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Abstract of the Dissertation

Sequential Monte Carlo Methods for Inference and
Prediction of Latent Time-series

by

Iñigo Urteaga

Doctor of Philosophy
in

Electrical Engineering

Stony Brook University

2016

In the era of information-sensing mobile devices, the Internet-
of-Things and Big Data, research on advanced methods for
extracting information from data has become extremely critical.
One important task in this area of work is the analysis of
time-varying phenomena, observed sequentially in time. This
endeavor is relevant in many applications, where the goal is to
infer the dynamics of events of interest described by the data,
as soon as new data-samples are acquired.

This dissertation is on novel methods for sequential inference
and prediction of latent time-series. We assume that a sequence
of observations is a function of a hidden process of interest and
the goal is to estimate the latent process from the observed data.
We consider flexible models that capture the dynamics of real
phenomena and can deal with many practical burdens.

The embraced methodology is based on Bayesian theory
and Monte Carlo algorithms. The former provides a consistent
framework for the analysis of latent random processes. The lat-
ter allows for overcoming the inherent difficulties of nonlinear
and non-Gaussian models. The goal is to propose methods that
can extract the hidden dynamics from observed data in the
most generic and challenging scenarios.

We start by investigating short-memory processes, that is,
time-series where most of the relevant information is contained
only within the most recent past. In particular, we study
latent Auto-Regressive Moving-Average (ARMA) processes with
independent Gaussian innovations. We first assume that the
parameters are known and then, we relax the assumptions until
they are all unknown.

The analysis of latent time-series is extended to processes
with different memory characteristics, including those with

iii



long-memory features. On the one hand, we investigate latent
processes that show self-similarity properties and are correlated
in time, such as the fractional Gaussian process (fGp). On the
other, we study extensions of the ARMA(p,q) model, by con-
sidering fractional differencing, which leads to Fractional Auto-
Regressive Integrated Moving-Average (FARIMA) processes.

We further generalize our work to allow for broad memory
properties, by relaxing previous modeling and parameteriza-
tion assumptions. We resort to wide-sense stationary (WSS)
time-series in general. Within this new framework, all the
previously considered models are covered. As a result, a
generic Sequential Monte Carlo (SMC) method for inference of
Gaussian WSS latent time-series is proposed. We broaden our
work by investigating a hierarchical model where correlation
amongst multiple time-series is accommodated.

Finally, we focus on model uncertainty; that is, we consider
that one may not know the specific form of the underlying
dynamics. For this problem, we investigate both Bayesian
model selection and averaging-based solutions. The resulting
outcome is a dynamically adjustable SMC method with im-
proved accuracy.

The contribution of the work in this dissertation is both
on the theoretical Bayesian analysis of the models and on
its application to computational algorithms for challenging
problems of interest in practice. Short- and long-memory
processes are examined and the modeling assumptions relaxed
as much as possible for added flexibility and applicability.

The performance of the proposed SMC methods is thoroughly
evaluated via simulations of most challenging scenarios, and
illustrative examples where they can be applied are provided.
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Nigan sinistu duten guztiei.

The important thing is not to stop questioning.
Curiosity has its own reason for existing.

— Albert Einstein
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Part I

I N T R O D U C T I O N A N D P R O B L E M
F O R M U L AT I O N

The focus of this work is on the analysis and
estimation of latent time-series, motivated by a
myriad of real-life applications.

Methods for inference and prediction of time-series
are studied, where the state-space framework is
embraced under the Bayesian data analysis method-
ology and sequential Monte Carlo algorithms are
proposed.

A motivation to the problem of interest, its formal
description, and an introduction to the foundations
of the work are presented in the following chapters.
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1
I N T R O D U C T I O N

In the era of information-sensing mobile devices, sensor net-
works, the Internet-of-Things and Big-Data, research on ad-
vanced methods for extracting information from data has
gained even more relevance.

Both within academia and industry, a great amount of effort
is being put into developing advanced techniques for learning
and understanding of the vast amount of data being collected.
Disciplines such as machine learning and data science have
become trendy and they heavily influence research, business
and economic activities. The goal of extracting knowledge from
data concerns many disciplines of science and engineering,
such as statistics, computer-science, signal-processing and pat-
tern-recognition.

One important area of work is the analysis of time-varying
phenomena, observed sequentially in time. This task is critical
in many applications in science and engineering, including
weather sciences, the study of time-evolution of stocks and
goods prices in econometrics, biomedical signal-processing, or
concentrations of pollutants in the environment.

The objective is to infer the dynamics of events of interest
that the data describe, as soon as they are acquired, so that
practitioners can classify events, predict the future and make
informed decisions. The study of time-varying phenomena is
often referred to as time-series analysis.

A time-series is nothing but a set of observations, each one
being recorded at a specified time t. Research on time-series
is a long and storied field of study [16, 47, 96] and examples
of time-series are endless in multitude of fields of engineering,
science, economics and others. We illustrate some interesting
cases below.

Signal processing (both in its analog and digital variants)
has been an important discipline in engineering departments,
where time-series have been long studied. Not only commu-
nication signals are good examples, but the speech signal-
processing community has also investigated the human voice
from a time-series point of view. Speech processing has been
studied for decades and, actually, is going through a revival

2



introduction

period because of the development of new technologies behind
Apple’s Siri, Google Voice, Microsoft’s Cortana and others.

An example of a short human speech time-series recorded by
a microphone is shown in Figure 1.
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Figure 1: An example of human speech time-series.

A pronounced interest in the study of time-series is also
observed in the areas of economics and finance. Two illustrative
examples are the analysis of prices over time (e.g., oil price
evolution as shown in Figure 2a) and the financial analysis
of stock markets (the evolution of the Dow Jones index is
shown in Figure 2b). In the era of algorithmic trading, complex
mathematical analysis and computer algorithms for advanced
trading strategies have become indispensable.
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(a) Oil price over time.
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(b) Dow Jones Index.

Figure 2: Examples of economics and finance time-series.
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introduction

Time-varying phenomena are also critical to many other
disciplines of science. For example, meteorologists have been
tracking variables of their interest for decades. In order to
assess the causes and evaluate the impact of Global Warming,
there is an increasing need to study the underlying patterns of
temperatures, precipitations and pollutants in the atmosphere.
The averaged monthly precipitation and temperature record-
ings at Central Park are illustrated in Figure 3, for the year
span between 2000 and 2012.
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Figure 3: Examples of time-series in meteorology.

Finally, interest in time-series analysis is increasingly grow-
ing within the medical and health sciences. Time-series anal-
ysis in neuroscience is quite a mature area [79] and, lately,
other fields of medicine and bio-engineering are increasingly
becoming aware of this field of study. In general, doctors can
benefit from the automated and machine-aided examination of
bio-medical signals, e.g., electro-cardiograms or fetal heart rate
monitoring (i.e., Figure 4).
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Figure 4: Examples of time-series in the health sciences.
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In all these applications, the interest is on learning hidden sci-
entific truths from the acquired data. That is, practitioners need
advanced techniques for obtaining insights about the observed
phenomena. In a nutshell, the aim is to infer knowledge about
the variables of interest and, if possible, to provide informed
predictions of future values of the phenomena.

In statistical terms, the goal is to perform accurate inference
and prediction (forecasting) of the variables of interest. Usually,
the relevant information is latent; that is, not directly observ-
able. For example, deciphering messages from noisy data is
common for a telecommunication engineer; discovering the
evolving volatility of assets is essential to financial analysts; in-
ferring the patient’s heart condition from Electrocardiography
(ECG) is critical for medical doctors. Hence, the analysis of latent
variables is challenging and essential in many fields of science
and engineering.

In general, one discriminates between continuous- and dis-
crete-time data series. The former are obtained when the mea-
surements are recorded continuously over some time interval.
The latter are formed by observations made at a specific
(discrete) set of time instants, which can be acquired at random
or periodically. The work presented here is devoted to discrete-
time series.

When relevant information is latent (i.e., the variables of
interest are not directly observed), flexible mathematical for-
mulations are required. That is, the modeling framework must
be able to capture the duality between the observables and the
latent variables of interest.

The focus of the work presented hereafter comprises infer-
ence and prediction of latent time-series of various types, where
data are available sequentially in time. The aim is to provide
specific techniques, by leveraging methods from statistics and
engineering, that (1) describe the data accurately, (2) model
both the latent and observable information, and (3) provide
mechanisms to accurately infer and predict the unknowns of
interest.
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2
P R O B L E M F O R M U L AT I O N

The analysis of latent time-series is the focal point of the work
presented here. This chapter formally introduces the problem
of interest and provides an overview of the foundations of the
described work.

We first clarify the notation used throughout the document
in Section 2.1. To accommodate for both the latent nature of
the hidden dynamics of interest and the applicability of the
solution to a myriad of scenarios, the state-space methodology
is adopted, which is described in Section 2.2.

Inference and prediction of the latent time-series is achieved
by means of the Bayesian methodology. A brief review of the
Bayesian theory and its application to data analysis is provided
in Section 2.3.

Since the work considers generic models, beyond linearity or
Gaussianity assumptions, advanced Monte Carlo methods are
in need. Specifically, and due to the sequential nature of the
acquired data, an introduction to SMC methods is provided in
Section 2.4.

In summary, this chapter provides a comprehensive overview
of the background for understanding the solutions presented in
the forthcoming chapters.

notation

Throughout the document, variables and scalars of interest
are represented by lower-case notation (e.g., x, y, z, θ), where
the dimensionality of the variable is specifically indicated: i.e.,
x ∈ Rdx . For matrices, upper-case notation is used (e.g., mixing
matrix A ∈ Rdy×dx or covariance matrix Σ ∈ Rdx×dx).

Time-dependency is indicated by the subscript "t", as in xt
and yt. When referring to a sequence of variables from time
t1 to t2, we use yt1:t2 ≡ {yt1 ,yt1+1, · · · ,yt2}. Unless specifically
indicated, discrete-time data are considered and, therefore, t ∈
N0. Within this document, yt represents the observed data and
xt, the latent time-series. In general, the set of parameters of the
model is represented by the vector θ.
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2.2 state-space models

The statistical notation used for stochastic variables is sum-
marized below:

• a ∼ f(·) represents that a continuous random variable a is
distributed according to the Probability Density Function
(PDF) f(·). The corresponding Cumulative Density Func-
tion (CDF) is represented by the uppercase counterpart
F(·).

• b ∼ p(·) represents that a discrete random variable b is
distributed according to the Probability Mass Function
(PMF) p(·). The corresponding CDF is represented by F(·).

• N
(
µ,σ2

)
represents the univariate Gaussian density with

mean µ and variance σ2. Its d-dimensional multivariate
counterpart is indicated by N (µ,Σ), with µ ∈ Rd and Σ ∈
Rd×d.

• Tν
(
µ,σ2

)
represents the univariate Student’s t-distribu-

tion with ν > 0 degrees of freedom, location parameter
µ and scale parameter σ. Its d-dimensional multivariate
counterpart is represented by Tν (µ,Σ), where µ ∈ Rd

represents its location vector and Σ ∈ Rd×d, the scale
matrix.

• IWd (ν,Λ) represents the d-dimensional inverse Wishart
distribution with ν > d− 1 degrees of freedom and scale
matrix Λ ∈ Rd×d.

• NIWd (η, κ,ν,Λ) represents the d-dimensional normal-
inverse-Wishart distribution with location parameter η ∈
Rd, inverse scale matrix Λ ∈ Rd×d, and real parameters
κ > 0 and ν > d− 1.

state-space models

State-space modeling provides a unified and robust methodol-
ogy for studying a wide range of engineering problems [47]. It
provides a very flexible framework for time-series analysis and
they have been successfully applied to a myriad of applications
[96].

With the state-space formulation, a system is modeled over
time by a series of hidden variables associated with another
series of measurements. That is, it comprises a set of ordered
observations yt that depend on some latent time-evolving
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2.2 state-space models

unknown xt. The hidden dynamics are not directly observed,
although the observations do depend on the latent states in
various forms (see Figure 5 and Figure 6 for two illustrative
examples).
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Figure 5: Example FHR state-space model.
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Figure 6: Example stochastic log-volatility state-space model.

Within this framework, several signal processing problems
can be tackled:

• Filtering: Updating the knowledge of the state process of
the system each time a new observation is available: i.e.,
estimate xt based on the newly observed yt. Filtering is
performed in a sequential manner, as new data becomes
available.

• Smoothing: Estimating the state process of the system
based on a whole set of observations: i.e., estimate xt
based on y1:T , where 1 6 t 6 T . This technique requires
the availability of a batch of observations and therefore,
implies a delay in processing.

8



2.2 state-space models

• Prediction: Forecasting the future of the state xt+τ or the
observations yt+τ for a time horizon τ, based on a set of
available observations y1:t.

The main focus of the work presented here is on filtering and
prediction, motivated by the real-life problems described in the
introductory Chapter 1.

The state-space methodology mathematically models the
system of interest as follows:xt = g (x1:t−1, θg,ut) , state equation

yt = h(xt, θh, vt), observation equation
(1)

where t = {1, 2, . . . } represents time, xt ∈ Rdx is the time-
varying latent process and yt ∈ Rdy is the ordered sequence
of observations available (of dimensionality dx and dy, respec-
tively).

The time-dependency of the latent process is characterized
by the (potentially time dependent) function g(·) on both
the previous values of the signal, the state noise ut (i.e.,
innovations) and a set of static parameters θg ∈ Rdθg .

The dependency of the observations on the hidden state
is accounted for by the function h(·) (which might also vary
with time and is parameterized by its static parameters θh ∈
R
dθh ). The observation equation is stochastic in nature, with

observation noise vt.
Based on the nature of the functions and the innovations

considered, there are many problems that can be presented
within the state-space paradigm. Amongst them, the most
studied case is the linear Gaussian one, where g(·) and h(·)
are linear functions and the state and observation noises are
both Gaussian:xt = Ax1:t−1 +But,yt = Dxt + Evt,

with

ut ∼ N(0,Cu)

vt ∼ N(0,Cv).
(2)

Filtering based on this linear and Gaussian model has been
widely studied and the closed form solution is the celebrated
Kalman Filter (KF) [63]. Its application to countless signals
and systems has been numerously reported. In fact, it is
the optimal candidate for the small subset of linear latent
time-series filtering cases with Gaussian innovations [3, 50].
However, the research described herein aims at more ambitious
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2.2 state-space models

settings, where the state-space models diverge from linearity
and Gaussianity assumptions.

For this set of more general problems, where nonlinearity
and non-Gaussianity are considered, optimal processing of
the data becomes very challenging and, in practice, impossi-
ble. Therefore, approximating techniques must be considered,
which result in suboptimal solutions.

There are several approaches that rely on approximating
the state and space functions, minimizing the impact of the
considered nonlinearities and non-Gaussianities. The Extended
Kalman Filter (EKF) is considered to be the natural evolution
to deal with nonlinear functions within the framework of the
traditional KF [3, 50, 103]. The EKF linearizes the problem by a
Taylor series approximation around the latest estimate, so that
the recursive KF is applicable.

Another alternative, known as the Unscented Kalman Filter
(UKF) [102] relies on the assumption of Gaussian densities in the
model, instead of resorting to strict linearization of the state-
space functions. A number of other variations of these, such
as the Gaussian quadrature Kalman filter [57], have also been
suggested. In all these, the aim is to provide a functional form
that approximates the true density.

A different paradigm for nonlinear/non-Gaussian problems
consists on evaluating the PDF of interest over a set of points,
without relying on approximations to the nonlinear functions.
This approach is orthogonal to the Kalman-based solutions, as
it uses discrete random measures to represent the densities of
interest. The most basic of these methods evaluate the densities
over a deterministic set of points (grids) [66].

To overcome the limitations of such a rigid approach, other
alternatives have been suggested, which are based on Monte
Carlo sampling. These particle-based methods use random sets
of points for representation of the PDFs of interest. In other
words, at one time instant the PDFs are evaluated at a set of
points, and at the next time instant, a completely different set
of points is used. Filters based on this methodology amount
to sequential Monte Carlo (SMC) sampling methods and are
popularly referred to as a Particle Filter (PF) [19, 37, 41, 43].

Ever since the introduction of PFs, they have been adopted
by the research community and successfully applied to a wide
range of disciplines, including engineering [85], geophysical
sciences [68], biology [55, 56], and economics [32].
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2.3 the bayesian methodology

We describe the foundations of SMC methods or PFs in
Section 2.4, after first introducing the Bayesian paradigm for
time-series analysis.

the bayesian methodology

The analysis of latent time-series raises several challenges: How
to fit the observed data to the mathematical model, how to
learn about the hidden variable of interest, and how to make
predictions on the future of the time-series.

In time-series analysis under the state-space paradigm, we
acquire data (i.e., the observable variables) that depend on
hidden dynamics (i.e., the latent variables). Therefore, one can
formulate the problem in terms of a set of random variables
that are acquired sequentially in time. The observed data are
considered to be a realization of a set of random variables.

The theory of stochastic processes becomes handy to model
the behavior of observed and latent data. At times, the process
is modeled according to a physical mechanism that generates
the data and uncertainty is included via an innovation or
noise process. Other times, the data are described in a purely
statistical sense, without providing any interpretation of the
model parameters.

When using statistical methods for the task in hand, two
related but orthogonal alternatives are available: The clas-
sical or frequentist statistical philosophy and the alternative
Bayesian methodology. This study embraces Bayesian theory, as
it accounts for all available information to perform statistical
inference.

The Bayesian methodology [86] focuses on three main con-
stituents: The likelihood of the data, the prior density of the
model parameters and the resulting posterior, all connected by
the celebrated Bayes’ theorem

f(x|y, θ) =
f(y, x|θ)
f(y|θ)

=
f(y, x|θ)∫
f(y, x|θ)dx

=
f(y|x)f(x|θ)∫
f(y|x)f(x|θ)dx

, (3)

where y is the observed data, x is the unknown variable and θ
the parameters of the model.

In Bayesian theory, all sources of uncertainty in the statis-
tical model are considered to be random variables, described
by their corresponding densities: f(y|x, θ) is the probability
distribution modeling the observables, which depend on the
unknown variable x, that has a prior distribution f(x|θ) with
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2.3 the bayesian methodology

parameters θ. The parameters, being random variables too,
are described by their own density f(θ|η), that depend on the
hyper-parameters η.

By applying Bayes’ principles, contribution of both the exper-
imental data (i.e., observed values) and the prior knowledge of
the problem are fused. The first, via the likelihood f(x|θ) and,
the second, through the prior information f(θ).

The Bayesian framework provides a unified approach to data
analysis, where practitioner’s knowledge is formally incorpo-
rated to the methodology. Furthermore, it allows for parameter
independent evaluation of data, by using the marginalization
theorem from statistics.

The parameter agnostic density of the latent variable can be
derived as

f(x) =

∫
f(x|θ)f(θ)dθ (4)

and predictive densities of the observables computed by

f(y ′) =

∫
f(y ′|x)f(x|y)dx . (5)

In order to conduct a fully Bayesian analysis, specification of
prior densities is critical, as model parameters are considered
random variables themselves. The simplest case amounts to
when the true values are known, as there is no need to express
conditioning on a constant and f(x|y) and f(x) are employed.
Thus, the Bayes formula simplifies to

f(x|y) =
f(y, x)
f(y)

=
f(y, x)∫
f(y, x)dx

. (6)

However, there are many practical cases where the model
parameters are not known. In some cases, some knowledge or
belief might be available to the practitioner while, in others,
no good guess can be made on the unknown θ. Nonetheless,
Bayesian theory addresses all these scenarios in a unified
manner, by careful determination of the prior density.

On the one hand, informative priors can be used to accom-
modate for field expertise (through particular shapes of the
prior densities). Among all the distributional families that an
informative prior f(x|θ) might belong to, a computationally
convenient choice is to use conjugate priors [77]. These priors
guarantee that, for a given likelihood f(y|x, θ), the posterior
f(x|y, θ) falls into the same distributional family as the prior
f(x|θ).
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2.3 the bayesian methodology

On the other hand, when no reliable prior information
concerning the model parameters exists, inference based ex-
clusively on data is preferable. The Bayesian methodology
endorses such cases by means of non-informative priors [59],
i.e., distributions f(θ) that do not favor any particular value of
θ. Many efforts have focused on the study of non-informative
priors and different alternatives have already been presented
[13].

Furthermore, under the Bayesian methodology, the prior
itself may depend on another set of unknowns, which follow
some second-stage prior f(η). This sequence of unknowns
and model parameters θ and hyper-parameters η constitute a
hierarchical model: f(x|θ), f(θ|η) and f(η).

Since the hierarchy might grow ad libitum, it is commonplace
to stop this at some point. When to stop and how to provide
a set of known hyper-parameters is a modeling choice left to
the practitioner. Estimation or marginalization of the hyper-
parameters are only two of the possible alternatives.

Another possibility consists on, instead of blindly deciding
on some hyper-parameter values, using observed data to
provide meaningful initial values. This approach is known as
the empirical Bayes method [21].

All in all, Bayesian statistics provide a unified framework
for data analysis. In particular, and under the state-space
paradigm, one can perform:

• Filtering, by sequentially estimating the posterior density
of xt, given the observations y1:t; i.e., f(xt|y1:t).

• Smoothing, by estimating the distribution of xt based on
a set of observations y1:T ; i.e., f(xt|y1:T ), where 1 6 t 6 T .

• Prediction, by estimating the density of the next state
xt+1 based on a set of available observations y1:t; i.e.,
f(xt+1|y1:t). Similarly, prediction of the space variables
resorts to f(yt+1|y1:t).

The sequential processing required for time-series analysis
is attained by means of factorization of the relevant densities,
marginalization of unknowns and Bayes’ rule:

f(x1:t+1|y1:t) = f(xt+1|x1:t,y1:t)f(x1:t|y1:t),

f(yt+1|y1:t) =
∫
f(yt+1|x1:t+1)f(x1:t+1|y1:t)dx1:t+1,

f(x1:t+1|y1:t+1) =
f(yt+1|x1:t+1)f(xt+1|x1:t,y1:t)f(x1:t|y1:t)

f(y1:t+1)
.

(7)
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2.4 sequential monte carlo methods

Besides a unified methodology for data analysis, Bayesian
statistics also provide model selection and averaging proce-
dures. In brief, one can include uncertainty about the true
model M into the analysis.

One considers some prior p(Mk) over the set of candidate
models Mk,k = 1, · · · ,K, and then applies Bayes’ theory to
update the posterior belief of each model after observing data
up to time instant t, y1:t, i.e.,

p(Mk|y1:t) =
f(y1:t,Mk)p(Mk|y1:t)

f(y1:t)
, (8)

where p(Mk|y1:0) = p(Mk) is the prior assumed for each model.
One can select the most likely model based on the above

computation or, as an alternative, fuse information via the total
probability theorem:

p(y1:t) =

K∑
k=1

f(y1:t|Mk)p(Mk). (9)

The work in this dissertation is mostly on the derivation of
the densities in Equation 7 (and, if applicable, Equation 8) for
a myriad of considered time-series models. To do so, we follow
Bayesian statistics, as it allows for consideration of known and
unknown parameters (also for model uncertainty) in a unified
manner.

In most of the problems that are of interest here (i.e., state-
space with non-Gaussian and nonlinear functions), no closed
form solution is available for the densities above. Thus, as
mentioned before, we resort to SMC methods, described now
in detail.

sequential monte carlo methods

In sequential Monte Carlo (SMC) sampling methods (also
known as PFs), recursive computation of relevant probability
distributions is performed by approximating them with dis-
crete random measures that change over time. That is, the
PF uses random grids (i.e., the location of the points varies
randomly with time) to evaluate the PDFs of interest.

The points used to represent the relevant density are called
particles. Weights are assigned to them, which can be inter-
preted as probability masses. Consequently, the particles (see
Figure 7a) and the weights form a discrete random measure
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2.4 sequential monte carlo methods

(see Figure 7b), which approximates the density of interest as
in Figure 8.
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Figure 7: Example of drawn and weighted random samples.
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Figure 8: A random measure approximates a Gaussian density.

The random measure is thus composed of particles and their
weights, i.e.,

fM(x) =

M∑
m=1

w(m)δ
(
x− x(m)

)
, (10)

where δ(·) is the Dirac delta function, x(m) is the mth particle,
w(m) is the weight of that particle, and M is the total number
of particles.
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2.4 sequential monte carlo methods

In summary, particle filtering is a Monte-Carlo method
that sequentially approximates evolving densities by randomly
generating candidate particles and assigning weights to them.

When applied to state-space models with sequential acqui-
sition of data, the system aligns to the recursive procedure of
the SMC methodology. The generation of particles at each time
instant depends on the previous random measure; thus, each
particle has a parent, the parent its own parent, and so on. Such
sequence of particles is called a particle stream, and it represents
one possible evolution of the latent state with time [37].

In particle filtering, the sequential processing is nothing but a
recursive update of the discrete random measure upon arrival
of a new observation. The update step accommodates both the
generation (sampling) of new particles and the computation of
their corresponding weights.

An SMC method consists of three basic steps. The first is the
propagation of particles following the dynamics of the model.
The second, the computation of their weights to form a proper
random measure and, the last, accounts for resampling to avoid
particle attrition over time.

A main challenge in implementing PFs is to generate and
propagate particles in regions of the hidden state’s space where
most of the information is located. That is, the goal is to explore
regions over which the densities carry significant probability
masses. Ideally, the optimal distribution to sample from is the
density of the state given all the available observations and
past states. However, this is not usually feasible and, thus,
particles are drawn from some other instrumental distribution:
i.e., the proposal distribution. To overcome these limitations, PFs
exploit a concept from statistics known as sequential importance
sampling.

When particles are directly generated from the target dis-
tribution of interest f(x), then all samples are assigned equal
weights; i.e., w(m) = 1

M , m = 1, 2, · · · ,M. However, when
drawing samples directly from f(x) is unfeasible, one can
generate particles x(m) from an alternative distribution π(x),
known as the proposal distribution, and assign (non-normalized)
weights according to

w̃(m) =
f(x(m))

π(x(m))
. (11)
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2.4 sequential monte carlo methods

These weights have to be normalized to obtain a correct random
measure approximation of the target density, i.e.,

w(m) =
w̃(m)∑M
i=1 w̃

(i)
. (12)

Thus, by leveraging importance sampling, a density of interest
at any given time instant is approximated by a random mea-
sure with appropriate weights. For example, for the filtering
problem, a PF approximates the posterior of the state xt given
observations y1:t, at time instant t, i.e., fMt (xt) ≈ f(xt|y1:t).

The key of a PF is the sequential computation of the random
measures. The methodology proceeds recursively upon recep-
tion of a new observation yt+1. Specifically, the distribution
f(x1:t|y1:t) can be updated to f(x1:t+1|y1:t+1) once a new ob-
servation yt+1 becomes available following Bayes rule. In SMC
sampling, one refurbishes the approximating random measures
sequentially, i.e., it updates fMt (xt) to fMt+1(xt+1).

Following the sequential importance sampling methodology,
this is done in two steps. In the first, one propagates the
particles x(m)

t to x(m)
t+1 via

x
(m)
t+1 ∼ π(xt+1|x

(m)
1:t ,y1:t+1) , (13)

where π(xt+1|x
(m)
1:t ,y1:t+1) is the proposal (instrumental, impor-

tance) density of xt+1, and x(m)
1:t is the genealogical lineage of

the particle (i.e., the mth particle stream).
The second step is the computation of the weights of x(m)

t+1
according to

w
(m)
t+1 ∝ w

(m)
t

f
(
yt+1|x

(m)
t+1

)
f
(
x
(m)
t+1|x

(m)
1:t

)
π
(
x
(m)
t+1|x

(m)
1:t ,y1:t+1

) , (14)

where f
(
yt+1|x

(m)
t+1

)
is the likelihood of x(m)

t+1, and f
(
x
(m)
t+1|x

(m)
1:t

)
is the transition density of the state. The computation of the
weights is followed by their normalization, so that they sum to
one.

One of the major drawbacks of using SMC sampling tech-
niques is that the approximating discrete random measure
degenerates quickly as time evolves. In practice, most of the
particles except for a very few are assigned negligible weights
and therefore, only few streams survive. Due to this particle
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attrition, the performance of the particle filter considerably
deteriorates as time evolves.

The impact of particle degeneracy can be reduced by using,
not only good importance sampling functions, but a technique
known as resampling too. In a nutshell, resampling eliminates
particle streams with small weights and replicates particles
with large weights. That is, it helps explore the region of
the density’s support where most of the probability mass is
concentrated.

Several techniques have been introduced in the literature
(e.g., regular resampling, Gaussian resampling, etc.) [42, 52,
69] and, when studying new PFs, careful consideration and
evaluation of the alternatives must be explored.

A measure of the particle degeneracy is known as the
effective particle size Meff [37], which can be estimated as

Meff ≈
1∑M

m=1w
(m)2

, (15)

where one uses the normalized weights in the computation.
When all the particles have the same weights, the variance

of the weights is zero and the particle size is equal to the total
number of particles, M. The other extreme occurs when all the
particles except one have negligible weights, and the particle
size is equal to one. Usually, if the effective particle size is below
a predefined threshold, resampling is carried out.

In the work presented here, we resort to the most common
resampling technique, and do so at every time instant. We
perform resampling by drawing from a categorical distribution
defined by the weights of the available random measure

x(m) ∼ fM(x), where m = 1, · · · ,M.

All the SMC methods in the following chapters perform
resampling as above for every time instant. The extension of
the proposed methods to any other resampling technique is
straightforward.

It is important to note that, no matter what resampling
technique is implemented, one must compute the estimates
of interest based on the random measure available before
resampling. That is, one computes

E {g(x)} =

∫
x
g(x)f(x)dx ≈

∫
x
g(x)fM(x)dx =

M∑
m=1

w(m)g
(
x(m)

)
.

18



2.4 sequential monte carlo methods

The estimates computed as above are guaranteed to have less
variance than the alternative, where the resampled particles
were to be used with equal 1

M weights.
Furthermore, one also needs to be careful with the impact

of resampling on other aspects of the performance of the SMC
method. More specifically, as the method evolves over time,
the set of genealogical particle streams is severely depleted
with resampling. That is, when using resampling to cope with
importance weight degeneration, then stream depletion occurs.
This phenomenon is known as path-degeneracy: i.e., in the long
run, the full path particle approximation is, effectively, carried
by a single particle stream only.

One needs to be careful with the potential impact of path-
degeneracy in the PF. It has already been reported [27] that
the Monte Carlo error of path functionals φ(x(m)

1:t ) remains
bounded over time if they relate to the filtering problem: i.e.,
φ(x

(m)
1:t ) = xt. However, it explodes for the smoothing problem:

i.e., φ(x(m)
1:t ) = x1.

There is, nonetheless, a lack of formal results for other
functionals of interest (a preliminary analysis of a symmetric
case is provided within the discussion in [28]). Therefore, any
solution that mitigates the path-degeneracy issue can only be
beneficial for any SMC method [64].

As noted before, the performance of the PF is critically
dependent on the proposal density selected. Ideally, it must
have the same support as the PDF that is being approximated.
In practice, the closer the proposal function is to the target
distribution, the better the approximation is.

The two most frequently used proposal functions are the
transition density f(xt+1|x1:t) and the optimal importance func-
tion f(xt+1|x1:t,y1:t+1), which lead to particle weight update
equations w(m)

t+1 ∝ w
(m)
t f(yt+1|xt+1) and w(m)

t+1 ∝ w
(m)
t f(yt+1|xt),

respectively.
The optimal importance function minimizes the variance of

the resulting weights, conditioned on the information avail-
able at each time instant: i.e., x(m)

1:t and y1:t+1. However, the
computation of the densities f(yt+1|xt) and f(xt+1|x1:t,y1:t+1)
require integration of certain variables, which is not trivial
(often intractable) for many problems of interest.

Therefore, it is of common practice to resort to the simpler
transition density, as its performance is often successful enough
(some illustrative results are provided in Appendix A).
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2.4 sequential monte carlo methods

Without loss of generality, the SMC methods presented in the
following chapters make use of the transition density as their
proposal function, as its derivation for the studied models is
already a challenging task.

The proposed SMC methods are described, in general, for the
filtering problem. That is, we obtain a random measure that
approximates the filtering density, i.e.,

f(xt|y1:t) ≈ fMt (xt) =

M∑
m=1

w
(m)
t δ

(
xt − x

(m)
t

)
. (16)

Computation of such density for different latent time-series
of practical interest is the main focus of the work hereby.

However, it is important to keep in mind the power of
the proposed SMC methods, as they can readily be used to
compute other informative densities. One can, for example,
derive parameter posteriors and predictive densities of the state
and/or the observations.

At any given time instant t, one takes the provided filtering
density fMt (xt) =

∑M
m=1w

(m)
t δ

(
xt − x

(m)
t

)
and extends it to

obtain the following mixture densities
f(θ|y1:t) ≈

∑M
m=1w

(m)
t f(θ|x

(m)
1:t ),

f(xt+1|y1:t) ≈
∑M
m=1w

(m)
t f(xt+1|x

(m)
1:t ),

f(yt+1|y1:t) ≈
∑M
m=1w

(m)
t f(yt+1|x

(m)
t+1),

(17)

where θ are model parameters and x(m)
t+1 in the last equation is

obtained by sampling from the transition density f(xt+1|x
(m)
1:t )

of the time-series.
Note that, with any of the above densities at hand, the

proposed SMC methods allow for computation not only of
point estimates, but also of more informative metrics, such as
probabilities of certain events or risk metrics.
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Part II

S M C M E T H O D S F O R L AT E N T
T I M E - S E R I E S

The core of this dissertation is on SMC methods for
inference and prediction of latent time-series. Short-
and long-memory processes are studied, where an
increased degree of complexity and uncertainty is
considered through the following Chapters.

In Chapter 3 and Chapter 4, latent ARMA(p,q) mod-
els are examined, with known and unknown param-
eters, respectively. In Chapter 5 and Chapter 6, long-
memory processes in the form of fGp and FARIMA
models are considered.

A more generic approach to latent time-series fol-
lows, where only wide-sense stationarity is assumed
in Chapter 7 and a solution for correlated time-series
is provided in Chapter 8.

We conclude by studying inference under model
uncertainty in Chapter 9.
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3
L AT E N T A R M A (p , q ) P R O C E S S E S W I T H
K N O W N PA R A M E T E R S

This chapter addresses the analysis of state-space models with
a latent ARMA process. Specifically, the most favorable case is
studied, where all the parameters of the state equation are
known.

First, a description of time-series in general, ARMA models in
particular, and their properties is provided in Section 3.1. Later,
two SMC methods are presented, targeting latent ARMA state
processes of different nature. In Section 3.2.1 the stationary
ARMA(p , q) process is considered and, in Section 3.2.2, more
generic ARMA models.

We conclude with Section 3.3, where the performance of
the proposed methods is compared to other state-of-the-art
alternatives.

time-series and the arma(p , q) model

The first step in the analysis of a time-series is the selection of
a suitable mathematical model for the data. Since the nature of
the observations is random, it is common to assume that the
data are realizations of a stochastic process. Thus, by using the
theory of statistics and stochastic processes, real-life time-series
can be accurately described.

Stochastic processes have widely been used to model the
behavior of time-series data [15, 16, 47, 80, 96]. At times,
the process is modeled according to a physical mechanism
that generates the data. Other times, the data are described
in a purely statistical sense, without providing a meaningful
interpretation of the model.

Among the many random processes available, this chapter
focuses on a particular class of time-series, which is very
flexible and widely applicable: the ARMA(p , q) model. Due to
its malleable parameterization, ARMA models can be fit to any
linear time-series with high accuracy.

The study of ARMA processes (and the special cases of
Auto-Regressive (AR) and Moving-Average (MA) processes) has
a long history. It started in the early 1950s [104], and its

22



3.1 time-series and the arma model

popularity rose considerably in the 1970s with [15]. Their
investigation in state-space form was introduced in [46].

Mathematically, the ARMA(p,q) model is described by

xt =

p∑
i=1

aixt−i +

q∑
j=1

bjut−j + ut, (18)

where p is the order of the AR component of the time-series
with parameters ai, i = 1, · · · ,p; and q is the order of the
MA with parameters bj, j = 1, · · · ,q. The innovations of the
ARMA(p,q) model are represented by ut. Typically, the uts are
assumed to be independent and identically distributed (iid)
samples. 1

The ARMA(p,q) model can be rewritten as follows:

xt =

p∑
i=1

aixt−i +

q∑
j=1

bjut−j + ut,

xt −

p∑
i=1

aixt−i =

q∑
j=1

bjut−j + ut,

p∑
i=0

aixt−i =

q∑
j=0

bjut−j, with a0 = 1,b0 = 1,

and thus, be represented in a lag-polynomial form:

A(L)xt = B(L)ut ,

where

A(L) = 1− a1L− a2L2 − · · ·− apLp ,

B(L) = 1+ b1L+ b2L
2 + · · ·+ bqLq .

(19)

The autoregressive part of the model (i.e., A(L)) takes into
account the previous values of the time-series, while the
moving-average term (i.e., B(L)) adds correlated innovations to
the time-series.

Depending on the nature of the noise ut, different stochastic
processes can be modeled: Gaussian stationary processes, mean
varying processes, time-series with outliers (with heavy tailed
innovations), etc.

If sequentially acquired data are understood as nothing but
a realization of such generic stochastic models; then, a time-
series is fully described by the mathematical formulation of the
stochastic process.

1 Non iid innovation processes are considered in Chapters 5 and 6.
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3.1 time-series and the arma model

In fact, by leveraging statistical tools, the densities of the
process (i.e., their PDFs) are sufficient to describe a time-series.
Precisely, different densities can be considered, depending on
the interest of the practitioner, such as the joint density f(x1:t) of
the time-series or the conditional transition density f(xt|x1:t−1).
Specifying the full form of the joint probability distribution
is sometimes quite a challenging task. However, once it is
obtained, any marginal or conditional density of the series can
be derived.

When necessary, it is common to make simplifying assump-
tions for the data observed in real-life. In fact, for many of the
time-series of interest in the fields of science and engineering
the stationarity of the process is usually enforced.

Time-series and stationarity

A stochastic process is said to be strictly stationary if its
properties (i.e., joint probability distribution) are unaffected by
a change in the time origin:

f(x1, x2, · · · , xt) = f(x1+τ, x2+τ, · · · , xt+τ). (20)

Since assuming strict sense stationarity is often too limiting,
a weaker form of stationarity is commonly employed in signal
processing, known as WSS.

WSS stochastic processes require that only the first and
second moments exist and that they are constant with respect
to time:

E {x1} = E {x2} = · · · = E {xt} = µ ,

Var {x1} = Var {x2} = · · · = Var {xt} = σ2 ,

Cov {xt, xt−τ} = Cov {xt+k, xt+k−τ} = γτ .

(21)

The conditions in Equation 21 imply that the mean does not
vary with time and that the autocovariance of the process is a
function of only the time-difference (lag τ) and not of the actual
time instants.

In order to enforce these weak-stationarity conditions for
an ARMA(p,q) process, limitations on the possible values of
the ARMA parameter set (ai,bj) must be satisfied. In fact, the
stationarity of an ARMA(p,q) process depends solely on its
autoregressive part (the moving average part determines the
invertibility of the process).
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3.1 time-series and the arma model

Precisely, an ARMA(p,q) process as described in Equation 19

is stationary if and only if the roots of the AR polynomial A(L)
lay outside the unit circle. A quick analysis of the condition
reveals that, equivalently, the stationarity of an ARMA(p,q)
process is guaranteed as long as the roots of the polynomial
1+ a1L+ a2L

2 + · · ·+ apLp are within the unit circle.
All in all, this implies that for a WSS stochastic process,

the mean and the covariance of the process are the sufficient
statistics that describe it. Thus, for an ARMA(p,q) process
that fulfills the stationarity constraints, the joint density is
computable in closed form.

ARMA(p,q) models: stationary densities

We now aim at deriving the joint density of a stationary
ARMA(p,q) process. We start by computing the first and second
order statistics of the ARMA(p,q) process, given that the roots
of the AR polynomial A(L) lie outside the unit circle. Without
loss of generality, a zero mean iid Gaussian innovation process
is assumed: i.e., E {ut} = 0 and Var {ut} = σ2u.

It can be readily concluded that the expected value of a
weakly-stationary ARMA(p,q) process is zero

E {xt} = µ = E


p∑
i=1

aixt−i +

q∑
j=1

bjut−j + ut

 =

=

p∑
i=1

aiE {xt−i}+

q∑
i=j

bjE
{
ut−j
}
+ E {ut}

=

p∑
i=1

aiµ ,

µ

(
1−

p∑
i=1

ai

)
= 0 ,

µ = 0 .

(22)
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3.1 time-series and the arma model

The autocovariance function (i.e., the expected value of the
product of two lagged time instants of the process E {xt, xt+τ} =
γ(τ)), can be written in the following recursive form,

For lags 0 6 τ < max(p,q+ 1) :

γ(τ) − a1γ(τ− 1) − · · ·− apγ(τ− p) = σ2u
∑
τ6j6q bjψj−τ .

For lags τ > max(p,q+ 1) :

γ(τ) − a1γ(τ− 1) − · · ·− apγ(τ− p) = 0.
where the ψjvalues are obtained from

ψj −
∑
0<τ6j

aτψj−τ = bj , 0 6 j < max(p,q+ 1),

ψj −
∑
0<τ6p

aτψj−τ = 0 , j > max(p,q+ 1).

(23)

The expressions in Equation 23 are recursive formulas for
computation of the covariance values of an ARMA(p,q) process
for any given lag τ.

These recursive equations can be rewritten in a linear system
form too, where ai = 0, i > p and bj = 0, j > q:

γ(0) γ(1) γ(2) · · · γ(τ)

γ(1) γ(0) γ(1) · · · γ(τ− 1)
γ(2) γ(1) γ(0) · · · γ(τ− 2)

...
...

... . . . ...
γ(τ) γ(τ− 1) γ(τ− 2) · · · γ(0)





1

−a1

−a2
...

−aτ


=

= σ2u



b0 b1 b2 · · · bτ
b1 b2 · · · bτ 0
...

...
... . . . 0

bτ−1 bτ 0 · · · 0

bτ 0 0 · · · 0





ψ0

ψ1

ψ2
...
ψτ


.

(24)
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3.1 time-series and the arma model

By basic algebraic transformations of the above Equation 24,
one obtains a matrix-based solution for computation of the
autocovariance values of an ARMA(p,q) up to lag τ:

γ(0)
γ(1)
γ(2)

...
γ(τ−2)
γ(τ−1)
γ(τ)

 =

σ2u


1 −a1 −a2 ··· −aτ−2 −aτ−1 −aτ

−a1 1−a2 −a3 ··· −aτ−1 −aτ 0
−a2 −a1−a3 1−a4 ··· −aτ 0 0

...
...

... . . . ...
...

...
−aτ−2 −aτ−3−aτ−1 −aτ−4−aτ ··· 1 0 0
−aτ−1 −aτ−2−aτ −aτ−3 ··· −a1 1 0
−aτ −aτ−1 −aτ−2 ··· −a2 a1 1


−1


1 b1 b2 ··· bτ
b1 b2 ··· bτ 0
...

...
... . . . 0

bτ−1 bτ 0 ··· 0
bτ 0 0 ··· 0




1 0 0 ··· 0
−a1 1 0 ··· 0

−a2 −a1 1
. . . 0

...
...

... . . . ...
−aτ −aτ−1 −aτ−2 ··· 1


−1

b0
b1
b2
...
bτ


(25)

In many real world applications, observed time-series show
stationarity features. That is, they can be described by sufficient
statistics that do not vary with time (i.e., WSS conditions are
fulfilled). Consequently, the autocovariance function γ(τ) of the
process and the mean are the required statistics to describe such
time-series.

For the ARMA(p,q) processes addressed here, the autocovari-
ance function depends on its parameters a and b, as shown
in Equation 25. Consequently, as long as the parameter set
(ai,bj) of the ARMA(p,q) model and the sufficient statistics of
the innovation process (i.e., E {ut} and Var {ut}) are known, then
an ARMA(p,q) time-series is fully described by the joint density
for which the sufficient statistics are readily computed.

For a unidimensional zero-mean ARMA(p,q) process with
zero-mean Gaussian innovations, the joint distribution of x1:t+1 =
(xt+1 xt · · · x2 x1)> is jointly Gaussian, i.e.,

x1:t+1 ∼ N(x1:t+1|0,Σt+1). (26)
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3.1 time-series and the arma model

The covariance matrix Σt+1 ∈ R(t+1)×(t+1) is a symmetric
Toeplitz matrix of the form

Σt+1 =



γ(0) γ(1) · · · γ(t)

γ(1) γ(0) · · · γ(t− 1)
...

... . . . ...
γ(t− 1) γ(t− 2) · · · γ(1)

γ(t) γ(t− 1) · · · γ(0)


, (27)

where γ(τ) is the autocovariance function of xt.
We introduce the notion of a standardized autocovariance

function defined as γ̃(τ) =
γ(τ)
σ2u

. Thus, we can rewrite the

covariance matrix of the vector x1:t+1 as Σt+1 = σ2uΣ̃t+1, where

Σ̃t+1 =

(
γ̃(0) γ̃>t
γ̃t Σ̃t

)
, with γ̃>t = (γ̃(1) γ̃(2) · · · γ̃(t)) . (28)

Given the joint distribution of the ARMA(p,q) process and
due to the properties of the Gaussian distribution (i.e., it is
closed under conditioning), the transition density of the process
can also be computed.

The density of the next state conditioned on the available
states at any given time t, x1:t, is a Gaussian distribution; that
is,

f(xt+1|x1:t,a,b,σ2u) = N
(
xt+1|µxt+1|x1:t ,σ

2
uct+1

)
, (29)

where

µxt+1|x1:t = γ̃
>
t Σ̃

−1
t x1:t,

ct+1 = γ̃(0) − γ̃
>
t Σ̃

−1
t γ̃t.

(30)

In summary, the stationarity analysis leads to a closed-form
expression for the transition density of the ARMA(p,q) process.

ARMA(p,q) models: recursive sufficient statistics

In general, the autocovariance function of an ARMA process is
infinite. Therefore, as time evolves, the size of the covariance
matrix in Equation 30 grows linearly in time, from dimensions
[t× t] to [t+ 1× t+ 1]. This imposes a practical burden, as the
computation of the Toeplitz matrix and its inverse becomes
very resource challenging, specially if long time-series are
considered.
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3.1 time-series and the arma model

However, we now show how to update recursively the
required quantities. We describe this on γ̃>t Σ̃

−1
t γ̃t, as the re-

maining quantities µxt+1|x1:t , ct+1 and x>1:tΣ̃
−1
t x1:t can be handled

analogously. In all of them, the key computation is the multipli-
cation of a vector with the inverse of a covariance matrix.

We rewrite the key computation as αt = −Σ̃−1t γ̃t, which
relates to a system of linear equations Σ̃tαt = −γ̃t, that can be
solved by the well-known Levinson-Durbin recursion [51]. Note
that Σ̃t is a symmetric Toeplitz matrix that can be generated
recursively.

For the computation of the sufficient statistics of the ARMA(p,q)
process at time instant t+ 1, one needs to recursively update
γ̃>t Σ̃

−1
t γ̃t to γ̃>t+1Σ̃

−1
t+1γ̃t+1.

This is achieved by

γ̃>t+1αt+1 = γ̃
>
t αt +βt+1γ̃

>
t Πtαt + γ̃(t+ 1)βt+1, (31)

where the values are recursively updated following these steps:

1. Initialize

• β1 = −γ̃(1)/γ̃(0),

• α1 = β1, and

• ε1 = γ̃(0)(1−β
2
1).

2. for t = 2, · · · , compute:

a) κt = γ̃(t) +α>t−1Πtγ̃t−1,

b) βt = −κt/εt−1,

c) εt = εt−1(1−β2t),

d) αt =

(
αt−1

0

)
+βt

(
Πt−1αt−1

1

)
,

where εt = γ̃(0) + α>t γ̃t and Πt is a t× t permutation matrix
with 1’s on the antidiagonal.

ARMA(p,q) models: short-memory property

In general, for a stationary ARMA(p,q) time-series at time
instant t, the full past history x1:t−1 is required to determine the
sufficient statistics of the process. Even though the exposition in
Section 3.1.2 follows such generic form, further insights into the
nature of the ARMA(p,q) covariance matrix and the transition
density are deemed relevant.
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3.1 time-series and the arma model

We recall here one of the prominent properties of ARMA(p,q)
processes: their short-memory. Namely, that most of the rele-
vant information in these models is contained within the most
recent past only. Hence, let us elaborate on the features of the
autocovariance function γ(τ) of any ARMA(p,q) process.

The exact form of the covariance matrix for the general
ARMA(p,q) process is, in fact, intractable [93, 94]. Despite the
lack of a generic analytical solution, the following statements
about the autocovariance function do hold [96]:

• For AR processes, the autocovariance function decays
exponentially.

• For MA processes, the autocovariance function is zero
after the first q lags.

• For the general ARMA(p,q), the autocovariance function
decays exponentially for lags bigger than m = max(p,q).

In summary, the dependence of ARMA(p,q) models on past
samples decays exponentially. Even if the sufficient statistics
in Equation 30 are explicitly written in terms of the full
past history x1:t, the dependence on past samples decays
exponentially. That is, it is negligible after a certain lag. This
short-memory property is evident from the behavior of the
recursive terms in Section 3.1.3 too: as t → ∞, γt → 0 and
κt → 0, thus βt → 0 and αt → 0.

Furthermore, notice that even if all the information is con-
tained in the covariance matrix, the key computation is on the
transition density. As a matter of fact, the αt = −Σ̃−1t γ̃t term
is critical in the computation of the sufficient statistics of the
transition density of any ARMA(p,q) process. Let us study its
properties.

On the one hand, for AR(p) models, it can be shown that the
information requirement for the transition density is not the
full past history, but only the last p time instants. That is, only
knowledge of the previous p time-series values xt−p:t−1 suffices.

Precisely, the sufficient statistics in Equation 30 for an AR(p)
process simplify toµxt+1|x1:t =

∑p
i=1 aixt−i ,

ct+1 = σ
2
u.

(32)

30



3.1 time-series and the arma model

The transition density for the AR(p) model is linear on
the past p values of the series. Particularly, for Gaussian
innovations processes, we have

f(xt|x1:t−1) = f(xt|xt−p:t−1) = N

(
xt

∣∣∣∣∣
p∑
i=1

aixt−i,σ2u

)
. (33)

On the other hand, the introduction of the MA(q) part
complicates the problem and, for such cases, the information
requirement is indeed infinite. That is, even if the MA auto-
covariance function is non-zero only for lags smaller than q,
the resulting conditional factors for both MA(q) and ARMA(p,q)
models are not truncated. Once again, note that the analytical
determination of such generic factors is not tractable.

However, not all is lost, as the key conditional factor in both
sufficient statistics, that is, αt, shows an exponential decay form
for stationary (and invertible) ARMA(p,q) processes. The exact
shape of the factor depends both on the model orders (p,q) and
the actual ARMA parameter values.

Extensive evaluation of the key factor αt (graphs included in
Appendix B) provide meaningful insights. Precisely, these are
the conclusions extracted:

1. The envelope of αt (i.e., the curve outlining its extremes),
decays to zero exponentially.

2. The rate of the decay depends on the model orders p and
q but, more importantly, on the MA parameter values bj.

3. The influence of the AR parameters ai is primarily on the
shape of αt, but not the rate of the decay.

4. For most of the invertibility range of the ARMA model, i.e.,
zeros within the unit circle, αt decays very quickly.

5. Only when the zeros are close to the unit circle, αt decays
more slowly.

These claims are further supported by results summarized in
Table 1 for general ARMA(p,q) models and in Table 2, Table 3

and Table 4 for different ARMA(1, 1) parameterizations. The
tables show the maximum time-lag τmax after which the αt
value is smaller than a given percentage of the maximum
contribution: i.e., |ατ| < η ·max {ατ}, ∀τ > τmax.

All in all, the short-memory property of ARMA(p,q) models
has been established. In other words, most of the information
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3.1 time-series and the arma model

ARMA(p,q)
Impact Factor

η = 0.1 η = 0.05 η = 0.01 η = 0.001

AR(1) 1 1 1 1

AR(2) 2 2 2 2

MA(1) 4 5 7 10

MA(2) 4 5 8 11

ARMA(1,1) a1 = 0.8,b1 = 0.5 4 5 7 10

ARMA(1,1) a1 = −0.8,b1 = 0.5 4 5 7 10

ARMA(1,1) a1 = 0.8,b1 = −0.5 4 5 7 10

ARMA(1,1) a1 = −0.8,b1 = −0.5 4 5 7 10

ARMA(1,2) 5 6 8 11

ARMA(2,1) 3 4 7 10

ARMA(2,2) 4 5 8 11

ARMA(3,1) 4 5 7 10

ARMA(3,2) 5 6 8 11

ARMA(1,3) 2 4 6 10

ARMA(2,3) 3 5 6 10

ARMA(3,3) 2 4 7 11

ARMA(4,1) 3 3 6 9

ARMA(4,2) 4 5 7 10

ARMA(4,3) 1 1 3 7

ARMA(4,4) 3 4 7 12

ARMA(1,4) 2 4 8 12

ARMA(2,4) 2 4 7 11

ARMA(3,4) 2 4 6 10

Table 1: τmax for different ARMA(p,q) models.

ARMA(1,1)
b1

-0.99 -0.95 -0.9 -0.85 -0.8 -0.75 -0.7 -0.6 -0.5 -0.4 -0.2 0 0.2 0.4 0.5 0.6 0.7 0.75 0.8 0.85 0.9 0.95 0.99

-0.99 229 45 22 15 11 9 7 5 4 3 2 1 2 3 4 5 7 9 11 15 22 45 0

-0.95 229 45 22 15 11 9 7 5 4 3 2 1 2 3 4 5 7 9 11 15 22 0 229

-0.9 229 45 22 15 11 9 7 5 4 3 2 1 2 3 4 5 7 9 11 15 0 45 229

-0.85 229 45 22 15 11 9 7 5 4 3 2 1 2 3 4 5 7 9 11 0 22 45 229

-0.8 229 45 22 15 11 9 7 5 4 3 2 1 2 3 4 5 7 9 0 15 22 45 229

-0.75 229 45 22 15 11 9 7 5 4 3 2 1 2 3 4 5 7 0 11 15 22 45 229

-0.7 229 45 22 15 11 9 7 5 4 3 2 1 2 3 4 5 0 9 11 15 22 45 229

-0.6 229 45 22 15 11 9 7 5 4 3 2 1 2 3 4 0 7 9 11 15 22 45 229

-0.5 229 45 22 15 11 9 7 5 4 3 2 1 2 3 0 5 7 9 11 15 22 45 229

-0.4 229 45 22 15 11 9 7 5 4 3 2 1 2 0 4 5 7 9 11 15 22 45 229

-0.2 229 45 22 15 11 9 7 5 4 3 2 1 0 3 4 5 7 9 11 15 22 45 229

0 229 45 22 15 11 9 7 5 4 3 2 0 2 3 4 5 7 9 11 15 22 45 229

0.2 229 45 22 15 11 9 7 5 4 3 0 1 2 3 4 5 7 9 11 15 22 45 229

0.4 229 45 22 15 11 9 7 5 4 0 2 1 2 3 4 5 7 9 11 15 22 45 229

0.5 229 45 22 15 11 9 7 5 0 3 2 1 2 3 4 5 7 9 11 15 22 45 229

0.6 229 45 22 15 11 9 7 0 4 3 2 1 2 3 4 5 7 9 11 15 22 45 229

0.7 229 45 22 15 11 9 0 5 4 3 2 1 2 3 4 5 7 9 11 15 22 45 229

0.75 229 45 22 15 11 0 7 5 4 3 2 1 2 3 4 5 7 9 11 15 22 45 229

0.8 229 45 22 15 0 9 7 5 4 3 2 1 2 3 4 5 7 9 11 15 22 45 229

0.85 229 45 22 0 11 9 7 5 4 3 2 1 2 3 4 5 7 9 11 15 22 45 229

0.9 229 45 0 15 11 9 7 5 4 3 2 1 2 3 4 5 7 9 11 15 22 45 229

0.95 229 0 22 15 11 9 7 5 4 3 2 1 2 3 4 5 7 9 11 15 22 45 229

0.99 0 45 22 15 11 9 7 5 4 3 2 1 2 3 4 5 7 9 11 15 22 45 229

a1

Table 2: τmax for different ARMA(1,1) parameterizations, with impact
factor η = 0.1.
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3.1 time-series and the arma model

ARMA(1,1)
b1

-0.99 -0.95 -0.9 -0.85 -0.8 -0.75 -0.7 -0.6 -0.5 -0.4 -0.2 0 0.2 0.4 0.5 0.6 0.7 0.75 0.8 0.85 0.9 0.95 0.99

-0.99 297 59 29 19 14 11 9 6 5 4 2 1 2 4 5 6 9 11 14 19 29 59 0

-0.95 297 59 29 19 14 11 9 6 5 4 2 1 2 4 5 6 9 11 14 19 29 0 297

-0.9 297 59 29 19 14 11 9 6 5 4 2 1 2 4 5 6 9 11 14 19 0 59 297

-0.85 297 59 29 19 14 11 9 6 5 4 2 1 2 4 5 6 9 11 14 0 29 59 297

-0.8 297 59 29 19 14 11 9 6 5 4 2 1 2 4 5 6 9 11 0 19 29 59 297

-0.75 297 59 29 19 14 11 9 6 5 4 2 1 2 4 5 6 9 0 14 19 29 59 297

-0.7 297 59 29 19 14 11 9 6 5 4 2 1 2 4 5 6 0 11 14 19 29 59 297

-0.6 297 59 29 19 14 11 9 6 5 4 2 1 2 4 5 0 9 11 14 19 29 59 297

-0.5 297 59 29 19 14 11 9 6 5 4 2 1 2 4 0 6 9 11 14 19 29 59 297

-0.4 297 59 29 19 14 11 9 6 5 4 2 1 2 0 5 6 9 11 14 19 29 59 297

-0.2 297 59 29 19 14 11 9 6 5 4 2 1 0 4 5 6 9 11 14 19 29 59 297

0 297 59 29 19 14 11 9 6 5 4 2 0 2 4 5 6 9 11 14 19 29 59 297

0.2 297 59 29 19 14 11 9 6 5 4 0 1 2 4 5 6 9 11 14 19 29 59 297

0.4 297 59 29 19 14 11 9 6 5 0 2 1 2 4 5 6 9 11 14 19 29 59 297

0.5 297 59 29 19 14 11 9 6 0 4 2 1 2 4 5 6 9 11 14 19 29 59 297

0.6 297 59 29 19 14 11 9 0 5 4 2 1 2 4 5 6 9 11 14 19 29 59 297

0.7 297 59 29 19 14 11 0 6 5 4 2 1 2 4 5 6 9 11 14 19 29 59 297

0.75 297 59 29 19 14 0 9 6 5 4 2 1 2 4 5 6 9 11 14 19 29 59 297

0.8 297 59 29 19 0 11 9 6 5 4 2 1 2 4 5 6 9 11 14 19 29 59 297

0.85 297 59 29 0 14 11 9 6 5 4 2 1 2 4 5 6 9 11 14 19 29 59 297

0.9 297 59 0 19 14 11 9 6 5 4 2 1 2 4 5 6 9 11 14 19 29 59 297

0.95 297 0 29 19 14 11 9 6 5 4 2 1 2 4 5 6 9 11 14 19 29 59 297

0.99 0 59 29 19 14 11 9 6 5 4 2 1 2 4 5 6 9 11 14 19 29 59 297

a1

Table 3: τmax for different ARMA(1,1) parameterizations, with impact
factor η = 0.05.

ARMA(1,1)
b1

-0.99 -0.95 -0.9 -0.85 -0.8 -0.75 -0.7 -0.6 -0.5 -0.4 -0.2 0 0.2 0.4 0.5 0.6 0.7 0.75 0.8 0.85 0.9 0.95 0.99

-0.99 430 90 44 29 21 17 13 10 7 6 3 1 3 6 7 10 13 17 21 29 44 90 0

-0.95 430 90 44 29 21 17 13 10 7 6 3 1 3 6 7 10 13 17 21 29 44 0 438

-0.9 430 90 44 29 21 17 13 10 7 6 3 1 3 6 7 10 13 17 21 29 0 90 434

-0.85 430 90 44 29 21 17 13 10 7 6 3 1 3 6 7 10 13 17 21 0 44 90 433

-0.8 430 90 44 29 21 17 13 10 7 6 3 1 3 6 7 10 13 17 0 29 44 90 432

-0.75 430 90 44 29 21 17 13 10 7 6 3 1 3 6 7 10 13 0 21 29 44 90 432

-0.7 431 90 44 29 21 17 13 10 7 6 3 1 3 6 7 10 0 17 21 29 44 90 432

-0.6 431 90 44 29 21 17 13 10 7 6 3 1 3 6 7 0 13 17 21 29 44 90 431

-0.5 431 90 44 29 21 17 13 10 7 6 3 1 3 6 0 10 13 17 21 29 44 90 431

-0.4 431 90 44 29 21 17 13 10 7 6 3 1 3 0 7 10 13 17 21 29 44 90 431

-0.2 431 90 44 29 21 17 13 10 7 6 3 1 0 6 7 10 13 17 21 29 44 90 431

0 431 90 44 29 21 17 13 10 7 6 3 0 3 6 7 10 13 17 21 29 44 90 431

0.2 431 90 44 29 21 17 13 10 7 6 0 1 3 6 7 10 13 17 21 29 44 90 431

0.4 431 90 44 29 21 17 13 10 7 0 3 1 3 6 7 10 13 17 21 29 44 90 431

0.5 431 90 44 29 21 17 13 10 0 6 3 1 3 6 7 10 13 17 21 29 44 90 431

0.6 431 90 44 29 21 17 13 0 7 6 3 1 3 6 7 10 13 17 21 29 44 90 431

0.7 432 90 44 29 21 17 0 10 7 6 3 1 3 6 7 10 13 17 21 29 44 90 431

0.75 432 90 44 29 21 0 13 10 7 6 3 1 3 6 7 10 13 17 21 29 44 90 430

0.8 432 90 44 29 0 17 13 10 7 6 3 1 3 6 7 10 13 17 21 29 44 90 430

0.85 433 90 44 0 21 17 13 10 7 6 3 1 3 6 7 10 13 17 21 29 44 90 430

0.9 434 90 0 29 21 17 13 10 7 6 3 1 3 6 7 10 13 17 21 29 44 90 430

0.95 438 0 44 29 21 17 13 10 7 6 3 1 3 6 7 10 13 17 21 29 44 90 430

0.99 0 90 44 29 21 17 13 10 7 6 3 1 3 6 7 10 13 17 21 29 44 90 430

a1

Table 4: τmax for different ARMA(1,1) parameterizations, with impact
factor η = 0.001.
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3.2 smc method for latent arma processes

required to predict the next state is contained in a (relatively)
small number of recent samples. Cautious consideration of this
assertion should be taken when MA parameters bj → 1, that is,
when the zeros of the process are almost on the unit circle.

smc method for latent arma(p , q) processes

We now consider a state-space model where the state is
represented by an ARMA process of known model order and
parameters, and the observations are nonlinear functions of the
state. That is, the model order (p , q); the ARMA parameters
a = (a1 · · · ap)> and b = (b1 · · · bq)>; and the state
innovation’s sufficient statistics, i.e., E {ut } and Var {ut }, are
all known.

Mathematically, a state-space model with a latent ARMA(p , q)
time-series is represented byxt =

∑p
i=1 aixt−i + ut +

∑q
j=1 bjut−j ,

yt = h(xt , vt) ,
(34)

where ut and vt are the innovations of the state and space
processes, respectively.

State-space models as in Equation 34 are very generic, due
to (1) the flexibility provided by the ARMA(p , q) model in
capturing the dynamics of various time-series, and (2) the
considered generic observation function h(xt , vt). The only
restriction made about h(·) is that the resulting likelihood
function, f(yt |xt), must be known up to a proportionality
constant.

Given the observations up to time instant t, y1 :t, the goal is to
sequentially estimate the posterior distribution of xt, f(xt |y1 :t)
and to obtain the forecasting distribution f(yt+1 |y1 :t).

As previously explained in Section 2.4, SMC techniques are
suitable for such inference problems in nonlinear and non-
Gaussian systems.

In general, hidden linear stochastic processes with nonlin-
ear observations have been extensively studied. Some have
focused on Bayesian analysis [58], while others have used quasi-
maximum likelihood (QML) type approximating techniques
[17]. In engineering and statistics, hidden AR processes have
been investigated with PF methods [22, 45, 73]. The importance
of considering the MA part (correlated noise) is justified by the
memory properties exhibited by many real-life time-series [80].
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3.2 smc method for latent arma processes

The estimation of hidden ARMA processes is a much more
challenging task than the estimation of AR processes. The
increased challenges are due to, amongst others, the nonlinear-
ities induced by the MA part. Even when the ARMA process
is directly observed, the derivation of the exact parameter
densities is intractable and thus, approximations have to be
used, as for example in [24, 75]. The problem is certainly much
more difficult when the ARMA process is not observed, as in this
dissertation. If in addition, observations are nonlinear functions
of the ARMA process, one has to employ advanced techniques
for sequential estimation.

In [47], hidden ARMA processes were studied and the ob-
jective was to estimate them. Two classes of problems were
considered, one where the processes were observed via linear
functions of the states and another, where the functions were
nonlinear. For the first class, optimal filtering methods were
presented and, for the latter, approximation methods based
on model transformations and the use of the QML and the
importance sampling principles were proposed.

In this dissertation, we resort to SMC methods [7], that
have the capacity of overcoming these difficulties and have
already been successfully applied in somewhat similar state-
space models [78, 88, 97].

SMC for stationary latent ARMA(p,q) processes

We propose an SMC method for inference of latent stationary
ARMA(p,q) processes with known parameters. To do so, we
leverage the analysis in Section 3.1.2 and, in particular, the
transition density in Equation 29 with sufficient statistics com-
puted as in Equation 30. Such density allows for propagation of
samples from time instant t to t+ 1 and thus, an SMC method
can be readily derived (see Table 5 for details).

Note that both the derivation in Section 3.1.2 and the PF
presented in Table 5 consider Gaussian state innovations. The
generalization to other noise distributions is straightforward,
as long as (1) the resulting ARMA process is stationary; (2)
the innovations can be accurately described by second order
statistics; and (3) the resulting densities are closed under
formation of conditional distributions.
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3.2 smc method for latent arma processes

pf for latent stationary arma , known parameters

1. At time instant t, consider the random measure

fMt (xt) =

M∑
m=1

w
(m)
t δ

(
xt − x

(m)
t

)
.

2. Upon reception of a new observation at time instant
t+ 1.

3. Perform resampling of the state (to avoid sample
degeneracy) by drawing from a categorical distribution
defined by the random measure

x
(m)
t ∼ fMt (xt), where m = 1, · · · ,M.

(In principle, this step does not have to be performed at
every time instant.)

4. Propagate the particles by sampling from the transition
density, given the previous stream of (resampled)
particles:

x
(m)
t+1 ∼ f(xt+1|x

(m)
1:t ) = N

(
xt+1|µxt+1|x1:t ,σ

2
uct+1

)
,

where

µxt+1|x1:t = γ̃>t Σ̃−1t x1:t,ct+1 = γ̃(0) − γ̃
>
t Σ̃

−1
t γ̃t.

5. Compute the non-normalized weights for the drawn
particles according to

w̃
(m)
t+1 ∝ f(yt+1|x

(m)
t+1),

and normalize them to obtain a new random measure

fMt+1(xt+1) =

M∑
m=1

w
(m)
t+1δ

(
xt+1 − x

(m)
t+1

)
.

Table 5: PF for latent stationary ARMA with known parameters.
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3.2 smc method for latent arma processes

SMC for generic latent ARMA(p,q) processes

In this section, a more flexible case is studied, where the sta-
tionarity assumption of the previous Section 3.2.1 is dropped.
Hence, generic distributions for state innovations ut are con-
sidered. With this new approach, inference in a wider class
of latent time-series that do not fall into the category of WSS
processes is possible.

The foundation for this new SMC method is to drift the
sampling step from the state variables to the innovation process
itself. A visual justification for this perspective is provided by
inspecting the problem in hand from a Probabilistic Graphical
Model (PGM) point of view.

As a toy example, let us consider a hidden ARMA(1,1)
state process. Mathematically, such a state-space model is
formulated asxt = a1xt−i + ut + b1ut−1 ,

yt = h(xt, vt) ,
(35)

which is represented graphically in Figure 9.

u0 u1 u2 u3 u4

x0 x1 x2 x3 x4

v1 v2 v3 v4

y1 y2 y3 y3

Figure 9: Graphical representation of the ARMA(1,1) model.

Recall that the single-circled variables are stochastic in nature,
while the double-circled ones are deterministic.

The PGM representation of Figure 9 illustrates the determin-
istic nature of the state, once knowledge of the noise and the
parameters is provided. That is, conditioned on the previous
state xt−1, the actual and past innovations ut and ut−1, and the
parameters a and b, the density of the actual state is nothing
but a Dirac’s delta function:

f(xt|xt−1,ut,ut−1,a,b) = δ (xt − [axt−1 + ut + but−1]) . (36)
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3.2 smc method for latent arma processes

Such a deterministic dependency readily facilitates the com-
putation of the joint transition density of the state and innova-
tion processes:

f(xt,ut|xt−1,ut−1,a,b) = fu(ut) · f(xt|xt−1,ut,ut−1,a,b)
= fu(ut) · δ (xt − [axt−1 + ut + but−1]) .

(37)

Therefore, by considering the density of not only the state,
but also of the driving innovation, a new SMC method is
proposed for generic ARMA(p,q) models with arbitrary state
noise processes.

Given a generic ARMA(p,q) latent state process

xt =

p∑
i=1

aixt−i + ut +

q∑
j=1

bjut−j where ut ∼ fu(u), (38)

the devised PF operates by first sampling the noise ut, then
determining the joint state-innovation distribution, conditioned
on those noise samples and the given parameter values

f(xt|a,b,ut−m:t) =

p∑
i=1

aixt−i +

q∑
j=1

bjut−j + fu(u), (39)

where m = max(p,q).
The main advantages of this new proposed SMC method

(fully described in Table 6) are:

• It is applicable to arbitrary state innovations, as long as
samples can be drawn from its distribution.

• It does not assume stationarity.

• It provides minimal added complexity (only one addi-
tional computational step), in exchange for great flexibil-
ity.
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3.2 smc method for latent arma processes

pf for latent general arma , known parameters

1. At time instant t, consider the random measure

fMt (xt,ut) =
M∑
m=1

w
(m)
t δ

((
xt

ut

)
−

(
x
(m)
t

u
(m)
t

))
.

2. Upon reception of a new observation at time instant
t+ 1.

3. Perform resampling of the state (to avoid sample
degeneracy) by drawing from a categorical distribution
defined by the random measure(

x
(m)
t

u
(m)
t

)
∼ fMt (xt,ut), where m = 1, · · · ,M.

(In principle, this step does not have to be performed at
every time instant.)

4. Propagate the innovation particles from its distribution

u
(m)
t+1 ∼ fu(u).

5. Propagate the state particles, given the previous
(resampled) state and noise particles:

x
(m)
t+1 =

p∑
i=1

aix
(m)
t+1−i +

q∑
j=1

bju
(m)
t+1−j + u

(m)
t+1.

6. Compute the non-normalized weights for the drawn
particles according to

w̃
(m)
t+1 ∝ f(yt+1|x

(m)
t+1),

and normalize them to obtain a new random measure

fMt+1(xt+1,ut+1) =
M∑
m=1

w
(m)
t+1δ

((
xt+1

ut+1

)
−

(
x
(m)
t+1

u
(m)
t+1

))
.

Table 6: PF for latent general ARMA with known parameters.
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3.3 evaluation

evaluation

We evaluate the performance of the proposed methods for
different latent time-series. In order to provide sound evidence
of the validity and convenience of the proposed SMC solution,
we simulate the stochastic log-volatility (Stochastic Volatility
(SV)) model, popular in the study of nonlinear state-space
models [1, 40].

The observations are zero-mean with time-varying log-variance
equal to the ARMA(p,q) state process. More specifically,xt =

∑p
i=1 aixt−i +

∑q
j=1 bjut−j + ut,

yt = e
xt
2 vt,

(40)

where vt is a standard Gaussian variable and the state noise ut
is a zero-mean Gaussian variable. We evaluate the proposed
method for both stationary ARMA and more generic cases,
always under the assumption of known parameters.

Given knowledge of all the ARMA parameters, the state
equation is linear and Gaussian and thus, one only needs
to deal with the nonlinearities in the observation equation.
A family of very popular alternative approaches is based on
the KF, such as the EKF [3], the UKF [61] and other Sigma-
Point Kalman filters [74]. However, as reported in [105], these
methods fail when addressing the SV model. The reason is that
they never update the prior beliefs because the Kalman gain is
null.

The first goal is to justify the use of the proposed SMC
methods for inference of latent time-series in nonlinear systems.
We evaluate the proposed methods by comparing them to
an alternative based on [47] and [106]. Due to the failure of
KF methods for estimation in SV models, a transformation of
the model is suggested to circumvent the nonlinearity. In this
transformed state-spacext =

∑p
i=1 aixt−i +

∑q
j=1 bjut−j + ut,

log(y2t) = xt + zt,
(41)

an approximated KF can be applied. Full details on the imple-
mented approximated Kalman Filter (Approx.KF) are available
in Appendix C.

We first compare the performance of this Approx.KF and the
stationary PF introduced in Table 5. As shown in Figure 10, both
methods track the hidden state with acceptable accuracy.
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(a) Approx.KF state tracking.
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(b) Proposed PF state tracking.

Figure 10: True (black) and estimated (red) state for Approx.KF and
proposed SMC for a latent ARMA(1,1) model.

A more thorough evaluation of the proposed SMC is pre-
sented in Table 7. Unless otherwise indicated, 1000 particles
are used for the PF method and the results are Mean-Squared
Error (MSE)s of the hidden state estimates, averaged over 100 re-
alizations of 500 samples long time-series. There, the following
different ARMA(p,q) parameterizations are scrutinized:

1. AR(1) with a1 = 0.8,

2. AR(2) with a1 = 0.8,a2 = 0.15,

3. MA(1) with b1 = 0.5,

4. MA(2) with b1 = 0.8,b2 = 0.15,
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3.3 evaluation

5. ARMA(1,1) with a1 = 0.8,b1 = 0.5,

6. ARMA(1,1) with a1 = −0.8,b1 = 0.5,

7. ARMA(1,1) with a1 = 0.8,b1 = −0.5,

8. ARMA(1,1) with a1 = −0.8,b1 = −0.5,

9. ARMA(1,2) with a1 = 0.8,b1 = 0.8,b2 = 0.15,

10. ARMA(2,1) with a1 = 0.8,a2 = 0.15,b1 = 0.5,

11. ARMA(2,2) with a1 = 0.8,a2 = 0.15,b1 = 0.9,b2 = 0.15,

12. ARMA(3,1) with a1 = 0.5,a2 = 0.3,a3 = 0.15,b1 = 0.5,

13. ARMA(3,2) with a1 = 0.5,a2 = 0.3,a3 = 0.15,b1 =

0.8,b2 = 0.15,

14. ARMA(1,3) with a1 = 0.8,b1 = 0.5,b2 = 0.3,b3 =

0.15,b2 = 0.15,

15. ARMA(2,3) with a1 = 0.8,a2 = 0.15,b1 = 0.5,b2 =

0.3,b3 = 0.15,b2 = 0.15,

16. ARMA(3,3) with a1 = 0.5,a2 = 0.3,a3 = 0.15,b1 =

0.5,b2 = 0.3,b3 = 0.15,b2 = 0.15,

17. ARMA(4,1) with a1 = 0.5,a2 = 0.2,a3 = 0.15,a4 =

0.1,b1 = 0.5,

18. ARMA(4,2) with a1 = 0.5,a2 = 0.2,a3 = 0.15,a4 =

0.1,b1 = 0.8,b2 = 0.15,

19. ARMA(4,3) with a1 = 0.5,a2 = 0.2,a3 = 0.15,a4 =

0.1,b1 = 0.5,b2 = 0.3,b3 = 0.15,

20. ARMA(4,4) with a1 = 0.5,a2 = 0.2,a3 = 0.15,a4 =

0.1,b1 = 0.5,b2 = 0.2,b3 = 0.15,b4 = 0.1,

21. ARMA(1,4) with a1 = 0.8,b1 = 0.5,b2 = 0.2,b3 =

0.15,b4 = 0.1,

22. ARMA(2,4) with a1 = 0.5,a2 = 0.15,b1 = 0.5,b2 =

0.2,b3 = 0.15,b4 = 0.1,

23. ARMA(3,4) with a1 = 0.5,a2 = 0.3,a3 = 0.15,b1 =

0.5,b2 = 0.2,b3 = 0.15,b4 = 0.1.
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3.3 evaluation

ARMA(p,q)
State estimation error (MSE)
Approx.KF Stationary PF

AR(1) 1.3484 1.0891

AR(2) 1.566 1.1946

MA(1) 1.9067 1.013

MA(2) 1.3061 0.98962

ARMA(1,1) a1 = 0.8,b1 = 0.8 3.9234 1.6363

ARMA(1,1) a1 = 0.8,b1 = −0.8 0.81783 0.73751

ARMA(1,1) a1 = −0.8b1 = 0.8 0.83402 0.74818

ARMA(1,1) a1 = −0.8,b1 = −0.8 3.9437 1.7715

ARMA(1,2) 3.4611 1.6895

ARMA(1,3) 2.3234 1.528

ARMA(1,4) 2.3356 1.5188

ARMA(2,1) 3.7798 1.7046

ARMA(2,2) 3.3571 1.7668

ARMA(2,3) 2.3192 1.6113

ARMA(2,4) 2.3422 1.61

ARMA(3,1) 3.1689 1.4607

ARMA(3,2) 2.5131 1.4801

ARMA(3,3) 1.8402 1.3985

ARMA(3,4) 1.7436 1.3415

ARMA(4,1) 3.2524 1.4442

ARMA(4,2) 2.6201 1.4749

ARMA(4,3) 1.7059 1.3142

ARMA(4,4) 1.7228 1.3086

Table 7: Filtering MSE for the ApproxKF and the stationary PF.

From Table 7, we see the advantage of using the proposed PF
in Table 5, as it outperforms the alternative for all the studied
ARMA(p,q) models. This superior accuracy, however, comes
with the additional computational complexity of the Monte
Carlo sampling of the method.

Note that these results have been obtained by using the full
covariance matrix of the ARMA(p,q) models for the transition
density in Equation 29. However, as noted in Section 3.1.4, most
of the information in ARMA models is contained within only the
most recent samples. Thus, one may be tempted to truncate the
covariance matrix up to a maximum lag τmax.
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3.3 evaluation

The justification comes from the short-memory feature of the
studied ARMA(p,q) models, so that we save in computation and
memory without sacrificing in performance. The modification
consists in truncating the computation of the sufficient statistics
in Equation 30, i.e., µxt+1|x1:t and ct+1, to a maximum lag τmax.

This reduces the computational cost (one computes γ(τ) only
for a relatively short window τ = 0, · · · , τmax), while incurring
a negligible information loss (γ(τ) ≈ 0, τ > τmax).

The computation of the sufficient statistics based on a trun-
cated sequence is approximately equal to the sufficient statistics
obtained from the full sequence:

µxt+1|x1:t = γ̃
>
t Σ̃

−1
t x1:t

≈ γ̃>τmaxΣ̃
−1
τmaxxt−τmax:t,

ct+1 = γ̃(0) − γ̃
>
t Σ̃

−1
t γ̃t

≈ γ̃(0) − γ̃>τmaxΣ̃
−1
τmaxγ̃τmax .

(42)

In Figure 11, we study the impact of truncating the co-
variance matrix to different lags (i.e., τmax). As expected, no
significant performance difference is seen for lags greater than
10 in all the studied models, while the computational burden
of recursively updating the statistics in Equation 30 is avoided.
Further details on the MSE for different truncation lags are
collected in Table 8.

The results presented in Table 8 reinforce the statements in
Section 3.1.4 about the short-memory properties of the ARMA
models, i.e., most of the information is confined within the last
few samples.

Note that, by looking at Table 1, informed guesses on what
maximum lag to use are attainable. From the values provided
there, truncation around τmax ≈ 10 seems reasonable. As
a matter of fact, there is no PF performance improvement
observed for lags τmax > 10 in Table 8.

We reiterate that there is no loss of information with autoco-
variance truncation by showing the evolution of the estimation
error over time in Figure 12 (averaged over 10 realizations of
10,000 samples long ARMA(1,1) processes). There, we observe
that the estimation is unbiased and that it does not vary over
time for any window size (the averaged error is 0.0043 for
τmax = 25 and 0.0051 for τmax = 100).
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ARMA(p,q)
State estimation error (MSE)

τmax = m τmax = 5 τmax = 10 τmax = 15 τmax = 20 τmax = 30 τmax = 40 τmax = 50 τmax = 75 τmax = t

AR(1) 1.1029 1.1032 1.1031 1.1041 1.1031 1.1038 1.1027 1.1033 1.1033 1.1028

AR(2) 1.2305 1.2286 1.2295 1.23 1.2291 1.2301 1.2299 1.2299 1.2303 1.2294

MA(1) 1.0263 1.0099 1.01 1.0103 1.0095 1.0093 1.0095 1.0092 1.0098 1.0096

MA(2) 1.0067 1.0016 1.0024 1.0023 1.002 1.0027 1.0016 1.0021 1.0014 1.0012

ARMA(1,1) a1 = 0.8,b1 = 0.8 1.7608 1.6825 1.6834 1.6818 1.6796 1.6794 1.6815 1.6829 1.6816 1.6806

ARMA(1,1) a1 = −0.8,b1 = 0.8 0.7465 0.74623 0.74632 0.74629 0.74645 0.74647 0.7467 0.74631 0.74641 0.74599

ARMA(1,1) a1 = 0.8,b1 = −0.8 0.73987 0.74017 0.7399 0.7402 0.7408 0.74034 0.74062 0.74042 0.74042 0.74042

ARMA(1,1) a1 = −0.8,b1 = −0.8 1.8417 1.7807 1.7791 1.7791 1.7777 1.7795 1.779 1.7786 1.7779 1.7775

ARMA(1,2) 1.752 1.7365 1.7352 1.7358 1.7336 1.7353 1.736 1.7348 1.7378 1.7339

ARMA(2,1) 1.8374 1.8296 1.8283 1.8269 1.8285 1.8254 1.8292 1.8273 1.8294 1.8275

ARMA(2,2) 1.8793 1.871 1.8708 1.8681 1.8697 1.8716 1.8705 1.8691 1.8706 1.8702

ARMA(3,1) 1.58 1.5724 1.569 1.5704 1.5707 1.5707 1.5706 1.571 1.569 1.5694

ARMA(3,2) 1.5803 1.5767 1.5777 1.5777 1.5759 1.5758 1.5749 1.5758 1.5776 1.5769

ARMA(1,3) 1.5759 1.573 1.5748 1.5733 1.5723 1.5739 1.5742 1.5738 1.5732 1.5712

ARMA(2,3) 1.761 1.756 1.7581 1.7584 1.7542 1.7534 1.7538 1.7581 1.7556 1.757

ARMA(3,3) 1.4975 1.4959 1.4944 1.4943 1.4942 1.4975 1.4958 1.4954 1.4974 1.4935

ARMA(4,1) 1.5293 1.5261 1.5256 1.5253 1.5247 1.5273 1.5276 1.5267 1.5266 1.5264

ARMA(4,2) 1.6044 1.6044 1.6078 1.6027 1.6071 1.6054 1.6046 1.6041 1.6066 1.6053

ARMA(4,3) 1.4646 1.4655 1.4651 1.4664 1.4663 1.4634 1.4656 1.4634 1.4641 1.4648

ARMA(4,4) 1.5206 1.5199 1.5183 1.5193 1.518 1.5204 1.5184 1.5184 1.5221 1.5201

ARMA(1,4) 1.5503 1.5519 1.5493 1.5505 1.5513 1.5499 1.5504 1.551 1.551 1.5494

ARMA(2,4) 1.8102 1.8126 1.8087 1.8118 1.8103 1.8078 1.8095 1.8059 1.8115 1.8105

ARMA(3,4) 1.5032 1.5008 1.5012 1.5027 1.5002 1.4999 1.5033 1.503 1.499 1.5015

Table 8: Filtering MSE of the stationary PF for different truncation lags.
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Figure 11: Impact of covariance truncation in the MSE performance
of the proposed SMC.
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(a) ARMA(1,1) with τmax = 25.
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(b) ARMA(1,1) τmax = 100.

Figure 12: Estimation error of the proposed SMC as a function of time.
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3.3 evaluation

In summary, we conclude that it is reasonable to truncate
the covariance matrix of ARMA(p,q) models, based on a pre-
liminary analysis of the model at hand. The filtering accuracy
is kept consistent, while both memory and computational
requirements are significantly reduced.

Finally, we evaluate the alternative SMC method proposed.
That is, we now study the performance of the more general PF
described in Table 6.

On the one hand, we show that the performance of the SMC
in Table 6 is identical to that of the SMC method in Table 5 for
all the studied cases (see Table 9). Thus, we can conclude that
both alternative methods are accurate solutions for inference of
latent ARMA(p,q) time-series with Gaussian iid innovations.

On the other hand, it is important to emphasize the extra
flexibility offered by the general PF as in Table 6. To illustrate
this, three different latent ARMA(p,q) models are evaluated,
each with different state innovations:

• Sinusoidal-mean Gaussian: The state innovation is Gaus-
sian with a periodic mean. Specifically, a sinusoid with
period 100 time-instants is used: µut = sin(

2πt
100).

• Time-correlated Gaussian: The state innovation is Gaus-
sian correlated in time with the previous samples. Specif-
ically, ρt,t = 1 and ρt,t−1 = 0.5.

• Student-t distributed noise: The state innovation fol-
lows a Student t-distribution with ν = 2 degrees of
freedom, a null location parameter µ = 0 and a unit scale
parameter σ2u = 1.

Figure 13 provides examples of the tracking accuracy of the
general SMC method presented in Table 6. The MSE evaluation
for 100 realizations summarized in Table 10 illustrates how, for
different Gaussian state innovations, the PF performs compara-
ble to the iid Gaussian benchmark case.

When considering non-Gaussian noises, as in Table 11 for
a noise with a Student-t distribution, a performance loss in
terms of MSE is observed, due to the unexpected events caused by
the heavy tails of the distribution. Nonetheless, it is important
to notice that the PF is able to recover from this rare events
and track accurately the forthcoming values of the latent time-
series.
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ARMA(p,q)
State estimation error (MSE)
General PF Stationary PF

AR(1) 1.0115 1.0126

AR(2) 1.0125 1.0135

MA(1) 1.1032 1.1031

MA(2) 1.2114 1.2133

ARMA(1,1) a=0.8, b=0.8 1.655 1.658

ARMA(1,1) a=0.8, b=-0.8 0.7377 0.73925

ARMA(1,1) a=-0.8 b=0.8 0.74593 0.74803

ARMA(1,1) a=-0.8, b=-0.8 1.7302 1.7306

ARMA(1,2) 1.7271 1.7259

ARMA(1,3) 1.5467 1.5451

ARMA(1,4) 1.5046 1.506

ARMA(2,1) 1.7336 1.735

ARMA(2,2) 1.7759 1.7795

ARMA(2,3) 1.6271 1.6241

ARMA(2,4) 1.5908 1.5906

ARMA(3,1) 1.4749 1.4746

ARMA(3,2) 1.4963 1.4991

ARMA(3,3) 1.399 1.3997

ARMA(3,4) 1.381 1.3821

ARMA(4,1) 1.4718 1.4707

ARMA(4,2) 1.4565 1.4557

ARMA(4,3) 1.3366 1.3372

ARMA(4,4) 1.306 1.3061

Table 9: Filtering MSE comparison for the stationary and general PFs.
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ARMA(p,q)
State estimation error (MSE)

iid Gaussian Sinusoidal-mean Gaussian Time-correlated Gaussian
AR(1) 1.096 1.0961 1.325

AR(2) 1.0102 1.0114 1.221

MA(1) 1.2116 1.1902 1.4112

MA(2) 0.9955 1.0056 1.2233

ARMA(1,1) a1 = 0.8,b1 = 0.8 1.693 1.6626 2.0001

ARMA(1,1) a1 = 0.8,b1 = −0.8 0.74611 0.75225 0.70873

ARMA(1,1) a1 = −0.8b1 = 0.8 0.74552 0.74782 0.70628

ARMA(1,1) a1 = −0.8,b1 = −0.8 1.7997 1.7413 0.60319

ARMA(1,2) 1.7068 1.7273 2.0484

ARMA(1,3) 1.5614 1.5361 1.8443

ARMA(1,4) 1.529 1.5099 1.808

ARMA(2,1) 1.7337 1.7064 2.0199

ARMA(2,2) 1.763 1.7698 2.0868

ARMA(2,3) 1.607 1.627 1.895

ARMA(2,4) 1.5876 1.6198 1.8428

ARMA(3,1) 1.4848 1.4749 1.7553

ARMA(3,2) 1.5079 1.4926 1.7807

ARMA(3,3) 1.397 1.3984 1.6251

ARMA(3,4) 1.3634 1.3744 1.6177

ARMA(4,1) 1.4428 1.4608 1.735

ARMA(4,2) 1.4848 1.4482 1.7196

ARMA(4,3) 1.3391 1.3362 1.5654

ARMA(4,4) 1.318 1.3185 1.5352

Table 10: Filtering MSE comparison for the general PF with different
Gaussian innovations.
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(a) Tracking with sinusoidal-mean Gaussian noise.
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(b) Tracking with time-correlated Gaussian noise.
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(c) Tracking with Student-t distributed noise.

Figure 13: True (black) and estimated (red) state for the proposed
generic SMC.
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ARMA(p,q)
State estimation error (MSE)

Student-t noise
AR(1) 10.974

AR(2) 10.179

MA(1) 6.0782

MA(2) 4.2368

ARMA(1,1) a1 = 0.8,b1 = 0.8 21.16

ARMA(1,1) a1 = 0.8,b1 = −0.8 4.1639

ARMA(1,1) a1 = −0.8b1 = 0.8 8.7618

ARMA(1,1) a1 = −0.8,b1 = −0.8 109.623

ARMA(1,2) 26.749

ARMA(1,3) 51.237

ARMA(1,4) 55.692

ARMA(2,1) 15.497

ARMA(2,2) 34.883

ARMA(2,3) 4.5758

ARMA(2,4) 36.234

ARMA(3,1) 38.71

ARMA(3,2) 7.2655

ARMA(3,3) 53.092

ARMA(3,4) 10.229

ARMA(4,1) 16.633

ARMA(4,2) 7.7182

ARMA(4,3) 30.58

ARMA(4,4) 21.167

Table 11: Filtering MSE for the general PF with Student-t distributed
innovations.
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4
L AT E N T A R M A (p , q ) P R O C E S S E S W I T H
U N K N O W N PA R A M E T E R S

This chapter addresses the analysis of state-space models with
a latent stationary ARMA process. In practice, it is unlikely (if
not impossible) to have full knowledge of the underlying ARMA
parameters. Thus, we relax the restrictive assumptions of Chap-
ter 3 and consider the unknown parameter case. Nonetheless,
we do assume that the model order of the process, i.e., (p , q) is
known. Now, one needs to deal with the nonlinearities induced
by the unknown parameters too and thus, inference of latent
ARMA processes gets complicated even more.

The contribution in this chapter is in the novel SMC methods
for inference of latent ARMA processes with unknown parame-
ters, which are presented in Section 4.2.1 and Section 4.2.2.

We avoid parameter estimation and exploit Rao-Blackwelliza-
tion of the unknowns, as explained in Section 4.2. With this
technique, the performance of the devised methods is superior,
as shown in Section 4.3.

smc methods and unknown static parameters

In this chapter, the problem of estimating hidden ARMA(p , q)
processes when their parameters are unknown is considered.
Since the adopted SMC methodology requires special care in
handling static parameters, we explore an alternative technique
known as Rao-Blackwellization.

The main inconvenience for SMC methods is the presence of
fixed unknown parameters. It has been extensively reported
that PFs suffers when the models contain fixed parameters [72].
In some of the existing work, particles of all the unknown
states and parameters are jointly generated [22, 71, 78], and
then weighted according to the observations.

However, the performance of the PFs deteriorates, as the
parameter does not change over time and, thus, propagating
parameter particles becomes troublesome. To overcome such
limitations, various methodologies have been suggested, in-
cluding the use of artificial parameter evolution [49], kernel
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4.2 latent arma : unknown parameters

smoothing techniques [71], density-assisted particle filtering
[39], marginalization [97] or smoothed MAP estimation [90].

Here, we shift our attention from parameter estimation and
exploit an alternative technique known as Rao-Blackwellization
[23]. With Rao-Blackwellization, one integrates out some of
these (or all) static parameters and, in principle, does not
generate particles for them.

Rao-Blackwellization is a statistical procedure that guaran-
tees reduced estimation variance of the variables of interest.
Thus, it allows for improved estimation of the state process. In
a nutshell, it consists of marginalizing some of the variables of
the model. This technique has already been applied to PFs [44,
81, 89, 92].

In the problem of interest here, the unknown static parame-
ters are those of the latent ARMA process. That is, the model
parameters a = (a1 · · · ap)> and b = (b1 · · · bq)>, and
the driving noise variance σ2u (as in Chapter 3, zero-mean
innovations are considered here). The goal is to integrate out
all these unknowns, so that there is no need for generating
particles for them.

In the SMC sampling context, when integration of the un-
known variables is carried out analytically, the accuracy of the
method is improved. On the one hand, due to the reduced
dimensionality of the resulting sampling problem. On the
other, due to the Rao-Blackwell theorem [65]. When Rao-
Blackwellization of the parameters cannot be implemented
analytically, one can resort to a Monte Carlo approximation of
the integral.

latent arma(p , q) processes with unknown parame-
ters

In Chapter 3, inference of latent ARMA(p , q) processes has
been tackled. To that end, we have resorted to the transition
density of the ARMA(p , q) state as the proposal function
for the proposed SMC method. This density can only be
derived analytically when dealing with processes whose ARMA
parameters are known.

However, assuming full knowledge of these is too restrictive.
In practice, it is unlikely (if not impossible) to have full knowl-
edge of the underlying ARMA parameters a = (a1 · · · ap)>
and b = (b1 · · · bq)> and innovation variance σ2u.
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4.2 latent arma : unknown parameters

We now address the problem of sequentially estimating the
latent ARMA(p , q) state xt, when the ARMA parameters are
unknown. Mathematically, we writext =

∑p
i=1 aixt−i + ut +

∑q
j=1 bjut−j ,

yt = h(xt , vt) ,
(43)

where ut and vt are the innovations of the state and space
processes respectively, and all the parameters of the state are
unknown.

Here, we approach the problem with Rao-Blackwellization.
That is, we aim at integrating out all the static unknowns: the
ARMA parameters a = (a1 · · · ap)> and b = (b1 · · · bq)>, and
the innovation variance σ2u.

We work with the marginalized state transition density

f(xt+1|x1:t) =

∫
a,b,σ2u

f(xt+1|xt,a,b,σ2u)f(a,b,σ2u|x1:t)dadbdσ2u.

(44)

However, one cannot obtain the analytical solution to the
above integral for the general ARMA(p,q) case. Furthermore,
one can separate the integration with respect to the unknown
ARMA parameters a and b and the innovation variance σ2u.

Thus, we tackle the Rao-Blackwellization of the unknowns
separately. In Section 4.2.1, we focus on the ARMA parameters
a = (a1 · · · ap)> and b = (b1 · · · bq)> and, then, study the
unknown σ2u case in Section 4.2.2.

Latent ARMA(p,q) processes with unknown a and b

Here, we focus on the inner integral in Equation 44 and
integrate out the unknown ARMA parameters a and b. That is,
we work with

f(xt+1|x1:t,σ2u) =
∫
a,b
f(xt+1|xt,a,b,σ2u)f(a,b|x1:t,σ2u)dadb. (45)

As pointed out before, for the general ARMA(p,q) case, one
cannot obtain the analytical solution to the above integral [26,
76]. However, for the AR(p) model, such solution can be derived.
We first present the derivation of the AR(p) solution, and then
turn our attention to the general ARMA(p,q) model.
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4.2 latent arma : unknown parameters

Latent AR(p) processes with unknown a

In the latent AR(p) case, the state process xt is of the form

xt =

p∑
i=1

aixt−i + ut. (46)

We aim at marginalizing the unknown a parameter, i.e.,

f(xt+1|x1:t,σ2u) =
∫
a
f(xt+1|xt,a,σ2u)f(a|x1:t,σ

2
u)da, (47)

where we follow the Bayesian paradigm and use the posterior
of the parameters at time instant t.

If we assume an initial constant prior for a that guarantees
stationarity, one can derive that the posterior of a for t > p+ 1
follows [65]

f(a|x1:t,σ2u) = N
(
a|µt,σ2uCt

)
,

with

µt = CtH>t−1xp+1:t ,

Ct =
(
H>t−1Ht−1

)−1 ,

(48)

and

Ht−1 =


xt−1 xt−2 · · · xt−p

xt−2 xt−3 · · · xt−p−1
...

...
...

...
xp xp−1 · · · x1

 . (49)

Finally, the transition density of interest is

f(xt+1|x1:t,σ2u) =
∫
f(xt+1|x1:t,a,σ2u)f(a|x1:t,σ

2
u)da

= N
(
xt+1|µxt+1|x1:t ,σ

2
uct+1

)
,

where

µxt+1|x1:t = h>t µt,ct+1 = 1+ h
>
t Ctht,

(50)

with h>t =
(
xt xt−1 · · · xt−p+1

)
.

Consequently, an SMC method for inference of latent station-
ary AR(p) processes with unknown a parameters is proposed.
The marginalized transition density in Equation 50 is used as
the proposal density for propagating state particles. The details
of the proposed SMC method are provided in Table 12.
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4.2 latent arma : unknown parameters

pf for latent ar with unknown a

1. At time instant t, consider the random measure

fMt (xt) =

M∑
m=1

w
(m)
t δ

(
xt − x

(m)
t

)
.

2. Upon reception of a new observation at time instant t + 1.

3. Perform resampling of the state (to avoid sample
degeneracy) by drawing from a categorical distribution
defined by the random measure

x
(m)
t ∼ fMt (xt) , where m = 1 , · · · ,M .

(In principle, this step does not have to be performed at
every time instant.)

4. Propagate the particles by sampling from the transition
density, given the previous stream of (resampled)
particles:

x
(m)
t+1 ∼ f(xt+1 |x

(m)
1 :t , σ2u) = N

(
xt+1 |µxt+1 |x1:t , σ2uct+1

)
,

where

µxt+1 |x1:t = h>t µt ,

ct+1 = 1 + h>t Ctht ,

as in Equation 48 and Equation 50.

5. Compute the non-normalized weights for the drawn
particles according to

w̃
(m)
t+1 ∝ f(yt+1 |x

(m)
t+1 ) ,

and normalize them to obtain a new random measure

fMt+1(xt+1) =

M∑
m=1

w
(m)
t+1δ

(
xt+1 − x

(m)
t+1

)
.

Table 12: PF for latent AR(p) with unknown parameters a.
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4.2 latent arma : unknown parameters

Latent ARMA(p,q) processes with unknown a and b

For the more general ARMA(p,q) case, the goal is to integrate
out the static parameters again, in order to obtain the Rao-
Blackwellized transition density f(xt+1|x1:t,σ2u) via Equation 45.

For this case, too, we assume that the prior of parameters
a and b is constant (over the region of stability of the ARMA
process). However, as already pointed out, there is no analytical
solution to this integral, so we proceed with a numerical
approach.

Let us denote θ = (a>,b>)> and approximate the parameter
posterior f(θ|x1:t,σ2u) by a random measure

f(θ|x1:t,σ2u) ≈
1

J

J∑
j=1

δ(θ− θ(j)), (51)

where θ(j) is a sample of θ drawn from f(θ|x1:t,σ2u) and J is the
total number of drawn parameter samples.

With this approximation, the integral with respect to the
ARMA parameters in Equation 45 can be rewritten as

f(xt+1|x1:t,σ2u) ≈
1

J

J∑
j=1

f(xt+1|x1:t,a
(j)
t ,b(j)t ,σ2u). (52)

Note that the subscript t of a and b indicates samples
obtained at that time instant, and not that these parameters
change over time. The density f(xt+1|x1:t,a

(j)
t ,b(j)t ,σ2u) has al-

ready been derived in Chapter 3, for a given set of parameter
samples.

We now address how to draw samples from the posterior of
f(θ|x1:t,σ2u). We explain this by assuming that at time instant
t− 1, we already had samples of the parameter θ. That is, we
have samples of a and b, which we denote by a(j)t−1,b

(j)
t−1.

We approximate the posterior f(θ|x1:t,σ2u) with a Gaussian
density. This is justified by the asymptotic Gaussian behavior
of parameter posteriors under some regularity conditions [101].
Note that the parameter posterior is indeed Gaussian for AR(p)
processes.

The sufficient statistics of the distribution approximating
the parameter posterior f(θ|x1:t,σ2u) are computed from the
particles a(j)t−1,b

(j)
t−1 and the weights w(j)

t−1, conditioned on the
sequence x1:t.
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4.2 latent arma : unknown parameters

Specifically, let us denote the joint state and parameter vector
at time instant t as ρt = (xt θt)

>. We approximate the joint
posterior distribution of ρt with a multivariate Gaussian

f(ρt) ≈ N(ρt|ηt,Qt). (53)

The sufficient statistics of this density are computed as weighted
averages of the available particles

ηt =

M∑
i=1

w
(m)
t ρ

(m)
t ,

Qt =

M∑
i=1

w
(m)
t (ρ

(m)
t − ηt)(ρ

(m)
t − ηt)

>.

(54)

Now, one can readily derive the conditional Gaussian distribu-
tion of the parameters to use for parameter particle propagation

f(θt|xt) = N(θt|ηθt|xt ,Qθt|xt),

where

ηθt|xt = ηθt +Qθt,xtQ−1
xt,xt (xt − ηxt) ,

Qθt|xt = Qθt,θt −Qθt,xtQ
−1
xt,xtQxt,θt ,

with ηt =

(
ηxt

ηθt

)
and Qt =

(
Qxt,xt Qθt,xt

Qxt,θt Qθt,θt

)
.

(55)

One concludes that, given a set of parameter samples a(j)t and
b
(j)
t , the transition density for each new state sample x(m)

t+1 is a
mixture of J densities as provided in Equation 52. We present a
SMC method for inference of latent ARMA(p,q) processes with
unknown parameters a and b in Table 13.
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4.2 latent arma : unknown parameters

pf for latent arma with unknown a and b

1. At time instant t, consider the random measure for the
joint state and parameter vector ρt = (xt θt)

>

fMJt (ρt) =

M∑
m=1

J∑
j=1

w
(m ,j)
t δ

(
ρt − ρ

(m ,j)
t

)
.

The superscript (m , j) indicates that for a given sample
x
(m)
t , we have J sets of a and b parameters.

2. Approximate the joint posterior distribution of ρt

f(ρt) ≈ N(ρt |ηt ,Qt) ,

with sufficient statistics as in Equation 54 with MJ

samples.

3. Downsample from MJ to M and obtain a set of
resampled streams x(m)

t ∼ fMJt (ρt).

4. Draw J new parameter samples from the conditional
Gaussian θ

(m ,j)
t+1 ∼ N(θt+1 |ηθt ,xt ,Qθt |xt ), given each

of the resampled particles x(m)
t . The parameters of the

conditional Gaussian are given by Equation 55.

5. Propagate the state by sampling from the transition
density

x
(m ,j)
t+1 ∼ f(xt+1 |x

(m)
1 :t , a(m ,j)

t+1 , b(m ,j)
t+1 , σ2u) ,

as given by Equation 29 and Equation 30.

6. Compute the non-normalized weights for the drawn
particles according to

w̃
(m ,j)
t+1 ∝ f(yt+1 |x

(m ,j)
t+1 ) ,

and normalize them to obtain a new random measure

fMJt+1(ρt+1) =

M∑
m=1

J∑
j=1

w
(m ,j)
t+1 δ

(
ρt+1 − ρ

(m ,j)
t+1

)
.

Table 13: PF for stationary ARMA(p,q) with unknown parameters a
and b.
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4.2 latent arma : unknown parameters

Latent ARMA(p,q) processes with unknown innovation variance σ2u

In any practical scenario, determining the sufficient statistics
of the innovation process is not a trivial task. It is of common
practice to consider zero-mean ARMA processes, i.e., µu = 0,
which simplifies the problem considerably. The justification is
that data can be easily adjusted to have zero-mean or a constant
term can be included in the state-space model.

However, determining the variance of the innovation process
is usually more challenging. Estimating the variability of a
hidden process requires advanced estimation techniques or
Expectation-Maximization (EM) type approaches.

We hereby deal with this uncertainty by marginalizing it.
Namely, we obtain the transition density of the latent state
where the unknown variance has been Rao-Blackwellized,
which allows for implementation of SMC methods for inference
of latent ARMA(p,q) processes with unknown variance.

We first derive the case where the ARMA parameters are
known in Section 4.2.2.1, later consider the unknown AR(p) case
in Section 4.2.2.2 and the general case with all unknown ARMA
parameters, in Section 4.2.2.3.

ARMA(p,q) processes with unknown innovation variance: known a
and b

We start by marginalizing the unknown innovation variance of
an ARMA(p,q) process when the model parameters a and b

are known. By means of a Bayesian analysis of the unknown
variance, we obtain the transition density of xt+1 given x1:t and
the parameters a and b.

That is, we are interested on computing f(xt+1|x1:t,a,b) via

f(xt+1|x1:t,a,b) =
∫∞
0
f(xt+1|x1:t,a,b,σ2u)f(σ

2
u|x1:t,a,b)dσ2u ,

(56)

where f(σ2u|x1:t,a,b) is the posterior of the unknown variance
σ2u, given the parameters a and b, as well as the data available
at time instant t, x1:t.

First, we need to derive the posterior of the unknown state
noise variance σ2u. We start by using Bayes rule and write

f(σ2u|x1:t,a,b) ∝ f(x1:t|σ2u,a,b)f(σ2u), (57)
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4.2 latent arma : unknown parameters

where f(σ2u) is the prior of the unknown variance. We use a
scaled inverse Chi-squared density

f(σ2u) = χ
−2(σ2u|ν0,σ

2
0) =

(
σ20
ν0
2

)ν0
2

Γ(ν02 )

1

(σ2u)
1+
ν0
2

e
−
ν0σ

2
0

2σ2u , (58)

where ν0 > 0 represents the degrees of freedom and σ20 > 0 is
the prior variance parameter.

Due to the conjugacy of the selected prior, the posterior is
also a scaled inverse Chi-squared density

f(σ2u|x1:t,a,b) ∝ f(x1:t|σ2u,a,b)f(σ2u)

= χ−2(σ2u|νt,σ
2
t),

(59)

with
νt = ν0 + t,

σ2t =
ν0σ

2
0 + x

>
1:tΣ̃

−1
t x1:t

νt
.

(60)

Now, we can proceed and integrate out the unknown vari-
ance

f(xt+1|x1:t,a,b) =
∫∞
0
f(xt+1|x1:t,a,b,σ2u)f(σ

2
u|x1:t,a,b)dσ2u

=

∫∞
0

N
(
xt+1|µxt+1|x1:t ,σ

2
uct+1

)
χ−2(σ2u|νt,σ

2
t)dσ

2
u,

(61)

which results in the following scaled Student-t distribution:

f(xt+1|x1:t) = Tνt

(
xt+1|µxt+1|x1:t , ct+1σ

2
t

)
=

Γ
(
νt+1
2

)
Γ
(
νt
2

)√
πct+1νtσ

2
t

·

(
1+

(xt+1 − µxt+1|x1:t)
2

ct+1νtσ
2
t

)−
(
νt+1
2

)
,

(62)

with sufficient statistics
νt = ν0 + t ,

µxt+1|x1:t = γ̃
>
t Σ̃

−1
t x1:t ,

σ2t =
ν0σ

2
0 + x

>
1:tΣ̃

−1
t x1:t

νt
,

ct+1 = γ̃(0) − γ̃
>
t Σ̃

−1
t γ̃t .

(63)

Note that the covariance function and matrix above are
normalized, as in Equation 28.

The SMC method for inference of latent stationary ARMA(p,q)
processes with known parameters a and b, and unknown
innovation variance σ2u is presented in Table 14.
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4.2 latent arma : unknown parameters

pf for latent arma with known a b , unknown σ2u

1. At time instant t, consider the random measure

fMt (xt) =

M∑
m=1

w
(m)
t δ

(
xt − x

(m)
t

)
.

2. Upon reception of a new observation at time instant t + 1.

3. Perform resampling of the state (to avoid sample
degeneracy) by drawing from a categorical distribution
defined by the random measure

x
(m)
t ∼ fMt (xt) , where m = 1 , · · · ,M .

(In principle, this step does not have to be performed at
every time instant.)

4. Propagate the particles by sampling from the transition
density, given the previous stream of (resampled)
particles:

x
(m)
t+1 ∼ f(xt+1 |x

(m)
1 :t ) = Tνt

(
xt+1 |µxt+1 |x1:t , ct+1σ2t

)
,

where



νt = ν0 + t ,

µxt+1 |x1:t = γ̃>t Σ̃
−1
t x

(m)
1 :t ,

σ2t =
ν0σ

2
0+x

(m)>
1:t Σ̃−1

t x
(m)
1:t

νt
,

ct+1 = γ̃(0) − γ̃>t Σ̃
−1
t γ̃t .

5. Compute the non-normalized weights for the drawn
particles according to

w̃
(m)
t+1 ∝ f(yt+1 |x

(m)
t+1 ) ,

and normalize them to obtain a new random measure

fMt+1(xt+1) =

M∑
m=1

w
(m)
t+1δ

(
xt+1 − x

(m)
t+1

)
.

Table 14: PF for latent ARMA(p,q) with known parameters a b and
unknown σ2u.
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4.2 latent arma : unknown parameters

AR(p) processes with unknown innovation variance:
unknown a

In taking care of σ2u when dealing with an AR(p) process with
unknown parameter a, we proceed in the same way as in
the previous section. However, we now use the marginalized
likelihood densities

f(xt+1|x1:t) =

∫∞
0
f(xt+1|x1:t,σ2u)f(σ

2
u|x1:t)dσ

2
u , (64)

where f(σ2u|x1:t) is the posterior of the unknown variance σ2u,
where the a parameter has been marginalized.

We find such density by first writing

f(σ2u|x1:t) ∝ f(xp+1:t|σ2u, x1:p)f(σ2u), (65)

where f(σ2u) is the prior of the unknown variance and we again
use a scaled inverse Chi-squared density χ−2(σ2u|ν0,σ20).

The derivation follows

f(σ2u|x1:t) ∝ f(xp+1:t|σ2u, x1:p)f(σ2u)

=

(∫
f(xp+1:t|a,σ2u, x1:p)f(a)da

)
χ−2(σ2u|ν0,σ

2
0)

∝ e
−
x>
p+1:tP

⊥
t xp+1:t

2σ2u

(σ2u)
t−p
2

× e
−
ν0σ

2
0

2σ2u

(σ2u)
1+
ν0
2

,

(66)

where P⊥t = I −Ht−1(H
>
t−1Ht−1)

−1H>t−1 is a projection matrix
and Ht−1 has been defined in Equation 49.

Thus, we deduce that the marginalized posterior of the
unknown variance f(σ2u|x1:t) is again χ−2(σ2u|νt,σ2t), with

νt = ν0 + (t− p),

σ2t =
ν0σ

2
0 + x

>
p+1:tP

⊥
t xp+1:t

νt
.

(67)

With this posterior of the unknown variance, the final expres-
sion for f(xt+1|x1:t) can be derived following the same steps as
in Equation 61. That is,

f(xt+1|x1:t) =

∫∞
0
f(xt+1|x1:t,σ2u)f(σ

2
u|x1:t)dσ

2
u

=

∫∞
0

N
(
xt+1|µxt+1|x1:t ,σ

2
uct+1

)
χ−2(σ2u|νt,σ

2
t)dσ

2
u,

(68)
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4.2 latent arma : unknown parameters

which results in the following scaled Student-t distribution

f(xt+1|x1:t) = Tνt

(
xt+1|µxt+1|x1:t , ct+1σ

2
t

)
,

with
νt = ν0 + t ,

µxt+1|x1:t = h
>
t µt,

σ2t =
ν0σ

2
0 + x

>
1:tΣ̃

−1
t x1:t

νt
,

ct+1 = 1+ h
>
t Ctht ,

(69)

where ht, µt and Ct have been defined in Equation 48 and
Equation 50.

The SMC method for inference of latent stationary AR(p)
processes with unknown parameter a and innovation variance
σ2u is presented in Table 15.
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pf for latent ar with unknown a and σ2u

1. At time instant t, consider the random measure

fMt (xt) =

M∑
m=1

w
(m)
t δ

(
xt − x

(m)
t

)
.

2. Upon reception of a new observation at time instant t + 1.

3. Perform resampling of the state (to avoid sample
degeneracy) by drawing from a categorical distribution
defined by the random measure

x
(m)
t ∼ fMt (xt) , where m = 1 , · · · ,M .

(In principle, this step does not have to be performed at
every time instant.)

4. Propagate the particles by sampling from the transition
density, given the previous stream of (resampled)
particles:

x
(m)
t+1 ∼ f(xt+1 |x

(m)
1 :t , σ2u) = Tνt

(
xt+1 |µxt+1 |x1:t , ct+1σ2t

)
,

where



νt = ν0 + t ,

µxt+1 |x1:t = h>t µt ,

σ2t =
ν0σ

2
0+x

>
1:t Σ̃

−1
t x1:t

νt
,

ct+1 = 1 + h>t Ctht ,

where ht, µt and Ct are defined in Equation 48 and
Equation 50.

5. Compute the non-normalized weights for the drawn
particles according to

w̃
(m)
t+1 ∝ f(yt+1 |x

(m)
t+1 ) ,

and normalize them to obtain a new random measure

fMt+1(xt+1) =

M∑
m=1

w
(m)
t+1δ

(
xt+1 − x

(m)
t+1

)
.

Table 15: PF for latent AR(p) with unknown parameters a and σ2u.
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ARMA(p,q) processes with unknown innovation variance:
unknown a and b

The final case is the most challenging one, as we do not
assume knowledge of any of the ARMA model’s parameters.
That is, a, b and σ2u are all unknown. Once again, our goal
is to Rao-Blackwellize all these, so that we can derive an
SMC method that relies on the marginalized transition density
without knowledge of model parameters.

We aim at integrating out all the static unknowns and thus,
deriving the state transition density

f(xt+1|x1:t) =

∫
a,b,σ2u

f(xt+1|xt,a,b,σ2u)f(a,b,σ2u|x1:t)dadbdσ2u.

(70)

However, as already pointed out, one cannot analytically inte-
grate out the ARMA parameters a and b. Thus, we approach the
integration of model parameters a and b and the innovation
variance σ2u separately.

We rewrite Equation 70 as

f(xt+1|x1:t) =

∫
σ2

∫
a,b
f(xt+1|x1:t,a,b,σ2u)

× f(a,b|x1:t,σ2u)f(σ
2
u|x1:t)dadbdσ2u,

(71)

where we separate the marginalization of the ARMA parameters
and the noise variance. We first deal with the unknown a and
b, before taking care of the unknown σ2u.

We first compute

f(xt+1|x1:t,σ2u) =
∫
a,b
f(xt+1|xt,a,b,σ2u)f(a,b|x1:t,σ2u)dadb, (72)

and then,

f(xt+1|x1:t)

∫∞
0
f(xt+1|x1:t,σ2u)f(σ

2
u|x1:t)dσ

2
u. (73)

For the Rao-Blackwellization of the unknown a and b pa-
rameters in Equation 72, we resort to the Monte Carlo solution
already presented in Section 4.2.1.2. That is, we obtain a
weighted sum of densities for given parameter samples, i.e.,

f(xt+1|x1:t,σ2u) ≈
1

J

J∑
j=1

f(xt+1|x1:t,a
(j)
t ,b(j)t ,σ2u). (74)
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The solution to Equation 73 when using the Monte Carlo
approximation in Equation 74 results in

f(xt+1|x1:t) ≈
1

J

J∑
j=1

∫∞
0
f(xt|a

(j)
t−1,b

(j)
t−1,σ

2
u, x1:t−1)f(σ2u|x1:t)dσ

2
u.

(75)

Thus, the solution for the transition density with unknown
parameters is a weighted sum of densities

f(xt+1|x1:t) ≈
1

J

J∑
j=1

f(j)(xt+1|x1:t),

where f(j)(xt+1|x1:t) =
∫∞
0
f(xt|a

(j)
t−1,b

(j)
t−1,σ

2
u, x1:t−1)f(σ2u|x1:t)dσ

2
u.

(76)

For given parameter samples a(j)t−1 and b(j)t−1, this is of the exactly
the same form as the one in Equation 61. Thus, we readily
conclude that

f(xt+1|x1:t) ≈
1

J

J∑
j=1

f(j)(xt+1|x1:t),

where f(j)(xt+1|x1:t) = Tνt

(
xt+1|µ

(j)
xt+1|x1:t

, c(j)t+1σ
(j)2

t

)

with



νt = ν0 + t ,

µ
(j)
xt+1|x1:t

= γ̃
(j)>

t Σ̃
(j)−1

t x1:t ,

σ
(j)2

t =
ν0σ

2
0+x

>
1:tΣ̃

(j)−1

t x1:t
νt

,

c
(j)
t+1 = γ̃

(j)(0) − γ̃
(j)>

t Σ̃
(j)−1

t γ̃
(j)
t .

(77)

Note the superscript (j) in all the sufficient statistics of the
solution, as they are computed for each parameter sample{
a
(j)
t ,b(j)t

}
. The Rao-Blackwellization of the parameters is thus

performed by averaging over all the sample parameters J.
The SMC method for inference of latent stationary ARMA(p,q)

processes with unknown model parameters a, b and σ2u is
presented in Table 16.
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pf for latent arma with unknown a , b and σ2u

1. At time instant t, consider the random measure for the
joint state and parameter vector ρt = (xt θt)

>

fMJt (ρt) =

M∑
m=1

J∑
j=1

w
(m ,j)
t δ

(
ρt − ρ

(m ,j)
t

)
.

The superscript (m , j) indicates that for a given sample
x
(m)
t , we have J sets of a and b parameters.

2. Approximate the joint posterior distribution of ρt

f(ρt) ≈ N(ρt |ηt ,Qt) ,

with sufficient statistics as in Equation 54 with MJ

samples.

3. Downsample from MJ to M and obtain a set of
resampled streams x(m)

t ∼ fMJt (ρt).

4. Draw J new parameter samples from the conditional
Gaussian θ

(m ,j)
t+1 ∼ N(θt+1 |ηθt ,xt ,Qθt |xt ), given each

of the resampled particles x(m)
t . The parameters of the

conditional Gaussian are given in Equation 55.

5. Propagate the state by sampling from the transition
density

x
(m ,j)
t+1 ∼ f(xt+1 |x

(m)
1 :t , a(m ,j)

t+1 , b(m ,j)
t+1 ) ,

as given by Equation 77, computed per particle.

6. Compute the non-normalized weights for the drawn
particles according to

w̃
(m ,j)
t+1 ∝ f(yt+1 |x

(m ,j)
t+1 ) ,

and normalize them to obtain a new random measure

fMJt+1(ρt+1) =

M∑
m=1

J∑
j=1

w
(m ,j)
t+1 δ

(
ρt+1 − ρ

(m ,j)
t+1

)
.

Table 16: PF for latent ARMA(p,q) with unknown parameters a, b and
σ2u.
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evaluation

In this chapter we, too, evaluate the performance of the
proposed methods by simulating the SV model. As explained in
Section 3.3, this model is popular in the study of nonlinear state-
space models [1, 105], as it makes inference very challenging for
Kalman based filters, even with known state parameters.

The problem gets further complicated when the parameters
are unknown (as is the case in this chapter for the latent
ARMA process), due to the nonlinearities introduced by the MA
parameters and the Student-t distributions resulting from the
Bayesian analysis of the unknown σ2u.

For this reason, we hereby use the performance of the
PF proposed in Chapter 3 for the known parameter case
(i.e., Table 5) as a benchmark for comparison with the more
challenging scenarios considered.

Mathematically, we writext =
∑p
i=1 aixt−i +

∑q
j=1 bjut−j + ut,

yt = e
xt
2 vt,

(78)

where vt is a standard Gaussian variable and the state noise ut
is a zero-mean Gaussian variable. Here, the ARMA parameters
a = (a1 · · · ap)> and b = (b1 · · · bq)>, and the innovation
variance σ2u are unknown.

First, we show the performance of the SMC method for AR(p)
processes, as their unknown parameters can be analytically
integrated out (see Section 4.2.1.1 and Section 4.2.2.2).

The results are presented in Table 17, where the entries are
the averaged MSEs of the estimates of the latent state xt. Unless
otherwise indicated, 1000 particles are used for the PFs and the
shown MSEs are averages over 100 realizations of 500 samples
long time-series. The results demonstrate a mild deterioration
in estimation performance as our knowledge about the AR
processes decreases.

We observe how the unknown a parameters have a more
pronounced impact on the performance of the methods, when
compared to the unknown innovation variance. The explana-
tion is two-fold.

On the one hand, the a parameters are directly determining
the evolution of the state. On the other, the integration of the
unknown variance results in a Student-t distributed transition
density, which is different from a Gaussian density only on its
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PF Type
State estimation error (MSE)
AR(1) AR(2) AR(3)

Known AR, known σ2u 1.10969 1.18849 0.92265

Known AR, unknown σ2u 1.16164 1.20956 0.96545

Unknown AR, known σ2u 1.32100 1.41613 0.98582

Unknown AR, unknown σ2u 1.35901 1.43513 0.99948

Table 17: MSE filtering performance of the proposed SMC methods for
AR processes.

tails. As a matter of fact, the former gets more and more similar
to the latter as the degrees of freedom increase; this is indeed
the case as we observe more data over time (see Equation 67 for
example).

We also evaluate the impact of the unknown innovation
variance for the general ARMA(p,q) case. Results are illustrated
in Figure 14, where we also study the impact of truncating the
covariance matrix in the computed sufficient statistics.

1 5 10 25 50 full
1

1.2

1.4

1.6

1.8

2

2.2

τmax

M
SE

AR(1), known σ2u

AR(1), unknown σ2u

ARMA(1,1), known σ2u

ARMA(1,1), unknown σ2u

Figure 14: MSE for SMC methods with known and unknown σ2u as a
function of τmax.

On the one hand, we observe the loss in performance
induced by not knowing the driving noise variance, which
is minimal as explained before for the AR(p) case. On the
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other, the negligible effect of truncating the covariance matrix
is noticed, which is justified by the short-memory claims
in Section 3.1.4 and coincides with the results provided in
Section 3.3 for the truncation with known ARMA parameters.

Now, we evaluate the more general case of ARMA models
with unknown a and b parameters. First, we illustrate the
tracking accuracy of the methods described in Section 4.2.1.2.

In general, the method is able to successfully estimate the
log-volatility xt for different ARMA(p,q) processes, as shown
in Figure 15 for specific realizations. Note the difficulty in
accurately estimating MA(q) processes, as plain correlated noise
is not very informative. We further illustrate the method’s
potential by plotting the evolution of the posterior densities of
the unknown ARMA(1,1) parameters in Figure 16.

Before further evaluating the proposed SMC for the general
ARMA(p,q) model with all unknown parameters, we first use
the unknown AR case to validate the numerical approximation
to the integrals in Equation 52 and Equation 76. That is,
we study the unknown AR case to provide insights into the
benefits of Rao-Blackwellization and validate the numerical
approximation to the integration of the unknown parameters.

We implement the method in Section 4.2.2.3 for AR processes
with unknown parameters and compare it to both the analyti-
cally Rao-Blackwellized AR solution (i.e., PF in Table 15), and
the alternative joint state and parameter estimation approach.
In all cases, the variance of the driving noise of the process is
assumed unknown.

The MSE results for estimation of the hidden process are
shown in Table 18. The performance of the Rao-Blackwellized
methods is in between the case when the parameters are
known (Known AR) and the case when the PF method esti-
mates the parameters and the process jointly (Unknown AR,

param.est). Furthermore, a better performance of the analy-
tically integrated out solution (Unknown AR, RB analytical)
compared to the numerical Rao-Blackwellization (Unknown AR,

RB numerical J=10) is observed.
These results demonstrate that Rao-Blackwellization of the

unknown parameters provides a superior performance. Namely,
(1) it always outperforms the PF that jointly estimates all the
parameters, (2) it provides estimation accuracy comparable
to that of the benchmark (Known AR), and (3) the numerical
approximation to the analytical solution is accurate.
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PF Type
State estimation error (MSE)
AR(1) AR(2) AR(3)

Known AR 1.1616 1.20956 0.96545

Unknown AR, RB analytical 1.35901 1.43513 0.99948

Unknown AR, RB numerical J = 10 1.49248 1.67136 1.02314

Unknown AR, param. est. 1.50258 1.70387 1.05567

Table 18: MSE filtering performance of variants of the PF for AR(p)
processes.

Once we have investigated the benefits and drawbacks of
the method proposed Section 4.2.2.3, we now evaluate the
accuracy of the PF for different ARMA(p,q) processes. Results
are presented in Table 19 for both known and unknown σ2u,
with PFs implemented as in Table 13 and Table 16, respectively.

Note that the accuracy of the proposed methods is reasonably
close to the benchmark, which is now the known parameter
case (Known ARMA in Table 19), as there is no closed-form Rao-
Blackwellized solution available.

We evaluate the quality of the Monte Carlo integral for
different J values. Even though, in general, the more particles
(larger J) used to approximate the integral, the more accurate
the estimate becomes, the improvement becomes negligible
compared to the computational burden for J > 20.

To conclude with the evaluation section, we emphasize the
importance of considering ARMA(p,q) processes instead of
using higher order AR(p) models to approximate them. For the
AR case, the analytical Rao-Blackwellization of its unknowns
has been derived in closed form and, thus, this alternative
might seem appropriate.

However, the results presented in Table 20 show how con-
sidering a true ARMA(p,q) state outperforms the alternative ap-
proximation. The ARMA model provides a more parsimonious
solution whereas the AR approximation is less accurate. This is
mainly due to the high dimension of the approximating model
and its impact on SMC sampling.
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PF Type
State estimation error (MSE)

MA(1) ARMA(1,1) ARMA(1,1) ARMA(1,2) ARMA(2,1)

Known ARMA, known σ2u 0.84729 1.51002 0.83048 1.74338 1.71039

Known ARMA, unknown σ2u 0.89428 1.56405 0.88028 1.78301 1.77861

Unknown ARMA J = 1, known σ2u 0.86743 2.05675 0.91206 2.28310 2.34009

Unknown ARMA J = 1, unknown σ2u 0.93760 2.08892 0.99929 2.38283 2.35899

Unknown ARMA J = 10, known σ2u 0.86317 2.01788 0.91414 2.23473 2.22838

Unknown ARMA J = 10, unknown σ2u 0.93959 2.09366 0.98532 2.32099 2.33336

Unknown ARMA J = 20, known σ2u 0.86274 2.00809 0.91642 2.23436 2.23242

Unknown ARMA J = 20, unknown σ2u 0.94077 2.06118 0.99258 2.31816 2.34098

Unknown ARMA J = 30, known σ2u 0.86292 1.99660 0.91219 2.23251 2.21125

Unknown ARMA J = 30, unknown σ2u 0.93067 2.08272 0.99819 2.31880 2.35163

Table 19: MSE performance of proposed PFs for different ARMA(p,q)
processes.

PF Type
State estimation error (MSE)

a1 = 0.85,b1 = 0.5 a1 = 0.85,b1 = 0.75

Known ARMA 1.68605 1.83369

Unknown ARMA J = 10 2.22736 2.33239

Unknown AR(2) 2.23292 2.34956

Unknown AR(3) 2.35514 2.40280

Unknown AR(4) 2.49513 2.52133

Unknown AR(5) 2.82545 2.68774

Table 20: MSE of the PFs assuming true ARMA(1,1) and different high-
order approximations to the latent process.
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Figure 15: True (black) and estimated (red) state for the proposed SMC

method.
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Figure 16: Posteriors of the unknown parameters a1 and b1 with 95%
confidence interval in blue (the true value in black).
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5
L AT E N T C O R R E L AT E D I N N O VAT I O N
P R O C E S S E S

Among the relevant features of the studied models in previous
Chapters 3 and 4, the "memory" of the time-series is one of
the most important characteristics. As shown in Section 3.1.4,
for an ARMA(p,q) process, the decay of the autocovariance is
asymptotically exponential. Thus, these time-series are referred
to as short-memory processes.

In this chapter, we address time-series where the dependen-
cies amongst samples goes further into the past. That is, we
study long-memory processes and, in particular, inference of
latent fGps. We provide a detailed overview of long-memory
processes and describe two types of time-series that fall into
this category, i.e., the fGp and the FARIMA model, in Section 5.1.
We focus on the former and present an SMC method for
inference of latent fGps in Section 5.2.

time-series and memory properties

Experts in many scientific areas have studied short-memory
processes in the form of ARMA (or their AR and MA variants)
and other Markov processes. In simple words, in short-memory
time-series only few past samples affect the present data values.

On the contrary, there are other time-series where the present
value is dependent on samples far into the past. These are often
refered to as long-memory processes. The intuitive interpreta-
tion of such a process is that the dependence between events
that are far apart diminishes slowly with increasing lag.

The groundwork on long-memory processes was laid by
Hurst [54], when he found that the Nile river data manifested
long-range dependence. Later, many other hydrological, geo-
physical, and climatological records were reported to describe
similar characteristics. Motivated by the verification that a
plethora of real-life time-series manifest such properties [8, 12,
80], we are interested on the study of processes with long-
memory properties.
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5.1 time-series and memory properties

First, let us understand the features of data with long-mem-
ory properties [12]. The qualitative features of long-memory
time-series are as follows:

1. There are relatively long periods where data tend to stay
at similar values. That is, once at a high level, the next
values are usually high too and, similarly, there are long
periods with low level values.

2. When one looks at short time intervals, there seems to
be cycles or local trends. However, when looking at the
whole series, there is no apparent persisting trend or cycle.
It rather seems that cycles of (almost) all frequencies occur,
superimposed and in random sequence.

3. Overall, the series looks stationary.

The memory of data can be mathematically studied by means
of their sample variance and correlation function. For data that
can be modeled with short-memory properties, the decay of
the sample autocorrelation is asymptotically exponential. On
the contrary, a slower decay is observed in long-memory data.

Specifically, the quantitative features of a long-memory pro-
cess are described by [12]:

1. The variance of the sample mean decays to zero at a
slower rate than n−1. In a good approximation, the rate
is proportional to n−α for some 0 < α < 1.

2. The sample correlations ρ̂(τ) = γ̂(τ)/γ̂(0) decay to zero at
a rate that is in good approximation proportional to τ−α

for some 0 < α < 1.

3. Near the origin, the logarithm of the periodogram I(f)

plotted against the logarithm of the frequency appears to
be scattered around a straight line with negative slope.

As for short-memory data, stochastic processes are use-
ful in modeling long-memory data. For these processes, too,
stationarity is a common assumption. Thus, one considers
processes for which the first two moments exist. In statistical
terms, the memory of any process is accurately described by
the autocovariance function γ(τ) of the process. Recall that,
because we consider stationarity, the autocovariance function
only depends on the time-lag τ.
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5.1 time-series and memory properties

As previously reported in Chapter 3, for ARMA processes
driven by iid noise, the decay of the autocovariance is asymp-
totically exponential. That is, an upper bound of the form
|γ(τ)| ∝ baτ for some real scalars 0 < b < ∞ and 0 < a < 1

exists for short-memory processes.
On the contrary, a slower decay of the autocovariance func-

tion is observed in long-memory processes. Specifically, one can
establish the following statistical properties for such processes:

1. The variance of the sample mean Var {x̄} is asymptotically
equal to cvar ·n−α for some 0 < α < 1.

2. The correlations ρ(τ) are asymptotically equal to cρ · τ−α
for some 0 < α < 1.

3. The spectral density S(f) has a pole at zero that is equal
to cf · τ−β for some 0 < β < 1.

All in all, we use the above to define a stationary process
with long-memory or long-range dependence.

Definition 1 xt is called a stationary process with long-memory if
there exists a real number α ∈ (0, 1) and a constant cρ > 0 such that
the following holds:

lim
τ→∞ ρ(τ)

cρτ−α
= 1. (79)

Due to the one to one mapping between the autocovariance
function and the spectral density function, an equivalent defi-
nition in terms of the spectral density S(f) follows:

Definition 2 xt is called a stationary process with long-memory if
there exists a real number β ∈ (0, 1) and a constant cf > 0 such that
the following holds:

lim
f→0

S(f)

cf|f|−β
= 1. (80)

These two definitions above are equivalent, as shown in the
theorems below.
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5.1 time-series and memory properties

Theorem 1 If the autocorrelation function in Equation 79 holds with
0 < α = 2− 2H < 1, then the spectral density S(f) exists and

lim
f→0

S(f)

cf(H)|f|1−2H
= 1, (81)

where for σ2 = Var {xt},

cf(H) =
σ2

π
cρΓ(2H− 1) sin (π− πH) . (82)

Theorem 2 If the spectral density in Equation 80 holds with 0 <
β = 2H− 1 < 1, then the autocorrelation function ρ(τ) exists and

lim
τ→∞ ρ(τ)

cρ(H)τ2−2H
= 1, (83)

where for σ2 = Var {xt},

cρ(H) =
2

σ2
cfΓ(2− 2H) sin

(
πH−

1

2
π

)
. (84)

Note that the above definitions for long-memory processes
are formulated in asymptotic terms. Thus, Equation 79 only
describes the behavior of the correlations as the lag tends to
infinity, and does not specify the correlations for any fixed
finite lag. Moreover, it only determines the rate of convergence,
and not the magnitude of the function, i.e., each individual
correlation can be arbitrarily small or large, only the rate of
decay is slow. Equivalent asymptotic insights are described by
Equation 80 for the frequency domain.

Among the potential models for which Equation 79 might
hold, there are two classes of models that are of special
interest, because they arise in a natural way from limit theorems
and classic models. On the one hand, those described as sta-
tionary increments of self-similar processes and, in particular
fractional Gaussian noise (fGn). On the other, fractional Auto-
Regressive Integrated Moving-Average (ARIMA) processes or
FARIMA, which are built upon ARMA models by differentiation
with fractional values.

Long-memory processes: the fractional Gaussian noise

Processes with long-memory properties naturally arise when
studying self-similar processes and stationary increments. We
formally define self-similarity of a stochastic process below.
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5.1 time-series and memory properties

Definition 3 Let yt be a stochastic process with continuous-time
parameter t. yt is called self-similar with self-similarity parameter H,
if for any positive stretching factor c, the rescaled process with time
scale ct, c−Hy(ct), is equal in distribution to the original process yt:

yt
d
= c−Hy(ct). (85)

Typical sample paths of a self-similar process look qualita-
tively the same, irrespective of the distance from which we look
at them. The motivation for stochastic self-similarity, apart from
aesthetic appeal and mathematical elegance, arises from limit
theorems for sums of random variables. As a matter of fact [12],
whenever a process is the limit of normalized partial sums of
random variables, it is necessarily self-similar.

By replacing c = t−1, t > 0 in Equation 85 for a self-similar

process yt with parameter H, one can study yt
d
= tHy1 and

conclude the asymptotic behavior of such processes.

• When t→∞,

1. if H < 0, then yt
d→ 0;

2. if H = 0, then yt
d
=y1;

3. if H > 0 and yt 6= 0, then |yt|
d→∞.

• When t→ 0,

1. if H < 0 and yt 6= 0, then |yt|
d→∞,

2. if H = 0, then yt
d
=y1,

3. if H > 0, then yt
d→ 0.

For modeling self-similar data that are stationary, one needs
to consider processes with stationary increments, which are
formally defined as follows.

Definition 4 yt has stationary increments if for k > 1 and any k
time points t1, · · · , tk, the distribution of{

xt1+c − xt1+c−1, · · · , xtk+c − xtk+c−1
}

does not depend on c ∈ R.

The covariance function γy(t, s) = Cov {yt,ys} of a self-sim-
ilar process yt with stationary increments can be analytically
derived.
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5.1 time-series and memory properties

Let us assume a zero-mean process, i.e., E {yt} = 0, and
let σ2 = E

{
(yt − yt−1)

2
}

= E
{
y21
}

be the variance of the
increment process xt = yt − yt−1.

For a self-similar process yt we can write yt
d
= tHy1 and if

s < t, derive

E
{
(yt − ys)

2
}
= E
{
(yt−s − y0)

2
}
= σ2 (t− s)2H . (86)

One can similarly write

E
{
(yt − ys)

2
}
= E
{
y2t

}
+ E
{
y2s

}
− 2E {ytys}

= σ2t2H + σ2s2H − 2γy(t, s),
(87)

and by combination of Equation 86 and Equation 87, conclude

γy(t, s) =
1

2
σ2
[
t2H − (t− s)2H + s2H

]
. (88)

We now focus on the stationary increments xt = yt− yt−1, in
order to obtain the covariance function of such process too.

Let us first write some identities for later use:
xt = yt − yt−1,

yt = yt−1 + xt = y0 +
∑t
i=1 xt,∑t

i=1 xt = yt − y0.

(89)

(
k+1∑
i=1

x(i)

)2
+

(
k∑
i=2

x(i)

)2
−

(
k∑
i=1

x(i)

)2
−

(
k+1∑
i=2

x(i)

)2
=

=

(
X(1) +

k∑
i=2

x(i) + x(k+ 1)

)2
+

(
k∑
i=2

x(i)

)2

−

(
x(1) +

k∑
i=2

x(i)

)2
−

(
k∑
i=2

x(i) + x(k+ 1)

)2

=

(
x(1) +

k∑
i=2

x(i)

)2
+ 2

(
x(1) +

k∑
i=2

x(i)

)
x(k+ 1)

+ x(k+ 1)2 +

(
k∑
i=2

x(i)

)2
−

(
x(1) +

k∑
i=2

x(i)

)2

−

(
k∑
i=2

x(i)

)2
− 2

(
k∑
i=2

x(i)

)
x(k+ 1) − x(k+ 1)2

= 2x(1)x(k+ 1).
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5.1 time-series and memory properties

The derivation of the covariance function γx(k) for the
stationary increments xt follows

γx(k) = E {x(i)x(k+ i)} = E {x(1)x(k+ 1)} =
1

2
E {2x(1)x(k+ 1)}

=
1

2
E


(
k+1∑
i=1

x(i)

)2
+

(
k∑
i=2

x(i)

)2
−
1

2
E


(

k∑
i=1

x(i)

)2
−

(
k+1∑
i=2

x(i)

)2
=
1

2
E
{
(y(k+ 1) − y0)

2 + (y(k− 1) − y0)
2
}

−
1

2
E
{
(y(k) − y0)

2 − (y(k) − y0)
2
}

=
1

2
σ2
[
(k+ 1)2H + (k− 1)2H − 2k2H

]
.

(90)

Thus, we conclude that the covariance function for the
stationary increments of a self-similar process at any lag τ

follows

γx(τ) =
1

2
σ2
[
(τ+ 1)2H − 2τ2H + (τ− 1)2H

]
. (91)

We further elaborate on the analysis of such function, in
order to explicitly observe its long-memory behavior. First, we
rewrite the above function as

γx(τ) =
1

2
σ2τ2H

[(
1+

1

τ

)2H
− 2+

(
1−

1

τ

)2H]
, (92)

and compute its Taylor series expansion, i.e., g(a) ≈ g(a) +
g ′(a)(x− a) + g ′′(a)

2 (x− a)2, at the origin

γx(0) ≈ g(0) + g ′(0)(x) +
g ′′(0)

2
(x)2

≈ (1− 2+ 1) + (2H− 2H) x+
2H(2H− 1) + 2H(2H− 1)

2
(x)2

≈ 2H(2H− 1)x2.
(93)

All in all, when τ tends to infinity, 1τ → 0, and thus

γx(τ) ≈
1

2
σ2τ2H(2H)(2H− 1)τ−2 = σ2H(2H− 1)τ2H−2. (94)
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5.1 time-series and memory properties

We conclude that if a process with such an autocovariance
function exists, and lim

τ→∞γx(τ) = 0 is met, then

1. for 0 < H < 1
2 , the process has short-memory;

2. for H = 1
2 , the process is uncorrelated; and

3. for 1
2 < H < 1, the process has long-memory.

We further study the properties of these stationary increment
processes. For 0 < H < 1, one can show [12] that its spectral
density is, for f ∈ [−π,π],

Sx(f) = 2cf(H,σ2) (1− cos(f))
∞∑
i=∞ |2πi+ f|−2H−1,

with cf(H,σ2) =
σ2

2π
sin(πH)Γ(2H+ 1).

(95)

We evaluate the spectrum again at null frequencies by Taylor
expansion of the above and obtain

Sx(f) ≈ cf(H,σ2)|f|1−2H +O
(
|f|min(3−2H,2)

)
. (96)

The numerical study of such function shows that it can
be approximated with a straight line (a detailed analysis is
provided in [12]).

So far, we have only considered self-similarity and station-
arity in the most general sense. We now consider Gaussian
processes and thus, we assume that the stationary increments
xt are Gaussian. Thus, the mean and the covariance are the
sufficient statistics of the process xt.

For each value of H ∈ (0, 1), also known as the Hurst
parameter, there is exactly one Gaussian process xt that is the
stationary increment of a self-similar process yt. This process
xt is called fractional Gaussian noise (fGn). Its covariance and
spectrum are given by Equation 91 and Equation 95, respec-
tively. The corresponding self-similar process yt is commonly
referred to as the fractional Brownian motion BHt .

That is, for BHt a self-similar process with self-similarity
parameter H with stationary Gaussian increments ut, these
increments ut = BHt − BHt−1 are the fGn. For H ∈ (12 , 1), the fGp
shows long-memory properties.
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5.1 time-series and memory properties

Long-memory processes: the FARIMA model

In applied time-series analysis, ARMA models and their exten-
sions have been widely studied. FARIMA models are a natural
extension of the classic ARMA models. We briefly describe in
the following how one elaborates on ARMA models into first,
ARIMA and then, FARIMA models.

As explained in detail in Section 3.1, the ARMA(p,q) model is
mathematically described by

xt =

p∑
i=1

aixt−i +

q∑
j=1

bjut−j + ut, (97)

or, in lag-polynomial form

A(L)xt = B(L)ut ,

where

A(L) = 1− a1L− a2L2 − · · ·− apLp ,

B(L) = 1+ b1L+ b2L
2 + · · ·+ bqLq .

(98)

One extends these models by considering differentiation of
a process. In discrete-time statistics, differencing refers to a
transformation applied to a time-series, where the difference
between consecutive data points is computed

x
′
t = xt − xt−1. (99)

This operation removes the changes in the level of a time-
series, thus eliminating trend and seasonality. Consequently, it
stabilizes the mean of the time-series and usually results in
stationarity.

Thus, if one computes differences of a time-series d times
before adding the autoregressive and moving average parts,
then the resulting process xt is referred to as ARIMA(p,d,q)
process, i.e.,

A(L)(1− L)dxt = B(L)ut. (100)

This equation can also be understood as if the autoregressive
polynomial has d unit roots. For this reason, every ARIMA
model with d > 0 is not wide-sense stationary. For ARIMA
models, the differencing has to be done d times and thus, only
integer values of d are considered.

However, if d is allowed to take any real value in (−1
2 , 12),

then the resulting stationary process is called a fractional
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5.1 time-series and memory properties

ARIMA(p,d,q) or FARIMA(p,d,q) process. For 0 6 d < 1
2 , the

process has long-memory and when d > 1
2 , the process is not

stationary.
The differentiation with non-integer values is mathematically

explained by using, for d > 0,

(1− L)d =

d∑
k=0

(
d

k

)
(−1)kLk, (101)

where the binomial coefficients follow(
d

k

)
=

d!
k!(d− k)!

=
Γ(d+ 1)

Γ(k+ 1)Γ(d− k+ 1)
. (102)

The gamma function Γ(·) is defined for all real numbers and
thus, Equation 100 can be extended to all real numbers d for
the definition of FARIMA(p,d,q) models.

There are two different but complementary interpretations of
the FARIMA(p,d,q) model:

1. An ARMA(p,q) process is obtained by d differencing a
FARIMA(p,d,q) process

(1− L)dxt = x̃t, (103)

where x̃t is an ARMA(p,q) process x̃t = A−1(L)B(L)ut.

2. A FARIMA(p,d,q) process is obtained by filtering a
FARIMA(0,d, 0) process through an ARMA(p,q) filter

xt = A
−1(L)B(L)x∗t , (104)

where x∗t is FARIMA(0,d, 0) process x∗t = (1− L)−dut.

The interpretation in Equation 103 allows for derivation of
the spectrum density of FARIMA(p,d,q) models. One simply
needs to multiply the spectrum of the ARMA(p,q) model with
that of a linear differencing filter. Thus, given h(t) =

∑
csxt−s

and its spectrum density H(f) =
∑
cse

isf, one derives

SX(f) = |H(f)|2 · SX̃(f) = |1− eif|−2d · σ
2

2π

|B(f)|2

|A(f)|2
. (105)

By replacing |1− eif| = 2 sin( f2), and taking the limit

lim
f→0

2 sin( f2)
f

= 1, (106)
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5.1 time-series and memory properties

the behavior of the spectral density at the origin follows

SX(0) ≈
σ2

2π

|B(1)|2

|A(1)|2
|f|−2d. (107)

The derivation of explicit formulas for the covariance func-
tion of the general FARIMA(p,d,q) model is very challenging.
Nonetheless, we can, for 0 < d < 1

2 , obtain asymptotic formulas
when τ→∞,

γx(τ) ≈ cγ(d,A,B)|τ|2d−1,

where cγ(d,A,B) =
σ2

π

|B(1)|2

|A(1)|2
Γ(1− 2d) sin(πd).

(108)

More specifically, for the interesting FARIMA(0,d, 0) case we
have γx(τ) = σ2

(−1)τΓ(1−2d)
Γ(τ−d+1)Γ(1−τ−d) ,

ρx(τ) =
Γ(1−d)Γ(τ+d)
Γ(d)Γ(τ+1−d) .

(109)

Note that with this equation and by following the intuition in
Equation 104, one can derive the covariances for any particular
FARIMA(p,d,q) model. That is, one needs to combine the above
with the ARMA(p,q) covariance function.

Finally, due to Equation 102, one can express the FARIMA(0,d, 0)
model as an infinite AR or MA process

1.
∑∞
k=0 akxt−k = ut, with ak =

Γ(k−d)
Γ(k+1)Γ(−d) .

2. xt =
∑∞
k=0 bkut−k, with bk =

Γ(k+d)
Γ(k+1)Γ(d) .

Long-memory processes: model comparison

From the descriptions in Section 5.1.1 and Section 5.1.2, it is
evident that both processes are not identical. Nonetheless, there
are many shared features.

Let us summarize the properties, differences and similarities
of the fGp and the FARIMA models.

• Both the fGp and the FARIMA model have long-memory if
1
2 < H < 1 and 0 6 d < 1

2 , respectively:

1. For τ → ∞, the covariance function follows long-
memory as in Equation 79.
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5.1 time-series and memory properties

2. For f → 0, the spectrum follows long-memory as in
Equation 80.

• The autocorrelation function for a fGp is defined for all
lags

ρx(τ) =
1

2

[
(τ+ 1)2H − 2τ2H + (τ− 1)2H

]
, (110)

and is shown for different H values in Figure 17.
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Figure 17: γ(τ) for fGps, as a function of the Hurst parameter.

The autocorrelation for the FARIMA(0,d, 0) model is

ρx(τ) =
Γ(1− d)Γ(τ+ d)

Γ(d)Γ(τ+ 1− d)
, (111)

where for big τ values, we can approximate it with

ρx(τ) ≈
Γ(1− d)

Γ(d)
τ2d−1. (112)

We illustrate the differences in the autocorrelation func-
tions for the fGp and FARIMA(0,d, 0) in Figure 18. Further
comparison details are included in Section D.2.

• The FARIMA(0,d, 0) model spectrum has a simple expres-
sion for all frequencies

Sx(f) = |1− eif|−2d = |2 sin(
f

2
)|−2d. (113)

87



5.2 smc method for latent fgp
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Figure 18: γ(τ) for fGps and FARIMA(0,d, 0), as a function of the Hurst
parameter.

The spectrum of the fGp is

Sx(f) = 2
σ2

2π
sin(πH)Γ(2H+ 1) (1− cos(f))

∞∑
i=∞ |2πi+ f|−2H−1.

(114)

• The low-frequency spectrum is identical for both pro-
cesses. If d = H− 1

2 and f→ 0, then

1. Sx(f) ∝ | sinπf|−2d ≈ f−2d for the FARIMA(0,d, 0)
model.

2. Sx(f) ≈ cf(H,σ2)|f|1−2H for the fGp.

smc method for latent fractional gaussian pro-
cesses

In this chapter, we are interested in the study of latent long-
memory processes observed through nonlinear functions. In
particular, we study the stationary increments of the fractional
Brownian motion, that is, the fGp described in Section 5.1.1.
Inference of the alternative FARIMA(p,d,q) model (as in Sec-
tion 5.1.2) is left aside for now, as it is addressed in the
forthcoming Chapter 6.

88



5.2 smc method for latent fgp

Here, we focus on the inference of latent fGps with nonlinear
observations. Mathematically, we model the problem at hand
by the following state-space representationxt = ut,yt = h(xt, vt),

(115)

where ut represents a zero-mean fGp with autocovariance
function

γu(τ) =
σ2u
2

[
|τ− 1|2H − 2 |τ|2H + |τ+ 1|2H

]
, (116)

where σ2 is the variance of the process.
For 1

2 < H < 1, the process has long-range dependence; and,
forH = 0.5, the observations are uncorrelated, as the expression
in Equation 116 simplifies to the Kronecker delta function: i.e.,
γ(τ) = σ2δ(τ). We illustrated the memory properties of the fGp
by plotting its autocovariance function for different H values in
Figure 17.

If short-memory processes, such as ARMA(p,q) models, were
used for modeling non-quickly decaying autocovariance func-
tions, one would need to increase the model orders p and q.
Actually, the number of parameters tends to infinity. In practice,
an excessive number of parameters is undesirable for many
reasons and, especially, because it increases the uncertainty of
the statistical inference. Therefore, the parsimonious descrip-
tion provided by the fractional Gaussian process is a more
satisfactory model to describe such autocovariance decays (see
Figure 17 and the long-term dependence as H→ 1).

Our goal hear is to sequentially infer the hidden state
as new observations become available. To do so, we are
interested on the filtering density f(xt+1|y1:t+1), which, due to
the nonlinearities considered, is approximated by a random
measure updated sequentially by SMC sampling. The challenge
is on deriving the densities for fractional Gaussian processes
that result in an efficient SMC solution.

The latent state is a fGp and thus, due to the Gaussianity and
stationarity of the process, the sufficient statistics are its mean
and the autocovariance function. For simplicity, we assume
here a zero-mean stationary fGp and thus, its autocovariance
function follows Equation 116.
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5.2 smc method for latent fgp

Therefore, at time instant t + 1, the joint distribution of
the whole process is a zero-mean multivariate Gaussian, i.e.,
x1:t+1 ∼ N(x1:t+1|0,Ct+1), where

Ct+1 =

(
γu(0) ct+1

c>t+1 Ct

)
, (117)

and 

ct+1 = ( γu(1) γu(2) ··· γu(t−1) γu(t) ) ,

Ct =


γu(0) γu(1) γu(2) ··· γu(t−2) γu(t−1)
γu(1) γu(0) γu(1) ··· γu(t−3) γu(t−2)

...
...

... . . . ...
...

γu(t−3) γu(t−4) γu(t−5) ··· γu(1) γu(2)
γu(t−2) γu(t−3) γu(t−4) ··· γu(0) γu(1)
γu(t−1) γu(t−2) γu(t−3) ··· γu(1) γu(0)

 .

Note that the covariance matrix of the joint distribution of
the fractional Gaussian process at time t+ 1 is determined by
computing the symmetric Toeplitz matrix of the autocovariance
function up to lag τ = t.

From this joint distribution and, given the last t samples of
the process, we can compute the conditional distribution of the
next sample xt+1, given x1:t.

It readily follows that the resulting transition density is the
univariate Gaussian distribution

f(xt+1|x1:t,σ2u) = N(xt+1|µxt+1|x1:t ,σ
2
xt+1|x1:t

),

where

µxt+1|x1:t = ct+1C−1
t x1:t,

σ2xt+1|x1:t
= γu(0) − ct+1C

−1
t c
>
t+1.

(118)

By relating the autocovariance and autocorrelation functions
as follows

γu(τ) = σ
2
uρ(τ) = σ

2
u

(
1

2

[
|τ− 1|2H − 2 |τ|2H + |τ+ 1|2H

])
, (119)

one can readily derive, as in previous Chapter 4, a normalized
covariance matrix Ct+1 = σ2uC̃t+1, where

C̃t+1 =

(
γ̃u(0) c̃t+1

c̃>t+1 C̃t

)
, (120)
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5.2 smc method for latent fgp

with 

γ̃u(0) = ρu(0),

c̃t+1 = ( ρu(1) ρu(2) ··· ρu(t−1) ρu(t) ) ,

C̃t =


ρu(0) ρu(1) ρu(2) ··· ρu(t−2) ρu(t−1)
ρu(1) ρu(0) ρu(1) ··· ρu(t−3) ρu(t−2)

...
...

... . . . ...
...

ρu(t−3) ρu(t−4) ρu(t−5) ··· ρu(1) ρu(2)
ρu(t−2) ρu(t−3) ρu(t−4) ··· ρu(0) ρu(1)
ρu(t−1) ρu(t−2) ρu(t−3) ··· ρu(1) ρu(0)

 .

(121)

This new notation allows for consideration of the unknown
noise variance σ2u case. Following the same approach as in
previous chapters, we apply Rao-Blackwellization and thus,
one can readily derive the marginalized transition density
(details are equivalent to those in Section 4.2.2)

f(xt+1|x1:t) = Tνt

(
xt+1|µxt+1|x1:t , ct+1σ

2
t

)

with



νt = ν0 + t ,

µxt+1|x1:t = c̃
>
t+1C̃

−1
t x1:t ,

σ2t =
ν0σ

2
0+x

>
1:tC̃

−1
t x1:t

νt
,

ct+1 = ρu(0) − c̃t+1C̃
−1
t c̃
>
t+1 .

(122)

We leverage the transition densities in Equation 118 and
Equation 122 to present an SMC sampling method for latent
fractional Gaussian processes in Table 21.

91



5.2 smc method for latent fgp

pf for latent fgp with known H parameter

1. At time instant t, consider the random measure

fMt (xt) =

M∑
m=1

w
(m)
t δ

(
xt − x

(m)
t

)
.

2. Upon reception of a new observation at time instant t + 1.

3. Perform resampling of the state by drawing from a
categorical distribution defined by the random measure

x
(m)
t ∼ fMt (xt) , where m = 1 , · · · ,M .

4. Propagate the particles by sampling from the transition
density, given the (resampled) stream of particles:

• If σ2u is known,

x
(m)
t+1 ∼ f(xt+1 |x

(m)
1 :t σ

2
u) = N(xt+1 |µxt+1 |x1:t , σ2xt+1 |x1:t ) ,

with

µxt+1 |x1:t = ct+1C
−1
t x1 :t ,

σ2xt+1 |x1:t
= γu(0) − ct+1C

−1
t c>t+1 .

• If σ2u is unknown,

x
(m)
t+1 ∼ f(xt+1 |x

(m)
1 :t ) = Tνt

(
xt+1 |µxt+1 |x1:t , ct+1σ2t

)
,

with



νt = ν0 + t ,

µxt+1 |x1:t = c̃>t+1 C̃
−1
t x

(m)
1 :t ,

σ2t =
ν0σ

2
0+x

(m)>
1:t C̃−1

t x
(m)
1:t

νt
,

ct+1 = ρu(0) − c̃t+1 C̃
−1
t c̃>t+1 .

5. Compute the non-normalized weights for the particles

w̃
(m)
t+1 ∝ f(yt+1 |x

(m)
t+1 ) ,

and normalize them to obtain a new random measure

fMt+1(xt+1) =

M∑
m=1

w
(m)
t+1δ

(
xt+1 − x

(m)
t+1

)
.

Table 21: PF for latent fGp with known H parameter.
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5.3 evaluation

evaluation

We evaluate the proposed SMC sampling method under the SV
model, as in previous chapters (see Section 3.3 and Section 4.3).
However, we now consider a latent fGp, that is, the log-volatility
of the observed time-series is a fractional Gaussian process.
Volatility models with long-memory characteristics have been
widely studied in finance [8]. The goal there is to estimate the
evolving volatility of an observed series of stock prices.

Mathematically, the state-space model is written asxt = ut,yt = e
xt/2vt,

(123)

where ut is a zero-mean fractional Gaussian process with
autocovariance function as in Equation 116 and vt ∼ N(vt|0,σ2v).
For the following results, we assume σ2 = 1 and σ2v = 1

and evaluate the performance of the proposed SMC method in
Table 21 for different Hurst parameter values. The presented
results are MSEs averaged over 100 realizations of 200 instants
long timeseries, and M = 1000 particles are used.
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Figure 19: MSE of the proposed SMC method for latent fGp with
different Hurst parameters.

The state filtering accuracy of the proposed SMC for the
known Hurst parameter case is presented in Figure 19. The
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results illustrate the implicit benefits of tracking long-memory
processes. As H → 1, more information is provided by past
samples in estimating the present value of the series and thus,
the performance of the SMC sampling technique improves. That
is, it is possible to more accurately estimate the time-evolving
log-variance of the observed time-series, because of the slow
decay of the autocovariance function in such long-memory
processes.

Note that the proposed SMC and the results in Figure 19

require computation of the full autocovariance function of the
fGp process up to time instant t, as shown in Equation 121. Thus,
in order to reduce computational cost, one may be tempted
to truncate the autocovariance function up to a maximum lag
τmax (along the lines of what was proposed for ARMA models
in Chapters 3 and 4).

We implemented a truncated version of the SMC method in
Table 21, where the truncated sufficient statistics followµxt+1|xt−τmax:t = cτmax+1C−1

τmaxxt−τmax:t,

σ2xt+1|xt−τmax:t
= γu(0) − cτmax+1C

−1
τmaxc

>
τmax+1

.
(124)

This reduces the computational cost of the method, as one
computes γ(τ) only for a short window τ = 0, · · · , τmax.
The question however, is how much information is lost when
truncating the sufficient statistics. We provide MSE results for
latent fGps with different Hurst parameters as a function of the
truncation lag τmax in Figure 20, Figure 21, Figure 22, Figure 23,
Figure 24 and Figure 25.

The results indicate that truncation is, indeed, only feasible
for short-memory processes (i.e., 0.5 6 H < 0.75), while non-
negligible information loss is observed as the memory of the
process increases (i.e., H → 1). These findings in terms of MSE
are backed up by the analysis provided in Section D.1. There,
we can observe how quickly the fGp forgets the past, both in
terms of the autocovariance function γ(τ) or the key −αt =

c̃−1t C̃
>
t+1 term. Only for 0.5 6 H < 0.75 values one can consider

the process to forget quickly.
Thus, one can only truncate the sufficient statistics for pro-

cesses with short-memory features, as we save in computation
and memory resources without sacrificing in performance. On
the contrary, truncation should be avoided when dealing with
long-memory processes.
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Figure 20: MSE of SMC method with truncation for fGp with H = 0.5.
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Figure 21: MSE of SMC method with truncation for fGp with H = 0.6.
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Figure 22: MSE of SMC method with truncation for fGp with H = 0.7.
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Figure 23: MSE of SMC method with truncation for fGp with H = 0.8.
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Figure 24: MSE of SMC method with truncation for fGp with H = 0.9.

10 25 50 75 100 t

0.36

0.38

0.4

0.42

0.44

0.46

0.48

τmax

M
SE

Figure 25: MSE of SMC method with truncation for fGp with H = 0.95.
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As of now, it is clear that accurately computing the suf-
ficient statistics of the fGp is critical for the performance
of the proposed method. That is, one needs to compute
the autocovariance function as in Equation 116, which is
parameterized by the Hurst parameter H. In practice though,
knowing the exact memory properties of a latent time-series is
not possible and thus, one needs to consider alternatives when
the autocovariance function is unknown.

However, estimation of all the unknowns in γ(τ) is too ambi-
tious of a task. The alternative, that is, to estimate the unknown
Hurst parameter and, from there, derive the autocovariance
function up to time-instant t, is also a very challenging task,
due to the nonlinear dependency of the parameter with the
data.

On the one hand, the most popular methods on estimating
the Hurst parameter H rely on direct observation of xt [98, 100].
However, this is not the case when dealing with latent fGps, as
is the case here.

On the other, since H is an unknown static parameter, the
proposed SMC will have problems in dealing with it [72]. To
overcome such limitations on estimating static parameters with
PFs, various methodologies have been suggested [39, 72]. In
these, an artificial model is assumed for the fixed parameter,
either by assuming a slowly varying evolution of the parameter
or by approximating the joint distribution of the parameter and
the state.

However, these approaches raise several concerns in our
problem of interest, i.e., the estimation of the Hurst parameter
of a latent fGp. Assuming a varying H would not only break
important properties of the process (i.e., stationarity and self-
similarity), but would also affect the mixing properties of the
states, thus endangering the convergence of the SMC method.
Besides, determining a suitable density for H is very challeng-
ing, due to its complicated dependency on the state.

Thus, we only consider here the SMC that assumes knowledge
of the autocovariance function of the latent fGp. Nonetheless,
alternatives to deal with the unknown Hurst parameter are
later presented in Chapter 9.
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6
L AT E N T A R M A (p , q ) P R O C E S S E S W I T H
C O R R E L AT E D I N N O VAT I O N S

In this chapter, we extend the analysis of time-series models
that are not limited to short-memory properties. We study a
very flexible set of time-series, which are ARMA(p , q) models
that are driven by non-iid noise. That is, we allow for the
innovation process to be correlated over time.

This new modeling approach generalizes previously studied
models (i.e., ARMA(p , q) and fGp) and, furthermore, allows for
modeling of a wide range of memory properties. Note that,
amongst the processes that this new model can describe are the
FARIMA(p , d , q) models. As explained in Section 5.1.2, these
can be understood as fGps or FARIMA(0 , d , 0) processes filtered
by an ARMA(p , q) model. We hereby generalize these notion
and consider any correlated innovation driving an ARMA(p , q)
filter.

In the following, we analyze the properties of these time-
series and derive the joint and transition densities of such
processes in Section 6.1. In Section 6.2, we leverage from the
previous analysis to propose, for different parameter knowl-
edge assumptions, an SMC method for inference of latent
ARMA(p , q) processes with correlated innovations. We con-
clude by evaluating in Section 6.3 the performance of the
proposed methods in the illustrative SV model with latent ARMA
with fGp innovations.

bayesian analysis of the correlated time-series

We hereby investigate latent time-series with correlated inno-
vations, observed via nonlinear functions. That is, we consider
hidden dynamics that follow an ARMA(p , q) model with non-
iid innovations.

Mathematically, we represent the model of interest as x t =
∑ p

i= 1 a i x t− i + u t +
∑ q

j= 1 b ju t− j ,

y t = h ( x t , v t ) ,
(125)
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6.1 arma with correlated innovations

where u t is a zero-mean Gaussian innovation process that is
correlated in time. It is described by an arbitrary autocovariance
function γu ( τ ) . For added modeling flexibility, we do not
enforce any restriction on the form of such autocovariance
function, as long as stationarity conditions are met.

We proceed with a Bayesian analysis of ARMA processes
driven by a time-correlated innovation process, as in Equa-
tion 125. We aim at deriving the joint distribution of the time-
series up to time instant t, i.e., x1:t ∼ f(x1:t). This density
contains all the relevant information of the time-series, from
which any marginal and conditional of interest can be directly
derived.

We start by reformulating the state in Equation 125, where
we fix b0 = 1,

xt =

p∑
i=1

aixt−i +

q∑
j=0

bjut−j ,

xt −

p∑
i=1

aixt−i =

q∑
j=0

bjut−j .

(126)

Now, we rewrite the above recursion for a time-series up to
time instant t in matrix form

1 −a1 −a2 ··· −ap 0 0 0 ··· 0
0 1 −a1 ··· −ap−1 −ap 0 0 ··· 0

0 0 1 ··· −ap−2 −ap−1 −ap 0 ··· 0

...
... . . . . . . . . . ... . . . . . . . . . ...

0 0 0 0 0 0 ··· 1 −a1 −a2
0 0 0 0 0 0 0 ··· 1 −a1
0 0 0 0 0 0 0 0 ··· 1




xt
xt−1
xt−2

...
x3
x2
x1

 =


1 b1 b2 ··· bq 0 0 0 ··· 0
0 1 b1 ··· bq−1 bq 0 0 ··· 0

0 0 1 ··· bq−2 bq−1 bq 0 ··· 0

...
... . . . . . . . . . ... . . . . . . . . . ...

0 0 0 0 0 0 ··· 1 b1 b2
0 0 0 0 0 0 0 ··· 1 b1
0 0 0 0 0 0 0 0 ··· 1




ut
ut−1
ut−2

...
u3
u2
u1

 .

(127)

If we define matrices

At =


1 −a1 −a2 ··· −ap 0 0 0 ··· 0
0 1 −a1 ··· −ap−1 −ap 0 0 ··· 0

0 0 1 ··· −ap−2 −ap−1 −ap 0 ··· 0

...
... . . . . . . . . . ... . . . . . . . . . ...

0 0 0 0 0 0 ··· 1 −a1 −a2
0 0 0 0 0 0 0 ··· 1 −a1
0 0 0 0 0 0 0 0 ··· 1

 ∈ Rt×t,

Bt =


1 b1 b2 ··· bq 0 0 0 ··· 0
0 1 b1 ··· bq−1 bq 0 0 ··· 0

0 0 1 ··· bq−2 bq−1 bq 0 ··· 0

...
... . . . . . . . . . ... . . . . . . . . . ...

0 0 0 0 0 0 ··· 1 b1 b2
0 0 0 0 0 0 0 ··· 1 b1
0 0 0 0 0 0 0 0 ··· 1

 ∈ Rt×t,

(128)
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where the subscript t indicates matrix dimensionality, then one
can immediately write Atx1:t = Btu1:t and, thus

x1:t = A
−1
t Btu1:t. (129)

Note that in this chapter, the innovation process ut can be
correlated in time. We now consider a Gaussian innovation
process where its sufficient statistics are the mean (usually
assumed to be zero) and an arbitrary autocovariance function
γu(τ) = σ

2
uρu(τ).

Consequently, the distribution of the vector of innovations
up to time instant t (i.e., u1:t) is a zero-mean Gaussian density
with covariance matrix Cut = σ

2
uRut , where

Rut =



ρu(0) ρu(1) · · · ρu(t− 2) ρu(t− 1)

ρu(1) ρu(0) · · · ρu(t− 3) ρu(t− 2)
...

... . . . ...
...

ρu(t− 2) ρu(t− 3) · · · ρu(0) ρu(1)

ρu(t− 1) ρu(t− 2) · · · ρu(1) ρu(0)


. (130)

Note the symmetric Toeplitz structure of the matrix, where
the fundamental row (column) contains the values of the
autocorrelation ρu(τ), for lags τ = 0, 1, · · · , t− 1.

We leverage these sufficient statistics of the correlated in-
novations and the formulation of the state equation as in
Equation 129 to derive the joint density of the time-series of
interest.

ARMA(p,q) with correlated innovations: joint density

Let us consider a time-series at time instant t with correlated
innovations, i.e., we write

x1:t = A
−1
t Btu1:t , u1:t ∼ N(0,σ2uRut). (131)

Due to the properties of the Gaussian distribution, the joint
density of the time-series x1:t is a zero-mean Gaussian with a
covariance matrix dependent on the matrices At, Bt and Rut .
Specifically,

x1:t ∼ f(x1:t|σ
2
u) = N

(
x1:t|0,σ2uΣt

)
,

Σt = A
−1
t BtRutB

>
t (A

−1
t )> ∈ Rt×t .

(132)

Because in any practical scenario knowledge of the under-
lying innovation variance is troublesome, it is of interest to
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6.1 arma with correlated innovations

consider the unknown noise variance σ2u case. Once again,
we resort to marginalization of the unknown (i.e., we Rao-
Blackwellize σ2u). We do so by considering conjugate priors, due
to their convenient analytical properties.

We assume a scaled inverse Chi-squared prior for the un-
known variance,

f(σ2u) = χ
−2(σ2u|ν0,σ

2
0) =

(
σ20
ν0
2

)ν0
2

Γ(ν02 )

1

(σ2u)
1+
ν0
2

e
−
ν0σ

2
0

2σ2u . (133)

The marginalization of σ2u in the joint density follows

f(x1:t) =

∫∞
0
f(x1:t|σ

2
u)f(σ

2
u)dσ

2
u

=

∫∞
0
(2π)−

t
2 (σ2u)

− t2 |Σt|
−12 e

− 1

2σ2u
x>1:tΣ

−1
t x1:t

×
(
σ20
ν0
2

)ν0
2

Γ(ν02 )

1

(σ2u)
1+
ν0
2

e
−
ν0σ

2
0

2σ2u dσ2u

∝
∫∞
0
(σ2u)

−
(
1+
ν0+t
2

)
e
− 1

2σ2u
(ν0σ20+x

>
1:tΣ

−1
t x1:t)

dσ2u

∝
[(
ν0σ

2
0 + x

>
1:tΣ

−1
t x1:t

)]−ν0+t2
∝
[(
1+

1

ν0
x>1:t

(
σ20Σt

)−1
x1:t

)]−ν0+t2
= Tν0(x1:t|0,σ

2
0Σt) .

(134)

Consequently, the joint density of the time-series at time
instant t after marginalization of the unknown variance is a
multivariate Student-t density

f(x1:t) = Tν (x1:t|µ1:t,Φ1:t)

=
Γ
(
ν+t
2

)
Γ
(
ν
2

)
π
t
2ν

t
2 |Φ|

1
2

·

(
1+

(x1:t − µ1:t)
>Φ−1 (x1:t − µ1:t)

ν

)−(ν+t2 )

,

(135)

with ν = ν0 degrees of freedom, location parameter µ1:t = 0

and scale matrix Φ1:t = σ20Σt.

102



6.1 arma with correlated innovations

ARMA(p,q) with correlated innovations: transition density

For inference and prediction of time-series, it is of practical
interest to derive the transition density of the time-series
considered. To do so, we leverage the joint densities from
Section 6.1.1.

Let us write the joint density of the time-series at time instant
t+ 1, i.e.,f(x1:t+1|σ2u) = N

(
x1:t+1|0,σ2uΣt+1

)
, if σ2u is known,

f(x1:t+1) = Tν0(x1:t+1|0,σ
2
0Σt+1), if σ2u is unknown,

(136)

and rewrite the covariance matrix Σt+1 in block form

Σt+1 = A
−1
t+1Bt+1Rut+1B

>
t+1(A

−1
t1
)> =

(
ht+1 λt

λ>t Σt

)
, (137)

where ht+1 ∈ R1×1, λt ∈ R1×t and Σt ∈ Rt×t.
By means of the expressions for the conditional densities of

the Gaussian and Student-t distributions [13], one can readily
derive the transition densities of the time-series:

• If σ2u is known,

f(xt+1|x1:t,σ2u) = N
(
xt+1|µt+1,σ2t+1

)
,

with

µt+1 = λtΣ−1t x1:t ,

σ2t+1 = σ
2
u

(
ht+1 − λtΣ

−1
t λ

>
t

)
.

(138)

• If σ2u is unknown,

f(xt+1|x1:t) = Tνt+1

(
xt+1|µt+1,φ2t+1

)
,

with


νt+1 = ν0 + t ,

µt+1 = λtΣ
−1
t x1:t ,

φ2t+1 =
ν0σ

2
0+x

>
1:tΣ

−1
t x1:t

ν0+t

(
ht+1 − λtΣ

−1
t λ

>
t

)
.

(139)
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6.2 smc for arma with correlated innovations

smc method for arma(p , q) with correlated innova-
tions

We now propose SMC sampling methods for ARMA processes
with correlated innovations, based on the transition densities
derived in Equation 138 and Equation 139. We first consider the
known ARMA parameter case and later relax these assumptions.

In order to use the transition density for propagating state
samples, one needs to have knowledge of the matrices At+1,Bt+1
and Rut+1 in Equation 137, so that the covariance matrix Σt+1
can be computed. We present an SMC method that assumes
knowledge of those parameters in Table 22.

Nonetheless, assuming knowledge of such parameters is
impractical in many scenarios. Since analytical marginalization
of all the parameters is not possible (same arguments as in
Chapter 4), we resort to a parameter sampling scheme.

On the one hand, sampling for the unknowns in matrix Rut+1
is a too ambitious task and thus, we hereby assume knowledge
of the autocovariance function of the correlated innovation
process (alternatives to deal with uncertainty on Rut+1 are
presented later in Chapter 9).

On the other, one can easily compute the matrices At+1 and
Bt+1 once the ARMA parameters a and b are known. Thus, a
sampling approach for the unknown ARMA model parameters
can be devised, as explained in detail in the following section.
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6.2 smc for arma with correlated innovations

pf for arma with correlated ut

1. At time instant t, consider the random measure

fMt (xt) =

M∑
m=1

w
(m)
t δ

(
xt − x

(m)
t

)
.

2. Upon reception of a new observation at time instant t + 1.

3. Perform resampling of the state, if necessary.

4. Propagate the particles by sampling from the transition
density, given the (resampled) stream of particles:

• If σ2u is known,

x
(m)
t+1 ∼ f(xt+1 |x

(m)
1 :t , σ2u) = N

(
xt+1 |µt+1 , σ2t+1

)
,

with

µt+1 = λtΣ
−1
t x

(m)
1 :t ,

σ2t+1 = σ2u

(
ht+1 − λtΣ

−1
t λ>t

)
.

• If σ2u is unknown,

x
(m)
t+1 ∼ f(xt+1 |x1 :t) = Tνt+1

(
xt+1 |µt+1 , φ2t+1

)
,

with


νt+1 = ν0 + t ,

µt+1 = λtΣ
−1
t x1 :t ,

φ2t+1 =
ν0σ

2
0+x

>
1:tΣ

−1
t x1:t

ν0+t

(
ht+1 − λtΣ

−1
t λ>t

)
.

with sufficient statistics computed as in Equation 137.

5. Compute the non-normalized weights for the particles

w̃
(m)
t+1 ∝ f(yt+1 |x

(m)
t+1 ) ,

and normalize them to obtain a new random measure

fMt+1(xt+1) =

M∑
m=1

w
(m)
t+1δ

(
xt+1 − x

(m)
t+1

)
.

Table 22: PF for latent ARMA with correlated innovations, known a

and b.
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6.2 smc for arma with correlated innovations

SMC method for ARMA(p,q) with correlated innovations: unknown
a and b parameters

We extend the SMC method presented in Table 22 to the case
where the parameters of the ARMA model θ = (a b)> are
unknown. We propose a sampling approach for the unknown
ARMA model parameters. That is, we consider a joint state and
parameter vector ρt = (xt θt)

>. Here, too, the subscript t in θt
does not imply that the parameter evolves over time.

The state samples are propagated by drawing from the state
transition density. For parameter propagation, two alternatives
are explored, one where the principles of Density Assisted (DA)
PFs [39] are followed, and another where Importance Sampling
(IS) is used.

In the former, one approximates the posterior of the un-
known parameter θ, given the current time-series x1:t with
a Gaussian distribution, i.e., f(θ(m)

t+1|x
(m)
1:t ) = N (θt+1|µθt ,Σθt),

where

µθt =

M∑
i=1

w
(m)
t θ

(m)
t ,

Σθt =

M∑
i=1

w
(m)
t (θ

(m)
t − µθt)(θ

(m)
t − µθt)

>.

(140)

One can use such approximation to the posterior of the pa-
rameters to propagate parameter samples from one time instant
to the next. In this case, the resulting weight computation
results in

w̃
(m)
t+1 ∝ f(yt+1|x

(m)
t+1) ·

f(x
(m)
t+1|x

(m)
1:t )

π(xt+1)
·
f(θ

(m)
t+1|x

(m)
1:t )

π(θt+1)
= f(yt+1|x

(m)
t+1) .

(141)

Details of an SMC sampling method following this approach
are presented in Table 23 and Table 24, for the known and
unknown σ2u cases, respectively.
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6.2 smc for arma with correlated innovations

da-pf : arma with correlated ut , unknown a and b

1. At time instant t, consider the joint random measure

fMt (ρt) =

M∑
m=1

w
(m)
t δ

(
ρt − ρ

(m)
t

)
,

and compute the parameter sufficient statisticsµθt =
∑M
i=1 θ

(m)
t w

(m)
t ,

Σθt =
∑M
i=1(θt − µθt )(θt − µθt )

>w
(m)
t .

2. Upon reception of a new observation at time instant t + 1,
perform resampling of the state (if necessary).

3. Propagate parameter samples from the approximated
Gaussian posterior density

θ
(m)
t+1 ∼ f(θt |x1 :t) ≈ N (θt+1 |µθt , Σθt ) ,

and compute a per θ(m)
t+1 sample covariance matrix

Σ
(m)
t+1 = A−1(m)

t+1 B
(m)
t+1RutB

>(m)

t+1 A
−1>

(m)

t1
=

(
h
(m)
t+1 λ

(m)
t

λ>
(m)

t Σ
(m)
t

)
.

4. Propagate state particles by sampling from

x
(m)
t+1 ∼ f(xt+1 |x

(m)
1 :t , σ2u) = N

(
xt+1 |µt+1 , σ2t+1

)
,

with

µt+1 = λ
(m)
t Σ

(m)−1

t x
(m)
1 :t ,

σ2t+1 = σ2u

(
h
(m)
t+1 − λ

(m)
t Σ

(m)−1

t λ
(m)>

t

)
.

5. Compute the non-normalized weights for the particles

w̃
(m)
t+1 ∝ f(yt+1 |x

(m)
t+1 ) , and normalize them

to obtain a new random measure fMt+1(ρt+1).

Table 23: Density assisted PF for latent ARMA process with correlated
innovations, unknown a and b and known σ2u.
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6.2 smc for arma with correlated innovations

da-pf : arma with correlated ut , unknown a , b and σ2u

1. At time instant t, consider the joint random measure

fMt (ρt) =

M∑
m=1

w
(m)
t δ

(
ρt − ρ

(m)
t

)
,

and compute the parameter sufficient statisticsµθt =
∑M
i=1 θ

(m)
t w

(m)
t ,

Σθt =
∑M
i=1(θt − µθt )(θt − µθt )

>w
(m)
t .

2. Upon reception of a new observation at time instant t + 1,
perform resampling of the state (if necessary).

3. Propagate parameter samples from the approximated
Gaussian posterior density

θ
(m)
t+1 ∼ f(θt |x1 :t) ≈ N (θt+1 |µθt , Σθt ) ,

and compute a per θ(m)
t+1 sample covariance matrix

Σ
(m)
t+1 = A−1(m)

t+1 B
(m)
t+1RutB

>(m)

t+1 A
−1>

(m)

t1
=

(
h
(m)
t+1 λ

(m)
t

λ>
(m)

t Σ
(m)
t

)
.

4. Propagate state particles by sampling from

x
(m)
t+1 ∼ f(xt+1 |x

(m)
1 :t ) = Tνt+1

(
xt+1 |µt+1 , φ2t+1

)
,

with


νt+1 = ν0 + t ,

µt+1 = λ
(m)
t Σ

(m)−1

t x
(m)
1 :t ,

φ2t+1 =
ν0σ

2
0+x

(m)>
1:t Σ

(m)−1

t x
(m)
1:t

ν0+t

(
h
(m)
t+1 − λ

(m)
t Σ

(m)−1

t λ
(m)>

t

)
.

5. Compute the non-normalized weights for the particles

w̃
(m)
t+1 ∝ f(yt+1 |x

(m)
t+1 ) , and normalize them

to obtain a new random measure fMt+1(ρt+1).

Table 24: Density assisted PF for latent ARMA process with correlated
innovations, unknown a, b and σ2u.
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Instead of approximating the parameter posterior, an alter-
native is to use a Gaussian proposal density for sampling the
unknown parameters. Then, one applies IS to properly weight
the joint state and parameter samples.

That is, at every time instant, one propagates parameter par-
ticles by sampling from the proposal π(θt+1) = N (θt+1|µθt ,Σθt)
(with sufficient statistics as in Equation 140). The corresponding
weight computation results in

w̃
(m)
t+1 ∝ f(yt+1|x

(m)
t+1) ·

f(x
(m)
t+1|x

(m)
1:t )

π(xt+1)
·
f(θ

(m)
t+1|x

(m)
1:t )

π(θt+1)

= f(yt+1|x
(m)
t+1) ·

f(θ
(m)
t+1|x

(m)
1:t )

N (θt+1|µθt ,Σθt)
.

(142)

Since the posterior of the parameters is analytically in-
tractable, we use

f(θ
(m)
t+1|x

(m)
1:t ) =

f(x
(m)
1:t |θ

(m)
t+1)f(θ

(m)
t+1)

f(x
(m)
1:t )

=
f(x

(m)
1:t |θ

(m)
t+1)

f(x
(m)
1:t )

, (143)

which results in

f(θ
(m)
t+1|x

(m)
1:t ) =

N
(
x
(m)
1:t

∣∣∣0,σ2uΣ(m)
t

)
N

(
x
(m)
1:t

∣∣∣∣∣0,σ2uΣ(µθt)t

) , if σ2u is known,

f(θ
(m)
t+1|x

(m)
1:t ) =

Tν0

(
x
(m)
1:t

∣∣∣0,σ20Σ(m)
t

)
Tν0

(
x
(m)
1:t

∣∣∣∣∣ν0,0,σ20Σ
(µθt)
t

) , if σ2u is unknown.

(144)

Note that, with Σ
(µθt)
t we refer to the covariance matrix

computed using the parameter estimates µθt as in Equation 140;
while with Σ(m)

t we refer to the covariance matrix evaluated per
drawn parameter sample θ(m)

t+1.
Full details of the SMC sampling method that follows this

approach are presented in Table 25 and Table 26, for the known
and unknown σ2u cases, respectively.

The proposed SMC methods rely on different a and b

parameter sampling approaches. They are both presented in
terms of one parameter sample per state sample. However, the
proposed solutions can be readily extended to J > 1 parameter
samples per state sample, and resort to a numerical Rao-
Blackwellization, in a similar fashion to the solutions proposed
in Chapter 4.
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6.2 smc for arma with correlated innovations

is-pf : arma with correlated ut , unknown a and b

1. At time instant t, consider the joint random measure

fMt (ρt) =

M∑
m=1

w
(m)
t δ

(
ρt − ρ

(m)
t

)
,

and compute the parameter sufficient statisticsµθt =
∑M
i=1 θ

(m)
t w

(m)
t ,

Σθt =
∑M
i=1(θt − µθt )(θt − µθt )

>w
(m)
t .

2. Upon reception of a new observation at time instant t + 1,
perform resampling of the state (if necessary).

3. Propagate parameter samples from the Gaussian proposal

θ
(m)
t+1 ∼ π(θt+1) = N (θt+1 |µθt , Σθt ) ,

and compute a per θ(m)
t+1 sample covariance matrix

Σ
(m)
t+1 = A−1(m)

t+1 B
(m)
t+1RutB

>(m)

t+1 A
−1>

(m)

t1
=

(
h
(m)
t+1 λ

(m)
t

λ>
(m)

t Σ
(m)
t

)
.

4. Propagate state particles by sampling from

x
(m)
t+1 ∼ f(xt+1 |x

(m)
1 :t , σ2u) = N

(
xt+1 |µt+1 , σ2t+1

)
,

with

µt+1 = λ
(m)
t Σ

(m)−1

t x
(m)
1 :t ,

σ2t+1 = σ2u

(
h
(m)
t+1 − λ

(m)
t Σ

(m)−1

t λ
(m)>

t

)
.

5. Compute the non-normalized weights for the particles

w̃
(m)
t+1 ∝ f(yt+1 |x

(m)
t+1 )

N
(
x
(m)
1 :t

∣∣∣0 , σ2uΣ
(m)
t

)
N
(
θ
(m)
t+1 |µθt , Σθt

)
N

(
x
(m)
1 :t

∣∣∣∣0 , σ2uΣ
(µθt )
t

) ,

and normalize them to obtain a new random measure
fMt+1(ρt+1).

Table 25: Importance sampling PF for latent ARMA process with
correlated innovations, unknown a and b and known σ2u.
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is-pf : arma with correlated ut , unknown a , b and σ2u

1. At time instant t, consider the joint random measure

fMt (ρt) =

M∑
m=1

w
(m)
t δ

(
ρt − ρ

(m)
t

)
,

and compute the parameter sufficient statisticsµθt =
∑M
i=1 θ

(m)
t w

(m)
t ,

Σθt =
∑M
i=1(θt − µθt )(θt − µθt )

>w
(m)
t .

2. Upon reception of a new observation at time instant t + 1,
perform resampling of the state (if necessary).

3. Propagate parameter samples from the Gaussian proposal

θ
(m)
t+1 ∼ π(θt+1) = N (θt+1 |µθt , Σθt ) ,

and compute a per θ(m)
t+1 sample covariance matrix

Σ
(m)
t+1 = A−1(m)

t+1 B
(m)
t+1RutB

>(m)

t+1 A
−1>

(m)

t1
=

(
h
(m)
t+1 λ

(m)
t

λ>
(m)

t Σ
(m)
t

)
.

4. Propagate state particles by sampling from

x
(m)
t+1 f(xt+1 |x

(m)
1 :t ) = Tνt+1

(
xt+1 |µt+1 , φ2t+1

)
,

with


νt+1 = ν0 + t ,

µt+1 = λ
(m)
t Σ

(m)−1

t x
(m)
1 :t ,

φ2t+1 =
ν0σ

2
0+x

(m)>
1:t Σ

(m)−1

t x
(m)
1:t

ν0+t

(
h
(m)
t+1 − λ

(m)
t Σ

(m)−1

t λ
(m)>

t

)
.

5. Compute the non-normalized weights for the particles

w̃
(m)
t+1 ∝ f(yt+1 |x

(m)
t+1 )

Tν0

(
x
(m)
1 :t

∣∣∣0 , σ20Σ
(m)
t

)
N
(
θ
(m)
t+1 |µθt , Σθt

)
Tν0

(
x
(m)
1 :t

∣∣∣∣ν0 , 0 , σ20Σ
(µθt )
t

) ,

and normalize them to obtain a new random measure
fMt+1(ρt+1).

Table 26: Importance sampling PF for latent ARMA process with
correlated innovations, unknown a, b and σ2u.

111



6.3 evaluation

The only modification consists of first approximating the
joint posterior distribution of the state and parameters ρt =

(xt θt)
> with a multivariate Gaussian

f(ρt) ≈ N(ρt|ηt,Qt), (145)

with sufficient statistics computed as weighted averages of the
available particles

ηt =

M∑
i=1

w
(m)
t ρ

(m)
t ,

Qt =

M∑
i=1

w
(m)
t (ρ

(m)
t − ηt)(ρ

(m)
t − ηt)

>.

(146)

Then, one samples J samples per state sample x(m)
t from the

conditional Gaussian distribution of the parameters

f(θt|xt) = N(θt|ηθt|xt ,Qθt|xt),

where

ηθt|xt = ηθt +Qθt,xtQ−1
xt,xt (xt − ηxt) ,

Qθt|xt = Qθt,θt −Qθt,xtQ
−1
xt,xtQxt,θt ,

with ηt =

(
ηxt

ηθt

)
and Qt =

(
Qxt,xt Qθt,xt

Qxt,θt Qθt,θt

)
.

(147)

This alternative method implements numerical Rao-Black-
wellization of the unknown parameters, where downsampling
from MJ to M particles is necessary at every time instant.

evaluation

We now evaluate the proposed SMC methods for latent ARMA
models with correlated innovations. To do so, we focus on a
family of processes that show various memory properties: the
ARMA model with fGn (which is equivalent to FARIMA(p,d,q)
models). This is a natural extension of the classical ARMA
model, where instead of iid innovations, the ARMA(p,q) filters
a fGp or a FARIMA(0,d, 0) (see Section 5.1.2 for more details).

In this chapter we, too, consider the SV model, where the
latent time-series is now an ARMA model with fGn. Mathemati-
cally, we havext =

∑p
i=1 aixt−i +

∑q
j=1 bjut−j + ut,

yt = e
xt
2 vt,

(148)
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where vt is a standard Gaussian variable and the state innova-
tion ut is a zero-mean Gaussian process with autocovariance
function

γ(τ) =
σ2u
2

[
|τ− 1|2H − 2 |τ|2H + |τ+ 1|2H

]
, (149)

parameterized by a Hurst parameter H and variance σ2u. As
explained in Section 5.1.1, when H = 0.5, the process is
uncorrelated, while the memory of the innovations increases
as H→ 1.

We evaluate the proposed method in this nonlinear model
first under the known ARMA parameter case, and then, drop
the assumption.

We show in Figure 26, Figure 27 and Figure 28 how the pro-
posed method is able to accurately track different FARIMA(p,d,q)
models, for both the known and unknown σ2u cases. The SMC
methods were run with M = 1000 particles and different
memory properties of the fGp were evaluated for each of the
studied ARMA parameterizations: AR(1) in Figure 26, MA(1) in
Figure 27 and ARMA(1,1) in Figure 28.
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(a) AR(1), H = 0.5.
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(b) AR(1), H = 0.7.
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(c) AR(1), H = 0.9.

Figure 26: True (black) and estimated state for the proposed SMC

methods with known AR(1) parameter a1 = 0.85.
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(a) MA(1), H = 0.5.
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(b) MA(1), H = 0.7.
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(c) MA(1), H = 0.9.

Figure 27: True (black) and estimated state for the proposed SMC

methods with known MA(1) parameter b1 = 0.8.
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(a) ARMA(1,1), H = 0.5.
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(b) ARMA(1,1), H = 0.7.
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(c) ARMA(1,1), H = 0.9.

Figure 28: True (black) and estimated state for the proposed SMC

methods with known ARMA(1,1) parameters a1 = 0.85 and
b1 = 0.8.
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PF Type
State estimation error (MSE)
Known σ2u unknown σ2u

AR(1), H = 0.5 1.1081 1.1945

AR(1), H = 0.7 1.3946 1.4397

AR(1), H = 0.9 1.1195 1.1970

MA(1), H = 0.5 1.0223 1.0686

MA(1), H = 0.7 1.0585 1.1136

MA(1), H = 0.9 0.87374 0.94053

ARMA(1,1), H = 0.5 1.5947 1.6197

ARMA(1,1), H = 0.7 1.7852 1.8516

ARMA(1,1), H = 0.9 1.7214 1.7362

Table 27: MSE performance of the proposed SMC methods for ARMA

models (known a and b) with fGn, known and unknown
σ2u.

We further study the filtering performance of the methods
described in Table 22 and conclude, based on results summa-
rized in Table 27, that the proposed SMC method successfully
estimates the latent ARMA with fGn, both for the known and
unknown innovation variance cases.

Note that there is a slight accuracy loss of the unknown σ2u
cases. The justification for such a good performance relies on
the form of the derived marginalized density. As more data are
observed, the density in Equation 139 becomes very similar to
the one in Equation 138, i.e., a Student-t distribution with high
degrees of freedom is very similar to a Gaussian distribution.
Thus, the proposal densities in both SMC methods become
almost identical with time.

Furthermore, we plot the evolution of the scale factor
ν0σ

2
0+x

>
1:tΣ

−1
t x1:t

ν0+t
in Equation 139 over time and observe that the

estimate approaches the true value σ2u (see Figure 29, Figure 30

and Figure 31). The estimation accuracy improves with time
for all the evaluated ARMA parameterizations and memory
properties of the fGp: AR(1) in Figure 29, MA(1) in Figure 30

and ARMA(1,1) in Figure 31.
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(a) AR(1), H = 0.5.
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(b) AR(1), H = 0.7.
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Figure 29: True (black) and estimated (red) scale factor for the
proposed SMC method with known AR(1) parameter a1 =

0.85.
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(a) MA(1), H = 0.5.
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(b) MA(1), H = 0.7.
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Figure 30: True (black) and estimated (red) scale factor for the
proposed SMC method with known MA(1) parameter b1 =

0.8.
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(a) ARMA(1,1), H = 0.5.
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(b) ARMA(1,1), H = 0.7.
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Figure 31: True (black) and estimated (red) scale factor for the
proposed SMC method with known ARMA(1,1) parameters
a1 = 0.85 and b1 = 0.8.
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We now turn our attention to the more challenging scenario
where the ARMA parameters are unknown. We evaluate both
proposed approaches, i.e., the DA- and IS-based SMC methods in
Section 6.2.1, and provide averaged state MSE results in Table 28

for different latent processes.

PF Type
State estimation error (MSE)

Known a,b Known a,b Unknown a,b, DA Unknown a,b, , IS Unknown a,b, DA Unknown a,b IS
Known σ2u Unknown σ2u Known σ2u Known σ2u Unknown σ2u Unknown σ2u

AR(1), H = 0.5 1.0991 1.127 1.6689 1.7337 1.4549 1.5903

AR(1), H = 0.7 1.4077 1.4375 2.5759 5.9889 1.9272 3.191

AR(1), H = 0.9 1.1336 1.1774 2.4334 6.5974 1.7795 6.4853

MA(1), H = 0.5 1.0348 1.0758 1.1033 1.185 1.1384 1.3831

MA(1), H = 0.7 1.0878 1.1138 1.1857 1.2688 1.1884 1.3748

MA(1), H = 0.9 0.88045 0.90841 0.96348 1.1124 0.97747 1.2517

ARMA(1,1), H = 0.5 1.638 1.6512 2.8563 3.6266 2.3157 2.3619

ARMA(1,1), H = 0.7 1.7452 1.7926 3.0939 4.1174 2.7807 2.4627

ARMA(1,1), H = 0.9 1.7374 1.7533 4.3466 20.617 2.5818 2.569

Table 28: MSE performance of the proposed SMC methods for ARMA

models (unknown a and b) with fGn, known and unknown
σ2u.

By analyzing the state filtering performance, we conclude
that both proposed approaches are suitable solutions for the
unknown ARMA case.

It is again remarkable that the impact of not knowing
parameters a and b is more pronounced in filtering, than not
knowing σ2u.

When comparing the DA PFs (i.e., Table 23 and Table 24)
with the IS-based PFs (i.e., Table 25 and Table 26), we observe
a slightly better filtering performance for the former when
compared to the latter.

However, this improved state filtering accuracy comes with a
cost, as the estimation of the unknown parameters is worse for
the DA-based SMC. We provide in the following pages some
illustrative examples of various parameter estimates for the
proposed PFs.

In Figure 32, Figure 33 and Figure 34 we show the estimation
accuracy for the unknown a1 parameter in an ARMA(1,1)
process with different driving fGns. Similarly, the estimation of
b1 is shown in Figure 35, Figure 36 and Figure 37. Finally, the
estimation of the unknown variance σ2u is plotted in Figure 38.
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Figure 32: True (black) and estimated (DA PF in red, IS PF in green) a1
for the proposed SMC methods with unknown ARMA(1,1)
parameters (fGn with H = 0.5).
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Figure 33: True (black) and estimated (DA PF in red, IS PF in green) a1
for the proposed SMC methods with unknown ARMA(1,1)
parameters (fGn with H = 0.7).
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Figure 34: True (black) and estimated (DA PF in red, IS PF in green) a1
for the proposed SMC methods with unknown ARMA(1,1)
parameters (fGn with H = 0.9).
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Figure 35: True (black) and estimated (DA PF in red, IS PF in green) b1
for the proposed SMC methods with unknown ARMA(1,1)
parameters (fGn with H = 0.5).
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Figure 36: True (black) and estimated (DA PF in red, IS PF in green) b1
for the proposed SMC methods with unknown ARMA(1,1)
parameters (fGn with H = 0.7).
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Figure 37: True (black) and estimated (DA PF in red, IS PF in green) b1
for the proposed SMC methods with unknown ARMA(1,1)
parameters (fGn with H = 0.9).
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(c) ARMA(1,1), H = 0.9.

Figure 38: True (black) and estimated (red for DA PF and green for
IS PF) scale factor for the proposed SMC methods with
unknown ARMA(1,1) parameters.
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The analysis of the parameter estimation performance allows
us to conclude that, for both proposed SMC methods, estimation
of the AR parameters is more accurate than the MA parameters.
We also note that, due to how these parameters are used (inver-
sion and multiplication of matrices is required for computation
of the sufficient statistics), numerical and identifiability issues
arise.

Furthermore, the DA PF overestimates the unknown variance
of the process (see Figure 38). Although this might seem
irrelevant for the filtering problem, variance overestimation is
critical when predicting future instances of the time-series, as
the density becomes too wide to be informative.

The poor parameter estimation accuracy for the DA PFs can
be explained by inspection of the weight computation for
each of the proposed alternatives. For the DA approach (i.e.,
Equation 141) only state samples are involved, while for the IS
approach as in Equation 142, both state and parameter samples
are taken into account.

That is, when applying IS, one explicitly computes weights
based on both the state and parameter samples; while with
the DA approach, one hopes that the best state particles are
linked with good parameters too (although this is not explicitly
accounted for).

The parameter-explicit weight computation in IS PFs implies
that, as a result, the number of particles with non-negligible
weights is much reduced at every time instant (as one looks for
both good state and parameter samples).

Consequently, the effective particle size of the PFs in Table 25

and Table 26 is quite low and thus, the obtained results
much more volatile. Averaged effective particle sizes for the
proposed SMC methods are depicted in Figure 39, Figure 40

and Figure 41.
For reference, the effective particle size of the PF with known

parameters as in Table 22 is shown in black, with the effective
particle size for the DA PF in red. The IS-based PF’s effective
particle size is always the lowest (shown in green in Figure 39,
Figure 40 and Figure 41).

129



6.3 evaluation

20 40 60 80 100 120
0

200

400

600

800

1000

t

M
e
ff

(a) H = 0.5, known σ2u.
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(b) H = 0.5, unknown σ2u.
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(c) H = 0.7, known σ2u.

20 40 60 80 100 120
0

200

400

600

800

1000

t

M
e
ff

(d) H = 0.7, unknown σ2u.
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(e) H = 0.9, known σ2u.
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(f) H = 0.9, unknown σ2u.

Figure 39: Average effective particle size for proposed SMCs with
latent AR(1) with fGn: PF with known a and b (black), DA

PF (red), IS PF (green).
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(a) H = 0.5, known σ2u.
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(b) H = 0.5, unknown σ2u.
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(c) H = 0.7, known σ2u.
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(d) H = 0.7, unknown σ2u.
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(e) H = 0.9, known σ2u.
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(f) H = 0.9, unknown σ2u.

Figure 40: Average effective particle size for proposed SMCs with
latent MA(1) with fGn: PF with known a and b (black), DA

PF (red), IS PF (green).
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(a) H = 0.5, known σ2u.
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(b) H = 0.5, unknown σ2u.
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(c) H = 0.7, known σ2u.
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(d) H = 0.7, unknown σ2u.
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(e) H = 0.9, known σ2u.
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(f) H = 0.9, unknown σ2u.

Figure 41: Average effective particle size for proposed SMCs with
latent ARMA(1,1) with fGn: PF with known a and b (black),
DA PF (red), IS PF (green).
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7
L AT E N T W I D E - S E N S E S TAT I O N A RY T I M E -
S E R I E S

In this chapter, we study a more general problem where the
restrictions on the latent time-series model are relaxed. We
aim at a generic SMC method for hidden processes, where the
modeling assumptions are minimal.

By inspection of the properties of the models considered in
previous chapters, i.e., ARMA(p,q) processes with iid innova-
tions, fGps and FARIMA models, one readily concludes that a
common feature is their stationarity. That is, their statistical
properties do not change with time-shifts. In other words, one
can fully describe them by means of their first and second order
statistics, which are not functions of time.

We now focus on these generic latent time-series, where the
only assumption is that they are wide-sense stationary. Con-
sequently, these time-series are fully described by a constant
mean vector and a covariance matrix that is a function of the
time lag τ.

A Bayesian analysis of these WSS time-series is provided in
Section 7.1. This allows us to propose a generic SMC method
in Section 7.2, which is evaluated in Section 7.3 for latent time-
series that are wide-sense stationary.

wide-sense stationary time-series

In the following, we keep our assumptions on the model of the
latent process to bare minimums, as we aim at a generic SMC
method for hidden time-series. As a matter of fact, we only
assume wide-sense stationary of the latent process.

Consequently, we require that the first and second moments
of the process exist and that they are not functions of time. That
is, the mean of the process is constant and the autocovariance
of the process is only a function of the time-difference τ, and
not of the actual time instants t.

If the innovation process driving the state is Gaussian and
the wide-sense stationarity requirements are met, one can
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7.1 stationary time-series

show that the joint distribution of the time-series x1:t+1 is a
multivariate Gaussian. That is, xt+1

xt
...
x2
x1

 ∼ N(x1:t+1|µt+1,Σt+1). (150)

The sufficient statistics of the process are a constant mean
µt+1 ∈ Rt+1 and a covariance matrix Σt+1 ∈ R(t+1)×(t+1) given
by

Σt+1 =



γ(0) γ(1) · · · γ(t)

γ(1) γ(0) · · · γ(t− 1)
...

... . . . ...
γ(t− 1) γ(t− 2) · · · γ(1)

γ(t) γ(t− 1) · · · γ(0)


, (151)

where γ(τ) is the autocovariance of the latent process for lag τ.
In general, the mean and the autocovariance function depend

on the particularities of the process. That is, based on the
specifics of the underlying model, their functional form and
values vary. In this chapter, we do not restrict ourselves to any
parameterization and thus, we consider sufficient statistics that
fulfill the WSS requirements.

The key paradigm shift here is to acknowledge that many
different time-series parameterizations can be, in general, de-
scribed by a joint density as in Equation 150. That is, ARMA(p,q)
processes with iid or correlated innovations, fGps and FARIMA
models, all result in a joint density of the above form. However,
one usually needs to know the specific type of model and its
parameters to be able to derive the particular values of the
sufficient statistics in Equation 150.

Consequently, either because one does not know the details
of the model or the true values of its parameters, a method that
can deal with such generic time-series is of interest.

Hereby, we focus on time-series that are described by the
joint distribution in Equation 150. The primary goal is, once
again, to infer the evolution of the states over time, without
knowledge of the specific form of the mean and autocovariance
function of the latent process. In other words, all the parameters
of the model are considered of secondary importance, as we are
exclusively interested on the state’s evolution.

Because the interest is on the state only, we proceed with
a hierarchical Bayesian approach and marginalize out the
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sufficient statistics of the process. That is, we obtain the
marginal joint distribution of x1:t+1 in Equation 150, so that we
can condition on previous samples to derive the marginalized
transition density f(xt+1|x1:t).

The proposed marginalization implies that one does not
require knowledge of the mean and covariance matrix in
Equation 150. Therefore, there is no need to know the specific
underlying model or its parameterization. Thus, the marginal-
ized densities that are derived in Section 7.1.1 are applicable
for any type of model that fulfills the WSS conditions, without
requiring knowledge of their parameters, model orders or the
specifics of the autocovariance function.

In the following, we describe how one can marginalize the
unknown mean and covariance matrix of such WSS processes
via the Bayesian methodology.

Marginalized densities for wide-sense stationary time-series

Given a vector x ∈ Rd generated according to

x ∼ f(x|µ,Σ) = N(x|µ,Σ), (152)

with mean µ ∈ Rd and covariance matrix Σ ∈ Rd×d, we are
interested on integrating the parameters out and obtaining the
marginal density of the vector. That is, we compute

f(x) =

∫ ∫
f(x|µ,Σ)f(µ,Σ)dµdΣ, (153)

where f(µ,Σ) is the prior of the unknown sufficient statistics µ
and Σ.

In the following, we make use of conjugate priors due to their
convenient analytical properties [77, 86]. The derivation is out-
lined here, while further details are provided in Appendix E.

The conjugate prior of the covariance matrix is the inverse
Wishart distribution IWd(Σ|νw,Λ), where νw > d−1 represents
degrees of freedom, and Λ ∈ Rd×d is a scale matrix.

The conjugate prior of µ given Σ is a Gaussian with hyper-
parameters η and κ, N(µ|η, Σκ ). From f(µ,Σ) = f(µ|Σ)f(Σ),
we deduce that the joint conjugate prior is a normal-inverse-
Wishart distribution NIW(µ,Σ|η, κ,νw,Λ).
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7.1 stationary time-series

With this prior, we integrate out the parameters of the density
of x and find its marginal

f(x) =

∫ ∫
f(x|µ,Σ)f(µ,Σ|η, κ,Λ,νw)dµdΣ

∝

∣∣∣∣∣1+ (x− η)>
(
1+ κ

κ
Λ

)−1

(x− η)

∣∣∣∣∣
−νw+1

2

,
(154)

which has the functional form of a multivariate Student-t
distribution (see Section E.1).

Consequently, one concludes that the joint marginal density
of the vector follows

f(x) = Tνw−d+1

(
x

∣∣∣∣η,
(1+ κ)Λ

κ(νw − d+ 1)

)
, (155)

where (νw − d+ 1) indicates the degrees of freedom, η is the
location parameter and (1+κ)Λ

κ(νw−d+1) is the scale matrix.
The marginal density for the case when the mean of the

process is known, but the covariance matrix Σ is unknown, is
derived similarly and results in a density as in Equation 155

with κ→∞ (see Appendix E for full details).
The result in Equation 155 is directly applicable to the time-

series of interest in this chapter, i.e., for a process described
by the joint distribution in Equation 150. Based on the above
derivation, the joint density of the process when its sufficient
statistics are unknown follow Equation 155.

Specifically, if the mean and the covariance of a time-series as
in Equation 150 are unknown, then the joint marginal density
of the process is

f(x1:t+1) = Tνw−t

(
x1:t+1

∣∣∣∣η,
(1+ κ)Λ

κ(νw − t)

)
, (156)

where d = t+ 1 in Equation 155, νw > t, and in block form,

η =

(
ζt+1

ζ1:t

)
and Λ =

(
λt+1 l>1:t
l1:t L1:t

)
.

Now, we derive the conditional density of the next state xt+1
given the past samples x1:t [87]. We conclude that the transition
density is a univariate Student-t distribution

f (xt+1|x1:t) = Tνw

(
xt+1|ζt+1|1:t,σ

2
t+1|1:t

)
, (157)
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where
ζt+1|1:t = ζt+1 + l

>
1:tL

−1
1:t (x1:t − ζ1:t) ,

σ2t+1|1:t = ht+1|1:t

(
λt+1 − l

>
1:tL

−1
1:t l1:t

)
,

ht+1|1:t =
(1+κ)
κ +(x1:t−ζ1:t)

>L−11:t(x1:t−ζ1:t)
νw

.

(158)

The above derivation considers the general case where both
the mean and the covariance are unknown. However, it is of
common practice to assume stationarity of the process. This
entails that, even if unknown, the mean vector µ is composed
of identical elements (which are often assumed to be equal
to zero). This deviates from the assumptions used in deriving
Equation 157.

Consequently, when zero-mean stationary processes are con-
sidered, the joint mean is known to be zero, i.e., µt+1 = 0. This
assumption usually holds because either the data are adjusted
or zero-mean Gaussian innovations are assumed. For these
cases, the transition density is similarly derived by applying
κ → ∞ (details are provided in Section E.2) which results in a
simplified transition density

f (xt+1|x1:t) = Tνw

(
xt+1|ζt+1|1:t,σ

2
t+1|1:t

)
,

with


ζt+1|1:t = ζt+1 + l

>
1:tL

−1
1:t (x1:t − ζ1:t) ,

σ2t+1|1:t = ht+1|1:t

(
λt+1 − l

>
1:tL

−1
1:t l1:t

)
,

ht+1|1:t =
1+(x1:t−ζ1:t)

>L−11:t(x1:t−ζ1:t)
νw

.

(159)

Marginal distributions for generic time-series: hyper-parameters

The marginalized densities of the time-series derived in Equa-
tion 156 and Equation 157 depend on the set of hyper-param-
eters η ∈ Rt+1, Λ ∈ R(t+1)×(t+1), κ ∈ R and νw ∈ R. We now
elaborate on the determination of these hyper-parameters of
the Student-t distributions.

Under the used Bayesian hierarchical model, the normal-
inverse-Wishart prior distribution can be understood as our
prior belief about the mean and covariance of the process. These
are parameterized by η and Λ and, by definition, κ > 0 and
νw > t. It is important to note that these hyper-parameters
depend on the time index t.

Determination of the hyper-parameters is critical for a suc-
cessful description of the time-series. Here, we leverage the
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7.1 stationary time-series

properties of the process and adopt the empirical Bayesian
paradigm. Unlike the standard Bayes approach, which uses a
prior that is independent from the observed data, the empirical
Bayes method [20] relies on estimating priors from the data.

That is, we combine a-priori knowledge about the process
(i.e., stationarity) with the a-posteriori information learned
from the observed data. All this information is put into the
hyper-parameters of the assumed hierarchical model via the
empirical Bayes paradigm.

Suppose we have data up to time instant t. Then, we want
to provide meaningful hyper-parameters for the priors for the
next time instant t + 1, by using data available up to time
instant t. We do so by embracing a two-fold approach: (1)
impose the WSS properties and (2) learn the shape of the
autocovariance function from the data. We now explain the
specifics.

On the one hand, we take advantage of the wide-sense
stationarity of the process and include prior knowledge into the
hyper-parameters. Specifically, that the mean does not change
over time, i.e., µt = µ1t, where 1t is a t× 1 vector with elements
equal to one; and that the covariance matrix of the process is
a symmetric Toeplitz matrix dependent on the autocovariance
function γ(τ) as in Equation 151.

On the other, the empirical Bayes principles suggest that we
compute the empirical mean and autocovariance function of the
sequence x1:t and use it for the next set of hyper-parameters η
and Λ.

We compute the empirical stationary mean at time instant t
by

µ ≈ x̂t =
1

t

t∑
i=1

xi, (160)

and the empirical autocovariance function by

γ(τ) ≈ γ̂(τ) = 1

t− τ

t−τ∑
i=1

(xi − x̂t) (xi+τ − x̂t) , (161)

for τ = {0, 1, · · · , t− 1}.
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7.2 smc method for latent stationary time-series

Following the empirical Bayes approach, we plug these
estimated values in the hyper-parameters of the mean and the
covariance matrix for the next time instant t+ 1 as follows:

ηt+1 = x̂t1t+1,

λt+1 = γ̂(0),

l1:t =
(
γ̂(1) γ̂(2) · · · γ̂(t− 1) 0

)>
,

L1:t =



γ̂(0) γ̂(1) · · · γ̂(t− 2) γ̂(t− 1)

γ̂(1) γ̂(0) · · · γ̂(t− 3) γ̂(t− 2)
...

... . . . ...
...

γ̂(t− 2) γ̂(t− 3) · · · γ̂(0) γ̂(1)

γ̂(t− 1) γ̂(t− 2) · · · γ̂(1) γ̂(0)


.

(162)

Obviously, when zero-mean stationary processes are consid-
ered, there is no need for computation of the empirical mean
x̂t and thus, one can simply assume η = 0,∀t and use the
simplified Equation 159.

smc method for latent wide-sense stationary time-
series

We leverage the transition density in Equation 157 with suf-
ficient statistics in Equation 158 computed as explained in
Section 7.1.1.1 to present an SMC sampling method for generic
latent WSS time-series in Table 29.

We emphasize that the transition density used for particle
propagation does not depend on any of the parameters of the
underlying model. Thus, one can apply the SMC in Table 29 to
ARMA(p,q) and FARIMA(p,d,q) models with unknown parame-
ters and model orders, to fGps with unknown Hurst parameter,
and to many other processes, as long as the WSS conditions are
met. That is, one needs to be certain that the joint density of
the underlying process is of the form as in Equation 150, but
no knowledge on the specific values of the sufficient statistics
is required.

Furthermore, note that the derivation of the transition den-
sity of a given stream only relies on previous states. That is, it
does not involve any observations at all.

On the construction of the marginalized density, the hyper-
parameters of the priors for η and Λ are obtained in a per-
stream basis, i.e., with information from each stream only.
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7.2 smc method for latent stationary time-series

pf for latent gaussian wss time-series

1. At time instant t, consider the random measure

fMt (xt) =

M∑
m=1

w
(m)
t δ

(
xt − x

(m)
t

)
.

2. Estimate the hyper-parameter values for each particle
stream x

(m)
1:t

x̂
(m)
t = 1

t

∑t
i=1 x

(m)
i ,

γ̂(τ)(m) = 1
(t−τ)

∑t−τ
i=1

(
x
(m)
i − x̂

(m)
t

)(
x
(m)
i+τ − x̂

(m)
t

)
,

where τ = {0, 1, · · · , t− 1}.

3. Upon reception of a new observation at time instant t+ 1.

4. Perform resampling of the state by drawing from a
categorical distribution defined by the random measure

x
(m)
t ∼ fMt (xt), where m = 1, · · · ,M.

5. Propagate the particles by sampling from the transition
density, given the (resampled) stream of particles:

x
(m)
t+1 ∼ f(xt+1|x

(m)
1:t ) = Tνw

(
xt+1|ζ

(m)
t+1|1:t

,σ2
(m)

t+1|1:t

)
,

with


ζ
(m)
t+1|1:t

= ζ
(m)
t+1 + l

(m)>

1:t L
(m)−1

1:t

(
x
(m)
1:t − ζ

(m)
1:t

)
,

σ2
(m)

t+1|1:t = h
(m)
t+1|1:t

(
λ
(m)
t+1 − l

(m)>

1:t L
(m)−1

1:t l
(m)
1:t

)
,

h
(m)
t+1|1:t

=
(1+κ)
κ +

(
x
(m)
1:t −ζ

(m)
1:t

)>
L
(m)−1

1:t

(
x
(m)
1:t −ζ

(m)
1:t

)
νw

.

for each stream m = 1, · · · ,M as in Equation 162.

6. Compute the non-normalized weights for the particles

w̃
(m)
t+1 ∝ f(yt+1|x

(m)
t+1),

and normalize them to obtain a new random measure

fMt+1(xt+1) =

M∑
m=1

w
(m)
t+1δ

(
xt+1 − x

(m)
t+1

)
.

Table 29: PF for latent Gaussian WSS time-series.
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The computed γ̂(m)(τ) values are hyper-parameters of the
inverse-Wishart prior and not estimates of the covariance
matrix of the underlying process. Thus, the observations have
no role in the construction of the prior nor the transition density.
The only place where the observations play a role is in the
weight computation and in the selection of which streams to
keep and which to discard from further processing.

evaluation

We evaluate the proposed method by considering latent WSS
time-series and the stochastic log-volatility (SV) model.

In particular, and without loss of generality, we hereby
examine the latent ARMA(p,q) process. Note that many other
models could be considered, as long as the WSS conditions are
met.

We focus on the ARMA(p,q) model because we can readily
compare the performance of the proposed method to those
in Chapter 3 and Chapter 4. The added flexibility of the SMC
proposed in this chapter can also be evaluated by considering
ARMA(p,q) models of unknown order (that is, any short-
memory process).

We mathematically write the considered state-space asxt =
∑p
i=1 aixt−i +

∑q
j=1 bjut−j + ut,

yt = e
xt
2 vt,

(163)

where the only assumptions made are that vt is the standard
Gaussian and the state noise ut is a zero-mean Gaussian. That
is, we consider a wide-sense stationary ARMA state process in
its most generic form, where the orders p and q are not known.
Thus, the parameters a, b, and σ2u of the latent process are all
unknown.

We follow the derivation in Section 7.1.1.1 and, since zero-
mean innovations are considered, use the transition density in
Equation 159 with νw = t+ 1 for all time instants. This implies
that, as time evolves, the transition Student-t distribution has
more degrees of freedom, as we are conditioning on more
available data samples.

First, we illustrate the accuracy of the sequential estimates
provided by the proposed method (i.e., the evolution of the
state estimates). In Figure 42, we compare state estimates for
particular realizations of an AR(1) with a1 = 0.8, a MA(1) with
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b1 = 0.8 and an ARMA(1,1) with a1 = 0.8 and b1 = 0.5 processes,
respectively.

We evaluate the proposed method by comparing it with the
previous alternatives: (1) when the parameters of the ARMA
process are known as in Chapter 3, (2) when the parameters
of the latent process are unknown but the model order is
known as in Chapter 4, and (3) when both, the model order
and parameters are unknown, i.e., the setting considered in
Chapter 7.

On the top row of Figure 42, we show the results of the
estimation when everything is known (i.e., PF in Table 5); on
the second, when only the model order is known (i.e., PF in
Table 16); and on the third, when nothing is known (i.e., PF in
Table 29).
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(f) ARMA(1,1), unknown a
and b.
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(g) AR(1), unknown p and
q.
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(i) ARMA(1,1), unknown p
and q.

Figure 42: True (black) and estimated (red) state for three different
proposed SMC methods.
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The figure shows that all the PFs are able to track the hidden
process. As observed in Chapter 4, estimating pure correlated
noise as in MA(q) processes is the most challenging case, while
the estimation accuracy improves with the presence of strong
autoregressive components.

We provide the MSE of the latent ARMA process estimates for
the same three SMC methods in Table 30. The results clearly
indicate how the increased lack of knowledge about the latent
process reflects on the estimation performance of the PFs.

The results are averaged over 50 realizations, which are 100

samples long. We use M = 500 particles and the parameters of
the processes were set to:

• AR(1) with a1 = 0.85;

• AR(2) with a1 = 0.8, a2 = 0.1;

• AR(3) with a1 = 0.65, a2 = −0.2, a3 = 0.1;

• MA(1) with b1 = 0.5;

• ARMA(1,1) with a1 = 0.85, b1 = 0.5;

• ARMA(1,1) with a1 = 0.85, b1 = −0.5;

• ARMA(1,2) with a1 = 0.85, b1 = 0.5, b2 = 0.1; and

• ARMA(2,1) with a1 = 0.8, a2 = 0.1, b1 = 0.5.

ARMA(p,q)
State estimation error (MSE)

Known Params Unknown Params All Unknown

AR(1) 1.16164 1.49248 1.99644

AR(2) 1.20956 1.67136 2.26017

AR(3) 0.96545 1.02314 1.23342

MA(1) 0.89428 0.93959 1.07060

ARMA(1,1) 1.56405 2.09366 2.91670

ARMA(1,1) 0.88028 0.98532 1.16023

ARMA(1,2) 1.78301 2.32099 3.36742

ARMA(2,1) 1.77861 2.33336 3.74361

Table 30: MSE comparison for proposed SMC methods with relaxed
assumptions.

The estimation of the hyper-parameters is critical for the per-
formance of our method. Clearly, the quality of the estimated
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values in Equation 162 heavily relies on the amount of available
data. We illustrate in Figure 43 how, as more data are used for
estimation, the autocovariance estimates become more stable
and accurate.
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(c) ARMA(1,1), t = 100.
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(d) AR(1), t = 500.
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(f) ARMA(1,1), t = 500.
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(g) AR(1), t = 1000.
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(h) MA(1), t = 1000.
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(i) ARMA(1,1), t = 1000.

Figure 43: True (black) and estimated (red) autocovariance function
of the latent process.

For the method proposed in Table 29, one can again consider
to approximate the sufficient statistics by means of truncation.
The benefits are two-pronged: (1) by truncating the computa-
tions of the sufficient statistics to a maximum lag τmax, the
computational (and memory) cost of the method is reduced;
and (2), the accuracy of the estimates in Equation 160 and
Equation 161 improves as more data are available.

With truncation, one needs to compute the autocovariance
function γ̂(τ) only for a relatively short window τ = 0, · · · , τmax.
Besides, the sufficient statistics become dependent on only the
most recent past, i.e., φ

(
x
(m)
1:t

)
≈ φ

(
x
(m)
t−τmax:t

)
.

We note that one must be careful with truncation, as the
memory features of the process will determine how much
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information is lost. In general, for short-memory processes (e.g.,
ARMA(p,q)), one incurs in negligible information loss, because
γ(τ) ≈ 0, τ > τmax. However, the truncation might imply
significant information loss when long-memory processes are
in play (e.g., fGp with H→ 1).

In the following, we evaluate the MSE for different values of
truncation lags for several ARMA(p,q) processes, with parame-
ters as follows:

• MA(2) with b1 = 0.8, b2 = 0.15;

• AR(2) with a1 = 0.8, a2 = 0.15;

• ARMA(1,1) with a1 = 0.9, b1 = 0.5;

• ARMA(1,2) with a1 = 0.8, b1 = 0.8, b2 = 0.15;

• ARMA(2,1) with a1 = 0.8, a2 = 0.15, b1 = 0.5;

• ARMA(2,2) with a1 = 0.8, a2 = 0.15, b1 = 0.8, b2 = 0.15;

• ARMA(2,3) with a1 = 0.8, a2 = 0.15, b1 = 0.5, b2 = 0.3,
b3 = 0.15;

• ARMA(2,4) with a1 = 0.8, a2 = 0.15, b1 = 0.5, b2 = 0.2,
b3 = 0.15, b4 = 0.1;

• ARMA(3,1) with a1 = 0.5, a2 = 0.3, a3 = 0.15, b1 = 0.5;

• ARMA(3,2) with a1 = 0.5, a2 = 0.3, a3 = 0.15, b1 = 0.8,
b2 = 0.15;

• ARMA(4,2) with a1 = 0.5, a2 = 0.2, a3 = 0.15, a4 = 0.1,
b1 = 0.8, b2 = 0.15; and

• ARMA(4,4) with a1 = 0.5, a2 = 0.2, a3 = 0.15, a4 = 0.1,
b1 = 0.5, b2 = 0.2, b3 = 0.15, b4 = 0.1.

We illustrate in Figure 44, for time-series of length 100 time
instants (top) and 1,000 time instants (bottom), the influence
of truncating the sufficient statistics for the SMC method in
Table 29 (tested with M = 1000 particles).

We observe that when short time-series are used, the hyper-
parameters for windows with τmax > 30 are not accurate
enough and, thus, the resulting filtering performance deterio-
rates considerably (see Figure 44a).

On the contrary, as more data become available, the hyper-
parameter estimates improve (as shown in Figure 43) and so
the inferred states do too (see Figure 44b).
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(a) MSE for time-series of length t = 100.
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Figure 44: Impact of the covariance truncation in the MSE perfor-
mance of the proposed SMC.

This improvement in accuracy is explained not only by the
better quality of the γ(τ) estimation, but also by the more
degrees of freedom (νw = t+ 1) used for the transition density
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(i.e., the density becomes more similar to a Gaussian as more
data are observed).

As a matter of fact, these results also justify using a burn-
out period for the SMC method. That is, one should allow for
the hyper-parameter estimates to stabilize with some initial
data, so that the subsequent state estimates are computed with
improved accuracy.

The results in Figure 44b emphasize the importance of
selecting an appropriate window size. Windows that are too
long hinder the estimation performance and, at the same
time, increase the computational complexity of the method.
Results in Figure 44b indicate that for the simulated processes,
small truncation lags (τmax 6 25) provide good estimates of
the autocovariance function and, thus, lead to good filtering
performance.

Nonetheless, we reiterate that the consideration of such small
windows makes sense only due to the short-memory of the
latent ARMA processes studied here. Careful consideration of
which window to use must be taken when dealing with long-
memory process, if truncation is used at all.

In other words, there is an important trade-off between
computational cost and estimation accuracy of the proposed
SMC method. The ratio between available data and the number
of variables to estimate (i.e., γ̂(τ) for τ = 0, · · · , τmax) plays a
very important role. Also, one must carefully study the memory
properties of the latent state before applying any truncation.

We illustrate this trade-off in Figure 45, where we observe
how the performance worsens when considering long windows
(MSE of 1.51 for τmax = 25 and 1.80 for τmax = 100). These
results, however, reinforce our claims about the unbiasedness
and consistency of the proposed method, as the estimation
error does not degrade with time.
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(a) ARMA(1,1) with τmax = 25.
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(b) ARMA(1,1) τmax = 100.

Figure 45: State estimation error over time for long time-series.
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8
L AT E N T C O R R E L AT E D T I M E - S E R I E S

In this chapter, we extend on the studied models by considering
multiple correlated time-series. This can be understood as a
multivariate time-series, which we model as a set of (poten-
tially) correlated mixtures of independent processes embedded
in noise. We embrace a hierarchical model, where each inde-
pendent time-series is correlated via a mixing matrix.

We provide a Bayesian analysis of the hierarchical model
in Section 8.1, where Rao-Blackwellization of the unknowns is
implemented, in order to propose an SMC method in Section 8.2.
We conclude with an evaluation Section 8.3.

correlated time-series

We are interested in making inference of correlated latent
processes observed through nonlinear functions. Specifically,
we consider state-space models that are described by a set of
latent Gaussian independent processes correlated via a mixing
matrix and embedded in noise.

Let st ∈ Rds be a vector of independent time-series, where
each of them is described by their own density. That is, we
consider a set of independent processes si,t, i = 1, · · · ,ds; where
the only assumption is that the transition density for each of
them is known, i.e.,

si,t+1 ∼ f(si,t+1|si,1:t), i = 1, · · · ,ds. (164)

These latent independent time-series denoted as st here can,
for example, be any of the processes studied in the previous
chapters: i.e., ARMA processes, fGps or ARMA models with
correlated innovations. Again, the assumptions on the model
specifics and knowledge of its parameters is not relevant here,
as long as the transition density can be computed. As such, the
methodology below works for any given distribution.

We model a set of latent correlated processes xt as a mixture
of those independent time-series st. That is, let xt ∈ Rdx be a
set of latent correlated processes and yt ∈ Rdy the observed
vector at time t.
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8.1 correlated time-series

Mathematically, we represent the hierarchical model as
si,t ∼ f(si,t+1|si,1:t), i = 1, · · · ,ds,

xt = Ast + εt,

yt = h(xt, vt),

(165)

where t = 1, 2, · · · ; εt ∈ Rdx is a zero mean Gaussian vector
with covariance matrix Cε; A ∈ Rdx×ds is a mixing matrix;
vt ∈ Rdv denotes an independent white Gaussian noise; and
h(xt, vt) : Rdx ×Rdv → Rdy , is some nonlinear function.

Given a set of observations y1:t ≡ {y1,y2, · · · ,yt}, we want to
sequentially estimate the posterior distribution of xt, f(xt|y1:t).
To do so, we need to proceed sequentially and the challenge
is to estimate f(xt+1|x1:t) for the state-space model as in
Equation 165, given its hierarchical nature and the properties
of the latent process.

By following the Bayesian paradigm, we now derive the
state transition density under different assumptions for the
parameters in Equation 165.

Correlated time-series: joint and transition densities

We are interested in the joint filtering density of both latent
states in Equation 165, i.e., f(st, xt|y1:t) and thus, we need to
derive the joint transition density f(st+1, xt+1|s1:t, x1:t).

Due to the hierarchical structure of the model, we can
factorize it as

f(st+1, xt+1|s1:t, x1:t) = f(st+1|s1:t)f(xt+1|st+1). (166)

That is, we can derive the joint transition density of the
states by separately studying the latent time-series st and the
correlated counterpart xt.

On the one hand, the transition density of the indepen-
dent time-series, given all their sufficient statistics, f(st+1|s1:t),
follows a multivariate distribution, as long as the sufficient
statistics of each of them are computable.

For example, if Gaussian transition densities are in place, i.e.,

si,t+1 ∼ f(si,t+1|si,1:t) = N
(
si,t+1

∣∣∣µi,t+1,σ2i,t+1) , i = 1, · · · ,ds,

(167)
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8.1 correlated time-series

then the joint distribution of the latent states is a multivariate
Gaussian f(st+1|s1:t) = N(st+1|µt+1,Ct+1), with parameters

µt+1 =
(
µ1,t+1 · · · µds,t+1

)>
,

Ct+1 =


σ21,t+1 0 · · ·

0 σ22,t+1 · · ·
...

... . . .

0 0 σ2ds,t+1

 .
(168)

On the other, we need to compute the conditional den-
sity of the correlated states, given the independent ones, i.e.,
f(xt+1|st+1). By inspection of the model in Equation 165, we
deduce that the transition density of xt+1 given st+1 is a
multivariate Gaussian

f(xt+1|st+1) = N(xt+1|Ast+1,Cε), (169)

for known A and Cε.
Nevertheless, it is unrealistic to know their true values in

practice and thus, we further study this challenging case. As
already pointed out, we resort to marginalizing out or Rao-
Blackwellizing the unknowns.

Consider the estimate of the mixing matrix at time instant
t, Ât = XtU

>
t (UtU

>
t )

−1, where the following historical data
matrices have been defined [65]:Xt = [x1x2 · · · xt] ∈ Rdx×t,

Ut = [s1s2 · · · st] ∈ Rds×t.
(170)

In the following, instead of using such point estimates,
we leverage them to determine full prior distributions. We
integrate out the unknowns A and Cε to derive the transition
density of xt+1, given st+1, Xt and Ut, by following the
derivation in [48].

The resulting density is a multivariate Student-t distribution

f(xt+1|st+1,Xt,Ut) = Tνt+1
(
xt+1|µxt+1 ,Rxt+1

)
, (171)

with νt+1 degrees of freedom, location parameter µxt+1 ∈ Rdx

and scale matrix Rxt+1 ∈ Rdx×dx [13], computed by
νt+1 = t− dx − ds + 1,

µxt+1 = Âtst+1,

Rxt+1 =
(Xt−ÂtUt)(Xt−ÂtUt)

>

νt+1(1−s>t+1(Ut+1U
>
t+1)

−1st+1)
.

(172)
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8.2 smc method for correlated time-series

Note that this density does not depend on any of the parame-
ters A and Cε.

smc method for correlated time-series

We leverage the densities derived in Section 8.1.1 to propose a
SMC sampling method for inference of correlated latent time-
series. As explained before, we proceed sequentially, i.e., for a
new observation yt+1, we update f(xt|y1:t) to a new distribution
f(xt+1|y1:t+1). This density is derived using the Bayes’ rule

f(xt+1|y1:t+1) ∝ f(yt+1|xt+1)
∫
f(xt+1|x1:t)f(x1:t|y1:t)dx1:t (173)

and thus, one needs the state transition density f(xt+1|x1:t).
For the model in Equation 165, we have shown that we can

factorize the transition density

f(st+1, xt+1|s1:t, x1:t) = f(st+1|s1:t)f(xt+1|st+1). (174)

Thus, the SMC method we propose relies on hierarchical
sampling. That is, one first propagates from st to st+1, then
conditions on those samples to propagate xt+1.

In summary, we propose to:

1. Propagate Ms samples of the latent process st from its
transition density

s
(ms)
t+1 ∼ f(st+1|s

(ms)
1:t ), ms = 1, · · · ,Ms. (175)

2. Propagate Mx state samples per each independent pro-
cess sample s(ms)t+1 (to improve diversity) from the condi-
tional transition density

x
(ms,mx)
t+1 ∼ f(xt+1|s

(ms)
t+1 ), mx = 1, · · · ,Mx. (176)

3. Compute weights of the particles based on the likelihood
of the data

w̃
(ms,mx)
t+1 ∝ f(yt+1|x

(ms,mx)
t+1 ). (177)

4. Downsample from Ms ·Mx to Ms to prevent the growth
of the number of samples with time. That is, draw a tuple{
s
(ms)
1:t+1, x

(ms)
1:t+1

}
from a categorical distribution defined by

the random measure{
s
(ms)
1:t+1, x

(ms)
1:t+1

}
∼ fMsMxt+1 (st+1, xt+1). (178)
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8.3 evaluation

The details of the proposed SMC method for the known and
unknown parameter case are described in Table 31 and Table 32

respectively.

evaluation

We illustrate the applicability of the proposed SMC method
by studying the inference of latent correlated time-series that
exhibit long-memory properties. These processes have attracted
the attention of many practitioners [12] and, for instance in
finance, the interest in multivariate long-memory volatility
processes is of increasing interest [8–10, 25, 31, 60, 83].

Thus, we investigate state-space models where the latent
states represent correlated mixtures of independent fGps em-
bedded in white Gaussian noise and the observed data are
nonlinear functions of the states.

The paradigm of self-similarity and scale-invariance has re-
cently attracted a lot of attention within the finance community
due to the multi-scale nature of econometric data. For capturing
these features, both fractal-system analysis [18] and self-similar
processes [91] have been popularized.

However, econometric data are often multivariate and, thus,
the concept of scale invariance needs to be generalized. To
that end, a recently suggested approach is based on the use of
Operator fractional Gaussian process (OfGp)s [2, 35], which are
multivariate Gaussian self-similar processes. The approach to
describing these processes coincides with the model addressed
in this chapter, i.e., that of correlated mixtures of independent
processes embedded in noise.

Specifically, OfGps model multivariate self-similar and scale-
invariant data based on linearly mixing a set of independent
fGps, where each of them may have a different Hurst parameter
H. The Hurst parameter relates, amongst others, to the memory
properties of the time-series (see Chapter 5 for details). The
resulting stationarity, self-similarity and other properties of
such OfGps have been studied in [34] and references therein.

Here, we evaluate the SMC methods presented in Table 31 and
Table 32 for studying OfGps embedded in noise (and observed
through nonlinear functions) for known and unknown mixing
parameters.

Let us write the specifics of the state-space in Equation 165

for the OfGp considered. We start by defining ut ∈ Rdu as a
vector of independent fGps, each with a Hurst parameter Hi,
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8.3 evaluation

pf for latent correlated time-series , known A and Cε

1. At time instant t, consider the random measure

fMs
t (st , xt) =

Ms∑
m=1

w
(ms )
t δ

((
st

xt

)
−

(
s
(ms )
t

x
(ms )
t

))
.

2. Upon reception of a new observation at time instant t + 1.

3. Propagate Ms samples of the latent process st from its
transition density, given (resampled) streams

s
(ms )
t+1 ∼ f(st+1 |s

(ms )
1 :t ) , ms = 1 , · · · ,Ms .

4. Propagate Mx samples per each process sample s(ms )t+1 (to
improve diversity) from the conditional transition density

x
(ms ,mx )
t+1 ∼ f(xt+1 |s

(ms )
t+1 ) = N(xt+1 |As

(ms )
t+1 , Cε) ,

for mx = 1 , · · · ,Mx.

5. Compute the non-normalized weights for the particles

w̃
(ms ,mx )
t+1 ∝ f(yt+1 |x

(ms ,mx )
t+1 ) ,

and normalize them to obtain a new random measure

fMsMx
t+1 (st+1 , xt+1) =

Ms∑
ms=1

Mx∑
mx=1

w
(ms ,mx )
t+1 δ

((
st+1

xt+1

)
−

(
s
(ms )
t+1

x
(ms ,mx )
t+1

))
.

6. Downsample from Ms ·Mx to Ms to prevent the growth
of the number of samples with time. That is, draw a tuple(
s
(ms )
1 :t+1 , x(ms )1 :t+1

)>
from a categorical distribution defined

by the random measure{
s
(ms )
1 :t+1 , x(ms )1 :t+1

}
∼ fMsMx

t+1 (st+1 , xt+1) .

Table 31: PF for latent correlated time-series with known A and Cε.
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8.3 evaluation

pf for latent correlated time-series , unknown A and Cε

1. At time instant t, consider the random measure

fMs
t (st , xt) =

Ms∑
m=1

w
(ms )
t δ

((
st

xt

)
−

(
s
(ms )
t

x
(ms )
t

))
.

2. Upon reception of a new observation at time instant t + 1.

3. Propagate Ms samples of the latent process st from its
transition density, given (resampled) streams

s
(ms )
t+1 ∼ f(st+1 |s

(ms )
1 :t ) , ms = 1 , · · · ,Ms .

4. Propagate Mx samples per each process sample s(ms )t+1 (to
improve diversity) from the conditional transition density

x
(ms ,mx )
t+1 ∼ f(xt+1 |s

(ms )
t+1 , X(ms )

t , U(ms )
t ) = Tνt+1

(
xt+1 |µ

(ms )
xt+1 , R(ms )

xt+1

)
,

with



νt+1 = t − dx − ds + 1 ,

µ
(ms )
xt+1 = Â

(ms )
t s

(ms )
t+1 ,

R
(ms )
xt+1 =

(
X
(ms )
t −Â

(ms )
t U

(ms )
t

)(
X
(ms )
t −Â

(ms )
t U

(ms )
t

)>
νt+1

(
1−s

(ms )>
t+1 (U

(ms )
t+1 U

(ms )>
t+1 )−1s

(ms )
t+1

) .

for mx = 1 , · · · ,Mx and using Equation 170 per sample.

5. Compute the non-normalized weights for the particles

w̃
(ms ,mx )
t+1 ∝ f(yt+1 |x

(ms ,mx )
t+1 ) ,

and normalize them to obtain a new random measure

fMsMx
t+1 (st+1 , xt+1) =

Ms∑
ms=1

Mx∑
mx=1

w
(ms ,mx )
t+1 δ

((
st+1

xt+1

)
−

(
s
(ms )
t+1

x
(ms ,mx )
t+1

))
.

6. Downsample from Ms · Mx to Ms from a categorical
distribution defined by the random measure{

s
(ms )
1 :t+1 , x(ms )1 :t+1

}
∼ fMsMx

t+1 (st+1 , xt+1) .

Table 32: PF for latent correlated time-series with unknown A and Cε.
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8.3 evaluation

variance σ2i and autocovariance function as in Equation 116.
Note that, for 1

2 < Hi < 1, i = 1, · · · ,du, the process has long-
range dependence; and, forHi = 0.5, it is uncorrelated. Now, let
xt ∈ Rdx be a set of latent correlated processes (i.e., the OfGp)
and yt ∈ Rdy the observed vector at time t.

The resulting hierarchical model for inference of a latent OfGp
is mathematically written as

ui,t ∼ fGp(Hi,σ2i ), i = 1, · · · ,du,

xt = Aut + εt,

yt = h(xt, vt),

(179)

where same notation and conditions as in Equation 165 apply.
Now, for evaluation purposes, we specifically address the SV

model with correlated trend and volatility observations. That is,
we simplify Equation 179 to (1) a latent two-dimensional OfGp
state and (2) the SV model with correlated trend and volatility.

The model is given by

u1,t ∼ fGp(H1,σ21),

u2,t ∼ fGp(H2,σ22),

x1,t
x2,t

 =

1 ρ

ρ 1

u1,t
u2,t

+ εt, εt ∼ N(0,σ2εI),

yt = x1,t + e
x2,t/2vt,

(180)

where vt represents a standard Gaussian variable.
Note that ρ is the idiosyncratic correlation between the trend

x1,t and log-volatility x2,t of the return yt observed over time,
while σ2ε is the variance of the additive noise εt.

The latent OfGp allows for modeling of clustering in the
return and volatility [83], i.e., the tendency of asset returns
to show large magnitudes in periods of high volatility and
calmness in periods of low volatility. Furthermore, we relate
the expected asset return to its risk or volatility. We consider an
idiosyncratic correlation between the return and its volatility
through the mixing matrix A and, at the same time, allow for
some random perturbations. The model is used to illustrate the
performance of the suggested method, but we do not claim that
it fits to any particular instance of real data.
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8.3 evaluation

We show on a particular realization the capability of the
proposed SMC methods in Section 8.2 to track the latent state
under different settings in Figure 46. We present the estimates
of only x1,t here, but similar results are obtained for all the
latent variables. The plots show a good tracking accuracy and
suggest that the impact of not knowing σ2i is less severe than
not knowing the mixing parameters.
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(a) All parameters are known.
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(b) The variances σ2i are unknown.
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(c) The mixing parameters are un-
known.
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(d) All parameters are unknown.

Figure 46: True (black) and estimated (red) states x1,t.

We present averaged filtering MSE results in Figure 47,
Figure 48, Figure 49 and Figure 50, where the proposed method
is evaluated for different combinations of Hurst parameters
and ρ values. All the results have been averaged over 25

realizations and obtained with known Hi values and Mu = 500,
Mx = 20, σ2ε = 0.01. We note that one expects increased
accuracy (specially for x1 and x2) for bigger values of Mx, at a
higher computational cost (i.e., cost of oversampling from Mu

to Mu ·Mx).
The study of the results show that, with the increase of

memory of the latent process (i.e., when Hi → 1), the MSE
of the estimated latent states decreases. This effect is more
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evident for the variables x1 and x2, but it is also observed for
the independent fGps u1 and u2. This finding is aligned with
those in Section 5.3.

Regarding the estimation of the trend and the log-volatility,
one immediately concludes that estimation accuracy for the
log-volatility is worse, when compared to the trend of the
observations. That is, the method is able to track the trend (i.e.,
u1 and x1) much better than the log-volatility (i.e., u2 and x2).
The explanation is that the dependency of the trend x1 with
the observations yt is linear, while it is nonlinear for the log-
volatility x2.

Finally, the results reveal that the performance of the SMC
methods is consistent for different values of ρ. The justification
comes from the way the proposed approach deals with the
mixing parameters (by integrating them out). We reiterate
that the marginalization is generic, as we do not assume any
particular value or structure for A and Cε.
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(a) u1 for H1 = 0.5, H2 = 0.5.
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(c) x1 for H1 = 0.5, H2 = 0.5.

0 0.25 0.5 0.75 0.95

0.5

1

1.5

2

ρ

M
SE

All known parameters

Unknown σ2i

Unknown mixing parameters

All unknown parameters

(d) x2 for H1 = 0.5, H2 = 0.5.

Figure 47: Filtering MSE for latent fGp and OfGp, H1 = 0.5, H2 = 0.5.
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(a) u1 for H1 = 0.7, H2 = 0.7.
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(b) u2 for H1 = 0.7, H2 = 0.7.
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Figure 48: Filtering MSE for latent fGp and OfGp, H1 = 0.7, H2 = 0.7.
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(a) u1 for H1 = 0.8, H2 = 0.8.
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(d) x2 for H1 = 0.8, H2 = 0.8.

Figure 49: Filtering MSE for latent fGp and OfGp, H1 = 0.8, H2 = 0.8.
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(a) u1 for H1 = 0.9, H2 = 0.9.
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(b) u2 for H1 = 0.9, H2 = 0.9.
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(c) x1 for H1 = 0.9, H2 = 0.9.
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Figure 50: Filtering MSE for latent fGp and OfGp, H1 = 0.9, H2 = 0.9.
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9
L AT E N T T I M E - S E R I E S U N D E R M O D E L
U N C E RTA I N T Y

So far in this work, we have relied on the assumption that the
underlying data dynamics follow a given model: ARMA models
in Chapters 3 and 4, fGp in Chapter 5 and more generic time-
series in Chapters 6 and 7.

In practice however, it is difficult (if not impossible) to know
the true underlying model. In this chapter, we elaborate on
SMC methods for inference and prediction of latent time-series
under model uncertainty.

In Section 9.1, we first study a model selection approach and
later, propose an alternative that fuses the information from the
considered models within the SMC method itself. We conclude
with Section 9.2, where we evaluate the performance of the
proposed methods.

latent time-series and model uncertainty

We hereby aim at devising a method for filtering and prediction
of time-varying signals under model uncertainty. That is, we
study the case where a practitioner is uncertain about the
specifics of the hidden dynamics and instead, considers a set
of candidate models Mk, k = 1, 2, · · · ,K.

We cast the problem in state-space form and make the model
uncertainty explicit. We writext = gk(xt−1, θg,ut),

yt = hk(xt, θh, vt),
(181)

where t ∈ N0 represents time, xt ∈ Rdx is a time-varying
hidden process whose meaning is not model dependent, and
yt ∈ Rdy is an observation process (of dimensions dx and dy,
respectively).

The subscript k of the functions g and h refers to each
candidate model Mk. The symbols ut and vt are the innovation
processes of the latent state and the observation process, which
we assume to be independent of each other. We refer to the
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9.1 latent time-series and model uncertainty

parameters of the model dependent state and space functions
as θg and θh, respectively.

The goal is to infer the evolution of the latent state, as new
observations are acquired, when one is not certain about the
model that best describes the studied system.

To deal with model uncertainty, model selection criteria have
been extensively used and popularized. For general model
selection problems, the most prominent ones are the Akaike
Information Criterion (AIC) and Bayesian Information Criterion
(BIC) [29].

Within the Monte Carlo methodology, joint Bayesian pa-
rameter estimation and model selection have been already
extensively studied [4–6, 53, 67]. However, these schemes
rely on Markov Chain Monte Carlo (MCMC) or population
Monte Carlo sampling techniques. Consequently, they are not
designed for real-time processing.

If we shift the attention to SMC methods, an early study
of PFs and model selection has been provided in [36]. Most
of the studies are based on considering a predefined set of
candidate models or dynamically exploring potential models
[62]. As an alternative, some researchers have adopted Bayesian
model averaging for SMC methods. In [84], computation of the
weights is performed statically over a training data set, while in
[70], Markov chains are used for exploring model probabilities.

For inference of latent time-series under model uncertainty,
we consider both alternatives and thus, study (1) a set of par-
allel SMC methods (i.e., bank of PFs) with model selection and
(2) model averaging for fusing information of all considered
models.

When studying time-series in practice, the ultimate goal is
to provide accurate and meaningful predictions of the obser-
vations, as these are the only variables that one can actually
observe in real-life. Therefore, the predictive performance of
any method is critical.

In this work, the metric for evaluating the predictive per-
formance of our method is the predictive likelihood of the
observations, that is, f(yt+1|y1:t). One can derive such density
by means of Bayesian principles and compute

f(yt+1|y1:t,Mk) =

∫
f(yt+1|xt+1,Mk)f(xt+1|y1:t,Mk)dxt+1. (182)

In general, obtaining the closed form solution to Equa-
tion 182 is troublesome, mostly because of the nonlinearities
and non-Gaussianities considered.
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9.1 latent time-series and model uncertainty

However, we propose to take advantage of the random
measure provided by the SMC method and thus, numerically
solve the otherwise analytically non-solvable integral above.

An SMC method allows for an approximate computation
of such density by using a random measure to approximate
the predictive density f(xt+1|y1:t,Mk) in the integral in Equa-
tion 182. This can be obtained by drawing J state prediction
samples from the transition density of the considered model,
i.e.,

f(xt+1|x1:t,y1:t,Mk) ≈ fJt+1(xt+1),

where x(j)t+1 ∼ f(xt+1|x1:t,y1:t,Mk), j = 1, 2, · · · , J.
(183)

As a result, one can numerically obtain

f(yt+1|y1:t,Mk) ≈
1

J

J∑
j=1

f(yt+1|x
(j)
t+1). (184)

How to leverage such density for improved inference and
prediction of latent time-series under model uncertainty is the
subject of the next subsections.

Model selection: picking the best candidate

First, we explore a solution that consists of a bank of K parallel
SMC filters. That is, a PF is run for each of the candidate models
Mk, k = 1, · · · ,K, followed by a model selection scheme.

On the one hand, each of the SMC filters must proceed
according to its assumed model. That is, the practitioner sets
up the kth PF in line with the underlying model assumptions,
which is run independently from other PFs (j 6= k) in the bank.

On the other, for the model selection criteria, we consider
the predictive likelihood of the observations for each of the
considered models Mk, i.e., f(yt+1|y1:t,Mk).

Within an SMC method, we approximate the predictive like-
lihood of the next observation with Equation 183, which is
computed per state sample x(m)

t , that is,

f(yt+1|y1:t,Mk) ≈
M∑
m=1

w
(m)
t

J

J∑
j=1

f(yt+1|x
(m,j)
t+1 ). (185)
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9.1 latent time-series and model uncertainty

Based on this metric, the best model M∗k that describes the
observed sequence y1:t+1 is selected by

M∗k = argmax
Mk

t∑
i=1

log f(yi+1|y1:i,Mk). (186)

In summary, we run a bank of PFs based on a set of candidate
models Mk, k = 1, · · · ,K, followed by selecting the best model
based on Equation 186, as detailed in Table 33.
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9.1 latent time-series and model uncertainty

pf with model uncertainty : model selection

1. At time instant t, consider the random measures

fMMk(xt) =

M∑
m=1

w
(m)
t δ

(
xt − x

(m)
t

)
.

for models Mk, k = 1, · · · ,K.

2. Upon reception of a new observation at time t+ 1.

3. Propagate J predictive samples x(m,j)
t+1 from the available

random measure and compute

f(yt+1|y1:t,Mk) ≈
M∑
m=1

w
(m)
t

J

J∑
j=1

f(yt+1|x
(m,j)
t+1 ).

4. Pick model M∗k that describes the observed data best by

M∗k = argmax
Mk

t∑
i=1

log f(yi+1|y1:i,Mk).

5. Perform resampling for each model, if necessary

x
(m)
t ∼ fMMk(xt), m = 1, · · · ,M.

6. Propagate the state particles for each model Mk

x
(m)
t+1 ∼ π(xt+1|x

(m)
t ,y1:t,Mk).

7. Compute the non-normalized weights of the drawn
particles of each model Mk

w̃
(m)
t+1 ∝

f
(
yt+1|x

(m)
t+1,Mk

)
f
(
x
(m)
t+1|x

(m)
t ,Mk

)
π
(
x
(m)
t+1|x

(m)
t ,y1:t,Mk

) w
(m)
t ,

and normalize them to obtain a new set of random
measures

fMMk(xt+1) =

M∑
m=1

w
(m)
t+1δ

(
xt+1 − x

(m)
t+1

)
.

Table 33: SMC method for inference of latent time-series under model
uncertainty: model selection.
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9.1 latent time-series and model uncertainty

Model averaging: fusing the candidates

As an alternative to plain model selection, we now consider
Bayesian model averaging. That is, we sequentially fuse infor-
mation from different models in agreement with their evolving
Bayesian posteriors. We achieve this autonomously within the
SMC method by adjusting the weighting and resampling steps.

The aim is to propose an SMC method that systematically
fuses information from candidate models, whose resources
are dynamically allocated according to their predictive perfor-
mance.

We start by considering the sequential update of the posterior
belief of each model, as more data are observed. That is, for the
posterior of each model Mk we write

p(Mk|y1:t) ∝ f(yt|y1:t−1,Mk)p(Mk|y1:t−1)

∝
t−1∏
i=0

f(yi+1|y1:i,Mk)p(Mk|y1:i),
(187)

where p(Mk|y1:0) = p(Mk) is the prior assumed for each model.
In Section 9.1.1, we suggested to use this posterior to perform

model selection. On the contrary, we now exploit the total
probability theorem to sequentially fuse the information from
all the models.

Given a set of densities f(xt|y1:t,Mk) and f(yt+1|y1:t,Mk)

and a set of model posterior probabilities p(Mk|y1:t), the total
probability theorem states that

f(xt|y1:t) =

K∑
k=1

f(xt|y1:t,Mk)p(Mk|y1:t),

f(yt+1|y1:t) =

K∑
k=1

f(yt+1|y1:t,Mk)p(Mk|y1:t).

(188)

This allows for direct computation of both the filtering, f(xt|y1:t),
and predictive, f(yt+1|y1:t), densities of interest, where the
specific models are marginalized.

Nonetheless, the densities in Equation 188 can not be ob-
tained in closed form in the problem of interest here, i.e.,
inference of latent time-series with nonlinear observations.
Thus, one must study how to apply the above densities within
an SMC sampling method.
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9.1 latent time-series and model uncertainty

Model averaging and SMC: dynamically fusing information

The goal here is to devise an SMC method that provides an
overall random measure fMt (xt) approximation to the density
of interest

f(xt|y1:t) ≈ fMt (xt) =

M∑
m=1

w
(m)
t δ

(
xt − x

(m)
t

)
, (189)

where a set of K candidate models are considered Mk, k =

1, · · · ,K.
To overcome the underlying model uncertainty, we fuse

the information from the different posteriors as suggested in
Equation 188.

Within the SMC methodology, each model dependent density
is approximated by a (model dependent) random measure

f(xt|y1:t,Mk) ≈ f
Mk,t
Mk,t

(xt) =

Mk,t∑
mk=1

w
(mk)
t δ

(
xt − x

(mk)
t

)
, (190)

with mk = 1, · · · ,Mk,t; where the subscript t indicates that the
number of particles used by model Mk may vary with time.
Note that the model weights w(mk)

t must, for all time instants t,
satisfy

∑Mk,t
mk=1

w
(mk)
t = 1.

We require that the overall approximation of f(xt|y1:t) in
Equation 189 is obtained from the random measures of all the
models, as in Equation 190. Mathematically,

f(xt|y1:t) ≈
M∑
m=1

w
(m)
t δ

(
xt − x

(m)
t

)

=

K∑
k=1

p(Mk|y1:t)

Mk,t∑
mk=1

w
(mk)
t δ

(
xt − x

(mk)
t

)
=

K∑
k=1

Mk,t∑
mk=1

p(Mk|y1:t)w
(mk)
t δ

(
xt − x

(mk)
t

) ,

(191)

which is fulfilled if

• the total number of samples adds up, i.e.,

M =

K∑
k=1

Mk,t ; (192)
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9.1 latent time-series and model uncertainty

• the weights are properly combined, i.e.,

w
(m)
t = p(Mk|y1:t)w

(mk)
t , (193)

with m =
∑k−1
l=1 Ml,t +mk, k = 1, · · · ,K.

As explained in Section 2.4, for the SMC to perform satisfacto-
rily, one needs to resample particles according to their weights.
After resampling, one obtains an equally weighted resampled
random measure

f(xt|y1:t) ≈
M∑
m=1

w
(m)
t δ

(
xt − x

(m)
t

)
≈

M∑
m=1

1

M
δ
(
xt − x

(m)
t

)
.

(194)

To guarantee convergence and unbiasedness of an SMC
method [43], (a) the expected number of resampled particles
must be proportional to their weights and (b) the total num-
ber of particles must remain constant (although this can be
relaxed).

We draw an equivalence between particles (models) and
their weights (model posterior probabilities) and establish the
following model resampling equivalence:

• Resampling from the overall random measure fMt (xt)

with its weights w(m)
t = p(Mk|y1:t)w

(mk)
t , is equivalent to

• assigning Mk,t = Mp(Mk|y1:t) samples to each model
Mk followed by resampling particles from each model
random measure fMk,t

Mk,t
(xt) based on their weights w(mk)

t ,
mk = 1, · · · ,Mk,t.
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9.1 latent time-series and model uncertainty

The above scheme guarantees that the overall resampled
random measure is equivalent to the mixture of per-model
resampled random measures, i.e.,

f(xt|y1:t) ≈
M∑
m=1

1

M
δ
(
xt − x

(m)
t

)

=

K∑
k=1

p(Mk|y1:t)

Mk,t∑
mk=1

1

Mk,t
δ
(
xt − x

(mk)
t

)
=

K∑
k=1

Mk,t∑
mk=1

p(Mk|y1:t)

Mk,t
δ
(
xt − x

(mk)
t

) ,

only if M =
∑K
k=1Mk,t,

1
M =

p(Mk|y1:t)
Mk,t

,→Mk,t =Mp(Mk|y1:t).

(195)

Thus, the weight of each resampled particle per model is
p(Mk|y1:t)
Mk,t

, which is equal for all the particles within each model,
but requires Mk,t = Mp(Mk|y1:t) to have equally weighted
overall particles.

In the above equations, to avoid unnecessary diversion, we
assumed that the particle allocations result in integers. This,
of course, is not the case in general. There are, however, well
understood approaches for handling this [69].

Furthermore, it might be of interest to avoid complete
depletion of models. That is, it might be undesirable that no re-
sources are assigned to a particular model. The straightforward
extension for such cases consists on determining the number of
particles to assign based on

Mk,t+1 =Mkmin +
(
M−K ·Mkmin

)
p(Mk|y1:t+1), (196)

where Mkmin is the minimum number of samples assigned to
each model and

∑K
k=1Mk,t+1 =M is fulfilled.

The key for the presented fusion strategy as in Equation 195

to be applicable is to compute the model posterior probability
at each time instant, i.e., p(Mk|y1:t). Such probability can be
sequentially updated by means of Equation 182 in general, and
Equation 184 within the SMC methodology.

One can evaluate the predictive performance of each model
via a two step procedure. First, one propagates the random
measure of each model in time, i.e., from f

Mk,t
Mk,t

(xt) to fMk,t+1
Mk,t+1

(xt+1).
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9.1 latent time-series and model uncertainty

Then, one evaluates the resulting predictive density by using
the next available observation yt+1.

All in all, the model posterior probability computation fol-
lows

p(Mk|y1:t+1) ∝ f(yt+1|y1:t,Mk)p(Mk|y1:t)

≈ p(Mk|y1:t)

Mk,t∑
mk=1

w
(mk)
t f(yt+1|x

(mk)
t+1 ,Mk).

(197)

Note that a normalization step is required so that we have a
proper probability mass function, i.e.,

∑K
k=1 p(Mk|y1:t+1) = 1.

Everything considered, we propose a dynamic SMC method
for sequential processing of data under model uncertainty in
Table 34. The proposed method is dynamic in that (a) it updates
model posterior probabilities as more data become available
and (b) it apportions SMC resources (i.e., particles) according to
such probabilities amongst the candidate models.

Note that the estimates of interest are computed at every time
instant t before resampling, via

E {g(xt)} =

K∑
k=1

p(Mk|y1:t)

Mk,t∑
mk=1

w
(mk)
t g

(
x
(mk)
t

)
. (198)
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9.1 latent time-series and model uncertainty

pf with model uncertainty : model averaging

1. At time instant t, consider the random measures

f
Mk,t
Mk,t

(xt) =

Mk,t∑
mk=1

w
(mk)
t δ

(
xt − x

(mk)
t

)
.

for models Mk, k = 1, · · · ,K.

2. Upon reception of a new observation at time t+ 1.

3. Compute the model posterior probability

p(Mk|y1:t+1) ∝ p(Mk|y1:t)

Mk,t∑
mk=1

w
(mk)
t f(yt+1|x

(mk)
t+1 ,Mk).

4. Determine the number of particles Mk,t+1 to be
assigned to each model Mk

Mk,t+1 =Mkmin +
(
M−K ·Mkmin

)
p(Mk|y1:t+1),

where Mkmin is the minimum number of samples
assigned to each model.

5. Perform resampling Mk,t+1 times for each model.

6. Propagate the state particles for each model Mk

x
(mk)
t+1 ∼ π(xt+1|x

(mk)
t ,y1:t,Mk).

7. Compute the non-normalized weights of the drawn
particles of each model Mk

w̃
(mk)
t+1 ∝

f
(
yt+1|x

(mk)
t+1 ,Mk

)
f
(
x
(mk)
t+1 |x

(mk)
t ,Mk

)
π
(
x
(mk)
t+1 |x

(mk)
t ,y1:t,Mk

) w
(mk)
t ,

and normalize them to obtain a new set of random
measures

f
Mk,t+1
Mk,t+1

(xt + 1) =

Mk,t+1∑
mk=1

w
(mk)
t δ

(
xt+1 − x

(mk)
t+1

)
.

Table 34: SMC method for inference of latent time-series under model
uncertainty: model averaging.
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9.2 evaluation

evaluation

To illustrate the applicability of the proposed SMC method for
inference of latent time-series under model uncertainty, we
return to the latent long-memory processes as in Chapter 5.
There, we propose a PF for inference of latent fGps, where only
the known Hurst parameter case is studied.

It is of no surprise that, in practice, assuming knowledge of
the memory properties of the hidden process (i.e., parameter-
ized by H for a fGp) is unrealistic. As explained in Section 5.3,
estimation of the unknown autocovariance function of the
latent state is challenging, and the estimation of the Hurst
parameter H is even more so.

On the one hand, because in our problem formulation as
in Equation 181, we do not observe the self-similar process
directly. On the other, because the approaches proposed in
the literature for estimation of unknown parameters within the
SMC method may (a) break the self-similarity and stationarity
properties of the fGp, and (b) hinder the convergence of the SMC
method. Thus, new alternatives must be explored.

As a matter of fact, we now cast the inference of latent fGps
with unknown H as a model uncertainty problem, so that we
can apply the methods devised in Section 9.1. That is, we
consider a set of candidate models for the latent state, each with
a particular autocovariance function (parameterized by H).

Consequently, by following the explanation in Section 9.1.1,
we propose to run a bank of K SMC filters, each with different
fGp model assumptions. In particular, the differences are de-
termined by the specific values of the autocovariance function,
which in turn, only depend on the Hurst parameters. All in
all, each model Mk assumes a different H parameter value, i.e.,
Hk ∈ [0.5, 1), k = 1, 2, · · · ,K.

Each of the k SMC filters proceeds as corresponds to its as-
sumed model (as described in Table 21 for a givenHk); followed
by a model selection scheme. For the model selection criteria,
we consider the predictive likelihood of the observations as in
Equation 186, which for the latent fGp with unknown H results
in

H∗ = argmax
Hk

t∑
i=1

log f(yi+1|y1:i,Hk). (199)

We are now ready to implement a bank of SMC filters as de-
scribed in Table 33 with different Hurst parameter assumptions,
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SMC bank True H
K=6 H = 0.5 H = 0.6 H = 0.7 H = 0.8 H = 0.9 H = 0.95

H1 = 0.5 0.75585 0.7384 0.7414 0.76453 0.7468 0.70245

H2 = 0.6 0.76235 0.73161 0.71785 0.71312 0.66156 0.59087

H3 = 0.7 0.78312 0.73957 0.70206 0.67159 0.57899 0.47794

H4 = 0.8 0.82449 0.76833 0.70837 0.65323 0.52737 0.39924

H5 = 0.9 0.9034 0.83263 0.74516 0.67107 0.50654 0.35076

H6 = 0.95 0.98512 0.90572 0.80342 0.71992 0.51913 0.33772

Table 35: MSE of the state for a bank of SMC filters.

where the transition density follows Equation 118 and we select
the best model as in Equation 199.

We evaluate such an SMC approach over the SV model with
latent fGp,xt = ut,yt = e

xt/2vt,
(200)

where vt ∼ N(0,σ2v) and ut is a zero-mean fGp with unknown
H.

The filtering results for this experiment are summarized in
Table 35, where it is clear that the most accurate inference is
attained when the correct parameter value is assumed (dark
shaded entries in the diagonal of the table).

For rapidly decaying autocovariance functions (i.e., 0.5 6
H < 0.75), there is a minimal MSE performance difference
among the SMC filters that assume different H values in this
interval. On the contrary, as the long-memory becomes more
evident (H > 0.75), only the filters with values close to the true
one provide good accuracy.

One concludes that, when there is uncertainty about the
underlying model, the relevance of the memory properties is
critical. That is, assuming short-memory for a long-memory
process results in poor inference and vice versa.

We run a bank of SMC schemes in parallel with a model
selection scheme and thus, it is of interest to evaluate whether
the method identifies the correct model (in this case, the correct
H value).

First, we plot the evolution of the model selection criteria, i.e.,
the metric in Equation 199. See, for latent fGps with different
Hurst parameters, Figure 51, Figure 52, Figure 53, Figure 54,
Figure 55 and Figure 56.

174



9.2 evaluation

50 100 150 200
-200

-150

-100

-50

0

50

t

∑ t i=
1

lo
g
f(
y
i+
1
|y
1
:i
,H

k
)

True likelihood
PF, known H=0.5
PF, known H=0.6
PF, known H=0.7
PF, known H=0.8
PF, known H=0.9
PF, known H=0.95

Figure 51: Cumulative log-likelihood
∑t
i=1 log f(yi+1|y1:i,Hk) of

each SMC filter over time for fGp with H = 0.5.
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Figure 52: Cumulative log-likelihood
∑t
i=1 log f(yi+1|y1:i,Hk) of

each SMC filter over time for fGp with H = 0.6.
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Figure 53: Cumulative log-likelihood
∑t
i=1 log f(yi+1|y1:i,Hk) of

each SMC filter over time for fGp with H = 0.7.
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Figure 54: Cumulative log-likelihood
∑t
i=1 log f(yi+1|y1:i,Hk) of

each SMC filter over time for fGp with H = 0.8.
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Figure 55: Cumulative log-likelihood
∑t
i=1 log f(yi+1|y1:i,Hk) of

each SMC filter over time for fGp with H = 0.9.
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Figure 56: Cumulative log-likelihood
∑t
i=1 log f(yi+1|y1:i,Hk) of

each SMC filter over time for fGp with H = 0.95.
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When evaluating the likelihood of the observed time-series
for different models, we conclude that only those with assumed
Hk parameter close to the correct one are able to provide the
best results. Besides, one observes how the difference between
models becomes more evident as more data are observed. Once
again, distinguishing amongst short-memory processes (i.e.,
0.5 6 H < 0.75) is a much harder task than separating short-
and long-memory fGps.

We can equivalently summarize the accuracy of the proposed
model selection scheme by looking at the confusion matrices in
Table 36 and Table 37.

We emphasize the difficulty of distinguishing the processes
with rapidly decaying autocovariance functions (i.e., 0.5 6 H <
0.75). By contrast, for long-memory processes, the long-range
dependence induced as H → 1 helps the SMC method to
identify the correct model. In other words, only when capturing
the influence of the samples deep in the past on the present
values, the SMC method is able to accurately predict the next
observations.

Finally, the results presented in the tables in the next page
(i.e., Table 36 and Table 37) confirm that the model selection
accuracy improves as (1) more data are observed (i.e., as t
grows) and (2) more predictive resources are used (i.e., J > 1).
In other words, the more information we have (i.e., more data),
the better the model selection is.

We elaborate on this idea by extending the model in Equa-
tion 200 to allow for multiple latent fGps to impact a set of
observations. That is, we consider a general model with Nx
latent processes and Ny observed time-series, where each have
idiosyncratic characteristics.

More precisely, we write

x1,t = u1,t,

x2,t = u2,t,

yn,t = an,0 + an,1yn,t−1 + x1,t + e
x2,t/2vn,t,

n = 1, · · · ,Ny,

(201)

where the observed time-series have both an idiosyncratic struc-
ture (a bias term an,0 and an auto-regressive term an,1) and a
common shared time-varying trend and volatility components
(x1,t and x2,t, respectively). The noise vn,t has the standard
Gaussian density and ui,t represents a fGp.
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SMC bank True H
K=6 H = 0.5 H = 0.6 H = 0.7 H = 0.8 H = 0.9 H = 0.95

H1 = 0.5 35 47 35 30 24 19

H2 = 0.6 13 18 14 13 13 6

H3 = 0.7 9 9 5 13 9 8

H4 = 0.8 7 5 9 7 7 6

H5 = 0.9 9 5 10 9 10 13

H6 = 0.95 27 16 27 28 37 48

SMC bank True H
K=6 H = 0.5 H = 0.6 H = 0.7 H = 0.8 H = 0.9 H = 0.95

H1 = 0.5 65 42 17 3 0 2

H2 = 0.6 20 28 19 15 2 2

H3 = 0.7 8 22 31 18 4 2

H4 = 0.8 4 4 20 42 23 7

H5 = 0.9 2 3 8 14 36 18

H6 = 0.95 1 1 5 8 35 69

Table 36: Model selection confusion matrix evolution over time: at t =
10 (top) and t = 200 (bottom), with J = 1.

SMC bank True H
K=6 H = 0.5 H = 0.6 H = 0.7 H = 0.8 H = 0.9 H = 0.95

H1 = 0.5 40 53 44 36 28 21

H2 = 0.6 13 15 5 4 10 3

H3 = 0.7 5 6 6 13 8 8

H4 = 0.8 9 5 11 9 5 8

H5 = 0.9 9 4 5 5 9 11

H6 = 0.95 24 17 29 33 40 49

SMC bank True H
K=6 H = 0.5 H = 0.6 H = 0.7 H = 0.8 H = 0.9 H = 0.95

H1 = 0.5 71 42 16 2 1 3

H2 = 0.6 11 29 17 11 2 1

H3 = 0.7 9 19 34 29 1 2

H4 = 0.8 2 6 21 39 21 5

H5 = 0.9 3 3 10 12 38 17

H6 = 0.95 4 1 2 7 37 72

Table 37: Model selection confusion matrix evolution over time: at t =
10 (top) and t = 200 (bottom), with J = 100.
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The model in Equation 201 is an illustrative practical applica-
tion with interest in finance. There, each yn,t would describe the
price evolution of an asset (described by the CAPM model [83])
within the same market dynamics. This is captured by the trend
of the market x1,t and its log-volatility x2,t [95]. The properties
of the market are captured by the latent fGps [31]. Recall that,
even if the described model contains only two shared variables
x1,t and x2,t, it can readily be generalized to a more general case
(see [99]).

When the idiosyncratic parameters are known, the derivation
of the observations likelihood is straightforward, i.e.,

f
(
y1:Ny,t+1|x1:2,t+1

)
=

Ny∏
n=1

N
(
yn,t+1|µyn,t+1 ,σ2yn,t+1

)
,

with

µyn,t+1 = an,0 + an,1yn,t + x1,t+1,

σ2yn,t+1
= ex2,t+1 .

(202)

Assuming that the distinctive parameters are known is
impractical in real-problems and thus, we resort to a Bayesian
analysis of the likelihood function.

Let us define the vector of unknown parameters per obser-

vation equation as an =
(
an,0 an,1

)>
and the auxiliary vector

hn,t =
(
1 yn,t−1

)>
. Recall that for the proposed SMC method,

the Bayesian parameter posterior and the likelihood function
evolve with the time-index t and depend, not only on the
observations n, but also on each of the m particle streams.

Thus, at time instant t, we use the following parameter prior:

f(a
(m)
n,t |yn,1:t, x

(m)
1:2,1:t) = N

(
a
(m)
n,t

∣∣∣µ(m)
an,t ,Σ

(m)
an,t

)
. (203)

By rewriting the predictive density as

f(yn,t+1|yn,1:t,a
(m)
n,t , x(m)

1:2,t+1) = N

(
yn,t+1

∣∣∣∣h(m)>

n,t+1a
(m)
n,t + x

(m)
1,t+1 , ex

(m)
2,t+1

)
,

(204)

180



9.2 evaluation

we can marginalize out the unknown parameters and obtain

f
(
yn,t+1|yn,1:t, x

(m)
1:2,t+1

)
=

=

∫
f(yn,t+1|yn,1:t,a

(m)
n,t , x(m)

1:2,t+1)f(a
(m)
n,t |yn,1:t, x

(m)
1:2,1:t)da

(m)
n,t

= N
(
yn,t+1|µ

(m)
yn,t+1 ,σ2

(m)

yn,t+1

)
,

with

µ
(m)
yn,t+1 = h

(m)>

n,t+1µ
(m)
an,t + x

(m)
1,t+1,

σ2
(m)

yn,t+1
= ex

(m)
2,t+1 + h

(m)>

n,t+1Σ
(m)
an,th

(m)
n,t+1.

(205)

Finally, the joint predictive density is given by

f
(
y1:Ny,t+1|y1:Ny,t, x1:2,t+1

)
=

Ny∏
n=1

N
(
yn,t+1|µyn,t+1 ,σ2yn,t+1

)
.

Once the data at t + 1 have been observed, we update the
parameter posterior to

f(a
(m)
n,t+1|yn,1:t+1, x

(m)
1:2,1:t+1) = N

(
a
(m)
n,t+1|µ

(m)
an,t+1 ,Σ(m)

an,t+1

)
,

with
µ
(m)
an,t+1 = Σ

(m)
an,t+1

(
h
(m)
n,t+1e

−x
(m)
2,t+1

(
yn,t+1 − x

(m)
1,t+1

)
+ Σ

(m)−1

an,t µ
(m)
an,t

)
,

Σ
(m)
an,t+1 =

(
Σ
(m)−1

an,t + h
(m)
n,t+1e

−x
(m)
2,t+1h

(m)>

n,t+1

)−1

.

Thus, we can now evaluate the proposed SMC bank in
this new model. The accuracy of state tracking is shown in
Figure 57, where the MSE results are plotted for different
instances of the SMC bank. Results are averaged over 50

realizations of 200 instants long time-series, where M = 1000

have been used.
First, we note that the uncertainty introduced by the un-

known idiosyncratic parameters is minimal due to the imple-
mented Bayesian estimation.

We show example estimates of the unknown idiosyncratic
parameters over time in Figure 58, for a given realization.

More importantly, we emphasize the benefit of observing
more data for the accuracy of the SMC bank. That is, as
more time-series are observed, the MSE reduces considerably:
Accuracy is improved when Ny = 5 as opposed to when
Ny = 1.

As a side note, the tracking accuracy for the trend x1,t is
better than for the log-volatility x2,t (which is in line with
conclusions for a similar model in Section 8.3).
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Figure 57: MSE for a bank of SMC filters with true H1:2 = [0.7, 0.9].
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(b) Estimate of the AR term a1,1.

Figure 58: Idiosyncratic parameter an,0 and an,1 estimation.

Again, we observe that the SMC filter with matching H1:2
values is able to provide the overall best performance (i.e.,
H∗1:2 = [0.7, 0.9]). When a mismatch occurs, the filters whose
H1:2 values are closer to the true ones provide the best results.
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We now turn our attention to the predictive performance and
the model selection accuracy of the bank of SMC filters.
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Figure 59: Model selection accuracy over time with true H1:2 =

[0.7, 0.9].

The results in Figure 59 show that the prediction of future
asset returns and thus, the model selection, becomes more
accurate as (1) t increases, (2) more time-series are available
and (3) oversampling for prediction is implemented (J > 1).

The confusion matrices in Table 38 and Table 39, where
correct model selection percentages are shown for Ny = 1 and
Ny = 5 respectively, corroborate these statements. Once again,
only those SMC filters with matchingH1:2s predict best and thus,
perform best in identifying the true underlying model.

J=1 True H
Assumed H H = [0.5, 0.5] H = [0.5, 0.7] [0.5, 0.9] H = [0.7, 0.5] H = [0.7, 0.7] H = [0.7, 0.9] H = [0.9, 0.5] H = [0.9, 0.7] H = [0.9, 0.9]

H = [0.5, 0.5] 58 (62) 12 (20) 4 (8) 24 (16) 4 (12) 6 (14) 2 (2) 2 (6) 0 (0)
H = [0.5, 0.7] 24 (16) 24 (20) 8 (12) 10 (16) 12 (4) 14 (4) 0 (0) 6 (10) 2 (0)
H = [0.5, 0.9] 6 (8) 10 (8) 28 (34) 8 (2) 8 (8) 26 (20) 4 (6) 0 (0) 12 (10)
H = [0.7, 0.5] 8 (10) 22 (16) 10 (10) 22 (18) 26 (8) 4 (8) 6 (12) 4 (4) 0 (8)
H = [0.7, 0.7] 4 (4) 14 (16) 12 (6) 18 (28) 14 (26) 10 (10) 8 (4) 14 (10) 8 (8)
H = [0.7, 0.9] 0 (0) 8 (10) 26 (18) 6 (4) 10 (12) 30 (30) 6 (0) 10 (6) 4 (16)
H = [0.9, 0.5] 0 (0) 4 (6) 2 (0) 10 (14) 10 (10) 0 (2) 44 (48) 18 (22) 6 (4)
H = [0.9, 0.7] 0 (0) 4 (2) 2 (2) 0 (2) 14 (14) 2 (0) 26 (22) 32 (32) 16 (14)
H = [0.9, 0.9] 0 (0) 2 (2) 8 (10) 2 (0) 2 (6) 8 (12) 4 (6) 147 (10) 52 (40)

Table 38: Model selection confusion matrix for Ny = 1. Results are
shown for J = 1 and J = 100, in parenthesis.
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True H
Assumed H H = [0.5, 0.5] H = [0.5, 0.7] [0.5, 0.9] H = [0.7, 0.5] H = [0.7, 0.7] H = [0.7, 0.9] H = [0.9, 0.5] H = [0.9, 0.7] H = [0.9, 0.9]

H = [0.5, 0.5] 72 (96) 12 (16) 0 (0) 10 (12) 2 (4) 0 (0) 0 (0) 0 (0) 0 (0)
H = [0.5, 0.7] 18 (2) 24 (62) 16 (8) 4 (2) 18 (8) 0 (0) 0 (0) 0 (0) 0 (0)
H = [0.5, 0.9] 0 (0) 30 (6) 52 (70) 0 (0) 0 (0) 14 (0) 0 (0) 0 (0) 0 (0)
H = [0.7, 0.5] 10 (2) 8 (0) 0 (0) 66 (68) 12 (14) 2 (2) 2 (0) 0 (0) 0 (0)
H = [0.7, 0.7] 0 (0) 26 (16) 0 (4) 16 (16) 50 (68) 8 (6) 0 (0) 2 (2) 0 (0)
H = [0.7, 0.9] 0 (0) 0 (0) 32 (18) 0 (0) 16 (6) 76 (92) 0 (0) 2 (0) 0 (2)
H = [0.9, 0.5] 0 (0) 0 (0) 0 (0) 4 (0) 0 (0) 0 (0) 76 (80) 14 (14) 0 (0)
H = [0.9, 0.7] 0 (0) 0 (0) 0 (0) 0 (2) 2 (0) 0 (0) 22 (20) 68 (76) 4 (6)
H = [0.9, 0.9] 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 14 (8) 96 (92)

Table 39: Model selection confusion matrix for Ny = 5. Results are
shown for J = 1 and J = 100, in parenthesis.

So far, we have focused on model selection and shown that
the proposed SMC method can deal with model uncertainty.
However, one needs to be careful on recognizing that, in the
above, the true model was always one of the candidates. In case
the true model is not considered, then one will end up selecting
the one that is closest to the true one, since it best describes the
observed data.

We now turn our attention from plain model selection
to model averaging. As explained in Section 9.1.2, the aim
is to sequentially fuse information from different models in
agreement with their evolving Bayesian posteriors. We achieve
this autonomously within the SMC method by adjusting the
weighting and resampling steps, as explained in Section 9.1.2.1.

Thus, we now evaluate the performance of the model aver-
aging SMC proposed in Table 34 and compare it to the model
selection SMC in the SV model with latent fGp with unknown
Hurst parameter, i.e.,xt = ut,yt = e

xt/2vt,
(206)

where vt ∼ N(0,σ2v) and ut is a zero-mean fGp with unknown
H.

We consider a set of candidate models Mk, k = 1, · · · ,K,
where we assume a different Hk ∈ [0.5, 1) value for each model,
resulting in different autocovariance functions γk(τ) for the
latent fGp.

An example of tracking the latent state under model uncer-
tainty by the model averaging SMC proposed in Table 34 is
shown in Figure 60.

We present statistical results of the filtering performance in
Table 40. They were obtained by averaging over 100 realizations,
each with time-series of length 500. The total number of
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Figure 60: True state (black) and estimated (red) by proposed model
averaging SMC.

particles was set to M = 1000. We considered K = 5 candidate
models with parameters H1 = 0.5, H2 = 0.7, H3 = 0.8, H4 = 0.9,
H5 = 0.95 and σk = 1, ∀k.

We compared the filtering performance of the following
methods:

• Model selection SMC: the model selection method pro-
posed in Table 33.

• Model averaging SMC: a model averaging SMC, where the
number of particles of each model is kept equal and
constant, i.e., Mk,t = 200, ∀k,∀t.

• Proposed SMC method: the SMC method proposed in Ta-
ble 34, with Mkmin = 0.

• True model SMC: SMC method that knows the true under-
lying model (indicated in the table header).

The results in Table 40 show that the model averaging pro-
vides, overall, better performance than a plain model selection
scheme.

Furthermore, the proposed dynamic SMC method is con-
sistently more accurate than the plain averaging alternative.
The reason is the implemented dynamic resampling scheme.
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SMC True H
methods H = 0.5 H = 0.6 H = 0.7 H = 0.8 H = 0.9 H = 0.95

Model selection SMC 0.75456 0.76018 0.75068 0.73097 0.69510 0.73836

Model averaging SMC 0.75216 0.75714 0.74734 0.72689 0.69082 0.73475

Proposed SMC method 0.75177 0.75265 0.74487 0.70598 0.61393 0.53713

True model SMC 0.74572 0.74664 0.71724 0.66040 0.53432 0.40041

Table 40: MSE of the state for different SMC methods.

By apportioning more particles to better models, the overall
estimation accuracy of the SMC method is improved. We remark
that the performance of the proposed method is reasonably
close to the benchmark (i.e., to that of the method based on
the true model).

How the method dynamically adjusts the resources (i.e.,
particles) over time is illustrated in Figure 61, Figure 62,
Figure 63, Figure 64 and Figure 65, where the sample size
(averaged over 100 realizations) assigned to each model is
shown.

By studying the resource allocation evolution, one concludes
that (a) the true model gets more resources as more data
are processed, (b) models with extreme memory properties
(i.e., H → 0.5 Vs H → 1) are quickly discarded, (c) for
long-memory processes, H → 1, short-memory processes are
quickly discarded, while close-by candidates are more slowly
distinguished.
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Figure 61: Number of particles Mk,t assigned to each SMC filter with
true H = 0.5.
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Figure 62: Number of particles Mk,t assigned to each SMC filter with
true H = 0.7.

187



9.2 evaluation

100 200 300 400 500
0

100

200

300

400

500

600

t

M
k

,t

H=0.5
H=0.7

H=0.8
H=0.9
H=0.95

Figure 63: Number of particles Mk,t assigned to each SMC filter with
true H = 0.8.
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Figure 64: Number of particles Mk,t assigned to each SMC filter with
true H = 0.9.
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Figure 65: Number of particles Mk,t assigned to each SMC filter with
true H = 0.95.
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We now emphasize one of the benefits of the proposed
dynamic model averaging technique: The ability to accurately
estimate the underlying latent process, when the true model is
not amongst the candidates (see true H = 0.6 in Table 40).

Even if none of the assumed models is the correct one, the
performance of the proposed SMC method is the best amongst
the alternatives and quite close to the benchmark (True model

SMC). The explanation comes from the proposed dynamic
averaging scheme. When the true model is not available, then
the proposed SMC assigns resources to those closest to the true
one and, due to model averaging, an improved performance is
obtained.

This behavior is illustrated in Figure 66, where a balance
between the models closest to the true one (H = 0.6) is achieved.
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Figure 66: Number of particles Mk,t assigned to each SMC filter with
true H = 0.6.

Another benefit of our proposed dynamic SMC is illustrated
in Figure 67, where the evolution of the filtering error is
plotted over time. There, we observe how as time evolves, the
proposed SMC improves its filtering accuracy, as it allocates
resources to those models with good predictive performance,
while discarding incorrect ones (see Figure 66). On the long run,
the accuracy of the proposed SMC method would match that of
the true one. On the contrary, a plain model averaging method
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weights equally all models and, thus, it can not improve its
performance over time.
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Figure 67: Filtering MSE evolution over time, for fGp with H = 0.95.

Finally, we evaluate the filtering performance if a minimum
sample size is guaranteed per model, i.e., Mkmin > 0. As
shown in Table 41, for the studied cases, it does not make
sense to guarantee a minimum amount of resources per model,
as it restricts the flexibility of the proposed method to assign
resources to the best models. In a sense, the reasoning is the
same as in the above paragraph, since a model averaging SMC
method is the limiting case with Mkmin = M/K. Once again,
we note that the difference for short-memory processes (i.e.,
0.5 6 H < 0.75) is less remarkable than for the long-memory
processes, as H→ 1.

SMC True H
methods H = 0.5 H = 0.6 H = 0.7 H = 0.8 H = 0.9 H = 0.95

Proposed SMC methodMkmin = 0 0.75177 0.75265 0.74487 0.70598 0.61393 0.53713

Proposed SMC methodMkmin = 20 0.75063 0.75670 0.75000 0.73306 0.69647 0.72918

Table 41: State MSE for the proposed SMC method, different Mkmin .
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Part III

C O N C L U S I O N S A N D F U T U R E W O R K

Concluding remarks on the presented work and the
contributions of this work are summarized in this
chapter. Directions for future work are also outlined.
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C O N C L U S I O N S A N D F U T U R E W O R K

The goal of the presented work is to provide methods for
accurate inference and prediction of latent time-series, in the
most challenging scenarios. Consequently, we have resorted
to SMC methods, so that generic state-space models with
nonlinearities and non-Gaussianities are accommodated.

Throughout the dissertation, different time-series have been
researched. We have thoroughly studied the different statisti-
cal features of each of the considered models. By means of
Bayesian analysis, we have derived the joint and transition
densities of interest, for different parameter and modeling
assumptions.

As a result, a set of SMC methods have been proposed,
which target inference of latent time-series of different nature
and with various parameterization assumptions. Furthermore,
more general solutions have been proposed for WSS and corre-
lated time-series. Finally, inference of time-series under model
uncertainty has been investigated too.

The contributions of this work are summarized in Sec-
tion 10.1 and we conclude by outlining further research efforts
in Section 10.2.

contributions

In Chapter 3 and Chapter 4, we addressed the problem of
recursive estimation of latent ARMA(p,q) processes. Inference
of latent ARMA processes is a much more challenging task than
the estimation of plain AR processes. The complications are
due to, amongst others, the nonlinearities induced by the MA
part. Even when the ARMA process is directly observed, the
derivation of the exact parameter densities is intractable. The
problem is certainly much more difficult when the process is
not observed, as in the work presented here.

In Chapter 3, we have provided a rigorous analysis of the
ARMA model, with emphasis on the statistical properties of the
process, the derivation of the key densities, and computation of
its sufficient statistics (in matrix and recursive forms).
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Based on such findings, we have proposed a set of novel
SMC methods for inference of latent ARMA(p,q) processes
with different parameter knowledge assumptions. Variants for
the cases of known/unknown ARMA parameters a and b,
and known/unknown driving noise variance σ2u have been
presented. The solutions when the parameters are unknown
are based on the concept of Rao-Blackwellization, which allows
for superior estimation accuracy.

We extended the analysis of time-series by considering other
memory properties in Chapter 5. There, we have addressed
time-series for which dependencies amongst time instants goes
further into the past. A detailed description of long-memory
processes is provided in Section 5.1, with emphasis on two
classes of models: the fGp and FARIMA models.

The main contribution in Chapter 5 is the proposed SMC
method for inference of latent fGps. These self-similar processes
are of interest due to their parsimonious parameterization
of diverse memory properties: from uncorrelated innovations
when H = 0.5, to long-memory when H → 1. Evaluation
results show that, given the Hurst parameter, the proposed SMC
successfully tracks different fGps with high accuracy.

The alternative FARIMA model, and extensions to a more gen-
eral framework with ARMA(p,q) processes driven by correlated
innovations, are the focus of Chapter 6. The first contribution
there is the Bayesian analysis of such generic models, which
leads into the derivation of their joint and transition densities.
Thus, we provide the key densities for the analysis of any time-
series that is, in general, described by an ARMA(p,q) driven by
correlated innovations. Note that any of the previous models
are sub-cases of this more general one: If innovations are
uncorrelated, we have an ARMA(p,q) model; and if no ARMA
filtering is applied, then we are left with a fGp.

The second contribution in Chapter 6 is the set of proposed
SMC methods for inference of ARMA(p,q) processes driven
by correlated innovations. Different parameter knowledge as-
sumptions have been made and the resulting SMC variants have
been shown to provide accurate state estimation for all the
studied cases.

Chapter 7 addresses a more general problem on inference
of latent time-series, where assumptions on the underlying
model and its parameters are kept to a minimum: wide-sense
stationarity is assumed. There, we only require that the time-
series is described by a Gaussian density with a constant first
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moment (i.e., the mean), and second order statistics that are
functions of the time-lag τ (i.e., the covariance matrix). By
relaxing the assumptions and resorting to the marginalization
(i.e., Rao-Blackwellization) of the sufficient statistics, we derive
a generic transition density: One that describes any Gaussian
WSS process.

Therefore, the contribution in Chapter 7 is a generic SMC
method for inference of latent Gaussian WSS time-series, that
can be applied to a myriad of scenarios: latent ARMA(p,q) and
FARIMA(p,d,q) models with unknown parameters and model
orders, latent fGps with unknown H, etc. The accuracy and
flexibility of the proposed method are shown via extensive
evaluations.

We broaden the scope of our work in Chapter 8 by in-
vestigating correlation amongst multiple time-series. That is,
we consider inference of multivariate latent time-series. We
devise a hierarchical model, where the correlated time-series
are modeled as a mixture of independent processes embedded
in noise. We provide a Bayesian analysis of the system by
marginalization of the unknown parameters. As a result, we
propose an SMC method for inference of correlated time-series,
where the assumptions on the underlying model parameters
are relaxed.

The dissertation concludes with a chapter devoted to the
study of latent time-series under model uncertainty. Because
in practice it is difficult to know the true underlying dynamics
of the data, deriving solutions for such problem is of critical
importance. Our contributions in Chapter 9 are two-fold.

First, we propose an SMC-based method that combines a bank
of filters with model selection. That is, an independent SMC
filter is run for each of a set of candidate models; followed by a
model selection scheme to determine the best model, based on
their predictive power.

Second, we contribute with a novel SMC method that sequen-
tially fuses information from different models in a dynamic
fashion. We achieve this autonomously within the proposed
SMC method by adjusting the weighting and resampling steps.
The method is dynamic in that it updates its model posterior
probabilities as more data become available, and that it appor-
tions resources (i.e., particles) according to such probabilities
amongst the candidate models. The proposed dynamically
adjustable SMC method is shown to have improved filtering
accuracy.
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In summary, the contribution of this dissertation is a set of
SMC methods for sequential inference and prediction of latent
time-series. Some of the proposed solutions target an specific
set of modeling or parameter knowledge assumptions, while
others are less restrictive and are suitable for inference of more
general time-series.

These methods are readily applicable to challenging prob-
lems of practical interest. The key to decide which solution to
implement in practice will be determined by the amount of
knowledge available to the practitioner.

future work

There are several directions of research that stem from the work
presented in this dissertation.

First, there are some aspects of the presented SMC meth-
ods that can be further investigated. Specifically, the memory
properties of the studied time-series and their impact on the
performance of the proposed methods is of interest.

The key is to scrutinize the memory-properties of the con-
sidered processes by means of their autocovariance functions
γ(τ). It is clear that one can discard past samples after a certain
lag, once the autocovariance function becomes negligible, as
they provide no information for present values. That is, if
γ(τ) → 0, τ > τmax, then there is basically no information loss
in discarding lags bigger than τmax; i.e., there is no information
about the present farther into the past. We have also shown
that the −αt = Σ̃−1t γ̃t term provides critical information on
this matter too. Therefore, an interesting line of research is to
analytically determine which τmax allows to keep most of the
relevant information in each time-series.

Because of this negligible information gain after τmax, we
have suggested to limit the computation of the sufficient
statistics of the transition density to a certain lag, i.e., to use
xt−τmax:t instead of x1:t (see Chapters 3, 4, 5 and 7), as it greatly
reduces the computation burden of the proposed methods.

However, truncation causes negligible information loss only
when τmax is carefully selected. We have established that trun-
cation is safe for most of the studied short-memory processes,
i.e., ARMA(p,q) models and fGp with 0.5 < H 6 0.75. Extending
the guidelines (either numerically or analytically) on which
truncation τmax to use for different time-series will be of
undeniable help for practitioners.
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Investigation on the memory properties of different time-
series will also shed light on the convergence of the proposed
SMC methods. It has already been shown [43] that, when
exponential forgetting holds, one can establish uniform-in-
time convergence of any PF, for functions that depend only
on recent states. Thus, one can readily guarantee that the
proposed SMC methods converge as long as the latent process
has short-memory. Nevertheless, it remains unclear how to
theoretically prove that the proposed SMC methods converge
for long-memory processes.

In the introduction, we pointed out that one needs to be
careful with the potential impact of path-degeneracy in any PF.
As reported in [27], the Monte Carlo error of path functionals
φ
(
x
(m)
1:t

)
remains bounded over time if the functionals relate to

the filtering problem, i.e., φ
(
x
(m)
1:t

)
= x

(m)
t , but explodes for the

smoothing problem, i.e., φ
(
x
(m)
1:t

)
= x

(m)
1 .

In the proposed SMC methods, some of the derived statistics
depend on the full path of the state and thus, questions
might be raised on this matter. Once again, the key for
the performance of the proposed methods is their memory
property. That is, when dealing with short-memory processes,
the dependence of the functionals on past samples decays
quickly φ

(
x
(m)
1:t

)
≈ φ

(
x
(m)
t−τmax:t

)
and thus, the impact of path-

degeneracy is contained. However, a rigorous analysis of the
relationship between the memory properties of the time-series,
the used path functionals and their impact on the proposed
SMC methods is deemed relevant.

Convergence and performance issues for SMC methods be-
come even more critical when considering estimation of high-
dimensional states. Either because joint state and parameters
are considered (as in Chapter 4 or Chapter 6), or because
multivariate time-series are studied (as in Chapter 8), the
dimensionality of the state grows.

The limitations of SMC techniques in high-dimensional prob-
lems have been noted by many authors [11, 33, 82]. The curse-
of-dimensionality in sampling methods refers to the inability
to efficiently search through high-dimensional spaces. Thus,
effective alternatives to deal with such curse (e.g., multiple
particle filtering [30, 38], Rao-Blackwellization [89], and others)
must be researched.
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Finally, the implementation of the proposed SMC methods
in real applications must be carried out. The work of this
dissertation has been on the derivation of novel SMC methods
for inference of latent time-series and its evaluation done in
simulated scenarios. This has allowed for a rigorous analysis of
the estimation accuracy of the methods, due to the knowledge
of the underlying model and the access to the true latent state.

However, the ultimate goal is to apply the proposed meth-
ods to real-life scenarios and data. Time-series from different
fields, such as biomedicine, economics, finance and others (e.g.,
Google Trends), should be examined.

There, one does not have access to the latent states and, even
more, has no certainty on the specifics of the hidden dynamics.
Thus, selecting which proposed SMC method to implement will
be of critical importance.

Lastly, one must explore alternative performance metrics for
evaluation of the applied methods. The proposed SMC methods
provide an approximation to the predictive density, which can
readily be used for the analysis of any time-series (and their
evaluation).
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A
S I R A N D O P T I M A L P F S : C O M PA R I S O N

We hereby study the difference in performance of the Sampling
Importance Resampling (SIR) and the optimal PFs. To do so, we
consider the following state-space modelxt = axt=1 + ut ,

yt = xt + vt ,
(207)

where the innovation processes followut ∼ N
(
ut|0,σ2u

)
,

vt = αN
(
vt|µ1,σ21

)
+ (1−α)N

(
vt|µ2,σ22

)
.

(208)

sir pf

First, we provide the details of the SIR method:

• The proposal density is the transition density

π(xt|x
(m)
t−1,yt) = f(xt|x

(m)
t−1). (209)

• The resulting weight computation equation follows

w̃
(m)
t ∝ wt−1

f(yt|x
(m)
t )f(x

(m)
t |x

(m)
t−1)

π(x
(m)
t |x

(m)
t−1,yt)

= wt−1
f(yt|x

(m)
t )f(x

(m)
t |x

(m)
t−1)

f(x
(m)
t |x

(m)
t−1)

∝ wt−1f(yt|x
(m)
t ).

(210)

• And we perform resampling at every time instant

w̃
(m)
t ∝ f(yt|x(m)

t ). (211)

The densities to be used for the model in Equation 208 aref(xt|xt−1) = N
(
xt|axt−1,σ2u

)
,

f(yt|xt) = αN
(
yt − xt|µ1,σ21

)
+ (1−α)N

(
yt − xt|µ2,σ22

)
.

(212)
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optimal pf

The details of the optimal PF are:

• The proposal density is optimal

π(xt|x
(m)
t−1,yt) = f(xt|x

(m)
t−1,yt) =

f(xt,yt|x
(m)
t−1)

f(yt|x
(m)
t−1)

=
f(yt|xt, x

(m)
t−1)f(xt|x

(m)
t−1)

f(yt|x
(m)
t−1)

=
f(yt|xt)f(xt|x

(m)
t−1)

f(yt|x
(m)
t−1)

.

(213)

• The resulting weight computation follows

w̃
(m)
t ∝ wt−1

f(yt|x
(m)
t )f(x

(m)
t |x

(m)
t−1)

π(x
(m)
t |x

(m)
t−1,yt)

= wt−1
f(yt|x

(m)
t )f(x

(m)
t |x

(m)
t−1)

f(yt|x
(m)
t )f(x

(m)
t |x

(m)
t−1)

f(yt|x
(m)
t−1)

∝ wt−1f(yt|x
(m)
t−1).

(214)

• And we, again, resample at every time instant

w̃
(m)
t ∝ f(yt|x(m)

t−1). (215)

We derive the required densities for the state-space model in
Equation 207f(xt|xt−1,yt) =

f(yt|xt)f(xt|xt−1)
f(yt|xt−1)

,

f(yt|xt−1) =
∫
f(yt|xt)f(xt|xt−1)dxt−1 .

(216)

We note that because the observation equation follows a
Gaussian mixture model, then

f(yt|xt)f(xt|xt−1) = αN
(
yt − xt|µ1,σ21

)
N
(
xt|axt−1,σ2u

)
+ (1−α)N

(
yt − xt|µ2,σ22

)
N
(
xt|axt−1,σ2u

)
.

(217)
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By using the Gaussian posterior and marginal distributions
[14], we conclude

f(xt|xt−1) = N
(
xt|axt−1,σ2u

)
,

f(yt|xt, xt−1) = f(yt|xt) = αN
(
yt|µ1 + xt,σ21

)
+(1−α)N

(
yt|µ2 + xt,σ22

)
,

f(yt|xt−1) = αN
(
yt|axt−1 + µ1,σ2u + σ21

)
+(1−α)N

(
yt|axt−1 + µ2,σ2u + σ22

)
,

f(xt|xt−1,yt) = αN
(
xt|

σ21axt−1+σ
2
u(yt−µ1)

σ2u+σ
2
1

, σ2uσ
2
1

σ2u+σ
2
1

)
+(1−α)N

(
xt|

σ22axt−1+σ
2
u(yt−µ2)

σ2u+σ
2
2

, σ2uσ
2
2

σ2u+σ
2
2

)
.

(218)

results

In the following, we provide illustrative results (averaged
over 100 realizations) for the model in Equation 207 and
Equation 208, with parameters for the observation equation set
to α = 0.7,µ1 = −1.7,σ21 = 2,µ2 = 1,σ22 = 3. The AR parameter
a and state noise variance σ2u are set as specified below.

214



appendix a

a = 0.9, σu = 0.5
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Figure 68: Averaged state filtering MSE, a = 0.9, σu = 0.5.
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Figure 69: Effective particle size, a = 0.9, σu = 0.5.
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a = 0.9, σu = 1.5
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Figure 70: Averaged state filtering MSE, a = 0.9, σu = 1.5.
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Figure 71: Effective particle size, a = 0.9, σu = 1.5.
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a = 0.9, σu = 2
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Figure 72: Averaged state filtering MSE, a = 0.9, σu = 2.
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Figure 73: Effective particle size, a = 0.9, σu = 2.

217



appendix a

a = 0.65, σu = 0.5
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Figure 74: Averaged state filtering MSE, a = 0.65, σu = 0.5.
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Figure 75: Effective particle size, a = 0.65, σu = 0.5.
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a = 0.65, σu = 1.5
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Figure 76: Averaged state filtering MSE, a = 0.65, σu = 1.5.
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Figure 77: Effective particle size, a = 0.65, σu = 1.5.
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a = 0.65, σu = 2
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Figure 78: Averaged state filtering MSE, a = 0.65, σu = 2.
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Figure 79: Effective particle size, a = 0.65, σu = 2.
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conclusions

As expected, the performance of the optimal PF is consistently
better than the SIR method. As illustrated by the effective
particle size plots, the optimal PF is able to propagate particles
towards regions of high probability, while it is more difficult
for the SIR method to so. However, the difference in MSE highly
depends on each model. That is, the more informative the
transition density is, the better the SIR method performs.
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B
A R M A (p , q ) P R O C E S S E S : γ ( τ ) A N D α t

In this appendix, the autocovariance γ ( τ ) and −α t = Σ̃− 1
t γ̃ t

functions for different ARMA(p , q) models are illustrated.
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Figure 80: γ(τ) and −αt for AR(1), a = 0.8.
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Figure 81: γ(τ) and −αt for AR(2), a1 = 0.8, a2 = 0.15.
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Figure 82: γ(τ) and −αt for MA(1), b = 0.5.
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Figure 83: γ(τ) and −αt for MA(2), b1 = 0.8, b2 = 0.15.
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Figure 84: γ(τ) and −αt for ARMA(1, 1), a1 = 0.8, b1 = 0.5.
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Figure 85: γ(τ) and −αt for ARMA(1, 1), a1 = −0.8, b1 = 0.5.
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Figure 86: γ(τ) and −αt for ARMA(1, 1), a1 = 0.8, b1 = −0.5.
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Figure 87: γ(τ) and −αt for ARMA(1, 1), a1 = −0.8, b1 = −0.5.
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Figure 88: γ(τ) and −αt for ARMA(1, 1), a1 = 0.8, b1 = 0.9.
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Figure 89: γ(τ) and −αt for ARMA(1, 1), a1 = −0.8, b1 = 0.9.
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Figure 90: γ(τ) and −αt for ARMA(1, 1), a1 = 0.8, b1 = −0.9.

225



appendix b

-10

-5

0

5

10

5 10 15 20 25 30 35 40 45 50

γ
(τ
)

τ

(a) γ(τ)

-2

-1.5

-1

-0.5

0

5 10 15 20 25 30 35 40 45 50

−
α
t

τ

(b) −αt

Figure 91: γ(τ) and −αt for ARMA(1, 1), a1 = −0.8, b1 = −0.9.
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Figure 92: γ(τ) and −αt for ARMA(1, 2), a1 = 0.8, b1 = 0.8, b2 = 0.15.

0

5

10

15

20

5 10 15 20 25 30 35 40 45 50

γ
(τ
)

τ

(a) γ(τ)

-1

-0.5

0

0.5

1

1.5

5 10 15 20 25 30 35 40 45 50

−
α
t

τ

(b) −αt

Figure 93: γ(τ) and −αt for ARMA(2, 1), a1 = 0.8, a2 = 0.15, b1 = 0.5.
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Figure 94: γ(τ) and −αt for ARMA(2, 2), a1 = 0.8, a2 = 0.15, b1 = 0.8,
b2 = 0.15.
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Figure 95: γ(τ) and −αt for ARMA(3, 1), a1 = 0.5, a2 = 0.3, a3 = 0.15,
b1 = 0.5.
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Figure 96: γ(τ) and −αt for ARMA(3, 2), a1 = 0.5, a2 = 0.3, a3 = 0.15,
b1 = 0.8, b2 = 0.15.
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Figure 97: γ(τ) and −αt for ARMA(1, 3), a1 = 0.8, b1 = 0.5, b2 = 0.3,
b3 = 0.15.
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Figure 98: γ(τ) and −αt for ARMA(2, 3), a1 = 0.8, a2 = 0.15, b1 = 0.5,
b2 = 0.3, b3 = 0.15.
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Figure 99: γ(τ) and −αt for ARMA(3, 3), a1 = 0.5, a2 = 0.3, a3 = 0.15,
b1 = 0.5, b2 = 0.3, b3 = 0.15.
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Figure 100: γ(τ) and −αt for ARMA(4, 1), a1 = 0.5, a2 = 0.2, a3 = 0.15,
a4 = 0.1, b1 = 0.5.
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Figure 101: γ(τ) and −αt for ARMA(4, 2), a1 = 0.5, a2 = 0.2, a3 = 0.15,
a4 = 0.1, b1 = 0.8, b2 = 0.15.
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Figure 102: γ(τ) and −αt for ARMA(4, 3), a1 = 0.5, a2 = 0.2, a3 = 0.15,
a4 = 0.1, b1 = 0.5, b2 = 0.3, b3 = 0.15.
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Figure 103: γ(τ) and −αt for ARMA(1, 4), a1 = 0.8, b1 = 0.5, b2 = 0.2,
b3 = 0.15, b4 = 0.1.
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Figure 104: γ(τ) and −αt for ARMA(2, 4), a1 = 0.8, a2 = 0.15, b1 = 0.5,
b2 = 0.2, b3 = 0.15, b4 = 0.1.
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Figure 105: γ(τ) and −αt for ARMA(3, 4), a1 = 0.5, a2 = 0.3, a3 = 0.15,
b1 = 0.5, b2 = 0.2, b3 = 0.15, b4 = 0.1.
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Figure 106: γ(τ) and −αt for ARMA(4, 4), a1 = 0.5, a2 = 0.2, a3 = 0.15,
a4 = 0.1, b1 = 0.5, b2 = 0.2, b3 = 0.15, b4 = 0.1.
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A P P R O X I M AT E D K A L M A N F I LT E R

In this appendix, we study how to apply a KF-based solution
to the stochastic ARMA log-volatility model. The observations
follow a SV model, whose log-volatility is described by a latent
ARMA time-series.

Mathematically, it is represented by a state-space model of
the form xt =

∑p
i=1 aixt−i + ut +

∑q
j=1 bjut−j,

yt = e
xt
2 vt,

(219)

with ut ∼ N(0,σ2u) and vt ∼ N(0,σ2v).
For the latent stationary ARMA state, it has already been

established in Chapter 3 that the transition density can be
readily derived, where knowledge of the ARMA parameters
suffices for determination of the sufficient statistics.

The transition density is Gaussian and depends linearly
on previous states. Thus, the Kalman equations for updating
the state can be derived. However, the nonlinear observation
equation requires further consideration.

In order to deal with nonlinearities in the state-space formu-
lation of the KF, the EKF has been proposed [3]. It consists of
linearizing the problem around point estimates of the current
mean and covariance. To do so, it resorts to the computation
of the partial derivatives of the measurement function, i.e.,
h(xt, vt) = e

xt
2 vt in our case.

If the linearization of the SV model is performed following
the guidelines of the EKF precisely, the resulting Kalman gain is
null:

Kt = P
−
t H
>
t

(
HtP

−
t h
>
t + VtRtV

>
t

)−1
= 0

because Ht =
δh

δxt
(x̂−t , 0) =

1

2
e
xt
2 0 = 0

(220)

Consequently, direct implementation of the EKF for the SV
model is not successful, as the estimates are never updated
with information from the observables. In such models, the EKF
simply updates its state estimates by following the stationary
transition density. Thus, it does not successfully track the state,
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but converges to the expected stationary mean (i.e., x̂t → 0 as
t→∞) [105].

An alternative approach is now suggested, where the obser-
vation equation is rewritten so that an additive noise form is
obtained.

Let us transform the observation equation

yt = e
xt
2 vt → y2t = e

xtv2t → log(y2t) = xt + log(v
2
t), (221)

and derive the density of the transformed noise:

1. If vt is a standard Gaussian random variable, then wt =
v2t follows a Chi-squared distribution with one degree of
freedom:

If vt ∼ N(0, 1), then wt = v2t ∼ χ
2
1,

wt ∼ fwt(wt) = χ
2
1 =

1

2
1
2 Γ
(
1
2

)w−12
t e−

wt
2 .

2. For the nonlinear transformation zt = log(wt), the result-
ing density is derived in two complementary forms:

• By using the general PDF transformation rule:

If, zt = log(wt), then wt = ezt and
δzt

δwt
=
1

wt

Leading to zt ∼ fzt(zt) =

∣∣∣∣∣ 1δzt
δwt

∣∣∣∣∣ fwt(ezt) = eztfwt(ezt)
fzt(zt) = e

zt
1

2
1
2 Γ
(
1
2

)e−zt2 e−ezt2 =
1√
(2π)

e

(
zt
2 −e

zt
2

)
.
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• By using the general CDF transformation rule:

FZt(zt) = P(Zt 6 zt) = P(log(wt) 6 zt) = P(wt 6 e
zt) = FWt(e

zt)

Since FWt(wt) =
1

Γ(12)
γ

(
1

2
,
wt

2

)
where γ (s, x) is the lower imcomplete Gamma function

γ (s, x) =
∫x
0
ts−1 e−t dt

Because Γ(
1

2
) =
√
π and γ

(
1

2
, x
)

=
√
π erf

(√
x
)

,

FWt(wt) = erf
(√

wt

2

)
.

Then FZt(zt) = FWt(e
zt) = erf

(√
ezt

2

)
= erf

(
1√
2
e
zt
2

)
and

fzt(zt) =
δFZt(zt)

δzt
=

δerf
(√

ezt
2

)
δzt

δ 1√
2
e
zt
2

δzt

=
2√
π
e−

ezt
2 · e

zt
2

2
√
2
=

1√
2π
e
zt
2 −e

zt
2 .

The transformed random variable zt thus follows a non-
Gaussian density fzt(zt) = 1√

2π
e
1
2 (zt−e

zt) (illustrated in Fig-
ure 107) with the following mean and variance:

• Mean: E {zt} = −1.2703628454615

• Variance: Var {zt} = 4.9348022005446

All in all, an approximated KF is derived for the modified
log-volatility space modelxt =

∑p
i=1 aixt−i + ut +

∑q
j=1 bjut−j,

log(y2t) = xt + zt, where zt ∼ fzt(zt) =
1√
2π
e
1
2 (zt−e

zt),
(222)

under the Gaussian approximation to the transformed noise,
i.e., zt ≈ N (E {zt} , Var {zt}). The suggested algorithm is de-
scribed in Table 42.
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Figure 107: PDF (top) and CDF (bottom) of variable zt = log(wt).
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approxkf for the modified sv model

1. Project the state ahead

x̂−t = µxt|xt−τ:t−1 x̂t−1:t−τ. (223)

2. Project the error covariance ahead

P−t = µxt|xt−τ:t−1Pt−1µ
>
xt|xt−τ:t−1

+Σxt|xt−τ:t−1 . (224)

3. Compute the Kalman gain

Kt = P
−
t

(
P−t + Var {zt}

)−1 . (225)

4. Update the state estimate with the transformed
measurement log(y2t)

x̂t = x̂
−
t +Kt

(
log(y2t) − x̂

−
t − E {zt}

)
. (226)

5. Update the state error covariance

Pt = (1−Kt)P
−
t . (227)

Table 42: Approximated Kalman Filter for the modified stochastic log-
volatility model.
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F G P A N D FA R I M A ( 0 , d , 0 ) M O D E L S : γ ( τ ) A N D
α t

fgp models : γ(τ) and αt

In this section, the autocovariance γ(τ) and −αt = C̃−1
t C̃>t+1

functions for different fGp models are illustrated.
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Figure 108: γ(τ) and −αt for fGp, H = 0.5.
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Figure 109: γ(τ) and −αt for fGp, H = 0.6.
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Figure 110: γ(τ) and −αt for fGp, H = 0.7.
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Figure 111: γ(τ) and −αt for fGp, H = 0.75.
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Figure 112: γ(τ) and −αt for fGp, H = 0.8.
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Figure 113: γ(τ) and −αt for fGp, H = 0.85.
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Figure 114: γ(τ) and −αt for fGp, H = 0.9.

0

0.2

0.4

0.6

0.8

1

5 10 15 20 25 30 35 40 45 50

−
α
t

τ

(a) γ(τ)

0

0.2

0.4

0.6

0.8

1

5 10 15 20 25 30 35 40 45 50

−
α
t

τ

(b) −αt

Figure 115: γ(τ) and −αt for fGp, H = 0.95.
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Figure 116: γ(τ) and −αt for fGp, H = 0.99.
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Figure 117: γ(τ) and −αt for fGp, H = 0.999.
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Figure 118: γ(τ) and −αt for fGp, H = 0.9999.
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fgp and farima(0 , d , 0) model comparison : γ(τ) and

αt

In this appendix, the autocovariance γ(τ) and −αt = Σ̃−1
t γ̃t

functions for different fGp and FARIMA(0 , d , 0) models are
compared.

0

0.2

0.4

0.6

0.8

1

5 10 15 20 25 30 35 40 45 50

−
α
t

τ

fGp H = 0 .5

FARIMA d = 0

(a) γ(τ)

0

0.2

0.4

0.6

0.8

1

5 10 15 20 25 30 35 40 45 50

−
α
t

τ

fGp H = 0.5

FARIMA d = 0

(b) −αt

Figure 119: γ(τ) and −αt for fGp and FARIMA(0,d, 0), H = 0.5.
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Figure 120: γ(τ) and −αt for fGp and FARIMA(0,d, 0), H = 0.6.
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Figure 121: γ(τ) and −αt for fGp and FARIMA(0,d, 0), H = 0.7.
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Figure 122: γ(τ) and −αt for fGp and FARIMA(0,d, 0), H = 0.75.
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Figure 123: γ(τ) and −αt for fGp and FARIMA(0,d, 0), H = 0.8.
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Figure 124: γ(τ) and −αt for fGp and FARIMA(0,d, 0), H = 0.85.
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Figure 125: γ(τ) and −αt for fGp and FARIMA(0,d, 0), H = 0.9.
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Figure 126: γ(τ) and −αt for fGp and FARIMA(0,d, 0), H = 0.95.
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Figure 127: γ(τ) and −αt for fGp and FARIMA(0,d, 0), H = 0.99.
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Figure 128: γ(τ) and −αt for fGp and FARIMA(0,d, 0), H = 0.999.
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Figure 129: γ(τ) and −αt for fGp and FARIMA(0,d, 0), H = 0.9999.
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D E R I VAT I O N O F T H E M A R G I N A L I Z E D
G A U S S I A N D I S T R I B U T I O N S

Let x ∈ Rd be generated according to x ∼ f(x|µ,Σ) = N(x|µ,Σ),
with mean µ ∈ Rd and covariance matrix Σ ∈ Rd×d. We are
interested in integrating out the parameters µ and Σ, i.e.,

f(x) =

∫ ∫
f(x|µ,Σ)f(µ,Σ)dµdΣ, (228)

where f(µ,Σ) is the prior of the unknown µ and Σ. We use
conjugate priors for easiness of the analytical derivations.

unknown mean and covariance

We start with the conjugate prior of the covariance matrix,
which is the inverse Wishart distribution IWd(Σ|νw,Λ), where
νw > d− 1 represents degrees of freedom and Λ ∈ Rd×d is a
scale matrix. Its probability density function is given by

f(Σ) = IWd(Σ|νw,Λ) =
1

ZIW
|Σ|−

νw+d+1
2 e−

1
2 tr{Σ−1Λ}, (229)

where

ZIW = 2
νwd
2 |Λ|−

νw
2 Γd

(νw
2

)
. (230)

Let the prior of µ given Σ be Gaussian with hyper-parameters
η and κ, i.e.,

f(µ|η,Σ) = N(µ|η,
Σ

κ
) = (2π)−

d
2

∣∣∣∣Σκ
∣∣∣∣−12 e−12 (µ−η)>(Σκ )−1(µ−η).

(231)

Then, from f(µ,Σ) = f(µ|Σ)f(Σ), we deduce that the joint
conjugate prior is a normal-inverse-Wishart distribution, i.e.,

f(µ,Σ|η, κ,Λ,νw) = NIW(µ,Σ|η, κ,νw,Λ)

=
1

ZNIW
|Σ|−

νw+d+2
2 e−

1
2 tr{Σ−1Λ}−κ2 (µ−η)

>Σ−1(µ−η).

(232)
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We find the normalizing constant ZNIW by computing

ZNIW =

∫ ∫
|Σ|−

νw+d+2
2 e−

1
2 tr{Σ−1Λ}−κ2 (µ−η)

>Σ−1(µ−η)dµdΣ.

(233)

First, we separate the integrals for µ and Σ

ZNIW =

∫
|Σ|−

νw+d+1
2 e−

1
2 tr{Σ−1Λ}

( κ
2π

)−d2
×
(∫ ( κ

2π

)d
2
|Σ|−

1
2e−

κ
2 (µ−η)

>Σ−1(µ−η)dµ
)

dΣ.
(234)

The inner integral with respect to µ integrates to one and so

ZNIW =
( κ
2π

)−d2 ∫
|Σ|−

νw+d+1
2 e−

1
2 tr{Σ−1Λ}dΣ

=
( κ
2π

)−d2
ZIW.

(235)

Thus,

ZNIW =
( κ
2π

)−d2
2
νwd
2 |Λ|−

νw
2 Γd

(νw
2

)
. (236)

With this prior, we can integrate out the parameters of the
data distribution and find its marginal as follows:

f(x) =

∫ ∫
f(x|µ,Σ)f(µ,Σ|η, κ,Λ,νw)dµdΣ

=

∫ ∫
N(x|µ,Σ)NIW(µ,Σ|η, κ,νw,Λ)dµdΣ

=

∫ ∫
N(x|µ,Σ)N

(
µ

∣∣∣∣η,
Σ

κ

)
IW(Σ|νw,Λ)dµdΣ

=

∫
IW(Σ|νw,Λ)

(∫
N(x|µ,Σ)N

(
µ

∣∣∣∣η,
Σ

κ

)
dµ
)

dΣ.

(237)

We can readily solve the inner integral and obtain the
resulting marginal Gaussian∫

N(x|µ,Σ)N(µ|η,
Σ

κ
)dµ = N

(
x

∣∣∣∣η,Σ
(
1+ κ

κ

))
. (238)
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Finally,

f(x) =

∫ (∫
N(x|µ,Σ)N

(
µ

∣∣∣∣η,
Σ

κ

)
dµ
)

IW(Σ|νw,Λ)dΣ

=

∫
N

(
x

∣∣∣∣η,Σ
(
1+ κ

κ

))
IW(Σ|νw,Λ)dΣ

∝
∫ (

1+ κ

κ

)−d2
|Σ|−

1
2e−

1
2 (x−η)

>Σ−1( κ
1+κ)(x−η)

× |Σ|−
νw+d+1

2 e−
1
2 tr{Σ−1Λ}dΣ

∝
∫
|Σ|−

νw+d+2
2 e−

1
2 tr{Σ−1(Λ+ κ

1+κ (x−η)(x−η)
>)}dΣ

∝
∫

IWd

(
Σ

∣∣∣∣νw + 1,Λ+
κ

1+ κ
(x− η)(x− η)>

)
dΣ

∝
∣∣∣∣Λ+

κ

1+ κ
(x− η)(x− η)>

∣∣∣∣−νw+1
2

∝

∣∣∣∣∣1+ (x− η)>
(
1+ κ

κ
Λ

)−1

(x− η)

∣∣∣∣∣
−νw+1

2

,

(239)

where we have used Sylvester’s determinant theorem, which
states that for any invertible d× d matrix we have |X+AB| =

|X||In +BX
−1A|.

Recall that if x ∈ Rd has a multivariate t-distribution, then

f(x) ∝
(
1+

1

ν
(x− µ)>R−1(x− µ)

)−ν+d2
, (240)

where ν represents the degrees of freedom and d is the
dimension of x. Thus, by comparison of (239) and (240),
we conclude that the joint marginal density is the following
multivariate t-distribution:

f(x) = Tνw−d+1

(
x

∣∣∣∣η,
(1+ κ)Λ

κ(νw − d+ 1)

)
. (241)

known mean, unknown covariance

The marginal density when the covariance matrix Σ is unknown
and the mean of the process µ is known is derived in a similar
fashion.

In this case, we only have a prior for the covariance, since the
prior for the mean is a delta function at the known mean value
η. Thus, we are left with Σ ∼ f(Σ|νw,Λ) = IWd(Σ|νw,Λ) and
x ∼ f(x|η,Σ) = N(x|η,Σ).
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appendix e

We can integrate out the covariance of the distribution
and obtain its marginal following the same approach as in
Equation 239, i.e.,

f(x) =

∫
f(x|η,Σ)f(Σ|Λ,νw)dΣ

=

∫
N (x|η,Σ) IWd(Σ|νw,Λ)dΣ

∝
∫
|Σ|−

1
2e−

1
2 (x−η)

>Σ−1(x−η)

× |Σ|−
νw+d+1

2 e−
1
2 tr{Σ−1Λ}dΣ

∝
∫
|Σ|−

νw+d+2
2 e−

1
2 tr{Σ−1(Λ+(x−η)(x−η)>)}dΣ

∝
∫

IWd

(
Σ|νw + 1,Λ+ (x− η)(x− η)>

)
dΣ

∝
∣∣∣Λ+ (x− η)(x− η)>

∣∣∣−νw+1
2

∝
∣∣∣1+ (x− η)>Λ−1(x− η)

∣∣∣−νw+1
2 .

(242)

Thus, the data marginal when the mean is known is given by

f(x) = Tνw−d+1

(
x

∣∣∣∣η,
Λ

(νw − d+ 1)

)
. (243)
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