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Abstract of the Dissertation

Two Essays on Actuarial and Financial Econometrics

by

Kwadwo Asamoah

Doctor of Philosophy

in

Economics

Stony Brook University

2015

In chapter 1, we analyze the concept of credibility in two generalized count models:

Mittag leffler and Weibull count models which can handle both underdispersion and

overdispersion in count data and nest the commonly used Poisson model as a special

case. A correct specification of the model is important since without a proper pricing

mechanism one is simply not competitive in the insurance industry. We find evidence

using data from Danish Insurance Company that the simple Poisson model can set the

credibility weight to one resulting from large heterogeneity among polycyholders and

thus breaks the credibility model down. We propose parametric estimators for the

structural parameters in the credibility formula using the mean and variance of the

assumed distributions and a maximum likelihood estimation over a collective data.

As an example, we show that the proposed parameters from Mittag leffler provides

weights that are consistent with the idea of credibility whiles a simulation study is

carried out to investigate the stability of the maximum likelihood estimates from the

Weibull count model. Finally, we extend analyses to multidimensional lines and show

how our approach can be adopted to cross selling application of the credibility model.
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Chapter 2 shows that Multinomial Logit (MNL) previously found to be a good

tool in predicting performance in the Indian market can only be implemented at the

industry level but not the entire U.S. market if the appropriate financial ratios are

selected with low predictive power but consistent with the efficiency of the market. We

design a multilayer perceptron (MLP) neural network and show that as an alternative

tool for the U.S. market when prediction is of ultimate importance with overall average

accuracy rate at about 57.6% and 59.4% in a training and testing data respectively.

The results obtained reveal that a firm’s ability to pay its short term obligations

and how efficient it uses cash for generating sales revenue are highly predictive and

important when predicting stock performance in a probabilistic framework.
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CHAPTER I

On the Credibility of Insurance Claim Frequency:

Generalized Count Models and Parametric

Estimators

1.1 Introduction

The basic idea underlying insurance is that individuals transfer their risks to

insurance companies and in return pay periodic premium. The premium paid by the

insured is usually a combination of a risk premium, also called pure risk, and risk

loadings, which include an extra amount for other expenses, profit, and a margin for

contingencies. Risk premiums are calculated by estimating individual’s risk levels,

which are expectations of some loss measures. These measures could be the number

of claims made by a customer per policy year (claim frequency), claim severity or the

total claim amount.

In this study, we focus on claim frequency information as a predictor of indi-

viduals’ risk levels which may depend on current period information as well as past

experience. The determination of a fair risk premium is a major concern in the actu-

arial profession. One classical approach in calculating the individual premium is to

use the expectation principle (Pinquet, 1997, 1998; Desjardins et al., 2001). In this

approach, the correct individual premium in a given year will be the expected value

1



of his claim frequency.1

An alternative approach, which we follow in this research, is the linear credibil-

ity theory. The claim experience observed for an individual policyholder is usually

too limited to be statistically reliable in predicting the pure risk. However, every

individual risk is usually part of a risk class so that the collective claim history in

a large class can provide credible statistical predictions.2 Therefore, it is clear that

both sources of information should be used in calculating the fair risk premium.

Credibility assigns meaningful weights to the individual and collective experience

estimates of the pure risk premium. When there is enough information on the indi-

vidual claims history, the credibility weight on the individual estimate increases. The

credibility concept dates back to Mowbray (1914) and Whitney (1918) and has since

been given attention in the literature. There have been several studies on the exten-

sions of this model usually in a non-parametric setting including Bühlmann (1967),

Jewell (1973, 1974), Hachemeister (1975), Sundt (1979, 1981) and Zehnwirth (1985).

This paper is focused on the approach presented by Bühlmann and Straub (1970),

which eliminated the limitation in the Bühlmann model by allowing the process vari-

ance of the loss measure (claim frequency in this case) to depend on the exposure.3

The number of claims, given the individual unobserved risk profile, is generally

assumed to follow a Poisson distribution (Bichsel, 1967; Pinquet, 1997; Desjardins

et al., 2001; Bühlmann and Gisler, 2005; Englund et al., 2008).4 However, a Poisson

distribution is valid only under a very restrictive assumption of equidispersion in the

data. A Poisson model implies that given an unobserved risk profile, the number of

claims made by an individual policyholder has no variability (the mean equals the

1There are other specifications of the expected value principle to include the risk loadings such
as the standard deviation, variance and exponential principles.

2Usually risks are classified into homogeneous classes (risk classes) based on some quantifiable
characteristics of policyholders such as age, occupation, sex, geographical location among others.

3Exposure as defined by American Institute for Chartered Property Casualty Underwriters is
any condition that presents a possibility of loss, regardless of whether loss actually occurs.

4In fact, every study on the applications of credibility theory known to us has modeled claim
frequencies with this so-called standard assumption.
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variance). This assumption may or may not hold true for every policyholder. In

practice, a company may deal with millions of customers and may be over ambiguous

to assume that the number of claims for each one is Poisson distributed.5 A misspec-

ification of the distribution of the loss measure could lead to mispricing and therefore

unfair premium paid by policyholders.

In addition, count data are usually the outcomes of an underlying count process

in continuous time. A Poisson distribution is derived under the assumption that the

number of events in a given time period results from exponentially distributed inter-

arrival times, implying a constant hazard function. In practice, the occurrence of an

event may increase the probability of occurrence of the next event (positive depen-

dence) or reduce the possibility of the next event (negative dependence). Seal (1969)

and Pinquet (2000) show that positive dependence in claim counts characterizes the

automobile insurance industry.

Statisticians, having recognized this limitation of the Poisson distribution, have

developed numerous count models with the inter-arrival times following Gamma,

Weibull, Mittag Leffler and many other distributions, thereby allowing for overdis-

persion and underdispersion in the data. A heterogeneous Gamma-Poisson model

(negative binomial) was first presented in Greenwood and Yule (1920) and it is rou-

tinely used to model overdispersed count data. A number of other studies including

King (1989), Winkelman (1995), Cameron and Johansson (1997) and Cameron and

Trivedi (1998) have since developed different models which address the issue of un-

derdispersion.

In a recent study, McShane et al. (2008) have derived a generalized count data

model based upon a Weibull inter-arrival time process that nests the Poisson and

negative binomial models as special cases.6 The Weibull count model, via the shape

5As we report later in the paper, we see all kinds of claim counts pattern in the data used for
this study.

6This new model is usually referred to as Weibull count model.
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parameter being less than, equal to, or greater than 1, can handle overdispersed,

equidispersed, and underdispersed data respectively and is computationally tractable.

A similar generalized count model has been developed by Kanichukattu and Abraham

(2011) when the inter-arrival times follow a Mittag Leffler distribution, referred to as

Mittag Leffler count model. The Mittag Leffler count model also nests the Poisson

count model and has the ability to handle overdispersed and underdispersed data.

This paper introduces the Weibull and Mittag Leffler count models in a Bühlmann-

Straub credibility model and studies the effects of the Poisson restriction. In addition

to the non-parametric estimation methods for the structural parameters in the lit-

erature, this work investigates and presents alternative parametric estimators using

the mean and variance of the assumed count distributions and maximum likelihood

estimation procedures. This paper contributes to the literature by giving flexibility

to the credibility formula and its parameters to handle many kinds of data processes.

We begin the analysis in the one dimensional model and then extend it to the multi-

dimensional case and explains how it can be adopted to the cross-selling application

of the model.

The remainder of the paper is organized as follows. Section 1.2 presents the

standard Bühlmann-Straub credibility model in a Weibull count model and shows the

corresponding parametric estimators with a simulation study. Section 1.3 undertakes

a similar analyses in a Mittag Leffler count model. A multidimensional version of

the models in the previous two sections is provided in Section 1.4. In Section 1.5, we

present the empirical findings and the data used. Finally, Section 1.6 concludes.

4



1.2 Bühlmann-Straub credibility model in Weibul Count Model

1.2.1 One Bühlmann-Straub credibility model

We analyze the classical one dimensional Bühlmann-Straub credibility model for

claim frequency when the inter-arrival time of the occurrence of claims Nij for cus-

tomer i in year j on one policy follow the Weibull distribution.7

Let Nij be the number of claims observed for customer i in year j on one policy.

We make the standard assumption in the literature that, we have a time dependent

covariates which give estimated prior information on the expected number of claims

of the customers each period. The estimated prior knowledge λij of customer i in

period j is modeled as

λij = wijg(X
′

ij) (1.1)

Where Xij is the vector of prior explanatory variables of a policyholder i in year j

and wij is the number of years at risk (duration).

We again assume that each customer i has his own risk profile θi, which is a

realization of the random variable Θi, then following from the Bühlmann-Straub

credibility model assumptions we have that:

Assumption I.1.

1. Nij|Θi are independent and follow the Weibull count model for j = 1, · · · J with

E(Nij|Θi) = λijµ(Θi) (1.2)

V ar(Nij|Θi) = λijσ
2(Θi) (1.3)

Where µ(Θi) and σ2(Θi) are the mean and variance of the Weibull count model.

7We will use the same notations as in the original model and in the literature so that we can
make reference to results therein.
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2. The pairs (Θ1,N1), (Θ2,N2),... are independent and Θi (i = 1, 2, ...) are iid

with Θi ∼ gamma(r, α).

Given Ni1, Ni2, ..., NiJ , we want to find the best linear predictor for Nij+1. The

estimator function is chosen to be the posterior mean equal to

E(µ(θ)|Ni1, Ni2, ..., NiJ)

If we define the claim frequency Fij of customer i in year j to be
Nij

λij
, then Fij satisfy

the hypothesis of the Bühlmann-Straub model and therefore given Ni1, ...NiJ , the

best linear credibility estimator of customer i in year J + 1 is

µ̂(Θi) = E(µ(Θi)) + [V ar(µ(Θi))]
2

(
E(σ2(Θi))

λiV ar(µ(Θi))
+ 1

)−1

(Fi − E(Fi))

= µ0 + ηi(Fi − µ0)

(1.4)

where

ηi =
λi

λi + κ
, κ =

σ2

τ 2
, µ0 = E(µ(Θi)), σ

2 = E(σ2(Θi)), τ
2 = V ar(µ(Θi)),

λi =
J∑
j=1

λij and Fi =
J∑
j=1

λij
λi
Fij.

The above result is straightforward from minimizing the mean square error. Detailed

derivation of this result is repeated in Appendix A.

1.2.2 Parameters Estimation

We need to estimate the three structural parameters µ0, σ2 and τ 2 in order to

obtain the credibility estimator for each customer.8 The consequence of the Poisson

distribution assumption of the number of claims in the literature is that the portfolio

premium µ0 is the same as the average variance within the individual risk σ2.

8µ0, σ2 and τ2 are respectively the portfolio premium, the average variance within individual
customer’s risk and the variance between individual risks.
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There are several studies in the actuarial literature on the best estimates for these

parameters (Dubey and Gisler, 1981; Norberg, 1982).9 In this work, we provide

an alternative to the estimation suggestions in the literature by using maximum

likelihood and the mean and variance of the Weibull count model (see Appendix B

for the moments of the Weibull count model). By our assumption of the Weibull

count model, we have that the probability of observing n from an individual with a

risk profile Θi is

P (N = n|Θi) =
∞∑
m=n

(−1)m+nαnmΘm
i

Γ(cm+ 1)
(1.5)

For n = 0, 1, 2, .... Where α0
m = Γ(cm+1)

Γ(m+1)
, for m = 0, 1, 2, ... and αn+1

m =
∑m−1

l=n
Γ(cm−cl+1)
Γ(m−l+1)

,

for n = 0, 1, 2, ... for m = n+ 1, n+ 2, n+ 3, ...

The risk profile of a policyholder is assumed to be homogeneous in time and as a

result, the structural parameters are time-independent. Englund et al. (2009) extend

this model to include time effects and report no significant change in the estimators.

This is because observed claim histories are usually available for only a short period

of time, usually under five years and policyholders’ risks do not change. In a pure

Bayesian analysis, these parameters are mostly estimated based on the opinions of

experts. They can also be determined from collective observations of similar risks. 10

The individual unobserved risk profiles are independent and identically distributed

random variables drawn from the gamma distribution (i.e. Θi ∼ gamma(r, α)). If we

integrate across all possible risk profiles in any given year, we have the heterogeneous

9Usually the estimation methods suggested are non-parametric and are used irrespective of the
observed statistical information (number of claims, claim sizes or claim amount). However, when
there is a structure in the model, it should be considered. A typical example is when the number
of claims is Poisson-distributed, we need to consider the fact that the estimate for µ0 should be
theoretically the same as that for σ2. Bühlmann and Gisler (2005) incorporates this structure by
some iterative procedure.

10This approach is referred to as the empirical Bayes. Since the estimators are time independent,
we can use collective information from any year.
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Weibull count model (McShane et al., 2008) given by

P (N = n) =
∞∑
m=n

(−1)m+nαnm
Γ(cm+ 1)

Γ(r +m)

Γ(r)αm
(1.6)

For n = 0, 1, 2, .... Where α0
m = Γ(cm+1)

Γ(m+1)
, for m = 0, 1, 2, ... and αn+1

m =
∑m−1

l=n
Γ(cm−cl+1)
Γ(m−l+1)

,

for n = 0, 1, 2, ... for m = n+ 1, n+ 2, n+ 3, ... (The derivation of the heterogeneous

model is repeated here in Appendix C). The heterogeneous count model describes

the distribution over the collective data and we will refer to it as the structural or

collective function.

Now, we have a considerably larger information for any year based on the collective

observed number of claims ni, i = 1, ..., I to estimate the parameters c, r and α by

maximum likelihood. The log likelihood function for n = (n1, · · · , nI) is

L(c, r, α) =
I∑
i=1

lnP (N = ni)

=
I∑
i=1

ln
∞∑

m=ni

(−1)m+niαni
m

Γ(cm+ 1)

Γ(r +m)

Γ(r)αm

(1.7)

Let ĉ, r̂ and α̂ be the maximum likelihood estimators. We will then estimate the

structural parameters using the mean and variance form from the Weibull count

model. The estimates for µ0, σ2 and τ 2 are respectively given by equations (1.8),

(1.9) and (1.10) below:

µ̂0 =
∞∑
n=1

∞∑
m=n

n(−1)m+nαnm
Γ(ĉm+ 1)

Γ(r̂ +m)

Γ(r̂)α̂m
(1.8)

σ̂2 =
∞∑
n=1

∞∑
m=n

n2(−1)m+nαnm
Γ(ĉm+ 1)

Γ(r̂ +m)

Γ(r̂)α̂m
− Ê

(
∞∑
n=1

∞∑
m=n

n(−1)m+nαnm
Γ(ĉm+ 1)

Θm
i

)2

(1.9)
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τ̂ 2 = V̂ ar

(
∞∑
n=1

∞∑
m=n

n(−1)m+nαnm
Γ(ĉm+ 1)

Θm
i

)
(1.10)

A detailed derivation of these estimators is provided in Appendix C. The expectation

and variance in (1.9) and (1.10) can be estimated using Monte Carlo estimation

method. With the maximum likelihood estimates r̂ and α̂, we know the estimated

gamma distribution of Θi as gamma(r, α). We will therefore simulate n samples of

Θi and use Monte Carlo as demonstrated in Appendix D.

1.2.3 Simulation Study

The approach adapted for estimating the structural parameters in this paper de-

pends highly on the maximum likelihood estimates (MLEs): r̂, α̂ and ĉ from the

Weibull heterogeneity model. Even though the MLEs have good asymptotic proper-

ties and perform well in finite samples, their computation and implementation can

be problematic in high dimensional situations. Therefore, we carry out a simulation

study to determine the sensitivity of the estimates to different sample sizes and pa-

rameter values. As pointed out by McShane et al. (2008), the log likelihood function

is robust to truncation points; 50 and 100.11

We undertake the bootstrapping in the following steps:

1. Guess some true parameter values for r, α and c and simulate I number of

observations from the collective function

2. Build the log likelihood function and optimize to obtain the MLEs of the pa-

rameters

3. Repeat steps 1 and 2 n times with the same parameter values so that we have

a sample distribution of the estimates.

4. Finally, find the mean, quantiles and obtain a box plot for the distributions

11We have verified this claim and can confirm that it is true.

9



First, we consider r = 5, α = 4 and c = 2 as our true parameters. Using these

parameters, we assume four(4) different sample sizes (3500, 5000, 8000, 10000) and

simulate observations from the collective function. The mean and median of samples

distribution of the estimates presented in Table E.1 show that the maximum likelihood

estimation is doing well and the results are consistent across the different samples.

This means we can estimate the parameters well irrespective of whether we have

large or small sample size. Figures E.1–E.4 representing the box plots of the sample

distributions clearly show a fairly normal distribution.

We then change the true parameters to r = 7, α = 3 and c = 1 and do the same

experiment for the different sample sizes. The results again suggest that with the right

starting values, the maximum likelihood estimation does a good job in estimating the

true parameters despite the complexity of the log likelihood function. We see that

the estimates are pretty close to the true parameters as shown in Table E.2 and

Figures E.5–E.8

Finally, we consider another set of true parameters: r = 7, α = 3 and c =

0.95 and repeat previous exercise. Notice that since c = 0.95 the resulting samples

display overdispersion. Like the previous samples, the results for this scenario as

shown in in Table E.3 and Figures E.9–E.12 also show that the maximum likelihood

method estimates the true parameters well. The set of parameters are chosen to

underdispersion, equidispersion and overdispersion data and in all cases we see that

the estimates are closer to the true parameters
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1.3 Bühlmann-Straub credibility model in Mittag Leffler Count

Model

1.3.1 One Bühlmann-Straub credibility model

Now, we analyze the one dimensional Bühlmann-Straub credibility model for claim

frequency when the interarrival time of the occurrence of claims Nij for customer i in

year j on one policy follow the Mittag Leffler distribution. The resulting count model

is Mittag leffler count model (Kanichukattu and Abraham, 2011).

The problem, we want to solve here is the same as Section 1.2.1 except that now

the number of claims of customer i given its risk profile is assumed to follow the Mittag

Leffler count model. Therefore, the Bühlmann-Straub credibility model assumptions

become:

Assumption I.2.

1. Nij|Θi are independent and follow the Mittag Leffler count model for j = 1, · · · J

with

E(Nij|Θi) = λijµ(Θi) (1.11)

V ar(Nij|Θi) = λijσ
2(Θi) (1.12)

Where µ(Θi) and σ2(Θi) are the mean and variance of the Mittag Leffler count

model.

2. The pairs (Θ1,N1), (Θ2,N2),... are independent and Θi (i = 1, 2, ...) are iid

with Θi ∼ gamma(r, α).

1.3.2 Parameters Estimation

Again, one needs to be able to estimate the three structural parameters µ0, σ2 and

τ 2. This can be done using the already existing non-parametric estimators. However,
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we show how parametric estimators can be derived. The process here is similar to

what was done in the case when the number of claims were assumed to follow the

Weibull count model. With our assumption, the probability of observing n from an

individual with a risk profile Θi is

P (N = n|Θi) =
∞∑
m=n

(−1)m−n
(
m
n

)
Θcm
i

Γ(cm+ 1)
(1.13)

Now, we can obtain the collective function P (N = n) by integrating across all the

possible risk profiles in a given year. From the collective function below we can build

the log likelihood function using data from the entire portfolio and estimate c, r and

α using maximum likelihood. See Appendix G for the derivation of the Mittag Leffler

collective function.

P (N = n) =
∞∑
m=n

(−1)m−n
(
m
n

)
Γ(r)αcm

Γ(cm+ r)

Γ(cm+ 1)
(1.14)

For n = 0, 1, 2, .... The log likelihood function to estimate r, α and c using the collec-

tive function from Mittag Leffler for n = (n1, · · · , nI) is

L(c, r, α) =
I∑
i=1

lnP (N = ni)

=
I∑
i=1

ln
∞∑

m=ni

(−1)m−n
(
m
n

)
Γ(r)αcm

Γ(cm+ r)

Γ(cm+ 1)

(1.15)

After getting the MLEs, ĉ, r̂ and α̂ and using the mean and variance of the Mittag

Leffler count model (see Appendix F), we obtain the parametric estimators for the

structural parameters as follows:

µ̂0 =
Γ(r̂ + ĉ)

Γ(1 + ĉ)Γ(r̂)α̂ĉ
(1.16)
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σ̂2 =
1

Γ(r̂)α̂ĉ

(
Γ(r̂ + ĉ)

Γ(1 + ĉ)
+

2Γ(r̂ + 2ĉ)

Γ(1 + 2ĉ)α̂ĉ
− Γ(r̂ + 2ĉ)

Γ(1 + ĉ)2α̂ĉ

)
(1.17)

τ̂ 2 =
1

Γ(1 + ĉ)2Γ(r̂)α̂2ĉ

(
Γ(r̂ + 2ĉ)− Γ(r̂ + ĉ)2

Γ(r̂)

)
(1.18)

1.4 Multidimensional Bühlmann-Straub

In this section, we extend the model presented in Sections 1.2.1 and 1.3.1 by in-

creasing the dimensions of the observed number of claims. There are many situations

in the actuarial industry where it becomes necessary to consider several business lines

for a particular customer or different types of claims for a policy held by a customer.

The latter could be normal claims versus big claims (Bühlmann et al., 2003). Nor-

mally, there are few biggest claims which account for more than half of the total claim

amount and hence they are sometimes treated separately from the normal claims.

The second case considers different business lines for one customer (Englund et al.,

2008).12 In this paper, we follow Bühlmann and Gisler (2005) and Englund et al.

(2008) and assumes one specific risk variable for each product.

Suppose each customer buys L products with an insurance company in the mul-

tivariate environment. Let θi = (θi1, ..., θiL) be a vector of risk profiles of customer

i corresponding to the different policies held by him. These unobserved risks are

realizations of a random vector Θi = (Θi1, ...,ΘiL). The estimated prior differences

now have three subscripts and thus ρijl represents the information of customer i in

the year j for the product type l.

The credibility estimator in this setting is obtained similarly to the univariate

case by understanding the projection operator componentwise. It is straightforward

12This is particularly useful because depending on the correlation between the different risk
profiles one can use information from one business line to price products in another where such
information is not available. One risk profile for all the different business lines implies a correlation
of 1. However, in practice one could observe the existence of different types of positive correlation.
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to derive the best linear credibility formula as:

µ̂µµ(Θi) = E(µµµ(Θi)) + Cov(µµµ(Θi),µµµ(Θi)
′)Cov(Fi,F

′
i)
−1(Fi − E(Fi)) (1.19)

Where now µ̂µµ(Θi) =
(
µ̂(Θi1), ..., µ̂(ΘiL)

)′
with the components being the linear cred-

ibility estimators for the different lines of business and Fi is an L-dimensional vector

such that the lth component equals
∑J

j=1
ρijl
ρil
Fijl and ρil =

∑J
j=1 ρijl

The multidimensional credibility estimator in equation (3.1) can be simplified as

a weighted sum of individual and collective claim histories as:

µ̂µµ(Θi) = (I− ηηηi)µµµ0 + ηηηiFi (1.20)

Where

µµµ0 = E(µµµ(Θi)), ηηη = T(T + Sρρρ−1
i )−1, T = Cov(µµµ(Θi),F

′
i) = Cov(µµµ(Θi),µµµ(Θi)

′) and

S = E[Cov(Fi,F
′
i|)Θi].

ρρρi is a L× L diagonal matrix with the lth element ρil =
∑J

j=1 ρijl and I is the L× L

identity matrix.

1.4.1 Parameters Estimation

1.4.1.1 Weibul Count Model

The parameters to be estimated in the multivariate case are µµµ0, S and T. Our

approach seeks to provide alternative parametric estimators to the distribution-free

estimators in the literature (DeVylder, 1978; Bühlmann and Gisler, 2005). We will

estimate the parameters element by element using the same idea as in the one di-

mensional case. Let µ0l be the collective premium corresponding to the lth business

line. Then, we can find the maximum likelihood estimates ĉl, r̂l and α̂l by using the
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observations across the different policyholders for product l so that

µ0l =
∞∑
n=1

∞∑
m=n

n(−1)m+nαnm
Γ(ĉlm+ 1)

Γ(r̂l +m)

Γ(r̂l)α̂ml
(1.21)

For l = 1, ..., L. Putting these elements together, we get the collective premium vector

µµµ0 = (µ01, ..., µ0L)′ (1.22)

We have assumed that, given the unobserved risk profile parameter Θi, the claim

frequencies Fi are independent. Therefore S is an L×L diagonal matrix and the lth

diagonal element is given by

σ2
l (Θi) =

∞∑
n=1

∞∑
m=n

n2(−1)m+nαnm
Γ(cm+ 1)

Θm
il −

(
∞∑
n=1

∞∑
m=n

n(−1)m+nαnm
Γ(cm+ 1)

Θm
il

)2

(1.23)

By using the information from product l we can get the maximum likelihood estimates

and estimate these elements σ2
l (Θi), for l = 1, ..., L by:

σ̂2
l =

∞∑
n=1

∞∑
m=n

n2(−1)m+nαnm
Γ(ĉlm+ 1)

Γ(r̂l +m)

Γ(r̂l)α̂ml
− Ê

(
∞∑
n=1

∞∑
m=n

n(−1)m+nαnm
Γ(ĉlm+ 1)

Θm
il

)2

(1.24)

where the expectation in the estimators is approximated using Monte Carlo (see

Appendix D).

Next, we need to estimate the covariance matrix T. The diagonal elements can

be estimated in the same way as in the one dimensional model. An estimate for the

lth diagonal element of T is

τ̂ 2
l = V̂ ar

(
∞∑
n=1

∞∑
m=n

n(−1)m+nαnm
Γ(ĉlm+ 1)

Θm
il

)
(1.25)

Where ĉl, r̂l and α̂l are estimated by maximum likelihood using information for the

15



lth business line. The non-diagonal elements of T for l 6= l′ is given by

cov(µ(Θil), µ(Θil′)) = E(µ(Θil).µ(Θil′))− E(µ(Θil))E(µ(Θil′))

= E(µ(Θil).µ(Θil′))− µ0lµ0l′

(1.26)

The non-diagonal elements are particularly important for instance, in a two dimen-

sional model where an employer insures his employees both ’at work’ and ’not at

work’, the non-diagonal elements cannot be zero since it is known that people who

are risky at work, tend to be more risky outside work. With the MLEs, the non-

diagonal elements can be estimated as:

ĉov(µ(Θil), µ(Θil′)) = Ê(µ(Θil).µ(Θil′))− µ̂0lµ̂0l′ (1.27)

where the expectation can be estimated with Monte Carlo.

1.4.1.2 Mittag Leffler Count Model

When the Mittag Leffler count model is assumed, we follow the same routine

exercise to provide parametric estimators for µµµ0, S and T.

The lth component of µµµ0 is given by

µ̂0l =
Γ(r̂l + ĉl)

Γ(1 + ĉl)Γ(r̂l)α̂
ĉl
l

(1.28)

Again, S is diagonal with the lth element estimated using data on the lth product

given by

σ̂2
l =

1

Γ(r̂l)α̂
ĉl
l

(
Γ(r̂l + ĉl)

Γ(1 + ĉl)
+

2Γ(r̂l + 2ĉl)

Γ(1 + 2ĉl)α̂
ĉl
l

− Γ(r̂l + 2ĉl)

Γ(1 + ĉl)2α̂ĉll

)
(1.29)

Next, we need to estimate the between variance matrix T. The diagonal elements

are straightforward treating each element in the same way as the one dimensional
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estimation procedure. Following from the one dimensional procedure, the lth diagonal

element of T is

τ̂ 2
l =

1

Γ(1 + ĉl)2Γ(r̂l)α̂
2ĉl
l

(
Γ(r̂l + 2ĉl)−

Γ(r̂l + ĉl)
2

Γ(r̂l)

)
(1.30)

The non-diagonal elements use information from two different products. Consider

any two products l and l′ such that l 6= l′ then the corresponding element is

cov(µ(Θil), µ(Θil′)) = E(µ(Θil).µ(Θil′))− E(µ(Θil))E(µ(Θil′))

= E

(
Θcl
il

Γ(1 + cl)
.

Θ
cl′
il′

Γ(1 + cl′)

)
− µ0lµ0l′

=
1

Γ(1 + cl)Γ(1 + cl′)
E
(
Θcl
ilΘ

cl′
il′

)
− µ0lµ0l′

(1.31)

which can be estimated as:

ĉov(µ(Θil), µ(Θil′)) =
1

Γ(1 + ĉl)Γ(1 + ĉl′)
Ê
(

Θĉl
ilΘ

ĉl′
il′

)
− µ̂0lµ̂0l′ (1.32)

1.4.2 Application to Cross-Selling

The multidimensional credibility model studied here has been recently applied to

cross selling by Kaishev et al. (2013), Thuring et al. (2012) and Thuring (2010). Cross-

selling is simply approaching the present customers of a company and encouraging

them to purchase one or more additional products of the company. The idea is to

identify less risky customers based on their history with the company and sell them

new products.

Cross-selling is important for a company to lower customers’ churn rate, increasing

the number of loyal customers and obtaining higher customer lifetime value (Akura

and Srinivasan, 2005) and the different product features allow significant contributions

for managers striving for valuable and strong relationship with their current customer

base (Larivière and den Poel, 2004). It also helps companies to learn more about the
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customers’ preferences and buying behavior, accumulate various types of data to their

database and use such information as a predictor of certain behaviors of the customers

such as customer retention and profitability outcomes (Ahn et al., 2011; Larivière and

den Poel, 2005; Kamakura et al., 2003).

Previous studies assume equidispersion at individual claims level and consequently

assume that the number of claims follow a Poisson distribution, which means selecting

customers is based on the risk profile θil for customer i with product l, which is also

the predicted number of claims. They also use the distribution free estimators by

Englund et al. (2008) and Bühlmann and Gisler (2005). With these assumptions for

example, Thuring et al. (2012) failed to identify 20% of the customers to target. This

is because after estimating the risk profiles, ordering them in ascending order, the

deviation between the estimated priori expected number of claims and the observed

number of claims was the lowest for the group with least estimated risk profiles.

The approach presented in this work gives so much flexibility in this area. First,

the restricted Poisson assumption can be generalized and customers can be selected

based on the means of more generalized distributions which are functions of the risk

profiles. Consider the multidimensional credibility formula obtained Section 1.4, the

estimator for the lth product can written as:

µ(Θil) = µ0l +
L∑
l′=1

ηill′(Fil′ − µ0l′)

= µ0l + ηill(Fil − µ0l) +
∑
l′ 6=l

ηill′(Fil′ − µ0l′)

(1.33)

In addition to the distribution flexibility, the parametric estimators provided in Sec-

tion 1.4.1 can also be exploited and it is highly recommended.
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1.5 Empirical Studies

1.5.1 Data

The data for testing the methodology and hypothesis in this paper is taken from a

large Danish Insurance company, consisting of individuals who have been customers

of the company from 1999 to 2004. We have information on a total of 99,951 unique

customers in the database. Th insurance information for each customer in the data

include the expected (estimated) claim frequency, number of reported claims, duration

(risk exposure), accident year, purchase date of policy, expiry date of policy and

11 different products or policies including building, traffic risks, motor hull and car.

Table 1.1 below shows the distribution of the customers across the different years. We

Table 1.1: Distribution of Customers

Year Number of Customers

1999 62,767
2000 59,544
2001 61,500
2002 60,248
2003 60,867
2004 60,102

will randomly divide the data set of each product into two samples: estimation data

and validation data.The estimation data will consist of 75% of the total customers

after removing NAs.13 The remaining 25% will constitute the validation data.

1.5.2 Results: Generalized Vrs. Poisson Count Models

The results presented here assess the distributional assumptions on the non-

parametric estimators by Bühlmann and Gisler (2005) using data from personal build-

ing and chattels lines of business. It is important to point out not all policyholders

13The NAs in the data indicate that the particular policies are not owned by the customers.
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have owned the lines of business for the same the number of years. We therefore,

select customers who have held the policies for the entire period under consideration.

We first consider customers who have held the personal building and chattels

coverages for the entire period from 1999 to 2004. The final samples consist of 2823

and 12681 policyholders for personal chattels and building coverages respectively.

Table 1.2 compares the structural parameters under two scenarios: when we assume

a generalized count model (Weibull and Mittag-leffler count models) and when we

assume that individual personal chattels claim counts follow the Poison model whiles

Table 1.3 shows the results for personal building. For details of the non-parametric

estimators including the iterative procedure imposed by the Poisson assumption, refer

to Bühlmann and Gisler (2005).

Table 1.2: Structural Parameters: Personal Chattels (1999-2004)

Bühlmann-Gisler

Parameters Generalized Count Models Poisson model

µ0 0.656 0.591
σ2 = E(σ2(Θ)) 0.503 0.591
τ 2 = V ar(µ(Θ)) 3.802 1564300

Table 1.3: Structural Parameters: Personal Building (1999-2004)

Bühlmann-Gisler

Parameters Generalized Count Models Poisson Model

µ0 0.881 0.819
σ2 = E(σ2(Θ)) 0.875 0.819
τ 2 = V ar(µ(Θ)) 0.560 60682496

Assuming equidispersion at individual claims level has a serious effect on the be-

tween variance parameter in the credibility formula. When the number of claims

of a policyholder is assumed to be Poison, the restriction imposed by equating the

collective premium (µ0) and the within variance parameter (σ2), simply renders the
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credibility formula unimportant. The Poisson model gives full credence to the indi-

vidual observed number of claims even for 6 years. However, when the equidispersion

assumption is relaxed, we get credibility weights that suggests that 6 years claims

information on the individual customer is not enough and accordingly assigns higher

weights to the collective information. Evidence using sample from the personal chat-

tels validation data sample is provided in Table 1.4. While the Poisson model gives

Table 1.4: Credibility Weights: Personal Chattels (1999-2004)

Credibility Weight

Generalized Count Models Poisson model

Nij = {0, 0, 0, 0, 0, 0}
λij = {0.003, 0.003, 0.003, 0.003, 0.003, 0.002} 0.104 1.00
Nij = {1, 0, 0, 0, 0, 0}
λij = {0.010, 0.009, 0.002, 0.010, 0.008, 0.011} 0.274 1.00
Nij = {0, 1, 0, 0, 0, 0}
λij = {0.003, 0.003, 0.003, 0.011, 0.001, 0.011} 0.199 1.00
Nij = {0, 0, 1, 0, 0, 0}
λij = {0.005, 0.005, 0.005, 0.005, 0.003, 0.005} 0.176 1.00
Nij = {0, 0, 0, 1, 0, 0}
λij = {0.002, 0.018, 0.020, 0.020, 0.003, 0.020} 0.381 1.00
Nij = {0, 0, 0, 0, 1, 0}
λij = {0.007, 0.012, 0.012, 0.009, 0.014, 0.014} 0.332 1.00
Nij = {0, 0, 0, 0, 0, 1}
λij = {0.004, 0.007, 0.007, 0.007, 0.007, 0.007} 0.231 1.00
Nij = {0, 1, 1, 0, 0, 0}
λij = {0.012, 0.012, 0.009, 0.011, 0.011, 0.011} 0.330 1.00

100% credibility to individual observed claim experience, the highest credibility weight

assigned to the individual experience without the Poisson restriction is 38.1%. The

lowest weight is assigned to the case where the individual reported no claim for the

entire six year period.

Now, suppose we have only three years of claims experience about the customers

from 2002 to 2004. Table 1.5 below compares the structural parameters under the

different models. Since the experience information has decreased, the estimated struc-

tural parameters responded accordingly. However, the between variance, τ̂ 2 resulting
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from the heterogeneity among customers is still large enough to break the credibility

model down as shown in Table 1.6.

Table 1.5: Structural Parameters: Personal Chattels (2002-2004)

Bühlmann-Gisler

Parameters Generalized Count Models Poisson model

µ0 0.6035106 0.4360533
σ2 = E(σ2(Θ)) 0.4305286 0.4360533
τ 2 = V ar(µ(Θ)) 0.8617676 851632.2

We see that using the generalized count models, the Bühlmann and Gisler (2005)

estimators methods are able to adjust and reduce the weights assigned to the individ-

ual experience while the Poisson model still gives full credence to 3 years experience.

Table 1.6: Credibility Weights: Personal Chattels (2002-2004)

Credibility Weight

Generalized Count Models Poisson model

Nij = {0, 0, 0, 0, 0, 0}
λij = {0.003, 0.003, 0.003, 0.003, 0.003, 0.002} 0.015 1.00
Nij = {1, 0, 0, 0, 0, 0}
λij = {0.010, 0.009, 0.002, 0.010, 0.008, 0.011} 0.055 1.00
Nij = {0, 1, 0, 0, 0, 0}
λij = {0.003, 0.003, 0.003, 0.011, 0.001, 0.011} 0.044 1.00
Nij = {0, 0, 1, 0, 0, 0}
λij = {0.005, 0.005, 0.005, 0.005, 0.003, 0.005} 0.024 1.00
Nij = {0, 0, 0, 1, 0, 0}
λij = {0.002, 0.018, 0.020, 0.020, 0.003, 0.020} 0.077 1.00
Nij = {0, 0, 0, 0, 1, 0}
λij = {0.007, 0.012, 0.012, 0.009, 0.014, 0.014} 0.067 1.00
Nij = {0, 0, 0, 0, 0, 1}
λij = {0.004, 0.007, 0.007, 0.007, 0.007, 0.007} 0.041 1.00
Nij = {0, 1, 1, 0, 0, 0}
λij = {0.012, 0.012, 0.009, 0.011, 0.011, 0.011} 0.062 1.00

22



1.5.3 Results: Mittag Leffler Parametric Vrs. Bühlmann-Gisler Struc-

tural Parameters

We want to estimate the parametric estimators from the Mittag Leffler count

model and compare that to the non-parametric estimators. One can think of this

estimation method as a 2-stage process. In stage 1, we find MLEs of the parameters

of the distribution of Θ to be used as the prior distribution in the second stage

using the most recent collective information (2004) of all customers and the collective

function (1.14). The MLEs from the personal chattels estimation sample are r̂ =

0.010, α̂ = 10.233 and ĉ = 0.587.

Since ĉ = 0.587, the collective sample is over-dispersed and it can easily be con-

firmed by comparing the mean and variance. With these estimates, we obtain the

parametric estimators from equations (1.16)– (1.18) in the 2 stage. The results are

provided in the last column of Table 1.7. The collective premium obtained is rela-

tively small, however this is compensated by a corresponding higher weight compared

to the Bühlmann-Gisler estimators when the individual equidispersion assumption is

generalized. The credibility weights on a validation data is presented in Table 1.8.

The Mittag Leffler estimators suggest that 6 years experience data on a customer

is not credible enough and accordingly assigns higher weights to the collective infor-

mation. A nice property of these estimators is that they share similar qualitative

properties as the generalized Bühlmann-Gisler estimators. For examples, both es-

timators rank the samples selected in the same increasing order of their credibility

weights.
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Table 1.7: Structural Parameters (with Mittag Leffler): Personal Chattels
(1999-2004)

Bühlmann-Gisler

Parameters Generalized Count Poisson model Mittag-Leffler

µ0 0.656 0.591 0.004
σ2 = E(σ2(Θ)) 0.503 0.591 0.005
τ 2 = V ar(µ(Θ)) 3.802 1564300 0.001

Table 1.8: Credibility Weights (with Mittag Leffler): Personal Chattels (1999-2004)

Credibility Weight

Generalized Count Models Mittag Leffler Poisson model

Nij = {0, 0, 0, 0, 0, 0} 0.104 0.003 1.00
Nij = {1, 0, 0, 0, 0, 0} 0.274 0.010 1.00
Nij = {0, 1, 0, 0, 0, 0} 0.199 0.007 1.00
Nij = {0, 0, 1, 0, 0, 0} 0.176 0.006 1.00
Nij = {0, 0, 0, 1, 0, 0} 0.381 0.016 1.00
Nij = {0, 0, 0, 0, 1, 0} 0.332 0.013 1.00
Nij = {0, 0, 0, 0, 0, 1} 0.231 0.008 1.00
Nij = {0, 1, 1, 0, 0, 0} 0.330 0.013 1.00

1.6 Conclusion

This work demonstrates that the usual restricted Poisson assumption of modeling

clam frequencies in credibility theory can be eliminated. Under some assumptions

we show that the nice properties of two generalized count models (the Weibull and

Mittag Leffler count models) for handling all kinds of data in terms variability can

be carried to the credibility estimator of individual risk levels.

In addition to existing estimation methods for the structural parameters in the

credibility formula, we have contributed to the literature by providing an alternative

parametric estimators using the mean and variance of the assumed distribution of

the number of claims given individual’s risk profile and a maximum likelihood over a

collective data. The Mittag Leffler structural parameters provide credibility weights

that have similar qualitative empirical properties as those provided by Bühlmann and
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Gisler (2005) without the Poisson restriction.

we further show that these analyses can be extended to the multidimensional

case and we show how elements in the structural parameters can be estimated. It is

important to mention that the maximum likelihood approach provided in this work

relies heavily on the time invariant assumption of the unobserved risk profile which

has also been shown to be the case in the literature, unless there is enough information

on the individual policyholder.

In this paper, we draw the attention of actuaries to the distribution assumptions

that are made about the number of claims used in determining individual risk premi-

ums. The premium can be determined fairly when the right distribution is used. We

introduce the Weibull count model and the Mittag Leffler count model in credibility

which handles many kinds of data processes. We conclude by saying that a thorough

investigation into what distribution fits a company claim data process is very impor-

tant since as evidenced in this work, the Poisson model though easy to work with,

can lead to misleading results.
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CHAPTER II

Predicting Performance for Stocks Selection in

U.S. Markets

2.1 Introduction

The U.S. markets are considered to be ‘efficient’, an idea commonly known as

the Efficient Market Hypothesis (EMH) which asserts that stocks always trade at

their fair value on financial exchanges, making it impossible for investors to either

sell inflated or purchase undervalued stocks and thus the only way to possibly earn

higher returns is by purchasing riskier assets. While the EMH is often disputed by

many, academics point to a large body of evidence in support of it. Past studies have

suggested financial ratios as an important tool for predicting stock performance which

is reflected in the stock’s return. Company’s annual report which are made available

through accounting principles provide enough financial data which transformed into

various ratios. These ratios have proved to be valuable not only in determining

a company’s relative performance but also are important tool in forecasting future

performance.

Investors take risks each time they enter the securities market. The decision

of which stock to buy vary among investors depending on their objectives.1 Some

1These may be short term or long term. Investors with short term goals may be interested in
companies paying frequent and high dividends.
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depend on public information to decide which securities they should buy; others

use sophisticated models which they hope will give them an upper edge in such a

competitive market like the stock exchange. Some people succeed whiles many more

loose everything despite these models.2

The performance rates of the different stocks in ones portfolio may be different

with some performing more poorly compared to market. In fact, predicting stock

performance is very complicated and difficult but may be impossible. This paper

employs key financial ratios in fundamental analysis to predict the performance of

U.S. listed stocks in a probabilistic framework. The tool developed in this work will

be useful for fund managers, investment companies as well as individual investors in

making their investment decisions.

Financial investments play a significant role in the U.S. economy. Movements in

the market can have serious effects on investors and hence the economy. The stock

markets serve as a major source of employment for many whiles most people depend

on the securities markets for their retirements. For some households, the returns from

financial securities may be their sole source of income. It is therefore important for

shareholders and other major stakeholders to use relevant financial information to

enable them to invest in good securities in the stock market.3

The remainder of this paper is organized into the six sections. Section 2.2 presents

a brief literature review. The third section 2.3 expands upon the relevant economic

theory and its relation to the performance measure. Section 2.4 presents the empir-

ical models and the estimation techniques employed. The fourth section 2.5 will be

devoted to describing the data set used for the analysis, while Section 2.6 presents

the empirical results and interpretations. The last section 2.7 contains conclusion and

proposes suggestions for future research.

2‘About two-thirds of all active investors will under perform index funds every year’ Taylor
(2004).

3Stakeholders basically include potential investors, employees, customers, suppliers and govern-
ment.
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2.2 Literature Review

Since the beginning of financial trading in the 12th century, several studies have

attempted to predict the market in order for investors to gain competitive advantage

over one another. Financial ratios were mostly used by banks and other lending

institutions to assess a company’s ability to pay short-term debt. Additionally, they

were used as a benchmark for a competitive business analysis. However, financial

analysts have realized the importance of these ratios in making investment decisions

and predicting future performance of an entity.

Analysts may use financial ratios for forecasting future return trends and can give

an early warning of a firm’s deteriorating financial condition (Ohlson, 1980). For

instance, financially hard-pressed companies can be correctly identified with a 94%

accuracy rate within two years prior to the declaration of bankruptcy by assessing

financial ratios (Altman, 1968).4 Over the past years, several empirical studies have

demonstrated the importance of these ratios contrary to the suggestion that the ratio

analysis is no longer an important analytical tool in academia (Altman, 1968; Turk,

2006).

Most of the studies have focused on identifying which ratios affect expected stock

returns or changes in stock prices. Cochrane (1997) combined Ordinary Least Squares

(OLS) and Generalized Method of Moments (GMM) in his study and found that

price-dividend ratio (P/D) can predict long run stock returns.5 In a similar study,

Lewellen (2004) showed that dividend yield (DY), book-per-market value (B/M) and

earnings-price ratio (E/P) are good indications of a company’s future stock price in

current economic environment.

Hobarth (2006) studied the relationship between financial indicators and firm’s

4He only considered publicly held manufacturing companies for which financial data were avail-
able. He outlined this situation as a limitation to his paper.

5He got decent results even though he did not include key ratios like price-earnings ratio (P/E)
and price-book ratio (P/B). Also, his findings are true for longer time horizons over 5-10 years.
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performance of listed firms in US using OLS. The result shows that companies with

low B/M, efficient working capital, more equity and less debt, negative stock rating,

few assets, high earnings-before-interest-and-tax (EBIT) margin and high profitability

will have a better market performance measured by stock price (Hobarth, 2006).

Other authors have shown the impact of several ratios on company’s stock return

but the strongest of the indicators in U.S. markets have been P/E, DY and P/B .

However, most of these studies have focused on “point forecast” and a large portion

of expected returns are left unexplained.6

The idea of using financial data in the probabilistic framework has been well

researched in the literature but authors have mainly concentrated on predicting a

company’s failure or bankruptcy rate. Altman (1968) developed a default-prediction

model using Multivariate Discriminant Analysis (MDA) and introduced the zscore

rate of bankruptcy where higher values greater than 3.0 indicate low probability of

bankruptcy with lower values suggesting otherwise. Ohlson (1980) criticized the MDA

model, particularly the restrictive statistical requirements on the distributional prop-

erties of the explanatory variables and revisited the problem using logistic regression.

Zavgren (1985) built a similar logit model that gives a five-year prior indication to

a company’s failure and found profitability and turnover ratios to be a significant

indicator.

Following up on the concerns about the MDA model (Altman, 1968) and the

logit model (Ohlson, 1980), others techniques including probit, recursive partitioning,

hazard models and neural networks have been used in the prediction of a company’s

failure rate (Zmijewski, 1984; Jones, 1987; Agarwal and Taffler, 2007). Surprisingly,

the question of how these ratios affect the probability of a company performing good

or bad has been given little or no attention particularly in the U.S. markets. Upadhyay

6This issue has been recognized by the Vanguard Research Group and states: ... But the fact that
even P/Es-the strongest of the indicators we examined-leave a large portion of returns unexplained
underscores our belief that expected stock returns are best stated in a probabilistic framework, not
as a “point forecast” (Joseph Davis and Thomas, 2012)
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et al. (2012) pioneered the probabilistic prediction of a company’s performance for the

Indian Stock Market. In a MNL model, they predicted 56.8% of the sample correct

and achieved a 58.41% accuracy prediction rate for out of sample data using seven

(7) financial ratios, for the years from 2005 to 2008.7

In their limited study, only 30 companies with large market capitalization and

are part of the Nifty index were selected resulting in a relatively small sample size

of 118 and 101 for training and testing respectively. It is however not true that if a

model works for top established companies then it must work for the entire market

and thus, the restrictive nature of the selection we believe could lead to a possible

sample selection bias. Another concern of their study which the authors admit is

the issue of multicollinearity which makes it impossible to assess and interpret the

effects of the ratios on the performance probabilities. However, they stated that their

objective was to show that the MNL model could be used in predicting performance

and a such the coefficients themselves didn’t matter to them as long as they predicted

the outcomes correctly.

This paper builds on the study by Upadhyay et al. (2012) and extends the analysis

to a more efficient market. First, we attempt to answer the question of how one could

use the MNL model in predicting performance for stocks listed on U.S. markets.

Since one cannot interpret the results when multicollinearity is present, and so if

predictability is preferred, It will be interesting to compare the MNL model with a

neural network model. In addition, the frequency of the data could play a role and

so one of the goals of the research work is to compare the results of annual data to

that of a quarterly data.

In addition, we will bring the analysis to the industry level and attempt to un-

derstand how MNL performs. Financial ratios may have different impacts depending

7They identified percentage increase in net sales, earnings per share, book value, price/earnings
per share, profit before interest depreciation and taxes/sales, price/book value and percentage change
in operating profit as the key ratios for prediction in the Indian market.
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on the economic sector of the company in question. For instance, a shoe store will

have goods that quickly lose value because of changing fashion trends. However,

these goods are easily sold and have high turnover. As a result, small amounts of

money continuously come in and go out, and in a worst-case scenario liquidation is

relatively simple. This company could easily function with a current ratio close to

1.0. An airplane manufacturer on the other hand, should have much higher current

ratio to allow for coverage of short-term liabilities. Also, some financial ratios may be

more predictive in some industries and thus in this study, we would want to identify

some important ratios to look out for when investing in the energy, industrials and

informational technology sectors.

One distinguishing feature of this research which is important to point out is

how performance is measured. Unlike Upadhyay et al. (2012), we use a performance

measure which is appropriate when selecting stocks to form a portfolio. To address

the sample selection issue, every listed company is selected and to account for their

differences, we control for their market capitalization in the model. Finally, this work

will propose a set of financial ratios one should consider when predicting performance

in a probabilistic framework for the U.S. markets.

2.3 Theory and Performance Measure

2.3.1 Theoretical Framework

Conceptually, the performance of a stock is measured by the returns it gives to

investors. The rate of return from holding a stock equals the sum of capital gains

(the change in price) plus any cash dividend payments, divided by the initial purchase
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price of the security.8 Mathematically we have that,

Rt =
Pt+1 − Pt +Dt

Pt
(2.1)

Where:

Rt is the rate of return on the stock held from time t to t+1

Pt+1 is the price of the stock at time t+1

Pt is the price of the stock at time t

Dt is the dividend payments made in the period t to t+1

Under the EMH. The capital asset pricing model (CAPM) gives a fair expected risk

premium on a stock as:

rs − rf = β(rm − rf ) (2.2)

Where:

rs = expected return on stock

rf = risk free rate

rm = expected market return

β = beta of the stock9

Upadhyay et al. (2012) developed performance by comparing a stock’s return and

variance to that of the market. While that works for the Indian market, we think the

story is different when considering the U.S. market. Figures H.1 and H.2 compare

the distributions of stock returns between the two markets.10 Clearly, the skewness

of expected returns in the U.S. market does suggest that we cannot use the variance

alone as risk in differentiating among the performance groups. The expected returns

8Different investors may have different goals for buying stocks. People who depend on their
investments for daily income would be more interested in cash dividends.

9β is the co-variance between the stock and the market returns divided by the variance of the
market return. An asset has β = 0 if it is uncorrelated with the market. It has positive β if it follows
the benchmark(market) and if β is negative, the return on the asset moves in opposite direction to
the market return.

10The stock returns for the Indian stock market consist of the 30 companies as in Upadhyay et al.
(2012) from year 2005 to 2008. We also consider the same sample period for NYSE.
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selected for the Indian market are at least close to a normal distribution. In fact,

Shapiro test fails reject the null hypothesis that the Indian stock returns follow a

normal distribution at 1% level of significance and so the dynamics between the

two markets are different. We also provide the Q-Q plot of the expected returns in

Appendix H.

Instead of the variance, we propose to use the zscore rate of bankruptcy developed

by Altman (1968) which forecast failure in the short-term. If a value less than 1.81

is returned, than there is a high probability of bankruptcy and if a value greater

than 3.0 is returned, than there is a low probability of bankruptcy. We also use the

expected risk premium per market risk β and design a performance measure that is

useful when selecting stocks to be part of a portfolio.

2.3.2 Performance Measure

From the CAPM model, we can re-arrange and get:

E(r)− rf
β

= E(rm)− rf (2.3)

Therefore, a stock performs well if

E(r)− rf
β

> E(rm)− rf (2.4)

and vice versa.11 However, among those that are doing well, we can distinguish be-

tween them based on their zscore of going bankrupt.12 Now, Let T =
E(r)−rf

β
and Tm =

E(rm) − rf , then we classify the performance of companies as Superior, Good and

Poor. A company is classified as ‘superior’ if T is greater or equal to Tm and the

zscore is higher than 3, ‘good’ if T is greater or equal to Tm and the zscore is less

11The left hand side expression is the Treynor’s ratio.
12For detailed explanation on the zscore rate of bankruptcy, see Altman (1968).
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or equal to 3 and ‘poor’ if T is less than Tm. The resulting performance measure is

summarized in Figure I.1.

2.4 Empirical Models

2.4.1 Multinomial Logit Model

We specify the following form of the stock performance equation:

Y ∗i = X
′

iβ + εi (2.5)

Where i indexes the observations (companies), Y ∗i is the latent stock performance

(unobserved), X
′
i are the financial ratios affecting stock returns, εi ∼ G (0, 1), Gumbel

distribution (mutually independent). We follow Upadhyay et al. (2012) and estimate

the model using the MNL model since we have three categories of performance.13

We do not know Y ∗i however we observe Yi coded as 0,1,2 representing the three

categories of performance (poor, good and superior). Thus, we have

Yi =


0 if the stock performs poor

1 if it performs average

2 if it has superior performance

(2.6)

The normalized log-likelihood function of the samples is given by:

Ln(Y ) =
1

n

n∑
i

2∑
j=0

DijlnPr (yi = j|xi) (2.7)

13This is sometimes called multinomial logistic regression (MLR).
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with

Dij =


1 if yi = j

0 if yi 6= j

(2.8)

and

Pij =
expX

′
iβj∑2

m=0 expX
′
iβm

(2.9)

Where Pij = Pr(y = j | xi), j = 0, 1, 2 is the probability that an observation i belongs

to alternative j and should be such that

2∑
j=0

Pij = 1,∀i (2.10)

The superior performance group is taken as the base category so the usual restriction

is that β0 = 0.

2.4.2 Artificial Neural Network

ANNs have enjoyed increasing popularity over standard econometric tools in pre-

dicting outcomes mainly because they do not suffer from specification bias and their

ability to model highly complex relationships. A neural network model will be more

complicated to explain than a regression model since the associated weights have no

meaning. However, in most fields, management would prefer a stronger predictive

model, even if it is more complicated. The predictive efficacy of ANNs have been

shown in several fields, particularly in medicine and marketing.

Unlike ANNs, the coefficients in MNL model can be interpreted. However, when

several ratios are put together and are correlated, it is difficult to assess the effects of
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the individual ratios just as ANNs. In addition, there are some underlying assump-

tions of MNL model which can have serious implications. Among them includes the

assumption of ’independence from irrelevant alternatives’ which reduces m alterna-

tives to a series of pairwise comparisons that are unaffected by the characteristics of

alternatives other than the pair under consideration. The second being the interaction

effects between the explanatory variables which is difficult under MNL model.

Therefore, when MNL is being used solely for predictive purposes, it is important

to ask how it compares with ANNs. Neural Networks have been increasingly applied

to a wide range of finance problems, going from modelling financial markets (Refenes,

1995; Trippi and Turban, 1992) to loan risk analysis (Burgess, 1995). Bridle (1990)

showed that the Softmax Output network with shared weights generalizes the MNL

model and thus, we design a network which we believe can take into account the

complex relationships in the stock market and compare the results to the MNL model.

We consider multi-layer feed forward network fully connected and consists of four

layers. Each unit in a given layer is connected to every unit in the next layer and

every connection has weight (wij) associated with it. The number of inputs in each of

the hidden layers are determined internally using the testing dataset. The activation

function is the sigmoid function given by:

f(X,W ) =
1

1 + exp(−W TX)
(2.11)

The output function is given by

Sk =
exp(W T

k f(X,W ))∑
j exp(W

T
j f(X,W ))

(2.12)

where j, k = 0, 1, 2
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The cross-entropy error function is given by

E(W ) = −
N∑
i=1

2∑
k=0

DiklnSk(Xi,W ) (2.13)

where

Dik =


1 if yi = k

0 if yi 6= k

(2.14)

We will train the network with the scaled conjugate gradient algorithm with a batch

training.14 Details of the algorithm is standard and can be found in any textbook on

neural networks.

2.5 Data

The dataset used for the empirical analysis comes from Compustat CD.15 A sample

period of 11 years starting from January, 2002 to December, 2012 is considered. For

each year, the companies were selected based on two (2) pre-determined criteria. The

company:

• must be public

• must actively be traded in the U.S.16

A total of 2133 companies are selected as a result of above criteria. Annual

financial data on these companies have been extracted for each year and pooled

14We are in no means claiming this as being the best algorithm for the U.S. market. Our goal is
to investigate any superiority of ANNs over MNL in the market and a such we will not be comparing
the different algorithms in this work.

15Compustat is a database of financial, statistical and market information on companies through-
out the world. The data come from the Compustat North America CD which focuses on US and
Canada companies

16This excludes Canadian companies not trading on U.S. exchanges, but includes American De-
pository Receipts (ADRs).
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together for two subperiods: 2011-2012 and 2005-2012. The use of the two sample

periods have the ability to check the stability of the models over different time periods.

17 We have also collected quarterly data for the sample period 2011-2012 to investigate

the influence of the data frequency.

The economic sector analyses have been conducted for three sectors: energy, in-

dustrials and informational technology using yearly data for sample period from 2002

to 2012. The final sample sizes used in this study are summarized in Table 2.1. We

split the final sample into training and testing data. We build the models on the

training data and test them using the testing data to help check over-fitting. In this

work, we use 75% of the sample for training and 25% for testing. In some cases,

we keep 5% of the testing data as a holdout for prediction. We have also collected

information about Indian Stocks’ returns from Yahoo Finance.

Table 2.1: Final Sample Size

Sample Period Sample Size

Yearly data sample 1: (2011-2012) 1821
sample 2: (2005-2012) 6667

Quarterly data sample 3: (2011-2012) 5398

Industry yearly data energy: (2002-2012) 952
industrials: (2002-2012) 1895
information technology: (2002-2012) 618

The Standard & Poor’s 500 (S & P 500) stock index is used as a proxy to represent

the U.S. market.18 An annualized 6 monthly treasury bill rate is used for the yearly

risk free rate while a 3 monthly t-bill is used as a proxy for the quarterly risk free

rate. The size of each company is controlled for by their market capitalization and

we standardized the values so that they are comparable with the ratios.

17In most cases, stocks selection are done at a particular point in time and therefore, we have to
check how pooling different times together can influence the results.

18The stocks in the index are chosen for market size, liquidity, and industry group representation.
It is the most commonly used benchmark for the overall US stock market.
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According to economic theory, changes in financial ratios that affect changes in

stock prices and dividend should effectively predict performance. There are more

than 100 financial items that are reported in the literature (Chen and Shimerda,

1981).19 In this paper, we have selected ratios which have empirical evidence of high

predictive power on stock returns or measures the efficiency, liquidity, profitability,

solvency and growth opportunities of firms.

We have identified 9 ratios to affect performance of the entire market and they

are cash turnover (CT), current ratio (CURRENT), debt to market ratio (DMKT),

financial leverage ratio (FLR), net profit margin (NPM), P/B, P/E, return on assets

(ROA) and return on investments (ROI). The ratios hypothesized to be important

in the energy sector are book value per share (BVPS), cash flow per share (CFS),

CURRENT, DY and earnings per share (EPS). We propose BVPS, CFS, CURRENT,

DY, EPS and ROA for the industrials sector and CT, CURRENT, DMKT, NPM

and ROI for the informational technology sector. For basic sample statistics of these

ratios, go to Appendix J.

2.6 Empirical Results

2.6.1 Yearly Data

The estimated results for the two different samples: 2011-2012 and 2005-2012 are

presented in Table K.1 and Table K.2. In general, having more data did not change

the signs of the logistic coefficients and where there was a change, the coefficient was

not statistically significant. The size of the companies measured by their standardized

market capitalization tends out not to be significant in distinguishing the alternative

performance groups from the reference group (superior) in both samples. A firm’s

19Chen and Shimerda (1981) reported that more than 100 financial indicators have been analyzed
in 26 studies, of which 65 are accounting ratios. 41 of these indicators are considered useful and/or
are used in the final analysis by one or more authors.
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efficiency in its use of cash for generation of sales revenue as measured by CT is very

significant and decreases the log odds by 0.001 in both samples.

CURRENT is significant in distinguishing between the superior and good perfor-

mance groups but not the superior group from the poor performing group. CURRENT

measures a firm’s ability to settle its short term debt obligations. A firm’s inability

to pay its debts will mean going bankrupt, captured by the zcore which was used to

separate the superior and the good and thus consistent with how performance was

created. The DMKT is highly significant and distinctive among the groups in both

samples.

The overall relationship among the ratios and the stock performance groups was

assessed by a likelihood ratio test and there is a significance evidence that the coeffi-

cients are all jointly different from zero. We now assess the effect of each hypothesized

ratio in the model using likelihood ratio test. We run a reduced model by omitting

an effect from the final model and test the null hypothesis that all coefficients of

that effect are zero and report the p-values in Table L.1. Surprisingly, P/E shown by

previous research as having strong effect on stock return is not significant.

As mentioned earlier, we want to find the right financial ratios and model for

prediction and thus we will study the classification accuracy table from the MNL. The

table is created by comparing the predicted categories based on the model against the

observed response groups in order to assess the prediction power of the model. Even

if the financial ratios have no relationship with stock performance, one would expect

some of the groups to be predicted correct by chance. This is referred to as ‘by chance

accuracy’ and it is computed by summing the squared proportion of the observations

in each category. The benchmark that is used to characterize a MNL as useful is

a 25% improvement over the chance accuracy rate.20 Figure M.1 compares the ‘by

accuracy rate’ and the ’benchmark rate’ for the different samples we considered for

20We will refer to this as the ‘benchmark rate’.
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this study.

Now that we know what prediction rate would constitute a good model, we will

present the results from the models. We build the model using the training data,

predict the training data and then validates the model with the testing data. The

results are shown in Table 2.2. The overall prediction rate for the sample: 2011-2012

is the best one would expect for an efficient market like NYSE and far exceeds the rate

obtained for the Indian market by Upadhyay et al. (2012). The 63.4% accuracy rate

is greater than the benchmark rate of 58.2% and less than the accuracy rate 65.1%

obtained from the testing data, thus suggesting a good model. However, the results

obtained for the sample: 2005-2012 suggest over-fitting the model since the prediction

rate from the testing data less that in the training even though the obtained accuracy

rate is higher than the benchmark rate.

Table 2.2: Classification Table (Yearly Data)

Percentage Correct (%)

Data Performance 2011-2012 2005-2012

Training Poor 93.0 78.1
Good 3.9 4.7

Superior 20.3 44.7

Overall 63.4 50.9

Testing Poor 93.7 73.9
Good 0 5.9

Superior 18.3 43.6

Overall 65.1 48.8

Due to the inconsistency of results from the MNL, we run goodness-of-fit tests

under the null hypothesis that the model adequately fits the data. We computes

Pearson and Deviance goodness-of-fit statistics so that we can compare our results

here to Upadhyay et al. (2012) found for the Indian market. Under the null, the

Pearson and Deviance statistics have a chi-square distribution. The results displayed

in Table N.1 contradict each other: while the Deviance statistic fails to reject the null
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hypothesis, Pearson statistic finds evidence that the model does not adequately fit the

data in both samples with p-value = 0. It is therefore difficult for one to completely

trust the MNL as a predictive tool for the U.S. market.

2.6.2 Quarterly Data

One hypothesis in this study is whether the frequency of data matters and we have

only done the analyses up to a quarterly data. The estimated results as shown in

Table K.3, however we see that they are qualitatively about the same as those obtained

from the yearly data. The individual ratios’ effects are also presented in Table L.2.

Except P/E, all the hypothesized ratios significantly contribute to the model and

therefore, the size of the company is now important at a lower data frequency.

Table 2.3 shows the prediction accuracy rates from the training and testing quar-

terly data.

Table 2.3: Classification Table (Quarterly Data)

Percentage Correct (%)

Data Performance 2011-2012

Training Poor 43.5
Good 41.6

Superior 76.4

Overall 55.6

Testing Poor 45.0
Good 42.9

Superior 75.5

Overall 56.3

2.6.3 ANNs

The number of units in each hidden layer is determined optimally using a testing

data set. A network with eight hidden units on the first hidden layer and six hidden
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units on the second hidden layer was selected as a result all samples. An example of

such network is shown in Figure E.1. In general, we conclude that the ANNs is able

to model the complex relationships in the U.S. data better as seen in the classification

table in Table 2.4. The network is consistent with a higher overall prediction accuracy

rate in the testing phase in all samples suggesting no over-fitting. The network is able

Table 2.4: Classification Table (ANNs)

Percentage Correct (%)

Data Performance 2011-2012 2011-2012(Q) 2005-2012

Training Poor 95.7 45.4 63.8
Good 2.5 47.8 26.7

Superior 19.0 73.1 55.2

Overall 64.3 56.5 52.1

Testing Poor 92.2 46.9 63.4
Good 1.7 47.2 31.2

Superior 24.7 73.1 58.1

Overall 66.5 57.3 54.5

to capture the inter-relationships existing among the ratios which otherwise cannot

be achieved using MNL. Achieving more than 50% overall classification rate in an

efficient market like the U.S. market is a success but the synaptic weights cannot

be interpreted. As we have seen in this study, several set of ratios need to be put

together to obtain a higher predictive rate. In this case, the marginal effects of the

ratios would be difficult to interpret since the ratios may be correlated. Therefore,

when prediction is all we care about, this work proposes ANNs over MNL.

2.6.4 Industry Sector Analyses

For the entire U.S. market, we have shown that MNL is always rejected by Pearson

goodness-of-fit test as a good model for probabilistic prediction and could potentially

lead to over-fitting. This study further shows that these inconsistencies can be elim-

inated and finds that, MNL passes all the goodness-of-fit tests at the industry level.
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Evidence from three industries (Energy, Industrials and Information technology) are

discussed in Sections 2.6.4.1– 2.6.4.3. We also find MNL to be more predictive in the

information technology industry compared to the other industries considered.

2.6.4.1 Energy

We have identified five important financial ratios in the energy industry: BVPS,

CFS, CURRENT, DY and EPS as key in predicting performance in a probabilistic

framework. The coefficients with their p-values are reported in Table K.4. The various

goodness-of-fit tests, we run in this work shows MNL fits the data (refer to Table L.3

and Table N.3).

We also check the predictive power of this model in the energy sector and report

the classification table in Table 2.5. The overall accuracy rate at both the training

and testing phases is higher than the benchmark rate (see Figure M.2) also suggesting

a good model but the rate is small as shown in Table 2.5 and we suspect this could be

the fact that the energy sector responds to information more quickly and thus more

efficient relative to the whole market or the ratios are not enough and other factors

are needed to improve the prediction rate.

Table 2.5: Classification Table (Energy)

Percentage Correct (%)

Data Performance 2002-2012

Training Poor 80.7
Good 8.8

Superior 36.7

Overall 48.5

Testing Poor 82.6
Good 6.9

Superior 39.1

Overall 48.9
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2.6.4.2 Industrials

In addition to the set of ratios identified for the energy sector, ROA is needed to

make the MNL model works for the industrial sector. Pearson and Deviance goodness-

of-tests failed to find evidence against the model at 5% level of significance (see

Table N.3). The significance of the individuals’ proposed ratios using likelihood ratio

test are provided in Table L.3. While BVPS is not significant in distinguishing the

good and poor performance from the superior group as seen displayed in Table K.5,

ROA is highly significant. CURRENT on the other hand is significant in the good

group but not the poor which is consistent with how we created the performance

group.

Now, we look at the prediction rate in this sector. Table 2.6 shows accuracy rates

in a training and testing sample. The rates achieved are about the same as the rates

obtained for the energy sector and again, revealing another similarity between these

two sectors. The rates are higher than the benchmark rate and the MNL model can

be used for prediction in the probabilistic framework.

Table 2.6: Classification Table (Industrials)

Percentage Correct (%)

Data Performance 2002-2012

Training Poor 74.4
Good 11.2

Superior 40.9

Overall 48.2

Testing Poor 75.6
Good 6.8

Superior 43.9

Overall 49.3
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2.6.4.3 Information Technology

MNL is most predictive in the information technology sector. This could be the

fact that the information technology sector is less efficient compared to the energy

and industrials sectors or we have identified ratios that are key determinant in this

industry. Likelihood ratio test (Table L.3) reveals CT, CURRENT and DMKT as

significant factors. The p-values for Pearson and Deviance goodness-of-fit tests are

0.994 and 0.998 respestively and we thus fail to reject the null hypothesis that the

MNL model fits the data.

The overall accuracy rates are 56.2% and 56.5% in training and testing data

respectively as seen in Table 2.7. The probability of a correct classification is 0.33

and thus achieving there accuracy rates which are also greater than the benchmark

rate of 53.11% (see Figure M.2) suggests that the MNL model works for this industry

with proposed ratios.

Table 2.7: Classification Table (Information Technology)

Percentage Correct (%)

Data Performance 2002-2012

Training Poor 87.3
Good 0.0

Superior 23.7

Overall 56.2

Testing Poor 89.9
Good 14.3

Superior 14.7

Overall 56.5

2.7 Conclusion and Future Research

This paper has introduced a probabilistic prediction of stock performance in the

U.S. market, an efficient market where one would expect a zero alpha and showed a
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potential prediction possibilities. MNL is always rejected by Pearson goodness-of-fit

test irrespective of the sample periods and the data frequency considered for this

study. Previous studies analyzing activities in the U.S. stock markets have relied

heavily on DY, EPS and P/E. This study demonstrates that other ratios such as CT,

CURRENT, DMKT and ROA play a key role on a company’s stock performance.

We have seen that MNL fits the U.S. data at the industry level but the peudo R-

squares are small suggesting that there may be other important factors affecting stock

returns and thus performance. Further research into other economic and industry

specific factors to help improve the prediction rate is strongly encouraged. Where

industry specific factors exist, nested logit model can be implemented to see how it

fits the data as well as its predictive power.

This paper shows that a neural network is preferred when prediction is the ultimate

goal. By no means are we claiming that this is the best prediction rate one can derive

from the network. ANNs are may be highy unstable: we have seen that the order

of the ratios can seriously affect the prediction rate and so one may ask what is the

maximum prediction rate from the network? Which algorithm among the numerous

algorithms available is optimum? Future studies will be interesting to answer these

questions.
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APPENDIX A

Derivation of the Bühlmann Straub Credibility

Model

Defining the number of claims per policy as
Nij

λij
and by our assumption of the

distribution of the number of claims, we have that

E(Fij|Θi) = E

(
Nij

λij
| Θi

)
= µ(Θi)

V ar(Fij|Θi) = V ar

(
Nij

λij
| Θi

)
=
σ2(Θi)

λij

(A.1)

• Now, define

µ̂(Θi) = ai +
J∑
j=1

bijFij = ai + bi

J∑
j=1

Fij (A.2)

where the last equality results from the probability distribution of Fi1, · · · , FiJ being

invariant under the permutations of Fij and the uniqueness of the credibility estimator

(Bühlmann and Gisler, 2005).

Lemma A.1. (Bühlmann, 1967) If E(ai + biFi − µ(θ))2 ≤ E(a′i + b′iFi − µ(θ))2 for

all arbitrary a′ and b′,

then ai + biFi is also the best linear approximation to E(µ(θ)|Fi1, Fi2, ..., FiJ). 1

1Refer to (Bühlmann, 1967) for the proof of the lemma.
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• Now, by letting Fi =
∑J

j=1
λij
λi
Fij and λi =

∑J
j=1 λij

µ̂(Θi) = âi + b̂iFi (A.3)

Where

(âi, b̂i) = arg min
ai,bi

E (µ(Θi)− ai − biFi)2 (A.4)

• The first order conditions yield

E(µ(Θi)− ai − biFi) = 0

Cov(µ(Θi), Fi) = biV ar(Fi)

(A.5)

• After some simplifications and combining equations (A.3) and (A.5) , we get

µ̂(Θi) = Eµ(Θi) + [V ar(µ(Θi))]
2

(
Eσ2(Θi)

λiV ar(µ(Θi))
+ 1

)−1

(Fi − EFi) (A.6)

50



APPENDIX B

Moments of Weibull Count Model

The expected value and variance of the Weibull count model, given a heteroge-

neous rate parameter Θi are

µ(Θi) =
∞∑
n=1

∞∑
m=n

n(−1)m+nαnm
Γ(cm+ 1)

Θm
i

σ2(Θi) =
∞∑
n=1

∞∑
m=n

n2(−1)m+nαnm
Γ(cm+ 1)

Θm
i −

(
∞∑
n=1

∞∑
m=n

n(−1)m+nαnm
Γ(cm+ 1)

Θm
i

)2

(B.1)

Where α0
m = Γ(cm+1)

Γ(m+1)
, for m = 0, 1, 2, ... and αn+1

m =
∑m−1

l=n
Γ(cm−cl+1)
Γ(m−l+1)

,

for n = 0, 1, 2, ... for m = n+ 1, n+ 2, n+ 3, ...
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APPENDIX C

Structural Parameters: Weibull Count Model

The derivation of the heterogeneous Weibull count model when t = 1 is given by

P (N = n) =

∞∫
0

[
∞∑
m=n

(−1)m+nαnmΘm
i

Γ(cm+ 1)

]
g(Θi|r, α)dΘi

=

∞∫
0

[
∞∑
m=n

(−1)m+nαnmΘm
i

Γ(cm+ 1)

]
× αr(Θi)

r−1e−αΘi

Γ(r)
dΘi

=
∞∑
m=n

(−1)m+nαnm
Γ(cm+ 1)

∞∫
0

Θm
i

αr(Θi)
r−1e−αΘi

Γ(r)
dΘi

=
∞∑
m=n

(−1)m+nαnm
Γ(cm+ 1)

∞∫
0

(αΘi)
m+r−1e−αΘi

Γ(r)αm
dαΘi

=
∞∑
m=n

(−1)m+nαnm
Γ(cm+ 1)

1

Γ(r)αm

∞∫
0

(αΘi)
m+r−1e−αΘidαΘi

=
∞∑
m=n

(−1)m+nαnm
Γ(cm+ 1)

Γ(r +m)

Γ(r)αm

(C.1)

For n = 0, 1, 2, ...

The collective premium µ0 is the expected value of the individual risk premiums

given by

µ0 = E[µ(Θi)] =
∞∑
n=1

∞∑
m=n

n(−1)m+nαnmE(Θm
i )

Γ(cm+ 1)
(C.2)
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Where the last equality holds because of the linearity property of expectation. There-

fore, we have that

µ̂0 =
∞∑
n=1

∞∑
m=n

n(−1)m+nαnmÊ(Θm
i )

Γ(ĉm+ 1)

=
∞∑
n=1

∞∑
m=n

n(−1)m+nαnm
Γ(ĉm+ 1)

Γ(r̂ +m)

Γ(r̂)α̂m

=
∞∑
n=1

∞∑
m=n

n(−1)m+nαnm
Γ(ĉm+ 1)

(r̂ +m− 1)...r̂

α̂m

(C.3)

Since Θi ∼ gamma(r, α) and E(Θm
i ) = Γ(r+m)

Γ(r)αm , which is the mth moment of the

gamma distribution.

The expected variance within individual risks σ2 is equal to

σ2 = E(σ2(Θi)) =
∞∑
n=1

∞∑
m=n

n2(−1)m+nαnm
Γ(cm+ 1)

(E(Θi))
m−Ê

(
∞∑
n=1

∞∑
m=n

n(−1)m+nαnm
Γ(ĉm+ 1)

Θm
i

)2

(C.4)

Using the best estimator for E(Θi) and the maximum likelihood estimates, we obtain

the expression in equation (1.9).

Lastly, we will find an estimate for the variance between individual risk premiums

using the mean expression of the Weibull count model. This is given by

τ 2 = V ar(µ(Θi)) = V ar

(
∞∑
n=1

∞∑
m=n

n(−1)m+nαnm
Γ(cm+ 1)

Θm
i

)
(C.5)

Now, using the maximum likelihood estimates, τ̂ 2 is equal to equation (1.10).
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APPENDIX D

Monte Carlo Estimates

Let

f(Θi) =
∞∑
n=1

∞∑
m=n

n(−1)m+nαnm
Γ(ĉm+ 1)

Θm
i (D.1)

Now, take n-sample of Θi, (θi1, · · · , θin), then an unbiased estimate of E(f(Θi)) is

f̃n(Θi) =
1

n

n∑
h=1

f(θih) (D.2)

Similarly, an unbiased estimate of V ar(f(Θi)) is given by:

V̂ ar(f(Θi)) =
1

n− 1

n∑
h=1

(
f(θih)− f̃n(θi)

)2

(D.3)

The proof of unbiasedness of the expected value is

E(f̃n(θi)) = E

(
1

n

n∑
h=1

f(θih)

)
=

1

n

n∑
h=1

E(f(θih)) = E(f(Θi)) (D.4)
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APPENDIX E

Simulation Results

Table E.1: r = 5, α = 4, c = 2: (Mean, Median)

True Parameter (I=3500, n=137) (I=5000, n=131) (I=8000, n=137) (I=10000, n=145)

r = 5 4.861, 4.868 4.843, 4.840 4.857, 4.848 4.871, 4.863
α = 4 3.829, 3.819 3.840, 3.832 3.841, 3.833 3.845, 3.830
c = 2 2.016, 2.017 2.016, 2.015 2.013, 2.012 2.006, 2.008

Figure E.1: I=3500, n=137
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Figure E.2: I=5000, n=131

Figure E.3: I=8000, n=137

Figure E.4: I=10000, n=145
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Table E.2: r = 7, α = 3, c = 1: (Mean, Median)

True Parameter (I=3500, n=29) (I=5000, n=35) (I=8000, n=39) (I=10000, n=48)

r = 7 6.705, 6.700 6.688, 6.690 6.686, 6.691 6.701, 6.704
α = 3 2.837, 2.838 2.843, 2.844 2.848, 2.845 2.837, 2.839
c = 1 1.018, 1.019 1.012, 1.011 1.014, 1.013 1.012, 1.011

Figure E.5: I=3500, n=29

Figure E.6: I=5000, n=35

Figure E.7: I=8000, n=39
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Figure E.8: I=10000, n=48

Table E.3: r = 7, α = 3, c = 0.95: (Mean, Median)

True Parameter (I=3500, n=88) (I=5000, n=52) (I=8000, n=47) (I=10000, n=54)

r = 7 6.952, 6.998 6.879, 6.904 6.968, 6.913 6.904, 6.788
α = 3 2.976, 2.995 2.942, 2.948 2.962, 2.946 2.975, 2.936
c = 0.95 0.950, 0.947 0.952, 0.949 0.958, 0.956 0.949, 0.948

Figure E.9: I=3500, n=88
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Figure E.10: I=5000, n=52

Figure E.11: I=8000, n=47
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Figure E.12: I=10000, n=54
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APPENDIX F

Moments of Mittag Count Model

The expected value and variance of the Mittag Leffler count model, given a het-

erogeneous rate parameter Θi are

µ(Θi) =
Θc
i

Γ(1 + c)

σ2(Θi) =
Θc
i

Γ(1 + c)
+

2Θ2c
i

Γ(1 + 2c)
−
(

Θc
i

Γ(1 + c)

)2

(F.1)
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APPENDIX G

Structural Parameters: Mittag Leffler Count

Model

The derivation of the heterogeneous Mittag Leffler count model when t = 1 is

given by

P (N = n) =

∞∫
0

[
∞∑
m=n

(−1)m−n
(
m
n

)
Θcm
i

Γ(cm+ 1)

]
g(Θi|r, α)dΘi

=

∞∫
0

[
∞∑
m=n

(−1)m−n
(
m
n

)
Θcm
i

Γ(cm+ 1)

]
× αr(Θi)

r−1e−αΘi

Γ(r)
dΘi

=
∞∑
m=n

(−1)m−n
(
m
n

)
Γ(cm+ 1)

∞∫
0

Θcm
i

αr(Θi)
r−1e−αΘi

Γ(r)
dΘi

=
∞∑
m=n

(−1)m−n
(
m
n

)
Γ(cm+ 1)

∞∫
0

αr(Θi)
cm+r−1e−αΘi

Γ(r)
dΘi

=
∞∑
m=n

(−1)m−n
(
m
n

)
Γ(cm+ 1)

∞∫
0

(αΘi)
cm+r−1e−αΘi

Γ(r)αcm
dαΘi

=
∞∑
m=n

(−1)m−n
(
m
n

)
Γ(cm+ 1)

1

Γ(r)αcm

∞∫
0

(αΘi)
cm+r−1e−αΘidαΘi

=
∞∑
m=n

(−1)m−n
(
m
n

)
Γ(r)αcm

Γ(cm+ r)

Γ(cm+ 1)

(G.1)
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For n = 0, 1, 2, ...

The collective premium µ0 is the expected value of the individual risk premiums

given by

µ0 = E(µ(Θi)) = E

(
Θc
i

Γ(1 + c)

)
=

1

Γ(1 + c)
E(Θc

i)

=
1

Γ(1 + c)

Γ(r + c)

Γ(r)αc

=
Γ(r + c)

Γ(1 + c)Γ(r)αc

(G.2)

Therefore,

µ̂0 =
Γ(r̂ + ĉ)

Γ(1 + ĉ)Γ(r̂)α̂ĉ
(G.3)

Since Θi ∼ gamma(r, α) and E(Θc
i) = Γ(r+c)

Γ(r)αc , which is the cth moment of the gamma

distribution.

The expected variance within individual risks σ2 is equal to

σ2 = E(σ(Θi)) = E

(
Θc
i

Γ(1 + c)
+

2Θ2c
i

Γ(1 + 2c)
− Θ2c

i

Γ(1 + c)2

)
=

E(Θc
i)

Γ(1 + c)
+

2E(Θ2c
i )

Γ(1 + 2c)
− E(Θ2c

i )

Γ(1 + c)2

=
Γ(r + c)

Γ(1 + c)Γ(r)αc
+

2Γ(r + 2c)

Γ(1 + 2c)Γ(r)α2c
− Γ(r + 2c)

Γ(1 + c)2Γ(r)α2c

=
1

Γ(r)αc

(
Γ(r + c)

Γ(1 + c)
+

2Γ(r + 2c)

Γ(1 + 2c)αc
− Γ(r + 2c)

Γ(1 + c)2αc

)
(G.4)

Using the MLEs, we obtain the expression in equation (1.17).

Lastly, we will find an estimate for the variance between individual risk premiums
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using the mean expression of the Mittag Leffler count model. This is given by

τ 2 = V ar(µ(Θi)) = V ar

(
Θc
i

Γ(1 + c)

)
= E

(
Θc
i

Γ(1 + c)

)2

−
(
E

(
Θc
i

Γ(1 + c)

))2

= E

(
Θ2c
i

Γ(1 + c)2

)
−
(

Γ(r + c)

Γ(1 + c)Γ(r)αc

)2

=
Γ(r + 2c)

Γ(1 + c)2Γ(r)α2c
− Γ(r + c)2

Γ(1 + c)2Γ(r)2α2c

=
1

Γ(1 + c)2Γ(r)α2c

(
Γ(r + 2c)− Γ(r + c)2

Γ(r)

)
(G.5)

Again, using the MLEs, τ̂ 2 is equal to equation (1.18).
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APPENDIX H

Distribution of Stock Returns

65



Figure H.1: Histogram of Stock Returns (INDIA)

Figure H.2: Histogram of Stock Returns (NYSE)
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Figure H.3: Q-Q Plot (NYSE)

Figure H.4: Q-Q Plot (INDIA)
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APPENDIX I

Performance Tree
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Figure I.1: Performance Tree
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APPENDIX J

Sample Descriptive Statistics

Table J.1: Summary Statistics (Yearly Data: 2011-2012)

Ratios Mean St. Dev. Min Median Max

CT 41.060 170.285 0.123 11.758 3,166.339
CURRENT 2.118 1.400 0.196 1.790 19.227
DMKT 0.547 0.983 0.000 0.298 16.684
FLR 4.633 45.767 1.077 2.362 1,918.410
NPM 4.335 32.664 −1,117.231 5.890 68.188
P/B 3.866 26.023 0.143 1.904 765.740
P/E 15.730 76.677 −1,158.333 15.283 1,316.000
ROA 4.643 8.532 −143.768 4.866 72.242
ROI 7.221 14.378 −166.021 7.299 142.464
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Table J.2: Summary Statistics (Yearly Data: 2005-2012)

Ratios Mean St. Dev. Min Median Max

CT 41.009 130.502 0.012 13.831 3,203.112
CURRENT 2.049 1.509 0.102 1.735 27.532
DMKT 0.516 1.171 0.000 0.259 44.288
FLR 3.636 25.175 1.022 2.328 1,918.410
NPM −1.290 404.912 −31,688.900 5.820 4,251.798
P/B 3.395 18.475 0.060 2.009 922.476
P/E 15.078 115.621 −3,657.001 15.729 4,241.001
ROA 4.472 12.747 −678.887 5.046 84.047
ROI 6.932 20.581 −943.228 7.639 142.464

Table J.3: Summary Statistics (Quarterly Data: 2011-2012)

Ratios Mean St. Dev. Min Median Max

CT 29.462 76.884 0.606 11.127 1,285.099
CURRENT 2.203 1.356 0.147 1.900 19.227
DMKT 0.371 0.689 0.000 0.215 19.767
FLR 2.749 23.136 −1,197.462 2.149 731.265
NPM 7.598 46.278 −2,690.769 6.889 266.667
P/B 3.076 10.372 −150.678 2.131 666.267
P/E 24.355 60.550 0.340 16.270 2,000.000
ROA 7.194 5.337 −0.041 6.149 72.242
ROI 11.388 14.242 −0.059 9.441 752.146
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Table J.4: Industry Summary Statistics (Yearly Data: 2002-2012)

Industry Ratios Mean St. Dev. Min Median Max

Energy BVPS 18.226 25.379 −0.607 12.250 296.055
CFS 3.852 5.605 −99.561 2.971 40.996
CURRENT 1.884 1.321 0.199 1.526 16.182
DY 1.302 3.178 0.000 0.262 34.716
EPS 1.816 4.885 −111.750 1.470 31.500

Industrials BVPS 15.273 12.867 −60.314 12.337 158.059
CFS 3.062 3.500 −45.510 2.436 28.778
CURRENT 2.046 1.090 0.119 1.817 10.909
DY 1.488 2.627 0.000 1.023 47.221
EPS 2.028 2.177 −16.940 1.640 21.050
ROA 4.787 6.942 −123.594 5.259 32.030

Information CT 13.405 23.550 0.130 5.573 195.297
Technology CURRENT 2.986 3.148 0.172 2.130 35.698

DMKT 0.244 0.746 0.000 0.122 16.850
NPM 1.070 39.293 −844.101 4.165 88.383
ROI 3.184 35.454 −743.224 7.187 69.625
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MNL Results
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Table K.1: MNL Results (Yearly Data: 2011-2012)

Good Poor

Intercept 0.929∗∗ 1.174∗∗∗

(0.304) (0.242)
CT −0.001∗ −0.001∗∗

(0.001) (0.000)
CURRENT −0.595∗∗∗ 0.004

(0.105) (0.053)
DMKT 1.002∗∗ 1.155∗∗

(0.347) (0.338)
FLR 0.139∗ 0.139∗

(0.062) (0.062)
NPM 0.059∗∗∗ 0.001

(0.01) (0.002)
P/B -0.01 −0.011

′

(0.006) (0.006)
P/E 0.001 -0.001

(0.001) (0.001)
ROA −0.129∗ 0.017

(0.055) (0.045)
ROI -0.038 −0.081∗∗

(0.033) (0.03)
Size -0.051 -0.086

(0.089) (0.072)

Cox and Snell R-sq. 0.215
Nagelkerke R-sq. 0.256
McFadden R-sq. 0.132
Likelihood-chi2(20) 330.317
p 0.000

The reference category is “superior”
Standard deviations in parentheses
*** p<0.001, ** p<0.01, * p<0.05, ’ p<0.1
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Table K.2: MNL Results (Yearly Data: 2005-2012)

Good Poor

Intercept 0.28∗ 0.095
(0.130) (0.105)

CT −0.001∗ −0.001∗∗∗

(0.000) (0.000)
CURRENT −0.431∗∗∗ 0.033

(0.046) (0.022)
DMKT 1.974∗∗∗ 1.956∗∗∗

(0.18) (0.179)
FLR 0.116∗∗∗ 0.117∗∗∗

(0.030) (0.030)
NPM 0.002∗∗∗ 0.001∗∗∗

(0.000) (0.000)
P/B −0.014∗∗∗ −0.02∗∗∗

(0.003) (0.006)
P/E 0.000 0.000

(0.000) (0.000)
ROA −0.092∗∗∗ −0.061∗∗

(0.019) (0.018)
ROI 0.005 0.000

(0.011) (0.011)
Size -0.022 -0.064

(0.041) (0.037)

Cox and Snell R-sq. 0.196
Nagelkerke R-sq. 0.223
McFadden R-sq. 0.104
Likelihood-chi2(20) 1091.863
p 0.000

The reference category is “superior”
Standard deviations in parentheses
*** p<0.001, ** p<0.01, * p<0.05, ’ p<0.1
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Table K.3: MNL Results (Quarterly Data: 2011-2012)

Good Poor

Intercept 0.928∗∗∗ -0.039
(0.174) (0.139)

CT −0.003∗∗∗ −0.003∗∗∗

(0.001) (0.001)
CURRENT −0.340∗∗∗ -0.01

(0.050) (0.030)
DMKT 2.596∗∗∗ 2.738∗∗∗

(0.207) (0.204)
FLR 0.002 0.040∗∗∗

(0.002) (0.007)
NPM 0.035∗∗∗ 0.001

(0.005) (0.001)
P/B -0.004 −0.229∗∗∗

(0.010) (0.026)
P/E -0.001 -0.001

(0.001) (0.001)
ROA −0.321∗∗∗ -0.028

(0.029) (0.024)
ROI 0.047∗∗ 0.015

(0.015) (0.016)
Size -0.051 −0.194∗∗∗

(0.047) (0.046)

Cox and Snell R-sq. 0.275
Nagelkerke R-sq. 0.311
McFadden R-sq. 0.149
Likelihood-chi2(20) 1303.906
p 0.000

The reference category is “superior”
Standard deviations in parentheses
*** p<0.001, ** p<0.01, * p<0.05, ’ p<0.1
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Table K.4: MNL Results: Energy

Good Poor

Intercept 0.808∗∗ 0.637∗∗

(0.257) (0.213)
BVPS 0.066∗∗∗ 0.062∗∗∗

(0.014) (0.014)
CFS 0.127

′
0.162∗

(0.072) (0.071)
CURRENT −0.635∗∗∗ −0.226∗∗

(0.112) (0.073)
DY 0.201∗∗∗ 0.153∗∗∗

(0.044) (0.043)
EPS −0.599∗∗∗ −0.633∗∗∗

(0.101) (0.099)

Cox and Snell R-sq. 0.176
Nagelkerke R-sq. 0.200
McFadden R-sq. 0.091
Likelihood-chi2(20) 138.534
p 0.000

The reference category is “superior”
Standard deviations in parentheses
*** p<0.001, ** p<0.01, * p<0.05, ’ p<0.1
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Table K.5: MNL Results: Industrials

Good Poor

Intercept 1.272∗∗∗ 0.950∗∗∗

(0.231) (0.185)
BVPS -0.004 -0.011

(0.011) (0.011)
CFS 0.344∗∗∗ 0.286∗∗∗

(0.061) (0.059)
CURRENT −0.542∗∗∗ -0.052

(0.096) (0.058)
DY 0.123∗∗ 0.102∗∗

(0.040) (0.038)
EPS −0.267∗∗ −0.171∗

(0.084) (0.079)
ROA −0.185∗∗∗ −0.157∗∗∗

(0.020) (0.019)

Cox and Snell R-sq. 0.157
Nagelkerke R-sq. 0.177
McFadden R-sq. 0.080
Likelihood-chi2(12) 241.907
p 0.000

The reference category is “superior”
Standard deviations in parentheses
*** p<0.001, ** p<0.01, * p<0.05, ’ p<0.1
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Table K.6: MNL Results: Information Technology

Good Poor

Intercept 1.338∗∗ 0.580∗

(0.509) (0.242)
CT −0.051∗∗ −0.016∗∗

(0.015) (0.005)
CURRENT −0.757∗∗∗ 0.044

(0.190) (0.046)
DMKT 2.272∗∗ 2.207∗∗

(0.656) (0.649)
NPM −0.037

′
-0.015

(0.019) (0.016)
ROI -0.014 -0.021

(0.016) (0.014)

Cox and Snell R-sq. 0.186
Nagelkerke R-sq. 0.218
McFadden R-sq. 0.107
Likelihood-chi2(12) 95.108
p 0.000

The reference category is “superior”
Standard deviations in parentheses
*** p<0.001, ** p<0.01, * p<0.05, ’ p<0.1
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APPENDIX L

Likelihood Ratio Tests

Table L.1: Likelihood Ratio Tests (Yearly Data)

P-value

Ratios 2011-2012 2005-2012

Intercept 0.000 0.061
CT 0.016 0.001
CURRENT 0.000 0.000
DMKT 0.000 0.000
FLR 0.012 0.000
NPM 0.000 0.000
P/B 0.178 0.001
P/E 0.052 0.412
ROA 0.012 0.000
ROI 0.000 0.406
Size 0.475 0.205
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Table L.2: Likelihood Ratio Tests (Quarterly Data: 2011-2012)

Ratio P-value

CT 0.000
CURRENT 0.000
DMKT 0.000
FLR 0.000
NPM 0.000
P/B 0.000
P/E 0.446
ROA 0.000
ROI 0.000
Size 0.000

Table L.3: Likelihood Ratio Tests (Industry Data)

P-value

Ratios Energy Industrials Information

Intercept 0.002 0.000 0.011
BVPS 0.000 0.456 ×
CT 0.061 × 0.000
CURRENT 0.000 0.000 0.000
DMKT × × 0.000
DY 0.000 0.002 ×
EPS 0.000 0.005 ×
NPM × × 0.142
ROA × 0.000 ×
ROI × × 0.260
Size × × ×
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APPENDIX M

Benchmark Accuracy Rates

Figure M.1: Benchmark Accuracy Rates
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Figure M.2: Benchmark Accuracy Rates: Industry Level
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APPENDIX N

Goodness-of-Fit Tests

Table N.1: Pearson and Deviance Statistics (Yearly Data)

Chi-square df P-value

2011-2012 Pearson 5152.686 2710 0.000
Deviance 2165.200 2710 1.000

2005-2012 Pearson 249991608.552 9978 0.000
Deviance 9420.554 9978 1.000

Table N.2: Pearson and Deviance Statistics (Quarterly Data)

Chi-square df P-value

2011-2012 Pearson 33771069.707 8074 0.000
Deviance 7433.548 8074 1.000
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Table N.3: Pearson and Deviance Statistics (Industry Data)

Chi-square df P-value

Energy Pearson 1429.163 1416 0.398
Deviance 1388.085 1416 0.697

Industrials Pearson 2953.789 2828 0.049
Deviance 2799.204 2828 0.646

Information Pearson 810.109 914 0.994
Technology Deviance 792.778 914 0.998
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APPENDIX O

Four-Layered Network
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Figure O.1: Four-Layered Network
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