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Abstract of the Dissertation 

Factor-Augmented Error Correction Model with Time Varying Coefficients 

by 

Xue Hao 

Doctor of Philosophy 

in 

Applied Mathematics and Statistics 

Stony Brook University 

2015 

 

Factor-based models have been extensively used in economic and financial time series 

analyses. The Factor-augmented Error Correction Model (FECM) is a successful generalization 

of the Factor-augmented Vector Autoregression Model and the Error Correction Model for large 

panel nonstationary time series data. By combining the factors and error correction terms 

together, the FECM is able to utilize both the aggregated panel information summarized through 

the Dynamic Factor Model as well as the long-term equilibrium information introduced by the 

cointegration relationship. In this thesis we extend the FECM by allowing time-varying model 

parameters. There are ample evidences from both theoretical and empirical studies supporting 

the notion that the parameters of economic and financial models often change over time. By 

relaxing the parameters to be time-varying, the model will be more adaptable to complicated and 

realistic data structures, such as those with potential structural instability after a recession or 

crisis. We conclude this thesis by applying the newly developed time-varying FECM to provide 

more suitable models for PPNR (Pre-Provision Net Revenue) studies, part of the required 

modeling process in CCAR (Comprehensive Capital Analysis and Review)  -- commonly known 

as the Federal Reserve’s Stress Test on big banks and other financial institutes.  
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Chapter 1 Introduction 

Factor-based time series analysis has received considerable attention in quantitative 

studies of economic and financial issues in the past fifteen years (Stock and Watson, 2010). Due 

to the advancement in data gathering technologies and the expansion of data over time, the 

traditional time series models are increasingly challenged by higher data dimensionality. Factor 

models provide an effective way of synthesizing information contained in large sets -- allowing 

the application of advanced models on big data feasible (Bai, 2004). In recent years, factor model 

procedures have been adapted to multivariate time series models, such as Vector Autoregression 

(VAR) and Vector Error Correction Models (VECM). The combined factor-based time series 

models have become powerful tools in macroeconometrics empirical analysis – with further 

generalization, they will become increasingly indispensible. In this thesis, we will generalize and 

adapt this framework to U.S. bank stress test. 

The US Federal Reserve Bank was compelled to install the stress test after the 2007-2009 

global financial crisis and the accompanying great recession in the general market with the 

characteristics of severe disruption of financial markets, a stubbornly high unemployment, and a 

slow recovery of economy. It drew the Government’s attention to renewed calls for active 

macroprudential regulation aimed at preventing the build-up of risks in the financial system, 

while at the same time reducing the social and economic costs of financial instability (Covas, 

Rump, and Zakrajšek, 2014). To this end, as part of the effort, bank stress tests have become an 

indispensable part of the toolkit used by banks and regulators from central banks to conduct 

regulation and supervision (Hirtle, Schuermann, and Stiroh , 2009; Hanson, Kashyap, and Stein, 
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2011; Greenlaw, Kashyap, Schoenholtz, and Shin, 2012). Few papers have explicitly constructed 

suitable models for bank stress test analysis. In this thesis, we use the Factor-Augmented Error 

Correction Model (FECM) to conduct a top-down stress test exercise – with our focus on 

modeling the Pre-Provision Net Revenue (PPNR) study with macroeconomic variables. We 

extend the FECM by allowing for time-varying coefficients to better supporting the notion that 

the parameters of economic and financial models do change over time.  

 

1.1 Factor-Based Time Series Models 

Statistical analysis in economics and finance is facing increasing difficulties raised by 

growing data volume in both length and dimension. On one hand, the numbers of observations in 

financial time series are increasing along with the passage of time. On the other hand, statistical 

agencies have been collecting a greater amount of related macroeconomic, financial, and sectoral 

variables for much of the postwar period (Stock and Watson, 2010). Thus, researchers face data 

sets that have hundreds or even thousands of series (large N) with increasing observations (large 

T), resulting in the curse of dimensionality for classic time series models and analyses.  

The Dynamic Factor Model (DFM) has gained popularity in the past fifteen years 

because of their ability to simultaneously and consistently model data sets with both large 

dimensions and lengths. Early work of dynamic factor models can be traced to Geweke (1977), 

who originally proposed the DFM as a time-series extension of factor models previously 

developed for cross-sectional data.  The premise of dynamic factor models is that a few latent 

factors can explain a substantial amount of information in many time series. Sargent and Sims 

(1977) showed that a small number of factors, as few as two factors, could explain a large 
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fraction of the variance of many important U.S. quarterly macroeconomic variables, including 

output, employment, and prices. This empirical finding has since been confirmed by many 

follow-up studies (Giannone, Reichlin, and Sala, 2004; Watson, 2004). 

The frequency domain methods in the seminal work of Geweke (1977) and Sargent and 

Sims (1977) were useful in searching evidence of a dynamic factor structure and estimating the 

importance of the factor. However, those methods failed to estimate latent factors directly and 

hence could not be used for further analysis. Subsequent work on DFMs focused on estimating 

latent factors directly through time domain methods, which can be divided into three generations 

of evolving models (Stock and Watson, 2010). The first generation consisted of low-dimensional 

(small N) parametric models estimated in the time domain using the Gaussian maximum 

likelihood estimation (MLE) and the Kalman filter (Engle and Watson, 1981, 1983; Stock and 

Watson, 1989; Sargent, 1989; Quah and Sargent, 1993). This parametric method limited the 

number of series that can be handled due to the restriction of its nonlinear optimization 

procedure.  The second generation nonparametric methods solve the dimensionality problem and 

are suitable for data sets with large N. They estimate the factors by using cross-sectional 

averaging methods, primarily principal components and related methods (Stock and Watson, 

2002b; Bai, 2003; Bai and Ng, 2006a). The third generation of methods for estimating the factors 

combines the first and the second generation models by merging the statistical efficiency of the 

state space approach with the robustness and convenience of the principal components approach 

(Giannone, Reichlin, and Small, 2008; Doz, Giannone, and Reichlin, 2012). This merger 

overcomes the dimensionality problems faced by the first generation methods, and improves the 

second generation methods in handling missing data and capturing persistent and small common 

components. 
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Another issue involved in the factor model estimation is determining the number of 

factors. There are several methods available for estimating the number of stationary and 

nonstationary factors based on the principle components estimation. The screen plots introduced 

by Cattell (1966), which is a plot of the ordered eigenvalues against the rank of that eigenvalues, 

are useful visual diagnostic measures that allow one to assess the marginal contribution of 

principal components intuitively. Ahn and Horenstain (2013) proposed a group of theoretical 

measures that corresponds to finding the edge of the cliff in the screen plot. Another popular 

strand is to estimate the number of factors using the information criteria. Bai and Ng (2002) 

developed a family of factor number estimators that are motivated by the information criteria 

used in model selection. Their simulation results suggested that their proposed criterion 

outperform the traditional information criteria such as the Bayesian Information Criterion (BIC) 

on estimating static factor numbers in stationary data. Bai (2004) later developed these 

information criteria to accommodate models with nonstationary data and nonstationary factor. 

With reliable estimates of the factors and the number of factors in hand, the estimated 

factors can be used as data in second stage analysis. Uses of the factors include but are not 

limited to multistep forecasts (Stock and Watson, 1999, 2002a, 2006, 2009; Boivin and Ng, 

2005; Eickmeier and Ziegler, 2008), conducting instrumental variables and generalized method 

of moments (GMM) analysis (Favero, Marcellino, and Neglia, 2005; Beyer, Farmer, Henry, and 

Marcellino, 2005, 2008;  Kapetanios and Marcellino, 2010; Bai and Ng, 2010), Factor-

Augmented Vector Autoregression (FAVAR) (Bernanke, Boivin and Eliasz, 2005; Stock and 

Watson, 2005), and dynamic stochastic general equilibrium (DSGE) modeling (Boivin and 

Giannoni, 2006). 



 

5 
 

In this thesis, we focus on taking advantage of factors in nonstationary time series 

analysis. Typically, the factors extracted from the dynamic factor models are utilized in the 

vector error correction models, forming the Factor-Augmented Error Correction Model (FECM). 

The Factor-augmented Error Correction Model (FECM) was first proposed by Banerjee and 

Marcellio (2008) as a generalization of the Factor-augmented Vector Autoregression (FAVAR) 

Model. The method of FAVAR assumes that the data have been transformed to eliminate unit 

roots and trends. Typically this is accomplished by differencing the original time series 

(Bernanke, Boivin and Eliasz, 2005; Stock and Watson, 2010; Korobilis, 2012). By introducing 

the error correction term, which is omitted in the FAVAR model, the FECM is enabled to 

analyze large panel nonstationary time series data sets directly with the long-term equilibrium 

and cointegration information considered in the model. Furthermore, we extend the Factor-

augmented Error Correction Model to allowing time-varying coefficients (TVC) in order to 

better capture the evolution of relations between factors and variables of interest in the model. 

We apply this extended TVC-FECM technique to the U.S. bank stress test analysis with 

historical data from the past 25 years, and expect to draw comprehensive conclusions about 

banks performances under different economic environments. 

 

1.2 U.S. Bank Stress Tests 

The last recession caused by the subprime mortgage crisis had enormous and persistent 

impact on US and global economy and financial markets. The nationwide banking emergency 

has drawn the attention of central banks and other regulators to seek more effective and powerful 

ways to enhance the capabilities of preventing the build-up of risks in the banking system.  
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As a response to the 2007-2009 Great Recession, the Dodd–Frank Wall Street Reform 

and Consumer Protection Act was passed in 2010 that brought about the most significant 

changes to financial regulations in the United States. It requires the Federal Reserve to conduct 

an annual assessment of the large bank holding companies (BHCs) and selected financial 

institutions in the United States considering their capital adequacy to continue operations under 

economic and financial stress environment. The assessment consists mainly of two programs 

with different emphasis: the Comprehensive Capital Analysis and Review (CCAR) and the 

Dodd-Frank Act Stress Testing (DFAST), requiring large, complex U.S. bank holding companies 

(BHCs) with $50 billion or greater in total consolidated assets to participate starting 2011, and 

BHCs and state member banks with total consolidated assets of more than $10 billion to 

participate starting 2013 respectively.   

As stated in the “Comprehensive Capital Analysis and Review 2015: Assessment 

Framework and Results” published by Federal Reserve Board in mid-March 2015, the main 

objective of the Comprehensive Capital Analysis and Review (CCAR) is to assess the largest 

U.S. BHCs’ capital adequacy, capital adequacy process, and their planned capital distributions. 

As part of CCAR, the Federal Reserve evaluates whether BHCs have sufficient capital to 

continue operations throughout times of economic and financial market stress and whether they 

have robust, forward-looking capital planning processes that would thoroughly account for their 

unique risks. At the same time, the Dodd-Frank Act stress testing (DFAST), which is a 

complementary exercise to CCAR, is a forward-looking quantitative company-run evaluation of 

the impact of stressful economic and financial market conditions on BHC capital.  DFAST helps 

the Federal Reserve and the financial companies supervised by the Federal Reserve to assess 

whether institutions have sufficient capital to absorb losses and to support normal operations 
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during adverse economic conditions. While DFAST is complementary to CCAR, both efforts are 

built upon similar processes, data, supervisory exercises, and requirements. In the empirical 

application of this thesis, we apply our newly developed methods to a selected group of largest 

U.S BHCs as representatives, which are participants of both programs. 

 Typically, the CCAR procedure is divided into two stages. In the first stage, namely late-

October to the beginning of January, the participating BHCs prepare and submit their capital 

plan and supporting documentation to the Federal Reserve. In the second stage, the Federal 

Reserve conducts a two-pronged approach to evaluate both the institution-specific and industry-

wide risks, and publishes the results of its supervisory stress test under both the supervisory 

severely adverse and adverse scenarios by the end of March.  

In CCAR, scenario analysis is an integral part of this supervisory assessment procedure. 

Scenario analysis involves the application of historical or hypothetical scenarios to assess the 

impact of various events on the performance of banks (Guerrieri and Welch, 2012). In the 

instance of 2015 CCAR, a total of 31 largest U.S. bank holding companies were asked to submit 

capital plans for a full nine-quarter planning horizon through the end of 2016, reflecting the 

hypothesized macroeconomic baseline and stress scenarios provided by the Federal Reserve in 

“2015 Supervisory Scenarios for Annual Stress Tests Required under the Dodd-Frank Act Stress 

Testing Rules and the Capital Plan Rule” published in late-October 2014. Three supervisory 

scenarios – baseline, adverse and severely adverse scenarios – are characterized by 28 variables 

including domestic and international macroeconomic features as listed in the Table 1.1. The 

scenarios start in the fourth quarter of 2014 (2014:Q4) and extend through the fourth quarter of 

2017 (2017:Q4).  
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The participating banks are asked to evaluate their capital structures under these 

hypothetical scenarios and submit their capital plan to the Federal Reserve. The assessment of  

Domestic (16 Variables) 
Economic Activity and Prices 

Real GDP Growth Percentage changes (at an annual rate) in real and nominal 
Gross Domestic Product (GDP); Nominal GDP Growth 

Unemployment Rate Unemployment rate of the civilian non-institutional 
population aged 16 years and over; 

Real Disposable Income Growth Percentage changes (at an annual rate) in real and nominal 
disposable personal income; Nominal Disposable Income Growth 

CPI Inflation Rate Percentage change (at an annual rate) in the Consumer 
Price Index (CPI). 

Asset Prices or Financial Conditions 
House Price Index Indices of house prices; 
Commercial Real Estate Price Index Commercial property prices; 
Dow Jones Total Stock Market Index Equity prices; 
Market Volatility Index U.S. stock market volatility. 

Interest Rates 
3-month Treasury Rate The rate on the 3-month Treasury bill; 
5-year Treasury Yield The yield on the 5-year Treasury bond; 
10-year Treasury yield The yield on the 10-year Treasury bond; 
BBB Corporate Yield The yield on a 10-year BBB corporate security; 

Mortgage Rate The interest rate associated with a conforming, 
conventional, fixed-rate 30-year mortgage; 

Prime Rate The prime rate. 
International (12 Variables) 

The three variables for each country or 
country block: 

Percentage change (at an annual rate) in real GDP; 
Percentage change (at an annual rate) in the CPI or local 
equivalent; 
Level of the U.S. dollar/foreign currency exchange rate. 

The four countries or country blocks 
included: 

The euro area (the 18 European Union member states that 
have adopted the euro as their common currency); 
The United Kingdom; 
Developing Asia (the nominal GDP-weighted aggregate of 
China, India, South Korea, Hong Kong Special Administrative 
Region, and Taiwan); 
Japan. 

Table 1.1 28 Variables in Supervisory Scenarios for 2015 CCAR (Source: 2015 Supervisory 
Scenarios for Annual Stress Tests Required under the Dodd-Frank Act Stress Testing Rules and the 
Capital Plan Rule) 
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the expected uses and sources of capital over the planning horizon in a capital plan mandated by 

the Federal Reserve is initiated by estimating of projected revenues, losses, reserves, and pro 

forma regulatory capital ratios, including tier 1 leverage, common equity tier 1 capital, tier1 risk-

based capital, and total risk-based capital ratios, over the planning horizon under baseline 

conditions and stressed scenarios. The key requirement for a bank to pass the stress test is that its 

projected tier 1 common capital ratio (T1CR) – which is calculated as the ratio of tier 1 capital to 

total risk-weighted assets using the definition of in 12 CFR 225, appendix A – under the severely 

adverse scenario remains above a specified minimum threshold over the forecast horizon. In the 

CCAR 2015, this threshold is set to be 5 percent. In addition, each institution also has to 

maintain all other regulatory capital ratios above a minimum of 4 to 8 percent, respectively. 

The Federal Reserve employs a two-pronged approach in its supervisory stress test based 

on the projected capital plans submitted from large BHCs. In the “bottom-up” models, 

proprietary granular data on institution-specific portfolios, which contain detailed information 

about individual loan characteristics that is provided by BHCs to the Federal Reserve 

confidentially, are used to estimate bank-level losses and revenues. The “top-down” models, 

from the other side, use macroeconomic variables and bank balance sheet data to estimate 

institution-specific and industry-wide loans, revenues and capital measures. The results of the 

top-down stress test models are useful benchmarks for the aggregated results from the bottom-up 

model under different macroeconomic scenarios (Covas, Rump and Zakrajšek, 2013). 

In this thesis, with the help of large panel macroeconomic information aggregated in the 

factors and the limitation of publicly available data, we particularly focus on the top-down stress 

test models. In a sense, we are analyzing financial variables based on aggregate macroeconomic 
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information. Intuitively, even slow moving variables, such as the unemployment rate, may 

contain useful information for modeling some of the banking measures that exhibit little high-  

 

 

Figure 1.1 Capital Adequacy (Tier 1 Common Capital Ratio) of the U.S. Bank Holding 
Companies: The red line shows the aggregate tier 1 common ratio (T1CR) for the 31 BHCs that 
participated in the CCAR 2015; the blue line shows the aggregate T1CR of all U.S. BHCs that reported in 
form FR Y-9C, Consolidated Financial Statements for Holding Companies.T1CR is defined as the ratio 
of tier 1 common capital to total risk-weighted assets, both are defined in 12 CFR 225, appendix A. The 
31 participated BHCs are: Ally Financial Inc.; American Express Company; Bank of America 
Corporation; The Bank of New York Mellon Corporation; BB&T Corporation; BBVA Compass 
Bancshares, Inc.; BMO Financial Corp.; Capital One Financial Corporation; Citigroup Inc.; Comerica 
Incorporated; Deutsche Bank Trust Corporation; Discover Financial Services; Fifth Third Bancorp; The 
Goldman Sachs Group, Inc.; HSBC North America Holdings Inc.; Huntington Bancshares Inc.; 
JPMorgan Chase & Co.; Keycorp; M&T Bank Corporation; Morgan Stanley;  MUFG Americas Holdings 
Corporation; Northern Trust Corporation The PNC Financial Services Group, Inc.; RBS Citizens 
Financial Group, Inc.; Regions Financial Corporation; Santander Holdings USA, Inc.; State Street 
Corporation; SunTrust Banks, Inc.; U.S. Bancorp; and Wells Fargo & Co.; Zions Bancorporation.  
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frequency variation, for example, the tier 1 common capital ratios (Guerrieri and Welch, 2012). 

A few papers confirmed this idea: Bellotti and Crook (2009) found that macroeconomic 

variables were statistically significant in their credit account default forecasting models;  

Simons and Rolwes (2009) used a macroeconomic-based model to estimating probabilities of 

default and found convincing relations between macroeconomic variables and the default 

behavior of Dutch firms. As to the U.S. bank stress tests, Grover and McCracken (2014) used 

factor-based models and reached the conclusion that macroeconomic variables provided in the 

Federal Reserves stressed scenarios are useful for identifying stress of bank at the industry-wide 

level. 

According to data recorded in form FR Y-9C, Consolidated Financial Statements for 

Holding Companies, the 31 selected CCAR participating large BHCs consist of 77.16% capital 

of all U.S. bank holding companies, in terms of the consolidated assets. Figure 1 shows that the 

aggregate tier 1 common capital ratio (T1CR) of CCAR participating BHCs, as a representative 

of the U.S. banking system, recovered to almost double of the nadir of the 2007-2009 financial 

crisis since the CCAR implement. Covas, Rump and Zakrajšek (2013) suggested that this 

significant improvement in the capital position and loss-absorbing capacity of the U.S. banking 

system is a key metric indicating the success of the Federal Reserve conducted stress tests. The 

stress tests boosted the issuance of common equity and increased retained earnings. Moreover, 

based on the outcomes of the stress tests, the Federal Reserve imposed restrictions on dividend 

payouts and share repurchases that would partly affect the financial decisions that the “stressed” 

institutions undertook. These promising outcomes drove the increase of the T1CR, which 

implied substantially enhanced resiliency of the banking sector since the end of the recession. 
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Chapter 2  Factor-Augmented Error Correction Model 

The Factor-Augmented Error Correction Model (FECM) was first introduced by Banerjee 

and Marcellio (2009) as a way to model key macroeconomic variables of interest jointly with 

factors extracted from large panel time series variables in level. Starting from the Dynamic 

Factor Models for non-stationary data, with established literature discussing their applications in 

economics and finance realms, the FECM brings the concept of cointegration and error 

correction, two important strands of the econometrics literature, into the analysis.  In this chapter, 

we first reproduce the derivation of the FECM with time constant coefficient (TCC).  

 

2.1 Model Description and Notations 

Suppose we have a small set of variables of interest denoted by 𝑌𝑡. For example, in the 

bank stress testing, we are interested in a group of balance sheet variables that reflect the revenue, 

losses, reserves and capital structures of the financial institutions under different economic 

scenarios. The standard approaches used extensively by regulatory authorities around the world 

are autoregression models assuming linear relations between the variables of interest and bank 

characteristics or macroeconomic variables (Duane, Schuermann, Reynolds and Wyman, 2013; 

Covas, Rump and Zakrajšek, 2013; Grover and McCracken, 2014).  To be specific, 𝑌𝑡 =

[𝑌1𝑡, … ,𝑌𝑀𝑡]′ is an M-dimensional time series and is supposed to be linearly affected by the N-

dimensional observed variables 𝑋𝑡 = [𝑋1𝑡, … ,𝑋𝑁𝑡]′ : 

𝑌𝑡 = 𝐵𝑋𝑡 + 𝑒𝑡                   (2.1) 
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where 𝑒𝑡 is zero-mean I(0) process that can be serially and cross-correlated, and 𝐵 is the loading 

matrix. In our empirical application of bank stress tests analysis, 𝑋𝑡 = [𝑋1𝑡 , … ,𝑋𝑁𝑡]′ is a selected 

group of N macroeconomic variables or sector indicators providing a representation of the 

economy, such as product output, prices index, interest rates, and so on. In general, 𝑌𝑡 may 

contain subset of 𝑋𝑡, in which case the corresponding elements in the idiosyncratic component 𝑒𝑡 

is constant zero.  

Typically, large amount of macroeconomic and financial variables are observed in levels. 

For example, in our empirical analysis, 148 out of 156 macroeconomic time series are identified 

as nonstationary by the Augmented Dickey–Fuller (ADF) unit root test. To better incorporate the 

long term equilibrium information and possible cointegration of the original level data, it is a 

natural choice of us to consider a Vector Error Correction Model (VECM) under the stationary 

assumption of idiosyncratic term 𝑒𝑡 in (2.1). However, direct derivation of VECM from (2.1) 

will become heavily parameterized when a large set of observation data 𝑋𝑡 is incorporate in the 

model, as is the case in bank stress tests faced by the banks and regulatory central banks. As a 

result, it makes the model very difficult or even impossible to solve. To avoid this problem of 

dimensionality, we decompose the N-dimensional observed time series 𝑋𝑡 into a lower 

dimensional vector of factors with the help of Dynamic Factor Model (DFM), and hence derive 

the Factor-Augmented Error Correction Model (FECM). 

Consider the following generalized Dynamic Factor Model (DFM) as in Banerjee, 

Marcellino and Masten (2015) for a large set of variables: 

𝑋𝑖𝑡 = 𝜆𝑖(𝐿)𝐹𝑡 + 𝜓(𝐿)𝑐𝑡 + 𝜖𝑖𝑡      (2.2) 
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where 𝑖 = 1, …𝑁, 𝑡 = 1, … ,𝑇,   𝐹𝑡 = (𝐹1𝑡, … ,𝐹𝑟𝑡)′ is an 𝑟-dimensional vector of I(1) latent 

factors, which follows a random walk. 𝑐𝑡 = �𝑐1𝑡 , … , 𝑐𝑞𝑐𝑡�
′
is a 𝑞𝑐-dimensional vector of I(0) 

latent factors. For any 𝑡 < 0,𝐹𝑡 = 𝑐𝑡 = 0. 

𝜆𝑖(𝐿) = ∑ 𝜆𝑖𝑖𝐿𝑖𝑛
𝑖=0   and 𝜓(𝐿) = ∑ 𝜓𝑖𝑖𝐿𝑖𝑚

𝑖=0    

are lag polynomials of finite order 𝑝 and  𝑚 respectively, with 𝐿 denotes the lag operator. The 

loading 𝜆𝑖𝑖 and 𝜓𝑖𝑖  can be either deterministic or mutually independent stochastic variables. For  

𝜆𝑖 = 𝜆𝑖(1) and  𝜓𝑖 = 𝜓𝑖(1), 

we assume the loadings satisfy  

 𝐸‖𝜆𝑖‖4 ≤ 𝑀 < ∞ and 𝐸‖𝜓𝑖‖4 ≤ 𝑀 < ∞, 

1
𝑁
∑ 𝜆𝑖𝜆𝑖′𝑁
𝑖=0

𝑝
→ ΣΛ and 1

𝑁
∑ 𝜓𝑖𝜓𝑖′𝑁
𝑖=0

𝑝
→ ΣΨ  as 𝑁 → ∞, 

where ΣΛ and ΣΨ are positive definite non-random matrices. 

The 𝜖𝑖𝑡 is a zero-mean I(0) idiosyncratic component. The idiosyncratic component 𝜖𝑖𝑡 can 

be serially and cross-correlated, but is independent of loading 𝜆𝑖𝑖 and 𝜓𝑖𝑖  for all points. 

 It is convenient to write the above generalized DFM into a restricted DFM in which the 

factors are dynamic but the relation between the dynamic factors and the observable variables is 

static. Following the definition in Bai (2004) and Banerjee, Marcellino and Masten (2015), let us 

denote 

�̃�𝑖𝑖 = 𝜆𝑖𝑖 + 𝜆𝑖𝑖+1 + ⋯+ 𝜆𝑖𝑛 ,    𝑘 = 0, … , 𝑛. 

𝛹𝚤� = [𝜓𝑖0, … ,𝜓𝑖𝑚]. 
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Then, we write the static form DFM as follows: 

𝑋𝑡 = Λ𝐹𝑡 + Ψ𝐺𝑡 + 𝜖𝑡           (2.3) 

in which  

𝑋𝑡 = [𝑋1𝑡, … ,𝑋𝑁𝑡]′, 

Λ = [Λ1′ , … ,ΛN′ ]′,    𝑤ℎ𝑒𝑟𝑒  Λi = �̃�𝑖0, 

Ψ = [Ψ1′, … ,Ψ𝑁′ ]′,    𝑤ℎ𝑒𝑟𝑒 Ψi = �𝛹𝚤� ,−�̃�𝑖1, … ,−�̃�𝑖𝑛�, 

𝐺𝑡 = [𝑐𝑡′, 𝑐𝑡−1′,−1 𝑐𝑡−𝑚′,−𝐹𝑡′, … ,Δ𝐹𝑡−𝑛+1′ ]′, 

𝜖𝑡 = [𝜖1𝑡 , … , 𝜖𝑁𝑡]′. 

The static DFM (2.3) isolates the I(0) factors 𝐺𝑡 from I(1) factors 𝐹𝑡, and eliminates the 

appearances of the lags of the factors. From the discussion in Bai (2004), without loss of 

generality, we assume the 𝑟-dimensional I(1) factors 𝐹𝑡 does not have cointegration among itself. 

In fact, a 𝑘-dimensional cointegrated I(1) factors can always be expressed by 𝑟 non-cointegrated  

I(1) factors and 𝑘 − 𝑟 stationary I(0) factors. In details, suppose 𝐹𝑡 is a vector of cointegrated 

I(1) factors. We can always find an invertible matrix 𝑃 such that 𝑃𝐹𝑡 = (𝜉𝑡′,𝜂𝑡′)′, where 𝜉𝑡 is a 

vector of non-cointegrated I(1) factors and 𝜂t is a vector of I(0) factors that are linear 

combinations of 𝐹𝑡.  Thus, the presence of I(0) factors in the above static DFM can accommodate 

the cointergrated non-stationary factors. For simplicity, denote the dimension of 𝐺𝑡 as 𝑞 =

𝑟(𝑝 + 1) + 𝑞𝑐(𝑚 + 1). 

 Bringing the previous static DFM (2.3) into the equation (2.1), we obtain 
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𝑌𝑡 = 𝐵Λ𝐹𝑡 + 𝐵Ψ𝐺𝑡 + 𝐵𝜖𝑡 + 𝑒𝑡 

   = ΛB𝐹𝑡 + ΨB𝐺𝑡 + 𝜖𝐵𝑡                 (2.4) 

where ΛB = 𝐵Λ is a 𝑀-by-𝑟 loading matrix, ΨB = 𝐵Ψ is a 𝑀-by-𝑞 loading matrix and 𝜖𝐵𝑡 =

 𝐵𝜖𝑡 + 𝑒𝑡 is still a zero-mean I(0) process. The equation (2.4) is in the form of static DFM with 

both I(1) and I(0) factors on its right. Since 𝐹𝑡 are non-conintegrated I(1) factors, for each given 

𝑖 = 1, … ,𝑀, the process 𝑌𝑖𝑡 is I(1) unless the i-th row of ΛB = [𝜆𝐵1, … , 𝜆𝐵𝑀],  𝜆𝐵𝑖 = 0. It is clear 

that  𝑌𝑖𝑡 and 𝐹𝑡 are cointegrated for each 𝑖 since the remaining terms ΨB𝐺𝑡 and 𝜖𝐵𝑡  are stationary. 

The idiosyncratic component 𝜖𝐵𝑡 of equation (4) can be serially and cross-correlated, but 

independent of elements in loading matrices ΛB and ΨB.  Specially, for the I(0) process 𝜖𝐵𝑡 =

(𝜖𝐵1𝑡 , … , 𝜖𝐵𝑀𝑡)′, we assume that  

𝜖𝐵𝑡 = Γ(𝐿)𝜖𝐵𝑡−1 + 𝜐𝑡              (2.5) 

where 𝜐𝑡 are orthogonal white noise errors, and the roots of  Γ(𝐿) lie inside the unit disc. 

 As shown in Banerjee, Marcellino and Masten (2014b), the serial correlation of the 

idiosyncratic component 𝜖𝐵𝑡 can be eliminated from the equation by pre-multiplying 𝐼 −  Γ(𝐿)𝐿 

to (2.4). This leads to the error correction form of the DFM: 

 Δ𝑌𝑡 = −�𝐼 − Γ(1)�(𝑌𝑡−1 − ΛB𝐹𝑡−1 − ΨB𝐺𝑡−1) + ΛBΔ𝐹𝑡 + Γ1(𝐿)Λ𝐵Δ𝐹𝑡−1 

                       +ΨBΔ𝐺𝑡 + Γ1(𝐿)ΨBΔ𝐺𝑡−1 − Γ1(𝐿)Δ𝑋𝑡−1 + 𝜐𝑡 ,        (2.6) 

where the factorization of Γ(𝐿): 

Γ(𝐿) =  Γ(1)− Γ1(𝐿)(1− 𝐿) 



 

17 
 

is utilized. We denote the equation (2.6) as Factor-Augmented Error Correction Model (FECM). 

 Notice here we put the component of the I(0) factors 𝐺𝑡 in the error correction term. 

Banerjee, Marcellino and Masten (2015) pointed out that it is best to include 𝐺𝑡in the 

cointegration space, since the model need to incorporate the information in the I(0) factors 𝐺𝑡. In 

fact, as we will discuss in details in the next chapter, the consistent estimation of the factors is 

only up to a rotation so that we will need to include the I(0) factors 𝐺𝑡in the cointegration space 

to allow the possibility that the estimated I(1) factors to be cointegrated.   

 

2.2  Vector Factor-Augmented Error Correction Model 

 To complete the model, we go back to the beginning of this chapter. Following Banerjee, 

Marcellino and Masten (2015), we assume the I(1) factors 𝐹𝑡 follow a random walk process: 

𝐹𝑡 = 𝐹𝑡−1 + 𝜖𝑡𝐹 , 

while the I(0) factors 𝑐𝑡  are described in a VAR(1) expression 

𝑐𝑡 = 𝜌𝑐𝑐𝑡−1 + 𝜖𝑡𝑐 , 

where 𝜌𝑐  is a diagonal matrix with values on the diagonal in absolute term strictly less than one. 

𝜖𝑡𝐹  and 𝜖𝑡𝑐 are independent of elements 𝜆𝑖𝑖, 𝜓𝑖𝑖 in the loading matrices and idiosyncratic error 𝜖𝑖𝑡 

for any 𝑖, 𝑗, 𝑡. 𝜖𝑡𝐹  and 𝜖𝑡𝑐 are not necessarily be 𝑖. 𝑖. 𝑑. and they are allowed to be serially and cross 

correlated. We represent 𝜖𝑡𝐹  and 𝜖𝑡0 in a stable vector process: 

�𝜖𝑡
𝐹

𝜖𝑡𝑐
� = 𝐴(𝐿) �𝜖𝑡−1

𝐹

𝜖𝑡−1𝑐 � + �
𝑢𝑡
𝑤𝑡�, 
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where 𝑢𝑡 and 𝑤𝑡are zero-mean white noise innovations to dynamic nonstationary and stationary 

factors respectively. We then express the model as 

�𝜖𝑡
𝐹

𝜖𝑡0
� = [𝐼 − 𝐴(𝐿)𝐿]−1 �

𝑢𝑡
𝑤𝑡�, 

under the stability assumption. Note under the previous assumptions, we have 𝐸‖𝜖𝑡𝐹‖4 ≤ 𝑀 < ∞. 

 ∑ 𝐹𝑡𝐹𝑡′𝑇
𝑡=0  converges at rate 𝑇2, while ∑ 𝑐𝑡𝑐𝑡′𝑇

𝑡=0  converges at the standard rate 𝑇. These imply 

that the cross-product matrices ∑ 𝐹𝑡𝑐𝑡′𝑇
𝑡=0  and ∑ 𝑐𝑡𝐹𝑡′𝑇

𝑡=0  converge at rate 𝑇2/3. As a result, the 

elements of the matrix composed of these four elements jointly converge to form a positive 

definite matrix. 

From the previous derivations in this section, we now write the VAR expression for the 

vector of nonstationary and stationary factors: 

�𝐹𝑡𝑐𝑡
� = ��𝐼 0

0 𝜌𝑐
� + 𝐴(𝐿)� �𝐹𝑡−1𝑐𝑡−1

� − 𝐴(𝐿) �𝐼 0
0 𝜌𝑐

� �𝐹𝑡−2𝑐𝑡−2
� + �

𝑢𝑡
𝑤𝑡� 

             = 𝐶(𝐿) �𝐹𝑡−1𝑐𝑡−1
� + �

𝑢𝑡
𝑤𝑡�, 

where the pre-multiplier 𝐶(𝐿) = �𝐶11
(𝐿) 𝐶12(𝐿)

𝐶21(𝐿) 𝐶22(𝐿)�  is a matrix with block sizes corresponding 

to the partition between 𝐹𝑡 and 𝑐𝑡 of r and 𝑞𝑐. With the definition of 𝐺𝑡in (2.3), we can write the 

previous VAR representation in static form factors 𝐹𝑡 and 𝐺𝑡: 
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⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝐼𝑟 0
0 𝐼𝑞

… 0
⋯ 0

⋮ ⋮
0 0

⋱ ⋮
… 𝐼𝑞

0 ⋯
⋮ ⋱

⋯ 0
⋯ ⋮

⋮ ⋯
0 ⋯

⋱ ⋮
⋯ 0

−𝐼𝑟 0
0 0

⋯ 0
⋯ 0

⋮ ⋮
0 0

⋱ ⋮
⋯ ⋯

𝐼𝑟 0
0 𝐼𝑟

⋯ 0
⋯ 0

0 0
0 0

⋱ 0
⋯ 𝐼𝑟⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝐹𝑡
 𝑐𝑡

 𝑐𝑡−1
⋮

 𝑐𝑡−𝑚
 Δ𝐹𝑡
Δ𝐹𝑡−1
⋮

Δ𝐹𝑡−𝑝+1⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

= 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 𝐶11

(𝐿) 𝐶12(𝐿)
𝐶21(𝐿) 𝐶22(𝐿)

0 𝐼𝑞

0 ⋯
0 ⋯
0 ⋯

⋮           ⋯
0           ⋯

⋱ ⋮
0 𝐼𝑞

0  0
0  0
⋮  ⋮

⋯
⋯

0 0
⋮ 0

⋱ ⋮    ⋮
⋮  ⋮
0 ⋯

⋮ ⋱ ⋮
⋯ ⋯ 0

−𝐼𝑟          0
0          0

     ⋯   0
     ⋯   0

  ⋮           ⋮
0           0       ⋱  ⋮

⋯  ⋯

  0 0
  0  𝐼𝑟

⋯  0   0
⋯  0   ⋮

  0  0
0  0

⋱  0   ⋮
⋯  𝐼𝑟  0⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝐹𝑡−1
 𝑐𝑡−1
 𝑐𝑡−2
⋮

 𝑐𝑡−𝑚−1
 Δ𝐹𝑡−1
Δ𝐹𝑡−2
⋮

Δ𝐹𝑡−𝑝 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

+

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝐼𝑟 0
0 𝐼𝑞
0 0
⋮ ⋮
0 0
⋮ ⋮
⋮ ⋮
⋮ ⋮
0 0 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

�
𝑢𝑡
𝑤𝑡� 

By pre-multiplying the inverse of the initial matrix, the reduced form VAR for static 

factors is written as 

�𝐹𝑡𝐺𝑡
� = 𝑀(𝐿) �𝐹𝑡−1𝐺𝑡−1

� + 𝑅 �
𝑢𝑡
𝑤𝑡�                                                (2.7)  

where 𝑀(𝐿) = �𝑀11(𝐿) 𝑀12(𝐿)
𝑀21(𝐿) 𝑀22(𝐿)�  is a matrix with block sizes corresponding to the partition 

between 𝐹𝑡 and 𝐺𝑡 and R is a 𝑞 – by – (𝑟 + 𝑞𝑐) matrix accounts for dynamic singularity of 𝐺𝑡. 

Subtracting a vector of the lag of factors 𝐹𝑡 and 𝐺𝑡 on both sides of (2.7), we get 

�Δ𝐹𝑡Δ𝐺𝑡
� = (𝑀(𝐿)− 𝐼) �𝐹𝑡−1𝐺𝑡−1

� + 𝑅 �
𝑢𝑡
𝑤𝑡�                                        (2.8) 

We combine this result with FECM function in (2.6) to obtain a vector FECM. Grouping 

the coefficients together, we write the vector FECM concisely as 
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�
Δ𝑌𝑡
Δ𝐹𝑡
Δ𝐺𝑡

� = 𝛼𝛽′ �
𝑌𝑡−1
𝐹𝑡−1
𝐺𝑡−1

� + Φ1 �
Δ𝑌𝑡−1
Δ𝐹𝑡−1
Δ𝐺𝑡−1

� + ⋯+ Φ𝑝 �
Δ𝑌𝑡−𝑝
Δ𝐹𝑡−𝑝
Δ𝐺𝑡−𝑝

� + �
𝜐𝑡
𝑅𝑢𝑡
𝑅𝑤𝑡

�                      (2.9) 

where the last term 𝜈𝑡 = [𝜐𝑡′, (𝑅𝑢𝑡)′, (𝑅𝑤𝑡)′]′ is a zero-mean white noise process. Once the 

unobserved factors of 𝐹𝑡 and 𝐺𝑡 are identified, equation (2.9) is in the form of standard Vector 

Error Correction Model (VECM).  We can then employ the typical estimation methods, such as 

the one provided by Johansen (1995), to estimate the remaining parameters in the model. In the 

following part of this thesis, we use the term FECM to refer to the vector form equation (2.9). 

 

2.3  Comments and Discussion 

Banerjee, Marcellino and Masten (2015) pointed out that from model (2.6) and our 

assumption of non-cointegrated structure on I(1)  factors 𝐹𝑡, the cointegration is only between 

each individual interested variable and the factors. However, treating the cointegrated coefficient 

𝛽 as unrestricted, the expression (2.9) omits the potentially cross-equations correlations in the 

original model. For a similar reason, the loading matrix 𝛼 and short term coefficents Φ1, … ,Φ𝑝 

are also left unrestricted. The lag order in (2.9) cannot be directly recovered from the structure of 

Γ(𝐿) in (2.5) and 𝑀(𝐿) in (2.7). In our empirical applications, it is chosen based on the VAR 

model that is equivalent to the VECM as shown in Tsay (2010, page 432 – 433), via appropriate 

information criteria. Banerjee, Marcellino and Masten (2015) concluded that the extent of the 

potential mis-specification of (2.9) depends mainly on the structure of the matrix Γ(𝐿) in (2.5). 

When the true Γ(𝐿) is diagonal, which eliminates the cross-correlation among the idiosyncratic 

errors of (2.4), the approximated expression (2.9) is very close to the original model.  
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The derived FECM can accommodate the case in which 𝜖𝐵𝑖𝑡 in (2.4) and (2.5) is I(1) for 

some i (Banerjee, Marcellino and Masten , 2015). By fitting the framework of Bai and Ng (2004), 

the space spanned by 𝐹𝑡 and 𝐺𝑡 can be consistently estimated jointly instead of separately, using 

data in differences. However, we give the preference to stationary idiosyncratic component 𝜖𝐵𝑖𝑡 

assumption in our model definition. This is not a strong restriction and the empirical illustrations 

support our choice (Banerjee, Marcellino and Masten , 2015). In our empirical experiment, 156 

U.S. quarterly macroeconomic time series, covering the period from the first quarter of 1990 

(1990:Q1) to the fourth quarter of 2014 (2014:Q4), are selected in the dataset. By applying the 

ADF unit root test to the estimated idiosyncratic components after extracting 5 factors from the 

dataset, 154 out of 156 residual series reject the unit root null hypothesis at significance level of 

5%. The only two exceptions also report considerably small p-values of 0.0585 and 0.1221, 

respectively. Hence, we are confident in restricting the idiosyncratic components to be stationary 

processes.  

From a theoretical point of view, the advantages of the FECM are two-folded. First, it is 

obvious that the FECM includes more information brought by factors from variables that are 

missing in the ECM. When the FECM is the true data generating process (DGP), the influence of 

this missing information is substantial, resulting in a dominant better performance in FECM. 

Simulation results from Banerjee, Marcellino and Masten (2015) suggested that even though the 

ECM outperforms the FECM in the cases when the underlying DGP is ECM, the relative loss 

form the use of FECM is rather small. Second, comparing to the Factor-Augmented Vector 

Autoregression (FAVAR) model in Bernanke, Boivin and Eliasz (2005), that extends the VAR 

with factors involved, FECM has an additional error correction term. The error correction term, 

representing the cointegration space of nonstationary time series, allows long-run components of 
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variables to obey equilibrium constraints (Engle and Granger, 1987). The appearance of 

cointegration and error correction term in large macroeconomic dataset is statistically significant 

in empirical studies (Banerjee, Marcellino and Masten , 2014b). While the FAVAR is nested in 

the FECM specification by imposing 𝛼 =0 in (2.9), the omitted error correction term cannot be 

recovered in the FAVAR when the true DGP follows FECM settings.  

Note that from (2.4), it has 

𝑌𝑡−1 − ΛB𝐹𝑡−1 − ΨB𝐺𝑡−1 = 𝜖𝐵𝑡−1 

that it would look like the error correction term omitted in the FAVAR comparing to (2.6) could 

be replaced by additional lags of I(0) idiosyncratic term. Substituting this equation into (2.6), 

however, we obtain an expression with data in its first difference: 

Δ𝑌𝑡 = ΛBΔ𝐹𝑡 + ΨBΔ𝐺𝑡 + Δ𝜖𝐵𝑡,                                         (2.10) 

containing a non-invertible moving average (MA) component. While conventional structural 

analysis in a FAVAR framework relies on inverting a system like (2.10) (Stock and Watson, 

2005; Lüetkepohl, 2014), unless we allow the number of factors to be infinite or include the 

explicit non-invertible MA structure of the error term, the standard FAVAR model generates 

biased results when the data is I(1). 

The analytical and Monte Carlo simulation results in Banerjee, Marcellino and Masten 

(2014a) also suggested that the FECM is virtually always better than the FAVAR. This is 

consistent with the findings in our empirical application. Table 2.1 lists the Mean Square Error 

(MSE) of FECM relative to the MSE of FAVAR model of the in-sample forecasting results for 

the 9 series we considered in the empirical experiment using FAVAR and FECM respectively. In 

both models, the input factors are identical and extracted from the 156 macroeconomic time 
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series with 100 quarterly observations from 1990:Q1 to 2014:Q4. The orders of lags are selected 

based on Bayesian Information Criterion (BIC) and the ranks of cointegration in FECM are 

determined by Johansen’s trace test. 

Variable 
MSE of FECM 
relative to 
MSE of FAVAR 

FAVAR FECM 

Lags Lags 
Cointegration 
Rank 

Net Interest Income 0.757106 2 1 2 
Total Noninterest Income 0.574723 2 1 3 
Compensation Expense 0.596774 2 1 3 
Fixed Assets Expense 0.778127 2 1 3 
Total Noninterest Expense 0.637431 2 1 2 

Net Interest Income of Citigroup 1.016468 2 1 2 
Total Noninterest Income of Citigroup 0.719711 2 1 3 
Net Interest Income of Wells Fargo 0.466292 2 1 4 
Total Noninterest Income of Wells Fargo 1.07384 2 1 2 

Table 2.1 MSE of FECM relative to MSE of FAVAR in forecasting PPNR components 

 

Table 2.1 shows that from the 9 forecasting results, the FECM dominantly outperform the 

FAVAR in terms of MSE, with only two exceptions in which the methods are comparable. These 

results are sufficient evidences of the fact that the error correction terms are indispensable in our 

model fitting. Hence the FECM is expected to work substantially better than the FAVAR model. 
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Chapter 3  Factor Identification and Estimation 

As mentioned in the previous chapter, the FECM in (2.9) can be treated as a standard 

VECM condition on the estimated factor spaces. Hence, the cointegration spaces and the 

remaining loading coefficients can be handled with approaches for standard VECM. In this 

chapter, we turn our attention to factor estimation. 

 

3.1 Dynamic Factor Model 

In section 2.1, the factors used in the subsequent FECM derivation are firstly described in 

a dynamic factor model of equation (2.2). Factor models provide an effective framework for 

synthesizing information contained in a substantial amount of time series. Factor models in high 

dimension are popular and have been successfully utilized in economic monitoring and 

forecasting, business cycle analysis, consumer theory analysis, asset pricing and so on (Bai, 

2002; Baltagi, Kao and Wang, 2015). 

A large amount of theory and econometrics analysis about high dimensional factor 

models has been intensively studied in the past fifteen years. Stock and Watson (2002) used the 

principle component method in estimating and forecasting the static factor model, and provided 

theorems showing that the factor space can be consistently estimated when both dimensions N 

and T go to infinity. Bai and Ng (2002) developed a group of panel criteria to obtain the 

consistent estimation of the number of factors, which improved the performance of traditional 

information criteria.  Bai (2003) made the breakthrough by developing the inferential theory, 
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including the theoretical discussion of the rate of convergence and the limiting distribution of the 

estimated factors, factor loadings, and common components, for large dimensional factor models 

with principal component estimators.  

In the empirical applications we are interested in, a potentially large number of observed 

macroeconomic variables in levels are modeled as being simultaneously driven by a small 

number of unobserved underlying stationary and nonstationary factors. The latter is also known 

as cross-section common stochastic trends. While the previous works are mainly focused on the 

stationary observation and factors, Bai (2004) extended the theory and estimation methods to 

models with nonstationary dynamic factors and stationary idiosyncratic errors. Bai and Ng 

(2004) accommodate the situations when nonstationarity presents in both common and 

idiosyncratic components. The principal components estimator was employed in their studies. 

 

3.2 Principal Components Estimation 

Among the three generations of the factor estimation approaches, the second generation 

of nonparametric estimations using cross-sectional averaging methods is extensively used in 

large dimension factor models. The key advantages of the principal components estimator is that 

the space spanned by the factors is consistently estimated and the estimated factors are precisely 

enough to be treated as data in subsequent regressions, if the number of time series N is 

sufficiently large (Stock and Watson, 2010). Moreover, the principal components estimator is 

extremely easy to compute and is asymptotically equivalent to the maximum likelihood estimator 

when normality is assumed (Bai, 2004). The asymptotic properties and calculation efficiency 

make the principal components estimator the ideal estimation method for large data cases.  
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Specify the factor model as  

𝑋𝑡 = Λ𝐹𝑡 + 𝜖𝑡                                 (3.1) 

where 𝑋𝑡 = [𝑋1𝑡 , … ,𝑋𝑁𝑡]′,  𝐹𝑡 = (𝐹1𝑡, … ,𝐹𝑟𝑡)′, 𝜖𝑡 = [𝜖1𝑡 , … , 𝜖𝑁𝑡]′,Λ = [𝜆1, … , 𝜆𝑁]′.  The vector 

representation is given by  

𝑋 = 𝐹Λ′ + 𝜖 

where 𝑋 = [𝑋1, … ,𝑋𝑇]′ is a 𝑇 × 𝑁 matrix observation, 𝐹 = [𝐹1, … ,𝐹𝑇]′ and 𝜖 = [𝜖1, … , 𝜖𝑇]′. 

Let k denote the number of factors that are estimated, which is not necessarily equal to 

the true number of factors r at this stage, the principal component estimators are obtained by 

solving the optimization problem  

minΛ𝑘,𝐹𝑘 𝑆(𝑘) = minΛ𝑘,𝐹𝑘(𝑁𝑇)−1  Σ𝑖=1𝑁 Σ𝑡=1𝑇 �𝑥𝑖𝑡 − 𝜆𝑖𝑖
′𝐹𝑡𝑖�

2
                         (3.2) 

where the superscripts on Λ𝑖  and 𝐹𝑖  signify the number of estimated factors. The results 

return by this minimization problem 𝐹𝑖  and Λ𝑖  are 𝑇 × 𝑘 matrix of estimated factors and its 

corresponding 𝑁 × 𝑘 matrix of estimated loadings. Notice that in the vector form of the 

factor model, 𝐹 and   are not separately identifiable. For an arbitrary 𝑟 × 𝑟 invertible matrix 

𝐴,𝐹Λ′ = 𝐹𝐴−1𝐴Λ′ = 𝐹∗Λ∗′, where 𝐹∗ = 𝐹𝐴−1 and Λ∗′ = 𝐴Λ′. Hence, we impose one of 

the following normalization to the optimization problem 

1)  Λ𝑖′Λ𝑖/𝑁 = 𝐼𝑖   and  𝐹𝑖′𝐹𝑖  is diagonal, 

2) 𝐹𝑖′ 𝐹𝑖/𝑇 = 𝐼𝑖   and  Λ𝑖′Λ𝑖  is diagonal. 
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Since the roles of F and Λ in the common components are equivalent, there are two ways 

to obtain the estimates. From the perspective of computational efficiency, when 𝑇 > 𝑁, we 

concentrate out 𝐹𝑡𝑖 and solve (3.2) subject to the first normalization. The problem is identical to 

maximizing 𝑡𝑟(𝛬𝑖′(𝑋′𝑋)𝛬𝑖). The estimated loading matrix 𝛬𝑖���� is √𝑁 times the eigenvectors 

corresponding to the k largest eigenvalues of 𝑁 × 𝑁 matrix 𝑋′𝑋. The estimated factor equals 

to 𝐹𝑖���� = 𝑋𝛬𝑖����/𝑁 under the normalization. When 𝑇 < 𝑁,  we concentrate out 𝛬𝑖 and solve (3.2) 

subject to the second normalization. The estimated factor 𝐹𝑖�  is √𝑇 times the eigenvectors 

corresponding to the k largest eigenvalues of 𝑇 × 𝑇 matrix 𝑋𝑋′ and the corresponding estimated 

loading matrix is 𝛬𝑖� = 𝑋′𝐹𝑖�/𝑇. 

 

3.3 Determining the Number of Factors   

   We suppose the DFM in (2.2) follows Assumption A-D, I and J as in Bai (2004), which 

are nested in our previous settings in the derivation with additional restrictions holding in general 

cases. By Theorem 5 in Bai (2004), the number of non-cointegrated I(1) factors r can be 

consistently estimated via their information criteria based on principle components estimators of 

data in levels. In addition, the differenced data satisfy all assumptions of Bai and Ng (2002), 

making it possible for us to consistently estimate the total number of non-stationary and 

stationary factors  (r+q). Note that with the stationary assumption, the idiosyncratic term is over-

differenced as shown in (2.10) when using data in differences. However, over-differencing does 

not violate any conditions for the consistent estimator (Bai and Ng, 2002; Bai, 2004). Once 

consistently estimated, the number of factors can be treated as known in the estimation procedure 
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of the factor space. For example, the estimated factor numbers can be used as the pre-specified k 

in the principal components estimators. 

 The family of information criteria developed by Bai and Ng (2002) for stationary data 

and Bai (2004) for nonstationary data in levels, trade off the benefit of including an additional 

factor against the cost of increased sampling variability arising from estimating another 

parameter (Stock and Watson, 2010). The consistent estimator is obtained by minimizing a 

penalized sum of squares, with 𝑘 less than some selected threshold 𝑘𝑚𝑘𝑥, in the form of: 

𝑃𝐶(𝑘) = 𝑆�𝑘,𝐹𝑖  � ,Λ 𝑖  � � + 𝑘𝑘(𝑁,𝑇), 

where 𝑆�𝑘,𝐹𝑖  � ,Λ 𝑖  � � is the least squares objective function in(3.2) evaluated at the principle 

components estimators �𝐹𝑖 � ,Λ 𝑖� �. The sum of squared residuals does not depends on which 

estimate of (𝐹𝑖,Λ 𝑖) is used. That is, the two estimators �𝐹𝑖� ,Λ 𝑖� � and �𝐹𝑖����,Λ 𝑖����� are not 

differentiated. The term 𝑘(𝑁,𝑇) is a penalty function satisfying certain converging conditions 

for stationary and nonstationary data respectively. The value of penalty term in the panel 

criterion increases linearly in the number of factors. 

 To be specific, from Bai and Ng (2002), the penalty function for stationary data satisfies 

the converging conditions that when 𝑁,𝑇 → ∞,  

(1) 𝑘(𝑁,𝑇) → 0 and, 

(2) 𝐶𝑁𝑇2 ∙ 𝑘(𝑁,𝑇) → ∞, where 𝐶𝑁𝑇2 = min {√𝑁,√𝑇}. 

Based on these conditions, Bai and Ng (2002) proposed three criteria: 
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𝑃𝐶𝑝1(𝑘) = 𝑆�𝑘,𝐹𝑖  �� + 𝑘𝜎�2 �
𝑁 + 𝑇
𝑁𝑇 � ln �

𝑁𝑇
𝑁 + 𝑇� ;  

  𝑃𝐶𝑝2(𝑘) = 𝑆�𝑘,𝐹𝑖  �� + 𝑘𝜎�2 �𝑁+𝑇
𝑁𝑇

� ln𝐶𝑁𝑇2 ; 

𝑃𝐶𝑝3(𝑘) = 𝑆�𝑘,𝐹𝑖  �� + 𝑘𝜎�2 �
𝑙𝑛𝐶𝑁𝑇2

𝐶𝑁𝑇2
� ; 

where 𝑆�𝑘,𝐹𝑖  �� is the sum squares of the residuals as defined in (3.2) and 

𝜎�2 = 𝑆�𝑘𝑚𝑘𝑥,𝐹𝑖𝑚𝑘𝑘 � �, 𝐶𝑁𝑇2 = min {√𝑁,√𝑇}. Apparently, these three criteria may be affected 

by the choice of the threshold kmax, which is undesirable in practice. Bai and Ng (2002) further 

proposed an improved version of criteria that would get rid of the threshold kmax: 

𝐼𝐶𝑝1(𝑘) = ln (𝑆�𝑘,𝐹𝑖 ��) + 𝑘 �
𝑁 + 𝑇
𝑁𝑇 � ln �

𝑁𝑇
𝑁 + 𝑇� ;  

  𝐼𝐶𝑝2(𝑘) = ln (𝑆�𝑘,𝐹𝑖 ��) + 𝑘 �𝑁+𝑇
𝑁𝑇

� ln𝐶𝑁𝑇2 ; 

𝐼𝐶𝑝3(𝑘) = ln �𝑆�𝑘,𝐹𝑖 ���+ 𝑘 �
𝑙𝑛𝐶𝑁𝑇2

𝐶𝑁𝑇2
�. 

 Although, the three criteria in each group are asymptotically equivalent, they could have 

different properties in finite samples. Bai and Ng (2002) recommended the first two criteria of 

each group, namely 𝑃𝐶𝑝1, 𝑃𝐶𝑝2 and 𝐼𝐶𝑝1, 𝐼𝐶𝑝2 according to their simulation results. 

 Bai (2004) extended the discussion to new criteria for nonstationary data. When consider 

the data in levels, the penalty functions should satisfy the converging condition that as 𝑁,𝑇 → ∞, 

(1) 𝑘(𝑁,𝑇) �ln ln(𝑇)
𝑇

� → 0 and, 
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(2) 𝑘(𝑁,𝑇) → ∞. 

Then the corresponding information criteria is given as 

𝐼𝑃𝐶1(𝑘) = 𝑆�𝑘,𝐹𝑖 �� + 𝑘𝜎�2𝛼𝑇 �
𝑁 + 𝑇
𝑁𝑇 � ln �

𝑁𝑇
𝑁 + 𝑇� ;  

  𝐼𝑃𝐶2(𝑘) = 𝑆�𝑘,𝐹𝑖 �� + 𝑘𝜎�2𝛼𝑇 �
𝑁+𝑇
𝑁𝑇

� ln𝐶𝑁𝑇2 ; 

𝐼𝑃𝐶3(𝑘) = 𝑆�𝑘,𝐹𝑖 �� + 𝑘𝜎�2𝛼𝑇 �
𝑁 + 𝑇 − 𝑘

𝑁𝑇 �  ln (𝑁𝑇); 

where 𝑆�𝑘,𝐹𝑖  �� is the sum squares of the residuals as defined in (3.2) and 

𝜎�2 = 𝑆�𝑘𝑚𝑘𝑥,𝐹𝑖𝑚𝑘𝑘 � �, 𝐶𝑁𝑇2 = min {√𝑁,√𝑇}, 𝛼𝑇 = 𝑇
4𝑖𝑛𝑖𝑛(𝑇)

.  

In general, the information criteria estimators of Bai and Ng (2002) tend to overestimate 

the correct factor numbers unless the cross correlations are sufficiently weak. An alternative way 

to determine the number of factors in stationary data was proposed by Ahn and Horenstein 

(2013) by using the maximizers of the ratio of two adjacent eigenvalues: 

𝐸𝑅(𝑘) =  
𝑆�𝑘 − 1,𝐹𝑖−1 � ,Λ 𝑖−1 � �−𝑆�𝑘,𝐹𝑖 � ,Λ 𝑖  � �
𝑆�𝑘,𝐹𝑖 � ,Λ 𝑖 � � − 𝑆�𝑘 + 1,𝐹𝑖+1 � ,Λ 𝑖+1 � �

, 

where 𝑆�𝑘,𝐹𝑖  � ,Λ 𝑖  � � is the least squares objective function in(3.2) evaluated at the principle 

components estimators �𝐹𝑖 � ,Λ 𝑖� �. The ratio can be viewed as a formalization of Cattell’s scree 

test. Intuitively this corresponds to finding the edge of the cliff in the screen plot (Stock and 

Watson, 2010). Under the same assumptions of Bai and Ng (2002), Ahn and Horenstein (2013) 

proved that their estimator also produced consistent estimators of the number of factors in DFM.  

Ahn and Horenstein’s estimator only uses the eigenvalues of sample covariance matrices of 
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response variables. This new approach does not require  pre-specified penalty functions or 

estimated threshold values, which are somewhat arbitrary choices in Bai and Ng (2002)’s 

information criteria. Their Monte Carlo experiment results suggested that the new estimators 

outperform the Bai and Ng (2002) estimators even in samples with small N and T. 

When the number of factors is known, Result A1 in Bai and Ng (2008) shows that the 

factor space can be consistently estimated by the principle components estimator without 

knowing if the data are stationary or not. The principal components factor estimates are same to 

the true factor multiplied by a full rank matrix H, whose rank is equal to the known factor 

number. In addition, the corresponding estimated loading matrix is equal to the true loading 

matrix times the inverse of the transposed same matrix H. That is, while the factor and loading 

matrix cannot be separately identified, they are estimated up to a transformation, namely 𝐹𝐹 and 

Λ(𝐹′)−1. Hence the common components 𝐹Λ′ are directly identifiable. For many empirical 

analysis purposes, knowing 𝐹𝐹 is as good as knowing 𝐹 (Bai, 2004).  

In the FECM application, the factors are specified in the DFM of (2.3) under the 

assumption of I(0) idiosyncratic term. Therefore, the space spanned by the factors can be 

consistently estimated using principle components approach. The number of factors 𝑟 and 𝑞 is 

either known or consistently estimated by the previously mention procedures. To be specific, the 

number of nonstationary factors r is estimated by the ICP information criteria proposed by Bai 

(2004) on level data. The total number of both nonstationary and stationary factors r+q is 

estimated by using either Bai and Ng (2002) or Ahn and Horenstein (2013) approach on 

differenced data. The number of stationary factors q is then easily obtained by subtracting 𝑟 from 

the total number r+q.  Subsequently using the principal components estimator, the nonstationary 

factor estimate 𝐹𝑡�  is the r eigenvectors of 𝑋𝑋′ corresponding to the first r largest eigenvalues 
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subject to normalization 𝐹𝑡� ′𝐹𝑡� /𝑇2 = 𝐼, while the stationary factor estimate 𝐺𝑡� is the q 

eigenvectors corresponding to the next q largest eigenvalues normalized with 𝐺𝑡�′𝐺𝑡�/𝑇 = 𝐼 (Bai, 

2004). 

 

3.4 Breaks and Structural Instability   

The early research about the large dynamic factor models is nearly all about the model 

with stable parameters and factor structures. In particular, the factor loadings, number of factors 

and the factors space are time-invariant and do not allow to change. However, in practice, when 

long period of time series are used in the large factor models, there is broad evidence of 

inevitable instability.  

Stock and Watson (2002) considered the case of temporal instability in factor loadings. 

They showed that given the number of factors, when the shifts of the factor loadings from time to 

time are small and idiosyncratic, the standard principal components estimation of factors is still 

consistent and robust. Bates, Plagborg-Møller, Stock and Watson (2013) further provided a 

sufficient condition for consistent estimation of the factor space when the factor loadings have 

certain types of instability. Their conclusion allows for larger instabilities in factor loadings than 

preceding theoretical calculations to hold the consistency of principal components estimator.  

The basic assumptions for the factor, initial factor loadings and idiosyncratic errors in their study 

follow the ones in Bai and Ng (2002), while the factor loading innovations are assumed varying 

with the magnitude converges to zero asymptotically. Their inference theory can be in parallel 

derived for nonstationary factor circumstances if we substitute the assumptions in Bai (2004) for 

the current one, with slightly modification on proofs. The simulation and empirical application 
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showed that instability in the factor loadings has a limited impact on estimation of the factor 

space. However, estimation of the number of factors based on the Bai and Ng (2002) information 

criteria is more substantially affected.  

In recent years, there is an emerging interest of big breaks in factor model analysis, partly 

because of the unexpected dramatic changes in the economy environment caused by the 

Subprime mortgage crisis and Great Recession in 2007 – 2009. Unlike other post-war U.S. 

recessions, the recent Great Recession is characterized by a sever disruption of financial markets, 

a slow recovery, and a lasting episode of zero nominal interest rates and unconventional 

monetary policies (Cheng, Liao and Schorfheide, 2014).  

Stock and Watson (2009) considered the case of a single large break in factor structure 

with the empirical analysis of U.S. macroeconomic data consider the Great Moderation starting 

from 1984. They evaluated two sets of factors and loadings with sub-sample from before and 

after the break. They showed that the full-sample principal components estimator of the factor 

asymptotically spans the space of the two combined factors, while the number of full-sample 

factors can exceed the number of subsample factor in both sets. They found that forecasts based 

on full-sample factors can outperform those based on subsamples. This is in contrast to Banerjee, 

Marcellino and Masten (2007)’s Monte Carlo results. The latter, indicated that when the 

instability of factor loadings is big, the factor-based forecasting become worse significantly, even 

though the factor space itself is invariant. Breitung and Eickmeier (2011) also mentioned that the 

presence of structural breaks in the factor loadings might lead to overestimation of the number of 

factors. This is because a factor model with unstable factor loading can be represented by an 

equivalent model with extra pseudo factors but stable factor loadings. This underlies the failure 

of consistent estimation of factor numbers on full sample for any existing method, including Bai 
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and Ng (2002), Onatski (2008, 2009), Ahn and Horestein (2013) etc. (Baltagi, Kao and Wang, 

2015). One practical solution is to split the full-sample set into sub-sample sets by breaks, and 

estimate the factor numbers on each subset, if the change point is known. Breitung and 

Eickmeier (2009), Chen, Dolado and Gonzalo (2014), Han and Inoue (2014) and Corradi and 

Swanson (2014) proposed a series of tests to detect the existence of large breaks in factor 

loadings. . Baltagi, Kao and Wang (2015) developed a least squares estimator of the change point 

without requiring prior knowledge of the factor numbers and observability. Meanwhile, Cheng, 

Liao and Schorfheide (2014) proposed a shrinkage procedure that consistently estimates the 

number of pre- and post-break factors without requiring knowledge of the change point. 
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Chapter 4 FECM with Time Varying Coefficients 

The analysis in the realms of economics and finance is time sensitive. There are both 

theoretical and empirical evidences suggesting the relation among variables may vary over time, 

especially during the periods of recession triggered by financial crisis, market shock or the 

bursting of an economic bubble. In the empirical application of this thesis, we use a U.S. 

macroeconomic variables data set covering the period spanning from 1990:Q1 to 2014:Q4, that 

includes the extended economic boom in the United States during 1990s, the burst of the dot com 

bubble around 2000 and the Great Recession following the subprime mortgage crisis in 2007-

2009.  A potential variation of variable relation is expected which we are highly interested in 

modeling and analyzing.  

In the past decade, time varying coefficient (TVC) approach has been extensively applied 

to VAR and FAVAR model for analysis of macroeconomic issues, such as the mechanism of 

monetary policy (Primiceri, 2005; Koop, Leon-Gonzalez and Strachan, 2008; Korobilis, 2012), 

accurate index of financial conditions (Koop and Korobilis, 2014) and dynamic relation of 

variables (Nakajima, Kasuya, and Watanabe, 2011).There are relative few literature considering 

time varying coefficient model which permit cointegration.  Li, Song and Witt (2005) used the 

TVC- ECM in forecasting of Tourism Demand with all parameters changing with time except 

that the cointergration coefficients are fixed. Bierens and Martins (2010) studied a time varying 

cointegration via Chebyshev Time Polynomials while all other parameters in the VECM were 

time-invariant. Koop, Leon-Gonzalez and Strachan (2011) provided a comprehensive framework 
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of Bayesian inference on time varying cointegration in VECM, with all parameters to be time 

varying in state space form. 

In this chapter, we extend the FECM in Chapter 2 by allowing time varying coefficient 

and stochastic volatility. 

 

4.1 Model Description 

  Recall the FECM (2.9) derived in Chapter 2. Let the coefficients that determining the 

cointegration relations, controlling short term dynamics and the error covariance matrix be time 

varying.  TVC-FECM is written as: 

�
Δ𝑌𝑡
Δ𝐹𝑡
Δ𝐺𝑡

� = 𝛼𝑡𝛽𝑡′ �
𝑌𝑡−1
𝐹𝑡−1
𝐺𝑡−1

� + Φ1𝑡 �
Δ𝑌𝑡−1
Δ𝐹𝑡−1
Δ𝐺𝑡−1

� + ⋯+ Φ𝑝𝑡 �
Δ𝑌𝑡−𝑝
Δ𝐹𝑡−𝑝
Δ𝐺𝑡−𝑝

� + �
𝜐𝑡
𝑅𝑢𝑡
𝑅𝑤𝑡

�                 (4.1) 

where the error terms are supposed to be independent 𝑁(0,𝛺𝑡),  𝛼𝑡  and 𝛽𝑡 are full rank n–by–k 

matrices for every time point, where 𝑛 = 𝑀 + 𝑟 + 𝑞 is the sum of dimensions of interested 

variables and factors, and k is their cointegration rank. We group the involved variables of 

interest and factors in a vector 𝑦𝑡 = �
𝑌𝑡
𝐹𝑡
𝐺𝑡
� and idiosyncratic term in 𝛿𝑡 = �

𝜐𝑡
𝑅𝑢𝑡
𝑅𝑤𝑡

�. Note that in 

Chapter 2, we conclude that the FECM with no restriction imposing on coefficients is a 

reasonable approximation. Hence we can treat the target variables and extracted factor in no 

difference when stating the TVC-FECM and considering its estimation. We rewritten (4.1) in the 

vector form as:   

Δ𝑦𝑡 = 𝛼𝑡𝛽𝑡′𝑦𝑡−1 + Φ1𝑡Δ𝑦𝑡−1 + ⋯+ Φ𝑝𝑡Δ𝑦𝑡−𝑝 + 𝛿𝑡   (4.2) 
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Under the expression of (4.2), the TVC-FECM is in the same specification of TVP-VECM in 

Koop, Leon-Gonzalez and Strachan (2011), with the deterministic terms ignored.  

 As to the time varying structure of the coefficients,  the state space form allowing the 

coefficients to evolve according to an AR(1) or random walk is popular in TVC time series 

model studies (Cogley and Sargent, 2005; Primiceri, 2005; Korobilis, 2009).  There are 

established literature studying the inference and properties of the space state form modeling. 

Those techniques are readily to be used in the TVC-FECM. We separate the coefficients in (4.2) 

into three main blocks and present their time varying structures respectively. 

 

4.2 Time Varying Cointegration 

 The most challenging part in the TVC-FECM is to properly modeling the changing 

pattern of the cointegration. Without further restriction, it is only the cointegrating space, instead 

of the particular cointegrating vectors, that is identified. This is consistent with the situation in 

standard time-invariant VECM, in which we can always find an orthogonal matrix Ω satisfying 

ΩΩ′ = 𝐼 such that  

𝛼𝛽′ = 𝛼𝛺𝛺′𝛽′ = 𝛼𝛺(𝛽𝛺)′ = 𝛼∗𝛽∗′ 

(Tsay, 2010). Moreover, the locations and dispersions of the cointegration vectors 𝛽𝑡 do not 

always translate directly to comparable locations and dispersions on the cointegration space 

(Koop, Leon-Gonzalez and Strachan, 2011). Therefore, the state space form of the cointegration 

coefficients is defined based on the cointegration space instead of the cointegration vectors 𝛽𝑡. In 

fact, Koop, Leon-Gonzalez and Strachan (2010) argued that it is not sensible to express changes 
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on cointegrating vectors in state space form directly. They illustrated this point by an analytical 

example which showed that small changes on vectors of 𝛽𝑡 may cause that the space spanned 

alter dramatically. This is clearly undesirable in the model. Koop, Leon-Gonzalez and Strachan 

(2010) proposed some simple but reasonable principles about the design of cointegrating space 

structure: first, the cointegrating space has a distribution centered on the cointegrating space of 

the previous time point; second, the change in location of the spaces from time to time should be 

small, accommodating the gradual evolution in long term equilibrium; third, there should be 

ways to express prior beliefs, if any, about the marginal distribution of the cointegrating space at 

each time t. Following these principles, the state equation for the time varying cointegrating 

spaces is given by 

𝑏𝑡∗ = 𝜌𝑏𝑡−1∗ + 𝜂𝑡 , 

𝜂𝑡~𝑁(0, 𝐼𝑛𝑖) for 𝑡 = 2, … ,𝑇,     (4.3) 

𝑏0∗~𝑁�0,
1

1 − 𝜌2 𝐼𝑛𝑖�. 

where 𝑛 is the dimension of 𝑦𝑡, 𝑘 is the number of cointegration, 𝑖. 𝑒. the rank of the 

cointegration matrix, |𝜌| < 1,   𝑏𝑡∗ = 𝑣𝑒𝑐(𝛽𝑡∗) — the vector stack of the unrestricted matrix of 

cointegration vectors 𝛽𝑡∗. Let  

𝛽𝑡 = 𝛽𝑡∗(𝜅𝑡)−1, 

where  

𝜅𝑡 = (𝛽𝑡∗
′𝛽𝑡∗)1/2, 
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𝛽𝑡 is semi-orthogonal, which satisfying the commonly used normalization  𝛽𝑡′𝛽𝑡 = 𝐼 in the 

VECM literatures.  

From (4.3), we can derive that for each time point t, the marginal prior of 𝑏𝑡∗ is 

multivariate normal distributed: 𝑏𝑡∗~𝑁(0, 𝑐𝐼𝑛𝑖) with c is some constant. This implies a uniform 

distribution for 𝛽𝑡 on the Stiefel manifold and a uniform distribution for the space it spans on the 

Grassmann manifold (Strachan and Inder, 2004). The previous literature stressed that this 

uniform distribution is a sensible and proper non-informative prior for the cointegrating space. 

Koop, Leon-Gonzalez and Strachan (2011) further investigated the distribution of cointegration 

spaces at time 𝑡 condition on that of time 𝑡 − 1. Equations in (4.3) implies that 𝑏𝑡∗ given 𝑏𝑡−1∗  is 

multivariate normal distributed and hence, the conditional density of 𝛽𝑡∗ given 𝛽𝑡−1∗  is matrix 

normal with mean 𝜌𝛽𝑡−1∗  and covariance matrix 𝐼𝑛𝑖 . From the results in Chikuse (2003), the 

conditional distribution of cointegration space is therefore an orthogonal projective Gaussian 

distribution with parameter 𝐹𝑡 = 𝛽𝑡−1𝜌2𝜅𝑡−12 𝛽𝑡−1′ . Koop, Leon-Gonzalez and Strachan (2011) 

showed that, following this distribution, the cointegration space of time 𝑡 is centered on the 

cointegration space of time 𝑡 − 1, in both modal sense and expectation sense, which leads the 

satisfactory of their first desirable principal. 

To ensure the second principal of “gradual” evolution in cointegration space, Koop, 

Leon-Gonzalez and Strachan (2011) emphasized the importance of the restriction |𝜌| < 1, which 

is quite different from the random walk evolution commonly specified in the VAR model for the 

time varying coefficients. They found that when 𝜌 = 1, the 𝑏𝑡∗ could wander far from the origin, 

implying the violation of their second principle, means that the variation in cointegration spaces 

would shrink until it imposes the identical spaces from time to time at the limit. On the other 

hand, the value of 𝜌 could not be too far away from one. Simulation results showed that even  
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𝜌 = 0.99 would allow for implausibly huge changes in the cointegration space. Therefore, Koop, 

Leon-Gonzalez and Strachan (2011) recommended choosing value of 𝜌 in [0.999, 1).  

One more thing to be noticed in the state equation (4.3) is that the variances for the error 

term 𝜂𝑡 are set to be constant over time. This prior distribution is typically used in TVC-VAR 

models and imposes a same expected change in the coefficients in every time period. It also 

helps ensure the gradual evaluation desired in the second principal and the constant change 

which often occurs in practice. 

 We now draw the measurement model for (4.3) to complete the state space form 

expression. Additionally denote  

𝛼𝑡∗ = 𝛼𝑡(𝜅𝑡)−1, 

𝑥�𝑡 = (𝛼𝑡∗⨂𝑦𝑡−1′ ). 

Then, 

𝛼𝑡∗𝛽𝑡∗
′𝑦𝑡−1 = (𝛼𝑡∗⨂𝑦𝑡−1′ )𝑏𝑡∗ = 𝑥�𝑡𝑏𝑡∗. 

We can write (4.2) in the following representation to obtain the measurement equation:  

𝑦𝑡� = Δ𝑦𝑡 − �Φ1𝑡Δ𝑦𝑡−1 + ⋯+ Φ𝑝𝑡Δ𝑦𝑡−𝑝� = 𝛼𝑡∗𝛽𝑡∗
′𝑦𝑡−1 + 𝜉𝑡  =  (𝛼𝑡∗⨂𝑦𝑡−1′ )𝑏𝑡∗ + 𝛿𝑡 

𝑦𝑡� = 𝑥�𝑡𝑏𝑡∗ + 𝛿𝑡.       (4.4) 

The normality assumption of 𝛿𝑡 gives us a linear normal form for the measurement 

equation. The measurement equation (4.4) paired with the state equation of 𝑏𝑡∗ in (4.3) forms a 

standard state model which can be fitted in the regular state space model frameworks to solve, 

for example, the method of Durbin and Koopman (2002). 



 

41 
 

4.3 Other Time Varying Coefficients 

The remaining short terms coefficients and error covariance matrix can be modeled in 

state space form in a similar way as that in the applications of TVC-VAR in Primiceri (2005) and 

TVC-FAVAR in Korobilis (2009). Again, we follow the notations in Koop, Leon-Gonzalez and 

Strachan (2011), define 

𝛯𝑡 = �𝛼𝑡∗,𝛷1𝑡, … ,𝛷𝑝𝑡�,  

𝑘𝑡 = 𝑣𝑒𝑐(𝛯). 

We assume the state equation of 𝑘𝑡 is a random walk: 

𝑘𝑡 = 𝑘𝑡−1 + 𝜁𝑡,     (4.5) 

where 𝜁𝑡~𝑁(0,𝑄). In addition, let 

𝑧𝑡 = 𝛽𝑡∗
′𝑦𝑡−1 

𝑍𝑡 = �𝑧𝑡′,𝛥𝑦𝑡−1′ , … ,𝛥𝑦𝑡−𝑝′ �′. 

and  

𝑥𝑡 = 𝑍𝑡′⨂𝐼𝑛 . 

Therefore, we can write the measurement model for 𝑘𝑡 from (4.2) in its vector and matrix form 

as follows: 

𝛥𝑦𝑡 = 𝛯𝑍𝑡 + 𝜉𝑡 = (𝑍𝑡′⨂𝐼𝑛)𝑣𝑒𝑐(𝛯) + 𝛿𝑡 

𝛥𝑦𝑡 = 𝑥𝑡𝑘𝑡 + 𝛿𝑡.      (4.6) 
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Again, thanks to the normal distribution of 𝛿𝑡, conditioning on 𝛽𝑡∗, (4.6) is a linear normal 

form measurement equation. (4.5) along with (4.6) is in the standard state space form which 

can be handled in a similar way as (4.3) and (4.4). 

 As to the covariance matrix of error 𝛿𝑡~𝑁(0,𝛺𝑡), we utilize the treatments in 

Primiceri (2005). This is also the method used in Korobilis (2009) and Koop, Leon-Gonzalez 

and Strachan (2011). To be precise, we first conduct a triangular reduction on the covariance 

matrix 𝛺𝑡: 

𝐴𝑡𝛺𝑡𝐴𝑡′ = 𝛴𝑡𝛴𝑡′, 

where 𝐴𝑡is the lower triangular matrix 

𝐴𝑡 = �

1 0
𝑘21,𝑡 1

⋯ 0
⋱ ⋮

⋮ ⋱
𝑘𝑛1,𝑡 ⋯

⋱ 0
𝑘𝑛𝑛−1,𝑡 1

�,  

and 𝛴𝑡 = 𝑑𝑖𝑘𝑘(𝜎1𝑡, … ,𝜎𝑛𝑡) is the diagonal matrix. Then, there exists 𝜀𝑡~𝑁(0, 𝐼) such that 

𝛿𝑡 = 𝐴𝑡−1𝛴𝑡𝜀𝑡. Let 

𝑘�𝑡 = �𝑘21,𝑡, 𝑘31,𝑡 ,𝑘32,𝑡 , … , 𝑘𝑛1,𝑡, … ,𝑘𝑛𝑛−1,𝑡�
′
, 

the row stack of the non-zero off-diagonal elements in 𝐴𝑡 , Primiceri(2005) imposed a random 

walk state equation of 𝑘�𝑡: 

𝑘�𝑡 = 𝑘�𝑡−1 + 𝜉𝑡,      (4.7) 

where 𝜉𝑡~𝑁(0,𝐶) is independent over t  and other previously defined error terms. Denote 

𝑛 × 𝑛(𝑛−1)
2

 matrix 
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𝑍𝑡� =

⎣
⎢
⎢
⎢
⎡

0 0
−𝑦�1,𝑡

0
0

−𝑦�[1,2],𝑡

⋯⋯⋯⋯ 0
⋯⋯⋯⋯⋯

⋱
0
⋯

⋮ ⋱
0 ⋯⋯⋯⋯

⋱ 0
0 −𝑦�[1,…,𝑛−1],𝑡 ⎦

⎥
⎥
⎥
⎤

, 

where 𝑦�[1,…,𝑖],𝑡 = �𝑦�1,𝑡 ,𝑦�2,𝑡, … ,𝑦�𝑖,𝑡� and 𝑦�𝑖,𝑡is the i-th element of vector   

𝑦�𝑡 = 𝛥𝑦𝑡 − �𝛼𝑡𝛽𝑡′𝑦𝑡−1 + 𝛷1𝑡𝛥𝑦𝑡−1 + ⋯+ 𝛷𝑝𝑡𝛥𝑦𝑡−𝑝�. 

Then from (4.2), we have  

𝐴𝑡�𝛥𝑦𝑡 − 𝛼𝑡𝛽𝑡′𝑦𝑡−1 − 𝛷1𝑡𝛥𝑦𝑡−1 − ⋯− 𝛷𝑝𝑡𝛥𝑦𝑡−𝑝� = 𝐴𝑡𝑦�𝑡 = 𝛴𝑡𝜀𝑡 

The measurement equation for 𝑘�𝑡 is given when we apply that  𝐴𝑡 is a lower triangular matrix 

with ones on the main diagonal: 

𝑦�𝑡 = 𝑍𝑡� 𝑘�𝑡 + 𝛴𝑡𝜀𝑡.      (4.8) 

Hence (4.7) and (4.8) describe the dynamic of 𝑘�𝑡 in a standard state space model. 

 Last but not the least, we lay out the evolution of 𝛴𝑡 . A Stochastic volatility framework 

is used on 𝛴𝑡. Let 

𝜎𝑡 = [𝜎1𝑡, … ,𝜎𝑛𝑡]′, 

ℎ𝑖𝑡 = 𝑙𝑛(𝜎𝑖𝑡), 

ℎ𝑡 = [ℎ1𝑡 , … , ℎ𝑛𝑡]′. 

The state equation is given on ht, 

ℎ𝑡 = ℎ𝑡−1 + 𝜔𝑡 ,      (4.9) 
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with 𝜔𝑡~𝑁(0,𝑊) is independent over t  and other previously defined error terms. Denote  

𝑦𝑡∗ = 𝐴𝑡𝑦�𝑡 = 𝛴𝑡𝜀𝑡, 

𝑦𝑡∗ = [𝑦1𝑡∗ , … , 𝑦𝑛𝑡∗ ]′, 

𝑦𝑡∗∗ = [𝑦1𝑡∗∗, … ,𝑦𝑛𝑡∗∗]′, 

where 𝑦𝑖𝑡∗∗ = 𝑙𝑛[(𝑦𝑖𝑡∗ )2 + 𝑐̅]  with 𝑐̅ = 0.001  is the offset constant. 

Then the measurement equation for ℎ𝑡 is 

𝑦𝑡∗∗ = 2ℎ𝑡 + 𝑒𝑡,      (4.10) 

where 𝑒𝑡 = [𝑒1𝑡 , … , 𝑒𝑛𝑡]′ with 𝑒𝑖𝑡 = 𝑙𝑛(𝜖𝑖𝑡2 )  𝑓𝑓𝑟 𝑖 = 1, … ,𝑛. (4.9) and (4.10) complete the 

state space form of ℎ𝑡.  

 Note that different from the previous state space models, the system consisting of (4.9) 

and (4.10) has a linear but non-Gaussian state space form, because the innovations in the 

measurement equation (4.10) are distributed as ln�𝜒2(1)�. Kim, Shephard and Chib(1998) 

provided a practical way to approximate the  ln�χ2(1)� by a mixture of normal distributions. 

Hence, we could employ this approximation to transform the state space system in (4.9) and 

(4.10) into a Gaussian one.  Since we have 𝜀𝑡~𝑁(0, 𝐼), implying an identity variance 

covariance matrix of 𝜀𝑡, the variance covariance matrix of 𝑒𝑡 should also be diagonal. This 

allows one to use the same (independent) mixture of normal distribution approximation for 

any element of 𝑒𝑡 (Primiceri, 2005). Kim, Shephard and Chib (1998) selected a mixture of 

seven normal distributions with component probabilities 𝑞𝑖, means 𝑚𝑖 − 1.2704 and variance 
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𝑣𝑖2 , 𝑗 = 1, … ,7. The constants {𝑞𝑖 ,𝑚𝑖, 𝑣𝑖2} listed in Table 4.1, from Kim, Shephard and Chib 

(1998), are chosen to match a number of moments of the ln�𝜒2(1)�. 

𝜔 𝑞𝑖 = Pr (𝜔 = 𝑗) 𝑚𝑖 𝑣𝑖2 
1 0.00730 -10.13 5.79596 
2 0.10556 -3.97281 2.61369 
3 0.00002 -8.56686 5.17950 
4 0.04395 2.77786 0.16735 
5 0.34001 0.61942 0.64009 
6 0.24566 1.79518 0.34023 
7 0.25750 -1.08819 1.26261 

Table 4.1 Selection of the mixing distribution to be ln�𝜒2(1)� (Source: Kim, Shephard and Chib, 
1998.) 

 
 Let 𝑠𝑡 denote the indicator variables selecting which normal approximation in Table 4.1 

has been used for 𝑒𝑡 at time point 𝑡, 𝑡 = 1, … ,𝑇. Conditional on 𝑠𝑇 = [𝑠1, … , 𝑠𝑇]′, other FECM 

coefficients and variance covariance matrices, the state space system of (4.9) and (4.10) would 

have an approximate linear and Gaussian state space form. At the same time, condition on ℎ𝑡 and 

𝑦𝑡∗∗ from (4.9) and (4.10), it is easy to draw the sample of new 𝑠𝑇. 

 

4.4 Bayesian Inference 

 We estimate the TVC-FECM through Markov Chain Monte Carlo (MCMC) algorithm. In 

the previous two sections, we divided the time varying coefficients in three main blocks: the 

short term coefficients �𝛼𝑡∗,Φ1𝑡 , … ,Φ𝑝𝑡�, the cointegration coefficients 𝛽𝑡∗, and the error 

covariance matrix Ω𝑡. Their time varying patterns are given in four state space models, specified 
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in equations (4.3) – (4.10). We employ the Gibbs sampling approach to accomplish the model 

estimation.  

We first list the prior distributions we use in the Gibbs samplers and their corresponding 

posterior distributions. 

(1) The block for short term coefficients described in (4.5) and (4.6). 

The initial value of the state 𝑘𝑡 is given as 𝑘0~𝑁�0, 2𝑉𝑘0�, where  

 𝑉𝑘0 = �(1− 𝜌2)𝐼𝑛𝑖 0
0 𝐼

� ,𝑛 = dim(𝑦𝑡) and 𝑘 is the cointegration rank. This prior variance 

𝑉𝑘0together with the setting in (4.3) imposes a prior variance of 2𝑘 on each of the elements of the 

product 𝛼0∗𝛽0∗
′. The posterior distribution of 𝑘0 given data and other coefficients is therefore 

𝑘0|𝑑𝑘𝑡𝑘~𝑁�𝜇𝑘0����, 𝑉𝑘0�����, where 𝑉𝑘0���� = �∑ 𝑥𝑡Ω𝑡−1𝑇
𝑖=1 𝑥𝑡′ + 𝑉𝑘0�

−1
 and 𝜇𝑘0���� =  𝑉𝑘0���� ∙ [∑ (Δ𝑦𝑡 −𝑇

𝑖=1

𝑥𝑡𝑘𝑡)Ω𝑡−1𝑥𝑡′]. 

 The error term 𝜁𝑡 in (4.5) has prior normal distribution  𝜁𝑡~ 𝑁(0,𝑄), where the prior of 

𝑄 is Wishart 𝑄−1~𝑊(𝜈𝑄,𝑄−1), with 𝜈𝑄 = dim(𝑘0) + 2 and 𝑄 = 0.0001 ∙ 𝐼. Here the constant 

0.0001 is chosen following Primiceri (2005). It appears small but in reality allows for substantial 

evolution of the states. The posterior distribution of 𝑄 given data is therefore 

𝑄−1|𝑑𝑘𝑡𝑘~𝑊��̅�𝑄 ,𝑄�−1�, where �̅�𝑄 = 𝑇 + 𝜈𝑄 = 𝑇 + dim(𝑘0) + 2 and 𝑄�−1 = �𝑄 +

∑ (𝑘𝑡 − 𝑘𝑡−1)(𝑘𝑡 − 𝑘𝑡−1)′𝑇
𝑡=1 �

−1
. 

(2) The block for cointegrating space coefficients in (4.3) and (4.4). 

The initial value of the state in (4.3) is given by 𝑏0∗~𝑁�0, 1
1−𝜌2

𝐼𝑛𝑟�.  
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Error term 𝜂𝑡 also has prior specified in (4.3) as  𝜂𝑡~𝑁(0, 𝐼𝑛𝑟). 

The autoregression coefficient 𝜌 can be set fixed in the prior or supposed uniformly 

distributed on [0.999, 1) as the simulation results in Koop, Leon-Gonzalez and Strachan (2011) 

suggested. If 𝜌 is treated as unknown, we could add one more block into the MCMC algorithm to 

iteratively draw it. Because of the nonlinear way in which 𝜌 involved in the initial condition for 

𝑏0∗, the posterior distribution of 𝜌 is non-standard and we use a Metropolis–Hastings algorithm to 

draw it in iterations. 

(3) The block of error covariance matrix parameters in (4.7) –(4.10). 

Error term 𝜉𝑡 in (4.7) has prior normal distribution  𝜁𝑡~ 𝑁(0,𝐶), where the prior of 𝐶 is 

Wishart 𝐶−1~𝑊(𝜈𝐶 ,𝐶−1) with 𝜈𝐶 = 𝑛(𝑛−1)
2

+ 2  and  𝐶 = 0.0001 ∙ 𝐼. Here the constant 0.0001 

is chosen due to the same reason as the short term coefficient block. The posterior distribution of 

𝐶 given data is therefore 𝐶−1|𝑑𝑘𝑡𝑘~𝑊(�̅�𝐶 ,𝐶̅−1), where �̅�𝐶 = 𝑇 + 𝜈𝐶 = 𝑇 + 𝑛(𝑛−1)
2

+ 2 and 

𝐶̅−1 = �𝐶 + ∑ (𝑘�𝑡 − 𝑘�𝑡−1)(𝑘�𝑡 − 𝑘�𝑡−1)′𝑇
𝑡=1 �−1. 

Error term 𝜔𝑡 in (4.9) has prior normal distribution  𝜔𝑡~𝑁(0,𝑊), where the prior of 𝑊 

is Wishart 𝑊−1~𝑊(𝜈𝑊,𝑊−1),  with 𝜈𝑊 = 𝑛 + 2  and  𝑊 = 0.0001 ∙ 𝐼, where constant 0.0001 

is determined, again, to ensure properly variation of states from time to time. The posterior 

distribution of 𝑊 given data is therefore 𝑊−1|𝑑𝑘𝑡𝑘~𝑊(�̅�𝑊,𝑊� −1), where �̅�𝑊 = 𝑇 + 𝜈𝑊 = 𝑇 +

𝑛 + 2 and 𝑊� −1 = �𝑊 + ∑ (ℎ𝑡 − ℎ𝑡−1)(ℎ𝑡 − ℎ𝑡−1)′𝑇
𝑡=1 �−1. 

Denote 𝑘𝑇 = [𝑘0′ , 𝑘1′ , … , 𝑘𝑇′ ]′,𝑏∗𝑇 = [𝑏0∗′, 𝑏1∗′, … , 𝑏𝑇∗ ′]′,𝐴𝑇 = [𝐴1′ , … ,𝐴𝑇′ ]′,Σ𝑇 =

[Σ1′ , … ,Σ𝑇′ ]′, 𝑠𝑇 = [𝑠1, … , 𝑠𝑇]′, and 𝑦𝑇 = [𝑦1′ , … , 𝑦𝑇′ ]′.  
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To summarize, the Gibbs sampler takes the form: 

(i) Initialize 𝑘𝑇 , 𝑏∗𝑇 ,𝐴𝑇 , Σ𝑇 , 𝑠𝑇    and 𝜌,𝑄,𝐶,𝑊; 

(ii) Draw sample 𝑘𝑇  from 𝑝(𝑘𝑇|𝑦𝑇 ,𝑏∗𝑇 ,𝐴𝑇 ,Σ𝑇 , 𝑠𝑇 , 𝜌,𝑄,𝐶,𝑊); 

(iii) Draw sample 𝑄 from 𝑝(𝑄|𝑦𝑇 ,𝑘𝑇 ,𝑏∗𝑇 ,𝐴𝑇 ,Σ𝑇 , 𝑠𝑇 , 𝜌,𝐶,𝑊); 

(iv) Draw sample 𝑏∗𝑇  from 𝑝(𝑏∗𝑇|𝑦𝑇 ,𝑘𝑇 ,𝐴𝑇 , Σ𝑇 , 𝑠𝑇 ,𝜌,𝑄,𝐶,𝑊); 

(v) Draw sample ρ from p(ρ|yT, aT, b∗T, AT, ΣT, sT, Q, C, W); 

(vi) Draw sample 𝐴𝑇  from 𝑝(𝐴𝑇|𝑦𝑇 ,𝑘𝑇 ,𝑏∗𝑇 ,Σ𝑇 , 𝑠𝑇 ,𝑄,𝐶,𝑊); 

(vii) Draw sample 𝐶 from 𝑝(𝐶|𝑦𝑇 ,𝑘𝑇 , 𝑏∗𝑇 ,𝐴𝑇 , Σ𝑇 , 𝑠𝑇 ,𝑄,𝑊); 

(viii) Draw sample 𝑠𝑇  from 𝑝(𝑠𝑇|𝑦𝑇 ,𝑘𝑇 , 𝑏∗𝑇 ,𝐴𝑇 , Σ𝑇 ,𝑄,𝐶,𝑊); 

(ix) Draw sample Σ𝑇  from 𝑝(Σ𝑇|𝑦𝑇,𝑘𝑇 , 𝑏∗𝑇 ,𝐴𝑇 , 𝑠𝑇 ,𝑄,𝐶,𝑊); 

(x) Draw sample 𝑊 from 𝑝(𝑊|𝑦𝑇 ,𝑘𝑇 , 𝑏∗𝑇 ,𝐴𝑇 , 𝑠𝑇 ,𝑄,𝐶). 

Specially, in the steps draw 𝑘𝑇 , 𝑏∗𝑇 ,𝐴𝑇 ,Σ𝑇, we implement the method of Durbin and 

Koopman (2002) for the state space model simulation smoothing. Consider the state space model, 

for 𝑡 = 1, … ,𝑇, the measurement equation is  

𝑦𝑡 = 𝑍𝑡𝛼𝑡 + 𝜀𝑡 , 𝜀𝑡~𝑁(0,𝐹𝑡),             (4.11) 

the state equation is  

𝛼𝑡+1 = 𝑇𝑡𝛼𝑡 + 𝑅𝑡𝜂𝑡 , 𝜂𝑡~𝑁(0,𝑄𝑡).    (4.12) 
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where 𝛼1~𝑁(𝑘1,𝑃1), 𝑍𝑡,𝑇𝑡,𝑅𝑡 ,𝐹𝑡 ,𝑄𝑡 ,𝑘1 and 𝑃1 are assumed to be known. Denote 𝑤 =

[ε1′ , η1′ , … , εT′ ,ηT′ ]′.  𝑤~𝑁(0,Ω ), where Ω = 𝑑𝑖𝑘𝑘(𝐹1,𝑄1, … ,𝐹𝑇 ,𝑄𝑇). The Kalman filter is given 

by, for 𝑡 = 1, … ,𝑇,  

𝑣𝑡 = 𝑦𝑡 − 𝑍𝑡𝑘𝑡, 𝐹𝑡 = 𝑍𝑡𝑃𝑡𝑍𝑡′ + 𝐹𝑡 , 𝐾𝑡 = 𝑇𝑡𝑃𝑡𝑍𝑡′𝐹𝑡−1, 

𝐿𝑡 = 𝑇𝑡 − 𝐾𝑡𝑍𝑡, 𝑘𝑡+1 = 𝑇𝑡𝑘𝑡 + 𝐾𝑡𝑣𝑡, 𝑃𝑡+1 = 𝑇𝑡𝑃𝑡𝐿𝑡′ + 𝑅𝑡𝑄𝑡𝑅𝑡′ .   (4.13) 

The disturbance smoothers are 

𝑤𝑡� = �𝐹𝑡𝐹𝑡
−1 −𝐹𝑡𝐾𝑡′

0 𝑄𝑡𝑅𝑡
� �
𝑣𝑡
𝑟𝑡 � , for 𝑡 = 1, … ,𝑇,    (4.14) 

where 𝑟𝑡 is evaluated by the backwards recursion 

𝑟𝑡−1 = 𝑍𝑡′𝐹𝑡−1𝑣𝑡 + 𝐿𝑡′ 𝑟𝑡,    for 𝑡 = 𝑇,𝑇 − 1, … , 1, with 𝑟𝑇 = 0.  (4.15) 

Then the smoother for state vector is computed as 

𝛼�𝑡+1 = 𝑇𝑡𝛼�𝑡 + 𝑅𝑡𝑄𝑡𝑅𝑡′𝑟𝑡, for 𝑡 = 1, … ,𝑇   (4.16) 

with the initialization  𝛼�1 = 𝑘1 + 𝑃1𝑟0. 

 Durbin and Koopman (2002) used the following algorithm to generate the draws of the 

state vector 𝛼 = [𝛼1′ , … ,𝛼𝑇′ ]′ from the conditional density 𝑝(𝛼|𝑦): 

Step 1. Draw a random vector 𝑤+from density 𝑝(𝑤) and use it to generate 𝛼+ and 𝑦+ by 

means of recursion (4.11) and (4.12) with 𝑤 replace by 𝑤+, where the recursion is initialized by 

the draw  𝛼1+~𝑁(𝑘1,𝑃1). 
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Step 2. Compute  𝛼� = 𝐸(𝛼|𝑦) by means of standard filtering and smoothing using (4.13) 

– (4.16). 

Step 3. Take  𝛼� = 𝛼� − 𝛼�+ + 𝛼+. 

The final result 𝛼� is a simulation smoother of the state space vector 𝛼. Durbin and 

Koopman (2002) showed that this simulation smoothing method is simple and computational 

efficient when comparing to other standard methods. In the empirical application of this thesis, 

we use this simulation smoother in our MCMC algorithm. 
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Chapter 5  Application to U.S. Bank Stress Testing 

  In this chapter, we apply the newly developed TVP-FECM to the U.S. bank stress testing 

analysis. Typically, we are interested in the projection of the pre-provision net revenue (PPNR). 

We use our model to look for potential variation of the relation between PPNR and the 

macroeconomic variables in different historical periods. 

 

5.1 Pre-Provision Net Revenue 

 In the Federal Reserve published CCAR reports, the key feature to make the “object or 

not object” decision about a BHC’s capital plan is the Tier 1 Common Capital Ratio (T1CR). 

The calculation of T1CR requires the projection of a group bank balance sheet data which reflect 

the profit, risk and regulatory capital of banks. As shown in Figure 5.1, this framework begins 

with a projection of the Pre-Provision Net Revenue (PPNR). Hence, as a first step experiment, 

we are of specially interest to apply our approach to analyzing the PPNR. 

Generally speaking, the PPNR consists of three part, Net Interest Income, Non-interest 

Income and Non-interest Expense. Covas, Rump and Zakrajšek (2013) separated the PPNR into 

six components: (1) NII = net interest income; (2) TI = trading income; (3) ONII = noninterest 

income, excluding trading income; (4) CE = compensation expense; (5) FA = fixed assets 

expense; and (6) ONIE = other noninterest expense. Duane, Schuermann, Reynolds and Wyman 

(2013) used regression models on 10 components related to PPNR. Their results showed 
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Figure 5.1 Projecting Net Income and Regulatory Capital (Source: Board of Governors of the 
Federal Reserve System, Comprehensive Capital Analysis and Review 2012: Methodology and Results 
for Stress Scenario Projections.) 

Net Interest Income + Non-interest Income - Non-interest Expense 

= Pre-provision Net Revenue (PPNR) 

Note: PPNR includes Losses from Operational Risk Events, Mortgage Put-back 
Losses, and OREO Costs. 

PPNR + Other Revenue - Provisions - AFS/HTM Securities Losses –  

Trading and Counterparty Losses - Other Losses (Gains)  

= Pre-tax Net Income  

Note: Change in the Allowance for Loan and Lease Losses + Net Charge-offs  

= Provisions. 

Pre-tax Net Income - Taxes + Extraordinary Items Net of Taxes  

= After-tax Net Income. 

After-tax Net Income - Net Distributions to Common and Preferred  

Shareholders and Other Net Reductions to Shareholder's Equity  

= Change in Equity Capital. 

Change in Equity Capital - Deductions from Regulatory Capital + Other  

Additions to Regulatory Capital  

= Change in Regulatory Capital. 
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that a single model attempting to directly project PPNR confounds and obscures the individual 

dynamics of each component and is therefore inferior in its prediction ability. This is consistent 

with the findings of Guerrieri and Welch (2012) that even the best performing model in their 

experiment could not beat a random walk at all horizons for Pre Provision Net Income modeling. 

Duane, Schuermann, Reynolds and Wyman (2013)’s empirical illustration suggested that the 

granularity and selection of PPNR components as response variables in the model substantially 

influence the projection results. Despite in the Federal Reserve’s model description, the number 

of PPNR components used in separate models are as many as to 22 (eight components of interest 

income, five components of interest expense, five components of noninterest non-trading income, 

three components of noninterest expenses, and trading revenue), we adopt the division method 

similar to that in Covas, Rump and Zakrajšek (2013) due to the limitation of publicly available 

data. 

 

5.2 Data 

Our TVC-FECM is designed for large data environments. We use a dataset of 156 

quarterly U.S. macroeconomic time series covering the period from the first quarter of 1990 

(1990:Q1) to the fourth quarter of 2014 (2014:Q4) with 100 observations to extract factors. The 

variables are selected based on the dataset used in Bernanke, Boivin and Eliasz (2005), Stock 

and Watson (2009) and Korobilis (2009). All series are downloaded from St. Louis’ FRED 

database except Commercial real estate price index (the Federal Reserve’s Z1 releases), Total 

Gross Domestic Product for China (National Bureau of Statistics of China), Dow Jones U.S. 

Total Stock Market Index, NYSE Composite, Dow Jones Industrial Average (Yahoo Finance). 
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All series are seasonally adjusted either by FRED or by applying the X-13 Seasonal Adjustment 

Program developed by United States Census Bureau after seasonality test. Series recorded in 

monthly basis are used by quarterly average, except the stock index variables which are end of 

period closing. Table 5.1 is a summary of the selected macroeconomic variables and the full list 

can be found in the Appendix at the end of this chapter. When comparing with the 28 

macroeconomic variables in the supervisory scenarios provided by the Federal Reserve, our data 

set includes all of these variables or their substitutions.  

Category Number of Macro 
Variables 

1.       Real Activity Factor 33 
2.       Unemployment and Employment 23 
3.       Housing 11 
4.       Price Index 17 
5.       Interest Rate 12 
6.       Stock Market 8 
7.       International Factors 19 
8.       Money Credit and Finance Factor 33 

Total 156 

Table 5.1 Summary of 156 Macroeconomic Variables. 

 

As to the bank PPNR data, we use the FR Y-9C form, the Consolidated Financial 

Statements for Bank Holding Companies, published  by the Federal Reserve to construct a 

balanced panel of the 4 largest U.S. BHCs, covering the period from 1990:Q1to 2014:Q4. The 

four selected BHCs, as listed in the top of Table 5.2, reported total consolidated assets over $1 

trillion in quarterly average at the end of sample period. The total consolidated assets of these 

four largest BHCs count for 58.65% of total assets of the 31 bank holding companies participated 
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in the CCAR 2015, and 45.26% of total assets of all U.S. BHCs that have reported in the FR Y-

9C form. We consider the mergers of these four BHCs during the sample period. Mergers and 

acquisitions information is from the Federal Financial Institutions Examination Council's 

(FFIEC) web site, and listed in the table under Appendix of this chapter. Typically, for each of 

these four large banks, we aggregate all institutions acquired by which during our sampling 

period. Due to the limit of data availability, we only consider the entities that report the FR Y-9C  

RSSD ID Bank Holding Company Ticker Assets 
1073757 Bank of America Corporation BAC 2141.074 
1951350 Citigroup Inc. C 1898.981 
1039502 JPMorgan Chase & Co. JPM 2503.514 
1120754 Wells Fargo & Co. WFC 1656.513 

31 CCAR 2015 Participating BHCs 13981.874 
All U.S. BHCs reported in the FR Y-9C form 18119.503 

Table 5.2 Assets of Bank Holding Companies in the U.S.: The RSSD ID is a unique identifier 
assigned to institutions by the Federal Reserve, used in the FR Y-9C form. Assets are referring to the 
quarterly average of total consolidated assets ($billions) reported at the end of 2014:Q4. 

 

Table 5.3 Components of Pre-Provision Net Revenue (PPNR): the regulatory reports mnemonics of 
the consolidated assets is BHCK3368. 

Components of PPNR Regulatory Reports 
Mnemonics Transformation 

Net interest income BHCK4074 400 ×
Net interest income
Consolidated assets 

Total noninterest 
income BHCK4079 400 ×

Total noninterest income
Consolidated assets  

Compensation 
expense BHCK4135 400 ×

Compensation expense
Consolidated assets  

Fixed assets expense BHCK4217 400 ×
Fixed assets expense
Consolidated assets  

Total noninterest 
expense BHCK4093 400 ×

Total noninterest expense
Consolidated assets  
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form. Some of the famous mergers are omitted: for example, in 2008, Bank of America bought 

Merrill Lynch while JPMorgan Chase bought Bear Stearns and Washington Mutual – however, 

Merrill Lynch, Bear Stearns, and Washington Mutual did not file the FR Y-9C. 

In terms of target variables, we consider the five components of PPNR as shown in Table 

5.3. Comparing with the six components of PPNR in Covas, Rump and Zakrajšek (2013), we 

skip the trading income since the records of it in FR Y-9C can only date back to 1996:Q1. 

 

5.3 Fitting TVC-FECM on PPNR Components 

We start the model by estimating factors. ADF unit-root test shows that 148 out of 156 

macroeconomic series are I(1), while the remaining 8 are considered to be stationary. The 

number of total nonstationary and stationary factors is determined to be 5 from estimation on 

differenced data. Information criterion for level nonstationary data in Bai (2004) identifies the 

number of I(1) factor to be 2 when the threshold of maximum number of factors is set to 5.  

Rank 𝑯𝟎:Unit Root Test Statistics Critical Value p-Value 
0 1 137.8119 40.1751 0.001 
1 1 47.82 24.2747 0.001 
2 0 4.8833 12.3206 0.6229 
3 0 0.0079 4.1302 0.9423 

Table 5.4 Johansen Trace Test of the First 4 Estimated Factors: assume no intercepts or trends in 
the cointegrating relations and no trends in the data. 

 

We extract 5 factors from the level data via principle components estimation. The ADF 

unit-root test suggest the first 4 estimated factors are I(1) at 5% significance. Table 5.4 shows the 

result of Johansen trace test – cointegration rank is 2 among these first 4 factors, which suggests 
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there are two non-cointegrated nonstationary trends in the extracted factors. Since the principle 

components estimator is consistently estimate the true factors up to a rotation, this finding is 

consistent with the result of factor number estimators.  

  

 

 

 

 

 

 

 

 

 

Figure 5.2 Time Varying Standard Deviations (std) of Errors in the Aggregated PPNR 
Components Equations: from left to right, top to bottom, the models are (1) Net interest income, (2) 
Total noninterest income, (3) Compensation expense, (4) Fixed assets expense, and (5) Total noninterest 
expense. 
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We aggregate the four selected banks data as a representative of the U.S. bank sector. 

Five PPNR components are fitted in bank industry level. Besides, we fit the (1) net interest 

income and (2) Total noninterest income of Citigroup Inc. and Wells Fargo & Co. to conduct a 

more institution-specific comparison. Comparing to Wells Fargo, Citigroup has a more 

diversified financial services to generate revenues, which may lead to the different reactions of 

the two banks interest income and noninterest income distribution. In addition, Citigroup has 

more geographically diversified business enabling which to raise cheap funds outside the U.S., 

and hence, it is expected to be less sensitive to U.S. economy changes.  We fit the TVC-FECM 

using the same five estimated factors on all nine tested models. Each model is estimated via 

Gibbs sampling MCMC algorithm with 20,000 iterations after 10,000 burn-in. 

Figure 5.2 presents the median posterior estimates of the standard deviation of the errors 

coming from the PPNR components equation in the TVP-FECM. At the aggregated bank 

industry-level, standard deviation of errors for all five PPNR components share a similar pattern: 

a clear spike is observed around 2008, reflecting the big variations in the 2007-2009 financial 

crisis and recession period; a moderate rise after 2000 could be explained by the market 

instability caused by the bursting of the dot com bubble. 

Our main results are shown in the form of Impulse Response Functions (IRF). Impulse 

response functions quantify the reaction of a dynamic system in response to some external 

shocks which is known as impulse, at different horizon.  Impulse response function is a powerful 

analytic tool in the empirical econometric application of macroeconomic models. We employ the 

IRF to illustrate the comparisons of relations between variables at different time.  Condition on 

each time point, the TVC-FECM can be treated as a standard VECM. Hence we are able to 

transform it into a structural VAR form and obtain the IRF for desired horizons. 
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Figure 5.3 to Figure 5.11 show the impulse response for the target variables in the 9 

models at time points of 1996:Q1, 2001:Q3, 2008:Q3, 2010:Q1. The four periods are chosen 

since they are in the four typical economy environment of U.S. in the past two decades. From 

boom to recession, the four time points represent (1) the 1990s boom (1996:Q1), (2) start to 

recover from Subprime mortgage crisis and Great Recession (2010:Q1), (3) the bursting of the 

dot com bubble and the end of 1990s boom (2001:Q3), and (4) Subprime mortgage crisis and 

Great Recession (2008:Q3).  

The macroeconomic variables listed in Table 5.5 are the ones we investigate in the 

impulse response analysis. That is, when a standard shock occurs on these macroeconomic 

variables, we evaluate the response of interested PPNR components. 

 ID Description 
GDP Real Gross Domestic Product, 3 Decimal 
DPI Real Disposable Personal Income 
IP Industrial Production: Total index 
Unemployment Rate Civilian Unemployment Rate 
Home Price Index S&P/Case-Shiller U.S. National Home Price Index 
CPI Consumer Price Index: Total All Items 
3-Month 3-Month Treasury Bill: Secondary Market Rate 
5-Year 5-Year Treasury Constant Maturity Rate 
BAA Moody's Seasoned Baa Corporate Bond Yield 
Fed Fund Effective Federal Funds Rate 
VIX CBOE Volatility Index: VIX© 
Dow Jones Dow Jones U.S. Total Stock Market Index 
EX Rate-Yen Japan / U.S. Foreign Exchange Rate 
Real Estate Real Estate Loans, All Commercial Banks 
Bank Loans Commercial and Industrial Loans, All Commercial Banks 
Bank Credit Bank Credit at All Commercial Banks 
Monetary Base Monetary Base; Total, Billions of Dollars 
M1 M1 Money Stock 

Table 5.5  Selected Macroeconomic Indicator tested in Impulse Response Function 

 



 

60 
 

 

Figure 5.3 Impulse Responses for aggregated Net Interest Income of U.S Banks to the Selected 
Variables on the Periods 1996:Q1, 2001:Q3, 2008:Q3, 2010:Q1 
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Figure 5.4 Impulse Responses for aggregated Total Noninterest Income of U.S Banks to the 
Selected Variables on the Periods 1996:Q1, 2001:Q3, 2008:Q3, 2010:Q1 
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Figure 5.5 Impulse Responses for aggregated Compensation Expense of U.S Banks to the 
Selected Variables on the Periods 1996:Q1, 2001:Q3, 2008:Q3, 2010:Q1 
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Figure 5.6 Impulse Responses for aggregated Fixed Assets Expense of U.S Banks to the 
Selected Variables on the Periods 1996:Q1, 2001:Q3, 2008:Q3, 2010:Q1 
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Figure 5.7 Impulse Responses for aggregated Total Noninterest Expense of U.S Banks to the 
Selected Variables on the Periods 1996:Q1, 2001:Q3, 2008:Q3, 2010:Q1 
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Figure 5.8 Impulse Responses for Net Interest Income of Citigroup to the Selected Variables on 
the Periods 1996:Q1, 2001:Q3, 2008:Q3, 2010:Q1 
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Figure 5.9 Impulse Responses for Total Noninterest Income of Citigroup to the Selected 
Variables on the Periods 1996:Q1, 2001:Q3, 2008:Q3, 2010:Q1 
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Figure 5.10 Impulse Responses for Net Interest Income of Wells Fargo to the Selected Variables 
on the Periods 1996:Q1, 2001:Q3, 2008:Q3, 2010:Q1 
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Figure 5.11 Impulse Responses for Total Noninterest Income of Wells Fargo to the Selected 
Variables on the Periods 1996:Q1, 2001:Q3, 2008:Q3, 2010:Q1 
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Overall, all plots have the four lines representing the four periods sorted in the order of 

economy conditions. Among the aggregated PPNR components, the compensation expense has 

the IRF more concentrated than others, implying that the changes in compensation expense 

responding to the macroeconomic variables shock are relatively invariant under different 

economic environments. In contrast, the fixed assets expense has the red lines, representing the 

period of 2008:Q3, stand apart from other time periods lines. Although the scale is relatively 

small, this is an interesting finding that the fixed assets expense would have very different, for 

some macroeconomic metrics even the inversed, reactions to system shocks under the stressed 

environment.  

As to the scale of the responses, interest rates receive most significant response from all 

components considered, even in the noninterest categories. Net interest income does more 

sensitive to interest rates variables than other noninterest components. The Unemployment rate 

following the interest rates variables, has the second large influences on PPNR components.  

Another surprising finding from the impulse response is that when comparing Figure 5.3, 

Figure 5.8 and Figure 5.10, the three net interest income groups, the response to interest rates 

shocks are negative in long term. While Wells Fargo does show a short increase in the net 

interest income when the interest rates were raised, the net interest income of the aggregated four 

banks and that of the Citigroup would go down when the rates were increased.  
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5.4 Appendix 

Table 5.6  Macroeconomic Variables used in Factor Estimation: The series are left in 

untransformed if indicated by Tcode 1. Others with Tcode 2 are the logarithm. 

Series ID Description Tcode 
1. Real Activity Factor 

GDPC96 Real Gross Domestic Product, 3 Decimal 2 
DPIC96 Real Disposable Personal Income 2 
CBI Change in Private Inventories 1 
FINSLC96 Real Final Sales of Domestic Product 2 
GSAVE Gross Saving 2 
FPI Fixed Private Investment 2 
PRFI Private Residential Fixed Investment 2 
SLINV State & Local Government Gross Investment 2 
EXPGSC96 Real Exports of Goods & Services, 3 Decima 2 
IMPGSC96 Real Imports of Goods & Services, 3 Decimal 2 
CIVA Corporate Inventory Valuation Adjustment 1 
CP Corporate Profits After Tax (without IVA and CCAdj) 2 
CNCF Corporate Net Cash Flow with IVA 2 
DPCERA3Q086SBEA Real personal consumption expenditures 2 
DSERRA3Q086SBEA Real personal consumption expenditures: Services 2 
DDURRA3Q086SBEA Real personal consumption expenditures: Durable goods 2 
DNDGRA3Q086SBEA Real personal consumption expenditures: Nondurable goods 2 
IPB50001SQ Industrial Production: Total index 2 
IPGMFSQ Industrial Production: Manufacturing (NAICS) 2 
IPB51100SQ Industrial Production: Durable consumer goods 2 
IPB51200SQ Industrial Production: Nondurable consumer goods 2 
IPB54100SQ Industrial Production: Construction supplies 2 
NAPM ISM Manufacturing: PMI Composite Index 2 
NAPMNOI ISM Manufacturing: New Orders Index 2 
NAPMII ISM Manufacturing: Inventories Index 2 
NAPMSDI ISM Manufacturing: Supplier Deliveries Index 2 
HOABS Business Sector: Hours of All Persons 2 
RCPHBS Business Sector: Real Compensation Per Hour 2 
ULCBS Business Sector: Unit Labor Cost 2 
COMPNFB Nonfarm Business Sector: Compensation Per Hour 2 
ULCNFB Nonfarm Business Sector: Unit Labor Cost 2 
HOANBS Nonfarm Business Sector: Hours of All Persons 2 
COMPRNFB Nonfarm Business Sector: Real Compensation Per Hour 2 
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2. Unemployment and Employment 
UNRATE Civilian Unemployment Rate 1 
UEMPLT5 Number of Civilians Unemployed for Less Than 5 Weeks 2 
UEMP5TO14 Number of Civilians Unemployed for 5 to 14 Weeks 2 
UEMP15OV Number of Civilians Unemployed for 15 Weeks and Over 2 
UEMP15T26 Number of Civilians Unemployed for 15 to 26 Weeks 2 
UEMP27OV Number of Civilians Unemployed for 27 Weeks and Over 2 
NDMANEMP All Employees: Nondurable goods 2 
MANEMP All Employees: Manufacturing 2 
SRVPRD All Employees: Service-Providing Industries 2 
USTPU All Employees: Trade, Transportation & Utilities 2 
USWTRADE All Employees: Wholesale Trade 2 
USFIRE All Employees: Financial Activities 2 
USEHS All Employees: Education & Health Services 2 
USPBS All Employees: Professional & Business Services 2 
USINFO All Employees: Information Services 2 
USSERV All Employees: Other Services 2 
USGOVT All Employees: Government 2 
USLAH All Employees: Leisure & Hospitality 2 
CES2000000008 Average Hourly Earnings: Construction 2 
CES3000000008 Average Hourly Earnings: Manufacturing 2 
AHETPI Average Hourly Earnings of: Total Private 2 
AWOTMAN Average Weekly Overtime Hours: Manufacturing 1 
AWHMAN Average Weekly Hours: Manufacturing 2 

3. Housing 
USSTHPI All-Transactions House Price Index for the United States 2 
CSUSHPISA S&P/Case-Shiller U.S. National Home Price Index© 2 
CREPI Commercial real estate price index 2 
HOUST Total: New Privately Owned Housing Units Started 2 
HOUSTNE Housing Starts in Northeast Census Region 2 
HOUSTMW Housing Starts in Midwest Census Region 2 
HOUSTS Housing Starts in South Census Region 2 
HOUSTW Housing Starts in West Census Region 2 
HOUST1F Privately Owned Housing Starts: 1-Unit Structures 2 
PERMIT New Private Housing Units Authorized by Building Permits 2 
PERMIT1 New Private Housing Units Authorized by Building Permits: 1-Unit 

Structures 
2 

4. Price Index 
CPALCY01USQ661N Consumer Price Index: Total All Items for the United States 2 
CPIAUCSL Consumer Price Index for All Urban Consumers: All Items 2 
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CPILEGSL Consumer Price Index for All Urban Consumers: All Items Less 
Energy 

2 

CPIULFSL Consumer Price Index for All Urban Consumers: All Items Less 
Food 

2 

CPIENGSL Consumer Price Index for All Urban Consumers: Energy 2 
CPIUFDSL Consumer Price Index for All Urban Consumers: Food 2 
PPIACO Producer Price Index for All Commodities 2 
PPICRM Producer Price Index for Crude Materials 2 
PPIFCF Producer Price Index for Finished Consumer Foods 2 
PPIFCG Producer Price Index for Finished Consumer Goods 2 
PFCGEF Producer Price Index for Finished Consumer Goods Excluding 

Foods 
2 

PPIFGS Producer Price Index by Commodity for Finished Goods 2 

PPICPE Producer Price Index for Finished Goods: Capital Equipment 2 
PPIENG Producer Price Index for Fuels & Related Products & Power 2 
PPIIDC Producer Price Index for Industrial Commodities 2 
PPIITM Producer Price Index for Intermediate Materials: Supplies & 

Components 
2 

MCOILWTICO Crude Oil Prices: West Texas Intermediate (WTI)  2 

5. Interest Rate 
TB3MS 3-Month Treasury Bill: Secondary Market Rate 1 
TB6MS 6-Month Treasury Bill: Secondary Market Rate 1 
GS1 1-Year Treasury Constant Maturity Rate 1 
GS3 3-Year Treasury Constant Maturity Rate 1 
GS5 5-Year Treasury Constant Maturity Rate 1 
GS10 10-Year Treasury Constant Maturity Rate 1 
BAA Moody's Seasoned Baa Corporate Bond Yield 1 
AAA Moody's Seasoned Aaa Corporate Bond Yield 1 
MORTG 30-Year Conventional Mortgage Rate 1 
MORTGAGE30US 30-Year Fixed Rate Mortgage Average in the United States 1 
MPRIME Bank Prime Loan Rate 1 
FEDFUNDS Effective Federal Funds Rate 1 

6. Stock Market 
VIX CBOE Volatility Index: VIX© 2 

DWCF Dow Jones U.S. Total Stock Market Index 2 
NASDAQCOM NASDAQ Composite Index 2 
NYA NYSE COMPOSITE (DJ) (^NYA) 2 
DJI Dow Jones Industrial Average 2 
GSPC S&P 500 Composite Stock Price Index 2 
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WILL5000IND Wilshire 5000 Total Market Index 2 
RU2000TR Russell 2000® Total Market Index 2 

7. International Factors 
NAEXKP01DEQ661S  Total Gross Domestic Product for Germany 2 
NAEXKP01GBQ661S Total Gross Domestic Product for the United Kingdom 2 
NAEXKP01CAQ661S Total Gross Domestic Product for Canada 2 
NAEXKP01FRQ661S Total Gross Domestic Product for France 2 
NAEXKP01ITQ661S Total Gross Domestic Product for Italy 2 
LORSGPORJPQ661S Gross Domestic Product: Original Series for Japan  2 
CNGDP Total Gross Domestic Product for China 2 
DEUCPIALLQINMEI Consumer Price Index of All Items in Germany  2 
GBRCPIALLQINMEI Consumer Price Index of All Items in the United Kingdom  2 
CANCPIALLQINMEI Consumer Price Index of All Items in Canada 2 
FRACPIALLQINMEI Consumer Price Index of All Items in France 2 
ITACPIALLQINMEI Consumer Price Index of All Items in Italy 2 
JPNCPIALLMINMEI Consumer Price Index of All Items in Japan 2 
CHNCPIALLQINMEI Consumer Price Index of All Items in China 2 
EXSZUS Switzerland / U.S. Foreign Exchange Rate 2 
EXUKUS U.K. / U.S. Foreign Exchange Rate 2 
EXCAUS Canada / U.S. Foreign Exchange Rate 2 
EXJPUS Japan / U.S. Foreign Exchange Rate 2 
EXCHUS China / U.S. Foreign Exchange Rate 2 

8. Money Credit and Finance Factor 
REALLN Real Estate Loans, All Commercial Banks 2 
NONREVSL Total Nonrevolving Credit Owned and Securitized 2 
USGSEC Treasury and Agency Securities at All Commercial Banks 2 
OTHSEC Other Securities at All Commercial Banks 2 
TOTALSL Total Consumer Credit Owned and Securitized 2 
BUSLOANS Commercial and Industrial Loans, All Commercial Bank 2 
CONSUMER Consumer Loans at All Commercial Banks 2 
LOANS Loans and Leases in Bank Credit, All Commercial Banks 2 
LOANINV Bank Credit at All Commercial Banks 2 
INVEST Securities in Bank Credit at All Commercial Banks 2 
BOGMBASE Monetary Base; Total 2 
REQRESNS Required Reserves of Depository Institutions 2 
TOTRESNSW Reserves Of Depository Institutions 2 
M1SL M1 Money Stock, Billions of Dollars 2 
CURRSL Currency Component of M1 2 
DEMDEPSL Demand Deposits at Commercial Banks 2 
TCDSL Total Checkable Deposits 2 
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M2SL M2 Money Stock, Billions of Dollars 2 
M2OWN M2 Own Rate 2 
M2MSL M2 Less Small Time Deposits 2 
M2MOWN M2 Minus Own Rate 2 
MZMSL MZM Money Stock 2 
SVSTCBSL Savings and Small Time Deposits at Commercial Banks 2 
SVSTSL Savings and Small Time Deposits - Total 2 
SVGCBSL Savings Deposits at Commercial Banks 2 
SVGTI Savings Deposits at Thrift Institutions 2 
SAVINGSL Savings Deposits - Total 2 
STDCBSL Small Time Deposits at Commercial Banks 2 
STDTI Small Time Deposits at Thrift Institutions 2 
STDSL Small Time Deposits - Total 2 
USGVDDNS U.S. Government Demand Deposits and Note Balances - Total 2 
USGDCB U.S. Government Demand Deposits at Commercial Banks 2 
CURRCIR Currency in Circulation 2 
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Table 5.7  Mergers and Acquisition Information (Source: FFIEC). 

RSSD ID Institutions Acquired by Acquisition Date 
Bank of America Corporation 

1073364 MNC FINANCIAL, INC. 10/1/1993 
1831715 C&S/SOVRAN CORPORATION 12/1/1993 
1250802 NATIONSBANK TEXAS CORPORATION 12/1/1993 
2122054 NATIONS FINANCIAL HOLDINGS CORPORATION 12/31/1995 
1079638 BANK SOUTH CORPORATION 1/9/1996 
1026016 BANKAMERICA CORPORATION 9/30/1998 
2372064 NATIONSCREDIT CORPORATION 1/1/1999 
1113514 FLEETBOSTON FINANCIAL CORPORATION 4/1/2004 
1871159 MBNA CORPORATION 1/1/2006 
1246140 MERRILL LYNCH & CO., INC. 10/1/2013 

Citigroup Inc. 
1246092 TRAVELERS CORPORATION 12/31/1993 
1042351 CITICORP 8/1/2005 
2879844 CITIGROUP HOLDINGS COMPANY 8/1/2005 
3158452 CITIBANK (WEST) BANCORP INC. 10/1/2006 
3158395 CITIBANK (WEST) HOLDINGS INC. 10/1/2006 
3609114 CITIGROUP JAPAN INVESTMENTS LLC 7/5/2007 
3367236 CITIGROUP FUNDING INC. 1/1/2013 
1277881 ASSOCIATED MADISON COMPANIES, INC. 11/1/2013 

JPMorgan Chase & Co. 
1035296 MANUFACTURERS HANOVER CORPORATION 12/31/1991 
1040795 CHASE MANHATTAN CORPORATION 3/31/1996 
1037115 J.P. MORGAN & CO. INCORPORATED 12/31/2000 
1068294 BANK ONE CORPORATION 7/1/2004 
2881511 HAMBRECHT & QUIST GROUP 12/21/2007 
2282378 JPMORGAN MEZZANINE CORPORATION 10/1/2009 
3367236 CITIGROUP FUNDING INC. 1/1/2013 
1277881 ASSOCIATED MADISON COMPANIES, INC. 11/1/2013 

Wells Fargo & Co. 
1061709 FIRST BELLEVUE BANCSHARES CO. 1/1/1990 
1199581 FIRST INTERSTATE CORPORATION OF WISCONSIN 4/30/1990 
1049042 UNITED BANKS OF COLORADO, INC. 4/19/1991 
1065958 UNITED BANCSHARES, INC. 10/3/1992 
1143463 MERCHANTS AND MINERS BANCSHARES, INC. 2/1/1993 
1208429 FINANCIAL CONCEPTS BANCORP, INC. 4/1/1993 
1124154 M & D HOLDING COMPANY 10/1/1993 
1067840 RALSTON BANCSHARES, INC. 10/7/1993 
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1124248 WINNER BANSHARES, INC. 12/10/1993 
1870590 NORWEST COLORADO, INC. 8/8/1997 
1120763 NORWEST AGRICULTURAL CREDIT, INC. 12/23/1999 
1847912 NORWEST HOLDING COMPANY 12/31/1999 
2058528 INDEPENDENT BANCORP OF ARIZONA, INC. 9/1/2000 
1125834 IRENE BANCORPORATION, INC. 9/1/2000 
1121827 LINDEBERG FINANCIAL CORPORATION 9/1/2000 
1427127 NORWEST AMG, INC. 9/1/2000 
1927131 VICTORIA FINANCIAL SERVICES, INC. 9/1/2000 
1124079 INTERNATIONAL BANCORPORATION, INC. 4/13/2001 
1207093 FARMERS NATIONAL BANCORP, INC. 9/1/2001 
1246627 FIRST NATIONAL BANKSHARES, INC., THE 9/1/2001 
1053076 PACKERS MANAGEMENT COMPANY, INC. 9/1/2001 
1120839 WELLS FARGO AUDIT SERVICES, INC. 12/10/2001 
1021981 BUFFALO NATIONAL BANCSHARES, INC. 12/13/2002 
1105939 TEXAS BANCSHARES, INC. 12/13/2002 
1073551 WACHOVIA CORPORATION 12/31/2008 
3297007 IJL 2004, LLC 2/18/2011 
1109946 CENTURY BANCSHARES, INC. 8/1/2011 
1136531 GREATER BAY BANCORP 8/1/2011 
3084953 PLACER SIERRA BANCSHARES 8/1/2011 
2537993 SIGNET STUDENT LOAN CORPORATION 10/3/2011 
3648609 EDWARDS DEVELOPMENT CORPORATION 12/1/2011 
2940986 NERO LIMITED, LLC 12/15/2011 
1074893 CENTRAL FIDELITY PROPERTIES, INC. 2/1/2012 
1145805 FAIRFAX CORPORATION, THE 2/1/2012 
794578 CAPITOL FINANCE GROUP, INC. 5/1/2012 

3597453 WACHOVIA CAPITAL INVESTORS, INC. 5/2/2012 
2747372 FPFC MANAGEMENT LLC 8/1/2012 
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Chapter 6  Discussion and Future Work 

The FECM is a promising tool that can simultaneously handle the long term and short 

term equilibrium information in a high dimensional nonstationary data. It is an important 

extension of the classical ECM and FAVAR model for both forecasting and structural analysis. 

Further extending the FECM to TVC-FECM, we are able to conduct multi-dimensional 

dissection of the time series data structure. In our empirical analysis, the TVC-FECM reveals the 

varying importance of the observed variables to the target variables, as well as the time evolution 

of their relations. It suggests that the TVC-FECM could be very useful for empirical analysis, 

especially when considering the models under different scenarios. 

In this thesis, the macroeconomic variable data set we used is a simple merger of the data 

sets in Bernanke, Boivin and Eliasz (2005), Stock and Watson (2009), and Korobilis (2009). The 

factors estimated actually are quite sensitive to the variables included in the data set. The three 

previous works all had a variable refining process – not all macroeconomic variables they 

collected were used in their factor estimation. To obtain estimated factors that would capture the 

characteristic of the economy environment more accurately, one of our future studies is to 

improve the observed data set based on macroeconomic knowledge. Another related issue is that 

we used only publicly available data from FR Y-9C in our PPNR modeling, while in the real 

stress testing world regulators and each bank holding company has access to a much greater 

collection of information. An improvement of model performance is expected if bank-specific 

granular information could be introduced in defining the components of PPNR. 
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