
 

   
SSStttooonnnyyy   BBBrrrooooookkk   UUUnnniiivvveeerrrsssiiitttyyy   

 
 
 

 
 
 
 

   
   
   
   
   

The official electronic file of this thesis or dissertation is maintained by the University 
Libraries on behalf of The Graduate School at Stony Brook University. 

   
   

©©©   AAAllllll    RRRiiiggghhhtttsss   RRReeessseeerrrvvveeeddd   bbbyyy   AAAuuuttthhhooorrr...    



Essays in Financial Econometrics and Game Theory

A dissertation presented

by

Abhinav Anand

to

The Graduate School

in partial fulfillment of the

requirements

for the degree of

Doctor of Philosophy

in

Economics

Stony Brook University

August 2014



Stony Brook University

The Graduate School

Abhinav Anand

We, the dissertation committee for the above candidate for the

Doctor of Philosophy degree, hereby recommend

acceptance of this dissertation

Sandro Brusco – Dissertation Advisor
Professor, Department of Economics

Yair Tauman – Chairperson of Defense
Leading Professor, Department of Economics

Pradeep Dubey
Leading Professor, Department of Economics

Young Shin Kim
Assistant Professor, College of Business

This dissertation is accepted by the Graduate School

Charles Taber
Dean of the Graduate School

ii



Abstract of the Dissertation

Essays in Financial Econometrics and Game Theory

by

Abhinav Anand

Doctor of Philosophy

in

Economics

Stony Brook University

2014

My thesis analyzes two different topics: the estimation of the equity risk posed by the

“too-big-to-fail” banks during the period encompassing The Great Recession; and a

comparative analysis of the welfare effects of two different classes of affirmative action

mechanisms. Both essays have been inspired by a desire to analyze currently enforced

policies and to attempt to improve upon them by using arguments from Financial

Econometrics and Game Theory respectively.

The first essay is titled “The Empirical Foster-Hart Risk of the Global Banking

Stock Market” and measures how much equity risk the too-big-to-fail banks posed

on the common public during the recent financial crisis. In this essay I use an

“ARMA(1,1)-GARCH(1,1)-Normal Tempered Stable” statistical model to capture

the skewed and leptokurtotic nature of stock returns; and employ the “Foster-Hart

risk measure” to better capture equity risk. This union of sophisticated risk modeling
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with fat-tailed statistical modeling bears fruit, as the paper is able to measure the

equity risk during the Great Recession much more accurately than is possible with

current techniques.

The second essay is titled “Quotas versus Handicaps: A Game Theoretic Analysis

of Affirmative Action Policies in India”. In this essay, I analyze and compare the

Quota Policy — in which preference is given to the disadvantaged section of the pop-

ulace by reserving a certain fraction of jobs for them; and a hypothetical “Handicap

Policy” — in which the performance index of the disadvantaged is given an added

boost, by means of an additive handicap. After modeling this situation as a game,

I am able to conclude that on many important metrics of performance, Quotas and

Handicaps can be shown to be equivalent to each other.

Keywords : ARMA-GARCH model, Normal Tempered Stable Distribution, Foster-

Hart risk, Value-at-Risk (VaR), Average Value-at-Risk (AVaR), Too-big-to-Fail, Sys-

temically Important Financial Institutions (SIFI), Affirmative Action, Quotas, Hand-

icaps

JEL classification: C13, C22, C58, C65, C72, G32, I24, I28
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Chapter 1

The Empirical Foster-Hart Risk of the Global Banking
Stock Market
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Abstract

The measurement of financial risk relies on two factors: determination of riski-

ness by use of an appropriate risk measure; and the distribution according to which

returns are governed. Wrong estimates of either, severely compromise the accuracy

of computed risk. We analyze the equity risk of an equally weighted portfolio of

“Global Systemically Important Financial Institutions” by means of the “Foster-

Hart risk measure” — a new, reserve based measure of risk, extremely sensitive to

tail events. We model banks’ stock returns as an ARMA(1,1)-GARCH(1,1) process

with “Normal Tempered Stable” innovations, to capture the skewed and leptokur-

totic nature of stock returns. Our union of sophisticated risk modeling with fat-tailed

statistical modeling bears fruit, as we are able to measure the equity risk during the

Great Recession much more accurately than is possible with current techniques.

Keywords : ARMA-GARCH model, Normal Tempered Stable Distribution, Foster-

Hart risk, Value-at-Risk (VaR), Average Value-at-Risk (AVaR), Too-big-to-Fail, Sys-

temically Important Financial Institutions (SIFI)

JEL classification: C13, C22, C58, C65, C72, G32

1.1 Introduction

While accurate measurement of financial risk is an important theoretical problem

in its own right, the Great Recession, its attendant financial turmoil and the Eu-

rozone crisis have catapulted the subject into public limelight and highlighted its

centrality in framing economic policy. Following the Lehman Brothers’ bankruptcy

in September 2008, the Basel Committee for Banking Supervision (BCBS) formu-

lated a successor to the then Basel II regulatory framework. The new framework,

Basel III, insisted on additional capital requirements for Global Systemically Im-

portant Financial Institutions (G-SIFIs) whose failure or distress, it claimed, could

2



trigger instability in the global financial markets.1 In turn, the Financial Stability

Board (FSB) was set up in April 2009 which drew up an initial list of 29 G-SIFIs in

November 2011.2

The Basel Committee for Banking Supervision is not alone in its calls for addi-

tional capital requirements. Admati and Hellwig (2013) make equally strident calls

for increase in capital requirements for banks. Similar concerns have been echoed

by Lord Adair Turner, the Chairman of the Financial Stability Authority (FSA) of

the UK in numerous speeches and press briefings.3 All of these commentators make

the point that benefits accruing from the long term financial stability of the sys-

temically important institutions far exceed the modest risk of slow GDP growth in

the near future. Moreover, the moral hazard generated by governments’ intervention

by means of taxpayer funded bailouts has detrimental consequences for corporate

incentives and public finances. The recent nationalization and subsequent breakup

and restructuring of Dexia, a G-SIFI, highlights the importance of adequate capital-

ization, especially for those institutions that are exposed to positions whose riskiness

becomes more pronounced during systemic market downturns.

Motivated by such concerns, we aim to measure the equity risk posed by the

G-SIFI constituents accurately. To this end, we form an equally weighted portfolio

of G-SIFIs and track its normalized equity risk on the basis of banks’ stock market

returns from January 4th, 2000 to February 28th, 2014. This is done by means of three

different measures of risk — the currently in use Value at Risk (VaR) and Average

Value at Risk (AVaR) — and the recently discovered Foster-Hart risk. Foster and

Hart (2009) have proposed a new measure of risk which computes the minimal wealth

needed to avoid bankruptcy for an agent who faces an unknown sequence of risky

gambles. In addition, it enjoys many other highly desirable properties that experts

in the field deem “coherent” (Artzner et al., 1998).

1In Basel II, capital requirements for banks were uniform and not dependent on their systemic
importance.

2For the latest list of G-SIFIs, please visit http://www.financialstabilityboard.org/

publications/r_131111.pdf
3The FSA was dissolved from April 1st, 2013 and its duties were split between the Prudential

Regulation Authority, the Financial Conduct Authority and the Bank of England.
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We postulate an underlying standard Multivariate Normal Tempered Stable dis-

tribution for the returns of banking stocks and model their temporal dependence by

means of an ARMA(1,1)-GARCH(1,1) stochastic process. In order to establish our

skewed and fat-tailed distributional hypothesis’s contribution to statistical modeling,

we compare it with the standard specification of stock returns being distributed as

Multivariate Normal random variables.

We emphasize that we are not measuring the equity risk of G-SIFIs but in fact

measuring the equity risk posed by them on a hypothetical investor who holds the

equally weighted G-SIFI portfolio. We interpret this hypothetical investor to be in

fact, the common public, whose financial fortunes are closely tied with those of the

systemically important banks. A rise in the levels of portfolio risk implies a rise in

the financial risk faced by ordinary citizens. Although they hold the portfolio only

symbolically, they face the quite real consequences of savings lost due to financial

panic, which in turn is often fueled by risky G-SIFI behavior. In this sense, the

analysis in our paper is helpful in measuring the extent to which the common public

is exposed to equity risks. We also note that in order to measure the equity risk of

banks, one must have access to banks’ internal portfolios. However, our methodology

is flexible enough for banks’ in-house risk management teams to adapt and thus, our

approach can be used to compute equity risks of banks as well.

The rest of the paper is organized as follows. In section 2 we introduce the

theory behind risk measurement and statistical modeling. In section 3 we describe

the data used while the 4th section outlines the methodology employed to estimate

the statistical model and the portfolio risks. Section 5 describes the results and

interprets them. We outline our conclusions in section 6 and end the paper by

including additional results and tables in the Appendices.

1.2 Theory

Our research work is primarily based on two parallel strands of literature — one

from the theory of risk measurement and the other from the theory of time series

econometrics.
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In the following sections, we focus on some relevant aspects of both theories to

properly ground our work in the broader context of related literature and delineate

its main features.

1.2.1 Risk Measurement

An agent undertaking a gamble can win as well as lose. From a mathematical point

of view, the gamble being undertaken is just a random variable whose outcomes

are governed by a certain probability distribution. In case of a win, it stands to

reason that the agent’s wealth increases when compared to its pre-gamble level and

decreases in case of a loss.

Since gambles may be viewed as random variables, can we ascribe their riskiness

as stemming from the measures of dispersion (such as variance) associated with their

distributions? After all, economic agents, usually modeled as risk averse, prefer less

uncertainty to more uncertainty; and measures of dispersion quantify uncertainty.

Such was the reasoning behind Markowitz (1952) in which he identified standard

deviation as a proxy for risk of a gamble.

Prima facie, it may seem to be a good assumption. However, on closer inspection,

we can detect problems with this approach. Standard deviation, like other symmetric

measures of dispersion, penalizes equally, deviations from the mean — whether in the

positive direction (big gains) or in the negative direction (big losses). Risk, however,

has traditionally been more concerned with losses than with gains. Arguably, if an

agent is proposed a gamble in which there are two equally probable outcomes — a

gain of $50 or a gain of $150, while the standard deviation of this gamble would

be positive, its risk posed to the agent is exactly 0! It was observations such as

these that led Markowitz to propose semi standard deviation as a proxy for risk

(Markowitz, 1959).

While semi standard deviation — in which only losses are taken into account —

may seem to be an acceptable solution, it turns out that it is still not sophisticated

enough to capture the notion of risk. In fact, it may be proved that all dispersion

measures will fail to be true risk measures! (Rachev et al., 2008, 180–181)
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Having underscored the essential difference between measures of dispersion and

those of risk, we introduce some popular and well studied measures of risk in the

following sections.

Value at Risk

Value at Risk is defined as the minimum level of loss at some specified, sufficiently

high confidence level (say 99%) for a given time horizon (say one day). As an example,

if a gamble’s (or equivalently, portfolio’s) one day 99% VaR is $1 million, it means

that the gamble (portfolio) may lead to a loss of an amount more than a million over

a period of one day with probability 1%.4

Mathematically:

VaRα(g) := −inf{g : G(g) ≥ α} = −G−1(α)

where g is the gamble, G(·) is its payoff distribution (profit and loss distribution)

and (1− α) ∗ 100 is the (percentage) confidence level.5

Even though VaR has been embraced by financial institutions and regulators

alike, it suffers from some serious deficiencies as outlined here:

Deficiencies

1. Uninformativeness about losses beyond the VaR level : As an example, if an

agent has two portfolios — one in which 5% VaR is $1 million and another one

in which 5% VaR is $1 million and 4% VaR is $10 million, the risk of both

portfolios at 95% confidence level will be reported by VaR to be at the same

level of $1 million. This is clearly misleading as the risk posed by holding the

second portfolio is much higher than the first. In other words, VaR is silent

about losses posed beyond the VaR level.

4VaR was popularized by JP Morgan in the late 1980s and remains the most widely used risk
measure in the industry. In the mid 1990s, it was endorsed by the Basel Committee of Banking
Supervision (BCBS) to be used to compute capital reserves of financial institutions.

5The second right hand side follows if we assume that G is continuous.
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2. Failure to capture “Diversification Effects”: While it is a well understood phe-

nomenon in Finance that holding different assets in a portfolio leads to an

overall reduction in risk (often dubbed the “diversification effect”), one may

easily come across examples in which portfolio VaR risk exceeds that of the

sum of its constituents. That is,

VaRα(X + Y ) > VaRα(X) + VaRα(Y )

Due to these crippling defects, researchers have argued that VaR should in fact

be abandoned as a measure of risk altogether (Rachev et al., 2008, 185).

Average Value at Risk

A more sophisticated measure of risk is Average Value at Risk, which as the name

suggests, averages the different VaR values beyond the confidence level. Mathemat-

ically, it is defined to be the following:

AVaRα(g) :=

∫ α

0

VaRp(g)dp

α

The Average Value at Risk is much more informative about the losses beyond

the stipulated confidence level and enjoys highly desirable properties of “coherence”

(Artzner et al., 1998) that VaR lacks.

This definition solves both the problems described above with VaR — not only

is AVaR much more informative about levels of losses beyond the VaR level — it is

also able to capture the diversification effect!

While AVaR is a significant improvement over VaR, it still suffers from some

deficiencies that one cannot overlook.

Deficiencies

1. Dependence on arbitrary confidence levels : AVaR’s dependence on arbitrary,

ad hoc confidence levels is a serious shortcoming especially since prima facie it
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is not clear what ought to be “the best” confidence level.

2. Problems with backtesting : Due to the definition of AVaR, checking whether

reported AVaR values are reliable, requires complete knowledge of the struc-

ture of the tails of the distribution according to which portfolio returns are

assumed to be distributed. This is often very difficult to assess and therefore

reported AVaR numbers may not be easily verified for accuracy — thus posing

a significant challenge to regulators.

Foster-Hart Risk

Foster and Hart (2009) proposed a new measure that was based on considerations

of how much wealth an agent should possess, irrespective of her utility function, to

render a gamble “not risky”. They describe “gamble” to be any bounded random

variable with a positive expectation and a positive probability of losses:

E(g) > 0 and P(g < 0) > 0

In their setup, a sequence of gambles is offered to an agent with an arbitrary

utility function where the only assumption made about her is that she prefers non

bankruptcy to bankruptcy. The agent rejects the gamble if she deems it “too risky”,

otherwise, accepts it.

To further motivate the setup, we offer an example taken from Foster and Hart

(2009). Suppose the gamble being offered gives gains of $120 and losses of $100 with

equal probability:

g =

120 with probability 1/2

−100 with probability 1/2

Foster and Hart (2009) ask some important questions about the riskiness of this

gamble. Since the analysis is free of any knowledge of the agent’s utility, their

questions probe the extent to which the wealth of the agent, and her preference of

non-bankruptcy over bankruptcy influences her perception of risk inherent in the

gamble. For example, if the agent possesses wealth of $100 will she deem the gamble
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to be “too risky”? What if, her wealth is $1 million?

It is clear that in the first case, the agent’s probability of bankruptcy is 50% thus

making the gamble risky for her to play, while in the second instance, bankruptcy

probability is 0 and so the gamble is not risky at all! The central concern of Foster

and Hart (2009) is: “Is there a critical level of wealth below which playing the gamble

is risky but beyond which it is not so?”. The answer they provide is “Yes!” and the

critical wealth level is proven to be unique as well!

Foster-Hart Setup:

The agent’s wealth in time periods 1, 2, . . . is assumed to be W1,W2, . . . and it is

assumed that she is being offered, in each time period, gambles g1, g2, . . .

In each time period the agent may choose to either accept (play) the gamble

or reject (not play) the gamble. If she accepts, her wealth next period becomes

Wt+1 = Wt + g — where g is the realization of the gamble gt, while if she rejects

the gamble, her new wealth equals her old wealth, i.e., Wt+1 = Wt. The sequence of

gambles is assumed to be arbitrary.

For each offered gamble gt, Foster and Hart (2009) define a “Critical Wealth

Function” which computes a wealth level below which gambles are rejected and above

which, they are accepted. The use of such a function induces a “simple strategy”

that instructs the agent to accept a gamble only if her wealth is more than that

computed by the critical wealth function.

It is assumed that such critical wealth functions Q(g) satisfy two important cri-

teria:

1. Homogeneity : ∀ λ > 0, Q(λg) = λQ(g) — doubling gambles doubles wealth

requirement.

2. Distribution: The critical wealth function Q(·) is objective and depends only

on the distribution of the gamble.

Bankruptcy is defined to be the situation in which, ∃ t < ∞: Wt = 0 or if

lim
t→∞

Wt = 0. Likewise, non bankruptcy is satisfied if Pr
(

lim
t→∞

Wt = 0
)

= 0.
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A simple strategy sQ, based on a critical wealth function Q(·) guarantees no

bankruptcy (almost surely) if

1. For each starting wealth W1, and

2. For each sequence of gambles g1, g2, . . .

Pr
(

lim
t→∞

Wt = 0
)

= 0

The main result of Foster and Hart (2009) is that for each gamble g, there is a function

R(g) which such that a simple strategy sQ guarantees no bankruptcy iff Q(g) ≥ R(g).

Moreover, R(g) is the unique positive solution to the following equation:

E
(

log

[
1 +

g

R(g)

])
= 0

This function R(g) — the Foster-Hart risk measure — may be interpreted as the

minimal reserve needed to play the gamble g.

The Foster-Hart risk is more sophisticated than VaR and AVaR since it is free

from arbitrary confidence levels and time horizons; and because it guarantees non-

bankruptcy in the face of infinite, unknown sequences of arbitrary gambles. (In other

words, the confidence level is 100%, the time horizon is infinite and the risk measure

is coherent.)

In addition, the Foster-Hart risk enjoys many other highly desirable properties:

Selected Properties:

1. Homogeneity : ∀ λ > 0, R(λg) = λR(g) — doubling gambles doubles wealth

requirement.

2. Subadditivity : R(g+ h) ≤ R(g) +R(h) — a diversified portfolio has lesser risk

than that of a sum of its components.

3. First Order Monotonicity : If gamble g first order stochastically dominates

gamble h, R(g) < R(h).
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4. Second Order Monotonicity : If gamble g second order stochastically dominates

gamble h, R(g) < R(h).

5. Black Swan Proofness :6 For each gamble, Foster-Hart riskiness is at least as

high as the maximum loss L of that gamble.

6. Continuity : If a sequence of gambles converges and their maximum losses

converge, their Foster-Hart risks converge.

Foster-Hart Risk for General Gambles

In the Foster-Hart setup, gambles faced by the agent are assumed to have discrete

probability mass functions. As shown in Riedel and Hellmann (2014), the defining

equation for the Foster-Hart riskiness has no solution for many common continuous

distributions. However, the Foster-Hart risk may be consistently extended to such

continuous random variables, in which case it coincides with maximum loss L, i.e.,

R(g) =

r
∗ : E

(
log
[
1 +

g

r∗

])
= 0 if E

(
log
[
1 +

g

L

])
< 0

L if E
(

log
[
1 +

g

L

])
≥ 0

(1.1)

1.2.2 Statistical Modeling

While in principle, it is very simple to compute the Foster-Hart risk — after all

it is the unique positive solution to (1.1) — one presupposes that we have the

“correct” distribution according to which gambles are governed. After many decades

of investigation, researchers now agree that return distributions of various financial

instruments are skewed and leptokurtotic — more peaked around the mean, with fat,

Pareto-type tails.7 Hence, using recent findings from Kim et al. (2012) we choose

the “Normal Tempered Stable” distribution to model stock returns.

6Taleb (2007) has popularized the idea of “Black Swan Events” — extremely rare events which
nonetheless have tremendous, often incalculable impacts on society.

7For a comprehensive review, see (Haas and Pigorsch, 2009).
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A simple way to find out the distribution according to which the payoffs or

returns of a gamble are distributed is to simply assume that the observations are

the realizations of an unobservable underlying distribution — say Normal with some

mean and standard deviation — and use a standard statistical method (say Maximum

Likelihood) to choose from the class of Normal distributions, the one whose mean

and standard deviation produce the best “fit” to the data (are most likely).

An obvious shortcoming of this approach is that it is not clear how to choose

this underlying distribution. For example there is a substantially large body of

literature, starting from Alexander (1961), Mandelbrot (1963a), Mandelbrot (1963b),

Fama (1963), Fama (1965), Mandelbrot (1967) etc. that overwhelmingly rejects the

normal family as candidates for underlying data generating distributions. (For a

comprehensive literature review, see Haas and Pigorsch (2009).)

Subsequent work done after Mandelbrot and Fama confirmed and extended their

findings (Haas and Pigorsch, 2009).

In fact, as is discussed at length in Rachev and Mittnik (2000), a promising way

to model return distributions is through the family of Stable Distributions. Also,

Rachev et al. (2005b) shows that Stable Distributions provide better fits to real

world stock returns than the Normal Distribution.

Stable Distributions: A Short Primer

Normal distributions and Cauchy distributions are special cases of Stable distribu-

tions. In fact, just as Normal distributions emerge as limiting distributions as a

consequence of the classical Central Limit Theorem, Stable distributions emerge as

limiting distributions as a consequence of the Generalized Central Limit Theorem.

The Central Limit Theorem provides the conditions under which an appropriately

centered and normalized sum of iid random variables with finite variances converges

in limit to a Normal distribution. If however, the assumption of finiteness of vari-

ances is relaxed, as a consequence of the Generalized Central Limit Theorem, the

summands converge in limit to a non-Normal, Stable Distribution. (Any properly

centered and normalized iid sum will converge to a Stable Distribution — when the

12



variances of the random variables are finite, a subclass of Stable Distributions — the

Normal Distribution — is the limiting distribution.)

Other than the Cauchy and Normal distributions, however, the members of the

Stable family do not have closed forms for their density or distributions; and hence

researchers have to rely on their characteristic functions (≡ E(eiuX)).

Parametrization:

Just as the Normal distribution is parametrized by its mean µ and standard deviation

σ, the Stable family may be parametrized by the following four parameters: (Rachev

et al., 2005a)

1. α ∈ (0, 2]: The tail parameter. The closer α is to 0, the fatter and more

“non-Normal” the Stable distribution becomes.

(a) At α = 2, the distribution is Normal.

(b) For α ∈ [1, 2), the variance is infinite.

(c) For α ∈ (0, 1), both mean and variance are infinite.

2. β ∈ [−1, 1]: The skewness parameter. Positive values imply that the distribu-

tion is positively skewed.

3. σ > 0: The scale parameter. If finite, coincides with the standard deviation.

4. µ ∈ R: The location parameter. If finite, coincides with mean.

Stable distributions have polynomially decaying tails — much “fatter” than the

exponentially decaying tails of the Normal distribution:

lim
x→∞

Pr(|X| > x) ∝ x−α

However, when it comes to modeling stock return distributions, the infinite vari-

ance property of the Stable Distribution becomes undesirable since although returns

have a very large variance, it is not quite infinite (Rachev et al., 2008, 123). In
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order to solve this issue, the use of “Tempered Stable Distributions” is encouraged,

for which, all moments exist and are finite. It provides better fits to asset return

distributions than those provided by the Stable Distributions while retaining the

existence of moments of all orders (Bianchi et al., 2010).

Normal Tempered Stable Distribution:

The Normal Tempered Stable distribution is built upon the Classical Tempered Stable

(CTS) distribution with parameters α ∈ (0, 2) and θ > 0 with characteristic function:

φT (u) = exp

(
−2θ1−α

2

α
((θ − iu)

α
2 − θ

α
2 )

)
The Normal Tempered Stable Distribution is then defined as:

X = µ+ β(T − 1) + γ
√
Tε

where µ, β ∈ R, γ > 0, ε ∼ N (0, 1) and T is the Classical Tempered Stable subordi-

nator defined above with parameters α and θ. The CTS subordinator is independent

of the standard normal ε ∼ N (0, 1). The Normal Tempered Stable (NTS) random

variable so defined is denoted as X ∼ NTS(α, θ, β, γ, µ).

Standardization of the NTS random variable involves setting µ = 0, γ =
√

1− β2
(

2−α
2θ

)
with |β| <

√
2θ

2−α . This yields a standard NTS random variable with mean 0 and

variance 1 and is denoted as X ∼ std NTS(α, θ, β). We use the Multivariate Stan-

dard Normal Tempered Stable (MNTS) Distribution to model G-SIFI returns (see

Kim et al. (2012) for more details).

Modeling Temporal Dependencies

Real life asset return data exhibit autocorrelation and volatility clustering. Postulat-

ing an underlying return distribution, no matter how sophisticated, cannot capture

the dependence effect owing to the implicit assumption of observed returns being iid.

Hence the common assumption in the literature is the use of ARMA(1,1)-GARCH(1,1)
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stochastic process:

rt+1 = µt+1 + σt+1εt+1

where rt+1 denotes asset return at time t + 1, µt+1 is the conditional mean, while

σt+1 is the conditional standard deviation. εt+1 is the “innovation” and is a standard

random variable with 0 mean and unit standard deviation.

The conditional mean and the conditional standard deviation themselves are

modeled as autoregressive processes, giving rise to the nomenclature of ARMA (Au-

toregressive Moving Average) and GARCH (Generalized Autoregressive Conditional

Heteroskedasticity).

The ARMA(1,1) process for the conditional mean is:

µt+1 = c+ art + bσtεt

The GARCH(1,1) process for the conditional standard deviation is:

σ2
t+1 = d+ f(σtεt)

2 + gσ2
t

We assume the innovations to be standard Normal Tempered Stable, i.e.,

εt ∼ std NTS(α, θ, β)

1.2.3 The Monte Carlo Method

The Monte Carlo Method is a powerful computational technique that does not rely

on any closed form expressions and yields accurate results. Our specification of the

statistical model that generates asset returns enables us to put this method to use.

We achieve this in the following steps:

1. Specification of a Statistical Model for Asset Returns : We choose an ARMA(1,1)-

GARCH(1,1) with standard NTS innovations as the underlying data generating

process whose realizations are the observed values of asset returns.
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2. Estimation of Parameters of the Statistical Model : Choosing a set of observed

asset return data, we estimate all the parameters of the model using the Max-

imum Likelihood Estimation technique.

3. Generation of Scenarios from the Fitted Model : Once the underlying data gen-

erating process has been estimated, we generate a large number of independent

simulations from it. These are possible realizations of asset returns in which

the specifications of the (already estimated) statistical model are embedded.

4. Computation of Risk : On the basis of generated scenarios, we compute risk as

specified by its definition.

1.3 Data

We construct an equally weighted portfolio of the “Global Systemically Important

Financial Institutions” (G-SIFIs) — a list of 29 banks compiled by the Financial

Stability Board (FSB) in November 2013.8 Our data set comprises daily log returns

of 28 of these 29 banks from January 4th, 2000 to February 28th, 2014. The only bank

among the G-SIFIs that we exclude is Groupe BPCE since it is unlisted. We use

the S&P 1200 financial sector index (SGFS) to represent the global banking stock

market.

We exclude American non-business days from the data set, which gives us 3694

observations for each bank’s stocks. The two Chinese banks: Bank of China and

Industrial and Commercial Bank of China, the three Japanese banks: Mitsubishi

UFJ FG, Mizuho FG and Sumitomo Mitsui FG; and the French bank Group Crédit

Agricole do not have sufficient historical data to cover the entire sample period. For

all of these G-SIFIs, we backfill historical data using “Cognity” — a risk manage-

ment software developed by FinAnalytica Inc. using the one-factor bootstrapped

method. We note that our approach in dealing with missing data via backfilling and

substitution is consistent with recent literature (Kurosaki and Kim, 2013).

8The list of Global Systemically Important Financial Institutions as it stood in November 2013,
is presented in the Appendices.
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1.4 Methodology

Our methodology may be considered to be built up largely of two steps — the first

one being the estimation of the ARMA-GARCH and innovation process’s parameters

— and the second one being the generation of scenarios from the fitted model and

subsequent computation of risk by the Monte Carlo method.

1.4.1 Estimation Methodology

We model the log returns of banking stocks as an ARMA(1,1)-GARCH(1,1) stochas-

tic process:

rit+1 = µit+1 + σit+1ε
i
t+1

µit+1 = ci + air
i
t + biσ

i
tε
i
t

(σit+1)2 = di + fi(σ
i
t)

2 + gi(σ
i
tε
i
t)

2

The index i ∈ {1, 2, . . . , 28} runs through the list of banks in the G-SIFI list.

εt = [ε1t , ε
2
t , . . . , ε

28
t ]T is the multivariate innovation. We choose the “Multivariate

Normal Tempered Stable” (MNTS) distribution to model the innovations’ process

since as demonstrated in Kim et al. (2012), it captures the skewed, interdependent

and leptokurtotic nature of real life stock returns.

The NTS distribution has two tail parameters α and θ and one skewness param-

eter β. Following the example of Kurosaki and Kim (2013), we represent G-SIFI

stocks by the S&P 1200 financial index (SGFS) and assume common tail parameters

α and θ for G-SIFIs’ NTS marginals and estimate them from the SGFS index. This

leaves the skewness parameters {βi}28
i=1 to be calibrated for each bank in the portfolio.

We follow Kim et al. (2012) in joining NTS marginals by means of their covariance

matrix into MNTS and note that such a method is computationally feasible even in

very high dimensional settings (Kurosaki and Kim, 2013). For comparative purposes,

we also estimate an ARMA(1,1)-GARCH(1,1) model with multivariate Normal in-

novations. Computation of the covariance matrix for both MNTS and Multivariate
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Normal innovations is done on the basis of the most recent 250 days of daily returns.9

The reason for explicitly modeling the dependence between various banking stocks’

innovations by means of their covariance matrix is because at each time period it is

unreasonable to assume that movements in the stock price of one banking stock are

unrelated to those of another G-SIFI. Hence while there is no temporal correlation

between innovations (they remain an iid process with 0 mean and unit variance),

they do depend on each other by means of a covariance matrix.

For more details on the estimation of parameters of the MNTS distribution, we

refer the reader to Kim et al. (2012).

1.4.2 Scenario Generation and Computation of Risk

Using the above methodology, we can estimate the parameters of both statistical

models — ARMA(1,1)-GARCH(1,1) with MNTS (AGMNTS) and Multivariate Nor-

mal (AGMNormal) innovations respectively. We then employ the estimated models

to compute the time series of risk.

We use a 1250 days’ forward moving time window to generate such a series.10

Our first time window starts at January 4th, 2000 and ends at October 18th, 2004.

For this time window, we estimate all parameters of the AGMNTS and AGMNor-

mal model, thereby automatically estimating all parameters of the G-SIFI portfolio

which in turn, is distributed as a one dimensional standard Normal Tempered Sta-

ble; and standard Normal random variable respectively (Kim et al., 2012). Once all

parameters are estimated, risk is computed corresponding to that particular time

window and the time window is then shifted one period ahead. Using such a moving

time window entails estimation of model parameters for 2445 different time windows

— each window shifted one trading day to the right of its preceding one.

We then generate a large number, N (= 106, in our paper) of scenarios for

the one dimensional portfolio log return one period ahead: {rport,1
t+1 , . . . , rport,N

t+1 } for

9There are about 250 trading days in a typical year. Hence our choice of a 250-day window
corresponds to the most recent one year of return data for computing the covariance matrix.

101250 daily returns correspond to about five years of financial data, since each year has about
250 daily returns.
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both AGMNTS and AGMNormal statistical models.11 These N simulations are the

realizations of the one dimensional return distribution of the G-SIFI portfolio which

is distributed as Normal Tempered Stable and Normal random variable respectively.

We note that the distribution of the portfolio remains a one dimensional NTS and

Normal respectively for any linear combination of individual stock returns.

On the basis of the above generated scenarios, we compute three different mea-

sures of risk for each specification of a statistical model (AGMNTS and AGMNor-

mal): Value at Risk (VaR), Average Value at Risk (AVaR) and Foster-Hart Risk

(FH). The time horizon for both VaR and AVaR is taken to be one day.

Finally, we update the conditional means and conditional standard deviations of

the two statistical models for the next period and move the time window one period

forward after which we re-estimate all parameters of AGMNTS and AGMNormal

models, generate scenarios, compute risks and again move the time window one

period ahead.

1.5 Results

We divide our description of results in three broad categories:

1. Tests of the validity of the Statistical Model (AGMNTS versus AGMNormal).

2. Analysis of the time series of portfolio risk (FH risk versus VaR and AVaR).

3. Backtesting of the computed VaR and AVaR estimates.

1.5.1 Tests of Statistical Model Validity

In order to test which statistical model provides a better fit to the observed data, we

rely on the Kolmogorov-Smirnov (KS) test, which is a goodness of fit based test that

compares empirical distributions to a specific, hypothesized distribution. We test the

11As is proved in Kim et al. (2012) if each stock return follows the NTS and Normal distribution
respectively, the portfolio return — a linear combination of each stock return — also follows the
NTS and Normal distribution respectively.
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standardized innovations of each banking stock against distributional hypotheses of

standard Normal Tempered Stable (NTS) and standard Normal random variables.

We first carry out this exercise on the S&P Global 1200 (SGFS) index which we

have assumed, represents the global banking stock market.

SGFS Index: NTS versus Normal

We fit the SGFS log return series to our standard ARMA-GARCH with Normal

and NTS innovations time series. The empirical densities of the residuals of the

ARMA(1,1)-GARCH(1,1)-Normal and ARMA(1,1)-GARCH(1,1)-NTS stochastic pro-

cesses are then compared with those of standard Normal and standard NTS densities

respectively.
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Figure 1.1: Comparing the empirical density of the residual to that of standard normal

The SGFS log return series is leptokurtotic and hence the standard normal dis-

tributional hypothesis is not adequate. We can check this further by plotting the

quantiles of the empirical distribution of residuals and comparing it to the quantiles

of standard Normal and standard NTS distributions respectively.

If the QQ plot is (almost) a 45◦ straight line, it implies that the quantiles of the

empirical distribution are (almost) the same as that of the hypothesized distribution.
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Figure 1.2: Comparing the empirical density of the residual to that of standard NTS

Again, due to leptokurtosis, Normal quantiles are a bad fit — especially in the tails.
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Figure 1.3: QQ plots of empirical and standard Normal distribution
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Figure 1.4: QQ plots of empirical and standard NTS distribution

The Multivariate Case: AGMNTS versus AGMNormal

Based on 2445 daily estimations of the AGMNTS and the AGMNormal models, we

apply the Kolmogorov-Smirnov test 2445 times for each banking stock. Table 1.1

reports the number of days on which NTS and Normal assumptions for each banking

stock are rejected at 0.5, 1, 5 and 10% significance levels respectively.

For all of the 28 banks in the G-SIFI list, and for all of the above significance

levels, the NTS hypothesis outperforms the Normal hypothesis. This is true not just

for the higher significance levels of 10% and 5% but also for the more conservative

significance levels of 1% and 0.5%. As Table 1.1 points out, not only does the NTS

hypothesis outperform the Normal, it does so quite overwhelmingly. Taking a few

examples, even at the relatively high significance level of 10%, for the banks Barclays,

BNP Paribas, Group Crédit Agricole, HSBC, Unicredit Group, Standard Chartered

and Mitsubishi UFG, the NTS hypothesis, from a total of 2445 estimations, is rejected

only 65, 13, 3, 11, 90, 12 and 5 times respectively. The corresponding figures for the

Normal distribution are 1967, 1922, 1624, 2421, 1616, 1635 and 1976 respectively.

At the opposite end of spectrum, with a very small significance level of 0.5%, the

banks mentioned above, under the NTS hypothesis, are rejected only 3, 0, 1, 0, 6,
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1 and 1 times (out of a possible 2445 estimations) respectively. Again, the Normal

hypothesis performs much worse comparatively, with corresponding rejection figures

being 8, 598, 126, 303, 308, 477 and 118 respectively.

For the other banks also, the NTS hypothesis is rejected far fewer times than the

Normal hypothesis at all significance levels. The overall result is that the Normal

Tempered Stable distributional hypothesis provides much better fits than the Normal

distribution. Such overwhelming evidence in our opinion, provides strong support in

favor of the AGMNTS model over the AGMNormal for stock returns for G-SIFIs.

1.5.2 Portfolio Risk Analysis

Before analyzing the time series of the portfolio equity risk for the G-SIFIs, we briefly

discuss the behavior of the (log) return time series of the Standard and Poor’s Global

1200 Financial Sector (SGFS) index.

We plot the (log) return time series of the index and superimpose on it, an

HP filtered time series of the index returns with λ = 20000. As is clear from the

SGFS time series graph, there are two sharp downturns in the index returns — one

during the first quarter of 2008 — corresponding to the collapse and eventual sale

of Bear Stearns to JP Morgan Chase; and a second, even more pronounced fall in

the final quarter of 2008 — corresponding to the bankruptcy of Lehman Brothers

in September 2008. A second, though less severe, phase of large negative returns

occurred in the second quarter of 2010, with the onset of the Greek crisis, Standard

and Poor’s downgrade of Greek debt ratings to junk bond status (April 27th) and the

subsequent nationwide protests against austerity policies in Greece. Finally there is

another heavy downslide in the third and fourth quarters of 2011, coinciding with

Standard and Poor’s downgrading of US federal government in August 2011; the

bankruptcy of Dexia, an ex-G-SIFI, in October 2011; and the controversial Greek

announcement of a referendum on the Eurozone debt deal in November 2011.

A qualitatively similar, though not identical behavior is exhibited by the con-

stituent banks of the index. For ease of comparison, we have included the log-return

time series of four of the 29 such banks. These are: Barclays (UK) and Credit Suisse
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Figure 1.5: Log-returns of the S&P Global 1200 Financial (SGFS) index (λ = 20000 for the HP
filter)

(Switzerland) from the Euro area; JP Morgan from the US; and Mitsubishi UFG

from Asia. While all of these banks show sharp downturns in the last quarter of

2008 with the collapse of Lehman Brothers, the two European banks show much

heavier losses from the Eurozone crisis than their American and Asian counterparts,

as should be expected.

Clearly, such sharp downturns amplified the equity risk posed by banks on their

shareholders dramatically. Our portfolio of G-SIFI stocks also exhibits these obser-

vations. In light of this information, we discuss the time series of our G-SIFI portfolio

equity risk below.

In order to track the risk profile of our equally weighted portfolio of G-SIFI stocks,

we plot the time series of portfolio risk according to three different risk measures —

VaR, AVaR and FH — assuming an underlying AGMNTS model. For VaR and

AVaR, we compute risk for 90%, 95% 99% and 99.5% confidence levels.

By definition, the risk according to VaR and AVaR increases with increase in

confidence levels.12 Again, in keeping with the definition, AVaR for a given confidence

12Graphs corresponding to variation of VaR and AVaR with confidence levels is presented in the
Appendices.
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Figure 1.6: Log-returns of some G-SIFIs (λ = 20000 for the HP filter)
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Figure 1.7: AVaR versus VaR at 99.5% confidence level under the AGMNTS model
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level is more than the corresponding VaR.

Theory suggests that the Foster-Hart risk should be more than both VaR and

AVaR at any confidence level. This is so because the risk as measured by Foster-

Hart is Black Swan proof — i.e., even if the maximum loss possible were to occur

(with howsoever small a probability) wealth levels computed by means of the Foster-

Hart riskiness will always prove adequate since it is always at least as large as the

maximum loss. Such a property is not possessed by either VaR or AVaR. Indeed even

for very high confidence levels, the probability that a large loss outstrips wealth levels

computed via VaR or AVaR — an event that results in bankruptcy — is positive.
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AGMNTS Model: Foster-Hart versus AVaR versus VaR
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Figure 1.8: FH versus AVaR and VaR at 99.5% confidence level. All series have been smoothed by
using the Hodrick-Prescott filter with λ = 20, 000.

This is exactly what we observe: a comparative study of risk profiles as measured

by VaR, AVaR and FH risk shows that not only is the FH risk always more than

that according to VaR and AVaR but in fact, the degree of divergence between the

two is much higher during times of crises. While it is true that during the worst of

the financial crisis (March 2008 – Bear Stearns’s sale to JP Morgan and September

2008 – Lehman Brothers’ bankruptcy) VaR and AVaR are able to pinpoint the equity

risk posed by, and reflected in, abysmal stock market performance; and exhibit local
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maxima at the aforementioned events, the corresponding FH risk puts the equity

risk value to be much higher.

Such a result goes on to show that equity risk, as computed by even the most

sophisticated of statistical models (ARMA(1,1)-GARCH(1,1)-MNTS process) and

the most widely used risk measures in the industry today (VaR and AVaR) severely

underestimated the equity risk posed during the financial crisis! In fact, it also

implies that if the banks’ in-house risk management groups, based on the knowledge

of their own internal portfolios, were to use VaR and AVaR as risk measures to

compute critical reserves, their computations would have proved far from adequate.

However, without much difficulty, the internal risk management teams of banks

can adopt our methodology and on the basis of their bank’s portfolio, come up

with capital reserve computations that are much more accurate, robust, reliable and

sensitive to information embedded in the stock market.

1.5.3 Backtesting

In order to evaluate the accuracy of forecasted VaR and AVaR according to the

AGMNTS and AGMNormal statistical models, we perform backtesting using the

Christofferson Likelihood Ratio (CLR) test (Christofferson, 1998) and the Berkowitz

Likelihood Ratio (BLR) test (Berkowitz, 2001). We check the marginal VaR of the

28 G-SIFIs by reporting the p-values of the CLR test; and check the VaR of the

equally weighted portfolio by both the CLR and the BLR tests. Finally, we analyze

our backtests further using a multi-period framework.

Marginal Risk Backtesting

The CLR test has three parts: the CLR unconditional coverage test (‘uc’),13 the

CLR independence test (‘ind’); and the CLR joint test of coverage and independence

(‘cc’). We report the p-values of 28 marginal CLR tests in Table 1.2, and report how

many of them are below 5% and 1% respectively.

13This test is also called the “proportion of failures” test in Kupiec (1995).
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Note that a p-value smaller than 5% (1%) means being rejected by the correspond-

ing 95% (99%) confidence level CLR test. We conclude the following: while both uni-

variate ARMA(1,1)-GARCH(1,1)-Normal and ARMA(1,1)-GARCH(1,1)-NTS mod-

els perform well for VaR backtesting at the 95% level, the non-Gaussian model over-

whelmingly outperforms the Gaussian model for both 99% and 99.5% levels of VaR

backtesting — especially in CLR uc and cc tests. For the Gaussian model, more than

24 out of the 28 marginal 99.5% VaRs; and more than 21 out of 28 marginal 99%

VaRs do not pass the 95% confidence level CLR uc/cc test, which strongly indicates

that the univariate ARMA(1,1)-GARCH(1,1)-Normal model should not be used to

measure daily tail risk. For the ARMA(1,1)-GARCH(1,1)-NTS model, the number

of rejections for the 95% confidence level CLR tests is less than 6 for the 99.5% VaR;

and less than 5 for the 99% VaR.

Therefore, we conclude that on the basis of all three CLR tests, there is strong

evidence in favor of the VaRs computed under the non-Gaussian statistical model.

We note that our marginal VaR and AVaR backtesting results are broadly con-

sistent with those obtained in recent literature (Kurosaki and Kim, 2013).

Portfolio Risk Backtesting

We construct an equally weighted portfolio of the 28 G-SIFI stocks and apply to

it, the same CLR tests to check if our estimations of portfolio VaR are reasonable.

Since the portfolio risk estimation is based on the 28 dimensional joint distribution

model, this test actually examines the reliability of the AGMNormal and AGMNTS

models. This is in contrast to the previous marginal VaR backtests for each G-SIFI

constituent which relied only on univariate Normal and NTS distributions.

Table 1.3 reports the p-values of CLR tests, based on which we conclude that

the AGMNTS model is much more reliable than the AGMNormal model in the CLR

uc/cc tests; and while its p-values are smaller than that of the AGMNormal model in

95% and 99% VaR independence backtests, the AGMNTS model is still able to pass

the CLR independence test. We note that this result is consistent with the backtests

of the individual G-SIFI constituents.
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Table 1.3: p-values of CLR test for portfolio VaR

99.5% VaR
uc ind cc

AGMNormal AGMNTS AGMNormal AGMNTS AGMNormal AGMNTS
0.0000 0.6076 0.3868 0.6873 0.0000 0.8082

99% VaR
uc ind cc

AGMNormal AGMNTS AGMNormal AGMNTS AGMNormal AGMNTS
0.0006 0.1931 0.7889 0.3710 0.0027 0.2873

95% VaR
uc ind cc

AGMNormal AGMNTS AGMNormal AGMNTS AGMNormal AGMNTS
0.0178 0.0961 0.3086 0.2941 0.0360 0.1445

Table 1.4: BLR tail test for the equally weighted G-SIFI portfolio

Tail probability 0.5% 1% 5%
Model AGMNormal AGMNTS AGMNormal AGMNTS AGMNormal AGMNTS

Statistics value 27.7675 0.497 27.0884 1.6883 26.3461 2.9099
p-value 0.0000 0.7800 0.0000 0.4299 0.0000 0.2334

In addition to the CLR tests, we also perform the BLR tail test to examine the

reliability of the estimated AVaR. In Table 1.4, we backtest for three levels of tail

probability: {0.5%, 1%, 5%}. As expected, the AGMNormal model cannot pass any

of BLR tail tests; while the AGMNTS model generally exhibits satisfying p-values,

thereby indicating the validity of AVaR estimations from the non-Gaussian model.

As a final exercise in backtesting, we divide the entire time series into five equally

spaced periods as follows:

1. 2004–2006: from 11/02/2004 to 09/12/2006

2. 2006–2008: from 09/13/2006 to 07/23/2008

3. 2008–2010: from 07/24/2008 to 06/03/2010

4. 2010–2012: from 06/04/2010 to 04/13/2012

5. 2012–2014: from 04/16/2012 to 02/24/2014
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Table 1.5: Multi-period p-values of CLR test for portfolio 99% VaR

uc ind cc
AGMNormal AGMNTS AGMNormal AGMNTS AGMNormal AGMNTS

2004-2006 0.6161 0.6859 0.6982 0.7965 0.8180 0.8913
2006-2008 0.0021 0.0915 0.3497 0.5596 0.0058 0.2032
2008-2010 0.0061 0.1903 0.4352 0.6044 0.0172 0.3710
2010-2012 0.3600 0.6161 0.6507 0.6982 0.5937 0.8180
2012-2014 0.9493 0.6859 0.7469 0.7965 0.9473 0.8913

We then repeat the CLR test on the 99% VaR period by period; and illustrate

the results in Table 1.5. We observe that the AGMNormal model completely fails

the CLR uc/cc tests in the second and third periods: from September 2006 to June

2010 — roughly the pre-crisis and crisis periods. During the same periods, while the

AGMNTS model has relatively small p-values, it definitely outperforms the Gaussian

model. For example, in the CLR cc test, the AGMNTS model has a p-value of 0.2032

in the pre-crisis period, and 0.3710 in the crisis period; while the AGMNormal model

has corresponding p-values as 0.0058 and 0.0172 respectively. Hence, based on the

multi-period CLR backtesting results, risk computations under the AGMNormal

model are reliable only in periods when the market is relative peaceful; and cannot

be trusted during periods of high volatility. On the other hand, due to its capacity to

capture extreme tail risk, the AGMNTS model can provide accurate risk estimations,

even in volatile periods.

We do not perform backtesting for the Foster-Hart risk measure because conven-

tional backtesting techniques cannot be applied to the FH risk estimates. Since the

Foster-Hart risk estimates are at least as high as the maximum realized loss of the

empirical portfolio distribution, there are no “exceedances” — instances in which the

observed losses are larger than the risk estimates. We note that devising backtesting

procedures for the Foster-Hart risk is very much an open problem.

32



1.6 Conclusions

In this paper, we compute the equity risks posed by the Global Systemically Impor-

tant Financial Institutions (G-SIFIs) which constitute a very important part of the

global financial system and are its most critical component from the point of view

of maintenance of overall stability of the global financial markets.

In order to illustrate that current methods of risk assessment underestimate the

real equity risk posed by the G-SIFIs, we employ the Foster-Hart risk measure. The

Foster-Hart risk measure is a recent breakthrough in the field of risk measurement

which is based on the observation that irrespective of utility functions, the risk posed

to each agent depends critically on the amount of wealth she needs to possess in order

to stave off bankruptcy.

In order to facilitate this exercise, we assume that stock returns of G-SIFIs are

distributed according to the ARMA(1,1)-GARCH(1,1) stochastic process whose in-

novations are distributed according to the Multivariate Normal Tempered Stable

distribution — from a family of tempered α-Stable distributions with finite mo-

ments. Use of such a sophisticated distribution for the innovations process leads to

much better statistical fits as compared to those that rely on standard Normal based

techniques. Specifically, the superiority of the MNTS to the Multivariate Normal

statistical model has been demonstrated for our dataset by both in-sample (the KS

test) and out-of-sample tests (the CLR and BLR test).

We show that during the Great Recession, equity risks posed by the G-SIFIs were

much higher than that suggested by conventional measures of risk such as VaR and

AVaR. The difference between the FH risk and that computed by VaR and AVaR is

not static — it evolves with time and is the most pronounced during times of high

volatility and during times of crises.

Our findings have important policy implications. Regulators looking to measure

equity risk posed by banks on the financial system as a whole might end up under-

estimating it if they rely on VaR and AVaR. To accurately assess the risks posed,

our approach, based on the Foster-Hart measure, is an improvement over current

methodologies. Another application of our paper is in the area of critical reserve
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computations for banks. Current methods endorsed by regulators for computation

of reserve requirements are not necessarily adequate and may be improved upon by

employing the Foster-Hart measure of risk.

This paper should prove useful to the banking industry as well, since the banks’

in-house risk management teams can adapt our methodology relatively easily and

based on the knowledge of their internal portfolio composition, may track their own

equity risks much more accurately.

34



Chapter 2

Quotas versus Handicaps: A Game Theoretic Analysis of
Affirmative Action Policies in India
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Abstract

We analyze the affirmative action policy implemented in India, the Quota Policy,

in which preference is given to the disadvantaged section of the populace by reserving

a certain fraction of positions for them. We compare it to a hypothetical policy called

the “Handicap Policy” in which the performance index of the disadvantaged is given

an artificial boost instead, by means of an additive handicap.

We conclude that if the degree of asymmetry between the disadvantaged and the

rest is not too high, on many important metrics of performance of affirmative action

policies, Quotas and Handicaps can be shown to be equivalent to each other.

Keywords : Affirmative Action, Quotas, Handicaps

JEL classification: I24, I28

2.1 Introduction

Affirmative Action policies are a means of reduction of socio-economic inequalities

in a society by favoring historically disadvantaged, or discriminated against groups

over the rest of the population by granting them special opportunities to help them

compete on an equal footing with the general populace. Governments the world over

implement many varieties of affirmative action techniques in order to combat social

inequalities. There are however, two main ways in which affirmative action policies

are implemented — the “Quota” policy — in which a certain fraction of positions

are reserved for those hailing from disadvantaged backgrounds; and the “Handicap”

policy, in which the performance indices of the disadvantaged are given “handicaps”

or additional points to help them compete with the rest of the population. For

example, India enforces the Quota policy to ensure that the backward castes are

guaranteed representation in government jobs, college admissions etc.1 The Peo-

ple’s Republic of China, on the other hand, favors the “handicap” policy by giving

1Among other nations, Romania and Pakistan also use quotas to ensure Roma people’s and
women and non-Muslim citizens’ representation in government jobs and universities respectively.
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grade boosts (“bonus points”) to minority students who take the National Higher

Education Entrance Examination (gaokao).

Supporters of affirmative action policies claim that it is unfair to assume that

those who have been victims of centuries of systematic discrimination can compete

for scarce resources in the economy on an equal footing; and that it is the moral

obligation of modern governments to help by leveling the playing field. However,

such opinions are not shared by all. Detractors point out the negative effects on

incentives that such policies may have on those belonging to the general population,

claiming that it is in fact, unfair for the progeny of the advantaged to be penalized

for the excesses of their forefathers’ era.

Moral and philosophical arguments aside, our task in this paper is to probe the

extent to which the economic decision making of agents — both disadvantaged and

otherwise — is affected by different implementations of affirmative action policies.

Indeed, the question that we are most interested in asking is “Is there a most efficient

way in which we could implement affirmative actions?”, or, in absence of a clear

answer to the previous question, the following, more modest inquiry: “Among some

affirmative action policies, can we compare them in terms of efficiency and rank

them from most to least efficient?” While we define what we mean by “efficient”

more precisely in a later section, we use these natural question to delineate the scope

and limits of our study.

We use a game theoretic model for studying this problem. We envisage a situation

in which a large number of students take a competitive exam. The top few rankers

of this exam will be awarded highly coveted jobs. However, there are two sections

of students who differ in their “test-taking skills”. The government can choose to

intervene and help those with lower test-taking skills by implementing some forms

of affirmative action; or it may choose to refrain from affecting the outcome of the

competition. The students may choose to put in full effort to prepare for the exam-

ination or may decide to not study at all if they feel that they have no chance of

winning the job. The reason why we use a game theoretic model is because a stu-

dent’s decision to study hard or slack off may influence all other students’ decisions

— imparting the problem a classic game theoretic flavor. As an easy illustration
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consider the case of only two students — one of them being disadvantaged. If the

disadvantaged student works hard, she gets a score between 30 and 60 out of a 100;

while in case of slacking off, she gets a score between 0 and 30. Imagine that the

other student obtains between 65 and 80 in case she shirks; and gets between 81

and 100 in case she studies hard. Having access to this information will compel the

disadvantaged student to slack off, since she can never win the job no matter what,

which decision in turn will make life easy for the advantaged student who will then

shirk too. The equilibrium of the game will entail both students shirking — the

disadvantaged getting a score between 0 and 30 — while the other student scoring

between 60 and 80 and winning the job. Clearly, this is a “bad equilibrium” but can

we institute changes, namely by some forms of affirmative action so as to nudge the

players’ behavior towards a “better” equilibrium? This is the type of analysis we

carry out in our paper.

The rest of the paper is organized as follows: section 2 discusses related work

done in this area; the third section describes the basic model while section 4 formally

introduces affirmative action policies. In section 5, we lay out general procedures that

governments may use to “shop” for affirmative action policies they prefer most and

formally compare different policies on the basis on some natural criteria. Section 6

concludes the paper.

2.2 Related Work

While there have been many attempts to understand the trade-offs involved between

efforts and incentives in the presence of affirmative action policies that favor a partic-

ular group of people, the paper that comes the closest in spirit to our work is Brent

R. Hickman (2010) in which explicit comparisons between the different affirmative

action mechanisms like Quota, Handicap and No Intervention are carried out.2 Like

our model, the author studies the game induced by the imposition of the partic-

ular affirmative action policy under question and studies equilibrium allocational

2In Brent R. Hickman (2010), the No Intervention policy is referred to as the Color Blind policy,
and the rule for the Quota system is a little different from the one that we use.
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outcomes.

However, our work is significantly different from the one in Brent R. Hickman

(2010). This is because Brent R. Hickman (2010) studies affirmative action mech-

anisms in context of American college admissions. Hence the objects for which the

students (players) compete are heterogeneous. The Quota policy considered in that

paper is that of “simple” quotas, in which a certain section of positions are reserved

for the backward section of society and they compete among themselves for only

those reserved positions. Also, there is no scarcity in the model — all players in the

game are guaranteed some position at some college.

All these features are different for the problem we are trying to tackle. In our

model students compete for a set of jobs that are identical, though highly valued by

all of them. The rules of the Quota game are also different. While there is a certain

fraction of jobs reserved for those coming from the backward sections of the society,

for the rest of the unreserved jobs, there is open competition between all players,

regardless of which section of society they hail from. This is how the quota rule is

currently enforced in India. Also, there is acute scarcity in our model in that the

measure of available jobs is much smaller than the measure of those competing for

them.

All these differences, in our opinion, radically change the game that is induced

and hence the behavior of players in equilibrium.

2.3 The Basic Model

Our model reflects the situation in which there are a large number of students taking

a competitive examination. The top rankers in this examination will be awarded

highly coveted jobs, the measure of which is very low compared to the measure of

students taking the exam.

We first analyze the basic game in which there is only one group of students and

then introduce affirmative action policies within two groups of disparately skilled

population of students by means of quotas and handicaps.
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2.3.1 The Game

We first model the basic situation in which there is only one group of students, all

of whom may have different “test taking abilities”. We postulate the existence of a

continuum of players located uniformly in the interval [0,1]. The location z ∈ [0, 1] of

a player completely specifies her test-taking abilities. Hence a player situated close

to 1 has a higher test-taking skill than that of a player located close to 0.

Each player is equipped with two possible actions denoted by e(z) ∈ {0, 1}, with

‘0’ standing for “shirking” or putting no effort in preparing for the examination,

while ‘1’ stands for “working”, or exerting full effort. We also assume that exerting

full effort is costly for the student and she incurs a constant disutility δ > 0 when

e(z) = 1. On the other hand, not exerting any effort is assumed costless and there

is no disutility associated with shirking.

We assume that when students (players) exert full effort, their scores in the exam

are higher than if they were to exert no effort. Each player receives a final score on

the competitive test which is dependent on whether she shirked or worked. If she

shirked, her score is governed by a random variable s(z, 0) while in case of working,

the score is given by s(z, 1). We assume that the score functions’ structure is as

follows:

s(z, 0) ∼ U[f(z), f(z) + η]

s(z, 1) ∼ U[g(z), g(z) + η]

where U(·) is the uniform distribution, η is an exogenous positive constant and f(·)
and g(·) are increasing functions of z.

This situation may also be represented pictorially in Fig. 2.1.

The students compete for a scarce set of jobs of measure J < 1 all of which are

homogeneous and are valued sufficiently highly by the players at v > 0. The jobs are

to be allocated to measure J top rankers in the competitive examination. We refer

to the set of winners as W .

Based on the description of the game above, the payoffs of the players may be
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Figure 2.1: The Basic Game

written as:

uz(e(z), e(−z)) =

uz(0, ·) = v Pr(z ∈ W )

uz(1, ·) = v Pr(z ∈ W )− δ

Here, in spirit of the notation s−i, we use e(−z) to denote the action profile of all

players other than z.

We can further understand the term Pr(z ∈ W ) by describing it in terms of the

score function of the student z:

Pr(z ∈ W ) = Pr{s(z, ·) ≥ s}

where s is the cutoff score — the lowest score at which one gets a job.

Nash Equilibrium: The Nash Equilibrium of the above game is a threshold equi-

librium in which players beyond a certain cutoff level of skill exert full effort and win
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Figure 2.2: Nash Equilibrium of the Basic Game

from the set of jobs J ; while the rest shirk:

e(z) =

0 ∀ z < z∗

1 ∀ z ≥ z∗

This may be represented by Fig. 2.2.

It is easy to check that this threshold strategy is indeed a Nash Equilibrium by

observing that those beyond the critical threshold have a positive expected payoff

when exerting full effort and 0 payoff when shirking; while those with z < z∗ have a

negative expected payoff while exerting full effort and 0 payoff when shirking. The

student at z = z∗ is the one who is indifferent between shirking and working.

The Nash Equilibrium may be characterized by two different equations — the

critical player z∗’s payoff equation and the second condition of the measure of winners

being equal to the measure of jobs.
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The Critical Player’s Condition:

uz∗(1, e(−z∗)) = v Pr(z∗ ∈ W )− δ = 0

⇒ Pr(s(z∗, 1) ≥ s) =
δ

v

The equation stems from the fact that the critical player must be indifferent

between working and shirking in equilibrium.

Measure of Winners Equals the Measure of Jobs∫ 1

z∗

Pr(s(z, 1) ≥ s)dz = J

We note that essentially, the above condition is the Law of Large Numbers.

2.4 Affirmative Action Policies

Now we introduce two different groups of players — the αs and the βs who differ

from each other in terms of their test-taking skills. The βs are assumed to be hailing

from the disadvantaged section of the society which fact is reflected in their relatively

lower test-taking skills.

We assume that the source of difference between the two sections of society is

captured by an exogenous “degree of asymmetry” ∆ > 0.

While we assume that the players have the same score functions, valuations over

jobs and the same disutility from exerting full effort, we posit that their test-taking

skills are dependent on ∆ as follows:

zβ ∈ [0, 1]

while

zα ∈ [∆, 1 + ∆]

We represent this pictorially in Fig. 2.3.
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Figure 2.3: The Affirmative Action Game
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As should be expected, the larger the degree of asymmetry between the two classes

of players, the larger will be the difference in relative test-taking abilities between

the two sections of the populace. We divide our analysis of affirmative action policies

in three different classes: the “No Intervention” policy — in which the government

does not intervene on behalf of the disadvantaged; the “Quota” Policy — in which

a certain fraction of jobs are reserved for the β players; and the “Handicap” policy

— in which the government intervenes by adding to the scores of βs, a certain fixed

handicap h0.

2.4.1 The No Intervention Policy

As the name suggests, in the No Intervention policy, the government does not do

anything to interfere with the job allocation mechanism. The top measure J students,

whether they be from the class α or β are handed jobs just on the basis of their

realized scores. In this analysis, however, we further encounter two separate cases

— one in which the degree of asymmetry is very high — and the other in which it

is moderate. In either case however, the Nash Equilibrium of the induced game is a

threshold equilibrium for the exact same reasons as given in the basic game.

High Asymmetry: If ∆ is very high, due to extreme inequality in the test-taking

skills of classes α and β, all the measure J jobs will be allocated to the top rankers

in the class α, since even the highly skilled βs will not be able to compete with them.

In this case, the equilibrium will be:

e(zβ) = 0 ∀ zβ ∈ [0, 1]

e(zα) =

0 ∀ zα < z∗α

1 ∀ zα ≥ z∗α

Fig. 2.4 shows the situation in which all jobs are allocated only to the α players.

The characterizing equations for the equilibrium will be the same two types —

the critical player’s condition and the measure of jobs being equal to the measure of
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Figure 2.4: No Intervention, Large Asymmetry
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winners. In this case the cutoff score s and the critical player’s identity will be given

by:

uz∗α(1, ·) = v Pr(z∗α ∈ W )− δ = 0

⇒ Pr(s(z∗α, 1) ≥ s) =
δ

v
(2.1)∫ 1+∆

z∗α

Pr(s(zα, 1) ≥ s)dzα = J (2.2)

Low Asymmetry: If ∆ is moderate, both α and β players have a chance of winning

the jobs. The highly skilled βs, situated close to zβ = 1 may now exert full effort and

be allocated jobs. In this case too, the equilibrium is threshold and the characterizing

equations are of the same type.

e(zβ) =

0 ∀ zβ < z∗

1 ∀ zβ ≥ z∗

e(zα) =

0 ∀ zα < z∗

1 ∀ zα ≥ z∗

We remark here that we take the degree of asymmetry as a given, exogenous

factor. It may be exogenously large or small in different societies depending on

several complicated factors. Ultimately the question of ascertaining its relative size

is an empirical one. Obviously, the question of governments intervening to restore

equity in a certain society is intimately linked to the already existing degree of

asymmetry in that society, captured in our model, by the constant ∆.

uz∗(1, ·) = v Pr(z∗ ∈ W )− δ = 0

Pr(s(z∗, 1) ≥ s) =
δ

v
(2.3)∫ 1+∆

z∗

Pr(s(zα, 1) ≥ s)dzα +

∫ 1

z∗

Pr(s(zβ, 1) ≥ s)dzβ = J (2.4)
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Figure 2.5: No Intervention, Low Asymmetry
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2.4.2 The Quota Policy

The Quota policy, the way it is practised in India, reserves a certain fraction of jobs

for the underprivileged sections of the society. For the rest of the unreserved jobs,

there is open competition between all students. In terms of the parameters of our

model, this implies that a certain measure Jβ < J of jobs are reserved for the β class

of players; and for the remainder J − Jβ measure of jobs, both α and β classes of

students compete, on the basis of their realized scores.

Again, our analysis will focus on two different cases — one in which the exogenous

degree of asymmetry is high — and the other in which it is moderate.

High Asymmetry: If the asymmetry is high, the β students cannot compete with

the αs if the government does not intervene. This was made clear in the analysis of

the case of high asymmetry, no intervention above. Hence the measure of jobs that

are allocated to the β class, can come only from the measure of jobs reserved, which

is Jβ. The equilibrium of this game is again threshold but a new feature of this policy

is that there are separate threshold levels z∗α and z∗β for the two different classes of

players. The cutoff scores for the two different classes of players are separate as well.

However, the equations that characterize equilibrium, the identities of the indifferent

players and the cutoff levels for the scores are of the same type.

e(zβ) =

0 ∀ zβ < z∗β

1 ∀ zβ ≥ z∗β

e(zα) =

0 ∀ zα < z∗α

1 ∀ zα ≥ z∗α

The following equations characterize equilibrium:

Pr(s(z∗β, 1) ≥ sβ) =
δ

v
(2.5)

Pr(s(z∗α, 1) ≥ sα) =
δ

v
(2.6)
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Figure 2.6: Quota Policy, Large Asymmetry
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The measure of jobs going to the β players is exactly Jβ, while the rest of the jobs

are allocated to the α players.∫ 1

z∗β

Pr(s(zβ, 1) ≥ sβ)dzβ = Jβ (2.7)

∫ 1+∆

z∗α

Pr(s(zα, 1) ≥ sα)dzα = J − Jβ (2.8)

Low Asymmetry: When ∆ is moderate, the β players get at least Jβ measure of

jobs. The reason for this is that now there are sufficiently many high skilled β players

who can compete with the αs on an equal footing without the need of governmental

assistance. Hence they will be able to win jobs from the “open” pool of J −Jβ while

their less skilled bretheren can be allocated measure Jβ jobs as before. Overall,

this is detrimental to the α class of students whose claim on the measure J − Jβ is

successfully challenged by the high skilled βs.

Again, the equilibrium remains threshold as before:

e(zβ) =

0 ∀ zβ < z∗β

1 ∀ zβ ≥ z∗β

e(zα) =

0 ∀ zα < z∗α

1 ∀ zα ≥ z∗α

As before, the critical players are different for different groups. Again, as before,

there are different cutoff levels for different groups.

Pr(s(z∗β, 1) ≥ sβ) =
δ

v

Pr(s(z∗α, 1) ≥ sα) =
δ

v

The third equation is obtained from the observation that a section of the β players

get jobs from the measure Jβ that is reserved for them:
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Figure 2.7: Quota Policy, Low Asymmetry
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∫ 1

z∗β

Pr(s(zβ, 1) ∈ [sβ, sα))dzβ = Jβ (2.9)

While the last equation may be deduced from the fact that there is open compe-

tition for the remainder of the J − Jβ measure of jobs:∫ 1+∆

z∗α

Pr(s(zα, 1) ≥ sα)dzα +

∫ 1

z∗β

Pr(s(zβ, 1) ≥ sα)dzβ = J − Jβ (2.10)

2.4.3 The Handicap Policy

The Handicap Policy is another type of affirmative action policy that is aimed to

help level the playing field for the disadvantaged group of the populace. However, the

method by which this is done is very different from that of the quota policy. Instead

of reserving a certain fraction of jobs for the βs, the handicap policy seeks to augment

the realized scores of the βs by a specific additive constant — the “handicap” — h0.

As an example, if the handicap is h0 = 20 points and an α and a β score 50 and 40

points (out of say, a normalized score of 100), the final score of the two students in

question will be 50 and 40+20 = 60 respectively. This is so because the score of the

β player is boosted by the additive handicap while that of the α remains unchanged.

Hence the score functions for the βs in the handicap game become:

s̃(zβ, ezβ) =

s(zβ, 0) + h0 ∼ U[f(zβ) + h0, f(zβ) + h0 + η]

s(zβ, 1) + h0 ∼ U[g(zβ) + h0, g(zβ) + h0 + η]

In our analysis we assume that the handicap h0 is not “too high” to do away with

uninteresting trivialities. Indeed, as an example, consider a maximum handicap of a

100 points. In this case, all βs, irrespective of their test-taking skills or actions taken

obtain a perfect score of 100. As a result, no α gets any job and all the measure J

jobs end up being allocated to the βs — all of whom are tied with a perfect score.

As a result of randomly broken ties, a random collection of measure J βs then end

up with jobs.
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Under this assumption on the size of the handicap, we can analyze the problem of

job allocation under two different scenarios — high asymmetry and low asymmetry.

High Asymmetry: If the exogenous asymmetry between the two groups is very

high, even after application of the handicap, the βs will not be able to compete with

the α players and all jobs will end up being allocated to them. We note that in

this case the analysis is identical to the case of “No Intervention, High ∆” and the

equilibrium equations for the identification of the indifferent α player and the cutoff

score are found exactly in the same way as in the case referred to above. Also, no

β puts in any effort since there is no chance of them winning a job even after the

exertion of full effort.

Low Asymmetry: For the case of low asymmetry, the handicaps do end up bene-

fiting the downtrodden. The equilibrium is threshold as before and the characterizing

equations are:

Criticality for β players:

Pr(s(z∗β, 1) + h0 ≥ s) =
δ

v

= Pr(s(z∗β, 1) ≥ s− h0) =
δ

v

Criticality for α players:

Pr(s(z∗α, 1) ≥ s) =
δ

v

Total measure of winners = Total measure of jobs:∫ 1

z∗β

Pr(s(zβ, 1) ≥ s− h0)dzβ +

∫ 1+∆

z∗α

Pr(s(zα, 1) ≥ s)dzα = J
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2.5 Evaluation of Affirmative Action Policies

There is no unique way in which one can rank Affirmative Action policies from top to

bottom. Indeed, different governments may have different preferences over the type

of allocation rules they want to implement. For example, if a government wishes to

not worry about social inequities and wants to allocate the measure J jobs to the

best performing students, they should do away with all affirmative action policies and

simply allocate the jobs to the top rankers. At the other extreme, if the only concern

of the government is to allocate jobs to as many students from the disadvantaged

section as possible, the best policy to follow would be to reserve all jobs for the βs,

i.e., put Jβ = J .

Some criteria that governments might find useful in ranking affirmative action

policies can be as follows:

1 All other things being equal, the policy giving higher quality students is prefer-

able.

2 All other things being equal, the policy under which students exert more effort

is preferable.

3 All other things being equal, the policy under which representation of job

winners is proportional to their proportion in the population is preferable.

...

d . . .

While in general, the space of affirmative action policies is a very complicated

function space, on the basis of some d performance criteria as listed above, one can

assign ordinal real numbers for each such criterion and hence locate all affirmative

action policies, no matter how complicated, on the “performance space” Rd.

Once all affirmative action policies have been identified with points in the Rd

space, governments that are searching for affirmative action policies to implement
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may look at the coordinates3 of each policy in performance space Rd; and based on

their individual preference ordering over each criterion (axis) choose the one they

prefer most.

2.5.1 Comparing Quotas and Handicaps

Of the many different criteria on which one could rank Quotas and Handicaps, we

choose to focus on three particular cases: one in which we compare the total measure

of jobs allocated to the βs, as a measure of the government’s inequality reducing man-

date; the second in which we compare the “quality” of the job-winners by comparing

the critical player in each such mechanism — clearly lower critical player thresholds

mean lower minimally skilled job holders; and the third criterion that we focus on

is the measure of students exerting full effort in each policy. We posit that all other

things being equal, a government would favor a policy in which more students exert

full effort since it implies building up of the human capital of the country.

Job Allocation to β players

Quotas: In the Quota policy the least measure of jobs that the βs can attain is

Jβ: ∫ 1

z∗β

Pr(s(zβ, 1) ∈ [sβ, sα))dzβ = Jβ (2.11)

However, the βs can win a further J̃ measure of jobs by competing for measure

J − Jβ jobs.4

J̃ =

∫ 1

z∗β

Pr(s(zβ, 1) ≥ sα)dzβ (2.12)

3Each government will place different policies on different points in the performance space. The
coordinates refer to the ordinal score that each government puts on various criteria consistent with
their preferences. For example, a government not concerned with social inequities collapses the
general performance space to R1 in which it gives the highest ordinal score to the “No Intervention
Policy” and hence chooses it for implementation.

4This analysis is done assuming the degree of asymmetry is not very high. The case of high ∆
is a special case of the analysis of low ∆.

56



We can combine equations 2.11 and 2.12 to arrive at the measure of jobs that βs

get in the Quota policy J̃Qβ :

J ≥ J̃Qβ =

∫ 1

z∗β,Q

Pr(s(zQβ , 1) ≥ sβ)dzβ,Q ≥ Jβ

Handicaps: In the case of high asymmetry, the measure of jobs allocated to the

βs is 0. In such a case, from the point of view of jobs allocated to the disadvantaged,

the Quota system does better since exactly Jβ measure of jobs are then allocated to

βs. However this is not the case in which ∆ is moderate.

J̃Hβ =

∫ 1

z∗β,H

Pr(s(zHβ , 1) ≥ s− h0)dzβ,H

Minimal Quality of Job Winners

The minimal quality of job winners can be identified with the last student who

manages to win — i.e., the critical player. Hence in the Quota policy, this player is

z∗β,Q while in the Handicap policy, this player is z∗β,H .

Equivalence: It is easy to see that for both Quotas and Handicaps

J̃Qβ = J̃Hβ ⇔ h0 = s− sβ and z∗β,Q = z∗β,H

This implies that under low asymmetry, for any job allocation outcome that

Quota achieves, one can find a suitable handicap which will induce the same al-

locational efficiency and the same minimal quality of job winners as in the Quota

mechanism.

The argument runs in the other direction too. Under low ∆, for any handicap

that allocates a certain measure of jobs and a certain minimal quality of job winners,

there is a quota level Jβ that ensures that the job allocation and minimal student

quality in the game induced by the Quota mechanism is the same as that in the

Handicap mechanism.
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Hence on the two desiderata of allocational efficiency and minimal student quality,

the Quota and Handicap mechanisms are equivalent (under low asymmetry).

Measure of Players Exerting Full Effort

Governments want to maximize the measure of students exerting full effort. However,

in the Quota and Handicap mechanisms, this is simply 1 − z∗β,Q + 1 − z∗α,Q and

1−z∗β,H+1−z∗α,H respectively. Since we have seen above that for the same allocational

efficiency, z∗β,Q = z∗β,H , hence

1− z∗β,Q + 1− z∗α,Q = 1− z∗β,H + 1− z∗α,H

or, in other words, the measure of players exerting full effort in the two policies is

also the same.

Hence we conclude that on the basis of some natural efficiency desiderata, the

Quota and Handicap policies are equivalent to each other.

2.6 Conclusion

In this paper we analyzed two different classes of affirmative action mechanisms in the

presence of a large number of students taking a competitive examination for a highly

valued, scarce set of jobs. We showed that we can analyze this situation as a game

and that the threshold Nash Equilibrium of the game allocates jobs to the top rankers

and also determines the minimal quality student that manages to be a job winner.

We then analyzed the games induced by the Quota and the Handicap affirmative

action policies and characterized their Nash Equilibria. We also described a general

procedure according to which governments can decide which affirmative action policy

suits their interests best given arbitrary criteria for measuring affirmative action

policies’ efficiency. We are, under some natural criteria, able to compare Quota

and Handicap policies and conclude that if the exogenous asymmetry between the

disadvantaged and advantaged groups of the population is not so high, the Quota and

Handicap mechanisms produce equivalent allocational outcomes, minimal quality of
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job winners and equilibrium measure of students exerting full effort. In this sense,

hence, the two policies are equally efficient. If however, the degree of asymmetry is

high, the Quota system produces better allocational outcomes for the disadvantaged,

while the Handicap system performs better as far as the minimal quality of job

winners is concerned. The measure of students who exert full effort also, is better

under the Quota policy.

We stress again that the matter of ascertaining the degree of asymmetry between

the two groups of students is necessarily empirical. As a policy prescription, we

recommend that if asymmetries are higher, the Quota system reduces inequities in

the society while the Handicap system may not affect it. Governments must first

determine the extant degree of asymmetry before putting one or the other policy in

implementation.
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Table 1: List of the 29 G-SIFIs (as of November 2013)

United States Europe Asia
Bank of America (BAC) Groupe BPCE Bank of China (BOC)

Bank of New York Mellon (BK) Barclays (BARC) Mitsubishi UFJ FG (MUFG)
Citigroup (C) BNP Paribas (BNP) Mizuho FG (MHFG)

Goldman Sachs (GS) Standard Chartered (STAN) Sumitomo Mitsui FG (SMFG)
JP Morgan Chase (JPM) Credit Suisse (CSGN) Industrial and Commercial Bank of China (ICBC)

Morgan Stanley (MS) Deutsche Bank (DBK)
State Street (STT) Banco Bilbao Vizcaya Argentaria (BBVA)
Wells Fargo (WFC) Group Crédit Agricole (ACA)

HSBC (HSBA)
ING Bank (INGA)

Unicredit Group (UCG)
Nordea (NDA)

Royal Bank of Scotland (RBS)
Santander (SAN)

Société Générale (GLE)
UBS (UBSN)

The appendices include tables indicating the membership of G-SIFIs, as assessed

by the Financial Stability Board. Also contained are graphical results that chart

variation in computed risk with changes in confidence levels, definition of risk and

with changes in the underlying statistical model.

.1 The Global Systemically Important Financial Institutions

The list of Global Systemically Important Financial Institutions is included as a

table. This table was prepared in November 2013 by the Financial Stability Board
5. It features 8 banks from North America, 16 banks from Europe and 5 banks from

Asia.

.2 Variation of Risk with Confidence Levels

For both VaR and AVaR, computed equity risk rises with increases in confidence

level.

5See http://www.financialstabilityboard.org/publications/r_131111.pdf for more de-
tails
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Figure 8: Variation of Value at Risk with confidence levels under the AGMNTS model
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Figure 9: Variation of Average Value at Risk with confidence levels under the AGMNTS model
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.3 Variation of FH Risk with the Underlying Statistical Model

As should be expected, due to the fat tailed distributional hypothesis of the AGM-

NTS model, the FH equity risk under AGMNTS is much higher than that computed

under the AGMNormal model. While there are qualitative similarities between the

two measures, for almost all time periods, the FH risk under AGMNTS dominates

that under the AGMNormal model. (We note however, that this behavior is reversed

for the second and third quarter of 2012 during which FH risk under AGMNormal

dominates that under AGMNTS.)

Since the Foster-Hart risk is defined only for random variables whose expectation

is positive — i.e., gambles whose mean is more than 0, for the cases in which the

expected portfolio returns are negative (this occurs during very heavy downturns

in the financial market), the Foster-Hart risk is not defined. For such cases, we

substitute the maximum loss of the portfolio for the Foster-Hart equity risk. We also

use the unique, continuity property of the Foster-Hart risk to rule out the existence

of outliers. We note that this technique is justified since the time series of maximum

losses of the portfolio is continuous (Foster and Hart, 2009).
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Figure 10: Variation of FH Risk with AGMNTS and AGMNormal models. All series have been
smoothed by using the Hodrick-Prescott filter with λ = 20000.
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