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Abstract of the Dissertation

Existence of Undominated Subgame Perfect Equilibrium in Finite Extensive Form Games

by

Ceren G. Yilmaz

Doctor in Philosophy

in

Economics

Stony Brook University

2014

There are games for which all subgame perfect equilibria are such that some (or all) players

use weakly dominated strategies. Surely this is undesirable as it diminishes the credibility of

equilibria. It is implausible to expect a player to play a weakly dominated strategy just because it

is an ’equilibrium strategy’. We focus on the class of finite extensive form games with complete

and perfect information and show that in this class of games there exists an undominated subgame

perfect equilibrium; a subgame perfect equilibrium in which no player uses a weakly dominated

strategy. The results also provide insight as to why one should restrict the class of mechanisms

to finite mechanisms where relevant.
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Chapter 1

Introduction

1.1 Basic Notation and Definitions

In this section we introduce the basic framework for Finite Perfect Information Extensive

Form Games and well known solution concepts. We restrict attention to finite extensive form

games with perfect recall and no chance moves. The formal treatment of an extensive form game

is standard and the reader is referred to ? and ?. The seasoned reader may skip to the next section.

Definition 1 (Finite Perfect Information Extensive Form Game) A finite perfect informaiton

extensive form game (hereon referred to as FPIE) consists of:

• A finite set of players, denoted N ;

• A finite directed game tree consisting of nodes, denoted H , and branches connecting

nodes;

– Each node represents a state of the game. Each branch represents an action. A branch

from a node h to a node h′ represents the situation where an action (represented by
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the branch) taken at state h leads the game to the state h′. Each state represents the

sequence of actions taken until that time instance. Hence in a game tree there can’t

be any loops or any nodes more than one incoming branch.

– There is a special node, called the starting node, which represents the beginning of

the game. This node does not have any incoming branch.

– Any node which does not have any outgoing branch is called a terminal node. These

are the nodes which represents an end state of the game. The set of terminal nodes

will be denoted with Z. Any node which is not a terminal node is an decision node.

At decision nodes an agent must take an action.

• An assignment of actions to each branch.

• A division of the decision nodes over players. The set of nodes assigned to player i, denoted

Hi, are the nodes at which player i must take action.

• An assignment of an outcome to each terminal node.

• A preference relation over the set of outcomes, hence over the terminal nodes, for each

agent.

Definition 2 (Strategy) A strategy of a player in a FPIE is a complete plan of action that speci-

fies the action the player will take at each decision node allocated to that player1.

A typical strategy of a player i is usually denoted si, and the strategy set of a player may be

denoted as Si. A list of possible strategies for every player constructs a strategy profile typically

denoted as s. The set of all strategy profiles of a game is denoted as S. A strategy profile s

is often denoted as (si, s−i) where si represents player i’s strategy and s−i represents all other

players’ strategies.

1Throughout the paper we will consider only pure strategies.

2



Since we are only considering pure strategies it is enough that we assume ordinal preferences

over the terminal nodes. For notational convenience we will use utility functions. For any given

strategy profile s ∈ S and any player i ∈ N , a utility function ui(s) will assign a real value so

as to preserve the preference order of player i over all possible outcomes. Hence ui : Z → ℜ or

equivalently ui : S → ℜ represents of player i’s preferences.

Definition 3 (Weakly dominated strategy) Given any FPIE, i ∈ N , a strategy si ∈ Si, is said

to be weakly dominated if there exists s′i ∈ Si such that

∀s−i ∈ S−i ui(s
′
i, s−i) ≥ ui(si, s−i),

and

∃s′−i ∈ S−i ui(s
′
i, s

′
−i) > ui(si, s

′
−i) .

The interpretation here is that a strategy is weakly dominated if there is another strategy

that always performs at least as well, and sometimes strictly better. Intuitively it is not difficult

to conclude that when undominated strategies exist, we would expect that players do not play

dominated strategies. It is more difficult to determine what we would expect in a game where

players have no undominated strategies.

Our final goal in this section is to introduce a well known solution concept called Subgame

Perfect Nash Equibrium, or just Subgame Perfect Equilibrium. We will first describe an intuitive

algorithm known as backward induction and then formally define the equilibrium via the aid of

Nash Equilibrium.

Given a FPIE, the backward induction algorithm will produce a strategy for each player. The

initial step of the algorithm starts with a final decision node (there may be more than one). The

player that is assigned to that decision node is assumed to choose the action that leads to the most

preferred outcome (assume for now that there are no ties). Once this step is repeated for all final
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decision nodes, one can move on to considering decision nodes that are immediate predecessors

of final decision nodes. Here we assume that players chose the action that leads to their most

preferred outcome given that the other players will play according to the assumption in the first

step. We proceed in this manner towards the initial node and the resulting strategy profile is the

backward induction solution to the game.

Definition 4 (Nash Equilibrium) Given a FPIE, a strategy profile s∗ ∈ S is a Nash equilibrium

of the game if

∀i ∈ N, ∀si ∈ Si ui(s
∗
i , s

∗
−i) ≥ ui(si, s

∗
−i) ,

i.e., no agent can gain by unilaterally deviating from the strategy profile s∗.

Before we define Subgame Perfect we need to introduce the notion of a subgame. Although

there is a slightly more general interpretation of a subgame than what we will introduce here, our

definition will suffice FPIE.

For any FPIE Γ, consider any decision node h. There is a another FPIE Γ(h) embedded in

the original game that has h as it’s initial node. In particular, we can think of each decision node

as a subgame of the original game.

Given a FPIE Γ, a strategy profile s and a subgame Γ(h), we can think of the restriction of s

as a strategy profile in Γ(h) that agrees with s.

Definition 5 (Subgame Perfect Equilibrium) Given a FPIE Γ, a strategy profile s∗ ∈ S is a

subgame perfect equilibrium of the game if the restriction of s∗ is a Nash equilibrium in every

subgame of Γ.
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1.2 Related Literature

In the event there is a unique Subgame Perfect Nash Equilibrium, hereon referred to as SPE,

is a widely accepted solution concept for extensive form games. Indeed even when there is multi-

plicity of SPE, one can make a strong argument in favor, as long as these multiple equilibria have

the same equilibrium path leading to the same outcome. Unfortunately for a generic extensive

form game, this is not always the case. Various refinements to SPE have been introduced so as

to provide more definitive answers as to what the ”equilibrium” outcome is in any given game.

A comprehensive study of these refinements can be found in van Damme (1991).

A relatively simple and intuitive refinement of SPE is that players play undominated strategies

in equilibrium. This has not received much attention. Perhaps the biggest reason is that this

refinement, on it’s own, is not enough to guarantee uniqueness. A second reason may be that it is

difficult to imagine a SPE may include a weakly dominated strategy for a player. We demonstrate

that this can in fact happen with the very simple example in figure 1.1. Although (a, a) is a SPE,

clearly the strategy a is a weakly dominated strategy for player 1.

This discussion outlines our motivation. If SPE can be in weakly dominated strategies is

there a class of games for which we can guarantee existence of a SPE in undominated strategies?

From hereon we will refer to such an equilibrium as USPE (Undominated Subgame Perfect Equi-

librium). The next chapter will prove existence of USPE in finite perfect information extensive

form games (FPIE).

The problem at hand is especially relevant in the context of the mechanism design literature.

Despite it’s drawback in not being able to provide a unique SPE, the requirement that equilibrium

strategies are not dominated is a rather crucial one. It is unreasonable to expect any rational player

to play a weakly dominated strategy just because it happens to be an ”equilibrium” strategy. Such
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an equilibrium provides no meaningful prediction on what will be played in any given game. As

such the use of such an equilibrium in the context of a constructive proof is problematic.

1

2

(0, y)

(0, 0) (3, 0)

a b

ba

Figure 1.1: There are three SPE, namely (a, a), (b, a) and (b, b). Although (a, a) is a SPE,
player 1 is prescribed a weakly strategy.

The situation of weakly dominated strategies being used in SPE becomes more problematic

in a game in which all SPE are such that all players use weakly dominated strategies. One such

example can be found in Brusco (2002).

To get a basic idea of why this is happening, we will take a look at what is referred in the

literature as an ’integer game’. Consider a 2 player normal form game where the strategy set

for each player consists of non-negative integers. In the event that at least one of the players

announces zero both players receive a payoff of zero. In all other cases the player that announces

the higher number is awarded a prize and the other player receives a payoff of zero. Ties are

broken in favor of the first player. Observe that the only equilibrium of such a game is when both

players announce zero. As such this game has only one equilibrium in which both players use

dominated strategies. Observe also that in this game any strategy is weakly dominated. Hence it

is not easy to predict how players will play in such a game.

This technique is widely used in the Mechanism Design literature as a tool to break undesir-

able equilibria. The action of announcing an integer is appended to the players’ strategy sets and
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the payoff structure is manipulated in a way to break the undesirable equilibria. For a critique of

this kind of mechanism as used in the mechanism design literature in the context of normal form

games, the reader is referred to Jackson (1992).

Our goal will be to identify a class of games for which the undesirable consequence of such

integer games - particularly players playing dominated strategies in all reasonable equilibria -

does not exist. In the next chapter we will not conclude that FPIE is the largest class of games

that guarantee existence of USPE, indeed this remains an open question. Our conjecture is that

it is the finiteness and not the perfect information aspect that guarantees USPE.
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Chapter 2

Existence of Undominated Subgame

Perfect Equilibrium

2.1 Results

Our first results is in the form of a lemma that outlines a fact for games that have a single SPE.

For FPIE we know that backward induction and SPE are equivalent. We show that for a FPIE

with a single SPE, at each stage of the backward induction procedure, there is a single optimal

branch. We will introduce some further notation before we proceed.

We will use the notation (h, a, s) to refer to following terminal history: h is reached followed

by a, followed by s being played in the subgame Γh everywhere except at h where a ∈ A(h) is

played. Likewise (h, a1, ..., an, s) will refer to the terminal history reached by passing h, playing

a1, ..., an, and then conforming to s from thereon where a1 ∈ A(h), a2 ∈ A((h, a1)) and so on.

In the subgame starting at h denoted as Γh, we will use the notation (a, s) to denote the strategy

profile that conforms with s everywhere except at h where a is played.
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Lemma 1 Let Γ be a FPIE. If Γ has a unique subgame perfect equilibrium s∗ in pure strategies,

then for each decision node h, there is a unique action a ∈ A(h) that maximizes player i(h)’s

payoff given s∗ will be played thereafter, i.e.,

| argmax
a∈A(h)

ui(h)(h, a, s
∗)| = 1

Proof Assume not, i.e., there exists h ∈ H such that there are two (or more) actions that

are optimal at h given s∗h, the restriction of s∗ to subgame Γ(h), will be played thereafter.

Chose h so that either all successors of h are terminal nodes or in any strict subgame of h

there is a unique optimal action given the restriction of s∗ will be played thereafter. By defi-

nition s∗(h) ∈ {argmaxa∈A(h) ui(h)(h, a, s
∗)}. Let a0 ̸= s∗(h) be such that ui(h)(h, s

∗(h), s∗) =

ui(h)(h, a
0, s∗). Now we have that in the subgame starting at h, there are two different SPE;

(s∗(h), s∗) and (a0, s∗). The former is obvious, as s∗ is a SPE. The latter follows from the fact

that a0 ∈ {arg maxa∈A(h)ui(h)(h, a, s
∗)} together with the statement of the proposition. For con-

venience let’s refer to those two SPE as s∗h and sah respectively. Note that since they only differ

at h, the appropriate restrictions are also SPE in any subgame for any history that is a successor

of h. Now consider h−1 and the corresponding player i(h−1). Since A(h−1) is finite we have

that {argmaxa∈A(h−1) ui(h−1)(h
−1, a, s∗)} ̸= ∅. Let a∗ ∈ {argmaxa∈A(h−1) ui(h)(h

−1, a, s∗)}.

Likewise let a−1 ∈ {argmaxa∈A(h−1) ui(h)(h
−1, a, s∗)} Even if a−1 = a∗ the subgame at h−1 has

two SPE. In one a∗ is played at h−1 then s∗h is played from thereon, in the other a−1 is played

at h−1 and sah is played from thereon. Reasoning in this way towards the beginning of the tree

we obtain that there are multiple SPE. This contradicts the original assumption that there was a

unique SPE. □

Remark 1 The result does not necessarily hold when there is a unique SPE outcome as it can be

supported by multiple SPE.

9



Remark 2 Given a FPIE game Γ with SPE(Γ) = {s∗} for any nonterminal history h ∈ H ,

SPE(Γ(h)) = {s∗h}.

Remark 3 The result holds only in finite games. Consider the game where Player 1 chooses

s1 ∈ [0, 1], and after observing x Player 2 chooses s2 ∈ {yes, no}. If (s1, yes) is observed, then

the payoffs are (s1, 1−s1) and if (s1, no) is observed payoffs are (0, 0). In the unique SPE Player

1 plays s1 = 1 and Player 2 responds yes for any s1. However at the decision node following

s1 = 1 Player 2 has two optimal actions, hence Lemma 1 clearly doesn’t hold. This is because

once we fix the second optimal action s2 = no for Player 2, there is no optimal action for Player

1, so no such SPE is generated from there.

Next we prove existence of USPE for FPIE with a unique SPE. In other words we show that

when the SPE of a FPIE Γ is unique, we have that SPE(Γ) = USPE(Γ).

Proposition 1 If Γ is a FPIE with SPE(Γ) = {s∗} then s∗i is not weakly dominated for any

i ∈ N .

Proof Suppose that for player i ∈ N there is a strategy s
′
i ̸= s∗i such that s′

i weakly dominates

s∗i . By definition we have the following

∃s′

−i ∈ S−i ui(s
′

i, s
′

−i) > ui(s
∗
i , s

′

−i) (2.1)

This implies that either (s′
i, s

′
−i) and (s∗i , s

′
−i) differ at the starting node of Γ or there is a

node h reached under both (s
′
i, s

′
−i) and (s∗i , s

′
−i) where their paths differ, i.e. s

′
(h) ̸= s∗(h) .

Since in either case both strategy profiles (s
′
i, s

′
−i) and (s∗i , s

′
−i) pass through h, we know that

s
′
i and s∗i agree until h and h ∈ H(s

′
i). We will refer to these facts later on in the proof. Con-

sider the subgame Γ(h). Exactly one the following three is true; ui(s
′
i|h, s∗−i|h) > ui(s

∗
i |h, s∗−i|h),

ui(s
′
i|h, s∗−i|h) = ui(s

∗
i |h, s∗−i|h) or ui(s

∗
i |h, s∗−i|h) > ui(s

′
i|h, s∗−i|h).

The first is impossible as it implies s∗ is not a Nash equilibrium in the subgame Γh.
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Let’s assume that the second is true. In the subgame Γ(h), the paths of (s
′
i|h, s∗−i|h) and

(s∗i |h, s∗−i|h) differ beginning at the initial node h. When player i takes the actions s
′
i(h) or

s∗i (h) this leads the game to subgame Γ(h(s
′
i)) or Γ(h(s∗i )) respectively. For notational sim-

plicity lets refer to them as Γ(h
′
) and Γ(h∗) here. Let’s first consider Γ(h′

). Notice first that

ui(s
′
i|h, s∗−i|h) = ui(s

′
i|h′ , s∗−i|h′ ) since they both lead to the exact same outcome. Likewise

ui(s
∗
i |h, s∗−i|h) = ui(s

∗
i |h∗ , s∗−i|h∗). Notice also that since s∗|h′ is a subgame perfect equilibrium

in Γ(h′), either ui(s
∗
i |h′ , s∗−i|h′) > ui(s

′
i|h′ , s∗−i|h′) or ui(s

∗
i |h′ , s∗−i|h′) = ui(s

′
i|h′ , s∗−i|h′) must be

true. Similarly either ui(s
∗
i |h∗ , s∗−i|h∗) > ui(s

′
i|h∗ , s∗−i|h∗) or ui(s

∗
i |h∗ , s∗−i|h∗) = ui(s

′
i|h∗ , s∗−i|h∗).

So both must hold with equality. But this contradicts Lemma 1.

Therefore the third must be true. However this is a contradiction. Remember that h ∈ H(s
′
i).

This means that there is a strategy profile for the other players, say ˆs−i that brings the game to

h when player i plays s′
i. Consider a strategy profile for the other agents where that agrees with

ˆs−i before h and agrees with s∗−i elsewhere and recall that sai and s∗i agree until h. We have just

established that given this strategy profile of the other players s∗i performs strictly better than s
′
i.

□

Definition 6 Given FPIE Γ, a history h ∈ H is called an indifference node for player i with

respect to s∗ if i = i(h), s∗ ∈ SPE(Γ), and there exists a, b ∈ A(h) with a ̸= b such that,

{a, b} ⊂ argmaxc∈A(h)ui(c, s
∗).

Figure 2.1 is useful in understanding the above definition.

Remark 4 An intuitive way to think of indifference nodes is to imagine the backward induction

algorithm applied to a game. As long as there is a unique optimal action at every step of the

algorithm, there are no indifference nodes. Keeping in mind Lemma 1, one may also think of

the indifference nodes as SPE generating. In the next proposition we will see that if there are

exactly two optimal actions at the only indifference node of the game, there are exactly two

subgame perfect equilibria and the indifference node is with respect to both of them. When h is
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1

2

1

a b

a b

a b

a b

0, x

1, 1

3, 0

y, 0

3, 2 0, 1

m1

m2

m3

m4

m5

Figure 2.1: In this FPIE there are two SPE; the first prescribes the the action labelled with a
circle at each decision node and the second prescribes the action labelled with a square.
Although there are two optimal actions available at both m2 and m3 for some SPE, only at m3

are there two actions optimal given a fixed SPE will be played from thereon.

an indifference node with respect to at least one SPE, we will simply refer to h as an indifference

node.

Definition 7 Let Γ be a FPIE, i ∈ N and si, s
′
i ∈ Si. The strategies si, s

′
i ∈ Si are equivalent

for player i if for any s−i ∈ S−i we have ui(si, s−i) = ui(s
′
i, s−i). If two strategies si and s

′
i are

equivalent for player i, we will denote this by si ≃ s
′
i.

Proposition 2 Let Γ be a FPIE, i ∈ N . Let h be the unique indifference node of the game with

i(h) = i such that a, b ∈ A(h) are the only optimal actions available at h given a SPE will be

played from thereon. Then;

• The game has exactly two SPE, namely sa and sb with sa(h) = a and sb(h) = b, and they

agree at every successor of h

• The history h is an indifference node with respect to sa and sb

• If j ∈ N with j ̸= i then there is no strategy of player j that weakly dominates saj or sbj
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• If s
′
i weakly dominates sai , then s

′
i |h ≃ sbi |h

Proof We will use the backward induction algorithm to find all the SPE of the game. Denote

the set of decision nodes including h and it’s predecessors by H , all the successors of h by H0

and all other nodes by H0. Assume that H0 ∪H0 = ∅. In other words there are no non terminal

histories that are not in H . The longest histories in such a game are the ones where h is reached

and a final action is taken and furthermore there are no decision nodes that are not on the unique

path of h. In particular there is a complete preorder on the set of decision nodes. For such a

game it is relatively simple to the backward induction procedure, especially since h is the only

indifference node. Since at h the action a ∈ A(h) is optimal, fix this action and continue to

solve by backward induction. At the history h
−1

, the predecessor of h, fixing the action a there

will be a unique optimal action say a−1 as otherwise h
−1

would have been an indifference node.

Fixing the path (a−1, a) at the history h
−2

, the action a−2 ∈ A(h
−2
) will be optimal and so on.

Proceeding to the root of the tree in this manner, we can obtain a SPE sa. Repeating the back-

ward induction algorithm by instead fixing the other optimal action b at the indifference node,

we arrive at the second SPE, sb. Note that it is not necessarily true that sa(h
−k
) = sb(h

−k
).

If H0 ∪ H0 is nonempty, then pick a last decision node h0 ∈ H0 ∪ H0. Since h0 is not an

indifference node, there will be a unique optimal action. Repeat the same step with all final de-

cision nodes and move to an immediate predecessor that is also in H0, if one exists. Continuing

with the algorithm h will be reached. From here the argument in the previous paragraph applies

and we have sa and sb as the two SPE of the game. This concludes the proof of the first part of

the proposition.

Before we prove the second part, remember that we have already established while proving

the first part that at in the subgame Γ(h) there are exactly two SPE namely sah and sbh. Further-

more we know that in the subgame Γ(h) sah and sbh agree everywhere except at h. Therefore at

any subgame starting from a successor of h there is a unique equilibrium. Since at h both a and
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b are optimal given the unique SPE from thereon will be played, h is an indifference node with

respect to sah and sbh.

To prove the third part, let j ∈ N and j ̸= i. Assume w.l.o.g. that there exists s′
j ∈ Sj such

that s′
j weakly dominates saj . By definition there exists h ∈ H(s

′
j) for which s

′
j(h) ̸= saj (h).

Using a similar argument to that of Proposition 1, let’s consider the subgame Γ(h) and compare

the values of ui(s
′
j|h, sa−j|h) and ui(s

a
j |h, sa−j|h). If the left hand side is greater, this contradicts

the fact that sa is a SPE. Assume the left hand side is less. Since h ∈ H(s
′
j), by definition there

exists a strategy profile of the other players say ˆs−j that brings the game to h when player j plays

s
′
j . Now consider a strategy profile for the other players that agrees with ˆs−j on the path of h and

agrees with saj elsewhere and recall that saj and s
′
j agree until h. We have just established that

given this strategy profile of the other players saj performs strictly better than s
′
j , which leads to

a contradiction. Therefore we must have ui(s
′
j|h, sa−j|h) = ui(s

a
j |h, sa−j|h), yet this also leads to a

contradiction. The argument is similar to that of Proposition 1. In the subgame Γ(h) let’s label the

histories following s
′
j(h) and saj (h) as h′ and ha respectively. Let’s first consider Γ(h′

). Notice

first that uj(s
′
j|h, sa−j|h) = uj(s

′
j|h′ , sa−j|h′ ) since they both lead to the exact same outcome. Like-

wise uj(s
a
j |h, sa−j|h) = uj(s

a
j |ha , sa−j|ha). Notice also that since sa|h′ is a subgame perfect equi-

librium in Γ(h′), either uj(s
a
j |h′ , sa−j|h′) > uj(s

′
j|h′ , sa−j|h′) or uj(s

a
j |h′ , sa−j|h′) = uj(s

′
j|h′ , sa−j|h′)

must be true. Similarly either uj(s
a
j |ha , sa−j|ha) > ui(s

′
j|ha , sa−j|ha) or uj(s

a
j |ha , sa−j|ha) = uj(s

′
j|ha , sa−j|ha).

So both must hold with equality. In particular we are interested that uj(s
a
j |h′ , sa−j|h′) = uj(s

a
j |ha , sa−j|ha)

holds which implies that h is an indifference node. This is contradiction since our assumption is

that Γ has a single indifference node that belongs to i ̸= j. This concludes the third part of the

proposition.

Now assume that s′
i weakly dominates sai . By definition there exists s

′
−i ∈ S−i such that

ui(s
′
i, s

′
−i) > ui(s

a
i , s

′
−i). Again we know that there exists h ∈ H(s

′
i) where s′

i(h) ̸= sai (h). Let h

be the first such history, so either s′
i and sai differ at the starting node of Γ or the path of (s′

i, s
′
−i)

and (sai , s
′
−i) agree until h. If ui(s

′
i|h, sa−i|h) > ui(s

a
i |h, sa−i|h) this contradicts the fact that sa
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is a SPE. On the other hand if ui(s
′
i|h, sa−i|h) < ui(s

a
i |h, sa−i|h) this contradicts that s′

i weakly

dominates sai . To see why, remember that h ∈ H(s
′
i) which means that there exists a strategy

profile for the other players say ˆs−i such that (s′
i, ˆs−i) reaches h. Furthermore s

′
i and sai agree

until h. So consider the strategy profile of the other agents that agrees with ˆs−i until h and agrees

with sa−i elsewhere. Given this strategy profile of the other players sai performs strictly better

than s
′
i as implied by the inequality. This is impossible if s′

i weakly dominates sai . Again the

last remaining possibility is that ui(s
′
i|h, sa−i|h) = ui(s

a
i |h, sa−i|h). For convenience let’s denote

the successor of h after action s
′
i(h) as h′ and the successor after sai (h) as ha. From here we

can use the same argument we made for player j above when proving part three and arrive at

ui(s
a
i |h′ , sa−i|h′ ) = ui(s

a
i |ha , sa−i|ha). This implies that h is an indifference node for player i and

therefore h = h and s
′
i(h) = sbi(h) = b.

Notice that to prove part four, it is not necessary to show that s′
i and sbi agree at every history.

It is sufficient (yet still not necessary) to show that s′
i and sbi agree at any history that can be

reached via s
′
i and some strategy profile of the other agents. This is what we will show here. We

will proceed separately or histories in H0 and H0 respectively.

First remember that at h, s′
i(h) = sbi(h) ̸= sai (h). Denote the history following h and s

′
i(h)

as ĥ. Any history in H0 ∩H(s
′
i) must belong to the subgame Γĥ. Since in the subgame Γĥ there

are no indifference nodes, sa
ĥ
= sb

ĥ
is the unique SPE. Consider ui(s

′
i|h, sb−i|h) and ui(s

b
i |h, sb−i|h).

Notice that ui(s
a
h
) = ui(s

b
h
), s′

i weakly dominates sai and (s
′
i, s

′
−i) and (sai , s

′
−i) both reach h.

Then the left hand side must be greater than or equal to the right hand side otherwise we can

arrive at a contradiction to the fact that s′
i weakly dominates sai because we can construct a strat-

egy profile of the other players for which sai performs strictly better than s
′
i. Since sb

h
is a SPE,

this only leaves the possibility of equality. Notice that in the subgame we are considering, there

is a unique equilibrium. This means we are in the environment of Proposition 1 once again and

this equality leads to the contradiction that there is an indifference node, if we have s
′
i|h ̸= sbi |h.
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Hence s
′
i|h and sbi |h must agree.

Any subgame originating from a history in H0 will have a unique SPE since there are no

indifference nodes in that subgame. Therefore sai and sbi must agree at any history in H0. At any

history in H0 ∩H(s
′
i), s

′
i and sbi must also agree. To see why, assume that h̃ ∈ H0 ∩H(s

′
i), is a

first such history with s
′
i(h̃) ̸= sbi(h̃). Since sai (h̃) = sbi(h̃), we have sai (h̃) ̸= s

′
i(h̃). We will once

again compare the utilities ui(s
a
i |h̃, sa−i|h̃) and ui(s

′
i|h̃, sa−i|h̃). Given that h̃ is not an indifference

equality is ruled out again. Notice that the subgame we are considering has a unique SPE, so the

same arguments in Proposition 1 hold here. Also the former cannot be less as sa is a SPE. We

are left with ui(s
a
i |h̃, sa−i|h̃) > ui(s

′
i|h̃, sa−i|h̃). However this contradicts that s′

i weakly dominates

sai because s
′
i and sai agree at h̃ and all it’s predecessors. Since h̃ ∈ H(s

′
i), by definition there

exists ˜s−i such that (s′
i, ˜s−i) reaches h̃. Note here that (sai , ˜s−i) must also reach h̃ since we have

assumed that s′
i and sai agree at all predecessors of h̃. Consider the strategy of the other players

s−i in which players play according to ˜s−i at all predecessors of h̃ and according to sa−i every-

where else. Under this strategy for the other players, sai performs strictly better than s
′
i however

this is a contradiction. Therefore we conclude that for any h̃ ∈ H0 ∩H(s
′
i), s

′
i(h̃) = sbi(h̃).

We’ve just established that at any history that is reached when s
′
i is played, s′

i and sbi agree.

This concludes the proof of Proposition 2. □

Corollary 1 Given a FPIE with a single indifference node, the set of USPE is nonempty.

Corollary 2 Given a FPIE with exactly two SPE, the set of USPE is nonempty.

Proposition 3 Let Γ be a FPIE, i ∈ N . Let h be the unique indifference node of the game with

i(h) = i such that {a1, a2, ..., an} ∈ A(h) are the only optimal actions available at h given a

SPE will be played from thereon. Let k ∈ {1, ..., n}.
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• There are n SPE, namely s1, s2, ..., sn with sk(h) = ak and they agree at every successor

of h

• The history h is an indifference node with respect to sk

• Let j ∈ N with j ̸= i then for any k, there is no strategy of player j that weakly dominates

skj

• For any k, if s
′
i weakly dominates ski , then for some m ∈ {1, ..., n} s′

i |h ≃ smi |h

Proof We will follow a very similar argument to the first part of Proposition 2 here. Again

we will denote the set of decision nodes that include h and it’s predecessors by H and the set

of all other decision nodes by H0. If H0 = ∅, it is relatively easy to use the backward induc-

tion algorithm. Since h is the unique indifference node, we have that SPE(Γ) = {s1, ..., sn}

with ski (h) = ak for each k ≤ n. If H0 is nonempty then pick a last decision node h0 ∈ H0.

Since h0 is not an indifference node, there will be a unique optimal action when following the

algorithm. Repeat the process with a new last decision node. Continuing this way eventually h

will be reached. From here the above argument applies once we reach a game that falls into the

category of H0 = ∅. This proves the first part.

Note that it follows from the first part that there are exactly n SPE namely s1, ..., sn. As in

part 2 of Proposition 2, in any proper subgame of Γ(h) there is a unique equilibrium which is the

appropriate restriction of sk to the subgame1.

To prove the third part, let j ∈ N and j ̸= i. Analogously to Proposition 2 part 3, as-

sume that there exists s
′
j ∈ Sj such that s′

j weakly dominates skj so there exists h ∈ H(s
′
j) for

1The restriction of any of the SPE will give the same strategy profile in any proper subgame of Γ(h) since there
is a unique equilibrium in any such subgame. So h is an indifference node with respect to sk for any k k ≤ n.
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which s
′
j(h) ̸= skj (h). Let h be the first such history. Once again we compare the two utilities;

ui(s
′
j|h, sk−j|h) and ui(s

k
j |h, sk−j|h). If the left hand side is greater, this contradicts the fact that sa

is a SPE. Assume the left hand side is less. Just as in part 3 of Proposition 2 we can construct

a strategy profile for the other players such that skj performs strictly better than s
′
j which is a

contradiction. Therefore equality must hold. From previous arguments already made in part 3 of

Proposition 2, we know that this implies that h is an indifference node, which is a contradiction

since the only indifference node in this game belongs to player i ̸= j.

To prove part 4 assume that s′
i weakly dominates ski . Therefore there is a strategy profile for

the other players s−i ∈ S−i such that ui(s
′
i, s

′
−i) > ui(s

k
i , s

′
−i). Let h be the first history in H(s

′
i)

at which s
′
i(h) ̸= ski (h) and let’s compare ui(s

′
i|h, sk−i|h) and ui(s

k
i |h, sk−i|h). The left hand side

cannot be strictly greater as this contradicts that sk is a SPE. It cannot be strictly less, since we can

construct a strategy profile for the other agents that arrives at h then agrees with sk−i for which ski

performs strictly better than s
′

k which contradicts that s′

k weakly dominates ski . Therefore equal-

ity must hold. Let’s denote the history after (h, s′
i) and (h, ski ) as h′ and hk respectively. Using

an analogous argument as in part 3 made for player j and later used again in part 4 of Proposition

2, we can arrive at the equality ui(s
k
i |h′ , sk−i|h′ ) = ui(s

k
i |hk , sk−i|hk), which implies that h is an

indifference node therefore h = h. This is only possible if for some m ∈ {1, ..., n}\{k} we have

s
′
i(h) = smi (h).

Now we will show that s′
i and smi agree at any history that can be reached by s

′
i and some

strategy profile of the other players. We know that s′
i(h) = smi (h) ̸= ski (h). Let’s denote the

history (h, s
′
i(h)) as hm. First we deal with histories in H . Any history in H\h ∩ H(s

′
) must

belong to the subgame Γhm . Since in that subgame there are no indifference nodes, smhm = skhm .

Now we will compare ui(s
′
i|h, sm−i|h) and ui(s

m
i |h, sm−i|h). Notice that ui(s

m
h
) = ui(s

k
h
), s′

i

weakly dominates ski , and (s
′
i, s

′
−i) and (ski , s

′
−i) both reach h. Then of the two utilities we are

comparing the left hand side cannot be smaller. If it was, then we could construct a strategy pro-
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file for the other players for which ski performs strictly better than s
′
i, which is a contradiction.

Given that sm
h

is a SPE, this leaves equality as the last option so ui(s
′
i|h, sm−i|h) = ui(s

m
i |h, sm−i|h).

When comparing ui(s
′
i|h, sm−i|h) and ui(s

m
i |h, sm−i|h) as we did above, remember that at h s

′
i

and smi agree. Therefore we also have that ui(s
′
i|hm , sm−i|hm) = ui(s

m
i |hm , sm−i|hm). Remember

that Γhm has no indifference nodes which means that we are once again in the environment of

Proposition 1. If we have s′
i|hm ̸= sbi |hm this would imply that there is an indifference node, ence

s
′
i|hm = sbi |hm .

Next we deal with histories in H0 = H\H . Any subgame in H0 will have a unique SPE

therefore ski and smi agree at any such history. At any history in H0 ∩ H(s
′
i), s

′
i and smi must

also agree. To show this fact, assume h̃ ∈ H0 ∩ H(s
′
i), s

′
i is the first such history for which

s
′
i(h̃) ̸= smi (h̃). Compare the utilities ui(s

′
i|h, sk−i|h) and ui(s

k
i |h, sk−i|h). Once again we are in

the environment of Proposition 1 and we use the by now familiar arguments. The right hand side

cannot be less since sk is a SPE. It also cannot be greater, as we can easily construct a strategy

profile for the other players and arrive at a contradiction to the assumption that s′
i weakly dom-

inates ski . Equality is the only remaining possibility but we know that there are no indifference

nodes in this part of the game so this is also not possible. We conclude that the assumption that

s
′
i(h̃) ̸= smi (h̃) must then be false and we therefore have s

′
i(h̃) = smi (h̃) and of course they also

agree at any other history in H0 ∩H(s
′
i). This concludes the proof of part 4. □

To generalize the result to all FPIE, we will make use of a variation of the well known back-

ward induction algorithm that we will refer to as the undominated backward induction algorithm.

The mentioned variation of the algorithm can produce multiple results. The algorithm only brings

a restriction on the backward induction algorithm at steps where an indifference node is reached.

We start the backward induction algorithm by choosing a final decision node. If such a node

has a unique optimal action, we assign that to the strategy profile s∗ we will construct using the

algorithm. If there are multiple optimal actions at a last decision node, we assign one randomly
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to s∗ and continue to the next step of the algorithm moving up the tree as in backward induction.

At any step in the algorithm for any history h for which there are multiple optimal actions avail-

able for player i = i(h), for each optimal action a, we will be concerned with a set of utilities

Ui(a(h)) = {ui ∈ R : ui = ui(a, sh), sh ∈ S(Γ(h))} which are precisely all possible utilities for

player i after the action a has been taken at h. If there is a weak domination relationship (defined

analogously to the regular weak dominance concept for strategies) then we choose the action

associated with the undominated set and assign it to s∗. Such an undominated set exists since

there is always only a finite number of sets to compare. The formal definition for set domination

is given below. We show below that any strategy profile s∗ that is obtained form the algorithm is

an USPE.

Definition 8 Let A,B ∈ R. Set A weakly dominates set B if for all (x, y) ∈ A × B we have

x ≥ y and there exists (x, y) ∈ A×B such that x > y.

Proposition 4 Let Γ be a FPIE and s∗ a strategy profile obtained from the undominated back-

ward induction algorithm. Then s∗ ∈ USPE(Γ).

Proof Assume to the contrary that s′i weakly dominates s∗i . We follow a similar argument to

that of Proposition 1.

∃s′

−i ∈ S−i ui(s
′

i, s
′

−i) > ui(s
∗
i , s

′

−i) (2.2)

This implies that either (s′
i, s

′
−i) and (s∗i , s

′
−i) differ at the starting node of Γ or there is a

node h reached under both (s
′
i, s

′
−i) and (s∗i , s

′
−i) where their paths differ, i.e. s

′
(h) ̸= s∗(h) .

Since in either case both strategy profiles (s
′
i, s

′
−i) and (s∗i , s

′
−i) pass through h, we know that

s
′
i and s∗i agree until h and h ∈ H(s

′
i). We will refer to these facts later on in the proof. Con-

sider the subgame Γ(h). Exactly one the following three is true; ui(s
′
i|h, s∗−i|h) > ui(s

∗
i |h, s∗−i|h),
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ui(s
′
i|h, s∗−i|h) = ui(s

∗
i |h, s∗−i|h) or ui(s

∗
i |h, s∗−i|h) > ui(s

′
i|h, s∗−i|h).

The first is impossible as it implies s∗ is not a Nash equilibrium in the subgame Γh.

Let’s assume that the second is true. (And this is where the proof differs from Proposi-

tion 1 towards the end of this paragraph). In the subgame Γ(h), the paths of (s′
i|h, s∗−i|h) and

(s∗i |h, s∗−i|h) differ beginning at the initial node h. When player i takes the actions s
′
i(h) or

s∗i (h) this leads the game to subgame Γ(h(s
′
i)) or Γ(h(s∗i )) respectively. For notational sim-

plicity lets refer to them as Γ(h
′
) and Γ(h∗) here. Let’s first consider Γ(h′

). Notice first that

ui(s
′
i|h, s∗−i|h) = ui(s

′
i|h′ , s∗−i|h′ ) since they both lead to the exact same outcome. Likewise

ui(s
∗
i |h, s∗−i|h) = ui(s

∗
i |h∗ , s∗−i|h∗). Notice also that since s∗|h′ is a subgame perfect equilibrium

in Γ(h′), either ui(s
∗
i |h′ , s∗−i|h′) > ui(s

′
i|h′ , s∗−i|h′) or ui(s

∗
i |h′ , s∗−i|h′) = ui(s

′
i|h′ , s∗−i|h′) must be

true. Similarly either ui(s
∗
i |h∗ , s∗−i|h∗) > ui(s

′
i|h∗ , s∗−i|h∗) or ui(s

∗
i |h∗ , s∗−i|h∗) = ui(s

′
i|h∗ , s∗−i|h∗).

So both must hold with equality. This establishes that h is an indifference node with respect

to s∗ where s′I(h) and s∗i (h) are two optimal actions. This along with the assumption that s′i

weakly dominates s∗i , and the construction of s∗ leads us to a contradiction. If the former state-

ments were true, the undominated backward induction algorithm, by definition, would not have

assigned s∗i (h) at the indifference node h.

Therefore the third must be true. However this is a contradiction. Remember that h ∈ H(s
′
i).

This means that there is a strategy profile for the other players, say ˆs−i that brings the game to

h when player i plays s′
i. Consider a strategy profile for the other agents where that agrees with

ˆs−i before h and agrees with s∗−i elsewhere and recall that sai and s∗i agree until h. We have just

established that given this strategy profile of the other players s∗i performs strictly better than s
′
i.

□

Theorem 1 For any FPIE game USPE is nonempty.

Theorem 1 is a corollary of Proposition 4.
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2.2 Conclusions and Future Research

This thesis brings to the readers attention that in extensive form games we may observe that

equilibria are in dominated strategies. Such a phenomenon severely diminishes the stability of

such ’equilibria’. This is of particular concern if the game in question is one constructed as a

mechanism to implement a particular outcome. While on the surface such a mechanism observes

implementability by mere standard of technical definition, with respect to the ’equilibrium’, such

a conclusion is questionable in practice if players are expected to play dominated strategies.

Further we establish that in the context of finite perfect information extensive form games

subgame perfect equilibrium in which no players play dominated strategies exists. We conjec-

ture that the class of games for which we can ensure existence might include finite extensive form

games with imperfect information. As such it is our suggession that especially in the context of

an otherwise finite environment, the mechanism designer restricts consideration to finite mecha-

nisms. Although such a reduction may very well reduce the set of implementable social choice

functions it brings some clarification to what can indeed be implemented by rational players and

what can not.
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