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Applied Mathematics and Statistics
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A basic fact in the theory of Discrete-time Markov Decisiao¢esses is that for any policy there
exists a Markov policy with the same marginal state-actistritbutions. This fact implies that the
study of control problems with multiple criteria and comastts that are determined by marginal
distribution (for e.g. expected total discounted and nmtalinted costs, average cost per unit
time) can be restricted to the set of Markov policies. Thesdrtation presents a similar result for

Continuous-Time Markov Decision Processes (CTMDPS).

In CTMDPs with Borel state and action spaces, unboundeditran and cost rates, for an ar-
bitrary policy, we construct a Markov policy such that thergiaal distribution on the state-action
pairs is the same for both the policies. This fact implies tha expected cost rates at each time
instant are equal for these two policies. Thus, the con&dullarkov policy performs equally



to the original policy for problems with multiple criteriand constraints that are determined by
marginal distribution. The proof consists of two major stephe first step describes the properties
of solutions to Kolmogorov’s equations for jump Markov pesses. In particular, for given transi-
tion intensities, the three approaches to construct a juragk®¥ process: (i) via the compensator
of the random measure of a multivariate point process, i eninimal solution of Kolmogorov’s
backward equation, and (iii) as a minimal solution of Kolroogy's forward equation define the
same transition function. If the jump Markov process assted with the transition function has
no accumulation points, then itis the unique solution ohliédImogorov’s equations. The second
step applies these results to CTMDPs and establishes thatalginal distribution on the state for
both the policies satisfy Kolmogorov’s forward equatiotiicied by the Markov policy. This fact
immediately implies that the marginal distributions on gtate for both the policies coincide if
the transition intensities corresponding to the Markovqycdre bounded. In the general case, it is
possible to consider a sequence of policies with boundeditran intensities and that converge to

the original policy. The proof for the general case follonah these approximations.
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Chapter 1

Overview

1.1 Brief description of the results and related works

In this dissertation, we study the properties of solutioh&olmogorov’s backward and
forward equations for non-homogeneous jump Markov prasessd apply the results on Kol-
mogorov’s forward equation to answer a fundamental copt@blem in Continuous-time Markov
decision processes (CTMDPs). Both Kolmogorov’s equataangs CTMDPs have broad range of
applications. For instance, Kolmogorov’s equations amelyi used in such applications as pop-
ulation growth, epidemics, queues, manufacturing systetesand CTMDPs are widely used in
such applications as inventory control, airline managdmaachine maintenance, smart grids,
health care services, etc. In this section we give a previethe results, and the background
and earlier works to which they are related. We addressemastand uniqueness of solutions of
Kolmogorov’s equations (Section 1.1.1) and sufficiency @frkbv policies (or decision rules that
depend only on the current state and time) to study CTMDP&i(8el.1.2).

1.1.1 Kolmogorov’s equations for non-homogeneous jump M&ov processes

Our work answers the following questions, which are imparfar the theory of stochastic
processes and their applications: (i) how a non-homogenjeoup Markov process can be defined
for given transition intensities, callg@Hfunctions, and (ii) how can its transition function be folun
as a solution of Kolmogorov’s backward and forward equatfoiVe answer these questions for
measurabl&-functions when the jump Markov process takes values on elBtaite space.

The common approach used in the literature to address thejdiestion is to construct a
transition function for a giverQ-function and show the jump property of the Markov process
defined by the constructed transition function and an indistribution by using the analytical
properties of the transition function; see, for e.g., Asder[1] and Reuter [30] foQ-functions
that do not depend on time parameter and countable statessf2aob [5] forQ-functions that do
not depend on time parameter and Borel state spaces. Ounatits of the jump Markov process
defined by the measuralfefunction and initial distribution is based on Jacod’s tteo [17]. This
approach to the construction of jump Markov process is rat¢t by the application of the theory
of jump Markov processes to study CTMDPs controlled by a Manbolicy.
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The transition function of a non-homogenous jump Markovcpss as solution of Kol-
mogorov’s equations was first studied by Feller [10]. Fetlensidered continuou®-functions
and provided the explicit formulae for the transition fuontand showed that it satisfies both
Kolmogorov’s backward and forward equations. In genetssé equations can have multiple
solutions. FoiQ-functions that do not depend on time parameter, Doob [SpC8provided an
explicit construction for multiple transition functionatssfying Kolmogorov’'s backward equation,
and Kendall [22], Kendall and Reuter [23], and Reuter [3Gjegaxamples with non-unique solu-
tions to both the equations. Considering measur@bfenctions and a countable state space, Ye
et al. [34] constructed the transition function satisfybragh Kolmogorov’s backward and forward
equations. All of the above mentioned work on solutions ofnkagorov’s equations considered
Q-functions satisfying certain boundedness conditions.Beoel state spaces, we consider more
general classes of unbound@efunctions and obtain the transition function of the jumprkta
process as the minimal non-negative solution of Kolmogsrbackward and forward equations
and provide a sufficient condition for its uniqueness.

Relation to stochastic process defined by a Markov policy in TMDPs

Feller's [10] results on Kolmogorov’s equations for nomiageneous jump Markov pro-
cesses are broadly used in the literature on CTMDPs to she&ljutnp Markov process defined
by a Markov policy, and this leads to the unnecessary assomittat decisions/actions depend
continuously on time; see, e.g., Guo and Rieder [13, Defimi#.2]. For countable state problems,
the results of Ye et al. [34] removed the necessity to asstisecontinuity. Our results on Kol-
mogorov’s equations imply that this continuity assumptguannecessary for CTMDPs with Borel
state spaces. They also unify a body of research on jump Markesses that can be traced back
to the works by Feller [10] and Jacod [17]. Given an initiatet the non-homogeneous jump
Markov process defined by a Markov policy is commonly corted using one of the following
two ways:

() Based on Jacod’s [17] theorem via the compensator ofahéam measure of the multivari-
ate point process; Kitaev [24], Kitaev and Rykov [25, Satddb], Feinberg [6, 7], Guo and
Piunovskiy [12].

(i) As the minimal non-negative solution of Kolmogoroviatvard equation; Miller [28], Kaku-
manu [19], Guo and Hernandez-Lerma [11].

The second approach is commonly used in the literature tty she jump Markov process defined
by a Markov policy via its transition function, including ihe monograph by Guo and Hernandez-
Lerma [11]. However, the first approach is used to consthesfump process associated with any
policy, and in particular, with a Markov policy. Our resuitsply that for Markov policies these
two constructions are equivalent for problems with Boratesspaces.

1.1.2 Sufficiency of Markov policies to study CTMDPs

In 1980, Yushkevich [35] introduced past dependent pdieied constructed the jump pro-
cess associated with them. Later, Kitaev [24] gave an etgrivaonstruction for the jump process

2



associated with a past dependent policy using the resulisbyd [17]. Since then, even though
it is possible to consider past dependent policies for CTBIDRost of the existing facts such
as optimality of certain policies are established withia thass of Markov policies; see Guo and
Hernandez-Lerma [11]. In this dissertation, we show thiatiglid to restrict the study of CTMDPs
to the class of Markov policies, and therefore, many of treviously existing results within the
class of Markov policies hold within the class of all polisieA similar result on the sufficiency
of Markov policies to study discrete-time Markov decisiogesses (DTMDPs) was given by
Derman and Strauch [4].

Given any policy, we construct a Markov policy such that thargmal distribution on the
state-action pairs at any time instant is the same for betpdficies. This immediately implies that
the expected cost rates at each time instant are equal & tive policies. Thus, the corresponding
Markov policy performs equally or better than the originalipy for problems with expected total
discounted and non-discounted costs as well as with avexaie per unit time. This is also true
for problems with multiple criteria. We consider the statd action sets as standard Borel spaces,
and the transition and cost rates may not be bounded. Thaugshlts in this thesis are applicable
to a wide class of problems. Two such important applicatamesnoted below:

(i) Queuing control: state space is countable, cost anditran rate functions may not be bounded
from above.
(ii) Inventory control: state and action spaces are unalat cost functions may not be bounded
from above.

1.2 Contents and Organization

This thesis consists of two parts: Chapter 2 on Kolmogoregigations for non-homogeneous
jump Markov processes, and Chapters 3, 4 on CTMDPs.

Chapter 2: Kolmogorov’s equations for non-homogeneous jump Markov processes
Chapter 2 concerns the construction of non-homogeneouys iankov process on a general state
space. For a given measural@efunction satisfying certain boundedness conditionsréspnts
three equivalent ways to construct the non-homogeneoug Markov process: (i) via the com-
pensator defined by tH@-function and initial distribution, (ii) as a minimal noregative solution
of Kolmogorov’s backward equation, and (iii) as a minimahagegative solution of Kolmogorov’s
forward equation. The results on Kolmogorov’s forward edurain this chapter lay the foundation
for the proof of the main result of this dissertation presdnh Chapter 4.

Chapter 3: Continuous-time Markov decision processes
In Chapter 3 we give a brief introduction of CTMDPs with gealestate and action spaces, in-
cluding definition of the control model, induced stochaptiocess, and optimality criteria we are
concerned with.

Chapter 4: Sufficiency of Markov policies in CTMDPs
Chapter 4 considers general state and action space CTMDPRsimbounded transition and cost
rates and presents one of the main results of this thesisngim initial probability measure on the
state space, for any policy there exists a Markov policy izatthe same marginal distribution on
the state-action pairs at any time instant. It shows thagifdptimality criteria depends only on the
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marginal distribution, like the expected total discounéed non-discounted costs, average costs
per unit time etc., one can restrict the search for optimétigs to the class of Markov policies.
For completeness, we present the analogous result thaaldisked for DTMDPs in Appendix 5.



Chapter 2

Kolmogorov’s equations for Non-homogeneous jump Markov
process

2.1 Introduction

This chapter answers the following questions, which areoamt for the theory of stochastic
processes and their applications: how a non-homogenemysiarkov process can be defined for
given transition intensities, callgg-functions, and how can its transition probabilities befdas
a solution of Kolmogorov’s backward and forward equatioRs3t we present a few definitions.

2.1.1 Basic definitions

For a topological spac8, its Borel o-field (the o-field generated by open subsetsSfis
always denoted b$s(S), and the sets if3(S) are calledBorel subset®f S. Let R be the real
line endowed with the Euclidean metric. A topological speé8é3(9)) is called astandard Borel
spaceif there exists a bijectiorf from (S,B(S)) to a Borel subset oR such that the mappings
f and f~1 are measurable. In this dissertation, measurability anelBoeasurability are used
synonymously. LetX,B(X)) be a standard Borel space (called the state space);la@id| be a
finite or an infinite interval oR ;. := [0, oo|.

Definition of jump Markov process and transition function:

A stochastic procesEX; : t € [To, T1[} with values inX, defined on the probability spa¢@,.7,P)
and adapted to the filtratioh 74 jc (1, 1, IS calledMarkovif P(X; € B | #,) = P(X; € B | Xy),
P—a.s. for all u,t € [To, T1[ with u < t and for allB € B(X). In addition, if the Markov process is
a jump process, that is, if each sample path of the processghtacontinuous piecewise constant
function int that has a countable number of discontinuity points enTo, T1[, then the Markov
process is called mmp Markov process

A functionP(u,x;t,B), whereu,t € [To, T1[, u < t, x € X, andB € B(X), is called @ransition
functionif it takes values ir0, 1] and satisfies the following properties:

(i) Forallu,x,t the functionP(u,x;t,-) is a measure ofX, B(X)).
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(i) For all B the functionP(u, x;t, B) is Borel measurable ifu, x,t).

(iii) P(u,x;t,B) satisfies the Chapman-Kolmogorov equation

P(u,x;t,B):/ P(s,y;t,B)P(u,x;s,dy), u<s<t. (2.1)
X

A transition functionP is calledregularif P(u,x;t,X) =1 for all u,x,t in the domain of.
Each Markov process has a transition functibsuch that

P(X; € B| Xy) =P(u,Xy;t,B), P—as, (2.2)

and any probability measuneon X and transition functior® define a unique Markov process
{Xt,t € [To, T1[} such that (2.2) holds; see Kuznetsov [26]. Thus, one carvalgutly define a
Markov process via the probability measirer its transition functiorP.

Definition of Q-function:
A functionq(x,t,B), wherex € X, t € [Tp, T1[, andB € B(X), is called aQ-functionif it satisfies
the following properties:

(i) forall x,t the functiong(x,t,-) is a signed measure @K, B (X)) such thag(x,t,X) < 0 and
0 <q(x,t,B\ {x}) < o for all B € B(X);

(i) for all Bthe functionq(x,t, B) is measurable iix,t).

Let q(x,t) := —q(x,t,{x}) for all x € X andt € [To, T1]. In addition to properties (i) and (ii), if
q(x,t,X) = 0 for all x,t, then theQ-function g is calledconservative Note that anyQ-function
can be transformed into a conservati®efunction by adding an absorbing stateto X with
q(x,t,{x}) := —q(xt,X), q(x,t,X) := 0, andq(x,t,{x}) := 0, wherex € X andt € [To,T1[. To
simplify the presentation, we always assume tha conservative. In Subsection 2.6.1, we ex-
plain how the main formulations change when @éunctionq is not conservative. A-function

q is calledcontinuousdf it is continuous int € [To, Ty .

A classical approach to the study of jump Markov processésaithe compensator of the ran-
dom measure of a multlivariate point process. A conserg&nunction can be used to construct
a predictable random measure. According to Jacod [17, EneBt6], an initial state distribution
and a predictable random measure define uniquely a muéteapioint process. In this chapter,
we show that the stochastic process associated with thevaridte point process defined by a
conservativeQ-function g and an initial state distribution is a jump Markov processsatibe its
transition functiorP, and thatP is the minimal non-negative solution to both Kolmogorovsk-
ward and forward equations. The first study of jump Markowpsses defined by tigg-function
via Kolmogorov's equations was first undertaken by Fell€j.[1

2.2 Boundedness assumptions and description of the main ndts

In this section, we describe the boundedness assumptio@sfanctions and provide the
general description of the results of this chapter.d(@) := supcy, 1,;d(%,t) for x € X. Consider
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the following assumptions of boundednesgjon t. Feller [10] studied Kolmogorov’s equations
for continuougQ-functions under the following assumption.

Assumption 2.2.1(Feller’'s assumption)There exists a sequence of measurable suf&ats =
1,2,...} of X such thasup,g q(x) <nforalln=12,...and B, 1 X as n— .

In this chapter, we consider the following assumptions.
Assumption 2.2.2(Boundedness df). q(x) < o for each xc X.

Forn=1,2,..., consider the functiond, from (X x [Tp, T1]) to [0, «| defined by
t
Un(x,t) ::/T 1{q(x,s) > n}ds xeX,te[To, Tq] . (2.3)
0

For eacht € [T, T1], let X{,n=1,2,..., be the subsets &f such that
Xt={xeX:Upx,t)=0}, n=12,.... (2.4)

Since the functionBl,(x,t) are measurable, the setsare measurable subsetsXof Observe that
nggxrg+1,n:1,2,... .

Assumption 2.2.3(Almost everywhere local boundednessgdf X! 1 X as n— o for each te
[T07T1['

Assumption 2.2.4(Local ! boundedness aj). For all x € X, the integralf}oq(x, s)ds< oo for
each te [To, T1] .

The following lemma compares Assumptions 2.2.1-2.2.4.

Lemma 2.2.1. The following statements hold for a measurable Q-function q
(i) Assumptions 2.2.1 and 2.2.2 are equivalent;
(i) Assumption 2.2.2 implies Assumption 2.2.3;
(iif) Assumption 2.2.3 implies Assumption 2.2.4.

Proof. (i) Let {B,,n=1,2,...} be a sequence of Borel subsetsXfsatisfying the properties
stated in Assumption 2.2.1. Then for eacke X there exists am € {1,2,...} such thatx €
Bn and thereforeg(x) < n. Thus, Assumption 2.2.1 implies Assumption 2.2.2. To prthet
Assumption 2.2.2 implies Assumption 2.2.1, def@ig= {x € X :q(x) > n},n=1,2,... . Since
Ch=projx({(x,t) € (XxR4) | q(x,t) > n}) are projections of Borel sets, the s€tsare analytic,
n=12,...; see Bertsekas and Shreve [2, Proposition 7.39]. In additiesumption 2.2.2 implies
that;,_1Cn = 0. Thus, in view of the Novikov separation theorem, Keclis Theorem 28.5],
there exist Borel subsefs, n=1,2,..., of X such thaC, C Z, andN_1 Z, = 0. This fact implies
thatZ; C C; andUn-1 Z5 = X, where the setZ] andCj are compliments of the se® andC,,
respectively. LeB,:=U]_,Z; foralln=1,2,.... The Borel setd,, n=1,2,..., satisfy the
properties stated in Assumption 2.2.1.



(i) Let Assumption 2.2.2 hold. In view of Lemma 2.2.1(i),rder set8,, n=1,2,...,
whose existence is stated in Assumption 2.2.1. TBea X! andB, + X, n=1,2,..., for each
t € [To, Ta). Therefore X{ 1 X asn — o for eacht € [To, T1]. Thus, Assumption 2.2.3 holds.

(iii) Under Assumption 2.2.3, for eachie X andt € [To, T1| there exists am € {1,2,...}
such thatUp(x,t) = 0. Thatis,u(w € [To,t[: q(x,S) > n) =0, wherey is the Lebesgue measure on
R . This immediately implies that Assumption 2.2.4 holds. 0J

In Section 2.3 we show in Theorem 2.3.2 that under Assumidr the compensator of a
random measure defined bygafunction defines a jump Markov process whose transitiostion
Pis described in (2.19). The functiétwas introduced in Feller [10]. Theorem 2.4.1in Section 2.4
states that under Assumption 2.2.4 the transition funddamthe minimal non-negative solution
of Kolmogorov’'s backward equation, and Theorem 2.5.1 irni6e@.5 states that under Assump-
tion 2.2.3 the transition functioR is the minimal non-negative solution of Kolmogorov’s fongda
eqguation. In Section 2.6, we consider non-conserv&ifenctions and weaker boundedness con-
ditions, Assumptions 2.6.1 and 2.6.2, than those presentdds section, and discuss how the
main results of this paper change in these two scenariosI3&@eesent some of the results of this
chapter under Assumption 2.2.2 as corollaries. Assumf@idr2 means that jump intensities are
bounded at each state for the time horiZ@# T1[, and this assumption is natural for continuous-
time Markov decision processes (CTMDPs). Hence, our resmitier Assumption 2.2.2 are useful
for applying the results of this chapter to CTMDPs; see Céragpt

2.3 Relation between jump Markov processes an@-functions

In this section, we show that @-function satisfying Assumption 2.2.4 defines a transition
function for a jump Markov process. _ _

Let X ¢ X be an isolated point adjoined to the spate DenoteX = XU {X,} andT =
|To, T1]. Consider the Boreb-field B(X) = g(B(X), {X»}) on X, which is the minimalo-field
containingB(X) and {x.}. Let (X x T)® be the set of all sequencé%y,t1,x,t2,%2,...) with
Xn € X andth 1 € T foralln=0,1,... . This set is endowed with the-field generated by the
products of the Boret-fieldsB(X) andB(T). o

Denote byQ the subset of all sequencaes= (Xg,t1,x1,t2,X2,...) from (X x T)® such that:
() xoeX; (i)foralln=1,2,...,if ty < Ty, thent, <ty 1 andx, € X, and ift, = Ty, thentp 1 =t,
andx, = X». Observe tha@ is a measurable subset(©f x T)*. Consider the measurable space
(Q,.7), where.# is the o-field of the measurable subsets®@f For alln=0,1,..., let x5(w) =
Xn andty1(w) = thy1, Wwherew € Q, be the random variables defined on the measurable space

(Q,.7). Lettg:=To, to(w) := rI]igrgmtn(oo), w € Q, and for allt € [To, T1], let Z 1= 0 (B(X), %),

where%; .= o(1{x, € B} {tn <s} :n> 1Ty <s<t,Be B(X)). Throughout this paper, we omit
w whenever possible.

For a givenQ-function q satisfying Assumption 2.2.4, consider the random measua
([To,Tl[ XX,‘B([To, Tl[) X ’B(X)) defined by

V(w; [To,t],B>:/T: Z}I{tn<S§tn+1}CI(Xn,S,B\{Xn})dS te[To,Tu[,BeB(X). (2.5)
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Note thatv({t}, X) = v([te, [, X) = 0 and (2.5) can be rearranged as

n-1 m+1—tm
V([To1.B)= 5 1in <t <tr] ( S [ a5 B Dxnh)ds
n> m=0

t—t,
i q(xn,tn+s,B\{xn}>ds). 2.6)
0

As the expression in the parentheses on the right hand s{@epfs an%, -measurable process for
eachB € B(X), it follows from Jacod [17, Lemma 3.3] that the procés$[To,t],B) : t € [To, T1[}
is predictable. Therefore, the measuris a predictable random measure. According to Jacod [17,
Theorem 3.6], the predictable random measudefined in (2.5) and a probability measwyren
X define a unique probability measufeon (Q,.#) such that’(xp € B) = y(B),B € B(X), andv
is the compensator of the random measure of the multivgpizite processtn, X,)n>1 defined by
the triplet(Q,.#,P).
Consider the proced(; :t € [To, T1[ },

Xi(w) == Z)l {th <t <tnyapXn+1{to <t}Xe, (2.7)

defined on(Q,.#,P) and adapted to the filtratiofi%,t € [To, T1[}. Observe that the process
{Xt:t € [To, T1[} is ajump process. The main result of this section, Theor@x 2shows that the
process{X; : t € [To, T1[} is a jump Markov process and provides its transition fumctio

For an.%-measurable stopping tine letN(7) ;= max{n=0,1,...: 7 >ty }. SinceN(T1) =
o andX; = {X» } whent > t,, we follow the convention thag, ;1 = T1 andXe., 11 = X». Denote by
Gr(w;-,-) andH¢(w;-) respectively the regular conditional laws @)1, Xn(r)+1) andiy )41
with respect taZ;; Hr(w;-) = Gr(w;-, X). In particular,G,(w;-,-) andHy,(w;-), wheren =
0,1,..., denote the conditional laws ¢f,:1,Xn+1) andty;1 with respect to%,. We remark that
the notationss;, andH, correspond to the notatio®@, andHy, in Jacod [17, p. 241].

Lemma 2.3.1.Forall u,t € [To, Ty[, u<t,
Hu([t, Ty)) = e JidEus)ds N(u) < oo, (2.8)
Gu(dt, B) = e~ hudXusdsy ¢ B\ {X,})dt, N(u) < 00, B € B(X). (2.9)
Proof. In view of Jacod [17, Proposition 3.1], for dlE [To, T1[, B € ®B(X), andn=0,1,...

th(dt, B)
H, ([t, ])”

In particular, forB = X, from (2.10) and from the property th&t. 1 € X whenty 1 < Ty,

Gy dLX) My (dy
~ Hi(Lo])  Fy (o))’
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This equality implies thaw (dt, X) is the hazard rate function corresponding to the distritout;,
whent, <t <ty.1. Therefore,

Hy ([t,0]) = e VIt XHtn<t=toea} ¢ [Ty Ta[t >t (2.11)
From (2.5) and (2.11), for alle [To, T1[,
Hy, ([t, 00]) = & finG0n8)ds, t>tn, (2.12)
and from (2.5), (2.10), and (2.12), for &lE [To, T1[, B € B(X),

Gy,(dt, B) = & fnd0e995q(x, 1, B\ {x})lt,  t>tn. (2.13)

To computeG,, observe that for alli,t € [To, T1[, u < t, andB € B(X),

Gu(dt, B) =P(tnu)+1 € [t t+dt[, Xyw)+1 € B| Fu)
]P)(t N(u)+1 € [t7t+dt[7XN(U)+l €B | ﬁu)l {N(U) = n}

(2.14)

n

— %P(tnﬂ € [t,t+dt[, X1 € B| Fu,N(u) = n)I {N(u) = n},

n

1V

V|

where the first equality follows from the definition &, the second equality holds because
{N(u) = e} U{N(u) = n}n_0y1,. is an.F,-measurable partition @ andxy ;1 = %o & X When
N(u) = o0, and the third equality follows froil(u) = nand from{N(u) = n} € .Z,,.

Observe that for any random varialden (Q,.7)

P(Z | Z#y,N(u) =n)I{N(u) =n} =P(Z | %#,,N(u) =n)I{N(u) = n}
=P(Z| %t,,th < Uthr1 > UI{N(u) =n} =P(Z | HA,,th+1 > U)I{N(u) = n}
 P(Ztni1 > U| ) ~ (2.15)
- P(tn+—]i__>u‘r%n) |{N<U)—n},

where the first equality follows from Brémaud [3, Theorem [[32308], the second equality holds
becausdty < u,th11 > u} = {N(u) = n}, the third equality holds becau$g < u} € .%, and the
last one follows from the definition of conditional probatids. LetZ = {t .1 € [t,t+dt[,Xps1 €
B}, wheret € [T, T1[, B € B(X). Then (2.14) and (2.15) imply

P(tni1 € [t,t+dt[, X011 € B| F,)

Gy(dt,B) = n;) P(’tm SMEN 1{N(u) = n}
e Jip A%, S)dSQ(Xn,t,B\{xn}) 016
N Z) e JinA(xn,9)ds I{N(U> =n}

= e haFus)dsg(x, 1 B\ {X,})dt
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where the first equality holds becaudg,1 € [t,t + dt[,thr1 > U} = {th+1 € [t,t +dt[} when
t > u, the second equality follows from (2.12) and (2.13), andaiseequality holds sincg, = X,
whenN(u) =n. For allu,t € [To, Ta[, u <t, it follows from the property thaty+1 € X when
tn(u)+1 < T1 and from (2.16) thak,([t, «]) satisfies (2.8). O

Following Feller [10, p. 501], fok € X, u,t € [To, T1[, u < t, andB € B(X), define

PO (u,xt,B) = | {x € B}e~ ud(xs)ds, (2.17)
and forn > 1 define
t S
P (u,x;t,B) = / / e Juax0)d0q(y s dy)P" V(s y:t,B)ds (2.18)
u JX\{x}
Set .
P(u,x;t,B) 1= ;FT(”)(u,x;t,B). (2.19)
n=

Observe thaP is a transition function, if th&-function q satisfies Assumption 2.2.4. For con-
tinuousQ-functions satisfying Assumption 2.2.1, Feller [10, Theos 2, 5] proved that (a) for
fixed u,x,t the functionP(u,x;t,-) is a measure o(X,B(X)) such that 0< P(u,x;t,-) < 1, and

(b) for all u,x,t, B the functionP(u, x; t, B) satisfies the Chapman-Kolmogorov equation (2.1). The
proofs remain correct for measural@efunctions satisfying Assumption 2.2.4. The measurapilit
of P(u,x;t,B) in u,xt for all B € B(X) is straightforward from the definitions (2.17), (2.18), and
(2.19). Therefore, ify satisfies Assumption 2.2.4, the functiBriakes values ifi0, 1] and satisfies
properties (i)-(iii) from the definition of a transition fation.

Theorem 2.3.2.Given a probability measurgr on X and a Q-function g satisfying Assump-
tion 2.2.4, the jump procesgX; : t € [To, T1[} defined in(2.7) is a jump Markov process with
transition functionP.

Proof. Observe that if, for alu,t € [To, T1[, u < t, andB € B(X),

]P)(Xt € B| <gb) = ]P)(Xt €B | XU) = P(uvxu;ta B)7 u< t°°7 (220)

then the jump procesgX; : t € [To, T1[} is a jump Markov process with transition functiéh
To prove (2.20), we first establish by induction that forra# 0,1, ..., u,t € [To, T1[, u <t, and
B € B(X)

P(X; € BNy =n| ) =PV (uX4t,B), U<t (2.21)

whereN, := N(t) — N(u) whenu < te andNyy = « whenu > t.. Equation (2.21) holds for
n = 0 because fou < te

P(X; € B,Nyy = 0] Fu) = P(Xy € Bty 1 >t | Fu)
= 1{Xy € B}Hy(Jt, 0]) = | {X, € B}e~ haEu9ds _ pO (y X1, B), (2.22)
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where the first equality holds because the corresponding®eeincide, the second equality holds
becausd X, € B} € %, and from the definition offl,, the third equality is correct because of (2.8),
and the last equality is (2.17).

For somen > 0, assume that (2.21) holds. Then o« t

P(X; € B, Nut] =n+1|.%)
— / /X\{X } Xt c B N]tN =N | ‘gu’tN(U)-i-l?XN(U)+1)GU(dtN(u)+17dXN(u)+1)
_ /u /X g PO BN g =1 i) GOty 1 D) (2.23)

t s
://{ }q(XwS?dy)e_J“q(X“’Q)dQFT(n)(S,y;t,B)ds: |5(n+1)(U,Xu;t,B),
X\ {Xy

where the first equality is correct sindé,;; = 1+ N]th)Hﬂ for Nyy > 1 and sincek(E(Z |
D)) = E(2Z) for any random variable Z and any-field ©, the second equality holds because
0 (FutNu)+1 XN +1) = %N(U)H, the third equality follows from (2.9) and (2.21), and thstla
equality is (2.18). Equality (2.21) is proved.

Observe that fou,t € [To, T1[, U< t, B € B(X),

Z} (Xt € BNy =n| Zu){u <t} = Z}ﬁn)(u,xu;t,B)l{u< te }
= n>

= (2.24)
= P(u,Xyt,B)I{U < to} = P(u,Xy;t,B)I {X, € X},

where the first equality holds sinddu < t. },{u >t }} is a partition ofQ and{u < te}, {u >
to} € Zu, the second equality holds sin&g € X impliest < t., the third equality follows from
(2.21), the fourth equality follows from (2.19), and thetlase holds sincgu < t.} = {Xy € X}.
As follows from (2.24), the functiof?(X; € B | .%,) is 0(Xy)-measurable. Thus,

PXieB| Zy) =P(P(X;eB| %) | Xy) =P(X; € B| Xy), (2.25)

where the second equality holds becaas$¥,) C .%,; see e.g. Brémaud [3, p. 280]. Thus, (2.20)
follows from (2.24) and (2.25). 0J

Corollary 2.3.3. Given a probability measurg on X and a Q-function g satisfying Assump-
tion 2.2.2, the jump procesgX; : t € [To, T1[} defined in(2.7) is a jump Markov process with
transition functionP.

Proof. This corollary follows from Lemma 2.2.1 and Theorem 2.3.2. O

The following lemma provides a simple statement that is adddr future references. Con-
sider aQ-functiong. Let ' be aQ-function such that

Ut € [To, Ta[: q(x,t,B) # d (x,t, B) for someB € B(X)) = 0, X € X, (2.26)
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wherey is the Lebesgue measure Bn.

Lemma 2.3.4. For arbitrary Top and T, consider a Q-function q satisfying Assumption 2.2.4. Let
q be a Q-function satisfyin¢R.26), and letP’(u,x;t,B), where ut € [To, T1[, u<t, x € X, and

B € %B(X), be the transition functiof defined by2.19)with g replaced by q Then, for a given
probability measurey on X, both the Q-functions g and define the same jump Markov process
{Xt :t € [To, T1] } defined in(2.7)and

P(uxt,B)=Puxt,B), ute|Ty,Taf,u<t,xeX,BeB(X). (2.27)

Proof. Observe that th-functiond satisfies Assumption 2.2.4. This follows from (2.26). Then,
it follows from Theorem 2.3.2 that, for a given a probabilityeasurey on X, each of theQ-
functionsg andq’ define a jump Markov proced&; : t € [To, T1[ } defined in (2.7) with transition
functionP andP’, respectively. Thus, if (2.27) holds, then ®€unctionsg andq’ define the same
jump Markov process for a given probability measyren X. This is indeed true as explained
below. It follows immediately from (2.17)—(2.19) that tw@-functions, that are equal almost
everywhere it with respect to the Lebesgue measure, define the same iwarfsibction. This
fact and (2.26) imply that (2.27) holds. 0J

2.4 Kolmogorov’s backward equation

In this section, by using the methods introduced by Felléy Theorems 2, 3] for continuous
Q-functions, we show that the transition functiBrdefined in (2.19) is the minimal non-negative
solution of Kolmogorov’'s backward equation.

Definition 2.4.1. A function f defined oiR is called locally absolutely continuous on an interval
| C R, if for any closed bounded intervg, b] C I, the function f is absolutely continuous @b].

Definition 2.4.2. For a Q-function ga functionP(u, x;t, B), where te|To, T1[, u € [To,t[, x€ X, and
B € ®B(X), is a solution of Kolmogorov's backward equati¢129)on the semi-intervalTo, T1 |, if
the functiorif’(u, x;t, B) satisfies the following properties:

(i) for each x t, B, the functionP(u,x;t,B) is locally absolutely continuous ona [To,t[ and
satisfies the boundary condition

u“ﬁ[ P(u,x;t,B) =1{x € B}; (2.28)

(ii) for each xt, B,

—;UP(u,x;t,B) =q(x,u)P(u,x;t,B) —/\{ }q(x,u,dy)P(u,y;t,B) for almost every « [To,t][.
X\ {x
(2.29)

Theorem 2.4.1.Under Assumption 2.2.4, the functi®nis the minimal non-negative solution of
Kolmogorov's backward equatidi2.29)on the semi-intervdlTp, T1[. In addition, ifP is a regular
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transition function (that isP(u,x;t,X) = 1 for all u,x,t in the domain oP), thenP is the unique
non-negative solution of Kolmogorov’s backward equaf@29)on the semi-intervd[Tp, T1| that
is a measure oX, B (X)) for fixed u x, t with u < t and takes values if0, 1].

We first show in Theorem 2.4.2 that the functi@ris a solution of Kolmogorov’s backward
equation (2.29), and then provide the proof of Theorem 2.4.1

Theorem 2.4.2.Under Assumption 2.2.4, the functiBris a solution of Kolmogorov’s backward
equation(2.29)on the semi-intervdllo, Ty|.

Proof. For allx € X, u,t € [To, T1[, u < t, andB € B(X),

00

P(uxt.B) =3 P™(uxt.B)
n=0

00 t s
=1{xe Ble huakxsds . Z/ efuqo"e)de/ q(x,s,dy)P" V(s y;t, B)ds
=1/u X\ {x}

t s 5
=l{xe B}e-fJQ(X’S)dSqL/ efuq(x’e)de/ q(x,s,dy) PI"-Y(sy:t,B)ds (2.30)
u X n=1

\{x}

t
=1{xe B}efJQ(X’S)dSqL/ equ(x,e)de/ q(x,s,dy)P(s,y;t, B)ds
u X\ {x}
where the first equality is (2.19), the second equality feidrom (2.17) and (2.18), the third
equality is obtained by interchanging the integral and samd,the last one follows from (2.19). For
fixedx,t, B, equation (2.30) implies th&(u, x;t, B) is the sum of two locally absolutely continuous
functions oru. Thus,P(u,x;t,B) is for fixedx,t, B locally absolutely continuous functions an
Observe thaP" (u,x;t,B) < P(u,x;t,B) < 1 foralln>0,x e X,u,t € [To,T1[, u< t, and
B € B(X). Then from (2.18),

t o .
P (u,x;t,B) < / e WaX0)doq(x S)ds=1— e hudlxs)ds n>1. (2.31)

u

Sincee udx9)ds 5 1 asy — t— for any Q-function q satisfying Assumption 2.2.4, the above
inequality and (2.17) imply that

lim PW(u,xt,B)=0 foralln>1 and IlimP9(u,xt,B)=I{xcB}. (2.32)

u—t— u—t—

Thus, it follows from (2.19) and (2.32) that (2.28) holdswi = P.

In addition, since locally absolutely continuous realenal function is differentiable almost
everywhere on its domain, for allt, B the functionP(u, x;t, B) is differentiable inu almost every-
where onTo, t[. By differentiating (2.30), for almost every< t,
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%P(u,x;t,B) — I {x € B}e hudx9dsq(x y) —/ q(x,u,dy)P(u,y;t, B)
X\{x}

+/ e / q(x,s,dy)P(s,y;t,B)ds
X\ {x}

(2.33)
—{xeBje Laoquon) — | qOeu.dy)P(uyit.B)
X\{x}

t s
+/ e Juax0)dbq(y u)/ q(xs,dy)P(s,y;t,B)ds
u X\ {x}

In view of (2.30), the sum of the first and the last terms in st Expression of (2.33) is equal
to the first term on the right-hand side of (2.29). That is,fthretion P satisfies (2.29) for almost
everyu € [To,t[. Therefore,P is a solution of Kolmogorov’s backward equation (2.29) oa th
semi-intervalTo, T1]. O

Proof of Theorem 2.4.1ln view of Theorem 2.4.2, the functid® is a solution of Kolmogorov’s
backward equation (2.29) on the semi-interi&l T,[. The proof of minimality ofP is similar

to the proof of Theorem 3 in Feller [10]. We provide it here émmpleteness. Consider a non-
negative solutiorP*(u,x;t,B) of Kolmogorov’s backward equation (2.29) on the semi-ivéér
[To, T1[. Integrating (2.29) fronu tot and by using the boundary condition (2.28),

t S
P*(u,x;t,B) = I {x € B}eﬁtﬂ(x’s)ds—i-/ /\{ }efuo'(x’e)deq(x,s,dy)P*(s,y;t,B)ds (2.34)
u JX\{x

Since the last term of (2.34) is non-negative,
P*(u,x;t,B) > 1{x e B}e_fLEQ(X?S)dS: PO (u,x;t,B), (2.35)

n _
where the last equality is (2.17). Foralk,t, Bwith u <t, assumé*(u,x;t,B) > Z p(m (u,x;t,B)
for somen > 0. Then from (2.34)

P*(uxt,B) > I {x c Ble id Xsd5+// e l5ax0)d0q(y 5 dy) z P (s, y:t, B)ds
X\{x}

n+1
=PO(u,xt,B)+ Z P™D (u,x;t, B) = z P™ (u,x;t,B),

where the first equality follows from the assumption tR&tu, x;t,B) > Z PM (u,x;t,B) for

all u,x,t,B with u < t, the second equality follows from (2 17) and (2. 18) andttie equality

is straightforward. Thus, by inductio®*(u,x;t,B) > Z p(m )(u,x;t,B) for all n>0, x € X,
m=0

u,t € Ry, u<t,andB e B(X), which implies thaP*(u, x;t,B) > I5(u,x;t, B) for all u,x,t, B.
To prove the second part of the theorem, let the solufiohe a measure ofX, B (X)) for
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fixed u,x,t and with values if0, 1]. Assume thaP*(u,x;t,B) # P(u,x;t,B) for at least one tuple
(u,x,t,B). Then,

P*(u,x;t,X) = P*(u,x;t,B) + P*(u,x;t,B) > P(u,x;t,B) + P(u,x;t,B) = P(u,x;t,X) = 1,
where the inequality holds becauBg&u, x,t, -) > I5(u,x,t,~) for all u,x,t. SinceP* takes values
in [0, 1], the assumption th&* (u,x;t,B) # P(u,x;t, B) for at least one tupléu, x,t, B) leads to a
contradiction. O

2.5 Kolmogorov’s forward equation

Kolmogorov’s forward equation (2.37) was studied by Fell€, Theorem 1] for continuous
Q-functions satisfying Assumption 2.2.1. In this sectiom, show that the functioR is the mini-
mal non-negative solution of Kolmogorov’s forward equat{(@.37) on the semi-interv@lo, Ty | if
Assumption 2.2.3 holds, which, as stated in Lemma 2.2.1pieergeneral than Assumption 2.2.1.

Consider the sef§! on whichq(x,-) < nalmost everywhere ofT,t[. These sets are defined
in (2.4).

Definition 2.5.1. For t €]Tp, T1[, a set Be B(X) is called(q,t)-bounded if BC X! for some n=
1,2,....

Definition 2.5.2. For a given Q-function g, a functioR(u,x;t,B), where ue [To, Ty[, t €]u, Ty,
x € X, and Be 9B(X), is a solution of Kolmogorov’s forward equati¢®.37) if for each ux,s, B,
such that s]To, T1[, U € [To, 5[, X € X, and the set B i$q, s)-bounded,
(i) the functionP(u, x; t, B) is locally absolutely continuous orefu, s| and satisfies the bound-
ary condition
t|—|>T+ P(u,x;t,B) =1{x € B}; (2.36)

(i) the functionlf’(u,x;t, B) satisfies Kolmogorov’s forward equation,

%P(u,x;t,B):—/q(y,t)P(u,x;t,dy)+/q(y,t,B\{y})P(u,x;t,dy) for almost every €]u, s|.
B X
(2.37)

The main result of this section, Theorem 2.5.1, shows thdeuAssumption 2.2.3 the tran-

sition functionP(u, x;t, B) is the minimal non-negative solution of Kolmogorov's fomtaequa-
tion (2.37) on the semi-interviilp, T1[ and provides a sufficient condition for its uniqueness.

Theorem 2.5.1.Under Assumption 2.2.3, the functiﬁ?ﬁti,x;t,B) is the minimal non-negative
solution of Kolmogorov's forward equatid@.37) Also, ifP is a regular transition function, then
P is the unique non-negative solution of Kolmogorov’s fadvequation(2.37) that takes values
in [0,1].
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We give the proof of Theorem 2.5.1 after presenting a fewleuyiresults. Theorem 2.5.1
states that the functioR satisfies Kolmogorov’s forward equation (2.37) {ar; s)-bounded sets
B € B(X). The following example demonstrates that, in general,nbispossible to extend (2.37)
to all the setd € B(X).

Example 2.5.2.Kolmogorov’s forward equatiof2.37) may not hold for all sets B 25(X). Let

X = Z, whereZ denotes the set of integem0,t) = 1, q(0,t, j) = 2-(il+D for all j # 0, and
a(j,t,—j) =q(j,t) = 2l for all j # 0. If X, = 0, then starting at time the process spends an
exponentially distributed amount of time at state 0, thgariips to a statg % 0 with probability
2-(il+1) and then it oscillates between the stajeand —j with equal intensities. Thus for all
u,t € [To, Te[ withu <t,

1-e W

S0 0O _ o (t-u) 501 04 B — :
P(u,0;t,0)=¢e and P(u,0;t, ) T j #0,
which implies that
/qy,t,X\{y}) P(u,0;t,dy) = q(0,t)P(u,0;t,0) + q(j,t,—j)P(u,0:t, )
0
e t U _l_% 1 e t U = o0,
Thus, ifB = X, then (2.37) does not hold because both integrals in (2/&7pénite. 0J

Recall thaig(X) := sup¢r, 1, d(%.t) for all x € X.
Definition 2.5.3. A set Be B(X) is called g-bounded gup, g q(Xx) < o

For continuousQ-functions, Feller [10, Theorem 1] showed that the traosifiunction P
satisfies Kolmogorov’s forward equation (2.37) forgdbounded setB. In order to show that the
functionP is a solution of Kolmogorov’s forward equation (2.37), wegshn Theorem 2.5.3 that
this property is correct for measuralfefunctions.

Theorem 2.5.3.Under Assumption 2.2.2, the following statements holde&mh ux, B, such that
ue [To,Ta[, x€ X, and the set B is g-bounded,

(a) the functionP(u,x;t,B) is locally absolutely continuous ond]u, T;[ and satisfies the
boundary conditior{2.36)

(b) the functiorP(u,x;t, B) satisfieg2.37)with s= T;.

Proof. (a) For allx € X,u,t € [To, Ty[, u <t, andB € B(X), equation (2.30) implies that the
functionP(u,x;t,B) is locally absolutely continuous dne|u, T1[ for fixed u,x, B. Also, it follows
from (2.17) and (2.31) that for ar@-functionq satisfying Assumption 2.2.2,

lim PW(uxt,B)=0 foralln>1 and |limP¥(uxt,B)=1{xeB} (2.38)

t—ut t—ut
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uniformly with respect td. Thus, (2.19) and (2.38) imply that the functiBrsatisfies (2.36).

(b) From the last equality of (2.23) witi, = x and the property that the jump proces§ :t €
[To, T1[} is @ jump Markov process, for alle [T, T1[, t €]u, T1], x€ X, B € B(X),andn=1,2,...,

t |
FT(”)(u,x;t,B):/ /q(y,s,dz\ {y})e‘«’stQ(zve)deﬁ(”‘l)(u,x;S,dy)ds (2.39)
uJB

Then, from (2.17), (2.19), and (2.39), we have
P(u,x;t,B) = Z)I:T(”)(u,x;t,B) =PO(u,xt,B) > P (u,x;t, B)
n= n=0

X o t .
— I{x e Bye fiaxsds % / / q(y,s,dz\ {y})e 9z (| -5 dy)ds
i=p/u B (2.40)

. ¢ . _
= 1{xe B}e‘ﬁQ(Xvs)ds-l—/ /q(y,s,dz\ (y))e kaz01d0p x5 dy)ds
u JB

Since I5(u,x;t_,B) is locally absolutely continuous function dne [T, T4[ for fixed u,x,B, the
derivative%P(u,x;t, B) exists for almost every €|u, T1[. By differentiating (2.40), for almost

everyt > u,

(uxit,B) = I {x & Bye B95g0x )+ [ qly.t.dz\ {y})Pluxt.dy

td : _
+/u E/X/Bq(y,s,dz\ {y})eﬁfsq(z,e)dep(wx;S,dy)ds (2.41)

Q)|Q)

t

Observe that, for ali-bounded setB € B (X),

o - s J
_/Q(Y,S,dZ\ {dy})e qu(zﬂ)dQ:/q(y,s,dz\ {y})_e JSQ(ZQ)dQ
e ’ o (2.42)
— - [ azva(ysdz\ {yhe Lazere.

B

Combining (2.41) and (2.42), for afbounded setB,

2 Pluxt,B) =~ {xe Ble Aax99%0ct) + [ qy.t, B\ {y})Pluxit.dy)
X
t 1 —
~ [ [ [azvawsdz\ yhe L9909 x5 dyds (2.43)

for almost everyt > u. By substituting?(u, x;t, dz) in the left-hand side of the following equality
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with the final expression in (2.40),
/Bq(z,t)ls(u,x;t,dz) =l{xe B}e*fLE axs)dsg(x, t)

t —
+ [ [ | a@vatys.dz\ {y)e £aE8R(u s dy)ds
uJX.JB

Formulae (2.43) and (2.44) imply statement (b) of the theore 0J

(2.44)

It follows from Theorem 2.5.3 that under Assumption 2.2 2 titansition functiorP satisfies
Kolmogorov’s forward equation (2.37) for ajfbounded sets. To show that the funct®gatisfies
(2.37) for all (g,s)-bounded sets, we consider tlefunctionsg® defined in (2.46) that satisfy
Assumption 2.2.2 if th&-functionq satisfies the weaker Assumption 2.2.3.

Define the functioN : X x [To, T1[— {0,1,...},
N(x,8) =min{n=1,2,...:x€ X5}, x € X,s€ [To, Ta[, (2.45)

where the setXs are defined in (2.4) and m{f} := . For eachx, the value ofN(x,s) is the
minimum natural numben for which g(x,t) < n for almost everyt € [Tp,s[. Consider theQ-
functionsg®, s €]Tp, T1], satisfying

a*(x,t,B) = q(x,t,B)I{t € [To,s[}1 {a(x,t) < N(x,s)}, xe X, te[To, T1[, Be B(X). (2.46)

The difference between the Markov processes defined b@#umctionsg andg® is that the latter
stops at times and does not move at timeg [To, | and statex € X with g(x,t) > N(x,s). At all
other time instances, these two processes are controlléuebsameQ-functiong. Let P° be the
transition functiorP defined in (2.19) withg replaced withg®.

Lemma 2.5.4.For arbitrary To and T, consider a Q-function g satisfying Assumption 2.2.3. Then
for each sc]To, Ty [, the following statements hold:

(a) the Q-function satisfies Assumption 2.2.2.

(b) For any given probability measugeon X, the Q-functions g and gefine the same jump
Markov procesgX; :t € [To, T1[} up to time s, and

P(u,x;t,B) = P5(u,x;t,B), ue [To,s,t €]u,s,x e X,B e B(X). (2.47)
Proof. (a) Assumption 2.2.3 implies that, for eaghe X ands €|Tp, T1], there exists am €
{1,2,...} such thatx € X3, and thereforeN(x,s) < e. This fact and (2.46) witlB = X \ {x}
imply that, for allx € X,
qs(x7t) = Q(X,t)l {t S [T07S[}| {Q(X,t) < N(X7 S)} < N<X7 S) < 0o, te [T07T1[' (248)
Thus, theQ-functiong® satisfies Assumption 2.2.2.
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(b) Assumption 2.2.3 and (2.45) imply that Xﬁ(xs) for all x € X ands €]To, T1[. Thus,
from the definition of the setsy, formula (2.4), for alls €] To, T4,

H(t € [To,S[: q(x,t) > N(x,s)) =0, xeX. (2.49)

The above equality and (2.46) imply that (2.26) holds With- sandq’ = ¢°. This fact, Lemma 2.2.1(iii),
and Lemma 2.3.4 witfi; = sandd = ¢® imply statement (b) of the lemma. 0J

For alls €]To, T1[ andt € [To,s|, let s = {x € X 1 q(x,t) < N(x,9)} and¥Z := X\ Y. For
any set € B(X), we denote byl := BNY s andBfs:=BN YA

Lemma 2.5.5.Under Assumption 2.2.3, for allx X, s€|Tp, T1[, and ue [To, 9,
FT(u,x;t,YfS) =0 foralmost every €]u, 9. (2.50)

Proof. Fix an arbitraryx € X ands €] To, T1[. To prove (2.50), we first show that (2.50) holds for the
particular case whem= Tp. According to Lemma 2.5.4(b), given an initial stateheQ-functions

g andg® define the same jump Markov proceSs; : t € [To, T1[} up to times. This fact implies
that the compensator corresponding to this process carvbe gy (2.5) withT; = s or by (2.5)
with T, = s and withq replaced byg®. However, it follows from Jacod [17, Theorem 2.1] that a
compensator is unique up to a modification df-aull set. Thus, from Jacod [17, Theorem 2.1]
and Lemma 2.5.4(b),

S _ S _ S _
/ /q(z,t)P(To,x;t,dz)dt:/ /qs(z,t)P(To,x;t,dz)dt:/ /q(z,t)l{zeYtls}P(To,x;t,dz)dt,
To /X To /X To /X ’

where the first equality follows from Jacod [17, (1)] wKlit,z) = 1{z€ X,t €]Tp, 5[}, formula (2.5)
with Ty = sgiven for theQ-functionsq andg®, and (2.7), and the last one follows from (2.46). The
above equality implies that

S —
//q(z,t)l{zeYtzs}P(To,x;t,dz)dt:O. (2.51)
To /X ’

Observe that s

S
|5(To,x;t,Yt725)dt < / / q(zt)I{ze YA} P(To,x;t,d2)dt. (2.52)
To To /X ’
This is true becauseg(zt) > N(zs) > 1 forallze st andt € [To,s[. Thus, (2.50) withu = Ty
follows from (2.51) and (2.52).

Now, to prove (2.50) for alu € [Tp, ], fix an arbitraryu € [Tp,s[. Consider the measurable
Q-functionqy(x,t, B) defined on the time domajn, T1| and satisfyingyu(x,t,B) = q(x,t, B) for all
xe X, te[u,Ty[, andB € B(X). Observe that th@-function gy satisfies Assumption 2.2.3 with
To = u, and that formula (2.19) defines the same transition funddw,x;t,B) on the domain
we [u, Ty, t €lw, T1[, x € X, B € B(X) if qis replaced by,. Starting at the point instead ofTo,
we have from the above arguments that (2.50) holds. Sineehosen arbitrarily, (2.50) holds for
allue [To, 9. O
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Lemma 2.5.6 provides a simple statement that is useful teedremma 2.5.7 and Corollar-
ies 2.6.2, 2.6.3.

Lemma 2.5.6. A functionP(u,x;t,B), where ue [To, T1[, t €]u, Ty[, x € X, and Be B(X), is a
solution of Kolmogorov’s forward equatiaf2.37) if and only if the functiorP satisfies, for all
t €]To, T1[, u€ [To,t[, x€ X, and(q,t)-bounded sets B B(X),

P(u,x;t,B) =1{x e B}—/Jtds/I3q(y,s)P(u,x;s,dy)+/utds/xq(y,s,B\{y})P(u,x;s,dy).
(2.53)

Proof. Integrating (2.37) fromu to t and by using the boundary condition (2.36), we get (2.53).
Thus, it follows from properties (i) and (ii) in Definition 22 that a solution of Kolmogorov’s
forward equation (2.37) satisfies (2.53) for@akt [To, T1[, t €]u, T1[, X € X, and(q,t)-bounded sets
B € B(X).

Consider a functiom®(u, x;t, B) that satisfies (2.53) for alle]To, T1[, u € [To,t[, X € X, and
(g,t)-bounded setB € B(X). For eachs €|To, T1[, a(q,s)-bounded set iq, t)-bounded for alt €
[To, s[. This property implies that, for all, x, s, Bsuch thas€|Tp, T1[, X € X, u € [To, 5], and the seB
is (g,s)-bounded, the functioﬁ(u,x;t, B) satisfies (2.53) for atl€|u, s[. Thus, for allu,x,s,B such
thats€]To, T1[, X € X, u € [To, [, and the seB is (g, s)-bounded, the functioﬁ(u,x;t, B) is locally
absolutely continuous onheju,s[ and (2.36) holds. That is, the functidhsatisfies property(i)
of Definition 2.5.2. Since a locally absolutely continuousdtion is differentiable almost every
where on its domain, differentiating (2.53) we have thatftimection P satisfies property (i) of
Definition 2.5.2. O

The following lemma is useful in proving the minimality pregy of P stated in Theo-
rem 2.5.1.

Lemma 2.5.7. Let Assumption 2.2.3 hold. Consider a non-negative saiu®ia, x;t, B) of Kol-
mogorov’s forward equatio(2.37) Then, for all t€]To, Ta[, u € [To,t[, x € X, and(q,t)-bounded
sets Be 9B(X), the functionP(u, x;t, B) satisfies

t
P(u,x;t,B) =I{xe B}e-mq(x’s)dsqt/ ds/ /q(y,s,dz\ {y})e k9z0d0p(y x5 dy). (2.54)
u XJB
Proof. Observe that: (i) for each, x,t,
{P(u,x;t + %, )}n=12... CONverge setwise #B(u,xt, -), (2.55)

and (ii) for any(q, s)-bounded seB € 2B(X), there exists a natural numharsuch that

1

t+1
/ q(y,0)d6 < m/n, t € [To,s[,n>1/(s—t),yeB. (2.56)
t

Formula (2.55) is correct since, for eagfx, B, the functionlf’(u,x;t, B) is absolutely continuous
int; see Definition 2.5.2(i), and Formula (2.56) follows frone tthefinition of & q, s)-bounded set.
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Then, for allx € X, s€|To, T1[, u € [To, 5[, (q,S)-bounded setB € B(X), andt €]u,s],

t+n

i/equ(y,e)dels(u x:t,dy) = lim Joel "A090B(y x:t + 1 dy) — ek a0y 1, dy)
ot /s P

n— oo 1

n
1 ~
— iMoo [ G0:0)80 (1 1 (7 (y,e)d6+(f(w+ LP(uxt+ 2 dy) — B(u,xt, dy))
= lim n/ef ua:.0)d9 By, xt+ .dy) — P(u,x;t,dy))

n—oo

t+3 .
+ lim n /B eladl(%:0)d8( /t q(y,e>de>P<u,x;t+%,dy>:31+Jz+33, (2.57)

where the first equality follows from the definition of a pattderivative, the second equality is

1
obtained by using the power series expansion of the expiahémiction el Ma0)d8 the third
equality is correct since the limit of the higher order tetersd to zero in the limit due to (2.55),
(2.56), and Lebesgue dominated convergence theorem, and

n—oo

ngr{ignmn/e/ qy@d@(/ q(y,6)d9> B(u,x:t,dy),

t+1
Jszr!i_rp n/efﬁq(y,e)de (/ qaly, 9)d9> (P(u X; t+ ,dy) — P(u, x,t,dy))
© JB t

Observe that, fox € X, s€|Tp, T1[, U € [Tp, S|, and(q, s)-bounded seB € B(X),

Ji = lim n/em‘q(y’e)Ole (P(u X; t+ ,dy) — P(u, x,t,dy))
B

1_r|]mon/efu yede/ ( q(y, v)P(u,x; v, dy) +/q zv,dy\ {z}) (u,x;v,dz)) dv
:r!ignmn/ %(/ef qy9d9< a(y, v)P(u,x; v, dy) +/q z,v,dy\ {z}) (u,x;v,dz)))dv
= [iet09% (—qpruxt.ay + [ aztay) (zhPuxtdz ). @59)

for almost everyt €]u, s, where the first equality follows from Lemma 2.5.6, the seceqdality

is correct due to Fubini’'s theorem, and the last one follosesf Lebesgue differentiation theo-
rem [32, Theorem 7.10], and

t+1 R A
B=jimn ( / q<y,v>efutq<y’9>dep<u,x;t,dy>)dv= [ auteb 98Bt dy), (259
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for almost every €|u, s, where the first equality is correct due to Fubini’s theorermh e second
equality follows from Lebesgue differentiation theorem.
In addition, forx € X, s€]To, T1[, u € [To, s, and(q,s)-bounded seB € B(X),

At t+32 1
Ja=lim [ &b [ q(y.0)d0) [ (~a(kvPluxwdy) + [ azvdy\ {2)Puxwdz)dv

n—o /g

—im [ [ ebaveren /t*q(y,e)de)( Qe VP(Uxvdy) + [ azvdy) {2)P(uxvdz))dv
n—eo Jt B t
—0, (2.60)

for almost every €|u, 5[, where the first equality follows from Lemma 2.5.6, the seceqdality is
correct due to Fubini’s theorem, and the third equalityus since (2.56) holds and since, for each
(d,5)-bounded seB € B(X), the integrals/gq(y,V) P(u,x;v,dy) and [, q(z,v, B\ {z})P(u,x;v,d2)
are finite for almost every €]u, 5 as the functior is a solution of (2.37).

From (2.57), (2.58), (2.59), and (2.60), forak X, s€]To, T1[, U € [To, 5[, and(q, s)-bounded
setsB € B(X),

at/ L0905y x 1. dy) — /efu 6 de/qz,t,dy\{zn P(u,x;t,d2),

for almost every €]u, 9. Integrating the above equality frooto t and using the boundary condi-
tion (2.36), for allx € X, t €]To, T1], u € [To,t[, and(q,t)-bounded setB € B(X),

~ t ~
/B el a-00B(y x:t, dy) — 1 {x € B} = /u de /B eli awv)av /X q(z 6,dy\ {z})P(u,x 6,d2)

which implies that,

/ elia(%.0)do (If’(u,x;t,dy) —1{xe dy}e‘ﬁqwﬁ)de)
B
. t : .
- / eli(y.0)de ( / ds / q(z,s,dy\{z})e—ls‘q(yﬂ)d%(u,x;s,dz)).
B u X

Sinceeltd%:6)49 = 0 for all u,t and since every measurable subset ¢6,)-bounded set is also
(g,t)-bounded, it follows from Radon-Nikodym theorem and thev@bequality that (2.54) holds
forall x e X,t €]To, T1[, u € [To,t[, and(q,t)-bounded setB € B(X). O

Proof of Theorem 2.5.1First, we show that the functiddis a solution of Kolmogorov’s forward
equation (2.37). It follows from the arguments given in thiegs of Theorem 2.5.3(a) that, for
all u,x, B such that € [To, T1[, x € X, andB € B(X), the functionP is an absolutely continuous
function ont €]u, T1[ and (2.36) holds. Thus, the functi®rsatisfies property (i) of Definition 2.5.2.
Though it was assumed in Theorem 2.5.3(a) that Assumptib@ Bolds, the arguments there are
correct for aQ-function satisfying Assumption 2.2.4. In view of Lemma.2#i), the Q-function

g satisfies Assumption 2.2.4 since Assumption 2.2.3 holds.
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To prove that the functiof® satisfies property (ii) of Definition 2.5.2, fix an arbitrasye
|To, T1[ and consider th@-functiong® defined in (2.46). Thi®-function satisfies Assumption 2.2.2;
Lemma 2.5.4(a). Then it follows from Theorem 2.5.3(b) ttiak,all u € [To, T1[, X € X, andg?-
bounded set8 € B(X), the functionPs(u,x;t,B) satisfies (2.37) witls = T; and with theQ-
functionq replaced byg®. This fact and (2.47) imply that, for alle [To, 5[, x € X, andg®-bounded
setsB € B(X),

g (uxt,B)= /q y,t)P(u,x;t, dy) +/q (y,t,B\ {y})P(u,x;t,dy) for almost every €]u,s.
(2.61)

Observe that a set -bounded if and only if it i5g,s)-bounded. Suppose that a 8¢
B(X) is g>-bounded. Then there exists a natural numbsuch thag®(x,t) < nfor all x € B and
t € [To, T1[. This fact and (2.48) imply that

gix,tH)1{a(x,t) < N(x,8)} <n, xe B,t € [Tp,9.

Thus, we have from the above inequality and (2.49) #at X3, and therefordq, s)-bounded.
Now, suppose that a sBte B(X) is (q,s)-bounded. Then there exists a natural nuntbeuch
thatB C X3, and thereforeN(x,s) < n for all x € B. This fact and (2.48) imply that the sBtis
g*-bounded. Then for all € [To, 5[, X € X, and(q,s)-bounded setB € B(X),

5Pt B = [ COOPluxtay + [ eyt By ()Pt dy
qs(y,t)FT(u,x;t,dy)Jr/ o°(y,t, B\ {y})P(u,xt,dy)
= [, GOPWxLay + [ aet B (yhPluxt.dy)
Bts
=~ [aw uxtdy+/qy,t,B\{y}> P(u . dy),

for almost every €]u, |, where the setB{ s, B, Y/, Y% are defined prior to Lemma 2.5.5, and the
first equality follows from (2.61), the second equality tmlis from (2.46) and (2.50), and the last
one is correct due to (2.50). Thus, the funct®satisfies property (ii) from Definition 2.5.2, and

is therefore a solution of Kolmogorov’s forward equatior8@).

To show the minimality property d®, consider a non-negative solutiér of Kolmogorov’'s
forward equation (2.37). Due to Lemma 2.5.7, the func#(u,x;t,B) satisfies (2.54) for all
t €]To, T1[, U € [To,t[, X € X, and(q,t)-bounded set8 € B(X). Since the last term of (2.54) is
non-negative, for all €]To, Ty, u € [To,t[, x € X, and(q,t)-bounded setB € B(X),

P*(u,x;t,B) > | {x € B}e uax9ds — pO (y x:t, B), (2.62)
where the last equality is (2.17). For &lE]To, T4, u € [To,t], X € X, and(qg,t)-bounded sets
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B € B(X), assumeP*(u,x;t,B) > P(m)(u,x;t,B) for somen > 0. This fact, (2.54) for the

functionP*, and (2.39) imply that

IIM:J

. t | n
P*(U,xt,B) > | {x € Ble hiaxs)ds / ds / / Q(y,s,dz\ {y})e Ea=090 5 B (4 ;. dy)
m=0

n+1
=PO(u,x;t,B)+ Z PI™ D (u,xt,B) = z P (u,x;t,B).

Thus, by inductionP*(u,x;t,B) > SN P™ (u,x;t,B) for all n > 0,t €]To, Ta[, u € [To,t[, X € X,
and(q,t)-bounded setB € B (X). This property and (2.19) imply that, for alE]|To, T1[, u € [To, [,
andx € X,

P*(u,xt,B) > P(u,x;t,B) for all (g,t)-bounded setB € B(X). (2.63)

Then for allt €]Tp, T1[, u € [To,t[, andx € X

P*(u,x;t,B) = rI}i_r}n(»P*(u,x;t,BﬂX,ﬁ) > lim P(u, xt,BNXY) =P(u,x;t,B), BeB(X), (2.64)

where the first and last equalities are correct since théxgetX asn — « due to Assumption 2.2.3
and the function® andP* are measures oX, 8(X)) for fixed u, x,t, and the inequality holds due
to (2.63). ThusP is the minimal non-negative solution of Kolmogorov's fomgtaquation (2.37).
To prove the uniqueness propertyRyflet the solutiorP* take values in0, 1. If P(u,x;t, X) =
1 for all u, x,t, then the uniqueness Bfwithin the set of non-negative solutions with value$§dsi|
follows from (2.64) and from the same arguments as in thefgrboniqueness in Theorem 2.4.1.
O

2.6 Additional results and comments

Assumption 2.2.2 means that the jump intensities are baliatieach state for the time hori-
zon [Tp, T1[, and this assumption is natural for continuous-time Mar#tegision processes (CT-
MDPs); see Feinberg et al. [8, 9]. In this section, we preparticular results on the minimality
and uniqueness properties of the solutlf Kolmogorov's forward equation under Assump-
tion 2.2.2.

Theorem 2.6.1.Let Assumption 2.2.2 hold. The functiB(u, x;t, B) is the minimal non-negative
function that satisfies, for eachxB such that u= [Tg, T1[, X € X, and the set B is g-bounded,
properties (a) and (b) given in Theorem 2.5.3. In additidrR iis a regular transition function,
thenP is the unique non-negative function satisfying properts and (b) given in Theorem 2.5.3
and takes values if®, 1].

Proof. According to Theorem 2.5.3, the functiéhsatisfies properties (a) and (b) given in Theo-
rem 2.5.3. To prove the minimality &, consider a non-negative functiéti that satisfies prop-
erties (a) and (b) given in Theorem 2.5.3. Recall thatlzounded set igq,t)-bounded for all
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t €]To, T1]. Then, in view of Theorem 2.5.3, it follows from the argurrsegiven in Lemma 2.5.7
that, for allt €]To, T1[, u € [To, t[, andx € X, formula (2.54) holds for ali-bounded setB € B(X).
Therefore, it follows from Lemma 2.2.1(ii) and from the angents given as in the proof of mini-
mality in Theorem 2.5.1 that (2.63) holds, and thereforé4pholds for allB € B(X). The proof
of uniqueness property &fis the same as the proof of uniqueness in Theorem 2.4.1. O

The following two corollaries are useful for applying theués of this paper to continuous-
time jump Markov decision processes; Feinberg et al. [8pfdma 3.2] and Theorem 4.3.1.

Corollary 2.6.2. Under Assumption 2.2.2, the following statements hold:

(a)forallxe X,t €]|To, T1[, u € [To,t], and g-bounded sets®B(X), the functiorP(u, x;t, B)
satisfieq2.53)

(b) the functionP is the minimal non-negative function for which statementhplds. In
addition, if P is a regular transition function, theR is the unique non-negative function with
values in[0, 1] for which statement (a) holds.

Proof. Integrating (2.37) fromu to t and by using the boundary condition (2.36), we get (2.53).
Thus, statements (a) and (b) of this corollary follow respety from Theorem 2.5.3(a) and (b),
and Theorem 2.6.1. O

Whenx is fixed andu = To, (2.53) is an equation in two variablésand B. Hence, for
simplicity, we writeP(t, B) instead ofP(Tp, x;t, B) for any functionP on the domain oP whenx
is fixed andu = Tp, and (2.53) will be given as

P(t,B) = I {x e B}+/T:ds/xq(y,s,B\{y})P(s,dy)—/T:ds/Bq(y,s)P(s,dy). (2.65)

For fixedx € X andu = Ty, the functionP(t, -) is the marginal probability distribution on the state
of the procesgX;,t € [To, T1[} givenXy, = x. Under Assumption 2.2.2, the following corollary
describes the properties of the solut®ft, B) to (2.65).

Corollary 2.6.3. Fix an arbitrary xe X. Under Assumption 2.2.2, the following statements hold:
(a) for allt €]To, [ and g-bounded sets 8B (X), the functionP(t, B) satisfieg2.65)

(b) the functionP(t,B) is the minimal non-negative function for which statemeth@lds. In
addition, if the intensities (@, t) are uniformly bounded in z and t, thé&t, B) is the unique non-
negative function with values {0, 1] for which statement (a) holds.

Proof. Statement (a) of the corollary follows immediately from Gitary 2.6.2(a) whem = T.
To prove the minimality of the functioR(t,B), consider a non-negative functiéi(t,B), where
t €]To, To[ andB € B (X), satisfying (2.65) for eache]To, T1[ andg-bounded seB € B (X). Define

the functionf (u, z t, B) with the same domain &u, zt,B),

P*(t,B) if u=Tpandz=x,
u,

f(u,z;t,B):{ P(u,zt,B), otherwise (2.66)
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Then, it follows from Corollary 2.6.2(a) and (2.66) thattetaent (a) of Corollary 2.6.2 holds for
the functionf. This fact, Corollary 2.6.2(b), and (2.66) imply that

P*(t,B) = f(To,x;t,B) > P(To,x;t,B) = P(t,B),  t€]To, Ta[,Be B(X). (2.67)
Thus, the functiorFT(t,B) is the minimal non-negative function for which statementdathis
corollary holds.

To show the uniqueness property, let the functi®ntake values in0,1]. This fact and
the property that the functioR(u, z t,B) takes values if0, 1] for all u,zt,B in the domain ofP
imply that the functionf defined in (2.66) takes values j@,1]. Observe that, if the intensities
q(z t) are uniformly bounded iz andt, X is ag-bounded set. Then, from Corollary 2.6.2(a),
we haveP(u,zt,X) =1 for all u,t € [To, T1[ with u <t andz € X. Therefore, it follows from
Corollary 2.6.2(b) thaff (u,zt,B) = P(u,zt,B) for all u,zt,B in the domain ofP, which along
with (2.67) implies the uniqueness propertyRit, B). O

2.6.1 Non-conservative)-functions

The results of this chapter can be extended to non-consergafunctions. As mentioned in
section 2.1, any non-conservati@efunctionq can be transformed into a conservatidunction
by adding a stat® to X with q(x,t, {x}) := —q(x,t, X), q(x,t,X) := 0, andq(x,t, {x}) := 0, where
x € X andt € R,. According to Theorem 2.3.2, there is a transition functoof a jump Markov
process with the state spa¥eJ {x}, and this process is determined by the initial state distidin
and by the compensator defined by the modi@eflinction.

The proofs of the results of sections 2.4 and 2.5 do not usasthemption that th@-function
qgis conservative. Therefore, these results remain validdorconservativ@-functions. However,
the validity of the conditiorP(u, x;t,X) = 1 for all x, u,t with u < t in Theorems 2.4.1 and 2.5.1 is
possible only if(x, t, X) = 0 almost everywhere infor eachx € X. Thus, in factg is conservative
if P(u,xt,X) =1 for all x,u,t with u <t. Itis also easy to see that the minimal solutions of
both Kolmogorov's backward and forward equations are etu#l(u,x;t,B), whenx € X and
B € %B(X), where the transition functioR is described in the previous paragraph for a broader
domain.

2.6.2 Generalized boundedness assumptions

For someQ-functions, Assumptions 2.2.3 and 2.2.4 may not hold if tbieT; is included.
To study Kolmogorov’s equations for su€rfunctions, we excluded the poiiit and defined the
solutionP(u,x;t,B) for all To < u <t < T1. Similarly, it is also possible to consider the situation
when Assumptions 2.2.3 and 2.2.4 do not hold from the pQjfut hold from any pointi > To,
as described below.

Forn=1,2,..., consider the function&, : X x [To, T1] x [To, T1] — [0, «] defined as
t
Zn(X,u,t) :/ 1{q(x,s) > n}ds xe X,u,t € [To, T1J,u<t. (2.68)
u
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For eachu,t € [To, Ty with u < t, let X5',n=1,2, ..., be the subsets of such that
XM ={xeX:Zy(x,ut)=0}, n=12.... (2.69)

Since the function&n(x, u,t) are measurable, for eacht the setsx;" are measurable subsets of
X. Observe thaks' € X', n=1,2,... . AsetB € B(X) is (q,u,t)-bounded ifB C X3 for some
n=212,....

Consider the following weak boundedness assumptions:

Assumption 2.6.1(General almost everywhere boundednesq)of)(,‘,"t 1T X as n— o for each
u,t €]To, Te[ withu < t.

Assumption 2.6.2(GeneralZ! boundedness af). For all x € X, the integralflj g(x,s)ds< oo for
each ut €]Tp, T1[ with u < t.

Under Assumption 2.6.2, the transition functiB_tu,x;t, B) is well defined for allu,t sat-
isfying To < u <t < Ty, but the stochastic proce$X;,t € [To, T1[} defined in (2.7) may not be
defined starting front = To. The construction of the stochastic procéXs,t € [To, T1[} is based
on Jacod [17, Theorem 3.6], which requires that the funati@n; [To,t], B) defined in (2.5) is fi-
nite for allt €]To, T1[ andB € B(X). This might not be the case if tlig-function does not satisfy
Assumption 2.2.4 as demonstrated by the following example.

Example 2.6.4.The random measung w; [To, t], B) defined in(2.5) may not be finite when the Q-
function satisfies Assumption 2.6L2t To =0, T1 = o, X = {1,2}, q(i,t, j) = q(i,t) = %I {t>0}
foralli, j € X withi # j. From (2.5),

t t1
v(w; [O,t],X):/O %I{tn§s<tn+1}q(xn,s)ds:/o gds: o, t €]0,00].
n=

Observe that Assumptions 2.6.1 and 2.6.2 are respecthelame as Assumptions 2.2.3 and
2.2.4 withTo = ufor all u €]To, T1[. Hence, results similar to those in Sections 2.4 and 2.5 on Kol
mogorov’s equations remain valid under Assumptions 2.6d.226.2. Under Assumption 2.6.2,
the following statements hold:

(a) the functiorP(u, x;t, B) satisfies property (i) from Definition 2.4.2;

(b) for eachx,t, B, such thak € X, t €|Tp, T1[, andB € B (X), the functionP(u, x; t, B) satisfies
Kolmogorov’s backward equation (2.29) for almost every| T, t|.
In addition,P is the minimal non-negative function satisfying stateraga), (b) given above. If
P(u,x;t,X) = 1, then it is the unique non-negative function that satidfiese statements, takes
values in[0, 1], and is a measure diX,B(X)) for fixed u,x,t. This is true because any function
P*(u,x;t,B) satisfying these statements can be extended to a solutidalwmfogorov’s backward
equation (2.29) by defininB*(Tp, x;t,B) = [{x € B} for all x € X, t €|Tp, T1[, andB € B(X).

Under Assumption 2.6.1, the following statements hold:

(@) for eachx € X,u €]|Tp, T1], andB € B(X), the functionP(u,x;t,B) satisfies property (i)
from Definition 2.5.2;
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(b) For eachw,s,u,x,B, such thatw €]To, Ty[,s €]w, T1[,u € [w,S], X € X, and the seB is
(0,w,s)-bounded, the functioR(u, x;t, B) satisfies Kolmogorov's forward equation (2.37).
In addition,P is the minimal non-negative function satisfying staters€aj, (b) given above. This
is true because any functid¥i(u, x;t, B) satisfying these statements is a solution of Kolmogorov’s
backward equation (2.29) on the semi-interjT;[ for eachw €]To, T1[. Since aQ-function
satisfying Assumption 2.6.1 satisfies Assumption 2.2. 3 \it= w for all w €|Tp, T1[, we have
from Theorem 2.5.1 that, for alV €|To, Ty,

P*(u,x;t,B) > P(u,x;t,B), uew,Ti[,t €lw,T1[,x € B,B € B(X). (2.70)

ThereforeP(u,x;t, B) is the minimal non-negative function for which statemeajsand (b) given
above hold. In fact, iP(u,x;t,X) = 1 then it is the unique non-negative function with values in
[0,1] satisfying these statements because (2.70) holds withuadisg
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Chapter 3

Continuous-time Markov decision processes

3.1 Introduction

A Markov decision process (MDP) is a mathematical framews#d for sequential decision
making under uncertainty. It is used for modelling decisimaking (or control) problems whose
uncontrolled version is a Markov chain. Hence, MDPs are &lsmwvn as controlled Markov
chains. They are commonly used in many fields, such as ingeotmtrol, queuing systems,
manufacturing, system maintenance, appointment schrgpinlhealthcare, population models etc,
to improve the performance characteristics.

In MDPs, the decision maker chooses actions/decisiondlteemce the evolution of underly-
ing Markov chain to minimize certain long term costs. Depegan when the actions are chosen,
MDPs can be classified into two types:

(i) Discrete-time MDP (DTMDP): Actions are chosen at fixadei points, say dt=10,1,2,...,
and the uncontrolled version of the MDP is a discrete-timeldachain.

(if) Continuous-time MDP (CTMDP): Actions can be chosenm Eime, say at any € [0, o],
and the uncontrolled version of the MDP is a continuous-fitaekov chain.

In this chapter, we formally introduce CTMDPs, provide a&bdonstruction of the stochastic
processes induced by a policy, and define the optimaliteriaitthat we are interested in. The
reader can refer to Appendix 5 for a similar description ofNIOPS.

3.2 The CTMDP model
A CTMDP is defined by the multipletX, A, A(X), q(-|x,a),c(x,a),C(x,a,y)), where
(i) X isthe state space such thiat B (X)) is a standard Borel space;
(i) Aisthe action space such th@, 5 (A)) is a standard Borel space;

(iii) A(x) are the set of actions availablexat X. It is assumed thad(x) € ®B(X) for all x € X
and the set of feasible state-action p&@gA) = {(x,a) : X € X,a € A(X)} is a measurable
subset of X x A) containing the graph of a measurable mapping f»to A.
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(iv) q(-|x,a) is the transition rate fronGr(A) to X. It is a signed measure giX,B(X)) for
any (x,a) € Gr(A) such thag(X|x,a) = 0, 0< q(Z\ {x}|x,a) < « for all Z € B(X), and
q(Z|x,a) is a measurable function @br(A) for eachZ € B (X).

(v) c(x,a) is the cost rate incurred for choosing an acéon A(X) in statex € X and is assumed
to be a bounded below measurable function orGh@).

(vi) C(x,a,y) is the instantaneous cost incurred if the process jumps ftatex to statey and
actiona was chosen at the jump epoch. It is assumed to be a bounded belasurable
function onGr(A) x X.

For CTMDPs, it is possible to choose actions any time. At danbt € R, the decision
maker observes the current statef the stochastic system and chooses a particular aatictom
the set of actioné\(x) available ak. We give an informal description of the evolution of the syst
Suppose that an acti@is chosen in state at timet. Then in the infinitesimal time intervét, t
dt], the decision maker incurs the casx, a)dt and the system transitions from stat® statey # x
under the controh with probability q(y|x,a)dt 4+ o(dt) or it stays in the stat& with probability
1—q(X\ {x}|x,a)dt+ o(dt). If the transition occurs, the decision maker incurs theainstneous
costC(x,a,y). At each timet, the decision maker can also choose a probability distdbutn
the set of available actior§x). Such decisions are commonly called randomized. If thesitati
maker chooses a randomized action, or in other words ch@pesbability distribution on the
set of available actions, then the system evolves as if thiside maker choose an action whose
associated transition rate, cost rate, and instantanexmisace expectation of the corresponding
values with respect to the measure defined by the randomaezhalntuitively, this means that,
for any two actionsa andb in statex and for any constank € (0,1) there is an actior in
statex such thag(-|x,d) = Aq(-|x,a)+ (1—A)q(-|x,b), c(x,d) = Ac(x,a) + (1 — A)c(x,b), and
C(x,d,y) = AC(x,a,y) + (1 — A)C(x,b,y) for all y # x. This definition for randomized actions
simply relaxes the control set rather than chose an actiatoraly from the set of actions available.
Thus, we think the term 'relaxed’ is more appropriate to dégcsuch actions. the system spends in
statex a random amount of time (also called the sojourn time) thatamaexponential distribution
with rateq(x, a) := —q({x}|x,a) for all (x,a) € Gr(A) and then makes the transition in to the next
state. In particular, on the infinitesimal time inter{tat 4 dt]: We give a simple example showing
the various parameters corresponding to the chosen action.

Example 3.2.1.Consider the 3 state CTMDP in Figure 3.2.1: Then,

action transition rate cost rate| instantaneous costs
a q(2|1,a)=1,q(3|1,a) =0 5 10
b q(2|1,b) =0,q(3|1,b) =2 10 5
d:p(a)=0.4]q(21,d)=04,q(3|1,d) =1.2 8 7
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q@lay=1, /
c(l,2)=35, // a
C(1,,2)=10/

@ b
q(3/1,b) =2,

c(1,b) =10, C(1,b,2) = 5

Figure 3.1: Example of a CTMDP

3.3 Jump process induced by a policy

In this section, we define different policies or decisioresutonsidered in this thesis and
provide a brief description of the construction of the jummpgess induced by them.

Adjoin an isolated poink, to X, and letX := X U {x»}. Consider the Boreb-algebra
B(X) := 0(B(X),{%}) on X, which is the minimalo-algebra containin@®(X) and {x. }. Let
(X x R;)*®, whereR, :=]0, ]|, be the set of all sequencés,ty,x,t2, X, ...) with x, € X and
thr1 € R, forn=0,1,... . This set is endowed with the-algebra defined by the products of the
Borel g-algebrasB (X) andB(R.,).

Denote byQ the subset of all sequences= (xo,t1,X1,t2, X2, ...) from (X x R, )% such that:
() xoeX; (i)forn=21,2,...,th11 >ty if ty < 0 andt,, 1 =ty if t, = o0; and, (iii) forn=1,2,...,

Xn = X if and only ift, = 0. Observe thaf is a measurable subset©f x R,)®. Consider the
measurable spad®,.7 ), where.# is the o-algebra of the measurable subset£ofDefine the
random variableg,(w) = Xy, thr1(w) =thi1, N=0,1,..., to(w) = 0, andte(w) = Alnmtn on the
measurable spad€,.%#). Throughout our study on CTMDPs, we omitwhenever possible. For
allt e Ry let % == 0(B(X), %), where4; .= o(I1{xn € Z}{th <s}:n>1se[0,t],Z € B(X)),
and letZ be the predictable-algebra oM x R that is generated by sets of the fofix {0},
e %, and,l x|sit], I € Zs,st € Ry withs<t.

The jump process of interesté; : t € R, }, defined on(Q,.%#) and adapted to the filtration
{%#,t e R} is given by

&t(w) 1= Z}I {tn <t <tny1}xn+H{tw <thXe. (3.1)

D=

Along the trajectoryw, observe thaf; (w) is right continuous piecewise constant endé;- (w) =
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& (w) (whereéy- (w) 1= &o(w)) for all t € R, except for a countable set of jump timigsn =
1,2,... . Thus, for notational convenience, we shall often repl&cewith & whenever this does
not lead to a confusion.

For a standard Borel spa¢8, B(S)), denote by (S) the set of all probability measures
on (SB(S)). We now describe the different classes of policies consitiér this thesis. Adjoin
an isolated poinés, to A, and letA := AU {aw» } andA(X.) := a». Consider the Boret-algebra
B(A) = 0(B(A),{ax}) onA.

e A relaxed policyr is a transition probability from(Q x R, 2?) to (A,28(A)) such that
MA(S-)|w,t) = 1.

e Arelaxed policyg is called arelaxed Markov policyf ¢ (- |w,t) = @ (- |&-,t) fort € R,.

Observe that a relaxed poliey(respectively, a relaxed Markov poli@) is a &?-measurable map-
ping fromQ x R, (respectively, fronX x R, ) to the metric space?(A) that is endowed with the
topology of weak convergence. It follows from Jacod [17, loean3.3] that theZ?-measurability
of the relaxed policyrt is equivalent to the existence of transition probabilitigsn = 0,1, ...,
from (Q xR,.%, x B(R4)) to (A,B(A)) concentrated oA(X,) such that, foralh=0,1,...,

7T(|(U,t): TE\('|X07t17X17-~-7tn7Xn,t—tn> on {tn<t§tn+1}~

Hence, our terminology here is consistent with Feinberg [7]

3.3.1 Kitaev’s construction of the probability measure defed by a policy

In this subsection, we provide a brief description of Kitaeonstruction [24] of the proba-
bility measure of the jump proces§;,t € R, } controlled by an arbitrary policyr.

Letq(za) := q(X\ {x}|za) for all (z,a) € Gr(A) andq(z) := sUpcay d(z @) for all z€ X.
ForallZ € B(X),ze Xandp e Z(A), let

q<Z\Z,p):z/A(Z)Q(le,a)p(da)l{zeX} and q(zp) :=q(X\{z}|z,p). (3.2)

Here, following the tradition, we use the same notatian either side of the definitions in (3.2).
The following assumption is necessary to define and analy84Ps with relaxed actions, and we
assume that it holds throughout our study on CTMDPs. In@aletr, for eacle € X, it guarantees

thatq(Z|z,p) < o for all Z € B(X) andp € Z(A).
Assumption 3.3.1.q(z) < o« for each z= X.

For each policyrt, let 7z be the measure corresponding to the probability distidout - |c,t).
Then the random measuwé’ given by

V@i08.2)= [[aZ\ (&} mds  te k. ZeBX), (3.3)
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is predictable and({t}, X) = 0" ([tw, [, X) = 0; see, e.g., Kitaev [24]. According to Jacod [17],
the predictable random measwr& defined in (3.3) and a probability distributigron (X, 8 (X))
define a unique probability measurg on (Q,.#) such thatP]}(& € Z) = y(Z), Z € B(X), and
v is the compensator (predictable projection) of the randa@asureu on (R x X),

H(w;[0,t],Z2) = z [ {th € [0,t]}H {x, € Z}, te Ry, ZeB(X), (3.4)

n>1

associated with the multivariate point procégsxn)n>1. If y({x}) =1 for somex € X, we shall
write P instead ofP. Let Ef andE) respectively denote the expectation with respect to the
measure®y andPy.

We shall show in Chapter 4 that it is a relaxed Markov policy, then the jump process
{&:,t > 0} defined by the compensatof satisfying (3.3) is a jump Markov process. This result
follows from Corollary 2.3.3.

3.4 Cost Criteria

Forally,ze X withy # zandp € Z(A), let
) = ) d 3.5
ozp) = [ czapda (35)
Czpy) = [ Clzayp(da) (3.6)

A(2)

We now give a brief description of the different cost crigeconsidered in this thesis for CTMDPs.
Given an initial distributiory on X, for any policyrt.
(i) thefinite horizon expected total discounted cisggiven by
TAte N(T) .
Vo, 1(y, 1) 1= Ec[/o e c(és, m)ds+ e TC(&, 4 Thy &), (3.7)
n=1
whereT is the finite planning horizonN(T) is the number of jumps up to timg, and
a €]0, 0] is the discount factor.
(i) Formula (3.7) witha = 0 defines théinite-horizon expected total cadénoted by 1 (y, 71).
(iii) Formula (3.7) withT = o defines theexpected total discounted caitnoted by (y, 1).
(iv) Formula (3.7) witha = 0 andT = « defines thexpected total costenoted by (y, ).

(V) If Py(& € X) =1forallt € Ry, then the average cost per unit time is given by

Vo7 (Y, 1)

W(y, ) =limsup (3.8)

T—o
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Chapter 4

Sufficiency of Markov policies in CTMDPs

In this chapter, we consider Borel state and action CTMDRIs wnbounded transition rates
and present the main result of this dissertation, Theor@mi 4We show that the search for optimal
policies in CTMDPs can be restricted to Markov policies fptimality criteria that depend only on
marginal distributions of state-action pairs, like the esed total discounted and non-discounted
costs and average costs per unit time.

4.1 Introduction

The first consideration of relaxed history dependent pedics by Kitaev [24]. He observed
that an arbitrary policy for the CTMDP defines a compensata natural way and constructed
the stochastic process via the compensator and the inisigd distribution based on Jacod [17,
Theorem 3.6]. Even though it is possible to consider histtegendent policies for CTMDPs,
most of the literature on CTMDPs considered relaxed Marladicies as the most general class of
policies and established many of the existing facts suclptsality of certain policies within the
class of relaxed Markov policies; see Guo and Hernandemadf1]. In this chapter, we show
that for any arbitrary policy there exists a relaxed Markoligy that performs equally, and thus,
extending the previously established results within tles<lof relaxed Markov policies to hold
within the class of all policies.

This chapter is organized as follows. In Section 4.2, wenhice marginal distributions on
the state-action pairs and on the states of CTMDPs. For aypmlive construct in Lemma 4.2.1
a relaxed Markov policyp. Then, in Theorem 4.2.2, we state the main result of thisedias
tion that the marginal distributions coincide for these padicies. This theorem is similar to the
well-known result by Derman and Strauch [4] for DTMDPs thatas the sufficiency of Markov
policies for objective criteria that depend only on the nraadistributions; see Theorem 5.2.1
in Appendix 5. The proof given by Derman and Strauch [4] far thscrete-time case is based
on induction in the step number, and hence not applicabledatinuous-time. The proof for
the continuous-time case is based on the fact that the naugjstributions on the state for both
the policies, T and ¢, satisfy Kolmogorov’s forward equation defined by the Markmlicy ¢;
Lemma 4.4.4. In Section 4.3, we apply the results in Chapsgr®show that the jump process de-
fined by a Markov policy is a jump Markov process whose maitgiisdribution on the state of the
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process is the minimal non-negative solution of Kolmog&éaward equation (4.10) defined by
the Markov policy; Theorem 4.3.1. We also provide a sufficmndition for the marginal distri-
bution on the state of the process to be the unique non-negatiution of Kolmogorov’s forward
equation (4.10) that takes valueg@1]. The proof of the main result, Theorem 4.2.2, is provided
in Section 4.4 after establishing few auxiliary resultsndfy in Section 4.5, we characterize the
equivalence between the classes of history-dependent ankioM policies for objective criteria
such as the expected discounted and non-discounted tstalaad average costs per unit time.

4.2 Main result

Given an initial distributiory, for any policyr, consider
PI(t,2,B) = /Q |{& € Z)m(Blw.PT(dw), tER,,ZEBX),BEBA), (4.1)
PI(t,Z) 1= PIT(t,Z,A) = / 1{& € Z}PT(dw), teR,,ZEBX), (4.2)
Q

where the equality in (4.2) is correct sin¢é € X} = {m(A|w,t) = 1}. Observe that (i) for
fixedt, the functions/(t, -, -) andP/i(t, -) are measures aiX x A,B(X) x B(A)) and(X,B(X)),
respectively, and (iiP)/(t,Z) = P}}(& € Z) for all t € Ry andZ € B(X). Similar to the notation
Py, we shall writeR" instead ofP)" if y({x}) = 1 for somex € X.

Lemma 4.2.1. Given an initial distributiony, for every policyr there exists a relaxed Markov
policy ¢ that satisfies, for all€ R,

¢(B|z,t):%, P/(t,-) —ae,ze X,Be B(A). (4.3)

Proof. Fix t € R, such thatP/i(t,X) > 0. By Bertsekas and Shreve [2, Corollary 7.27.1], there
exists a transition probability from (X x R4, B(X) x B(R4)) to (A,B(A)) satisfying

P;T(t,z,B):/Z¢(B\z,t)P;T(t,dz), Z € B(X),Be B(A), (4.4)

which, by definition, is equivalent to (4.3). Since the mea®J'(t,-,-) is concentrated oGr(A),
the transition probability can be defined in such a way tifatA(z)|z,t) = 1 for allze X and (4.4)
holds. Therefore, iP)(t, X) > 0, then (4.3) holds. Alternatively, fixc R, such thaP/(t,X) =0.
Then, (4.3) holds for any relaxed Markov poligy Thus, (4.3) holds forall € R, .. O

The following theorem is the main result of this dissertatio

Theorem 4.2.2.Let the initial distributiony be fixed. For any policyr, consider a relaxed Markov
policy ¢ satisfying(4.3). Then

P?(t,Z,B) =P(t,Z,B), ZeB(X),BeB(A),teR,. (4.5)
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In particular,
P(t,2)=P(t,Z), ZeB(X),teR,. (4.6)

The proof of Theorem 4.2.2 is given in Section 4.4.

4.3 Kolmogorov’s forward equation for CTMDPs controlled by Markov poli-
cies

In this section, we apply the results on Kolmogorov’s fordvaguation in Chapter 2 to CT-
MDPs controlled by Markov policies. L@t be a Markov policy. Then, it follows immediately that
the transition rate functioq(Z|z, ¢v), Z € ®B(X), z€ X, andt € R, is aQ-function (see Chapter 2
for definition of aQ-function). In view of Theorem 2.5.1, the minimal non-negatsolution of
Kolmogorov’s forward equation defined by tRefunctionq(Z|z, ¢t),ze X;te R, Z € B(X),isa
transition function of a jump Markov process. This approctonstruct the jump process defined
by a Markov policy is adapted in many of the studies on CTMD&gmolled by Markov policies
including the monograph Guo and Hernandez-lerma [11]; sedakumanu [19], Miller [27, 28].
However, as mentioned in Chapter 3, the jump process defipneahyppolicy can be constructed
using the compensator of the random measure of the muliteapioint process. The following
theorem shows that the two ways to construct the jump pradefised by a Markov policy: (i)
via the compensator of the random measure of multivariaté poocess, and (ii) as the minimal
non-negative solution of Kolmogorov’s forward equatioril@) are equivalent.

Consider the transition functid®?® (u,zt,Z), whereu,t € R, u <t, ze X, andZ € B(X),
given below, that is obtained by replacing the gené¥itinctionq(zt,2),ze X,t e R4, Z € B(X),
in (2.17)-(2.19) with the specific functiog(Z|z, ¢;),z€ X,t € R;,Z € B(X). For allu,t € R,
u<t,ze X, andZ € B(X), define

POy zt,2)=1{ze Z}e—JLEGI(Z@W)O'W7 (4.7)

and form=1,2,..., define

t S
P(‘P’m)(U,Z;t,Z):// g Jud@tn)dWg dyiz o) PO M (s vt 7)ds (4.8)
u Jx\(z)
Set .
P?(u,zt,2) ;= > Py zt,2). (4.9)
m=0

LetYy be the collection of Borel subsets Xfsuch that

Yo ={Z€B(X): sup q(z,¢) < o}.

teR,,zeZ

Theorem 4.3.1.Let the initial state x be fixed. For any Markov poligythe following statements
hold:
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(i) the jump proces$é; : t € R, } defined in(3.1) by the compensatar? satisfying(3.3)is a
jump Markov process with transition functiodf Ri, z t, B) defined in(4.9).

(ii) the function I;? (t,Z) is the minimal non-negative solution of Kolmogorov's fordvaqua-
tion,

P(t,Z2)=1{xe Z}—i—/ot/xq(Z|z,¢s)P(s,dz)ds, t>0,Z¢ecYp. (4.10)

In addition, if X Yy, then I#(t,Z) is the unique non-negative function with valuegQnl] for
which statement (i) holds.

Proof. (i) Assumption 3.3.1 and (3.2) imply that

supq(z @) = sup qd(z,a)¢(dalzt) < q(z) < oo, ze X. (4.11)
teR, teR, JA(2)
That is, the transition rate functia{Z|z, ¢), Z € B(X), ze X, t € Ry, is aQ-function satisfying
Assumption 2.2.2 in Chapter 2. Thus, in view of Corollary.2,3ve have that statement (i) of the
theorem holds.
(i) From (4.2) and (2.2) withu = 0 for the jump Markov process defined by the Markov
policy ¢,

PY(t,2) =P¢(& €Z) =P?(0,xt,Z), t>0,ZeB(X). (4.12)
The above equality, (4.11), and Corollary 2.6.3 wiflz,s,Z) = q(Z|z,¢s), To =0, and Ty = o
imply that the second statement of the theorem holds. O

Remark 4.3.1. In view of Lemma 2.2.1(i), the collection of Borel subs¥t contains, among
others, a sequence of Borel subséfs! X asn — . ThereforeY? = 0.

4.4 Proof of Theorem 4.2.2

A setZ € ®B(X) is called ag-bounded set if syp, q(z) < «. Given an initial statex and any
policy 7, for eacht € R, , a setZ € B(X) is called an(x, 11,t)-bounded set ifly EXq(&s, T&)! {&s €
Z}ds< o, and if the seZ € B(X) is (x, m,t)-bounded for alt € R, we say the set i$x, 1)-
bounded. Note that, if a sétis ag-bounded set, then it is also &x 1)-bounded set for ak € X
and for any policyrt. The jump proces§é; it € R, } defined by a policytis called non-explosive
if PI(& € X) =1forallxe X andt € R;..

4.4.1 Marginal distributions for an arbitrary policy satis fy Kolmogorov’s
forward equation

To study the jump process associated with a history depémubdicy 7T and initial statex,
Kitaev [24, Lemma 4] established the following equationdamiformly bounded transition kernel
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g. Given a policyrr and initial statex, for allt € R, andZ € B(X),

P(t,Z) =1{xe Z} +EJ (/Ot q(Z|é&s, rrs)ds) . (4.13)

By imposing additional conditions on the transition kergegb ensure that the jump process is
non-explosive for any policy, Guo and Song [14, Theorem 8tidwed that (4.13) holds for all
g-bounded setZ € %B(X) and, under slightly weaker conditions for non-explosissidan those
considered by Guo and Song [14], Piunovskiy and Zhang [28d&ition A.1] established (4.13)
for all Z € B(X). Given a policyrr and initial statex, Theorem 4.4.2 establishes (4.13) for alll
t € R, and(x, 1m,t)-bounded set& € B(X), and thus (4.13) holds for an explosive process.

The following lemma is used in the proof of Theorem 4.4.2. gaia probability space
(Q,.7,P) with a right-continuous and complete filtratigi# }cgr, , a random measure: (Q x
B(R4+)xB(X)) — R is called a compensator of the random meagureQ x B(R ) x B(X)) —
R if (i) for eachZ € B (X), the proces$v(w; [0,t],Z) }icr, is measurable with respect to the pre-
dictableo-algebra?’ of (Q x R.), and (ii) for any non-negativé” x 28 (X)-measurable function

f(w,t,2),
//fwsz (w;ds dz)) //fwsz (w;ds dz)),
wherelE denotes the expectation with respect to the probabilitysme®; Kallenberg [20, p. 422].

Lemma 4.4.1.Let the initial state x be fixed. For any policy the random measung™ given by

t
0"(@i[0.1,2):= [ Al m{&eZids  teR.ZeB(X), (4.14)
is a compensator for the random measfirgiven by

fi(w;[0,t],2) == I{tn € [0,t]}{Xn-1 € Z}, teR,,ZeB(X), (4.15)

n>1

with respect to the probability spa¢®,.7, {-% }t>0, PY).
Proof. See the proof of Lemma 4 in Kitaev [24]. O

Theorem 4.4.2.Let the initial state xc X be fixed. For any policyr, formula(4.13)holds for all
t € Ry and(x, im,t)-bounded sets £ B(X).

Proof. Forallm=0,1,...,t € Ry, andZ € B(X), as the number of jumps in the intery@Jt Aty
is bounded byn and the random measurg§[0,t A tm], Z) andfi([0,t Aty], Z) defined in (3.4) and
(4.15), respectively, give the number of jumps into and duZ gincluding within itself) in the
interval[0,t Aty),

Hétntm € 21 = 1{x € Z} + p([0,t Atm], Z) — ([0, t At], 2). (4.16)
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Taking expectation with respect B on both sides of the above equality, for 6 R and
Z € B(X),

PR (Enty € Z) = {X € Z} + EF(U(0,t A, 2) — ER(E(0t At Z)),  (4.17)

which implies that
ExX(H([0,t Atm], 2)) < EJ({([0,t Atm],Z)) + 1. (4.18)

Next, we show that for eache R (4.17) holds withm =  for all (x, 17,t)-bounded sets
Z € B(X). Fix an arbitraryt € R,.. For all(x, 7,t)-bounded setg& € B(X),

B0 Ate], 2)) = BEGT(0.t0 ). 2) = BF [ (& m)l (£ € Z)ds (4.19)

t TT,
< /O Elq(&s, 16)l {&s € Z}ds < oo,

where the first equality is correct sin6& is a compensator of the measyreLemma 4.4.1, the
second equality is (4.14), the third inequality is straigiward, and the last one follows from
the definition of(x, 77,t)-bounded sets. Then (4.18), (4.19), and the propertypg@t Atm|, Z)
and [1([0,t Atm],Z) are non-decreasing im for eachZ imply that, for all (x, 7,t)-bounded sets
Z € B(X),

Iim BY(u([0,tAtn],2)) = EX(u([0,tAts],Z)) <eo, (4.20)
Iim B (A([0,tAt], 2)) = EX(R([0,t A t],Z)) <eo. (4.21)

Observe that for al(x, 77, t)-bounded setZ € B(X)

nI]iLnOOIP’Q(EWm €Z)= Pg(ft €Z,t <tw) +rHanPg(Etm €Zt>ty)

(4.22)
=PN(& € Z,t < to) = P (&ipt, € 2),

where the first equality holds becaugé t. asm— oo, the second equality holds becausedim, Py (&, €
Z,t >tm) =0, and the last one holds becaysec X} = {t <t»}. Indeed, letlimsug_,,, P (&, €

Z,t >ty) = p> 0. Then there exists a subsequefiog, k=1,2,...} such thaﬁP{}(Eth eZt>

tm) > 5 forallk=1,2,.... This fact, (3.4), and the properfym € [0,t]} = {tm € [0,t Ato]} for
allm=0,1,... imply that, for all(x, r7,t)-bounded setg € B(X),

B (U([0,t A te], Z])) = EX(H([0,1],2])) > ) PY(tm, € [0,t], Xm, € Z) = oo,
-T2...

which contradicts (4.20). This contradiction implies thaty . PY(&,, € Z,t > tm) = 0 for all
(x, m,t)-bounded setZ € B(X). Therefore, (4.22) holds which together with (4.17), (3,20d
(4.21) implies that, for eact) (4.17) holds withm = o for all (x, 7,t)-bounded setZ € B(X).

To complete the proof, observe that, fortaf Ry andZ € B(X), (i) u([0,t],Z) = u([0,t A
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tw], Z) andfi([0,t],Z) = f1([0,t Atw],Z), and (i) P (t, Z) = PZ(&t. € Z). We remark that (i) holds
becausdty € [0,t]} = {tm € [0,t Ate]}, m=0,1,..., and (i) follows from (4.2) and the property
{éin., €2} =1{& € Z,t <tw} = {& € Z}. Then, for allt € R, and for all(x, r1,t)-bounded sets
Z € B(X),

R(t,2) = I{x € Z} + Ex(u™([0,t] x Z) — 1"([0,t] x Z))
= 1{xe Z} + EF(0™([0,1] x Z) — 67([0,] x Z))

—1{xeZ} +E] ( [[a@\ (8116 mids— [ a(es mi &< Z}ds)
—1{xe Z} +E] (/O q(Z|E ns>ds) ,

where the first equality follows from observations (i) anigl given above and from (4.17) with
m= oo, the second equality holds sine€ andi ™ are respectively the compensator of the measures
u andft, the third equality follows from (3.3) and (4.14), and thstlane follows from (3.2). O

Corollary 4.4.3 follows immediately from Theorem 4.4.2 amdseful to prove Lemma 4.4.4.

Corollary 4.4.3. Let the initial state x= X be fixed. Then, for each poliey (4.13)holds for all
t € R, and(x, mm)-bounded sets & B(X).

Proof. The statement of this corollary follows immediately fromebinem 4.4.2 and the fact that
an(x, m)-bounded set i$x, 11,t)-bounded for alt € R .. O

The following lemma plays the pivotal role in the proof of tin@in theorem, Theorem 4.2.2.
It establishes that, given an initial state for any policy i the functionR['(t,Z),t € R, ,Z €
B(X), satisfies Kolmogorov’s forward equation (4.10) correspogdo relaxed Markov policy
¢ satisfying (4.3) withy({x}) = 1. In particular, it establishes that (4.6) holds if the siéion rates
q(z ¢t),z€ X,t € R, are uniformly bounded.

Lemma 4.4.4. Let the initial state x be fixed. For each poliecy consider a relaxed Markov
policy ¢ satisfying(4.3) with y = &. Then, (i) The functionRt,Z),t € R, ,Z € B(X), satisfies
Kolmogorov’s forward equatio(4.10) (ii) PJ(t,Z) > R’ (t,Z) forallt € Ry and Ze B(X), and
(ii) if X € Yy, then(4.6)holds for allte R, and Ze B(X).

Proof. Observe that, for eadh the functionP['(t, -) is a nonnegative measure @4,8(X)) and
take values iff0,1]. Thus, if statement (i) of the lemma holds, it follows fronetproperty that
PT(0,2) = Pf(o, Z) =I1{xe Z} for all Z € B(X) and Theorem 4.3.1 that statements (ii) and (iii)
of the lemma hold. The rest of the proof establishes state(iesf the lemma.

ForallY,Z € B(X) andt € R,

EQ[CI(Z\{Et}IEt,m)l{EtGY}]=/Q/ACI(Z\{Et}lft,a)"(dalw,t)l{EtGY}PQ(dw)
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:/A/Qq(z\{Et}m’a)"(dalw’t)'{ftEY}PQ(dw):/A/YCI(Z\{Z}|z,a)Px"(t,dz,da)

(4.23)

= [ [ a2\ {#za)p(0azt)RT1.02 = [ o\ (2|2 4Pt 02,
where the first equality follows from the definition of expetadbn and (3.2), the second equality
is obtained by interchanging the order of integration, thedtequality follows from (4.1), the
fourth equality follows from (4.4) and from interchangirgetorder of integration, and the last one
follows from (3.2). In particular, (4.23) witd = X and (3.2) imply that

ETq(&, )l {& € Y} = /Y Az p)PT(tdD,  teR,,Y e B(X). (4.24)
Then for allZ € B(X) andt € R

EX(a(214, ) = Efa(Z\ {&}H& 01 {& € X)) - Ef{al& 1 {& € 2)]
= [ a@\ (B2 4RI :d2 - [ a(z4)RT(:d2) = [ o[z 40Pt d2). (4.25)

where the first and last equalities follows from (3.2), angl skcond equality follows from (4.23)
with Y = X and from (4.24) withY = Z. Therefore, it follows from Corollary 4.4.3 and from (4.25)
that the functiorP](t,Z2),t € R, ,Z € B(X), satisfies (4.10) for all € R, and(x, r1)-bounded sets
Z € B(X). In fact, it follows from (4.24) withy = Z that if Z € Yy, thenZ is an(x, i)-bounded set.
Thus, the functior’'(t,Z) defined in (4.2) satisfies Kolmogorov’s forward equatioi(d. [

Lemma 4.4.5 shows that to prove the main theorem it is suffi¢ceeshow that (4.6) holds for
the policiestand¢ satisfying (4.3). The proof of Theorem 4.2.2 is then prodidéer giving few
auxiliary results.

Lemma 4.4.5. Given an initial distributiony on X, for each policyt consider a relaxed Markov
policy ¢ satisfying(4.3). Then, formulg4.6)implies formula(4.5).

Proof. Assume that (4.6) holds. Then, for 8 R, Z € B(X), andB € B(A),

PP(L2B) = | 1{& € Z}9(BIE.UP] (dw) = | 9(BI )R (t.d2)

(4.26)
_ / ¢ (Blz,V)PI(t,d2) = P(t,Z,B),
z
where the first equality follows from (4.1) and the equafity |w,t) = ¢ (- |&,t), the second equal-
ity follows from (4.2), the third equality follows from thesaumption that (4.6) holds for dlE R
andZ € B(X), and the last one holds due to (4.3). O

It follows from Lemma 4.4.4 and Lemma 4.4.5 that the main theoholds if the initial state
distribution is a Dirac measure and the transition rgtesp;), z€ X,t € R, defined by the relaxed
Markov policy ¢ satisfying (4.3), are uniformly bounded. In the generak¢cage approximate the
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state spacX by measurable subset§,n= 1,2, ..., of X such thaiX" 1+ X asn — «, and consider
policiesi™ n= 1,2, ..., such thatr™ coincides withr on X" and all the states X \ X" are
absorbing under the policg™. For each policyr™,n=1,2,..., we establish the existence of
a relaxed Markov policy",n= 1,2, ..., such that the marginal distributions coincide for these
two policies. The proof of the main theorem follows from thegpproximations; see the diagram
below.

P™"(t,2,B) — PM(tZ,B)
I — P¢(t,Z,B) = P/(t,Z,B).
R (t,z,8) — PRY(t,ZB)

Figure 4.1: Major steps of the proof of Theorem 4.2.2

Lemma 4.4.6. There exists a sequence of measurable subsets X such thasup,.xnq(z) < n
foralln=1,2,...and X"t X as n— oo,

Proof. The statement of the lemma follows from the arguments in tieefpof Lemma 2.2.1(i)
given for the measurable functigx, a) instead of for the measurable functigfx,t). O

For an isolated poird Z A, defineA := AU {&} andA(x) := A(x) U{&}, x € X. Consider the
Borel o-algebraB (A) := o(*B(A),{8}) onA. For allx € X, a€ A(x), andZ € B(X), define the
new transition intensity by

G(Z|x,a) ;= q(Z|x,a)l{xc X,ac A(x)},  Ze&B(X),xcX,acAXx). (4.27)

Consider the extended CTMDEX, A A(x),6(-[x,a)}. Letq(x,a) := (X \ {x}|x,a), xe X, ae
A(x), andq(x-) := 0. Note that any policyt in the original CTMDP{X,A A(X),q(-|x,a)} is a
policy in the extended CTMDP that does not select the action ~

Consider the measurable subs€tsn=1,2, ..., of X whose existence is stated in Lemma 4.4.6.
For a policyr in the original CTMDP, leti™.n=1,2,..., be a policy in the extended CTMDP

~

such that, for alB € B(A), w € Q, andt € R,
" (B|w,t) := 1(B\ {&} |, 1)1 {& € X"U {Xe} } + 1{& € B} {& € X\ X"} (4.28)

Lemma 4.4.7.For a policy 1 in the original CTMDP, let™.n = 1,2,..., be a policy in the
extended CTMDP satisfyir(g.28) Then, given an initial distributios,

)
P (,2,B) 1 PJ(t,Z,B) as n— o, (4.29)

forallt e R,,Z € B(X), and Be B(A).

Proof. Forn=1,2,..., define the functiorm,: Q — R,
Tn(w) == inf{t e R, : & (w) € X\ X"}, we Q, (4.30)
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where inf 0} := . Observe that, forath=1,2,..., t e Ry, Z € ®B(X), andB € ‘B(A),

P (t,2,8) = /Ql{a € 2,1y >t} (Blw, HPI" (dw)

+/ |{Etez,rngt}n<”>(5|w,t>19>¢”>(dw):/ 1{& € Z}1 {1n > t} 1(B|w,tP]{(dw). (4.31)
Q Q

where the first equality follows from (4.1) for the policg®™ and the second equality follows from
(4.28) and (4.30) which imply that (i) if, > t thenm" (B|w, s) = 1(B|w, s) for all B € B(A) and
s<t; and (ii) if T, <t thenm" (B|w,t) = 0 for all B € B(A). Then, (4.29) follows from (4.1),
(4.31), the almost sure convergencerpfw) — t, asn — o, and the property thafé; € X} =

{t <tw}. O

Lemma 4.4.8.Let the initial state x be fixed. For any poliggin the original CTMDP, leti™ . n=
1,2,..., be a policy in the extended CTMDP satisfyi#g28) Then, for each policyt™, n =
1,2,..., there exists a relaxed Markov poligy’,n=1,2,..., satisfying

o"({a}|zt) = 1{ze X\ X"}, teR,,ze X, (4.32)
and, forallte R,
¢"(Blz,t) = R (1,dzB) P (t,.) —ae,ze X,B e B(A) (4.33)
o oR(tdy T T ' '

Proof. In view of Lemma 4.2.1, for each policg™,n=1,2,..., there exists a relaxed Markov
policy y",n=12 ... such that: for alt € R, there exists a subs¥t € B(X) such that

P (t,dz B) -

" _ n _
R’ (t,X\X)=0 and y¢"(Blzt)= P)(K”)(t,dz)’ Z€ X,BeB(A). (4.34)

Using the relaxed Markov policy",n = 1,2,..., we construct a relaxed Markov policy

~

" )n=12 ... satisfying (4.32) and (4.33). Forall=12...,ze X,t € R,, andB € B(A),
define
¢"(B|zt) = Y"(B\ {8}|zt)I{ze X"} +1{de B}I{ze X\ X"}. (4.35)

Then, itimmediately follows from (4.35) that the functi¢fi is a relaxed Markov policy satisfying
(4.32). )
To prove (4.33), observe that, for &lle B(X),t € R, andB € B(A),

P (t,ZNX",B) = / 1{& € Zn X"} (Bloo, t) P (dw)
Q
= [ H&eznx"n 8\ {&w.0r; " (do) = B (1,20X" B\ (&), (436)
where the first and last equalities follows from (4.1) andgbeond equality follows from (4.28),
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and

P (1,20 (X \ X, /l{anm(X\x 3 (Bloo, )P (dw)  (4.37)
—1{ae BIP™"(t,ZN (X \ X"),

where the first equality is (4.1) and the last one follows fi@n2) and (4.28). Then, from (4.34),
(4.36), and (4.37), foratle R,

0 Yn(B\{a}zt), if zeXnX", BeB(A),
v (B|Z’t):{ |{ac B}, it ze %N (X\X"), Be B(A).

The above equality, (4.34), and (4.35) imply that (4.33)lsol O

Corollary 4.4.9. Let the initial state x be fixed. For any poligyin the original CTMDP, let
™ n=1,2,..., be apolicy satisfying4.28) and let¢",n=1,2, ..., be a relaxed Markov policy
satisfying(4.32)and (4.33) Then, for allte R, ,Z € B(X), and B€ B(A),

P?"(t,Z,B) 1 P(t,Z,B) as n—s . (4.38)

Proof. Observe that the transition ratg&, ") are uniformly bounded by for eachn=1,2,....
Indeed, foralze X andt € R,

d(z o) /qza "(dazt) = </ q(z.a)¢ (dajzt)) {ze X"}
<q(7)l{ze X"} <n,

(4.39)

where the first equality follows from (3.2) given for the extied CTMDP, the second equality
follows from (4.27) and (4.35), and the last two inequaditége straightforward. That iX, € Ygn.
This fact, Lemma 4.4.4(jii) and Lemma 4.4.5 for the polici#® and¢", and Lemma 4.4.7 imply
(4.38). M

Lemma 4.4.10.Let the initial state x be fixed. For each poliey let ¢ be a relaxed Markov
policy satisfying4.3)with y({x}) = 1, and™,n=1,2,..., be a policy in the extended CTMDP
satisfying(4.28) Then there exists a sequence of relaxed Markov polig@sn = 1,2,...} such
that:

() foralln=1,2,..., the relaxed Markov policg" satisfieg4.32)and (4.33)

(i) forallt € Ry and ze X,

¢"(Bjzt) —» ¢(Blzt) as n—w forall BeB(A). (4.40)

Proof. In view of Lemma 4.4.8, for each policg™,n=1,2,..., there exists a relaxed Markov
policy ¢",n=1,2,..., such that (4.32) and (4.33) hold with' replaced by$". Using the re-
laxed Markov policiesp”, we construct relaxed Markov policigg', n=1,2,..., for which both
statements (i) and (ii) of the lemma hold.
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For eacht € Ry, let G € B(X) be the support of the measurg(t,-) on (X,B(X)), that
is, G is the smallest closed set such tRdtt,X\C) = 0. For alln=1,2,... andt € R, let

~

Cl:=(X\G)nX". Foralln=1,2,...,ze X,t € R, andB € ®B(A), define

¢"(Blzt) = ¢(B\{a}zt)I{ze O} + §"(Blz ) {ze X\ T} (4.41)

(i) Observe that the functiogi” defined in (4.41) is a relaxed Markov policy. Since (4.32)
holds with¢" replaced byd", it immediately follows from (4.41) that (4.32) holds foretipolicy
¢" defined in (4.41).

Next, we show that the policy" defined in (4.41) satisfies (4.33). From (4.1) and (4.31), for
allZeB(X),BeB(A),andn=1,2, ...,

P (t,Z,B) < PI(t,Z,B). (4.42)

Then, foralln=1,2,...,
n) n)
R (.M = PR (.G, A) < BI(t,CP.A) = B(t.CM) = 0, (4.43)

where the first equality follows from (4.2) and (4.36), thes®d inequality follows from (4.42),
the third equality is (4.2), and the last one is true bec&®jge X \ C;) = 0. Thus, it follows from
(4.33) with ¢" replaced by@", (4.41), and (4.43) that the poliay" defined in (4.41) satisfies
(4.33).

(i) Fix an arbitraryt € R,. To prove (4.40), observe that, for alc X\ G, we have
¢"(B|zt) = ¢ (B|zt) for all n > q(z) andB € B(A). This follows from the property thaj(z) < n
for all ze X", (4.41), and the definition of the s€f'. Thus, (4.40) holds for alt € X\ C;. To
complete the proof, it remains to show that (4.40) holds foz a C;. Since¢"(B|zt) <1 for all
Be®B(A),ze X;te R ,andn=1,2,..., to establish (4.40) for alt € G, it is sufficient to show

¢™m(Blzt) — ¢(Bjzt) as m— o foral zeC. (4.44)

The rest of the proof proves the existence of a subsequigngém-12,.. for every subsequence
{nc}k=12... of the sequencél, 2, ...} such that (4.44) holds for a8 € B(A).

Since(A,B(A)) is a standard Borel space, there exists a countablégset{B*,B?,...} of
measurable subsetssuch thaB' NBI = 0 if i # j and any seB € B(A) can be represented as

B= (J BUY forsome BUVez j=12... (4.45)
i=12....

Choose an arbitrary subsequer{cg}y—1 2 . of the sequencgl,2,...}. To prove (4.44) for all
B € B(A), we first show the existence of a subsequejmgg}m-12,.. of the sequencéni}r—1.2
such that (4.44) holds for a8 € %. Observe that

.......

Iim/X|¢(B|z,t)—¢”(B|z,t)|Px"(t,dz):O, Be B(A), (4.46)

n—oo
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that is, for fixed, B, the sequence of random variablgs'(B|zt),n=1,2,...} converge inZ* to
¢ (BJz,t) with respect to the measuRf(t, ) on (X,2B(X)). Indeed, for allZ € B(X), B € B(A),
andn=12,...,

|, [9(Bzt) — 6"(Bl2.)]R(t.d2) < B(t.2.B) ~ | 9"(Bl2.)RI" (t.dzA)

— B(t,2,B)— R (1,Z,B) + /Z o"(Blz, )R (t,dz {a}) .

— P7(t,Z,B) — P (t,2,B) < P(t,Z,A) — P (t,Z,A),

where the first inequality follows from (4.2), (4.4), and43), the second equality follows from
(4.2) and (4.33), the third equality follows from (4.32) af@d36), and the last one follows from

(4.42) and from the property that, for fixédthe functionsP)?(n) (t,-,-) andPR'(t,-,-) are measures
onX x AandX x A, respectively, and,

| 19" Blz) ~ 9(BZUIR(t.d2 < | 4"(BZ Rt d2 ~ R (1,2.B)

_ [ gn e dg) _ prt n n _pr”

_/Z¢ (Blz,t)[RF(t,d2) — P} (t,dz)]S/ZtlJ (Blzt)[R(t.dzA) — R (t,dZ A)] (4.48)
< P(t,Z,A) - P (t,Z,A),

where the first inequality follows from (4.4) and (4.42), gexond equality follows from (4.33),
the third inequality follows from (4.2) applied to the paéis Tand ", and the fourth inequality
is correct because of (4.42) and sifcEB|z,t) < 1. Then, for allB € B(A),

[ 16 (Biz.) — 9"(Blz ) B, 02

= [ [#(BED 4" BZUIPCAD+ [ | [0"(BlzD) — ¢ (Blzt)R(t.d2
<P, XHB), Ay - P (1, X(B) A) Bt X(—B) A) — P (1, X(—B) A)
= PT(t,X,A) — P (t, X, A),

whereX(+:B) := {ze X : ¢(B|zt) > ¢"(B|zt)} andX(~B) := X\ X(+:B) for eachB € B(A), and

the inequality follows from (4.47) witd = X (+B) and (4.48) witiz = X(—B). Thus, (4.46) follows
from the above inequality and (4.29) wig{x}) = 1.

Denoteny) = nk forallk=1,2,... . Forj=1,2,..., from (4.46), Jacod and Protter [18,
Theorems 17.2, 17.3], and from the property tR&tt,Z) > 0 for any measurable subsébf C,
there exists a subsequer{cqhk)}k:l?zw of the sequencén(j_lvk)}kzlg such that

"0 (Bl|zt) — ¢(Bl|zt) as k— oo forall zeC. (4.49)
Let N, = Nmm), M=1,2,... . As follows from Cantor’s diagonal argument, (4.44) holdshwi
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B=Blforall j=1,2,.... In other words, (4.44) is proved for @lc 4.
Let B be an arbitrary set fror(A) andB1 B(D . be disjoint elements o8 satisfying
(4.45). For allze G,

imi Mkm — limi Mk (3,1 imi Mk (3,1
Ilnrmgfcp (B|zt) Ilrrrmglof_z2 ¢"m (B z,t)zj:;mhnrmgfqb (BYYzt)

j=12,...
- Zz ¢(BUY|zt) = ¢(Blz ), (4:50)
i=T2,...

where the first and last equalities follow from the countaulditivity of probability measures, the
third equality holds since (4.44) is correct for Bl £, and the inequality follows from Fatou’s
lemma [31, p. 226]. In addition, for alic C;,

limsupg™n(B|zt) = 1—liminf ¢"m(A\ B|z,t) = 1—liminf ¢"m(A\ B|z 1)
M- m-es m-ses 4.51
§1_¢(A\B|Z7t>:¢(B|th)7 ( )

where the first equality follows from sub-additivity propeof limit superior and the property
that ¢™n(-|zt) is a measure oA, B(A)) for eachzt, the second equality is correct because
¢"(d|z,t) = 0 for alln > q(2) (see (4.32)), the third inequality follows from (4.50) wBh= A\ B,
and the last one is correct singé - |z t) is a measure ofA,B(A)) for eachzt. Therefore, it
follows from (4.50) and (4.51) that (4.44) holds for BlE ®B(A) andz € G. O

Lemma 4.4.11 is a special case of Theorem 4.2.2, and showshbarem 4.2.2 holds if the
initial distributiony is a Dirac measure.

Lemma 4.4.11.Let the initial state x be fixed. For any policy consider a relaxed Markov policy
¢ satisfying(4.3)with y({x}) = 1. Then,(4.5)and (4.6) hold withy({x}) = 1.

Proof. Let ™ ,n=1,2,..., be a policy in the extended CTMDP satisfying (4.28). Theopf
Lemma 4.4.10, there exists a sequence of relaxed Markogigs{ip",n=1,2 ...} such that, for
alln=12,..., the relaxed Markov policy" satisfies (4.32) and (4.33), and in addition (4.40)
holds. Observe that if

lim R?"(t,Z,A) =P (t,2), teR,,ZeB(X), (4.52)

n—o0

then Lemma 4.4.5 and Corollary 4.4.9 imply the statemerttisflemma. To prove (4.52), we first
show by induction that, forath=0,1,...,ut e R;,u<t,ze X, andZ € B(X),

lim PO ™ (u zt,ZnX") = P (u,zt,2), (4.53)

n—o00

where the function®(®"™ andP(®™ m=0,1,..., are given by (4.7), (4.8).
Forallze X,se R, andZ € B(X),

n—-00

im d(Z/2.60) = lim, [ aZlza)¢"(dazs) = | | aZiza)(dazs) = a(Zlz ). (450
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where the first equality follows from (3.2) and (4.27), thea®d equality follows from Lemma 4.4.10,
and the last one is (3.2). In particular, (4.54) with= X \ {z} and (3.2) imply that

rl\iLnooq(z’ ¢g> = q(27 ¢S>7 VAS X,S€R+. (455)

This equality, (4.7) witlz = ZNX" for the relaxed Markov policy", and the property that" 1 X
asn — oo imply that (4.53) holds fom= 0.

Assume that (4.53) holds for some> 0. Then

t
lim PO ™Dy zt,ZnX") = lim /e Jiaz e dwg(dyiz, p0)PO"M (s y:t, ZN X" ds

n—o0 n—o0

U x\(2
nm/ e JadZ90nG(dyiz pMP@"M (s y;t, ZN X")ds
X\{2}

u N—o»
:/ [, & FaEhI(dyiz PO (s it Z)ds— PO D (uzt,2),
u JX\{z}

where the first equality follows from (4.8) with = Z N X" for the relaxed Markov policy", the
second and third equalities follow from (4.54), (4.55), &ssumption that (4.53) holds far, the
Lebesgue dominated convergence theorem [31, p. 232], andthre property that the integrand
is bounded byy(z), and the last one follows from (4.8) for the relaxed Markoliqgo¢. Equality
(4.53) is proved.

Observe that, for all € R, andZ € B(X),

lim R?"(t,Z,A) = lim P"(t,ZNX") = lim PO"M (0, x:t,ZNXM),

n—oo n—oo n—oo
o (4.56)

_ ;l PO-M(0,xt,Z) =P (t,2),
[T-': b}

where the first equality follows from (4.1), (4.2), and (4.3®e second and the fourth equalities
follow from (4.9) and (4.12) for the relaxed Markov polici¢8 and¢, respectively, and the third
equality is correct due to Lebesgue dominated convergdreaém [31, p. 229] since (4.53)
holds andP(¢"M(0,x;t,ZNX") < 1 for allm=0,1,... andn = 1,2,.... Thus, equation (4.52)
holds. O

Proof of Theorem 4.2.2For isolated pointx’ ¢ X anda,a” ¢ A, let X' := XU{X}, A ;=AU
{&,a"}, A(x) :=A(x)u{a’} for all x e X, andA'(X) := {a,a’}. Forallx e X';ae A(x), and
Z € B(X’), define the new transition intensity by

q(Z\ {X}|x a), ifxeX,aeA(x),
(Z|x,a) { y(Z\{X}) if x=X,a=4d, (4.57)
0, |fxeX’ ”
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Consider the extended CTMDIX', A", A'(x),q (- [x,a)}. Fix T €]0,]. To prove the statement of
the theorem, we consider the evolution of the stochasticgg®defined by a policy and initial state
X' over the time horizofi-T, e[. Similar to the measurable spaEe,.# ) described in Section 3.3,
let (Q',.#") be the measurable space over which the stochastic pro§essc [—T, | } is defined

in the extended CTMDP.

For any policyg in the original CTMDP, lety’ denote a policy in the extended CTMDP that
selects actio®’ up to time6 := min{t;,0}, wheret] denotes the time of the first jump starting
from time —T, selects the absorbing actiafi for timet €]6,0] and fort €]0, | if &, = X, and
plays the policyp starting from time 0 iy € X. Then, for allZ € B(X), B € B(A), andt € R,

P’ (t,Z,B) :/Q/I{Et € 7}/ (Blw, )PY (dw, & € X)
+/Q, 1{& € 2}/ (Blw,H)PY (dw, & = {X}) = /Q 1{& € Z}¢/ (Blw, )P (dw, & € X)

- [ HaezypE\{a.aNwni-eT) [ Pdwydd = (1-e TIRY(1.Z,B\ {a.a'}),
(4.58)

where the first equality follows from (4.1) for the polig), the second equality is correct because,
under the policyy/, we haves; € X fort < t if and only if &y € X, the third equality follows from

(4.57) and the definition of policg’ which imply thatIP’ff,{(Eo €2)=(1-e"y2),ZecB(X)
and, givenép € X, the process is defined by the poligyand initial statefg, and the one follows
from (4.1).

Applying (4.58) for the policiegt and ¢ satisfying (4.3), for alZ € B(X), B € B(A'), and
teR,,

P (t,2,B) = (1—e ")P(t,Z,B\ {d,a"}) and Py (t,2,B) = (L-e T)PY(.Z,B\ {d.a"}).
(4.59)
Thus, (4.5) holds if
PY(t,2,B)=PY (1,Z,B), teR,,ZcB(X),BcB(A). (4.60)
So, to complete the proof of the theorem, it is sufficient tofy€4.60).
Observe that, foralle R, ,Z € B(X), andB € B(A),
PF(t.Z,B) = (1—e ")PX(t,Z,B\ {&,a"})
—(1-eT) [ 9B\ (@A z0P(t.dzA) = [ ¢'(BZUPF (1., (4.61)
z z

where the first equality follows from (4.58) witlpp = 11, the second equality follows from (4.2)
and (4.3), and the last one follows from (4.2) for the polityin the extended CTMDP, (4.59)
with B = A, and the definition of the policg’. In addition, for allt € [-Tp,0[, Z € B(X), and
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Be B(A),
PY(1,Z,B) = /Q/|{fst e Z}7(B|w,t)PT (dw)

(4.62)
:/Q/|{5tez}¢’(5\5t,) (dw) = /¢ (Blz,t)PZ (t,d2),

where the first and last equalities follow respectively fr@hil) and (4.2) for the policyr in the

extended CTMDP, and the second equality holds by the deifisitbf the policiest and¢’ which

imply that 17 (B|w,t) = ¢'(B|é&;,t) for all w e Q', t € [-T,0[, andB € B(A’). Then, from (4.61)
and (4.62),

P (t,Z,B) = /¢ (Blzt)PF(t,d2), te[-T,o[,ZeB(X),BeB(A). (4.63)

Therefore, (4.60) follows from Lemma 4.4.11. O

4.5 Sufficiency of relaxed Markov policies for particular oljective criteria

In this section, using the results in Section 4.2, we chares the equivalence of the class of
history-dependent policies and the class of relaxed Magadicies for the above mentioned cost
criteria. We tackle this problem in two steps: we considea(CTMDP with zero instantaneous
costs, and (ii) a CTMDP with non-zero instantaneous costs.

45.1 The case of zero instantaneous costs

Theorem 4.5.1.Given an initial distributiony on X, for any policytthere exists a relaxed Markov
policy ¢ such that

Efc(&, ¢) =Elc(&, ),  if t<tw, (4.64)

and therefore, for the case of zero instantaneous costg(¥ ¢) = Vr o (y, ) and \a (v, ¢) =
Vu(y, ) for a >0, and WMy, ¢) =W(y, ) WhenIP’ff(& e X)=PJ(& € X) =1forallt e R,.

Proof. Observe that, for any policy
o [T o [T
Ey[/o e (&, @)dg = Ey[/o e 93c(&s, @) {s < tw}dd, a>0T>0, (4.65)
and, for allt € R,

EYc(&, @) {t <tw} = // (&,a)p(dajw,t) {& € X}PJ(dw) ://czaP“’t dzda),
A X

(4.66)
where the first equality follows from the definition of exp&tadn, from exchanging the order of
integration, (3.5), and the property tHa € X} = {t <t.}, and the last one follows from (4.1).
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For each policyr, consider a relaxed Markov poligy satisfying (4.3). In view of Theo-
rem 4.2.2, we have tha‘,”(t,z, B) = PJi(t,Z,B) for allt € Ry, Z € B(X), andB € B(A). This
fact along with (4.66) applied to the policigsand T implies that (4.64) holds. The second state-
ment of the theorem immediately follows from the definitimiscost criteria given prior to the
theorem, (4.64), and (4.65) applied to the policiesnd¢. O

4.5.2 The case of non-zero instantaneous costs

Recall that, at each time< t., the relaxed policyr selects the probability measurg €
Z(A), and the cost rate at timds equal toc(&, 7&) and the instantaneous cost incurretl= t,
forsomen=1,2,...isC(&, ,, T, &,). Given an initial distributiory, for any policyr, consider
the occupancy measure

H/(Z,B) = Eg/otw e M{&cz,meB}, ZcB(X),BecB(LZA)). (4.67)

It follows from Feinberg [6, Corollary 4.4] that the expedtetal discounted cost, (y, 1) satisfies

Volvr) = [ [ [ezp)+ [ Clzpy)ateyizp)| Hdzdp.

This equality and (4.67) imply that

Valy,m = [Te {c«a, 0+ [ ClEmYadiE m)} dt.  (4.68)

t

The following theorem establishes the sufficiency of rethiMarkov policies for the expected
total discounted cost criteria if the instantaneous casttionC depends only on the state prior to
the jump epoch.

Theorem 4.5.2.Consider a CTMDP such that the instantaneous cost functioney),x,y € X
with x# y and ac A(x) depends only on x. Given an initial distributignfor any policyr there
exists a relaxed Markov poliay such that ¥ (y, ¢) = Vu(y, 7).

Proof. Define
C(z,p) =c(zp)+C(2a(z p), zeX,pe Z(A). (4.69)

From the above equality and (4.68), for any poligy

tOO
Va(y, @) =EI /O & te(&, )dt. (4.70)

Thus, (4.70) and Theorem 4.5.1, witfz, p) = €(z p) imply that the statement of the theorem
holds. O

In Theorems 4.5.1 and 4.5.2, the equivalent relaxed Markidieyp¢ corresponding to an
arbitrary policyrtis constructed using (4.4). In general, the expected tasabdnted costs need
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not be the same for the poligyand its corresponding relaxed Markov poligythat satisfies (4.3).
Consider the following example:

Example 4.5.3.The relaxed Markov policy satisfying(4.4) may perform better than the pol-
icy T when the instantaneous costs C depend on the action chosiie #atmp epochs.Let
X ={1,2},A={b,c},A(1) = A/A(2) = b,q(1,b) = q(2,b) = 4, andq(1,c) = 2. The cost rate
functionc(x,a) = 0 for all x € X anda € A, and the instantaneous co€tare given byC(1,b,2) =
2,C(1,c,2) =4,andC(2,b,1) = 0. Consider a policyr satisfying

b, if &i(w) =
m(w,t) = < b, if &(w) =1 andN is even oN =0, (4.71)
C, if &(w)=1andN is odd,

whereN represents the number of jumps into state 1 upto time
Let ¢ be a relaxed Markov policy such that, for af R, ,
PI(t,1,)

1 1 T
p(b|2,t):=1 and d(-|1,t):= { PIL) if P'(t,1) >0,

: _ (4.72)
arbitrary, otherwise

Note that the relaxed Markov poligy satisfies (4.3) withy({1}) = 1, and, therefore it follows
from Theorem 4.2.2 thad®['(t;-) = Pf’( forallt e R..

The expected total discounted cost corresponding to tlaeedl Markov policyg and the
initial state 1 is given by

Va(17¢> = Ef [/()tw e*dSc(]_’ ¢S7 Z)q(lv ¢S)I {ES: l}ds}
:/ /me“Sc 1,66, 2)q(L, 95l {& = 1}dsP? (dw)

= [Tee [ e g5 20 491 (&= 1} (dw)ds
_/ as[ Pl (s,1,b) 4P1 (s,1,c)} [4P1 (s;1,b) 2P1"(s,1,c) P# (s 1)ds (4.73)

(s,1) Pl'(s,1) Pl'(s,1) Pl'(s,1)
as12P( s 1,b) 4+ 4P['(s,1,¢)|[4P(s,1,b) + 2P[(s,1 c)]d
- / P(s.1) S

where the first equality follows from (4.68), the second dityiéollows from the property that
{&s=1} € {s< t»} and from the definition of expectation, the third equalitpigained by inter-
changing the order of integration, the fourth equalitydals from (3.2), (4.2), (3.6), and (4.72),
and the last one holds sine(t;1) = Pf (t;1) forallt e Ry.

Similarly, the expected total discounted cost correspugmth the policyrr and initial state 1
is given by
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too
Vo (1, 1) =ET [/o e 95C(1,1,2)q(1, %)l {&s = 1}ds}
= [ [ eocm 20w w1 (& = 1}dsFl(dw)
Iélf€“WM®HMQ$:m+MMaHm@$:qmgz1mwﬂm»
= [" | 8= o1 &= 1yPf(deds= [ se *Pfi(s,1)ds
(4.74)

where the first equality follows from (4.68), the second dityibolds becauséés =1} € {S<tw}
and from the definition of expectation, the third equalitydars from (4.71), the fourth equality is
obtained by interchanging the order of integration, anddakeone follows from (4.2).

For notational convenience, bet := P(s,1,b) andx, := P{'(s,1,¢). ThenP{'(s,1) = X1+ X2
and

(o] 2 2 2 (o] 2 2
Va(1,¢)=/ s (Bt +200%) 4 g Va (1, n):/ gas(BIOG+1600) |
0 X1+ %2 0 X1+

ThereforeVq (1, ¢) =Va (1, )+ Jo° 4e*“Sstwhich impliesthaVy (1, ¢) > Vg (1, ).
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Chapter 5

Appendix A

In this appendix, we describe discrete-time Markov deqigimcesses (DTMDPS), provide a
brief construction of the stochastic processes induceddmfiay, and define the common optimal-
ity criteria. We present the result on sufficiency of Markaligies in DTMDPs that was shown
by Derman and Strauch [4].

5.1 Discrete-time Markov decision processes

A DTMDP is defined by the multiplgtX, A, A(x), p(-|x,a),c(x,a)), where
(i) X isthe state space such thiat, B (X)) is a standard Borel space;
(i) Aisthe action space such th@, B (A)) is a standard Borel space;

(iii) A(x) are the set of actions availablexat X. It is assumed thai(x) € B(X) for all x € X
and the set of feasible state-action p&gA) = {(x,a) : x € X,a € A(x)} is a measurable
subset of X x A) containing the graph of a measurable mapping f’0io A.

(iv) p(-|x,a)is the transition probability fror®r(A) to X, thatisp(-|x, a) is a probability measure
on(X,%B (X)) for any(x,a) € Gr(A) andp(Z|x,a) is a measurable function dr(A) for any
Z e B(X).

(v) c(x,a) is the one step cost incurred for choosing an aci@nA(X) in statex € X and is
assumed to be a bounded below measurable function dari{#e.

A DTMDP evolves as follows: At each time epothk-0,1,..., the decision maker observes the
current statex € X of the stochastic system and chooses an actifstom the set of actions\(x)
available at statg. After an actiora is selected, the decision maker incurs the cfsta) and the
system moves to the next state at titrel according to the probability law( - |x, a).

The decision rules that specify how actions are chosen bgiebision maker at every tinte
using the available information are callpdlicies. In DTMDPs, the information available up to
the currenttime is (X, ap, - - ., %—1,&-1,% ), wherex, anda,,n=0,1,..., respectively denote the
state of the process and the action chosen in this state entist each time epoch, the decision
maker may select a particular action or, in a more genera) wayobability distribution on the
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set of available action8(x). Decisions of the first type are called non-randomized amisas
of the second type are called randomized. To formally defaiieigs, letH; := (X x A)' x X be
the set of histories (or information vectors) up to and idatg timet = 0,1,..., and®B8(H;) =
(B(X)®@B(A) @B(X). We now define different classes of policies considered foMDPs in
this thesis.

¢ A (randomized) policytis a sequence of transition probabilitigst = 0,1, ..., from H; to
A such thatg (A(%) [0, @0, - -, %1, -1,%) = 1.

e A policy mris called(randomized) Marko¥f 7%( - |xo,a0,...,%—1,&-1,%) = T&(-|%) for all
t=0,1,....

Let A be the set of all policies ané™ be the set of all Markov policies. Then, we immediately

jumps. Observe that the détis endowed with ar-algebra defined by the products of the Bagel
algebrass (X) and3(A). In view of lonescu Tulcea theorem (Hernandez-Lerma andéras [15,

p. 178]), an initial probability measuneon X and a policyrr define a unique probability measure
P7 on the space of historigs. We denote byE] the expectations with respect to the probability
measurePy.

5.1.1 Cost Criteria

We now give a brief description of the different cost cridedonsidered in this thesis for
DTMDPs. Given an initial distributioy on X, for any policym € A,

(i) thefinite horizon expected total discounted cisggiven by

T-1
V[)’,T(V? T[) = Eg %Btc(xtaat)? (51)
t=

whereT is the finite planning horizon an@l € [0, 1] is the discount factor.
(i) Formula (5.1) withB = 1 defines théinite-horizon expected total cas¢noted by 1 1 (y, r).
(iii)y Formula (5.1) withT = o defines theexpected total discounted ca#noted by g (y, 7).
(iv) Formula (5.1) with3 = 1 andT = « defines theexpected total costenoted by o(y, ).

(v) the average cost per unit timés given by

W (y, m) = limsup (5.2)

T—o

V17T <y7 7T)
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5.2 Sufficiency of Markov policies in DTMDPs

The following theorem shows that, given an initial disttibn y on X, for any policy
there exists a Markov policg such that both the policies have the same marginal distoifsit
on the state-action pairs. This fundamental result in DTMIQRen by Derman and Strauch [4]
establishes that the search for optimal policies, whenidengag cost criteria that depend only on
marginal distributions on the state-action pairs, can bicted to the class of Markov policies.

Theorem 5.2.1(Derman and Strauch [4], Strauch [33[piven an initial distributiony on X, for
any policyr consider the Markov policy satisfying, for ak0,1,2, ...,

PJ(x € dza € B)

Blz) = P )—ae X,B A). 5.3
O—t( ‘Z) ]Pg()(t EdZ) ’ y(xt S ) ae,ZG ’ E%( ) ( )

Then, forallt=0,1,2,...,
Py(x € Z,a € B) =PJ(x € Z,& € B), ZeB(X),BeB(A). (5.4)

Therefore, for optimality criteria G {Vg, Vo, W},

G(y,m = G(y,0). (5.5)
Proof. Observe that, for any policy and initial distributiony,

Eyc(x,a) =/X/A0(x,a)IP’$’(xt € dx g € da).

This fact and the definitions of the optimality criteria@imply that (5.5) is correct if (5.4) holds.
The rest of the proof shows (5.4).

Observe that, if forany=0,1,2,...,
PY (% € Z) =PJ(x € Z), Z e B(X), (5.6)

then, for allZ € 9B(X), andB € B(A),

PY(x € Z,a € B) = /Zat(B|z>IP>;’(xt €z)— /Zat(B|z)IP>g(xt €2)=Pl(x €ZacB), (5.7)

where the first equality holds sineeis a Markov policy, the second equality follows from (5.6),
and the last one follows from (5.3). Thus, to complete thepvee establish (5.6). The proof of
(5.6) is based on induction.

Fort =0,Py(x € Z) = PJJ(x0 € Z) = y(Z) for all Z € B(X). Assume (5.6) holds for some
t > 0. Then, for allZz € B(X),
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Prxiie2)= | [ [ ployizalPfix € dza e da)
:/X/A/Zp(dWZ,a)IP;’(XtGdZ,&Eda):IP’g(XtHEZ),

where the first and last equalities are straightforward &wedsecond equality holds due to (5.7)
and (5.6). Thus, (5.6) holds for @l=0,1,.... O
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