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Abstract of the Thesis

Classification of Fetal Heart Rate Signals by Deep Learning

by

Xuan Chen

Master of Science

in

Electrical Engineering

Stony Brook University

2016

In the course of delivery, a fetus may suffer from oxygen deficiency due to the
intensive pressure changes. Electronic fetal monitoring (EFM) system has been widely
used in obstetrics, to provide continuous information to clinicians for making decisions
and in preparing for delivery. There has been many efforts to build automated systems
to analyze fetal heart rates (FHRs) and offer clinical supports.

In this thesis, our goal is to introduce the most recent and popular machine learn-
ing method, deep learning, for FHR classification. We first introduce the preliminaries
of FHR classification methods and the database used in our experiments. Then, the
basics and unique characteristics of deep learning are discussed, in order to create
foundation to understand our method. After that, we introduce 1-D convolutional
layer to the models and select their parameters. Finally, we test the performance and
generalization under three conditions.

We build two models, which take the raw FHR and features extracted from FHR,
respectively. The comparison between two models confirms the capability of neural
network to exploit nonlinear features. We also apply data augmentation to the FHR
database, which eliminates the unbalance of data set and the lack of sample size.
It shows good performance of cross validation on augmented data set. The general-
ization of the models is tested on the original data set used to generate augmented
data. Finally, we propose conjectures on the low true positive rate happened in the
validation on original data set that is not used in generation.
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Chapter 1

Introduction

It has always been the most important and precious event for a mother to get preg-

nant, nourish and deliver a baby. During the process of pregnancy, the physiological

status of mother is significantly different from its normal status. Maternal body pro-

vides extra nutritions in order to maintain the fetus in the uterine and drive normal

metabolism of the fetus through the umbilical cord. The life of a fetus relies on ex-

terior resources but as soon as the baby is delivered, the newborn individual has to

support itself by its own physiological system. This crucial transition between the two

statuses happens during the mother is laboring. Lots of changes of body structures

occur to the fetal body within the fleeting hour and all procedures need to be ready

for the first breath after labor. This process is so crucial that any unwanted outcome

brings threat to the life of fetus.

A woman’s uterine contracts when the fetus is about to be delivered, which is

helpful during natural birth because of the pressure it creates for pushing the baby

out of the vagina. The uterine contraction makes impact on the fetal body as well as

the umbilical cord. The constriction gives pressure on the surface of the fetal body,

squeezing the blood vessels under the skin. In addition, the constriction presses the

umbilical cord, and reduces the blood flow into the fetus. The fetal cardiac activity

decreases following the uterine activity, reflecting their intimate connections. When

the uterine relaxes, the pressure and activities of the fetal body gradually return to

normal. Since the fetus stays in a highly intensive environment during delivery, the
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oxygen insufficiency caused by the blood flow reduction, which might be caused by

excessive uterine activity or other reasons, is necessary to be taken care of. There

are different stages for oxygen insufficiency. Hypoxemia is the initial stage of oxygen

insufficiency. In this stage, the oxygen in the fetal arteries reduces. The reflex system

increases the cardiac activity in order to raise more blood flow bringing enough oxygen

and on the other hand, restrains fetal activity to reduce oxygen consumption.

If the fetus suffers from more serious oxygen insufficiency or stays in hypoxemia

for a longer period without recovering to normal states, it enters the stage named

hypoxia. In this stage, oxygen is insufficient to supply the whole body. Then, oxygen

is provided to the central organs in order to sustain the baseline of staying alive.

Consequently, the peripheral tissues are not able to obtain enough oxygen and they

turn to anaerobic metabolism. Fetuses can last a few hours in this stage without

irreversible damage. Then fetus may enter a third stage of oxygen insufficiency,

asphyxia, where central organs lack oxygen and turn to anaerobic metabolism. The

anaerobic metabolism consumes the glucose stored in the fetal body. Along with the

glucose being consumed, the fetus will undergo unrecoverable damage of the brain

and the heart, which is one of the sources of cerebral palsy, or die.

As for the intimate relation between fetal heart rate and oxygen insufficiency,

electronic fetal monitoring system was introduced in order to continuously place fe-

tus under supervision. The methods for monitoring can be divided into two cat-

egories: invasive and non-invasive. Invasive methods usually refer to the insertion

of an electronic device with piezoelectric sensors. The piezoelectric sensors generate

electric signals while being deformed by the fetal activities. The signal is transmit-

ted through cables into the outside part and is displayed on a screen or analyzed by

a computer and then displayed. There are similar devices for non-invasive measure-

ments, which place piezoelectric sensors on the maternal body. Non-invasive methods

are preferred nowadays due to the potential influence of invasive devices to neonates.

However, non-invasive methods are less accurate than invasive ones due to the inter-

ference from maternal activities such as heartbeat, breath and peristalsis. Another

non-invasive method is based on a device that uses Doppler. The device emits ul-
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trasonic waves and receives the reflection and measures the difference between their

frequencies to calculate the fetal activity.

The development of automatic monitoring system has been proposed for two ma-

jor reasons. At first, clinical doctors who are able to diagnose fetal status are unable

to supervise continuously because of either limited stamina or lack of staff. Therefore,

it is extremely dangerous for a baby to enter the asphyxia stage when doctors are

absent since there are few minutes before an unrecoverable damage occurs. Secondly,

research reveals high intra- and inter observer variability in daily clinical practices.

The diagnostic result sometimes differs between different doctors and between differ-

ent states for a certain doctor regardless of their work place and experience. Thus, a

reliable, stable and automatic monitoring system is expected, where the classification

model is the most critical part.

1.1 Motivation

The aim of the this thesis is to contribute to the classification model of fetal heart

rate by introducing state of the art technology, deep learning. Deep learning has

thrived since 2006 when a theoretical breakthrough came into being [1]. It shows

great advantage for some problems that were considered difficult. These problems

involved images, audio signals and natural languages, which have common similarities

in their features in that they are hard to describe and they have highly abstract

information built hierarchically from bottom up. The information of fetal heart rate

lies in time series, which can be described by a point existing in a high dimensional

space whose dimension is the length of the time series. As long as the dimension

increases, classification models suffer from the “curse of dimensionality”, in which the

number of samples exponentially increases with respect to the dimensions to keep

sufficient sample density. Without sufficient sample density, models tend to overfit

in the training stage and result in bad performance in generalization. Deep learning

has shown the ability that overcomes overfitting to some extent when dealing with

high dimensional problems. Intuitively, this property can be used for fetal heart rate
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signals. Traditionally, the features of FHR signals were hand coded. Before the test

result of a certain feature comes out, we do not know whether the feature provides

additional information with respect to the information available in existent features.

This leads to a trial and error process, which is inefficient and may fail if useful

information hides in unknown features. The proposal of Multi layered perception

(MLP) [2, 3] wanted to solve the problem. The predecessor of MLP is perceptron,

which is a classification model for binary input and output with linear relations [4].

MLP extends the notion by stacking multiple perceptions and regards every layer

except the last one as a nonlinear feature extractor. Since the stacking of linear

functions is still linear, the output of each layer of MLP is followed by a nonlinear

activation function. MLP is a type of artificial neural network. The work in this

thesis will explore the available means and appropriate type of neural network for

classification of FHR signals, test the performance, and provide directions further

research.

1.2 Fetal Heart Rate Time series

The FHR signals are usually recorded by electrocardiograph (ECG), which takes

consecutive time samples from sensors and outputs R-R intervals. FHR signals can

be directly computed from the R-R intervals. Each sample of the signal is measured

in beats per second. The data used in training and validation is from Physionet [5],

an online resource of physiological data for biomedical researches. The database we

use in this thesis is from the Czech Technical University in Prague and the University

Hospital in Brno. The database contains 552 FHR recordings selected from 9164

recordings [6]. Each recording starts no more than 90 minutes before delivery and is

at most 90 minutes long. The signal is sampled at 4Hz and the recording is stored as

fetal heart rate in beats per minute. There are additional clinical variables included

in each sample such as age, parity, sex, indices of umbilical artery blood sample and

APGAR score. The blood samples are measured when the baby is delivered. In this

work, we take the pH value of the umbilical blood as the golden standard to indicate
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whether a fetus is undergoing oxygen insufficiency.

There are missing data during sampling due to imperfections of the recording

system problem. This is resolved by preprocessing the acquired signals. The prepro-

cessing strategy is described as follows:

1. Delete missing data (0s and NaNs) at the beginning and at the end of each

recording.

2. For missing data in the middle, if the duration is less than 15 seconds, interpolate

data by a piecewise cubic Hermite polynomial. Otherwise, delete the segment

directly and connect the two adjacent segments.

1.3 Previous Studies

Monitoring FHR has been used in practice for a long time. At first stethoscope was

used to inspect FHR intermittently. Then electronic fetal monitoring (EFM) system

provided continuous monitoring, and overcame the potential danger when doctors

were not in attendance. EFM usually includes cardiotocography (CTG) and uterine

contractions (UC). Nowadays EFM has already been a common equipment and is

deployed almost completely in obstetrical activities.

Though continuous monitoring sounds practical, the reading and interpretation of

FHR signals have been a huge burden for clinical doctors. Furthermore, the interpre-

tation suffers from significant inter- and intra-observer variability, which lead people

to build fully automated FHR signal interpretation and decision system. However,

there has been some progress. For example, the STAN system developed by Neoventa,

Sweden, has full clinical use [7–9]. Also, there has been progress with new methods.

These methods are based on different approaches, including time-frequency analy-

sis [10], nonlinear feature classification [11], hierarchical Bayesian modeling [12] and

use of neural networks [13, 14]. However, due to the complex biological environment

during delivery, a lot of noise, artifacts and lack of continuity are introduced to the

measured signal, bringing difficulty and challenges [15]. As a result, the search for an
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accurate and stable method for supporting clinical decisions is still underway.

1.4 Structure of Thesis

This chapter discussed the motivation of this work, the previous studies of classifica-

tion of FHR signals and preliminaries of fetal heart rate and deep learning, which are

the basis of and closely related to the other chapters of this thesis.

In chapter 2, a detailed overview of deep learning is presented. We discuss the

common properties of neural networks. We also discuss the characteristics of each

type of neural network and determine the most suitable one to be used in our work.

In chapter 3, the model is built from a type of neural network to a well-defined

model that could be about to work. We build different models for different inputs

and later compare their performances.

Chapter 4 presents the training and validation results. The comparison between

different models on augmented and real data sets is presented and analyzed.

Chapter 5 provides conclusions from the performance results and discusses the

problems we encountered during our work. The discussion also involves the possible

solutions of these problems. We also suggest directions for future research.
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Chapter 2

Introduction Deep Learning

Deep learning has been extensively used in industry [16–24], due to its handiness

and effectiveness without knowing domain specific knowledge. However, it is not so

popular in academia. Researchers usually prefer models with concrete mathematical

basis and rigorous logic, whereas deep learning still remains unexplainable to some

extent. However, it is important to study its theory and properties, because we

can improve it only if we know how it works. In recent years, attention of some

researchers has been drawn to this field. Thus, a lot of variations of neural network

with better performance such as Long Short Term Memory (LSTM) [25] and Neural

Turing Machine (NTM) [26] have been published. On the other hand, we are still

far away from the underlying theory that could unify all the frameworks and explain

their properties.

This chapter will introduce some basics of deep learning and build the foundation

for using neural networks in subsequent chapters.

2.1 Background of Deep Learning

Neural networks dominate the research on deep learning. However the predecessor of

neural networks is the perceptron. The perceptron algorithm was invented in 1957

at the Cornell Aeronautical Laboratory by Frank Rosenblatt [4], and it is equiva-

lent to a linear support vector machine (SVM). The perceptron is able to classify
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input vectors into binary classes. However, the perceptron is only capable to solve

linear separable problems. It cannot solve even a simple linear inseparable case, i.e.

exclusive-or classification problem [27]. The successor of perceptron, the multilayer

perceptron (MLP), introduces an activation function so that it allows perceptrons to

stack together without reduction. The MLP can be learned by backpropagation and

is also known as the basic type of feedforward artificial neural network (ANN) [2, 3].

The neural network also known as recurrent neural network (RNN) was invented in

1993. The RNN contains feedbacks, which provide memory ability, enabling the neu-

ral network to process time series. The Long short-term memory (LSTM) is a type of

RNN, which was proposed in 1997 [25]. The LSTM explicitly includes memory cells,

and it resolved the gradient vanishing problem during the unfold backpropagation

in RNN. In 2014, the Neural Turing Machines (NTMs) as an extension of RNN was

proposed [26]. It couples the external memory resources and lets it be differentiable.

In 2016, the differentiable neural computer (DNC) [28] was introduced. It combines

NTMs with an attention mechanism.

2.2 Semantics of Activation Function

The activation function plays an important role in the neural network structure. It

is obvious that a multi layered neural network with linear activation functions can be

reduced to a single layer model as follows (2.1):

ℎ1 = 𝑊 1ℎ0

ℎ2 = 𝑊 2ℎ1

⇒ ℎ2 = 𝑊 2𝑊 1ℎ0, (2.1)

where ℎ𝑖s are layer vectors and 𝑊 𝑗s are weights. Thus, adding more layers with

linear activation functions doesn’t help to improve performance because they are all

equivalent to a single linear model.

Stacking more nonlinear layers is helpful because such model cannot degenerate.

8



It endows the neural network with the capability to become deep. There are a number

of types of activation functions but most of them can be categorized into three classes:

sigmoid, Rectifier Linear Unit (ReLU) and others. The sigmoid functions usually refer

to a sigmoid or a hyperbolic tangent function (tanh) [29]. They are given by (2.2).

𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) =
1

1 + 𝑒−𝑥

𝑡𝑎𝑛ℎ(𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
(2.2)

One of the unique properties of the sigmoid class is the S-shaped curve. The limits of

the function at plus and minus infinity are constant values, and the only significant

change happens near the origin. The output of the sigmoid function ranges from 0

to 1, which is often used to describe probability. Tanh ranges from -1 to 1, which is

unable to have probabilistic semantics but is symmetric along the origin. The sigmoid

class was preferred in the first few years after 2006, because of its concrete theoretical

meaning. However, in practice, it was found that the sigmoid function causes severe

degradations. When the neural network becomes deep, the gradient vanishes by

exponential rate along with backward propagation [30,31]. This phenomenon prevents

the building of deeper models. ReLU as an activation function solved the problems

to some extent [32–34]. As described by (2.3).

𝑅𝑒𝐿𝑈(𝑥) =

⎧⎪⎨⎪⎩0 𝑥 < 0

𝑥 𝑥 ≥ 0

(2.3)

The ReLU is a piecewise linear function of which the gradient does not vanish along

its positive half axis. The gradient of the negative part of ReLU is 0, so that as long

as the input lies on the negative side, the gradient disappears and the corresponding

parameters are fixed, or namely, the neuron is dead. In order to improve this, other

alternatives such as Leaky ReLU (LReLU) [35] and Parametric ReLU (PReLU) [36]

have been proposed. There are also other types of activation functions [37], but they

are usually used in rare edge cases, so we will not discuss them in detail.
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The effectiveness of the neural network is usually described in two ways. Some

researchers expect to derive the model from basic mathematical assumptions and ax-

ioms, just like other models. This method tends to guarantee the logic and structure

of the neural network rigorously following the existing mathematical system. Oth-

ers prefer to develop the neural network from the principles of neuroscience, which

in general studies the basics of neurons and neural system. Researchers from this

area tend to view the neural network as an abstract mathematical description of a

biological neural system, assuming that it somehow behaves as being intelligent [38].

2.2.1 Abstraction of Biological Neural Activation

The secret of intelligence is still under cover, but the mainstream notion of the source

of intelligence is that it comes from neural activities. The firing characteristics of a

single neuron has been broadly studied. It shows that the stimulation from receptors

and synapses from other neural cells accumulates in the neuron. If there is enough

stimulation received by a certain neural cell, it fires and generates action potential.

The potential change moves along its axon and reaches the synapses, where it re-

leases transmitters to cross the cell membrane, received by the receptors of the target

cell. The two major type of activation functions represent two different perspectives

in modeling the action characteristic of a neuron. The sigmoid activation function

(2.4), taking input from the previous layer, accumulates input signals and outputs a

probability of whether the neuron fires.

ℎ𝑖+1 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊 𝑖+1ℎ𝑖 + 𝑏𝑖+1) (2.4)

ℎ𝑖+1 = 𝑅𝑒𝐿𝑈(𝑊 𝑖+1ℎ𝑖 + 𝑏𝑖+1) (2.5)

The RuLU function (2.5), corresponding to a rate coded neuron, takes the input

signals and produces a positive value from 0 to infinity, indicating the rate or frequency

of the fired signal, i.e., these two types are used in the second generation of neural

networks. There is a third generation of neural networks, aka spiking neural networks,

which take the timing pattern into account and assume the timing pattern as a part

10



of representation, namely temporal coding. However, the mathematical background

of spiking neural network is still rather weak, and it will not be covered in this thesis.

2.2.2 Probabilistic Semantics

The more acceptable perspective to view neural network is from probability theory.

Probability theory has always been in the center of dispute in history. The dispute

involves the multiple aspects of probability theory. For instance, there is divergence

for the origin of randomness (or noise). One opinion is that the noise exists because

there are effective factors that are not observed yet, but the underlying interaction is

deterministic. The other opinion believes even if all factors are taken into account,

the interactions between variables still have random part. One of the most successful

usage of probability theory is the modern quantum theory, which heavily relies on

probabilistic result. Therefore, the dispute of the aforementioned problem was nat-

urally brought to the physics area. Though there is no solution so far, the problem

itself somehow follows the rules of probability, and probability theory has been widely

used and is regarded as one of the foundation of machine learning.

The sigmoid neural network can be derived independently from probabilistic graph-

ical model (PGM). Consider a Restricted Boltzmann Machine (RBM) [39] with Bernoulli

random variables for both the visible layer 𝑣 and the hidden layer ℎ. The joint prob-

ability if the RBM is

𝑃 (ℎ, 𝑣) = 𝑒𝑏
′𝑣+𝑐′ℎ+ℎ′𝑊𝑣.

Since each element of ℎ is conditionally independent given 𝑣, the conditional proba-

bility of ℎ given 𝑣 can be calculated as follows:

𝑃 (ℎ|𝑣) =
∏︁
𝑖

𝑃 (ℎ𝑖|𝑣)
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𝑃 (ℎ𝑖|𝑣) =
𝑒𝑏

′𝑣+𝑐𝑖ℎ𝑖+ℎ𝑖𝑊𝑖𝑣∑︀̃︀ℎ𝑖
𝑒𝑏′𝑣+𝑐𝑖̃︀ℎ𝑖+̃︀ℎ𝑖𝑊𝑖𝑣

=
𝑒𝑐𝑖ℎ+ℎ′

𝑖𝑊𝑖𝑣∑︀̃︀ℎ𝑖∈{0,1} 𝑒
𝑐𝑖̃︀ℎ𝑖+̃︀ℎ𝑖𝑊𝑖𝑣

=
𝑒𝑐𝑖ℎ𝑖+ℎ𝑖𝑊𝑖𝑣

1 + 𝑒𝑐𝑖+𝑊𝑖𝑣

Thus, the conditional probability of a hidden variable ℎ𝑖 = 1 is

𝑃 (ℎ𝑖 = 1|𝑣) =
1

1 + 𝑒−(𝑐𝑖+𝑊𝑖𝑣)

= 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑖𝑣 + 𝑐𝑖).

Similarly,

𝑃 (𝑣𝑖 = 1|ℎ) = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊 𝑇
𝑖 ℎ + 𝑏𝑖).

When the variables are assumed Gaussian, similar inference can be made and the

result is still a sigmoid network. Deep belief network (DBN) can be derived by

stacking RBMs [40]. The probability of an 𝑛-layered DBN can be formulated by

𝑃 (𝑣, ℎ1, ..., ℎ𝑛) = 𝑃 (𝑣|ℎ1)
𝑛−1∏︁
𝑖=2

𝑃 (ℎ𝑖−1|ℎ𝑖)𝑃 (ℎ𝑛−1, ℎ𝑛) (2.6)

A deep rendering model (DRM) [41] explains the probabilistic semantics of convo-

lutional neural network (CNN) with RuLU function. The model defines a rendering

function 𝑅(𝑐, 𝑔) to render an image (or other type of signals) 𝐼 = 𝑅(𝑐, 𝑔)+𝑛𝑜𝑖𝑠𝑒 from

a category 𝑐 and a nuisance variables 𝑔. By applying max-sum marginalization on

the maximum a posteriori (MAP) classifier, the estimated category of an observation

is

𝑐 = 𝑎𝑟𝑔 max
𝑐∈𝐶

𝑝(𝑐|𝐼) = 𝑎𝑟𝑔 max
𝑐∈𝐶

𝑝(𝐼|𝑐)𝑝(𝑐)

= 𝑎𝑟𝑔 max
𝑐∈𝐶

max
𝑔∈𝐺

𝑝(𝐼|𝑐, 𝑔)𝑝(𝑐)𝑝(𝑔)
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= 𝑎𝑟𝑔 max
𝑐∈𝐶

max
𝑔∈𝐺

⟨𝜂(𝜃𝑐𝑔)|𝑇 (𝐼)⟩

= 𝑎𝑟𝑔 max
𝑐∈𝐶

max
𝑔∈𝐺

⟨𝑤𝑐𝑔|𝐼⟩ + 𝑏𝑐𝑔

where

𝑤𝑐𝑔 =
1

𝜎2
𝜇𝑐𝑔 =

1

𝜎2
𝑅(𝑐, 𝑔)

𝑏𝑐𝑔 =
1

2𝜎2
‖𝜇𝑐𝑔‖22.

where 𝜇𝑐𝑔 = 𝐸(𝑅(𝑐, 𝑔)). Since the input may contain multiple objects, a single

point is possible to belong to different configurations for a random variable. To

prevent this from happening, a switching variable 𝑎 is introduced. When 𝑎 = 0, the

rendered patch is replaced by all zeros. Otherwise it is left unchanged. The switching

variable of each point is assumed to be independent, which is one of the weaknesses

of DRM, because in practice they can be correlated. Then, the estimate becomes

𝑐 = 𝑎𝑟𝑔 max
𝑐∈𝐶

max
𝑔∈𝐺

max
𝑎∈𝐴

𝑎(⟨𝑤𝑐𝑔|𝐼⟩ + 𝑏𝑐𝑔) + 𝑏𝑐𝑔𝑎

= 𝑎𝑟𝑔 max
𝑐∈𝐶

max
𝑔∈𝐺

𝑅𝑒𝐿𝑈(⟨𝑤𝑐𝑔|𝐼⟩ + 𝑏𝑐𝑔)

The marginalization of 𝑎 forms the ReLU function.

2.3 Distributed Representation

The distributed representation refers to storing the memory of an object into all the

memory elements in contrast to one-hot representation, which uses a unique memory

element to represent a certain object. One of the advantages of distributed represen-

tation is its large capacity. Imagine that a memory includes 𝑛 binary elements. If we

store information by one-hot representation, maximally 𝑛 objects can be represented.

However, if we store information by distributed representation, by the power law,

2𝑛 objects in total can be represented. In addition, distributed representation shows

automatic generalization ability, which alleviates the necessity of regularization, al-
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lowing models to be more integrated. [42]

The embodiment of distributed representation in neural networks is reflected by

its multi-layered structure. With the notion of deep structure, one expects that the

deep neural network describes the data in a hierarchical form. Each layer represents

a level of features of the data and each layer is independent from each other. By this

notion, the data can be stored in a distributed pattern, according the neural networks

to process very complex data accurately without losing generalization.

2.4 Universal Approximation

There used to be few models that are capable for interdisciplinary usage. The key

factor of the generality of a model is the capability of approximating functions. As

shown in (2.1), a linear function cannot approximate a nonlinear function. Kernel

methods could transform nonlinear relations to a linear relation, making it easier to

solve difficult problems, but kernels need to be hand-coded, lacking flexibility. Poly-

nomials and splines are used as kernels to provide universal approximation ability.

However, the accuracy of the approximation of these methods depends on the num-

ber of parameters. When high accuracy is needed, the large number of parameters

will lead to overfitting, which forms a dilemma between model accuracy and gener-

alization. The standard multi-layered feedforward neural network has been proved

to be a universal approximator. For arbitrary bounded and non-constant activation

function, the network having at least one hidden layer can approximate any function

by arbitrary precision, provided a sufficient number of neurons. [43–45]

2.5 Variations of Neural Networks

Until now there has been a number of different neural networks proposed in the

literature. Some of them are intended to achieve better performance and others can be

used where basic neural networks cannot fit. According to the topology, these models

can be categorized into two classes: feedforward networks and recurrent networks.
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Feedforward means the graph constructed by the network contains no cycles, that is,

the graph is a directed acyclic graph (DAG). Originally, every neuron in a certain

layer is connected by all neurons from its previous layers. However, when neural

network is used in image processing problems, the number of parameters becomes

excessively huge, resulting in their inpracticality. In order to reduce the parameters

as well as being inspired by the concept of receptive field of the visual system [46–49],

convolutional layer has been developed and is widely used in vision and graphical

area [50,51]. A convolutional layer can be expressed by

ℎ𝑖+1
𝑗 = 𝜎(

𝑛𝑖∑︁
𝑘=1

𝑊 𝑖+1
𝑗𝑘 * ℎ𝑖

𝑘 + 𝑏𝑖+1
𝑗 ) (2.7)

where 𝜎 is any activation function, ℎ𝑖
𝑗 is the 𝑗th channel of the 𝑖th layer and 𝑛𝑖 is

the number of channels of the 𝑖th layer. The symbol (*) denotes 2-D convolution. A

neural network with convolutional layers is also called convolutional neural network

(CNN).

In contrast, a recurrent neural network (RNN) has feedback connections, which

allows the output to be time correlated, or namely, the network has a memory ability.

This characteristic is appropriate when processing time series such as audio signal and

heart rate signals [18,21,52,53]. However, the RNN has its own limitations. There are

several areas for improvement. Firstly, due to the feedback connections, in the training

of the RNN, one has to unfold the whole network through time. When develop with

long series in training, the gradient vanishes during the long term propagation. This

problem can be ameliorated by choosing a proper activation function [54]. Secondly,

a major reason for using RNN is the memory ability. However, it is shown in practice

that RNN “forgets” too quickly, meaning that it cannot make inference upon events

between long intervals [55]. Long short term memory (LSTM) introduces memory

cells integrated into the neural network. The control signals: input, output and forget,

of the cells are provided by neurons and can be trained as normal neurons. In practice,

the LSTM demonstrates decent long term memory unlike the plain RNN [56].

There are plenty of variations of neural networks not mentioned above, but they

15



can be classified into either of the two classes. Another perspective is to categorize

the neural networks according ti their ability to generate samples. If they can, they

are generative networks; otherwise, they are a discriminative networks. Usually a

generative network has the probabilistic semantics and sometimes can be used as a

discriminative model, or vice versa.

2.6 Batch Normalization

The training methods of neural networks involve deterministic and probabilistic ap-

proaches. Contrastive divergence is an efficient method to train a neural network from

probability perspective and is often used for training a probabilistic model without

supervision as the initial value for supervised training. Backpropagation is a deter-

ministic method, which requires labeled data so that it is only valid for supervised

learning.

Backpropagation works with optimization techniques. The target loss function

defines the distance between the estimated values from the network and the labels.

Since the loss relates to all the samples in the training set, it is ideal to feed all

the recordings into the network before the computing gradients. However, in most

cases when the training set is too large to calculate together, the stochastic gradient

decent (SGD) must be used. The notion of SGD is feeding one recording at a time

to compute gradient according to the sample fed, allowing the loss to move to local

minimal via a zig-zag curve. Batch normalization technique allows feeding multiple

recordings at a time called mini-batch to neural network to compute the gradient.

Technically, it reduces the variance of the gradient and gives a better estimation of it

during each step. Batch normalization allows training with larger learning rate and

simultaneously behaves as regularization [57].
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2.7 Loss Function and Optimization

Loss function defines the distance between the estimates and the ground truth. It is

also known as cost function, object function or error. Usually the aim of optimization

is to minimize the loss function, so that the estimates can be as close to the expected

output as possible. The Euclidean distance is often used in regression models. It

defines the distance within a regular Euclidean space from the point of ground truth

in estimation. For the classification problem, the ground truth can be considered as

locating at either 0 or 1 at each dimension and the loss still refers to the Euclidean

distance [58]. Recent studies proposed machine learning methods based on manifold,

where one assumes the recordings to only exist on a manifold of the space, where the

distance is defined accordingly [59].

The computer architectures so far are good at processing discrete values but can

barely process continuous variables. Thus, optimization methods based on gradient

must be discretized. The training of neural network is virtually optimizing a non-

linear function. Since backpropagation only takes effect when the gradient exists,

the gradient based optimization is the exclusive choice for deterministic training. By

choosing a different optimization scheme, the behavior of training varies dramatically.

The most intuitive method is SGD, whose iteration formula is

∆𝜃𝑡+1 = −𝛼∇𝐿(𝜃𝑡)

𝜃𝑡+1 = 𝜃𝑡 + ∆𝜃𝑡+1. (2.8)

Plain SGD converges slowly if the loss function is flat. SGD with momentum is given

by

∆𝜃𝑡+1 = 𝜂∆𝜃𝑡 − 𝛼∇𝐿(𝜃𝑡)

𝜃𝑡+1 = 𝜃𝑡 + ∆𝜃𝑡+1. (2.9)

The momentum behaves similarly to inertia, keeping a certain speed of convergence

even if the gradient is small [60]. The parameter 𝛼 refers to learning rate, designating
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the speed of convergence. However, a large learning rate may cause unstable iterations

and an absence of converge. The parameter 𝜂 indicates momentum, which should be

assigned a value between 0 and 1.

Adaptive gradient methods are welcomed because of their handiness and robust-

ness. AdaGrad [61] attempts to compute updates according to the information from

previous iterations. AdaDelta [62] not only realizes adaptive gradient, but also can-

cels out the learning rate, leading to a more robust training process and removing a

hyperparameter. In this thesis, we chose AdaDelta in all our experiments.

2.8 Platform Selection

Deep learning is a compound technique, involving plenty of components that require

specific algorithms. Building a feasible deep learning program takes tremendous work,

not to mention making it efficient and general. Considering that the main aim of this

work is not developing new algorithms, we decided to work with the deep learning

framework. Fortunately, because of the popularity of deep learning, many academic

groups and enterprises released their own frameworks such as CNTK [63], which is

from Microsoft, TensorFlow [64], which is from Google, Theano [65–67], which is a

product of Université de Montréal and Caffe [68], which is owned by Berkeley Artificial

Intelligence Research (BAIR) Lab.

We chose Caffe for the following reasons.

1. Caffe provides Matlab interface, which is easier for accessing the FHR database

and previous results.

2. Caffe implements GPU acceleration, allowing faster training than on CPU.

3. Caffe uses json format to describe the network structure, which explicitly sep-

arates the model construction and underlying implementation.

Caffe also has disadvantages. Its encapsulation is on a very high level, so that it is

relatively difficult to modify low level principles. For those who want to study the the-

ories of deep learning or develop new learning algorithms, Caffe is not recommended.
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2.9 Summary

In this section, an overview picture of deep learning is introduced. Neural networks

are interpreted from two semantics describing an identical structure. We also briefly

introduced distributed representation and universal approximation theory, which are

two popular research directions in the theoretical study of deep learning. Then we dis-

cussed several typical characteristics of neural networks, including activation function,

batch normalization and optimization methods. At the end, we addressed practical

ways for implementing deep learning.
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Chapter 3

Model Configuration

In this chapter, we describe the details of the model we used in our experiments. Most

statistical models require choice of some hyperparameters to determine their basic

characteristics. The selection procedure is also called model selection. The results of

a model vary a lot according to the hyperparameters. Usually the model user would

try different sets of hyperparameters in order to achieve the best performance. Being

different from ordinary parameters, the hyperparameters are not estimated from data.

Generally speaking, they are a part of the model assumptions. They are also viewed as

the prior knowledge of structures in contrast to the unknown part which corresponds

to parameters. Not all hyperparameters cannot be estimated. Akaike information

criterion (AIC) [69] and Bayesian information criterion (BIC) [70] can estimate the

degree of freedom according to specific balance between the complexity of the model

and entropy. But they still need to run the model multiple times.

Deep learning models usually involve enormous number of parameters and these

parameters can be categorized into groups. The large degree of freedom and the

interaction between these parameters bring difficulties in determining the hyperpa-

rameters. Furthermore, the size of each layer, the number of layers and the types

of activation functions are also included in the set of hyperparameters. Specifically,

every neuron has at least two hyperparameters. One is to determine whether it in-

cludes a bias and the other indicates the type of activation function. The weights

between layers depend on the number of neurons in both layer and layer type. On the
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other hand, the different types of data also influence the determination of number of

weights. For example, the convolutional layer is meaningful for visual and audio data,

and we can use it in these settings so that wedramatically decrease the number of

weights. There is no golden standard for selecting the hyperparameters for a neural

network, but thanks to its popularity some rules of thumb exist. In the following

sections, we will determine neural network structures gradually according to these

rules.

3.1 Selection of Neural Network

The topological structure should be the first thing to consider. If the data are not

time-correlated, a feedforward structure is sufficient, otherwise a recurrent structure

must be considered. Even if we choose feedforward structure, there are also variations

such as ResNet [71], highway-net [72] and dense network [73]. When the model needs

to be very deep (more than tens of layers), the choice of these variations is crucial to

ensure convergence.

The FHR data represent time series, which are time-correlated. Intuitively, the

recurrent structure is the first topological choice. However, it is not suitable to use

RNN directly for our data set. The RNN takes input data and output data simul-

taneously, which means when the input of an RNN is a time series, the output of

it is also a time series with the same length. In the data set, the input is a time

series whereas the output is a scaler for each sample. Therefore, the training of RNN

becomes problematic, and this leads us to select feedforward structure as the basis of

a model.

The data set consists of 552 recordings in total, which is not a big number to

train a complex model. In order to perform cross validation, the size of training

samples further deceases. This limits the upper bound of number of parameters and

bounds the number of layers. On the other hand, due to the selection of feedforward

structure, the input signal must be fed into neural network at one time. Since the

length of the FHR signal could be long (several thousands of samples), the size of
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neurons at the input layer can be very large. Then the number of weights will be

enormous and the model will be unable to train. Convolutional layer is one of the

solutions to this limitation, because the weights of a convolutional layer are shared

between neurons. The weights are structured as a set of kernel convolving with the

input. The size of the kernels could be much smaller than input.

The size of the input and the output are highly unmatched. Therefore the inter-

mediate layers should shrink their sizes from top to bottom. The convolutional layers

are good at reducing the number of weights, but they are not able to decrease the size

of the data, since the convolution keeps the input and the output roughly of the same

size. Fully connected layers can be manually configured in such a way but the number

of weights between the neurons will grow drastically. There are two major methods

that could allow the convolutional layers to reduce the data size. One is based on

adding a pooling layer [74,75] and the other on using stride convolution [76]. Pooling

layer follows a convolutional layer, and it involves a pooling function which aggregates

multiple input values and outputs one scalar. For example, a pooling layer with a

window of length 4 will take 4 elements from the output of the previous convolutional

layer and outputs 1 element as output. Then the window moves by 4 elements to

where it is adjacent to the previous position. The procedure is repeated and as a

result, the output decreases by 4 times. Stride convolution adopts similar ideas. the

plain convolution computes the inner product between a window of the input and a

kernel, and moves the window by one element every time. Stride convolution accepts

a hyperparameter called stride, indicating how many elements the window moves each

time. Thus, the size of the output is the size of the input divided by the given stride.

Obviously, the information loss occurs within the stride convolution, and the larger

stride we use, the more information will lose.

The number of layers should be considered carefully. According to the power of

distributed representation, more layers could provide better performance and gener-

alization but will be difficult to train. This is because the gradients vanish gradually

during the process of propagation. The speed of vanishing varies when choose dif-

ferent activation function [30, 31, 77]. The sigmoid function suffers from the rapid
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vanishing of gradient because the maximum gradient of the sigmoid function is 0.25.

That is, the gradient vanishes by a factor of at least 0.25 per layer and shrinks expo-

nentially with respect to the number of layers. Additionally, in most of the domain

of the sigmoid function where it is flat the gradient is close to 0, which exacerbates

the vanishing of gradients. The gradient of the Tanh function locates between 0 and

1 despite of the original point, where the gradient is 1. However it has the same

problem as the sigmoid function. ReLU does not have a gradient vanishing problem,

thus, the network can be stacked for many layers.

3.2 Model with Raw Data Input

One of the extraordinary powers of deep neural networks is their ability to disentangle

complex and nonlinear features in the data. Thus, our first model is intended to make

use of these advantages and will be end-to-end model at first. The end-to end model

takes raw time series as input and directly produces the desired output, a label that

indicates whether the fetus is in danger. The input of the model are FHR time series.

The length of each sample will not exceed 90 minutes, and the recording of each

sample lasts until delivery. The active pushing phase is the second stage of labor,

in which the fetus is pushed actively to prepare for delivery. The second stage lasts

maximally 30 minutes. Thus the size of the input is chosen to be the last 30 minutes.

The signal is sampled at 4Hz, so that there are 7200 elements in the input layer. The

output label is a scalar binary value, indicating the fetal status. It is also possible to

output multiple statuses to indicate different risk levels of the current fetal status. It

is easy to do so by sightly modifying the model with binary output, as pointed out

in the sequel.

The final structure is determined by considering all of the factors mentioned above,

and compromising their pros and cons. The entire feedforward neural network con-

sists of two portions. The first portion includes five convolutional layers followed

by a pooling layer, which is followed by the second portion, consisting of two fully

connected layers and a linear layer. The size of the parameters of a fully connected
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layer depends on the size of its input and output. For the first layer, the input size is

identical to the output of the output of the last pooling layer. Since we are keeping

the number of weights as small as possible, the convolutional layers must compress

the feature size as much as possible and preserve the useful information as much as

possible. The number of the kernels for every convolutional layer is chosen to be the

power of 2. We choose powers of 2 only in order to achieve the best performance for

parallel computing.

The output size of the convolutional layer can be computed as follows:

𝑙𝑒𝑛𝑜𝑢𝑡 = 𝑛[(𝑙𝑒𝑛𝑖𝑛 − 𝑙𝑒𝑛𝑘𝑒𝑟𝑛𝑒𝑙)/𝑠𝑡𝑟𝑖𝑑𝑒 + 1]. (3.1)

where 𝑛 is the number of kernels of a certain layer.

In most cases, the length of the kernel is much smaller than the length of the input.

Thus, the decreasing factor is mainly affected by stride. On the other hand, the kernel

plays the role of representing features, where the richness of features depends on the

size of the kernel. Since the output size is irrelevant to the kernel size, the relation

between output size and the kernel size is decoupled. Therefore, we can determine

them respectively.

The first layer is responsible for extracting morphological patterns directly from

the time series. Thus, we assume that a longer kernel would be required. we choose

the length of the kernel of the first layer to be 128, and the number of kernels to be

16. The window size of the polling following the first convolutional layer is 4, which

decreases the data length from the first convolutional layer by 4. The output size of

the pooling layer can be computed as follows:

𝑙𝑒𝑛𝑜𝑢𝑡 = ⌈𝑙𝑒𝑛𝑖𝑛/𝑠𝑡𝑟𝑖𝑑𝑒⌉ . (3.2)

Thus, the output size of the first layer is

𝑙𝑒𝑛𝑐𝑜𝑛𝑣_𝑜𝑢𝑡 = 16 × [(7200 − 128)/1 + 1]

= 16 × 7073,
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𝑙𝑒𝑛𝑝𝑜𝑜𝑙_𝑜𝑢𝑡 = 16 × ⌈7073/4⌉

= 16 × 1769.

Therefore, the output data of the first layer is 1769.

For hidden layers, since they no more extract morphological features, the length of

the kernels are chosen shorter than the first layer. However, the scaling rates are still

kept the same. The number of kernels of all the hidden layers are all set to 32, slightly

higher than the first layer considering the flexibility provided by the decrease of kernel

length. According to (3.1) and (3.2), the output of the fifth layer is 32 × 6 = 192.

The last convolutional layer is followed by fully connected layers. Fully connected

layers, in which each neuron of its output is connected to every neuron of its input,

can configure the size of the output independently from the other hyperparameters.

We choose 32 and 16 as the size of the output of the first and second fully connected

layer, respectively. The following linear layer aggregates the 16 output from the

second fully connected layer to 2 neurons. The two neurons represent healthy and

non-healthy status, respectively, and represent the final classification. The output

layer is implemented by a softmax layer. The softmax layer normalizes the output

of each neuron to a value between 0 and 1, and improves the difference between

them at the same time [78]. The impact of the softmax layer on each neuron can be

represented as

𝑂𝑖 =
𝑒𝐼𝑖

𝑍

𝑍 =
∑︁
𝑘

𝑒𝐼𝑘

where I and O denote input and output of the softmax layer respectively. Since the

two output neurons are normalized, they can be seen as probabilities of unhealthy

fetus conditioned on the input FHR series. Then we can choose the neuron that

has larger probability as the estimated fetal status. Table A.4 presents a detailed

summary of the hyperparameters of each layer.

25



3.3 Model with Feature Input

Deep neural networks have shown ability to disentangle nonlinear features from com-

plex data structure. The previous section discussed the detail of building a deep

convolutional neural network which takes FHR time series as input, finds features

and does classification in an integrated model. This section, in contrast with the pre-

vious one, provides a description of a design of another convolutional neural network

which takes features already computed from raw FHR time series. The model itself

does not find features but only classifies the FHR signals by corresponding given fea-

tures. In the next chapter, we will compare the performance of the two models and

examine the disentangling capability of deep neural networks.

Although it is immediately reflected by the appearance when fetus suddenly enters

severely dangerous status, the biomarkers remain relatively stable. In order to gain

enough sensitivity, we calculate features within a window of certain length. To ensure

time resolution, the window is sightly shifted through time. Then, for each FHR

sample, we get a feature matrix 𝐹 as follows:

𝐹𝑖𝑗 = 𝑓𝑒𝑎𝑡𝑖(𝐹𝐻𝑅[𝑡 + 𝑗 * 𝑑𝑡 : 𝑡 + 𝜏 + 𝑗 * 𝑑𝑡])

where 𝐹𝑖𝑗 denotes the 𝑗th value of feature 𝑖, 𝑑𝑡 denotes the distance that the window

is shifted in each step and 𝜏 is the length of the window. The index of FHR starts

from the delivery moment and increases to earlier times.

Apparently, the matrix 𝐹 forms a 2-D feature map. However, there are two

ways to map 𝐹 to the input of a convolutional neural network since the data of

standard convolutional layers are 3 dimensional. The first choice is to regard the

feature matrix as a 2-D image (Figure B-2). The image convolves with different kernels

given by each channel of the first convolutional layer, and produces an output for each

channel. Obviously, the output of each channel is a 2-D array, and this characteristic is

inherited to all subsequent layers until the first fully connected layer. Secondly, we can

divide features into channels respectively (Figure B-3). Each channel of the output of

the first convolutional layer is the function of the sum of convolutions between each
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feature channel and corresponding kernels. We use the second configuration in the

experiment for the following reasons:

1. 1-D channels keep consistent with the model with raw data input (Figure B-1),

making it easier to implant the remaining part of the model and reducing the

additional differences in their performances.

2. The scale of the features are different. Some features have values greater than

a thousand and others might be less than 1. If they convolve with the same

kernel, the contribution of the features that have small values will vanish in the

noise of large values. Convolving them separately could prevent the vanishing

of small valued features and ensure less information loss, since their kernels are

disjoint and can have different scales.

3. The 2-D feature maps introduce significant amount of weights in the concate-

nation of the last convolutional layer and the first fully connected layer. Using

the second configuration reduces the weights that need to learn.

The windows size is finally chosen as 30 minutes. After each evaluation the window

moves 30 seconds to the past. Since we use the last 60 minutes to evaluate feature

values, the size of the feature matrix is 14 by 60. The complete configuration of the

model with feature input is listed in Table A.3.

3.4 Summary

In this chapter, we discussed the model selection of neural network used in the exper-

iments for this thesis. The two models have some common hyperparameters, which

are selected in the first section. After that, the second section describes the methods

to determine the remaining part of the model which takes raw FHR data as input,

and gives a sample to show how to compute the size of each layer. The third section

focuses on the model with feature input. We at first introduce the features we use

and the way to compute and arrange the input matrix. Then we compare the pros

and cons of the two mapping schemes and finally decide which will be used in the
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model. The next chapter will discuss the procedure of the experiment and the result.

The performance of both models are evaluated in different situations.
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Chapter 4

Model Evaluation

Training a deep model is usually considered to be difficult due to the lack of knowledge

of its convergence and theories. The first barrier of training is the convergence. There

are a lot of reasons for lack of convergence. For instance, a very small learning rate

results in a very slow convergence especially when the objective function is flat, so

that the convergence is not observable in a short period or the update value in each

iteration is less than the minimal number a computer could represent. By contrast, a

too large learning rate may cause divergence. The choice of activation function also

affects the convergence. The convergence becomes extremely slow if the activation

function is sigmoid and the input is far away from the origin. Recall that the sigmoid

function is flat when the absolute value of the input is large. The ReLU function

keeps constant gradient in positive half axis (see 2.3). However, once the input of a

ReLU neuron falls on negative axis, the neuron will “die” forever. This phenomenon

usually leads to a minute accurate loss but sometimes causes inability to converge.

There are many other reasons related to the convergence, and these reasons usually

involve plenty of aspects such as algorithmic stability, quantitative approximation,

software defect and unknown reasons, which increase the difficulty of training when

they interweave with each other.

In chapter 3 we have build two deep models for FHR classification. In this chapter,

we train the two models respectively in different situations. The models are trained

directly on data set at first but the performance is poor due to the small sample size
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and highly unbalanced data distribution. Then we use data augmentation to produce

a synthesized data set with sufficient and balanced sample size. The models trained

on this set show good generalization. The models trained on the synthesized data set

are also tested on real samples. The results show that the performance is good when

the test cases are used to generate synthesized data, whereas if the test cases are

not included in the samples used to generate, the performance is as good as training

directly on the data set.

This chapter is organized as follows: first, we introduce the training configurations

for both models. Second, we describe the methods used to generate augmented data

set. Then, the strategy of cross validation is introduced and the result of each situation

is presented. Finally, a qualitative analysis of the result will be discussed at the end

of this chapter.

4.1 Training Strategy

The training of a neural network involves configurations of several aspects. In this

section, we will discuss the settings of each aspect and the rationality behind them.

The detailed hardware and software description is listed in Table A.1.

4.1.1 Batch Size

Batch normalization is a common technique to facilitate the speed of convergence. A

large batch size offers better estimation of gradient and furthermore reduces curvature

of the path of optimization. Intuitively, it is better to assign larger as large as possible

and can be ideally equal to the number of recordings. Thus, in the experiment that

train the model by original data set, we choose a batch size of 497, where the rest

55 recordings are left for validation. However, for the experiment that train the

model based on synthesized data, choosing the number of recordings as the batch size

causes video memory overflow, since the training set is too large to entirely store into

memory. Therefore, after several tests, we chose a batch size of 8192 for feature input

model, in which more than half of the video memory is occupied, whereas the batch

30



size of raw input model is 512, since the size of raw FHR data is much greater than

that of features.

4.1.2 Optimization Algorithm

We choose AdaDelta as the optimization algorithm in all experiments. Unlike SGD,

AdaDelta is not intended to use the gradient as an update value. The principle of

AdaDelta is to simulate the Newton’s method, which gives optimal estimation by

the inverse Hessian matrix. Since the computation of the matrix inverse is slow and

the chain rule of the second derivative is not intuitive, backpropagation framework

is designed based on the first derivative. AdaDelta uses the following equation to

approximate the inverse Hessian:

∆𝜃 =
𝜕𝐿(𝜃)
𝜕𝜃

𝜕2𝐿(𝜃)
𝜕𝜃2

⇒ 1
𝜕2𝐿(𝜃)
𝜕𝜃2

=
∆𝑥
𝜕𝐿(𝜃)
𝜕𝜃

where 𝜃 denotes a parameter of the loss function 𝐿.

Then use the 𝑙2-norm of previous gradients to approximate the gradient of the

next point, and use the same technique to approximate update value, ∆𝜃, which so

far is unknown. Therefore, the update value can be computed as:

∆𝜃𝑡+1 = −
√︀

𝐸(∇𝐿(𝜃𝑡+1)2) + 𝜀√︀
𝐸(∆𝑥𝑡) + 𝜀

∇𝐿(𝜃𝑡)

where

𝐸(𝑥𝑡) = 𝜌𝐸(𝑥𝑡−1) + (1 − 𝜌)𝑥𝑡.

We use the same configuration for all the experiments. The decay of 𝑙2-norm, 𝜌, is set

to a default value of 0.99 and the numerical stability, 𝜀, is set to 1e-6. The momentum

of the update is set to 0.9.
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4.1.3 Maximum Iteration

The training of neural networks requires a huge amount of computation. One needs

to set an upper limit for the number of iterations when we conduct cross validation.

Figure B-4 shows the learning curves of training and testing accuracies in the first

10,000 iterations performed on raw data before experiments in order to find an appro-

priate iteration limit. From the example shown in figure B-4, we could see that the

training and validation accuracies do not increase significantly after 2500 iterations.

Leaving some margin, we chose 3000 as the number of iterations in the experiments.

4.1.4 Regularization

Neural networks usually contain a number of parameters and our two models are

not exceptions. In order to prevent overfitting, it is usually required to add a reg-

ularization term to constrain the number of parameters. However, practical use of

neural network shows that even if without regularization, deep models possess good

generalization properties [42]. After a few pre-experiments, we decided not to use

regularization.

4.2 Data Augmentation

The FHR data set included 552 items. Depending on the selection of the pH threshold,

the number of positive samples varied from around 20 to 60. Obviously, such data set

is too small and biased for training a neural network. In fact, we did this experiment

and according to the validation result, the model usually had accuracy of around 0.8,

but true positive rate was low, somewhere between 0.1 and 0.2, whereas the the true

negative rate was always close to 1. There are two possible reasons that could explain

this consequence.

1. The model learns little from these samples due to lack of sample capacity. Con-

sider the following equation used to describe the probability of class prediction
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after the softmax layer:

𝑃 (𝑐|𝑠, 𝑤) = 𝑃 (𝑠|𝑐, 𝑤)𝑃 (𝑐)

where 𝑠 denotes the input sample to the neural network, 𝑐 denotes a particular

class and 𝑤 represents the parameters in the model. According to the validation

result, the prediction accuracy of a particular class is close to the proportion

of that class in the training set as well as the validation sets. Thus, the term

𝑃 (𝑠|𝑐, 𝑤) is roughly a uniform distribution, which means the model did not

learn to distinguish two classes.

2. From the perspective of sample space, the 7200-point time series can be seen

as a point in a 7200-D space. The model learns a border that can divide the

space into two subspaces, which represent two classes respectively. The border

can be either plane or curved surface. Since the neural network is a universal

approximator, a curved surface should provide a more accurate description. We

can imagine if there are enough recordings for both the positive and negative

classes, the model is able to find an exact and clear border between them.

However, since the data set is small and highly biased towards negative class,

the positive recordings scatter sparsely across the ideal positive region. Thus,

for the region belonging to the positive class where a positive recording in the

validation set is located but there is no recording in training set, the behavior

of model is unknown. A visualized explanation is given by Figure B-5.

Although we do not have complete understanding to determine which reason is the

major influence, the second reason is the preferred, since it could also explain the

good performance on augmented data.

Data augmentation is a technique that could improve the stability and generaliza-

tion of models by generating large amount of data from the original data. There are a

number of methods for generation depending on the requirement and data type. One

of the most common methods is resampling, in which we repeatedly choose a random

sample from the original data set with replacement. This method doesn’t work for
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our case since direct resampling does not generate new points in the sample space.

Finally we decided to resample from the frequency domain of the FHR, because pre-

vious study shows that frequency information of FHR has larger correlation between

different bands.

In order to correctly label the generated samples, we treated the negative and

the positive traces separatively. The procedure of generating the fictitious data of

positive class is presented as follows:

1. Transform every positive FHR trace to the frequency domain by FFT.

2. Divide the frequency domain into several bands. Each band has equivalent

energy summed across all traces. Since we have 44 FHR samples, there will be

44 samples for each band.

3. In order to generate a fictitious sample, we randomly choose a sample from each

band independently, integrate all bands into a complete frequency representa-

tion, and then transform it to time domain by the inverse FFT.

The generation of negative data is similar. In practice, we divide the frequency

domain into 7 bands. The window of each band is listed in Table A.2. It is obvious

that most energy is distributed in the low frequency part, so that the window is short

in the low frequency bands but long in the high frequency bands.

Following combination rule, for positive data, we can generate at most 447 for

positive class and 4477 for negative class, which is large enough for training any

model. By limiting the number of samples generated for each class, we can get

balanced training set and validation set. In the following experiments, we generated

100,000 traces for each class.

4.3 Cross Validation

Data are never enough for any machine learning method. The more data we have,

the more accuracy and generalization we can get from the model. In practice, there
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does not exist an infinite data set. Therefore, there are many techniques that are

proposed to ensure and prove the generalization of a certain model based on limited

data. Cross validation is one of the most widely used method to do so. One cross

validation method follows the leave-one-out test scheme. While using cross validation

on a data set, we train the model with the whole data set except one chosen sample.

Then we test the model on the selected sample. After that we train the model again

by leaving out another sample. The procedure will continue until every sample in the

data set has been chosen as the test sample. There are also 𝑛-fold cross validation.

For this method, we first divide the whole data set into 𝑛 partitions, train the model

with 𝑛 − 1 partitions in it and test on the remaining one. We repeat until every

partition has been chosen once [79–81]. Since the training of neural network takes

long time, we choose 10-fold cross validation to balance between running time and

effectiveness.

In order to keep the randomness of the selection of the validation set, each par-

tition of the validation set is chosen randomly from the fictitious data set without

replacement. We pick up 10,000 samples from positive and negative set respectively

for each test, and train the model by the remaining 180,000 samples. The same

procedure is applied to the model with raw input and feature input.

4.3.1 Validation on Original Data

Although the cross validation can show the stability and generalization on generated

data set with confidence and concreteness, it is not proved if it performs well on real

data. Thus, the second experiment performs validation of the 10 models trained in

each fold of the cross validation in the first experiment on the original data set used

to generate augmented data. This validation result is stronger than the previous one

because it shows the generalization of the model from fictitious data to real data.

A more radical validation method is the follows. Before we generate fictitious data,

leave half of each class from the original data as the validation set. Then generate

200,000 samples in total by the remaining data and use them in the same way as

in the second experiment. After that, we test the model by the validation set that
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comes from the original data. The performance of this experiment is stronger than

the second experiment, in which it shows the generalization to independent and real

samples.

4.4 Performance

This section presents the validation result for the aforementioned three experiments:

1. 10-fold cross validation on augmented data set (Figure B-6);

2. 10-fold cross validation on original data set used to generate augmented data

(Figure B-7);

3. Validation on original data not used to generate augmented data (Figure B-8).

For each experiment, we train and validate two models by the same data. The first

model directly takes FHR trace as input, and the second model takes the feature

matrix described in Section 3.3. Despite of accuracy, we use four additional indices,

true positive rate (sensitivity), true negative rate (specificity), false positive rate (false

alarm or type I error) and false negative rate (type II error), to thoroughly describe

the performance of each model in every situation.

4.4.1 Experiment 1

The validation of feature input model is presented in Table A.5. The average accuracy

of 10-fold cross validation is 0.9819, and both TP and TN are around 0.98. The

equality shows that there is no bias in the training stage, and the high value of the

three indices shows that the model learns good difference between given features of

positive and negative FHR traces. The validation of raw input model is presented in

Table A.6. The three indices are all above 0.999, which are slightly better than those

of the feature input model. This difference indicates that the neural network extracts

better features than the manually chosen features. However, since there is no big

difference, we can conclude that these 14 features have covered almost all necessary

information to distinguish positive and negative traces.
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4.4.2 Experiment 2

This experiment uses the model trained in Experiment 1 and validates in different

data set. The validation of feature input model is presented in Table A.7. The

average accuracy of 10 validations is 0.9481, and both TP and TN are around 0.95.

The indices are slightly lower than the Experiment 1 but still are very good. The

validation of raw input model is presented in Table A.8. The three indices are all

above 0.97, which are slightly better than those of the feature input model and again

lower than those in Experiment 1. The same trend as Experiment 1 supports the

conclusion we made in Section 4.4.1. In addition, we find that all the indices in

this experiment are worse than those in Experiment 1, but there are only slightly

different. This indicates that there is information loss that occurs when generating

data, in which we only use frequency information. On the other hand, it seems we

can distinguish classes with high accuracy by only inspecting its frequencies. This

phenomenon can also be interpreted as that neural network learns the transformation

from the similarity among large amount of samples and the correspondence between

frequency bands and classes defined on pH value.

4.4.3 Experiment 3

Experiment 3 trains the feature input model by the newly generated data set from

half of the original data, and validates the models on the rest half of original data.

In order to provide sufficient validation traces, we lightly increased the pH threshold.

The traces that pH value is less than or equal to 7.1 are positive traces and the

traces that pH value is greater than or equal to 7.2 are negative traces. Therefore, we

obtained 61 positive recordings and 375 negative recordings in total. Thus the number

of the positive and negative recordings in validation set are 30 and 187, respectively.

The result accuracy is 0.8065. TP and TN are 0.2 and 0.9037 respectively. This

result, which is much worse than the other two experiments, is similar to the result

of training directly on the original data set. The performance we have obtained so

far is still illustrating that the lack of negative traces makes it difficult to maintain
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the correlation between them. Once we use some of them in the training, the lack of

correlation prevents the model to infer the class of validation samples correctly.

4.5 Summary

In this chapter, we discussed the whole process of evaluating the performances of

deep learning methods for analyzing FHR signals. The first section introduces config-

urations of training, including the selection of optimization methods, batch size, and

maximum iteration. The reason of why not use regularization is also discussed. Then,

the data augmentation technique, which is used in our experiments to overcome the

shortage and unbalance of original data set, is described in detail in Section 4.2. The

subsequent section talks about the validation scheme and the last section presents

the results for each experiment individually.
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Chapter 5

Conclusion and Future Work

This thesis intends to apply state-of-the-art deep learning technology to an important

obstetric problem, the interpretation of fetal heart rate signals, in order to estimate

the oxygen deficiency status of the fetus before delivery. Due to the scalar label of

recordings in the database, we chose to work with a convolutional neural network

instead of a recurrent neural network, which is more suitable to process time series.

We also use data augmentation to overcome the lack of data and the severe unbalance

in the database. This provided sufficient data for training the neural network for

balancing the distance between positive and negative performance.

5.1 Conclusion

Deep learning has been proved to be effective in many areas by its capacity to repre-

sent complex nonlinear features by its intrinsic generalization. On the other hand, it

has limitations. For example, it requires large amount of data to discover underlying

structures whereas conventional models use hand-coded prior instead. This limitation

often brings compromise for certain data sets, and allows us to select optimal model

between deep learning and other models. The difference between training by original

data set and by augmented data set presents this compromise. When the data size is

not large enough, the stability and effectiveness may be significantly influenced.

We performed three experiments to evaluate detailed performance and generaliza-
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tion of our models. From the result, we make following conclusions:

1. One needs to prepare enough data to train a neural network. The lack of data

may cause the model to always output a single class which occupies the highest

proportion in the training set.

2. Data augmentation is helpful to balance the data set and to provide sufficient

training data to the neural network. The model trained on augmented data has

good performance and generalization. However, it will not work if the training

set is not general enough.

3. The neural network does excellent job in extracting unknown features. In our

experiment, the accuracy is obtained with no prior knowledge provided to the

raw data input.

4. According to the comparisons of results between the raw data input model

and the feature input model, the one with carefully selected features performs

equally well to that with raw data processed by the neural network. The good

performances of the two models indicate that the manually selected features are

able to provide most of the useful information.

5. We conjecture that the main reason of the low TP is because of the the sparse

distribution of positive samples. The model cannot estimate the accurate border

between the positive and the negative spaces. As long as the validation sample

is far away from the training samples in the sample space, the behavior of the

model is difficult to predict. It is intuitive that even if there are no large samples,

as long as the training set includes corner cases, the estimated border will still

be accurate. The bad thing is, unless we have already known the shape of the

border, or it is unable to verify whether a sample is corner case.
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5.2 Future Work

This thesis studied the behavior of deep learning methods in the classification of FHR

signals, and found interesting phenomena which were described in this work. Some

of them are good results, showing the power of deep learning and the correct way to

apply it to certain data. Some of them point out the weak points in which current

deep learning methods are not good at processing certain data. These limitations lead

us to further study of the methods including how to apply deep learning to certain

data, and in particular to FHR traces. New forms of deep learning methods that can

perform better than the ones from this thesis also of great interest.

According to the problems we encountered, some of the following items could be

important directions for study.

1. Collect enough data and reverify Experiment 3. Experiment 3 is important

because it shows the generalization on independent practical data. If the model

performs well in Experiment 3, it will provide a strong impetus for further study.

2. Collect time-varying labels, which indicate the status of the FHR signal over

time. A series of outputs enables the usage of RNN, which is more meaningful

for processing time series. Additionally, the variations of RNN are of the most

interest in industry and academia and have the most cut-in-edge use cases. The

most recent concepts such as attention and memory cell are coming from the

investigation of it. RNN is Turing complete, and is theoretically being able to

learn arbitrary sequential logic.

3. Improve the data augmentation method. Our data augmentation is based on

individual frequency features. It is highly possible that some useful information

is not included in frequencies. Furthermore, the distribution of the generated

data has not been verified. Finding new augmentation methods could reduce

information loss and increase generalization.

4. DRM (see Section 2.2.2) provides the method that train deep convolutional

neural network by the EM algorithm. It is worth trying this and introduce
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graphical model to FHR.

5. Change the output model to continuous variables, so that it can predict biomark-

ers, offer suggestions to clinical doctors and leave the decision out of the sys-

tem. This is useful to circumvent potential legal responsibility and blames from

morality. Similar to autopilot vehicles, FHR system connects directly to life

security. Responsibility ownership should be seriously considered in case of any

accident that world happen.
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Appendix A

Tables

Table A.1: Evaluation Platform
Item Description

OS Windows 7 Enterprise Service Pack 1 64-bit

CPU Intel(R) Core(TM) i5-2400 @ 3.10GHz

RAM 8GB

GPU NVIDIA GeForce GTX 760

Caffe Windows 1.0.0-rc3

MatLab R2015b
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Table A.2: Band Selection for Data Augmentaion

No. of Band Band Interval in FFT Band Interval in Frequency (Hz)

1 1 0

2 2 : 3 5.56 × 10−4 : 1.11 × 10−3

3 4 : 19 1.67 × 10−3 : 1.00 × 10−2

4 20 : 131 1.06 × 10−2 : 7.22 × 10−2

5 132 : 700 7.28 × 10−2 : 3.88 × 10−1

6 701 : 1800 3.89 × 10−1 : 9.99 × 10−1

7 1801 : 3600 1 : 2

Table A.3: Network Setting for Feature Matrix Input

Layer Type Weights Input Dimension Output Dimension

1 Conv 14x16x16 14x60 16x45

2 Pool 16x45 16x23

3 Conv 16x32x8 16x23 32x16

4 Pool 32x16 32x8

5 Conv 32x64x4 32x8 64x5

6 Pool 64x5 64x3

7 FC 64x3x64 64x3 64

8 FC 64x16 64 16

9 Linear 16x2 16 2

10 SoftMax 2 2
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Table A.4: Network Setting for Raw Data Input

Layer Type Weights Input Dimension Output Dimension

1 Conv 1x16x128 1x7200 16x7073

2 Pool 16x7073 16x1769

3 Conv 16x32x32 16x1769 32x1738

4 Pool 32x1738 32x435

5 Conv 32x32x16 32x435 32x420

6 Pool 32x420 32x105

7 Conv 32x32x8 32x105 32x98

8 Pool 32x98 32x25

9 Conv 32x32x4 32x25 32x22

10 Pool 32x22 32x6

11 FC 32x6x32 32x6 32

12 FC 32x16 32 16

13 Linear 16x2 16 2

14 SoftMax 2 2

Table A.5: Cross-validation Result on Augmented Data of Neural Network with Fea-
ture Input

Fold Accuracy True Pos. True Neg. False Pos. False Neg.

1 0.9825 0.98 0.985 0.015 0.02

2 0.9745 0.978 0.971 0.029 0.022

3 0.982 0.99 0.974 0.026 0.01

4 0.981 0.983 0.979 0.021 0.017

5 0.9755 0.97 0.981 0.019 0.03

6 0.985 0.984 0.986 0.014 0.016

7 0.991 0.993 0.989 0.011 0.007

8 0.984 0.985 0.983 0.017 0.015

9 0.989 0.991 0.987 0.013 0.009

10 0.9745 0.976 0.973 0.027 0.024

Ave 0.9819 0.983 0.9808 0.019 0.017
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Table A.6: Cross-validation Result on Augmented Data of Neural Network with Raw
Input

Fold Accuracy True Pos. True Neg. False Pos. False Neg.

1 0.9995 1 0.9990 0.0010 0

2 1 1 1 0 0

3 1 1 1 0 0

4 0.9990 0.9980 1 0 0.0020

5 1 1 1 0 0

6 1 1 1 0 0

7 0.9995 0.9990 1 0 00010

8 1 1 1 0 0

9 1 1 1 0 0

10 1 1 1 0 0

Ave 0.9998 0.9997 0.9999 0.0001 0.0003

Table A.7: Validation Result on Original Data of Neural Network with Feature Input

Fold Accuracy True Pos. True Neg. False Pos. False Neg.

1 0.9613 1 0.9575 0.0425 0

2 0.9511 0.9773 0.9485 0.0514 0.0227

3 0.9430 0.9773 0.9396 0.0604 0.0227

4 0.9450 0.9545 0.9441 0.0559 0.0454

5 0.9491 0.9318 0.9508 0.0492 0.0682

6 0.9470 0.9545 0.9463 0.0537 0.0454

7 0.9348 0.9773 0.9306 0.0694 0.0227

8 0.9674 0.9318 0.9709 0.0291 0.0682

9 0.9593 0.9545 0.9597 0.0403 0.0454

10 0.9226 0.8409 0.9306 0.0694 0.1591

Ave 0.9481 0.9499 0.9479 0.0521 0.0500
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Table A.8: Validation Result on Original Data of Neural Network with Raw Input

Fold Accuracy True Pos. True Neg. False Pos. False Neg.

1 0.9919 1 0.9911 0.0089 0

2 0.9878 1 0.866 0.0134 0

3 0.9878 1 0.9866 0.0134 0

4 0.9878 0.9773 0.9888 0.0112 0.0227

5 0.9817 1 0.9799 0.0201 0

6 0.9919 1 0.9911 0.0089 0

7 0.9898 1 0.9888 0.0112 0

8 0.9796 1 0.9776 0.0224 0

9 0.9776 1 0.9754 0.0246 0

10 0.9939 1 0.9933 0.0067 0

Ave 0.9860 0.9977 0.9739 0.0141 0.0023

Table A.9: Validation Result on Original Data Not Used in Generation of Neural
Network with Feature Input

Accuracy True Pos. True Neg. False Pos. False Neg.

0.8065 0.2000 0.9037 0.0963 0.8000
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Appendix B

Figures
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Every arrow denotes convolution with a certain kernel.

Figure B-1: Raw FHR Data as Input

Every arrow denotes convolution with a certain kernel.

Figure B-2: FHR Features as 2-D Input
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Every arrow denotes convolution with a certain kernel.

Figure B-3: FHR Features as Saperatd 1-D Input

Figure B-4: Learning Curve of Training by Raw Data
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Figure B-5: An explaination of the bad performance on original data set

Figure B-6: Experiment Scheme of Cross Validation
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Figure B-7: Experiment Scheme of Validation on Original Data

Figure B-8: Experiment Scheme of Validation on Left-out Original Data
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