

SSStttooonnnyyy BBBrrrooooookkk UUUnnniiivvveeerrrsssiiitttyyy

The official electronic file of this thesis or dissertation is maintained by the University
Libraries on behalf of The Graduate School at Stony Brook University.

©©© AAAllllll RRRiiiggghhhtttsss RRReeessseeerrrvvveeeddd bbbyyy AAAuuuttthhhooorrr...

Log-linear Model Based Tree and Latent Variable Model for Count Data

A Dissertation presented

by

Yuan Zhao

to

The Graduate School

in Partial Fulfillment of the

Requirements

for the Degree of

Doctor of Philosophy

in

Applied Mathematics and Statistics

(Statistics)

Stony Brook University

August 2016

Stony Brook University

The Graduate School

Yuan Zhao

We, the dissertation committe for the above candidate for the

Doctor of Philosophy degree, hereby recommend

acceptance of this dissertation

Hongshik Ahn - Dissertation Advisor
Professor, Department of Applied Mathematics and Statistics

Stephen Finch - Chairperson of Defense
Professor, Department of Applied Mathematics and Statistics

Il Memming Park - Dissertation Coadvisor
Assistant Professor, Department of Neurobiology and Behavior

Sangjin Hong - Outside Member
Professor, Department of Electrical and Computer Engineering

This dissertation is accepted by the Graduate School

Nancy Goroff
Interim Dean of the Graduate School

ii

Abstract of the Dissertation

Log-linear Model Based Tree and Latent Variable Model for Count Data

by

Yuan Zhao

Doctor of Philosophy

in

Applied Mathematics and Statistics

(Statistics)

Stony Brook University

2016

Events that occur randomly over time or space result in count data. Pois-
son models are widely used for analyses. However, simple log-linear forms
are often insufficient for complex relationship between variables. Thus we
study tree-structured log-linear models and latent variables models for count
data. First, we consider extending Poisson regression for independent ob-
servations. Decision trees exhibit the advantage of interpretation. Constant
fits are too simple to interpret within strata nonetheless. We hence propose
to embed log-linear models to decision trees, and use negative binomial dis-
tribution for overdispersion. Second, we consider latent variable models for
point process observation in neuroscience. Neurons fire sequences of electrical
spikes as signals which can naturally be treated as point processes disregarding
the analog difference. Large scale neural recordings have shown evidences of
low-dimensional nonlinear dynamics which describe the neural computations
implemented by a large neuronal network. Sufficient redundancy of population
activity would give us access to the underlying neural process of interest while
observing only a small subset of neurons for understanding how neural systems
work. Thus we propose a probabilistic method that recovers the latent tra-
jectories non-parametrically under a log-linear generative model with minimal
assumptions. Third, we are aim to model the continuous dynamics to further

iii

understand the neural computation. Theories of neural computation are char-
acterized by dynamic features such as fixed points and continuous attractors.
However, reconstructing the corresponding low-dimensional dynamical system
from neural time series are usually difficult. Typical linear dynamical system
and autoregressive models either are too simple to reflect complex features
or sometimes extrapolate wildly. Thus we propose a flexible nonlinear time
series model that directly learns the velocity field associated with the dynam-
ics in the state space and produces reliable future predictions in a variety of
dynamical models and in real neural data.

iv

Table of Contents

1 Introduction 1
1.1 Poisson log-linear models . 1
1.2 Greater variability in count 2
1.3 Segment log-linear models . 7
1.4 Neural spike trains are point processes 10
1.5 Recover latent trajectories from spike trains 14
1.6 Dynamical models for interpretation 21

2 Log-linear Model Based Tree 27
2.1 Log-Linear Model . 27
2.2 Growing a Tree . 29

2.2.1 Test for Splitting . 32
2.2.2 Simulation Study . 34

2.3 Test for Over-dispersion . 37
2.4 Missouri Lung Cancer . 38
2.5 Summary . 41

3 Variational Latent Gaussian Process for Recovering Single-
Trial Dynamics from Population Spike Trains 46
3.1 Generative model . 47
3.2 Variational inference . 49

3.2.1 Posterior over the latent process 51
3.2.2 Weights . 55
3.2.3 Hyperparameters . 56

3.3 Results . 58
3.3.1 Evaluation . 58
3.3.2 Simulation . 59
3.3.3 V1 population recording 63

3.4 Summary . 69

4 Interpretable Nonlinear Dynamic Modeling of Neural Trajec-
tories 71
4.1 Model . 71
4.2 Estimation . 74

v

4.3 Inferring Theoretical Models of Neural Computation 75
4.3.1 Fixed point attractor and bifurcation for binary decision-

making . 75
4.3.2 Nonlinear oscillator model 78
4.3.3 Ring attractor dynamics for head direction network . . 80
4.3.4 Chaotic dynamics . 81

4.4 Learning V1 neural dynamics 83
4.5 Summary . 85

5 Discussion 86
5.1 Log-Linear Model Based Tree 86
5.2 Variational Latent Gaussian Process for Recovering Single-Trial

Trajectories from Population Spike Trains 89
5.3 Interpretable Nonlinear Dynamic Modeling of Neural Trajectories 90

Bibliography 92

Appendix 102
A.1 Derivation of vLGP Equations 102
A.2 Wong and Wang’s Dynamics 103

vi

List of Figures

2.1 Regression tree of Missouri lung cancer 1 43
2.2 Regression tree of Missouri lung cancer 2 44
3.1 Generative model schematic 48
3.2 Simulation and inference . 59
3.3 Performance comparison on simulated datasets. (a,b) Conver-

gence speed of each algorithm in terms of inferred rank corre-
lation between the true generative latent time series and the
inferred mean posterior. GPFA is the fastest, and PLDS con-
verges very slowly. vLGP achieves the largest correlation, yet
an order of magnitude faster than PLDS. The origin of time is
shifted to 1 for convenience. 62

3.4 Single trial spike trains and inferred latent 65
3.5 Average inferred latent processes 66
3.6 3D projection of mean latent trajectories 67
3.7 Noise-correlation . 68
4.1 Wong and Wang’s model . 77
4.2 FitzHugh-Nagumo model . 79
4.3 Ring attractor velocity field and simulation 80
4.4 Ring attractor training trajectories 82
4.5 Lorenz trajectory . 84
4.6 V1 latent dynamics prediction 85
A.1 Failure mode of unregularized locally linear model 104

vii

List of Tables

2.1 Probability of a Type I error and Power 36
2.2 Probability of a Type I Error and Power of Test for Over-

dispersion . 39
2.3 Poisson (min. terminal = 5) 41
2.4 Poisson (min. terminal = 20) 42
2.5 Negative binomial (min. terminal = 5, 20) 45
3.1 Predictive log-likelihood (PLL) 64
4.1 Model errors . 76

viii

Acknowledgements

I am especially indebted to Dr. Hongshik Ahn and Dr. Il Memming Park.
This work would not have been possible without their academic mentorship
and support. I am grateful to all of those with whom I have had the pleasure
to study and work during the four years.

ix

Chapter 1

Introduction

Events that occur randomly over time or space result in count data. Models

of count data are used to explain and predict the number of occurrences of an

event. The count data are usually heteroscedastic and right skewed. Poisson

models are widely used for analyzing count data. However, simple log-linear

forms are often insufficient for complex relationship between responses and

explanatory variables.

In this study, we consider two specific problems in the field of count data:

one is extending log-linear models of independent observations in biostatistics;

the other pertains to latent variable models of point process observations in

neuroscience.

1.1 Poisson log-linear models

A simple distribution modeling counts is Poisson [1]. The density function

of the Poisson distribution is

f(yi; µi) = e−µiµyi
i

yi!
, yi = 0, 1, 2, . . . ; µi > 0 (1.1)

1

where yi is the i-th response, µi is the mean.

Poisson distribution belongs to the exponential family. McCullagh and

Nelder [85] proposed the generalized linear models (GLMs) that adopt expo-

nential family as distributions of response variables, and model functions of

the mean, which extends ordinary regression models. Log-linear models are

widely used Poisson regression models to analyze count with independent vari-

ables. Such models are of the form of the logarithm of the Poisson mean as

linear form of the covariates,

log(µi) = ηi = x′
iβ. (1.2)

The advantage of GLMs is that it provides a unified framework of modeling,

estimating, hypothesis testing and predicting for a family of distributions.

The model functions of the mean can be extended beyond linear forms.

Hastie and Tibshirani [48, 49] introduced general additive models which re-

place the linear form by a sum of smoother functions that are estimated ap-

plicable to any likelihood-based regression model.

1.2 Greater variability in count

The variance of a Poisson random variable equals its mean. However,

count data often exhibit greater variability than Poisson assumption [106,

54]. This phenomenon is called overdispersion. Overdispersion has various

causes. Suppose that the response is Poisson distributed at each level of the

covariates. Then the variance equals the mean when the relevant covariates

2

are controlled, but the heterogeneity causes the variance exceeding the mean

when it is not controlled. McCullagh and Nelder [85] gave other scenarios in

which intra-cluster variability leads to overdispersion. One might observe a

Poisson process over an interval whose length is random rather than fixed, or

the data might be produced by a clustered Poisson process where each event

contributes a random amount to the total.

A model that allows extra-Poisson variations is desirable for such data.

Ignoring occurrence of overdispersion in data may lead to an underestimation

of variances and further anti-conservative results of tests. Such errors can

exaggerate the association between the responses and factors.

Breslow [14] proposed a modification of the iteratively re-weighted least

squares that adopts extra-Poisson variation. It introduces a random error

term with zero mean and unknown constant variance into the log-linear form.

It provides an equation to estimate the variance recursively, and a moment

estimator as well. It proposes the iterative procedure of alternatively doing the

re-weighted least squares estimation and the variance estimation until certain

condition is satisfied.

Wedderburn [114] proposed to use quasi-likelihood approach to overcome

this disadvantage that is mainly used for fitting linear or nonlinear regression

models. Instead of specifying a distribution, it only assumes the relationship

between the mean and variance. Then the quasi-likelihood function Q(yi, µi)

is defined by the score function,

∂Q(yi, µi)
∂µi

= yi − µi

V (µi)
. (1.3)

3

The parameter β can be estimated by solving the equation,

S(β) = ∂Q/∂β = 0 (1.4)

where S is the quasi-score function.

Suppose the variance of yi satisfies var(yi) = ϕV (µi) for known V and

unknown ϕ. It represents the overdispersion if ϕ > 1. The maximum quasi-

likelihood estimate of β and µi will not be affected by the value of ϕ so that

β̂ can be calculated by setting ϕ to 1. In a Poisson model, with V (µi) = µi,

the maximum quasi-likelihood estimate is identical to the maximum likelihood

estimate. So the estimated covariance matrix of β̂ becomes ϕ times that in the

Poisson model. This implies that the Poisson model may not be appropriate

when overdispersion arises since the estimated covariance matrix will affect

the tests. Usually ϕ is an unknown parameter to be estimated from the data.

Wedderburn [114] suggested a moment estimation

ϕ̂ = 1
n− p

n∑
i=1

(yi − µi)2

V (µi)
. (1.5)

Nelder and Pregibon [87] extended quasi-likelihood to allowing for the com-

parison of various forms of the components of a generalized linear model. The

extended quasi-likelihood function Q+ is defined as

Q+(yi; µi) = −1
2

log(2πϕV (yi))−
1
2

D(yi; µi)/ϕ (1.6)

where D is the deviance and ϕ is the dispersion parameter. The estimates of

4

β are the same as those obtained from quasi-likelihood whereas the estimate

of ϕ by maximizing Q+ is D(yi; µ̂i)/n.

Chen and Ahn [19] investigated the approach of quasi-likelihood. They

extended quasi-likelihood and pseudo-likelihood to estimating and testing the

mean parameters with respect to two models, var(y) = µθ(1+ϕµ) and var(y) =

µθ(1 + τ). They discussed that the quasi-likelihood yields consistent estimates

for the mean parameter with reduced efficiency even if the structure of the

variance is not correctly specified.

Another approach dealing with overdispersion is the negative binomial

model. Comparing to Poisson distribution, a negative binomial distribution

has an additional parameter that scales the variance. Thus it provides flexi-

bility over the Poisson model. The negative binomial model can be considered

as a Poisson model with a gamma distributed error residing in its mean in a

multiplicative manner [50]. Suppose the counts follow the Poisson distribution

conditional on νi:

f(yi; µi, νi) = e−µiνi(µiνi)yi

yi!
(1.7)

where yi is the observed number of count for i = 1, 2, . . . , n and νi is the one-

parameter gamma distributed error term with rate and shape θ. Integrating

µ, we obtain the marginal density of yi as

f(yi; µi, θ) =
∫ ∞

0

e−µiνi(µiνi)yi

yi!
θθ

Γ(θ)
νθ−1

i e−θνi dνi

= Γ(yi + θ)
Γ(yi + 1)Γ(θ)

(
1− µi

µi + θ

)θ (
µi

µi + θ

)yi

which is the p.m.f. of a negative binomial random variable with mean µi and

5

variance µi(1 + µi/θ). This model is as known as NB2. There are other forms

of negative binomial models. NB1 model is similar to NB2 except that the

variance is µi + µi

θ
[50].

Given θ fixed and re-parameterizing pi = µi

µi+θ
, the p.m.f. can be expressed

in exponential family form as

f(yi; µi, θ) = exp
{

yi log(pi) + θ log(1− pi) + log Γ(yi + θ)
Γ(yi + 1)Γ(θ)

}
(1.8)

with log link.

We transform θ into ϕ = 1/θ for convenience in the thesis. If the regres-

sion model is specified in terms of µ, say µ = µ(β), and if ϕ is an unknown

constant, then it will no longer be of exponential family and hence the estimat-

ing equations for β are in general different from those obtained by iteratively

re-weighted least squares.

Lawless [72] studied negative binomial regression models that can han-

dle extra-Poisson variation. He stated that the simplest way of obtaining

maximum likelihood estimates (β̂, ϕ̂) was to maximize the log-likelihood with

respect to β by fixing the value of dispersion parameter ϕ. This leads to the

estimates β̃(ϕ) and the profile likelihood l(β̃(ϕ), ϕ). Then one can estimate ϕ

from the profile likelihood.

The maximum likelihood estimation of the coefficients and the dispersion

parameter are asymptotically independent. It was found that under mild con-

ditions on the distribution of the response, β̂ and β̃ are both consistent esti-

mators of β. For some positive ϕ, ϕ̃ gives a consistent estimation.

6

Hilbe [50] mentioned an algorithm that is called a ML negative binomial to

obtain the estimate of θ, and then uses it as constant in the GLM algorithm.

Cameron and Trivedi [16] also proposed a test based on the standardized

dispersion statistic

S =
∑n

i=1[(yi − µ̂i)2 − yi]√
2∑n

i=1 µ̂2
i

(1.9)

that is asymptotically standard normal under the hypothesis that yi’s are

independent Poisson random variables.

1.3 Segment log-linear models

A single log-linear model is often insufficient for complex data. Relation-

ship beyond linearity between the response and explanatory variables or vari-

ability may vary across strata. Hence stratifying the data according to co-

variates can provide insight into the nature of the response and explanatory

variables. The data in strata involve few covariates and might be more homo-

geneous.

Tree-structured regressions feature highlights of decision trees: interpretabil-

ity and predictive power in nonlinear regression relationship. The importance

of predictive power has been dimmed by modern approaches such as boosting

and random forests [47] which often perform better than trees. However, the

interpretability of single tree is still valuable in form of graphical represen-

tations of complex regression problems. Chaudhuri et al. [18] studied Pois-

son regression tree. Hongshik Ahn [55] proposed tree-structured methods for

over-dispersed binomial data. Choi, Ahn, and Chen [21] modified the former

7

method with the quasi-likelihood approach for fitting extra-Poisson models.

There have been increasing interests in the incorporation of simple regres-

sion models into trees. The motivation is by the fact that the nodes of classical

trees use constant fits which tends to grow large trees and thus they are hard to

interpret [17]. Methods attaching simple regression models to terminal nodes

or splitting in non-terminal nodes were proposed. Kim and Loh [64], Loh [75],

and Chan and Loh [17] use parametric models in terminal nodes. Loh and Shih

[76] employ parametric models to obtain splits in non-terminal nodes. Choi,

Ahn, and Chen [21] modified the tree-structured methods for over-dispersed

count data using quasi-likelihood approach and moment estimator, and de-

veloped a test of overdispersion. Zeileis, Hothorn, and Hornik [120] embed

recursive partitioning into parametric models with fluctuation tests.

In a simple generalized linear model, all the observations have one common

coefficient vector. Since we partition only a single variable at one time, it

reduces to a scalar coefficient in our problem,

ln µ1 = β0 + β1x1

...

ln µj = β0 + βjxj

...

ln µn = β0 + βnxn

(1.10)

where x1 . . . xn are the values of n observations. Note that the β1 . . . βn corre-

spond to not different variables but observations here. This is different from

8

usual notation. We formulate the sufficiency of linearity in terms of such

hypothesis test,

H0 : β1 = · · · = βn = β (1.11)

If the linear relationship is sufficient, that is all the coefficients are the same,

then the hypothesis is accepted. Otherwise there will be more than one distinct

coefficients if the linearity is broken at some point. It is natural to ask whether

the relationship between responses and explanatory variables changes over

particular ordering. A large number of literature have been written since

the CUMSUM test [99]. Werner Ploberger [115] generalize the CUMSUM

test to dependent and heteroskedastic OLS residuals. Kuan and Hornik [67]

introduce a generalized and unifying framework without a specific alternative

for linear regressions. Hjort and Koning [51] propose tests based on maximum

likelihood scores. Zeileis and Hornik [119] suggest generalized M-fluctuation

tests incorporating a variety of existing tests.

Inspired by these ideas, we embed log-linear models into trees by partition-

ing the explanatory variables. In our work, a segmented log-linear model is

fitted by computing a tree in which every node is associated with a log-linear

model using maximum likelihood estimation. The corresponding parameter

instability is tested for each node to assess whether a variable should be used

for partitioning. The recursive partitioning allows for non-linear relationships.

Moreover, the use of log-linear models provides with scientific insight and in-

terpretability. We apply our method on the data for lung-cancer mortality

among the 115 counties in Missouri during the period from 1972 to 1981 [109,

9

110]1. The resulted regression trees will shown in Chapter 2.

1.4 Neural spike trains are point processes

Ion channels spanning on the neuronal membrane control the inflow and

outflow of ions. By controlling the flowing ions, a neuron is able to change the

membrane potential and generates action potentials. An action potential is a

roughly 100 mV fluctuation in the electrical potential across the cell membrane

that lasts for about 1 ms. Action potentials are the only form of membrane

potential fluctuation that can travel down nerve fibers over long distances.

Neurons use such electrical pulses as signals to communicate with one another.

These signals are also called spikes.

Neural signals are usually obtained by electrodes. While recording, a hollow

glass electrode filled with conducting electrolyte is connected to a neuron. The

potentials are captured and compared with ones from a reference electrode

placed in the extracellular medium. Action potential sequences are recorded

either intra- or extracellularly.

Neurons respond to various stimulus such as light, sound or motor actions.

The attributes of stimulus are represented and transmitted by firing sequences

of spikes in various temporal patterns. Such sequences of spikes are usually

called spike trains. It is important to study the relationship between stimu-

lus and response in order to understand how the stimuli are encoded in the

sequences.

Generally the spikes are abstracted as identical discrete events disregarding
1The data can be obtained from http://www.ams.stonybrook.edu/hahn/research/

tree.html

10

http://www.ams.stonybrook.edu/∼hahn/research/tree.html
http://www.ams.stonybrook.edu/∼hahn/research/tree.html

durations, amplitudes and shapes in neural study. Neuronal responses can vary

from trial to trial even given the same stimulus. This variability comes from

many different sources and make spikes stochastic. Point processes naturally

describe spike trains in terms of events.

A point process is modeling the occurrences of some phenomenon at the

time epochs {ti} with i in some suitable index set [27]. For a neural spike train

this would be the set of individual spike times. For a sequence of n spikes, we

denote the spike times by ti with i = 1, 2, . . . , n. The spike train can also be

represented as a sum of infinitesimally narrow, idealized spikes in the form of

Dirac δ functions,

ρ(t) =
n∑

i=1
δ(t− ti) (1.12)

where ρ(t) is called the neural response function and used to re-express sums

over spikes as integral over time.

Another equivalent way of describing a point process is counting events.

Counting spikes over a time interval [0, t] gives the function

N(t) =
∫ t

0
ρ(τ) dτ. (1.13)

The firing rate also characterizes spike trains defined as mean count over an

time interval,

r = N(t)
t

. (1.14)

However this is insufficient to determine the distribution of spikes. To find the

distribution, starting with the simplest case — constant rate over time, then n

spikes are generated in equal probability over a fixed interval. Divide the time

11

t into m equal-spaced bins, ∆t = t/m. Assuming that ∆t is small enough to

involve at most one spike in each bin, each bin becomes a Bernoulli variable

where exists a spike or not. Then the number of spikes over the entire interval

is binomial distributed,

P{N(t) = n} = m!
n!(m− n)!

(r∆t)n(1− r∆t)m−n

= λn

n!
m!

mn(m− n)!
(1− λ/m)−n(1− λ/m)m

(1.15)

where λ = r∆t. As ∆t→ 0,

P{N(t) = n} → λne−λ

n!
. (1.16)

Therefore the spike count in an interval is Poisson distributed for constant

rate. Such a process is called homogeneous Poisson process.

Generally a realistic firing rate would not be constant over time. Spike

trains exhibit various temporal correlation structures. The distribution of

a spike train is determined by the joint probability density of spikes of the

sequence. The joint probability density can be characterized in terms of the

conditional intensity function,

λ(t | Ht) = lim
∆t→0

P{N(t + ∆t)−N(t) = 1 | Ht}
∆t

(1.17)

where Ht is the history of the sample path and any covariates up to time t. An

inhomogeneous Poisson process is a special case that preserves the assumption

of independent spike arrival times. The spike count in any interval is Poisson

12

distributed. For a particular ordering 0 ≤ t1 ≤ t2 ≤ . . . ≤ tn ≤ t, the

probability of the sequence is given as

P{t1, t2, . . . , tn} = exp
(
−
∫ t

0
λ(τ) dτ

) n∏
i=1

λ(ti). (1.18)

Note that the probability should be divided by n! if the times are not ordered.

Although such processes are defined in continuous time, they can be dis-

cretized by binning to time series. For example, a discretized homogeneous

Poisson process with evenly-spaced bins are series of Poisson random variables.

Classical analyses of neural spike trains typically average the responses over

repeated trials that are presumably time-locked to a stereotypical computation

process. Denote the average neural response function by ρ̄(t), the time-variant

firing rate is estimated by

r(t) = 1
∆t

∫ t+∆t

t
ρ̄(τ) dτ. (1.19)

For sufficiently small ∆t, r(t)∆t is the average spike count in the time interval

[t, t + ∆t] over multiple trials.

However, the complex neural responses are not necessarily time-locked nor

precisely repeated from trial to trial. The sequences of spikes often reflect

a mixture of both neuronal intrinsic dynamics and temporal features of the

stimulus. The mean trajectory loses the observable variations in the internal

processes that manifest in behavior such as error trials, broad reaction time

and change of mind. For example, the firing rates in trial-averaged responses

could arise from instantaneous jumps at different times on different trials in

13

the macaque lateral intra-parietal (LIP) area during decision-making [70]; The

standard deviation of duration between events increases with their mean [60];

decision-makers would change of mind in some trials without additional in-

formation [102]. In addition, it is difficult to disambiguate different possible

neural implementations of computation from the average trajectory since they

may only differ in their trial-to-trial variability. Churchland et al. [22] unveils

neural computations that cannot be discerned from measures of average firing

rate by an analysis of neural response variance. Therefore, if we wish to un-

derstand how neural computation is implemented in neural populations, it is

necessary to learn from individual trials.

1.5 Recover latent trajectories from spike trains

Advanced techniques enable recording from large subpopulations of neu-

rons which facilitate single-trial analysis. Footprints of underlying low-dimensional

dynamics have been revealed behind large-scale recordings, that is, a small

number of common factors often explain most of the dependence among neu-

rons. The firing patterns produced by a large population of neurons in cortex

lie in a space of lower dimension [88]. Variability in responses of sensory neu-

rons arising from fluctuations in excitability was found due to factors such

as arousal, attention and adaptation which are not purely sensory [42]. A

common sequential structure contributes to variations in population timing

patterns with different stimuli [77]. All these evidences support the idea that

a large neuronal network is implementing necessary computations described

by continuous low-dimensional nonlinear dynamics.

14

Although we can only observe a small subset of neurons at one time, suffi-

cient amount of redundancy in the population activity would allow us access

to the internal computation process of interest. Thus, it is necessary to deduce

the latent trajectories from neural time series in order to understand if and

how neural systems operate in this regime. Latent trajectories recovered from

motor cortex suggest that these methods can provide insight to the coding

and preparation of planned reaching behavior [103, 24, 23]. Latent dynamical

trajectories also elucidate the low-dimensional noise structure of neural codes

and computations [86, 44, 103, 30].

Several statistical approaches have been developed for extracting latent dy-

namical trajectories that describe the observed neural activities in populations.

With the assumption of low-dimensionality and discretization, the inference

of latent dynamical trajectories is a dimensionality-reduction method for mul-

tivariate time series, akin to Kalman smoothing or factor analysis [62]. Given

the sequences of observations, the task is to infer a shared, low-dimensional

latent process that explains much of the variation in high-dimensional observa-

tions. For example, Koyama et al. [66] uses Laplace’s method to approximate

the mean and variance of the posterior density in state-space models; Pfau,

Pnevmatikakis, and Paninski [95] models the firing rate driven by linear com-

bination of latent trajectory and history of spikes; Archer et al. [3] propose a

state-space model of logarithm of firing rate which incorporate the stimulus

and interactions into the linear dynamics through quadratic form and interac-

tion; Frigola, Chen, and Rasmussen [36] defines the state transition function

by Gaussian process.

15

In our study, we pay attention to two typical classes of methods.

A large number of neural trajectory inference algorithms assume linear

dynamical system [91, 80, 15, 25] in the latent space which lack nonlinear

features ubiquitous in neural computation. We refer to those with Poisson

likelihood as PLDS (Poisson Linear Dynamical System). Denote the latent

state by xt at time t. PLDS defines a Gaussian linear dynamics with an

external drive ut as

x1 ∼ N (x0, Q0)

xt | xt−1 ∼ N (Axt−1 + But, Q)
(1.20)

where A is the state transition matrix, matrix B is for control-input, Q0 and

Q are covariance matrices.

Although the assumption of linear dynamics advantages computational

tractability, it can also be overly simplistic: interesting neural computations

are naturally implemented as nonlinear dynamics, and evidence points to non-

linear dynamics in the brain in general.

The Gaussian process factor analysis (GPFA) method [118, 69] relaxes the

assumption of linearity and imposes a general Gaussian process to nonpara-

metrically infer the latent trajectories.

A Gaussian process is a collection of random variables, any finite number

of which have a joint Gaussian distribution [101]. It is completely specified by

its mean function

m(t) = E(xt), (1.21)

16

and covariance function

k(t1, t2) = E[(xt1 −m(t1))(xt2 −m(t2))], (1.22)

where xt is a Gaussian random variable.

The covariance function plays an important role in a Gaussian process.

It encodes the assumption about the correlation structure we wish to learn.

GPFA chooses a modified squared exponential covariance function,

kGPFA(t1, t2) = σ2
f exp

(
−(t1 − t2)2

2τ 2

)
+ σ2

n · δt1,t2 (1.23)

where σ2
f is the signal variance, τ is the timescale, σ2

n is the noise variance

and δt1,t2 equals 1 if t1 = t2 and 0 otherwise. A typical squared exponential

covariance function only includes the first exponential term. It provides general

smoothness and is probably the most widely-used kernel within the kernel

machines field.

Despite of the advantage of Gaussian process, GPFA assumes Gaussian

observations on square root of spike count in time bins. These observations

are driven by the latent Gaussian process. As we mentioned above, point

process observations are more appropriate to spike trains. Even if the spike

count could be approximately Gaussian statistically when it is of a high value,

a Gaussian distribution would do poorly due to rare spikes per bin in the

millisecond-range time scale.

To overcome the shortcoming and exploit the advantages of point process

and Gaussian process, we propose a generative model where the point process

17

observation are driven by Gaussian process. Precisely we bin the observations

with equal time-interval and assume conditional independence of bins so that

we obtain Poisson likelihood. The detail will be discussed in Chapter 3.

We have assumed the generation of spikes is driven by the dynamics in the

model. Yet we are only able to observe the spike trains in experiment, while

the dynamics of interest are latent. We hence do Bayesian inference on the

trajectories.

Bayesian inference provides a framework of making conclusions about un-

observed quantities in terms of observations. Denote the observation by y and

the trajectory by x. Given a prior p(x), Bayes’ rule yields the posterior density

as

p(x | y) = p(y | x)p(x)
p(y)

. (1.24)

It updates as more evidence or information become available. In neural con-

text, y represents a spike train and x represents the latent trajectory.

The posterior is obtained analytically if the marginal density p(y) is avail-

able given prespecified prior p(x) and likelihood p(y | x). If the posterior is in

the same family as the prior, a closed-form the posterior is given conveniently

without explicit marginal. Then the prior is called conjugate prior for the very

likelihood. However, this is not always the case. The marginal density is still

required otherwise by integration (continuous random variables) or summa-

tion (discrete random variables) of the numerator over the hidden variable.

However the integral or sum may not have a closed-form in practice. It makes

the exact calculation of the posterior impractical.

In our generative model, the point process observation has conditional

18

Poisson likelihood. The Gaussian prior is not conjugate with respect to it.

So the price we pay is a non-conjugate prior and, consequently, we turn to

approximation methods.

A family of approximation techniques called variational Bayes has been

widely used which originates from the calculus of variations [7]. It is a method

to find the function that optimizes a certain functional. Decompose the loga-

rithm of marginal density in the following way,

ln p(y) = ln p(x | y)
p(x | y)

p(y) (1.25)

= ln p(x, y)
p(x | y)

(1.26)

= ln p(x, y)− ln p(x | y) (1.27)

introduce a new distribution q(x),

= ln p(x, y)
q(x)

− ln p(x | y)
q(x)

(1.28)

take expectation with respect to q on both sides,

=
∫

q(x) ln p(x, y)
q(x)

dx−
∫

q(x) ln p(x | y)
q(x)

dx (1.29)

=
∫

q(x) ln p(x, y)
q(x)

dx +
∫

q(x) ln q(x)
p(x | y)

dx. (1.30)

Note that the second term on the right hand side is the Kullback-Leibler (KL)

divergence of p(x | y) from q(x) denoted by KL(q∥p). The KL divergence is

a measure of the difference between two probability distributions. It equals

19

to zero if and only if the two distribution are equal almost everywhere. Since

the KL divergence is always nonnegative, the first term is a lower bound of

the logarithm of marginal. Denote the lower bound by L(q). It is also called

evidence lower bound (ELBO).

The distribution q(x) equals to the posterior density if the KL divergence

equals to zero. It implies that q(x) can be a feasible approximation to the

posterior as long as the divergence is minimized. However, the intractable

posterior prevents the calculation of KL divergence. Instead we can maximize

the lower bound with respect to the distribution q(x) equivalently. The family

of q(x) must be restricted for optimization. One way of restriction is to use a

parametric distribution determined by a set of parameters. Then the problem

becomes nonlinear optimization for optimal values of the parameters.

There are plenty of methods solving the optimization problem. Under dif-

ferentiability of objective functions, gradient descent and Newton-type meth-

ods are widely used. Newton’s method advantages better rate of convergence

thanks to the curvature information. It also brings information matrix as

by-product that happens to be the negative Hessian of likelihood objective.

Since we impose Gaussian prior on the trajectory, the finite sample of

Gaussian process can be treated as a multivariate normal random vector with

covariance matrix defined by the corresponding covariance function. For gen-

eral smoothness, we choose the squared exponential covariance function as

GPFA does. The smoothness is then determined by the time-scale. However,

the smoothness leads the covariance matrix to be ill-conditioned such as al-

most singular. The computation of its inverse or solution of a linear system

20

in the optimization problem is prone to numerical errors. Most widely used

strategies involves incomplete Cholesky factorization [41]. The idea is to com-

pute a low rank sparse matrix G that is close to the exact Cholesky factor,

i.e.

K ≈ GG∗. (1.31)

We will discuss how those techniques are incorporated and other detail of

our method in Chapter 3. There we validate our method in contrast to PLDS

and GPFA and apply to a real neural recording from primary visual cortex of

monkey.

1.6 Dynamical models for interpretation

Understanding how the neural dynamics evolve can give us insight of the

mechanism of neural computation. There are many proposed theories and

models of how the brain works, however, we have been in the data poor regime

since the dawn of electro-physiology, where theories of neural computation

were only partially supported by experimental data. Continuous dynamical

systems theory lends itself as a framework for both qualitative and quantitative

understanding of neural models [45, 78, 58, 107].

A dynamical system are defined by differential equations. Differential equa-

tions describe the evolution of systems in continuous time. The temporal

behavior that concerns us only involves the derivatives with respect to time

that pertain to ordinary differential equations (ODE). Generally a n-variate

21

dynamical system described by ODEs is given as

ẋ1 = f1(x1, . . . , xn)
...

ẋn = fn(x1, . . . , xn)

(1.32)

where the overdots denote the differentiation with respect to time t, ẋi ≡

dxi/dt. The system is linear if the functions fi are linear in all the x’s.

Models of neural computation are often implemented as attractor dynam-

ics where the convergence to one of the attractors represents the result of

computation. The models also are often reduced to low-dimensional system,

ignoring the fast dynamic modes. The key features of dynamics are multiple

stable and unstable fixed points, bifurcation, meta-stability, chaos and robust-

ness to noise. Stable fixed points, also known as attractors, are important

because the system will converge to them or, in the presence of noise, dwell

near them. Unstable fixed points come in more varieties, as either repellers or

saddle points that funnel a large volume of phase space through. Slow points

in areas of phase space are not true fixed points but merely points of very

slow movement [107]. When the neuron is resting, it has a stable equilibrium.

Small perturbations causes small excursions from the equilibrium, while large

perturbations are amplified by the neuron’s intrinsic dynamics and result in

spikes. Sufficiently strong current into a neuron excites periodic spike firing.

In terms of dynamical system, the state has a limit circle. Equilibria and limit

cycles can both exist and transit from one to the other by a transient input.

Such transitions correspond to a bifurcation of neuronal dynamics. Neurons

22

are excitable near bifurcations from resting to spiking. Synchronized chaos

generated by the internal dynamics of a large neural network is investigated

in [45].

Recent advances in the neural recording capabilities allow us for the first

time to access large number of neurons in the mammalian brain. Ultimately,

brain is a computing machine where its internal dynamics implement com-

putations at various time scales, and to learn how the brain works, we must

connect the theories with the experimental time series at appropriate scales.

The methods of dynamics recovery bring low-dimensional and smooth time

series as mentioned in the previous section. To connect those dynamical the-

ories with neural time series data, we need to be able to fit a model that has

the expressive power to identify such features of a dynamical system. Despite

the wide adoption of dynamical systems theory in theoretical neuroscience,

solving the inverse problem, that is, reconstructing meaningful dynamics from

neural time series, has been challenging.

One of the key ingredients we are missing is an expressive dynamical model

that is easily interpretable and controllable. Numerous linear and nonlinear

time series models emerge in the field. However most of them are not readily

interpretable due to their parameterization, and often produces wild extrap-

olation which is not suitable for scientific study confidently recovering the

dynamics is of great interest.

In this study, we aim to build an interpretable dynamics model to reverse-

engineer the neural implementation of computation.

Clearly linear dynamical system models (e.g., PLDS [80]) can have at most

23

one fixed point, so that they cannot predict the trajectories such as meta-stable

states, saddles, fixed points, hyperplane attractors, and slow points, or further-

more exhibit important features of nonlinear theories of neural computation,

even with static nonlinear transformations (Hammerstein-style model) [4].

Typical approaches of using nonlinear autoregressive models [90]. Eiken-

berry and Marmarelis [31] proposed a new variant of Volterra-type model with

a nonlinear autoregressive component as a framework for describing the pro-

cess of action potential generation by the neuron membrane potential. The

proposed model was applied to input-output data generated by the Hodgkin-

Huxley equations [53].

Consider a general d-dimensional continuous nonlinear dynamical system

driven by external input,

ẋ = F (x, u) (1.33)

where x ∈ Rd represent the dynamic trajectory, and F : Rd × Rdi → Rd fully

defines the dynamics in the presence of input drive u ∈ Rdi . We aim to learn

the essential part of the dynamics F from a collection of trajectories sampled

at frequency 1/∆.

Assuming a separable, linear input interaction, F (x, u) = Fx(x) + Fu(x)u,

many nonlinear take a general form:

xt+1 = f(xt) + B(xt)ut + ϵt, (1.34)

where B(x) : Rd → Rd×di is the linearization of Fu around x and ϵt de-

notes model mismatch noise of order O(∆2). This form is widely used, and

24

called nonlinear autoregressive with eXogenous inputs (NARX) model where

f assumes various function forms (e.g. neural network, radial basis function

network [20], or Volterra series [31]).

One subclass of (4.3) use a locally linear expansion [90, 113]:

xt+1 = A(xt)xt + b(xt) + B(xt)ut + ϵt (1.35)

where A(x) : Rd → Rd×d and b(x) : Rd → Rd is the linearization of f around x.

For example, {A, B} are parametrized with an RBF network in multivariate

RBF-ARX model of [38, 90], and {A, b, B} are parametrized with sigmoid

neural networks in [113].

Our work assumes slow continuous dynamics allowing us to propose a flex-

ible nonlinear time series model that directly learns the velocity field, and

builds on a specific parameterization. The particular parameterization yields

to better interpretations: identifying fixed points and ghost points are easy,

and so is the linearization of the dynamics around those points for stability

and manifold analyses.

We further parameterize the velocity field using a finite number of basis

functions. Standard multilayer feed-forward networks with as few as one single

hidden layer and arbitrary bounded and non-constant basis function are uni-

versal approximation to continuous functions on compact subsets of Rn [56].

Simple networks can represent a wide variety of interesting functions.

One class of the widely used basis functions are radial basis functions. A

radial basis function (RBF) is a real-valued function whose value depends only

25

on the distance from some center c, so that ϕ(x, c) = ϕ(∥x−c∥). One common

used type of RBF are Gaussian,

ϕ(r) = e− r2
2σ2 , (1.36)

where r is the distance.

The artificial neural network that uses radial basis function as activation

functions is called a radial basis function network. A typical radial basis

function network consists of three layers: an input layer, a hidden layer and

an output layer. The input layer is a vector of real numbers x. The hidden

layer contains multiple radial basis functions. The output layer is a linear

combination of radial basis functions of the inputs and parameters, which is

φ(x) =
n∑

i=1
wiϕ(∥x− ci∥), (1.37)

given the hidden layer has n nodes. We use a normalized radial basis function

networks in this study. The definition will be given in Chapter 4.

In addition, we add a global contractional component. These features en-

courages the model to focus on interpolating dynamics within the support of

the training trajectories. We show the expressive power of our modeling frame-

work by characterizing dynamical features of various computational models.

26

Chapter 2

Log-linear Model Based Tree

Poisson regression is a widely-used tool for analyzing counting observations.

A common form of it is the log-linear model. The assumptions of linearity

and Poisson have not only advantages but also limitations. Relaxing such

assumptions is desirable when the data are complex and overdispersed.

Decision trees stratify the data hierarchically which gives insight and inter-

pretability of data. Meanwhile, negative binomial distribution as an extension

to Poisson distribution allows modeling overdispersed data. We embed log-

linear models with negative binomial likelihood into nodes of a tree for those

benefits.

2.1 Log-Linear Model

A log-linear model takes the logarithm of response mean as a linear com-

bination of the covariates,

log µi = ηi = β0 + β1xi1 + β2xi2 + · · ·+ βpxip, (2.1)

27

where µi the mean of i-th observation and xi1 . . . xip are the corresponding

covariates. The response is often treated as Poisson distributed and the max-

imum likelihood estimation (MLE) is widely used for parameters. The MLE’s

derived likelihood equation is

n∑
i=1

(yi − µi)xij

var(yi)
∂µi

∂ηi

= 0.

One can obtain the estimates of β by solving it. Newton-Raphson method

and Fisher scoring are two usual ways to find the solution [1].

Newton-Raphson method starts with an initial value for the solution. It

iteratively keeps updating the solution by approximating the function to be

maximized in a neighborhood of the previous solution until the process con-

verges to the maximum,

β(t+1) = β(t) − (H(t))−1∇L(β(t))

where ∇L(β) and H are the gradient and Hessian matrix of the log-likelihood

function respectively.

Fisher scoring resembles the Newton-Raphson method using the expected

information instead of the observed information by taking expectation of the

Hessian matrix,

β(t+1) = β(t) + (I(t))−1∇L(β(t)).

A generalized linear model with canonical link, such as a Poisson log-linear

model, has the identical observed information to the expected information.

28

Fisher scoring also gives the asymptotic covariance matrix besides the estima-

tion, but the observed information usually is easier to calculate.

Another variety is iterative reweighted least squares (IRLS). It can be

shown that

I = X′WX

where W is the diagonal matrix with elements wi = (∂µi/∂ηi)2/var(yi). Then

Fisher scoring formula can be rearranged as

β(t+1) = (X′W(t)X)−1X′W(t)z(t)

where zi = ηi + (yi − µi)(∂ηi/∂µi). Since the initial value does not require β,

the process can simply begin with the observation y as the initial estimate of

µ.

The negative binomial models allow for overdispersion. The variance func-

tion is given as

V (µi) = µi + ϕµ2
i ,

where ϕ (ϕ > 0) is the parameter that characterizes overdispersion. Since neg-

ative binomial distributions have the parameter ϕ twisted with µ, an iterative

ML procedure for estimation is given in Algorithm 1.

2.2 Growing a Tree

We build tree by recursive partitioning as classical decision trees. Instead

of using a constant fit in a node, we fit a log-linear model for the data within

29

Algorithm 1 Pseudocode for NB estimation
1: procedure NB(y, maxit, tol)
2: µ̂(0) ← arg maxLpois(µ; y)
3: ϕ̂(0) ← arg maxLnb(ϕ; y, µ̂(0))
4: i← 1
5: while true do
6: µ̂(i) ← arg maxLnb(µ; y, ϕ̂(i−1))
7: ϕ̂(i) ← arg maxLnb(ϕ; y, µ̂(i))
8: ∆← |Lnb(y, µ̂(i), ϕ̂(i))− Lnb(y, µ̂(i−1), ϕ̂(i−1))|
9: if ∆ < tol then

10: return µ̂(i), ϕ̂(i)

11: end if
12: i← i + 1
13: if i > maxit then
14: return max iteration reached.
15: end if
16: end while
17: end procedure

the node. In this study, we only consider binary trees.

Starting from the root node, we recursively partition the data into subsets

which consist of branches. The procedure is described as follows:

1. Fit a log-linear model once to all observations in the current node.

2. Assess whether a split is necessary. Stop if it is not.

3. Search the split point that locally optimizes the objective function.

4. Split the node into children nodes and repeat the procedure.

The objective function in generalized linear models is usually the (nega-

tive) likelihood function to maximize (minimize). To be consistent with this

objective, we split the node at the value that maximizes the sum of likelihood

of the children nodes.

30

To assess the necessity of a split, we formulate a hypothesis test. Suppose

the data contain n observations and the log-linear model takes the form of

E(yi) = exp(x⊤
i βi). (2.2)

The split is considered necessary if the null hypothesis of

H0 : β1 = · · · = βn = β (2.3)

is rejected, where βn is the parameter vector for the n-th observation. To

control the size of tree, we control the probability of a Type I error of the test.

The Type I error is defined as the probability of a unnecessary splitting.

The hypothesis can be expressed in another way if the value where the

splitting happens is given. Denote the splitting variable by s, and its split-

ting value by v (for continuous variables) or c (for categorical variables). We

introduce the dummy variable d in model

log µ = β0 + β1x1 + . . . + βpxp + βd, (2.4)

where

d = I(s ≤ v)s, (2.5)

or

d = I(s ∈ c). (2.6)

31

Then we test the hypothesis

H0 : β = 0 vs H1 : β ̸= 0. (2.7)

Note that it is not necessary to split a categorical variable which is already

considered as an independent variable in the log-linear model, because the

coded variable (not the dummy variable for splitting) is equivalent to stratifi-

cation.

An intuitive value of v is the one determined by the splitting rule that is

maximizing the likelihood. However, such a value estimated from the data may

violate the distribution of test statistic under the null hypothesis and make

test incorrect (high probability of a type I error) [97]. We use the median value

if the variable is continuous for the division [97]. If the variable is categorical,

we add the variable as a regressor directly.

2.2.1 Test for Splitting

There are many methods of testing β = 0 in (2.7). In context of generalized

linear models, Wald test and likelihood ratio test are often used [1]. Besides

we can also use bootstrap tests. We define parametric bootstrapped LRT test

as

1. Compute the LRT statistic λ from the data.

2. Generate bootstrap samples from the null model.

3. Form a 1− α confidence interval with the statistic λb from the samples

generated from the null distribution.

32

4. Reject H0 if the above confidence interval does not contain λ.

The above tests needs a prespecified splitting value. Although testing a

nearly equal-size split would avoid deficiency of small sample size, it might be

inappropriate in some cases. Hence we use another class of tests for parameter

instability that work with (2.3).

Let u(y | β) be the score function. Under H0,

Wn(t, β) = 1√
n

∑
i≤[nt]

u(yi, β)→d Z(t), 0 ≤ t ≤ 1 (2.8)

where Z(t) is a Gaussian process with zero mean and covariance function

min(t1, t2)B(β) and B(β) is the variance of score. Then a stochastic process

defined as

Mn(t) = B(β)−1/2W (t, β) (2.9)

converges to a p-dimensional Brownian motion.

Define two test statistics [119] as

1
n

n∑
i=1

∥∥∥∥Mn

(
i

n

)∥∥∥∥2

2
(2.10)

and

max
t,k
|Mn,k(t)| (2.11)

The idea behind such tests is that if any observation has an different parameter

value from the others, the test statistics will deviate far away from the zero

mean. We denote (2.10) by TL2 and (2.11) by TL∞ . The critical values of (2.10)

are tabulated in [46], and the calculation of (2.11) is given in [115].

33

2.2.2 Simulation Study

In this section, we conducted a simulation study with the models from [21].

The models are defined as follows,

• Model 3:

µ = exp(−0.6931 + 0.497x), x ∼ U(0, 5)

• Model 6:

µ =


exp(−0.6931 + 0x) x ≤ 2.5

exp(−3.178 + 0.994x) x > 2.5
, x ∼ U(0, 5)

• Model 7:

µ = exp(|x|), x ∼ U(−2, 2)

• Model 8:

µ =



exp(2x + 4) x ≤ −1

exp(2|x|) −1 < x ≤ 1

exp(−2x + 4) x > 1

, x ∼ U(−2, 2)

• Model 9:

µ = exp(−0.5 + 0.8x1 − 0.5x2), x1, x2 ∼ U(0, 3)

34

• Model 10:

µ = exp((−1)c(0.4x1 − 0.4x2), c ∈ {0, 1}, x1 ∼ U(0, 5), x2 ∼ U(0, 2)

Among those models, Model 3 and 9 do not need split, Model 6, 7 and 9 need

one split, and Model 8 needs 3 splits.

The responses are generated from Poisson distribution without overdisper-

sion and from the negative binomial distribution with corresponding mean and

overdispersion parameter ϕ = 1. Poisson likelihood is used for all tests when

ϕ = 0 and negative binomial likelihood is used for Wald, LRT and bootstrap

tests and quasi-Poisson is used for the remaining two instability tests when

ϕ = 1.

We follow the same setting as that in [21]. We simulate 200 samples from

each model. Each sample contains 120 observations except that it is 300

for overdispersed Model 8 to adapt multiple splits and high variance due to

overdispersion. Bootstrap size is 1000. The significance level is 0.05.

The probability of a Type I error and Power of the simulation study are

shown in Table 2.1. The Wald test is not performed on categorical variables

(Model 10) since the coding might be more than one dummy variable. It

only shows the probability of at least one split for the bootstrapped LRT to

compare with LRT. The first three tests perform poorly on Model 8 because

of the particular function form. The function is symmetric about 0 and so are

the observations which lead to similar estimation before and after splitting, a

line parallel to the x-axis so that the tests do not reject the null.

35

Table 2.1: Probability of a Type I error and Power

Model # of splits Wald LRT P.Boot.LRT TL∞ TL2

ϕ = 0 3 >0 0.055 0.055 0.045 0.015 0
6 1 0.11 0.125 0.08 (# > 0) 0.72 0.71

2 0 0 0 0
3 0.005 0.005 0.005 0

7 1 0.985 0.985 0.985 0.985
2 0.015 0.015 0.015 0.015

8 1 0.01 0.01 0.035 (# > 0) 0.04 0.04
2 0.045 0.045 0.385 0.51
≥3 0.045 0.045 0.247 0.347

9 >0 0.045 0.045 0.085 (# > 0) 0.015 0.015
10 >0 NA 1 1 (# > 0) 1 1

ϕ = 1 3 0.06 0.055 0.05 (# > 0) 0.03 0.025
6 1 0.15 0.15 0.114 (# > 0) 0.41 0.315

2 0.005 0 0.005 0
7 1 0.995 0.995 0.315 0.95

2 0.005 0.005 0.005 0.015
8 1 0.005 0.01 0.03 (# > 0) 0.095 0.041

2 0.035 0.02 0.333 0.424
≥3 0.015 0.02 0.199 0.251

9 >0 0.075 0.06 0.023 (# > 0) 0.05 0.035
10 >0 NA 0.94 1 (# > 0) 0.835 0.85

36

2.3 Test for Over-dispersion

Though the negative binomial distribution is used to deal with overdisper-

sion, it is still necessary to know if the data are truly overdispersed in practice.

Suppose the variance function is var(µ) = µ(1 + ϕµ). Over-dispersion exists if

ϕ > 0. Then we have the hypothesis:

H0 : ϕ = 0 vs H1 : ϕ > 0. (2.12)

Here we consider several tests for overdispersion. The first one is the like-

lihood ratio test (LRT),

T = −2
[
ℓPoisson(µ|x)− ℓnegative binomial(µ, ϕ|x)

]
(2.13)

where ℓ(µ, ϕ|x) is the log likelihood [50]. The test statistic T converges in

distribution to chi-squared distribution with 1 degree of freedom as sample

size goes to infinity. We reject H0 if T > χ2
α,1.

Secondly, if the variance function takes another form as var(y) = φµ,

overdispersion exists if φ > 1. The new dispersion parameter φ can be esti-

mated through the Pearson χ2 statistic

φ̂ =
χ2

p

n− p
. (2.14)

Base on the estimator, we propose a nonparametric bootstrap test. Reject no

overdispersion if 1 is on the left of the bootstrap confidence interval.

37

Thirdly a score test was given in [16, 117] as

T =

∑n
i=1((yi − µ̂i)2 − yi)√

2∑n
i=1 µ̂2

i

2
n→∞→ χ2

1 (2.15)

It is obvious that overdispersion exists if the test statistic deviates far beyond

1.

We also do a simulation study for those tests. The simulation was con-

ducted with different combinations of sample size (20, 50, 100), value of

overdispersion (0, 0.05, 0.1, 0.2), number of covariates (2, 4, 6, 8) and log-

arithm of ground mean (2, 2, 4, 5). The covariates are uniformly random in

[−1, 1] and the coefficients are sampled from standard normal distribution ex-

cept β0. We used log-linear model to obtain the mean of response and generate

responses by Poisson or negative binomial random variables according to the

overdispersion value. The result is given in Table 2.2.

2.4 Missouri Lung Cancer

The Missouri lung cancer data contain death, age, sex and populations of

115 counties in each age and sex category. The counties were given in coded

format and thus the true names are unidentifiable.

The raw response is the number of deaths. Obviously it is proportional

to the population (size). Hence the mortality rate is modeled instead. The

interest is the association between the mortality rate and covariates. The

regression variables are sex and age. Sex contains only two categories, female

and male. It is not necessarily a splitting variable. The ages are grouped

38

Table 2.2: Probability of a Type I Error and Power of Test for Over-dispersion

n log β0 ϕ p LRT Boot Quasi LM
20 2 0 2 0 0 0.01
50 2 0 2 0.02 0.01 0.02
20 4 0 2 0 0 0
50 4 0 2 0 0.01 0.01
20 2 0.05 2 0.01 0.01 0.01
50 2 0.05 2 0.43 0.4 0.5
20 4 0.05 2 0.01 0.01 0.04
50 4 0.05 2 0.48 0.31 0.55
20 2 0.2 2 0.27 0.18 0.33
50 2 0.2 2 0.95 0.94 0.95
20 4 0.2 2 0.14 0.11 0.19
50 4 0.2 2 0.7 0.5 0.78
20 2 0 4 0 0 0
50 2 0 4 0 0.02 0.02
20 4 0 4 0 0 0.04
50 4 0 4 0.02 0.01 0.03
20 2 0.05 4 0.01 0 0.04
50 2 0.05 4 0.16 0.11 0.2
20 4 0.05 4 0.5 0.18 0.56
50 4 0.05 4 0.18 0.11 0.23
20 2 0.2 4 0.05 0.01 0.03
50 2 0.2 4 0.03 0.04 0.07
20 4 0.2 4 0.09 0.03 0.15
50 4 0.2 4 1 1 1
20 2 0 8 0 0 0
50 2 0 8 0 0 0
20 4 0 8 0 0 0
50 4 0 8 0.01 0 0.03
20 2 0.05 8 0 0 0
50 2 0.05 8 0.02 0.01 0.01
20 4 0.05 8 0 0 0
50 4 0.05 8 0.32 0.03 0.12
20 2 0.2 8 0 0 0
50 2 0.2 8 0.69 0.13 0.68
20 4 0.2 8 0.05 0 0.03
50 4 0.2 8 0.9 0.68 0.72

39

into 45–54, 55-64, 65–74 and 75+. It is naturally coded as ordered if only

linear relationship with the mortality rate is considered. We code it as 45, 55,

65 and 75. Since the size is considered the exposure, it is not included as a

regression variable. However, size is a splitting variable because it may be a

representation of other geographic information. So sex and age are used as

regression variables, and age and size are used as splitting variables.

Trees with two models are fitted. One uses Poisson likelihood and the

other uses negative binomial likelihood to assess overdispersion. The minimum

terminal sizes are chosen to be 5 and 20. The stopping rule uses meanL2 test.

The results are shown in Figure 2.1 for Poisson (20 min. terminal node size)

and negative binomial (5 and 20 min. terminal node size) and Figure 2.2 for

Poisson (5 min. terminal size). When the minimum terminal node size is set

to 5, the Poisson tree splits node 6 into two sub nodes. The fitted log-linear

models are shown in Tables 2.3, 2.4 and 2.5.

Sex is always significant in all terminal nodes. It implies the mortality

rates are different between males and females, and positive estimates suggest

that males have higher chance to die than females from lung cancer. The

root node is split at age 65 for both models. Age is insignificant in the whole

sample. It is significant for people who are younger than 65, but not for the

older people. In the negative binomial tree, overdispersion is significant for

the whole sample, but it is insignificant in nodes 10 and 11 in Figure 1. These

nodes contain people who are at least 65 years old and living in counties with

low population.

40

Table 2.3: Poisson (min. terminal = 5)

Node Parameter Estimate p value
1 (Intercept) -7.9151 0.0000

SexM 1.5223 0.0000
Age 0.0452 0.0000

4 (Intercept) -10.3281 0.0000
SexM 1.2928 0.0000
Age 0.0927 0.0000

5 (Intercept) -9.8033 0.0000
SexM 1.1466 0.0000
Age 0.0894 0.0000

7 (Intercept) -4.9236 0.0000
SexM 1.6740 0.0000
Age 0.0025 0.3305

8 (Intercept) -5.6923 0.0000
SexM 1.7105 0.0000
Age 0.0077 0.1377

9 (Intercept) -5.4495 0.0000
SexM 1.8727 0.0000
Age 0.0051 0.1145

2.5 Summary

In this chapter, we embed log-linear models with negative binomial likeli-

hood into tree to relax the assumption of linearity and allow overdispersion.

To control the size of tree, tests for parameter instability are introduced in

the procedure of tree growth. The node splits only if the sufficiency of linear

relationship is rejected by the test. Besides, we test the overdispersion to see

if extra-Poisson is present.

We validate our method with simulation study and apply it to modeling

mortality rate of Missouri lung cancer cases. The result shows significance of

effects and overdispersion change along the path of tree which are not reveal

41

Table 2.4: Poisson (min. terminal = 20)

Node Parameter Estimate p vlaue
1 (Intercept) -7.9151 0.0000

SexM 1.5223 0.0000
Age 0.0452 0.0000

5 (Intercept) -9.7674 0.0000
SexM 1.0900 0.0000
Age 0.0885 0.0000

7 (Intercept) -4.9236 0.0000
SexM 1.6740 0.0000
Age 0.0025 0.3305

8 (Intercept) -6.0290 0.0000
SexM 1.1292 0.0000

9 (Intercept) -5.3129 0.0000
SexM 1.4444 0.0000

10 (Intercept) -5.6923 0.0000
SexM 1.7105 0.0000
Age 0.0077 0.1377

11 (Intercept) -5.4495 0.0000
SexM 1.8727 0.0000
Age 0.0051 0.1145

by the simple Poisson model.

42

Node 1
n: 920

Node 2
n: 460

age < 65

Node 3
n: 460

Node 4
n: 437

size < 5777

Node 5
n: 23

Node 6
n: 435

size < 2786

Node 7
n: 25

Node 8
n: 216

age < 55

Node 9
n: 221

Node 10
n: 201

size < 570

Node 11
n: 234

Figure 2.1: Regression tree of Missouri lung cancer. Poisson (min. terminal
= 20), negative binomial (min. terminal = 5, 20). The circles represent
intermediate nodes, and the boxes represent the terminal nodes. The number
of node and sample size are printed in nodes. The splitting variable and value
are printed on the left branches.

43

Node 1
n: 920

Node 2
n: 460

age < 65

Node 3
n: 460

Node 4
n: 447

size < 8982

Node 5
n: 13

Node 6
n: 435

size < 2786

Node 7
n: 25

Node 8
n: 201

size < 570

Node 9
n: 234

Figure 2.2: Regression tree of Missouri lung cancer. Poisson (min. terminal
= 5)

44

Table 2.5: Negative binomial (min. terminal = 5, 20)

Node Parameter Estimate p value
1 (Intercept) -7.9034 0.0000

ϕ 0.1069 0.0000
SexM 1.4402 0.0000
Age 0.0458 0.0000

5 (Intercept) -9.5688 0.0000
ϕ 0.1424 0.0000

SexM 1.0601 0.0000
Age 0.0849 0.0000

7 (Intercept) -4.8927 0.0000
ϕ 0.0022 0.0000

SexM 1.6735 0.0000
Age 0.0020 0.5539

8 (Intercept) -6.0290 0.0000
ϕ 0.0304 0.0215

SexM 1.1292 0.0000
9 (Intercept) -5.3129 0.0000

ϕ 0.0222 0.0000
SexM 1.4444 0.0000

10 (Intercept) -5.7075 0.0000
ϕ 0.0000 0.6323

SexM 1.7105 0.0000
Age 0.0079 0.1359

11 (Intercept) -5.4769 0.0000
ϕ 0.0071 0.0584

SexM 1.8734 0.0000
Age 0.0055 0.1284

45

Chapter 3

Variational Latent Gaussian Process for Recovering Single-Trial

Dynamics from Population Spike Trains

A small number of shared factors, or a low-dimensional trajectory can

explain the interdependence of simultaneously recorded population of neurons

when governed by underlying low-dimensional dynamics. Recovering these

latent trajectories, particularly from single-trial population recordings, may

help to understand the dynamics that drive neural computation. However,

inferring trajectories from data is a difficult statistical problem. Here, we

propose a practical and efficient inference method, called the variational latent

Gaussian process (vLGP). The vLGP combines a generative model with a

history-dependent point process observation together with a smoothness prior

on the latent trajectories. It improves upon earlier methods for recovering

latent trajectories, which assume either observation models inappropriate for

point processes or linear dynamics. We compare and validate vLGP on both

simulated datasets and population recordings from the primary visual cortex

(V1). In the V1 dataset, we find that vLGP achieves substantially higher

performance than previous methods for predicting omitted spike trains, as

well as capturing both the toroidal topology of visual stimuli space, and the

46

noise-correlation. These results show that vLGP is a robust method with a

potential to reveal hidden neural dynamics from large-scale neural recordings.

3.1 Generative model

Suppose we simultaneously observe spike trains from N neurons. Let

(yt,n)t=1,...,T denote the spike count time-series from the n-th neuron for a

small time bin. We assume the following parametric form of the conditional

intensity function λ∗(·) for the point process likelihood [27, 80]:

log p(yt,n |xt, ht,n, αn, βn) = yt,n log λ∗(t, n |ht,n)− λ∗(t, n |ht,n),

λ∗(t, n |ht,n) = exp
(
α⊤

n xt + β⊤
n ht,n

)
,

(3.1)

where xt is a latent process and ht,n = [1, yt−p,n, yt−p+1,n, . . . , yt−1,n]⊤ denotes

the spike history vector [108, 96]. Each neuron is directly influenced by the

observed self-history1 with weight βn and also driven by the common latent

process with weight αn (Fig. 3.1). Neurons are conditionally independent

otherwise: all trial-to-trial variability is attributed either to the latent process

or individual point process noise (c.f., [42, 30, 74]).

The vector xt denotes the L-dimensional latent process at time t. We

assume that L≪ N , since we are looking for a small number of latent processes

that explain the structure of a large number of observed neurons. The vector

βn consists of the weights of the spike history and a time-independent bias

term of the log firing rate for each neuron, and ht,n is a vector of length (1+p)
1It is straightforward to add external covariates similar to the self-history in this point

process regression [92].

47

nonlinear
function

loading
weights

latent processesGaussian process prior
(encodes assumptions) spikes

autoregressive filter

Figure 3.1: Generative model schematic for one neuron driven by two latent
processes. Every neuron in the observed population are driven by the same set
of latent processes. The inferred latent processes are more likely to be smooth,
as assumed by the smooth Gaussian process prior. The point nonlinearity is
fixed to be exponential f(·) = exp(·).

containing the dummy value 1 for the bias and p time-step spike self-history.

This parametrization assumes that at most p bins in the past influence the

current intensity.

Under conditional independence, the joint distribution (data likelihood) of

N spike trains is given by,

p(y1...T,1...N |x1...T , α1...N , β1...N) =
T∏

t=1

N∏
n=1

p(yt,n |xt, ht,n, αn, βn). (3.2)

Note that this model is not identifiable (see later sections for further dis-

cussions): αT
n xt = (αT

n C)(C−1xt) = α′T
n x′

t where C is an arbitrary L × L

invertible matrix. Also, the mean of latent process x can be traded off with

the bias term in β.

Our assumptions about the latent process — namely the smoothness over

time in this paper — are encoded in the prior distribution over the latent pro-

cess. We use the popular Gaussian process (GP) framework [101] for flexible

48

prior design of each dimension xl(t) independently:

xl(t) ∼ GP(µl, κl) (3.3)

where µl(t), and κl(t, s) are mean and covariance functions, respectively. When

time is discretized, the GP prior reduces to a multi-variate Gaussian distribu-

tion over the latent time series. We use the following form:

p(xl) = N (xl |0, Kl), l = 1, . . . , L. (3.4)

For the analyses in this manuscript, we choose the squared exponential covari-

ance function [101] for general smoothness over time,

cov(xt,l, xs,l) = σ2
l exp(−ωl(t− s)2). (3.5)

where σl and ωl are hyperparameters corresponding to the magnitude and

inverse time scale of the latent process, respectively.

3.2 Variational inference

Our goal is to infer the posterior distribution over the latent process and

fit the model parameters given the observed data. By Bayes’ theorem, the

posterior distribution of the latent process is,

p(x1...L |y1...N) = p(y1...N |x1...L)p(x1...L)
p(y1...N)

, (3.6)

49

However, unlike in GPFA, the posterior under a point process likelihood and

Gaussian process prior does not have an analytical form [91]. Consequently, we

must turn to an approximate inference technique. We employ variational in-

ference, which aims to find an approximate distribution q(x) of the intractable

true posterior p(x |y). We can introduce this approximate posterior into the

likelihood by re-writing it as,

log p(y1...N) = Eq[log p(y1...N)] = Eq

[
log p(y1...N , x1...L)

q(x1...L)
· q(x1...L)

p(x1...L |y1...N)

]

(3.7)

= Eq

[
log p(y1...N , x1...L)

q(x1...L)

]
︸ ︷︷ ︸

L(q)

+ Eq

[
log q(x1...L)

p(x1...L |y1...N)

]
︸ ︷︷ ︸

DKL(q∥p)

, (3.8)

where Eq denotes an expectation over q(x), and DKL(q∥p) is the Kullback-

Leibler divergence, which measures the difference in the true posterior and its

variational approximation. Since DKL(q∥p) is non-negative, L(q) is the lower

bound for the marginal likelihood. Finding an approximate posterior q close to

the true posterior by minimizing the Kullback-Leibler divergence is equivalent

to maximizing the lower bound L(q).2

We further assume the q distribution factorizes into Gaussian distributions

with respect to each dimension of the latent process, so that

q(x1...L) =
L∏

l=1
N (xl |µl, Σl). (3.9)

2L(q) is often called the Evidence Lower BOund (ELBO).

50

We then obtain

L(q) =
T∑

t=1

N∑
n=1
Eq[log p(yt,n |xt, ht,n, αn, βn)]−

L∑
l=1
Eq

[
log q(x1...L |µl, Σl)

p(x1...L |Kl)

]

=
T∑

t=1

N∑
n=1

[yt,n(α⊤
n µt + β⊤

n ht,n)− exp(α⊤
n µt + β⊤

n ht,n + 1
2

α⊤
n Σtαn)]

− 1
2

L∑
l=1

[µ⊤
l K−1

l µl + tr(K−1
l Σl)− log det(K−1

l Σl)− T].

(3.10)

where T is the number of total time steps, and each temporal slice µt is a

vector of posterior means of the L latent variables at time t. Each temporal

slice Σt is a diagonal matrix whose diagonal contains the variances of the L

latent variables at time t.

Variational inference for the entire posterior over latents, parameters, and

hyperparameters all be formulated in terms of maximizing (3.10). We sequen-

tially update all parameters coordinate-wise; each conditional update turns out

to be a convex-optimization problem except for hyperparameters as explained

below. The algorithm is summarized in Algorithm 2.

Our algorithm scales linearly in space O(Ts) and time O(Tr2L) per itera-

tion (for a fixed hyperparameter) where s = max(rL, pN) thanks to the rank-r

incomplete Cholesky factor of the prior covariance matrix. For comparison,

time complexity of GPFA is O(T 3L3), and that of PLDS is O(T (L3 + LN)).

3.2.1 Posterior over the latent process

The variational distribution ql is assumed to be Gaussian and thus deter-

mined only by its mean µl and covariance Σl. The optimal solution is therefore

51

Algorithm 2 Pseudocode for vLGP inference
1: procedure vLGP(y1...T , h1...T,1...N , σ2

1...L, ω1...L, tol, k)
2: Gl = ichol(σ2

l , ωl), l = 1 . . . L ▷ construct incomplete Cholesky
decomposition [5]

3: Initialize αn and µl by factor analysis
4: βn ← (h⊤

1...T,nh1...T,n)−1h⊤
1...T,ny1...T , n = 1 . . . N ▷ linear regression

5: while true do
6: for l← 1, . . . , L do
7: λt,n ← α⊤

n µt + β⊤
n ht,n + 1

2α⊤
n Σtαn, t = 1 . . . T, n = 1 . . . N

8: ul ← GlG⊤
l (y− λ)αl − µold

l

9: Bl ← G⊤
l diag(Wl)Gl

10: µnew
l ← µold

l + [IT −GlG⊤
l Wl + GlBl(Ir + Bl)−1G⊤

l Wl]ul ▷
Newton-step for µ

11: µnew
l ← (µnew

l − µ̄new
l) ▷ constrain µ

12: end for
13: for n← 1, . . . , N do
14: λt,n ← α⊤

n µt + β⊤
n ht,n + 1

2α⊤
n Σtαn, t = 1 . . . T, n = 1 . . . N

15: αnew
n ← αold

n + [(µ + V ◦ αold
n)⊤diag(λn)(µ + V ◦ αold

n) +
diag(V⊤λn)]−1[µ⊤yn − (µ + V ◦αold

n)⊤λn] ▷ Newton-step for α
16: βnew

n ← βold
n + [h⊤

n diag(λn)hn]−1h⊤
n (yn − λn) ▷ Newton-step for β

17: end for
18: αnew

l ← αnew
l /∥αnew

l ∥, l = 1 . . . L ▷ constrain α
19: W ← λα2⊤ ▷ update diagonals of W
20: Bl ← G⊤

l diag(Wl)Gl, l = 1 . . . L
21: V1...T,l ← [Gl ◦ (Gl −GlBl + GlBl(Ik + Bl)−1Bl)]1, l = 1 . . . L
22: Optimize hyperparameters with the gradient in (3.35) and update G1...L

every k iterations
23: if ∥(µnew

1...L, αnew
1...N , βnew

1...N)− (µold
1...L, αold

1...N , βold
1...N)∥ < tol then

24: break
25: end if
26: µold

1...L ← µnew
1...L, αold

1...N ← αnew
1...N , βold

1...N ← βnew
1...N

27: end while
28: end procedure

52

obtained by

µ⋆
1...L, Σ⋆

1...L = arg max
µ1...L,Σ1...L

L(q), (3.11)

while holding other parameters and hyperparameters fixed.

Denote the expected firing rate of neuron n at time t by λt,n,

λt,n = Eq [λ∗(t, n |ht,n)] = exp
(

β⊤
n ht,n + α⊤

n µt + 1
2

α⊤
n Σtαn

)
. (3.12)

The optimal µl can be obtained by the Newton-Raphson method. The gradient

and Hessian are given as

∇µl
L =

∑
t,n

(yt,n − λt,n)an,let −K−1
l µl, (3.13)

∇2
µl
L =−

∑
t,n

λt,na2
n,lete⊤

t −K−1
l . (3.14)

where et is a vector of length T with value 1 at t and zero elsewhere. Note

that the Hessian is negative definite, and hence this is a convex optimization

given the other arguments and λt,n. In each iteration, the update is

µnew
l = µold

l − (∇2
µl
L)−1(∇µl

L). (3.15)

If we set the derivative w.r.t. Σl to 0,

∇Σl
L = −1

2
∑
t,n

λn,ta
2
n,lete⊤

t −
1
2

K−1
l + 1

2
Σ−1

l = 0, (3.16)

53

we obtain the optimal covariance,

Σl =

K−1
l +

∑
t,n

λt,na2
n,lete⊤

t

−1

(3.17)

=
(
K−1

l + Wl

)−1
. (3.18)

where Wl = ∑
t,n λt,na2

n,lete⊤
t is a diagonal matrix. Therefore, there is no need

for optimization of the covariance. This simple form of variational posterior

covariance has been noted before [89]. Also note that ∇2
µl
L = −Σ−1

l .

There is a redundancy between the bias term in β and the mean µ. During

optimization, we constrain the latent mean µ by zero-centering, and normalize

the loading α by its max-norm latent-wise.

The prior covariance matrix Kl is large (T × T) and is often severely ill-

conditioned. We only keep a truncated incomplete Cholesky factor G [5] of

size T × r where r is the rank of the resulting approximation,

Kl ≈ GlG⊤
l , (3.19)

which provides both a compact representation and numerical stability. Now,

we derive key quantities that are necessary for a memory-efficient and numeri-

cally stable implementation. For convenience and without ambiguity, we omit

the subscript l of all vectors and matrices below. By the matrix inversion

lemma [101], we have

Σ = (K−1 + W)−1 = K−K(W−1 + K)−1K. (3.20)

54

and applying the lemma again

(W−1 + K)−1 = W−WG(I + B)−1G⊤W, (3.21)

where B = G⊤WG. We obtain two useful identities as a result:

Σ = GG⊤ −GBG⊤ + GB(I + B)−1BG⊤, (3.22)

K−1Σ = I−WGG⊤ + WG(Ik + B)−1BG⊤. (3.23)

With (3.22) and (3.23), we can avoid large matrices in above equations such

as,

tr[K−1Σ] = T − tr[B] + tr[B(I + B)−1B], (3.24)

log det[K−1Σ] = log det[I−B + B(I + B)−1B], (3.25)

diag(Σ) = [G ◦ (G−GB + GB(Ik + B)−1B)]1, (3.26)

Σ∇µL = (I−GG⊤W + GB(Ik + B)−1G⊤W)u, (3.27)

where 1 is the all-ones vector, and u = GG⊤(y − λ)αl − µ. In addition, by

the one-to-one correspondence between W and Σ, we use the diagonal of W

as a representation of Σ in the algorithm. The derivations of useful identities

are in Appendix A.1.

3.2.2 Weights

Denote the temporal slices of Σl’s by T×L matrix V. The optimal weights

αn and βn given the posterior over the latents can be obtained by the Newton-

55

Raphson method with the following derivatives and Hessians,

∇anL =µ⊤(yn − λn)− diag(V⊤λn)an, (3.28)

∇2
an
L =− (µ + V ◦ 1a⊤

n)⊤ diag(λn)(µ + V ◦ 1a⊤
n)− diag(V⊤λn), (3.29)

and

∇βn
L =h⊤

n (yn − λn), (3.30)

∇2
βn
L =− h⊤

n diag(λn)hn. (3.31)

The updating rules are

αnew
n =αold

n − (∇2
αn
L)−1∇αnL, (3.32)

βnew
n =βold

n − (∇2
βn
L)−1∇βn

L. (3.33)

Once again, both Hessians are negative definite, and hence in the territory of

convex optimization.

3.2.3 Hyperparameters

One way to choose hyperparameters is to maximize the marginal likelihood

w.r.t. the hyperparameters. Since the marginal likelihood is intractable in the

vLGP model, we instead maximize (3.10) once again given the parameters and

posterior. Interestingly, this objective function takes the same form as the one

that is maximized in the GPFA’s hyperparameters updates.

56

We write the squared-exponential covariance kernel as,

Kl = σ2
l exp(−ωlD), (3.34)

where D is the matrix of squared distances of each time pair. Hyperparameters

σ2 and ω corresponds to prior variance and inverse (squared) time scale. We

optimize the log-transformed hyperparameter for those are positive. To the j-

th transformed hyperparameter of the l-th latent dimension, θlj, the derivative

is given as

∂L
∂θlj

= tr
(

∂L
∂Kl

∂Kl

∂θlj

)
, (3.35)

∂L
∂Kl

= 1
2
(
K−1

l µlµ
⊤
l K−1

l + K−1
l ΣlK−1

l −K−1
l

)
. (3.36)

The optimal value can be found by common gradient algorithms for each latent

dimension independently.

The above derivation of the hyperparameter optimization technique as-

sumes a fixed posterior and parameters. Thus it requires complete prior covari-

ance matrices and explicit posterior covariance matrices rather than low-rank

decompositions. In order to avoid numerical singularity, we add a small quan-

tity to the diagonal of prior covariance matrices. It would be extremely costly

to use these complete covariance matrices for long, consecutive time series.

Therefore, we randomly take many shorter temporal subsamples of the pos-

terior for fast computation [118]. One hyperparameter iteration is performed

every fixed number of iterations of posterior and parameter optimization.

57

3.3 Results

We apply our inference algorithm to two simulated systems and one real

dataset. We compare our method (vLGP) against GPFA and PLDS.

3.3.1 Evaluation

We use a leave-one-neuron-out prediction likelihood to compare models.

For each dataset comprising of several trials, we choose one of the trials as

test trial and the others as training trials. First, the weights and posterior

are inferred from the training trials. Next, we leave one neuron out of the

test trial and make inference on the posterior by the remaining neurons with

the weights estimated from the training trials. Then the spike train of the

left-out neuron are predicted by the model given the weights estimated from

the training trials and the posterior inferred from the test trial. We do this

procedure on each neuron of one trial and each trial of one sample. Finally we

obtain the prediction of all spike trains in the sample.

For simulated datasets, we know the true latent process that generates

observations. Since latent space is only identifiable up to affine transformation,

we quantify using the angle between subspaces [15, 95]. However, due to

possible mismatch in the point nonlinearity, the subspace can be distorted. To

account for this mismatch, we use the mean Spearman’s rank correlation that

allows invertible monotonic mapping in each direction. The Spearman’s rank

correlation between the posterior and true latent trajectory gives a measure of

the goodness of the posterior. If the correlation is large, the posterior recovers

58

more information about the underlying trajectory.

0 200 400 600 800 1000 ms 0 200 400 600 800 1000 ms

PLDS
GPFA
vLGP
True

(a) Lorenz attractor with refractory period

0 200 400 600 800 1000 ms 0 200 400 600 800 1000 ms

PLDS
GPFA
vLGP
True

(b) Linear dynamical system (LDS) with soft-rectified Poisson observation.

Figure 3.2: Spike trains from 50 simultaneously observed neurons, and corre-
sponding 3-dimensional latent trajectory. (Left) Simulated spike trains from
each corresponding system. See (4.13) and (3.38) for the exact generative
model. (Right) True and inferred 3-dimensional latent processes. vLGP and
GPFA infers smooth posterior, while noticeable high-frequency noise is present
in the PLDS inference.

3.3.2 Simulation

We simulate two datasets: one with deterministic nonlinear dynamics, and

one with linear dynamics and model-mismatched nonlinear observation. Each

59

dataset consists of 5 samples and each sample contains 10 trials from 50 neu-

rons which last for 1 sec. We choose a bin size of 1 ms.

In the first dataset, the latent trajectories are sampled from the Lorenz

dynamical system with the time step of 0.0015. This 3-dimensional system is

defined by the following set of equations,

ẋ = 10(y − x),

ẏ = x(28− z)− y,

ż = xy − 2.667z.

(3.37)

Spike trains are simulated by (3.1) with 10 ms suppressive history filter given

the latent trajectories.

In the second dataset, Poisson spike trains are simulated from a 3-dimensional

linear dynamical system (LDS) defined as

yt,n |xt ∼ Poisson(log(1 + exp(c⊤
n xt + dn))

x0 ∼ N (µ0, Q0)

xt+1 |xt ∼ N (Axt + bt, Q).

(3.38)

Figure 3.2 shows one trial from each dataset and corresponding inferred

posterior mean latent trajectory. The posterior means are rotated toward the

true latent subspace. The PLDS inference (blue) looks the farthest away from

the true Lorenz latent relatively but much closer to the LDS latent because the

true latent meets its assumption. However, PLDS inference lacks of smooth-

ness. The GPFA inference (green) is better than PLDS for Lorenz latent but

60

shows deviations from the true LDS latent. The smoothness is kept in the

inference. The inference of our model (red) are very close to the true latent in

both cases along the time while being smooth at the same time.

The Spearman’s rank correlation between the posterior and true latent

trajectory gives a measure of the goodness of the posterior. If the correlation is

large, the posterior recovers more information about the underlying trajectory.

For one sample, we compute the correlation between the posterior and true

latent after concatenate all the trials along time. Since the models do not

assume continuity between trials and impose constrains on the posterior mean,

the concatenation is performed before computing the correlation. Note that

the GPFA divides each trial into small time segments for estimating the loading

matrix and bias. It breaks the continuity within each trial. Only the final

iteration infers each trial as whole. Thus the correlations of the final iterations

jumps up in the figures. However, those sudden changes do not affect for

comparison so the correlations are still meaningful. The resulting correlation

is an overall measure of the whole sample.

Figure 3.3 shows the Spearman’s rank correlation between the posterior

mean and true latent versus running time (log scale). The figures shows our

model (vLGP) resulted in overall larger correlation than the PLDS and GPFA

for almost all samples of both datasets after the algorithms end. PLDS uses

nuclear norm penalized rate estimation as initialization [95]. The rank corre-

lation from PLDS inference stayed near the initial value through the optimiza-

tion. Both the GPFA and our model use factor analysis as initialization [118].

Note that the GPFA divides each trial into small time segments for estimating

61

100 101 102 103

time (s)

0.5

0.6

0.7

0.8

0.9

1.0
ρ

PLDS

GPFA

vLGP

(a) Lorenz

100 101 102 103

time (s)

0.5

0.6

0.7

0.8

0.9

1.0

ρ

PLDS

GPFA

vLGP

(b) LDS

Figure 3.3: Performance comparison on simulated datasets. (a,b) Conver-
gence speed of each algorithm in terms of inferred rank correlation between
the true generative latent time series and the inferred mean posterior. GPFA
is the fastest, and PLDS converges very slowly. vLGP achieves the largest
correlation, yet an order of magnitude faster than PLDS. The origin of time
is shifted to 1 for convenience.

the loading matrix and bias. It breaks the continuity within each trial. Only

the final iteration infers each trial as whole. Thus the correlations of the final

iterations jumps up in the figures. It is obvious that our model makes much

improvement to the result of factor analysis in terms of the rank correlation.

We use the log-likelihood on the leave-one-neuron-out to quantify predictive

performance on the spike trains, as described in the evaluations section. The

likelihood of test spike train is normalized with respect to that of a baseline

model which assumes a homogeneous Poisson process to obtain, the prediction

log-likelihood (PLL), given as,

PLL =

[∑
t,n(yy,n log(λt,(−n))− λt,(−n))

]
−
[∑

t,n(yy,n log(ȳ)− ȳ)
]

(# of spikes) log(2)
, (3.39)

where λt,(−n) is the leave-neuron-out prediction to the firing rate of neuron n

62

at time t, and ȳ is the population mean firing rate. Poisitive PLL implies the

model predicts better than mean firing rate, and higher PLL implies better

prediction. PLL has a unit of bits per spike, and is widely used to quantify

spike train prediction [96].

In Table 3.1, we compare the three models for each dataset. Since GPFA

assumes a Gaussian likelihood, it is incompatible to compare directly using a

point process likelihood. We use linear rectifier to convert the GPFA predic-

tions to non-negative rates, then compute PLL 3. Denote the linear predictor

by η omitting the neuron, time and model. Specifically, The predicted rate is

given by,

λ =


log(1 + exp(aη))/a GPFA (rectifier link)

exp(η + 1
2α⊤Vα) PLDS and vLGP

, (3.40)

where a control the “softness” of the rectifier. We choose the possible largest

value that guarantees positive firing rates.

3.3.3 V1 population recording

We apply our method to a large scale recording to validate that vLGP picks

up meaningful known signals, and investigate the population-wide trial-to-trial

variability structure. We use the dataset [43] where 72 different equally spaced

directional drifting gratings were presented to an anesthetized monkey for 50

trials each (array-5, 148 simultaneously recorded single units). We use 63 V1

neurons by only considering neurons with tuning curves that could be well
3We tried square link function for GPFA initially. However, it often produces deterimen-

tal predictions due to large negative predictions.

63

Table 3.1: Predictive log-likelihood (PLL)

Dataset Sample PLDS GPFA (rectifier) vLGP
Lorenz 1 0.41 -0.22 0.58

2 0.50 -0.52 0.74
3 0.50 -0.68 0.74
4 0.51 -0.83 0.76
5 0.44 -0.78 0.66

LDS 1 0.79 0.72 0.83
2 0.94 0.87 0.98
3 0.99 0.91 1.03
4 0.97 0.92 1.01
5 0.97 0.91 1.01

V1 N=63 0.81 0.97 0.99
N=148 1.28 1.29 1.35

approximated (R2 ≥ 0.75) by bimodal circular Gaussian functions (the sum of

two von Mises functions with different preferred orientations, amplitudes and

bandwidths) according to [43]. We do not include the stimulus drive in the

model, in hopes that the inferred latent processes would encode the stimulus.

We used bin size of 1 ms.

We use 4-fold cross-validation to determine the number of latents. A 15–

dimensional model is fitted to a subsample composed of the first trial of each

direction at first. In each fold, we use its estimated parameter to infer the

latent process from another subsample composed of the second trial of each

direction. The inference is made by leaving a quarter of neurons out, and we

predict the spike trains of the left-out neurons given the first k (k = 1 . . . 15)

orthogonalized latent process corresponding to k-dimension. This procedure

led us to choose 5 as the dimension since the predictive log-likelihood reached

its maximum.

We refit a 5-dimensional vLGP model using the subsample of the first trials.

64

To quantify how much the model explains, we report pseudo-R2 defined as

R2 = 1− LLsaturated − LLmodel

LLsaturated − LLnull
(3.41)

where LLnull refers to the log-likelihood of population mean firing rate model

(single parameter). The pseudo-R2 our model (vLGP with 5D latents) is

20.88%. This model explains with shared variability through the latents, and

heterogeneity of baseline firing of individual neurons. For a baseline model

with only per neuron noise component (and no shared latent), the pseudo-R2

is 6.77%.

Table 3.1 shows the PLLs based on two subsets. The first one is 4 trials

(0◦, 90◦, 180◦, 270◦) of the subset of 63 neurons with 5-dimensional latent

process. The second one is 10 trials (5 trials of 0◦ and 5 trials of 90◦) of all

148 neurons with 4-dimensional latent process.

0 1280 2560 ms 0 1280 2560 ms

0 1280 2560 ms 0 1280 2560 ms

0°

0 1280 2560 ms 0 1280 2560 ms

0 1280 2560 ms 0 1280 2560 ms

90°

Figure 3.4: Single trial spike trains and inferred latent. The visual stimulus
was only on for the first half of the trial. The left two columns are the spike
trains and respective inferred latent of 2 trials of 0◦. The right ones are 2 trials
of 90◦.

Although the parameters are estimated from a subsample, we can use them

65

0 1280 2560 ms

0°
1st

2nd

3rd

4th

5th

0 1280 2560 ms

90°
1st

2nd

3rd

4th

5th

Figure 3.5: Inferred latent processes averaged for two stimulus directions (0◦

and 90◦). Latents are rotated to maximize the power captured by each latent
in decreasing order.

to infer the latent process of all trials of all 72 directions. Figure 3.4 shows

inferred latent processes for two trials for two directions. We rotate the inferred

latent process by the singular value decomposition (SVD) Variational posterior

distribution over the latents are shown for each trial. During the second half

of the trial when the stimulus was off, and the firing rate was lower, the

uncertainty in the latent processes increases. There are visible trial-to-trial

variability in the spike trains which are reflected in the variations of latents.

First we investigate how the “signal”—defined as visual stimuli—is cap-

tured by the latent processes. We average the inferred latent processes over

50 trials with identical spatiotemporal stimuli (Fig. 3.5). Since the stimuli are

time-locked, corresponding average latent trajectory should reveal the time-

locked population fluctuations driven by the visual input. We concatenate the

average latent processes along the dimension of time. Then we orthogonalize

it by SVD. The dimensions of orthogonalized one are ordered by the respective

singular values. The latent process of a single trial is also rotated to the same

66

1st

2nd

3rd

0 ms
1400 ms

0°

45°

90°

135°

1st

2nd

3rd

0 ms
1400 ms

 180°

225°

270°

315°

Figure 3.6: 3D projection of mean latent trajectories given each orientation.
We plot the first three singular vectors of the inferred latent corresponding to
the signal interval (0–1400 ms) colored by orientation. The colored circles are
cycle averages that visualize the temporal phase of oscillation per direction,
and form an approximate torus. The black circle visualizes the circular orien-
tation that goes through the center of the torus. The left side shows 0–180◦

and the right side shows 180–360◦.

subspace.

Furthermore, we visualized the trajectories in 3D (see supplementary online

video4) that show how signal and noise are dynamically encoded in the state

space. Figure 3.6 shows the projection of average latent process corresponding

to each orientation to the first 3 principal components. The projection topo-

logically preserves the orientation tuning in the V1 population. There are two

continuous circular variables in the stimuli space to be encoded: orientation

and temporal phase of oscillation. The simplest topological structure of neural

encoding is a torus, and we observe a toroidal topology (highlighed as rings of

cycle averages).

To see if our model captures the noise correlation structure through the

latents as one would predict from recent studies of cortical population ac-
4https://www.youtube.com/watch?v=CrY5AfNH1ik

67

https://www.youtube.com/watch?v=CrY5AfNH1ik

1
5
0
 -

 1
1
5
0
m

s

True

44.35%

vLGP

40.37%

GPFA

35.11%

PLDS

1
4
0
0
 -

 2
4
0
0
m

s

53.57% 47.85% 45.18%

0.00

0.15

0.30

0.45

Figure 3.7: Noise-correlation analysis. The pairwise noise correlations between
all neurons were calculated during the stimulus period (top, 150–1150 ms) and
off-stimulus period (bottom, 1400–2400 ms). The time bin size is 50 ms.
Neurons are sorted by the total noise-correlation defined as the row sum
of stimulus-driven noise correlation matrix (top-left). The model-explained
power percentages are shown on the bottom of each matrix.

68

tivity [42, 30, 74], we calculated pairwise correlations between all neurons.

We simulated spike trains by model-predicted firing rates of all trials with

0◦ and 90◦ stimulus. To remove the signal, we subtracted the mean over

50 trials for each direction of stimulus. Figure 3.7 shows the correlation

matrices during the stimulus period (150–1150 ms) and off-stimulus period

(1400–2400 ms). The neurons are sorted by the total correlations during the

stimulus period. The power of model-explained noise correlation is defined

as (1 − ∥Cmodel −Ctrue∥F)/∥Ctrue∥F where C is the zero-diagonal correlation

matrix w.r.t. its subscript and ∥·∥F is the Frobenius norm. The proposed

model explains more noise correlation in contrast to GPFA and PLDS for

both periods.

These results show that vLGP is capable of capturing both the signal —

repeated over multiple trials — and noise — population fluctuation not time

locked to other task variables — present in the cortical spike trains.

3.4 Summary

We propose vLGP, a method that recovers low-dimensional latent trajec-

tories from high-dimensional time series in this chapter. Inferring latent tra-

jectories from single trials provides a flexible framework for studying internal

processes that are not time-locked. It can perform dimensionality reduction

on a single trial basis and allows decomposition of neural signals into a small

number of temporal signals and their relative contribution to the population

signal.

We compare our method to two widely used latent state space modeling

69

tools in neuroscience, GPFA [118] and PLDS [80]. Our method allows point

process observations in contrast to GPFA and is faster than PLDS. Yet it

shows superiority in capturing the spatio-temporal structures in the neural

data to both PLDS and GPFA.

We also apply our method to real electrophysiological recordings, V1 pop-

ulation recording driven by fixed stimulus. The inferred latents contain mean-

ingful information about the external stimuli, encoding both orientation and

temporal modulation.

The proposed method has potential application in many areas, and it will

be particularly useful in discovering how specific neural computations are im-

plemented as neural dynamics.

70

Chapter 4

Interpretable Nonlinear Dynamic Modeling of Neural Trajectories

A central challenge in neuroscience is understanding how neural system

implements computation through its dynamics. In this chapter, we propose

a nonlinear time series model aimed at characterizing interpretable dynamics

from neural trajectories. Our model incorporates prior assumption about glob-

ally contractional dynamics to avoid overly enthusiastic extrapolation outside

of the support of observed trajectories. We will show that our model can re-

cover qualitative features of the phase portrait such as attractors, slow points,

and bifurcation, while also producing reliable long-term future predictions in

a variety of dynamical models and in real neural data.

4.1 Model

Consider a general d-dimensional continuous nonlinear dynamical system

driven by external input,

ẋ = F (x, u) (4.1)

where x ∈ Rd represent the dynamic trajectory, and F : Rd × Rdi → Rd fully

defines the dynamics in the presence of input drive u ∈ Rdi . We aim to learn

the essential part of the dynamics F from a collection of trajectories sampled

71

at frequency 1/∆.

Our work builds on extensive literature in nonlinear time series modeling.

Assuming a separable, linear input interaction, F (x, u) = Fx(x) + Fu(x)u, a

natural nonlinear extension of autoregressive model is to use a locally linear

expansion of (4.1) [90, 113]:

xt+1 = xt + A(xt)xt + b(xt) + B(xt)ut + ϵt (4.2)

where b(x) = Fx(x)∆, A(x) : Rd → Rd×d is the Jacobian matrix of Fx at x

scaled by time step ∆, B(x) : Rdi → Rd is the linearization of Fu around x,

and ϵt denotes model mismatch noise of order O(∆2). For example, {A, B} are

parametrized with an RBF network in multivariate RBF-ARX model of [38,

90], and {A, b, B} are parametrized with sigmoid neural networks in [113].

Note that A(·) is not guaranteed to be the Jacobian of the dynamical sys-

tem (4.1) since A and b also change with x. In fact, the functional form for

A(·) is not unique, and a powerful function approximator for b(·) makes A(·)

redundant and over parameterizes the dynamics.

Note that (4.2) is a subclass of a general nonlinear model:

xt+1 = f(xt) + B(xt)ut + ϵt, (4.3)

where f , B are the discrete time solution of Fx, Fu. This form is widely used,

and called nonlinear autoregressive with eXogenous inputs (NARX) model

where f assumes various function forms (e.g. neural network, radial basis

function network [20], or Volterra series [31]).

72

We propose to use a specific parameterization,

xt+1 = xt + g(xt) + B(xt)ut + ϵt

g(xt) = Wgϕ(xt)− e−τ2xt

vec(B(xt)) = WBϕ(xt)

(4.4)

where ϕ(·) is a vector of r continuous basis functions,

ϕ(·) = (ϕ1(·), . . . , ϕr(·))⊤. (4.5)

Note the inclusion of a global leak towards the origin whose rate is controlled

by τ 2. The further away from the origin (and as τ → 0), the larger the effect

of the global contraction. This encodes our prior knowledge that the neural

dynamics are limited to a finite volume of phase space, and prevents solutions

with nonsensical runaway trajectories.

The function g(x) directly represents the velocity field of an underlying

smooth dynamics (4.1), unlike f(x) in (4.3) which can have convoluted jumps.

We can even run the dynamics backwards in time, since the time evolution

for small ∆ is reversible (by taking g(xt) ≈ g(xt+1)), which is not possible for

(4.3), since f(x) is not necessarily an invertible function.

Fixed points x∗ satisfy g(x∗)+B(x∗)u = 0 for a constant input u. Far away

from the fixed points, dynamics is locally just a flow (rectification theorem)

and largely uninteresting. The Jacobian J = ∂g(x)
∂x provides linearization of

the dynamics around the fixed points (via Hartman-Grobman theorem), and

the corresponding fixed point is stable if all eigenvalues of J are negative.

73

We can further identify local minima of ∥g∥ which include the ghost points

in addition to the fixed points. The flow around the ghost points can be

extremely slow [107], and can exhibit signatures of computation through meta-

stable dynamics [100]. Continuous attractors (such as limit cycles) are also

important features of neural dynamics which exhibit spontaneous oscillatory

modes. We can easily identify attractors by simulating the model.

4.2 Estimation

We define the mean squared error as the loss function

L(Wg, WB, c1...r, σ1...r) = 1
T

T −1∑
t=0
∥g(xt) + B(xt)ut + xt − xt+1∥2

2, (4.6)

where we use normalized squared exponential radial basis functions

ϕi(z) =
exp

(
−∥z−ci∥2

2
2σ2

i

)
ϵ +∑r

i=1 exp
(
−∥z−ci∥2

2
2σ2

i

) , (4.7)

with centers ci and corresponding kernel width σi. The small constant ϵ = 10−7

is to avoid numerical 0 in the denominator.

We estimate the parameters {Wg, WB, τ, c, σ} by minimizing the loss

function through gradient descent (Adam [65]) implemented within Tensor-

Flow [82]. We initialize the matrices Wg and WB by truncated standard

normal distribution, the centers {ci} by the centroids of the K-means clus-

tering on the training set, and the kernel width σ by the average euclidean

distance between the centers.

74

4.3 Inferring Theoretical Models of Neural Computation

We apply the proposed method to a variety of low-dimensional neural mod-

els in theoretical neuroscience. Each theoretical model is chosen to represent

a different mode of computation.

4.3.1 Fixed point attractor and bifurcation for binary decision-

making

Perceptual decision-making and working memory tasks are widely used

behavioral tasks where the task typically involve a low-dimensional decision

variable, and subjects are close to optimal in their performance. To under-

stand how the brain implements such neural computation, many competing

theories have been proposed [6, 79, 81, 39, 84, 116, 40]. We implemented the

two dimensional dynamical system from [116] where the final decision is repre-

sented by two stable fixed points corresponding to each choice. The stimulus

strength (coherence) nonlinearly interacts with the dynamics (see appendix for

details), and biases the choice by increasing the basin of attraction (Fig. 4.1).

We encode the stimulus strength as a single variable held constant throughout

each trajectory as in [116].

The model with 10 basis functions learned the dynamics from 90 training

trajectories (30 per coherence c = 0, 0.5,−0.5). We visualize the log-speed as

colored contours, and the direction component of the velocity field as arrows in

Fig. 4.1. The fixed/slow points are shown as red dots, which ideally should be

at the crossing of the model nullclines given by solid lines. For each coherence,

75

two novel starting points were simulated from the true model and the estimated

model in Fig. 4.1. Although the model was trained with only low or moderate

coherence levels where there are 2 stable and 1 unstable fixed points, it predicts

bifurcation at higher coherence and it identifies the ghost point (lower right

panel).

We compare the model (4.4) to the following “locally linear” (LL) model,

xt+1 =A(xt)xt + B(xt)ut + xt

vec(A(xt)) =WAϕ(xt)

vec(B(xt)) =WBϕ(xt)

(4.8)

in terms of training and prediction errors in Table 4.1. Note that there is no

contractional term. We train both models on the same trajectories described

above. Then we simulate 30 trajectories from the true system and trained

models for coherence c = 1 with the same random initial states within the

unit square and calculate the mean squared error between the true trajectories

and model-simulated ones as prediction error. The other parameters are set

to the same value as training. The LL model has poor prediction on the test

Table 4.1: Model errors

Model Training error Prediction error: mean (std)

(4.4) 4.06E-08 0.002 (0.008)
(4.8) 2.04E-08 0.244 (0.816)

set. This is due to unbounded flow out of the phase space where the training

data lies (see Fig. A.1 in the appendix).

76

0.0 0.2 0.4 0.6 0.8 1.0
s1

0.0

0.2

0.4

0.6

0.8

1.0

s 2

ds1

d t = 0

ds2

d t = 0

c=0

12

11

10

9

8

7

6

5

4

0.0 0.2 0.4 0.6 0.8 1.0
s1

0.0

0.2

0.4

0.6

0.8

1.0

s 2

ds1

d t = 0

ds2

d t = 0

c=0.5

12

11

10

9

8

7

6

5

4

0.0 0.2 0.4 0.6 0.8 1.0
s1

0.0

0.2

0.4

0.6

0.8

1.0

s 2

ds1

d t = 0

ds2

d t = 0

c=­0.5

12

11

10

9

8

7

6

5

4

0.0 0.2 0.4 0.6 0.8 1.0
s1

0.0

0.2

0.4

0.6

0.8

1.0

s 2

ds1

d t = 0

ds2

d t = 0

c=1.0

12

11

10

9

8

7

6

5

4

Figure 4.1: Wong and Wang’s 2D dynamics model for perceptual decision-
making [116]. We train the model with 90 trajectories (uniformly random
initial points within the unit square, 0.5 s duration, 1 ms time step) with dif-
ferent input coherence levels c = {0, 0.5,−0.5} (30 trajectories per coherence).
The yellow and green lines are the true nullclines. The black arrows represent
the true velocity fields (direction only) and the red arrows are model-predicted
ones. The black and gray circles are the true stable and unstable fixed points,
while the red ones are local minima of model-prediction (includes fixed points
and slow points). The background contours are model-predicted log∥d s

d t
∥2. We

simulated two 1 s trajectories each for true and learned model dynamics. The
trajectories start from the cyan circles. The blue lines are from the true model
and the cyan ones are simulated from trained models. Note that we do not
train our model on trajectories from the bottom right condition (c = 1).

77

4.3.2 Nonlinear oscillator model

One of the most successful application of dynamical systems in neuro-

science is in the biophysical model of a single neuron. We study the FitzHugh-

Nagumo (FHN) model which is a 2-dimensional reduction of the Hodgkin-

Huxley model [58]:

v̇ = v − v3

3
− w + I, (4.9)

ẇ = 0.08(v + 0.7− 0.8w), (4.10)

where v is the membrane potential, w is a recovery variable and I is the

magnitude of stimulus current. The FHN has been used to model the up-down

states observed in the neural time series of anesthetized auditory cortex [26].

We train the model with 50 basis functions on 100 simulated trajectories

with uniformly random initial states within the unit square [0, 1] × [0, 1] and

driven by injected current generated from a 0.3 mean and 0.2 standard devi-

ation white Gaussian noise. The duration is 200 and the time step is 0.1.

In electrophysiological experiments, we only have access to v(t), and do not

observe the slow recovery variable w. Delay embedding allows reconstruction of

the phase space under mild conditions [61]. We build a 2D model by embedding

v(t) as (v(t), v(t − 10)), and fit the dynamical model (Fig. 4.2b). The phase

space is distorted, but the overall prediction of the model is good given a fixed

current (Fig. 4.2b). Furthermore, the temporal simulation of v(t) for white

noise injection shows reliable long-term prediction (Fig. 4.2c). We also test

the model in a regime far from the training trajectories, and the dynamics

78

3 2 1 0 1 2 3
v

3

2

1

0

1

2

3
w

dv
dt = 0

dw
dt = 0

I = 0.3

(a)

3 2 1 0 1 2 3
v(t)

3

2

1

0

1

2

3

v(
t­

10
)

I = 0.3

(b)

0 50 100 150 200 250
time

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

v

True
Prediction
Start point

(c)

0 50 100 150 200 250 300
time

4

3

2

1

0

1

2

3

v

True
Prediction
Start point

(d)

Figure 4.2: FitzHugh-Nagumo model. (a) Direction (black arrow) and log-
speed (contour) of true velocity field. Two blue trajectories starting at the blue
circles are simulated from the true system. The yellow and green lines are null-
clines of v and w. The diamond is a spiral point. (b) 2-dimensional embedding
of v model-predicted velocity field (red arrow and background contour). The
black arrows are true velocity field. There are a few model-predicted slow
points in light red. The blue lines are the same trajectories as the ones in
(a). The cyan ones are simulated from trained model withe the same initial
states of the blue ones. (c) 100-step prediction every 100 steps using a test
trajectory generated with the same setting as training. (d) 200-step predic-
tion every 200 steps using a test trajectory driven by sinusoid input with 0.5
standard deviation white Gaussian noise.

79

a b

true dynamics

model dynamics

time

Figure 4.3: (a) Model-predicted (red arrows) velocity field for both direction
and log-speed, model-predicted fixed points (red circles). (b) One trajectory
from the true model, and one trajectory from the fit model. The trajectory
remains on the circle for both (purple dashed line). Both are driven by the
same input, and starts at same initial state, however, they quickly diverge.

does not diverge away from reasonable region of the phase space (Fig. 4.2d).

4.3.3 Ring attractor dynamics for head direction network

Continuous attractors such as line and ring attractors are often used as

models for neural representation of continuous variables [81, 107]. For exam-

ple, the head direction neurons are tuned for the angle of the animal’s head

direction, and a bump attractor network with ring topology is proposed as the

dynamics underlying the persistently active set of neurons [94]. Here we use

the following 2 variable reduction of the ring attractor system:

τrṙ = r0 − r, (4.11)

τθθ̇ = I(t), (4.12)

80

where θ represents the head direction driven by input I(t), and r is the radial

component representing the overall activity in the bump. The computational

role of this ring attractor is to be insensitive to the noise in the r direction,

while integrating the differential input in the θ direction. In the absence of

input, the head direction θ does a random walk around the ring attractor.

The ring attractor consists of a continuum of stable fixed points with a center

manifold.

We train the model with 50 basis functions on 150 trajectories (Fig. 4.4).

The duration is 5 and the time step is 0.01. The parameters are set as r0 = 2,

τr = 0.1 and τθ = 1. The initial states are uniformly random within (r, θ) ∈

[0, 4] × [0, 2π]. The inputs are constant angles evenly spaced in [−π, π] with

standard Gaussian noises added.

From the trained model, we can identify a number of fixed points arranged

around the ring attractor (Fig. 4.3a). The true ring dynamics model has one

negative eigenvalue, and one zero-eigenvalue in the Jacobian, but the analysis

of the trained model are all saddles (one positive, and one negative eigenvalue).

The fixed points allows the state to remain close to the ring attractor, however,

this results in an imperfect integration of input. This is demonstrated in

Fig. 4.3b, as the true model and the trained model are both attracted to the

ring, however show qualitatively different behavior for the same input.

4.3.4 Chaotic dynamics

Chaotic dynamics (or near chaos) has been postulated to support asyn-

chronous states in the cortex [45], and neural computation over time by gen-

81

0°

45°

90°

135°

180°

225°

270°

315°

1
2

3
4

5
6

Figure 4.4: 150 training trajectories for the ring attractor. Green circles are
initial states and red circles are final states.

82

erating rich temporal patterns [78, 68]. We consider the 3D Lorenz attractor

as an example chaotic system. We simulate 20 trajectories from,

ẋ = 10(y − x),

ẏ = x(28− z)− y,

ż = xy − 8
3

z.

(4.13)

The initial state of each trajectory is standard normal. The duration is 200

and the time step is 0.04. The first 300 transient states of each trajectory are

discarded. We use the 19 trajectories for training and the last one for test.

We train a model with 10 basis functions. Figure 4.5a shows the direction of

prediction. The vectors represented by the arrows start from current states

and point at the next future state. The predicted vectors (red) overlap the

true vectors (blue) implying the one-step-ahead predictions are close to the

true values in both speed and direction. Panel (b) gives an overview that the

prediction resembles the true trajectory. Panel (c) shows that the prediction

is close to the true value up to 200 steps.

4.4 Learning V1 neural dynamics

We use a set of trajectories obtained from a Gaussian process latent dy-

namical model. The latent trajectory model infers a 5-dimensional trajectory

that describes a large scale V1 population recording. The recording was from

an anesthetized monkey that 72 different equally spaced directional drifting

gratings were presented to for 50 trials each (63 well tuned neurons out of 148

83

a

b

c

Figure 4.5: (a) Vector plot of 1-step-ahead prediction on one Lorenz trajec-
tory (test). (b) 50-step prediction every 50 steps on one Lorenz trajectory
(test). (c) A 200-step window of (b) (100-300). The dashed lines are the true
trajectory, the solid lines are the prediction and the circles are the start points
of prediction.

simultaneously recorded single units from [43]). Each trial lasts for 2.56 s and

the stimulus was presented during the first half.

We train our model with 50 basis functions on the mean trajectories for 71

directions, and use 1 direction for testing. The input were 3 dimension: two

boxcar indicating the stimulus direction (sin θ, cos θ), and one corresponding to

a low-pass filtered stimulus onset indicator. Figure 4.6 shows the prediction of

the best linear dynamical system (LDS) for the 71 directions, and the nonlinear

prediction from our model. Although the LDS is widely used for smoothing the

latent trajectories, it clearly is not a good predictor for the nonlinear trajectory

of V1 (Fig. 4.6a).

84

0 1280 2560 ms
4

3

2

1

0

1

2

3

True
Prediction

(a) LDS prediction

0 1280 2560 ms
3

2

1

0

1

2

3

(b) Proposed model prediction

Figure 4.6: V1 latent dynamics prediction. Models trained on 71 average
trajectories for each directional motion are tested on the 1 unseen direction.
We divide the average trajectory at 0◦ into 200 ms segments and predict each
whole segment from the starting point of the segment. Note the poor predictive
performance of linear dynamical system (LDS) model.

4.5 Summary

In summary, we present a novel complementary approach to studying the

neural dynamics of neural computation and show that it successfully learns

low-dimensional dynamics of well-known dynamical models of neural computa-

tion with various features such as fixed points, bifurcation, ring attractor and

chaotic attractor. In addition, it can model nonlinear latent trajectories ex-

tracted from high-dimensional neural time series. Applications of the proposed

method are not limited to neuroscience, but should be useful for studying other

slow low-dimensional nonlinear dynamical systems from observations [28].

85

Chapter 5

Discussion

In this thesis, we focus on modeling count data. Two specific problems

have been discussed. The first involves independent counting observations in

biostatistics, and the second pertains to point process observations in neuro-

science. To deal with those problems, we extend the Poisson log-linear model,

and propose a latent variable model together with a nonlinear dynamic model

in correspondence.

5.1 Log-Linear Model Based Tree

Poisson regressions play an important role in the classical framework of

count data analyses. The log-linear model as a subclass of GLM is a standard

device for interpreting the association between response and explanatory vari-

ables. It has been well-studied and shows many advantages such as tractabil-

ity and interpretability. The assumptions, however, are not always satisfied

in practice. The relationship between dependent and independent variables is

often complex.

There are many sophisticated methods that deal with nonlinearity such as

GAM [49]. Those powerful nonparametric techniques somehow lack of inter-

86

pretability. Here we consider another way to relax the linearity by stratifi-

cation. In other words, we break a single log-linear model into pieces. Such

stratification is repeated recursively, which leads to the tree structure. The

tree partitions the data by certain conditions. It results in a graphical repre-

sentation of stratification. In a tree, each node represents a subset of data and

the attached branches are substratification within those subset.

Traditional decision trees use simple statistics, such as mean, median and

mode, as the representation of the very subset. This advantages computational

efficiency and power especially in prediction and classification problems, but

it loses information within each node. Ensemble methods are proposed to

improve the accuracy such as random forest and boosting. Those methods

trade interpretability for prediction power.

We replace the simple statistic (mean, median or mode) of the nodes with

log-linear models. Within each node, there is a log-linear model for the stra-

tum. Then the tree can be considered as a piecewise log-linear model. In

consistent with maximum likelihood estimation for log-linear models, we par-

titions the variable in the way that maximizes the likelihood of two branches.

Without controlling the size, the tree grows to saturation of which the ter-

minal (leaf) nodes are single individual observations. Apparently overfitting

happens if a simple log-linear model is sufficient for the data. So it is impera-

tive to remove unnecessary splits to control the size. This can be done forward

(look-ahead) and backward (prune). We only consider forward methods in this

study. We assess splits by testing for sufficiency of a simple log-linear model.

One node is splitted only if the null hypothesis is rejected. Then controlling the

87

tree size becomes controlling the Type I error. Different tests were compared

on simulated data from several typical models.

The responses are usually treated as Poisson distributed in log-linear mod-

els. The Poisson distribution features the same mean and variance. Overdis-

persion however occurs sometimes. It leads to incorrect testing result which

has higher probability of rejection due to underestimation of variance. We use

negative binomial instead of Poisson for overdispersed data.

We apply the method on Missouri lung cancer data with both Poisson

and negative binomial distributions. The resulted trees are the same when

the minimal size of node is 20 and different when the size is 5. They show

that the effect of sex is significant in all strata but the effect of age is not

in certain nodes. This is not revealed in the root node which is the simple

log-linear model. Besides, in the negative binomial tree, the overdispersion

become weaker as the nodes go deeper, which suggests that the overdispersion

may come from mixture.

The likelihood ratio test is competitive to the last two parameter instability

tests in most simulation cases. The shortcoming is that it relies on prespecified

breakpoint. We use median in purpose of balanced size, but it causes failure

in some cases (Model 8). A desirable breakpoint is the true one used in split.

The distribution of the test statistic is no longer χ2
1 under null hypothesis since

the breakpoint is estimated from data. Thus the test will be biased and high

likely to reject the null. Therefore a future work would be to find the null

distribution of the likelihood ratio with the breakpoint which maximize the

likelihood.

88

5.2 Variational Latent Gaussian Process for Recovering Single-Trial

Trajectories from Population Spike Trains

To neuroscience problem, we propose vLGP, a method that recovers low-

dimensional latent trajectories from high-dimensional time series. Methods

inferring latent state-space are different from trial averaging ones that only

recover the average trajectories time-locked to an external observation [24,

13]. Inferring latent trajectories from single trials provides a flexible framework

for studying internal processes that are not time-locked. Higher-order tasks

such as decision-making, attention, and memory recall are well suited to be

analyzed via latent trajectories. It performs dimensionality reduction on a

single trial basis and allows decomposition of neural signals into a small number

of temporal signals and their relative contribution to the population signal.

In our study, we compare our method to two widely used latent state-

space modeling tools in neuroscience, GPFA [118] and PLDS [80]. Unlike

GPFA, vLGP allows generalized linear model observations which is suitable

for a wide class of point process observations. Moreover, vLGP is faster than

PLDS which assumes a Poisson process observation given the latent trajectory,

yet it shows performance in capturing the spatio-temporal structures in the

neural data superior to both PLDS and GPFA.

To test its validity in real electrophysiological recordings, we use V1 pop-

ulation recording driven by fixed stimulus as a litmus test for vLGP. Our

inferred latent trajectories contain meaningful information about the external

stimuli, encoding both orientation and temporal modulation.

89

We have only applied smoothness encoded in the GP prior in this study,

but a plethora of GP kernels are available [101, 104]. For example, to capture

prior assumptions about periodicity in some of the latent processes, we can

use spectral kernels [111]. This can be particularly useful for capturing inter-

nal neural oscillations [35]. In addition, it is straightforward to incorporate

additional covariates such as external stimuli [92] or local field potential [63]

to vLGP. The proposed method has potential application in many areas, and

it will be particularly useful in discovering how specific neural computations

are implemented as neural dynamics.

5.3 Interpretable Nonlinear Dynamic Modeling of Neural Trajec-

tories

Following the latent dynamics recovery, fitting an expressive model that

produces robust prediction is in connection to the dynamical theories of neural

computation with neural time series data. The interpretability is needed such

that signatures of neural computation from the theories can be identified by

its qualitative features.

Our method successfully learns low-dimensional dynamics in contrast to

fitting a high-dimensional recurrent neural network models in previous ap-

proaches [81, 107, 68]. Our proposed model works well for well-known dynam-

ical models of neural computation with various features: chaotic attractor,

fixed point dynamics, bifurcation, line/ring attractor, and a nonlinear oscilla-

tor. In addition, our method can model nonlinear latent trajectories extracted

from high-dimensional neural time series.

90

The critical assumption is that the dynamics consists of a continuous and

slow flow. This allows us to parameterize the velocity field directly, which

reduces the complexity of the nonlinear function approximation, and makes

it easy to identify the fixed/slow points. An additional structural assump-

tion is the existence of a global contractional dynamics. This regularizes and

encourages the dynamics to occupy a finite phase volume around the origin.

Learning continuous attractor dynamics requires more basis functions, and

more careful regularization. Although we learn the continuous attractor, the

modeled ring dynamics cannot integrate the input correctly. Our plan is to

design basis functions and explore a deeper architecture that can represent

arbitrary limit cycles and meta-stable dynamics parsimoniously without losing

flexibility.

Visualization techniques for arbitrary trajectories from a nonlinear system

such as recurrence plots were often difficult to understand. We decompose

the velocity field into speed and direction, and overlay fixed/slow points found

by numerically minimizing the speed. This is however difficult for higher-

dimensional dynamics. So dimensionality reduction and visualization that

preserves essential dynamic features are left for future directions.

Our next goal is to incorporate this model with a multivariate point process

observation model in Chapter 3 and control internal neural states [113].

91

Bibliography

[1] A. Agresti. Categorical Data Analysis. 2nd Edition. John Wiley & Sons,
Apr. 2003.

[2] H. Ahn et al. “Classification by Ensembles from Random Partitions of
High-Dimensional Data”. In: Computational Statistics & Data Analysis
51 (2007), pp. 6166–6179.

[3] E. W. Archer et al. “Low-Dimensional Models of Neural Population
Activity in Sensory Cortical Circuits”. In: Advances in Neural Infor-
mation Processing Systems 27. Ed. by Z. Ghahramani et al. Curran
Associates, Inc., 2014, pp. 343–351.

[4] E. Archer et al. “Black Box Variational Inference for State Space Mod-
els”. In: ArXiv (Nov. 2015).

[5] F. R. Bach and M. I. Jordan. “Kernel Independent Component Analy-
sis”. In: Journal of Machine Learning Research 3.1 (Jan. 2002), pp. 1–
48.

[6] O. Barak et al. “From Fixed Points to Chaos: Three Models of Delayed
Discrimination”. In: Progress in neurobiology 103 (Apr. 2013), pp. 214–
222.

[7] C. Bishop. Pattern Recognition and Machine Learning. Information Sci-
ence and Statistics. Springer, 2006.

[8] D. M. Blei, A. Kucukelbir, and J. D. McAuliffe. Variational Inference:
A Review for Statisticians. Mar. 2016. arXiv: 1601.00670.

[9] L. Breiman. “Bagging Predictors”. In: Machine learning 140 (1996),
pp. 123–140.

[10] L. Breiman. “Heuristics of instability and stabilization in model selec-
tion”. In: The annals of statistics 24 (1996), pp. 2350–2383.

[11] L. Breiman. Out-of-Bag Estimation. Tech. rep. 1996.
[12] L. Breiman. “Random Forests”. In: Machine learning 45 (2001), pp. 5–

32.

92

http://arxiv.org/abs/1601.00670

[13] W. Brendel, R. Romo, and C. K. Machens. “Demixed Principal Compo-
nent Analysis”. In: Advances in Neural Information Processing Systems
24. Ed. by J. Shawe-Taylor et al. 2011, pp. 2654–2662.

[14] N. Breslow. “Extra-Poisson Variation in Log-Linear Models”. In: Ap-
plied statistics 33 (1984), pp. 38–44.

[15] L. Buesing, J. Macke, and M. Sahani. “Spectral Learning of Linear
Dynamics from Generalised-Linear Observations with Application to
Neural Population Data”. In: Advances in Neural Information Process-
ing Systems 25. 2012, pp. 1691–1699.

[16] A. C. Cameron and P. K. Trivedi. “Econometric Models Based on Count
Data. Comparisons and Applications of Some Estimators and Tests”.
In: Journal of Applied Econometrics 1.1 (1986), pp. 29–53.

[17] K.-Y. Chan and W.-Y. Loh. “LOTUS: An Algorithm for Building Ac-
curate and Comprehensible Logistic Regression Trees”. In: Journal of
Computational and Graphical Statistics 13.4 (2004), pp. 826–852.

[18] P. Chaudhuri et al. “Generalized Regression Trees”. In: Statistica Sinica
5.1986 (1995), pp. 641–666.

[19] J. Chen and H. Ahn. “Fitting Mixed Poisson Regression Models Using
Quasi-Ikelihood Methods”. In: Biometrical journal 38 (1996), pp. 81–
96.

[20] S. Chen et al. “Practical Identification of NARMAX Models Using Ra-
dial Basis Functions”. In: International Journal of Control 52.6 (Dec.
1990), pp. 1327–1350.

[21] Y. Choi, H. Ahn, and J. Chen. “Regression Trees for Analysis of Count
Data with Extra Poisson Variation”. In: Computational statistics &
data analysis (2005).

[22] A. K. Churchland et al. “Variance as a Signature of Neural Computa-
tions During Decision Making”. In: Neuron 69.4 (Feb. 2011), pp. 818–
831.

[23] M. M. Churchland et al. “Cortical Preparatory Activity: Representation
of Movement or First Cog in a Dynamical Machine?” In: Neuron 68.3
(Nov. 2010), pp. 387–400.

[24] M. M. Churchland et al. “Neural Population Dynamics During Reach-
ing”. In: Nature 487.7405 (July 2012), pp. 51–56.

93

[25] J. P. Cunningham and B. M. Yu. “Dimensionality Reduction for Large-
Scale Neural Recordings”. In: Nature Neuroscience 17.11 (2014), pp. 1500–
1509.

[26] C. Curto et al. “A Simple Model of Cortical Dynamics Explains Vari-
ability and State Dependence of Sensory Responses in Urethane-Anesthetized
Auditory Cortex”. In: The Journal of Neuroscience 29.34 (Aug. 2009),
pp. 10600–10612.

[27] D. Daley and D. Vere-Jones. An Introduction to the Theory of Point
Processes. Probability and Its Applications. Springer-Verlag New York,
2002.

[28] B. C. Daniels and I. Nemenman. “Automated Adaptive Inference of
Phenomenological Dynamical Models”. In: Nature Communications 6
(Aug. 2015), pp. 8133+.

[29] P. Deb and P. K. Trivedi. “Demand for Medical Care by the Elderly:
A Finite Mixture Approach”. In: Journal of Applied Econometrics 12
(1997), pp. 313–336.

[30] A. S. Ecker et al. “State Dependence of Noise Correlations in Macaque
Primary Visual Cortex”. In: Neuron 82.1 (Apr. 2014), pp. 235–248.

[31] S. E. Eikenberry and V. Z. Marmarelis. “A Nonlinear Autoregressive
Volterra Model of the Hodgkin–Huxley Equations”. In: Journal of Com-
putational Neuroscience 34.1 (2013), pp. 163–183.

[32] J. Engel. “Models for Response Data Showing Extra-Poisson Varia-
tion”. In: Statistica Neerlandica 38.3 (1984), pp. 159–167.

[33] H. L. Fernandes et al. “Saliency and Saccade Encoding in the Frontal
Eye Field During Natural Scene Search”. In: Cerebral Cortex 24.12
(2014), pp. 3232–3245.

[34] R. W. Friedrich and G. Laurent. “Dynamic Optimization of Odor Rep-
resentations by Slow Temporal Patterning of Mitral Cell Activity”. In:
Science 291.5505 (Feb. 2001), pp. 889–894.

[35] P. Fries et al. “Modulation of Oscillatory Neuronal Synchronization by
Selective Visual Attention”. In: Science 291.5508 (Feb. 2001), pp. 1560–
1563.

[36] R. Frigola, Y. Chen, and C. Rasmussen. “Variational Gaussian Process
State-Space Models”. In: Advances in Neural Information Processing
Systems 27. Curran Associates, Inc., 2014, pp. 3680–3688.

94

[37] J. Gama. “Functional Trees for Classification”. In: Data Mining, 2001.
ICDM 2001, Proceedings IEEE International Conference on. 2001, pp. 147–
154.

[38] M. Gan et al. “A Locally Linear RBF Network-Based State-Dependent
Ar Model for Nonlinear Time Series Modeling”. In: Information Sci-
ences 180.22 (Nov. 2010), pp. 4370–4383.

[39] S. Ganguli et al. “One-Dimensional Dynamics of Attention and Decision
Making in LIP”. In: Neuron 58.1 (Apr. 2008), pp. 15–25.

[40] M. S. Goldman. “Memory Without Feedback in a Neural Network”. In:
Neuron 61.4 (Feb. 2009), pp. 621–634.

[41] G. Golub and C. Van Loan. Matrix Computations. Matrix Computa-
tions. Johns Hopkins University Press, 2012.

[42] R. L. T. Goris, J. A. Movshon, and E. P. Simoncelli. “Partitioning Neu-
ronal Variability”. In: Nature Neuroscience 17.6 (June 2014), pp. 858–
865.

[43] A. B. Graf et al. “Decoding the Activity of Neuronal Populations in
Macaque Primary Visual Cortex”. In: Nature neuroscience 14.2 (Feb.
2011), pp. 239–245.

[44] R. M. Haefner et al. “Inferring Decoding Strategies from Choice Prob-
abilities in the Presence of Correlated Variability”. In: Nature neuro-
science 16.2 (Feb. 2013), pp. 235–242.

[45] D. Hansel and H. Sompolinsky. “Synchronization and computation in a
chaotic neural network”. In: Physical Review Letters 68.5 (Feb. 1992),
pp. 718–721.

[46] B. E. Hansen. “Testing for parameter instability in linear models”. In:
Journal of Policy Modeling 14.4 (1992), pp. 517–533.

[47] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statisti-
cal Learning: Data Mining, Inference, and Prediction, Second Edition.
Springer Series in Statistics. Springer New York, 2009.

[48] T. Hastie and R. Tibshirani. “Generalized Additive Models”. In: Sta-
tistical science (1986), pp. 297–310.

[49] T. Hastie and R. Tibshirani. Generalized Additive Models. Vol. 43. CRC
Press, 1990.

[50] J. Hilbe. Negative Binomial Regression. Cambridge University Press,
2011, p. 553.

95

[51] N. L. Hjort and A. Koning. “Tests For Constancy Of Model Parame-
ters Over Time”. In: Journal of Nonparametric Statistics 14.1-2 (2002),
pp. 113–132.

[52] T. K. Ho. “The random subspace method for constructing decision
forests”. In: Pattern Analysis and Machine Intelligence, IEEE Trans-
actions on 20 (1998), pp. 832–844.

[53] A. L. Hodgkin and A. F. Huxley. “A Quantitative Description of Mem-
brane Current and Its Application to Conduction and Excitation in
Nerve”. In: The Journal of Physiology 117.4 (1952), pp. 500–544.

[54] T. R. Holford. “The Estimation of Age, Period and Cohort Effects for
Vital Rates”. In: Biometrics 39.2 (1983), pp. 311–324.

[55] J. J. C. Hongshik Ahn. “Tree-Structured Logistic Model for Over-
Dispersed Binomial Data with Application to Modeling Developmental
Effects”. In: Biometrics 53.2 (1997), pp. 435–455.

[56] K. Hornik. “Approximation Capabilities of Multilayer Feedforward Net-
works”. In: Neural Networks 4.2 (1991), pp. 251–257.

[57] E. M. Izhikevich and R. FitzHugh. “FitzHugh-Nagumo model”. In: 1.9
(2006), p. 1349.

[58] E. M. Izhikevich. Dynamical Systems in Neuroscience: The Geometry of
Excitability and Bursting. Computational Neuroscience. San Francisco,
CA, USA: MIT Press, 2010.

[59] J. A. S. James N. Morgan. “Problems in the Analysis of Survey Data,
and a Proposal”. In: Journal of the American Statistical Association
58.302 (1963), pp. 415–434.

[60] M. Jazayeri and M. N. Shadlen. “Temporal context calibrates interval
timing”. In: Nature Neuroscience 13.8 (June 2010), pp. 1020–1026.

[61] H. Kantz and T. Schreiber. Nonlinear Time Series Analysis. Cambridge
University Press, 2003.

[62] J. C. Kao et al. “Single-Trial Dynamics of Motor Cortex and Their
Applications to Brain-Machine Interfaces”. In: Nature Communications
6.7759 (July 2015).

[63] R. C. Kelly et al. “Local Field Potentials Indicate Network State and
Account for Neuronal Response Variability”. In: Journal of Computa-
tional Neuroscience 29.3 (Dec. 2010), pp. 567–579.

96

[64] H. Kim and W.-Y. Loh. “Classification Trees With Unbiased Multi-
way Splits”. In: Journal of the American Statistical Association 96.454
(2001), pp. 589–604.

[65] D. P. Kingma and J. Ba. “Adam: A Method for Stochastic Optimiza-
tion”. In: ArXiv (2014).

[66] S. Koyama et al. “Approximate Methods for State-Space Models.” In:
Journal of the American Statistical Association 105.489 (Mar. 2010),
pp. 170–180. arXiv: 1004.3476.

[67] C.-M. Kuan and K. Hornik. “The Generalized Fluctuation Test: A Uni-
fying View”. In: Econometric Reviews 14.2 (1995), pp. 135–161.

[68] R. Laje and D. V. Buonomano. “Robust Timing and Motor Patterns by
Taming Chaos in Recurrent Neural Networks”. In: Nat Neurosci 16.7
(July 2013), pp. 925–933.

[69] K. C. Lakshmanan et al. “Extracting Low-Dimensional Latent Struc-
ture from Time Series in the Presence of Delays”. In: Neural Computa-
tion 27.9 (Sept. 2015), pp. 1825–1856.

[70] K. W. Latimer et al. “Single-Trial Spike Trains in Parietal Cortex
Reveal Discrete Steps During Decision-Making”. In: Science 349.6244
(2015), pp. 184–187.

[71] G. Laurent. “Olfactory Network Dynamics and the Coding of Mul-
tidimensional Signals”. In: Nature reviews. Neuroscience 3.11 (2002),
pp. 884–895.

[72] J. Lawless. “Negative Binomial and Mixed Poisson Regression”. In: The
Canadian Journal of Statistics 15 (1987), pp. 209–225.

[73] N. Lim et al. “Classification of High-Dimensional Data with Ensem-
ble of Logistic Regression Models”. In: Journal of biopharmaceutical
statistics 20 (2009), pp. 160–171.

[74] I.-C. Lin et al. “The Nature of Shared Cortical Variability”. In: Neuron
87.3 (Aug. 2015), pp. 644–656.

[75] W.-Y. Loh. “Regression Trees with Unbiased Variable Selection and
Interaction Detection”. In: Statistica Sinica (2002), pp. 361–386.

[76] W.-Y. Loh and Y.-S. Shih. “Split Selection Methods for Classification
Trees”. In: Statistica Sinica 7.4 (1997), pp. 815–840.

[77] A. Luczak, P. Bartho, and K. D. Harris. “Gating of Sensory Input by
Spontaneous Cortical Activity”. In: Journal of Neuroscience 33.4 (Jan.
2013), pp. 1684–95.

97

http://arxiv.org/abs/1004.3476

[78] W. Maass, T. Natschläger, and H. Markram. “Real-Time Computing
Without Stable States: A New Framework for Neural Computation
Based on Perturbations”. In: Neural Computation 14 (2002), pp. 2531–
2560.

[79] C. K. Machens, R. Romo, and C. D. Brody. “Flexible Control of Mutual
Inhibition: A Neural Model of Two-Interval Discrimination”. In: Science
307.5712 (Feb. 2005), pp. 1121–1124.

[80] J. H. Macke et al. “Empirical Models of Spiking in Neural Populations”.
In: Advances in Neural Information Processing Systems 24. Ed. by J.
Shawe-Taylor et al. Curran Associates, Inc., 2011, pp. 1350–1358.

[81] V. Mante et al. “Context-Dependent Computation by Recurrent Dy-
namics in Prefrontal Cortex”. In: Nature 503.7474 (Nov. 2013), pp. 78–
84.

[82] Martn Abadi et al. TensorFlow: Large-Scale Machine Learning on Het-
erogeneous Systems. Software available from tensorflow.org. 2015.

[83] M. E. Mazurek and M. N. Shadlen. “Limits to the Temporal Fidelity of
Cortical Spike Rate Signals”. In: Nat Neurosci 5.5 (May 2002), pp. 463–
471.

[84] M. E. Mazurek et al. “A Role for Neural Integrators in Perceptual
Decision Making”. In: Cerebral Cortex 13.11 (Nov. 2003), pp. 1257–
1269.

[85] P. McCullagh and J. A. Nelder. Generalized Linear Models. Chapman
and Hall, 1989.

[86] R. Moreno-Bote et al. “Information-Limiting Correlations”. In: Nature
Neuroscience 17.10 (Oct. 2014), pp. 1410–1417.

[87] J. A. Nelder and D. Pregibon. “An Extended Quasi-Likelihood Func-
tion”. In: Biometrika 74 (1987), pp. 221–232.

[88] M. Okun et al. “Diverse Coupling of Neurons to Populations in Sensory
Cortex”. In: Nature 521.7553 (May 2015), pp. 511–515.

[89] M. Opper and C. Archambeau. “The Variational Gaussian Approxi-
mation Revisited”. In: Neural Computation 21.3 (Sept. 2008), pp. 786–
792.

[90] T. Ozaki. Time Series Modeling of Neuroscience Data. CRC Press, Jan.
2012.

98

[91] L. Paninski et al. “A New Look at State-Space Models for Neural Data”.
In: Journal of Computational Neuroscience 29.1-2 (Aug. 2010), pp. 107–
126.

[92] I. M. Park et al. “Encoding and Decoding in Parietal Cortex During
Sensorimotor Decision-Making”. In: Nature Neuroscience 17.10 (Oct.
2014), pp. 1395–1403.

[93] M. Park and J. W. Pillow. “Receptive Field Inference with Localized
Priors”. In: PLoS Comput Biol 7.10 (Oct. 2011), pp. 1–16.

[94] A. Peyrache et al. “Internally Organized Mechanisms of the Head Di-
rection Sense”. In: Nature Neuroscience 18.4 (Mar. 2015), pp. 569–575.

[95] D. Pfau, E. A. Pnevmatikakis, and L. Paninski. “Robust Learning of
Low-Dimensional Dynamics from Large Neural Ensembles”. In: Ad-
vances in Neural Information Processing Systems 26. Ed. by C. J. C.
Burges et al. 2013, pp. 2391–2399.

[96] J. W. Pillow et al. “Spatio-Temporal Correlations and Visual Signaling
in a Complete Neuronal Population”. In: Nature 454 (2008), pp. 995–
999.

[97] R. E. Quandt. “Tests of the Hypothesis that a Linear Regression System
Obeys Two Separate Regimes”. In: Journal of the American Statistical
Association 55.290 (1960), pp. 324–330.

[98] J. R. Quinlan. C4.5: Programs for Machine Learning. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 1993.

[99] J. M. E. R. L. Brown J. Durbin. “Techniques for Testing the Constancy
of Regression Relationships over Time”. In: Journal of the Royal Sta-
tistical Society. Series B (Methodological) 37.2 (1975), pp. 149–192.

[100] M. I. Rabinovich et al. “Transient Cognitive Dynamics, Metastabil-
ity, and Decision Making”. In: PLoS Computational Biology 4.5 (May
2008), e1000072+.

[101] C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine
Learning (Adaptive Computation and Machine Learning Series). The
MIT Press, Nov. 2005.

[102] A. Resulaj et al. “Changes of Mind in Decision-Making”. In: Nature
461.7261 (Sept. 2009), pp. 263–266.

[103] P. T. Sadtler et al. “Neural Constraints on Learning”. In: Nature 512.7515
(Aug. 2014), pp. 423–426.

99

[104] B. Schölkopf and A. J. Smola. Learning with Kernels: Support Vector
Machines, Regularization, Optimization, and Beyond. Adaptive com-
putation and machine learning. MIT Press, 2002.

[105] L. Song, P. Langfelder, and S. Horvath. “Random Generalized Linear
Model: A Highly Accurate and Interpretable Ensemble Predictor”. In:
BMC bioinformatics 14 (2013), p. 5.

[106] R. G. Stevens, S. H. Moolgavkar, and J. A. Lee. “Temporal trends
in breast cancer”. In: American journal of epidemiology 115.5 (1982),
pp. 759–777.

[107] D. Sussillo and O. Barak. “Opening the Black Box: Low-Dimensional
Dynamics in High-Dimensional Recurrent Neural Networks”. In: Neural
Computation 25.3 (Dec. 2012), pp. 626–649.

[108] W. Truccolo et al. “A Point Process Framework for Relating Neural
Spiking Activity to Spiking History, Neural Ensemble and Extrinsic
Covariate Effects”. In: J. Neurophysiol 93.2 (2005), pp. 1074–1089.

[109] R. K. Tsutakawa. “Estimation of Cancer Mortality Rates: A Bayesian
Analysis of Small Frequencies”. In: Biometrics 41.1 (1985), pp. 69–79.

[110] R. K. Tsutakawa. “Mixed Model for Analyzing Geographic Variability
in Mortality Rates”. In: Journal of the American Statistical Association
83.401 (1988), pp. 37–42.

[111] K. R. Ulrich et al. “GP Kernels for Cross-Spectrum Analysis”. In: Ad-
vances in Neural Information Processing Systems 28. Ed. by C. Cortes
et al. Curran Associates, Inc., 2015, pp. 1990–1998.

[112] J. M. Vesin. “An Amplitude-Dependent Autoregressive Model Based on
a Radial Basis Functions Expansion”. In: Acoustics, Speech, and Signal
Processing, 1993. ICASSP-93., 1993 IEEE International Conference
on. Vol. 3. IEEE, Apr. 1993, pp. 129–132.

[113] M. Watter et al. “Embed to Control: A Locally Linear Latent Dynamics
Model for Control from Raw Images”. In: Advances in Neural Informa-
tion Processing Systems 28. Ed. by C. Cortes et al. Curran Associates,
Inc., 2015, pp. 2746–2754.

[114] R. Wedderburn. “Quasi-Likelihood Functions, Generalized Linear Mod-
els, and the Gauss—Newton Method”. In: Biometrika 61 (1974), pp. 439–
447.

[115] W. K. Werner Ploberger. “The Cusum Test with Ols Residuals”. In:
Econometrica 60.2 (1992), pp. 271–285.

100

[116] K.-F. Wong and X.-J. Wang. “A Recurrent Network Mechanism of Time
Integration in Perceptual Decisions”. In: The Journal of Neuroscience
26.4 (Jan. 2006), pp. 1314–1328.

[117] Z. Yang et al. “Testing approaches for overdispersion in poisson re-
gression versus the generalized poisson model”. In: Biometrical Journal
49.4 (2007), pp. 565–584.

[118] B. M. Yu et al. “Gaussian-Process Factor Analysis for Low-Dimensional
Single-Trial Analysis of Neural Population Activity”. In: Journal of
neurophysiology 102.1 (July 2009), pp. 614–635.

[119] A. Zeileis and K. Hornik. “Generalized M-Fluctuation Tests for Param-
eter Instability”. In: Statistica Neerlandica 61.4 (2007), pp. 488–508.

[120] A. Zeileis, T. Hothorn, and K. Hornik. “Model-Based Recursive Par-
titioning”. In: Journal of Computational and Graphical Statistics 17.2
(2008), pp. 492–514.

[121] A. Zeileis, C. Kleiber, and S. Jackman. “Regression Models for Count
Data in R”. In: Journal of Statistical Software 27 (2008), pp. 1–25.

101

Appendix

A.1 Derivation of vLGP Equations

The equations used in the algorithm of vLGP heavily use the incomplete
Cholesky decomposition

K = GT ×kG⊤, (A.1)

and the matrix inversion lemma

(K−1 + W)−1 = K−K(W−1 + K)−1K, (A.2)
(W−1 + K)−1 = W−WG(Ik + G⊤WG)−1G⊤W. (A.3)

The posterior variance and some other quantities are given as follows,

Σ =(K−1 + W)−1

=K−K(W−1 + K)−1K
=GG⊤ −GG⊤(W−1 + GG⊤)−1GG⊤

=GG⊤ −GG⊤(W−WG(Ik + G⊤WG)−1G⊤W)GG⊤

=GG⊤ −GG⊤WGG⊤ + GG⊤WG(Ik + G⊤WG)−1G⊤WGG⊤

(A.4)

K−1Σ =IT − (W−1 + K)−1K
=IT − (W−1 + GG⊤)−1GG⊤

=IT − (W−WG(Ik + G⊤WG)−1G⊤W)GG⊤

=IT −WGG⊤ + WG(Ik + G⊤WG)−1G⊤WGG⊤

(A.5)

ΣK−1 =IT −K(W−1 + K)−1

=IT −GG⊤(W−1 + GG⊤)−1

=IT −GG⊤(W−WG(Ik + G⊤WG)−1G⊤W)
=IT −GG⊤W + GG⊤WG(Ik + G⊤WG)−1G⊤W)

(A.6)

102

tr[K−1Σ]
= tr[IT −WGG⊤ + WG(Ik + G⊤WG)−1G⊤WGG⊤]
= tr[IT]− tr[WGG⊤] + tr[WG(Ik + G⊤WG)−1G⊤WGG⊤]
=T − tr[G⊤WG] + tr[G⊤WG(Ik + G⊤WG)−1G⊤WG]

(A.7)

ln det[K−1Σ]
= ln det[IT − (W−WG(Ik + G⊤WG)−1G⊤W)GG⊤]
= ln det[Ik −G⊤(W−WG(Ik + G⊤WG)−1G⊤W)G]
= ln det[Ik −G⊤WG + G⊤WG(Ik + G⊤WG)−1G⊤WG]

(A.8)

Diagonal

diag(Σ) = diag[GG⊤ −GG⊤WGG⊤ + GG⊤WG(Ik + G⊤WG)−1G⊤WGG⊤]
= diag[G(G⊤ −G⊤WGG⊤ + G⊤WG(Ik + G⊤WG)−1G⊤WGG⊤)]
=[G ◦ (G⊤ −G⊤WGG⊤ + G⊤WG(Ik + G⊤WG)−1G⊤WGG⊤)⊤]jk

=[G ◦ (G−GG⊤WG + GG⊤WG(Ik + G⊤WG)−1G⊤WG)]jk

(A.9)

The term G⊤WG is frequently used.

A.2 Wong and Wang’s Dynamics

We used the following setting in the simulation of Wong and Wang’s two-
variable dynamics.

dsi

dt
= −si

τs

+ (1− si)γHi (A.10)

Hi = axi − b

1− exp[−d(axi − b)]
(A.11)

x1 = JN,11s1 − JN,12s2 + I0 + I1 (A.12)
x2 = JN,22s2 − JN,21s1 + I0 + I2 (A.13)

Ii = JA,extµ0

(
1± c

100%

)
(A.14)

where i = 1, 2, a = 270(ΣnC)−1, b = 108Hz, d = 0.154s, γ = 0.641, τs =
100ms, JN,11 = JN,22 = 0.2609nA, JN,12 = JN,21 = 0.0497nA, JA,ext = 0.00052nA·
Hz−1, µ0 = 30Hz.

103

Figure A.1: Failure mode of unregularized locally linear model: 1 s simula-
tion from xt+1 = A(xt)xt + B(xt)ut + xt model (fitted to Wong and Wang’s
dynamics).

104

	Introduction
	Poisson log-linear models
	Greater variability in count
	Segment log-linear models
	Neural spike trains are point processes
	Recover latent trajectories from spike trains
	Dynamical models for interpretation

	Log-linear Model Based Tree
	Log-Linear Model
	Growing a Tree
	Test for Splitting
	Simulation Study

	Test for Over-dispersion
	Missouri Lung Cancer
	Summary

	Variational Latent Gaussian Process for Recovering Single-Trial Dynamics from Population Spike Trains
	Generative model
	Variational inference
	Posterior over the latent process
	Weights
	Hyperparameters

	Results
	Evaluation
	Simulation
	V1 population recording

	Summary

	Interpretable Nonlinear Dynamic Modeling of Neural Trajectories
	Model
	Estimation
	Inferring Theoretical Models of Neural Computation
	Fixed point attractor and bifurcation for binary decision-making
	Nonlinear oscillator model
	Ring attractor dynamics for head direction network
	Chaotic dynamics

	Learning V1 neural dynamics
	Summary

	Discussion
	Log-Linear Model Based Tree
	Variational Latent Gaussian Process for Recovering Single-Trial Trajectories from Population Spike Trains
	Interpretable Nonlinear Dynamic Modeling of Neural Trajectories

	Bibliography
	Appendix
	Derivation of vLGP Equations
	Wong and Wang's Dynamics

