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Abstract of the Dissertation

Investigations of electronic and optical sources in the mid infrared and terahertz regions

by

Thakur Siddharth Singh

Doctor of Philosophy

in

Electrical Engineering

Stony Brook University

2016

Fundamental sources of mid-infrared and terahertz radiation are of the
utmost importance for applications such as chemical sensing, molecular spec-
troscopy, imaging and telecommunications to name a few. Practical realiza-
tions of room temperature fundamental sources in the terahertz region are
often hampered by low power and poor temperature performance and this
is referred to as the Terahertz gap. This work presents investigations of
Quantum Cascade Lasers (QCL) as optical sources of mid-infrared radiation
and the proposal of a novel electronic oscillator in the extremely important
terahertz region based on a single layer of a suspended graphene sheet.

Monte Carlo simulations of electron and photon transport have been per-
formed on both device concepts. Firstly, the transport models were validated
by simulating existing devices from other research groups which have been
fabricated and tested. The simulation results of the Monte Carlo model were
shown to be in good agreement with experimental data. An injectorless and
compact QCL design was proposed. Simulations showed enhanced optical
gain, improved temperature performance and very stable and low thresh-
old current densities over a wide temperature range over conventional QCL
designs.
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A new type of an electronic oscillator based on a single layer of suspended
graphene was simulated demonstrating oscillations up to 800 GHz in the ter-
ahertz region of the electromagnetic spectrum at room temperature. The
proposed device concept could potentially provide a much needed fundamen-
tal source in the terahertz region.
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Chapter 1

Introduction

The design, operation and realization of fundamental sources of mid-infrared
(MIR) and terahertz (THz) radiation are active areas of research as they
are indispensable components for many important applications. The region
comprising wavelengths between 3-12 µm broadly comprises the MIR region
of the electromagnetic spectrum and is called the molecular fingerprint re-
gion as most of the fundamental rotational and vibrational transitions of the
molecular species are located in this region. An illustration of the location
of these bands and the various applications that would need MIR sources is
shown in Fig. 1.1. One of the most promising and tunable sources of MIR
radiation are quantum cascade lasers (QCLs) [2].

Fundamental THz sources are needed for numerous applications as well.
THz radiation offers intriguing and exciting possibilities for material and de-
vice characterization [3]. Fig. 1.2 illustrates the imaging of a single transistor
and the immense improvement in the resolution of the transistor when a THz
source is used [3]. In addition to high resolution imaging, the modulation of
the output of THz sources is important for high speed communications. Com-
pact THz sources are desirable for high-capacity and short-distance wireless
communications [4]. Further motivations for MIR and THz sources will be
outlined in subsequent chapters.

The challenges facing designing long wavelength MIR QCLs are princi-
pally the waveguide losses which are proportional to the square of the wave-
length which limit the optical gain and consequently the power. The in-
creased waveguide losses at longer wavelengths also require larger pumping

1



Figure 1.1: Chart showing the location of the strongest rotational vibrational
bands for several species based on simulated spectra [1].
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Figure 1.2: TEM image, IR image and high resolution THz image of a single
transistor [3].
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currents which tend to heat the active region and require extensive cooling.
On the other hand, fundamental sources of THz radiation which could po-
tentially be compact components for many applications have been hard to
design. The best performing THz sources in the 0.1-5 THz frequency range
are either bulky mixers or very low power and low temperature fundamental
sources such as RTDs, Josephson junction devices or THz QCLs to name a
few. The aim of this dissertation is to use physics based models to quan-
titatively describe electron and photon transport and propose novel design
architectures using the models both in the MIR and THz regions of the elec-
tromagnetic spectrum. Part I of this dissertation develops the Monte Carlo
based model used for describing transport in QCLs. This model is then used
to propose a novel long wavelength QCL and its performance is compared
to existing designs. Part II is aimed at proposing a novel THz oscillator
based on an exciting new material, suspended graphene. The Monte Carlo
model described in Part I will be adapted to simulate the oscillator in Part II.
The dissertation is concluded with possible future work for both the device
concepts.
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Part I

Long Wavelength Mid Infrared QCL
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Chapter 2

Ensemble Monte Carlo method

2.1 Intersubband lasers

Quantum cascade lasers (QCLs) [2] are electrically injected semiconductor
heterostructure devices which utilize electronic transitions between conduc-
tion band states to emit photons and is therefore referred to as an inter-
subband laser. This idea is quite different from conventional heterostructure
laser diodes where the optical transition takes place across the band gap
separating the conduction and valence band and are called interband lasers.
Intersubband lasers are called unipolar lasers as only electrons or holes par-
ticipate in producing a laser which interband lasers utilize both holes and
electrons simultaneously and hence are called bipolar lasers. QCLs have
also been shown to operate in the valence band but the strong valence band
anisotropy and heavier effective masses coupled with fabrication difficulties
have made electron based QCLs the standard.

A semiconductor heterostructure is formed by joining a sequence of al-
ternating wide band gap and narrow band gap materials and hence quantum
well and barrier layers are formed in the growth direction which is usually
denoted by z. The plane parallel to the growth direction also called the in-
plane direction is denoted by x-y. A QCL is formed by periodically repeating
a single generic stage or period. Each stage in a QCL is a superlattice, i.e.,
a multiple well-barrier heterostructure. Quantum confinement leads to a set
of discrete energies also referred to as subbands and the electron’s energy
in the z direction Ez is confined to one of these subbands. In the plane of

6
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Figure 2.1: Semiconductor heterostructure.

the QCL, the particle feels no confinement and can be thought of as a free
electron. A schematic illustration of a semiconductor heterostructure formed
in the conduction band is shown in Fig. 2.1.

When an appropriate voltage bias is applied in the z direction, electrons
are transported from one stage to another and and with proper wavefunction
engineering in the z direction, each electron emits one photon per stage
or equivalently Np photons, where Np is the number of stages in the QCL.
Fig. 2.2 depticts a generic QCL formed by the Γ valley of the conduction band
under an applied bias. The length of one stage is LP . The term cascade
in QCL arises from the fact that when a proper bias is applied, electrons
continuously lose energy and cascade down an energy staircase emitting a
single photon in each stage.
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Figure 2.2: Electronic states in a QCL under an applied bias.
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2.1.1 Active and Injector regions in a QCL

In Fig. 2.2, the QCL contained two distinct regions namely the active re-
gion and the injector region seperated by a thick barrier called the injection
barrier. The active region is the portion of the QCL where the optical tran-
sition takes place between a upper lasing state UL and a lower laser state LL
and this region is usually not doped to avoid carrier absorption induced by
photons. The injector region is a set of closely spaced (in energy) subbands
which serves the purpose of transporting or injecting the carrier to the next
stage. The electrons in the QCL are provided by n-doping certain layers of
the injector region. These layers act as electron reservoirs. It is a reasonable
assumption that each stage of the QCL is charge neutral, i.e., all the elec-
trons are provided by the doping. To acheive a net gain, one must maintain
the population of the UL higher than LL. This is called population inversion
and it was proposed in 1971 by studying a semiconductor superlattice under
an applied electric field [5]. In a QCL this is acheived by engineering levels
D1 and D2 which are exactly one optical phonon energy below LL. Thus the
lifetime of an electron in LL is very short due to rapid longitudinal phonon
emission while the lifetime of an electron in the UL should be as large as
possible. The qualitative condition between the population n of a level and
lifetime τ for an electron in the level is n ∝ τ .

Electron transport in the active region is dictated mainly by longitudinal
optical (LO) phonon emission as mentioned before and recently it has been
shown that interface roughness (IR) scattering is a crucial transport mecha-
nism. However after threshold when the gain of the laser exceeds the losses
of the optical device, stimulated emission plays an exceedingly important
part by scattering electrons between the active region subbands. Transport
in the injector is a rich interplay between phase coherent tunneling and scat-
tering(also called as incoherent transport). Transport between the active
region and injector of a QCL is usually an interplay between coherent and
incoherent transport.

2.2 Time dependent Schrödinger equation

The time dependent Schrödinger equation (TDSE) describes the temporal
evolution of the quantum state |ψ(t)〉 of a physical system and is given by,

9



Ĥ|ψ(t)〉 = i~
∂

∂t
|ψ(t)〉. (2.1)

The Hamiltonian of the system describes the various potentials present
in the system which give rise to the dynamics of the quantum state. The
Hamiltonian of a system can be divided into two components. The first com-
ponent describes potentials which are time-independent and will be denoted
by Ĥ0 and the second one describes time varying potentials V̂ (t). The TDSE
can now be written as,

(Ĥ0 + V̂ (t))|ψ(t)〉 = i~
∂

∂t
|ψ(t)〉. (2.2)

In one dimensionally confined semiconductor heterostructures such as
QCLs, Ĥ0 generally contains the kinetic energy of an electron T̂ , the con-
duction band offset between the constituent materials of the well and barrier
regions in the growth or confinement direction of the heterostructure (de-
noted by z) Ec(z) , electric fields due to an applied electric field in the z
direction F given by VE(z) = −eFz and any self consistent Hartree po-
tentials −eφH(z) due to charge redistribution obtained by solving Poisson’s
equation. Band parameters for most III-V materials and alloys can be found
in [24]. The potential in the plane parallel to z(denoted by x-y ) is assumed
to be constant and uniform. Thus,

Ĥ0 = T̂ + Ec(z) + VE(z)− eφH(z). (2.3)

The time varying potential arises due to various scattering mechanisms
such as phonons, interface roughness, alloy disorder, electron-electron and
photon induced scattering. These potentials are usually treated as small
perturbations to Ĥ0.

If the eigenstates of the stationary unperturbed system Ĥ0 are denoted
by |φ〉 and the eigenenergies Eφ correspoding to each |φ〉 represent the elec-
tron energies as a result of a measurement of electron energy,then the time
dependent form of the eigenstates is,

|φ(t)〉 = |φ〉 exp
(−iEφt

~

)

. (2.4)
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In the next section we will find the stationary electronic states in a QCL.
As the time varying potentials act as small perturbations to Ĥ0, we can
employ perturbation theory to solve for the effects of the time varying po-
tentials. The explicit form of the scattering rates due to the time varying
scattering mechanisms along with the details of the solution obtained using
perturbation theory will be described in the next chapter.

2.3 Time-independent Schrödinger equation

The time-independent Schrödinger equation (TISE) enables us to calculate
the stationary electronic states in a QCL. The TISE is given by,

Ĥ0|φ〉 = Ez|φ〉. (2.5)

Here Ez is the quantization energy in the z direction as Ĥ0 varies only in the
z direction.

The three dimensional stationary wavefunction |φ〉(R) is given by the
product of a slowly varying component along the quantization direction called
the envelope function ψ(z) and a rapidly varying component called the Bloch
function uk(R).

|φ〉(R) =
1√
A
eik.rψ(z)uk(R) (2.6)

where k is the 2D in-plane or parallel momentum also denoted by kxy/k‖,
r is the in-plane position and A is the cross sectional area in the x-y plane
which is the normalization constant.

Under the assumption that the Bloch function does not change spatially
when moving from the well to the barrier regions owing to the fact that the
constituent materials of the well and barrier regions possess similar crystal
structures, the TISE reduces to,

Ĥ0ψ(z) = Ezψ(z). (2.7)

This ansatz is called the envelope function approximation [15] and
has shown to produce good agreement with more accurate atomistic band-
structure methods.
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2.3.1 Non-parabolicity

The kinetic energy operator for a free electron is given by,

T̂ = − ~
2

2m∗
∆,

wherem∗ is the effective mass of the electron and the ∆ = ∂2

∂z2
is the Laplacian

operator. This leads to what is called the parabolic Schrödinger equation as
such an operator leads to a parabolic relation(also called the E−k dispersion
relationship) between the energy and momentum in the plane of the QCL,

E =
~
2k2

2m∗

where k is the magnitude of the in-plane momentum.

− ~
2

2m∗

∂2ψ

∂z2
+ Vc(z) = Ezψ(z) (2.8)

Here we have combined the conduction band offset, electric field and Hartree
potentials into an effective potential Vc(z).

This is however not an accurate description of the electronic states as
electrons in the conduction band of a QCL feel the potential due to the
remote band electrons such as valence band electrons and to be exact even
higher lying conduction bands. This can lead to corrections in the values of
the eigenenergies Ez. To accurately solve for the effects of remote bands on
the electron states, effective mass theories such as the 8x8 k.p method can be
employed but they are computationally too expensive to be implemented in a
design tool. Therefore to simplify the problem we introduce a factor α called
the non-parabolicity factor to describe the effects of the remote bands. We
restrict ourselves to the remote valence bands only as this has been shown to
produce energies which are in reasonable agreement with experiment. The
E − k dispersion though will still be assumed to be parabolic in this work
as non-parabolicity manifests itself to greater effect only at higher energies
and since there is no electric field in the in-plane direction, we can neglect
the corrections to the dispersion relationship.
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The non-parabolicity factor is given by,

α(z) =
β(z)

Eg(z)

(

1− m∗(z)

m0

)

(2.9)

β(z) =
1 + 4x(z) + 2x2(z)

1 + 5x(z) + 2x2(z)
(2.10)

x(z) =
∆so(z)

Eg(z)
(2.11)

wherem0 is the free electron mass ∆so is the spin orbit split off energy and
Eg is the direct band gap. All quantities in the above equation are spatially
varying in the z direction to account for the fact that the well and barrier
regions in the QCL are composed of different materials. The non-parabolic
TISE is now given by,

− ~
2

2

∂

∂z

(

1

m∗(z)(1 + α(z)[Ez − Vc(z)])

∂ψ

∂z

)

+ Vc(z)ψ(z) = Ezψ(z). (2.12)

This is a non-linear eigenvalue problem and can be converted into a linear
eigenvalue problem and solved using the finite difference method [16] to yield
the subband quantization energies Ez and the envelope functions ψ(z). A
detailed derivation and description of this solver will be given in Appendix
A. The total energy of an electron Eφ is given by,

Eφ = Ez +
~
2k2

2m∗
. (2.13)

Here m∗ can be taken to be the effective mass in the well.

A QCL is a periodic repetition of a single stage of length L. To reflect
the correct boundaries at the beginning and end of each stage, we solve
the non-parabolic TISE over three periods with the boundary conditions
ψ(0) = 0 and ψ(3L) = 0 and we take the central period states as the correct
ones. Owing to the translational invariance of the QCL, we can calculate the
wavefunctions in any other stage of the QCL by appropriate shifts in space
and energy of the central period states. In the next few sections, a detailed
procedure for calculating the conduction band offsets will be given and then
a method for incorporating the self-consistent potential will be detailed.
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2.4 Conduction band offsets

An excellent and thorough review of the material parameters for commonly
used III-V alloys and materials was published in [24]. The QCLs considered
in this thesis were electron based conduction band QCLs and therefore it is
necessary to have a quantitative framework for calculating the conduction
band offsets of these material systems and the method adopted in [33] is
followed.

In order to calculate the conduction band offsets, one needs to know the
value of the valence band offset parameter (VBO), since the valence band
offsets have been studied much more extensively. The convention that is
usually adopted is to find the parameter VBO, which is the valence band
offset relative to a pre-determined reference material whose VBO is specified.
In [24], for example, VBO(InSb)=0 has been adopted. Hence, the VBO for
any two materials is found as the difference in VBO of the two materials
under consideration. In order to calculate the conduction band offset, one
simply needs to add the band gap of each material to its respective VBO.
The conduction band edge or minimum (at the Γ point to be precise) is called
Ec

Γ and can be computed using the following equation,

Ec
Γ = V BO + Eg

Γ + δEV ars + δEcǫ + δEvǫ, (2.14)

where Eg
Γ is the band gap at the Γ point at T=0 K, δEV ars is the Varshney

correction to the band gap energy at non-zero temperatures, and δEcǫ and
δEvǫ are the strain induced corrections to the conduction and valence band
edges due to deformation. The conduction band offset for a heterostructure
formed by two arbitrary materials A and B is therefore simply the difference
in the energies of their conduction band edges and is given by,

∆Ec
Γ = Ec

Γ(A)− Ec
Γ(B). (2.15)

A ternary alloy is a material whose chemical composition can be written
in the form AxB1−xC and is composed of its two constituent binaries (AC)x
and (BC)1−x. x is the mole fraction and can range between 0 and 1. Thus
any parameter P of the ternary alloy can interpolated as the mole fraction
weighted average of the parameters of its constituent binaries. The material
parameters for the binary alloys InAs, GaAs and AlAs which are commonly
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Table 2.1: Material parameters for InAs, GaAs and AlAs

Parameter InAs GaAs AlAs

al (A
o) 6.0583 5.6533 5.6611

c11 (GPa) 832.9 1221 1250
c12 (GPa) 452.6 566 534
Eg

Γ (eV) 0.417 1.519 3.099
∆SO (eV) 0.39 0.341 0.28
V BO (eV) -0.59 -0.80 -1.33
ac

Γ (eV) -5.08 -7.17 -5.64
av (eV) -1 1.16 -2.47
b (eV) -1.8 -2.0 -2.3
EP (eV) 21.5 28.8 21.1

F -2.90 -1.94 -0.48
me

Γ/m0 0.026 0.067 0.15
αΓ (meV/K) 0.276 0.5405 0.885
βΓ (K) 93 204 530
ǫs 14.3 12.9 10.06
ǫ∞ 11.6 10.86 8.16

~ωLO 29.93 35.3 49.8

used binaries for the heterostructure alloys of mid infrared QCLs are given
in Table 2.1 and are taken from [24].

P (AxB1−xC) = xP (AC) + (1− x)P (BC) + CBx(1− x) (2.16)

Here CB is called the bowing factor and is a characteristic of the ternary
alloy. There are uncertainties in the determination of CB often and in these
cases, a zero bowing factor CB = 0 is assumed. The bowing parameters are
given in Table 2.2

2.4.1 Varshney corrections

The temperature dependence of the band gap is given in terms of the two
Varshney parameters α and β and is given by,

Eg(T ) = Eg(0)−
αT 2

β + T
. (2.17)
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Table 2.2: Bowing parameters for InGaAs and InAlAs

Parameter InGaAs InAlAs

Eg
Γ (eV) 0.477 0.70

∆SO (eV) 0.15 0.15
V BO (eV) -0.38 -0.64
EP (eV) -1.48 -4.81

F 1.77 -4.44
me

Γ/m0 0.0091 0.049
ac

Γ (eV) 2.61 1.4

Thus, the Varshney correction factor is,

δEV ars = − αT 2

β + T
. (2.18)

2.4.2 Strain induced corrections

Semiconductor epitaxy is used to grow the heterostructures used in QCLs.
The grown materials often have lattice constants different from that of the
substrate material. As can be imagined, strain is undesirable and the ac-
cumulation of strain leads to epitaxial defects. Since the lattice constant
and band gap are functions of the mole fraction x, the only way to alter the
material band gap is to change x and thereby induce strain. Thus, all the
grown materials need not be lattice matched to the substrate. The ability
to vary x, vary material compositions and intentionally induce strain allows
one to tailor the conduction band offset depending on the desired design
wavelength.

However, it is possible to achieve “strain balancing” by inducing com-
pressive strain in one layer while tensile strain in the other layer of the
heterostructure. This is referred to as a “strain balanced heterostructure”.
Most III-V alloys crystallize under the zinc blende structure which has cubic
symmetry. These alloys acquire biaxial strain when grown epitaxially on a
substrate with a different lattice constant. This means that only the diagonal
components of the three dimensional strain tensor are non-zero. If z is the
the direction of epitaxial growth, a0 the lattice constant of the substrate and
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al the lattice constant of the epitaxial layer, then,

ǫxx = ǫyy =
a0 − al
al

; ǫzz = −2c12
c11

ǫxx. (2.19)

c11 and c12 are the elastic stiffness constants of the layer material. Strain
effects on the bandgaps of semiconductors have been modeled using the
Pikus-Bir interaction [34] and Van de Walle “model solid” theory [35]. The
relative change in volume V due to strain is related to the change in the band
gap by a hydrostatic deformation potential a.

δV

V
= ǫxx + ǫyy + ǫzz (2.20)

δEǫ = a
δV

V
(2.21)

The components of this correction or shift acquired by the conduction
band and valence bands are,

δEǫc = ac
δV

V
; δEǫv = av

δV

V
(2.22)

where ac and av are the conduction and valence band hydrostatic defor-
mation potentials and are related to a by a = ac + av. Compressive strain
adds hydrostatic pressure and increases the band gap. This can be visualized
as the moving up of the conduction band edge by ac/a and the moving down
proportionally of the valence band edge by av/a.

The light hole (LH), heavy hole (HH) and split-off (SO) valence bands
have a p-state shape and therefore lack spherical symmetry unlike the con-
duction band (C) which has a s-state shape. Due to this asymmetry in the
valence bands, the biaxial strain in the valence bands has a shear component
that splits the degeneracy of the HH and LH bands. Using the Bir-Pikus
Hamiltonian [34], the energy band gaps with shear strain including the spin-
orbit interaction are,

EΓ
C−HH = Eg

Γ + δEǫc + δEǫv −Qǫ (2.23)

EΓ
C−LH = Eg

Γ + δEǫc + δEǫv +
1

2
(Qǫ −∆SO +

√

∆SO
2 + 2∆SOQǫ + 9Qǫ

2),

(2.24)
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EΓ
C−HH = Eg

Γ + δEǫc + δEǫv −
1

2
(Qǫ −∆SO −

√

∆SO
2 + 2∆SOQǫ + 9Qǫ

2),

(2.25)
where ∆SO is the split-off energy and the shear deformation potential b

is included in Qǫ which is given by,

Qǫ =
b

2
(ǫxx + ǫyy − 2ǫzz). (2.26)

2.5 Poisson’s equation

In order to update the electric field to account for space charge effects and
add a self-consistent potential to the TISE, Poisson’s equation is solved using
a standard centralized finite difference scheme. Poisson’s equation takes the
form,

∂

∂z
(ǫ(z)

∂φH

∂z
) = −e(Nd(z)− ne(z)), (2.27)

where φH is the self-consistent Hartree potential across the device. ǫ, Nd

and ne are the effective permittivity, doping profile and electron densities in
the device respectively and all are spatially varying quantities in the growth
direction z.

The electron density in a QCL can be calculated in the following manner,

ne(z)=

Nsub
∑

j=1

nj |ψj(z)|2, (2.28)

where Nsub is the number of subbands in the QCL, nj is the sheet den-
sity of the jth subband described by the wavefunction ψj(z). The numerical
method used to solve Poisson’s equation will be now be detailed.

Poisson’s equation can be written more succinctly by defining an effective
charge density ρ(z) = −e((Nd(z) − ne(z)) and for convenience dropping the
subscript H in the Hartree potential φH(z) as,

∂

∂z
(ǫ(z)

∂φ

∂z
) = ρ(z), (2.29)
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Let L be the length of the domain in which Poisson’s equation is to be solved.
A grid is created in the z direction and let the grid be discretized with a step
δz into Nz points with i = 1, 2, 3...Nz being the index labelling the grid
points δz, 2δz, 3δz...Nzδz (L=Nzδz). Boundary conditions of φ(0) = 0 and
φ(L) = φL are assumed with φL being the desired potential at the end point
of the domain. The finite difference approximation of the second order partial
derivative (see Appendix D) is,

φi−1(ǫi + ǫi−1)/2− φi(ǫi + (ǫi−1 + ǫi+1)/2) + φi+1(ǫi + ǫi+1)/2 = δz2ρi (2.30)

This is a purely tri-diagonal matrix equation and can be rapidly solved
using the Thomas algorithm which is also referred to as the TDMA [68]. For
devices with a uniform dielectric constant, i.e., ǫi±1 = ǫi, Eq. (2.30) simplifies
to,

φi−1 − 2φi + φi+1 =
δz2ρi
ǫi

. (2.31)

2.6 Scattering rates in QCLs

The various rates due to the scattering mechanisms which transport the
electrons between the subbands of a QCL will now be described and are cal-
culated using Fermi’s golden rule which is described in Appendix B. The
numerical methods for computing the integrals describing the following scat-
tering rates can be found in Appendix D.

2.6.1 Longitudinal optical phonon scattering

The scattering rate due to the emission(ems) or absorption(abs) of a longitu-
dinal phonon by an electron initially in subband i with an in-plane momen-
tum ki and envelope function ψi(z) making a transition to subband f and
envelope function ψf (z) is given by [19],

1

τif

LO

(ki) =
m∗e2~ωLO

8π~3ǫ0
(ǫ∞

−1−ǫ0−1)

[

NLO

∫ 2π

0

Mif (qabs)dθ + (NLO + 1)

∫ 2π

0

Mif (qem)dθ

]

(2.32)
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where ωLO is the angular frequency of a longitudinal optical phonon and θ
is the angle between ki and kf . NLO is the equilibrium phonon occupation
number and is given by Bose-Einstein statistics

NLO =
1

exp( ~ωLO

kBTL
)− 1

, (2.33)

Mif (q) =

∫

dz

∫

dz′ρif (z)ρ
∗
if (z

′)I(q, qs, z, z
′), (2.34)

ρif(z) = ψ∗
i(z)ψf (z), (2.35)

I(q, qs, z, z
′) =

e−
√

q2+qs2|z−z′|

√

q2 + qs2

[

1− |z − z′|qs2

2
√

q2 + qs2
− qs

2

2(q2 + qs2)

]

, (2.36)

qem,abs(θ) =

√

2ki
2 − 2

m∗∆Eabs,ems

~2
− 2kicos(θ)

√

ki
2 − 2

m∗∆Eabs,ems

~2
,

(2.37)

∆Eabs,ems = Ef − Ei ∓ ~ωLO. (2.38)

2.6.2 Acoustic deformation phonon scattering

The ω − k dispersion relationship for the acoustic phonon branch can be
approximately considered to be linear. Using deformation potential theory,
the scattering rates due to acoustic phonons is given by [18],

1

τif

ADP

(ki) =
m∗DackBTL

~3ρvs2

∫

dzψf
2(z)ψi

2(z). (2.39)

2.6.3 Interface roughness scattering

In reality, heterostructures are not perfectly flat and random fluctuations in
the interface location cause small shifts in the conduction band offset and
this acts as a scattering potential for the electrons as they traverse the QCL.
It is now widely accepted that interface roughness scattering is crucial in
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understanding the operation of a QCL. The scattering rate due to roughness
assuming perfectly abrupt interfaces is given by [18],

1

τif

IR

(ki) =
∑

I

m∗∆2Λ2|Fif,I |2
~3

∫ π

0

e−Λ2qα2/4dθ, (2.40)

qα
2 = 2(ki

2 +
m∗Eif

~2
− ki

√

ki
2 + 2

m∗Eif

~2
cos(θ)), (2.41)

Fif,I = V (zI)ψ
∗
i(zI)ψf(zI). (2.42)

∆,Λ are the mean roughness height and correlation length for the inter-
faces respectively and V (zI) is the potential jump at the I th interface.

2.6.4 Alloy disorder scattering

The constituent materials of the well and barrier regions of the QCL are al-
loys. The atoms comprising the alloys are distributed randomly in the alloy
and the crystal potential due to this randomness varies stochastically. To
overcome this difficulty, the model solid approximation was proposed where
the random atoms were replaced by a uniform array of atoms. Although
the virtual crystal model matches the average potential, microscopic fluctu-
ations on the atomic scale act as perturbations to the electrons and manifest
themselves as a scattering rate given by [18],

1

τif

AD

(ki) =
m∗a3∆Vad

2

8~3
x(1− x)

∫

dz|ψi(z)|2|ψf (z)|2. (2.43)

a is the lattice constant, x and 1 − x are the mole fractions of the com-
pounds making up the alloy and ∆Vad is the alloy disorder potential.

2.6.5 Optical cavity dynamics and Photon induced scat-
tering

The scattering due to the emission and absorption of photons is an important
scattering mechanism when the QCL is lasing. This scattering rate between
any two subbands in calculated in the following manner [26].
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The Number of photons in a laser mode is,

n0

c

dNm

dt
= (Γgm − a(ωm))Nm, (2.44)

with the gain in each mode m being,

gm =
πωmZ0

Vn0~

∑

p

∑

f

ωip,f

|ωip,f |
|dipf |2Lipf (ωm). (2.45)

The optical Mode intensity is given by,

Im(ωm) =
ΓNm~ωmc

Vgn0

. (2.46)

The optical mode dynamics are,

dIm
dt

=
c

n0
(Γgm − a(ωm))Im, (2.47)

and at steady state, dIm
dt

= 0 leading to the gain=loss condition, i.e.,
g = a

Γ
. The time evolution for the mode intensity Im can be found by

integrating Eq. (2.47). Assuming the initial mode intensity at t = 0 at the
beginning of the simulation to be I0 (which can be 0 or any arbitrarily small
intensity such as 1000 W/cm2), the intensity at any non-zero time t is,

Im(t) = I0 exp(
c

n0
(Γgm − a(ωm))t). (2.48)

Finally experimentally measurable parameters such as power and the wall
plug efficiency can be be calculated using,

Pm = 0.5ImA(1− R)/Γ;WPE =
Pm

V I
. (2.49)

The semiclassical rate induced due to stimulated photon processes is,

(

1

τif

)hν

(ki) =
πZ0

n0~
2
|dif |2

∑

m

ImLif(ωm). (2.50)

22



-

Figure 2.3: The state of an electron |α〉 in a subband of a QCL.

2.7 Boltzmann-like transport equation for QCLs

An electron in the Γ valley of the QCL is characterized by the state |α〉
= |k, Ez, S〉 where k =

√

kx
2 + ky

2 is the 2D wave vector in the parallel

plane, Ez is the energy of the subband in the quantized (z) direction and
S is the stage/period of the QCL. The state of an electron in a QCL is
illustrated in Fig. 2.3. The time evolution of the electron distribution function
fα (neglecting coherences and assuming that the cell periodic Bloch functions
are the same in the well and barrier regions) which gives us the probability
that an electron is in a state |k, Ez, S〉 at time t is given by [21],

dfα
dt

=
∑

k′,Ez
′,S′

{

PEz
′S′,EzS(k

′,k)fα′(t)(1− fα(t))− PEzS,Ez
′S′(k,k′)fα(t)(1− fα′(t))

}

.

(2.51)
Here P is the total scattering rate for an electron to make a transition

from the state |α〉 to |α′〉 and is qualitatively given by Matthiessen’s rule,

P =
1

τ

LO

+
1

τ

ADP

+
1

τ

IR

+
1

τ

AD

. (2.52)
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(2.51) is basically the celebrated Boltzmann transport equation (BTE)
and is one of the cornerstones of non-equilibrium statistical mechanics. Semi-
conductor device physicsits have used the BTE for nearly half a century now
to study charge transport. There is however an important difference between
(2.51) and the standard BTE. The absence of an electric field in the plane of
QCL leads to an absence of the drift and diffusion terms of the BTE. Also,
the electric field in the z direction doesn’t explicitly accelerate the electrons
but by modifying the envelope wavefunctions ψ(z) affects the scattering rates
and hence the electron transport.

2.7.1 Solving the BTE

The BTE is a complex integro-differential equation and analytical solutions
are rarely possible. The relaxation time approximation is one of the few ex-
amples where an analytical solution to the BTE has been found but it is valid
only for situations where the device is not far from equilibrium. The BTE
has resisted analytical attacks for years now and the best bet is to search for
a numerical solution. The two most popular numerical methods for solving
the BTE were presented in the 1966 Kyoto semiconductor conference and are
the Monte Carlo method (Kurosawa) and the iterative method(Budd). The
Monte Carlo method is by far the more popular of the two because of it’s
physical intuitiveness and ease of use. The Monte Carlo method for solving
the BTE will now be described.

2.7.2 Physical interpretation and validity of the BTE

The BTE has a very simple yet powerful interpretation. It tell us that the net
incoming flux of electrons into a state |α〉 should equal to the net outgoing
flux from |α〉 to all other states |α′〉 once steady state has been reached
dfα
dt

= 0. This is schematically illustrated in Fig. 2.4.

The physical mechanisms that govern the fluxes are essentially the scat-
tering rates we have described in the section. Mathiessen’s rule which was
briefly mentioned will now be explained in greater detail for QCLs keeping
in mind the fact that a QCL is a multisubband system and therefore an elec-
tron in a particular state would have many possible scattering paths. Before
we continue, it is worth mentioning the the approximations inherent in the
BTE. The salient points to remember are,
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Figure 2.4: The total incoming flux represented by the green arrows must
equal the total outgoing flux represented by the red arrows at steady state.

• 1. Scattering processes are instantaneous in space and time.

• 2. Scattering processes are uncorrelated, i.e. ,they are independent of
previous scattering events. This is called the Markov approximation.

• 3. The distribution function is a single electron distribution function
and multi electron correlations are neglected. This assumption is some-
what relaxed when including electron-electron scattering.

Based on these assumptions we will now outline the theory behind the
ensemble Monte Carlo method for solving the BTE.

2.8 Implementation of the Ensemble Monte

Carlo simulator

The semiclassical ensemble Monte Carlo method (EMC) is a powerful stochas-
tic technique which has been employed by device physicists and engineers for
nearly half a century to simulate nonequilibrium transport in semiconduc-
tor devices [20, 21, 22, 23]. It has found remarkable success in explaining
physical phenomena hardly accessible to experiment. Physically important
macroscopic parameters such as electron mobility, diffusion coefficients, drift
velocity and thermal conductivity to name a few and even microscopic quan-
tities such as the electron distribution function, electron temperature and
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charge distributions can be readily obtained as outputs of the EMC method
[22]. The flowchart of the EMC algorithm is first illustrated in Fig. 2.5 and
each individual step in the EMC will be explained in detail.

In the EMC, a random walk is generated to simulate the stochastic motion
of electrons subject to the scattering mechanisms outlined in the previous
chapter. This in essence is equivalent to the random walk sampling technique
used in the evaluation of multi-dimensional integrals. The basic idea is to
simulate the free flight of an electron followed by an instantaneous scattering
process. The free flight is the time duration after which the scattering process
takes place and is related to the lifetime of the electron. The EMC algorithm
consists of generating random free flight times for a simulated ensemble of
electrons Nsim usually between 10, 000 to 15, 000 which represent a sample
of the doping, choosing the type of scattering terminating the free flight,
updating the energy and momentum of the electron based on the scattering
mechanism and then repeating the procedure for all the simulated electrons
until a steady state has been reached. Sampling the electron motion at
various instances of time allows for the statistical estimation of the physical
parameters of the device.[23].

The EMC simulator consists of the following steps.

• The conduction band offset for a given heterostructure is calculated
using the framework detailed in section 2.4.

• The electronic states are solved using Eq. (2.12) resulting the station-
ary wavefunctions and their respective discrete energy levels along the
growth or z direction.

• The scattering rates between the various states are calculated using the
equations from section 2.6.

• An ensemble of electrons or particles is initialized according to a Maxwellian
distribution at the operating temperature of the device.

• The particles are dynamically tracked in time steps and perform a
series of free flights and undergo scattering events at the end of each
free flight.
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Figure 2.5: The flowchart of the EMC method.
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• The energy and momentum of each particle is updated according to
the scattering event which occurs.

• At the end of each time step, the mode intensities are updated according
to the framework presented in section 2.6.5.

• In addition, Poisson’s equation can be solved using the method detailed
in section 2.5.

• The simulation is completed when the ensemble averaged observables
reach their respective steady states.

Detailed descriptions of the generation of free flights and scattering event
updates using random numbers will now be given.

2.8.1 Free flight

The lifetime of an electron in a state addressed by it’s subband i and in-
plane momentum ki denoted by Γi(ki), is related to the total scattering rate
which transports the electron from this state to all other possible final states
f . If the reciprocal scattering rate or lifetime for an electron with subband
i and in-plane momentum ki to make a transition to subband f due to a
scattering mechanism scatt is denoted by,

Γscatt
if (ki) =

1

τif

scatt

(ki) (2.53)

then, the lifetime Γi(ki) due to all the scattering mechanisms included in the
simulation is,

Γi(ki) =
∑

f

(ΓLO
if (ki) + ΓADP

if(ki) + ΓIR
i.f(ki) + ΓAD

if (ki)). (2.54)

The probability P (t) of an electron scattering in a time interval dt after
a free flight time t may be written as the joint probability,

P (t)dt = Γi(ki(t)) exp

[

−
∫ t

0

Γi(ki(t
′))dt′

]

dt. (2.55)

The desired random free flight times tf may be generated according to the
probability density P (t) using a uniform pseudo-random number r ∈ [0, 1].
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r =

∫ tf

0

P (t)dt (2.56)

Thus,

r = 1− exp

[

−
∫ tf

0

Γi(ki(t
′))dt′

]

. (2.57)

As 1−r is statistically the same as r and is also a uniform random number
(1− r) ∈ [0, 1], we finally arrive at the fundamental equation for generating
free flight times,

− ln(r) =

∫ tf

0

Γi(ki(t
′))dt′. (2.58)

In a QCL, the electric field is applied only in the z direction and not
in the plane. Therefore, the in-plane momentum in the above equation ki

is constant during the free flight and the time dependence can be removed
yielding the following analytical equation for generating free flight times,

tf =
− ln(r)

Γi(ki)
. (2.59)

Such a simplification cannot be made if the in-plane momentum is a time
varying quantity which would be the case for semiconductor devices such as
a Gunn diode or a MOSFET. An elegant technique called the self-scattering
method can be employed to simplify the free flight integral in such situations
[22].

2.8.2 Instantaneous scattering update

All that remains now is to identify the scattering mechanism responsible for
removing the electron from it’s initial state and the based upon the type of
scattering mechanism update the electron’s subband and in-plane momentum
to a final state addressed by (Ef ,kf ). This final state would be the initial
state of the electron for the next iteration. To do this, let us return to,

Γi(ki) =
∑

f

(ΓLO
if(ki) + ΓADP

if (ki) + ΓIR
if(ki) + ΓAD

if (ki)).
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Figure 2.6: Selection of scattering mechanism and final subband.

The same idea which was used to generate free flight times based on the
lifetime of the electron can be also be used here with a minor difference
that the above equation is a discrete sum and not a continuous integral. By
generating two more uniform random numbers rf ∈ [0, 1] and rscatt ∈ [0, 1]
one can probabilistically select the final subband and scattering mechanism.
Once the final state f and scattering mechanism have been selected, one can
update the electron’s subband and in-plane momentum by conserving the
total energy and in-plane momentum. This process is schematically illus-
trated in Fig. 2.6 for an example when interface roughness scattering (IR) is
selected.

If Ef denotes the energy of the final subband selected and ∆Escatt the
energy exchange during a particular scattering process then,

Ei +
~
2ki

2

2m∗
+∆Escatt = Ef +

~
2kf

2

2m∗
. (2.60)

The energy exchange for an elastic and inelastic scattering process is
illustrated in Fig. 2.7.∆Escatt for the scattering mechanisms considered in
this thesis is tabulated in Table 2.3.
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Figure 2.7: Energy exchange for elastic and inelastic processes.

Table 2.3: Scattering energy exchange

Scattering ∆Escatt (eV)

LO phonon emission -~ωLO

LO phonon absorption ~ωLO

Acoustic deformation phonon 0
Interface roughness 0

Alloy disorder 0

The sequence of free flights and instantaneous scatterings is illustrated in
Fig. 2.8. A time step dt is chosen such that the correct electron dynamics are
captured. In each time step all the simulated electrons are allowed to scatter
till they cross the time step. Once all the electrons have been followed, one
can statistically average physically relevant quantities of the ensemble such
as the single particle distribution function and current . It is important to
understand that while estimating these quantities, each simulated electron
actually represents a sample of the doping and is not a single electron in
reality. The simulated electrons are also referred to as particles to avoid this
ambiguity.
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Figure 2.8: Ensemble Monte Carlo method illustration. The blue stars repre-
sent instantaneous scattering events and the time between successive scatter-
ings is the free flight time. The vertical red lines represent the time steps at
which ensemble averages are calculated to check for convergence to a steady
state.
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Figure 2.9: Periodic boundary conditions in QCLs for charge conservation.

2.8.3 Periodic boundary conditions

As mentioned before , a QCL contains of a number of stages or periods and
the electrons are provided by doping a few layers in each stage. Considering
the fact that all the stages are identical it is a reasonable approximation to
assume that charge transport should also be the same in all stages. Therefore,
one can simulate a generic central stage S bounded by two neighbouring
stages S− and S+ in order to study transport. Every simulated electron
which exits S is properly injected into the corresponding state to ensure
charge conservation. These periodic boundary conditions are schematically
illustrated in Fig.. Every time a simulated electron in a state |k, Ez, S〉makes
a transition (represented by red arrows) to a state k′Ez

′, S±〉, it is properly
reinjected into S by the transitions represented by the green arrows. It
is sufficient to simulate three stages as the envelope wavefunctions ψ(z) in
a stage do not extend beyond their respective neighbouring stages. Every
electron that makes an interstage transition carries with it a charge ±e (+
if S → S+ and - if S → S−) and this in the model is the method used to
calculate current. This is illustrated in Fig. 2.9.
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2.9 Synopsis of the EMC method

The EMC method can be summarized with the aid of Fig. 2.10. To sum-
marize, the EMC follows an ensemble of electrons in a device. Each electron
experiences a sequences of free flight interrupted by scattering events. At
each scattering event, the energy and momentum of the electron are up-
dated. At the end of each time step, Poisson’s equation can be solved to
update the self-consistent potential. This process is continued until a steady
state is reached when the observable dynamical quantities converge to their
respective steady state values.

2.10 Summary

In this chapter, the EMC simulator used in this thesis for quantitatively
describing electron and photon transport for QCLs has been described in
detail. The inputs to the EMC simulator are the electronic states and the
scattering rates. The equations describing them have been derived and math-
ematically formulated. Although the EMC is a semiclassical method, it is
a computationally efficient and accurate one which is a good compromise of
computational speed and physical accuracy . The questions about coher-
ent transport in QCLs is a complex one and the inclusion of scattering in
such methods is a highly non-trivial task. The issues dealing with coherent
transport have been discussed in [12, 13, 14, 25].
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Figure 2.10: Schematic synopsis of Ensemble Monte Carlo method.
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Chapter 3

Experimental validation of the
EMC method

3.1 Simulation of a voltage pinned QCL

Another good test of the validity of the EMC method is the simulation of
voltage clamping in super diagonal QCLs, i.e., QCLs where the upper and
lower lasing state are separated very diagonally in space. This has the effect
of pinning the electric field in the active region to its threshold value thereby
preventing Stark tuning of the lasing transition [41]. Stark tuning is the
change in the emission wavelength due to a change in the applied electric
field.

This effect can only be captured accurately if the optical cavity dynamics
are included correctly and in order to verify this an experimentally fabricated
and tested, super diagonal QCL was simulated Fig. 3.1. The upper (u) and
lower state (l) have been marked in red to identify the lasing transition.

This device was simulated using the EMC method and as can be seen
from Fig. 3.2, the EMC simulator is able to correctly capture the voltage
pinning or clamping effect and also gives a quantitative agreement with the
experimentally measured I-V curve (top most I-V curve in experimental I-V
characteristic). As can be seen from Fig. 3.2, the voltage is pinned to 9V
and this effect is captured by the EMC if the optical cavity dynamics are
included.
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Figure 3.1: A super diagonal QCL used to study voltage pinning.
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EMC <->Optical Cavity dynamics simulation

Experimental I-V

Figure 3.2: Experimentally measured (top) vs EMC simulated (bottom) I-V
characteristic of the QCL in Fig. 3.1.
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Figure 3.3: Simulated wavefunctions for QCL structure taken from [7].

3.2 Simulation of an electrically tunable QCL

In order to validate the EMC model, a fabricated and experimentally tested
QCL from [7] was simulated. The wavefunctions for this QCL were solved
using the non-parabolic TISE and they are plotted at a bias of 10 V in
Fig. 3.3.

The I-V curve generated using the EMC simulator is now compared to
the experimentally measured one from [7] and as can be seen in Fig. 3.4,
there is a quantitative agreement between the model and experiment.

As can be seen from Fig. 3.4, the inclusion of the optical cavity dynamics
is important to model the QCL accurately. There is an under-estimation of
the current density if the photon induced scattering is not included. The
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Figure 3.5: EMC simulated subband populations for QCL in [7].

photon induced scattering between the upper and lower states of the QCL
increases the current by decreasing the subband population of the upper state
and increasing the population of the lower state. The subband populations
of the various states of the QCL are detailed in Fig. 3.5.

The time evolution of the optical mode intensity Im is plotted in Fig. 3.6
and as can be seen from Fig. 3.6, Im reaches a steady state value once the
gain equals loss condition has been met.

3.3 Summary

The EMC simulation model was validated by simulating two fabricated and
experimentally tested QCLs and the simulation results were in quantitative

41



0 50 100 150 200 250 300 350
time in ps

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

M
od

e 
in

te
ns

ity
 Im

 in
 W
/
cm

2

1e7
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agreement with experimentally measured ones. The inclusion of the optical
cavity dynamics was shown to be important for an accurate description of
the QCL. Further validation of the EMC model will be given in the next few
chapters.

The EMC simulator will be employed in subsequent chapters to simu-
late proposed novel devices and the results of the EMC simulator which are
microscopic quantities will be discussed in detail. Such microscopic quan-
tities are extremely difficult to probe and measure experimentally and they
offer great insights into a device’s operation and consequently can be used
to optimize and improve device performances.
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Chapter 4

Injectorless Mid Infrared
Quantum Cascade Laser

4.1 Motivation

Since their first demonstration [27], mid infrared (MIR) quantum cascade
lasers (QCLs) have been developed to operate at high temperatures and pro-
duce high output powers for a wide range of wavelengths from as short as 4
µm to as long as 12 µm [28]. QCLs are attractive sources for applications
such as gas and chemical detection, military applications and free-space op-
tical communications to name a few [28, 29]. In particular, QCLs have been
trageting two specific wavelength windows of 3-5 µm and 8-12 µm for com-
munication purposes and also because the fundamental vibration modes of
many trace gases and molecules fall in these wavelength ranges [28, 29].

The operation of most existing MIR QCLs relies on the injector regions
which are alternated with the active regions and perform several important
functions such as transport and injection of electrons from one active region
to the next, convenient space for doping, isolation of the upper laser state
from the continuum thereby reducing parasitic leakage currents and “cooling”
of the electron gas. However, the presence of the injector region has some
significant drawbacks namely the lengthening of the QCL period which can
result in an additional voltage drop across the injector, restriction on the
number of QCL periods due to the long period length and longer transport
times due to scattering in the injector region which limits the dynamic range
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of operating current. The additional voltage drop in the injector reduces the
wall-plug efficiency (WPE) as a majority of the applied voltage is not used
for producing photons. Recently, injectorless quantum cascade lasers have
been proposed to overcome the aforementioned drawbacks. A comprehensive
review and analysis of the injector regions in a QCL can be found in [29].

The salient features of injectorless or short injector QCLs have been the
use of highly strained material systems to increase the band offset in order to
ensure isolation of the upper state from the continuum, short period lengths
which allow for a larger number of periods compared to injector based QCLs
, shorter transport times, low voltage defect, resonant phonon depopulation
of the lower state and resonant tunneling (RT) as the injection mechanism.
Their low temperature performance has exceeded the performance of injec-
torbased MIR QCLs and WPEs exceeding 50 %, several watts of output
power and low threshold current densities have been demonstrated at the
shorter end (4-6 µm) of the MIR spectrum [31, 30]. However, due to a com-
bination of thermally activated phonon scattering, parasitic X valley leakage
and thermal backfilling, their high temperature performance has shown dras-
tic degradation and they also suffer from low characteristic temperatures (T0)
in the range of 120 to 125 K. Such low temperatures would indicate the need
for drastic cooling of the QCLs. Due to the shorter period length, higher op-
erating electric fields and voltages are required which is also undesirable due
to carrier heating. Some of the issues such as the parasitic X valley leakage
and thermal backfilling have been addressed by the use of multiple alloy het-
erostructures with variable barrier heights to prevent leakage and double and
triple resonant LO phonon depopulation schemes to decrease thermal back-
filling [32] . These designs would involve complications due to the presence
of the multiple alloys. Another important issue is the lack of an energetic
barrier that a long injector QCL would offer. This barrier prevents parasitic
current from the active region of one period to the injector of the previous
period. The absence of such a barrier has greatly impaired the high tempera-
ture performances of short injector QCLs [33]. Also, most of the injectorless
QCLs cited in this section have focused on emitting at shorter wavelengths
due to the fact that the optical losses increase approximately as the square
of the wavelength [36]. Hence, due to the increased optical losses, it is always
more challenging to design QCLs at the longer end of the MIR spectrum.

In this chapter, a conceptually simple long wavelength injectorless QCL
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emitting in the range of 11-12 µm is proposed utilizing scattering assisted
(SA) injection as opposed to the conventional RT injection scheme and whose
operating electric field is significantly lower in comparison to the best per-
forming injectorless QCLs. The use of multiple alloys has been avoided and it
is has also been ensured that parasitic leakages into the neighboring periods’
injector regions have been minimized by appropriate wavefunction engineer-
ing. The benefits of the SA injection scheme have been realized both in very
long injector MIR and the terahertz QCLs [37, 38]. Detailed comparisons
between SA and RT injection QCLs with thorough analysis have been pre-
sented in [37, 38]. In the following sections, the design and concept of the
proposed structure will be described. The simulation model will be briefly
described and validated against published experimental data. The model
will be used to investigate the performance of the proposed structure and
the simulation results will be used to highlight the advantages of the design
when compared to existing injectorless QCLs.

4.2 Proposed Design

A In0.6Ga0.4As/In0.44Al0.56As SA injection QCL grown on an InP substrate
is proposed. The same material system as the one used in [40] is employed.
This material system provides a large conduction band offset of 663 meV thus
preventing carrier leakage into the continuum and also a lighter effective mass
of m∗ = 0.040216m0 (when compared to the matched InP/InGaAs/InAlAs
system) in the well layers which facilitates electron transport. The layer
thicknesses of one period of the QCL in Ao, starting from the injection bar-
rier are 40/40/23/32/12/68/13/54/28/48 with the bold and regular num-
bers representing In0.44Al0.56As and In0.6Ga0.4As layers, respectively. The
underlined layers have been doped with a volume doping density of 8.37 ×
1016 cm−3 corresponding to an approximate sheet charge density of ns=6.36
× 1010 cm−2 identical to the doping levels in [40]. The electronic states of the
QCL are plotted in Fig. 4.1. The energy levels and wavefunctions described
by the nonparabolic Schrödinger equation have been computed by employ-
ing a finite difference solver [42]. A rather thick injection barrier has been
used to isolate the upper state from the injector. The length of this device
is 362 Ao and even though this is slightly longer than previous injectorless
QCLs, its performance in subsequent sections of this chapter will be shown to
more than compensate for the slight increase in device length. However, the
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Figure 4.1: Conduction band profile and probability densities of the proposed
QCL for an applied electric field of 50 kV/cm. The central period’s states are
plotted with solid lines and the neighboring periods’ states are the dashed
blue lines. The upper and lower states are separated by 113.8 meV which
corresponds to a lasing wavelength of 10.9 µm.

proposed device is still much shorter than most conventional injector based
QCLs. The QCL has also been designed to have a slight larger optical dipole
matrix element when compared to a previous design [40] in order to enhance
the optical gain.

Each period of the proposed QCL has five states. The upper (U), lower
(L), depopulation (D) and intermediate (I) states have been marked in the
figure along with the ground state (G) of the QCL. The lasing transition is
diagonal which ensures a long upper state lifetime. The state D acts as a
depopulation state for the lower lasing state and is approximately one LO
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phonon energy below it which ensures fast depopulation. The highly diago-
nal lasing transition coupled with the fast LO phonon assisted depopulation
greatly improves the temperature performance of a QCL and it’s advantages
have been demonstrated both in MIR and THz QCLs. At the peak gain elec-
tric field, state G of one period is resonantly aligned with state I of the next
period. G injects carriers into I of the next period which subsequently injects
carriers into U via LO phonon scattering. States U and I are separated by
one LO phonon energy which ensures that the U state holds a majority of
the carriers and the population of I is kept small. This is one of the main
advantages of the SA injection mechanism over the RT injection mechanism.
In RT injection QCLs, state U directly aligns with G and can typically hold
at most half the sheet charge density ns/2 thus limiting the optical gain. The
SA injection scheme circumvents this limitation and the U state can hold a
majority of the electrons thereby enhancing the gain [37, 38]. This would
also imply that the population of state G is also kept low which minimizes
thermally activated backfilling of state L which is one of the major reasons
for temperature related performance degradation of QCLs. Also, isolation
of U from state G of the previous period reduces parasitic scattering mech-
anisms which will be detailed in the following sections. This would not have
been possible in a RT QCL where G and U are aligned.

4.3 Method and Validation

A ensemble Monte Carlo (EMC) simulator has been developed to study elec-
tron transport in QCLs. This will be used in subsequent sections to analyze
the performance of one the best performing long wavelength short injector
design and also to compare it with the performance of the proposed QCL.
The optical cavity field has also been included and both the electronic and
optical features of a QCL can be modeled [43] . The spectral gain based on
lifetime broadening is used in this model and has been shown to agree reason-
ably with experiment [44]. The electron scattering mechanisms included in
the simulation include LO and acoustic phonon, interface roughness and al-
loy disorder scattering. The bulk phonon approximation is adopted [45] and
a LO phonon energy of approximately 31 meV has been calculated based
on the mole fraction weighted average of the phonon energies of InAs and
GaAs. The contribution of AlAs-like branch to the phonon energy has been
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neglected as it is not too important [45]. Interface roughness scattering is
usually characterized by a mean height ∆ and correlation length Λ. Experi-
mental studies suggest a product of ∆Λ ≈ 1 nm2 for the InGaAs/InAlAs ma-
terial system and and therefore ∆ = 0.06 nm [45] has been fixed. Due to the
high indium content in InGaAs, random alloy scattering has been included
with a scattering potential of 0.3 eV [45]. Space charge induced corrections to
the conduction band potential for MIR QCLs have been shown to be negligi-
ble [46] and therefore have not been considered along with electron-electron
and electron-impurity scattering. In [46], EMC simulations revealed that
electron-electron scatterings contributed less than 4 % to the device current.
EMC simulations of another short injector MIR QCL [47] based on a similar
material system have also revealed that Coulomb interactions, i.e., electron-
electron and electron-impurity scattering practically do not contribute to the
current and have also been shown to have only a moderate influence on the
optical gain of the device. Also, the sheet charge doping levels of the QCLs
simulated in this paper are of the order of 1010 cm−2 which is quite low even
for MIR QCLs and it has been shown that electron-electron scattering in
particular is more effective at higher densities [48]. In order to reduce the
computational load and due to the aforementioned reasons, it is a reasonable
approximation to neglect Coulomb interactions in the EMC simulation of the
MIR QCLs simulated in this paper.

In order to validate the method, the EMC simulator is used to calculate
the temperature dependent current densities of two experimentally realized
injectorless RT QCLs operating at 5 µm [39] and 9-11 µm [40] (depending
on the operating temperature). A total optical loss and confinement fac-
tor of atot= 4.18 cm −1 and Γ = 0.62 for the short wavelength device [39]
were assumed. Only a confinement factor of Γ= 0.36 was given for the long
wavelength device in [40] and the optical loss was not mentioned. Hence,
atot=14.4 cm −1 which is typical for longer wavelength MIR QCLs [36] has
been assumed.

The characteristic temperature T0 which is a measure of the increase in
the threshold current density as the operating temperature increases is a
key device metric and a higher T0 is always desirable. The current den-
sities usually increase exponentially with temperature. The characteristic
temperatures for the above mentioned devices are 114 K and 173 K respec-
tively which are substantially lower than the typical T0 of a conventional
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Figure 4.2: Comparison between experimental (blue solid lines) and EMC
generated(red circles) temperature dependent current density of two short
injector MIR QCLs. (a) is a 6 µm QCL experimentally demonstrated in [39]
and (b) is a 9-11 µm QCL which was demonstrated in [40].
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long injector QCL. In Fig. 4.2, the threshold current densities (plotted on
a logarithmic scale in order to generate linear curves) for various operating
temperatures calculated using the EMC simulator are compared with the ex-
perimentally determined current densities of the the short wavelength QCL
[39] in Fig. 4.2(a) and the long wavelength one [40] in Fig. 4.2(b). The EMC
simulations agree quantitatively with the experimental curves. The simula-
tions slightly underestimate the threshold current densities above 200 K as
can be seen in Fig. 4.2. The reason for this discrepancy is that a tempera-
ture independent optical loss has been assumed for all devices in this chapter
as is commonly done in the EMC [45]. This is however a rather simplistic
approximation and it has been shown that the temperature dependence of
the optical loss is highly non-trivial [49] and depends on many factors includ-
ing the transport in the active region of the QCL. Also, the Drude model
approach adopted in [36] is a rather simplistic approach and is inaccurate.
The temperature dependence in the Drude model is solely reflected in the
temperature dependence of the bulk mobility of the active region. This is a
rather gross simplification since the active region in a QCL is a superlattice
and not a bulk material. It is beyond the scope of this thesis to deal with
the temperature dependence of the optical losses as the temperature induced
change in the losses is still an active topic of research.

In the next section, the proposed QCL will be simulated and its results
will be compared with the results of the long wavelength injectorless QCL
[40] mentioned in this section. This device which will be referred to as the
reference device is one of the best performing injectorless QCL in the long
MIR. Both the proposed and reference device have identical doping which
would make for a fair comparison of their performances.

4.4 Simulation results

Since the proposed QCL operates in a similar wavelength range to the refer-
ence device [40], it is reasonable to assume that the proposed device will also
have the same loss and optical confinement factor as the reference design.
This results in an effective loss of aeff = atot/Γ= 40 cm−1. This assumption
is accurate as a first approximation and for a more accurate estimation of
the waveguide losses and optical confinement factor, a thorough modeling
of the waveguide region needs to be carried out which is beyond the scope
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of this thesis and a suggested method for doing this is given in [36]. The
operating electric field range of the proposed device is from 43 to 50 kV/cm
depending on the temperature. This changes the emission wavelength from
about 11 µm to 12 µm as the temperature increases from 77 K to 300 K.
The peak (unsaturated) [43] gain for the proposed and reference device has
been plotted in Fig. 4.3 for temperatures varying from 77 K to 300 K. The
temperature independent effective loss which is the same for both devices
is also plotted in the same figure. As can be observed, the proposed device
has nearly double the optical gain of the reference device at 77 K and has
higher gain than the reference device at all temperatures. This is a good
indication that the proposed design could potentially have higher operating
temperatures than the reference design. The reason for the increased gain
is due to the SA assisted injection scheme and can be explained by looking
at the transport times across the injection barrier for both the reference and
proposed design. In Fig. 4.4 and Fig. 4.5, the energy resolved electron den-
sities for the reference and proposed design are shown respectively. For the
reference design in Fig. 4.4, one can see that the upper and ground states
hold most of the electrons and that the electrons are evenly distributed be-
tween the two states. In Fig. 4.5, the SA injection scheme of the proposed
design facilitates for a much larger number of electrons to reside in the upper
state while also depleting the ground state.

Referring to Fig.4.1, τf defines the transport time for an electron to scatter
from states L, D and G of one period to U and I of the next period and by
τb the reverse process. It is straightforward to calculate scattering times in
the EMC by averaging over all the possible k-states and the procedure to do
so has been detailed in [44]. These two transport mechanisms are essentially
the scattering processes that contribute to the current of the QCL. τf is a
measure of how fast the electrons scatter across the injection barrier while τb
represents parasitic scattering which scatters carriers away from the upper
state and to the injector states in the preceding period. Such scattering
processes are undesirable and they reduce the optical gain. It is evident
that their ratio τb/τf must be as large as possible in order to efficiently
transport electrons into the active region of the QCL thereby maximizing
the gain. In Fig. 4.6, this ratio is plotted as a function of temperature and
the proposed design maintains a higher τb/τf ratio over all temperatures. The
reason for this is that in the SA injection scheme the upper state is spatially
and energetically separated from the ground state of the previous period
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Figure 4.3: Peak gain as a function of temperature for the proposed and ref-
erence designs. The dashed black line indicates the temperature independent
effective loss. In the simulation of the reference design, we have limited the
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explained in more detail in the text.
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Figure 4.4: Energy resolved electron density for reference device at 77 K at
peak operating electric field. The corresponding probability densities of the
QCL states have also been plotted using solid yellow lines to illustrate the
spatial variation of the wavefunctions of the QCL states.
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Figure 4.5: Energy resolved electron density for proposed device at 77 K at
peak operating electric field. Similar to Fig. 4.4, the probability densities of
the QCL states have also been plotted.
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Figure 4.6: Ratio of backward to forward electron transport times τb/τf
(dimensionless quantity) as a function of temperature for the proposed and
reference designs.

which greatly reduces scattering out of the upper state thereby increasing its
population and subsequently the optical gain.

For the simulation of the reference device in this section, the maximum
applied electric field has been limited to a value which corresponds to the
resonant alignment of the ground state and upper state which is the in-
tended peak operating point for a RT QCL. However in [40], the authors
have pointed out that such a field is not sufficient to overcome the losses
and that an additional 30 kV/cm electric field would be required. This fact
is also observed in Fig. 4.3 where it is clear that the reference device can-
not overcome the losses above 200 K. Such a large incremental electric field
meant that the reference device began to function unintentionally as a SA
injection QCL with a key difference that the intermediate state was not one
LO phonon energy above the upper state. This mode of operation would
increase the gain of the reference device to levels comparable to the proposed
design. However, the reference design will be less efficient as the 30 kV/cm
increment in the electric field would result in a 4 V increase in the oper-
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ating voltage. In addition, the current would increase by about 1.4 times
and as a result the input electrical power would be about twice that of the
reference design. This would clearly result in heating and degradation of the
gain. Incorporating heating effects self-consistently with the electron trans-
port [50] model is a challenging task and such a model is beyond the scope
of this thesis and would require extensive computational time in order to be
accurate.

The temperature dependent threshold current density of the proposed
device is plotted in Fig. 4.7. The curve can be approximated accurately by the
usual exponential fit with a characteristic temperature of T0=260 K which is
much higher than the typical characteristic temperatures of injectorless QCLs
and is even comparable to the characteristic temperatures of conventional
injector based QCLs. The threshold current density at 77 K is found to be
0.85 kA/cm2 which is extremely low for QCLs in this wavelength range and
is comparable to the values of many conventional long injector MIR QCLs.
The high temperature threshold current density is 1.95 kA/cm2 which is also
extremely low.

The wall-plug efficiency ηwp is an important metric of a QCL’s perfor-
mance. It is given by the ratio of the optical power P to the input electrical
power (product of applied voltage V and electrical current I) and by adopting
a simple rate equation approach [29], one can show that it can be approxi-
mated by,

ηwp =
Jmax − Jth
JmaxV

dP

dI
. (4.1)

Here, Jmax is the current density at the maximum operating field and V
the applied voltage at the same field. Modeling the optical power of a QCL
would require information about quantities such as the collection efficiency
[43] and other parameters of the waveguide which can be hard to model
quantitatively. However, one can further simplify ηwp by observing that the
optical power would be proportional to the optical gain P ∝ g and by noting
that the current and current density are proportional to each other, a measure
of the wall-plug efficiency can be defined. We denote this measure (which is
proportional to ηwp) by η̃wp and it is given by,

ηwp ∝ η̃wp =
Jmax − Jth
JmaxVp

dg

dJ
. (4.2)
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Figure 4.7: EMC generated (red circles) temperature dependent current
density (Jth) of the proposed QCL for temperatures ranging from 77 K to
300 K. The dashed blue line is an exponential fit described by Jth(T ) =
J0 exp(T/T0) with J0=0.85 kA/cm2 and T0= 260 K.
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Table 4.1: Wall-plug efficiency parameters for reference and proposed design
at 77 K.

Parameter Reference design 77K Proposed design 77 K
Jth[kA/cm

2] 0.95 0.85
Jmax[kA/cm

2] 1.5 1.8
dg/dJ [cm/kA] 40 80

Vp[V] 0.18 0.181
η̃wp[cm/(V-kA)] 81 233.27

V has been replaced by the voltage drop per period Vp so as to eliminate
the dependence on the number of periods. In Table 4.1, η̃wp has been com-
pared for both the reference and proposed design at 77 K. Since the reference
and proposed design have the same optical losses and sheet charge densities,
the much larger η̃wp of the proposed design should imply that the proposed
design would a have a much larger wall-plug efficiency ηwp than the reference
design.

Although the proposed design has exceeded the performance of the ref-
erence design in many aspects, there are a few areas in which the proposed
device’s performance can be optimized. As can be seen from Fig. 4.3, the
peak gain of the proposed device decreases with increasing temperature sim-
ilar to the reference design. The reasons for this are the increased phonon
absorption from the upper to the intermediate state and also due to the
more vertical nature of the lasing transition of the proposed design which
is a result of the increased optical dipole matrix element of the proposed
design. The phonon absorption to the intermediate state could be decreased
by varying the energy spacing and the overlap between the intermediate and
upper states. Decreasing the optical dipole matrix element would imply a
more diagonal QCL and it’s advantages and disadvantages have been studied
in [51]. This could potentially stabilize the optical gain against increasing
temperatures at the cost of a lower optical gain due to the decreased overlap
between the lasing states.

4.5 Summary

In this chapter an injectorless, long wavelength MIR QCL emitting in the
wavelength range of 11-12 µm has been proposed targeting the 8-12 µm wave-
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length window where QCLs can be used for multiple applications. An EMC
simulator was developed to study transport in QCLs and it was validated
against published experimental data by simulating two existing injectorless
designs. Using the EMC simulator, the proposed device is shown to have
almost double the optical gain compared to one of the best performing long
wavelength injectorless QCL and the reason for this has been shown to be the
improved transport across the injection barrier minimizing scattering away
from the upper state. This was achieved using a scattering assisted injection
scheme as opposed to the conventional resonant tunneling injection. The
device simulation yielded low threshold current densities of 0.85 k/cm2 and
1.95 k/cm2 at 77 K and 300 K respectively. The proposed design is also
expected to have a higher wall-plug efficiency. Further improvements can be
achieved by optimizing the scattering assisted injection and diagonalizing of
the lasing transition.
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Part II

Terahertz Graphene Oscillator
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Chapter 5

Graphene based Terahertz
Oscillator

5.1 Motivation

The generation and detection of electromagnetic waves in the terahertz (THz)
frequency range have been active areas of research. Optical and microwave
technologies have been used to attempt to bridge the “THz gap”. The gap
is illustrated in Fig. 5.1 where the power performances of various electronic
and optical sources are compared in the vicinity of this gap. As can be seen
from Fig. 5.1, there is a lack of viable and compact fundamental sources
in this region and in particular at room temperature. THz radiation in
this region displays unique characteristics such as a strong sensitivity to
polar liquids, spectroscopic responses to a range of materials and enhanced
transmission through a range of plastics [53]. These features can be applied to
important applications such as medical diagnostics and imaging, ultra-high-
speed communications, remote detection of explosive substances and drugs
through spectroscopic response of crystalline compounds and non-destructive
imaging of items concealed in packaging to name a few [53, 54].

Gunn diode oscillators employ the negative differential resistance (NDR)
of III-V materials such as GaAs, InP and GaN to generate power in the
microwave and THz frequency range. NDR in III-V materials is a conse-
quence of the electric field induced transfer of electrons into valleys with
higher effective mass. This produces the effect of reducing the velocity with

62



Figure 5.1: Power performance of different sources in the vicinity of the THz
gap. Figure taken from [52].

increasing electric fields. These oscillators represent a negative resistance
when biased in the NDR and when placed in an appropriate resonant circuit
which offer a positive impedance, high frequency oscillations are produced
[55]. The frequencies of these devices are limited by the saturation veloci-
ties of the materials which are not high enough to reach the frequencies in
the THz gap. Another material which exhibits NDR is suspended graphene
which is a two dimensional (2D) honeycomb lattice sheet [57, 58]. However,
suspended graphene has ultra-high mobility and exhibits velocities which are
about 4-5 times higher than the typical saturation velocities of III-V materi-
als. Equally important is the fact the graphene exhibits ultra-high mobility
and velocities at room temperature which coupled with the high thermal con-
ductivity of graphene, make it a promising candidate to be a fundamental
source of THz radiation at room temperature if oscillations can be achieved.
Also, with advances in experimental and fabrication techniques, it is possible
to suspend a doped layer of graphene between two electrical contacts [56, 59]
thereby opening up avenues for practical device realizations. An example of
a recently fabricated and tested suspended graphene set up is illustrated in
Fig. 5.2
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Figure 5.2: Schematic of a suspended graphene device along with SEM im-
ages of suspended graphene. Figure taken from [56].

In the next few sections, a novel electronic oscillator based on single
layer suspended graphene will be proposed. First, the theoretical aspects of
suspended graphene will be elucidated. The device concept will be then be
simulated using a self-consistent Ensemble Monte Carlo-Poisson simulator
and the results of the simulator will be described in detail. In particular, the
microscopic quantities responsible for the oscillations will be illustrated and
explained.

5.2 Bandstructure of graphene

Electrons in a single layer of suspended graphene can be described reasonably
well for energies in the vicinity of 1 ev by a linear E − k dispersion,

E(k) = ~kvF (5.1)

where k =
√

kx
2 + ky

2 is the 2D wave vector describing the momentum

space of electrons in the (x-y) plane of the graphene sheet and vF = 106 m/s
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is the Fermi velocity. The derivation of this most interesting bandstructure
will be given in Appendix C. The semiclassical definition of effective massm∗

for electrons in any semiconductor is usually given by a parabolic dispersion
and is,

m∗(k) = ~
2

(

d2E(k)

dk2

)−1

(5.2)

and this definition would clearly result in a diverging effective mass for
electrons in graphene. However, an alternate description for the effective
mass exists and is given by,

m∗ = ~
2k

(

dE(k)

dk

)−1

. (5.3)

The above equation can be again derived using semiclassical arguments
where the momentum of a particle is defined as p = ~k = m∗vg with vg being

the group velocity of a “packet” of electrons and is given by vg =
1
~

dE(k)
dk

.

This definition of the effective mass is consistent with both the parabolic
and linear dispersions. Applying the linear dispersion of graphene to this
definition of the effective mass yields,

m∗(k) =
~k

vF
. (5.4)

At k = 0, the effective mass is zero and this partially appears to justify
why electrons in graphene are often called “masless” Dirac fermions. Another
distinguishing feature of electrons in graphene is that the effective mass is a
function of the wavevector and more importantly is proportional to the wave
vector and this implies that the effective mass increases with increasing wave
vector within the same energy valley. In III-V semiconductors such as GaAs,
InP and GaN, the effective mass of the electrons changes abruptly from a
low value in the Γ-valley to a higher value in the L-valley. Electrons are
transferred in higher effective mass valleys by a combination of increasing
electric fields and phonon scattering. This is the famous Ridley-Watkins-
Hilsum theory (RWH) by which NDR is developed in a bulk semiconductor
in the presence of an applied voltage [60]. The continuous increase of effective
mass in graphene suggests that NDR is also possible in the presence of an
applied voltage and phonon scattering. This effect will be studied in the
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next few sections by first detailing the scattering mechanisms in suspended
graphene and then simulating its velocity-field (v-F) curve.

Assuming that the electric field is applied in the y-direction, the velocity
in the y-direction can also be calculated using semiclassical arguments. Using
semiclassical arguments, the velocity of an electron is given by v = ~ky

m∗(k)
.

Using m∗(k) = ~k
vF

yields,

v = vF
ky
k
. (5.5)

5.3 Scattering mechanisms in graphene

The main scattering mechanisms which govern electron transport in graphene
are acoustic and optical phonon scatterings which are modeled using defor-
mation potentials. For the electron densities considered in the subsequent
sections, it is a reasonable approximation to neglect degeneracy due to Pauli’s
exclusion principle and impurity scattering [61, 62].

The intravalley acoustic phonon scattering rate is given by [58],

(

1

τk

)

ac

=

(

kB
4~3v2Fρmv

2
s

)

D2
acTEk , (5.6)

where vs denotes the sound velocity, ρm ≈ 7 x 10−8 g/cm2 is the mass density
and Dac = 6.8 eV is the acoustic phonon deformation potential. The total
optical phonon scattering rate including emission and absorption is given by
[58],
(

1

τk

)

op

=
D2

0

ρmω0(~vF )2
[(Ek − ~ω0) (Nq + 1)Θ (Ek − ~ω0) + (Ek + ~ω0)Nq] ,

(5.7)
where Nq is the optical phonon occupation number and is governed by Bose-
Einstein statistics, Θ(x) is the Heaviside step function, D0 is the optical
phonon deformation potential and ~ω0 is the optical phonon energy. At the
zone edge, there is no distinction between acoustic and optical modes. Hence,
intervalley longitudinal acoustic (LA) and transverse acoustic (TA) phonons
are modeled as optical phonons with a deformation potential of D0 = 3.5
x 108 eV/cm and a phonon energy of ~ω0 = 124 meV. Transverse optical
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Figure 5.3: Total scattering rate in graphene as a function of the electron
energy at 300 K calculated using deformation potentials in comparison with
scattering rate calculated using DFPT. Figure taken from [58].

(TO) and longitudinal optical (LO) phonon scatterings are combined and
calculated using D0 = 109 eV/cm and ~ω0 = 164.6 meV [62, 58].

The total scattering rate is found by adding all the scattering rates due
to intravelley acoustic phonon, TA-LA and TO-LO. The total room tem-
perature scattering rate found using the equations in this section compares
well with density functional theory (DFT) based ab initio scattering rates
calculated using DFT and DFPT (QUANTUM-ESPRESSO) [58]. The com-
parison between the two methods is illustrated in Fig. 5.3.

As can be seen from the form of the scattering rates, the scattering mecha-
nisms in graphene are randomizing which is typical of scattering mechanisms
described by deformation potentials. A scattering event for an electron will
induce a randomizing of the wave vector. Acoustic phonon scattering in
graphene is elastic while optical phonon emission and absorption are inelas-
tic and change the energy of an electron by ±~ω0.
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5.4 EMC simulator for graphene

In order to model electron transport in graphene, an EMC simulator adapt-
ing the EMC simulation framework described previously for QCLs in chapter
chapter 2 has been developed. An ensemble of electrons or particles labelled
by the index p=1, 2, 3...Nsim representing the sheet doping ns of the graphene
sheet is followed in time as they perform a random walk in the two dimen-
sional kx − ky space. Each electron undergoes a series of free flights and
scatterings as usual and the energy and momentum of each electron is up-
dated after each scattering event. The time domain is discretized into small
time steps of length ∆t and the real space of the device (labelled as z) is
discretized into small space steps of length ∆z. The direction of the applied
electric field F is assumed to be y. The EMC simulator for graphene can be
summarized as follows.

• Initialize all particles according to a Maxwellian distribution at t=0

• In a time step ∆t, each particle in the ensemble p=1, 2, 3...Nsim under-
goes a series of free flights of duration tf (p) and scattering events. The
ky for each particle is updated according to ky(p) = ky(p)− eF tf (p)/~.

• Free flights are generated using a uniform random number r1∼U [0, 1]
and tf (p) = −ln(r1)/(Γt).

• The total scattering rate for each particle Γp(k) can be found by sum-
ming the scattering rates due to all the mechanisms which have been

detailed in section 5.3, Γp(k) =
1
τ

ac
(k) + 1

τ

LA/TA
(k) + 1

τ

LO/TO
(k).

• The total scattering rate is made independent of k by adding a large
fictitious scattering rate called self-scattering Γss, i.e., Γt = Γss+Γp(k).

• Γt is normalized to 1 and another uniform random number r2∼U [0, 1]
is generated to randomly select the appropriate scattering mechanism
according to their respective weights.

• The scattering energy exchange ∆Escatt for acoustic phonon scattering
is ∆Escatt,ac = 0 while for optical phonons it is ∆Escatt,op = ±~ω0.
The energy of the p-th particle is updating according to Ep = ~kpvF +
∆Escatt.
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• The momentum is updated according to, kp =
Ep

~vF
.

• As all the scattering mechanisms in section 5.3 are deformation poten-
tial scatterings which randomize the momentum completely, another
uniform random number is generated r3∼U [0, 1]. Then kx and ky are
updated according kx,p = kp cos(2πr3) and ky,p = kp sin(2πr3).

• At the end of each time step, Poisson’s equation is solved using the
methods described in section 2.5 of chapter 2.

• The simulation ends when all the observable dynamical quantities such
as the current and electron density have reached their steady state
values and no longer have any significant changes over time.

5.5 Negative differential resistance in suspended

graphene

Negative differential resistance (NDR) has been studied in suspended graphene
[57, 58, 61]. The existence of NDR is an interesting phenomenon and could
be useful for a wide range of applications.

A single layer of suspended graphene is simulated using graphene’s scat-
tering rates as the input to the EMC model described in section 5.4. The
graphene layer is n-doped to 5x1011 cm−2. The steady state drift velocity as
a function of the applied D.C electric field for suspended graphene at room
temperature is illustrated in Fig. 5.4.

As can be seen from Fig. 5.4, graphene exhibits ultra high low field mo-
bility and NDR with a peak velocity of 6.5 x 105 m/s at an electric field of 1
kV/cm. The drift velocities in graphene are 4-5 times higher than the drift
velocities of most III-V compounds which exhibit NDR.

5.6 Proposed Graphene Oscillator

A device structure with an n-doped layer of suspended graphene sandwiched
between two n+ regions of graphene as illustrated in Fig. 5.5 is proposed.
Such device structures are commonly used in microwave oscillators employing
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Figure 5.4: Monte Carlo simulation of drift velocity as a function of applied
electric field for suspended graphene at 300 K.
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Figure 5.5: Proposed device structure using a layer of doped suspended
graphene between two heavier doped regions with an applied voltage.

III-V compounds [63]. Typically, a D.C. voltage VDC sufficient enough to bias
the graphene sheet in its NDR region is applied. The design and simulation
parameters for the device in Fig. 5.5 are listed in Table 5.1.

The effective thickness td is used to convert the sheet doping of 2D
graphene into volume doping which is needed to use Poisson’s equation.
Space charge effects are essential in capturing the operation of oscillators
which operate in regimes which are far from equilibrium. The self consistent
Monte Carlo-Poisson solver has been a cornerstone of semiconductor device
simulation in non-equilibrium and transient regimes for nearly three decades
[64]. In order to mimic the wave guide cavity and circuit, a time varying
sinusoidal RF voltage VRF is applied in addition to the D.C electric field
and takes the form VRF sin(2πfRF t) [63, 65]. Realistic boundary conditions
are used in the simulation of the graphene oscillator. In the simulation of
QCLs, periodic boundary conditions were assumed because three stages of
the device were being simulated and the first and third stage merely acted
as boundaries and hence the central stage which is the simulated device was
not affected by the boundary conditions. For the graphene oscillator, elec-
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Table 5.1: Design and simulation parameters for proposed graphene oscillator
design at 300 K.

Parameter Value
Relative dielectric constant 10

Active/ region sheet doping n [cm−2] 5x1011

Cathode and anode sheet doping n+ [cm−2] 5x1012

Effective thickness td [cm] 2x10−5

Number of simulated electrons Nsim 4x105

D.C electric field [kV/cm] 30
Length of active region Ln [µm] 1.0

Length of cathode Lc [µm] 0.1
Length of anode La [µm] 0.2

R.F voltage VRF [V] 1.0
R.F frequency fRF [GHz] 640

Time step of Monte Carlo simulator ∆t [fs] 0.1
Space step for Poisson equation solver ∆z [µm] 0.005

trons are injected according to a thermalized, room temperature Maxwellian
distribution when they exit the cathode or the anode corresponding to an
energy of kBT since graphene is a 2D material.

5.6.1 Simulation results

The final simulated device current (in absolute units) is plotted against the
applied voltage in Fig. 5.6 for two RF periods. For the exact calculation of
the current, one would simply need to multiply the current density with the
width of the graphene sheet.

The generation of THz power is due the negative resistance of the oscil-
lator. The negative resistance is a consequence of a phase shift between the
current and voltage as can be seen in Fig. 5.6. The method for estimating
whether the oscillator offers a negative resistance or not is briefly described
now. The R.F. voltage is a sinusoidally varying signal with a time period T
and angular frequency ω = 2πfRF . The sinusoidally averaged current over
one period is given by,
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Figure 5.6: Simulated device current plotted against the applied voltage for
the proposed device at 300 K.

〈I〉 = 2

T

∫ T

0

I(t)sin(ωt)dt. (5.8)

The device resistance is given by RD = VRF/〈I〉 and for the oscillator it
is indeed negative RD < 0. A capacitor, for example, would have a 90o phase
shift with respect to the voltage and this would have yielded a vanishing
integral in Eq. (5.8), i.e., 〈Icapacitor〉 = 0. A normal or positive resistor has
no phase shift with respect to the voltage.

To extract the fundamental frequency (first harmonic) of the oscillating
current, a fast Fourier transform (FFT) of the current is calculated and
the relative magnitude of the power of the frequency spectrum is plotted
as a function of the frequency in Fig. 5.7. As can be seen from Fig. 5.7,
a clear peak at fosc=0.641 THz or 641 GHz is observed corresponding to
the oscillating frequency of the device. Another interesting feature is the
presence of a second peak at approximately 2fosc is also observed. This
could potentially be leveraged for power generation at the second harmonic.
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Figure 5.7: FFT of current showing a fundamental harmonic oscillating fre-
quency of fosc=0.641 THz.

In order to understand the physics behind the oscillations in the current, a
few important microscopic variables of the device will now be illustrated and
analyzed. The electron density along the device (with the doping density
plotted in dashed lines) is plotted at various times during one RF period
in Fig. 5.8. As can be seen from Fig. 5.8, the oscillation in the current
(equivalently velocity) is due to the formation of space charge accumulation
layers [65]. This is a consequence of the NDR that graphene exhibits and
small space charge instabilities or excesses are amplified when the device
is properly biased. During one RF period, accumulation layers or domains
form close to the cathode and increase in magnitude as they transit the device
and extinguish as they exit the anode. This cyclical or periodic nucleation
and extinguishing of domains is the reason for the periodic oscillation in the
current.

As a consequence of the space charge accumulation layers, the electric
field inside the device also evolves in a periodic manner and are illustrated
in Fig. 5.9. The electric field profiles are plotted at the same times at which
the electron densities have been plotted in Fig. 5.9. As can be seen from
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Figure 5.8: Simulated device electron density plotted at various times during
one RF period.
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Figure 5.9: Electron densities, electric field profiles, average electron energies
and velocities across the device plotted at various times during one RF period.
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Fig. 5.9, the electric field is low in the contact regions and becomes positive
and very small before the accumulation layer (in space) and increases to a
large negative value in the space after the accumulation layer has peaked.
This is a consequence of the “slowing down” of electrons due to their gain
in mass. As the electric field becomes more negative, electrons which follow
the dispersion relation E = ~kvF in graphene, gain energy and consequently
their wavevector is increased. This increase in wavevector leads to an increase
in effective mass according to the equation derived before, i.e., m∗(k) = ~k

vF
.

The spatial variations in the device of the average energy of the electrons
and their velocities (at the same time instants at which the electron densities
and electric fields have been illustrated) are also plotted in Fig. 5.9. The spa-
tial trends in the energy and velocity profiles can be understood by observing
the corresponding electric field profiles. As the electric field becomes larger
and more negative, the electrons gain energy due to the increasing electric
field and the acceleration of ky and k. This gain in k leads to a increase in
mass and decrease in velocity at larger electric fields.

5.6.2 0.8 µm active region device

In order to investigate if the proposed device concept could potentially os-
cillate at higher frequencies, the active region was shortened to Ln = 0.8
µm in order to reduce the transit time of the accumulation layers. This can
be understood by approximating the oscillation frequency of the oscillator
according to fosc =

vtr
Ltr

. vtr can be rationalized as the average transit veloc-
ity of the accumulation layers and it depends on the applied bias and the
corresponding electric fields. Also, in order to increase the velocity of the
accumulation layers, the device bias is modified to 20 kV/cm corresponding
to a higher velocity in the NDR region of graphene as can be seen in 5.5.

The simulated device current for this device is plotted in Fig. 5.10 and like
the 1.0 µm device, the current and voltage are also out of phase as expected.
The frequency spectrum computed using the FFT is plotted in Fig. 5.11. As
can be seen from Fig. 5.11, a clear peak exists around fosc=0.8 THz.
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Figure 5.10: Simulated device current plotted against the applied voltage for
the proposed device with 0.8 µm active region at 300 K.

5.7 Summary

In this chapter, the motivation for a fundamental THz source and the impor-
tant applications it could facilitate were first outlined. Then the proposal of a
novel electronic oscillator based on a single layer of suspended graphene were
outlined. First, graphene’s band structure was quantified along with the var-
ious scattering mechanisms involved in the electron transport of graphene.
NDR in graphene was observed during the Monte Carlo simulation of its
steady state v-F characteristics leading to the potential for high frequency
oscillations due to graphene’s higher velocities particularly when compared
to III-V compounds. The Monte Carlo-Poission solver was used to simu-
late a 1.0 µm device and simulations showed oscillations in the current at
0.641 THz or 641 GHz. To probe whether the device concept could oscillate
at higher frequencies, the active region was then shortened to 0.8 µm and
simulation results showed an oscillation frequency of 0.8 THz.
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Figure 5.11: FFT of current showing a fundamental harmonic oscillating
frequency of fosc=0.8 THz for device with 0.8 µm active region .
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Chapter 6

Conclusions and Future Work

In Part I of this dissertation, a quantitative and thorough framework for
modeling mid-infrared QCLs and graphene based terahertz oscillators has
been presented. As a result of precise wavefunction engineering, a novel long
wavelength injectorless QCL emitting in the mid-infrared range was pro-
posed. The performance of this compact design architecture yielded higher
gain, characteristic temperature and wall plug efficiency when compared to
previous designs which were based on the resonant tunneling paradigm for
injector transport. In Part II of this dissertation, a novel room temperature
fundamental THz source based on an electronic oscillator employing sus-
pended single layer graphene was proposed. The EMC simulator outlined in
Part I was adapted to model transport in graphene. The initial EMC simula-
tions showed that graphene exhibits NDR and with velocities 4-5 times higher
than III-V semiconductors which also display NDR. The high velocities and
NDR were promising signs that this device concept could be used as high
frequency electronic oscillator. And indeed, this device exhibited promising
results oscillating in the range of 0.6-0.8 THz. The microscopic physics of
this oscillator were then explained in detail. To the best of our knowledge,
this is the first utilization of suspended graphene’s NDR to produce such
high frequency terahertz oscillations.

Future work in the area of long wavelength mid-infrared QCLs should
involve a unified framework capturing the essential physics of the waveg-
uide and thermal modeling of the complete laser. In particular, temperature
dependent waveguide losses [36] are important to accurately compute the cur-
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rent densities and optical power of the QCL. Self-consistent electro-thermal
modeling [50] is an active area of research for many electronic devices and a
complete self-consistent electron-phonon transport model should be incorpo-
rated to study active region heating and different heat sink materials. Also,
the optimization of the QCL structure can be performed and this can be
carried by using evolutionary and genetic optimization algorithms such as
the CMA-ES method which have been performed by the author of this dis-
sertation for optical waveguides [66].

For the practical realization of the graphene oscillator, the dynamics of
the device in a realistic resonant circuit need to be studied. In particular,
the formulation of an equivalent circuit and modeling the various active and
passive elements of the graphene oscillator in a resonant circuit need to be
carried out [65]. The contacts in graphene devices could potentially be Schot-
tky contacts and not Ohmic ones as in this thesis. The modeling of Schottky
contacts is a challenging task and would represent an interesting challenge.
The inclusion of a self-consistent electro-thermal model and the use of a full
non-linear bandstructure model would make the modeling framework more
thorough as well.
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Appendix A

Time Independent
Schrödinger’s Equation Solver

The stationary electronic wavefunctions for a quantum well heterostructre
with a potential V (z) (with z as the growth direction) are described by the
time independent Schrödinger’s equation (TISE),

− ~
2

2

∂

∂z

(

1

m∗(z)(1 + α(z)[E − V (z)])

∂ψ

∂z

)

+ V (z)ψ(z) = Eψ(z). (A.1)

The non-parabolicity factor α(z) and the energy dependent effective mass
m∗(E, z) is,

α(z) =
β(z)

Eg(z)

(

1− m∗(z)

m0

)

(A.2)

β(z) =
1 + 4x(z) + 2x2(z)

1 + 5x(z) + 2x2(z)
(A.3)

x(z) =
∆so(z)

Eg(z)
. (A.4)

1

m∗(E, z)
=

1

m∗(z)(1 + α(z)[E − Vc(z)])
. (A.5)

The solution of Eq. (A.1) gives the energy eigenstates E and the corre-
sponding eigevectors are the electron wavefunctions ψ(z).
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In order to solve Eq. (A.1), a finite difference solver was implemented
using the method presented in [16]. This TISE is a non-linear and cubic
eigen value problem (EVP) and this method linearizes the EVP into a sparse,
banded an linear EVP albeit tripled in size [16]. This method was deemed
computationally exhaustive for calculating the electronic states of quantum
dots due to the three dimensional nature of a quantum dot’s geometry 1 .
However, for quantum well heterostructures such as QCLs, this method is
computationally feasible.

Finite difference solver

The procedure outlined in [16] is adopted. Consider a discretization of the
z-domain into a finite difference grid with a step size of δz. Let i be the index
running over all the grid points. Intermediate points (i ± 1/2) are treated
equal to the average of the two neighboring points i and i ± 1. Infinite
potential boundaries are considered at the simulation boundaries and the
effective mass is defined by m for convenience and the superscript * has been
removed . The finite difference (FD) discretization of the TISE with N grid
points leads to (see Appendix D),

− ~
2

2δz2

{

ψi+1 − ψi

mi+1/2[1 + αi+1/2(E − Vi+1/2)]
− ψi − ψi−1

mi+1/2[1 + αi−1/2(E − Vi−1/2)]

}

+Viψi = Eψi

(A.6)
Rearranging the terms to be in ascending order spatially ( i − 1 comes

first followed by i and i+1), one can recast the above equation into a matrix
equation in ascending orders of E and this takes the form,

(E3A3 + E2A2 + EA1 +A0)ψ = 0, (A.7)

where ψ = (ψ1ψ2...ψN) is a single dimensional array containing values
of the wavefunction at every grid point in the discretization space. The
matrices A0, A1, A2 and A3 are NxN matrices and are either tri-diagonal or
diagonal. The exact form of the matrices and the elements of these matrices

1Hwang et al., Math. Comp. Modell., 40, 519 (2004)
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are now detailed. A0 and A1 are tri-diagonal matrices while A2, A3 are
purely diagonal matrices.

A0 =

















b1 a1 0 . . . 0

a1 b2 a2 . . .
...

0
. . .

. . .
. . . 0

... . . . aN−2 bN−1 aN−1

0 . . . 0 aN−1 bN

















A1 =

















d1 c1 0 . . . 0

c1 d2 c2 . . .
...

0
. . .

. . .
. . . 0

... . . . cN−2 dN−1 cN−1

0 . . . 0 cN−1 dN

















A2 =

















e1 0 0 . . . 0

0 e2 0 . . .
...

0
. . .

. . .
. . . 0

... . . . 0 eN−1 0
0 . . . 0 0 eN

















A3 =

















f1 0 0 . . . 0

0 f2 0 . . .
...

0
. . .

. . .
. . . 0

... . . . 0 fN−1 0
0 . . . 0 0 fN

















The matrix elements are given by,
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ai =
~
2

2δz2
mi−1/2(1− αi−1/2Vi−1/2), (A.8)

bi =
~
2

2δz2
[−mi−1/2(1− αi−1/2Vi−1/2)−mi+1/2(1− αi+1/2Vi+1/2)]

−(1−αi−1/2Vi−1/2−αi+1/2Vi+1/2−αi−1/2αi+1/2Vi−1/2Vi+1/2)mi+1/2mi−1/2Vi,
(A.9)

ci =
~
2

2δz2
mi−1/2αi−1/2 (A.10)

di =
~
2

2δz2
(−mi−1/2αi−1/2 −mi+1/2αi+1/2) + [1− αi−1/2(Vi−1/2 + Vi)

− αi+1/2(Vi+1/2 + Vi) + αi−1/2αi+1/2

(Vi−1/2Vi + Vi+1/2Vi + Vi+1/2Vi−1/2)]mi+1/2mi−1/2, (A.11)

and

ei = mi+1/2mi−1/2αi+1/2αi−1/2. (A.12)

The matrix equation in Eq. (A.7) can now be converted into a normal
EVP using the techniques described in [16].

Solver validation

In order to validate the solver, one can compare ∆E = EUL − ELL to the
experimental peak luminiscence wavelength of an experimentally fabricated
and tested QCL [7] and as can be seen from the following table, there is a
good agreement between the experimental wavelengths and the wavelengths
calculated using the finite difference solver.

λ =
hc

∆E
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Voltage bias (V) λexperimental (µm) λtheoretical (µm)

11.9 8.8256 8.7949
12.9 8.7819 8.6519
13.7 8.6411 8.3221
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Appendix B

Fermi’s Golden Rule

The time varying potentials V̂ (t) are treated as small pertrurbations to Ĥ0.
These perturbations perturb the state over time and the time varying state
can be represented by a weighted sum of the unperturbed states given by,

|ψ(t)〉 =
∑

φ

aφ(t)|φ〉e
−iEφt

~ . (B.1)

Inserting this equation in the time-dependent Schrödinger equation,

∑

φ

(

aφ(t)Ĥ0|φ(t)〉+ aφ(t)V̂ (t)|φ(t)〉
)

= i~
∑

φ

[

aφ(t)
∂

∂t
|φ(t)〉+ daφ(t)

dt
|φ(t)〉

]

.

(B.2)

The first parts on either side of the above equation represent the unper-
turbed system and therefore can be excluded. If one considers an electron in
state |φ〉 making a transition to a final state |f〉 one can write,

∑

φ

aφ(t)〈f |V̂ (t)|φ〉e
−iEfφt

~ = i~
∑

φ

daφ(t)

dt
〈f |φ〉, (B.3)

where Efφ = Ef − Eφ is the total transition energy.

Employing the orthonormality of of states and defining Vφf(t)=〈f |V̂ (t)|φ〉,

daf(t)

dt
=

1

i~

∑

φ

aφ(t)Vφf(t)e
−iEfφt

~ (B.4)
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Assuming that the scattering rates are small enough so that the electrons
are likely to remain in their initial state |i〉 between two measurements, one
can state that aφ(t) = δiφ and that the probability of finding an electron in
state |f〉 > is given by,

|af (t)|2 =
1

~2

∣

∣

∣

∫ t

0

Vif(t
′)e

−iEfφt

~ dt′
∣

∣

∣

2

. (B.5)

In QCLs, Ei/f is the total energy of the electron and is explicitly given
by a sum of the z component Ei/f which is the minimum of the subband and

the energy in the plane Exy =
~2ki/f

2

2m∗
.

Ei/f (ki/f ) = Ei/f +
~
2ki/f

2

2m∗
(B.6)

where ki/f is the in-plane momentum of the electron in the initial(before
scattering) and final subband(after scattering).

We can now study the various scattering mechanisms governing the elec-
tron dynamics in QCLs. Static scattering potentials Vif(t) = Vif can in
principle be included in the time independent Schrödinger equation for cal-
culating the stationary electronic states but it is physically more intuitive
to study them in conjecture with the time varying mechanisms. Hence we
can broadly classify the scattering mechanisms into static and time varying
potentials.

Static scattering potentials

For static scattering potentials,

|af(t)|2 =
|Vif |2t2

~2
sinc2

(

Efit

2~

)

(B.7)

In the limit t → ∞, i.e., the transients have died away and steady state
has been reached, the above equation reduces to

lim
t→∞

|af(t)|2 =
2π

~
|Vif |2δ(Efi). (B.8)
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Thus the final state is only occupied for static potentials if the scattering
is elastic or Ef = Ei. Differentiating the probability yields the scattering
rate 1

τif
(ki) transporting the electron from it’s initial state |i〉 to a final state

|f〉 [18]
1

τif
(ki) =

2π

~
|Vif |2δ(Efi) (B.9)

This is the famous Fermi’s golden rule (FGR) [17]. 1

Time varying potentials

The time varying potentials in semiconductors generally arise due to vibrat-
ing phonons. Electron-phonon scattering potentials can be represented by a
sinusoidal perturbation and take the form,

Vif(t) = Vif
(

ejω0t + e−jω0t
)

(B.10)

where ω0 is the angular frequency of the oscillating potential due to the
vibrating phonons.

In the steady state limit t→ ∞ we obtain the scattering rate as [18],

1

τif
(ki) =

2π

~
|Vif |2 [δ(Efi − ~ω0) + δ(Efi + ~ω0), ] (B.11)

where the + sign corresponds to absorption and the - sign to emission of a
phonon.

1Although named after Enrico Fermi, it was Paul Dirac who had formulated this equa-
tion in his 1927 paper ”The Quantum Theory of Emission and Absorption of Radiation”
Proc. Roy. Soc. (London) A 114 (767): 243265
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Appendix C

Graphene Bandstructure

Graphene is comprised of carbon atoms arranged in a hexagonal or honey-
comb lattice as shown in Fig. C.1.

The bandstructure of graphene is derived using the approach from [67].
The notations of [67] will be followed and a tight-binding Hamiltonian with
hopping energies used as fitting parameters will be used to drive the E-k
dispersion of graphene.

The structure of graphene is a triangular lattice with a basis of two atoms
per unit cell. The carbon-carbon distance is a=1.42 Ao. The lattice vectors
in real space can be written as ( Fig. C.2),

a1 =
a

2
(3,

√
3) and a2 =

a

2
(3,−

√
3). (C.1)

The reciprocal lattice vectors (Fig. C.3) are there given by,

a1 =
a

2
(3,

√
3) and a2 =

a

2
(3,−

√
3). (C.2)

The points at the corner of the Brillouin zone of graphene are labeled as
the K and K’ points and are of particular importance. These are called the
Dirac points. Their positions in the reciprocal momentum space are given
by,

K =

(

2π

3a
,

2π

3
√
3a

)

and K′ =

(

2π

3a
,− 2π

3
√
3a

)

. (C.3)
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Figure C.1: Hexagonal honeycomb lattice of graphene. Figure from [69].

Figure C.2: Honeycomb lattice of graphene and its Brillouin zone. The
lattice structure of graphene, made out of two inter-penetrating triangular
lattices. a1 and a2 are the real-space lattice unit vectors. δi, i= 1, 2, 3 are
the nearest-neighbor vectors. Figure from [67, 69].
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Figure C.3: Reciprocal lattice structure of graphene with basis vectors b1
and b2 along with various points in the Brillouin zone. Figure from [67, 69].

The three nearest-neighbor vectors in real space are,

δ1 =
a

2
(1,

√
3), δ2 =

a

2
(1,−

√
3) and δ3 = −a(1, 0). (C.4)

while the six second-nearest neighbors are located at δ′1 = ±a1, δ
′
2 = ±a2

and δ′3 = ±(a2 − a1).

The tight-binding Hamiltonian used in [67] with a nearest neighbor hop-
ping energy of t ≈ 2.8 eV and next nearest-neighbor hopping energy of t′ ≈
0.1 eV leads to following energy bands (in units of ~=1),

E±(k) = ±t
√

3 + f(k)− t′f(k), (C.5)

f(k) = 2cos(
√
3kya) + 4cos(

√
3

2
kya)cos(

3

2
kxa). (C.6)

The energy dispersion for graphene can now be plotted. The full band-
structure of graphene using Eq. (C.5) can now be plotted and is shown in
Fig. C.4.
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Figure C.4: E-k dispersion of graphene. Figure from [69].
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Eq. (C.5) is the full band structure E-k dispersion for graphene. Close
to the K or K’ vector, as k=K+q with |q| << |K|,

E±(q) = ±vF |q|. (C.7)

Here the Fermi velocity is vF = 3ta/2 and this value is clearly vF ≈ 106

m/s (rescaling vF to be dimensionally correct by dividing it with ~) . q is the
momentum measured relative to the Dirac points and hence can be though
of as |q| = ~k. An interesting feature to compare with materials with a
parabolic E-k dispersion is that in their case, the Fermi velocity depends on

the energy and is given by v =
√

2E
m∗

.

The energy dispersion showing the linear E-k dispersion in the vicinity
of the Dirac points can also be visualized in Fig. C.5. The cones that are
formed by this dispersion are often referred to as Dirac cones.
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Figure C.5: E-k dispersion of graphene in the vicinity of the Dirac points.
Figure from [69].
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Appendix D

Numerical Differentiation and
Integration

Finite difference approximations of derivative

Consider two smoothly varying functions f(x) and g(x). The domain
of these functions can be discretized into a grid such as the one in Fig.
D.1. The finite difference approximation of the generalized order derivative
d
dx
(f(x)dg(x)/dx) evaluated at the point i is given by,

d

dx
(f(x)g(x))|i ≈

1

∆x
[f(i+1/2)(g(i+1)− g(i))− f(i−1/2)(g(i)− g(i−1))]

(D.1)
where i = 1, 2, 3...n runs over all the grid points in the domain and f(i)

and g(i) are the values of the respective functions at those grid points. The
values at the intermediate points can be taken to be the averages of their
nearest neighbors, i.e., f(i± 1/2) = [f(i) + f(i± 1)]/2.

1D Trapezoidal rule

The integral of a function f(x) between two end points a and b can be
approximated as the area under the curve f(x) between a and b. This is
called the 1D trapezoidal rule and is an numerical approximation of the
integral

∫ b

a
f(x)dx and is given by,
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Figure D.1: 1D discretized domain. Figure taken from [70]
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∫ b

a

f(x)dx =
∆x

2
[f(a) + f(b) + 2(f(1) + f(2) + ....f(n− 1))]. (D.2)

2D Trapezoidal rule

Consider the discretization of a two dimensional function f(x, y) in the x-y
plane Fig. D.2. The integral of f(x, y) between a ≤ x ≤ b and c ≤ y ≤ d can
be interpreted as the volume V between the function in the aforementioned
bounded area.

Let the step sizes in the x and y directions be ∆x and ∆y. Let i =
0, 1, 2, 3, ...n and j = 1, 2, 3....m be the indices in the x and y directions. Any
arbitrary point in this 2D domain can be indexed by,

xi = a+ i∆x; yj = c+ j∆y. (D.3)

The volume of each of these 3D trapezoidal elements is given by,

Vij =
1

4
∆x∆y[f(xi−1, yj−1) + f(xi−1, yj) + f(xi, yj−1) + f(xi, yj)]. (D.4)

The effective volume V ′ can be found by summing over all the volume
elements and is given by,

V ′ =
∆x∆y

4
[f(a, c) + f(a, d) + f(b, c) + f(b, d)] +

1

2
∆x∆y[

n−1
∑

i=1

f(xi, c)+

n−1
∑

i=1

f(xi, d) +
m−1
∑

j=1

f(a, yj) +
m−1
∑

i=1

f(b, yj)] + ∆x∆y
n−1
∑

i=1

m−1
∑

j=1

f(xi, yj). (D.5)
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Figure D.2: 2D discretized domain. Figure taken from [70]
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