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Abstract of the Dissertation

Building a High Performance Perpetual Wireless
Sensor Network by Wireless Charging

by

Cong Wang

Doctor of Philosophy

in

Electrical Engineering

Stony Brook University

2017

With an increasing demand of sensing applications, energy has been
one of the top concerns in wireless sensor networks. Most of the previ-
ous works study energy conservation to extend network lifetime and a
variety of schemes have been proposed that can elongate network life-
time to some extent. However, with limited energy storage, sensor’s
battery would deplete eventually and replacing those batteries requires
tremendous human efforts. My dissertation investigates a novel ap-
proach to replenishing sensor’s battery via wireless charging without
wires or plugs. We start with a complete overview of the recent de-
velopments in wireless charging technologies and their applications in
wireless sensor networks to highlight their features and capabilities. A
mobile charger (MC) is adopted and we call these networks Wireless
Rechargeable Sensor Networks (WRSNs). Then we address several im-
portant issues and propose a suite of algorithms to guarantee perpetual
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operation of the network. First, we discuss several principles from the-
oretical aspects for perpetual operation. To guarantee that the recharge
decisions are made based on accurate information, we then consider
the problem of how to gather energy information from the network effi-
ciently. A distributed, on-demand communication protocol is proposed.
Based on the energy information collected, recharge scheduling algo-
rithms are developed to minimize the moving cost of MCs. Second,
due to physical limits, an MC can only recharge one sensor at a time.
We explore the feasibility of multi-hop wireless charging via resonant
repeaters and demonstrate tremendous performance improvements. A
new recharge scheduling algorithm based on multi-hop wireless charg-
ing is proposed. Finally, we exploit the combination of wireless energy
with renewable environmental energy for extra cost savings. In partic-
ular, we propose a network that relies on hybrid energy sources (both
wireless and solar). We further consider a set of interesting problems
such as solar-powered sensor deployments, energy re-balance cluster-
ing and recharge/data gathering in a joint tour. A complete network
performance evaluation is presented in various criteria such as non-
functional node percentage, network latency, energy overhead, etc.
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Chapter 1

Introduction

1.1 Motivation

The future of Internet-of-Things relies on the usage of sensors to detect, identify
and track objects of interests. With options to mount various types of detectors
from pressure, magnetic, chemical, acoustic and seismic sensors to complicated
devices such as infrared, video-camera and hyperspectral imaging, sensors have
become a bridge between the physical world and cyber space[1, 2]. They begin to
play an increasingly important role from our daily lives to many mission-critical
tasks. In our daily lives, temperature and humidity sensors deployed indoors that
can automatically control the climate. In mission-critical tasks such as volcano or
forest fire monitoring [3, 4], sensors are deployed in inaccessible areas for providing
information on time. For example, the traditional forest fire monitoring system
depends on the analysis of satellite images. However, the accuracy of these systems
is usually limited by image quality and weather conditions. Hence, these analysis
are usually error-prone and postponed. Sensors equipped with thermal imaging and
temperature detectors can be deployed and transmit real-time data for fast decision
making[4].

As we can see, the increasing demand for more complex sensors leads to higher
energy consumption on the sensor nodes. To this end, energy conservation has been
one of the primary focuses in Wireless Sensor Network (WSN) research in the past
decade. Since replacing sensor’s battery is infeasible or risky in many applications
[3, 4], most of the research aims to maximize network lifetime. For a single node,
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duty cycling is one of the most effective methods to save energy [5]. It puts radio
transceivers/CPU in sleep mode whenever there is no communication/computation.
To adopt this method in a network, wakeup/sleep scheduling of sensors is required
to guarantee end-to-end communications [6, 7]. Battery-aware routing and schedul-
ing based on battery recovery property have been studied to extend sensor node
lifetime [8–10]. At the network level, researchers have considered to maximize
network lifetime by optimizing either flow routing [11] or sensor missions [12, 13].

Essentially, how data is collected also has a great impact on network lifetime.
Traditional approaches to aggregating sensed data through a static data sink is
known to be less energy efficient since nodes close to the sink consume more en-
ergy to relay packets. These nodes usually form a bottleneck around the sink and
put an upper limit on the network lifetime while other nodes may still have energy.
This is regarded as the infamous “energy hole problem” [14]. A solution is to intro-
duce a mobile data sink for data gathering [15–21]. It has been shown in [20] that
by carefully planning trajectory of the mobile sink, energy consumptions on sensor
nodes can be balanced and network lifetime is extended significantly.

Although these methods can prolong network lifetime to some extent, sensor’s
battery would deplete eventually and cause service interruptions. A promising tech-
nique is to replenish sensor’s battery by harvesting environmental energy such as
solar and wind [22–24]. Solar harvesting can provide energy from an external solar
panels of similar size to sensor nodes [25]. Further, multiple such ambient energy
sources can be combined to power sensor nodes [26]. However, due to the inherent
dynamics of energy sources, environmental energy is unpredictable. When energy
sources are not available, nodes would stop working and cause network interrup-
tions.

Recently, finding a convenient and reliable way to replenish sensor’s battery
begins to attract more attentions in the sensor network research community. The
breakthroughs in wireless charging technology offers a bright new alternative to
power sensor nodes (in distance) without any wires or plugs. Pioneered by Nikola
Tesla [27] a century ago, it is only recently wireless charging enjoys so much pop-
ularity after the experimental realization by Kurs, et al. [28]. It has been shown
in [28] that a total of 60 watts energy can be transferred between two magnetically
coupled coils over an air gap of 2 meters with 40% efficiency. Fast development
of mobile devices soon as well as the relatively stagnant battery technology deliver
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Figure 1.1: Overview of wireless rechargeable sensor network.

the impetus to drive this technology into commercialization stage. Many products
are available in the market that can recharge cell phones, PDAs without charging
coils. The prototype is soon extended to power multiple devices in [29]. For exam-
ple, a charging pad called “Powermat” can recharge multiple cell phones and PDAs
simultaneously by simply putting them on the pad [30]. Powercast systems realize
wireless charging for sensing devices up to several meters away [31]. This tech-
nology has demonstrated not only the strengths to power small portable devices,
but also the potentials to recharge Electrical Vehicles (EVs). With the ability to
deliver hundreds watts of energy at high efficiency, wireless charging systems can
be launched at power stations, parking lots or even beneath road surface to recharge
EVs without any physical contact [32].

Based on this new technology, we propose a novel framework comprised of one
or more multi-functional Mobile Chargers (MCs) for delivering energy to sensor
nodes, gathering sensed data and engaging management activities. Fig. 1.1 shows
an overview of the wireless rechargeable sensor network. The MC equips with high-
capacity battery packs, a DC/AC (Direct Current/Alternating Current) converter
and resonant coils. To deliver energy, the MC converts the energy stored in its
battery into alternating current using a DC/AC converter when it moves into close
proximity of sensors. Then an oscillating magnetic field is induced around the
transmitting coil of the MC. The receiving coil on the sensor is tuned to resonate
at the same frequency to capture energy from the magnetic field and utilize the
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AC/DC converter to recharge its battery with DC current. To achieve temporal
efficiency, the MC can perform other activities such as data gathering, network
management while wireless energy replenishment is in progress. Next, we present
some background information on wireless charging technologies.

1.2 Wireless Charging Technologies

In this section, we introduce two major techniques of wireless charging: elec-
tromagnetic radiation and magnetic resonant coupling, and their applications in
WSNs.

1.2.1 Electromagnetic Radiation

Electromagnetic waves have been used for communications since the last century.
Recently, upon discovering the energy resides in the electromagnetic waves can be
captured to power ultra-low power devices, a great amount of research efforts have
been devoted to scavenge energy in the ubiquitous electromagnetic waves. There
are plenty of such energy sources such as TV towers, cellular base stations or even
local Wi-Fi access points. However, due to the nature of isotropic wave propa-
gation and multi-path fading, received signal strength decreases dramatically with
transmission distance. Thus only a very small fraction of energy can be effectively
captured from the air. Fig. 1.2 shows a sketch of an electromagnetic radiation based
wireless charging.

A popular commercial product currently available on the market is the Power-
cast wireless charging system [31]. It consists of a wireless energy transmitter op-
erating at 850-950 MHz and a number wireless energy receivers. There have been
some previous works on applying such systems in WRSNs. In [33], the impact
of wireless charging on current routing and node deployment schemes in WSNs is
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studied. In [34], the problems of how to place and mobilize wireless chargers to
sustain network operations are studied. First, a point provisioning problem is pro-
posed to ensure all the locations in the network can receive enough energy. Then
a path provisioning problem is studied to further reduce the number of wireless
chargers. The problem is extended in [35] to minimize charging delay by optimally
planning the moving trajectory of mobile chargers. In [36], an O(k2k!) (where k is
the number of nodes in the network) algorithm is designed to schedule recharge ac-
tivities such that network lifetime is maximized. In [37], a joint routing and wireless
charging scheme is proposed by guiding routing and recharge activities. In addi-
tion, problems in WRSNs other than recharge scheduling are studied in [38, 39].
In [38], an important safety issue of using electromagnetic radiation based wireless
charging is studied. Since absorption of overdosed electromagnetic radiation poses
great risks to human body, a placement problem on how to place wireless chargers
to sustain network operations while the radiation level of all positions is below a
threshold is studied in [38]. Other than the safety issue, in [39], it is shown that
traditional localization strategies in WSNs can be further improved by measuring
the wireless charging time of sensors.

As pointed out in [38], a limitation of electromagnetic radiation based wireless
charging is due to health concerns. Although it is desired to increase the emitted
energy at the power source, the Federal Communication Commission’s (FCC) has a
regulation of maximum effective isotropic radiated power (EIRP) at 4W [40]. In ad-
dition, the isotropic nature of omni-directional antenna emits energy that attenuates
quickly over distance. Therefore, this technique usually has very low efficiencies
and only supports low-power sensing applications such as simple temperature, hu-
midity monitoring, etc. Therefore, in this dissertation, we mainly focus on wireless
charging based on magnetic resonant coupling described next.

1.2.2 Magnetic Resonant Coupling

In contrast to the low-efficiency in electromagnetic radiation based wireless charg-
ing techniques, magnetic resonant coupling can transfer a large amount of energy
over an air gap at high efficiency [28, 29]. Fig. 1.3 shows a wireless charging
system with magnetic resonant coupling. To guarantee high charging efficiencies,
a mobile charger with high-density battery packs is usually adopted to approach
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sensors in close proximity.
The potentials of using magnetic resonant coupling in WRSNs is studied in [41–

45]. In [42], an optimization problem to maximize the ratio between MC’s idling
and working time is studied. A Hamiltonian cycle through all the sensor nodes is
proved to be the shortest recharge path. Instead of recharging all the nodes, in [41],
only a number of nodes request for recharge are serviced, and this number is up-
per bounded by a tour length threshold to guarantee data latency. During recharge,
the MC simultaneously gathers data from the neighborhood in multi-hops and u-
ploads all collected data to the base station after a recharging cycle is completed.
A system-wide optimization is performed to maximize network utility by selecting
optimal data rates and flow routing. In [44], optimal allocation of MC’s stopping
time to recharge sensors at different locations is studied. Upon realizing the dynam-
ics in sensors’ energy consumptions, to provide more accurate recharge decisions,
a recharge framework is proposed in [45]. An NP-hard problem to minimize the
movement cost of MCs is studied and several heuristic algorithms are proposed. In
sum, magnetic resonant coupling is a promising technology ready to support many
complex, energy-demanding multimedia applications with enormous data commu-
nication and sensing activities.

1.2.3 Research Goals

This dissertation aims to achieve the following research goals.
Perpetual Operation: Our ultimate goal is to achieve perpetual operation of

the network. That is, no sensor would deplete its energy during the run. This
requires the MCs to fulfill energy requests on time. We can see that it poses great
research challenges in dynamic network environments, in which the patterns of
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energy consumptions may vary. The MCs have to schedule and coordinate their
recharge activities to make sure the battery deadlines from sensors are met.

Minimal System Cost: Another important research goal is to minimize system
cost. It mainly consists of manufacturing cost of the MCs, wireless-powered or
solar-powered sensors, MC’s operating cost and extra cost incurred such as compu-
tation, communications on either sensors or the MCs. Our solutions need to bring
these factors in the designs of the algorithms for minimal cost or achieve optimality
to balance different types of costs.

Bounded Latency: Our approach needs to achieve bounded latency for data
gathering. Traditional approaches adopts the MCs for data gathering. Since mo-
bile data gathering is usually time-consuming (delay is governed by MC’s mov-
ing/recharging time), we should develop new schemes to minimize such latency or
provide an upper bound of packet delay for different applications.

Distributed Operations: Although the computation-intensive tasks can be ex-
ecuted by the MCs and disseminate the decisions to sensors, we still aim to achieve
distributed designs of protocols. For example, sensors can communicate between
each other for clustering and sharing energy information. Some of these operations
can be done at the lowest sensor level to adapt dynamics of the network and save
computation resources.

1.2.4 Contributions

In this dissertation, we have made the following contributions.
Recharge Scheduling of Mobile Chargers based on Real-time Energy In-

formation We propose a novel real-time recharging framework for wireless sensor
networks, consisting of a set of scalable and efficient energy aggregation and gath-
ering protocols. The protocols satisfy both normal and emergency recharging needs
for multiple MC. We identify that the emergency recharge optimization with multi-
ple MCs is an Orienteering Problem and we formalize the normal recharge problem
into an m-TSP problem. Efficient on-line algorithms with low computation com-
plexity are proposed. Extensive evaluations demonstrate our algorithms can achieve
perpetual operation of the network effectively.

Mobile Data Gathering and Recharge Scheduling with Mobile Charger’s
Movement Costs and Capacity Constraints We further study limitations in the
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existing works on important issues of data latency, MC’s moving cost, recharge ca-
pacity, and their impact on existing recharge scheduling algorithms. We establish a
mathematical model to quantify the relationship between data latency and the num-
ber of MC needed. We also present several theoretical results such as node lifetime
and adaptive recharge thresholds. Second, we formulate recharge optimization into
a Profitable Traveling Salesmen Problem with Capacity and Battery Deadline con-
straints, and propose two algorithms. The Adaptive Algorithm takes a systematic
approach to capture all constraints in the problem. Finally, we conduct extensive
simulations comparing the two proposed algorithms. Although we are not able to
prove approximation bounds for the Adaptive Algorithm theoretically, simulations
show that it is only 1.06 to the optimal solutions and saves an additional 8% on
vehicle’s moving energy compared to the on-line algorithm. Moreover, when the
number of MCs is sufficient, the Adaptive Algorithm can keep all the nodes alive at
all times. Compared to the Greedy Algorithm, the Adaptive Algorithm can reduce
nonfunctional nodes by 30-50% while saving 10-20% energy on MCs. We validate
our theoretical results and justify the system cost, data latency of our framework
compared to other schemes.

Multi-hop Wireless Charging via Resonant Repeaters We adopt resonan-
t repeaters to improve charging capability based on realistic modeling of charging
efficiency under physics laws and formulate recharge scheduling into a bi-objective
optimization problem. A two-step approximation algorithm with bounded approx-
imation ratios for each objective is proposed. In addition, We discover the subtle
relations between cost objectives and propose a post-optimization approach to fur-
ther reduce the system cost while retaining nodes’ battery deadlines. Our evaluation
shows that the post-optimization algorithm can reduce the system cost by an addi-
tional 25% and the proposed framework can cover more than 3 times of nodes and
has significantly less service interruptions compared to previous works. We al-
so demonstrate trade-offs between multi-hop and single-node recharging methods,
and relations between different optimization objectives.

Combine Wireless Charging and Solar Energy Harvesting We propose a hy-
brid framework to overcome the constraints of wireless charging and environmental
harvesting techniques and formulate the solar-powered sensor placement problem
into a facility location problem. Both centralized and distributed algorithms are
proposed with bounded approximation ratios. Then, we propose a method to main-
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tain network robustness by reducing energy consumption and a route improvement
algorithm that can save an extra 25% moving energy on MCs and surpasses the
algorithm in [120] by additional 5%. The algorithm can also be used in a general
setting for the Traveling Salesmen Problem with Neighborhood (TSPN) and pro-
vide solutions very close to the exact solutions found by exhaustive search. We also
give MCs more flexibility to only partially refill the battery in case of high energy
demand and propose an efficient algorithm that yields solutions within 5% to op-
timality. Finally, we conduct extensive simulations to evaluate the performance of
the framework compared to WSNs that are solely wireless-powered.

1.2.5 Dissertation Outline

The rest of this dissertation is organized as follows. Chapter 2 lays the foundations
of our analysis by proposing an energy information gathering protocol and on-line
recharge algorithms. Chapter 3 establishes a mathematical model based on energy
balance in the network and considers MC’s moving cost and recharge capacities
in recharge activities. Chapter 4 studies multi-hop wireless charging to improve
charging capabilities. Chapter 5 presents a new framework of hybrid energy sources
and Chapter 6 concludes this dissertation.
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Chapter 2

Recharge Scheduling of Mobile
Chargers based on Real-time Energy
Information

This chapter presents a real-time energy monitoring and recharging framework that
optimizes the recharging policies for one and multiple MCs under dynamic network
conditions. The recharging policy - when and which MC should recharge which n-
odes and in what order - critically impacts the efficiency and thus the lifetime of
the network. So far only a few works [41, 42] have studied the recharging policy
problem. Basically, nodes report their energy levels periodically, and a centralized
algorithm computes a specific order so a single MC recharges all nodes in the nex-
t cycle. Although commendable first steps, they do not fully consider important
practical issues, which significantly limit their applicability in a real environment.

First, it takes nontrivial (e.g., 30-60 min) time to recharge a commercial off-
the-shelf battery, such that finishing one round of recharging for a network of a few
hundred nodes may take several days. During this time the energy levels of nodes
may have changed significantly due to unpredictable external events that can trigger
extensive activities and quickly drain the battery. The recharging policy computed
at the beginning of the cycle is no longer optimal. This can cause energy depletion
on some nodes, leading to network disconnection or application failures. Second,
the timely, efficient and scalable gathering of energy information of nodes to a
mobile vehicle is an important and challenging issue in itself. The previous works
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do not consider this issue and assume such information is readily available. Finally,
they use centralized algorithms that have high complexity and may not scale to large
network sizes. A distributed solution is more desirable in real network settings.

Instead of nodes reporting their energy levels only after a long period[41, 42], a
scalable and efficient energy information aggregation protocol gathers battery lev-
els continuously from all sensor nodes upon requests by MC. The MC receives such
information and makes (on-line) recharging decisions based on the latest energy in-
formation. To deal with unpredictable emergencies where nodes may dramatically
drain the battery in short time, the recharging of sensor nodes whose energy levels
are below a critical threshold has higher priority and takes precedence over those
that can work for relatively long time with their residual energy.

The rest of this chapter is organized as follows. Section 2.1 describes the basic
network components. Section 2.2 presents a distributed protocol for node status
reporting and Section 2.3 develops on-line recharge scheduling algorithms for dif-
ferent scenarios. Section 2.5 provides simulation results and Section 2.6 concludes
this chapter.

2.1 Network Components

We assume that sensor nodes are uniformly and randomly distributed in the net-
work. Nodes are stationary and each node knows its deployed location. For scal-
able performance, the network is divided into several areas and each area is further
divided to generate some new sub-areas. A new level is generated in each division.
The divisions are based on geographical coordinates of the sensing field. An exam-
ple of a 2-level WRSN network is shown in Fig. 2.1. The two areas represented
by solid lines are generated at the first level. Then each area is further split into
two sub-areas represented by dashed lines on the second level. Several key network
components are explained below.

• Mobile Charger: The MCs have positioning systems (GPS) and know their
locations. The sensor locations are pre-processed during network initializa-
tion and known to the MCs. The MCs are equipped with high density bat-
tery packs and charging coils. They also have communication capability by
launching powerful antennas. In this way, they can not only query the net-
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Figure 2.1: Network Architecture.

work for node status information but also communicate among themselves or
to the base station via long range communication technologies (e.g., cellular,
WiMax).

• Base Station: The base station is used for collecting sensing data and per-
forming network management. The MCs can be commanded remotely by the
network administrator via the base station. It also has computing capabilities
to perform the tasks of calculating recharge sequences and dispatching MCs.
When an MC almost depletes its own energy, it returns to the base station for
a quick battery replacement.

• Head Nodes: A head node is a sensor node that aggregates node’s status infor-
mation in its subordinate area. When requested by an MC or the head node of
its superior level, it aggregates node status information from the subordinate
sub-areas at the lower levels and sends to the requester.

• Proxy Nodes: An emergency occurs when a node’s battery energy falls be-
low a threshold (e.g., 10%). It needs to be handled by the MCs immediately.
The head nodes on the top-level are selected as proxies so they can aggre-
gate emergency information from sensor nodes directly without propagating
through the network hierarchy.

• Normal Nodes: A sensor node not selected as a head is a normal node. It
reports its status information to its superior head node, or sends emergency
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information directly to its proxy when the battery energy drops below the
recharge threshold.

The network has a number of m MCs. Once the voltage at the sensor’s output
circuit is enough to provide a charge, the recharge time is governed by battery
characteristics. The typical recharge time required to bring battery energy from
zero to full capacity is Tr time (e.g., for a Panasonic Ni-MH AAA battery [46] of
battery capacity Cs=780 mAh, Tr = 78 minutes). Note that how to determine the
number of MCs m will be further discussed in the next chapter.

2.2 Distributed Node Status Reporting Protocol

This section introduces a distributed communication protocol that can gather node
status information from the network on-demand. To guarantee scalability, it first
elects a head node on each network level and establishes routes to the head nodes.
Since the MCs’ locations are constantly changing, the protocol allows the them to
send out recharge requests that naturally reflect their current locations and build
routing paths for the status packets. The protocol categorizes recharge missions
according to their time urgency and aggregates node status efficiently at the MCs.

2.2.1 Overview

To perform effective recharge and maintain network operations, MCs should obtain
global node status information of sensors. This information includes residual bat-
tery energy, node lifetime, identification, location, etc. Since sensors do not keep
track of MC’s locations during operations, a trivial way is to flood the network with
status packets periodically. However, for a network with N nodes, O(N3) packet
transmissions might be needed in the worst case. This is because that the number
of edges in a completely connected graph is N(N−1)

2
and there are N status packet-

s from different nodes on all the edges. Apparently, the cost becomes prohibitive
for any network contains more than a few hundreds of nodes. Indeed, for each
recharge maneuver, the MC only picks a small subset of nodes with immediate en-
ergy demands for recharge, status information from other regions could be regarded
as useless. If the useless information can be filtered out before reported to the MC,
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a great amount of communication overhead can be saved. Therefore, we introduce
a real-time communication protocol for node status gathering in the network.

The MCs obtain the real-time node status information before making any recharge
decisions. Node status information is aggregated on head nodes at different levels.
For robustness, the head node is usually elected with the maximum battery energy
in its subordinate area. The head election process is initiated in the network startup
phase through propagation of head election packets. During the operation, when a
head node is low on energy, it will appoint another node with high energy in its area,
and send out a head notification packet to notify the new head node. The details
will be discussed in the next subsection.

To start the information gathering process, MCs send out status request packets
to poll the head nodes on the top-level first. Once the head nodes receive such
packets, they generate new status request packets for the lower level head nodes
in respective subordinate areas. This process repeats down the network hierarchy
until the bottom-level status request packets reach all the nodes in the bottom-level
subareas.

Once a sensor node receives a bottom-level status request, it responds by send-
ing out a status packet that contains its current energy level, estimated lifetime,
identification and position, etc. When the bottom-level head nodes receive such
status packets, they select sensor nodes with energy level below their correspond-
ing recharge thresholds, and forward their status information in a combined status
packet to their superior head nodes. This process repeats from the bottom up along
the hierarchy until the top-level head nodes successfully aggregate all the status
information from designated areas. This information is then sent to the requested
MC. In the case that there are more than one MC send out such request simultane-
ously, the top-level head nodes send the aggregated node status information to the
one with fewer communication hops. For overhead reduction, the head nodes take
partial responsibilities to pre-select nodes for recharge. On the bottom level, the
head nodes only report those nodes with energy level below the threshold.

Once a node’s energy falls below an emergency threshold (e.g., 10% of full
capacity), without waiting for the MCs to send out request, it preemptively transmits
an emergency packet to the proxy node that manages its area. The route from each
node to its proxy is established by head election messages from the proxy and
updated during the operation accordingly. Once an MC finishes recharging a node,
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it sends out an emergency request packet to see whether there is emergency. These
packets are directed to the proxy nodes where updated emergency lists are stored
and they respond by sending back identifications, lifetime estimations and energy
levels to the MC. The MC receives this packet and adopts an appropriate recharge
scheduling algorithm to decide the recharge sequence.

The mechanism in the head election protocol shares some similarities with [47,
48]. In the following, we describe details of the new protocols for communication
between head nodes on different levels.

2.2.2 Protocol Design

We describe the protocol design in this section for a network with l levels.

Head Election

At the initialization phase, the network performs head election starting from the
bottom l-th level and this process is propagated up to the top level. Each node
generates a random number x and compares it with a pre-determined threshold K.
If x > K, it floods a head election packet in its subarea at the l-th level. The packet
contains the random number x and its identification. Then the node sets it as its
maximum random number at its local record xmax = x. Otherwise, if x ≤ K, the
node waits for receiving packets from other nodes.

Upon receiving a head election packet, a node first compares the random num-
ber field in the packet with its local record xmax. If its local record is larger, the
packet is discarded. Otherwise, the sensor updates xmax to that in the packet ac-
cordingly and records the identifier in the packet. Then it sends out the packet to
all its neighbors except the one where packet is received from. This process can
be regarded as a distributed fashion to elect the node with the maximum x in each
subarea on the bottom level.

On the (l − 1)-th level, the newly elected head nodes compete for the heads on
this level following a similar manner. They flood new head election packets in their
subareas on the (l − 1)-th level. Nodes follow the same procedure to compare the
received random number x and finally the head nodes are elected. This process is
repeated until the heads on all the levels are elected.
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To build intermediate routing information from each node to its head, the head
election packets that do not succeed in the comparison are not discarded except for
the bottom level. Instead, they are propagated throughout the respective subarea.
This ensures the intermediate nodes to know the routes to the head nodes. Once an
upper level head node wants to communicate with its subordinate head nodes, these
entries in the routing tables on each intermediate node can be utilized.

Status Request

The hierarchical head structure is constructed to facilitate the propagation of status
request packets. These packets collect the current status from nodes to offer MCs
a global view of the network. The status information is gathered on demand. That
is, it can be either sent out after an MC finishes recharging every node or once in a
while to reduce communication overhead in the network.

After the head hierarchy is constructed, the MCs send status request packets to
query nodes that need recharge. Upon receiving such packets, intermediate nodes
use the routing tables established during head election process to forward the pack-
ets to all top-level head nodes. At the same time, an intermediate node also leaves
an entry in its routing table pointing to the neighbor from which the status request
packet is received. This entry is used to guide status packets back to the MCs. In
Fig. 2.2, the propagation status request of a network with two levels is illustrated.
After a status request is sent by an MC, status information is converged from the
bottom level to the top level and finally delivered to the MC.

After receiving a status request packet, a top-level head generates a new status
request packet and transmits it to its child-heads. These packets use the routing
entries set up during the head election process to find the lower-level head nodes.
Similarly, nodes also set up routing entries where these packets are coming from so
that later status packets can be aggregated at the upper level heads. This process
repeats down the head hierarchy until the bottom level heads are reached. Those
heads then flood the status request packets in their respective subareas.

It could be the case that two or more MCs are requesting node status simul-
taneously. To avoid receiving duplicated information, we direct the status packets
towards the MC with fewer hop counts. The status request packet carries a field to
count the hops from the MC, i.e., the field grows by one at each intermediate node.
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Figure 2.2: Illustrating propagation of different types of packets.

Once multiple status request packets are received by a head node, an intermediate
node updates its routing entries by recording only the neighbor with the smallest
hop count. In this way, status information from a head node follows the route to
reach the MC with the smallest hop count. Since the MCs are moving during the
operation, these routing entries are updated for each status request.

Status Report and Recharge

Once a node receives a bottom level status request packet, it responds with in-
formation including its current energy level, estimated lifetime, identification and
position. These packets are easily routed back to the bottom level heads based on
the routing entries set up earlier. The head nodes quickly check if the reported ener-
gy level of a node is less than the node’s recharge threshold. If so, the identification
of the node is added to a local recharge list at the head node, and the energy demand
is also added to a cumulative summation counter. Once the head finishes collecting
status packets in its subarea, it sends out an aggregated status packet to its upper
level head node. The aggregated status packet contains the information from nodes
with energy below their recharge thresholds. The recharge threshold could be ei-
ther predetermined or selected adaptively. The details will be discussed in the next
chapter.

Upon receiving aggregated status packets from the lower level head node, a
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head node always selects the one with the largest cumulative energy demand and
forwards it upwards the head hierarchy. Finally, the MC close to a head on the
top level receives which subarea has the largest energy demand and proceeds to
recharge the nodes based on the recharge algorithms discussed later.

By entitling the head node some responsibilities to filter out some sub-areas,
communication overhead can be minimized during the process of gathering node
status. This is important since node status information is gathered every once in
a while, redundant information would not only enlarge the packet length but also
increase the computation complexity of recharge schedules.

Fig. 2.2 gives a pictorial illustration of a network with two levels. The MC
sends out a status request to poll all the node status information from area 1. The
energy request packet is relayed towards the head node in area 1 by nodes in areas 2
and 4. Upon receiving the energy request, the head node in area 1 aggregates node
status in its area and reports to the MC. The packet is routed back following the
same route taken by the status request packet.

Emergency Report and Recharge

Emergency occurs when a node’s energy falls below the emergency energy thresh-
old. These nodes should be taken care immediately to prevent them from depleting
battery energy. Once an emergency is detected, the node immediately sends out an
emergency packet with its identification and energy level to the proxy node in its
area. The proxy nodes are top level head nodes so the emergency packets do not
need to propagate through the head hierarchy. The routing information established
earlier during the head election process can be used to direct these packets towards
the proxy nodes.

The MC should frequently check whether there is emergency situation by polling
the proxy nodes through emergency request packets. In principle, to avoid any miss-
ing emergency, the MCs should send out such packets after finishing recharging the
current node. Once an intermediate node receives an emergency request packet, it
updates the local routing entries to record where this packet is coming from. This
entry is used to route the emergency report packets from the proxy nodes back to the
MCs. Since there could be multiple emergency nodes reported while there are also
other normal recharge requests, an MC needs to handle all the emergency situations

18



within a specified time (e.g., the expected time before next emergency occurs). We
introduce several recharge scheduling strategies in the next chapter.

Fig. 2.2 also shows an example with a node having emergency in area 3. The
node immediately reports to the proxy node and the packet is further forwarded to
the MC upon an emergency request.

Head Hierarchy Maintenance

A head node may run out of energy since it usually engages in more activities than
other nodes. In this situation, head re-election is needed. In fact, only the head
nodes on the bottom levels compete with each other for the head node on an upper
level. Since a head node receives status report from all the nodes in its bottom level
subarea, it knows the updated node status in its subarea. To reduce overhead, it
can easily appoint the node with the highest energy as the new head node. A head
notification packet is then flooded in the bottom level subarea to notify all the nodes
of the new head node.

The generation of the new head triggers a new head election process up the head
hierarchy. It floods a new head election packet in its subarea. Instead of a random
number, the packet carries the current energy level of the participating head node.
Following the same procedure, nodes in the subarea compare the energy level in the
incoming packet and only store the information with the maximum energy. Then
the head node with the highest energy level is elected. If this is the same head node,
the process stops to avoid unnecessary overhead. Otherwise, the new head triggers
a sequence of head election in the upper level and this process repeats until a new
head node is elected on the top level.

2.3 Recharge Scheduling Problem

This section discusses the important recharge scheduling problems. Our primary
objective is to find a recharge policy with minimal energy cost on the MCs while
maintaining the perpetual operation of the network. We first discuss the emergency
recharge scheduling problem and provide an efficient algorithm to solve it. Then
we investigate the normal recharge problem by formulating it into an optimiza-
tion problem, which is NP-hard. We present an on-line algorithm for this problem
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which leverages a weighted sum of node lifetime and MC’s traveling time to make
recharge decisions.

2.3.1 Emergency Recharge Scheduling Problem

First, we discuss the optimal recharge policy to handle multiple emergencies. Ac-
cording to Section 2.2.2, a node that is on the verge to deplete its battery energy will
send an emergency recharge request to the proxy node on the top level. In addition,
when the MC is idle, it polls the proxy node to obtain an emergent recharge node
list if there is any. Here, we consider the scenario where there are n emergent nodes
to be recharged in Te time. Te is defined as the average inter-arrival time of emer-
gencies during operations. The value of Te can be measured and updated iteratively
through the operation by MCs. We assume that the sum of their energy demands is
much less than the recharging capacity of the vehicle.

Since the MC may not finish recharging all n nodes within Te time, our objective
is to maximize the amount of energy refilled into the network in Te. The problem
can be formulated as a classic Orienteering Problem (OP) [49]. OP involves a set of
points in the field with different rewards to be visited by a player before time expi-
ration. The objective is to maximize the rewards collected before the time expires.
To model OP into our problem, the MC visits sensor nodes for maximizing energy
replenishment (reward) within inter-arrival period of emergency Te. We consider a
graph G = (V,E) where vertex Vi represents the emergent sensor locations. The
MC starts from the original location V0. E is the edges among sensor nodes. The
recharging reward ri of sensor i is defined as the amount of energy replenished from
the current energy level to full capacity. The edge cost is defined to be the traveling
time tij between i and j plus the recharge time of node i (denoted as ti). In order
to be consistent with the original OP formulation, we virtually make the MC return
to the starting location after Te by adding an edge of zero weight, i.e., the traveling
time is ti0 = 0. A decision variable xij for edge eij is introduced. xij = 1 if the
edge Eij is visited, otherwise, it is 0. Variable ui is defined as the position of vertex
i in the recharging path. The emergency recharge scheduling problem is formulated
as follows.

P1 : max
n∑

i=1

n∑
j=1

rixij, (2.1)
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Subject to
n∑

i=1

x0i =
n∑

i=1

xi0 = 1, (2.2)

n∑
i=1

xik =
n∑

j=1

xkj ≤ 1, ∀k = 1, 2, . . . , n (2.3)

n∑
i=1

n∑
j=1

(tij + ti)xij ≤ Te, (2.4)

xij ∈ {0, 1},∀i, j = 1, 2, . . . , n, (2.5)

1 ≤ ui ≤ n,∀i = 2, 3, . . . , n, (2.6)

ui − uj + 1 ≤ n(1− xij),∀i, j = 2, 3, . . . , n. (2.7)

Constraint (2.2) guarantees that the recharging path starts from starting position 0
and ends at starting position 0. Constraint (2.3) ensures the connectivity of the path
and that every node is visited at most once. Constraint (2.4) makes sure that the
time threshold Te is not exceeded. Constraint (2.5) imposes decision variable xij to
be 0-1 valued. Constraints (2.6) and (2.7) eliminate subtours in the planned route.
These subtour elimination constraints are formulated according to [50, 57].

If time Te is set to infinity, OP is reduced to the classic Traveling Salesmen Prob-
lem with Profit which is known to be an NP-hard problem [51]. Therefore, adopting
heuristic algorithms can achieve a balance between performance and computation
complexity. A few algorithms have been proposed in [52–55] and a survey of the
problem is available in [49]. Tsiligirides [52] has developed a stochastic Monte Car-
lo technique to generate a large number of routes and used the divide-and-conquer
method to select the best among them. A center-of-gravity heuristic algorithm is
proposed in [53]. Another algorithm consisting of five steps is proposed in [54].
Optimal solutions to the OP using the brand-and-cut method is introduced in [55].
However, these algorithms are quite complex in terms of efficiency and computa-
tional time. Given energy restrictions in the network and the urgency to resolve the
emergent nodes, a fast and efficient algorithm is more desirable in the context of
our problem.

Next, we show OP can be approximated into a Knapsack problem [56]. The K-
napsack problem aims to maximize the value of items into a knapsack with limited
size. Each item is associated with a known size. In fact, the recharge time of a node
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i is much more than the traveling time from vehicle’s current location k to i (i.e.,
ti ≫ tki). For example, replenishing a node to full capacity usually takes around an
hour, the traveling time only takes a few minutes at most. Therefore, to maximize
the amount of energy replenished within Te, we can focus on the recharge time of
node i. Thus, Constraint (2.4) in the original OP formulation can be rewritten as
n∑

i=1

tiyi ≤ Te. Here, recharge time ti corresponds to the item size and recharge re-

ward ri is the item value in the Knapsack problem respectively. With this reduction,
we have a much simpler formulation.

P2 : max
n∑

i=1

riyi, (2.8)

Subject to
n∑

i=1

tiyi ≤ Te. (2.9)

Although Knapsack problem is known to be NP-complete [56], we can solve it in
polynomial time using dynamic programming techniques. Dynamic programming
is a strategy to break down a problem into many recurring small subproblems and
solve them in a recursive manner. We define a table R with entry R(i, t) to represent
the maximum recharging reward attained with total time duration less than t where
1 ≤ i ≤ n and 1 ≤ t ≤ Te. Our goal is to compute every entry in the table
towards the maximum value of R(n, Te). We set all the entries R(0, t) for 1 ≤
t ≤ Te to zero initially. For all the i and t in the table, if picking a new node for
recharge exceeds Te, the reward remains unchanged R(i, t) = R(i−1, t); otherwise,
R(i, t) = max(R(i− 1, t), ri +R(i− 1, t− ti)). The pseudo-code of the algorithm
is shown in Table 2.1. As there are two loops of size n and Te, the complexity of
the algorithm is O(nTe), which is much lower than directly implementing those
algorithms designed for OP.

Finally, it is important to examine the accuracy of such approximation. To see
how accurate this approximation achieves in our problem, we use brute force to
calculate the optimal solution to OP thereby providing a baseline for comparison.
Due to exponentially increasing combinations of larger datasets, we manage to test
several cases for n varies from 3 to 16. We define the accuracy as 1 −

∣∣∣Rk−Rop

Rop

∣∣∣,
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Table 2.1: Algorithm to approximate Orienteering Problem

Input: Te, recharge time ti, table R with entry R(i, t), 1 ≤ i ≤ n and 1 ≤ t ≤ Te

Output: maximum recharge reward and recharging nodes
Initialize R(0, t) = 0, 1 ≤ t ≤ Te

For i from 1 to n
For t from 1 to Te

If ti ≤ t, R(i, t) = max(R(i− 1, t), ri +R(i− 1, t− ti))
Else R(i, t) = R(i− 1, t)
End If

End For
End For

Table 2.2: Accuracy of Knapsack Approximations to Optimal Solutions
# Emergencies n 3 4 5 6 7 8 9
Te = 300 min 1 1 1 1 1 1 1
Te = 400 min 1 1 1 1 1 0.997 0.996
Te = 500 min 1 1 1 1 1 1 1
# Emergencies n 10 11 12 13 14 15 16
Te = 300 min 1 1 1 1 1 1 0.998
Te = 400 min 0.999 0.998 0.997 0.995 0.997 0.998 0.997
Te = 500 min 0.996 1 1 1 1 0.995 0.996

where Rk is the solution by Knapsack approximation and Rop is the optimal solution
by brute force. Table 2.2 shows that the accuracy is over 99% for different Te.

2.4 Normal Recharge Scheduling

Next, we discuss how to schedule multiple MCs for normal battery recharge. In
the process of normal recharge, it is also necessary to prevent nodes in the recharge
sequence from depleting battery energy. The objective is to minimize the overall
moving cost of MCs while maintaining the perpetual network operation and sat-
isfying a few constraints. The first constraint comes from MC’s limited capacity
whereas most of the previous works have ignored the moving energy of the vehicle
and the limit of its recharge capacity [41, 45]. These simplifications may cause the
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MC to deplete energy en route, become stranded and unable to return to the base
station. The second constraint is to meet sensors’ dynamic battery deadlines. This
would require the vehicle to recharge some nodes earlier than others. For exam-
ple, depending on the size of recharge sequences, some nodes may need prioritized
recharge to avoid depleting battery energy. How to place these nodes in the recharge
sequence to guarantee optimal and feasible solution is an interesting, yet difficult
problem. We formalize it into an optimization problem with these constraints and
provide two algorithms to tackle the problem.

After each time the node status information is reported to the MCs, a recharge
scheduling problem is formed as follows. We denote the set of MCs as S =

{1, 2, . . . ,m} and the set of nodes requesting for recharge as N = {1, 2, . . . , n}.
Consider a graph G = (V,E), where vertex Vi (i ∈ N ) is the location of node i

requests for recharge, and E is the set of edges. During the operation, the vehicles
could have different starting positions. We introduce an virtual vertex V a

0 as the
starting position of vehicle a. The weight of each edge Eij is associated with the
moving energy cost cij , which is proportional to the distance between nodes i and j.
ca0i represents the cost from initial position V a

0 of vehicle a to node i. Since differ-
ent MCs might have different energy during the run, we denote the battery energy
of MC a as Ca (Ca ≤ Ch). The value of Ca determines the number of nodes it
can recharge before it goes back to the base station for its own battery replacement.
The energy demand for node i is denoted as di (demand equals a node’s total battery
capacity minus its residual energy). Each sensor node i has lifetime Li and Ai is
the arrival time of a vehicle at node i. We further introduce two decision variables
xa
ij for edge Eij and yia for vertex Vi. The decision variable xa

ij is 1 if an edge is
visited by vehicle a, otherwise, it is 0. The decision variable yia is 1 if and only if
node i is served by vehicle a, otherwise, it is 0. ui is the position of vertex i in the
recharge tour. The objective is to minimize the total moving cost of the MCs while
guaranteeing that the recharge capacities of MCs are not exceeded and no sensor
node depletes battery energy.

P1 : max
( m∑

a=1

n∑
i=1

n∑
j=1

cijx
a
ij +

m∑
a=1

n∑
i=1

ca0ix
a
0i

)
(2.10)

24



Subject to

n∑
j=1

xa
0j = 1, a ∈ S, (2.11)

n∑
i=1

xik =
n∑

j=1

xkj = 1, k ∈ N , (2.12)

n∑
i=1

diyia +
n∑

i=1

n∑
j=1

cijx
a
ij +

n∑
i=1

ca0ix
a
0i ≤ Ca, a ∈ S

(2.13)
m∑
a=1

yia = 1, i ∈ N , (2.14)

Ai ≤ Li, i ∈ N , (2.15)

xa
ij ∈ {0, 1}, i, j ∈ N , a ∈ S, (2.16)

yia ∈ {0, 1}, i ∈ N , a ∈ S, (2.17)

1 ≤ ui ≤ n, i ∈ N , (2.18)

ui − uj + (n−m)xij ≤ n−m− 1, i, j ∈ N , i ̸= j.

(2.19)

In the above formulation, Constraint 2.11 states that the recharge path for each MC
starts at an initial position 0. Constraint 2.12 ensures the connectivity of the path
and every vertex is visited at most once. Constraints 2.13 and 2.14 guarantee the ve-
hicle’s battery energy is not depleted and each sensor is recharged by only one MC.
Constraint 2.15 guarantees arrival time of an MC is within each sensor’s lifetime.
Constraints 2.16 and 2.17 impose xij and yia to be 0-1 valued. Constraints 2.18 and
2.19 eliminate the subtour in the planned routes, which is formulated according to
[57]. The problem can be reduced to the classic Traveling Salesmen Problem (TSP)
with unlimited recharge capacity and unspecified node’s battery deadline. Clearly,
since TSP is a well known NP-hard problem [56], the recharge scheduling problem
is also NP-hard.

A direct solution to the recharge scheduling problem that accounts for both ve-
hicle’s capacity and node’s deadline is rare in existing literature due to its hardness.
Therefore, we first review some literatures that have partially solved the problem. A
similar problem to TSP is the Vehicle Routing Problem (VRP) [58]. In VRP, a fleet
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of vehicles start from the same depot and visit client locations to deliver goods. The
difference between VRP and TSP is that the salesmen in TSP are allowed to start
from different locations whereas vehicles usually start from the same location. In
addition, the number of vehicles could be undetermined in VRP and more vehicles
can be added in order to meet the demands from clients. The Capacitated Vehicle
Routing Problem (CVRP) is studied in [59–61]. In [59], a method is proposed to
decompose the problem into a convex combination of TSP tours and the tours are
examined if the capacity constraint is violated. In [60], tree-based CVRP is studied
and a 2-approximation algorithm is proposed. In [61], exact solutions of CVRP are
explored by a combination of branch-and-cut and Lagrangian relaxation methods.
Time constraint is also important in many VRPs. For example, a store may only
accept goods delivery from 9:00AM-5:00PM during regular business hours. How
to schedule the fleet of vehicles to make the deliveries within clients’ specified time
windows is called Vehicle Routing Problem with Time Windows (VRPTW). The
problem is studied in [62–65]. In [62], a local search algorithm is proposed to re-
duce the computation of checking the feasibility of the time constraint. In [63], a
theoretical approach of 3 log n-approximation algorithm is sought based on estab-
lished subroutines (where n is the number of nodes). In [64, 65], a relaxed time
constraint that allows late arrivals is considered.

Most of these works adopt standard optimization techniques that are effective
for datasets with small size and static inputs. Therefore, the optimization can be
done offline by computers with strong computing power. In contrast, the wireless
sensing environment is statistical in nature. That is, the inputs of energy request
would change for each run and the size of such request could be large. Besides, the
MC’s energy declines while moving and recharging sensors. The existing solutions
cannot handle these dynamic situations. Further, due to limited computing power
on the vehicles, it is not cost-effective and efficient to implement algorithms with
high complexity. To this end, our objective is to design algorithms that are suitable
to the dynamic nature of the recharge scheduling problem.

There are several challenges to solve this complex problem. The first challenge
is that the MCs’ energy constantly decreases due to moving and recharging sensor
nodes. Thus, the recharge route should be built with caution to reflect the vehicle’s
current energy level and traveling costs to node locations. The second challenge
comes from the dynamics of energy consumption due to data transmissions. Some

26



nodes consume energy at higher rates and have shorter lifetime than others. These
nodes usually lie on the main routing path and should be taken care of more fre-
quently than others to maintain the operation of the network. The optimal solution
to this problem is between achieving conflicting goals. On one hand, to keep all the
nodes running, we need to push the MCs to recharge as many nodes as possible. On
the other hand, the desire to reduce overall cost needs to minimize the moving dis-
tance of MCs. At the same time, the recharge decisions should account for node’s
lifetime and vehicle’s own battery energy as well. We can see that an ideal solu-
tion should achieve a good balance between the two objectives without sacrificing
either. In the next subsections, we present two such algorithms.

2.4.1 Weighted-Sum Algorithm

First, we present a fast algorithm that leverages the weighted sum of node’s lifetime
and MC’s traveling time. Given an MC’s current location at k and two nodes i

and j, there are important metrics to affect their orders in the recharge sequence:
the traveling time between k to i, j (tki, tkj), and their lifetime li, lj . If node j is
bound to deplete its battery while node i can still last for a while, the vehicle should
recharge j first even if j is located further away than i. Therefore, we can see that to
maintain perpetual operations, a trade-off has to be made between meeting sensor’s
battery deadlines and minimizing vehicle’s traveling cost. We introduce a weighted
sum wij below

wij = αtij + (1− α)lj. (2.20)

For an MC residing at node i, wij is used to decide which node j to recharge next.
A node with a smaller weighted value is more desirable and should be visited with
higher priority. The weight parameter α affects the choice of recharging schedules.
When α = 1, the algorithm reduces to the nearest neighbor algorithm that the
vehicle always recharges the closest node first regardless of battery deadlines; when
α = 0, it picks the node with the earliest battery deadline first regardless of the
traveling time. When the vehicle detects its own battery is about to deplete, it
returns to the base station for battery replacement.

Fig. 2.3 shows an example of an MC with three sensor nodes. The lifetime
and the traveling time on each edge are shown in the figure. For demonstration
purpose, we vary α from 0, 0.5 to 1 and assume the recharge takes 3600 s (seconds)
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Figure 2.3: An example of weighted sum algorithm with one MC and 3 sensor
nodes.

to finish. At time 0 s, the vehicle calculates the weight for sensor nodes 1, 2 and
3. The minimum weights are circled. When α = 1, node 3 has the minimum
weight of 200 (purely traveling time); when α = 0.5, node 1 has the minimum
weight of 1050; when α = 0, node 1 also has the minimum weight of 1800. At this
point, if node 3 is visited next, node 1 would have depleted its energy after finishing
recharge node 3. Therefore, the choice of α = 1 is infeasible in this example and
node 1 is visited first. After node 1 has been recharged, choosing node 3 results in
the minimum weight for both α = 0.5 and α = 0. Therefore, the recharge schedule
follows 0− 1− 3− 2 in this example.

We can see that the weight parameter α also affects the feasibility of the solu-
tion. Since the total distance is not simply inversely proportional to α, we cannot use
a binary search method to locate the best α value. To this end, we find α by search-
ing through a list of candidate α values, A. For example, α = 0, 0.05, 0.1, 0.15,

. . . , 1.0, where |A| = 21. In this way, a desirable trade-off is achieved between
optimality and complexity.

While there are multiple MCs calculating the recharge sequence together, they
exchange their location information via long range radio communications. Current
technologies such as cellular communications and WiMax can easily realize such
coordinations. At the beginning of recharge scheduling, an updated recharge node
list is synchronized on all the vehicles. We label the vehicles in orders so they
begin the calculation of the next node sequentially. After a vehicle selects a node
for recharge, it broadcasts its decision so other vehicles can remove this node in
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Table 2.3: Recharge Scheduling - Weighted Sum Algorithm
Input: Weight parameter α ∈ [0, 1] in stepsize 1/(A− 1),
current position of vehicle at node k,
set of energy requests N , traveling time from i to j, tij , lifetime li,∀i, j ∈M.
Output: Recharge sequence Q.
Initialize minDist =∞, obtain updated recharge node list N , set Qt = ∅.
For α = 0, . . . , 1 in an increment of 1/(A− 1)
While N ̸= ∅
∀j ∈ N Compute wkj ← αtkj + (1− α)lj .
Find j ← argmin

j
wkj . Broadcast node j has been selected to other vehicles.

Update its local N ← N − j, add j to the end of Qt,
move to position j for recharge.

Update lifetime of the rest nodes ∀i ∈ N , li ← li − tkj − tj .
If li ≤ 0,
Declare infeasible and inform base station.

End If
End While
If solution is feasible,
compute total cost dist(Qt).

End If
If dist(Qt) < minDist,
minDist← dist(Qt), Q← Qt.

End If
End For
If the vehicle’s battery is about to deplete,
it returns to the base station for battery replacement.

their recharge node list at this point. This operation avoids possible conflicts where
multiple MCs select the same node for recharge. Table 2.3 shows the pseudo-code
of the entire algorithm.

2.5 Performance Evaluations

In this section, we use simulation to evaluate the effectiveness and efficiency of
our framework. We have developed a discrete event-driven simulator using POSIX
thread programming in C language. Message communications between sensor n-
odes are emulated using inter-process communication in our simulator. Our simula-
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tor is fully capable of realizing message communication, information convergence,
recharge and MC mobility. To evaluate the performance, we examine two net-
work sizes of 500 and 1000 sensor nodes, uniformly randomly distributed over a
200 × 200m2 and 282 × 282m2 square field, respectively. The field size is chosen
so that the two cases have the same node density. The network consists of 3-level
hierarchy with 4l number of subareas at the l-th level. The energy consumption
on each sensor is a Bernoulli random variable with probability p to consume unit
energy (37.5 mJ). If a sensor node works continuously at this rate, the battery can
last for 5 days.

To evaluate energy overhead of the protocol, we use the model presented in
[70], i.e., et = (e1d

α
r + e0)l, where et is the energy consumption while transmitting

a message of l bits, dr is the transmission range, e1 is the loss coefficient per bit, α is
the path loss exponent and e0 is the excessive energy consumed on sensing, coding,
modulations, etc.1 The relationship between recharged energy and recharge time
follows that of Panasonic Ni-MH AAA battery [46]. To understand the impact
of the number of MCs on network performance, we show marginal cases where
the number of MCs is not sufficient while adding one more MC would guarantee
perpetual operations. These cases are S = 2, 3 for N = 500 and S = 4, 5 for
N = 1000. Fig. 2.4 shows a function from curve fitting of recharge time vs. battery
percentage. All the parameter settings in the simulation are listed in Table 2.4.

2.5.1 Evaluation of Weighted-sum Algorithm

In this subsection, we evaluate the effectiveness of the weighted-sum algorithm in
finding the shortest path and achieving no node failure. We examine cases when
4 MCs are employed. We assume the locations of emergencies are randomly dis-
tributed in the field of 282 × 282m2, and the residual energy uniformly distributed
from zero to the emergency threshold. The corresponding residual lifetime is cal-
culated by dividing the residual energy by prc, the expected energy consumption in
unit time.

Table 2.5 shows the total distance of MCs when the number of concurrent e-
mergencies M increases from 72 to 96 in a step of 8. Note that when the number
reaches 96, the set of 4 MCs is not sufficient to resolve all the emergencies without

1dr = 15m, e0 = 45× 10−9 J/bit, e1 = 10× 10−9 J/bit, α = 2.
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Figure 2.4: Curve fitting of battery recharge time

Table 2.4: Parameter Settings
Parameter Value
Field Length 200× 200, 282× 282m2

Number of Nodes N 250, 350, 500, 1000
Number of MCs S 1, 2, 3, 4, 5
Number of Levels 3
Areas on l-th level 4l

Battery Capacity 780 mAh
Transmission Range 18 m
Unit Energy Consumption rc 37.5 mJ
Energy Consumption Probability p 0.5
MC’s Speed 1 m/s
Maximum Recharge Time 78 mins
Normal Recharge Threshold 50%
Emergency Recharge Threshold 10%
Simulation Time 6 months
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Table 2.5: Total Traveling Distance of MCs, D
M D (α = 0) D (α = 0.2) D (α = 0.4)
72 7524.1 7473.3 7740.2
80 7652.4 7578.9 7706.6
88 8662.6 8128.3 7251.6
96 Infeasible Infeasible Infeasible
M D (α = 0.6) D (α = 0.8) D (α = 1)
72 6843.5 6390.6 Infeasible
80 7271.8 6941.0 Infeasible
88 6998.3 Infeasible Infeasible
96 Infeasible Infeasible Infeasible

complete battery depletion. For M = 88, weight parameter α = 0.8, 1 are not
feasible and for M = 72, 88, α = 1 is not feasible either. We notice that in the case
when α = 1, some nodes that suffer from energy shortage may not get recharged in
a higher priority thereby rendering the result infeasible to avoid battery depletion.
As we can see from this example, the choice of α is critical, when α approaches
1, the total distance is decreased at the risk of becoming infeasible. Thus we need
to search for α in our algorithm. In real applications, the value of α is subject to
change and determined by real-time statistical data and parameters.
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Figure 2.5: Comparison of static and real-time approaches in terms of (a) Percent-
age of nonfunctional nodes; (b) Average response time to emergencies.
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2.5.2 Performance Comparison with a Static Optimization Ap-
proach

In this subsection, we compare network performance of our real-time framework
with the static optimization approach used in [41]. Since the static approach has
only designed algorithms for a single MC, we set the number of MCs at 1 and com-
pare the percentage of nonfunctional nodes and response time to emergencies when
N = 250, 300. The percentage of nonfunctional nodes indicates how many nodes
have depleted energy and are waiting for the MC. The response time to emergencies
is measured from the time a node reports emergency until it is resolved by the MC.
A shorter response time indicates that the MC can respond faster to emergencies.

In the static approach, the MC selects nodes with energy less than the normal
recharge threshold, calculates the minimum traveling distance throughout these n-
odes and performs recharge one by one. Fig. 2.5(a) shows the percentage of non-
functional nodes. We can see the number of nonfunctional nodes is much higher
in the static optimization approach, e.g. when N = 250, there are around 15%
nonfunctional nodes in our framework but nearly 30% in the static approach. This
is because that some nodes in the pre-computed sequence may consume energy at
faster rates, making the initial sequence computed in the static method no longer
valid. Thus it cannot cover all the sensor nodes before energy depletion. Second,
a node in emergency is not treated with priority in the static method. Thus a n-
ode in emergency may deplete its energy before the MC arrives, resulting in high
percentage of nonfunctional nodes. The results in Fig. 2.5(a) clearly indicate that
our real-time framework is more effective in recharging sensor nodes and resolving
emergencies.

Fig. 2.5(b) shows the average response time to emergencies. We can see while
our approach takes around 10 and 12.5 hours (for N = 250 and 350 respectively),
the static approach takes drastically longer times (around 61 and 160 hours, almost
one order of magnitude longer). This is because in [41] emergency and normal
nodes are not differentiated. A pre-computed route containing both types of nodes
would result in extremely long waiting times for emergency nodes. The approach
degrades fast and becomes infeasible as the network size increases. In contrast, our
approach prioritizes nodes in emergency; it resolves nonfunctional situations much
faster than the static approach.
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Figure 2.6: Evolution of energy consumption vs. energy replenishment in 6 months
time. (a) N = 500, S = 2. (b) N = 500, S = 3. (c) N = 1000, S = 4. (d)
N = 1000, S = 5.
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Figure 2.7: Energy distribution at equilibrium. (a)N = 500, S = 2. (b) N = 500,
S = 3. (c) N = 1000, S = 4. (d) N = 1000, S = 5.
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2.5.3 Network Performance

In this subsection, we evaluate the energy evolution of the network, the number of
emergency and nonfunctional (i.e., energy depleted) nodes of the network, and the
maintenance cost of the framework.

Energy Evolution

First, we show the energy evolution in the networks with 500 nodes and 1000 n-
odes served by different numbers of MCs, compared to the upper bounds of total
recharge capabilities. In Fig. 2.4, the maximum recharging rate is achieved in the
17-th minute to 45-th minute duration. It replenishes 75% of the battery energy,
equivalent to 433 J/min. The upper bound is calculated by assuming that all the M-
Cs are performing recharge at maximum recharging rates all the time. In Fig. 2.6,
the amount of energy consumed, replenished and recharge upper bound in every
one-hour time slot is plotted as functions of the simulation time.

In Fig. 2.6(a) and (c), we can see that the consumed energy “steps down” to a
lower level around 400 hours and then enters equilibrium. This is because a portion
of sensor nodes deplete their energy and do not get recharged. In these two scenarios
the energy neutral condition has been violated, simply because the number of MCs
is not enough. Fig. 2.6(b) and (d) show the energy evolution when the number of
MCs is increased by 1, both of which satisfy the energy neutral condition at the
equilibrium and there is no such “step-down” effect in energy consumption. The
gap between the recharge upper bound and energy replenished is due to that there
are traveling time and idling time between two consecutive recharges in simulations.
In addition, the MCs may perform normal recharge in which the recharging rates
are much lower than the maximum recharging rates used for calculating the upper
bound.

The energy distribution among nodes also carries valuable information about
the health of the network. Higher average energy distribution is more robust to
unexpected surges in energy consumption. Fig. 2.7 shows the energy distribution
of N = 500, S = 2, 3 and N = 800, S = 4, 5. To see the benefits of more
MCs, compare Fig. 2.7(a) to Fig. 2.7(b). The latter has energy distribution that
concentrates around a higher average value. In Fig. 2.7(d) for a network size of
1000 sensors, the number of nodes with energy below the emergency threshold is
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Figure 2.8: Number of emergent and nonfunctional nodes (a) number of emergent
nodes (b) number of nonfunctional nodes.

significantly lower than that in Fig. 2.7(c).

Number of Emergencies

Fig. 2.8 compares the percentage of nodes in emergency and nonfunctional (i.e., en-
ergy at zero) status for networks of 500 and 1000 nodes with different numbers of
MCs. First, we can see that there are surges in the numbers of emergency and non-
functional nodes during the first 200 hours. This is due to the fact that the MCs only
responds to requests when the node energy is below the normal recharge threshold.
When such requests swarm into the job queues on the MCs at the beginning of 200
hours, we can see that the MCs’ capacity has been temporarily exceeded. As the
energy of sensors is restored, the numbers of emergency and nonfunctional nodes
decrease sharply.

To illustrate the consequences of insufficient number of MCs, we vary the num-
ber of MCs S over a range including the minimum number needed for energy neu-
tral. Fig. 2.8 (a) and (b) show the number of emergency and nonfunctional nodes
over time. For cases N = 500, S = 2 and N = 1000, S = 4 when the number
of MCs is insufficient for energy neutral, we can see that about 30% nodes are in
constant emergency and 20% nodes are in nonfunctional status after the network
achieves equilibrium. For N = 500, S = 3, there are occasional nonfunctional
nodes but they are soon recharged by the MCs. For a majority of the time, the
number of nonfunctional nodes stays at zero. For N = 1000, S = 5, the number
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Figure 2.9: Comparison of energy information convergence schemes (a) converge
to service station (b) converge to MCs.

of nonfunctional nodes stays at zero at equilibrium with only a small number of
emergencies.

2.5.4 Cost Evaluation

Comparison of Energy Information Collection Schemes

We compare energy consumption for different energy information collection schemes.
Rather than collecting energy information at the MCs, another method is to route
it through multi-hop transmission to the service station. The service station com-
putes recharge schedules and disseminates decisions to MCs via long range radio.
A challenge to this alternative scheme is that more energy is consumed on nodes
near the service station. For demonstration purposes, we draw the heat map of en-
ergy consumed in a one-hour interval after the network enters equilibrium in Fig.
2.9. First, we observe that more energy is consumed if the information is routed
back to the service station, i.e., 3-4 times of that to route it to MCs. Second, more
energy is consumed on nodes near the service station, which is shown as bright spot
in Fig. 2.9(a). Since a rechargeable battery has a limited number of recharging cy-
cles, higher loads on these nodes result in more frequent recharge and faster battery
expiration.
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Evaluation of Protocol Overhead

We evaluate the energy overhead incurred during transmission of all types of mes-
sages sent by sensor nodes or MCs, and compare with that of the static scheme
in [41], where energy information is routed to the service station every 6 hours. Fig.
2.10 shows the average energy overhead for each node per hour in a 6 month period
for different scenarios. Due to head selection, our protocol has certain amount of
overhead (around 6-8 mJ/h per node) at the beginning. We plot the energy overhead
after the networks enter equilibrium.

First, we can see that the average energy overhead is from 0.1 to 1 mJ. Compared
to the average energy consumption of 135 J/h (i.e., average energy consumption per
slot 37.5 mJ times 3600s) due to sensing activities for each node, the overhead is
negligible. Second, we can see that the average energy overhead is similar to that
the static scheme. Intuitively, our protocol could incur more energy overhead be-
cause energy information is collected more frequently. However, the static scheme
requires the energy information routed back to the service station. Thus unbalanced
energy consumption on nodes near the service station is inevitable. The scalability
of the scheme degrades when the size of the network increases. In contrast, deliver-
ing the energy information to multiple mobile MCs alleviates the unbalance in our
protocol.

The energy overhead to gather emergency energy information is not significant
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in our protocol. Both the emergency interests from MCs and emergency reports
from nodes are sent directly to proxies (i.e., top-level heads) without propagating
through the hierarchy, leading to less energy overhead. More importantly, when the
number of MCs is sufficient, most of the time the network has very small fraction
of nodes in emergency.

Normal energy information gathers causes more overhead. Upon receiving en-
ergy interests, the heads need to poll their descendants in a top-down manner which
finally results in the broadcast of energy interest message in subareas at the bottom-
level. Such broadcast, as well as the reply from each node, leads to the increase of
the number of messages transmitted and the overhead. When the number of MCs
is sufficient as N = 500, S = 3 and N = 1000, S = 5, more energy overhead is
observed.

Evaluation of Load Balance and Mileage on MCs

We monitor the energy replenished by each MC and compare their workloads. The
workload is measured by the amount of energy replenished to sensor nodes during
the entire simulation period. Table 2.6 shows that the workloads are well balanced
in all four scenarios due to the effective coordination in our framework. The MCs
share the work evenly and no MC is overloaded. On the other hand, we use the
mileages MCs travel to evaluate the cost (e.g., the energy consumed) for MCs to
move around. Fig. 2.11 shows the accumulated mileages in 6 months. For both
network sizes, the networks with fewer MCs (500 nodes and 2 MCs, 1000 nodes
and 4 MCs) have lower mileage compared with the same network with more M-
Cs (500 nodes and 3 MCs, 1000 nodes and 5 MCs), respectively. This is due to
the presence of nonfunctional nodes. According to the calculation of weight for
emergency selection (Eq. (2.20)), decision is made based on the residual lifetime
of the nodes and the traveling time from the MCs to the nodes. For the networks
with fewer MCs, there are always approximate 20% nonfunctional nodes after the
networks enter equilibrium. The weights are dominated by the traveling time which
is proportional to the distances from the MCs to these nodes. Thus the MCs always
choose the nearest nodes for recharge. For the network with more MCs, however,
the traveling time is not the dominating factor, thus the MCs may choose a farther
node with shorter residual lifetime for recharge to avoid battery depletion. This
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Table 2.6: Balance of load on MCs
MC 1 2 3 4 5
N = 500, S = 2 51% 49% - - -
N = 500, S = 3 35% 34% 31% - -
N = 1000, S = 4 25% 25% 25% 25% -
N = 1000, S = 5 22% 20% 20% 19% 19%
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Figure 2.11: Mileages MCs have traveled in 6 months.

causes the increase of MC mileage.

2.6 Conclusion

In this chapter, we study how to coordinate multiple MCs to recharge sensors and
propose a distributed real-time communication protocol for gathering energy infor-
mation. The protocols can adapt to unpredictable network conditions and satisfy
the needs for both normal and emergency recharging. Then we discussed sever-
al recharge scheduling algorithms for different scenarios. In case of emergency
recharge, an MC needs to resolve multiple emergencies at different locations. The
problem is formulated into the classic Orienteering Problem that aims to maximize
the total amount of recharged energy in a given time period. Based on the fact that
recharging time is much larger than traveling time, the problem can be simplified
into a Knapsack problem solved by dynamic programming with high accuracy. In
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the meanwhile, a weighted sum algorithm that considers sensor’s lifetime and MC’s
traveling time is proposed for normal recharge operation. Performance evaluations
have demonstrated the proposed algorithms can maintain perpetual operations of
the network effectively.
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Chapter 3

Mobile Data Gathering and
Recharge Scheduling with Mobile
Charger’s Movement Costs and
Capacity Constraints

3.1 Motivations

In the previous chapter, we have proposed a novel framework that powers sensor
nodes via wireless energy. We can see that as long as the number of MCs are enough
and the MCs are scheduled appropriately, we can extend the lifetime if WRSN to
infinitely long time for perpetual operations. However, two important questions are
still left unanswered. First, how can we determine the number of MCs for a network
plan ? Second, what if the MC’s own energy consumption and battery capacity are
considered ? Are there any impacts on recharge scheduling ?

To answer the first question, we need to analyze the relations between energy
consumption and replenishment. This is because, for WRSNs, energy replenish-
ment cannot be considered separately from energy consumption patterns, which
rely on how data is gathered in the network. Previous works in [42, 71] simply uti-
lize a static data sink to gather packets over multi-hops. It is subject to the infamous
energy hole problem [14] where nodes near the base station consume energy and
deplete batteries much faster, causing service interruptions. A single vehicle that
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gathers data and charges nodes simultaneously[41] can mitigate the problem. How-
ever, it causes high data collection latency due to the non-negligible battery recharge
time. A battery requires nontrivial recharge time (e.g., 30 to 90 min) whereas gath-
ering data takes only a few minutes (e.g., 1.6 min for transmitting 3 MBytes at
250 kbps). Thus the waiting time for completing recharge increases dramatically
when more nodes need recharge. The gathered data would inevitably experience
long latency and may be of little value when delivered to the base station for some
time-sensitive applications.

Second, ignoring MC’s own energy consumption during movement and recharge
may lead to serious problems in reality. First, it may cause impractical schedules
where the MCs deplete their energy, become stranded and unable to return to the
base station. The network would eventually use up energy and stop operation com-
pletely. Second, they tend to overestimate the MC’s recharge capability and nodes’
lifetimes since the MCs have limited battery capacity. They have to spend time
returning to the base station for battery replacement and cannot keep recharging
nodes continuously. Third, they may result in inefficient recharge scheduling and
node selection. They may choose nodes faraway simply because they have low-
er energy levels, and subsequently MCs travel back-and-forth over long distances,
wasting significant amounts of energy.

To answer the above two problems, we propose a comprehensive framework
that solves both data collection and recharge scheduling problems. To eliminate
the entanglement between recharging and latency, we employ a separate, dedicated
data gathering vehicle. Thus the data latency only depends on the mobility pattern
(e.g., dispatching frequency, number of stops, speed) of this vehicle. This avoids
long latency caused by slow recharging processes [41]. To prevent stopping at
every node thus prolonging the tour length and latency, we let nodes form clusters
and forward data to cluster heads. Thus only stops at these cluster heads are needed.
A series of interesting questions arise in this new scheme. First, what should be the
appropriate cluster size such that all nodes are covered while there are not too many
clusters causing long latency? Second, what is the minimum number of MCs to
cover all the nodes given a bounded cluster size? To answer these questions, we
establish a mathematical model for the energy neutral condition to characterize the
tradeoff between data collection latency and the number of MCs, both related to the
cluster size. A small cluster size leads to more stops, thus higher latency. In the
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extreme case of single-hop clusters, the vehicle has to traverse through every other
node to obtain all the data. A large cluster size reduces latency, but incurs more
relaying traffic and more energy consumption. Our model successfully quantifies
such trade-offs.

Next, we consider MC’s limited battery capacity and their moving energy con-
sumptions in recharge scheduling. We maximize recharge profit (i.e., the recharged
energy less the traveling cost), while meeting nodes’ battery deadlines and MC’s
capacity constraints. These constraints bring us new challenges. On one hand,
recharging nearby nodes reduces an MC’s moving cost. On the other hand, faraway
nodes, not just nearby ones, need recharge once in a while. We have to balance
between the need to recharge the whole network and the desire to minimize the
traveling cost. In particular, we need to answer the following questions: How to
schedule MCs so they will not waste energy traveling back and forth over long
distances? Which nodes an MC should select to ensure it has enough energy to
return, and in what orders so as to meet nodes’ battery deadlines? We formulate
the recharge scheduling problem into an optimization of Profitable Traveling Sales-
men Problem with Capacity and Battery Deadline Constraints, which was studied
before but has only computationally intensive solutions.

We propose two efficient algorithms. The first is a simple Greedy Algorithm
that maximizes an MC’s profit at each step. However, it may lead to long traveling
distances. We further propose a three-step Adaptive Algorithm. After collecting
recharge requests, it partitions the network into several regions using the K-means
algorithm [66]. Each MC is assigned a region and its movements are confined
within the region, so long-distance travels are avoided. Then each MC works in-
dependently to construct Capacitated Minimum Spanning Trees in its designated
region where edges in the tree have the minimum traveling cost. This ensures that
the MC’s capacity is not exceeded so it can return to its starting position. Finally,
the algorithm performs route improvements to meet nodes’ battery deadlines. It
categorizes nodes according to their lifetimes. An initial route containing nodes
that do not need prioritized recharge is first constructed using Traveling Salesmen
Problem algorithms. Then it inserts nodes that need prioritized recharge into the
route while ensuring each insertion retains time feasibility of the whole recharge
sequence.

The rest of the paper is organized as follows. Section 3.2 outlines the network
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model and assumptions. Section 3.3 describes the main design of low latency mo-
bile data collection. A mathematical model with a set of theoretical results are
derived in Section 3.4. Section 3.5 formalizes the recharge optimization problem
and proposes two algorithms. Finally, Section 3.6 provides the evaluation results
and Section 3.7 concludes this chapter.

3.2 Network Model and Assumptions

Fig. 3.1 gives a pictorial illustration of the network. Sensory data is generated at
normal nodes and aggregated at anchor points (i.e., cluster heads) in a multi-hop
fashion. A data gathering vehicle traverses the sensing field periodically and stops
at anchor points to collect data. It uploads the collected data to the base station
at the end of each data collection tour. The base station also provides basic main-
tenance of the network by offering battery replacement. It can be commanded by
network administrators remotely to perform computations such as network parti-
tioning in the Adaptive Algorithm proposed later.

Meanwhile, a fleet of Mobile Chargers query the network for energy informa-
tion using the mechanism introduced in [45]. The MCs send those queries period-
ically, make recharge decisions (i.e., which nodes to recharge, in which order) and
recharge nodes accordingly. Once an MC fulfills all requests, it sends out a query
to see whether there is new energy request. Both types of vehicles return to the base
station and have their own batteries replaced when their energy is low.

We assume a number of Ns sensor nodes are uniformly randomly scattered in a
square sensing field with side length L. Node density of the network is ρ = Ns

L2 . In
this paper, we focus on event-driven sensing applications and assume events occur
at every location with equal probability, spatially and temporally independent of
each other. Thus, the data generation process can be modeled as a Poisson process
with average rate λ[74]. All sensors transmit at the same power level with fixed
transmission range dr. The energy consumed for transmitting/receiving a packet of
length l, denoted by et, er, is modeled as in [70], i.e., et = (e1d

α
r + e0)l, where

e1 is the loss coefficient per bit, α is the path loss exponent (usually from 2 to 4)
and e0 is energy consumed on sensing, coding, modulations. In this paper, we use
e0 = 50× 10−8 J/bit, e1 = 10× 10−8 J/bit, α = 4.

The network is split into a number c clusters. A cluster is formed in a way such
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Figure 3.1: Illustration of the network architecture and components.
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that the maximum hop count from a node to the anchor point (cluster head) is k.
When a node falls within k-hops of multiple anchor points, it will join the cluster
with the least number of hops. A data gathering vehicle starts from the base station
every Tc time period, stops at anchor point location i for time ti to gather all sensed
data and returns to the base station after all anchor points have been visited. The
dispatch interval Tc is greater than the duration of the data gathering tour. The data
gathering vehicle visits anchor point locations directly to minimize transmission
energy consumption on these nodes. The transmission bit rate is B.

There are also m mobile chargers working together to replenish sensor batteries.
A number of nodes are selected for an MC to form its recharge set. If a node
cannot survive the time needed to recharge all the other nodes in the set, it needs
prioritized recharge (i.e., it should be charged earlier in the recharge sequence).
MCs can bring sensor batteries from zero to full capacity Cs in Tr time which is
governed by battery characteristics (e.g., for a Panasonic Ni-MH AAA battery [46]
of battery capacity Cs = 780 mAh and Tr = 78 min.). All the vehicles are equipped
with high-capacity batteries of Ch capacity and consume at ec J/m while moving at
speed v m/s. In addition, we have made the following assumptions: 1) we assume
the energy consumption during transmission and reception of a packet is equivalent
(er ≈ et); 2) the MCs have positioning systems and know their locations; 3) the
locations of all the sensor nodes are known to the MCs (e.g., through a one-time
effort during network initialization). Finally, important notations used in this paper
are summarized in Table 3.1.

3.3 Low Latency Mobile Data Collection in WRSNs

We now study how to minimize data collection latency given k-hop clusters. To
minimize delay, it is desirable to have the data gathering vehicle stop at fewer an-
chor points. To ensure all data can be collected, the k-hop coverage areas of these
anchor points should collectively cover the entire network. The delay mainly de-
pends on three variables: sum of stopping time at anchor points, traveling time
through all anchor points and data uploading time to the base station.

The stopping time at each anchor point depends on the amount of data generat-
ed during two consecutive visits of the data gathering vehicle. The traveling time
depends on the number of anchor points and vehicle’s speed. Hence, let us first
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Table 3.1: List of Notations
Notation Definition

Ns Number of sensor nodes
L Side length of squared sensing field
c Number of clusters in the network
k Cluster size in terms of communication hop count
m Number of MCs
dr Transmission range of sensor nodes

et, er Energy consumptions for transmitting and receiving a packet
ec Energy consumption of MC while moving
λ Average packet rate of Poisson distributed traffic
Tc Data collection period
B Data uploading bit rate
Cs Battery capacity of sensor nodes
Ch Battery capacity of MCs
Tr Recharge time of sensor’s battery
v Moving speed of vehicles

determine the number of anchor points that can cover the entire sensing field in k

hops. As studied in [14], a k-hop cluster can be closely approximated by a circle
with radius r = kdr with k coronas as shown in Fig. 3.2. Then, finding the mini-
mum number of anchor points is equivalent to finding a complete coverage of the
sensing field with minimum number of circles of radius r. The problem is closely
related to the circle covering problem studied by Kershner [73], which gives the
minimum number of circles needed to cover a rectangular region in the following
lemma.

Lemma 1: The number of circles c to cover a sensing field with area L2(L is the
side length of the field) has the lower bound of ([73])

c >
2π
√
3(L2 − 2πr2)

9πr2
(3.1)

Although the exact placement pattern to achieve this lower bound was not given
in [73], it has been proved in [20] that the maximum coverage is achieved when
we tessellate the sensing area with equilateral triangles of side length

√
3kdr and

place the centers of circles at the vertices of triangles. However, how to place
these clusters in a square sensing field considering the effects of boundaries was
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Figure 3.2: Example of equilateral triangular tessellation of clusters covering a
sensing field with hop count k = 3.

not discussed in [20] so we introduce a placement pattern first. For a square sensing
field with the origin (0,0) at the left bottom, we place I circles parallel to the x-
axis and J circles parallel to the y-axis, then the cartesian coordinates of centers of
circles at the i-th row, j-th column are

[Xij, Yij] =


[
√
3(j − 1)r, 3

2
(i− 1)r]

i = {2u+ 1; ∀u ∈ Z}
[
√
3
2
r +
√
3(j − 1)r, 3

2
(i− 1)r]

i = {2u;∀u ∈ Z}

(3.2)

After the deployment pattern has been determined, the number of circles I to cover
each row can be calculated as

I =

 ⌊
L
3
2
r
⌋+ 1, L

3
2
r
− ⌊ L

3
2
r
⌋ ≤ 1

2

⌊ L
3
2
r
⌋+ 2, otherwise

(3.3)

The number of circles J to cover each column with an odd index i = {2u+1; ∀u ∈
Z} is

J =

{
⌊ L√

3r
⌋+ 1, L√

3r
− ⌊ L√

3r
⌋ ≤ 1

2

⌊ L√
3r
⌋+ 2, otherwise

(3.4)
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Figure 3.3: A timing diagram of two consecutive mobile data gathering tours.

The number of circles J to cover each column with an even index i = {2u; ∀u ∈ Z}
is

J =

{
⌊ L√

3r
⌋, L√

3r
− ⌊ L√

3r
⌋ = 0

⌊ L√
3r
⌋+ 1, otherwise

(3.5)

Fig. 3.2 shows an example of equilateral triangular tessellation of 14 clusters cov-
ering a square sensing field with k = 3, L = 3

√
3r. Compared to the lower bound

of c > 7.97 obtained from Eq. (3.1), an additional 6 clusters are needed to cover the
boundaries of the field. Given a field length L, the number of clusters c (number of
anchor points), coverage of the entire sensing field can be obtained from Eqs. (3.3),
(3.4) and (3.5). Then we derive an upper bound of mobile data gathering latency in
the following lemma.

Lemma 2: The mobile data gathering latency is bounded by

Td ≤ Tc + (c− 1)Ts + (
√

2(c− 3)L+ 4L)/v (3.6)

where Td is the data latency, Ts = F−1
λ (ϵ)ρr2πlTc/B, F−1

λ (x) is the inverse CDF
of Poisson distribution with average rate λ, ϵ is a value close to 1 but not equal to 1
(e.g. ϵ = 0.99), v is the vehicle’s speed.

Proof. Fig. 3.3 shows a timing diagram of mobile data gathering. tni is the stopping
time at the i-th anchor point during the n-th round of data gathering. We observe
that the maximum latency occurs when a packet arrives at the first anchor point
in the visiting sequence after the data gathering vehicle has left. Then the packet
has to be buffered and wait for another collection period after time Tc, plus sum of
stopping time at subsequent anchor points, traveling time to the base station through
the rest of anchor points. The maximum stopping time Ts at an anchor point occurs
when each node generates at maximum data rate F−1

λ (ϵ). Note that ϵ is a value
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very close to 1 but not equal to 1 (e.g., ϵ = 0.99) because F−1
λ (1) → ∞. For each

cluster with a number of ρr2π sensors, Ts = F−1
λ (ϵ)ρr2π/B. Therefore, the sum of

stopping time at subsequent anchor points is bounded by (c− 1)Ts.
To traverse (c−1) nodes, a deterministic upper bound on the shortest tour length

was given in [68]. That is, for n points in a rectangle with size a × b, the shortest
tour length s <

√
2(n− 2)ab + 2(a + b). Here, a = b = L, n = c − 1, so the

upper bound of traveling time is (
√

2(c− 3)L+4L)/v. By summing by this result
with maximum stopping time at subsequent anchor points (c−1)Ts and Tc, we have
derived an upper bound of mobile data gathering latency.

From Lemma 2, we can compare the data gathering latency with the com-
bined approach in [41] numerically. For MCs of battery capacity 12Ah of 5V
(Ch = 216KJ), a recharge tour would take around ChTr

Cs
= 32 hours to finish.

This amounts to at least 32 hours waiting time for the data to be delivered to the
base station till the vehicle returns to the base station for battery replacement. For
our approach, we set Ns = 500, Tc = 60 mins, r = 45 m, c = 14, L = 160m,
B = 250 Kbps, l = 10 bytes, λ = 3 and after plug into Eq. (3.6), we have
Td ≤ 1.65 hours which is significantly less than the combined approach about an
order of magnitude. For further improvement of latency, we can dispatch the data
gathering vehicle more frequently by using a small Tc. We will use different Tc to
see their average latencies and corresponding upper bounds in the simulations.

3.4 Number of Mobile Chargers for k-hop WRSN

Having discussed k-hop cluster formation and data latency in our framework, we
now analyze the minimum number of MCs needed to fulfill all energy requests
given the number of clusters c obtained from Eqs. (3.3), (3.4), (3.5).

3.4.1 Number of MCs

For the perpetual operation of the network, the energy neutral condition must hold
in a long time period ,

E(T ) ≤ R(T ) + E0 (3.7)
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in which T is a large time, E(T ) is the total energy consumption of the network up
to T , R(T ) is the total energy replenished into the network by the MCs up to T and
E0 is the initial energy of all the sensor nodes. The energy neutral condition states
that the energy consumption of all the sensor nodes must be less than or equal to
the total energy available in long term. Otherwise, sensor nodes would eventually
deplete energy. Note that for the network to function, it is not necessary for the con-
dition to hold at every single moment. In practice, a small fraction of the network
may consume more energy in a short time window due to external activities, lead-
ing to temporary unbalance between energy consumption and replenishment. As
long as there are enough MCs, these nodes will be recharged, and such unbalance
is transient, not permanent.

Our objective is to obtain the minimum number of MCs m needed for Eq. (3.7)
to hold. First, we estimate R(T ) which is the amount of energy that can be re-
plenished into the network. The maximum recharge capacity of an MC is achieved
when it recharges sensor nodes continuously without any idling time. The longest
recharging time for a sensor occurs when a node’s energy is brought from zero en-
ergy to full capacity which takes Tr time plus the longest moving time between
two consecutive sensors in the recharge sequence (moving on the diagonal of the
square sensing field). Therefore, in the worst scenario, it takes

√
2L/v+ Tr time to

recharge each sensor. Then we can estimate the energy replenished into the network
in T time by m MCs,

R(T ) =
mCbT√
2L/v + Tr

. (3.8)

Next, we need to derive E(T ) on the left hand side of Eq. (3.7) which is a
random variable. Given the structure of the cluster of radius r = kdr, each corona
carries traffic loads from all outer coronas. The number of nodes in the i-th corona,
is Ni = (2i − 1)d2rπρ for 0 < i ≤ k. Since the outmost k-th corona only needs
to send out its own data and data is generated independently, the mean of energy
consumption at the k-th corona µk in time period T is,

µk = NiλTet = (2k − 1)d2rπρλTet (3.9)

For the i-th corona (0 < i < k), it carries all the traffic from the outer coronas so
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the mean energy consumption is,

µi = NiλTet +
k∑

j=i+1

NjλT (et + er)

= d2rπρλT
(
(k2 − i2)(et + er) + (2i− 1)et

)
(3.10)

Then we can compute the mean of network energy consumptions E(T ),

E(T ) = (
k−1∑
i=1

(
(k2 − i2)(et + er) + (2i− 1)et

)
+ (2k − 1)et + k2(et + er))d

2
rπρλTc

=

(
(
2

3
k3 − 1

2
k2 − 1

6
k)(et + er) + k2et

)
d2rπρλTc

(3.11)

Based on the energy neutral condition, by combining R(T ) in Eq. (3.8) and E(T )

in Eq. (3.11), we have the following lemma. Lemma 3: The probability for the
energy neutral condition to hold is

Pop = Φ

R(T ) + E0 − E(T )√
E(T )

 (3.12)

where R(T ) and E(T ) are obtained in Eq. (3.8) and Eq. (3.11), respectively. Φ(·)
denotes the Cumulative Distribution Function of the Normal distribution.

Proof. Energy consumption of a cluster can be described by the sum of independent
Poisson variables over T . When T is observed over a long time period, we can
use the Central Limit Theorem to approximate Poisson distribution by a Normal
distributionN (E(T ), E(T ))(the mean and variance of a Poisson distribution is the
same) [72].

From Lemma 3, we immediately get the following Proposition.
Proposition 1: The minimum number of MCs required to achieve perpetual
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operation is

m =

(Φ−1(ϵ)

√
E(T ) + E(T )− E0)(

√
2L/v + Tr)

CsT

 (3.13)

where Φ−1(ϵ) is the inverse cumulative distribution function of Normal distribution,
ϵ is a value very close to 1 but not equal to 1.

Proof. Since Φ−1(1) → ∞, we consider the network achieves perpetual operation
with very high probability approaches 1 but not equal to 1, e.g. ϵ = 0.99,Φ−1(0.99) ≈
2.33. From Eq. (3.12), we have

mCbT√
2L/v+Tr

+ E0 − E(T )√
E(T )

≥ 2.33,

after some manipulations we can obtain the minimum number of MCs m needed to
satisfy the energy neutral condition.

Based on the results from Proposition 1 and Lemma 2, we demonstrate the trade-
off between number of MCs and data latency. For L = 400 m, we change the
number of cluster hop count k and plot the corresponding number of MCs needed
as well as upper bound of data latency in Fig. 3.4. We can see a trade-off point
around k = 3. It means when k = 3, we can minimize the number of MCs without
sacrificing too much from the data collection latency.

3.4.2 Estimate Node Lifetime

To devise effective recharging schedules, we need to know how long a sensor node
can survive after it has requested for recharge. Such information is vital in making
recharge decisions in the next section. Since a node’s energy consumption rate is
a random variable and depends on traffic patterns, it is important for each node
to know its traffic burden which is determined by the number of hops from base
station. This information can be obtained by message propagation from the base
station in various routing protocols and adjusted accordingly during operation.
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Figure 3.4: Trade-off between number of MCs and data collection latency.

From Eqs. (3.9) and (3.10), we know the average traffic rate of a node in the
j-th corona (1 ≤ j ≤ k) is, λj = λ(1 + (k2 − j2)/(2j − 1)). Given residual energy
Er, the maximum number of packets the node can transmit is n = ⌊ Er

(et+er)
⌋.

Lemma 4: Given a recharge sequence of N nodes in which a node at the j-
th corona waiting to be recharged, it will survive time t with probability (lifetime
Lj > t),

P (Lj > t) = 1− γ(N, λjt)

Γ(N)
, (3.14)

where γ(·, ·) and Γ(·) are the lower incomplete gamma function and complete gam-
ma function[72], respectively.

Proof. Since sensor nodes are randomly deployed in the field, and the data gen-
eration process is independent of each other, the summation of packet interarrival
times until the sensor node can no longer transmit packets is the lifetime of the
sensor node. Because data generation is Poisson distributed with rate λj , the in-
terarrival time of packets is exponentially distributed. It is known that the sum of
independently identically distributed exponential variables results a Gamma distri-
bution with probability density function

fLj
(x) = λje

−λjx
(λjx)

N−1

(N − 1)!
, x ≥ 0 (3.15)
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and the Cumulative Distribution Function of Gamma distribution is

P (x < t) =

∫ t

0

λje
−λjx

(λjx)
N−1

(N − 1)!
dx =

γ(N, λjt)

Γ(N)
(3.16)

Proposition 2: For the recharge sequence of N nodes, if a node at the j-th
corona has probability γ(N,λjTl)

Γ(N)
≈ 0, Tl = (N − 1)(Tr +

√
2L/v), no matter where

the node is placed in the recharge sequence, it will not deplete battery energy before
its recharging starts.

Proof. The worst case occurs when the node is placed at the end of the recharge
sequence. The longest waiting time to get recharged is Tl = NTr +(N − 1)

√
2L/v

since there are N − 1 nodes ahead with
√
2L/v maximum traveling time between

two sensor nodes and
√
2L is the diagonal of the square field. Once γ(N,λjTl)

Γ(N)
≈ 0,

P (Lj > Tl) approaches probability 1 so it is guaranteed to recharge the node before
it depletes battery energy.

Based on Proposition 2, given a recharge sequence, we can calculate the possi-
bility that a node can survive the entire recharging process. This lays the theoretical
foundations to solve the recharge scheduling problem in the next section.

3.4.3 Adaptive Recharge Threshold

We observe that the difference of energy consumptions between nodes at different
locations is mainly caused by data communications. Although the hop count for
clusters k should not be too large to avoid the energy hole problem on anchor points,
it is inevitable to have higher data traffic in the inner coronas. If all the nodes
follows a universally same recharge threshold, it may result some nodes closed to
the anchor point nodes to deplete energy very soon and lead to unfair service for
nodes with higher consumption rates. To this end, the recharge thresholds should be
made adaptive and proportional to energy consumption rates at different coronas.
In other words, nodes closer to the anchor points should request recharge more
frequently than others.

Let τi(0 < τj < 1) denote the recharge thresholds for nodes at the j-th corona.
We make the ratio between the recharge thresholds of corona i and j equal to that
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between their energy consumptions due to data transmission. Assume we have set
the recharge threshold of the first corona to be τ1. The thresholds for other coronas
are,

τi =
(k2 − i2)(et + er) + et(2i− 1)

(k2 − 1)(et + er) + et
τ1 ≈

2k2 − (i− 1)2 − i2

2k2 − 1
, (3.17)

where 0 < i < k. The approximation is taken under the assumption that et ≈ er.
To illustrate Eq. (3.17), e.g. k = 5, after τ1 is set, we obtain τ2 = 45

49
τ1, τ3 = 37

49
τ1,

τ4 =
25
49
τ1 and τ5 =

9
49
τ1.

3.5 Capacitated Recharge Problem with Battery Dead-
lines

During operation, the MCs query sensors for recharge and they usually engage in
multiple recharge tasks at different locations. In this section, we study a Capacitated
Multi-Vehicle Recharge Problem with Battery Deadlines (CaMP-BaD) and consid-
er practical constraints from real sensing applications. The first challenge is the
constant changes (i.e., decrease) of charging vehicles’ energy due to moving and
recharging sensor nodes. The recharge route should be planned carefully to reflec-
t MC’s current energy status and traveling costs to nodes’ locations. The second
challenge is the nonuniform energy consumption due to data transmissions. Some
nodes consume energy at higher rates and should be taken care of more frequently
than others to maintain the functionality of the network. The recharge routes should
reflect all aforementioned concerns. The difficulty of the problem lies in achieving
conflicting goals - the need to keep the whole network running pushes the charging
vehicles to recharge as many sensor nodes as possible while the desire to reduce
cost means that charging vehicles should minimize traveling distances to save en-
ergy cost. Therefore, an ideal solution should achieve a good balance between the
two without sacrificing either.

Next we show the recharge problem can be formulated into a Profitable Travel-
ing Salesmen Problem with Capacity and Battery Deadline constraints (PTSP). In
the Profitable Traveling Salesmen Problem [51], a reward is collected by visiting
a city while the objective is to maximize the profit which is defined as the reward

58



minus cost. In our problem, the reward represents the amount of energy that can be
replenished into a sensor node and the cost measures the energy cost in traveling to
that node’s location.

To tackle the problem, we first present a straightforward Greedy Algorithm
(GA). After realizing that the greedy algorithm might incur extra movements of
charging vehicles, we further propose a three-step Adaptive Algorithm (AA) through
1) adaptive network partition using K-means algorithm, 2) Capacitated Minimum
Spanning Tree (CMST) formation and 3) route improvements using node inser-
tions. By partitioning the network, the MCs are confined in their own regions so
traveling back and forth through the entire field is avoided. Then we form CMST
for each MC. The trees indicate which subset of sensor nodes the MC should se-
lect to minimize traveling cost and ensure the total weight of the tree is within the
MC’s recharge capacity. After that, we perform route improvements on nodes in
CMST to capture sensor nodes’ dynamic battery deadlines. Finally, we analyze the
complexity of the proposed algorithms.

3.5.1 Problem Formulation

The recharge optimization problem can be defined as follows. Given a set of MCs
S = {1, 2, . . . ,m} and a set of recharge node listN = {1, 2, . . . , n}, we formulate
the CaMP-BaD problem into a PTSP problem. Consider a graph G = (V,E), where
Vi (i ∈ N ) is the location of sensor node i to be visited, and E is the set of edges.
We add a vertex V a

0 as the starting position of MC a. Each edge Eij is associated
with a traveling energy cost cij , which is proportional to the distance between nodes
i and j, ca0i represents the cost from initial position V a

0 of MC a to node i. An MC a

has recharge capacity Ca (≤ Ch) that determines the maximum number of nodes it
can recharge before it goes back to the base station for its own battery replacement.
Different MCs might have different recharge capacities during the run. Each sensor
node i has lifetime Li and demand (reward) for energy recharge ri (demand equals
the total battery capacity of a sensor node minus its residual energy). Ai specifies
the arrival time for an MC at sensor node i.

We introduce two decision variables xa
ij for edge Eij and yia for vertex Vi. The

decision variable xa
ij is 1 if an edge is visited by vehicle a, otherwise it is 0. The

decision variable yia is 1 if and only if node i is served by vehicle a, otherwise it is
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0. ui is the position of vertex i in the path. Our objective is to maximize the total
amount of energy recharged minus total traveling energy cost of the MCs while
ensuring their recharge capacities are not exceeded and no sensor node depletes
battery energy.

P1 : max

{
m∑
a=1

n∑
i=1

riyia −
m∑
a=1

n∑
i=1

n∑
j=1

cijx
a
ij −

m∑
a=1

n∑
i=1

ca0ix
a
0i

}
(3.18)

Subject to

n∑
j=1

xa
0j = 1; a ∈ S (3.19)

n∑
i=1

xik =
n∑

j=1

xkj = 1; k ∈ N (3.20)

n∑
i=1

riyia +
n∑

i=1

n∑
j=1

cijx
a
ij +

n∑
i=1

ca0ix
a
0i ≤ Ca; a ∈ S

(3.21)
m∑
a=1

yia = 1; i ∈ N (3.22)

Ai ≤ Li; i ∈ N (3.23)

xa
ij ∈ {0, 1}; i, j ∈ N , a ∈ S (3.24)

yia ∈ {0, 1}; i ∈ N , a ∈ S (3.25)

1 ≤ ui ≤ nr; i ∈ N (3.26)

ui − uj + (nr −m)xij ≤ nr −m− 1; i, j ∈ N , i ̸= j

(3.27)

In the above formulation, constraint (3.19) states that the recharge tour for each MC
starts at initial position 0. Constraint (3.20) ensures the connectivity of the path and
every vertex is visited at most once. Constraints (3.21) and (3.22) guarantee the
MC’s capacity is not violated and each vertex is visited by only one MC. Constraint
(3.23) guarantees the arrival time of the MC is within each sensor’s residual life-
time. Constraints (3.24) and (3.25) impose xij and yia to be 0-1 valued. Constraints
(3.26) and (3.27) eliminate the subtour in the planned route, which is formulated
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according to [57]. The classic TSP with Profits can be considered as a special case
of CaMP-BaD with unlimited capacity and unspecified deadlines. Since TSP with
Profits is well known to be NP-hard [51], CaMP-BaD is also NP-hard.

A direct solution to the CaMP-BaD is difficult to obtain and rare in existing
literature. Hence, we review some literature that has partially solved the problem. In
[75], a survey of different approaches to TSP with profits is presented. Lagrangian
decomposition method and approximated algorithms developed based on existing
solutions can provide solutions very closed to optimality. However, adding capacity
(Eq. (3.21)) and time (Eq. (3.23)) constraints makes the problem more complicated.
A great deal of research efforts on these two constraints are devoted in the context
of Vehicle Routing Problem, in which a number of vehicles start from a depot to
visit client locations and the objective is to minimize the total traveling cost of the
vehicles. In [60], the Capacitated Vehicle Routing Problem where each vehicle
has a fixed capacity is considered. Time constraints are studied in Vehicle Routing
Problem with Time Windows[62]. A local search algorithm is proposed in [62]
based on the k-exchange concept, and reduction of the computation for checking
feasibility constraint is also studied. A theoretical approach to obtaining 3 log n-
approximation algorithm is sought in [63] (n is the number of nodes). However,
subroutines from existing solutions visit the node with the smallest deadline last,
which contradicts to our problem where such nodes should be serviced earlier.

Due to the nature of our problem, it is not realistic to use standard optimiza-
tion techniques[60, 75] because these methods deal with datasets of static inputs
and the optimization is usually done offline through a one-time effort. In contrast,
energy consumption in our framework is probabilistic in nature. A charging ve-
hicle’s recharge capacity declines after recharging sensor nodes, so the input to
our problem is more dynamic than that most existing solutions have considered.
Furthermore, existing algorithms require high computation power that may not be
available on charging vehicles. Therefore, we need to design algorithms suitable to
our problem context. Next, we present two such algorithms.

3.5.2 Greedy Algorithm (GA)

The simplest approach is a greedy algorithm which selects the node with the maxi-
mal recharge profit (i.e., recharge reward less traveling cost) for each node selection.
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After an MC finishes recharging a node, it picks the next available node with the
maximal profit. When the its energy falls below a threshold χ, it returns to the base
station for battery replacement and then resumes recharge in the same fashion.

Despite of its simplicity, GA may have some problems in practice. The first
problem is that the MC might move back and forth over long distances, thereby
increasing the traveling energy cost. This happens when the node with the maxi-
mum profit lies faraway, and the energy efficiency of MCs can deteriorate. Second,
because the only consideration is profit, it may not fulfill a recharge request in a
fixed time. These observations offer us room for further improvements. To prevent
charging vehicles from traveling long distances, we can confine the scope of move-
ments by partitioning the network into several regions adaptively and assigning
each charging vehicle to one of the regions. Second, a more sophisticated schedul-
ing method should be developed to capture MCs’ capacity as well as sensors’ bat-
tery deadline constraints. In the next subsection, we will introduce an Adaptive
Algorithm (AA) to address the limitations in GA.

3.5.3 Recharge by Adaptive Algorithm (AA)

Adaptive Network Partitioning

In the first step, the base station requests sensor nodes for energy information pe-
riodically using the method discussed in the previous chapter. Then it adaptively
partitions the network into m regions according to the originating locations of re-
quests. The result of partitions is disseminated to the MCs using long range radio.
We utilize the well-known K-means algorithm to perform the partition[66]. Using
the K-means algorithm would allow the MCs to adaptively select a subset of nodes
with their square sum of distance minimized regarding to the centroid of each re-
gion so the MC would only move in a confined scope, and most likely with less
distances. For each region, our objective is to minimize the intra-region square sum
of inter-node distance.

S =
m∑
j=1

nr∑
i=1

∥n(j)
i − µ(j)∥2 (3.28)

in which ∥n(j)
i − µ(j)∥2 is the square distance between a recharge node ni of region

j to the region’s centroid µ(j) (computed by taking the mean of x, y coordinates of
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all the nodes in the region). Now we briefly explain the partitioning process.
Initially, we select a number of m sensor nodes with the minimum lifetime

from N to be the centroid of regions. We assign each node to the closest centroid.
After all the nodes have been associated with a centroid, we re-calculate centroid
positions taking the average value of x and y coordinates of nodes in the region.
This process is repeated until the centroids no longer change. After the partition,
the centroid of each region represents a virtual position that has the minimal sum
of distances to all the nodes in its region. This position can be used as the starting
position for the MC to recharge nodes in its region.

Generating Capacitated Minimum Spanning Tree

In the first step, m regions are generated and each charging vehicle only needs to
take care of the nodes in its region. To decide the route to recharge sensor nodes,
we need to ensure each MC’s recharge capacity is not exceeded (Eq. (3.21)). At the
same time, we also want to minimize the traveling energy cost for the MC. These
requirements lead to finding Capacitated Minimum Spanning Tree (CMST)[67]
where the total sum of demands from nodes does not exceed the MC’s capacity
and the minimum traveling energy cost can be found by constructing the minimum
spanning tree. In this way, we can ensure sensor nodes closed to each other are
placed in the same tree and later covered by the same recharge route.

The exact solution to CMST requires us to go over all possible tree setups and
pick the one with the lowest cost, which involves exponential computation. Fortu-
nately, an efficient algorithm by Esau-Williams(EW) can find a suboptimal solution
very close to the exact solution in polynomial time [67]. The EW algorithm merges
any two subtrees when there is a “saving” in the total cost of two trees.

Nevertheless, there are some limitations of the original EW algorithm when
applied for our problem. First, when determining whether two subtrees can be
merged, only the demands from sensor nodes are counted whereas the traveling
costs on edges are not considered. Second, multiple such trees can be generat-
ed. How does the MC decide which tree to pick? To overcome these limitations,
we extend the original EW algorithm. As mentioned earlier, a deterministic upper
bound on the shortest tour length is developed as

√
2(n− 2)ab + 2(a + b) for a

rectangle of side length a, b and n nodes. For the square sensing field with L side

63



length and subtree of nb nodes, we have a loose upper bound on the traveling cost,
(
√

2(nb − 2) + 2)Lec. Second, when multiple trees are generated, we select a tree
that maximizes the ratio of total energy demand to traveling cost. In this way, we
can exploit limited resources on MCs better and improve energy efficiency of the
network.

Next, we explain our extension to the EW algorithm in detail. Each MC com-
putes CMST independently by iteratively updating a distance matrix. The distance
matrix facilitates the computation process by maintaining costs of tree nodes. Let
us denote recharge set Na with na nodes for MC a (

∪m
a=1Na = Nr). We define

trade-off function ti for each node in its recharge set Na, ti = min(c
(a)
ij )− c

(a)
0i and

j ∈ Pi, where Pi is the neighboring set of node i, min(c
(a)
ij ) finds the minimum cost

from node i to its neighbor j in Pi and c
(a)
0i is the cost from node i to MC’s starting

position (i.e., the root)1. The trade-off function evaluates whether it is beneficial to
merge subtrees of nodes i and j. A positive ti indicates that it incurs smaller cost
for the MC to directly travel from the root to node i so merging subtrees of nodes
i and j is not preferred. A negative ti indicates how much it can be saved by con-
necting subtrees of i and j. Thus the most negative ti results in the most savings in
an iteration.

After ti has been computed, we search through all trade-offs ti(∀i = 1, . . . , na),
looking for the minimum trade-off (i.e., the most negative value). Assume tk is
the most negative trade-off and j is k’s minimum cost neighbor. To capture MC’s
capacity constraint in Eq. (3.21), if the sum of total demands from the subtrees of
k and j plus upper bound of their traveling cost is less than the recharge capacity
(which means we can cover the subtrees of k and j under the current recharge
capacity), we merge the subtrees of k and j. Since the action of merging k and
j has resulted in a lower total traveling cost to k, direct traveling from the root to
reach k has higher cost and should be avoid. So we remove the edge from node k

to the root by setting c
(a)
0k in the distance matrix to∞.

At this point, two subtrees satisfying the recharge capacity with minimum sum
of cost have been merged, and we need to update the minimum cost of the newly
merged tree to the root. It is done by updating the minimum cost in the distance
matrix from the tree to the root by setting the value to min(c

(a)
0i ), where i is the node

1In order to reduce intra-region traveling cost, we set the centroid output from K-means algo-
rithm to be the root.
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in the newly merged tree.
On the other hand, if merging subtrees of k and j violates MC’s recharge ca-

pacity, we need to restrict any further actions to merge j to k because these two
trees cannot be covered by the MC in a single run. Then we recompute the trade-off
function tk to search for the next neighboring node that results in minimum trade-
off until the next valid neighboring node j is found and merged to the existing trees.
The iteration continues until all the trade-offs become nonnegative, in other words,
no more saving can be made.

After the CMST has been generated, the MC selects a tree with the maximal
ratio of recharge demand to sum of tree’s edge cost and utilize the route improve-
ment algorithm to form the final recharge sequence among the tree nodes. After
the MC finishes recharging nodes in a tree, it checks whether its energy falls below
a threshold. If so, it returns to the base station for battery replacement. Table 3.2
shows the pseudo-code of our extended EW algorithm.

Insertion Algorithm for Route Improvement

After the CMST has been obtained, next we want to produce a recharge sequence
for nodes such that for each node the MC arrives before its battery deadline. Let us
denote the result from CMST to be a recharge node set N (a)

r (N (a)
r ⊆ Na). Recall

that if the condition in Proposition 2 is satisfied, a node can be placed anywhere
in the recharge sequence. We call such a set of nodes a feasible node set N (a)

f .
Otherwise, a node may need prioritized treatment to meet its battery deadline. We
denote such a set of nodes as a prioritized set N (a)

p (N (a)
f ∪N (a)

p = N (a)
r ).

Intuitively, we first use a Traveling Salesman Problem algorithm (e.g., theO(n2)

nearest neighbor heuristic algorithm[69], where n is the number of nodes) to find a
feasible solution as the initial sequence Ψ for nodes in the feasible set N (a)

f . Then
we insert nodes from the prioritized setN (a)

p into Ψ while ensuring the battery dead-
line in Eq. (5.8) for all nodes are still met. To this end, we sort the nodes inN (a)

p in
a descending order of residual lifetimes and denote the sorted sequence as Ω. We
insert these nodes starting from the first node Ω1. Let Ai denote the arrival time of
the MC at the i-th node in the shortest path Ψ, i = {1, 2, . . . , n(a)

f }.
To insert the j-th node Ωj from Ω into Ψ, we first find position mt in Ψ such that

Amt ≤ lΩj
and Amt+1 > lΩj

where lΩj
is Ωj’s lifetime. We call mt the temporary
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Table 3.2: Extended Esau-Williams Algorithm
input: recharging node set Nr, distance matrix D(a),
recharge capacity Ca, demand of nodes di, i ∈ Na.
output: CMST nodes need to recharge.
Initialize t(a) < 0, weight of tree, C(a) = 0.
while (t(a) < 0)
Find neighbor mi of i results min cost, min

mi

D(a)(i,mi).

Compute trade-off value list t(a)i = D(a)(i,mi)−D(a)(1, i).
Find k and j resulting most negative trade-off value,
k ← min

i
(t(a)), j ← mk.

do
Add new nodes Nnew ← k + j if not exist in current trees
if weight of merging subtree of Nnew < Ca

Add Nnew to corresponding tree i

Update cumulative weight of corresponding tree i, C(a)
i .

Declare Nnew is accepted.
else
Update D(a)(k, j)←∞
Search for next min cost neighbor for k,
mk ← min

mk

D(a)(k,mk).

Recompute trade-off for k, t(a)k = D(a)(k,mk)−D(a)(1, k).
Declare Nnew rejected.
until (Nnew is accepted) or (all t(a)i ≥ 0)

end while
Select a tree results maximum energy efficiency.
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maximum position to insert Ωj . It indicates the maximum number of nodes in Ψ that
can be served before node Ωj depletes its battery. To accommodate the remaining
|Ω| − j nodes, we need to find a position such that even all the remaining nodes
are inserted before Ωj , Ωj can still meet its battery deadline. We find the maximum
position m such that Am ≤ Amt−

∑na
p

i=j+1 ti and Am+1 > Amt−
∑na

p

i=j+1 ti, where ti
is the recharge time of Ωj . Now, the maximum position m represents the rightmost
position Ωj can be inserted if all remaining nodes are later inserted before Ωj .

For each of the m possible positions that Ωj can be inserted, a total traveling
cost is computed and the one that minimizes the traveling cost is selected as the
final insertion position for Ωj . Then we obtain a new sequence Ψ and remove Ωj

from Ω. The iteration continues until we exhaust Ω or an infeasible situation is
encountered. Table 3.3 shows the pseudo-code of the insertion algorithm.

We briefly illustrate how the insertion algorithm works in Fig. 3.5. We consider
two nodes Ω1, Ω2 with lifetime 104 mins and 90 mins that need to be inserted into
a feasible recharge sequence. We find the position k to insert Ω1 is between node
6 and 7 since A6 < lΩ1 < A7. To ensure Ω1 can survive when Ω2 is later inserted
before Ω1, k′ can only be between node 3 and 4 (since A3 < A6 − TΩ1 < A4).
Then we search all the 4 possible locations (before node 1, 2, 3, 4) and find that the
position before node 3 minimizes the traveling cost. Thus Ω1 is inserted between
node 2 and 3. We repeat the procedure for Ω2. Since it is the last node, we can
directly calculate the rightmost insertion position k′ and find the minimum cost
among possible inserting positions.

3.5.4 Complexity Analysis

We now analyze the complexity of our algorithms. The complexity of the greedy
algorithm is O(n) because it only selects the maximum profitable node at each
step. For the adaptive algorithm, the base station has abundant resources and it
performs the k-means algorithm. So we focus on the computing burdens on MCs
for calculating CMST and route improvements. In the worst case, there is only one
MC to recharge n nodes. For the extended EW algorithm, finding the minimum
trade-off value requires n2 + 2n iterations at the outer loop. In the inner loop, the
worst case is that for a node with the minimum trade-off value, every minimum-cost
neighbor is rejected due to capacity violations. So n iterations are required. In sum,
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Table 3.3: Insertion Algorithm
input: CMST N (a)

r , lifetime li and recharge time ti, i ∈ N (a)
r ,

distance matrix D(a), feasible set N (a)
f satisfying Proposition 2.

output: resultant recharge sequence Ψ.
Compute shortest path in the feasible set, Ψ← TSP(N (a)

f )
Sort N (a)

p in a descending order of lifetime as Ω
Initialize i← 1, last step node position k ←∞.
while Ω ̸= ∅

Find temporary max position mt in Ψ such that
Amt ≤ lΩi

and Amt+1 > lΩi

Find the max insertion position m such that
Am ≤ Amt −

∑np
r

k=i+1 tk and Am+1 > Amt −
∑np

r

k=i+1 tk.
if Cannot find m ≥ 0. break,return infeasible and report.end if

Set minimum cost cmin ←∞.
for x from 0 to m
Insert node Ωi into Ψ, get temporary sequence Ψt

Calculate cost c←
∑|Ψt|−1

j=1 Da(j, j + 1).

if c < cmin, Ψ← Ψt, cmin ← c, k ← x. end if
end for
i← i+ 1, update Ω← Ω− i

end while
Return recharge sequence Ψ, minimum cost cmin.
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Figure 3.5: Illustration of insertion algorithm.

its time complexity is O(n3).
For the route improvement algorithm, running a TSP algorithm requires O(n2)

time. Sorting nodes’ lifetimes requires O(n log n) time. Then, insertion requires
O(n2) time. Hence, the total time complexity of route improvement algorithm is
O(n2) and the adaptive algorithm takes O(n3) time. Note that although the pro-
posed algorithms are centralized, they run on the MCs that usually have much high-
er computation and energy resources than common sensor nodes. It is not difficult
for them to handle computations for large networks.

3.5.5 An Example of Algorithms

To illustrate operations of the algorithms, we show an example in Fig. 3.6-Fig. 3.7.
A snapshot of 70 recharge requests from sensors during the operation is presented
in Fig. 3.6(a) when three MCs cooperate to recharge these nodes. Fig. 3.6(b)
demonstrates the recharge routes using the Greedy Algorithm with a total distance
of 3272 m. We can see the MCs travel long distances to take care of energy requests
in the field, which matches our analysis in Section 3.5.2. Fig. 3.7(a) shows an
adaptive network partitioning of the recharge requests into three regions. Then the
MCs compute the CMST in parallel fashion in Fig. 3.7(b). Note that two trees are
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Figure 3.6: An example of the Greedy Algorithm (a) a snapshot of recharge request.
(b) recharge routes from the Greedy Algorithm.
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Figure 3.7: An example of the Adaptive Algorithm (a) adaptive network partition-
ing regarding recharge request. (b) establish CMST (c) improve recharge route.
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generated for MC 1 due to limited recharge capacity. The tree with higher ratio
between energy demands and sum of edge costs is chosen first. The uncovered
nodes will be recharged in the next round after the MC has replenished its own
battery at the base station. Next, each MC calculates an improved recharge route on
the selected tree shown in Fig. 3.7(c). MC 1 has to return to base station for battery
replacement before recharging nodes on the second tree (edges shown as dashed
line). In contrast to the Greedy Algorithm, MCs only travel a distance of 993 m
which suggests great potentials of the Adaptive Algorithm to reduce system cost.

3.6 Performance Evaluations

We have developed a discrete event-driven simulator using POSIX multi-thread pro-
gramming in C language. In our simulator, packet transmissions between nodes are
modeled by inter-thread communications and each MC also calculates the recharge
decisions by exchanging information. To model WRSNs with high accuracy, the
simulator takes real parameters such as battery recharge times.

A number of N = 500 sensor nodes are uniformly randomly deployed over
a square sensing field with side length L = 160 m. All sensors transmit at the
same power level with fixed transmission range dr = 15 m. The choice of max-
imum cluster hop-count k will have a direct impact on energy consumption and
data gathering latency. On one hand, a large k would result in large intra-cluster
energy consumptions due to more traffic relays, especially on anchor points which
aggregate all the packets. This would potentially increase the load on MCs. On
the other hand, a small k will generate more clusters. To cover all the nodes, the
data collection tour would be elongated and cause higher latency. Through trials
we find that when k = 3, c ≈ 5 clusters are needed to cover the entire field, and the
intra-cluster energy consumptions are not too large. Thus we set k = 3. Dijkstra’s
shortest path algorithm is used to route packets from sensors to their corresponding
anchor points at an average rate of λ = 3 pkt/min and 30 bits per packet following
a Poisson process. Each time slot is 1 min. The bit rate is 250 Kbps. Since a higher
initial energy takes longer time for the network to achieve equilibrium, we set all
sensors to start from 50% battery initially to make the network enter equilibrium
faster. The MCs collect energy information every 12 hours and each time it finishes
fulfilling all the energy requests.
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Figure 3.8: Evaluation of algorithms and validation of theoretical model (a) com-
parison of different algorithms (b) validation of energy consumption model.

Sensor nodes have adaptive recharge thresholds regarding their communication
hop counts to anchor points following Eq. (3.17). Given τ1 = 0.75, we can calculate
τ2, τ3 = 0.57, 0.22, respectively. The battery’s recharge time is modeled from [46].
We assume MCs are electric-powered vehicles carrying computing, communication
modules and high density battery packs (e.g., 12A, 5V standard ones). The MC can
weight tens of pounds and we assume it is 20 lbs. Using the method in [76], we
estimate that the MC consumes energy at a rate of 5.59 J/m. To evaluate how the
number of MCs affects system performance as well as validate theoretical results in
Proposition 1, we vary the number of charging vehicles m from 1 to 5 and set the
simulation time to 4 months.

3.6.1 Evaluation of Algorithm and Energy Consumption Model

We first evaluate the performance of the adaptive algorithm by comparing with the
optimal solution and weighted-sum algorithm proposed in [45]. The weighted-sum
algorithm finds the shortest recharge sequence based on traveling time and residual
lifetime of sensor nodes through a weighted parameter. It tries different weighted
parameters and chooses the best solution among all the trials. Both the weighted-
sum and adaptive algorithms aim to capture the battery deadline constraints.

Due to the NP-hardness of our problem, it is very difficult to obtain optimal so-
lutions using brute force for large networks. To provide a baseline for comparison,
we have managed to obtain optimal solutions for networks up to 30 nodes by prun-
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ing solutions that lead to infeasibility or sub-optimality. We set the residual energy
of sensor nodes uniformly randomly distributed from zero to 20% and compare
different approaches that form recharge routes through all the nodes. The simula-
tion results are averaged over 100 datasets. Fig. 3.8(a) shows the moving energy
consumption of charging vehicles. We can see that for a small network size (1-5
nodes), the gaps between our adaptive algorithm and the optimal solution is small.
This is because the number of different possible schedules is small. Our algorithm
may find the optimal schedule, or one very close. What is interesting is that the
ratio remains almost the same as we increase the number of nodes. The maximum
ratio of 1.10 appears when the number of nodes is 14. On average, the ratio is 1.065
to the optimal solution, which offers a good approximation. This shows our algo-
rithm can still find schedules very close to optimal even when the search space has
grown dramatically. For the weighted-sum algorithm, the maximum ratio is 1.22
when we have 8 nodes, and the average approximation ratio is 1.16. The results
indicate that the adaptive algorithm saves an additional 8% energy cost compared
to the weighted-sum algorithm. Besides, the selection of weight parameter in [45]
may not be easy in real applications. The adaptive algorithm utilizes an existing
solution from the TSP problem without the complexity to examine various weight
values.

We also evaluate the correctness and accuracy of the energy consumption model
shown in Fig. 3.8(b). To examine our model over different network field sizes, we
first set N = 500, L = 160m (node density ρ = 0.019 nodes/m2) and increase L

from 160 − 400 m while keeping node density the same. The theoretical results
show the average energy consumptions with variations along the curve. That is,
if we use the lower bound of Eq. (3.1) to calculate the number of anchor points,
we have a lower limit for the energy consumption. On the other hand, if we count
anchor points according to actual layouts governed by Eqs. (3.3), (3.4) and (3.5),
an upper bound on energy consumption is derived (it overestimates partial clusters
on the boundaries). It is observed that our energy consumption model can achieve
very high accuracy (falls within theoretical variations). For L = 160 − 280, the
simulation results almost match our theoretical model and for L = 320 − 400m,
the simulation results are within 15% of the average theoretical numbers. The inac-
curacies are due to an increasing number of clusters on the field boundaries, which
are not complete circles causing overestimates. Next, we will validate the entire
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theoretical model on the minimum number of MCs.

3.6.2 Evaluation of Network Performance

In this subsection, we evaluate the performance of proposed algorithms in terms
of the number of nonfunctional nodes, energy consumption vs. replenishmen-
t, recharge fairness, duration of nonfunctional nodes, data collection latency and
operating energy cost.

Nonfunctional Nodes

First, we examine the evolution of the number of nonfunctional nodes. When a
sensor node depletes its battery energy, it becomes nonfunctional until recharged.
Fig. 3.9 presents the results of nonfunctional nodes by proposed algorithms.

For the Greedy algorithm (GA), when m = 1, the number of nonfunctional n-
odes surges dramatically around 18 days to over 80% until it slowly decreases and
stabilizes at 55% around 37 days. Similar phenomenons are observed for m = 2, 3.
This is because the MCs favor nodes closer to the anchor points with more recharge
profits. Thus they do not serve nodes in the outmost corona of clusters fast enough
after their requests. MCs only cover them when their batteries nearly deplete. By
then, their recharge capacity (m = 2) is temporarily exceeded, which causes the
big spike. Although m = 1 − 3 MCs can gradually resolve most nonfunctional
nodes, it is observed that there is persistently more than 50%, 20% and 10% non-
functional nodes for m = 1, 2, 3, respectively. In contrast, the Adaptive Algorithm
(AA) provides more stability. When m = 2, 3, there is no such huge spike. For
m ≥ 3, nonfunctional nodes are within 10% at network equilibrium. This is be-
cause AA captures the sensor battery deadlines. When m = 5, AA can reduce the
nonfunctional nodes to zero.

We observe that m = 5 is likely to be a threshold since 4 MCs still result
in sporadic 5% nonfunctional nodes. From Proposition 1, after plugging in the
experimental parameters, we obtain m = ⌈4.72⌉ = 5. Thus m = 4 can barely
satisfy the energy neutral condition. This calculation matches our observations in
Fig. 3.9(b), validating the correctness of our theoretical results.
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Figure 3.9: Evolution of nonfunctional nodes. (a) GA. (b) AA.

Energy Consumption vs. Recharge

In this subsection, we demonstrate the evolution of energy consumption vs. re-
plenishment. Since GA and AA have similar curve shapes, we illustrate the energy
changes of AA only. In Fig. 3.10(a), we trace the evolution of consumed and re-
plenished energy when m = 1, 4. For m = 1, it is definitely not enough to sustain
network operations. Thus nodes continuously deplete battery and no longer con-
sume energy, which causes the drop in energy consumption at the very beginning.
Since the recharge capacity of one vehicle puts an upper limit on the energy con-
sumption, the two curves reach an equilibrium and converge after 30 days. For
m = 4, about 4 times the energy is replenished compared to m = 1, thus the large
gap in between. We also observe that when there is a drop in energy consumption,
the energy replenishment correspondingly jumps up, which represents four vehicles
acting in response to to battery depletions.

To illustrate energy balance in the network, we also show the cumulative energy
evolution in Fig. 3.10(b). For clarity and better observing the gaps and intersection-
s between curves, we plot 40 days’ simulation time. If the energy replenishment
curve is above the consumption curve, more energy has been refilled into the net-
work than consumed, and vice versa. For m = 1, the energy consumption curve is
above the energy replenishment curve. A larger gap is observed at the first 10 days,
indicating energy replenishment can barely keep up with consumptions. In contrast,
with m = 4, the energy consumption curve stays above replenishment until the two
curves first cross each other around 6 days. This is because from the very begin-
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Figure 3.10: Energy consumption vs. replenishment of AA. (a) trace of energy
evolution. (b) cumulative energy consumption vs. replenishment (40 days).

ning, more energy is consumed than replenished. Around 6 days, a few nodes have
depleted energy and stopped consuming more, which brings down the consumption
curve. The replenishment curve stays above the consumption curve until the next
crossing around 20 days. Therefore, the evolution of network energy also validates
m = 4 is a threshold case since sporadic battery depletions are observed.

Recharge Fairness

Recharge fairness indicates whether charging vehicles recharge nodes commensu-
rate to their workloads. Those having more workload (e.g., nodes near the base
station) should be recharged more frequently. This is reflected from the functional
time of sensor nodes. To quantify recharge fairness, we leverage the fairness index
from [77],

F =
(
∑n

i=1 xi)
2

n
∑n

i=1(xi)2
, (3.29)

in which xi is a normalized indicator whether a node is functional in a time slot.
xi equals 1/Ns if i is functional in a time slot, otherwise, it is zero. The fairness
index F ranges from 0 (worst case if all nodes are nonfunctional) to 1 (best case
if all the nodes are functional). In Fig.3.11(a), when nodes in the outmost ring
become nonfunctional, the fairness of GA algorithm severely degrades as vehicles
only recharge nodes with maximum profits. We can see from Fig.3.11(b) that AA
can distribute energy resources fairly among the nodes especially when m = 4, 5
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Figure 3.11: Comparison of recharge fairness. (a) GA. (b) AA.

(F = 1).

Nodes’ Nonfunctional Periods

Fig. 3.12 plots the percentage of nonfunctional durations of nodes as a function of
their locations. Using GA, nodes near the anchor points have a maximum of 22.47%
time in nonfunctional states whereas AA is only 6.02%. Further, AA spreads non-
functional durations across the field while the spikes of GA are highly concentrated
around anchor point locations. This is because nodes close to anchor points con-
sume energy faster and are more prone to become nonfunctional. GA considers
profit only and has no measure for battery deadlines. In contrast, AA considers
both profit and battery deadlines. Therefore, the duration of nonfunctional nodes
with AA is significantly less than that of GA.

Data Collection Latency

Data collection latency mainly depends on two variables: dispatching time interval
Tc and availability of routing paths. The former is a system parameter determining
how often to dispatch the data gathering vehicle; the later relies on the number and
locations of nonfunctional nodes. To transmit packets to anchor points timely, all
nodes should be functional on a routing path. We assume shortest routing paths
by Dijsktra’s algorithm are used. If a node depletes energy and there is no alter-
nate route available, all pending messages are buffered at senders until the path is
restored.
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Figure 3.12: Comparison of durations for nonfunctional nodes when m = 4. (a)
GA. (b) AA.
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Figure 3.13: Evaluation of data collection latency (a) Latency using different Tc vs.
upper bound. (b) Comparison of latency between different data collection schemes.
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To see the fluctuations of curves more clearly, we trace the evolution of data
collection latency for the first 40 days in Fig. 3.13(a). We vary Tc = 15, 20, 30

mins, resulting in average packet latencies of 27,30,34 mins respectively. The small
spikes are caused by temporary unavailability of routing paths when packets are
buffered for longer time. We have also plotted corresponding data collection upper
bounds calculated in Lemma 2 and we observe that the actual packet latencies are
well within these bounds. It is interesting to see when Tc = 15 mins, the latency
is 27 mins whereas when Tc = 30 mins, the latency only increases slightly to 34
mins. This is because data transmission time and MC’s moving time dominate
when Tc = 15 mins. This indicates that sending out the data gathering vehicle
too frequently may not help reduce packet latency too much compared to the extra
operating costs incurred.

In addition, we have also compared packet latency between different data col-
lection schemes. A static data sink is used in [42, 71] to gather all the packets and
we denote it as “Static”. A combination of data sink and wireless charging on a
single vehicle is proposed in [41] and we denote it as “Combined”. Fig. 3.13(a)
compares the average packet latency when we increase the MCs from 1 to 3. First,
we can see both the static and our schemes have about two orders of magnitude less
latency than the combined scheme. The large latency of the combined scheme is
caused by the inevitable gap between battery recharge time and data transmission
time. The delivery of gathered data has to wait for at least 10 hours until the MC
returns to the base station for battery replacement. On the contrary, our scheme em-
ploys a dedicated vehicle without any waiting for recharge. Second, although the
static scheme is expected to yield less latency than our scheme (when m = 2, 3),
it has a higher latency when m = 1. Since using a static sink results in more
traffic relays, thus higher energy consumption. When there are not enough MCs,
nonfunctional nodes lead to unavailability of routing paths and longer latencies.

Operating Energy Cost

In this subsection, we evaluate the traveling energy cost of MCs. Fig. 3.14(a)
compares the average traveling cost per vehicle for GA and AA. When m = 1− 3,
more energy cost is observed with AA. This is because the AA takes care of nodes
in the outmost corona preemptively before they deplete energy, thus more energy
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Figure 3.14: Evaluation of operating energy cost. (a) Comparing MC’s moving
cost between GA and AA. (b) Comparing total system cost between different data
collection schemes.

is used in traveling. With GA, charging vehicles travel to the outmost corona only
when recharge profits there are larger, but by then those nodes nearly deplete energy
and many become nonfunctional. Although GA has lower traveling cost when m =

1 − 3, the network performance deteriorates greatly. When m = 4 − 5, we can
partition the network into more regions with smaller sizes so the movements of
MCs can be confined in smaller regions. This brings down the movement energy
for MCs. However, as GA does not partition the network, long distance travels are
inevitable. So AA incurs less energy with more MCs.

Fig. 3.14(b) shows the total system cost on MCs for different data collection
schemes. For fair comparison, we set the communication hop count k = 3 in both
our scheme and the combined scheme in [41]. The main body of the bar charts are
energy used for recharging sensor nodes and the dark portion on top represents the
total moving energy cost on vehicles. First, we can see the static scheme used in
[71] consumes most energy since multi-hop forwarding to the base station requires
more hops of traffic relays. Although introducing a dedicated data gathering vehicle
increases the moving cost, the total system cost is still 30% less than the static
scheme. This is because we have smaller clusters and thus less energy for traffic
relay on intermediate nodes. The combined scheme seems to have the least system
cost. However, it has prohibitive network latency as illustrated in Fig. 3.13(b).
Further, since the data collection hop count k = 3, it is possible that some nodes
are not covered in simulation time. So their packets have to be buffered until the
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MC moves into multi-hop communication range. It lowers the energy consumption
at the cost of dramatically exacerbating packet latency.

Trade-off between Network Performance and Expense

Finally, we evaluate the trade-off between network performance and monetary costs
of the MCs. We assume one MC may not cost too much (e.g., $100) when man-
ufactured at large scale. Fig. 3.15 shows the average percentage of nonfunctional
nodes versus the total costs of MCs. Initially there are one MC and one data collect-
ing vehicles, resulting in nearly 42% nonfunctional nodes. Adding one more MC
reduces this number to 12%. As we keep adding, the marginal benefits decrease
whereas the expense grows linearly. This shows that when the number of nonfunc-
tional nodes is already very small (e.g. below 10%), adding more MCs may not be
cost-effective. Therefore, considering such trade-offs, a good strategy is to select
a minimum number of MCs that can maintain very low levels (e.g. around 5%) of
nonfunctional nodes.

3.7 Conclusions

In this chapter, we consider several important factors overlooked in the previous
chapter, including the MC’s energy consumption, capacity limits, energy efficien-
cy and data latency. We first propose a low latency mobile data gathering scheme
that can collect packets from all nodes and provide theoretical results on latency.
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Then we establish a mathematical model to calculate the minimum number of MCs
needed, nodes’ lifetimes and adaptive recharge thresholds. We formulate recharge
optimization problem into a Profitable Traveling Salesmen Problem with Capacity
and Battery Deadline constraints, which is NP-hard. We propose two low complex-
ity algorithms. The greedy algorithm maximizes the recharge profit in each step.
A three-step adaptive algorithm systematically captures the recharge capacity and
nodes’ battery deadline constraints while minimizing traveling costs. We evaluate
and compare the proposed algorithms by extensive simulations. They show that the
adaptive algorithm can provide better stability by reducing the number of nonfunc-
tional nodes and their durations. We also validate the theoretical results through
simulations. The comparison with other schemes show that the adaptive algorithm
achieves both low latency and high energy efficiency.
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Chapter 4

Multi-hop Wireless Charging via
Resonant Repeaters

4.1 Introduction

In the previous chapters, the MC can only recharge one sensor node at a time due
to physical limitations from wireless charging range. This is because the charging
efficiency decays as an inverse cube of distance - hence, most of the previous works
only considered “short-range” charging where an MC needs to approach nodes in
very close proximity and can only recharge the nodes one by one. This may lead to
extremely long recharging latency: if a rechargeable battery takes 1-4 hours to fully
recharge, a network of hundreds of nodes can take days or weeks. During such long
latencies some nodes may exhaust energy and cause service interruption.

Inspired by the latest advances in mid-range wireless charging (where mid-
range refers to energy transmitting distances much larger than the diameter of coils)
that can relay energy over several hops to simultaneously replenish multiple nodes,
in this paper, we explore how to leverage this technology to solve the above prob-
lems and enhance network scalability and performance.

One of the most cost-effective means to relay energy is to use resonant repeater-
s. Resonant repeaters can be easily manufactured from copper coils at low costs. In
[80], significant improvements (10%-46%) in efficiency are reported by adding res-
onant repeaters between the source and receiving coils. In [81], distributing 15mW
energy over a distance of 2m to 6 different loads through 4 resonant repeaters has
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(a) Distribute 15mW energy to 6 loads by 4 repeaters over 2m.
Repeater coils are twisted on the black wheels with loads sepa-
rated in between (courtesy of [81]).

(b) Power a 14W lamp by organizing
repeaters into domino form (courtesy
of [78]).

Figure 4.1: Experimental prototypes of multi-hop wireless charging using resonant
repeaters[78, 81].

been demonstrated (Fig. 4.1(a)). In [78], experiments have shown that resonant
repeaters can be organized into a domino form to power a 14W lamp (Fig. 4.1(b)).
Their theoretical results indicate up to 50-70% charging efficiency even after 5-6
hops of relays.

For WRSNs, only very few works have considered recharging nodes in multi-
hops [82, 84]. Although pioneering first steps, these works do not consider the
physics laws governing wireless charging efficiency. In practice, the efficiency is
not only impacted by the distance and MC’s position, but also by a series of phe-
nomenons such as cross-coupling where complex interactions between neighboring
resonant repeaters cannot be simply ignored. Further, unlike data flows whose rates
can be continuously adjusted, an energy flow can be turned on/off but there is no
easy means to alter its rate over links [78]. Thus these works would deviate from
real network operating conditions.

To tackle these limitations, we propose a new multi-hop wireless charging frame-
work to improve charging capability and scalability. With a low-cost repeating cir-
cuit installed, sensor nodes can relay energy to their neighbors. Since previous
single-node recharge scheduling algorithms do not consider such energy relaying,
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we provide a new recharge scheduling algorithm for this fundamentally different
charging model. The new framework raises several interesting questions. First, how
to quantify the improvements from charging capability compared to the single-node
recharge in terms of the number of nodes a MC can cover, and the number of M-
Cs needed? Second, given time-varying recharge requests, where MCs should stop
to recharge surrounding nodes such that multi-hop wireless charging cost is mini-
mized and how to schedule the MCs to minimize the moving cost? Third, are there
any relationships between the two types of costs and is there a way to minimize the
total system cost? Finally, what is the tradeoff among energy efficiency, network
scalability and packet latency compared to the single-node recharge scheme?

To answer these questions, we first show how to accurately calculate wireless
charging efficiency based on well-established methods in physics and electronics
[78], so as to estimate energy charging cost during multi-hop relay. Then we the-
oretically analyze the energy consumptions under the hybrid data gathering model
and estimate the improvements of using multi-hop charging. Based on the mathe-
matical model, we can derive the number of MCs needed to cover a network. Fur-
ther, to minimize both charging and moving costs, we formulate recharge schedul-
ing into a problem in the category of location-routing problems [85] with two ob-
jectives. Since the problem is NP-hard, we propose a two-step approximation algo-
rithm that guarantees all energy demands are satisfied while minimizing the costs.
In the first step, we identify a set of representative sensor locations (called “an-
chors”) where MCs stop and recharge nearby nodes such that overall charging cost
is minimized. Our algorithm achieves a bounded approximation ratio of log n to
the optimal solution (where n is number of nodes). In the second step, we first u-
tilize an approximation algorithm for the Traveling Salesmen Problem to compute
a complete shortest recharge tour through anchors. Then we assign recharge routes
for different MCs by dividing the complete tour according to MCs’ recharge capac-
ity, energy demands and multi-hop charging cost. Given the selection of anchors,
our algorithm generates recharge tours with the moving cost on MCs bounded by
(5
2
− 1

2k
) ratio to the optimal result (where k is number of tours). Finally, upon

discovering more room exists to optimize the system cost (charging cost plus mov-
ing cost), we propose a post-optimization algorithm that iteratively changes nodes
with low charging efficiency into anchors and inserts them back into the established
routes to further reduce the overall system cost.
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Figure 4.2: Multi-hop wireless charging based on resonant repeaters.

The rest of this chapter is organized as follows. Section 4.2 outlines the network
model, and briefly describes how to compute charging efficiencies. Section 4.3 for-
malizes multi-hop recharge scheduling into a bi-objective optimization problem and
proposes a two-step approximation algorithm with a post-optimization algorithm
given in Section 4.4. Section 4.5 provides simulation results. Finally, Section 4.6
gives some discussions and Section 4.7 concludes this chapter.

4.2 Preliminaries

In this section, we introduce the network model and briefly describe the procedures
to calculate multi-hop charging efficiency while taking comprehensive factors such
as mutual inductance and cross-coupling into consideration.

4.2.1 Network Model

Network Components

Fig. 4.2 shows the basic components in our framework. We assume N static sensor
nodes are uniformly randomly distributed in a circular field. An embedded resonant
repeater is added into the charging circuitry on both MCs and sensors. It can be
manufactured at low costs using copper wires/coils.
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In contrast to previous works in [82, 84], which do not provide any model of
energy relay or charging efficiency, our framework establishes on physical models
and provides concrete details by considering mutual inductance and cross-coupling
effects between neighboring sensor coils. For simplicity, we assume all the nodes
and MCs have identical coils with nt rounds and rs radius. To successfully relay
energy, nodes need to tune their resonant frequencies to the same frequency as MCs
and these nodes form a charging set around the stopping location of an MC. In
practice, this is done by having different resonant frequency bands for neighboring
charging sets. The band between different frequencies is wide enough to avoid any
interference.

To provide an effective charge that can stimulate enough currents on sensors’
reception circuits, the charging efficiency η should be greater than a threshold τ ,
e.g., τ = 30%; otherwise, the node cannot be properly charged and it stops relaying
wireless energy. We assume a charge controller is built into the circuit. It regulates
the charging current to be a constant and stable value in order to protect the battery
and elongate its lifespan.

If a node’s battery level falls below threshold β, a recharge request is triggered
and sent to MCs. m MCs respond to recharge requests cooperatively. They stop at
selected sensor locations (called anchors) to recharge nodes that have also requested
for recharge with multi-hop energy relay.

To maintain perpetual operation of the network, the MCs need to make every ef-
fort to recharge nodes before their battery energy depletes. For a recharge schedule,
we denote the time instance when the MC begins to recharge sensor i (via multi-
hops) by Ai. Then for the node with lifetime Li, the MC should arrive before the
battery depletes, Ai ≤ Li. Li = Ei/µi where Ei is the residual battery energy
and µi is the average traffic rates including the traffic relayed by i. In practice, it is
common that the energy requests come in the form of bursts and the MCs cannot
handle all the requests at once. Some nodes that cannot be recharged on time will
deplete energy and become nonfunctional temporarily. To this end, we introduce a
term of recharge delay, qi, to measure how long an MC misses the battery deadline
of a node (late arrival). qi takes the maximum value of Ai − Li and 0. That is, if
Ai > Li, a late arrival occurs and qi = Ai − Li; otherwise, qi = 0. The recharge
delay is also a measure of the time duration while a node is in nonfunctional status.

In addition, we make the following assumptions: 1) We assume the network
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is connected so messages can be exchanged among nodes. 2) Because nodes are
static, network topology can be obtained at the initialization stage by a one-time
effort. 3) To increase life cycles of batteries, only nodes in the charging range with
energy below a threshold β will be recharged. Otherwise, they serve as energy
relays for other nodes by switching on the resonant repeating circuit. 4) When the
MC is about to deplete its battery, it goes back to the base station for a quick battery
replacement.

4.2.2 Multi-hop Wireless Charging Efficiency

Calculating multi-hop wireless charging efficiency is the key in our framework. In
this subsection, we describe an approach to estimate efficiency ηn after n relays. In
principle, efficiency is governed by mutual inductance. Let Lij denote the mutual
inductance between repeaters on nodes i and j. From [79] we have

Lij = κij(ntLs)
2 ≈ r3s

2d3ij
(ntLs)

2 (4.1)

where rs is the coil radius, nt is the number of rounds of coil wires, κij is the
magnetic coupling coefficient between nodes i and j (0 ≤ κij ≤ 1), and Ls is
the self-inductance of coils. Ls = µ0rs(ln

8rs
rd
− 2), rd is the wire radius and µ0

is the permeability constant equal to 4π × 10−7H· m−1 (Henry per meter). The
approximation is taken when wireless charging distance dij between i and j is much
larger than the dimensions of coil radius rs. Based on Kirchoff’s Voltage Law,
an established method in [78] can be used to calculate charging efficiency. The
input voltage from MC’s transmitting coil induces currents I2-In on all sensor coils
oscillating at frequency w and these values can be obtained by solving n linear
equations as shown below (where X = wLs − 1

wC
and C is the capacitance).

R + jX · · · jwL1n

jwL12 · · · jwL2n

... . . . ...
jwL1(n−1) · · · jwL(n−1)n

jwL1n · · · R + jX




I1

I2
...

In−1

In

 =


Vsc

0
...
0

0


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Figure 4.3: A schematic of multi-hop wireless charging circuitries.

The above computation ensures that mutual inductance and cross coupling ef-
fects are accounted in our model. To maximize the utility of resonant repeaters,
nodes finish charging their batteries should still act as energy relays. Denote the
resistance of the charging circuit of branch B by R in Fig. 4.3. A resistor of the
same R is added to match its resistance with the charging circuit. When a node is
charging, switch at branch A is open and the output load is R. Once charging is
finished, the battery stops charging and makes branch B open. Then we close the
switch at branch A so the output load is still R. In this way, the charging efficiencies
can stay the same despite some nodes might finish recharging earlier.

Although there are some energy cost in the repeating circuity, it can be justified
from the following two aspects. First, since battery has a low internal resistance[46],
the energy dissipated on the resistor for the given charging current is very smal-
l. Our model will successfully capture this factor into the calculations of charging
efficiency next. Second, since nodes within MC’s charging range share similar
amounts of traffic load, the standard deviation of recharge times is small. Nodes
within the same charging set usually finish charging at around the same time, there-
by reducing the energy costs during these time gaps.

While relaying energy, power consumption of the resonant repeater is the energy
dissipated at the resistor R (i.e., I2kR, where Ik is the constant current at branch of
the k-th relay). The efficiency at the n-th repeater output is

ηn = (RI2n)/(R
n∑

k=1

I2k) = I2n/
n∑

k=1

I2k . (4.2)

As an example, in Table 4.1, we calculate the charging efficiency for up to
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Table 4.1: Charging efficiency vs. relay hops
hops 1 2 3 4
d = 0.25 m 0.93 0.88 0.85 0.81
d = 0.5 m 0.89 0.68 0.54 0.39
d = 0.75 m 0.82 0.48 0.43 0.11
d = 1 m 0.78 0.33 0.27 0.03
d = 1.25 m 0.53 0.21 0.11 0.01
d = 1.5 m 0.35 0.08 0 0

4 hops with nt = 300 rounds and rs = 10 cm coil radius while changing the
hop-to-hop distance d from 0.25 m to 1.5 m. First, we can see wireless charging
efficiency decreases with more hops. This matches the intuition that energy relay
attenuates rapidly from the source. Second, we observe that the efficiency decreases
sharply when d is larger. This is because that the mutual inductance declines as an
inverse cube of distance. For instance, when d = 0.25 m, charging efficiency after
4 hop relay (η4) is still 81%. When d = 1.5 m, η2 has reduced to 8% and hardly
provides any effective charge for sensor’s battery. Thus, the efficiency depends on
the number of intermediate nodes that are relaying energy as well as the distance
between them. Based on this method, each node can calculate energy cost during
multi-hop charging by acting as a source where the MC might be residing at. Since
the charging range is usually much less than the communication range, nodes can
propagate requesting packets to know the positions of their neighbors and use this
information to calculate charging efficiency.

4.3 Scheduling MCs for Multi-hop Charging

In this section, we discuss how to schedule m MCs for multi-hop wireless charging
to respond to sensors’ energy requests. A variety of practical factors, e.g., location-
dependent charging efficiencies, energy charging cost, MC’s recharge capacity, and
energy consumption in movements, are brought into our problem formulation.

Our objectives are two-folds: on one hand, we aim to minimize the energy cost
via multi-hop charging. It requires MCs to select advantageous locations (anchors)
for stopping so that overall charging efficiency is maximized. On the other hand,
we want to minimize moving energy consumption for MCs within their recharge
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capacities. In principle, our problem resembles the location-routing problem (L-
RP) [85]. LRP finds the optimal warehouse locations for minimum accessing and
distributing costs of traversal routes over demand locations that start and end at
warehouses. It encompasses two NP-hard problems, i.e., location and routing prob-
lems, and seeks to provide an integrated solution to optimize the overall system
cost. However, instead of MCs directly visiting each warehouse location in the o-
riginal LRP, our problem involves an additional level of cover problem. That is, the
anchors have to ensure that all sensors are “covered”, i.e., be charged either directly
or via multi-hops. Based on the energy requests at different times, MCs need to
calculate anchors and fulfill all requests from sensors adaptively.

Thus we formulate our problem in the context of LRP with two objectives that
minimize both MCs’ charging cost and moving cost. Due to the NP-hardness na-
ture of our problem, we propose a two-step approximation algorithm. In the first
step, a ratio of log n to the optimal charging cost is achieved, where n is the total
number of recharge requests. In the second step, given the selection of anchors, the
maximum touring cost is bounded by a ratio of (5

2
− 1

2k
) to the optimal solution,

where k is the number of scheduled tours (normally, k = m). Finally, based on the
results from the algorithm, we study the relationships between the two objectives
and combine them into a single-objective problem using the weighted method [90].
A post-optimization algorithm is proposed to further reduce the total system cost
by inserting anchors into the established routes.

4.3.1 Problem Formulation

Given the set of MCs,M, the set of sensor nodes requesting recharge,N , the set of
potential anchors where MCs can stop,A(A ⊆ N ), and the set of starting locations
of MCs, I, we formulate the problem as follows.

Consider a graph G = (V,E), where Vi (i ∈ N
∪
I) is the location of sensor

node i, and E are edges connecting sensor nodes. The weight of an edge Eij is the
energy cost cij traveling on the edge, which is proportional to the distance between
nodes i and j. Each MC has recharge capacity Ch corresponding to the maximum
number of nodes and distance it can travel in each tour. A node i has energy demand
di (which equals full capacity minus its residual energy). Each anchor a covers a set
of nodes Sa and the entire covered set of all the anchors achievesN (

∪
Sa∈A = N ).
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Recharging Sa requires ta time which is usually determined by the node with the
longest recharge time. For a node i, ηia denotes the recharge efficiency when an MC
resides at anchor a. Several decision variables are introduced in the formulation.
xijk is 1 if anchor i ∈ A immediately precedes j ∈ A for MC k; otherwise, it is 0.
For i ∈ N , k ∈ M, a ∈ A, yia is 1 if node i can be recharged when an MC resides
at a ∈ A. zik is 1 if node i is recharged by MC k. ua is 1 if an anchor a is chosen;
otherwise, it is 0. vik is the position of anchor i in the path of MC k. Our objective
is to minimize the charging cost in multi-hop energy relays, Fc, and MCs’ moving
cost, Fm.

P1 : min F = (Fc, Fm) (4.3)

where,

Fc =
∑
i∈N

∑
a∈A

1− ηia
ηia

diyia (4.4)

Fm =
∑
i∈A

∑
j∈A

∑
k∈M

cijxijk +
∑
i∈I

∑
j∈A

∑
k∈M

cijxijk (4.5)
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Subject to ∑
i∈A

xijk = zjk, j ∈ A, k ∈M (4.6)∑
j∈A

xijk = zik, i ∈ A, k ∈M (4.7)∑
a∈A

yia = 1, i ∈ N (4.8)

ηiayia > τ, i ∈ N , a ∈ A (4.9)

yia ≤ ua, i ∈ N , a ∈ A (4.10)∑
i∈N

zik(
∑
a∈A

diyia/ηia) +
∑
i∈A

∑
j∈A

cijxijk +∑
i∈I

∑
j∈A

cijxijk ≤ Ch, k ∈M (4.11)∑
k∈M

zak = ua, a ∈ A (4.12)

2 ≤ vik ≤ |N |, i ∈ A, k ∈M (4.13)

vik − vjk + (|A| − |M|)xijk ≤ |A| − |M| − 1

i, j ∈ A, k ∈M (4.14)

xijk, yia, zik ∈ {0, 1}, i, j ∈ N , a ∈ A, k ∈M (4.15)

In the above formulation, constraint (4.6) and constraint (4.7) stipulate the connec-
tivity of the path that an MC stopping at an anchor also leaves it. Constraint (4.8)
imposes that all the nodes request recharge are covered by anchors. Constraint (4.9)
ensures that the recharge efficiency for a node from its anchor should be larger than
the efficiency threshold. Constraint (4.10) guarantees that a node is assigned to one
of the anchors. Constraint (4.11) mandates that the sum of total demands serviced
by an MC plus its moving energy consumptions should not exceed its recharge
capacity. Constraint (4.12) enforces that each anchor is visited by only one MC.
Constraints (4.13) and (4.14) are formed according to [57] to prevent subtours of
MCs. Constraint (4.15) forces xijk, yia and zik to be 0-1 valued.

Remarks: This formulation reflects recharge schedules at time t based on N

energy requests (N is an input). For executions at different times, the optimiza-
tion problem takes corresponding inputs and generates different results (anchors,
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MC schedules, etc). Although we do not formulate node lifetime strictly into the
formulation, it will be considered by our algorithm in Section 4.3.2 and Section
4.4.3.

The above problem is NP-hard because the location routing problem is known
to be NP-hard[85]. Although standard optimization procedures can yield optimal
solutions [85], it is prohibitive to run them on MCs due to enormous computation
overhead. The base station has computational resources. However, the commu-
nication overhead to maintain updated energy requests and disseminate recharge
decisions for MCs could be high in a long run. Moreover, the existing optimization
methods are usually designed to handle static inputs and lack the flexibility to deal
with constant variations in sensor networks such as battery energy and MC move-
ments. Therefore, a polynomial-time approximation algorithm with an acceptable
bounded ratio is more desirable in practice. To design the approximation algorithm,
we follow a natural approach to tackling the objectives sequentially and finally ex-
amine the relationships between them. Next, we propose a two-step approximation
algorithm which first selects the anchors that minimize energy charging cost, and
then finds the minimum recharge routes for MCs.

4.3.2 Approximation Algorithms

In this subsection, we explain the details of the algorithm. We first define a charging
set Si of node i as its nearby nodes with charging efficiencies larger than τ when
an MC stops at node i. At the network initialization phase, each node performs
the procedures in Section 4.2.2 to compute its charging set in a distributed manner.
For node i, its neighbor j is included in Si only if j’s charging efficiency is larger
than threshold τ and the corresponding efficiency is denoted as ηj,i (j ∈ Si). The
algorithm starts with finding the set of anchors based on the energy requests.

Adaptive Anchor Selection

We define the weight of each set Si as the total energy needed to satisfy the recharge
demands of these nodes, wi =

∑
j∈Si

(1 − ηj,i)dj/ηj,i. It is not difficult to observe
that our objectives in Eq. (4.4) is equivalent to minimizing the sum of weights of the
selected sets. In general, this problem belongs to the category of Set Cover Prob-
lem (SCP) with one difference: While the original SCP allows the results to share

94



Table 4.2: Adaptive Anchor Selection Algorithm
Input: Recharged node set N , charging set Si,
energy demand di, charging efficiency of node j
ηj,i when an MC stops at i, i ∈ N . Empty sets A, B.
Output: Set of anchors A and resultant subsets B
While B ≠ N
Calculate wi =

∑
j∈Si

(1−ηj,i)dj
ηj,i

/|Si|.

Find minimum weight k = argminiwi, i ∈ N .
A ← A

∪
k, B ← B

∪
Sk.

Si ← Si −B, ∀i\k ∈ N .
End While

the same nodes and thus resultant sets are not necessarily disjoint, our formulation
restricts a node to be recharged by only one MC (Eq. (4.12)), since if a node can be
recharged by more than one MCs in different recharge routes, it is always preferred
to assign the node to a charging set with higher charging efficiency. Hence in our
problem, the resultant sets should be disjoint. Next, we modify the classic greedy
approach to fit into the context of our problem.

Initially, we define sets A and B to record anchors and their covered node sets
respectively and both sets are initialized to empty. First, for each node i ∈ N ,
we compute its average weight, wi =

∑
j∈Si

(1−ηj,i)dj
ηj,i

/|Si| and search for the set
with the minimum wi. Assume node k’s subset has the least average weight so k

becomes an anchor. Then, it is added into A and Sk is put into B to be marked as
“covered.” In practice, this is done by tuning all the nodes in Sk to have the same
resonant frequency (described in the next subsection). Since those nodes might be
also covered by other sets, we need to remove them from the remaining sets. Their
elements are updated accordingly, Si = Si − B, ∀i\k ∈ N . At this time, if B
contains all the nodes in N , the algorithm terminates. Otherwise, it continues to
find the next set among the remaining nodes with minimum average weight until
all the nodes are covered (B = N ). Algorithm 4.2 shows the pseudo-code for the
adaptive anchor selection algorithm.
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Resonant Frequency Assignment

After the anchors have been found in the first step, we need to assign resonant fre-
quencies in order to distinguish charging sets and avoid potential interference. By
tuning to a proper frequency, nodes can “join” or “leave” a set very easily. Given an
available resonating frequency range, we divide it into numerous frequency band-
s and each band should be reused as long as there is no interference between the
neighboring charging sets, i.e., the frequency assignment for each charging set and
its neighbors are different. This problem is equivalent to the classic vertex coloring
problem [56] which tries to color nodes in a graph with as small number of colors
as possible such that no two adjacent nodes have the same color. Here, the vertice
are anchors and edges are connections represented by energy relays between an-
chors if the distance between any two elements in their charging sets is less than
the maximum charging range rmax. Unfortunately, vertex coloring is a well-known
NP-hard problem and it even turns out that approximation within n1−ϵ is NP-hard
(0 < ϵ < 1, n = |A|)[86]. For a reasonable balance between computation com-
plexity and optimality, we propose an algorithm that uses at most max

1≤i≤|A|
(∆i + 1)

frequency bands, where ∆i is the degree of anchor i. A set of frequency bands is
denoted by F = {f1, f2, . . . , fn}.

After the anchors are determined in Section 4.3.2, the algorithm starts from an
arbitrary anchor in A and uses f1 as its resonant frequency. Then it proceeds to the
next anchor and uses available frequency band with the lowest fi if it is not used by
any of its neighboring anchors. The algorithm terminates when all the anchors inA
are assigned proper frequency bands. At this point, the anchors, charging sets and
their resonant frequencies are determined and these decisions are disseminated to
the anchors. Anchors also send out packets carrying their corresponding frequency
information within the boundary of their charging sets. Since the maximum charg-
ing range rmax is usually less than transmission distance dr, the construction of
charging sets is done easily by one-hop transmission. Thus, the message overhead
is O(|N − A|). The algorithm is summarized in Algorithm 4.3.

Note that the upper bound of max
1≤i≤|A|

(∆i + 1) holds because an anchor i has

at most ∆i neighboring anchors and occupies at most ∆i frequency bands (some
of the neighboring anchors may have already been assigned frequencies). By the
same token, for the anchor with the maximum degree, at most the same amount
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Table 4.3: Resonant Frequency Assignment Algorithm
Input: Set of anchors A, set of frequency bands F .
Output: Frequency assignment fa, ∀a ∈ A.
Establish connections among anchors based on rmax.
While A ̸= ∅
Check the frequency of anchor a’s neighbors, denoted by F ′.
Find available frequency bands, F ← F −F ′.
Assign frequency min(fk) k ∈ F to anchor a.
Set frequency of nodes in charging set Sa to fk.
A ← A− a.

End While

of frequency bands are needed for its neighbors. Thus, it is not difficult to see the
upper bound holds at the maximum degree of anchors.

Schedule Recharge Routes

After the set of anchors A has been found, we assign the recharge routes for m

MCs while considering MCs’ capacities along with their moving cost and multi-
hop charging cost. Based on [87], we propose an approximation algorithm to bound
MCs’ moving energy cost given the anchors. Our approach first utilizes a Traveling
Salesman Problem (TSP) algorithm to compute a complete route on A, e.g., 1.5-
approximation Christofides algorithm [88]. In this way, we can ensure that anchors
close to each other are placed on the same MC’s recharge route. To facilitate our
analysis, we assume that the complete tour starts at the base station and ends at the
last node for recharge. In fact, the starting positions of MCs are the ending positions
from the last tour and MCs traverse through the base station to upload data packets.
The recharge sequence can be expressed as r = (b, 1, 2, . . . , i, . . . , n), where anchor
i ∈ A, n = |A| and b is the base station. To reflect MC’s starting position, an extra
edge with cost ci,b, i ∈ I, can be added to represent the energy cost from MC’s
starting location i ∈ I to the base station b. Let cmax denote the maximum energy
cost from any node on the path to the base station, cmax = max

i∈A
∪

I
cb,i. The TSP

algorithm yields a complete route r that incurs cr energy cost using one MC.
Next, r is split into k tours. For partitioning, we start with an arbitrary direction

along r. For each route j, 1 ≤ j ≤ k, we find the last anchor along the complete tour
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r that ensures the traveling energy cost is no greater than j
k
(cr−cmax)+2cmax. Here,

the term 2cmax is the maximum energy cost from MC’s starting position to the base
station plus the cost from the base station to the first anchor on the recharge path.
Then r will be split into k tours. Let aji and ajl represent the i-th and the last nodes
in the j-th tour, respectively. The j-th tour is then obtained as (Ij, b, aj1, a

j
2, . . . , a

j
l ).

k depends on MCs’ recharge capacity (constraint in Eq. (4.11)). We check
whether an equal division of m MCs from the total energy costis less than MC’s
capacity. Depending on the results, there are two cases:

Case 1: If an equal division of m among the total cost is less than MC’s capacity
Ch, k = m. In this case, m MCs are sufficient to cover all the nodes in one shot.

Case 2: Otherwise, k > m and,

k = ⌈(
∑
i∈A

∑
j∈Si

(1− ηj,i)dj
ηj,i

+ cr − cmax)/(Ch − 2cmax)⌉. (4.16)

This case usually occurs when the temporary energy demands overwhelmingly ex-
ceed MCs’ recharge capacity so that they have to take ⌈ k

m
⌉ rounds to cover all the

routes. In each round, at most m routes can be selected from k, thus late recharge
for some nodes is inevitable. Therefore, our objective is to reduce the recharge
delay as much as possible. Let us denote the recharge time for node i by ti and
traveling time between nodes i and i + 1 by ti,i+1 in the recharge sequence. For
multi-hop wireless charging, the MC leaves an anchor after it has fulfilled all re-
quests in a charging set, so the recharge time of Sa is ta = maxi∈Sa(ti). The total
time duration for a route j is Tj =

∑lj
a=1 ta +

∑lj−1
a=1 ta,a+1. The longest route takes

the maximum time among Tj to finish. For route j, if it is selected by an MC in the
current round, the recharge delay of all the nodes is

Pj =
∑

i∈
∪

Sj
k,k∈Aj

qi =
∑

i∈
∪

Sj
k,k∈Aj

max(Ai − Li, 0) (4.17)

However, if route j is not selected, in the next round, the worst case occurs when it
has to wait for the longest route to finish. The recharge delay is

P ′
j =

∑
i∈

∪
Sj
k,k∈Aj

max(Ai + Tmax − Li, 0) (4.18)
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An increment

∆Pj =
∑

i∈
∪

Sj
k,k∈Aj

(
max(Ai + Tmax − Li, 0)−max(Ai − Li, 0)

)
(4.19)

is observed. To keep recharge delay at minimal, we sort ∆Pj and select the m routes
with the largest increment in each round so that those routes that would incur longer
delay can be recharged in the current round. The pseudo-code of the algorithm is
presented in Algorithm 4.4.

4.3.3 Approximation Bounds and Complexity

We now analyze the approximation bounds for the proposed algorithm. For n =

|N | recharge requests, our algorithm gives a log n approximation of the energy
cost during multi-hop wireless charging and a (5

2
− 1

2k
) ratio for the traveling cost

given the selected anchors, where k is the number of tours depending on energy
demands and recharge capacity Ch. In the extended greedy algorithm of the Set
Cover Problem, we assume the optimal energy cost is w∗. During computation,
when there are i nodes left to be covered, it incurs at most w∗

i
energy cost per

node. The bound of the extended greedy algorithm is thus
∑n

i=1
w∗

i
= w∗ log n.

The equality holds because the summation
∑n

i=1
1
i
= log n is the n-th harmonic

number.
Remarks: Although the log n bound for energy charging cost seems quite large,

it is essentially one of the best polynomial-time approximation algorithms: it has
been proved in [89] that the Set Cover Problem cannot be approximated in polyno-
mial time within a ratio of c log n, for c < 1

4
, under general complexity assumptions.

A tighter bound might not be necessary given the increased complexity and tran-
sient nature of energy requests.

Next, we show that the traveling energy cost has an approximation ratio of (5
2
−

1
2k
) respect to k tours. Here, when k > m, the k−m tours are traversed by MCs after

they have replaced batteries in the base station. Nevertheless, the total cost would
still be the same. For the complete tour, the energy cost is cr with the optimal value
c∗r . Use Christofide’s minimum spanning tree approximation to the TSP, cr

c∗r
≤ 1.5

[88]. Assume that tour j has the maximum energy cost cj among k tours and its
optimal value is c∗j . The energy cost for tour j is at most 1

k
(cr−cmax) (excluding the
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Table 4.4: Route Scheduling Algorithm
Input: Set of anchors A, MCsM, energy demand
di of node i, charging efficiency of node j, ηj,i when charger is
at i. Set of MCs’ initial locations I, capacity Ch,
base station b, max energy cost traveling on an edge cmax.
Output: Recharge sequence rj for MC j’s tour.
Compute complete TSP recharge path on A starting from b.
Record the TSP sequence r = (b, 1, 2, . . . , i, . . . , n) with cost cr.
If (

∑
i∈A

∑
j∈Si

(1−ηj,i)dj
ηj,i

+ cr − cmax)/m+ 2cmax < Ch, k = m,

Else k = ⌈(
∑
i∈A

∑
j∈Si

(1−ηj,i)dj
ηj,i

+ cr − cmax)/(Ch − 2cmax)⌉.

End If
Start with an arbitrary direction on r, j = 1
While r is not exhausted
For tour j, search for the last node ajl along r
Satisfying cj ≤ j

k
(cr − cmax) + 2cmax.

Obtain the j-th tour, (Ij, b, aj1, a
j
2, . . . , a

j
lj
), 1 ≤ j ≤ k.

Exclude nodes in j-th tour from r. j ← j + 1.
End While
If k = m, assign each MC to a recharge route
Else Find the route with max time duration,

Tmax = max
j=(1,2,...,k)

(
lj∑

a=1

ta +
lj−1∑
a=1

ta,a+1), calculate recharge delay.

∆Pj =
∑

i∈
∪

k∈Aj
Sj
k

(
max(Ai + Tmax − Li, 0)−max(Ai − Li, 0)

)
.

Sort ∆Pj and select the m largest for recharge each round.
End If
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edge leaving the base station in the complete tour r) plus 2cmax for the two edges
connecting the base station to MC’s starting position and the first anchor in each
tour. Therefore, cj ≤ 1

k
(cr − cmax) + 2cmax = 1

k
cr + (2 − 1

k
)cmax. We divide both

sides by c∗j and have

cj
c∗j

=
1

k

cr
c∗j

+

(
2− 1

k

)
cmax

c∗j
≤ 1

k
k
cr
c∗r

+

(
2− 1

k

)
1

2
≤ 5

2
− 1

2k
(4.20)

The inequality holds because for each tour, an edge is added to connect the first

sensor node to the base station, c∗r ≤
k∑

i=1

c∗i . If we divide both sides by k and use the

fact that max
1≤i≤k

(c∗i ) = c∗j , we have c∗r
k
≤ c∗j . We take the approximation cmax ≤ 1

2
c∗j .

The equality holds when the tour has only one node.
Let us denote the number of energy requests by N and the number of anchors

by A. The time complexity of the anchor selection algorithm is O(N logN) be-
cause if we first sort nodes according to their weights, O(N logN) is required. In
each step, we select the node with minimum weight and the number of iterations is
bounded by N . To assign proper frequencies for anchors, the frequency assignment
algorithm needs to go through all A anchors so its time complexity is O(A). For
the route scheduling algorithm, if k = m, the time complexity is O(A3 + N), i.e.,
Christofides O(A3) algorithm [88] plus splitting demands over N . If k > m, the
time complexity isO(A3+N+k+k log k) which consists of a series computations
in linear time and sorting operations. When A3 is much larger than N and k, both
cases have time complexity O(A3) dominated by the Christofides algorithm.

4.4 Post-optimization by Inserting Anchors

When node’s battery deadline is not exceeded, there could be further room to op-
timize the results of the two-step algorithm. In this subsection, we propose a post-
optimization algorithm. Since both objectives in Eq. (4.4) and Eq. (4.5) are the
energy outputs from the MC’s own battery, we can combine them into a single
objective using the weighted method in [90], F = w1Fc + w2Fm.

The weights w1 and w2 are assigned by network administrators to measure the
importance of energy charging cost compared to moving cost. If w2 > w1, it means
that the administrator cares more about MC’s moving cost over energy charging
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cost. For example, if w2/w1 = 2, for total cost F , reducing the moving cost by 1 J
is equivalent to saving energy charging cost of 2 J on MCs. In practice, we would
expect w2 > w1 in most cases as the administrators want to minimize the recharge
time by covering more nodes with anchors so a slight increase of energy cost due
to multi-hop charging is acceptable.

4.4.1 Inserting Anchors

It is critical to observe that the optimal system cost F achieves a good compromise
between Fc and Fm. In fact, any solution that can minimize F is said to be Pareto
optimal when w1, w2 ̸= 0[91]. In multi-objective optimization, Pareto optimality
describes a state that we cannot further increase the profit of one objective without
reducing the profit of another objective. For our problem, it means that we cannot
further reduce charging cost without increasing the moving cost on MCs. On one
hand, introducing more anchors would potentially increase MCs’ moving cost Fm;
on the other hand, more anchors means fewer energy relays thus less energy charg-
ing cost Fc. Based on this observation, we propose a post-optimization algorithm
that evaluates whether inserting an anchor into the established charging sets leads
to lower system cost. However, since such insertion splits the original charging set,
it would elongate the total recharge time of the route. To this end, the algorithm
should also ensure anchor insertions do not cause battery depletion on subsequent
nodes in the route. To keep it simple and effective in a dynamic network environ-
ment, we need to avoid computationally intensive algorithms.

The basic procedures is illustrated below. Initially, for each anchor ai, a node
with the maximum charging cost is selected in its charging set Sai . Then these
selected nodes are sorted in a descending order according to their charging costs.

The MC starts from the first node j in the list which has the maximum charging
cost on the entire route. Tentatively designate node j as a new anchor because by
charging j directly, a great amount of energy cost can be reduced. We denote node j
as a new anchor a′j . Next, an important step is to see whether we can further reduce
energy charging cost by moving some of the elements from Sai to Sa′j .

This is because a node k in Sai may be more efficiently recharged via the new
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anchor. For each node k in Sai , we compare if,

(1− ηk,ai)/ηk,ai > (1− ηk,a′j)/ηk,a′j (4.21)

If yes, we move node k to be covered in Sa′j and denote the old ai by a′i after this
operation. The new anchor will be assigned a new frequency band that is not being
used by its neighbors. For k to join the new charging set, its resonant frequency
is tuned to be the same as a′j . All elements in Sai are examined to see whether it
is beneficial to be included under the new anchor a′j or remain with old anchor ai.
At this point, a new anchor a′j is introduced to partition the original charging set
whereas their joint coverage still remains the same.

4.4.2 Optimize Total Cost

The next step is to calculate whether there would be a reduction in the total cost
F . Denote the changes of moving cost after introducing a′j by ∂fm and changes of
charging cost by ∂fc. We assume the new sequence (a1, a2, . . . , a

′
i, a

′
j, . . . , als) has

the lowest moving cost so

∂fm = (cai−1,a′i
+ ca′i,a′j + ca′j ,ai+1

)− (cai−1,ai + cai,ai+1
) (4.22)

and
∂fc =

∑
a∈{a′i,a′j}

∑
k∈Sa

(1− ηk,a)dk
ηk,a

−
∑
k∈Sai

(1− ηk,ai)dk
ηk,ai

(4.23)

Then we see whether △F = w1∂fc + w2∂fm is less than zero. If yes, it means a
reduction of F is accomplished.

4.4.3 Preserve Battery Deadline

Before the new anchor can be successfully added into the recharge route, the al-
gorithm should check whether the insertion preserves time feasibility of the entire
sequence. For the new sequence (a1, a2, . . . , a

′
i, a

′
j, . . . , als), a node with the min-

imum value of MC’s arrival time minus lifetime is selected for each charging set
(argmaxk∈Sai

(Ak −Lk) for Ak −Lk < 0). The lifetime of this node represents the
latest time for an MC to reach its superior anchor and the difference between Ak and
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Lk indicates the tightness of the battery deadline. The closer Ak approaches Lk, the
less chance a new anchor can be inserted prior to this node without violating the bat-
tery deadline. Recall from Section 4.3.2 that the recharge time of a′j’s charging set
Sa′j is governed by the node with the maximum recharge time (ta′j = maxi∈Sa′

j

ti).

Thus, the new insertion introduces an additional ∆T = ta′j + ∂fm/v waiting time
to all subsequent nodes after a′j in the sequence. For anchor ai from a′j to als , the
algorithm computes whether Aai +∆T − Lai > 0. If yes, it indicates the new an-
chor would potentially cause battery depletion in ai’s charging set and the insertion
should be avoided. Otherwise, the new anchor can be successfully added into the
recharge route and assigned an appropriate resonant frequency.

To speed up the optimization process, whenever a new anchor insertion causes
battery depletion at anchor ai, ai is marked, which means new anchors can only
be inserted after this location in the sequence. In the subsequent iterations, while a
maximum charging cost node is being considered as a candidate anchor, the algo-
rithm first checks its location with the previous mark. If its location is before the
mark, the algorithm skips this node and proceeds to the next one. This operation
saves a considerable amount of time by avoiding unnecessary computations that
would lead to battery depletion ultimately. The algorithm terminates when a new
anchor cannot be added into the recharge sequence, i.e., no more improvement on
the system cost. The pseudo-code for the post-optimization algorithm is shown in
Algorithm 4.5.

4.4.4 Time Complexity

We now analyze the time complexity of the algorithm. Since A anchors are generat-
ed from the two-step approximation algorithm, we need to check at most A charging
sets. Suppose the size of maximum charging set is Sm. Initially, finding nodes with
maximum charging cost for A anchors requires ASm time and the sorting takes
A logA time. In the worst case, the algorithm iterates through all A anchors and
each iteration requires Sm for new anchor re-assignments and ASm time for check-
ing possible battery deadline violations. In sum, the post-optimization algorithm
takes O(ASm + A logA+ A(Sm + SmA)) = O(A2Sm + A(Sm + logA)).
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Table 4.5: Post-optimization Algorithm on MC s
Input: Recharge sequence a1, a2, . . . , als for MC s,
Set of anchors As, energy demand di of node i, charging
efficiency of j, ηj,i if MC is at i, moving cost ci,j
on edge (i, j), time feasibility mark at anchor x← 0
objective weights w1, w2, charging set Sa for all anchors.
Output: A new recharge sequence consists of anchors.
Find nodes with max charging costs for each Sa, max(

1−ηi,a
ηi,a

di),
i ∈ Sa. Sort these nodes in descending order list I. j ← 1
While x ̸= als AND I ̸= ∅
For j > x, consider j as a candidate anchor a′j and ∀k ∈ Sai .

If (1−ηk,ai )

ηk,ai
>

(1−ηk,a′
j
)

ηk,a′
j

, Sa′i ← Sai − k, Sa′j ← Sa′j + k.

∂fm ← (cai−1,a′i
+ ca′i,a′j + ca′j ,ai+1

)− (cai−1,ai + cai,ai+1
).

∂fc ←
∑

a∈{a′i,a′j}

∑
k∈Sa

(1−ηk,a)dk
ηk,a

−
∑

k∈ Sai

(1−ηk,ai )dk
ηk,ai

.

△F ← w1∂fc + w2∂fm, new sequence (a1, . . . , a
′
i, a

′
j, . . . , als),

If△F < 0
For Ak − Lk < 0 in each charging set, find
k = argmaxk∈Sai

(Ak − Lk), ∆T = maxi∈Sa′
j

ti + ∂fm/v

For anchor ai from a′j to als ,
If Aai +∆T − Lai > 0.
When ai > x, update mark x← ai,

Declare time infeasible, Break.
End If
End For
Insertion of a′j is successful, I ← I − j, j ← j + 1.

Else Consider next node j, I ← I − j, j ← j + 1.
End If
End While
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4.4.5 A Complete Example

To see the entire operation of the algorithm more clearly, we show an example in
Fig. 4.4. Fig. 4.4(a) demonstrates a snapshot during the operation of 3 MCs ready
to resolve 80 recharge requests of nodes with energy demands from 200-1500 J.
The first step is to find anchors that can offer entire coverage of all energy requests
with the minimal charging cost. Fig. 4.4(b) shows the results of anchor selection
algorithm. 23 anchors are selected and the largest charging set includes 9 nodes.
For clarity, we only plot the charging set in Fig. 4.4(b). In Fig. 4.4(c), a complete
recharge route is found through all the anchors starting from the base station using
the Christofides algorithm [88]. In Fig. 4.4(d), the complete recharge path is split
into 3 different routes and each MC is assigned a route. Up to this point, MCs can
fulfill all the energy requests by stopping at anchor locations and charge nodes in
multi-hops.

To further reduce the system cost, we conduct post-optimization procedures for
each MC. For demonstration purposes, we use weights w1 = 1, w2 = 3 to evaluate
the improvement by inserting an anchor and perform an iteration for all 3 MCs.
An anchor with maximum charging cost is selected in each route. We calculate the
value of△F to see whether there is further saving in the system cost. Our algorithm
yields△F1 = −496 J for MC 1,△F2 = −490 J for MC 2 and△F3 = 130 J for MC
3. The insertions would elongate durations of the three recharge routes by 68, 62
and 41 mins, respectively, which still satisfies the minimum battery deadline of the
subsequent nodes. Since △F1, △F2 for MCs 1 and 2 are less than zero, inserting
anchors at the locations shown in Fig. 4.4(e) has further reductions in system cost.
On the other hand, since△F3 for MC 3 is larger than zero, there would be a slight
increase of the total cost so we should not insert the anchor at the picked set. For
clarity, we have shown two successful cases of anchor insertion in Fig. 4.4(f) for
MCs 1 and 2. The post-optimization process ends after each MC has examined all
its charging sets for further improvement or a late recharge occurs.

4.5 Performance Evaluations

In this section, we evaluate the performance of multi-hop wireless charging (denot-
ed as “MH”). Since the works in [82, 84] do not provide concrete models of multi-
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Figure 4.4: A complete example of the algorithm. (a) MCs receive a number of
energy requests. (b) Find anchors among nodes. (c) Form a complete recharge path
through anchors. (d) Assign recharge route to each MC. (e) Inserting an anchor in
MC 1’s route. (f) Inserting an anchor in MC 2’s route.
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hop wireless charging, it is very difficult to compare the performance with theirs.
Actually, even the performance and cost of MH over the conventional single node
wireless charging (denoted as “SN”) is unknown. To this end, we decide to compare
our framework with SN in [33, 36, 42, 83]. We distribute 500 sensor nodes uniform-
ly randomly in a circular field with radius of 25 m. The transmission distance and
sensing range are 5 m. Sensors’ energy consumptions are modeled according to
[70]. By using some typical values of e0 = 50 × 10−6 J/bit, e1 = 10 × 10−7 J/bit,
α = 4 and lp = 32 bits, ec is 21 mJ for transmitting/receiving a packet. We use
Dijkstra’s shortest path routing algorithm to direct packets to their destinations.

Recharge threshold β is critical to the overall performance. On one hand, if
β is large, e.g. 90%, MC’s recharge capacity may be easily overwhelmed upon
receiving too many energy requests; on the other hand, if β is set to be very small,
e.g. 10%, nodes might not have enough residual lifetime before the MC arrives,
thereby causing large numbers of energy depletions. Therefore, we set β at 50%
of the total battery capacity. We use an AAA NiMH battery of 780 mAh capacity
working at 1.5 V. Recharge time is modeled from [46] with a maximum at 78 mins.
The MH charging efficiency threshold is τ = 0.3; any node with smaller charging
efficiency will not receive any energy. All the MCs and sensors have identical coils
with nt = 300 rounds and rs = 10 cm. Wireless charging efficiencies are calculated
using the procedures in Section 4.2.2. Each MC is equipped with a 12V battery. At
the speed of 1 m/s, the current draws from the battery is 4Ah. Thus, the moving
energy consumption is es = 48 J/m. The simulation is set to run for 4 months’ time.

4.5.1 Evaluation of Post-optimization

First, we validate the designs of post-optimization algorithm. We evaluate the evo-
lution of cost during the simulation when the energy requests are within the range
of [10, 120] with 3 MCs. Fig. 4.5(a) shows the relation between recharge time and
MC’s energy cost. As we keep adding new anchors into the recharge route, the total
recharge time increases from 600 to 1020 mins and the (weighted) moving costs Fm

of MCs also increase. On the other hand, energy charging cost Fc declines as more
anchors are introduced into the routes. The evolution of MCs’ moving and charg-
ing costs validates that adding new anchors can reduce charging costs, elongate the
recharge time span and increase MCs’ moving costs.
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Figure 4.5: Evaluation of algorithm design. (a) Relationships between energy cost
and recharge time. (b) Effectiveness of post-optimization algorithm.

To visualize the progress of post-optimization more clearly, we trace the evolu-
tion of total energy cost on different MCs and plot a trend line of their combined
average cost in Fig. 4.5(b). The x-axis represents the number of iterations before
the algorithm terminates. We observe from the trend line that the post-optimization
algorithm can effectively reduce the total energy cost by 12%. During simulations,
once the algorithm detects an increase of total system cost after adding an anchor
(△F > 0), it removes the anchor from the route. New anchors are added when
△F < 0 and we observe that, on average, the post-optimization algorithm can ef-
fectively reduce total cost in each iteration in Fig. 4.5(b). Thus the above results
validate that the post-optimization algorithm further improves solutions.

4.5.2 Number of Nonfunctional Nodes

We now demonstrate the advantage of MH by comparing the number of nonfunc-
tional nodes with SN. Once a node depletes its battery and no MC has arrived yet,
it is nonfunctional until being recharged. Fig. 4.6(a) compares the number of non-
functional nodes when N = 500. To keep nonfunctional nodes within 5%, at least
5 MCs are needed for SN. In contrast, for MH, only 1 MC is needed and 2 MC-
s can almost eliminate the chances of battery depletion over the entire operations.
The surge of nonfunctional nodes around 10-15 days for SN is because the recharge
requests have temporarily exceeded MCs’ capability. As the network reaches equi-
librium, the curves decline gradually. However, this phenomenon does not appear
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Figure 4.6: Comparison on the number of nonfunctional nodes. (a) Performance
comparison when N = 500. (b) Scalability evaluation when m = 2.

in MH, which shows better robustness even with fewer MCs.
To see the scalability improvement more clearly, we have conducted additional

evaluation in Fig. 4.6(b) where we set m = 2 and N = 300 for SN to provide
a baseline and increase N from 600 to 900 nodes. As we can see, the number of
nonfunctional nodes still stays below 5%, which indicates a 3-fold increase in the
nodes MCs can cover compared to SN (900 nodes vs. 300 nodes). In addition, we
have also evaluated the performance of MH in sparse networks where node density
is low. To maintain the connectivity among nodes, we double the radius of the field
and fix N at 600 nodes. The node density diminishes 75% from 0.3 nodes/m2 to
0.075 nodes/m2. We observe that the number of nonfunctional nodes jumps slightly
above 5% at equilibrium (not large). The results indicate that the advantage of MH
could be weakened in a sparse network with lower node density. However, in the
worst case, it is still equivalent to SN without any multi-hop energy relay.

4.5.3 Energy Consumption vs. Replenishment

We now evaluate the amount of energy consumption and replenishment and validate
the accuracies of our theoretical model. To better exhibit the gaps between curves,
we plot the results for the first 50 days. Fig. 4.7(a) depicts energy consumption
and replenishment curves for the theoretical and simulation results of MH, m = 1.
For the theoretical consumption curve, we delineate the mean values with ranges
representing standard deviations from the means. For the theoretical replenishment

110



curve, we use the average charging rate for the battery in [46] as a base and the
maximum and minimum rates are indicated by the range of the curve. First, we
observe that the replenishment curve is above the energy consumption curve for
both theoretical and simulation results. This indicates that MCs can put more energy
back into the network than consumed, which is consistent with our observations in
Fig. 4.6(a) (that is, almost all the nodes are functional). Our theoretical analysis on
the energy consumptions can achieve very high estimation accuracy, as indicated
by the small gap between the two curves. The gap between replenishment curves
is wider, which is due to the idle time between two successive recharge operations.
When the number of MCs is sufficient, the recharge requests are sparse over time
and MCs do not need to perform recharge continuously, thus the gap is in between.

We also trace the energy evolution of energy consumption and replenishment
in Fig. 4.7(b). For SN, the energy consumption curve quickly drops from the
very beginning until it hits a bottom around 20 days. As the MC slowly resolves
nonfunctional nodes, these nodes resume normal operation (consume energy) which
corresponds to the jump-up of the energy consumption curve at 20 days and the two
curves enter an equilibrium after 40 days. On the other hand, for MH, a large gap is
observed from SN, indicating 50% more energy being replenished into the network.
The improved recharge capability is clearly observed during the first 20 days. That
is, in contrast to the slow response in SN, the replenishment curve of MH surges
when the energy consumption curve has a sharp decline. It means that whenever
nodes are becoming nonfunctional and stop consuming energy, they are quickly
recharged by the MC.

4.5.4 System Energy Cost

We now compare the energy cost of MH and SN and explore possible trade-offs
between the two schemes. In Fig. 4.8, we evaluate the energy cost needed to
maintain the same quality of service (nonfunctional < 5%). In Fig. 4.8(a), for MH,
we show energy costs from both node recharging and MC movement, as well as
the sum of them and compare with the total cost of SN, while varying N from 250-
1000. When N = 250, the total cost is almost equivalent while increasing N results
in better efficiency for MH. This is because that when node density is higher, more
nodes can be recharged simultaneously without the hassle of approaching them one
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Figure 4.7: Energy consumption vs. replenishment N = 500. (a) Theoretical
results vs. simulations (MH, m = 1). (b) Trace of energy evolution for SN and MH
(m = 1).

by one. If multi-hop charging cost is much less than moving cost es, it is more
cost-effective to use MH.

To visualize the trade-offs between MH and SN, we adjust the moving cost es
from 12 to 96 J/m in Fig. 4.8(b) which represents different energy efficiencies of the
MC’s battery and motors. For N = 250, a trade-off point around 46 J/m is observed.
When es < 46 J/m, SN is more cost-effective. A similar result is observed for
N = 500 where the trade-off point is around 36 J/m. These results indicate that if
energy charging cost can be compensated by shorter moving distances, MH would
have less total cost. Based on these results, the network administrator can decide
which scheme to use given the system parameters.

4.5.5 Trade-offs between Charging and Moving Costs

In this subsection, we further explore the subtle relations between the two opti-
mization objectives by finding pareto solutions generated by the algorithm. Note
that since the problem is NP-hard and intractable in polynomial time, the pareto so-
lutions found by the algorithm are in fact suboptimal and within the approximation
bounds discussed in Section 4.3.3. As shown in [91], a minimizer of the weighted
combination of objectives in Eq. (4.4) and Eq. (4.5) is a pareto optimal solution
to the original bi-objective problem in Eq. (4.3). To explore the solution space,
we vary the weights w1 and w2 from 1 to 10 in small increments and delineate
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Figure 4.8: Comparison of energy cost on MCs to maintain nonfunctional nodes
under 5%. (a) es = 48 J/m. (b) es = 24 to 96 J/m.

those solutions of MCs’ charging cost and moving cost in Fig. 4.9(a). The y-axis
represents MC’s charging cost Fc (the first objective) and the x-axis represents M-
C’s moving cost Fm (the second objective). In the post-optimization algorithm, the
choice of different weights allows the MC to explore different solutions and it has
a direct impact on the decision value△F as well as the recharge routes. From Fig.
4.9(a), we can see that the points along the pareto-frontier form a contour to bound
the feasible solution space. The pareto-frontier consists of solutions that cannot be
surpassed by any other alternative solutions. As analyzed in our algorithm designs,
a trade-off is observed between the two optimization objectives. That is, when the
MC’s moving cost is reduced, the charging cost has to increase and vice versa.

Similarly, we also examine the trade-offs between the total system cost and
recharge delay. As shown in Fig. 4.9(b), if we want to reduce system cost, a certain
amount of nodes would suffer from extended recharge delay. These results validate
our designs and analysis in the algorithm as we aim to reduce system cost as much
as possible while minimizing the chances of battery depletion.

4.5.6 Evaluation of Recharge Delay and Service Interruptions

Since some nodes may have similar energy consumption rates, it is possible for
them to request recharge at the same time. If the requests are scattered at different
locations, due to limited multi-hop charging range, the MC may not be able to cover
all the requests at once. In this case, late recharge is inevitable and its duration is
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Figure 4.9: Evaluation of trade-offs in the network. (a) Trade-offs between MC’s
charging and moving costs. (b) Trade-offs between total system cost and recharge
delay.

measured by recharge delay. Fig. 4.10 compares recharge delay of SN and MH.
Recall from Section 4.5.2 that for N = 500, SN m = 5 and MH m = 2 have
comparable nonfunctional percentage under 5%. For SN, Fig. 4.10(a) shows that
some nodes would experience more than 50 hours of recharge delay. In other words,
it means that once a node has requested for recharge, there are at least 50 nodes
in MCs’ service queues ahead of this node waiting for recharge. In contrast, Fig.
4.10(b) presents much better results with MH while the number of MCs is only m =

2. We can see that a majority (almost 80%) of nodes have even no recharge delay
and very few nodes have recharge delay over 20 hours. The huge improvements
are due to extended charging range which upgrades the single-server queue of SN
into a multi-server queue in MH. The MCs have extra capabilities to handle energy
requests in the vicinity thereby expediting the entire recharging process.

We also present the percentage of nonfunctional durations in a geographical
view in Fig. 4.11 where x and y axes are field coordinates. The time duration while
a node is in nonfunctional status greatly impacts the network operation. Such nodes
are not able to sense the environment and may miss important events, constituting
service interruptions. For fair comparison, we set N = 500 and m = 2 for both
cases. SN results in a maximum of 75% time in nonfunctional status with the
average over 40% widely spreading on the entire field. In sharp contrast, MH has
the maximum of only 10% with an average below 3%. This shows that MH has
significantly less service interruptions than SN.
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Figure 4.10: Comparison of recharge delay when SN and MH have similar non-
functional percentage. (a) SN, m = 5. (b) MH, m = 2.
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4.6 Discussions

In practice, the effectiveness of multi-hop wireless charging could be affected by
node density and topology. For sparse networks, it is possible that a node has no
immediate neighbors to relay energy. In this case, our scheme still works, but re-
duces to a single node recharge method. In fact, due to the declining manufacturing
cost of sensor nodes, and the needs to ensure robustness against node and commu-
nication failures and faults, they are usually deployed at densities much higher than
needed for monitoring. Some applications even require k-coverage, where each
point on the field is monitored by at least k sensors. For example, to detect forest
fires, different parameters across multi-dimensions are collected to create a poten-
tial ignition map of the forest. For better reliability, indicator for each location is
usually calculated based on the readings from multiple sensors. High density is de-
sired for load balancing purposes as well. For example, nodes have higher densities
near the sink so they can take turns forwarding data to extend network lifetime and
improve robustness. Such high density deployment presents opportunities to apply
our multi-hop recharging method. In reality, multi-hop wireless charging can make
use of this node redundancy to improve network lifetime.

Another practical challenge is that the node topology may cause misalignment
of sensor coils and degrade charging efficiency. Fortunately, recent research using
coil arrays provides position-free solutions to the misalignment problem and it is
found that charging efficiency increases from 4.8% to 64% [92]. Another option
is to use mechanisms similar to “sliding antennas” [93] to fine tune and align the
orientations of coils on demand.

The past several years have witnessed the rapid advance and maturity of wireless
charging technology. One prominent example among others is WiTricity, a major
player in the wireless charging market. It has recently released multiple products
for consumer electronics, automobiles, medical and industrial applications. Its re-
search and standardization efforts in wireless repeaters have effectively increased
charging distance, scale and efficiency[94]. Our framework works under the same
principle of resonant repeaters, which can be embedded under the floor, table or
even walls to hop power in a room. Besides, researchers have accomplished a new
milestone to extend charging distance significantly. They invented the Dipole Coil
Resonant System based on refined coil structures that can power 40 smartphones
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from 5 meters and a single device from 9 meters[95] (close to sensors’ transmission
range). Combined with resonant repeaters for energy relay, energy delivery over
multiple hops as studied in our framework is not just feasible in principle, but could
soon be implemented based on all such recent technology advances.

4.7 Conclusions

In this chapter, we employ resonant repeaters to improve the efficiency and scala-
bility of recharge in WRSNs. We present detailed procedures to calculate multi-hop
wireless charging efficiency based on the laws in physics and electronics that have
been overlooked by previous studies. We formulate the recharge scheduling prob-
lem into a multi-objective optimization problem, which is NP-hard. To achieve
low-complexity, we propose a two-step approximation algorithm with bounded ra-
tio for each objective followed by a post-optimization algorithm to further reduce
the system cost. Finally, we evaluate the proposed framework by extensive simu-
lations and compare with previous works. The results reveal much better network
scalability and performance of our algorithm.
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Chapter 5

Combine Wireless Charging and
Solar Energy Harvesting

5.1 Introduction

From the previous chapters, we have seen that wireless charging is a promising tech-
nique that can power hundreds of nodes reliably from single to multi-hop wireless
energy transmission. Since the rising energy demands in the network also increase
the risks of electromagnetic exposure [38]. As a result, energy transmitters must
comply with standards from Federal Communication Commission and limit their
emitting power to human safe power densities (< 1mW/cm2[40]). Nevertheless,
nodes at data aggregation points (such as cluster heads in a clustered WSN) usually
consume very high energy (10 − 100mW ) due to data traffic. Thus limiting trans-
mission power at wireless chargers can easily cause battery depletion and network
interruption on such nodes.

In the meanwhile, there is another competitive technique for environmental en-
ergy harvesting that has low risk yet much higher power density. As shown in [96],
among a variety of harvesting techniques, solar harvesting through photovoltaic
conversion enjoys the highest power density (15mW/cm2), which is renewable and
risk-free. In practice, a solar panel commensurate with sensor’s size is sufficient
to meet the energy demands of cluster heads. However, availability of sunlight is
subject to dynamics in the environment. Not only weather conditions would have
a direct impact on the harvesting rates, but also a series of spatial-temporal factors
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such as sunrise, sunset times, locations and their surroundings would affect deploy-
ment decisions of harvesting sensors.

Realizing the pros and cons of both technologies, in this chapter, we propose a
hybrid framework to make use of their advantages and overcome their drawbacks.
In the new framework, a majority of nodes are wireless-powered nodes (WNs) due
to the low costs of charging coils. On the other hand, due to the relatively higher
manufacturing and deploying costs, a small number of solar-powered nodes (SNs)
are responsible for aggregating data. Normally, a fleet of MCs roam over the field to
serve recharge requests from WNs and collect data from SNs. In contrast to WNs,
SNs’ energy from the ambient source is self-sufficient. This scheme provides effec-
tive energy replenishment at cluster heads so that they can complete high volume
data transmissions. Meanwhile, the rest of WNs can be recharged by MCs on de-
mand. The hybrid framework raises several new challenges. First, how many SNs
are needed and where should we deploy them such that the total cost is minimized?
Second, how to guarantee robustness of the network when sunlight is unavailable
(e.g., cloudy/raining days)? Third, how to schedule the MCs to complete wireless
charging and data gathering in the same tour? Can we further optimize system cost
and improve network performance compared to previous approaches?

To answer these questions, in this paper we first study a placement problem in
discrete form where SNs are deployed among the known WN locations. We formu-
late it into a facility location problem [97–100] to minimize the total cost of packet
routing and node deployment. Due to its NP-hardness, we use the primal-dual
method to develop a distributed 1.61(1 + ϵ)2-factor algorithm suitable for WSN
applications based on the centralized paradigm in [99]. Then we show the loca-
tions of SNs can be further optimized within a cluster in continuous space and
propose an iterative mechanism based on the Weiszfeld algorithm [101]. We al-
so demonstrate how our algorithms can adapt to seasonal variations of sunlight by
adjusting their locations accordingly. Second, we theoretically analyze network en-
ergy balance and propose a method to maintain such balance during cloudy/raining
days. We find that using a smaller cluster size is effective to reduce energy con-
sumptions and develop a distributed algorithm to appoint some selected WNs as
temporary cluster heads until solar energy becomes available. Finally, we optimize
MCs’ routes for the joint wireless charging and mobile data gathering problem. D-
ifferent from [41] in which MCs visit exact node locations, we point out that for
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data gathering, it is only necessary for MCs to move into SN’s transmission range.
Based on this observation, we give a polynomial-time route improvement algorith-
m that can take shortcuts through SN’s neighborhood to further reduce the cost.
Since some nodes may require expedited recharge due to limited lifetime, we allow
the MCs to perform partial recharge rather than to refill batteries to full capaci-
ty [33, 36, 41, 71, 83, 106]. Our objective is to simultaneously maximize the time
MCs spend in recharging and prevent nodes from energy depletion, which is for-
mulated into a Linear Programming problem. For easy implementation on MCs,
we propose an efficient algorithm based on the particular structure of the lifetime
constraints and validate its near-optimality by extensive simulations.

The rest of the chapter is organized as follows. Section 5.2 studies related works.
Section 5.3 presents the network model and assumptions. Section 5.4 studies the
placement problem of SNs. Section 5.5 provides theoretical analysis and discusses
how to maintain energy balance using WNs. Section 5.6 optimizes MC’s migration
routes and explores partial recharge for further improvements. Section 5.7 evaluates
the new framework and Section 5.8 concludes the chapter.

5.2 Related Works

In this section, we discuss some related works of wireless charging, environmental
energy harvesting and tour planning algorithms.

5.2.1 Wireless Charging

Wireless charging technology has developed at an unprecedented pace recently.
From the earlier pad-based charging systems (requiring close contact) [30] to the
most recent mid-range wireless charging that allows energy delivery up to several
meters [107], the technology is envisioned to revolutionize charging without the
hassle of power cables.

The application of wireless charging has been also considered in battery-powered
WSNs [33, 36, 38, 41, 71, 83, 106, 108, 109]. In [41], optimization of wireless
charging and mobile data gathering is studied by combining the two utilities on a
single MC. Based on the products from Powercast [31], wireless charging is ex-
plored in [33] to evaluate the new impact on deployment patterns and packet rout-
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ing. In [36], an O(k2k!) greedy algorithm (where k is the number of nodes) is de-
veloped to maximize network lifetime whereas the moving cost of wireless chargers
is not considered. Upon realizing this problem, minimization of chargers’ moving
cost is considered in [71, 83]. In [83], a distributed real-time energy information
gathering protocol is proposed first. Then based on the updated energy information,
a weighted-sum algorithm considering nodes’ lifetimes and MCs’ moving costs is
developed. The problem is further extended to jointly consider MCs’ recharge ca-
pacities and sensors’ dynamic battery deadlines in [71]. In [106], a joint routing and
wireless charging scheme is proposed to improve network utilization and prolong
network lifetime. Similarly, in [108], deployment problems of wireless chargers are
studied to extend network lifetime.

However, since many wireless charging systems are radiation-based, exposure
to radio-frequency energy implies potential health risks. The negative biological
effects include increased possibility of tumor and other impairments. Therefore,
the Federal Communication Commission (FCC) has imposed a regulatory limit to
restrict the maximum transmitter output power to be under 1W and the maximum
effective isotropic radiated power (EIRP) under 4W [40]. In practice, the omnidi-
rectional propagation of electromagnetic wave causes health risks in all directions.
Due to regulations of emitting power level on a single charger, multiple wireless
chargers are considered in [38, 109]. In [38], the problem of how to adjust the
transmitting power of wireless chargers such that overall electromagnetic exposure
does not exceed a threshold is studied. A charger placement problem is formulated
to guarantee all the locations to satisfy the safety requirements. In [109], optimiza-
tion of “useful” energy transferred from chargers to nodes under safety concerns is
considered. However, since the accumulative emitting power from multiple charg-
ers is still restricted, nodes cannot perform energy-consuming applications.

5.2.2 Environmental Energy Harvesting

Environmental energy harvesting provides another alternative to extend network
lifespan. Renewable energy from the environment such as solar, wind, vibration
and thermal can be used effectively to power sensor nodes. Due to the dynamics in
environmental energy sources, a majority of previous efforts focus on energy man-
agement of sensors [110–113]. In [110], a power management scheme to maximize
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sensors’ duty cycles is proposed. Energy is profiled based on moving average to pre-
dict future income and the duty cycles are adjusted accordingly. Similarly, methods
from adaptive control theory are adopted in [111] to deal with environmental ener-
gy dynamics. Harvesting energy from light sources indoors is investigated in [112].
Energy allocation algorithms based on experimental measurements are developed to
optimize energy storage on sensors. Joint energy management and resource alloca-
tion is considered in [113] for optimizing network performance. A local algorithm
is developed to adjust sensors’ sampling rates and adapt to the battery states. How-
ever, an inevitable drawback of these earlier works is that the network operations
would be disrupted when those ambient energy sources are unavailable (e.g,. dur-
ing cloudy/raining days in a solar harvesting network). In contrast, our proposed
framework in this paper incorporates a combination of hybrid energy sources so
that steady and productive network performance can be guaranteed.

5.2.3 Tour Planning of Mobile Vehicles

Tour planning of mobile vehicles for data collection in WSNs has been studied, see,
for example in [20, 114–116]. The problem shares similarities to the well-known
Traveling Salesmen Problem with Neighborhood (TSPN) [117, 118, 120] in which
the salesman aims to find the shortest tour through city neighborhoods of arbitrary
shapes. In the context of WSNs, due to the omnidirectional propagation of electro-
magnetic waves, the neighborhoods are usually assumed to be circles. In [20], the
tour planning problem is formulated into a mixed-integer program and a spanning
tree covering algorithm is proposed. However, the algorithm requires the vehicles to
visit exact node locations for data gathering, which is usually unnecessary in prac-
tice. If the node’s transmission range is considered, the performance can be further
improved. The method proposed in [114] attempts to improve current solutions for
TSPN. It first determines the shortest TSP routes among sensors without consid-
ering their transmission ranges. Then it searches along transmission boundaries to
find the best hitting points such that the tour length is minimized. In [115], the
problem is formulated into a label-covering tour problem. A complete graph is first
constructed to represent all possible paths between nodes. The objective is to find
an optimal path that covers all the nodes in their transmission ranges. Although an
approximation algorithm is proposed for this NP-hard problem, the approximation
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Figure 5.1: Overview of a three-level network hierarchy.

ratio also increases with the number of nodes in the tour. In [116], a progressive
tour construction method is proposed. The method exploits the overlaps of trans-
mission ranges of neighboring nodes so that the mobile vehicle can take shortcuts
for cost savings. This method works effectively when there exist overlaps among
nodes’ transmission ranges. Different from [115, 116] where nodes’ transmission
ranges may have overlaps, in this paper, multi-hop clusters are formed such that
one-hop transmission neighborhoods of cluster heads (SNs) are disjoint. In addi-
tion, different from all the previous works, a migration tour may incorporate both
WNs and SNs in our framework. Therefore, we focus on how to minimize tour
lengths by taking advantage of SNs’ neighborhoods in a joint wireless charging and
data gathering tour.

5.3 Network Model and Assumptions

In this section, we give an overview of the network model and assumptions of the
new framework. Based on the energy sources, there are two types of nodes in the
framework: wireless-powered nodes and solar-powered nodes. For brevity, we de-
note them by “WNs” and “SNs” respectively. Based on the functionality of network
components, we divide the network into three hierarchical levels as shown in Fig.
5.1: wireless-powered sensor, solar-powered sensor and mobile charger levels.

The bottom level (wireless-powered sensor level) has N WNs uniformly ran-
domly distributed on a square field of side length L. Since charging coils can be
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cheaply manufactured, WNs are deployed in high density to perform basic sensing
missions such as environmental readings, target tracking, etc. In particular, to moni-
tor location-dependent solar radiation strength, each node has an illuminance sensor
and reports its reading with other data to the base station. The energy consumption
for transmitting a packet follows the widely adopted model [70], et = e0 + e1d

α
r ,

where et is the transmitting energy, e0 and e1 are the energy consumed in electronics
and amplifiers, dr is the distance between the transmitter and the receiver (dr ≤ r,
r is the transmission range), and α is the path loss exponent. To perform sensing
tasks, sensors also consume es energy for each packet. For message exchange, we
assume the network is connected. Each WN generates packets independently fol-
lowing a Poisson process with average rate λ. Each WN is powered by a 750 mAh
rechargeable NiMH battery and the recharge time Tr is 78 minutes. If the energy
drops below a threshold, e.g., 50%, it sends out a request to the MCs for scheduling
energy replenishment.

The middle level (solar-powered sensor level) is comprised of self-sustaining,
energy harvesting nodes. Normally, when solar energy income is sufficient, SNs act
as cluster heads for aggregating sensed data. However, when energy supply is not
enough during cloudy/raining days, the network re-selects WNs as cluster heads
so they can rely on consistent wireless energy supply from the MCs. To minimize
routing and deploying costs, SNs should be deployed at advantageous locations.
Due to varying nature of sun’s angles during a year, building obstructions and tree
shades may exhibit different spatial-temporal patterns. Therefore, SN locations
should be re-calculated based on the updated data once in a while (e.g., several
weeks). The energy harvesting rates are modeled according to [103], which will
be discussed in Section 5.5. We assume the size of solar panel is chosen to be
large enough to harvest enough energy for aggregating all the data. We adopt a
commercially available panel of 10× 10cm2 size which is connected to a 3V, 2150
mAh lithium-ion battery.

The top level (mobile charger level) manages a fleet of m MCs through the base
station. Proposed in [41], MCs are equipped with high-capacity batteries and pow-
erful antennas for energy replenishment and data collection. Coordination among
the MCs is conducted via long range communications to exchange status, position,
energy request, etc. They also have positioning devices (e.g., GPS, gyroscope, etc)
to locate sensor positions so that they can approach them in close proximity for

124



Table 5.1: List of Notations
Notation Definition

N Number of wireless-powered sensors
s Number of solar-powered sensors (calculated by algorithm)
m Number of mobile chargers
L Side length of squared sensing field
r Transmission range of sensor nodes

et, er, es Energy consumption to transmit, receive, generate a packet
λ Average packet rate of Poisson distributed traffic

ps, pm Monetary expenses of SNs and MCs, respectively
Ch Battery capacity of sensor nodes
Tr Recharge time of sensor’s battery from zero to full capacity
v Average moving speed of MCs

wireless charging at high efficiency. We assume each node is only recharged by
one MC at a time and the emitting power at the wireless charger also complies with
FCC’s regulations to minimize health risks. Depending on updated geographical
solar energy distribution, MCs can deploy SNs at appropriate locations. In case
some nodes in the recharge sequences are bound to deplete their energy, the MCs
can expedite the process by partially refilling their batteries. Since SNs and MC-
s are the main components to sustain network operations and their manufacturing
costs are much higher than WNs, we assume their monetary expenses are ps (for
SNs) and pm (for MCs), respectively and ps < pm. Finally, we summarize some
important notations used in this paper in Table 5.1.

5.4 Solar-powered Sensor Layer: Placement Prob-
lem

In this section, we study the Solar-powered sensor Placement Problem (SPP). It
determines where to place SNs such that the total cost is minimized. In SPP, there
are two types of costs: packet routing cost and sensor deploying cost. According
to the energy model on packet transmissions [70], the routing cost is proportional
to the number of hops thus the distance to the cluster head. The deploying cost
is related to expense ps and the strength of sunlight at a specific location. Since
harvested energy exhibits slow variation due to seasonal changes of sun’s angle,
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solar radiations at a fixed location also change slowly during a year. According
to the illuminance readings from sensors, we denote the average solar strength at
sensor location i by li. The deploying cost can be defined as the ratio ps to li, which
can be explained as the price we pay to gather a unit of solar energy from a specific
location. If more SNs are deployed, nodes would have less relaying distance to the
SNs. Thus, less routing cost can be achieved. On the other hand, more SNs would
increase the deploying cost so our objective is to minimize the sum of routing cost
and deploying cost.

These observations suggest that our problem is in close analogy to the classic
Facility Location Problem (FLP) [97–100], which is NP-hard. In FLP, a set of facil-
ities and cities are given. There is an opening cost associated with each facility and a
transportation cost between any pair of facility and city. The goal is to connect each
city to an open facility while minimizing the sum of transportation cost and open-
ing cost. Due to NP-hardness, obtaining an optimal solution in polynomial time is
infeasible. In practice, approximation algorithms that can achieve certain factors
to the optimal solution are always preferred. After the first polynomial time 3.16-
approximation algorithm is proposed in [97], there has been encouraging progress
in improving the approximation ratio and running time. An O(n2 log n) algorith-
m is proposed in [98] with an approximation ratio of 3 based on the primal-dual
method. This bound is soon improved by [99] from 1.86 to 1.61 which is very close
to the upper limit 1.46-ratio that polynomial-time algorithms can achieve [100].

However, the aforementioned efforts only focus on centralized algorithms where-
as distributed implementation of FLP is rare in the literature. In dynamic wireless
environments, a centralized algorithm requires the collection of variables across
multiple dimensions to form global knowledge, which is usually time-consuming
and not cost-effective. To this end, we propose a distributed 1.61(1+ϵ2)-approximation
algorithm based on the centralized approach in [99]. Next, we first formalize SP-
P and illustrate the centralized 1.61-approximation algorithm. Then we propose a
distributed version of the algorithm. Since the locations of SNs are not necessarily
constrained to WN locations, we further improve the solution using the Weiszfeld
algorithm [101]. Finally, we discuss how to re-deploy SNs in order to adapt varia-
tions in solar strength at different times.
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5.4.1 Placement of Solar-powered Sensors

In this subsection, we formalize the problem and describe both the centralized and
distributed versions of the algorithm.

Centralized Placement Algorithm

First, let us formalize SPP. We denote the sets of SNs and WNs by S and N , re-
spectively. For simplicity, we first study discrete SPP by assuming SNs can only
be co-located at WNs’ locations, S ⊂ N . We consider a graph G = (V,E) where
vertices are sensor nodes and edges are connections. cij is the routing cost between
nodes i and j, which is the energy consumed for transmitting packets. fi is the de-
ploying cost of SN i, and fi = ps/li, where li is the solar strength at node i. Since
the energy consumed by WNs for data transmissions ultimately comes from the M-
Cs, to convert cij’s energy units into monetary cost, we scale cij by how much the
base station has paid for consuming per watt of energy to recharge MC’s battery.
The decision variable xij is 1 if WN j is assigned to SN i; otherwise, it is 0. yi is 1
if we place an SN at i; otherwise, it is 0. Initially, all WNs are candidate locations
for SNs. Our objective is to minimize the total cost by finding the locations for SNs.

P1 : min
∑
i∈S

∑
j∈N

cijxij +
∑
i∈S

fi (5.1)

Subject to ∑
i∈S

xij ≥ 1; j ∈ N (5.2)

xij ≤ yi; i ∈ S, j ∈ N (5.3)

xij, yi ∈ {0, 1}; i ∈ S, j ∈ N (5.4)

Constraints (5.2) and (5.3) impose that each WN is only connected to one SN. A
centralized 1.61-approximation algorithm is proposed in [99]. Since we will use
it as a guideline for designing the distributed algorithm, we briefly describe the
centralized algorithm below. For each SN i, we introduce a set Bi to represent its
connected WNs (Bi ⊆ N ). In each step, the algorithm selects the node i∗ with the
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Table 5.2: Centralized 1.61-factor SN Placement Algorithm
Input: Set of WN N .
Output: Set of SN S and Bi, i ∈ S .
While (N ̸= ∅)
Find i∗ = argmin

i∈N

( ∑
j∈Bi

cij + fi −
∑
j∈B′

i

(ci′j − cij)
)
/|Bi|.

Deploy i∗, connect ∀j ∈ Bi
∪
B′
i to i∗, N ← N − Bi.

End While

minimum average cost

i∗ = argmin
i∈N

[∑
j∈Bi

cij + fi −
∑
j∈B′

i

(ci′j − cij)
]
/|Bi|. (5.5)

Node i′ is a deployed SN that WN j has already connected to. B′
i is the set of these

already connected WNs which would be benefited by altering their connections to
the new SN i. Hence, a saving of routing cost

∑
j∈B′

i
(ci′j − cij) should be deducted

from the total cost. To find the minimum average cost for each candidate SN i, we
can sort the cost in an ascending order and select the least one. This would result in
|Bi|WNs being chosen each time. After i∗ is found, we deploy an SN at its location
and update all the WNs in Bi

∪
B′
i to connect with node i∗. The iteration continues

to add SNs until all WNs are connected to them. The centralized algorithm has
O(N3) complexity and is summarized in Table 5.2.

(1.61 + ϵ2)-factor Distributed Algorithm

To understand the nature of the problem, we first formulate the dual problem of P1.
The introduction of dual variables will help design the distributed problem.

P2 : max
j∈N

aj (5.6)

Subject to

aj − bij ≤ cij; i ∈ S, j ∈ N (5.7)∑
j∈N

bij ≤ fi; i ∈ S (5.8)

ai, bij ≥ 0; i ∈ S, j ∈ N (5.9)
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Table 5.3: Distributed 1.61(1 + ϵ)2-factor Algorithm for WN j
If j is not connected to any SN,
send a message to i with offer aj ← max(aj − cij, 0).

Else If j is connected to a deployed SN i′,
send a message to i with offer aj ← max(ci′j − cij, 0).

End If
Raise offer aj ← (1 + ϵ)aj .

Here, we can think the dual variable aj as a monetary offer from node j to the
total expense for deploying an SN. Constraints (5.7)-(5.8) can be combined into∑

j∈N max(aj − cij, 0) ≤ fi for SN i ∈ S . It means that if offer aj is raised for
all the WNs at the same pace, and at the moment the total offer minus the total cost
is equivalent to fi, an SN can be successfully deployed at i. This method is known
as the dual ascent procedure [99] and its 1.61-factor approximation is proved in
[99] following the centralized paradigm. Based on [99], we propose a distributed
1.61(1 + ϵ)2-approximation algorithm next, where ϵ is a small fraction greater than
zero.

First, WNs will send out their offers to SNs. If a WN is not connected to any
i ∈ S , the value of the offer is set to max(aj − cij, 0); otherwise, the value is set to
max(ci′j−cij, 0). At the other side, SNs receive the offering messages from WNs. If
an SN j is not yet deployed while its received total offers

∑
j∈N max(aj−cij, 0) are

greater than or equal to fi, we can successfully deploy an SN at i. If j is deployed
and the offer value aj = cij , we connect j to i by sending a connection message
to j. In the next round, WNs increase their offers aj by a ratio of (1 + ϵ). After
the locations for SNs have been calculated, the WNs send out deploying requests
to the MCs. Then an MC is dispatched from the base station to deploy SNs at their
designated locations. The distributed algorithm on WNs and SNs is summarized in
Table 5.3 and Table 5.4 and has the following properties.

Property 1: In principle, the distributed and centralized algorithms are equiva-
lent.

Proof. We sequentialize the distributed algorithm into execution rounds. For the
distributed algorithm, each round consists of a number of message sending and
receiving by respective WNs and SNs. In each round, the total offers received from
all the nodes are

∑
j∈N aj =

∑
j∈N cij + fi. For some nodes already connected,
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Table 5.4: Distributed 1.61(1 + ϵ)2-factor Algorithm for SN i
Receive offering messages from WNs.
If i is not yet deployed AND

∑
j∈N max(aj − cij, 0) ≥ fi

deploy an SN at i’s location, S ← S + i.
∀j ∈ N , Bi ← Bi + j. Connect j to SN i.

Else If i has been deployed AND aj = cij
connect j to i, Bi ← Bi + j, B′

i ← B′
i − j.

Send a connection request message to j.
End If

the new offers are
∑

j∈N aj =
∑

j∈N ci′j − cij , which should be deducted from
the total offers to reflect the adjusted value. We can see that this result is exactly
the term in (5.5). Since the offer value is increased at a rate (1 + ϵ), an SN that
meets the lowest total offer will be selected in the earliest time, which is equivalent
to selecting the least average cost in the centralized algorithm. Therefore, we can
see that the mechanism of the distributed algorithm is analogous to the centralized
algorithm in [99].

Property 2: The distributed algorithm terminates inO(log1+ϵ fm) rounds, where
fm = max fi, i ∈ N . The total message overhead is O((log1+ϵ fm)N

2).

Proof. Clearly, when the offering amount aj increases at a rate (1+ϵ), reaching the
maximum value of fi requires O(log1+ϵ fm). In each round, the message overhead
is bounded by O(N2) so the overall message overhead is O((log1+ϵ fm)N

2).

Property 3: The distributed algorithm achieves 1.61(ϵ + 1)2-factor approxima-
tion to the optimal solution.

Proof. First, denote optimal offers in the centralized algorithm [99] by aj and the
distributed algorithm by a′j , j ∈ N . A Factor Revealing LP is constructed by [99].
For SN i, k = |Bi|, the optimal solution is to solve the following maximization
problem

P3 : zk = max
k∑

j=1

aj
/
(

k∑
j=1

cij + fi) (5.10)
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Subject to

aj ≤ aj+1,∀j ∈ {1, 2, . . . , k − 1} (5.11)
k∑

j=1

max(aj − cil, 0) ≤ fi,∀l ∈ {1, 2, . . . , k} (5.12)

aj ≤ al + cij + cil,∀j, l ∈ {1, 2, . . . , k} (5.13)

aj, cij, cil, fi ≥ 0,∀j, l ∈ {1, 2, . . . , k} (5.14)

For the maximization problem to be bounded, aj should also be bounded. It implies
that at least one of the constraints of (5.12) and (5.13) is tight (i.e., changing from
inequality into equality). Case 1: Eq. (5.12) is tight; Case 2: Eq. (5.13) is tight,
thus al is also bounded.

For the distributed algorithm, we can formulate it into a similar Factor Reveal-

ing LP except that constraint (5.12) becomes
k∑

j=1

max
(

a′j
1+ϵ
− cil, 0

)
≤ fi and con-

straint (5.13) becomes
a′j
1+ϵ
≤ a′l + cij + cil since increasing offers at the same pace

in the centralized scheme would deploy SN i at most (1 + ϵ) time earlier com-
pared to the distributed algorithm. For Case 1, since fi ≥ 0 and the constraint is
tight, aj − cil ≥ 0 and

a′j
1+ϵ
− cil ≥ 0 hold for the centralized and distributed al-

gorithms, respectively. Thus,
a′j
aj
≤ 1 + ϵ. For Case 2:

a′j
1+ϵ

= a′l + cij + cil and
k∑

l=1

max(
a′l
1+ϵ
− cil, 0) ≤ fi is also tight to bound a′l. The latter suggests that the ratio

in Case 1 a′l
al
≤ 1 + ϵ can be applied here:

a′j
1 + ϵ

≤ al(1 + ϵ) + cij + cil ≤ (1 + ϵ)(al + cij + cil) (5.15)

Then by taking the ratio of Eq. (5.15) to Eq. (5.13), we have
a′j
aj
≤ (1 + ϵ)2 for

Case 2. Since the approximation ratio to the optimal solution a∗j is proved by [99],
aj
a∗j
≤ 1.61. Thus, our algorithm has at most

a′j
a∗j
≤ 1.61(1+ ϵ)2 approximation to the

optimal solution.
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5.4.2 Placement of SNs in Continuous Space

Since MCs enjoy the freedom to place SNs at any feasible location in the field, in
this subsection, we explore the placement of SNs in continuous space. Clearly, the
continuous problem is much harder than its discrete version (SPP). Thus we start
from the discrete results and relax them into the continuous domain. Intuitively, the
asymptotic behavior of the discrete problem should approach the continuous prob-
lem when the number of nodes is infinite. However, in our problem, the number is
limited. Thus discrete results from the SPP provide a feasible, sub-optimal solution
to the continuous problem.

Our objective is to re-locate SNs in the continuous domain so the total cost
which consists of the intra-cluster routing cost and the deploying cost is minimal.
We find that, in most cases, variations of geographical solar radiation are quite small
in a cluster (unless some spots are covered by shades) so the total cost is usually
dominated by the routing cost. Changing SNs to new locations might reduce the
routing cost (by ∆C) but lead to an increase of deploying cost (by ∆F ). If the
reduction in routing cost is higher than the increment in deploying cost (∆C −
∆F > 0), there is still an extra saving in the total cost. To minimize the total cost,
a naive approach is to divide the field into grids and enumerate through all possible
locations. This method obviously requires enormous computation power and its
accuracy also depends on the density of the grid.

We shift our focus to minimizing intra-cluster routing cost, and at the same
time, we look for locations that offer the largest overall savings ∆C − ∆F . From
SPP, a set S is obtained (S ⊆ N ) with the corresponding cluster set Bi, ∀i ∈ S .
We observe that the problem resembles the well-known Weber problem[101, 102]
which finds the geometric mean for the set of Bi nodes. A well-known algorithm to
solve the problem is to use an iterative procedure due to Weiszfeld[101]. In order
to consider the deploying cost also, we introduce an additional step to the original
Weiszfeld algorithm.

The algorithm is illustrated below. First, we initialize SN’s location x0 at node
i’s coordinates (from the output of SPP). The Weiszfeld algorithm uses a recursive
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Table 5.5: Extended Weiszfeld algorithm for a cluster
Initialize SN’s location x0 to i’s coordinates obtained by SPP.
While xk+1 − xk > ε

W (xk) =
[ |Bi|∑
j=1

αj

c(xk,j)

]
/
[ |Bi|∑
j=1

1
c(xk,j)

]
, xk+1 = W (xk).

Record deploying cost Fk at xk.
End While
n← k is the number of iterations until convergence.
Find km = arg min

1≤i≤n
(Ci + Fi) and place SN at location xkm .

function W (·) to find the optimal cost. The computation of the k-th iteration is,

W (xk) =
[ |Bi|∑

j=1

αj

c(xk, j)

]/[ |Bi|∑
j=1

1

c(xk, j)

]
(5.16)

where c(xk, j) is the routing cost of transmitting a packet from location xk to node
j, and αj are the coordinates of node j ∈ Bi. The iteration continues by executing
xk+1 = W (xk) until location changes are less than a small error bound ε. Since it
has been proved in [102] that the Weiszfeld algorithm can converge to an optimum,

the intra-cluster routing cost Ck =
|Bi|∑
j=1

1
c(xk,j)

for the k-th iteration is larger than

Ck+1 in the (k + 1)-th iteration. However, the corresponding deploying cost may
not share the same property due to the relative randomness in geographical solar
energy distribution. For an algorithm that converges in n iterations, an additional
step of finding the minimal deploying cost km = arg min

1≤i≤n
(Ci + Fi) is needed

when the iteration is over. Then location xkm is the final solution of the extended
Weiszfeld algorithm. The algorithm is summarized in Table 5.5.

5.4.3 Adapt to Solar Variations

Here, we demonstrate how to change SNs’ locations to adapt to solar variations.
During different seasons of a year, the sun’s angle towards earth surface varies slow-
ly. Consequently, the harvested energy at different locations reflects such changes
due to building obstructions, tree shades, etc. Fig. 5.2 shows the heatmaps of
a sensing field on our campus gathered at different locations in February and May

133



0 20 40 60 80 100
0

20

40

60

80

100
Solar energy distribution (Feb)

Field Coordinates X−Axis (m)

F
ie

ld
 C

oo
rd

in
at

es
 Y

−
A

xi
s 

(m
)

 

 

0

0.6

1.2

1.8

2.4

3
mW/cm2

Tree Shades

0 20 40 60 80 100
0

20

40

60

80

100
Solar energy distribution (May)

Field Coordinates X−Axis (m)

F
ie

ld
 C

oo
rd

in
at

es
 Y

−
A

xi
s 

(m
)

 

 

0

0.8

1.6

2.4

3.2

mW/cm2

4
Tree Shades

(a) (b)

Figure 5.2: Geographic solar energy distribution in different months. (a) February.
(b) May.

(Longitude at North 40◦). We can see that the areas falling into tree shades are quite
different. This has a direct impact on the deploying cost fi at a location. Second,
the strength of solar radiation also varies dramatically. In February, the maximum
level is 3 mW/cm2 and an increase of 13% is observed in May. These observations
suggest that SN locations should be re-calculated after some time Tc. Otherwise,
they might be covered in shades with limited harvesting capabilities.

Our algorithm fully exploits the distributed nature of WSNs. During operation,
each node records solar strength at its location periodically and maintains a trailing
average for the past Tc time. fi is updated every Tc time accordingly. Once a new
deployment is initiated, SNs’ locations are calculated using the distributed algorith-
m. After their locations are found, an MC is dispatched to re-locate corresponding
SNs to designated locations.

5.5 Wireless-powered Sensor Level: Maintaining En-
ergy Balance

In this section, we study the wireless-powered sensor level. Our main objective is
to maintain network energy balance on WNs in different scenarios. First, we derive
energy balance when SNs operate during sunny days. To facilitate our analysis,
we denote the number of SNs obtained by the SPP algorithm as s = |S| and the
maximum hop count from WN to its assigned SN as h. We assume that a total
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budget B for s SNs and m MCs, sps + mpm ≤ B. We explore the relationship
between s and m given their manufacturing costs ps and pm (ps < pm). Second,
during cloudy/raining days, energy balance might be broken. In this case, we further
study how to regain such balance by refilling the energy gap. We propose to utilize
several WNs to act as temporary cluster heads for aggregating data. A numerical
range of WN cluster heads is first derived followed by a distributed algorithm to
determine which WNs should be selected.

5.5.1 Energy Balance

First, let us consider energy consumptions in the network. For s shortest path rout-
ing trees rooted at SNs, the total energy consumption is

Ec =
∑
j∈N

[
λ(et + es) +

∑
i∈Cj

λ(et + er)
]
T

≤
h∑

i=1

[
Ni(et + es) +

h∑
j=i+1,
i̸=h

Nj(et + er)
]
λsT

=
[(2
3
h3 − 1

2
h2 − 1

6
h
)
(et + er) + h2(et + es)

]
πr2ρλsT (5.17)

where Cj is the set of child nodes of j ∈ N , Ni = (2i− 1)πr2ρ. The inequality
holds because 1) a cluster can be estimated as a circle of radius R = hr which
consists of h concentric rings [14]; 2) summation of consumptions from all circle-
shaped clusters has overlapping areas between neighboring clusters.

The harvested solar energy can be estimated by the empirical model proposed in
[103]. The model provides a year-round analysis of solar radiations from weather
stations and relates power levels to a quadratic equation on the time t of the day,

E = (a1(t+ a2)
2 + a3)(1− σ). (5.18)

The shape of Eq. (5.18) is determined by parameters a1 − a3 that vary sea-
sonally for different months. For example, for the month of May, a1 = −1.1,
a2 = −13.5 and a3 = 43.5. t1 and t2 are the respective time of sunrise and sunset
(t1 = −

√
−a3

a1
− a2, t2 =

√
−a3

a1
− a2). σ is the percentage of cloud cover from
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weather reports. For T days, energy harvested by SNs is

Es = s
T∑
i=1

∫ t2

t1

[
a1(t+ a2)

2 + a3
]
(1− σi)dt (5.19)

The wireless energy replenished by MCs into the network is governed by the battery
charging rates Ch/Tr. Thus, the amount of wireless energy replenished by m MCs
in T can be calculated by Ew = (mTCh)/Tr, m ̸= 0. Then network energy balance
is achieved when

Ec ≤ Es + Ew

Ec <
[(2
3
h3 − 1

2
h2 − 1

6
h
)
(et + er) + h2(et + es)

]
πr2ρλsT

≤ s

T∑
i=1

∫ t2

t1

[
a1(t+ a2)

2 + a3)
]
(1− σi)dt+

mTCh

Tr

(5.20)

Since π(hr)2s ≥ L2, we have
√

L2/(sr2π) ≤ h. By plugging it into Eq. (5.20)
and taking approximation et ≈ er, we obtain a relationship between s and m

LTretρλ

3
√
πChr

(4L2

√
s
− πr2

√
s
)
−Xs+

(1
2
et + es

)L2ρλTr

Ch

≤ m, (5.21)

where X is

X =
[ Tr

ChT

T∑
i=1

(1− σi)
][a1

3
t3 + a1a2t

2 + (a1a
2
2 + a3)t

]∣∣t=t2

t=t1
. (5.22)

5.5.2 Analysis of Budget and System Cost

The relationship between s and m in Eq. (5.21) can be explained graphically. Fig.
5.3(a) shows a group of energy balance curves when N = 250 ∼ 750. Any point
on a curve serves the same purpose for balancing network energy and there is no
preference between choosing SNs or MCs as long as the balance holds. In fact,
these curves can also be interpreted as the indifference curves in microeconomics.
An indifference curve shows a collection of different goods between which the
consumer is indifferent and every point on the curve results in the same utility. For
example, when N = 500, point A requires 2 SNs and 8 MCs, which is equivalent
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Figure 5.3: Network plans under budget constraints. (a) Energy balance curves for
different network sizes. (b) Optimal choices under budget constraints.

to point B of 4 SNs and 6 MCs. Note that keeping adding SNs reduces MCs at a
diminishing marginal rate. This is because that when the number of SNs is small,
adding more SNs helps alleviate routing cost significantly (saving energy); however,
this benefit gradually diminishes as more SNs are deployed.

Based on the budget, we can find whether a network plan is feasible to maintain
energy balance. Since s is determined by the SPP algorithm, the corresponding
number of MCs m can be found from the budget line m = −Pm

Ps
s + B

Ps
(point

(s,m)). If this point is above a balance curve, it means that the corresponding
network size can satisfy energy balance. For example, point (6, 3) on budget line
1: m = −1

3
s + 5 is above the balance curve of N = 250 which indicates that

the selection of s = 6, m = 3 is feasible. The feasible region for budget line 1
is marked as the shaded area. Furthermore, to find the maximum network size a
given budget can sustain, we gradually increase N until point (s,m) is no longer
above the balance curve. For point (6, 5) on budget line 2, the maximum network
size is N = 500. As the network size increases, the budget should be increased as
well, which is to shift the budget line upward in Fig. 5.3(b). In this way, network
administrators can quickly find an appropriate network plan, given the budget and
available choices of SNs and MCs.
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5.5.3 Adaptive Re-selection of Cluster Heads

An imperfection of solar energy is that sunlight is not always available. For ex-
ample, during raining seasons, the network could experience consecutive cloudy
or raining days and SNs are unable to harvest enough energy. To sustain network
operation, our framework should adaptively switch cluster heads to WNs for aggre-
gating sensed data. In this section, we first discuss how to maintain energy balance
in the absence of solar energy. Then, we propose an algorithm to re-select cluster
heads among WNs.

Maintaining Energy Balance

Since the number of MCs m is fixed for a network plan, we cannot expect more
energy income from the energy replenishing side. To this end, we should reduce
energy consumptions to restore energy balance. That is, the energy gap during
cloudy days should be filled by reducing consumption for at least the same amount.
Intuitively, introducing more cluster heads can effectively reduce energy consump-
tion because more aggregation points would shorten packet relay paths. In other
words, this is equivalent to having smaller k-hop clusters (k < h). The following
property validates our intuition.

Property 4: For a network originally clustered by s SNs with cluster size h > 2,
in the case that solar energy is unavailable, we can always restore network energy
balance by reducing cluster size.

Proof. By assumption, for SNs to successfully aggregate and transmit data, E∗
s ≥

sh2r2πρλ(et + er)T . Plugging this into Eq. (5.20), we have

mCh

Tr

>
[(2
3
h3 − 3

2
h2 − 1

6
h
)
(et + er) + h2(et + es)

]
πr2ρλs (5.23)

For h > 2, 2
3
h3 − 3

2
h2 − 1

6
h > 0 so mCh

Tr
> h2r2πρ(et + es)λs > N(et + es)λ.

N(et+es)λ is exactly the energy consumed by sensors to generate and transmit data
in one-hop communication to the MCs and the inequality states that the recharging
rates from MCs is enough to support one-hop communications. Thus, we have
proved that for h > 2, in the worst case, we can always use one-hop mobile data
gathering to restore energy balance.
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Remarks: An anomaly is h = 1, 2. Because the original cluster sizes are al-
ready very small, we cannot reduce energy consumption further by having smaller
clusters. In these cases, a notification message should be sent to request for more
MCs.

However, one-hop mobile data gathering only occurs in the worst case. Nor-
mally, we have 1 < k < h so our objective is to calculate how many WN cluster
heads are needed given k. From the previous subsection, the solar radiation mod-
el indicates the energy harvested peaks when σ ≈ 0 (perfect weather condition).
Let us denote the number of new WN cluster heads by s′ (s′ > s). The maximum
amount of energy harvested is E∗

s when σ = 0 in the ideal case. Ec(h) is the en-
ergy consumption with h-hop clusters. Xc(k) is the energy consumption for each
k-hop cluster (plugging k into Eq. (5.17) and getting rid of s′). Since we require
E∗

s ≤ Ec(h)− s′Xc(k), a range for s′ is

L2

π(kr)2
< s′ ≤ Ec(h)− E∗

s

Xc(k)
. (5.24)

By fixing k, any s′ satisfying Eq. (5.24) will guarantee energy balance of the net-
work. Next, we develop a distributed algorithm to find WN cluster heads.

Head Re-selection Problem

We now further explore the Head Re-selection Problem (HRP) which finds k-hop
clusters with s′ cluster heads satisfying Eq. (5.24). On one hand, since WN cluster
heads will be traversed by MCs for data collection, the number of such nodes should
be minimized to save MCs’ moving cost. On the other hand, for heads to cover all
the nodes within k hops, s′ should be sufficiently large; otherwise, clusters will
exceed k hops and more likely break the energy balance. Hence, our objective is to
select a minimum number of heads and ensure that the shortest path from any node
to its nearest head does not exceed k hops. It is not difficult to see that HRP is the
minimum k-hop dominating set problem which is NP-hard [104].

A distributed algorithm for this problem is proposed in [104] for ad-hoc net-
works. The algorithm requires two rounds of k-hop message flooding for all the
nodes. Since flooding is usually less preferred in energy constrained WSNs, we
will not adopt the algorithm in [104]. Instead, we leverage the range in Eq. (5.24)
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as a basis for HRP. That is, as s′ grows, hop distance from a node to its nearest
head should decrease. Thus, we can start from the lower bound and increase s′ iter-
atively until all the nodes are covered in k hops or the upper bound is reached. To
find which WNs should become cluster heads, we extend the furthest first traver-
sal algorithm proposed in [105]. The algorithm selects the node with the maximum
distance from the current node to become the head in the next round. Unfortunately,
the algorithm cannot be applied directly to our problem because: 1) it is centralized
and not efficient to implement in distributed WSNs; 2) it may lead to inefficient se-
lections. A new head might be chosen in the vicinity of an established one thereby
causing a large overlap between neighboring clusters. This is not efficient and may
also violate Eq. (5.24). Hence, we leverage the principle of furthest first traversal
and propose a new distributed algorithm.

When gathered data at an MC indicates solar energy is not sufficient to support
SNs, the MC sends a head notification message to any arbitrary WN whose battery
has just been replenished and sets a counter to 0. The message specifies the cluster
size k hops (k = h − 1 initially and decreased by 1 in each trial till k = 1). Upon
receiving the head notification message, the WN declares itself as a new head and
builds a shortest path tree (e.g., using Bellman-Ford algorithm). Each node also
maintains a routing entry to store minimum hop distance to a head. Those entries
are updated when a new shortest path tree is formed. If a node j’s entry indicates the
minimum hop distance to a head i is less than or equal to k, it sends a join message
to i to “join” the cluster as a member. Otherwise, it sends a resume message to node
i to let the head selection continue. Within a timeout period, if the head receives
a resume message, it means that there still exist some node(s) uncovered and the
selection process should continue.

If a resume message is received, the head computes a shortest path tree using
the Bellman-Ford algorithm. To avoid inefficient head selection, nodes should also
report to the head whether they are cluster members or not. Then a new head noti-
fication message is generated and sent along the shortest path tree to the node with
the maximum hop distance and enough battery energy which is not a cluster mem-
ber yet. The counter is then increased by one. Otherwise, if no resume message is
received during the timeout period, the head declares that clustering is successful by
sending a complete message to all the heads. Upon receiving the complete message,
heads report to the MC of cluster information. Note that if the counter exceeds the
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Table 5.6: Distributed Head Re-selection Algorithm for WN i, i ∈ N
MC sends HeadMsg to a WN (with enough energy), counter c← 0,
sets HeadMsg.hop to k(k < h). Set of cluster headsH ← ∅.
If Recv(HeadMsg.ID = i AND c ≤ Ec(h)−E∗

s

Xc(k)
)

dij = min
j∈N

HopCount(i, j) (Bellman-Ford-SPT(i)),H ← H + i.

Send new routing msg regarding new head i to all the nodes.
Set time-out period T waiting for resume messages.
If Recv(ResumeMsg.ID = i) within T
u = argmaxmin

j∈N
HopCount(i, j), c← c+ 1.

Send HeadMsg to u.
Else
Clustering is completed and broadcast complete msg.
End If

Else If Recv(NewRoutingMsg.ID is i)AND min
j∈H

HopCount(i, j) > k.

Send ResumeMsg to the new head.
Else If Recv(NewRoutingMsg.ID is i)AND min

j∈H
HopCount(i, j)≤ k.

Send JoinMsg to u = argmin
j∈H

HopCount(i, j),

Declare as cluster member of u (Bu ← Bu + i,N ← N − i).
Else If Recv(HeadMsg.ID = i AND c > Ec−E∗

s

Xc(k)
)

k ← k − 1, broadcast a restart message.
Else Forward message according to routing entries.
End If

upper bound in Eq. (5.24), the current k is not feasible to maintain energy balance
so it should be further decreased. In this case, the head should broadcast a message
to restart the whole process and choose a smaller k. The psuedocode of this algo-
rithm is given in Table 5.6. Based on Property 4, the distributed HRP algorithm
can always find a set of cluster heads in O(hS) rounds and the worse case message
overhead is O(hSN2), where S is the upper bound in Eq. (5.24).
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5.6 Mobile Charger Layer: Joint Wireless Charging
and Mobile Data Gathering

In this section, we focus on optimizing trajectories of MCs. Proposed in [41], the
instrumenting radio modules on MCs realize joint wireless charging and mobile
data gathering on a single MC. This design certainly reduces manufacturing cost
of MCs and system cost. However, because the effective wireless charging range
is very limited (0.5-1m), the method in [41] requires the MC to stop at the exact
WN location to perform simultaneous data gathering and recharge. However, in
our framework, since SNs are powered by solar energy, it is only necessary for the
MC to enter the transmission range (“touch” the transmission boundaries) to collect
data from SNs. This creates opportunities to further optimize MCs’ trajectories.

5.6.1 Planning of Joint Data Gathering and Recharging Tours

Initial Center Tour

We assume MC i has been assigned a touring sequence. The sequence defines
an ordered set of nodes that starts from the base station b, traverses through WNs
wi and SNs (cluster heads) aj , wi ∈ N , aj ∈ S , and finally returns to the base
station for uploading data and recharging MC’s own battery. Recharge scheduling
algorithm proposed in [71] can be used conveniently to take recharging and data
gathering requests together and calculate an initial touring sequence for each MC.
Normally, the cluster size is larger than one hop (h > 1), and the transmission range
around SNs form disjoint disks with identical radius. Since the initial sequence
does not distinguish an SN from a WN and stops at the center of SN’s transmission
radius, we call it “Initial Center Tour” and denote its length as Lc. For such a tour
with n WNs and s SNs, we have the following property.

Property 5: For an optimal tour with length L∗
r , when L∗

r is much larger than
transmission range r, Lc is within

(
1 + 8

π
+ ϵ

)
≈ 3.55 + ϵ to the optimal L∗

r .

Proof. Our proof is based on [118]. Since SNs can be represented by disjoint disks,
the sum of feasible areas for s SNs is sπr2. We consider a larger disk of radius 2r
so any point in disk of radius r can be enclosed. The total area sπr2 should be less
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than the area swept by the disk of 2r,

sπr2 + nπr2w ≤ 4rL∗
r + 4r2π. (5.25)

The wireless charging range rw is much smaller than r (rw ≪ r). If we enforce
the MC to go through disk centers, an extra distance less than 2r has to be made
(entering and leaving the center). Thus, Lc is bounded by

Lc ≤ L∗
r + 2rs ≤ L∗

r + 2r
4rL∗

r + 4r2π − nπr2w
πr2

Lc

L∗
r

≤
(
1 +

8

π

)
+

8r

L∗
r

≤ 1 +
8

π
+ ϵ (5.26)

In the first step, we use Eq. (5.25) for s. In the last step, we omit the last term
n( rw

r
)2, as rw

r
≈ 0. Since r is much smaller than L∗

r , we denote 8r
L∗
r
≤ ϵ where ϵ is a

small fraction close to 0.

Exhaustive Search

Although the initial center tour guarantees a (3.55 + ϵ)-factor approximation, the
solution can be further improved if the MC can take shortcuts through the disks.
This problem is known as the Traveling Salesmen Problem with Neighborhoods
and no efficient solution exists [117, 118]. However, in our problem, we can take
advantage of WNs in the sequence and greatly reduce computation complexity.
For all WNs in a sequence (and the base station), we order them in pairs (b, w1),
(w1, w2), . . ., (wn, b). For each pair (wi, wi+1), there could be at most s SNs in
between. Let us start the analysis with s = 1. Fig. 5.4 shows that there are
two cases: 1) the path connecting wi and wi+1 directly cuts through the disk (Fig.
5.4(a)). In this case, the MC does not need to change directions. It only stops for
a period of data uploading time (several minutes) in the disk. 2) the disk does not
intersect with the path so there should exist a point on the boundaries of the disk that
can minimize the path (min(a+ b) in Fig. 5.4(b)). A naive approach is to divide the
disk perimeter into l segments and find out which one yields the minimum distance.
The method is used in [114] to find optimal hitting points on disk boundaries and
its accuracy is proportional to l.
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Figure 5.4: Analysis of shortest path through feasible regions around SNs.

A closer look at Fig. 5.4(b) suggests a possible reduction of search space. Let
us define the angle between lines connecting wiai and wi+1ai as θ. For a point
t on the arc outside the sector, there is an angle β > 0 between lines wi+1t and
wi+1ai. Clearly, c + d > e + f so any point t outside the sector gives an inferior
solution compared to a point within the sector of θ. Thus, we can narrow down the
search space to the points on the arc within angle θ between wiai and wi+1ai, so
examination of only a fraction f = θl

2π
points is enough. Nevertheless, computation

complexity of exhaustive search still grows exponentially when there are s SNs
between wi and wi+1 (with complexity O(f s)), thus a faster method is needed.

Minimizing Sum of Squared Distance

Exhaustive search quickly turns out to be impractical in reality. If the problem can
be solved analytically, computational complexity can be greatly reduced. Since the
expressions of distance involving square roots tend to yield intractable computa-
tions, we minimize the sum of squared distance instead. In fact, sum of squared
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distance has been used in many applications such as the well-known K-means algo-
rithm [66]. The estimation error to the actual sum of distance will be evaluated by
simulations. Likewise, we start our analysis from s = 1 and derive the following
property.

Property 6: The point p on disk ai that minimizes d = (|wip|)2 + (|wi+1p|)2 is
the intersection between line wmai and the disk, where wm is the mid-point between
the coordinates of wi and wi+1.

Proof. Although the property seems to be true by visual judgment of Fig. 5.4(b), a
geometric proof is difficult. Thus, we calculate p in terms of cartesian coordinates.
Denote coordinates of wi,wi+1 and p as (xi, yi), (xi+1, yi+1), (x, y), respectively.
Assume the origin of coordinate system resides at the disk center. The function of
the disk is x2 + y2 = r2. We use the Lagrangian multiplier method to find minimal
sum of squared distance. After taking partial derivatives, the variables are

Lx

∂x
= 4x− 2(xi + xi+1) + 2xλ,

Ly

∂y
= 4y − 2(yi + yi+1) + 2yλ

Lλ

∂λ
= x2 + y2 − r2 (5.27)

After some calculations, the coordinates for p are

x =
(xi + xi+1)r√

(xi + xi+1)2 + (yi + yi+1)2
,

y =
(yi + yi+1)r√

(xi + xi+1)2 + (yi + yi+1)2
. (5.28)

On the other hand, the coordinates of wm are (xi+xi+1

2
, yi+yi+1

2
). We plug the func-

tion of line wmai, y = yi+yi+1

xi+xi+1
x into the disk function of ai, and obtain two inter-

section points

x = ±
√

r2

( yi+yi+1

xi+xi+1
)2 + 1

, y = ±
√

r2

(xi+xi+1

yi+yi+1
)2 + 1

(5.29)

We can see one of the solutions in Eq. (5.29) is exactly Eq. (5.28), so the property

145



Table 5.7: Route Improvement Algorithm for MCs
Input: Sequence ⟨b, w1, . . . , ai, . . . , wj, . . . , wn, b⟩.
Set of SNs between wj and wj+1, Sj , S =

∪
j∈N Sj .

Output: Coordinates (xi, yi) MC should visit near ai.
While Sj ̸= ∅
For ai ∈ Sj , find coordinates of WNs wj , wj+1 in sequence.
If ai+1 is also between wj , wj+1.xj+1 = xai+1

, yj+1 = yai+1
.

Else (xj+1, yj+1) is set to wj+1’s coordinates.
End If
Establish cartesian coordinate system originated at center of ai.
xi = (xj + xj+1)r/

√
(xj + xj+1)2 + (yj + yj+1)2,

yi = (yj + yj+1)r/
√
(xj + xj+1)2 + (yj + yj+1)2.

Sj ← Sj − ai.
End While

is proved.

Next, we consider the case of s = 2 without a direct cut as illustrated in Fig.
5.4(c). To use our method, computing each touching point on a disk needs two
fixed points. For two disks, since the touching points can change simultaneously,
minimization of sum of distance (a + b + c) by considering multiple variables is
very difficult analytically. Instead, we use the center of ai+1 as the reference point
and calculate pi on disk ai to minimize (a + d) first. Then, based on pi, we cal-
culate pi+1 on ai+1 to min(b + c). In this way, each computation only involves
one variable. The method can be easily extended to the case when there are s SNs
between wi and wi+1, so a total of O(s) computation is needed, which reduces the
exponential-O(f s) exhaustive search algorithm to linear time. We summarize the
route improvement algorithm in Table 5.7.

5.6.2 Optimizing Recharging Time

We now optimize the allocation of MCs’ recharge times for different WNs to avoid
battery depletion. After the touring sequences have been found, the MCs need
to traverse through WNs and the neighborhoods of SNs for wireless charging and
data gathering. We assume the energy recharged into sensors’ batteries is roughly
proportional to the recharging time. In fact, most batteries exhibit such property
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as the longer they are being recharged, the more energy will be stored (under the
battery capacity). An ideal situation is to replenish all the nodes to full capacity and
hopefully no sensor depletes its battery before the recharge begins[83]. However,
due to the nontrivial recharge time, the MCs have to reside at the WN locations for
some time (e.g., 30-78 mins). This may easily cause energy depletion of subsequent
nodes in the sequence.

Linear Program Formulation

Here, we take a new approach that gives the MCs more flexibility so they can
recharge more sensors in fixed time and sustain their battery energy at working lev-
els. That is, instead of fully replenishing sensors’ batteries[33, 36, 41, 71, 83, 106],
we allow partial recharge. In case a node is bound to deplete its energy, the MC can
expedite all recharge schedules before that node.

Let us denote the touring sequence found in Section 5.6.1 by ⟨1, 2, · · · , i, · · · , n⟩.
There are two types of sojourn time at sensor nodes. For WN i, the MC stays for
a period of ti for recharge; for SN j, the MC spends a fixed time τj to collect data
packets. τj = pj/B, where pj is the amount of data at SN j’s buffer and b is the
data rate. A special case is when the MC’s trajectory directly cuts through SN’s
transmission range (Fig. 5.4(a)). If pj

b
≤ dc

v
, τj = dc

v
where dc is the length of

chord within SN’s transmission range. It means that if the data transmission time is
less than MC’s traveling time inside SN’s transmission range, the MC can collect
all the data without stopping. We denote MC’s traveling time between two consec-
utive nodes in the sequence by τi,i+1 = di,i+1/v. Each WN i has a residual lifetime
Li. Our objective is to maximize the sum of recharge time under a pre-determined
packet delay T . At the same time, we should also guarantee that all the recharge
requests are met before their lifetime expirations. It can be formulated as a Linear
Programming (LP) problem,

P4 : max
∑
i∈N

ti (5.30)
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Subject to

j−1∑
i=1

(τi,i+1 + ti) +
∑

i<j,i∈S

τi ≤ Lj; 2 ≤ j ≤ n (5.31)

0 < ti ≤ Tr; 1 ≤ i ≤ n (5.32)
n−1∑
i=1

τi,i+1 +
n∑

i=1

ti +
∑
i∈S

τi ≤ T (5.33)

Constraint (5.31) in fact contains (n− 1) constraints and each one ensures that
for a sensor, the sum of all the time spent during recharging, data gathering and
traveling for all previous nodes in the sequence does not exceed its lifetime. Con-
straint (5.32) states that the maximum recharge time is to replenish the battery to
full capacity and Constraints (5.33) imposes a delay bound T for the entire recharge
sequence.

Recharge Time Assignment

Although the problem can be calculated by standard LP solvers (e.g., using the
simplex method), their worst case performance may take exponential time[121].
Thus, in this subsection, we develop a new algorithm by exploiting the particular
structure of the problem. Since τi,i+1 and τi can be calculated (constants) once the
recharge sequence has been determined, we can simplify Constraints (5.31) and

(5.33) as,
j−1∑
i=1

ti < L′
j ,

n∑
i=1

ti < T ′, where

L′
j = Lj −

j−1∑
i=1

τi,i+1 −
∑

i<j,i∈S

τi, T
′ = T −

n−1∑
i=1

τi,i+1 −
∑
i∈S

τi.

In other words, L′
j and T ′ represent the maximum recharge time from node 1 to

j−1 and the entire sequence respectively. It is not difficult to observe that there are
generally two cases for the optimal solution.

Case I: ∀j ∈ N , L′
j ≥ (j − 1)Tr and T ′ ≥ nTr. In this case, the MC can

recharge all the nodes to full capacity, i.e., t∗i = Tr, ∀i ∈ N and
∑

i∈N t∗i = nTr.
Case II: ∃j ∈ N , L′

j < (j − 1)Tr or T ′ < nTr. In this case, recharge time prior
to j may not take Tr so new assignments of recharge time should be performed. In
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fact, the maximization should take the value of a node’s lifetime when its lifetime
constraint is tight. Based on this observation and the iterative structure of Con-
straint (5.31), we propose a time assignment algorithm. It assigns recharge time
proportional to the energy demands. The algorithm starts from the node with the
minimum lifetime jm = argmin (L′

j, T
′), j ∈ N . Then for node i in the sequence

(1 ≤ i < jm), an amount of ti = L′
jmdi/(

jm−1∑
j=1

dj) recharge time is assigned. di is

the energy demand from node i. If assigned ti > Tr, ti should be bounded by Tr

according to Constraint (5.32). The remaining time ti − Tr can be evenly distribut-
ed among the other nodes from i + 1 to jm. For the node’s lifetime, we have the
following property.

Property 6: For the time assignment of node i prior to jm in the recharge se-

quence i < jm, the constraint
i−1∑
k=1

tk < L′
i holds.

Proof. The property can be proved since

i−1∑
k=1

tk = L′
jm(

i−1∑
k=1

dk/

jm−1∑
k=1

dk) < L′
jm < L′

i. (5.34)

Based on Property 6, we can see that once jm has been selected and recharge
time is assigned for all the nodes before jm, the lifetime constraints still hold for
these nodes. Hence, we can proceed to find the next node with minimum lifetime
from (jm + 1) to n and repeat the same procedure for recharge time assignments.
The iteration continues until the recharge sequence is exhausted. In most cases, the
time complexity of the algorithm is O(n2) since it needs to iterate through O(n)
nodes and each one requires O(n) time assignments. In the worst case, the algo-
rithm needs O(n3) since an extraO(n) assignments are needed once the calculated
recharge time exceeds Tr. The algorithm is summarized in Table 5.8.

5.6.3 An Example of Proposed Hybrid Framework

Finally, we demonstrate a complete example of the proposed framework in Fig. 5.5.
In Fig. 5.5(a), 8 SNs are placed to organize 250 WNs into clusters. Their initial
locations calculated by the distributed SPP algorithm are marked by triangles and
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Table 5.8: Recharge Time Assignment Algorithm
Initialize js ← 1, jm = argmin (L′, T ′)
While jm ̸= n
Initialize time variables φi ← 0 (js ≤ i ≤ jm − 1).

For i from js to jm − 1

ti = min(Tr, L
′
jmdi/

jm−1∑
j=js

dj + φi).

If ti = Tr, for i+ 1 ≤ k ≤ jm − 1

φk ← φk + (L′
jmdi/

jm−1∑
i=js

di − Tr)/(jm − i− 1)

End
End For
js ← jm, update L′ ← {L′

jm+1, · · · , L′
n, T

′}
Find the next, jm = argmin (L′, T ′)
End While

improved by the intra-cluster Weiszfeld algorithm shown as the crosses. In case
of shortage of sunlight, Fig. 5.5(b) shows the results from the HRP algorithm to
re-allocate cluster heads to WNs. Here, the loss in energy harvested from the 8 SNs
can be compensated by introducing 13 WN cluster heads to reduce hop distance.
For wireless charging and data gathering, Fig. 5.5(c) shows an initial center tour that
covers 9 energy requests and 7 data uploading sites (SNs). The route is improved
by our algorithm in Fig. 5.5 (d) with a saving of 17% moving energy on the MCs.

5.7 Performance Evaluations

In this section, we evaluate the performance of the framework by a discrete-event
simulator and compare it with a network solely relied on wireless energy [41, 71,
108]. In the simulation, all the cluster heads are replenished by the MCs in the
wireless-powered framework. N = 500 nodes are uniformly randomly distributed
over a square field of L = 150 m. Sensors have identical transmission range of
r = 12 m, and consume es = 0.05J for generating a sensing packet and et = er =

0.02J for transmitting/receiving a packet. Each time slot is 1 min and the traffic
follows a Poisson distribution with average λ = 3 pkt/min. WNs have battery
capacity Ch = 750mAh and require Tr = 78 mins for recharge. SNs have larger
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Figure 5.5: A complete example of the framework. (a) Placement of SNs. (b)
Restoring energy balance by WNs. (c) Initial center tour. (d) Optimized joint tour
with MC’s stopping time.
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Figure 5.6: Evaluation of the proposed algorithms. (a) Convergence of Weiszfeld
algorithm. (b) Improvements of tour for only data gathering sites (SNs). (c) Im-
provements of joint wireless charging and mobile data gathering tour. (d) Average
approximation ratios of the recharge time assignment algorithm.

capacity of 2150mAh. MC consumes 5 J/m while moving at v = 1 m/s. We use
real meteorological trace at Stony Brook, NY from [119], which has a complete
archive of weather conditions. The simulation time starts from December and lasts
for 12 months.

5.7.1 Evaluation of Algorithms

First, we evaluate the performance of the proposed algorithms.
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Extended Weiszfeld algorithm

We validate the convergence property of the extended Weiszfeld algorithm for find-
ing the SN locations in continuous space. For clarity, we randomly pick 4 SNs
and trace the evolution of their total costs in Fig. 5.6(a). We normalize the total
cost for better visualization. First, we observe that the Weiszfeld algorithm can
converge extremely fast (within 5-6 iterations) and offer an additional 2-5% energy
savings. Second, since the deploying cost is usually much less than the routing cost
in our problem, the total costs are dominated by the changes in the routing costs.
Therefore, the optimal values reach the minimum when the algorithm converges.
Otherwise, the algorithm will use the minimum total cost during the iteration pro-
cess as the final solution (explained in Section 5.4.2).

Route Improvement Algorithm

We evaluate the route improvement algorithm by comparing it with the algorithms
proposed in [41, 120]. The algorithm in [120] continuously finds the closest hitting
points on the boundaries of the disks and we call it nearest insertion algorithm.
The tour passing through the disk centers is used in [41] for joint wireless charging
and data gathering and we denote it by initial center tour. Fig. 5.6(b) compares
MC’s moving energy using the three methods. First, we can see that our algorithm
provides an average of 25% energy saving compared to the initial center tour. In
fact, more energy saving can be achieved with a larger transmission range since
an MC only needs to visit the transmission boundaries for gathering data. Second,
the results further indicate 5-7% improvements over the nearest insertion algorithm
[120]. This is because that selecting the closest hitting point on a disk cannot guar-
antee that the sum of distance to the neighboring nodes is minimal. In contrast, our
algorithm finds a point on the disk that minimizes the sum of squared distance. To
examine the gap between minimizing the sum of squared distance and the actual
distance, we conduct more evaluations in Fig. 5.6(c) by considering a joint route
comprised of WNs and SNs. Since WNs outnumber SNs by a considerable amount,
we maintain a 10 to 1 ratio between WNs and SNs. To provide a baseline, an exact
solution is found by exhaustive search using [114]. Surprisingly, our algorithm has
only an average of 1% difference to the exact solution whereas reducing computa-
tion complexity from exponential to linear time. In addition, with mixed WNs and
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SNs, our algorithm also outperforms the nearest insertion algorithm by 5-10%.

Recharge Time Assignment Algorithm

We also evaluate the performance of the recharge time assignment algorithm and
compare with optimal solutions from standard LP solver. Recharge sequences from
5 to 100 nodes are evaluated with nodes’ battery energy and lifetime randomly dis-
tributed. The results are averaged over 100 simulation runs. Fig. 5.6 (d) illustrates
difference between our algorithm and the optimal solution. We observe that our
algorithm is able to achieve results very close (within 5%) to the optimal LP solver.
As we increase the number of nodes in the sequence, the approximation ratio does
not degrade as indicated by the flat trend line. In the simulation, we discover that in
most cases, our algorithm can find the optimal solution. However, in some special
cases, there are several consecutive nodes with limited lifetimes that require partial
recharge of previous nodes. For these cases, our approach may not always yield
optimal results but remains very close to them.

5.7.2 Nonfunctional Nodes

One of the key performance metrics for recharging is nonfunctional nodes. Once
a node’s battery is depleted, it stops working and becomes nonfunctional until its
battery is replenished. To sustain perpetual operations, nodes should be alive all the
time; otherwise, they will degrade sensing qualities and node communications. Fig.
5.7 compares the percentage of nonfunctional nodes between hybrid (full or partial
recharge) and wireless-powered frameworks [41, 71, 108]. The SPP algorithm gen-
erates s = 11 SNs. To compare the performance, we change the number of MCs
m. Fig. 5.7(a) shows the results from the hybrid framework when m = 2 ∼ 4. We
can see that 2 MCs can keep the percentage of nonfunctional nodes around 10%
and 4 MCs can almost achieve perpetual operations. Partial recharge offers even
better performance with less than 10% nonfunctional nodes when m = 2. In con-
trast, m = 2 for wireless-powered network results in 30% nonfunctional nodes in
Fig. 5.7(b) and an increase to m = 6 still barely eliminates all battery depletions at
equilibrium. These observations clearly demonstrate that the hybrid framework can
improve network performance significantly. Since for a wireless-powered network,
cluster heads consume energy much faster, MCs need to visit them more frequently,
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Figure 5.7: Number of nonfunctional nodes. (a) Hybrid framework. (b) Wireless-
powered framework.

which reduces the chances for other nodes to get recharged. However, SNs are re-
plenished by solar energy which has much higher power density so MCs have more
leverage to take care of the rest of the network.

5.7.3 System Cost

The cost to maintain network operations is another important performance metric.
In our framework, there are two types of costs. The first type comes from network
maintenance which basically involves energy expenditures at the MCs while mov-
ing and recharging. Since the energy expense for recharging is necessary for sensor
nodes, we focus on the energy cost while the MCs are moving. Fig. 5.8(a) and (b)
trace the evolution of MCs’ moving energy cost when our goals are maintaining
nonfunctional percentage under 15% and 1%, respectively. First, let us examine
the cost brought by partial recharge. Although it is not obvious on Fig. 5.8(a), by
taking their mean values, we are able to see that partial recharge results in slightly
higher cost (3.57 KJ vs. 3.49 KJ). This is because that partial recharge allows MCs
to recharge more nodes in a fixed time period (MCs move more frequently). Sec-
ond, we compare the moving cost to wireless-powered networks. Since it requires
more MCs to maintain energy balance, their moving costs inevitably increase which
are almost doubled if evaluated by their mean values (mean 6.91 KJ vs. 3.49 KJ
of the hybrid network). Similar results are observed in Fig. 5.8(b) when the ob-
jective is to maintain nonfunctional percentage below 1%. The difference is that
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Figure 5.8: Evaluation of system cost. (a) Evolution of MC’s moving cost when
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the gap between the two curves becomes even wider (mean value 36 KJ vs. 105
KJ), which indicates that the wireless-powered network almost needs 3 times the
energy of the hybrid network. From these results, we can see that hybrid networks
are more energy efficient for higher performance requirements.

We have also evaluated energy efficiency for different numbers of MCs in Fig.
5.8(c). Energy efficiency is defined as the ratio between energy replenished and
the total energy consumed on the MCs. The hybrid network enjoys the highest
overall energy efficiency as more than 90% energy can be used for recharge while
partial recharge has slightly lower efficiency due to possibly more movements. The
wireless-powered network has the lowest energy efficiency since the MCs have to
move even more often to recharge cluster heads.

The second type of cost is the fixed cost of SNs and MCs. The theoretical
results in Section 5.5 indicate that by having more SNs, we are able to save the
cost on MCs since they are usually more expensive. To see the trade-offs between
the numbers of SNs and MCs, we show the impact on nonfunctional percentage
in Fig. 5.8(d) in which the X and Y axes represent the numbers of SNs and MCs
and the Z axis represents the percentage of nonfunctional nodes. First, we observe
that introducing SNs helps reduce the nonfunctional percentage much faster than
MCs. Second, it is also interesting that with more SNs, even fewer MCs can achieve
similar performance. For example, 8 SNs and 1-2 MC result in similar performance
to 6-8 MCs and 1 SN. These results suggest that hybrid networks are more cost-
effective and energy efficient than wireless-powered networks.

5.7.4 Harvested Energy and Message Overhead

To validate our algorithm design, we evaluate the evolution of SN’s energy and net-
work message overhead. Fig. 5.9(a) traces SNs’ energy with weather conditions
represented by percentage of solar exposure (1 − σ) obtained in [119]. We focus
on two typical nodes with light and heavy data traffic. We can see that through
the month of December, energy storage continuously declines due to weak solar
strength in winter. In addition, there are also several consecutive snowing days so
SNs are unable to harvest enough energy and re-selection of cluster heads among
WNs is needed. This gives SNs opportunities to recover their energy (during 40-50
days). For the remaining simulation, although a few consecutive raining days are
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Figure 5.9: Evolution of harvested solar energy and message energy overhead. (a)
Energy variations of SNs. (b) Message energy overhead.

observed, the energy gaps are quickly filled. This is because that solar radiation has
strengthened since spring and energy storage is sufficient to sustain network oper-
ations. For example, from summer to fall, SNs can maintain their battery energy
over 80% due to favorable weather conditions and strong solar radiation.

Fig. 5.9(b) demonstrates the energy consumed by exchanging control messages
such as SN clustering, re-selection of WN cluster heads and energy information
requests. For each month, MCs initiate a new calculation of SN’s placement pattern
to reflect the updated geographical solar radiations (e.g., Fig. 5.2). These message
overhead is shown as the blue spikes at the beginning of each month. Note that in
the simulation, when SNs’ energy is less than 30% due to insufficient solar energy,
they request to re-cluster by WNs. The overhead is represented by those higher
spikes (in purple), which corresponds to the time when SNs’ energy drops in Fig.
5.9(a). Our results indicate that re-clustering using WNs only occur during winter
time though there are some consecutive raining periods in other seasons. From
Fig. 5.9, we have validated that our algorithm can adapt to weather conditions
effectively.

5.7.5 Geographical Distributions of Service Interruption

Finally, we examine geographical distributions of service interruptions. Our ob-
jective is to see how long nodes are in nonfunctional status and their geographical
distributions. Since cluster heads are responsible for aggregating and uploading
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Figure 5.10: Geographical distributions of service interruption. (a) Hybrid frame-
work m = 2. (b) Wireless-powered framework m = 4.

sensed data, their survivals are critical for the entire network. A breakdown may
lead to severe packet loss, network interruption and extended data latency. For fair
comparison, we use the results from Section 5.7.2 and set m = 2 for the hybrid
framework and m = 4 for the wireless-powered framework so that both cases have
a similar number of nonfunctional nodes. From Fig. 5.10(a), we observe that the
distribution of nonfunctional nodes is quite even in the hybrid framework. In con-
trast, nodes around the cluster heads (including the heads as well) are more prone
to deplete battery energy in the wireless-powered network (20% more nonfunction-
al time in Fig. 5.10(b)). On average, a node in the hybrid framework has only
8.5% time in nonfunctional status whereas it would experience 16% nonfunctional
time in the wireless-powered network. The sharp contrast is because that for the
wireless-powered network, MCs need to not only take care of cluster heads but al-
so their surrounding areas. This may cause the MCs to move frequently between
head locations and overwhelm their recharge capabilities. However, for the hybrid
framework, MCs do not need to recharge SNs so the resources can be re-distributed
among WNs to reduce their nonfunctional rates.

5.8 Conclusions

In this chapter, we consider a hybrid framework that combines the advantages of
wireless charging and solar energy harvesting technologies. We study a three-level
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network consisting of SNs, WNs and MCs levels. First, we study how to minimize
the total cost of deploying a set of SNs. The problem is formulated into a facility
location problem and a 1.61(1 + ϵ2)-factor distributed algorithm is proposed. The
solution is further improved by using intra-cluster Weiszfeld algorithm in contin-
uous space. Second, we examine the energy balance in the network and develop
a distributed head re-selection algorithm to designate some WNs as cluster heads
when solar energy is not available during raining/cloudy days. Third, we focus on
how to optimize the joint tour consisting of both wireless charging and data gather-
ing sites for the MCs. A linear-time algorithm is proposed that can approach very
closely to the exact solution and reduce at least 5% MC’s moving energy compared
to previous solutions. We also propose to partially refill sensors’ energy to further
reduce battery depletion and develop an efficient algorithm to solve the problem
with high accuracy. Finally, based on real weather data, we demonstrate through
simulations the effectiveness and efficiency of the hybrid framework that can im-
prove network performance significantly.
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Chapter 6

Conclusions

This dissertation focuses on the applications of wireless charging technology in
sensor networks. A suite of mathematical models and algorithms have been pro-
posed to address critical issues in this emerging research field. In particular, first,
a real-time energy information gathering protocol is proposed. Based on such in-
formation, on-line algorithms are proposed to handle both emergency and normal
recharge operations. Second, a mathematical model is established based on energy
neutrality of the network. The model provides a theoretical estimation for network
plans. MC’s moving cost and recharge capacity is further brought into consideration
of the framework and an adaptive recharge scheduling algorithm is proposed. Third,
we extend the single-hop wireless charging into multi-hops by embedding resonant
repeaters on sensor nodes. This low-cost scheme provides extra network scalability
and improves MC’s recharge capability. A multi-hop recharge scheduling algorith-
m is proposed based on the physical calculations of charging efficiencies and cost
trade-offs in the network are analyzed in a multi-objective optimization. Finally, a
hybrid framework is investigated by combining solar and wireless-powered sensors.
Both centralized and distributed location algorithms are developed for locating the
solar-powered sensors. An effective scheme is proposed to re-gain energy balance
when sunlight is unavailable. MC’s routes are further optimized by considering a
joint route while recharging and gathering data.

In sum, in this dissertation, we have conducted extensive and comprehensive
studies around the fundamental problem of powering sensor nodes. We have pro-
posed efficient algorithms to improve recharge scheduling, charging capability, net-
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work latency while minimizing system cost. This work has laid the foundations for
various kinds of sensing applications including the current Internet-of-Things by
tackling the fundamental energy issues. As we can see, it engages in both indus-
trial and academic research and would have a significant impact on principles and
paradigms for the future of wireless sensor networks.
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