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Abstract of the Dissertation
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Prediction of Latent Time-series

by
Ifiigo Urteaga

Doctor of Philosophy
in
Electrical Engineering

Stony Brook University

2016

In the era of information-sensing mobile devices, the Internet-
of-Things and Big Data, research on advanced methods for
extracting information from data has become extremely critical.
One important task in this area of work is the analysis of
time-varying phenomena, observed sequentially in time. This
endeavor is relevant in many applications, where the goal is to
infer the dynamics of events of interest described by the data,
as soon as new data-samples are acquired.

This dissertation is on novel methods for sequential inference
and prediction of latent time-series. We assume that a sequence
of observations is a function of a hidden process of interest and
the goal is to estimate the latent process from the observed data.
We consider flexible models that capture the dynamics of real
phenomena and can deal with many practical burdens.

The embraced methodology is based on Bayesian theory
and Monte Carlo algorithms. The former provides a consistent
framework for the analysis of latent random processes. The lat-
ter allows for overcoming the inherent difficulties of nonlinear
and non-Gaussian models. The goal is to propose methods that
can extract the hidden dynamics from observed data in the
most generic and challenging scenarios.

We start by investigating short-memory processes, that is,
time-series where most of the relevant information is contained
only within the most recent past. In particular, we study
latent Auto-Regressive Moving-Average (ARMA) processes with
independent Gaussian innovations. We first assume that the
parameters are known and then, we relax the assumptions until
they are all unknown.

The analysis of latent time-series is extended to processes
with different memory characteristics, including those with
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long-memory features. On the one hand, we investigate latent
processes that show self-similarity properties and are correlated
in time, such as the fractional Gaussian process (fGp). On the
other, we study extensions of the ARMA(p, q) model, by con-
sidering fractional differencing, which leads to Fractional Auto-
Regressive Integrated Moving-Average (FARIMA) processes.

We further generalize our work to allow for broad memory
properties, by relaxing previous modeling and parameteriza-
tion assumptions. We resort to wide-sense stationary (WsS)
time-series in general. Within this new framework, all the
previously considered models are covered. As a result, a
generic Sequential Monte Carlo (SMC) method for inference of
Gaussian WSS latent time-series is proposed. We broaden our
work by investigating a hierarchical model where correlation
amongst multiple time-series is accommodated.

Finally, we focus on model uncertainty; that is, we consider
that one may not know the specific form of the underlying
dynamics. For this problem, we investigate both Bayesian
model selection and averaging-based solutions. The resulting
outcome is a dynamically adjustable SMC method with im-
proved accuracy.

The contribution of the work in this dissertation is both
on the theoretical Bayesian analysis of the models and on
its application to computational algorithms for challenging
problems of interest in practice. Short- and long-memory
processes are examined and the modeling assumptions relaxed
as much as possible for added flexibility and applicability.

The performance of the proposed SMC methods is thoroughly
evaluated via simulations of most challenging scenarios, and
illustrative examples where they can be applied are provided.
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Nigan sinistu duten guztiei.

The important thing is not to stop questioning.
Curiosity has its own reason for existing.

— Albert Einstein
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If A is a success in life, then A equals x plus y plus z.
Work is x; y is play; and z is keeping your mouth shut.

— Albert Einstein
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Part I

INTRODUCTION AND PROBLEM
FORMULATION

The focus of this work is on the analysis and
estimation of latent time-series, motivated by a
myriad of real-life applications.

Methods for inference and prediction of time-series
are studied, where the state-space framework is
embraced under the Bayesian data analysis method-
ology and sequential Monte Carlo algorithms are
proposed.

A motivation to the problem of interest, its formal
description, and an introduction to the foundations
of the work are presented in the following chapters.



INTRODUCTION

In the era of information-sensing mobile devices, sensor net-
works, the Internet-of-Things and Big-Data, research on ad-
vanced methods for extracting information from data has
gained even more relevance.

Both within academia and industry, a great amount of effort
is being put into developing advanced techniques for learning
and understanding of the vast amount of data being collected.
Disciplines such as machine learning and data science have
become trendy and they heavily influence research, business
and economic activities. The goal of extracting knowledge from
data concerns many disciplines of science and engineering,
such as statistics, computer-science, signal-processing and pat-
tern-recognition.

One important area of work is the analysis of time-varying
phenomena, observed sequentially in time. This task is critical
in many applications in science and engineering, including
weather sciences, the study of time-evolution of stocks and
goods prices in econometrics, biomedical signal-processing, or
concentrations of pollutants in the environment.

The objective is to infer the dynamics of events of interest
that the data describe, as soon as they are acquired, so that
practitioners can classify events, predict the future and make
informed decisions. The study of time-varying phenomena is
often referred to as time-series analysis.

A time-series is nothing but a set of observations, each one
being recorded at a specified time t. Research on time-series
is a long and storied field of study [16, 47, 96] and examples
of time-series are endless in multitude of fields of engineering,
science, economics and others. We illustrate some interesting
cases below.

Signal processing (both in its analog and digital variants)
has been an important discipline in engineering departments,
where time-series have been long studied. Not only commu-
nication signals are good examples, but the speech signal-
processing community has also investigated the human voice
from a time-series point of view. Speech processing has been
studied for decades and, actually, is going through a revival
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period because of the development of new technologies behind
Apple’s Siri, Google Voice, Microsoft’s Cortana and others.

An example of a short human speech time-series recorded by
a microphone is shown in Figure 1.

0.4

N N
4000 6000 8000

Time instants t

"
2000

Figure 1: An example of human speech time-series.

A pronounced interest in the study of time-series is also
observed in the areas of economics and finance. Two illustrative
examples are the analysis of prices over time (e.g., oil price
evolution as shown in Figure 2a) and the financial analysis
of stock markets (the evolution of the Dow Jones index is
shown in Figure 2b). In the era of algorithmic trading, complex
mathematical analysis and computer algorithms for advanced
trading strategies have become indispensable.
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(a) Oil price over time. (b) Dow Jones Index.

Figure 2: Examples of economics and finance time-series.
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Time-varying phenomena are also critical to many other
disciplines of science. For example, meteorologists have been
tracking variables of their interest for decades. In order to
assess the causes and evaluate the impact of Global Warming,
there is an increasing need to study the underlying patterns of
temperatures, precipitations and pollutants in the atmosphere.
The averaged monthly precipitation and temperature record-
ings at Central Park are illustrated in Figure 3, for the year
span between 2000 and 2012.

S
8

inches per day
3
Farenheit
3

o 20
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

(a) Precipitation. (b) Temperature.

Figure 3: Examples of time-series in meteorology.

Finally, interest in time-series analysis is increasingly grow-
ing within the medical and health sciences. Time-series anal-
ysis in neuroscience is quite a mature area [79] and, lately,
other fields of medicine and bio-engineering are increasingly
becoming aware of this field of study. In general, doctors can
benefit from the automated and machine-aided examination of
bio-medical signals, e.g., electro-cardiograms or fetal heart rate
monitoring (i.e., Figure 4).

mvV

200 400 600 800 1000 1200 1000 2000 3000 4000
Time instants t Time instants t

(a) Sample ECG. (b) Sample Fetal Heart Rate.

Figure 4: Examples of time-series in the health sciences.



INTRODUCTION

In all these applications, the interest is on learning hidden sci-
entific truths from the acquired data. That is, practitioners need
advanced techniques for obtaining insights about the observed
phenomena. In a nutshell, the aim is to infer knowledge about
the variables of interest and, if possible, to provide informed
predictions of future values of the phenomena.

In statistical terms, the goal is to perform accurate inference
and prediction (forecasting) of the variables of interest. Usually,
the relevant information is latent; that is, not directly observ-
able. For example, deciphering messages from noisy data is
common for a telecommunication engineer; discovering the
evolving volatility of assets is essential to financial analysts; in-
ferring the patient’s heart condition from Electrocardiography
(ECG) is critical for medical doctors. Hence, the analysis of latent
variables is challenging and essential in many fields of science
and engineering.

In general, one discriminates between continuous- and dis-
crete-time data series. The former are obtained when the mea-
surements are recorded continuously over some time interval.
The latter are formed by observations made at a specific
(discrete) set of time instants, which can be acquired at random
or periodically. The work presented here is devoted to discrete-
time series.

When relevant information is latent (i.e., the variables of
interest are not directly observed), flexible mathematical for-
mulations are required. That is, the modeling framework must
be able to capture the duality between the observables and the
latent variables of interest.

The focus of the work presented hereafter comprises infer-
ence and prediction of latent time-series of various types, where
data are available sequentially in time. The aim is to provide
specific techniques, by leveraging methods from statistics and
engineering, that (1) describe the data accurately, (2) model
both the latent and observable information, and (3) provide
mechanisms to accurately infer and predict the unknowns of
interest.



PROBLEM FORMULATION

The analysis of latent time-series is the focal point of the work
presented here. This chapter formally introduces the problem
of interest and provides an overview of the foundations of the
described work.

We first clarify the notation used throughout the document
in Section 2.1. To accommodate for both the latent nature of
the hidden dynamics of interest and the applicability of the
solution to a myriad of scenarios, the state-space methodology
is adopted, which is described in Section 2.2.

Inference and prediction of the latent time-series is achieved
by means of the Bayesian methodology. A brief review of the
Bayesian theory and its application to data analysis is provided
in Section 2.3.

Since the work considers generic models, beyond linearity or
Gaussianity assumptions, advanced Monte Carlo methods are
in need. Specifically, and due to the sequential nature of the
acquired data, an introduction to SMC methods is provided in
Section 2.4.

In summary, this chapter provides a comprehensive overview
of the background for understanding the solutions presented in
the forthcoming chapters.

NOTATION

Throughout the document, variables and scalars of interest
are represented by lower-case notation (e.g., x, y, z, 0), where
the dimensionality of the variable is specifically indicated: i.e.,
x € R%. For matrices, upper-case notation is used (e.g., mixing
matrix A € R% 9 or covariance matrix £ € R%x*dx),
Time-dependency is indicated by the subscript "i", as in x¢
and yi. When referring to a sequence of variables from time
ty to ty, we use Yy, = {Uty, Yt,+1, - - » Yt,)- Unless specifically
indicated, discrete-time data are considered and, therefore, t €
INy. Within this document, y; represents the observed data and
xt, the latent time-series. In general, the set of parameters of the

model is represented by the vector 0.
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The statistical notation used for stochastic variables is sum-
marized below:

* a~ f(-) represents that a continuous random variable a is
distributed according to the Probability Density Function
(PDF) f(-). The corresponding Cumulative Density Func-
tion (CDF) is represented by the uppercase counterpart

F(-).

* b ~ p(-) represents that a discrete random variable b is
distributed according to the Probability Mass Function
(PMF) p(-). The corresponding CDF is represented by F(-).

* N (u, 0?) represents the univariate Gaussian density with
mean p and variance o?. Its d-dimensional multivariate
counterpart is indicated by N (i, £), with p € R% and £ €
]Rdxd.

T, (1, 0%) represents the univariate Student’s t-distribu-
tion with v > 0 degrees of freedom, location parameter
p and scale parameter o. Its d-dimensional multivariate
counterpart is represented by Ty (i, L), where p € R¢
represents its location vector and L € R4*4 the scale
matrix.

* IW4 (v, A) represents the d-dimensional inverse Wishart
distribution with v > d — 1 degrees of freedom and scale
matrix A € R4%4,

* NIW,4 (n,k,v,A) represents the d-dimensional normal-
inverse-Wishart distribution with location parameter n
RY, inverse scale matrix A € R%*¢, and real parameters
k>0and v >d—1.

STATE-SPACE MODELS

State-space modeling provides a unified and robust methodol-
ogy for studying a wide range of engineering problems [47]. It
provides a very flexible framework for time-series analysis and
they have been successfully applied to a myriad of applications
[96].

With the state-space formulation, a system is modeled over
time by a series of hidden variables associated with another
series of measurements. That is, it comprises a set of ordered
observations y; that depend on some latent time-evolving
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unknown x;. The hidden dynamics are not directly observed,
although the observations do depend on the latent states in
various forms (see Figure 5 and Figure 6 for two illustrative
examples).

o
1000 2000 3000 3000 1000 2000 3000 4000
t t

(a) Latent FHR. (b) Observed FHR signal.

Figure 5: Example FHR state-space model.

50 100 150 200 250 300 350 50 100 150 200 250 300 350
t t

(a) Latent volatility process. (b) Observed stochastic signal.

Figure 6: Example stochastic log-volatility state-space model.

Within this framework, several signal processing problems
can be tackled:

¢ Filtering: Updating the knowledge of the state process of
the system each time a new observation is available: i.e.,
estimate x; based on the newly observed yy. Filtering is
performed in a sequential manner, as new data becomes
available.

* Smoothing: Estimating the state process of the system
based on a whole set of observations: i.e., estimate x
based on yj.1, where 1 < t < T. This technique requires
the availability of a batch of observations and therefore,
implies a delay in processing.
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¢ Prediction: Forecasting the future of the state x . or the
observations Y4 for a time horizon T, based on a set of
available observations yj.t.

The main focus of the work presented here is on filtering and
prediction, motivated by the real-life problems described in the
introductory Chapter 1.

The state-space methodology mathematically models the
system of interest as follows:

Xt = g (x1.1—1,0g, 1), state equation @
1

Yt = h(xg, On, Vi), observation equation

where t = {1,2,...} represents time, x; € R is the time-
varying latent process and yi € R% is the ordered sequence
of observations available (of dimensionality dx and d,, respec-
tively).

The time-dependency of the latent process is characterized
by the (potentially time dependent) function g(-) on both
the previous values of the signal, the state noise u; (i.e.,
innovations) and a set of static parameters 04 € R%s.

The dependency of the observations on the hidden state
is accounted for by the function h(-) (which might also vary
with time and is parameterized by its static parameters 0y, €
R%n). The observation equation is stochastic in nature, with
observation noise v;.

Based on the nature of the functions and the innovations
considered, there are many problems that can be presented
within the state-space paradigm. Amongst them, the most
studied case is the linear Gaussian one, where ¢(-) and h(:)
are linear functions and the state and observation noises are
both Gaussian:

— Axy._1+ Buy, ~N(0,C
Xt X1:t—1 + But with d ™ (0, Cu) @)

Yt = DXt + EVt, Vi ~ N(O, CV)

Filtering based on this linear and Gaussian model has been
widely studied and the closed form solution is the celebrated
Kalman Filter (KF) [63]. Its application to countless signals
and systems has been numerously reported. In fact, it is
the optimal candidate for the small subset of linear latent
time-series filtering cases with Gaussian innovations [3, 50].
However, the research described herein aims at more ambitious
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settings, where the state-space models diverge from linearity
and Gaussianity assumptions.

For this set of more general problems, where nonlinearity
and non-Gaussianity are considered, optimal processing of
the data becomes very challenging and, in practice, impossi-
ble. Therefore, approximating techniques must be considered,
which result in suboptimal solutions.

There are several approaches that rely on approximating
the state and space functions, minimizing the impact of the
considered nonlinearities and non-Gaussianities. The Extended
Kalman Filter (EKF) is considered to be the natural evolution
to deal with nonlinear functions within the framework of the
traditional KF [3, 50, 103]. The EKF linearizes the problem by a
Taylor series approximation around the latest estimate, so that
the recursive KF is applicable.

Another alternative, known as the Unscented Kalman Filter
(UKF) [102] relies on the assumption of Gaussian densities in the
model, instead of resorting to strict linearization of the state-
space functions. A number of other variations of these, such
as the Gaussian quadrature Kalman filter [57], have also been
suggested. In all these, the aim is to provide a functional form
that approximates the true density.

A different paradigm for nonlinear/non-Gaussian problems
consists on evaluating the PDF of interest over a set of points,
without relying on approximations to the nonlinear functions.
This approach is orthogonal to the Kalman-based solutions, as
it uses discrete random measures to represent the densities of
interest. The most basic of these methods evaluate the densities
over a deterministic set of points (grids) [66].

To overcome the limitations of such a rigid approach, other
alternatives have been suggested, which are based on Monte
Carlo sampling. These particle-based methods use random sets
of points for representation of the PDFs of interest. In other
words, at one time instant the PDFs are evaluated at a set of
points, and at the next time instant, a completely different set
of points is used. Filters based on this methodology amount
to sequential Monte Carlo (SMC) sampling methods and are
popularly referred to as a Particle Filter (PF) [19, 37, 41, 43].

Ever since the introduction of PFs, they have been adopted
by the research community and successfully applied to a wide
range of disciplines, including engineering [85], geophysical
sciences [68], biology [55, 56], and economics [32].

10
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We describe the foundations of SMC methods or PFs in
Section 2.4, after first introducing the Bayesian paradigm for
time-series analysis.

THE BAYESIAN METHODOLOGY

The analysis of latent time-series raises several challenges: How
to fit the observed data to the mathematical model, how to
learn about the hidden variable of interest, and how to make
predictions on the future of the time-series.

In time-series analysis under the state-space paradigm, we
acquire data (i.e., the observable variables) that depend on
hidden dynamics (i.e., the latent variables). Therefore, one can
formulate the problem in terms of a set of random variables
that are acquired sequentially in time. The observed data are
considered to be a realization of a set of random variables.

The theory of stochastic processes becomes handy to model
the behavior of observed and latent data. At times, the process
is modeled according to a physical mechanism that generates
the data and uncertainty is included via an innovation or
noise process. Other times, the data are described in a purely
statistical sense, without providing any interpretation of the
model parameters.

When using statistical methods for the task in hand, two
related but orthogonal alternatives are available: The clas-
sical or frequentist statistical philosophy and the alternative
Bayesian methodology. This study embraces Bayesian theory, as
it accounts for all available information to perform statistical
inference.

The Bayesian methodology [86] focuses on three main con-
stituents: The likelihood of the data, the prior density of the
model parameters and the resulting posterior, all connected by
the celebrated Bayes’ theorem

Cfyxl8)  fyx8)  fyhf(xe)
FOdu, )= 010y = Ty, x0)dx [yl f(x8)dx

(3)

where y is the observed data, x is the unknown variable and 6
the parameters of the model.

In Bayesian theory, all sources of uncertainty in the statis-
tical model are considered to be random variables, described
by their corresponding densities: f(ylx,0) is the probability
distribution modeling the observables, which depend on the
unknown variable x, that has a prior distribution f(x|0) with

11
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parameters 0. The parameters, being random variables too,
are described by their own density f(6n), that depend on the
hyper-parameters 7.

By applying Bayes’ principles, contribution of both the exper-
imental data (i.e., observed values) and the prior knowledge of
the problem are fused. The first, via the likelihood f(x|0) and,
the second, through the prior information f(9).

The Bayesian framework provides a unified approach to data
analysis, where practitioner’s knowledge is formally incorpo-
rated to the methodology. Furthermore, it allows for parameter
independent evaluation of data, by using the marginalization
theorem from statistics.

The parameter agnostic density of the latent variable can be
derived as

fx) = mee)f(e)de 4)

and predictive densities of the observables computed by

fly') = Jf(ywx)f(xm)dx . (5)

In order to conduct a fully Bayesian analysis, specification of
prior densities is critical, as model parameters are considered
random variables themselves. The simplest case amounts to
when the true values are known, as there is no need to express
conditioning on a constant and f(x|y) and f(x) are employed.
Thus, the Bayes formula simplifies to

flyx) _ fly,x)
fly)  [fly,x)dx’

However, there are many practical cases where the model
parameters are not known. In some cases, some knowledge or
belief might be available to the practitioner while, in others,
no good guess can be made on the unknown 0. Nonetheless,
Bayesian theory addresses all these scenarios in a unified
manner, by careful determination of the prior density.

On the one hand, informative priors can be used to accom-
modate for field expertise (through particular shapes of the
prior densities). Among all the distributional families that an
informative prior f(x|0) might belong to, a computationally
convenient choice is to use conjugate priors [77]. These priors
guarantee that, for a given likelihood f(ylx,0), the posterior
f(xly,0) falls into the same distributional family as the prior
f(x|0).

fxly) = 6)

12
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On the other hand, when no reliable prior information
concerning the model parameters exists, inference based ex-
clusively on data is preferable. The Bayesian methodology
endorses such cases by means of non-informative priors [59],
i.e., distributions f(0) that do not favor any particular value of
0. Many efforts have focused on the study of non-informative
priors and different alternatives have already been presented
[13].

Furthermore, under the Bayesian methodology, the prior
itself may depend on another set of unknowns, which follow
some second-stage prior f(n). This sequence of unknowns
and model parameters 6 and hyper-parameters n constitute a
hierarchical model: f(x|0), f(6ln) and f(n).

Since the hierarchy might grow ad libitum, it is commonplace
to stop this at some point. When to stop and how to provide
a set of known hyper-parameters is a modeling choice left to
the practitioner. Estimation or marginalization of the hyper-
parameters are only two of the possible alternatives.

Another possibility consists on, instead of blindly deciding
on some hyper-parameter values, using observed data to
provide meaningful initial values. This approach is known as
the empirical Bayes method [21].

All in all, Bayesian statistics provide a unified framework
for data analysis. In particular, and under the state-space
paradigm, one can perform:

* Filtering, by sequentially estimating the posterior density
of x¢, given the observations yr.; i.e., f(x¢[yr:¢).

* Smoothing, by estimating the distribution of x; based on
a set of observations y.1; i.e., f(xt[y1.7), where 1 <t < T.

* Prediction, by estimating the density of the next state
xt+1 based on a set of available observations yiy; i.e.,
f(xt+1ly1:¢). Similarly, prediction of the space variables
resorts to f(ye+1/yr:t).

The sequential processing required for time-series analysis
is attained by means of factorization of the relevant densities,
marginalization of unknowns and Bayes’ rule:

f(xlth ’Ul:t) = f(Xt+1 \Xht;U]:t)f(X]:t’U]:t);

f(ytelyre) = [y lxieo) Fxealyrnd) dxe, (7)

(Y1 X1 D F e 110y 1:0) F(X1:61Y1:0)
f(Yt:e41)

f
f(X111Y1:0401) =

13
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Besides a unified methodology for data analysis, Bayesian
statistics also provide model selection and averaging proce-
dures. In brief, one can include uncertainty about the true
model M into the analysis.

One considers some prior p(My) over the set of candidate
models My, k = 1,---,K, and then applies Bayes’ theory to
update the posterior belief of each model after observing data
up to time instant t, yy., i.e.,

f(Y1.0, Mo ) p (Micly 1)
f(yl:t) ’

where p(Mxlyr1.0) = p(My) is the prior assumed for each model.

One can select the most likely model based on the above
computation or, as an alternative, fuse information via the total
probability theorem:

P(Miclyr:e) = (8)

K
P(yrt) Zf Y1t M) p (M). (9)
k=1

The work in this dissertation is mostly on the derivation of
the densities in Equation 7 (and, if applicable, Equation 8) for
a myriad of considered time-series models. To do so, we follow
Bayesian statistics, as it allows for consideration of known and
unknown parameters (also for model uncertainty) in a unified
manner.

In most of the problems that are of interest here (i.e., state-
space with non-Gaussian and nonlinear functions), no closed
form solution is available for the densities above. Thus, as
mentioned before, we resort to SMC methods, described now
in detail.

SEQUENTIAL MONTE CARLO METHODS

In sequential Monte Carlo (SMC) sampling methods (also
known as PFs), recursive computation of relevant probability
distributions is performed by approximating them with dis-
crete random measures that change over time. That is, the
PF uses random grids (i.e., the location of the points varies
randomly with time) to evaluate the PDFs of interest.

The points used to represent the relevant density are called
particles. Weights are assigned to them, which can be inter-
preted as probability masses. Consequently, the particles (see
Figure 7a) and the weights form a discrete random measure

14
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(see Figure 7b), which approximates the density of interest as
in Figure 8.

°
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(a) Drawn samples. (b) Weighted samples.
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Figure 7: Example of drawn and weighted random samples.
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Figure 8: A random measure approximates a Gaussian density.

The random measure is thus composed of particles and their
weights, i.e.,

M
Mx) = Z wimg (x—x(m)> , (10)
m=1

where §(-) is the Dirac delta function, x™ is the mth particle,
w(™ is the weight of that particle, and M is the total number
of particles.

15
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In summary, particle filtering is a Monte-Carlo method
that sequentially approximates evolving densities by randomly
generating candidate particles and assigning weights to them.

When applied to state-space models with sequential acqui-
sition of data, the system aligns to the recursive procedure of
the SMC methodology. The generation of particles at each time
instant depends on the previous random measure; thus, each
particle has a parent, the parent its own parent, and so on. Such
sequence of particles is called a particle stream, and it represents
one possible evolution of the latent state with time [37].

In particle filtering, the sequential processing is nothing but a
recursive update of the discrete random measure upon arrival
of a new observation. The update step accommodates both the
generation (sampling) of new particles and the computation of
their corresponding weights.

An sMC method consists of three basic steps. The first is the
propagation of particles following the dynamics of the model.
The second, the computation of their weights to form a proper
random measure and, the last, accounts for resampling to avoid
particle attrition over time.

A main challenge in implementing PFs is to generate and
propagate particles in regions of the hidden state’s space where
most of the information is located. That is, the goal is to explore
regions over which the densities carry significant probability
masses. Ideally, the optimal distribution to sample from is the
density of the state given all the available observations and
past states. However, this is not usually feasible and, thus,
particles are drawn from some other instrumental distribution:
i.e., the proposal distribution. To overcome these limitations, PFs
exploit a concept from statistics known as sequential importance
sampling.

When particles are directly generated from the target dis-
tribution of interest f(x), then all samples are assigned equal
weights; i.e., wm = ]m, m = 1,2,---, M. However, when
drawing samples directly from f(x) is unfeasible, one can
generate particles x(™ from an alternative distribution 7(x),
known as the proposal distribution, and assign (non-normalized)
weights according to

wim) = : (11)
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These weights have to be normalized to obtain a correct random
measure approximation of the target density, i.e.,

wim = —XvA(m) — . (12)
Yo wt

Thus, by leveraging importance sampling, a density of interest
at any given time instant is approximated by a random mea-
sure with appropriate weights. For example, for the filtering
problem, a PF approximates the posterior of the state x; given
observations yi.;, at time instant t, i.e., fi\/‘(xt) ~ f(xtly1.t).

The key of a PF is the sequential computation of the random
measures. The methodology proceeds recursively upon recep-
tion of a new observation yi,j. Specifically, the distribution
f(x1:tly1.t) can be updated to f(xq.¢+1lyt:t+1) once a new ob-
servation Yy, 1 becomes available following Bayes rule. In SMC
sampling, one refurbishes the approximating random measures
sequentially, i.e., it updates M(x¢) to fi\i] (x¢a1)-

Following the sequential importance sampling methodology,

this is done in two steps. In the first, one propagates the
(m) (m)

particles x;  to x,; via
I~ mlxe ki ) (13)
t+1 141 X]:t s Y1) 13

where 7t(x¢ 1 ng?),ymﬂ) is the proposal (instrumental, impor-

tance) density of x¢;1, and xg?) is the genealogical lineage of
the particle (i.e., the mth particle stream).

The second step is the computation of the weights of xm
according to

m) () <”t+] 'Xm> f (Xﬂl])"‘g?))

Wip1 X Wy (m)(m)
Tt Xt—H |X]:t /y1tt+1

, (14)

Sf%) is the likelihood of x,(::]) ,and f (xi]j:]) IXET)>
is the transition density of the state. The computation of the
weights is followed by their normalization, so that they sum to
one.

One of the major drawbacks of using SMC sampling tech-
niques is that the approximating discrete random measure
degenerates quickly as time evolves. In practice, most of the
particles except for a very few are assigned negligible weights
and therefore, only few streams survive. Due to this particle

where f (yH] Ix

17
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attrition, the performance of the particle filter considerably
deteriorates as time evolves.

The impact of particle degeneracy can be reduced by using,
not only good importance sampling functions, but a technique
known as resampling too. In a nutshell, resampling eliminates
particle streams with small weights and replicates particles
with large weights. That is, it helps explore the region of
the density’s support where most of the probability mass is
concentrated.

Several techniques have been introduced in the literature
(e.g., regular resampling, Gaussian resampling, etc.) [42, 52,
69] and, when studying new PFs, careful consideration and
evaluation of the alternatives must be explored.

A measure of the particle degeneracy is known as the
effective particle size M. [37], which can be estimated as

1

Megf ¥ ————

, (15)

where one uses the normalized weights in the computation.

When all the particles have the same weights, the variance
of the weights is zero and the particle size is equal to the total
number of particles, M. The other extreme occurs when all the
particles except one have negligible weights, and the particle
size is equal to one. Usually, if the effective particle size is below
a predefined threshold, resampling is carried out.

In the work presented here, we resort to the most common
resampling technique, and do so at every time instant. We
perform resampling by drawing from a categorical distribution
defined by the weights of the available random measure

x™ « M(x), wherem =1,---, M.

All the SMC methods in the following chapters perform
resampling as above for every time instant. The extension of
the proposed methods to any other resampling technique is
straightforward.

It is important to note that, no matter what resampling
technique is implemented, one must compute the estimates
of interest based on the random measure available before
resampling. That is, one computes

E{g(x)} :j

X

g(x)f(x)dx ~ J g(x)fM(x)dx = Z w(m)g (x(m)> .

X
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The estimates computed as above are guaranteed to have less
variance than the alternative, where the resampled particles
were to be used with equal 1M weights.

Furthermore, one also needs to be careful with the impact
of resampling on other aspects of the performance of the SMC
method. More specifically, as the method evolves over time,
the set of genealogical particle streams is severely depleted
with resampling. That is, when using resampling to cope with
importance weight degeneration, then stream depletion occurs.
This phenomenon is known as path-degeneracy: i.e., in the long
run, the full path particle approximation is, effectively, carried
by a single particle stream only.

One needs to be careful with the potential impact of path-
degeneracy in the PF. It has already been reported [27] that

the Monte Carlo error of path functionals d)(xg?)) remains
bounded over time if they relate to the filtering problem: i.e.,
cl)(xg?) = x¢. However, it explodes for the smoothing problem:
ie., d)(x(T.n)) = Xq.

1t

There is, nonetheless, a lack of formal results for other
functionals of interest (a preliminary analysis of a symmetric
case is provided within the discussion in [28]). Therefore, any
solution that mitigates the path-degeneracy issue can only be
beneficial for any SMC method [64].

As noted before, the performance of the PF is critically
dependent on the proposal density selected. Ideally, it must
have the same support as the PDF that is being approximated.
In practice, the closer the proposal function is to the target
distribution, the better the approximation is.

The two most frequently used proposal functions are the
transition density f(x¢+1/x1.¢) and the optimal importance func-
tion f(x¢4+1/X14,Y1:t+1), which lead to particle weight update
equations w\™ o w(m)f( IXt41) and wi™ w(m)f( Ixt),

qua t+1 t Tt X4 LT t Yt
respectively.

The optimal importance function minimizes the variance of
the resulting weights, conditioned on the information avail-
able at each time instant: i.e., xg? and yi.t.1. However, the
computation of the densities f(yy1lx¢) and f(x¢+1/%1:4, Y1:e41)
require integration of certain variables, which is not trivial
(often intractable) for many problems of interest.

Therefore, it is of common practice to resort to the simpler
transition density, as its performance is often successful enough
(some illustrative results are provided in Appendix A).
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Without loss of generality, the SMC methods presented in the
following chapters make use of the transition density as their
proposal function, as its derivation for the studied models is
already a challenging task.

The proposed SMC methods are described, in general, for the
tiltering problem. That is, we obtain a random measure that
approximates the filtering density, i.e.,

f(xtlyrd) ~ ft Xt) Z Wt (Xt —Xim)> . (16)

Computation of such density for different latent time-series
of practical interest is the main focus of the work hereby.

However, it is important to keep in mind the power of
the proposed SMC methods, as they can readily be used to
compute other informative densities. One can, for example,
derive parameter posteriors and predictive densities of the state
and/or the observations.

At any given time instant t, one takes the provided filtering

density fM(x) Zm ]wt 5 (xt—xi )> and extends it to

obtain the following mixture densities

f(Olyr.t) = Zm 1Wt eb‘]t ),
f(xt1lyre) = Zm 1Wt xt+1l>c5"§)), (17)
f(Yer1lyre) = Zm IWt yt+1|xt+1})

where 0 are model parameters and xm in the last equation is

obtained by sampling from the transition density f(x1 !xg?))
of the time-series.

Note that, with any of the above densities at hand, the
proposed SMC methods allow for computation not only of
point estimates, but also of more informative metrics, such as
probabilities of certain events or risk metrics.
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Part II

SMC METHODS FOR LATENT
TIME-SERIES

The core of this dissertation is on SMC methods for
inference and prediction of latent time-series. Short-
and long-memory processes are studied, where an
increased degree of complexity and uncertainty is
considered through the following Chapters.

In Chapter 3 and Chapter 4, latent ARMA(p, q) mod-
els are examined, with known and unknown param-
eters, respectively. In Chapter 5 and Chapter 6, long-
memory processes in the form of fGp and FARIMA
models are considered.

A more generic approach to latent time-series fol-
lows, where only wide-sense stationarity is assumed
in Chapter 7 and a solution for correlated time-series
is provided in Chapter 8.

We conclude by studying inference under model
uncertainty in Chapter 9.
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LATENT ARMA(p,q) PROCESSES WITH
KNOWN PARAMETERS

This chapter addresses the analysis of state-space models with
a latent ARMA process. Specifically, the most favorable case is
studied, where all the parameters of the state equation are
known.

First, a description of time-series in general, ARMA models in
particular, and their properties is provided in Section 3.1. Later,
two SMC methods are presented, targeting latent ARMA state
processes of different nature. In Section 3.2.1 the stationary
ARMA(p, q) process is considered and, in Section 3.2.2, more
generic ARMA models.

We conclude with Section 3.3, where the performance of
the proposed methods is compared to other state-of-the-art
alternatives.

TIME-SERIES AND THE ARMA(pP, ) MODEL

The first step in the analysis of a time-series is the selection of
a suitable mathematical model for the data. Since the nature of
the observations is random, it is common to assume that the
data are realizations of a stochastic process. Thus, by using the
theory of statistics and stochastic processes, real-life time-series
can be accurately described.

Stochastic processes have widely been used to model the
behavior of time-series data [15, 16, 47, 80, 96]. At times,
the process is modeled according to a physical mechanism
that generates the data. Other times, the data are described
in a purely statistical sense, without providing a meaningful
interpretation of the model.

Among the many random processes available, this chapter
focuses on a particular class of time-series, which is very
flexible and widely applicable: the ARMA(p, q) model. Due to
its malleable parameterization, ARMA models can be fit to any
linear time-series with high accuracy.

The study of ARMA processes (and the special cases of
Auto-Regressive (AR) and Moving-Average (MA) processes) has
a long history. It started in the early 1950s [104], and its
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3.1 TIME-SERIES AND THE ARMA MODEL

popularity rose considerably in the 1970s with [15]. Their
investigation in state-space form was introduced in [46].
Mathematically, the ARMA(p, q) model is described by

p q
Xt = Z aiXt—i + Z b]‘ut_]‘ + uy, (18)
i=1 j=1

where p is the order of the AR component of the time-series
with parameters a;, i = 1,---,p; and q is the order of the
MA with parameters bj, j = 1,---,q. The innovations of the
ARMA(p, q) model are represented by wu;. Typically, the u;s are
assumed to be independent and identically distributed (iid)
samples. *

The ARMA(p, q) model can be rewritten as follows:

p q
Xt = Z aiX¢—i + Z bj'LLt_j + Wy,
i=1 j=1
p q
Xt — Z AiXp—qi = Z bjug +uy,
i=1 j=1

P q
Z AiXi_i = Z bjui 5, withag=1,by =1,
i=0 =0

and thus, be represented in a lag-polynomial form:

A(L)x¢ = B(L)ut,
AlL)=1—aqL—aql?—---—aplP, (19)
B(L) =1+biL+byL? 4+ bgLd.

where

The autoregressive part of the model (i.e., A(L)) takes into
account the previous values of the time-series, while the
moving-average term (i.e., B(L)) adds correlated innovations to
the time-series.

Depending on the nature of the noise u, different stochastic
processes can be modeled: Gaussian stationary processes, mean
varying processes, time-series with outliers (with heavy tailed
innovations), etc.

If sequentially acquired data are understood as nothing but
a realization of such generic stochastic models; then, a time-
series is fully described by the mathematical formulation of the
stochastic process.

Non iid innovation processes are considered in Chapters 5 and 6.
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3.1 TIME-SERIES AND THE ARMA MODEL

In fact, by leveraging statistical tools, the densities of the
process (i.e., their PDFs) are sufficient to describe a time-series.
Precisely, different densities can be considered, depending on
the interest of the practitioner, such as the joint density f(x;.¢) of
the time-series or the conditional transition density f(x¢[x7.t—1).
Specifying the full form of the joint probability distribution
is sometimes quite a challenging task. However, once it is
obtained, any marginal or conditional density of the series can
be derived.

When necessary, it is common to make simplifying assump-
tions for the data observed in real-life. In fact, for many of the
time-series of interest in the fields of science and engineering
the stationarity of the process is usually enforced.

Time-series and stationarity

A stochastic process is said to be strictly stationary if its
properties (i.e., joint probability distribution) are unaffected by
a change in the time origin:

f(X1IX2/ e /Xt) - f(X1+TI X2, ot /Xt-i-T)‘ (20)

Since assuming strict sense stationarity is often too limiting,
a weaker form of stationarity is commonly employed in signal
processing, known as WSS.

WSS stochastic processes require that only the first and
second moments exist and that they are constant with respect
to time:

E{xi}=E{x}=--=E{x}=u,
Var{x;} = Var{x,} = - -- = Var{x{} = o2, (21)

Cov {xt, xt—1} = Cov {X¢1¥, Xt4+k—1} = Y -

The conditions in Equation 21 imply that the mean does not
vary with time and that the autocovariance of the process is a
function of only the time-difference (lag T) and not of the actual
time instants.

In order to enforce these weak-stationarity conditions for
an ARMA(p, q) process, limitations on the possible values of
the ARMA parameter set (aj, bj) must be satisfied. In fact, the
stationarity of an ARMA(p, q) process depends solely on its
autoregressive part (the moving average part determines the
invertibility of the process).
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3.1 TIME-SERIES AND THE ARMA MODEL

Precisely, an ARMA(p, q) process as described in Equation 19
is stationary if and only if the roots of the AR polynomial A(L)
lay outside the unit circle. A quick analysis of the condition
reveals that, equivalently, the stationarity of an ARMA(p,q)
process is guaranteed as long as the roots of the polynomial
T+ aL+ a2+ + apLP are within the unit circle.

All in all, this implies that for a WSS stochastic process,
the mean and the covariance of the process are the sufficient
statistics that describe it. Thus, for an ARMA(p, q) process
that fulfills the stationarity constraints, the joint density is
computable in closed form.

ARMA(p, q) models: stationary densities

We now aim at deriving the joint density of a stationary
ARMA(p, q) process. We start by computing the first and second
order statistics of the ARMA(p, q) process, given that the roots
of the AR polynomial A(L) lie outside the unit circle. Without
loss of generality, a zero mean iid Gaussian innovation process
is assumed: i.e., E{u{} = 0 and Var{u:} = 0'121.

It can be readily concluded that the expected value of a
weakly-stationary ARMA(p, q) process is zero

P q
E{xt}=pn=E Z aiX¢—i + Z bjugj+u p =
i=1 j=1

p q
= Z B {x¢—i} + Z bE {w;} +E{uy

i=1 i=j

P
:Zaill/
i=1
P
H<1 _Zai> =0,
i=1

w=0|

(22)
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3.1 TIME-SERIES AND THE ARMA MODEL

The autocovariance function (i.e., the expected value of the
product of two lagged time instants of the process E {x¢, X4} =
Y(7)), can be written in the following recursive form,

.
For lags 0 <t < max(p,q+1):

Y(T) —ary(t=1) = — apy(T—Pp) = 05 ¥ jcq b1 -
For lags T > max(p,q+1):

YO —ary(t—1) = —apy(t—p) =0.

where the 1;values are obtained from

Pi— D andjc=bj, 0<j<max(p,q+1),
0<1gj

Pj— Y arbj.=0, j>max(p,q+1).

0<T<p

(23)

The expressions in Equation 23 are recursive formulas for
computation of the covariance values of an ARMA(p, q) process
for any given lag T.

These recursive equations can be rewritten in a linear system
form too, where a; =0, i>pand b; =0, j > g:

v(0)  v(1) v(2) v(7) 1
y(1)  v(0) vy  ov(r=1 | | —a
v(2)  y(1) y0) o v(r=2) | | a2 | =
y(t) y(t—=1) y(t—=2) -~ v(0) —as
(24)
bo br by b\ (Vo
by by br O Py
=on| S 0 1)
beg be O 0 :
be 0 0 0/ \We
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3.1 TIME-SERIES AND THE ARMA MODEL

By basic algebraic transformations of the above Equation 24,
one obtains a matrix-based solution for computation of the
autocovariance values of an ARMA(p, q) up to lag T

v(0)
v(1)
v(2)
y(t-2)
y(t—1)
v(T)
1 —aq —ay v —Grp —Qr_] —ar\
—ay 1—ay —a3 o —Qg_1 —ag 0
—az —aj—as 1—ay e —ar 0 0
—Qr—2 —Qr-3—0Qg—1 —Qg—4—0Qg - 1 0 0
—Qr_1] —Qr_2—Qr  —Qg_3 - —aj 1 0
—ar —Qr g —Qr—p v —az 0 1
N
1obrby by /0 9 g bo
by by - be 0 by
S —ay —aj 1 -0 b2
be 1be O - 0 - :
br 0 0 — 0 e ey~ i be
(25)

In many real world applications, observed time-series show
stationarity features. That is, they can be described by sufficient
statistics that do not vary with time (i.e., WSS conditions are
tulfilled). Consequently, the autocovariance function y(t) of the
process and the mean are the required statistics to describe such
time-series.

For the ARMA(p, q) processes addressed here, the autocovari-
ance function depends on its parameters a and b, as shown
in Equation 25. Consequently, as long as the parameter set
(ai, b;) of the ARMA(p, q) model and the sufficient statistics of
the innovation process (i.e., [E {ui} and Var{u;}) are known, then
an ARMA(p, q) time-series is fully described by the joint density
for which the sufficient statistics are readily computed.

For a unidimensional zero-mean ARMA(p, q) process with
zero-mean Gaussian innovations, the joint distribution of x1.t+1 =
(Xga1 Xt -+ X2 X7 )" s jointly Gaussian, i.e.,

X1:t41 ~ N(x1:44110, Zei1). (26)

27



3.1 TIME-SERIES AND THE ARMA MODEL

The covariance matrix Zy,; € REDXE) §s a symmetric
Toeplitz matrix of the form

v(0) v(1) Y(t)
v(1) v(0) Y(t—1)
Lip1 = : : : , (27)
Y(t—=1) y(t—2) v(1)
y(t)  yt—1) v(0)

where y(7T) is the autocovariance function of x;.
We introduce the notion of a standardized autocovariance
function defined as y(t) = VG(—ZT) Thus, we can rewrite the

covariance matrix of the vector xq.ty1 as Ly = G%LZH], where

5 ST
Fr = (Vﬁo) Yt>,with W= Q) - V(). @)
Ye o Lt
Given the joint distribution of the ARMA(p, q) process and
due to the properties of the Gaussian distribution (i.e., it is
closed under conditioning), the transition density of the process
can also be computed.
The density of the next state conditioned on the available
states at any given time t, x7., is a Gaussian distribution; that
is,

f(Xt_H X114, a,b, G%L) =N <Xt+1 “‘th+1 [x1.¢7 Gict—b—]) ’ (29)
where

_ STy
Mg i = Vi Zt X1:ts

N T e (30)
cir1 =v(0) —YtTZt_]Yt.

In summary, the stationarity analysis leads to a closed-form
expression for the transition density of the ARMA(p, q) process.

ARMA(p, q) models: recursive sufficient statistics

In general, the autocovariance function of an ARMA process is
infinite. Therefore, as time evolves, the size of the covariance
matrix in Equation 30 grows linearly in time, from dimensions
[t x t] to [t+ 1 x t+ 1]. This imposes a practical burden, as the
computation of the Toeplitz matrix and its inverse becomes
very resource challenging, specially if long time-series are
considered.
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3.1 TIME-SERIES AND THE ARMA MODEL

However, we now show how to update recursively the
required quantities. We describe this on vy, ft_ 194, as the re-
maining quantities {t,, .., Ct+1 and x]T:tf; 1%1.¢ can be handled
analogously. In all of them, the key computation is the multipli-
cation of a vector with the inverse of a covariance matrix.

We rewrite the key computation as oy = —i; l?t, which
relates to a system of linear equations ftat = —vV4, that can be
solved by the well-known Levinson-Durbin recursion [51]. Note
that Z; is a symmetric Toeplitz matrix that can be generated
recursively.

For the computation of the sufficient statistics of the ARMA(p, q)
process at time instant t + 1, one needs to recursively update
VI Ve o VG 5 Ve

This is achieved by

Y&t = V¢ o+ BV Mo + Yt +1)Bes, (31)
where the values are recursively updated following these steps:

1. Initialize
* Br1=—v(1)/¥(0),
e 1 =f1,and
o & =7(0)(1-Bd).
2. fort=2,---, compute:
a) ke =Y(t)+ ol 4Ty,
b) Bt =—ki/€t-1,

0) er=er1(1-B7),

d _ [ %t Ty 00— )
()

where e; = y(0) + o ¥t and TT; is a t x t permutation matrix
with 1’s on the antidiagonal.

ARMA(p, q) models: short-memory property

In general, for a stationary ARMA(p,q) time-series at time
instant t, the full past history x;._1 is required to determine the
sufficient statistics of the process. Even though the exposition in
Section 3.1.2 follows such generic form, further insights into the
nature of the ARMA(p, q) covariance matrix and the transition
density are deemed relevant.
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3.1 TIME-SERIES AND THE ARMA MODEL

We recall here one of the prominent properties of ARMA(p, q)
processes: their short-memory. Namely, that most of the rele-
vant information in these models is contained within the most
recent past only. Hence, let us elaborate on the features of the
autocovariance function y(t) of any ARMA(p, q) process.

The exact form of the covariance matrix for the general
ARMA(p, q) process is, in fact, intractable [93, 94]. Despite the
lack of a generic analytical solution, the following statements
about the autocovariance function do hold [96]:

e For AR processes, the autocovariance function decays
exponentially.

* For MA processes, the autocovariance function is zero
after the first q lags.

¢ For the general ARMA(p, q), the autocovariance function
decays exponentially for lags bigger than m = max(p,q).

In summary, the dependence of ARMA(p, q) models on past
samples decays exponentially. Even if the sufficient statistics
in Equation 30 are explicitly written in terms of the full
past history xi., the dependence on past samples deca