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Abstract of the thesis

Investigating the Tolerance of Wirelessly Powered Charge-Recycling Logic

to Power-Clock Phase Difference Deviations

by

Sushil Panda

Master of Science

in

Electrical Engineering

Internet-of-things (IoT) has emerged as an exciting application domain for semiconduc-

tor electronics. Recently, a new circuit design framework has been developed where

charge-recycling circuits were leveraged to wirelessly power IoT based devices. Most of

the existing charge-recycling circuits require multiple AC signals (referred to as power-

clock signals) with certain phase difference to operate. The primary objective of this

thesis is to investigate the tolerance of wirelessly powered charge-recycling circuits to

non-ideal phase differences among power-clock signals. The operation principle of the

most common charge-recycling (also referred to as adiabatic) circuits is described. The

power consumed by efficient charge recovery logic (ECRL), complementary energy path

adiabatic logic (CEPAL) and static CMOS logic are compared. The circuit considered

for power comparison is a 16-bit carry select adder (CSA) and results verify that the

charge-recycling operation consumes less power as compared to static CMOS logic which

is in coherence with the theoretical expectation. In ECRL, each stage receives a power-

clock signal that ideally should be 90◦ ahead of the power-clock signal of the previous

stage. The VDD counterpart of static CMOS is the power-clock signal whereas the

GND remains the same. In CEPAL, each logic gate employs two power-clock signals
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with 180◦ phase difference. These power-clock signals correspond to the VDD and GND

in static CMOS. The 16-bit carry select adder (designed in both ECRL and CEPAL)

was used to investigate the effect of non-ideal phase differences on power consumption

and accuracy. The tolerance of each charge-recycling logic to phase difference deviation

has been quantified. For ECRL logic, a deviation of up to 30◦ does not affect the power

consumption and functionality, irrespective of the power-clock frequency. If the phase

difference deviation is higher than 30◦, the power consumption significantly increases,

but functionality is maintained. However for CEPAL, the tolerable deviation is inversely

proportional with the power-clock frequency. For example, for a power-clock frequency

of 10 MHz, CEPAL operates correctly until a phase difference deviation of 30◦ whereas

for power-clock frequency of 30 MHz, CEPAL fails if the phase difference deviation is

above 10◦. Furthermore, unlike ECRL, in CEPAL the non-ideal phase difference affects

the functionality rather than the power consumption.
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Chapter 1

INTRODUCTION

As of 2015, 5.5 billion transistors can be integrated on a commercially available CPU [1].

Following Moore's Law, the total number of transistors on an integrated circuit has

almost doubled every two, and most recently three years. With the increasing number

of transistors and the Dennard scaling paradigm hitting the utilization wall, the power

consumption has become a major concern [2]. Various techniques such as voltage scaling,

minimizing interconnect capacitance by compact layout, clock gating, and power gating

have been proposed to reduce power consumption in static CMOS circuits [3].

The output signals in static CMOS are obtained by either charging or discharging the

output capacitance [4]. During the process of output evaluation, the charge is either

drawn from the power source, thereby charging the output node capacitance to obtain

logic one or transmitted to the ground, thereby discharging the output node capacitance

to obtain a logic zero. This process of charging and discharging the output capacitance

is irreversible.

Thermodynamically, a process that does not involve the transfer of heat or matter into

or out of a system is called an adiabatic process [5]. In the world of very large scale

integration (VLSI), the charge can be considered analogous to matter and hence an

adiabatic circuit can be defined as a circuit that does not involve any charge dissipation

at the load capacitance [6]. Since there is no charge dissipation, the energy dissipated at

the load capacitance is zero. There is however energy dissipation across the on-resistance

of the transistors. The zero energy dissipation at the load capacitance is possible only

when the charge that has been transferred to the output node capacitance is given back
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to the power source rather than being dissipated to ground. This phenomenon can

be achieved by employing various circuit topologies referred to as charge-recycling or

adiabatic circuits [7]. The charge-recycling circuits operate with a trapezoidal or AC

power supply referred to as power-clock signal (PC). There can be single or multiple

PCs in a particular logic [8]. In charge-recycling logic with multiple PCs, a certain

phase difference should be maintained between the PCs in order to obtain the desired

operation.

The operation of charge-recycling circuits, in general, can be divided into four intervals:

1. Evaluation (E): During the evaluation interval, the output is evaluated from the

stable input signals.

2. Hold (H): During the hold interval, the outputs are maintained constant to provide

stable inputs to the subsequent stage.

3. Recover (R): Energy is recovered during the recover interval.

4. Wait (W): To maintain the symmetry in the signal a wait interval is inserted as

symmetric signals are easier to generate.

Figure 1.1 represents the various intervals of operation for charge-recycling circuits.

Figure 1.1: Various intervals of operation for charge-recycling circuits [9].

Depending on the number of power-clock signals employed in the circuit, the number of

intervals can change and two or more of the above intervals can be combined to form

one interval for the circuit [10].
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1.1 Synergy Between Wireless Power Harvesting and Charge-

Recycling Circuit

Charge-recycling circuits have been investigated since 1990s, but have not become a

mainstream design method due to the following reasons:

5. The power-clock signals are AC signals and the process of converting the DC signal

into multiple AC signals is highly lossy, sacrificing most of the energy saved during

operation.

6. The charge-recycling circuits operate at a much lower frequency as compared to

the static CMOS circuits.

Since the charge-recycling circuits employ AC signals to operate and the wirelessly har-

vested power is in the form of an AC signal, a unique synergy exists between charge-

Figure 1.2: Conceptual diagram for wireless power harvesting [11].

recycling circuits and wireless power harvesting [11]. Figure 1.2 is a conceptual diagram

which shows the conventional and the recently proposed wireless power harvesting tech-

nique. The proposed technique eliminates the highly lossy rectifier and regulator. In-

stead, a phase shifter is used that provides the required power-clock signals with desired

phase difference. These multiple AC signals are directly used by the charge-recycling

logic.
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An issue that needs further investigation is the effect of non-ideality (which can be

exhibited by phase shifter) on the power consumption and functionality. This thesis is

aimed at investigating this non-ideality in the phase difference and determine the tolera-

ble deviation that does not significantly affect the power consumption and functionality.

The primary operating frequency is 13.56 MHz which is one of the RFID operating

frequencies.

The thesis is organized as follows. Chapter 2 presents a theoretical comparison of power

consumed by static CMOS and charge-recycling circuits, followed by a brief insight into

the types and operation of various adiabatic logic families. Chapter 3 focuses on two

of the adiabatic logic families and comparison with static CMOS topology in terms of

operation and power consumption. Chapter 4 describes the simulation results about the

relationship among the power-clock phase difference deviation, power consumption and

power-clock frequency for two charge-recycling logic families. Finally, Chapter 5 has the

concluding remarks.
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Chapter 2

BACKGROUND ON

CHARGE-RECYCLING

In this chapter, the power consumed by CMOS and charge-recycling circuits is compared

followed by the operation principle of common charge-recycling logic circuits. The power

consumption comparison also describes how charge-recycling circuits consume low power

at the expense of low operating frequency.

2.1 Power Consumption: A Quantitative Approach

2.1.1 Power Consumption in Static CMOS

First, a static CMOS inverter is observed for power consumption over a period of time

t1 to t2. Figure 2.1 shows a static CMOS inverter with a load capacitance C at the

output. The capacitor is either charged or discharged depending on whether the PMOS

or NMOS is on [7]. Amount of charge stored in the capacitor is given as Q = CVdd and

the energy consumed from the source is given as

EVdd
= QVdd = CV 2

dd. (2.1)

Energy stored at the load capacitor is

EC =
1

2
CV 2

dd. (2.2)
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Figure 2.1: Static CMOS inverter with load capacitance.

Overall energy dissipated in the PMOS transistor is given as

Ediss = EVdd
− EC =

1

2
CV 2

dd. (2.3)

The energy dissipation of a switching event in static CMOS gate is

ECMOS = α
1

2
CV 2

dd, (2.4)

where α is the switching probability. Over a period of time from t1 to t2, the power

consumed is

P =
1

T
ECMOS , (2.5)

where T = t2 − t1.

2.1.2 Power Consumption in Charge-Recycling Circuits

Power consumed by charging a capacitor adiabatically can be calculated by considering

the circuit shown in Figure 2.2 [7, 12, 13]. If in is initially 1, N1 is on which causes P2 to

turn on. Assuming the on-resistance of a transistor is R and power-clock signal φ=v(t)

goes from 0 to Vdd gradually over a time T, a small voltage difference vR(t) is maintained

6



Figure 2.2: An example of adiabatic inverter with load capacitance.

across the transistor. Since the voltage build up across the capacitor is gradual, vC(t)

follows power-clock signal, thereby vC(t) ≈ v(t). Hence, the current in the circuit is

given as

i(t) = C
dv(t)

d(t)
= C

Vdd
T
. (2.6)

Energy consumed while charging the load capacitor is

E =

∫ T

0
p(t)dt =

∫ T

0
v(t)i(t)dt =

∫ T

0
(vR(t) + vC(t))i(t)dt. (2.7)

Over one clock cycle, the integral of vC(t)i(t) is zero as there is no energy dissipated

across the capacitor, attributed to the recovery of the charge. Hence the overall energy

consumed because of the on-resistance R of the transistor is given as

E =

∫ T

0
R
C2Vdd

2

T 2
dt =

RC

T
CVdd

2. (2.8)

As one complete cycle consists of charging and recovery, the same amount of energy

is dissipated twice across the on-resistance, thereby the total energy dissipation in the

charge-recycling logic is

EAL = 2
RC

T
CVdd

2. (2.9)

Equation (2.9) shows that the total energy is a function of operating frequency. Thus,

unlike static CMOS where dynamic energy consumption is independent of frequency, in

adiabatic logic, a lower operating frequency reduces the energy dissipation. A minimum

transition time T for which the adiabatic circuits are more efficient than static CMOS
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is

T >
4RC

α
, (2.10)

where α is the switching probability of static CMOS circuit, R is the on-resistance of

the transistor in the adiabatic circuit and C is the load capacitance [7].

2.2 Types of Charge-Recycling logic

This section describes the operation of an inverter in several charge-recycling logic fam-

ilies [14–17].

2.2.1 Efficient Charge Recovery Logic (ECRL)

Figure 2.3 shows an ECRL inverter and the power-clock signal φ [7, 18, 19]. It is

assumed that in is at logic high and in is at logic low. When power-clock signal φ rises

Figure 2.3: ECRL inverter.

from 0 to Vdd, out is at 0 as N1 is on thereby P2 is on. As φ goes above Vtp, P2 starts
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conducting and out follows φ. As φ reaches Vdd, both out and out are at valid logic

and this state is held until φ maintains its state at Vdd. Once φ starts falling from Vdd

to 0, the charge stored at load capacitance is transferred back to the power supply but

only until P2 turns off (φ falls to Vtp). Lastly, φ is held at 0 for an equal amount of

time to maintain symmetry in the power-clock signal. Figure 2.4 shows the input and

output waveforms of an ECRL inverter. In case of cascaded gates in ECRL, the power-

Figure 2.4: ECRL inverter input and output signals.

Φ1 Φ2 Φ1 Φ2

Φ1

Φ2

Φ1

Φ2

Figure 2.5: Cascaded ECRL inverter with power-clock signal for each stage.

clock signals of two consecutive stages have a 90◦ phase difference. Figure 2.5 shows the

power-clock signals for a 4-stage cascaded logic assuming that the power-clock signal is

trapezoidal. The detailed operation and relevance of power-clock phase difference are

discussed in the next chapter.
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2.2.2 Positive Feedback Adiabatic Logic (PFAL)

Figure 2.6 shows a PFAL inverter and the supply power-clock signal φ [7, 20]. Initially,

when in is at 1, N4 is on, thereby out follows power-clock signal φ which switches N2

Figure 2.6: PFAL inverter.

on. Switching N2 on pulls out to 0. Out is the input to P1 hence P1 is on, thereby

ensuring out remains at Vdd as long as φ is at Vdd. Once φ starts falling to 0, out follows

power-clock signal and starts discharging. Since out is held at 0, there exists a path for

the complete discharge of out unlike ECRL inverter. When φ is held at 0, out follows

power-clock signal and out is still at 0. out starts following power-clock signal only when

in changes to 1, i.e., in switches to 0. Similar to ECRL, PFAL also has a 90◦ phase

difference between consecutive stages of logic.

2.2.3 Clocked Adiabatic Logic (CAL)

Figure 2.7 shows a CAL inverter with a power-clock signal φ and auxiliary timing control

signal CX [21]. CX controls transistors N4 and N6 which are in series with logic

transistors N3 and N5, respectively. When CX is high, logic evaluation is enabled.

For in = 0, N5 is on because of which out is pulled down to logic 0. Since gate of

P1 is connected to out, out follows φ. If the auxiliary clock becomes 0, the previously

stored logic state is maintained at the output irrespective of the inputs. Figure 2.8

shows the waveform response of CAL inverter [21]. All logic stages are supplied with

the same power-clock signal and logic evaluation is enabled at every other logic stage by

the auxiliary clock. Hence, CAL takes in new input every other power-clock cycle.
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Figure 2.7: CAL inverter.

Figure 2.8: CAL inverter waveforms.

2.2.4 Complementary Pass Transistor Adiabatic Logic (CPAL)

A CPAL inverter is illustrated in Figure 2.9 [22]. The circuit consists of two main parts:

Figure 2.9: CPAL inverter.

the logic function and the load driven circuit. The transistors N1 to N4 constitute the
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logic circuit employing the complementary pass transistor logic. The load driven circuit

comprises of two transmission gates (N5, P1) and (N6, P2). The transistors N7 and N8

act as the clamp transistors with the main purpose of making the undriven output node

grounded. The node X follows in and Y follows inb, hence when in is 1, X follows in and

switches on N5, thereby allowing out to follow power-clock signal φ. When φ rises from

0 to Vdd, out goes to logic 1 and switches N8 on, thereby pulling out to 0. And since out

is connected to gate of P1, it further enhances the charging process of out node. Similar

to ECRL, cascaded CPAL requires multiple PCs with 90◦ phase difference.

2.2.5 Quasi Static Energy Recovery Logic (QSERL)

QSERL has an ideal diode that is connected between the source node of transistors

and power line, as shown in Figure 2.10 [10]. The ideal diodes are replaced by diode

Figure 2.10: QSERL inverter with ideal diodes and diode connected transistors.

connected transistors and the power lines have AC power supplies (power-clock signals)

which are 180◦ phase apart. For In = 0, the logic PMOS is on and as the PC goes from

0 to Vdd, the PMOS diode becomes forward biased, thereby Out follows the power-clock

signal PC. For a cascaded QSERL logic, the power lines need to be switched for every

other stage, i.e., if stage 1 PMOS diode receives PC, the following stage PMOS diode

receives PC as the power-clock signal [10]. QSERL has the limitations of interlaced

circuit configuration, floating output that are overcome by the complementary energy

path adiabatic logic, as described in the following section. [23].
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2.2.6 Complementary Energy Path Adiabatic Logic (CEPAL)

CEPAL is an improvement over the QSERL. The circuit configuration for a CEPAL

Figure 2.11: CEPAL inverter.

inverter is shown in Figure 2.11 [10, 23]. The improvement is achieved by placing an

NMOS diode in parallel with the PMOS diode connected to the source of logic PMOS

and also a PMOS diode in parallel with the NMOS diode connected to source of logic

NMOS. Placement of these parallel complementary diodes provides a path between the

source of logic transistors to power-clock signal at all times, unlike in QSERL, thereby

eliminating the floating output condition. The cascaded stages have a continuous PC

and PC without the need of alternating the power-clock signals. The CEPAL topology

is discussed in more detail in the following chapter.

In this chapter, the design of an inverter in several charge-recycling logic families has

been discussed and it was observed that for the logic families that need multiple power-

clock signals for proper operation (cascaded or single stage), a certain phase difference

between the power-clock signals needs to be maintained.

The main objective of the thesis is to study the effects of non-ideal phase difference

among power-clock signals on the power consumption and functionality. A more complex

circuit, 16-bit adder, is designed for this objective, as discussed in the following chapter.
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Chapter 3

16-BIT ADDER DESIGN USING

CHARGE-RECYCLING LOGIC

This chapter first describes the design and operation of a 16-bit carry select adder (CSA)

designed in each logic, followed with a comparative analysis of power consumption. The

motivation behind choosing ECRL and CEPAL for this study is:

7. ECRL employs a 90◦ phase difference between two consecutive stages and has the

least number of transistors among the charge-recycling circuit families.

8. CEPAL employs 180◦ phase difference between the power-clock signals and is an

improvement over the QSERL.

Static CMOS has been considered as the reference for the power comparison.

3.1 Circuit Architecture

The design approach for the 16-bit CSA is depicted in Figure 3.1 [24]. The design can

be implemented in various approaches depending on the design of the 1-bit full adder.

The 1-bit full adder has been implemented in two ways:

9. Propagate/Generate (PG) Logic: According to this logic, the operation can be per-

formed by implementing the following Boolean expressions using the corresponding

14



Figure 3.1: Hierarchical carry select adder design.

gates:

Sum = A⊕B⊕Cin (3.1)

Carry = A•B + (A⊕B)•Cin. (3.2)

10. 28-transistor mirror adder: This is a single complex gate having 28 transistors

to evaluate the sum and carry functions shown by Eqns. (3.1) and (3.2). The

schematic for this circuit is shown in Figure 3.3.

The design and simulations are performed using FreePDK45 which is a 45 nm, 1 V

process technology from North Carolina State University [25]. Nominal threshold voltage

devices are used and simulations are performed using HSPICE.

The hierarchical structure of the 16-bit CSA is the same for all the logic types. There

are minor changes in the design approach for ECRL 16-bit CSA which are explained

later. Unless mentioned, the approach remains similar to the static CMOS logic.

3.1.1 Static CMOS based 16-bit CSA

3.1.1.1 Design of 1-bit FA

Figures 3.2 and 3.3 show the 1-bit full adder using the propagate/generate logic and 28

transistor mirror logic, respectively.

3.1.1.2 Design of 4-bit Ripple Carry Adder

The 4-bit adder is designed using the carry ripple topology. Figure 3.4 shows the circuit

implementation. The 1-bit FA can either be the propagate/generate or mirror adder.

15



Figure 3.2: Propagate/Generate logic for 1-bit full adder.

Figure 3.3: 28-transistor mirror 1-bit full adder.

Figure 3.4: 4-bit static CMOS carry ripple adder circuit.

16



3.1.1.3 Design of 16-bit Carry Select Adder

The approach to the design of 16-bit CSA is as follows:

11. Two of the 4-bit carry ripple adders are used in a hierarchy, first one receives

Carry_in as 1 and the second one receives Carry_in as 0. The outputs are pro-

vided to multiplexers to select the correct sum and carry values, as shown in

Figure 3.5: 4-bit static CMOS carry select adder.

Figure 3.5. The select line of multiplexer is the actual Carry_in that is provided

to the adder.

12. Four such 4-bit CSAs are combined to obtain the 16-bit CSA. The select line of

the multiplexer is the Carry_out from the previous stage. For the first stage, the

select line is 0, but in order to maintain the reusability, all four 4-bit CSAs are

designed to be identical. Figure 3.6 shows the 16-bit carry select adder.

13. To make the design synchronous, flip-flops are added to the primary inputs and

outputs. Thus, the correct outputs are obtained after two active edges with respect

to the inputs.

Since the 1-bit FA can be implemented in two ways, there are two designs for the 16-bit

CSA, each employing one of the 1-bit FA logic.
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3.1.1.4 Simulation Setup for Evaluating Functionality

To evaluate functionality, the 16-bit CSA is provided with 32 input signals. A load

capacitance of 5 fF is connected to each output node. The circuit is then simulated

for various combinations of input signals. Also, each hierarchy is checked for correct

functionality which re-affirms the correctness of the overall design. The input and cor-

responding output for the 1-bit full adder are shown in Figure 3.7.

3.1.2 ECRL based 16-bit CSA

The ECRL inverter design can be generalized to understand the design of various other

gates. Figure 3.8 shows that the NMOS logic for an inverter can be replaced by the

NMOS Fn logic to realize any logic functionality. Since ECRL produces complementary

outputs, the NMOS Fn logic generates the complement of the desired output. Also,

attributing to the self-complementing functionality, ECRL needs to have the input sig-

nal and its complement. Designing a circuit in ECRL is different than static CMOS

since there are 4 power-clock signals and one particular interval for a stage acts as the

subsequent interval for the following stage [18]. In the case where a stage accepts inputs

from two different stages, the signals need to be propagated through the same number

of logical gates since ECRL is inherently pipelined. This step is necessary to ensure that

both signals have the correct phase, as discussed more in detail later. The AND, OR,

XOR and 2:1 MUX transistor level design using ECRL are shown in Figures 3.9 to 3.12.

3.1.2.1 Design of 1-bit FA:

14. Propagate/Generate FA: Figure 3.13 shows the design of a 1-bit full adder which

implements the propagate/generate logic. The inputs A and B, and their comple-

ments, are provided to the AND and XOR gates. These two gates can evaluate

at the same time as they are not dependent on any signal/output from any other

stage. Hence, these two gates receive the same power-clock signal. The next stage

comprises of the XOR and AND gates. The XOR gate produces the sum as the

output whereas the output of AND gate is provided to the next stage OR gate

which evaluates the carry. The XOR and AND gate of stage 2 are independent.
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Figure 3.8: Generalized ECRL circuit.

Figure 3.9: ECRL AND circuit.
Figure 3.10: ECRL OR circuit.

Figure 3.11: ECRL XOR circuit. Figure 3.12: ECRL 2:1 MUX cir-
cuit.

Hence, they receive the same power-clock signal whereas the OR gate that evalu-

ates the carry receives a different power-clock signal as this gate is in a different

stage because of the dependency on the output of the AND gate in stage 2. The
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Figure 3.13: ECRL 1-bit FA using the propagate/generate logic.

signals/inputs are propagated through buffers until the stage where they are pro-

vided as input to other gates. Hence, the adder is divided into three stages and

the three power-clock signals have 90◦ phase difference, as shown in Figure 3.13.

15. 28-transistor mirror FA:

The 1-bit mirror adder shown in Figure 3.3 can be divided into two stages, as

shown in Figure 3.14.

Figure 3.14: ECRL 1-bit mirror adder.

(a) Carry Evaluation Stage

(b) Sum Evaluation Stage.

The ECRL circuitry of carry and sum evaluation is shown in Figures 3.15 and

3.16, respectively. As the sum evaluation depends on a signal that is generated

during the carry evaluation, there exists a dependency, hence the circuit takes in
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Figure 3.15: ECRL circuit for implementation of carry evaluation in mirror adder.

Figure 3.16: ECRL circuit for implementation of sum evaluation in mirror adder.

two power-clock signals that are 90◦ phase apart. The symbolic representation is

shown in Figure 3.17.

The inputs and corresponding outputs for the 1-bit adder are shown in Figure 3.18.
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Figure 3.17: Symbol for 1-bit ECRL mirror adder.

3.1.2.2 Design of 4-bit Carry Ripple Adder

To design a 4-bit FA, a gate-level representation is adopted (without higher level hier-

archy) to provide a better picture and understanding of the power-clock connectivity.

The basic computation remains the same as explained in the previous subsection. The

signals need to pass through buffers in order to propagate until the stage wherein they

are used as inputs for evaluation. The sum value for each pair of bits is also propagated

through buffers in order to make the entire circuit synchronous by generating all of the

outputs at the end of the same corresponding power-clock signal. Figure 3.19 and Fig-

ure 3.20. represent the 4-bit ripple carry adder employing PG logic and mirror adder

logic, respectively.

The following observations are noted:

16. The 4-bit adder with mirror FAs requires fewer stages to evaluate the final output.

17. Assuming that gates in one vertical line form one stage and the four power-clock

signals are PC1, PC2, PC3, and PC4 then stage 'n' and stage 'n+4' receive the

same power-clock signal.

18. The correct outputs are obtained after 'n/4' number of power-clock cycles (where

'n' is the number of stages), as that many number of power-clock cycles is required

to evaluate and propagate the output and also maintain the synchronicity of the

circuit.
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Figure 3.19: ECRL 4-bit adder using propagate/generate logic.

Figure 3.20: ECRL 4-bit adder using mirror adder logic. Note that the buffers needed
to ensure synchronous operation are not shown.
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Figure 3.21: 16-bit carry select adder with ECRL logic.

19. The synchronicity of the system is maintained without the use of flip-flops because

the operation is based on the principle that one stage can evaluate only after the

previous stage has finished evaluating and is in the hold interval. Hence, the design

is inherently pipelined.
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3.1.2.3 Design of 16-bit Carry Select Adder

Figure 3.21 illustrates the design of a 16-bit CSA using four 4-bit adders. The 4-bit

adders can either use PG FA or mirror FA. The sum values need to be propagated

through buffers until the corresponding multiplexer receives the select signal from the

previous 4-bit adder.

Each of the multiplexers shown in Figure 3.21 is a combination of five 2:1 multiplexer

(MUX), all receiving the same select signal. The multiplexer outputs are also propagated

through a chain of buffers until all the outputs are obtained at the same power-clock

signal. Note that depending upon the kind of logic used for 1-bit FA, the number of

power-clock cycles for evaluation and output generation varies. The 16-bit CSA with

PG FA requires 3.25 power-clock cycles whereas the 16-bit CSA with mirror FA requires

2.25 power-clock cycles.

3.1.3 CEPAL based 16-bit CSA

As mentioned earlier, CEPAL is an improvement over QSERL and both families employ

the basic structure of static CMOS [23]. Hence, a general circuit with the CEPAL logic

can be designed as shown in Figure 3.22. Unlike static CMOS, there is no ground (GND)

Figure 3.22: A generalized representation of CEPAL.
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supply to CEPAL logic. Instead, CEPAL has two power-clock signals which are 180◦

phase apart. Unlike ECRL, cascaded stages, as shown in Figure 3.23, share the same

power-clock signals. Note that the PMOS and NMOS bulk nodes cannot be biased with

Figure 3.23: Cascaded CEPAL topology.

the same voltage as their respective power-clock signals since the PN junctions within

the transistors become forward biased and therefore deteriorates the functionality of the

circuit.

3.1.3.1 Design of 1-bit FA

The implementation of propagate/generate design and 28 transistor mirror adder design

are similar to that of static CMOS except the presence of AC power-clock supply instead

of a DC supply voltage. More specifically, V DD in static CMOS is replaced by PC and

GND is replaced by PC, in addition to the diode connected transistors, as shown in

Figure 3.22. The input and output waveforms for a 1-bit adder are shown in Figure 3.24.

Note that the output signal does not reach V DD and GND due to the diode connected

transistors. Thus, output signals in CEPAL have reduced voltage rail.

3.1.3.2 Design of 4-bit Carry Ripple Adder

The 1-bit propagate/generate FA and mirror FA are used as the building block to design

two types of 4-bit carry ripple adders, similar to static CMOS. Figures 3.2 and 3.3 are

used for reference.
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3.1.3.3 Design of 16-bit Carry Select Adder

The same carry select adder architecture is used. There are four 4-bit carry ripple adders.

Unlike ECRL and similar to static CMOS, the synchronicity in CEPAL is maintained by

using flip-flops at the primary inputs and outputs, thereby obtaining the correct output

signals after two active clock edges with respect to the inputs.

3.1.3.4 Simulation Setup for Evaluating Functionality

A load capacitance of 5 fF is connected to each output node. The circuit is supplied

with two power-clock signals which are 180◦ phase apart. For the bulk connections, a

DC source for PMOS and a ground supply for NMOS are provided. The external clock

frequency (required for the flip-flops) is the same as the power-clock frequency. The

circuit is then simulated for various combination of input signals. The 16-bit carry select

adder with CEPAL works until 30 MHz, beyond which timing (max delay constraint)

violations occur.

3.2 Simulation Setup and Results for Power Consumption

The power consumption over 100 power-clock cycles is obtained for each logic for various

frequencies [26]. Theoretically, it is expected that

20. The overall power consumption should increase at higher power-clock frequencies.

21. The power consumption by charge-recycling logic (ECRL and CEPAL) should be

much lower as compared to the static CMOS power consumption.

The simulation results for power consumed by 16-bit carry select adder designed in

various logic families are listed in Table 3.1 to Table 3.3.

Simulation results confirm the theoretical expectations. Note the following observations:

22. At low frequency of operation (1-5 MHz), the power consumed by charge-recycling

circuits is only 3-4 times less than the static CMOS circuits.
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Frequency Mirror PG

(MHz) (µW) (µW)

1 4.28 4.77

5 7.41 8.01

10 11.33 12.07

20 19.18 20.17

50 42.73 44.52

100 81.98 85.03

Table 3.1: Power consumed by static CMOS 16-bit CSA.

Frequency Mirror PG

(MHz) (µW) (µW)

1 0.95 1.4

5 1.05 1.49

10 1.3 1.81

20 1.92 2.56

50 4.27 5.72

100 9.19 12.1

Table 3.2: Power consumed by ECRL 16-bit CSA.

Frequency Mirror PG

(MHz) (µW) (µW)

1 1.37 1.64

5 3.55 4.07

10 5.93 6.79

20 10.39 11.48

50 19.63 21.84

100 24.35 30.18

Table 3.3: Power consumed by CEPAL 16-bit CSA.

23. As the power-clock frequency is increased, the overall power consumption increases

for each of the circuits, but the rate of increase is much lower for the charge-

recycling circuits as compared to the static CMOS.

24. ECRL power consumption is approximately 8-9 times lower than that of static

CMOS whereas CEPAL power consumption is almost half to one-forth of the static

CMOS power consumption depending on the power-clock frequency. Figure 3.25

and Figure 3.26 show the power comparison as a function of power-clock frequency.
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Figure 3.25: Power consumed by 16-bit CSA employing 1-bit adder with mirror logic.

Figure 3.26: Power consumed by 16-bit CSA employing 1-bit adder with propagate/-
generate logic.
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Chapter 4

EFFECTS OF NON-IDEAL

POWER-CLOCK PHASE

DIFFERENCE ON CIRCUIT

CHARACTERISTICS

As mentioned in the previous chapters, the ECRL and CEPAL employ power-clock

signals among which a certain phase difference should be maintained. In this chapter,

the primary objective is to investigate the effect of non-ideal phase differences on the

power consumption and functionality. The operating frequencies considered for this

investigation vary from 10 MHz to 100 MHz.

4.1 Simulation Setup

For the simulation setup to analyze power consumption, the same method is used as

mentioned in the previous chapter. The steps followed to obtain the power consumption

corresponding to various phase differences are as follows:

25. For ECRL, the phase difference of one power-clock signal is varied from 40◦ to

140◦ (ideally should be 90◦) with respect to the adjacent power-clock signal while

maintaining the rest of the power-clock signals at the ideal state. This process is
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performed for each of the four power-clock signals. The phase difference is varied

in steps of 5◦ to obtain sufficient accuracy in the results. The outputs and power

consumption at the end of each simulation are compared to that of the ideal output

and power consumption.

26. For CEPAL, the phase difference of one of the two power-clock signals is varied

from 140◦ to 220◦ (ideally should be 180◦) with respect to the other power-clock

signal, ensuring that the second power-clock signal is at ideal state. The same

process is performed for the second power-clock signal. The phase difference is

varied in steps of 10◦. The outputs and power consumption at the end of each

simulation are compared to that of the ideal output and power consumption.

4.2 Output and Power Consumption Analysis

4.2.1 ECRL

For ECRL, the outputs remain the same as that of the ideal outputs for the entire range

of phase difference for all of the frequencies, i.e., 10 MHz, 13.56 MHz, 50 MHz and 100

MHz whereas there is a noticeable change in the power consumed by the circuit.

Tables 4.1 to 4.4 in the following pages list the power corresponding to each phase dif-

ference. These results are also shown in Figures 4.1 to 4.4. According to these results, if

the phase difference between two consecutive power-clock signals is 120◦ or more (rather

than the ideal 90◦, representing more than 30◦ phase deviation), the power consumption

by the following (next logic gate) power-clock signal exponentially increases. For exam-

ple, if PC3 and PC4 have a phase difference more than 120◦, PC4 consumes more power

as compared to a phase difference of 90◦. If more than one pair of power-clock signals

exhibit non-ideal phase difference, then each pair should be considered separately and

the same principle should be followed to analyze the power consumption. The power

consumption vs. phase difference plots for power-clock frequency of 10 MHz, 13.56 MHz,

50 MHz and 100 MHz are shown, respectively, in Figures 4.1, 4.2, 4.3 and 4.4. For all

of the power-clock frequencies, the behaviour of power consumption remains the same.

Also note that the overall power consumption corresponding to each phase increases at

higher power-clock frequencies. For example, at 10 MHz and phase difference of 120◦
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between PC2 and PC3, the power consumption is 1.47µW whereas at 50 MHz, the same

phase difference between the same power-clock signals produces a power consumption

of 4.35µW.

As the phase difference between two consecutive power-clock signals varies, the output

of the first stage shifts in time (since the output follows the power-clock signal in ECRL).

When this shifted output is used as the input for the following logic gate (which has

ideal power-clock signal), the shift in the output waveform is fixed, thereby ensuring

correct operation. However, due to the shift at the output of the first stage, this signal

falls under the evaluation interval of the following power-clock signal (where the signal

should ideally remain stable). Since the input changes during evaluation interval due to

the non-ideal phase difference, the power consumed by the second stage increases.
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Figure 4.1: Phase difference (in ◦) vs. power consumed (in µW) by each power-clock
signal for power-clock frequency 10 MHz.

Figure 4.2: Phase difference (in ◦) vs. power consumed (in µW) by each power-clock
signal for power-clock frequency 13.56 MHz.
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Figure 4.3: Phase difference (in ◦) vs. power consumed (in µW) by each power-clock
signal for power-clock frequency 50 MHz.

Figure 4.4: Phase difference (in ◦) vs. power consumed (in µW) by each power-clock
signal for power-clock frequency 100 MHz.
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Figure 4.5: Overall power consumption in µW (summation of the power consumed by
each power-clock signal) vs. phase difference (in ◦) for 10 MHz power-clock frequency
when only the phase difference of one power-clock signal varies (with respect to the

following power-clock signal).

Figure 4.6: Overall power consumption in µW (summation of the power consumed
by each power-clock signal) vs. phase difference (in ◦) for 13.56 MHz power-clock
frequency when only the phase difference of one power-clock signal varies (with respect

to the following power-clock signal).
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Figure 4.7: Overall power consumption in µW (summation of the power consumed by
each power-clock signal) vs. phase difference (in ◦) for 50 MHz power-clock frequency
when only the phase difference of one power-clock signal varies (with respect to the

following power-clock signal).

Figure 4.8: Overall power consumption in µW (summation of the power consumed by
each power-clock signal) vs. phase difference (in ◦) for 100 MHz power-clock frequency
when only the phase difference of one power-clock signal varies (with respect to the

following power-clock signal).
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4.2.2 CEPAL

Similar to the approach followed for ECRL, the phase difference between PC and PC

is varied separately by maintaining the other power-clock signal at the ideal state. This

analysis is performed for power-clock frequencies of 10 MHz, 13.56 MHz and 30 MHz.

The external clock frequency (required for the flip-flops since CEPAL is not inherently

pipelined, unlike ECRL) is the same as the power-clock signal. The consumed power, cor-

responding phase difference and the functionality are listed in Table 4.17 to Table 4.19.

According to these tables, the tolerance to non-ideal phase differences decreases with

higher power-clock frequencies. For the power-clock frequency of 10 MHz, correct func-

tionality is achieved for a phase difference range of 150◦ to 210◦. Thus, tolerance is 30◦

on both directions (of 180◦). Similarly, for 13.56 MHz the tolerable phase difference

range is 150◦ to 210◦. Since the two frequencies are close to each other, the tolerance is

the same. However, for a 30 MHz power-clock frequency, the tolerance is 10◦, as listed

in Table 4.19.

The dependence of power consumption on phase difference is significantly different on

CEPAL since this logic does not rely on different intervals (unlike ECRL that has four

intervals of hold, evaluation, wait, and recover). It is observed that the power consump-

tion is the highest under ideal condition and slightly reduces as the phase difference

changes. Figures 4.9 to 4.11 show the power consumption vs. phase difference for

different frequencies.

Phase difference Power consumed Functionality Power consumed Functionality

when PC varied when PC varied
(in ◦) (in µW) (in µW)

220 5.48 Failed 5.3 Failed

210 5.89 Correct 5.61 Correct

200 5.96 Correct 5.86 Correct

190 6.02 Correct 6.03 Correct

180 6.06 Ideal 6.06 Ideal

170 6.02 Correct 5.99 Correct

160 5.89 Correct 5.92 Correct

150 5.69 Correct 5.70 Correct

140 5.41 Failed 5.40 Correct

Table 4.17: Power consumed (in µW) by CEPAL 16-bit CSA for various phase dif-
ferences (in ◦) operating at 10 MHz power-clock frequency.
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Figure 4.9: Power consumed vs. phase difference for CEPAL operating at 10 MHz
power-clock frequency.
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Phase difference Power consumed Functionality Power consumed Functionality

when PC varied when PC varied
(in ◦) (in µW) (in µW)

220 6.8 Failed 6.68 Failed

210 7.34 Correct 7.27 Correct

200 7.51 Correct 7.48 Correct

190 7.61 Correct 7.62 Correct

180 7.67 Ideal 7.67 Ideal

170 7.59 Correct 7.59 Correct

160 7.5 Correct 7.48 Correct

150 7.34 Correct 7.30 Correct

140 6.77 Failed 6.82 Correct

Table 4.18: Power consumed (in µW) by CEPAL 16-bit CSA for various phase dif-
ferences (in ◦) operating at 13.56 MHz power-clock frequency.

Figure 4.10: Power consumed vs. phase difference for CEPAL operating at 13.56
MHz power-clock frequency.
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Phase difference Power consumed Functionality Power consumed Functionality

when PC varied when PC varied
(in ◦) (in µW) (in µW)

200 13.34 Failed - -

190 13.94 Correct 13.92 Failed

180 14.24 Ideal 14.24 Ideal

170 13.99 Failed 13.91 Correct

160 - - 13.35 Failed

Table 4.19: Power consumed (in µW) by CEPAL 16-bit CSA for various phase dif-
ferences (in ◦) operating at 30 MHz power-clock frequency.

Figure 4.11: Power consumed vs. phase difference for CEPAL operating at 30 MHz
power-clock frequency.
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Chapter 5

CONCLUSION

The primary objective of this thesis is to evaluate the tolerance of two charge-recycling

logic families (ECRL and CEPAL) to non-ideal phase differences in power-clock signals.

Recently, a unique synergy between wireless power harvesting and charge-recycling logic

has been demonstrated. Specifically, harvested wireless energy in the form of AC sig-

nal (known as the power-clock signal) is directly used to power charge-recycling logic,

thereby eliminating the costly (both in terms of power and area) rectification and regu-

lation stages.

Since most of the charge-recycling logic families require multiple phases to operate, it

is important to understand how these circuits behave under non-ideal phase differences.

Understanding this behavior is important particularly for wirelessly powered charge-

recycling logic since deviations in the ideal phase differences are expected.

Initially, the power consumed by the ECRL, CEPAL, and static CMOS 16-bit carry

select adder is investigated. The power comparison between the three logic approaches

is studied, as listed in Table 3.1 to Table 3.3. Figure 3.25 and Figure 3.26 show that

the ECRL consumes the least power among the three logic families, which verifies the

theoretical results.

The effect of non-ideal phase difference on power consumption and functionality is then

studied by varying the phase difference among the power-clock signals for the 16-bit

CSA. To summarize:
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27. For ECRL, the 16-bit CSA is able to tolerate a non-ideality of 30◦ in the phase

difference without affecting the power consumption and functionality. If the devi-

ation is more than 30◦, the power consumed by the circuit increases exponentially,

however the functionality remains unaffected. Furthermore, the increase in power

consumption is higher at higher power-clock frequencies.

28. Alternatively, for CEPAL, the 16-bit CSA fails to correctly operate when the

phase difference varies by 40◦ at 13.56 MHz and by only 10◦ at 30 MHz. Thus,

unlike ECRL, functionality strongly depends upon the phase difference. The power

consumption, however, is a weak function of phase difference in CEPAL.

Charge-recycling circuits can provide new and highly exciting opportunities for wire-

less power harvesting, particularly for IoT based devices. This thesis provides helpful

information on the tolerance of this logic to non-ideal phase differences.
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Appendix A: Schematic Figures

Figure E.1: Static CMOS 1-bit full adder employing propagate/generate logic
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Figure E.2: Static CMOS 1-bit full adder employing 28-transistor mirror logic

Figure E.3: Static CMOS 4-bit carry ripple full adder
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Figure E.4: Static CMOS 4-bit carry select full adder
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Figure E.5: Static CMOS 16-bit carry select adder
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Figure E.6: ECRL buffer circuit

Figure E.7: ECRL AND circuit
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Figure E.8: ECRL OR circuit
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Figure E.9: ECRL XOR circuit

Figure E.10: ECRL mulitplexer circuit
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Figure E.11: ECRL carry generator circuit of 28-transistor mirror adder

Figure E.12: ECRL mum generator circuit of 28-transistor mirror adder
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Figure E.13: ECRL 4-bit carry ripple adder employing propagate generate logic
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Figure E.14: ECRL 4-bit carry ripple adder employing mirror adder logic
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Figure E.15: ECRL 4-bit carry select adder
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Figure E.16: ECRL 16-bit carry select adder
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Figure E.17: CEPAL inverter circuit
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Figure E.18: CEPAL NAND circuit
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Figure E.19: CEPAL NOR circuit
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Figure E.20: CEPAL XOR circuit

Figure E.21: CEPAL multiplexer circuit
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Figure E.22: CEPAL 1-bit full adder employing 28-transistor mirror logic

70


	Abstract
	Dedicatory
	List of Figures
	List of Tables
	Acknowledgements
	1 INTRODUCTION
	1.1 Synergy Between Wireless Power Harvesting and Charge-Recycling Circuit

	2 BACKGROUND ON CHARGE-RECYCLING
	2.1 Power Consumption: A Quantitative Approach
	2.1.1 Power Consumption in Static CMOS
	2.1.2 Power Consumption in Charge-Recycling Circuits

	2.2 Types of Charge-Recycling logic
	2.2.1 Efficient Charge Recovery Logic (ECRL)
	2.2.2 Positive Feedback Adiabatic Logic (PFAL)
	2.2.3 Clocked Adiabatic Logic (CAL)
	2.2.4 Complementary Pass Transistor Adiabatic Logic (CPAL)
	2.2.5 Quasi Static Energy Recovery Logic (QSERL)
	2.2.6 Complementary Energy Path Adiabatic Logic (CEPAL)


	3 16-BIT ADDER DESIGN USING CHARGE-RECYCLING LOGIC
	3.1 Circuit Architecture
	3.1.1 Static CMOS based 16-bit CSA
	3.1.1.1 Design of 1-bit FA
	3.1.1.2 Design of 4-bit Ripple Carry Adder
	3.1.1.3 Design of 16-bit Carry Select Adder
	3.1.1.4 Simulation Setup for Evaluating Functionality

	3.1.2 ECRL based 16-bit CSA
	3.1.2.1 Design of 1-bit FA:
	3.1.2.2 Design of 4-bit Carry Ripple Adder
	3.1.2.3 Design of 16-bit Carry Select Adder

	3.1.3 CEPAL based 16-bit CSA
	3.1.3.1 Design of 1-bit FA
	3.1.3.2 Design of 4-bit Carry Ripple Adder
	3.1.3.3 Design of 16-bit Carry Select Adder
	3.1.3.4 Simulation Setup for Evaluating Functionality


	3.2 Simulation Setup and Results for Power Consumption 

	4 EFFECTS OF NON-IDEAL POWER-CLOCK PHASE DIFFERENCE ON CIRCUIT CHARACTERISTICS
	4.1 Simulation Setup
	4.2 Output and Power Consumption Analysis
	4.2.1 ECRL
	4.2.2 CEPAL


	5 CONCLUSION
	Bibliography
	Appendix A: Schematic Figures

