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Abstract of the Dissertation
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continuous-time Markov decision processes

by
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Doctor of Philosophy

in

Applied Mathematics and Statistics

Stony Brook University

2015

A basic fact in the theory of Discrete-time Markov Decision Processes is that for any policy there

exists a Markov policy with the same marginal state-action distributions. This fact implies that the

study of control problems with multiple criteria and constraints that are determined by marginal

distribution (for e.g. expected total discounted and non-discounted costs, average cost per unit

time) can be restricted to the set of Markov policies. This dissertation presents a similar result for

Continuous-Time Markov Decision Processes (CTMDPs).

In CTMDPs with Borel state and action spaces, unbounded transition and cost rates, for an ar-

bitrary policy, we construct a Markov policy such that the marginal distribution on the state-action

pairs is the same for both the policies. This fact implies that the expected cost rates at each time

instant are equal for these two policies. Thus, the constructed Markov policy performs equally
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to the original policy for problems with multiple criteria and constraints that are determined by

marginal distribution. The proof consists of two major steps: The first step describes the properties

of solutions to Kolmogorov’s equations for jump Markov processes. In particular, for given transi-

tion intensities, the three approaches to construct a jump Markov process: (i) via the compensator

of the random measure of a multivariate point process, (ii) as a minimal solution of Kolmogorov’s

backward equation, and (iii) as a minimal solution of Kolmogorov’s forward equation define the

same transition function. If the jump Markov process associated with the transition function has

no accumulation points, then it is the unique solution of both Kolmogorov’s equations. The second

step applies these results to CTMDPs and establishes that the marginal distribution on the state for

both the policies satisfy Kolmogorov’s forward equation defined by the Markov policy. This fact

immediately implies that the marginal distributions on thestate for both the policies coincide if

the transition intensities corresponding to the Markov policy are bounded. In the general case, it is

possible to consider a sequence of policies with bounded transition intensities and that converge to

the original policy. The proof for the general case follows from these approximations.
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Chapter 1

Overview

1.1 Brief description of the results and related works

In this dissertation, we study the properties of solutions of Kolmogorov’s backward and
forward equations for non-homogeneous jump Markov processes and apply the results on Kol-
mogorov’s forward equation to answer a fundamental controlproblem in Continuous-time Markov
decision processes (CTMDPs). Both Kolmogorov’s equationsand CTMDPs have broad range of
applications. For instance, Kolmogorov’s equations are widely used in such applications as pop-
ulation growth, epidemics, queues, manufacturing systems, etc, and CTMDPs are widely used in
such applications as inventory control, airline management, machine maintenance, smart grids,
health care services, etc. In this section we give a preview of the results, and the background
and earlier works to which they are related. We address existence and uniqueness of solutions of
Kolmogorov’s equations (Section 1.1.1) and sufficiency of Markov policies (or decision rules that
depend only on the current state and time) to study CTMDPs (Section 1.1.2).

1.1.1 Kolmogorov’s equations for non-homogeneous jump Markov processes

Our work answers the following questions, which are important for the theory of stochastic
processes and their applications: (i) how a non-homogeneous jump Markov process can be defined
for given transition intensities, calledQ-functions, and (ii) how can its transition function be found
as a solution of Kolmogorov’s backward and forward equations? We answer these questions for
measurableQ-functions when the jump Markov process takes values on a Borel state space.

The common approach used in the literature to address the first question is to construct a
transition function for a givenQ-function and show the jump property of the Markov process
defined by the constructed transition function and an initial distribution by using the analytical
properties of the transition function; see, for e.g., Anderson [1] and Reuter [30] forQ-functions
that do not depend on time parameter and countable state spaces, Doob [5] forQ-functions that do
not depend on time parameter and Borel state spaces. Our construction of the jump Markov process
defined by the measurableQ-function and initial distribution is based on Jacod’s theorem [17]. This
approach to the construction of jump Markov process is motivated by the application of the theory
of jump Markov processes to study CTMDPs controlled by a Markov policy.
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The transition function of a non-homogenous jump Markov process as solution of Kol-
mogorov’s equations was first studied by Feller [10]. Fellerconsidered continuousQ-functions
and provided the explicit formulae for the transition function and showed that it satisfies both
Kolmogorov’s backward and forward equations. In general, these equations can have multiple
solutions. ForQ-functions that do not depend on time parameter, Doob [5, Chap. 6] provided an
explicit construction for multiple transition functions satisfying Kolmogorov’s backward equation,
and Kendall [22], Kendall and Reuter [23], and Reuter [30] gave examples with non-unique solu-
tions to both the equations. Considering measurableQ-functions and a countable state space, Ye
et al. [34] constructed the transition function satisfyingboth Kolmogorov’s backward and forward
equations. All of the above mentioned work on solutions of Kolmogorov’s equations considered
Q-functions satisfying certain boundedness conditions. For Borel state spaces, we consider more
general classes of unboundedQ-functions and obtain the transition function of the jump Markov
process as the minimal non-negative solution of Kolmogorov’s backward and forward equations
and provide a sufficient condition for its uniqueness.

Relation to stochastic process defined by a Markov policy in CTMDPs

Feller’s [10] results on Kolmogorov’s equations for non-homogeneous jump Markov pro-
cesses are broadly used in the literature on CTMDPs to study the jump Markov process defined
by a Markov policy, and this leads to the unnecessary assumption that decisions/actions depend
continuously on time; see, e.g., Guo and Rieder [13, Definition 2.2]. For countable state problems,
the results of Ye et al. [34] removed the necessity to assume this continuity. Our results on Kol-
mogorov’s equations imply that this continuity assumptionis unnecessary for CTMDPs with Borel
state spaces. They also unify a body of research on jump Markov processes that can be traced back
to the works by Feller [10] and Jacod [17]. Given an initial state, the non-homogeneous jump
Markov process defined by a Markov policy is commonly constructed using one of the following
two ways:

(i) Based on Jacod’s [17] theorem via the compensator of the random measure of the multivari-
ate point process; Kitaev [24], Kitaev and Rykov [25, Section 4.6], Feinberg [6, 7], Guo and
Piunovskiy [12].

(ii) As the minimal non-negative solution of Kolmogorov’s forward equation; Miller [28], Kaku-
manu [19], Guo and Hernández-Lerma [11].

The second approach is commonly used in the literature to study the jump Markov process defined
by a Markov policy via its transition function, including inthe monograph by Guo and Hernández-
Lerma [11]. However, the first approach is used to construct the jump process associated with any
policy, and in particular, with a Markov policy. Our resultsimply that for Markov policies these
two constructions are equivalent for problems with Borel state spaces.

1.1.2 Sufficiency of Markov policies to study CTMDPs

In 1980, Yushkevich [35] introduced past dependent policies and constructed the jump pro-
cess associated with them. Later, Kitaev [24] gave an equivalent construction for the jump process
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associated with a past dependent policy using the results byJacod [17]. Since then, even though
it is possible to consider past dependent policies for CTMDPs, most of the existing facts such
as optimality of certain policies are established within the class of Markov policies; see Guo and
Hernández-Lerma [11]. In this dissertation, we show that itis valid to restrict the study of CTMDPs
to the class of Markov policies, and therefore, many of the previously existing results within the
class of Markov policies hold within the class of all policies. A similar result on the sufficiency
of Markov policies to study discrete-time Markov decision processes (DTMDPs) was given by
Derman and Strauch [4].

Given any policy, we construct a Markov policy such that the marginal distribution on the
state-action pairs at any time instant is the same for both the policies. This immediately implies that
the expected cost rates at each time instant are equal for these two policies. Thus, the corresponding
Markov policy performs equally or better than the original policy for problems with expected total
discounted and non-discounted costs as well as with averagecosts per unit time. This is also true
for problems with multiple criteria. We consider the state and action sets as standard Borel spaces,
and the transition and cost rates may not be bounded. Thus, the results in this thesis are applicable
to a wide class of problems. Two such important applicationsare noted below:
(i) Queuing control: state space is countable, cost and transition rate functions may not be bounded
from above.
(ii) Inventory control: state and action spaces are uncountable, cost functions may not be bounded
from above.

1.2 Contents and Organization

This thesis consists of two parts: Chapter 2 on Kolmogorov’sequations for non-homogeneous
jump Markov processes, and Chapters 3, 4 on CTMDPs.

Chapter 2: Kolmogorov’s equations for non-homogeneous jump Markov processes
Chapter 2 concerns the construction of non-homogeneous jump Markov process on a general state
space. For a given measurableQ-function satisfying certain boundedness conditions, it presents
three equivalent ways to construct the non-homogeneous jump Markov process: (i) via the com-
pensator defined by theQ-function and initial distribution, (ii) as a minimal non-negative solution
of Kolmogorov’s backward equation, and (iii) as a minimal non-negative solution of Kolmogorov’s
forward equation. The results on Kolmogorov’s forward equation in this chapter lay the foundation
for the proof of the main result of this dissertation presented in Chapter 4.

Chapter 3: Continuous-time Markov decision processes
In Chapter 3 we give a brief introduction of CTMDPs with general state and action spaces, in-
cluding definition of the control model, induced stochasticprocess, and optimality criteria we are
concerned with.

Chapter 4: Sufficiency of Markov policies in CTMDPs
Chapter 4 considers general state and action space CTMDPs with unbounded transition and cost
rates and presents one of the main results of this thesis: given an initial probability measure on the
state space, for any policy there exists a Markov policy thathas the same marginal distribution on
the state-action pairs at any time instant. It shows that if the optimality criteria depends only on the
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marginal distribution, like the expected total discountedand non-discounted costs, average costs
per unit time etc., one can restrict the search for optimal policies to the class of Markov policies.
For completeness, we present the analogous result that is established for DTMDPs in Appendix 5.
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Chapter 2

Kolmogorov’s equations for Non-homogeneous jump Markov
process

2.1 Introduction

This chapter answers the following questions, which are important for the theory of stochastic
processes and their applications: how a non-homogeneous jump Markov process can be defined for
given transition intensities, calledQ-functions, and how can its transition probabilities be found as
a solution of Kolmogorov’s backward and forward equations?First we present a few definitions.

2.1.1 Basic definitions

For a topological spaceS, its Borel σ -field (theσ -field generated by open subsets ofS) is
always denoted byB(S), and the sets inB(S) are calledBorel subsetsof S. Let R be the real
line endowed with the Euclidean metric. A topological space(S,B(S)) is called astandard Borel
spaceif there exists a bijectionf from (S,B(S)) to a Borel subset ofR such that the mappings
f and f−1 are measurable. In this dissertation, measurability and Borel measurability are used
synonymously. Let(X,B(X)) be a standard Borel space (called the state space), and[T0,T1[ be a
finite or an infinite interval ofR+ := [0,∞[.

Definition of jump Markov process and transition function:
A stochastic process{Xt : t ∈ [T0,T1[} with values inX, defined on the probability space(Ω,F ,P)
and adapted to the filtration{Ft}t∈[T0,T1[, is calledMarkov if P(Xt ∈ B | Fu) = P(Xt ∈ B | Xu),
P−a.s. for all u, t ∈ [T0,T1[ with u< t and for allB∈B(X). In addition, if the Markov process is
a jump process, that is, if each sample path of the process is aright-continuous piecewise constant
function in t that has a countable number of discontinuity points ont ∈ [T0,T1[ , then the Markov
process is called ajump Markov process.

A functionP(u,x; t,B), whereu, t ∈ [T0,T1[, u< t, x∈ X, andB∈B(X), is called atransition
functionif it takes values in[0,1] and satisfies the following properties:

(i) For all u,x, t the functionP(u,x; t, ·) is a measure on(X,B(X)).
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(ii) For all B the functionP(u,x; t,B) is Borel measurable in(u,x, t).

(iii) P(u,x; t,B) satisfies the Chapman-Kolmogorov equation

P(u,x; t,B) =
∫

X
P(s,y; t,B)P(u,x;s,dy), u< s< t. (2.1)

A transition functionP is calledregular if P(u,x; t,X) = 1 for all u,x, t in the domain ofP.
Each Markov process has a transition functionP such that

P(Xt ∈ B | Xu) = P(u,Xu; t,B), P−a.s, (2.2)

and any probability measureγ on X and transition functionP define a unique Markov process
{Xt , t ∈ [T0,T1[} such that (2.2) holds; see Kuznetsov [26]. Thus, one can equivalently define a
Markov process via the probability measureP or its transition functionP.

Definition of Q-function:
A function q(x, t,B), wherex∈ X, t ∈ [T0,T1[, andB∈B(X), is called aQ-functionif it satisfies
the following properties:

(i) for all x, t the functionq(x, t, ·) is a signed measure on(X,B(X)) such thatq(x, t,X)≤ 0 and
0≤ q(x, t,B\{x})< ∞ for all B∈B(X);

(ii) for all B the functionq(x, t,B) is measurable in(x, t).

Let q(x, t) := −q(x, t,{x}) for all x ∈ X and t ∈ [T0,T1[ . In addition to properties (i) and (ii), if
q(x, t,X) = 0 for all x, t, then theQ-function q is calledconservative. Note that anyQ-function
can be transformed into a conservativeQ-function by adding an absorbing state ¯x to X with
q(x, t,{x̄}) := −q(x, t,X), q(x̄, t,X) := 0, andq(x̄, t,{x̄}) := 0, wherex ∈ X and t ∈ [T0,T1[. To
simplify the presentation, we always assume thatq is conservative. In Subsection 2.6.1, we ex-
plain how the main formulations change when theQ-functionq is not conservative. AQ-function
q is calledcontinuousif it is continuous int ∈ [T0,T1[.

A classical approach to the study of jump Markov processes isvia the compensator of the ran-
dom measure of a multlivariate point process. A conservativeQ-function can be used to construct
a predictable random measure. According to Jacod [17, Theorem 3.6], an initial state distribution
and a predictable random measure define uniquely a multivariate point process. In this chapter,
we show that the stochastic process associated with the multivariate point process defined by a
conservativeQ-functionq and an initial state distribution is a jump Markov process, describe its
transition functionP̄, and thatP̄ is the minimal non-negative solution to both Kolmogorov’s back-
ward and forward equations. The first study of jump Markov processes defined by theQ-function
via Kolmogorov’s equations was first undertaken by Feller [10].

2.2 Boundedness assumptions and description of the main results

In this section, we describe the boundedness assumptions onQ-functions and provide the
general description of the results of this chapter. Let ¯q(x) := supt∈[T0,T1[

q(x, t) for x∈ X. Consider
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the following assumptions of boundedness ofq in t. Feller [10] studied Kolmogorov’s equations
for continuousQ-functions under the following assumption.

Assumption 2.2.1(Feller’s assumption). There exists a sequence of measurable subsets{Bn,n=
1,2, . . .} of X such thatsupx∈Bn

q̄(x)< n for all n= 1,2, . . . and Bn ↑ X as n→ ∞.

In this chapter, we consider the following assumptions.

Assumption 2.2.2(Boundedness ofq). q̄(x)< ∞ for each x∈ X.

Forn= 1,2, . . ., consider the functionsUn from (X× [T0,T1]) to [0,∞] defined by

Un(x, t) :=
∫ t

T0

I{q(x,s)≥ n}ds, x∈ X, t ∈ [T0,T1] . (2.3)

For eacht ∈ [T0,T1] , let Xt
n,n= 1,2, . . ., be the subsets ofX such that

Xt
n = {x∈ X : Un(x, t) = 0}, n= 1,2, . . . . (2.4)

Since the functionsUn(x, t) are measurable, the setsXt
n are measurable subsets ofX. Observe that

Xt
n ⊆ Xt

n+1,n= 1,2, . . . .

Assumption 2.2.3(Almost everywhere local boundedness ofq). Xt
n ↑ X as n→ ∞ for each t∈

[T0,T1[ .

Assumption 2.2.4(Local L 1 boundedness ofq). For all x ∈ X, the integral
∫ t

T0
q(x,s)ds< ∞ for

each t∈ [T0,T1[ .

The following lemma compares Assumptions 2.2.1–2.2.4.

Lemma 2.2.1.The following statements hold for a measurable Q-function q:
(i) Assumptions 2.2.1 and 2.2.2 are equivalent;
(ii) Assumption 2.2.2 implies Assumption 2.2.3;
(iii) Assumption 2.2.3 implies Assumption 2.2.4.

Proof. (i) Let {Bn,n = 1,2, . . .} be a sequence of Borel subsets ofX satisfying the properties
stated in Assumption 2.2.1. Then for eachx ∈ X there exists ann ∈ {1,2, . . .} such thatx ∈
Bn and therefore ¯q(x) < n. Thus, Assumption 2.2.1 implies Assumption 2.2.2. To provethat
Assumption 2.2.2 implies Assumption 2.2.1, defineCn := {x∈ X : q̄(x) ≥ n},n= 1,2, . . . . Since
Cn = pro jX({(x, t)∈ (X×R+) | q(x, t)≥ n}) are projections of Borel sets, the setsCn are analytic,
n= 1,2, . . . ; see Bertsekas and Shreve [2, Proposition 7.39]. In addition, Assumption 2.2.2 implies
that

⋂∞
n=1Cn = /0. Thus, in view of the Novikov separation theorem, Kechris[21, Theorem 28.5],

there exist Borel subsetsZn, n= 1,2, . . . , of X such thatCn ⊆ Zn and
⋂∞

n=1Zn = /0. This fact implies
thatZc

n ⊆ Cc
n and

⋃∞
n=1Zc

n = X, where the setsZc
n andCc

n are compliments of the setsZn andCn,
respectively. LetBn := ∪n

m=1Zc
m for all n = 1,2, . . . . The Borel setsBn, n = 1,2, . . . , satisfy the

properties stated in Assumption 2.2.1.

7



(ii) Let Assumption 2.2.2 hold. In view of Lemma 2.2.1(i), consider setsBn, n = 1,2, . . . ,
whose existence is stated in Assumption 2.2.1. ThenBn ⊆ Xt

n andBn ↑ X, n = 1,2, . . . , for each
t ∈ [T0,T1]. Therefore,Xt

n ↑ X asn→ ∞ for eacht ∈ [T0,T1]. Thus, Assumption 2.2.3 holds.
(iii) Under Assumption 2.2.3, for eachx ∈ X and t ∈ [T0,T1[ there exists ann ∈ {1,2, . . .}

such thatUn(x, t) = 0. That is,µ(w∈ [T0, t[ : q(x,s)≥ n) = 0, whereµ is the Lebesgue measure on
R+. This immediately implies that Assumption 2.2.4 holds.

In Section 2.3 we show in Theorem 2.3.2 that under Assumption2.2.4 the compensator of a
random measure defined by aQ-function defines a jump Markov process whose transition function
P̄ is described in (2.19). The function̄P was introduced in Feller [10]. Theorem 2.4.1 in Section 2.4
states that under Assumption 2.2.4 the transition functionP̄ is the minimal non-negative solution
of Kolmogorov’s backward equation, and Theorem 2.5.1 in Section 2.5 states that under Assump-
tion 2.2.3 the transition function̄P is the minimal non-negative solution of Kolmogorov’s forward
equation. In Section 2.6, we consider non-conservativeQ-functions and weaker boundedness con-
ditions, Assumptions 2.6.1 and 2.6.2, than those presentedin this section, and discuss how the
main results of this paper change in these two scenarios. We also present some of the results of this
chapter under Assumption 2.2.2 as corollaries. Assumption2.2.2 means that jump intensities are
bounded at each state for the time horizon[T0,T1[, and this assumption is natural for continuous-
time Markov decision processes (CTMDPs). Hence, our results under Assumption 2.2.2 are useful
for applying the results of this chapter to CTMDPs; see Chapter 4.

2.3 Relation between jump Markov processes andQ-functions

In this section, we show that aQ-function satisfying Assumption 2.2.4 defines a transition
function for a jump Markov process.

Let x∞ /∈ X be an isolated point adjoined to the spaceX. DenoteX̄ = X ∪ {x∞} and T̄ =
]T0,T1]. Consider the Borelσ -field B(X̄) = σ(B(X),{x∞}) on X̄, which is the minimalσ -field
containingB(X) and {x∞}. Let (X̄ × T̄)∞ be the set of all sequences(x0, t1,x1, t2,x2, . . .) with
xn ∈ X̄ andtn+1 ∈ T̄ for all n = 0,1, . . . . This set is endowed with theσ -field generated by the
products of the Borelσ -fieldsB(X̄) andB(T̄).

Denote byΩ the subset of all sequencesω = (x0, t1,x1, t2,x2, . . .) from (X̄× T̄)∞ such that:
(i) x0 ∈ X; (ii) for all n= 1,2, . . . , if tn < T1, thentn < tn+1 andxn ∈ X, and iftn = T1, thentn+1 = tn
andxn = x∞. Observe thatΩ is a measurable subset of(X̄× T̄)∞. Consider the measurable space
(Ω,F ), whereF is theσ -field of the measurable subsets ofΩ. For all n= 0,1, . . ., let xn(ω) =
xn and tn+1(ω) = tn+1, whereω ∈ Ω, be the random variables defined on the measurable space
(Ω,F ). Let t0 := T0, t∞(ω) := lim

n→∞
tn(ω), ω ∈ Ω, and for allt ∈ [T0,T1], let Ft := σ(B(X),Gt),

whereGt := σ(I{xn ∈ B}I{tn ≤ s} : n≥ 1,T0 ≤ s≤ t,B∈B(X)). Throughout this paper, we omit
ω whenever possible.

For a givenQ-function q satisfying Assumption 2.2.4, consider the random measureν on
([T0,T1[×X,B([T0,T1[)×B(X)) defined by

ν(ω; [T0, t],B) =
∫ t

T0
∑
n≥0

I{tn < s≤ tn+1}q(xn,s,B\{xn})ds, t ∈ [T0,T1[ ,B∈B(X). (2.5)
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Note thatν({t},X) = ν([t∞,∞[ ,X) = 0 and (2.5) can be rearranged as

ν([T0, t],B) = ∑
n≥0

I{tn < t ≤ tn+1}

(

n−1

∑
m=0

∫ tm+1−tm

0
q(xm, tm+s,B\{xm})ds

+

∫ t−tn

0
q(xn, tn+s,B\{xn})ds

)

. (2.6)

As the expression in the parentheses on the right hand side of(2.6) is anFtn-measurable process for
eachB∈B(X), it follows from Jacod [17, Lemma 3.3] that the process{ν([T0, t],B) : t ∈ [T0,T1[}
is predictable. Therefore, the measureν is a predictable random measure. According to Jacod [17,
Theorem 3.6], the predictable random measureν defined in (2.5) and a probability measureγ on
X define a unique probability measureP on (Ω,F ) such thatP(x0 ∈ B) = γ(B),B∈B(X), andν
is the compensator of the random measure of the multivariatepoint process(tn,xn)n≥1 defined by
the triplet(Ω,F ,P).

Consider the process{Xt : t ∈ [T0,T1[},

Xt(ω) := ∑
n≥0

I{tn ≤ t < tn+1}xn+ I{t∞ ≤ t}x∞, (2.7)

defined on(Ω,F ,P) and adapted to the filtration{Ft , t ∈ [T0,T1[}. Observe that the process
{Xt : t ∈ [T0,T1[} is a jump process. The main result of this section, Theorem 2.3.2, shows that the
process{Xt : t ∈ [T0,T1[} is a jump Markov process and provides its transition function.

For anFt-measurable stopping timeτ, let N(τ) := max{n= 0,1, . . . : τ ≥ tn}. SinceN(τ) =
∞ andXτ = {x∞} whenτ ≥ t∞, we follow the convention thatt∞+1 = T1 andx∞+1 = x∞. Denote by
Gτ(ω; ·, ·) andHτ(ω; ·) respectively the regular conditional laws of(tN(τ)+1,xN(τ)+1) andtN(τ)+1
with respect toFτ ; Hτ(ω; ·) = Gτ(ω; ·, X̄). In particular,Gtn(ω; ·, ·) and Htn(ω; ·), wheren =
0,1, . . . , denote the conditional laws of(tn+1,xn+1) andtn+1 with respect toFtn. We remark that
the notationsGtn andHtn correspond to the notationsGn andHn in Jacod [17, p. 241].

Lemma 2.3.1.For all u, t ∈ [T0,T1[ , u< t,

Hu([t,T1]) = e−
∫ t
u q(Xu,s)ds, N(u)< ∞, (2.8)

Gu(dt,B) = e−
∫ t
u q(Xu,s)dsq(Xu, t,B\{Xu})dt, N(u)< ∞, B∈B(X). (2.9)

Proof. In view of Jacod [17, Proposition 3.1], for allt ∈ [T0,T1[ , B∈B(X), andn= 0,1, . . .

ν(dt,B) =
Gtn(dt,B)
Htn([t,∞])

, tn < t ≤ tn+1. (2.10)

In particular, forB= X, from (2.10) and from the property thatxn+1 ∈ X whentn+1 < T1,

ν(dt,X) =
Gtn(dt,X)

Htn([t,∞])
=

Htn(dt)
Htn([t,∞])

, tn < t ≤ tn+1.
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This equality implies thatν(dt,X) is the hazard rate function corresponding to the distributionHtn
whentn < t ≤ tn+1. Therefore,

Htn([t,∞]) = e−ν(]tn,t],X)I{tn<t≤tn+1}, t ∈ [T0,T1[ , t > tn. (2.11)

From (2.5) and (2.11), for allt ∈ [T0,T1[ ,

Htn([t,∞]) = e−
∫ t
tn q(xn,s)ds, t > tn, (2.12)

and from (2.5), (2.10), and (2.12), for allt ∈ [T0,T1[ , B∈B(X),

Gtn(dt,B) = e−
∫ t
tn q(xn,s)dsq(xn, t,B\{xn})dt, t > tn. (2.13)

To computeGu, observe that for allu, t ∈ [T0,T1[ , u< t, andB∈B(X),

Gu(dt,B) = P(tN(u)+1 ∈ [t, t+dt[ ,xN(u)+1 ∈ B | Fu)

= ∑
n≥0

P(tN(u)+1 ∈ [t, t+dt[ ,xN(u)+1 ∈ B | Fu)I{N(u) = n}

= ∑
n≥0

P(tn+1 ∈ [t, t+dt[ ,xn+1 ∈ B | Fu,N(u) = n)I{N(u) = n},

(2.14)

where the first equality follows from the definition ofGu, the second equality holds because
{N(u) = ∞}∪{N(u) = n}n=0,1,... is anFu-measurable partition ofΩ andxN(u)+1 = x∞ /∈ X when
N(u) = ∞, and the third equality follows fromN(u) = n and from{N(u) = n} ∈ Fu.

Observe that for any random variableZ on (Ω,F )

P(Z | Fu,N(u) = n)I{N(u) = n}= P(Z | Ftn,N(u) = n)I{N(u) = n}

= P(Z | Ftn, tn ≤ u, tn+1 > u)I{N(u) = n}= P(Z | Ftn, tn+1 > u)I{N(u) = n}

=
P(Z, tn+1 > u | Ftn)

P(tn+1 > u | Ftn)
I{N(u) = n},

(2.15)

where the first equality follows from Brémaud [3, Theorem T32, p. 308], the second equality holds
because{tn ≤ u, tn+1 > u}= {N(u) = n}, the third equality holds because{tn ≤ u} ∈Ftn, and the
last one follows from the definition of conditional probabilities. LetZ = {tn+1 ∈ [t, t+dt[ ,xn+1 ∈
B}, wheret ∈ [T0,T1[ ,B∈B(X). Then (2.14) and (2.15) imply

Gu(dt,B) = ∑
n≥0

P(tn+1 ∈ [t, t+dt[ ,xn+1 ∈ B | Ftn)

P(tn+1 > u | Ftn)
I{N(u) = n}

= ∑
n≥0

e−
∫ t
tn q(xn,s)dsq(xn, t,B\{xn})dt

e−
∫ u
tn q(xn,s)ds

I{N(u) = n}

= e−
∫ t
u q(Xu,s)dsq(Xu, t,B\{Xu})dt,

(2.16)
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where the first equality holds because{tn+1 ∈ [t, t + dt[ , tn+1 > u} = {tn+1 ∈ [t, t + dt[} when
t > u, the second equality follows from (2.12) and (2.13), and thelast equality holds sincexn = Xu

whenN(u) = n. For all u, t ∈ [T0,T1[ , u < t, it follows from the property thatxN(u)+1 ∈ X when
tN(u)+1 < T1 and from (2.16) thatHu([t,∞]) satisfies (2.8).

Following Feller [10, p. 501], forx∈ X, u, t ∈ [T0,T1[, u< t, andB∈B(X), define

P̄(0)(u,x; t,B) = I{x∈ B}e−
∫ t
u q(x,s)ds, (2.17)

and forn≥ 1 define

P̄(n)(u,x; t,B) =
∫ t

u

∫

X\{x}
e−

∫ s
u q(x,θ )dθ q(x,s,dy)P̄(n−1)(s,y; t,B)ds. (2.18)

Set

P̄(u,x; t,B) :=
∞

∑
n=0

P̄(n)(u,x; t,B). (2.19)

Observe that̄P is a transition function, if theQ-function q satisfies Assumption 2.2.4. For con-
tinuousQ-functions satisfying Assumption 2.2.1, Feller [10, Theorems 2, 5] proved that (a) for
fixed u,x, t the functionP̄(u,x; t, ·) is a measure on(X,B(X)) such that 0≤ P̄(u,x; t, ·) ≤ 1, and
(b) for all u,x, t,B the functionP̄(u,x; t,B) satisfies the Chapman-Kolmogorov equation (2.1). The
proofs remain correct for measurableQ-functions satisfying Assumption 2.2.4. The measurability
of P̄(u,x; t,B) in u,x, t for all B∈B(X) is straightforward from the definitions (2.17), (2.18), and
(2.19). Therefore, ifq satisfies Assumption 2.2.4, the function̄P takes values in[0,1] and satisfies
properties (i)-(iii) from the definition of a transition function.

Theorem 2.3.2. Given a probability measureγ on X and a Q-function q satisfying Assump-
tion 2.2.4, the jump process{Xt : t ∈ [T0,T1[} defined in(2.7) is a jump Markov process with
transition functionP̄.

Proof. Observe that if, for allu, t ∈ [T0,T1[ , u< t, andB∈B(X),

P(Xt ∈ B | Fu) = P(Xt ∈ B | Xu) = P̄(u,Xu; t,B), u< t∞, (2.20)

then the jump process{Xt : t ∈ [T0,T1[} is a jump Markov process with transition function̄P.
To prove (2.20), we first establish by induction that for alln = 0,1, . . . , u, t ∈ [T0,T1[ , u < t, and
B∈B(X)

P(Xt ∈ B,N]u,t] = n | Fu) = P̄(n)(u,Xu; t,B), u< t∞, (2.21)

whereN]u,t] := N(t)−N(u) whenu < t∞ andN]u,t] := ∞ whenu ≥ t∞. Equation (2.21) holds for
n= 0 because foru< t∞

P(Xt ∈ B,N]u,t] = 0 | Fu) = P(Xu ∈ B, tN(u)+1 > t | Fu)

= I{Xu ∈ B}Hu(]t,∞]) = I{Xu ∈ B}e−
∫ t
u q(Xu,s)ds= P̄(0)(u,Xu; t,B), (2.22)
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where the first equality holds because the corresponding events coincide, the second equality holds
because{Xu ∈B} ∈Fu and from the definition ofHu, the third equality is correct because of (2.8),
and the last equality is (2.17).

For somen≥ 0, assume that (2.21) holds. Then foru< t∞

P(Xt ∈ B,N]u,t] = n+1 | Fu)

=

∫ t

u

∫

X\{Xu}
P(Xt ∈ B,N]tN(u)+1,t] = n | Fu, tN(u)+1,xN(u)+1)Gu(dtN(u)+1,dxN(u)+1)

=
∫ t

u

∫

X\{Xu}
P(Xt ∈ B,N]tN(u)+1,t] = n | FtN(u)+1

)Gu(dtN(u)+1,dxN(u)+1)

=
∫ t

u

∫

X\{Xu}
q(Xu,s,dy)e−

∫ s
u q(Xu,θ )dθ P̄(n)(s,y; t,B)ds= P̄(n+1)(u,Xu; t,B),

(2.23)

where the first equality is correct sinceN]u,t] = 1+ N]tN(u)+1,t] for N]u,t] ≥ 1 and sinceE(E(Z |

D)) = E(Z) for any random variable Z and anyσ -field D, the second equality holds because
σ(Fu, tN(u)+1,xN(u)+1) = FtN(u)+1

, the third equality follows from (2.9) and (2.21), and the last
equality is (2.18). Equality (2.21) is proved.

Observe that foru, t ∈ [T0,T1[ , u< t, B∈B(X),

P(Xt ∈ B | Fu) = P(Xt ∈ B | Fu)I{u< t∞}+P(Xt ∈ B | Fu)I{u≥ t∞}

= ∑
n≥0

P(Xt ∈ B,N]u,t] = n | Fu)I{u< t∞}= ∑
n≥0

P̄(n)(u,Xu; t,B)I{u< t∞}

= P̄(u,Xu; t,B)I{u< t∞}= P̄(u,Xu; t,B)I{Xu ∈ X},

(2.24)

where the first equality holds since{{u < t∞},{u ≥ t∞}} is a partition ofΩ and{u < t∞}, {u ≥
t∞} ∈ Fu, the second equality holds sinceXt ∈ X implies t < t∞, the third equality follows from
(2.21), the fourth equality follows from (2.19), and the last one holds since{u< t∞}= {Xu ∈ X}.
As follows from (2.24), the functionP(Xt ∈ B | Fu) is σ(Xu)-measurable. Thus,

P(Xt ∈ B | Fu) = P(P(Xt ∈ B | Fu) | Xu) = P(Xt ∈ B |Xu), (2.25)

where the second equality holds becauseσ(Xu) ⊆ Fu; see e.g. Brémaud [3, p. 280]. Thus, (2.20)
follows from (2.24) and (2.25).

Corollary 2.3.3. Given a probability measureγ on X and a Q-function q satisfying Assump-
tion 2.2.2, the jump process{Xt : t ∈ [T0,T1[} defined in(2.7) is a jump Markov process with
transition functionP̄.

Proof. This corollary follows from Lemma 2.2.1 and Theorem 2.3.2.

The following lemma provides a simple statement that is needed for future references. Con-
sider aQ-functionq. Let q′ be aQ-function such that

µ(t ∈ [T0,T1[ : q(x, t,B) 6= q′(x, t,B) for someB∈B(X)) = 0, x∈ X, (2.26)
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whereµ is the Lebesgue measure onR+.

Lemma 2.3.4.For arbitrary T0 and T1, consider a Q-function q satisfying Assumption 2.2.4. Let
q′ be a Q-function satisfying(2.26), and letP̄′(u,x; t,B), where u, t ∈ [T0,T1[, u < t, x ∈ X, and
B∈B(X), be the transition function̄P defined by(2.19)with q replaced by q′. Then, for a given
probability measureγ on X, both the Q-functions q and q′ define the same jump Markov process
{Xt : t ∈ [T0,T1[} defined in(2.7)and

P̄′(u,x; t,B) = P̄(u,x; t,B), u, t ∈ [T0,T1[ ,u< t,x∈ X,B∈B(X). (2.27)

Proof. Observe that theQ-functionq′ satisfies Assumption 2.2.4. This follows from (2.26). Then,
it follows from Theorem 2.3.2 that, for a given a probabilitymeasureγ on X, each of theQ-
functionsq andq′ define a jump Markov process{Xt : t ∈ [T0,T1[} defined in (2.7) with transition
functionP̄ andP̄′, respectively. Thus, if (2.27) holds, then theQ-functionsq andq′ define the same
jump Markov process for a given probability measureγ on X. This is indeed true as explained
below. It follows immediately from (2.17)–(2.19) that twoQ-functions, that are equal almost
everywhere int with respect to the Lebesgue measure, define the same transition function. This
fact and (2.26) imply that (2.27) holds.

2.4 Kolmogorov’s backward equation

In this section, by using the methods introduced by Feller [10, Theorems 2, 3] for continuous
Q-functions, we show that the transition function̄P defined in (2.19) is the minimal non-negative
solution of Kolmogorov’s backward equation.

Definition 2.4.1. A function f defined onR is called locally absolutely continuous on an interval
I ⊆R, if for any closed bounded interval[a,b]⊆ I, the function f is absolutely continuous on[a,b].

Definition 2.4.2. For a Q-function q, a functionP̂(u,x; t,B),where t∈]T0,T1[, u∈ [T0, t[, x∈X, and
B∈B(X), is a solution of Kolmogorov’s backward equation(2.29)on the semi-interval[T0,T1[, if
the functionP̂(u,x; t,B) satisfies the following properties:
(i) for each x, t, B, the functionP̂(u,x; t,B) is locally absolutely continuous on u∈ [T0, t[ and
satisfies the boundary condition

lim
u→t−

P̂(u,x; t,B) = I{x∈ B}; (2.28)

(ii) for each x, t,B,

∂
∂u

P(u,x; t,B) = q(x,u)P(u,x; t,B)−
∫

X\{x}
q(x,u,dy)P(u,y; t,B) f or almost every u∈ [T0, t[.

(2.29)

Theorem 2.4.1.Under Assumption 2.2.4, the function̄P is the minimal non-negative solution of
Kolmogorov’s backward equation(2.29)on the semi-interval[T0,T1[. In addition, ifP̄ is a regular
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transition function (that is,̄P(u,x; t,X) = 1 for all u,x, t in the domain ofP̄), thenP̄ is the unique
non-negative solution of Kolmogorov’s backward equation(2.29)on the semi-interval[T0,T1[ that
is a measure on(X,B(X)) for fixed u, x, t with u< t and takes values in[0,1].

We first show in Theorem 2.4.2 that the function̄P is a solution of Kolmogorov’s backward
equation (2.29), and then provide the proof of Theorem 2.4.1.

Theorem 2.4.2.Under Assumption 2.2.4, the function̄P is a solution of Kolmogorov’s backward
equation(2.29)on the semi-interval[T0,T1[ .

Proof. For allx∈ X, u, t ∈ [T0,T1[ , u< t, andB∈B(X),

P̄(u,x; t,B) =
∞

∑
n=0

P̄(n)(u,x; t,B)

= I{x∈ B}e−
∫ t
u q(x,s)ds+

∞

∑
n=1

∫ t

u
e−

∫ s
u q(x,θ )dθ

∫

X\{x}
q(x,s,dy)P̄(n−1)(s,y; t,B)ds

= I{x∈ B}e−
∫ t
u q(x,s)ds+

∫ t

u
e−

∫ s
u q(x,θ )dθ

∫

X\{x}
q(x,s,dy)

∞

∑
n=1

P̄(n−1)(s,y; t,B)ds

= I{x∈ B}e−
∫ t
u q(x,s)ds+

∫ t

u
e−

∫ s
u q(x,θ )dθ

∫

X\{x}
q(x,s,dy)P̄(s,y; t,B)ds,

(2.30)

where the first equality is (2.19), the second equality follows from (2.17) and (2.18), the third
equality is obtained by interchanging the integral and sum,and the last one follows from (2.19). For
fixedx, t,B, equation (2.30) implies that̄P(u,x; t,B) is the sum of two locally absolutely continuous
functions onu. Thus,P̄(u,x; t,B) is for fixedx, t,B locally absolutely continuous functions onu.

Observe that̄P(n)(u,x; t,B) ≤ P̄(u,x; t,B) ≤ 1 for all n ≥ 0, x ∈ X,u, t ∈ [T0,T1[ , u < t, and
B∈B(X). Then from (2.18),

P̄(n)(u,x; t,B)≤
∫ t

u
e−

∫ s
u q(x,σ)dσ q(x,s)ds= 1−e−

∫ t
u q(x,s)ds, n≥ 1. (2.31)

Sincee−
∫ t
u q(x,s)ds → 1 asu → t− for any Q-function q satisfying Assumption 2.2.4, the above

inequality and (2.17) imply that

lim
u→t−

P̄(n)(u,x; t,B) = 0 for all n≥ 1 and lim
u→t−

P̄(0)(u,x; t,B) = I{x∈ B}. (2.32)

Thus, it follows from (2.19) and (2.32) that (2.28) holds with P̂= P̄.

In addition, since locally absolutely continuous real-valued function is differentiable almost
everywhere on its domain, for allx, t,B the functionP̄(u,x; t,B) is differentiable inu almost every-
where on[T0, t[. By differentiating (2.30), for almost everyu< t,
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∂
∂u

P̄(u,x; t,B) = I{x∈ B}e−
∫ t
u q(x,s)dsq(x,u)−

∫

X\{x}
q(x,u,dy)P̄(u,y; t,B)

+

∫ t

u

∂
∂u

e−
∫ s
u q(x,θ )dθ

∫

X\{x}
q(x,s,dy)P̄(s,y; t,B)ds

= I{x∈ B}e−
∫ t
u q(x,s)dsq(x,u)−

∫

X\{x}
q(x,u,dy)P̄(u,y; t,B)

+

∫ t

u
e−

∫ s
u q(x,θ )dθ q(x,u)

∫

X\{x}
q(x,s,dy)P̄(s,y; t,B)ds.

(2.33)

In view of (2.30), the sum of the first and the last terms in the last expression of (2.33) is equal
to the first term on the right-hand side of (2.29). That is, thefunctionP̄ satisfies (2.29) for almost
every u ∈ [T0, t[ . Therefore,P̄ is a solution of Kolmogorov’s backward equation (2.29) on the
semi-interval[T0,T1[ .

Proof of Theorem 2.4.1.In view of Theorem 2.4.2, the function̄P is a solution of Kolmogorov’s
backward equation (2.29) on the semi-interval[T0,T1[ . The proof of minimality ofP̄ is similar
to the proof of Theorem 3 in Feller [10]. We provide it here forcompleteness. Consider a non-
negative solutionP∗(u,x; t,B) of Kolmogorov’s backward equation (2.29) on the semi-interval
[T0,T1[ . Integrating (2.29) fromu to t and by using the boundary condition (2.28),

P∗(u,x; t,B) = I{x∈ B}e−
∫ t
u q(x,s)ds+

∫ t

u

∫

X\{x}
e−

∫ s
u q(x,θ )dθ q(x,s,dy)P∗(s,y; t,B)ds. (2.34)

Since the last term of (2.34) is non-negative,

P∗(u,x; t,B)≥ I{x∈ B}e−
∫ t
u q(x,s)ds= P̄(0)(u,x; t,B), (2.35)

where the last equality is (2.17). For allu,x, t,Bwith u< t, assumeP∗(u,x; t,B)≥
n
∑

m=0
P̄(m)(u,x; t,B)

for somen≥ 0. Then from (2.34)

P∗(u,x; t,B)≥ I{x∈ B}e−
∫ t
u q(x,s)ds+

∫ t

u

∫

X\{x}
e−

∫ s
u q(x,θ )dθ q(x,s,dy)

n

∑
m=0

P̄(m)(s,y; t,B)ds

= P̄(0)(u,x; t,B)+
n

∑
m=0

P̄(m+1)(u,x; t,B) =
n+1

∑
m=0

P̄(m)(u,x; t,B),

where the first equality follows from the assumption thatP∗(u,x; t,B) ≥
n
∑

m=0
P̄(m)(u,x; t,B) for

all u,x, t,B with u < t, the second equality follows from (2.17) and (2.18), and thethird equality

is straightforward. Thus, by induction,P∗(u,x; t,B) ≥
n
∑

m=0
P̄(m)(u,x; t,B) for all n ≥ 0, x ∈ X,

u, t ∈ R+, u< t, andB∈B(X), which implies thatP∗(u,x; t,B)≥ P̄(u,x; t,B) for all u,x, t,B.

To prove the second part of the theorem, let the solutionP∗ be a measure on(X,B(X)) for
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fixed u,x, t and with values in[0,1]. Assume thatP∗(u,x; t,B) 6= P̄(u,x; t,B) for at least one tuple
(u,x, t,B). Then,

P∗(u,x; t,X) = P∗(u,x; t,B)+P∗(u,x; t,Bc)> P̄(u,x; t,B)+ P̄(u,x; t,Bc) = P̄(u,x; t,X) = 1,

where the inequality holds becauseP∗(u,x, t, ·) ≥ P̄(u,x, t, ·) for all u,x, t. SinceP∗ takes values
in [0,1], the assumption thatP∗(u,x; t,B) 6= P̄(u,x; t,B) for at least one tuple(u,x, t,B) leads to a
contradiction.

2.5 Kolmogorov’s forward equation

Kolmogorov’s forward equation (2.37) was studied by Feller[10, Theorem 1] for continuous
Q-functions satisfying Assumption 2.2.1. In this section, we show that the function̄P is the mini-
mal non-negative solution of Kolmogorov’s forward equation (2.37) on the semi-interval[T0,T1[ if
Assumption 2.2.3 holds, which, as stated in Lemma 2.2.1, is more general than Assumption 2.2.1.

Consider the setsXt
n on whichq(x, ·)< n almost everywhere on[T0, t[. These sets are defined

in (2.4).

Definition 2.5.1. For t ∈]T0,T1[, a set B∈B(X) is called(q, t)-bounded if B⊆ Xt
n for some n=

1,2, . . . .

Definition 2.5.2. For a given Q-function q, a function̂P(u,x; t,B), where u∈ [T0,T1[, t ∈]u,T1[,
x∈ X, and B∈B(X), is a solution of Kolmogorov’s forward equation(2.37), if for each u,x,s,B,
such that s∈]T0,T1[, u∈ [T0,s[, x∈ X, and the set B is(q,s)-bounded,

(i) the functionP̂(u,x; t,B) is locally absolutely continuous on t∈]u,s[ and satisfies the bound-
ary condition

lim
t→u+

P(u,x; t,B) = I{x∈ B}; (2.36)

(ii) the functionP̂(u,x; t,B) satisfies Kolmogorov’s forward equation,

∂
∂ t

P(u,x; t,B)=−
∫

B
q(y, t)P(u,x; t,dy)+

∫

X
q(y, t,B\{y})P(u,x; t,dy) f or almost every t∈]u,s[.

(2.37)

The main result of this section, Theorem 2.5.1, shows that under Assumption 2.2.3 the tran-
sition functionP̄(u,x; t,B) is the minimal non-negative solution of Kolmogorov’s forward equa-
tion (2.37) on the semi-interval[T0,T1[ and provides a sufficient condition for its uniqueness.

Theorem 2.5.1.Under Assumption 2.2.3, the function̄P(u,x; t,B) is the minimal non-negative
solution of Kolmogorov’s forward equation(2.37). Also, if P̄ is a regular transition function, then
P̄ is the unique non-negative solution of Kolmogorov’s forward equation(2.37) that takes values
in [0,1].
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We give the proof of Theorem 2.5.1 after presenting a few auxiliary results. Theorem 2.5.1
states that the function̄P satisfies Kolmogorov’s forward equation (2.37) for(q,s)-bounded sets
B∈B(X). The following example demonstrates that, in general, it isnot possible to extend (2.37)
to all the setsB∈B(X).

Example 2.5.2.Kolmogorov’s forward equation(2.37)may not hold for all sets B∈ B(X). Let
X = Z, whereZ denotes the set of integers,q(0, t) = 1, q(0, t, j) = 2−(| j |+1) for all j 6= 0, and
q( j, t,− j) = q( j, t) = 2| j | for all j 6= 0. If Xu = 0, then starting at timeu the process spends an
exponentially distributed amount of time at state 0, then itjumps to a statej 6= 0 with probability
2−(| j |+1), and then it oscillates between the statesj and− j with equal intensities. Thus for all
u, t ∈ [T0,T1[ with u< t,

P̄(u,0;t,0) = e−(t−u) and P̄(u,0;t, j) =
1−e−(t−u)

2| j |+1
, j 6= 0,

which implies that

∫

X
q(y, t,X\{y})P̄(u,0;t,dy) = q(0, t)P̄(u,0;t,0)+ ∑

j 6=0

q( j, t,− j)P̄(u,0;t, j)

= e−(t−u)+ ∑
j>0

(1−e−(t−u)) = ∞.

Thus, ifB= X, then (2.37) does not hold because both integrals in (2.37) are infinite. �

Recall that ¯q(x) := supt∈[T0,T1[
q(x, t) for all x∈ X.

Definition 2.5.3. A set B∈B(X) is called q-bounded ifsupx∈B q̄(x)< ∞.

For continuousQ-functions, Feller [10, Theorem 1] showed that the transition functionP̄
satisfies Kolmogorov’s forward equation (2.37) for allq-bounded setsB. In order to show that the
functionP̄ is a solution of Kolmogorov’s forward equation (2.37), we show in Theorem 2.5.3 that
this property is correct for measurableQ-functions.

Theorem 2.5.3.Under Assumption 2.2.2, the following statements hold: foreach u,x,B, such that
u∈ [T0,T1[ , x∈ X, and the set B is q-bounded,

(a) the functionP̄(u,x; t,B) is locally absolutely continuous on t∈]u,T1[ and satisfies the
boundary condition(2.36);

(b) the functionP̄(u,x; t,B) satisfies(2.37)with s= T1.

Proof. (a) For all x ∈ X,u, t ∈ [T0,T1[ , u < t, and B ∈ B(X), equation (2.30) implies that the
functionP̄(u,x; t,B) is locally absolutely continuous ont ∈]u,T1[ for fixed u,x,B. Also, it follows
from (2.17) and (2.31) that for anyQ-functionq satisfying Assumption 2.2.2,

lim
t→u+

P̄(n)(u,x; t,B) = 0 for all n≥ 1 and lim
t→u+

P̄(0)(u,x; t,B) = I{x∈ B} (2.38)
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uniformly with respect toB. Thus, (2.19) and (2.38) imply that the function̄P satisfies (2.36).

(b) From the last equality of (2.23) withXu = x and the property that the jump process{Xt : t ∈
[T0,T1[} is a jump Markov process, for allu∈ [T0,T1[ , t ∈]u,T1], x∈X, B∈B(X), andn= 1,2, . . . ,

P̄(n)(u,x; t,B) =
∫ t

u

∫

B
q(y,s,dz\{y})e−

∫ t
s q(z,θ )dθ P̄(n−1)(u,x;s,dy)ds (2.39)

Then, from (2.17), (2.19), and (2.39), we have

P̄(u,x; t,B) =
∞

∑
n=0

P̄(n)(u,x; t,B) = P̄(0)(u,x; t,B)
∞

∑
n=0

P̄(n+1)(u,x; t,B)

= I{x∈ B}e−
∫ t
u q(x,s)ds+

∞

∑
n=0

∫ t

u

∫

B
q(y,s,dz\{y})e−

∫ t
s q(z,θ )dθ P̄(n)(u,x;s,dy)ds

= I{x∈ B}e−
∫ t
u q(x,s)ds+

∫ t

u

∫

B
q(y,s,dz\{y})e−

∫ t
s q(z,θ )dθ P̄(u,x;s,dy)ds.

(2.40)

Since P̄(u,x; t,B) is locally absolutely continuous function ont ∈ [T0,T1[ for fixed u,x,B, the
derivative ∂

∂ t P̄(u,x; t,B) exists for almost everyt ∈ ]u,T1[ . By differentiating (2.40), for almost
everyt > u,

∂
∂ t

P̄(u,x; t,B) =−I{x∈ B}e−
∫ t
u q(x,s)dsq(x, t)+

∫

B
q(y, t,dz\{y})P̄(u,x; t,dy)

+
∫ t

u

∂
∂ t

∫

X

∫

B
q(y,s,dz\{y})e−

∫ t
s q(z,θ )dθ P̄(u,x;s,dy)ds. (2.41)

Observe that, for allq-bounded setsB∈B(X),

∂
∂ t

∫

B
q(y,s,dz\{dy})e−

∫ t
s q(z,θ )dθ =

∫

B
q(y,s,dz\{y})

∂
∂ t

e−
∫ t
s q(z,θ )dθ

=−
∫

B
q(z, t)q(y,s,dz\{y})e−

∫ t
s q(z,θ )dθ .

(2.42)

Combining (2.41) and (2.42), for allq-bounded setsB,

∂
∂ t

P̄(u,x; t,B) =−I{x∈ B}e−
∫ t
u q(x,s)dsq(x, t)+

∫

X
q(y, t,B\{y})P̄(u,x; t,dy)

−
∫ t

u

∫

X

∫

B
q(z, t)q(y,s,dz\{y})e−

∫ t
s q(z,θ )dθ P̄(u,x;s,dy)ds, (2.43)

for almost everyt > u. By substitutingP̄(u,x; t,dz) in the left-hand side of the following equality
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with the final expression in (2.40),
∫

B
q(z, t)P̄(u,x; t,dz) = I{x∈ B}e−

∫ t
u q(x,s)dsq(x, t)

+
∫ t

u

∫

X

∫

B
q(z, t)q(y,s,dz\{y})e−

∫ t
s q(z,θ )dθ P̄(u,x;s,dy)ds.

(2.44)

Formulae (2.43) and (2.44) imply statement (b) of the theorem.

It follows from Theorem 2.5.3 that under Assumption 2.2.2 the transition function̄P satisfies
Kolmogorov’s forward equation (2.37) for allq-bounded sets. To show that the functionP̄ satisfies
(2.37) for all (q,s)-bounded sets, we consider theQ-functionsqs defined in (2.46) that satisfy
Assumption 2.2.2 if theQ-functionq satisfies the weaker Assumption 2.2.3.

Define the functionN : X× [T0,T1[→{0,1, . . .},

N(x,s) = min{n= 1,2, . . . : x∈ Xs
n}, x∈ X,s∈ [T0,T1[, (2.45)

where the setsXs
n are defined in (2.4) and min{ /0} := ∞. For eachx, the value ofN(x,s) is the

minimum natural numbern for which q(x, t) < n for almost everyt ∈ [T0,s[. Consider theQ-
functionsqs, s∈]T0,T1[, satisfying

qs(x, t,B) = q(x, t,B)I{t ∈ [T0,s[}I{q(x, t)< N(x,s)}, x∈ X, t ∈ [T0,T1[, B∈B(X). (2.46)

The difference between the Markov processes defined by theQ-functionsq andqs is that the latter
stops at times and does not move at timest ∈ [T0,s[ and statesx∈ X with q(x, t)≥ N(x,s). At all
other time instances, these two processes are controlled bythe sameQ-functionq. Let P̄s be the
transition functionP̄ defined in (2.19) withq replaced withqs.

Lemma 2.5.4.For arbitrary T0 and T1, consider a Q-function q satisfying Assumption 2.2.3. Then,
for each s∈]T0,T1[, the following statements hold:

(a) the Q-function qs satisfies Assumption 2.2.2.

(b) For any given probability measureγ on X, the Q-functions q and qs define the same jump
Markov process{Xt : t ∈ [T0,T1[} up to time s, and

P̄(u,x; t,B) = P̄s(u,x; t,B), u∈ [T0,s[, t ∈]u,s[,x∈ X,B∈B(X). (2.47)

Proof. (a) Assumption 2.2.3 implies that, for eachx ∈ X and s ∈]T0,T1[, there exists ann ∈
{1,2, . . .} such thatx ∈ Xs

n, and therefore,N(x,s) < ∞. This fact and (2.46) withB = X \ {x}
imply that, for allx∈ X,

qs(x, t) = q(x, t)I{t ∈ [T0,s[}I{q(x, t)< N(x,s)}< N(x,s)< ∞, t ∈ [T0,T1[. (2.48)

Thus, theQ-functionqs satisfies Assumption 2.2.2.
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(b) Assumption 2.2.3 and (2.45) imply thatx ∈ Xs
N(x,s) for all x ∈ X ands∈]T0,T1[. Thus,

from the definition of the setsXs
n, formula (2.4), for alls∈]T0,T1[,

µ(t ∈ [T0,s[: q(x, t)≥ N(x,s)) = 0, x∈ X. (2.49)

The above equality and (2.46) imply that (2.26) holds withT1= sandq′=qs. This fact, Lemma 2.2.1(iii),
and Lemma 2.3.4 withT1 = s andq′ = qs imply statement (b) of the lemma.

For all s∈]T0,T1[ andt ∈ [T0,s[, let Y1
t,s := {x∈ X : q(x, t)< N(x,s)} andY2

t,s := X \Y1
t,s. For

any setB∈B(X), we denote byB1
t,s := B∩Y1

t,s andB2
t,s := B∩Y2

t,s.

Lemma 2.5.5.Under Assumption 2.2.3, for all x∈ X, s∈]T0,T1[, and u∈ [T0,s[,

P̄(u,x; t,Y2
t,s) = 0 f or almost every t∈]u,s[. (2.50)

Proof. Fix an arbitraryx∈X ands∈]T0,T1[. To prove (2.50), we first show that (2.50) holds for the
particular case whenu= T0. According to Lemma 2.5.4(b), given an initial statex, theQ-functions
q andqs define the same jump Markov process{Xt : t ∈ [T0,T1[} up to times. This fact implies
that the compensator corresponding to this process can be given by (2.5) withT1 = s or by (2.5)
with T1 = s and withq replaced byqs. However, it follows from Jacod [17, Theorem 2.1] that a
compensator is unique up to a modification of aP-null set. Thus, from Jacod [17, Theorem 2.1]
and Lemma 2.5.4(b),
∫ s

T0

∫

X
q(z, t)P̄(T0,x; t,dz)dt=

∫ s

T0

∫

X
qs(z, t)P̄(T0,x; t,dz)dt=

∫ s

T0

∫

X
q(z, t)I{z∈Y1

t,s}P̄(T0,x; t,dz)dt,

where the first equality follows from Jacod [17, (1)] withX(t,z)= I{z∈X, t ∈]T0,s[}, formula (2.5)
with T1 = sgiven for theQ-functionsq andqs, and (2.7), and the last one follows from (2.46). The
above equality implies that

∫ s

T0

∫

X
q(z, t)I{z∈Y2

t,s}P̄(T0,x; t,dz)dt = 0. (2.51)

Observe that
∫ s

T0

P̄(T0,x; t,Y2
t,s)dt ≤

∫ s

T0

∫

X
q(z, t)I{z∈Y2

t,s}P̄(T0,x; t,dz)dt. (2.52)

This is true becauseq(z, t) ≥ N(z,s) ≥ 1 for all z∈ Y2
t,s andt ∈ [T0,s[. Thus, (2.50) withu = T0

follows from (2.51) and (2.52).
Now, to prove (2.50) for allu ∈ [T0,s[, fix an arbitraryu ∈ [T0,s[. Consider the measurable

Q-functionqu(x, t,B) defined on the time domain[u,T1[ and satisfyingqu(x, t,B) = q(x, t,B) for all
x∈ X, t ∈ [u,T1[, andB∈B(X). Observe that theQ-functionqu satisfies Assumption 2.2.3 with
T0 = u, and that formula (2.19) defines the same transition function P̄(w,x; t,B) on the domain
w∈ [u,T1[, t ∈]w,T1[, x∈ X, B∈B(X) if q is replaced byqu. Starting at the pointu instead ofT0,
we have from the above arguments that (2.50) holds. Sinceu is chosen arbitrarily, (2.50) holds for
all u∈ [T0,s[.
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Lemma 2.5.6 provides a simple statement that is useful to prove Lemma 2.5.7 and Corollar-
ies 2.6.2, 2.6.3.

Lemma 2.5.6. A functionP̂(u,x; t,B), where u∈ [T0,T1[, t ∈]u,T1[, x∈ X, and B∈ B(X), is a
solution of Kolmogorov’s forward equation(2.37) if and only if the functionP̂ satisfies, for all
t ∈]T0,T1[, u∈ [T0, t[, x∈ X, and(q, t)-bounded sets B∈B(X),

P(u,x; t,B) = I{x∈ B}−
∫ t

u
ds
∫

B
q(y,s)P(u,x;s,dy)+

∫ t

u
ds
∫

X
q(y,s,B\{y})P(u,x;s,dy).

(2.53)

Proof. Integrating (2.37) fromu to t and by using the boundary condition (2.36), we get (2.53).
Thus, it follows from properties (i) and (ii) in Definition 2.5.2 that a solution of Kolmogorov’s
forward equation (2.37) satisfies (2.53) for allu∈ [T0,T1[, t ∈]u,T1[, x∈ X, and(q, t)-bounded sets
B∈B(X).

Consider a function̂P(u,x; t,B) that satisfies (2.53) for allt ∈]T0,T1[, u∈ [T0, t[, x∈ X, and
(q, t)-bounded setsB∈B(X). For eachs∈]T0,T1[, a(q,s)-bounded set is(q, t)-bounded for allt ∈
[T0,s[. This property implies that, for allu,x,s,Bsuch thats∈]T0,T1[, x∈X, u∈ [T0,s[, and the setB
is (q,s)-bounded, the function̂P(u,x; t,B) satisfies (2.53) for allt ∈]u,s[. Thus, for allu,x,s,B such
thats∈]T0,T1[, x∈ X, u∈ [T0,s[, and the setB is (q,s)-bounded, the function̂P(u,x; t,B) is locally
absolutely continuous ont ∈]u,s[ and (2.36) holds. That is, the function̂P satisfies property(i)
of Definition 2.5.2. Since a locally absolutely continuous function is differentiable almost every
where on its domain, differentiating (2.53) we have that thefunction P̂ satisfies property (ii) of
Definition 2.5.2.

The following lemma is useful in proving the minimality property of P̄ stated in Theo-
rem 2.5.1.

Lemma 2.5.7.Let Assumption 2.2.3 hold. Consider a non-negative solution P̂(u,x; t,B) of Kol-
mogorov’s forward equation(2.37). Then, for all t∈]T0,T1[, u∈ [T0, t[, x∈ X, and(q, t)-bounded
sets B∈B(X), the functionP̂(u,x; t,B) satisfies

P(u,x; t,B) = I{x∈ B}e−
∫ t
u q(x,s)ds+

∫ t

u
ds
∫

X

∫

B
q(y,s,dz\{y})e−

∫ t
s q(z,θ )dθ P(u,x;s,dy). (2.54)

Proof. Observe that: (i) for eachu,x, t,

{P̂(u,x; t +
1
n
, ·)}n=1,2,... converge setwise tôP(u,x; t, ·), (2.55)

and (ii) for any(q,s)-bounded setB∈B(X), there exists a natural numberm such that

∫ t+ 1
n

t
q(y,θ)dθ ≤ m/n, t ∈ [T0,s[,n> 1/(s− t),y∈ B. (2.56)

Formula (2.55) is correct since, for eachu,x,B, the functionP̂(u,x; t,B) is absolutely continuous
in t; see Definition 2.5.2(i), and Formula (2.56) follows from the definition of a(q,s)-bounded set.
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Then, for allx∈ X, s∈]T0,T1[, u∈ [T0,s[, (q,s)-bounded setsB∈B(X), andt ∈]u,s[,

∂
∂ t

∫

B
e
∫ t
u q(y,θ )dθ P̂(u,x; t,dy) = lim

n→∞

∫

Be
∫ t+1

n
u q(y,θ )dθ P̂(u,x; t + 1

n,dy)−
∫

Be
∫ t
u q(y,θ )dθ P̂(u,x; t,dy)

1
n

= limn→∞ n
∫

Be
∫ t
u q(y,θ )dθ ((1+

∫ t+ 1
n

t q(y,θ)dθ +
(
∫ t+1

n
t q(y,θ )dθ )2

2! + . . .)P̂(u,x; t+ 1
n,dy)− P̂(u,x; t,dy))

= lim
n→∞

n
∫

B
e
∫ t
u q(y,θ )dθ (P̂(u,x; t+

1
n
,dy)− P̂(u,x; t,dy))

+ lim
n→∞

n
∫

B
e
∫ t
u q(y,θ )dθ (

∫ t+ 1
n

t
q(y,θ)dθ)P̂(u,x; t +

1
n
,dy) = J1+J2+J3, (2.57)

where the first equality follows from the definition of a partial derivative, the second equality is

obtained by using the power series expansion of the exponential functione
∫ t+ 1

n
t q(y,θ )dθ , the third

equality is correct since the limit of the higher order termstend to zero in the limit due to (2.55),
(2.56), and Lebesgue dominated convergence theorem, and

J1 = lim
n→∞

n
∫

B
e
∫ t
u q(y,θ )dθ

(

P̂(u,x; t +
1
n
,dy)− P̂(u,x; t,dy)

)

,

J2 = lim
n→∞

n
∫

B
e
∫ t
u q(y,θ )dθ

(

∫ t+ 1
n

t
q(y,θ)dθ

)

P̂(u,x; t,dy),

J3 = lim
n→∞

n
∫

B
e
∫ t
u q(y,θ )dθ

(

∫ t+ 1
n

t
q(y,θ)dθ

)

(

P̂(u,x; t+
1
n
,dy)− P̂(u,x; t,dy)

)

.

Observe that, forx∈ X, s∈]T0,T1[, u∈ [T0,s[, and(q,s)-bounded setB∈B(X),

J1 = lim
n→∞

n
∫

B
e
∫ t
u q(y,θ )dθ

∫ t+ 1
n

t

(

−q(y,v)P̂(u,x;v,dy)+
∫

X
q(z,v,dy\{z})P̂(u,x;v,dz)

)

dv

= lim
n→∞

n
∫ t+ 1

n

t

(

∫

B
e
∫ t
u q(y,θ )dθ

(

−q(y,v)P̂(u,x;v,dy)+
∫

X
q(z,v,dy\{z})P̂(u,x;v,dz)

))

dv

=
∫

B
e
∫ t
u q(y,θ )dθ

(

−q(y, t)P̂(u,x; t,dy)+
∫

X
q(z, t,dy\{z})P̂(u,x; t,dz)

)

, (2.58)

for almost everyt ∈]u,s[, where the first equality follows from Lemma 2.5.6, the secondequality
is correct due to Fubini’s theorem, and the last one follows from Lebesgue differentiation theo-
rem [32, Theorem 7.10], and

J2= lim
n→∞

n
∫ t+ 1

n

t

(

∫

B
q(y,v)e

∫ t
u q(y,θ )dθ P̂(u,x; t,dy)

)

dv=
∫

B
q(y, t)e

∫ t
u q(y,θ )dθ P̂(u,x; t,dy), (2.59)
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for almost everyt ∈]u,s[, where the first equality is correct due to Fubini’s theorem and the second
equality follows from Lebesgue differentiation theorem.

In addition, forx∈ X, s∈]T0,T1[, u∈ [T0,s[, and(q,s)-bounded setB∈B(X),

J3 = lim
n→∞

∫

B
e
∫ t

u q(y,θ )dθ (n
∫ t+ 1

n

t
q(y,θ)dθ)

∫ t+ 1
n

t
(−q(y,v)P̂(u,x;v,dy)+

∫

X
q(z,v,dy\{z})P̂(u,x;v,dz))dv

= lim
n→∞

∫ t+ 1
n

t
(
∫

B
e
∫ t

u q(y,θ )dθ (n
∫ t+ 1

n

t
q(y,θ)dθ)(−q(y,v)P̂(u,x;v,dy)+

∫

X
q(z,v,dy\{z})P̂(u,x;v,dz)))dv

= 0, (2.60)

for almost everyt ∈]u,s[, where the first equality follows from Lemma 2.5.6, the secondequality is
correct due to Fubini’s theorem, and the third equality is true since (2.56) holds and since, for each
(q,s)-bounded setB∈B(X), the integrals

∫

Bq(y,v)P̂(u,x;v,dy) and
∫

X q(z,v,B\{z})P̂(u,x;v,dz)
are finite for almost everyv∈]u,s[ as the functionP̂ is a solution of (2.37).

From (2.57), (2.58), (2.59), and (2.60), for allx∈X, s∈]T0,T1[, u∈ [T0,s[, and(q,s)-bounded
setsB∈B(X),

∂
∂ t

∫

B
e
∫ t
u q(y,θ )dθ P̂(u,x; t,dy) =

∫

B
e
∫ t
u q(y,θ )dθ

∫

X
q(z, t,dy\{z})P̂(u,x; t,dz),

for almost everyt ∈]u,s[. Integrating the above equality fromu to t and using the boundary condi-
tion (2.36), for allx∈ X, t ∈]T0,T1[, u∈ [T0, t[, and(q, t)-bounded setsB∈B(X),

∫

B
e
∫ t
u q(y,θ )dθ P̂(u,x; t,dy)− I{x∈ B}=

∫ t

u
dθ
∫

B
e
∫ θ
u q(y,v)dv

∫

X
q(z,θ ,dy\{z})P̂(u,x;θ ,dz)

which implies that,

∫

B
e
∫ t
u q(y,θ )dθ

(

P̂(u,x; t,dy)− I{x∈ dy}e−
∫ t

u q(y,θ )dθ
)

=
∫

B
e
∫ t
u q(y,θ )dθ

(

∫ t

u
ds
∫

X
q(z,s,dy\{z})e−

∫ t
s q(y,θ )dθ P̂(u,x;s,dz)

)

.

Sincee
∫ t
u q(y,θ )dθ > 0 for all u, t and since every measurable subset of a(q, t)-bounded set is also

(q, t)-bounded, it follows from Radon-Nikodym theorem and the above equality that (2.54) holds
for all x∈ X, t ∈]T0,T1[, u∈ [T0, t[, and(q, t)-bounded setsB∈B(X).

Proof of Theorem 2.5.1.First, we show that the function̄P is a solution of Kolmogorov’s forward
equation (2.37). It follows from the arguments given in the proof of Theorem 2.5.3(a) that, for
all u,x,B such thatu∈ [T0,T1[, x∈ X, andB ∈B(X), the functionP̄ is an absolutely continuous
function ont ∈]u,T1[ and (2.36) holds. Thus, the function̄Psatisfies property (i) of Definition 2.5.2.
Though it was assumed in Theorem 2.5.3(a) that Assumption 2.2.2 holds, the arguments there are
correct for aQ-function satisfying Assumption 2.2.4. In view of Lemma 2.2.1(iii), theQ-function
q satisfies Assumption 2.2.4 since Assumption 2.2.3 holds.
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To prove that the function̄P satisfies property (ii) of Definition 2.5.2, fix an arbitrarys∈
]T0,T1[ and consider theQ-functionqs defined in (2.46). ThisQ-function satisfies Assumption 2.2.2;
Lemma 2.5.4(a). Then it follows from Theorem 2.5.3(b) that,for all u ∈ [T0,T1[, x ∈ X, andqs-
bounded setsB ∈ B(X), the functionP̄s(u,x; t,B) satisfies (2.37) withs= T1 and with theQ-
functionq replaced byqs. This fact and (2.47) imply that, for allu∈ [T0,s[, x∈ X, andqs-bounded
setsB∈B(X),

∂
∂ t

P̄(u,x; t,B)=−
∫

B
qs(y, t)P̄(u,x; t,dy)+

∫

X
qs(y, t,B\{y})P̄(u,x; t,dy) f or almost every t∈]u,s[.

(2.61)

Observe that a set isqs-bounded if and only if it is(q,s)-bounded. Suppose that a setB ∈
B(X) is qs-bounded. Then there exists a natural numbern such thatqs(x, t)< n for all x∈ B and
t ∈ [T0,T1[. This fact and (2.48) imply that

q(x, t)I{q(x, t)< N(x,s)}< n, x∈ B, t ∈ [T0,s[.

Thus, we have from the above inequality and (2.49) thatB ⊆ Xs
n, and therefore(q,s)-bounded.

Now, suppose that a setB ∈ B(X) is (q,s)-bounded. Then there exists a natural numbern such
thatB ⊆ Xs

n, and therefore,N(x,s) ≤ n for all x ∈ B. This fact and (2.48) imply that the setB is
qs-bounded. Then for allu∈ [T0,s[, x∈ X, and(q,s)-bounded setsB∈B(X),

∂
∂ t

P̄(u,x; t,B) =−

∫

B1
t,s

qs(y, t)P̄(u,x; t,dy)+
∫

Y1
t,s

qs(y, t,B\{y})P̄(u,x; t,dy)

−

∫

B2
t,s

qs(y, t)P̄(u,x; t,dy)+
∫

Y2
t,s

qs(y, t,B\{y})P̄(u,x; t,dy)

=−

∫

B1
t,s

q(y, t)P̄(u,x; t,dy)+
∫

Y1
t,s

q(y, t,B\{y})P̄(u,x; t,dy)

=−
∫

B
q(y, t)P̄(u,x; t,dy)+

∫

X
q(y, t,B\{y})P̄(u,x; t,dy),

for almost everyt ∈]u,s[, where the setsB1
t,s,B

2
t,s,Y

1
t,s,Y

2
t,s are defined prior to Lemma 2.5.5, and the

first equality follows from (2.61), the second equality follows from (2.46) and (2.50), and the last
one is correct due to (2.50). Thus, the functionP̄ satisfies property (ii) from Definition 2.5.2, and
is therefore a solution of Kolmogorov’s forward equation (2.37).

To show the minimality property of̄P, consider a non-negative solutionP∗ of Kolmogorov’s
forward equation (2.37). Due to Lemma 2.5.7, the functionP∗(u,x; t,B) satisfies (2.54) for all
t ∈]T0,T1[, u ∈ [T0, t[, x ∈ X, and(q, t)-bounded setsB ∈ B(X). Since the last term of (2.54) is
non-negative, for allt ∈]T0,T1[, u∈ [T0, t[, x∈ X, and(q, t)-bounded setsB∈B(X),

P∗(u,x; t,B)≥ I{x∈ B}e−
∫ t
u q(x,s)ds= P̄(0)(u,x; t,B), (2.62)

where the last equality is (2.17). For allt ∈]T0,T1[, u ∈ [T0, t[, x ∈ X, and (q, t)-bounded sets
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B ∈ B(X), assumeP∗(u,x; t,B) ≥
n
∑

m=0
P̄(m)(u,x; t,B) for somen ≥ 0. This fact, (2.54) for the

functionP∗, and (2.39) imply that

P∗(u,x; t,B)≥ I{x∈ B}e−
∫ t
u q(x,s)ds+

∫ t

u
ds
∫

X

∫

B
q(y,s,dz\{y})e−

∫ t
s q(z,θ )dθ

n

∑
m=0

P̄(m)(u,x;s,dy)

= P̄(0)(u,x; t,B)+
n

∑
m=0

P̄(m+1)(u,x; t,B) =
n+1

∑
m=0

P̄(m)(u,x; t,B).

Thus, by induction,P∗(u,x; t,B)≥ ∑n
m=0 P̄(m)(u,x; t,B) for all n≥ 0, t ∈]T0,T1[, u∈ [T0, t[, x∈ X,

and(q, t)-bounded setsB∈B(X). This property and (2.19) imply that, for allt ∈]T0,T1[, u∈ [T0, t[,
andx∈ X,

P∗(u,x; t,B)≥ P̄(u,x; t,B) for all (q, t)-bounded setsB∈B(X). (2.63)

Then for allt ∈]T0,T1[, u∈ [T0, t[, andx∈ X

P∗(u,x; t,B) = lim
n→∞

P∗(u,x; t,B∩Xt
n)≥ lim

n→∞
P̄(u,x; t,B∩Xt

n) = P̄(u,x; t,B), B∈B(X), (2.64)

where the first and last equalities are correct since the setsXt
n ↑X asn→∞ due to Assumption 2.2.3

and the functions̄P andP∗ are measures on(X,B(X)) for fixedu,x, t, and the inequality holds due
to (2.63). Thus,̄P is the minimal non-negative solution of Kolmogorov’s forward equation (2.37).

To prove the uniqueness property ofP̄, let the solutionP∗ take values in[0,1]. If P̄(u,x; t,X)=
1 for all u,x, t, then the uniqueness of̄P within the set of non-negative solutions with values in[0,1]
follows from (2.64) and from the same arguments as in the proof of uniqueness in Theorem 2.4.1.

2.6 Additional results and comments

Assumption 2.2.2 means that the jump intensities are bounded at each state for the time hori-
zon [T0,T1[, and this assumption is natural for continuous-time Markovdecision processes (CT-
MDPs); see Feinberg et al. [8, 9]. In this section, we presentparticular results on the minimality
and uniqueness properties of the solutionP̄ of Kolmogorov’s forward equation under Assump-
tion 2.2.2.

Theorem 2.6.1.Let Assumption 2.2.2 hold. The function̄P(u,x; t,B) is the minimal non-negative
function that satisfies, for each u,x,B such that u∈ [T0,T1[, x ∈ X, and the set B is q-bounded,
properties (a) and (b) given in Theorem 2.5.3. In addition, if P̄ is a regular transition function,
thenP̄ is the unique non-negative function satisfying properties (a) and (b) given in Theorem 2.5.3
and takes values in[0,1].

Proof. According to Theorem 2.5.3, the function̄P satisfies properties (a) and (b) given in Theo-
rem 2.5.3. To prove the minimality of̄P, consider a non-negative functionP∗ that satisfies prop-
erties (a) and (b) given in Theorem 2.5.3. Recall that aq-bounded set is(q, t)-bounded for all
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t ∈]T0,T1[. Then, in view of Theorem 2.5.3, it follows from the arguments given in Lemma 2.5.7
that, for allt ∈]T0,T1[, u∈ [T0, t[, andx∈ X, formula (2.54) holds for allq-bounded setsB∈B(X).
Therefore, it follows from Lemma 2.2.1(ii) and from the arguments given as in the proof of mini-
mality in Theorem 2.5.1 that (2.63) holds, and therefore (2.64) holds for allB∈B(X). The proof
of uniqueness property of̄P is the same as the proof of uniqueness in Theorem 2.4.1.

The following two corollaries are useful for applying the results of this paper to continuous-
time jump Markov decision processes; Feinberg et al. [8, Theorem 3.2] and Theorem 4.3.1.

Corollary 2.6.2. Under Assumption 2.2.2, the following statements hold:
(a) for all x∈X, t ∈]T0,T1[, u∈ [T0, t], and q-bounded sets B∈B(X), the functionP̄(u,x; t,B)

satisfies(2.53).
(b) the functionP̄ is the minimal non-negative function for which statement (a) holds. In

addition, if P̄ is a regular transition function, then̄P is the unique non-negative function with
values in[0,1] for which statement (a) holds.

Proof. Integrating (2.37) fromu to t and by using the boundary condition (2.36), we get (2.53).
Thus, statements (a) and (b) of this corollary follow respectively from Theorem 2.5.3(a) and (b),
and Theorem 2.6.1.

When x is fixed andu = T0, (2.53) is an equation in two variablest and B. Hence, for
simplicity, we writeP(t,B) instead ofP(T0,x; t,B) for any functionP on the domain of̄P whenx
is fixed andu= T0, and (2.53) will be given as

P(t,B) = I{x∈ B}+
∫ t

T0

ds
∫

X
q(y,s,B\{y})P(s,dy)−

∫ t

T0

ds
∫

B
q(y,s)P(s,dy). (2.65)

For fixedx∈ X andu= T0, the functionP̄(t, ·) is the marginal probability distribution on the state
of the process{Xt , t ∈ [T0,T1[} givenXT0 = x. Under Assumption 2.2.2, the following corollary
describes the properties of the solutionP̄(t,B) to (2.65).

Corollary 2.6.3. Fix an arbitrary x∈ X. Under Assumption 2.2.2, the following statements hold:
(a) for all t ∈]T0,T1[ and q-bounded sets B∈B(X), the functionP̄(t,B) satisfies(2.65);
(b) the functionP̄(t,B) is the minimal non-negative function for which statement (a) holds. In
addition, if the intensities q(z, t) are uniformly bounded in z and t, then̄P(t,B) is the unique non-
negative function with values in[0,1] for which statement (a) holds.

Proof. Statement (a) of the corollary follows immediately from Corollary 2.6.2(a) whenu = T0.
To prove the minimality of the function̄P(t,B), consider a non-negative functionP∗(t,B), where
t ∈]T0,T1[ andB∈B(X), satisfying (2.65) for eacht ∈]T0,T1[ andq-bounded setB∈B(X). Define
the functionf (u,z; t,B) with the same domain as̄P(u,z; t,B),

f (u,z; t,B) =

{

P∗(t,B), if u= T0 andz= x,
P̄(u,z; t,B), otherwise.

(2.66)
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Then, it follows from Corollary 2.6.2(a) and (2.66) that statement (a) of Corollary 2.6.2 holds for
the functionf . This fact, Corollary 2.6.2(b), and (2.66) imply that

P∗(t,B) = f (T0,x; t,B)≥ P̄(T0,x; t,B) = P̄(t,B), t ∈]T0,T1[,B∈B(X). (2.67)

Thus, the functionP̄(t,B) is the minimal non-negative function for which statement (a) of this
corollary holds.

To show the uniqueness property, let the functionP∗ take values in[0,1]. This fact and
the property that the function̄P(u,z; t,B) takes values in[0,1] for all u,z, t,B in the domain ofP̄
imply that the functionf defined in (2.66) takes values in[0,1]. Observe that, if the intensities
q(z, t) are uniformly bounded inz and t, X is a q-bounded set. Then, from Corollary 2.6.2(a),
we haveP̄(u,z; t,X) = 1 for all u, t ∈ [T0,T1[ with u < t andz∈ X. Therefore, it follows from
Corollary 2.6.2(b) thatf (u,z; t,B) = P̄(u,z; t,B) for all u,z, t,B in the domain ofP̄, which along
with (2.67) implies the uniqueness property ofP̄(t,B).

2.6.1 Non-conservativeQ-functions

The results of this chapter can be extended to non-conservative Q-functions. As mentioned in
section 2.1, any non-conservativeQ-functionq can be transformed into a conservativeQ-function
by adding a state ¯x to X with q(x, t,{x̄}) :=−q(x, t,X), q(x̄, t,X) := 0, andq(x̄, t,{x̄}) := 0, where
x∈ X andt ∈ R+. According to Theorem 2.3.2, there is a transition functionP̄ of a jump Markov
process with the state spaceX∪{x̄}, and this process is determined by the initial state distribution
and by the compensator defined by the modifiedQ-function.

The proofs of the results of sections 2.4 and 2.5 do not use theassumption that theQ-function
q is conservative. Therefore, these results remain valid fornon-conservativeQ-functions. However,
the validity of the condition̄P(u,x; t,X) = 1 for all x,u, t with u< t in Theorems 2.4.1 and 2.5.1 is
possible only ifq(x, t,X)= 0 almost everywhere int for eachx∈X. Thus, in fact,q is conservative
if P̄(u,x; t,X) = 1 for all x,u, t with u < t. It is also easy to see that the minimal solutions of
both Kolmogorov’s backward and forward equations are equalto P̄(u,x; t,B), whenx ∈ X and
B ∈ B(X), where the transition function̄P is described in the previous paragraph for a broader
domain.

2.6.2 Generalized boundedness assumptions

For someQ-functions, Assumptions 2.2.3 and 2.2.4 may not hold if the point T1 is included.
To study Kolmogorov’s equations for suchQ-functions, we excluded the pointT1 and defined the
solutionP̄(u,x; t,B) for all T0 ≤ u< t < T1. Similarly, it is also possible to consider the situation
when Assumptions 2.2.3 and 2.2.4 do not hold from the pointT0 but hold from any pointu> T0,
as described below.

Forn= 1,2, . . ., consider the functionsZn : X× [T0,T1]× [T0,T1]→ [0,∞] defined as

Zn(x,u, t) =
∫ t

u
I{q(x,s)≥ n}ds, x∈ X,u, t ∈ [T0,T1],u< t. (2.68)
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For eachu, t ∈ [T0,T1] with u< t, let Xu,t
n ,n= 1,2, . . ., be the subsets ofX such that

Xu,t
n = {x∈ X : Zn(x,u, t) = 0}, n= 1,2, . . . . (2.69)

Since the functionsZn(x,u, t) are measurable, for eachu, t the setsXu,t
n are measurable subsets of

X. Observe thatXu,t
n ⊆ Xu,t

n+1, n= 1,2, . . . . A setB∈B(X) is (q,u, t)-bounded ifB⊆ Xu,t
n for some

n= 1,2, . . . .
Consider the following weak boundedness assumptions:

Assumption 2.6.1(General almost everywhere boundedness ofq). Xu,t
n ↑ X as n→ ∞ for each

u, t ∈]T0,T1[ with u< t.

Assumption 2.6.2(GeneralL 1 boundedness ofq). For all x ∈ X, the integral
∫ t

u q(x,s)ds< ∞ for
each u, t ∈]T0,T1[ with u< t.

Under Assumption 2.6.2, the transition function̄P(u,x; t,B) is well defined for allu, t sat-
isfying T0 < u < t < T1, but the stochastic process{Xt , t ∈ [T0,T1[} defined in (2.7) may not be
defined starting fromt = T0. The construction of the stochastic process{Xt, t ∈ [T0,T1[} is based
on Jacod [17, Theorem 3.6], which requires that the functionν(ω; [T0, t],B) defined in (2.5) is fi-
nite for all t ∈]T0,T1[ andB∈B(X). This might not be the case if theQ-function does not satisfy
Assumption 2.2.4 as demonstrated by the following example.

Example 2.6.4.The random measureν(ω; [T0, t],B) defined in(2.5)may not be finite when the Q-
function satisfies Assumption 2.6.2.Let T0 = 0, T1 = ∞, X = {1,2}, q(i, t, j) = q(i, t) = 1

t I{t > 0}
for all i, j ∈ X with i 6= j. From (2.5),

ν(ω; [0, t],X) =

∫ t

0
∑
n≥0

I{tn ≤ s< tn+1}q(xn,s)ds=
∫ t

0

1
s
ds= ∞, t ∈]0,∞[.

Observe that Assumptions 2.6.1 and 2.6.2 are respectively the same as Assumptions 2.2.3 and
2.2.4 withT0 = u for all u∈]T0,T1[. Hence, results similar to those in Sections 2.4 and 2.5 on Kol-
mogorov’s equations remain valid under Assumptions 2.6.1 and 2.6.2. Under Assumption 2.6.2,
the following statements hold:

(a) the functionP̄(u,x; t,B) satisfies property (i) from Definition 2.4.2;
(b) for eachx, t,B, such thatx∈X, t ∈]T0,T1[, andB∈B(X), the functionP̄(u,x; t,B) satisfies

Kolmogorov’s backward equation (2.29) for almost everyu∈]T0, t[.
In addition,P̄ is the minimal non-negative function satisfying statements (a), (b) given above. If
P̄(u,x; t,X) = 1, then it is the unique non-negative function that satisfiesthese statements, takes
values in[0,1], and is a measure on(X,B(X)) for fixed u,x, t. This is true because any function
P∗(u,x; t,B) satisfying these statements can be extended to a solution ofKolmogorov’s backward
equation (2.29) by definingP∗(T0,x; t,B) = I{x∈ B} for all x∈ X, t ∈]T0,T1[, andB∈B(X).

Under Assumption 2.6.1, the following statements hold:
(a) for eachx∈ X,u∈]T0,T1[, andB ∈ B(X), the functionP̄(u,x; t,B) satisfies property (i)

from Definition 2.5.2;
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(b) For eachw,s,u,x,B, such thatw ∈]T0,T1[,s∈]w,T1[,u ∈ [w,s[, x ∈ X, and the setB is
(q,w,s)-bounded, the function̄P(u,x; t,B) satisfies Kolmogorov’s forward equation (2.37).
In addition,P̄ is the minimal non-negative function satisfying statements (a), (b) given above. This
is true because any functionP∗(u,x; t,B) satisfying these statements is a solution of Kolmogorov’s
backward equation (2.29) on the semi-interval[w,T1[ for eachw ∈]T0,T1[. Since aQ-function
satisfying Assumption 2.6.1 satisfies Assumption 2.2.3 with T0 = w for all w ∈]T0,T1[, we have
from Theorem 2.5.1 that, for allw∈]T0,T1[,

P∗(u,x; t,B)≥ P̄(u,x; t,B), u∈ [w,T1[, t ∈]w,T1[,x∈ B,B∈B(X). (2.70)

Therefore,P̄(u,x; t,B) is the minimal non-negative function for which statements (a) and (b) given
above hold. In fact, ifP̄(u,x; t,X) = 1 then it is the unique non-negative function with values in
[0,1] satisfying these statements because (2.70) holds with an equality.
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Chapter 3

Continuous-time Markov decision processes

3.1 Introduction

A Markov decision process (MDP) is a mathematical frameworkused for sequential decision
making under uncertainty. It is used for modelling decision-making (or control) problems whose
uncontrolled version is a Markov chain. Hence, MDPs are alsoknown as controlled Markov
chains. They are commonly used in many fields, such as inventory control, queuing systems,
manufacturing, system maintenance, appointment scheduling in healthcare, population models etc,
to improve the performance characteristics.

In MDPs, the decision maker chooses actions/decisions to influence the evolution of underly-
ing Markov chain to minimize certain long term costs. Depending on when the actions are chosen,
MDPs can be classified into two types:

(i) Discrete-time MDP (DTMDP): Actions are chosen at fixed time points, say att = 0,1,2, . . . ,
and the uncontrolled version of the MDP is a discrete-time Markov chain.

(ii) Continuous-time MDP (CTMDP): Actions can be chosen at any time, say at anyt ∈ [0,∞[ ,
and the uncontrolled version of the MDP is a continuous-timeMarkov chain.

In this chapter, we formally introduce CTMDPs, provide a brief construction of the stochastic
processes induced by a policy, and define the optimality criteria that we are interested in. The
reader can refer to Appendix 5 for a similar description of DTMDPs.

3.2 The CTMDP model

A CTMDP is defined by the multiplet(X,A,A(x),q(·|x,a),c(x,a),C(x,a,y)), where

(i) X is the state space such that(X,B(X)) is a standard Borel space;

(ii) A is the action space such that(A,B(A)) is a standard Borel space;

(iii) A(x) are the set of actions available atx∈ X. It is assumed thatA(x) ∈B(X) for all x∈ X
and the set of feasible state-action pairsGr(A) = {(x,a) : x∈ X,a∈ A(x)} is a measurable
subset of(X×A) containing the graph of a measurable mapping fromX to A.
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(iv) q(·|x,a) is the transition rate fromGr(A) to X. It is a signed measure on(X,B(X)) for
any (x,a) ∈ Gr(A) such thatq(X|x,a) = 0, 0≤ q(Z \ {x}|x,a) < ∞ for all Z ∈ B(X), and
q(Z|x,a) is a measurable function onGr(A) for eachZ ∈B(X).

(v) c(x,a) is the cost rate incurred for choosing an actiona∈ A(x) in statex∈ X and is assumed
to be a bounded below measurable function on theGr(A).

(vi) C(x,a,y) is the instantaneous cost incurred if the process jumps fromstatex to statey and
actiona was chosen at the jump epoch. It is assumed to be a bounded below measurable
function onGr(A)×X.

For CTMDPs, it is possible to choose actions any time. At eachtime t ∈ R+, the decision
maker observes the current statex of the stochastic system and chooses a particular actiona from
the set of actionsA(x) available atx. We give an informal description of the evolution of the system.
Suppose that an actiona is chosen in statex at timet. Then in the infinitesimal time interval[t, t+
dt], the decision maker incurs the costc(x,a)dt and the system transitions from statex to statey 6= x
under the controla with probabilityq(y|x,a)dt+o(dt) or it stays in the statex with probability
1−q(X \ {x}|x,a)dt+o(dt). If the transition occurs, the decision maker incurs the instantaneous
costC(x,a,y). At each timet, the decision maker can also choose a probability distribution on
the set of available actionsA(x). Such decisions are commonly called randomized. If the decision
maker chooses a randomized action, or in other words choosesa probability distribution on the
set of available actions, then the system evolves as if the decision maker choose an action whose
associated transition rate, cost rate, and instantaneous cost are expectation of the corresponding
values with respect to the measure defined by the randomized action. Intuitively, this means that,
for any two actionsa and b in statex and for any constantλ ∈ (0,1) there is an actiond in
statex such thatq( · |x,d) = λq( · |x,a)+ (1−λ )q( · |x,b), c(x,d) = λc(x,a)+ (1−λ )c(x,b), and
C(x,d,y) = λC(x,a,y)+ (1− λ )C(x,b,y) for all y 6= x. This definition for randomized actions
simply relaxes the control set rather than chose an action randomly from the set of actions available.
Thus, we think the term ’relaxed’ is more appropriate to describe such actions. the system spends in
statex a random amount of time (also called the sojourn time) that has an exponential distribution
with rateq(x,a) :=−q({x}|x,a) for all (x,a) ∈ Gr(A) and then makes the transition in to the next
state. In particular, on the infinitesimal time interval[t, t+dt]: We give a simple example showing
the various parameters corresponding to the chosen action.

Example 3.2.1.Consider the 3 state CTMDP in Figure 3.2.1: Then,

action transition rate cost rate instantaneous costs
a q(2|1,a) = 1, q(3|1,a) = 0 5 10
b q(2|1,b) = 0, q(3|1,b) = 2 10 5

d : p(a) = 0.4 q(2|1,d) = 0.4, q(3|1,d) = 1.2 8 7
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2

q(2|1,a) = 1, 

c(1,a) = 5,

C(1,a,2) = 10

b 31

a

q(3|1,b) = 2, 

c(1,b) = 10, C(1,b,2) = 5

Figure 3.1: Example of a CTMDP

3.3 Jump process induced by a policy

In this section, we define different policies or decision rules considered in this thesis and
provide a brief description of the construction of the jump process induced by them.

Adjoin an isolated pointx∞ to X, and letX := X ∪ {x∞}. Consider the Borelσ -algebra
B(X) := σ(B(X),{x∞}) on X, which is the minimalσ -algebra containingB(X) and{x∞}. Let
(X ×R+)

∞, whereR+ :=]0,∞], be the set of all sequences(x0, t1,x1, t2,x2, . . .) with xn ∈ X and
tn+1 ∈ R+ for n= 0,1, . . . . This set is endowed with theσ -algebra defined by the products of the
Borel σ -algebrasB(X) andB(R+).

Denote byΩ the subset of all sequencesω = (x0, t1,x1, t2,x2, . . .) from (X×R+)
∞ such that:

(i) x0 ∈ X; (ii) for n= 1,2, . . ., tn+1 > tn if tn < ∞ andtn+1 = tn if tn = ∞; and, (iii) for n= 1,2, . . .,
xn = x∞ if and only if tn = ∞. Observe thatΩ is a measurable subset of(X×R+)

∞. Consider the
measurable space(Ω,F ), whereF is theσ -algebra of the measurable subsets ofΩ. Define the
random variablesxn(ω) = xn, tn+1(ω) = tn+1, n= 0,1, . . ., t0(ω) = 0, andt∞(ω) = lim

n→∞
tn on the

measurable space(Ω,F ). Throughout our study on CTMDPs, we omitω whenever possible. For
all t ∈R+ let Ft := σ(B(X),Gt), whereGt := σ(I{xn ∈ Z}I{tn ≤ s} : n≥ 1,s∈ [0, t],Z∈B(X)),
and letP be the predictableσ -algebra onΩ×R+ that is generated by sets of the formΓ×{0},
Γ ∈ F0, and,Γ× ]s, t], Γ ∈ Fs,s, t ∈ R+ with s< t.

The jump process of interest,{ξt : t ∈ R+}, defined on(Ω,F ) and adapted to the filtration
{Ft , t ∈ R+} is given by

ξt(ω) := ∑
n≥0

I{tn ≤ t < tn+1}xn+ I{t∞ ≤ t}x∞. (3.1)

Along the trajectoryω, observe thatξt(ω) is right continuous piecewise constant int andξt−(ω) =
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ξt(ω) (whereξ0−(ω) := ξ0(ω)) for all t ∈ R+ except for a countable set of jump timestn,n =
1,2, . . . . Thus, for notational convenience, we shall often replaceξt− with ξt whenever this does
not lead to a confusion.

For a standard Borel space(S,B(S)), denote byP(S) the set of all probability measures
on (S,B(S)). We now describe the different classes of policies considered in this thesis. Adjoin
an isolated pointa∞ to A, and letA := A∪{a∞} andA(x∞) := a∞. Consider the Borelσ -algebra
B(A) := σ(B(A),{a∞}) on A.

• A relaxed policyπ is a transition probability from(Ω×R+,P) to (A,B(A)) such that
π(A(ξt−)|ω, t) = 1.

• A relaxed policyϕ is called arelaxed Markov policyif ϕ( · |ω, t) = ϕ( · |ξt−, t) for t ∈ R+.

Observe that a relaxed policyπ (respectively, a relaxed Markov policyϕ) is aP-measurable map-
ping fromΩ×R+ (respectively, fromX×R+) to the metric spaceP(A) that is endowed with the
topology of weak convergence. It follows from Jacod [17, Lemma 3.3] that theP-measurability
of the relaxed policyπ is equivalent to the existence of transition probabilitiesπn, n = 0,1, . . . ,
from (Ω×R+,Ftn ×B(R+)) to (A,B(A)) concentrated onA(xn) such that, for alln= 0,1, . . .,

π( · |ω, t) = πn( · |x0, t1,x1, . . . , tn,xn, t− tn) on {tn < t ≤ tn+1}.

Hence, our terminology here is consistent with Feinberg [7].

3.3.1 Kitaev’s construction of the probability measure defined by a policy

In this subsection, we provide a brief description of Kitaev’s construction [24] of the proba-
bility measure of the jump process{ξt , t ∈ R+} controlled by an arbitrary policyπ .

Let q(z,a) := q(X \{x}|z,a) for all (z,a) ∈ Gr(A) andq̄(z) := supa∈A(z)q(z,a) for all z∈ X.

For allZ ∈B(X), z∈ X andp∈ P(A), let

q(Z|z, p) :=
∫

A(z)
q(Z|z,a)p(da)I{z∈ X} and q(z, p) := q(X \{z}|z, p). (3.2)

Here, following the tradition, we use the same notationq on either side of the definitions in (3.2).
The following assumption is necessary to define and analyse CTMDPs with relaxed actions, and we
assume that it holds throughout our study on CTMDPs. In particular, for eachz∈ X, it guarantees
thatq(Z|z, p)< ∞ for all Z ∈B(X) andp∈ P(A).

Assumption 3.3.1.q̄(z)< ∞ for each z∈ X.

For each policyπ , letπt be the measure corresponding to the probability distributionπ( · |ω, t).
Then the random measureυπ given by

υπ(ω; [0, t],Z) :=
∫ t

0
q(Z\{ξs}|ξs,πs)ds, t ∈ R+,Z ∈B(X), (3.3)
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is predictable andυπ({t},X)= υπ([t∞,∞[,X) = 0; see, e.g., Kitaev [24]. According to Jacod [17],
the predictable random measureυπ defined in (3.3) and a probability distributionγ on (X,B(X))
define a unique probability measurePπ

γ on (Ω,F ) such thatPπ
γ (ξ0 ∈ Z) = γ(Z), Z ∈B(X), and

υπ is the compensator (predictable projection) of the random measureµ on (R+×X),

µ(ω; [0, t],Z) = ∑
n≥1

I{tn ∈ [0, t]}I{xn ∈ Z}, t ∈ R+, Z ∈B(X), (3.4)

associated with the multivariate point process(tn,xn)n≥1. If γ({x}) = 1 for somex∈ X, we shall
write P

π
x instead ofPπ

γ . Let Eπ
γ andEπ

x respectively denote the expectation with respect to the
measuresPπ

γ andPπ
x .

We shall show in Chapter 4 that ifπ is a relaxed Markov policy, then the jump process
{ξt , t ≥ 0} defined by the compensatorνπ satisfying (3.3) is a jump Markov process. This result
follows from Corollary 2.3.3.

3.4 Cost Criteria

For all y,z∈ X with y 6= zandp∈ P(A), let

c(z, p) :=
∫

A(z)
c(z,a)p(da) (3.5)

C(z, p,y) :=
∫

A(z)
C(z,a,y)p(da). (3.6)

We now give a brief description of the different cost criteria considered in this thesis for CTMDPs.
Given an initial distributionγ on X, for any policyπ :

(i) thefinite horizon expected total discounted costis given by

Vα,T(γ,π) := E
π
γ [

∫ T∧t∞

0
e−αsc(ξs,πs)ds+

N(T)

∑
n=1

e−αtnC(ξtn−1,πtn,ξtn)], (3.7)

whereT is the finite planning horizon,N(T) is the number of jumps up to timeT, and
α ∈ ]0,∞[ is the discount factor.

(ii) Formula (3.7) withα = 0 defines thefinite-horizon expected total costdenoted byV0,T(γ,π).

(iii) Formula (3.7) withT = ∞ defines theexpected total discounted costdenoted byVα(γ,π).

(iv) Formula (3.7) withα = 0 andT = ∞ defines theexpected total costdenoted byV0(γ,π).

(v) If Pπ
γ (ξt ∈ X) = 1 for all t ∈ R+, then the average cost per unit time is given by

W(γ,π) = limsup
T→∞

V0,T(γ,π)
T

. (3.8)
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Chapter 4

Sufficiency of Markov policies in CTMDPs

In this chapter, we consider Borel state and action CTMDPs with unbounded transition rates
and present the main result of this dissertation, Theorem 4.2.2. We show that the search for optimal
policies in CTMDPs can be restricted to Markov policies for optimality criteria that depend only on
marginal distributions of state-action pairs, like the expected total discounted and non-discounted
costs and average costs per unit time.

4.1 Introduction

The first consideration of relaxed history dependent policies is by Kitaev [24]. He observed
that an arbitrary policy for the CTMDP defines a compensator in a natural way and constructed
the stochastic process via the compensator and the initial state distribution based on Jacod [17,
Theorem 3.6]. Even though it is possible to consider historydependent policies for CTMDPs,
most of the literature on CTMDPs considered relaxed Markov policies as the most general class of
policies and established many of the existing facts such as optimality of certain policies within the
class of relaxed Markov policies; see Guo and Hernández-Lerma [11]. In this chapter, we show
that for any arbitrary policy there exists a relaxed Markov policy that performs equally, and thus,
extending the previously established results within the class of relaxed Markov policies to hold
within the class of all policies.

This chapter is organized as follows. In Section 4.2, we introduce marginal distributions on
the state-action pairs and on the states of CTMDPs. For a policy π we construct in Lemma 4.2.1
a relaxed Markov policyϕ. Then, in Theorem 4.2.2, we state the main result of this disserta-
tion that the marginal distributions coincide for these twopolicies. This theorem is similar to the
well-known result by Derman and Strauch [4] for DTMDPs that states the sufficiency of Markov
policies for objective criteria that depend only on the marginal distributions; see Theorem 5.2.1
in Appendix 5. The proof given by Derman and Strauch [4] for the discrete-time case is based
on induction in the step number, and hence not applicable forcontinuous-time. The proof for
the continuous-time case is based on the fact that the marginal distributions on the state for both
the policies,π andϕ, satisfy Kolmogorov’s forward equation defined by the Markov policy ϕ;
Lemma 4.4.4. In Section 4.3, we apply the results in Chapter 2and show that the jump process de-
fined by a Markov policy is a jump Markov process whose marginal distribution on the state of the
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process is the minimal non-negative solution of Kolmogorov’s foward equation (4.10) defined by
the Markov policy; Theorem 4.3.1. We also provide a sufficient condition for the marginal distri-
bution on the state of the process to be the unique non-negative solution of Kolmogorov’s forward
equation (4.10) that takes values in[0,1]. The proof of the main result, Theorem 4.2.2, is provided
in Section 4.4 after establishing few auxiliary results. Finally in Section 4.5, we characterize the
equivalence between the classes of history-dependent and Markov policies for objective criteria
such as the expected discounted and non-discounted total costs and average costs per unit time.

4.2 Main result

Given an initial distributionγ, for any policyπ , consider

Pπ
γ (t,Z,B) :=

∫

Ω
I{ξt ∈ Z}π(B|ω, t)Pπ

γ (dω), t ∈ R+,Z ∈B(X),B∈B(A), (4.1)

Pπ
γ (t,Z) := Pπ

γ (t,Z,A) =
∫

Ω
I{ξt ∈ Z}Pπ

γ (dω), t ∈ R+,Z ∈B(X), (4.2)

where the equality in (4.2) is correct since{ξt ∈ X} = {π(A|ω, t) = 1}. Observe that (i) for
fixed t, the functionsPπ

γ (t, ·, ·) andPπ
γ (t, ·) are measures on(X×A,B(X)×B(A)) and(X,B(X)),

respectively, and (ii)Pπ
γ (t,Z) = P

π
γ (ξt ∈ Z) for all t ∈ R+ andZ ∈B(X). Similar to the notation

P
π
x , we shall writePπ

x instead ofPπ
γ if γ({x}) = 1 for somex∈ X.

Lemma 4.2.1. Given an initial distributionγ, for every policyπ there exists a relaxed Markov
policyϕ that satisfies, for all t∈ R+,

ϕ(B|z, t) =
Pπ

γ (t,dz,B)

Pπ
γ (t,dz)

, Pπ
γ (t, ·)−a.e.,z∈ X,B∈B(A). (4.3)

Proof. Fix t ∈ R+ such thatPπ
γ (t,X) > 0. By Bertsekas and Shreve [2, Corollary 7.27.1], there

exists a transition probabilityϕ from (X×R+,B(X)×B(R+)) to (A,B(A)) satisfying

Pπ
γ (t,Z,B) =

∫

Z
ϕ(B|z, t)Pπ

γ (t,dz), Z ∈B(X),B∈B(A), (4.4)

which, by definition, is equivalent to (4.3). Since the measure Pπ
γ (t, ·, ·) is concentrated onGr(A),

the transition probabilityϕ can be defined in such a way thatϕ(A(z)|z, t)= 1 for all z∈X and (4.4)
holds. Therefore, ifPπ

γ (t,X)> 0, then (4.3) holds. Alternatively, fixt ∈R+ such thatPπ
γ (t,X)= 0.

Then, (4.3) holds for any relaxed Markov policyϕ. Thus, (4.3) holds for allt ∈ R+.

The following theorem is the main result of this dissertation.

Theorem 4.2.2.Let the initial distributionγ be fixed. For any policyπ , consider a relaxed Markov
policyϕ satisfying(4.3). Then

Pϕ
γ (t,Z,B) = Pπ

γ (t,Z,B), Z ∈B(X),B∈B(A), t ∈ R+. (4.5)
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In particular,
Pϕ

γ (t,Z) = Pπ
γ (t,Z), Z ∈B(X), t ∈ R+. (4.6)

The proof of Theorem 4.2.2 is given in Section 4.4.

4.3 Kolmogorov’s forward equation for CTMDPs controlled by Markov poli-
cies

In this section, we apply the results on Kolmogorov’s forward equation in Chapter 2 to CT-
MDPs controlled by Markov policies. Letϕ be a Markov policy. Then, it follows immediately that
the transition rate functionq(Z|z,ϕt), Z ∈B(X), z∈ X, andt ∈R+, is aQ-function (see Chapter 2
for definition of aQ-function). In view of Theorem 2.5.1, the minimal non-negative solution of
Kolmogorov’s forward equation defined by theQ-functionq(Z|z,ϕt),z∈ X, t ∈R+,Z∈B(X), is a
transition function of a jump Markov process. This approachto construct the jump process defined
by a Markov policy is adapted in many of the studies on CTMDPs controlled by Markov policies
including the monograph Guo and Hernández-lerma [11]; see also Kakumanu [19], Miller [27, 28].
However, as mentioned in Chapter 3, the jump process defined by any policy can be constructed
using the compensator of the random measure of the multivariate point process. The following
theorem shows that the two ways to construct the jump processdefined by a Markov policy: (i)
via the compensator of the random measure of multivariate point process, and (ii) as the minimal
non-negative solution of Kolmogorov’s forward equation (4.10) are equivalent.

Consider the transition functionPϕ(u,z; t,Z), whereu, t ∈ R+, u< t, z∈ X, andZ ∈B(X),
given below, that is obtained by replacing the genericQ-functionq(z, t,Z),z∈X, t ∈R+,Z∈B(X),
in (2.17)-(2.19) with the specific functionq(Z|z,ϕt),z∈ X, t ∈ R+,Z ∈ B(X). For all u, t ∈ R+,
u< t, z∈ X, andZ ∈B(X), define

P(ϕ,0)(u,z; t,Z) = I{z∈ Z}e−
∫ t
u q(z,ϕw)dw, (4.7)

and form= 1,2, . . ., define

P(ϕ,m)(u,z; t,Z) =
∫ t

u

∫

X\{z}
e−

∫ s
u q(z,ϕw)dwq(dy|z,ϕs)P

(ϕ,m−1)(s,y; t,Z)ds. (4.8)

Set

Pϕ(u,z; t,Z) :=
∞

∑
m=0

P(ϕ,m)(u,z; t,Z). (4.9)

Let Yϕ be the collection of Borel subsets ofX such that

Yϕ = {Z ∈B(X) : sup
t∈R+,z∈Z

q(z,ϕt)< ∞}.

Theorem 4.3.1.Let the initial state x be fixed. For any Markov policyϕ, the following statements
hold:
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(i) the jump process{ξt : t ∈R+} defined in(3.1)by the compensatorνϕ satisfying(3.3) is a
jump Markov process with transition function Pϕ(u,z; t,B) defined in(4.9).

(ii) the function Pϕ
x (t,Z) is the minimal non-negative solution of Kolmogorov’s forward equa-

tion,

P(t,Z) = I{x∈ Z}+
∫ t

0

∫

X
q(Z|z,ϕs)P(s,dz)ds, t > 0,Z ∈Yϕ . (4.10)

In addition, if X∈ Yϕ , then Pϕ
x (t,Z) is the unique non-negative function with values in[0,1] for

which statement (i) holds.

Proof. (i) Assumption 3.3.1 and (3.2) imply that

sup
t∈R+

q(z,ϕt) = sup
t∈R+

∫

A(z)
q(z,a)ϕ(da|z, t)≤ q̄(z)< ∞, z∈ X. (4.11)

That is, the transition rate functionq(Z|z,ϕt), Z ∈B(X), z∈ X, t ∈ R+, is aQ-function satisfying
Assumption 2.2.2 in Chapter 2. Thus, in view of Corollary 2.3.3, we have that statement (i) of the
theorem holds.

(ii) From (4.2) and (2.2) withu = 0 for the jump Markov process defined by the Markov
policy ϕ,

Pϕ
x (t,Z) = P

ϕ
x (ξt ∈ Z) = Pϕ(0,x; t,Z), t > 0,Z ∈B(X). (4.12)

The above equality, (4.11), and Corollary 2.6.3 withq(z,s,Z) = q(Z|z,ϕs), T0 = 0, andT1 = ∞
imply that the second statement of the theorem holds.

Remark 4.3.1. In view of Lemma 2.2.1(i), the collection of Borel subsetsYϕ contains, among
others, a sequence of Borel subsetsXn

ϕ ↑ X asn→ ∞. Therefore,Yϕ 6= /0.

4.4 Proof of Theorem 4.2.2

A setZ ∈B(X) is called aq-bounded set if supz∈Z q̄(z)< ∞. Given an initial statex and any
policy π , for eacht ∈ R+, a setZ ∈B(X) is called an(x,π , t)-bounded set if

∫ t
0E

π
x q(ξs,πs)I{ξs∈

Z}ds< ∞, and if the setZ ∈ B(X) is (x,π , t)-bounded for allt ∈ R+ we say the set is(x,π)-
bounded. Note that, if a setZ is aq-bounded set, then it is also an(x,π)-bounded set for allx∈ X
and for any policyπ . The jump process{ξt : t ∈R+} defined by a policyπ is called non-explosive
if Pπ

x (ξt ∈ X) = 1 for all x∈ X andt ∈ R+.

4.4.1 Marginal distributions for an arbitrary policy satis fy Kolmogorov’s
forward equation

To study the jump process associated with a history dependent policy π and initial statex,
Kitaev [24, Lemma 4] established the following equation fora uniformly bounded transition kernel

38



q. Given a policyπ and initial statex, for all t ∈ R+, andZ ∈B(X),

Pπ
x (t,Z) = I{x∈ Z}+E

π
x

(

∫ t

0
q(Z|ξs,πs)ds

)

. (4.13)

By imposing additional conditions on the transition kernelq to ensure that the jump process is
non-explosive for any policy, Guo and Song [14, Theorem 3.1]showed that (4.13) holds for all
q-bounded setsZ ∈B(X) and, under slightly weaker conditions for non-explosiveness than those
considered by Guo and Song [14], Piunovskiy and Zhang [29, Proposition A.1] established (4.13)
for all Z ∈ B(X). Given a policyπ and initial statex, Theorem 4.4.2 establishes (4.13) for all
t ∈ R+ and(x,π , t)-bounded setsZ ∈B(X), and thus (4.13) holds for an explosive process.

The following lemma is used in the proof of Theorem 4.4.2. Given a probability space
(Ω,F ,P) with a right-continuous and complete filtration{Ft}t∈R+, a random measureν : (Ω×
B(R+)×B(X))→R+ is called a compensator of the random measureµ : (Ω×B(R+)×B(X))→
R+ if (i) for eachZ∈B(X), the process{ν(ω; [0, t],Z)}t∈R+ is measurable with respect to the pre-
dictableσ -algebraP of (Ω×R+), and (ii) for any non-negativeP ×B(X)-measurable function
f (ω, t,z),

E(
∫ ∞

0

∫

X
f (ω,s,z)µ(ω;ds,dz)) = E(

∫ ∞

0

∫

X
f (ω,s,z)ν(ω;ds,dz)),

whereE denotes the expectation with respect to the probability measureP; Kallenberg [20, p. 422].

Lemma 4.4.1.Let the initial state x be fixed. For any policyπ , the random measurẽυπ given by

υ̃π(ω; [0, t],Z) :=
∫ t

0
q(ξs,πs)I{ξs∈ Z}ds, t ∈ R+, Z ∈B(X), (4.14)

is a compensator for the random measureµ̃ given by

µ̃(ω; [0, t],Z) := ∑
n≥1

I{tn ∈ [0, t]}I{xn−1 ∈ Z}, t ∈ R+, Z ∈B(X), (4.15)

with respect to the probability space(Ω,F ,{Ft}t≥0,P
π
x ).

Proof. See the proof of Lemma 4 in Kitaev [24].

Theorem 4.4.2.Let the initial state x∈ X be fixed. For any policyπ , formula(4.13)holds for all
t ∈ R+ and(x,π , t)-bounded sets Z∈B(X).

Proof. For allm= 0,1, . . ., t ∈R+, andZ∈B(X), as the number of jumps in the interval[0, t∧ tm]
is bounded bymand the random measuresµ([0, t∧ tm],Z) andµ̃([0, t∧ tm],Z) defined in (3.4) and
(4.15), respectively, give the number of jumps into and out of Z (including within itself) in the
interval[0, t∧ tm],

I{ξt∧tm ∈ Z}= I{x∈ Z}+µ([0, t ∧ tm],Z)− µ̃([0, t∧ tm],Z). (4.16)
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Taking expectation with respect toPπ
x on both sides of the above equality, for allt ∈ R+ and

Z ∈B(X),

P
π
x (ξt∧tm ∈ Z) = I{x∈ Z}+E

π
x (µ([0, t ∧ tm],Z))−E

π
x (µ̃([0, t∧ tm],Z)), (4.17)

which implies that
E

π
x (µ([0, t∧ tm],Z))≤ E

π
x (µ̃([0, t∧ tm],Z))+1. (4.18)

Next, we show that for eacht ∈ R+ (4.17) holds withm= ∞ for all (x,π , t)-bounded sets
Z ∈B(X). Fix an arbitraryt ∈ R+. For all(x,π , t)-bounded setsZ ∈B(X),

E
π
x (µ̃([0, t∧ t∞],Z)) = E

π
x (υ̃π([0, t∧ t∞],Z)) = E

π
x

∫ t∧t∞

0
q(ξs,πs)I{ξs∈ Z}ds

≤

∫ t

0
E

π
x q(ξs,πs)I{ξs∈ Z}ds< ∞,

(4.19)

where the first equality is correct sinceυ̃π is a compensator of the measureµ̃ ; Lemma 4.4.1, the
second equality is (4.14), the third inequality is straightforward, and the last one follows from
the definition of(x,π , t)-bounded sets. Then (4.18), (4.19), and the property thatµ([0, t ∧ tm],Z)
and µ̃([0, t ∧ tm],Z) are non-decreasing inm for eachZ imply that, for all (x,π , t)-bounded sets
Z ∈B(X),

lim
m→∞

E
π
x (µ([0, t∧ tm],Z)) = E

π
x (µ([0, t∧ t∞],Z))< ∞, (4.20)

lim
m→∞

E
π
x (µ̃([0, t∧ tm],Z)) = E

π
x (µ̃([0, t∧ t∞],Z))< ∞. (4.21)

Observe that for all(x,π , t)-bounded setsZ ∈B(X)

lim
m→∞

P
π
x (ξt∧tm ∈ Z) = P

π
x (ξt ∈ Z, t < t∞)+ lim

m→∞
P

π
x (ξtm ∈ Z, t ≥ tm)

= P
π
x (ξt ∈ Z, t < t∞) = P

π
x (ξt∧t∞ ∈ Z),

(4.22)

where the first equality holds becausetm↑ t∞ asm→∞, the second equality holds because limm→∞P
π
x (ξtm ∈

Z, t ≥ tm) = 0, and the last one holds because{ξt ∈X}= {t < t∞}. Indeed, let limsupm→∞P
π
x (ξtm ∈

Z, t ≥ tm) = p> 0. Then there exists a subsequence{mk,k = 1,2, . . .} such thatPπ
x (ξtmk

∈ Z, t ≥
tmk) >

p
2 for all k= 1,2, . . . . This fact, (3.4), and the property{tm ∈ [0, t]}= {tm ∈ [0, t ∧ t∞]} for

all m= 0,1, . . . imply that, for all(x,π , t)-bounded setsZ ∈B(X),

E
π
x (µ([0, t ∧ t∞],Z])) = E

π
x (µ([0, t],Z]))≥ ∑

k=1,2,...

P
π
x (tmk ∈ [0, t],xmk ∈ Z) = ∞,

which contradicts (4.20). This contradiction implies thatlimm→∞P
π
x (ξtm ∈ Z, t ≥ tm) = 0 for all

(x,π , t)-bounded setsZ ∈ B(X). Therefore, (4.22) holds which together with (4.17), (4.20), and
(4.21) implies that, for eacht, (4.17) holds withm= ∞ for all (x,π , t)-bounded setsZ ∈B(X).

To complete the proof, observe that, for allt ∈ R+ andZ ∈B(X), (i) µ([0, t],Z) = µ([0, t ∧
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t∞],Z) andµ̃([0, t],Z)= µ̃([0, t∧t∞],Z), and (ii)Pπ
x (t,Z)= P

π
x (ξt∧t∞ ∈ Z). We remark that (i) holds

because{tm ∈ [0, t]}= {tm ∈ [0, t ∧ t∞]}, m= 0,1, . . ., and (ii) follows from (4.2) and the property
{ξt∧t∞ ∈ Z} = {ξt ∈ Z, t < t∞}= {ξt ∈ Z}. Then, for allt ∈ R+ and for all(x,π , t)-bounded sets
Z ∈B(X),

Pπ
x (t,Z) = I{x∈ Z}+E

π
x (µπ([0, t]×Z)− µ̃π([0, t]×Z))

= I{x∈ Z}+E
π
x (υ

π([0, t]×Z)− υ̃π([0, t]×Z))

= I{x∈ Z}+E
π
x

(

∫ t

0
q(Z\{ξs}|ξs,πs)ds−

∫ t

0
q(ξs,πs)I{ξs∈ Z}ds

)

= I{x∈ Z}+E
π
x

(

∫ t

0
q(Z|ξs,πs)ds

)

,

where the first equality follows from observations (i) and (ii) given above and from (4.17) with
m=∞, the second equality holds sinceυπ andυ̃π are respectively the compensator of the measures
µ andµ̃ , the third equality follows from (3.3) and (4.14), and the last one follows from (3.2).

Corollary 4.4.3 follows immediately from Theorem 4.4.2 andis useful to prove Lemma 4.4.4.

Corollary 4.4.3. Let the initial state x∈ X be fixed. Then, for each policyπ , (4.13)holds for all
t ∈ R+ and(x,π)-bounded sets Z∈B(X).

Proof. The statement of this corollary follows immediately from Theorem 4.4.2 and the fact that
an(x,π)-bounded set is(x,π , t)-bounded for allt ∈ R+.

The following lemma plays the pivotal role in the proof of themain theorem, Theorem 4.2.2.
It establishes that, given an initial statex, for any policyπ the functionPπ

x (t,Z), t ∈ R+,Z ∈
B(X), satisfies Kolmogorov’s forward equation (4.10) corresponding to relaxed Markov policy
ϕ satisfying (4.3) withγ({x}) = 1. In particular, it establishes that (4.6) holds if the transition rates
q(z,ϕt),z∈ X, t ∈ R+, are uniformly bounded.

Lemma 4.4.4. Let the initial state x be fixed. For each policyπ , consider a relaxed Markov
policy ϕ satisfying(4.3) with γ = δx. Then, (i) The function Pπx (t,Z), t ∈ R+,Z ∈B(X), satisfies
Kolmogorov’s forward equation(4.10), (ii) Pπ

x (t,Z)≥ Pϕ
x (t,Z) for all t ∈ R+ and Z∈B(X), and

(iii) if X ∈Yϕ , then(4.6)holds for all t∈ R+ and Z∈B(X).

Proof. Observe that, for eacht, the functionPπ
x (t, ·) is a nonnegative measure on(X,B(X)) and

take values in[0,1]. Thus, if statement (i) of the lemma holds, it follows from the property that
Pπ

x (0,Z) = Pϕ
x (0,Z) = I{x∈ Z} for all Z ∈B(X) and Theorem 4.3.1 that statements (ii) and (iii)

of the lemma hold. The rest of the proof establishes statement (i) of the lemma.
For allY,Z ∈B(X) andt ∈ R+,

E
π
x [q(Z\{ξt}|ξt,πt)I{ξt ∈Y}] =

∫

Ω

∫

A
q(Z\{ξt}|ξt ,a)π(da|ω, t)I{ξt ∈Y}Pπ

x (dω)
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=
∫

A

∫

Ω
q(Z\{ξt}|ξt ,a)π(da|ω, t)I{ξt ∈Y}Pπ

x (dω) =
∫

A

∫

Y
q(Z\{z}|z,a)Pπ

x (t,dz,da)

=

∫

Y

∫

A
q(Z\{z}|z,a)ϕ(da|z, t)Pπ

x (t,dz) =
∫

Y
q(Z\{z}|z,ϕt)P

π
x (t,dz),

(4.23)

where the first equality follows from the definition of expectation and (3.2), the second equality
is obtained by interchanging the order of integration, the third equality follows from (4.1), the
fourth equality follows from (4.4) and from interchanging the order of integration, and the last one
follows from (3.2). In particular, (4.23) withZ = X and (3.2) imply that

E
π
x q(ξt ,πt)I{ξt ∈Y}=

∫

Y
q(z,ϕt)P

π
x (t,dz), t ∈ R+,Y ∈B(X). (4.24)

Then for allZ ∈B(X) andt ∈ R+

E
π
x [q(Z|ξt,πt)] = E

π
x [q(Z\{ξt}|ξt ,πt)I{ξt ∈ X}]−E

π
x [q(ξt,πt)I{ξt ∈ Z}]

=
∫

X
q(Z\{z}|z,ϕt)P

π
x (t;dz)−

∫

Z
q(z,ϕt)P

π
x (t;dz) =

∫

X
q(Z|z,ϕt)P

π
x (t,dz), (4.25)

where the first and last equalities follows from (3.2), and the second equality follows from (4.23)
with Y =X and from (4.24) withY = Z. Therefore, it follows from Corollary 4.4.3 and from (4.25)
that the functionPπ

x (t,Z), t ∈R+,Z∈B(X), satisfies (4.10) for allt ∈R+ and(x,π)-bounded sets
Z∈B(X). In fact, it follows from (4.24) withY = Z that if Z∈Yϕ , thenZ is an(x,π)-bounded set.
Thus, the functionPπ

x (t,Z) defined in (4.2) satisfies Kolmogorov’s forward equation (4.10).

Lemma 4.4.5 shows that to prove the main theorem it is sufficient to show that (4.6) holds for
the policiesπ andϕ satisfying (4.3). The proof of Theorem 4.2.2 is then provided after giving few
auxiliary results.

Lemma 4.4.5.Given an initial distributionγ on X, for each policyπ consider a relaxed Markov
policyϕ satisfying(4.3). Then, formula(4.6) implies formula(4.5).

Proof. Assume that (4.6) holds. Then, for allt ∈ R+, Z ∈B(X), andB∈B(A),

Pϕ
γ (t,Z,B) =

∫

Ω
I{ξt ∈ Z}ϕ(B|ξt , t)P

ϕ
γ (dω) =

∫

Z
ϕ(B|z, t)Pϕ

γ (t,dz)

=
∫

Z
ϕ(B|z, t)Pπ

γ (t,dz) = Pπ
γ (t,Z,B),

(4.26)

where the first equality follows from (4.1) and the equalityϕ( · |ω, t)=ϕ( · |ξt , t), the second equal-
ity follows from (4.2), the third equality follows from the assumption that (4.6) holds for allt ∈R+

andZ ∈B(X), and the last one holds due to (4.3).

It follows from Lemma 4.4.4 and Lemma 4.4.5 that the main theorem holds if the initial state
distribution is a Dirac measure and the transition ratesq(z,ϕt),z∈X, t ∈R+, defined by the relaxed
Markov policyϕ satisfying (4.3), are uniformly bounded. In the general case, we approximate the
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state spaceX by measurable subsetsXn,n= 1,2, . . ., of X such thatXn ↑ X asn→ ∞, and consider
policiesπ(n),n= 1,2, . . . , such thatπ(n) coincides withπ on Xn and all the statesz∈ X \Xn are
absorbing under the policyπ(n). For each policyπ(n),n = 1,2, . . . , we establish the existence of
a relaxed Markov policyϕn,n = 1,2, . . . , such that the marginal distributions coincide for these
two policies. The proof of the main theorem follows from these approximations; see the diagram
below.

Pπ(n)

x (t,Z,B) → Pπ
x (t,Z,B)

=

Pϕn

x (t,Z,B) → Pϕ
x (t,Z,B)

=⇒ Pϕ
x (t,Z,B) = Pπ

x (t,Z,B).

Figure 4.1: Major steps of the proof of Theorem 4.2.2

Lemma 4.4.6.There exists a sequence of measurable subsets Xn of X such thatsupz∈Xn q̄(z) < n
for all n = 1,2, . . . and Xn ↑ X as n→ ∞.

Proof. The statement of the lemma follows from the arguments in the proof of Lemma 2.2.1(i)
given for the measurable functionq(x,a) instead of for the measurable functionq(x, t).

For an isolated point ˜a /∈ A, defineÃ := A∪{ã} andÃ(x) := A(x)∪{ã}, x∈ X. Consider the
Borel σ -algebraB(Ã) := σ(B(A),{ã}) on Ã. For allx∈ X, a∈ Ã(x), andZ ∈B(X), define the
new transition intensity ˜q by

q̃(Z|x,a) := q(Z|x,a)I{x∈ X,a∈ A(x)}, Z ∈B(X),x∈ X,a∈ Ã(x). (4.27)

Consider the extended CTMDP{X, Ã, Ã(x), q̃( · |x,a)}. Let q̃(x,a) := q̃(X \ {x}|x,a), x ∈ X, a ∈
Ã(x), andq̄(x∞) := 0. Note that any policyπ in the original CTMDP{X,A,A(x),q( · |x,a)} is a
policy in the extended CTMDP that does not select the action ˜a.

Consider the measurable subsetsXn,n=1,2, . . . , of X whose existence is stated in Lemma 4.4.6.
For a policyπ in the original CTMDP, letπ(n),n= 1,2, . . . , be a policy in the extended CTMDP
such that, for allB∈B(Ã), ω ∈ Ω, andt ∈ R+,

π(n)(B|ω, t) := π(B\{ã}|ω, t)I{ξt ∈ Xn∪{x∞}}+ I{ã∈ B}I{ξt ∈ X \Xn}. (4.28)

Lemma 4.4.7. For a policy π in the original CTMDP, letπ(n),n = 1,2, . . . , be a policy in the
extended CTMDP satisfying(4.28). Then, given an initial distributionγ,

Pπ(n)

γ (t,Z,B) ↑ Pπ
γ (t,Z,B) as n→ ∞, (4.29)

for all t ∈ R+,Z ∈B(X), and B∈B(A).

Proof. Forn= 1,2, . . ., define the functionτn : Ω → R+,

τn(ω) := inf{t ∈ R+ : ξt(ω) ∈ X \Xn}, ω ∈ Ω, (4.30)
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where inf{ /0} := ∞. Observe that, for alln= 1,2, . . . , t ∈ R+, Z ∈B(X), andB∈B(A),

Pπ(n)

γ (t,Z,B) =
∫

Ω
I{ξt ∈ Z,τn > t}π(n)(B|ω, t)Pπ(n)

γ (dω)

+

∫

Ω
I{ξt ∈ Z,τn ≤ t}π(n)(B|ω, t)Pπ(n)

γ (dω) =

∫

Ω
I{ξt ∈ Z}I{τn > t}π(B|ω, t)Pπ

γ (dω). (4.31)

where the first equality follows from (4.1) for the policyπ(n) and the second equality follows from
(4.28) and (4.30) which imply that (i) ifτn > t thenπ(n)(B|ω,s) = π(B|ω,s) for all B∈B(A) and
s≤ t; and (ii) if τn ≤ t thenπ(n)(B|ω, t) = 0 for all B ∈ B(A). Then, (4.29) follows from (4.1),
(4.31), the almost sure convergence ofτn(ω) → t∞ asn → ∞, and the property that{ξt ∈ X} =
{t < t∞}.

Lemma 4.4.8.Let the initial state x be fixed. For any policyπ in the original CTMDP, letπ(n),n=
1,2, . . . , be a policy in the extended CTMDP satisfying(4.28). Then, for each policyπ(n),n =
1,2, . . . , there exists a relaxed Markov policyϕn,n= 1,2, . . . , satisfying

ϕn({ã}|z, t) = I{z∈ X \Xn}, t ∈ R+,z∈ X, (4.32)

and, for all t∈ R+,

ϕn(B|z, t) =
Pπ(n)

x (t,dz,B)

Pπ(n)
x (t,dz)

, Pπ(n)

x (t, ·)−a.e.,z∈ X,B∈B(Ã). (4.33)

Proof. In view of Lemma 4.2.1, for each policyπ(n),n= 1,2, . . . , there exists a relaxed Markov
policy ψn,n= 1,2, . . . , such that: for allt ∈ R+, there exists a subsetXt ∈B(X) such that

Pπ(n)

x (t,X \Xt) = 0 and ψn(B|z, t) =
Pπ(n)

x (t,dz,B)

Pπ(n)
x (t,dz)

, z∈ Xt ,B∈B(Ã). (4.34)

Using the relaxed Markov policyψn,n = 1,2, . . ., we construct a relaxed Markov policy
ϕn,n = 1,2, . . . , satisfying (4.32) and (4.33). For alln = 1,2, . . ., z∈ X, t ∈ R+, andB ∈ B(Ã),
define

ϕn(B|z, t) = ψn(B\{ã}|z, t)I{z∈ Xn}+ I{ã∈ B}I{z∈ X \Xn}. (4.35)

Then, it immediately follows from (4.35) that the functionϕn is a relaxed Markov policy satisfying
(4.32).

To prove (4.33), observe that, for allZ ∈B(X), t ∈ R+, andB∈B(Ã),

Pπ(n)

x (t,Z∩Xn,B) =
∫

Ω
I{ξt ∈ Z∩Xn}π(n)(B|ω, t)Pπ(n)

x (dω)

=
∫

Ω
I{ξt ∈ Z∩Xn}π(n)(B\{ã}|ω, t)Pπ(n)

x (dω) = Pπ(n)

x (t,Z∩Xn,B\{ã}), (4.36)

where the first and last equalities follows from (4.1) and thesecond equality follows from (4.28),
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and

Pπ(n)

x (t,Z∩ (X \Xn),B) =
∫

Ω
I{ξt ∈ Z∩ (X \Xn)}π(n)(B|ω, t)Pπ(n)

x (dω)

= I{ã∈ B}Pπ(n)

x (t,Z∩ (X \Xn)),

(4.37)

where the first equality is (4.1) and the last one follows from(4.2) and (4.28). Then, from (4.34),
(4.36), and (4.37), for allt ∈ R+,

ψn(B|z, t) =

{

ψn(B\{ã}|z, t), if z∈ Xt ∩Xn, B∈B(Ã),
I{ã∈ B}, if z∈ Xt ∩ (X \Xn), B∈B(Ã).

The above equality, (4.34), and (4.35) imply that (4.33) holds.

Corollary 4.4.9. Let the initial state x be fixed. For any policyπ in the original CTMDP, let
π(n),n= 1,2, . . . , be a policy satisfying(4.28), and letϕn,n= 1,2, . . . , be a relaxed Markov policy
satisfying(4.32)and (4.33). Then, for all t∈ R+,Z ∈B(X), and B∈B(A),

Pϕn

x (t,Z,B) ↑ Pπ
x (t,Z,B) as n→ ∞. (4.38)

Proof. Observe that the transition rates ˜q(z,ϕn
t ) are uniformly bounded byn for eachn= 1,2, . . . .

Indeed, for allz∈ X andt ∈ R+,

q̃(z,ϕn
t ) =

∫

Ã(z)
q̃(z,a)ϕn(da|z, t) =

(

∫

A(z)
q(z,a)ϕn(da|z, t)

)

I{z∈ Xn}

≤ q̄(z)I{z∈ Xn}< n,

(4.39)

where the first equality follows from (3.2) given for the extended CTMDP, the second equality
follows from (4.27) and (4.35), and the last two inequalities are straightforward. That is,X ∈Yϕn.
This fact, Lemma 4.4.4(iii) and Lemma 4.4.5 for the policiesπ(n) andϕn, and Lemma 4.4.7 imply
(4.38).

Lemma 4.4.10.Let the initial state x be fixed. For each policyπ , let ϕ be a relaxed Markov
policy satisfying(4.3)with γ({x}) = 1, andπ(n),n= 1,2, . . . , be a policy in the extended CTMDP
satisfying(4.28). Then there exists a sequence of relaxed Markov policies{ϕn,n= 1,2, . . .} such
that:

(i) for all n = 1,2, . . ., the relaxed Markov policyϕn satisfies(4.32)and (4.33);
(ii) for all t ∈ R+ and z∈ X,

ϕn(B|z, t)→ ϕ(B|z, t) as n→ ∞ for all B ∈B(A). (4.40)

Proof. In view of Lemma 4.4.8, for each policyπ(n),n= 1,2, . . . , there exists a relaxed Markov
policy ϕ̃n,n = 1,2, . . . , such that (4.32) and (4.33) hold withϕn replaced byϕ̃n. Using the re-
laxed Markov policiesϕ̃n, we construct relaxed Markov policiesϕn, n= 1,2, . . . , for which both
statements (i) and (ii) of the lemma hold.
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For eacht ∈ R+, let Ct ∈ B(X) be the support of the measurePπ
x (t, ·) on (X,B(X)), that

is, Ct is the smallest closed set such thatPπ
x (t,X \Ct) = 0. For alln = 1,2, . . . and t ∈ R+, let

Cn
t := (X \Ct)∩Xn. For alln= 1,2, . . ., z∈ X, t ∈ R+, andB∈B(Ã), define

ϕn(B|z, t) = ϕ(B\{ã}|z, t)I{z∈Cn
t }+ ϕ̃n(B|z, t)I{z∈ X \Cn

t }. (4.41)

(i) Observe that the functionϕn defined in (4.41) is a relaxed Markov policy. Since (4.32)
holds withϕn replaced byϕ̃n, it immediately follows from (4.41) that (4.32) holds for the policy
ϕn defined in (4.41).

Next, we show that the policyϕn defined in (4.41) satisfies (4.33). From (4.1) and (4.31), for
all Z ∈B(X), B∈B(A), andn= 1,2, . . .,

Pπ(n)

x (t,Z,B)≤ Pπ
x (t,Z,B). (4.42)

Then, for alln= 1,2, . . .,

Pπ(n)

x (t,Cn
t ) = Pπ(n)

x (t,Cn
t ,A)≤ Pπ

x (t,C
n
t ,A) = Pπ

x (t,C
n
t ) = 0, (4.43)

where the first equality follows from (4.2) and (4.36), the second inequality follows from (4.42),
the third equality is (4.2), and the last one is true becausePπ

x (t,X \Ct) = 0. Thus, it follows from
(4.33) with ϕn replaced byϕ̃n, (4.41), and (4.43) that the policyϕn defined in (4.41) satisfies
(4.33).

(ii) Fix an arbitrary t ∈ R+. To prove (4.40), observe that, for allz ∈ X \Ct , we have
ϕn(B|z, t) = ϕ(B|z, t) for all n> q̄(z) andB∈B(A). This follows from the property that ¯q(z)< n
for all z∈ Xn, (4.41), and the definition of the setCn

t . Thus, (4.40) holds for allz∈ X \Ct . To
complete the proof, it remains to show that (4.40) holds for all z∈Ct . Sinceϕn(B|z, t)≤ 1 for all
B∈B(A),z∈ X, t ∈ R+, andn= 1,2, . . ., to establish (4.40) for allz∈Ct , it is sufficient to show
that every subsequence{nk}k=1,2,... has a subsequence{nkm}m=1,2,... such that, for allB∈B(A),

ϕnkm(B|z, t)→ ϕ(B|z, t) as m→ ∞ for all z∈Ct . (4.44)

The rest of the proof proves the existence of a subsequence{nkm}m=1,2,... for every subsequence
{nk}k=1,2,... of the sequence{1,2, . . .} such that (4.44) holds for allB∈B(A).

Since(A,B(A)) is a standard Borel space, there exists a countable setB = {B1,B2, . . .} of
measurable subsetsA such thatBi ∩B j = /0 if i 6= j and any setB∈B(A) can be represented as

B=
⋃

j=1,2,...

B( j ,1) for some B( j ,1) ∈ B, j = 1,2, . . . . (4.45)

Choose an arbitrary subsequence{nk}k=1,2,... of the sequence{1,2, . . .}. To prove (4.44) for all
B∈B(A), we first show the existence of a subsequence{nkm}m=1,2,... of the sequence{nk}k=1,2,...
such that (4.44) holds for allB∈ B. Observe that

lim
n→∞

∫

X
|ϕ(B|z, t)−ϕn(B|z, t)|Pπ

x (t,dz) = 0, B∈B(A), (4.46)
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that is, for fixedt,B, the sequence of random variables{ϕn(B|z, t),n= 1,2, . . .} converge inL 1 to
ϕ(B|z, t) with respect to the measurePπ

x (t, ·) on (X,B(X)). Indeed, for allZ ∈B(X), B∈B(A),
andn= 1,2, . . . ,

∫

Z
[ϕ(B|z, t)−ϕn(B|z, t)]Pπ

x (t,dz)≤ Pπ
x (t,Z,B)−

∫

Z
ϕn(B|z, t)Pπ(n)

x (t,dz,A)

= Pπ
x (t,Z,B)−Pπ(n)

x (t,Z,B)+
∫

Z
ϕn(B|z, t)Pπ(n)

x (t,dz,{ã})

= Pπ
x (t,Z,B)−Pπ(n)

x (t,Z,B)≤ Pπ
x (t,Z,A)−Pπ(n)

x (t,Z,A),
(4.47)

where the first inequality follows from (4.2), (4.4), and (4.42), the second equality follows from
(4.2) and (4.33), the third equality follows from (4.32) and(4.36), and the last one follows from
(4.42) and from the property that, for fixedt, the functionsPπ(n)

x (t, ·, ·) andPπ
x (t, ·, ·) are measures

on X× Ã andX×A, respectively, and,

∫

Z
[ϕn(B|z, t)−ϕ(B|z, t)]Pπ

x (t,dz)≤
∫

Z
ϕn(B|z, t)Pπ

x (t,dz)−Pπ(n)

x (t,Z,B)

=

∫

Z
ϕn(B|z, t)[Pπ

x (t,dz)−Pπ(n)

x (t,dz)]≤
∫

Z
ϕn(B|z, t)[Pπ

x (t,dz,A)−Pπ(n)

x (t,dz,A)]

≤ Pπ
x (t,Z,A)−Pπ(n)

x (t,Z,A),
(4.48)

where the first inequality follows from (4.4) and (4.42), thesecond equality follows from (4.33),
the third inequality follows from (4.2) applied to the policiesπ andπ(n), and the fourth inequality
is correct because of (4.42) and sinceϕn(B|z, t)≤ 1. Then, for allB∈B(A),

∫

X
|ϕ(B|z, t)−ϕn(B|z, t)|Pπ

x (t,dz)

=

∫

X(+,B)
[ϕ(B|z, t)−ϕn(B|z, t)]Pπ

x (t,dz)+
∫

X(−,B)
[ϕn(B|z, t)−ϕ(B|z, t)]Pπ

x (t,dz)

≤ Pπ
x (t,X

(+,B),A)−Pπ(n)

x (t,X(+,B),A)+Pπ
x (t,X

(−,B),A)−Pπ(n)

x (t,X(−,B),A)

= Pπ
x (t,X,A)−Pπ(n)

x (t,X,A),

whereX(+,B) := {z∈ X : ϕ(B|z, t)≥ ϕn(B|z, t)} andX(−,B) := X \X(+,B) for eachB∈B(A), and
the inequality follows from (4.47) withZ=X(+,B) and (4.48) withZ=X(−,B). Thus, (4.46) follows
from the above inequality and (4.29) withγ({x}) = 1.

Denoten(0,k) = nk for all k = 1,2, . . . . For j = 1,2, . . ., from (4.46), Jacod and Protter [18,
Theorems 17.2, 17.3], and from the property thatPπ

x (t,Z)> 0 for any measurable subsetZ of Ct ,
there exists a subsequence{n( j ,k)}k=1,2,... of the sequence{n( j−1,k)}k=1,2,... such that

ϕn( j,k)(B j |z, t)→ ϕ(B j |z, t) as k→ ∞ for all z∈Ct . (4.49)

Let nkm = n(m,m), m= 1,2, . . . . As follows from Cantor’s diagonal argument, (4.44) holds with
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B= B j for all j = 1,2, . . . . In other words, (4.44) is proved for allB∈ B.
Let B be an arbitrary set fromB(A) andB(1,1),B(2,1), . . . be disjoint elements ofB satisfying

(4.45). For allz∈Ct ,

lim inf
m→∞

ϕnkm(B|z, t) = lim inf
m→∞ ∑

j=1,2,...
ϕnkm(B( j ,1)|z, t)≥ ∑

j=1,2,...
lim inf
m→∞

ϕnkm(B( j ,1)|z, t)

= ∑
j=1,2,...

ϕ(B( j ,1)|z, t) = ϕ(B|z, t),
(4.50)

where the first and last equalities follow from the countableadditivity of probability measures, the
third equality holds since (4.44) is correct for allB∈ B, and the inequality follows from Fatou’s
lemma [31, p. 226]. In addition, for allz∈Ct ,

limsup
m→∞

ϕnkm(B|z, t) = 1− lim inf
m→∞

ϕnkm(Ã\B|z, t) = 1− lim inf
m→∞

ϕnkm(A\B|z, t)

≤ 1−ϕ(A\B|z, t) = ϕ(B|z, t),
(4.51)

where the first equality follows from sub-additivity property of limit superior and the property
that ϕnkm( · |z, t) is a measure on(Ã,B(Ã)) for eachz, t, the second equality is correct because
ϕn(ã|z, t) = 0 for all n≥ q̄(z) (see (4.32)), the third inequality follows from (4.50) withB= A\B,
and the last one is correct sinceϕ( · |z, t) is a measure on(A,B(A)) for eachz, t. Therefore, it
follows from (4.50) and (4.51) that (4.44) holds for allB∈B(A) andz∈Ct .

Lemma 4.4.11 is a special case of Theorem 4.2.2, and shows that Theorem 4.2.2 holds if the
initial distributionγ is a Dirac measure.

Lemma 4.4.11.Let the initial state x be fixed. For any policyπ , consider a relaxed Markov policy
ϕ satisfying(4.3)with γ({x}) = 1. Then,(4.5)and (4.6)hold withγ({x}) = 1.

Proof. Let π(n),n = 1,2, . . ., be a policy in the extended CTMDP satisfying (4.28). Then, from
Lemma 4.4.10, there exists a sequence of relaxed Markov policies{ϕn,n= 1,2, . . .} such that, for
all n = 1,2, . . ., the relaxed Markov policyϕn satisfies (4.32) and (4.33), and in addition (4.40)
holds. Observe that if

lim
n→∞

Pϕn

x (t,Z,A) = Pϕ
x (t,Z), t ∈ R+,Z ∈B(X), (4.52)

then Lemma 4.4.5 and Corollary 4.4.9 imply the statement of this lemma. To prove (4.52), we first
show by induction that, for allm= 0,1, . . ., u, t ∈ R+, u< t, z∈ X, andZ ∈B(X),

lim
n→∞

P(ϕn,m)(u,z; t,Z∩Xn) = P(ϕ,m)(u,z; t,Z), (4.53)

where the functionsP(ϕn,m) andP(ϕ,m), m= 0,1, . . . , are given by (4.7), (4.8).
For all z∈ X, s∈ R+, andZ ∈B(X),

lim
n→∞

q̃(Z|z,ϕn
s ) = lim

n→∞

∫

A(z)
q(Z|z,a)ϕn(da|z,s) =

∫

A(z)
q(Z|z,a)ϕ(da|z,s) = q(Z|z,ϕs), (4.54)
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where the first equality follows from (3.2) and (4.27), the second equality follows from Lemma 4.4.10,
and the last one is (3.2). In particular, (4.54) withZ = X \{z} and (3.2) imply that

lim
n→∞

q̃(z,ϕn
s ) = q(z,ϕs), z∈ X,s∈ R+. (4.55)

This equality, (4.7) withZ= Z∩Xn for the relaxed Markov policyϕn, and the property thatXn ↑X
asn→ ∞ imply that (4.53) holds form= 0.

Assume that (4.53) holds for somem≥ 0. Then

lim
n→∞

P(ϕn,m+1)(u,z; t,Z∩Xn) = lim
n→∞

t
∫

u

∫

X\{z}

e−
∫ s
u q̃(z,ϕn

w)dwq̃(dy|z,ϕn
s )P

(ϕn,m)(s,y; t,Z∩Xn)ds

=
∫ t

u
lim
n→∞

∫

X\{z}
e−

∫ s
u q̃(z,ϕn

w)dwq̃(dy|z,ϕn
s )P

(ϕn,m)(s,y; t,Z∩Xn)ds

=

∫ t

u

∫

X\{z}
e−

∫ s
u q(z,ϕw)dwq(dy|z,ϕs)P

(ϕ,m)(s,y; t,Z)ds= P(ϕ,m+1)(u,z; t,Z),

where the first equality follows from (4.8) withZ = Z∩Xn for the relaxed Markov policyϕn, the
second and third equalities follow from (4.54), (4.55), theassumption that (4.53) holds form, the
Lebesgue dominated convergence theorem [31, p. 232], and from the property that the integrand
is bounded by ¯q(z), and the last one follows from (4.8) for the relaxed Markov policy ϕ. Equality
(4.53) is proved.

Observe that, for allt ∈ R+ andZ ∈B(X),

lim
n→∞

Pϕn

x (t,Z,A) = lim
n→∞

Pϕn

x (t,Z∩Xn) = lim
n→∞ ∑

m=0,1,...
P(ϕn,m)(0,x; t,Z∩Xn),

= ∑
m=0,1,...

P(ϕ,m)(0,x; t,Z) = Pϕ
x (t,Z),

(4.56)

where the first equality follows from (4.1), (4.2), and (4.32), the second and the fourth equalities
follow from (4.9) and (4.12) for the relaxed Markov policiesϕn andϕ, respectively, and the third
equality is correct due to Lebesgue dominated convergence theorem [31, p. 229] since (4.53)
holds andP(ϕn,m)(0,x; t,Z∩Xn) ≤ 1 for all m= 0,1, . . . andn = 1,2, . . . . Thus, equation (4.52)
holds.

Proof of Theorem 4.2.2.For isolated pointsx′ /∈ X anda′,a′′ /∈ A, let X′ := X ∪ {x′}, A′ := A∪
{a′,a′′}, A′(x) := A(x)∪{a′′} for all x∈ X, andA′(x′) := {a′,a′′}. For all x∈ X′,a∈ A′(x), and
Z ∈B(X′), define the new transition intensityq′ by

q′(Z|x,a) :=







q(Z\{x′}|x,a), if x∈ X,a∈ A(x),
γ(Z\{x′}) if x= x′,a= a′,
0, if x∈ X′,a= a′′.

(4.57)
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Consider the extended CTMDP{X′,A′,A′(x),q′( · |x,a)}. Fix T ∈ ]0,∞[. To prove the statement of
the theorem, we consider the evolution of the stochastic process defined by a policy and initial state
x′ over the time horizon[−T,∞[ . Similar to the measurable space(Ω,F ) described in Section 3.3,
let (Ω′,F ′) be the measurable space over which the stochastic process{ξt : t ∈ [−T,∞[} is defined
in the extended CTMDP.

For any policyφ in the original CTMDP, letφ ′ denote a policy in the extended CTMDP that
selects actiona′ up to timeθ := min{t ′1,0}, wheret ′1 denotes the time of the first jump starting
from time−T, selects the absorbing actiona′′ for time t ∈ ]θ ,0] and fort ∈ ]0,∞[ if ξ0 = x′, and
plays the policyφ starting from time 0 ifξ0 ∈ X. Then, for allZ ∈B(X), B∈B(A′), andt ∈ R+,

Pφ ′

x′ (t,Z,B) =
∫

Ω′
I{ξt ∈ Z}φ ′(B|ω, t)Pφ ′

x′ (dω,ξ0 ∈ X)

+

∫

Ω′
I{ξt ∈ Z}φ ′(B|ω, t)Pφ ′

x′ (dω,ξ0 = {x′}) =
∫

Ω′
I{ξt ∈ Z}φ ′(B|ω, t)Pφ ′

x′ (dω,ξ0 ∈ X)

=

∫

Ω
I{ξt ∈ Z}φ(B\{a′,a′′}|ω, t)(1−e−T)

∫

X
P

φ
z (dω)γ(dz) = (1−e−T)Pφ

γ (t,Z,B\{a′,a′′}),

(4.58)

where the first equality follows from (4.1) for the policyφ ′, the second equality is correct because,
under the policyφ ′, we haveξt ∈ X for t < t∞ if and only if ξ0 ∈ X, the third equality follows from

(4.57) and the definition of policyφ ′ which imply thatPφ ′

x′ (ξ0 ∈ Z) = (1−e−T)γ(Z), Z ∈B(X)
and, givenξ0 ∈ X, the process is defined by the policyφ and initial stateξ0, and the one follows
from (4.1).

Applying (4.58) for the policiesπ andϕ satisfying (4.3), for allZ ∈B(X), B∈B(A′), and
t ∈ R+,

Pπ ′

x′ (t,Z,B) = (1−e−T)Pπ
γ (t,Z,B\{a′,a′′}) and Pϕ ′

x′ (t,Z,B) = (1−e−T)Pϕ
γ (t,Z,B\{a′,a′′}).

(4.59)
Thus, (4.5) holds if

Pπ ′

x′ (t,Z,B) = Pϕ ′

x′ (t,Z,B), t ∈ R+,Z ∈B(X),B∈B(A). (4.60)

So, to complete the proof of the theorem, it is sufficient to verify (4.60).

Observe that, for allt ∈ R+,Z ∈B(X), andB∈B(A′),

Pπ ′

x′ (t,Z,B) = (1−e−T)Pπ
γ (t,Z,B\{a′,a′′})

= (1−e−T)
∫

Z
ϕ(B\{a′,a′′}|z, t)Pπ

γ (t,dz,A) =
∫

Z
ϕ ′(B|z, t)Pπ ′

x′ (t,dz), (4.61)

where the first equality follows from (4.58) withφ = π , the second equality follows from (4.2)
and (4.3), and the last one follows from (4.2) for the policyπ ′ in the extended CTMDP, (4.59)
with B = A′, and the definition of the policyϕ ′. In addition, for allt ∈ [−T0,0[ , Z ∈ B(X), and
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B∈B(A′),

Pπ ′

x′ (t,Z,B) =
∫

Ω′
I{ξt ∈ Z}π ′(B|ω, t)Pπ ′

x′ (dω)

=
∫

Ω′
I{ξt ∈ Z}ϕ ′(B|ξt, t)P

π ′

x′ (dω) =
∫

Z
ϕ ′(B|z, t)Pπ ′

x′ (t,dz),
(4.62)

where the first and last equalities follow respectively from(4.1) and (4.2) for the policyπ ′ in the
extended CTMDP, and the second equality holds by the definitions of the policiesπ ′ andϕ ′ which
imply thatπ ′(B|ω, t) = ϕ ′(B|ξt , t) for all ω ∈ Ω′, t ∈ [−T,0[, andB∈B(A′). Then, from (4.61)
and (4.62),

Pπ ′

x′ (t,Z,B) =
∫

Z
ϕ ′(B|z, t)Pπ ′

x′ (t,dz), t ∈ [−T,∞[,Z ∈B(X′),B∈B(A′). (4.63)

Therefore, (4.60) follows from Lemma 4.4.11.

4.5 Sufficiency of relaxed Markov policies for particular objective criteria

In this section, using the results in Section 4.2, we characterize the equivalence of the class of
history-dependent policies and the class of relaxed Markovpolicies for the above mentioned cost
criteria. We tackle this problem in two steps: we consider (i) a CTMDP with zero instantaneous
costs, and (ii) a CTMDP with non-zero instantaneous costs.

4.5.1 The case of zero instantaneous costs

Theorem 4.5.1.Given an initial distributionγ on X, for any policyπ there exists a relaxed Markov
policyϕ such that

E
ϕ
γ c(ξt ,ϕt) = E

π
γ c(ξt ,πt), if t < t∞, (4.64)

and therefore, for the case of zero instantaneous costs, VT,α(γ,ϕ) = VT,α(γ,π) and Vα(γ,ϕ) =
Vα(γ,π) for α ≥ 0, and W(γ,ϕ) =W(γ,π) whenPϕ

γ (ξt ∈ X) = P
π
γ (ξt ∈ X) = 1 for all t ∈ R+.

Proof. Observe that, for any policyφ

E
φ
γ [
∫ T∧t∞

0
e−αsc(ξs,φs)ds] = E

φ
γ [
∫ T

0
e−αsc(ξs,φs)I{s< t∞}ds], α ≥ 0,T > 0, (4.65)

and, for allt ∈ R+,

E
φ
γ c(ξt ,φt)I{t < t∞}=

∫

A

∫

Ω

c(ξt ,a)φ(da|ω, t)I{ξt ∈ X}P
φ
γ (dω) =

∫

A

∫

X

c(z,a)Pφ
γ (t,dz,da),

(4.66)
where the first equality follows from the definition of expectation, from exchanging the order of
integration, (3.5), and the property that{ξt ∈ X}= {t < t∞}, and the last one follows from (4.1).
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For each policyπ , consider a relaxed Markov policyϕ satisfying (4.3). In view of Theo-
rem 4.2.2, we have thatPϕ

γ (t,Z,B) = Pπ
γ (t,Z,B) for all t ∈ R+, Z ∈ B(X), andB ∈ B(A). This

fact along with (4.66) applied to the policiesϕ andπ implies that (4.64) holds. The second state-
ment of the theorem immediately follows from the definitionsof cost criteria given prior to the
theorem, (4.64), and (4.65) applied to the policiesπ andϕ.

4.5.2 The case of non-zero instantaneous costs

Recall that, at each timet < t∞, the relaxed policyπ selects the probability measureπt ∈
P(A), and the cost rate at timet is equal toc(ξt ,πt) and the instantaneous cost incurred ift = tn
for somen= 1,2, . . . is C(ξtn−1,πtn,ξtn). Given an initial distributionγ, for any policyπ , consider
the occupancy measure

Hπ
γ (Z,B) = E

π
γ

∫ t∞

0
e−αt I{ξt ∈ Z,πt ∈ B}, Z ∈B(X),B ∈B(P(A)). (4.67)

It follows from Feinberg [6, Corollary 4.4] that the expected total discounted costVα(γ,π) satisfies

Vα(γ,π) =
∫

X

∫

P(A)

[

c(z, p)+
∫

X\{z}
C(z, p,y)q(dy|z, p)

]

Hπ
γ (dz,dp).

This equality and (4.67) imply that

Vα(γ,π) = E
π
γ

∫ t∞

0
e−αt

[

c(ξt ,πt)+
∫

X\{ξt}
C(ξt ,πt,y)q(dy|ξt,πt)

]

dt. (4.68)

The following theorem establishes the sufficiency of relaxed Markov policies for the expected
total discounted cost criteria if the instantaneous cost functionC depends only on the state prior to
the jump epoch.

Theorem 4.5.2.Consider a CTMDP such that the instantaneous cost function C(x,a,y),x,y∈ X
with x 6= y and a∈ A(x) depends only on x. Given an initial distributionγ, for any policyπ there
exists a relaxed Markov policyϕ such that Vα(γ,ϕ) =Vα(γ,π).

Proof. Define
ĉ(z, p) = c(z, p)+C(z)q(z, p), z∈ X, p∈ P(A). (4.69)

From the above equality and (4.68), for any policyφ ,

Vα(γ,φ) = E
π
γ

∫ t∞

0
e−αt ĉ(ξt ,πt)dt. (4.70)

Thus, (4.70) and Theorem 4.5.1, withc(z, p) = ĉ(z, p) imply that the statement of the theorem
holds.

In Theorems 4.5.1 and 4.5.2, the equivalent relaxed Markov policy ϕ corresponding to an
arbitrary policyπ is constructed using (4.4). In general, the expected total discounted costs need
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not be the same for the policyπ and its corresponding relaxed Markov policyϕ that satisfies (4.3).
Consider the following example:

Example 4.5.3.The relaxed Markov policyϕ satisfying(4.4) may perform better than the pol-
icy π when the instantaneous costs C depend on the action chosen atthe jump epochs.Let
X = {1,2},A = {b,c},A(1) = A,A(2) = b,q(1,b) = q(2,b) = 4, andq(1,c) = 2. The cost rate
functionc(x,a) = 0 for all x∈ X anda∈ A, and the instantaneous costsC are given byC(1,b,2) =
2,C(1,c,2) = 4, andC(2,b,1) = 0. Consider a policyπ satisfying

π(ω, t) =











b, if ξt(ω) = 2,

b, if ξt(ω) = 1 andN is even orN = 0,

c, if ξt(ω) = 1 andN is odd,

(4.71)

whereN represents the number of jumps into state 1 upto timet.

Let ϕ be a relaxed Markov policy such that, for allt ∈ R+,

ϕ(b | 2, t) := 1 and ϕ( · |1, t) :=

{

Pπ
1 (t,1,·)
Pπ

1 (t,1)
, if Pπ

1 (t,1)> 0,

arbitrary, otherwise.
(4.72)

Note that the relaxed Markov policyϕ satisfies (4.3) withγ({1}) = 1, and, therefore it follows
from Theorem 4.2.2 thatPπ

1 (t; ·) = Pϕ
1 (t; ·) for all t ∈ R+.

The expected total discounted cost corresponding to the relaxed Markov policyϕ and the
initial state 1 is given by

Vα(1,ϕ) = E
ϕ
1

[

∫ t∞

0
e−αsC(1,ϕs,2)q(1,ϕs)I{ξs= 1}ds

]

=
∫

Ω

∫ ∞

0
e−αsC(1,ϕs,2)q(1,ϕs)I{ξs= 1}dsPϕ

1 (dω)

=

∫ ∞

0
e−αs

∫

Ω
C(1,ϕs,2)q(1,ϕs)I{ξs= 1}Pϕ

1 (dω)ds

=
∫ ∞

0
e−αs

[

2
Pπ

1 (s,1,b)

Pπ
1 (s,1)

+4
Pπ

1 (s,1,c)

Pπ
1 (s,1)

][

4
Pπ

1 (s;1,b)

Pπ
1 (s,1)

+2
Pπ

1 (s,1,c)

Pπ
1 (s,1)

]

Pϕ
1 (s,1)ds

=
∫ ∞

0
e−αs[2Pπ

1 (s,1,b)+4Pπ
1 (s,1,c)][4Pπ

1 (s,1,b)+2Pπ
1 (s,1,c)]

Pπ
1 (s,1)

ds,

(4.73)

where the first equality follows from (4.68), the second equality follows from the property that
{ξs = 1} ∈ {s< t∞} and from the definition of expectation, the third equality isobtained by inter-
changing the order of integration, the fourth equality follows from (3.2), (4.2), (3.6), and (4.72),
and the last one holds sincePπ

1 (t;1) = Pϕ
1 (t;1) for all t ∈ R+.

Similarly, the expected total discounted cost corresponding to the policyπ and initial state 1
is given by
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Vα(1,π) = E
π
1

[

∫ t∞

0
e−αsC(1,πs,2)q(1,πs)I{ξs= 1}ds

]

=
∫

Ω

∫ ∞

0
e−αsC(1,πs,2)q(1,πs)I{ξs= 1}dsPπ

1(dω)

=

∫

Ω

∫ ∞

0
e−αs[(2)(4)I{π(ω,s) = b}+(4)(2)I{π(ω,s) = c}]I{ξs= 1}dsPπ

1(dω)

=
∫ ∞

0

∫

Ω
8e−αsI{ξs= 1}Pπ

1(dω)ds=
∫ ∞

0
8e−αsPπ

1 (s,1)ds,

(4.74)

where the first equality follows from (4.68), the second equality holds because{ξs= 1} ∈ {s< t∞}
and from the definition of expectation, the third equality follows from (4.71), the fourth equality is
obtained by interchanging the order of integration, and thelast one follows from (4.2).

For notational convenience, letx1 := Pπ
1 (s,1,b) andx2 := Pπ

1 (s,1,c). ThenPπ
1 (s,1) = x1+x2

and

Vα(1,ϕ)=
∫ ∞

0
e−αs(8x2

1+8x2
2+20x1x2)

x1+x2
ds and Vα(1,π)=

∫ ∞

0
e−αs(8x2

1+8x2
2+16x1x2)

x1+x2
ds.

Therefore,Vα(1,ϕ)=Vα(1,π)+
∫ ∞

0 4e−αsPπ
1 (s,1,b)P

π
1 (s,1,c)

Pπ
1 (s,1)

dswhich implies thatVα(1,ϕ)>Vα(1,π).
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Chapter 5

Appendix A

In this appendix, we describe discrete-time Markov decision processes (DTMDPs), provide a
brief construction of the stochastic processes induced by apolicy, and define the common optimal-
ity criteria. We present the result on sufficiency of Markov policies in DTMDPs that was shown
by Derman and Strauch [4].

5.1 Discrete-time Markov decision processes

A DTMDP is defined by the multiplet(X,A,A(x), p(·|x,a),c(x,a)), where

(i) X is the state space such that(X,B(X)) is a standard Borel space;

(ii) A is the action space such that(A,B(A)) is a standard Borel space;

(iii) A(x) are the set of actions available atx∈ X. It is assumed thatA(x) ∈B(X) for all x∈ X
and the set of feasible state-action pairsGr(A) = {(x,a) : x∈ X,a∈ A(x)} is a measurable
subset of(X×A) containing the graph of a measurable mapping fromX to A.

(iv) p(·|x,a) is the transition probability fromGr(A) toX, that isp(·|x,a) is a probability measure
on(X,B(X)) for any(x,a)∈ Gr(A) andp(Z|x,a) is a measurable function onGr(A) for any
Z ∈B(X).

(v) c(x,a) is the one step cost incurred for choosing an actiona ∈ A(x) in statex ∈ X and is
assumed to be a bounded below measurable function on theGr(A).

A DTMDP evolves as follows: At each time epocht = 0,1, . . ., the decision maker observes the
current statex∈ X of the stochastic system and chooses an actiona from the set of actionsA(x)
available at statex. After an actiona is selected, the decision maker incurs the costc(x,a) and the
system moves to the next state at timet +1 according to the probability lawp( · |x,a).

The decision rules that specify how actions are chosen by thedecision maker at every timet
using the available information are calledpolicies. In DTMDPs, the information available up to
the current timet is (x0,a0, . . . ,xt−1,at−1,xt), wherexn andan, n= 0,1, . . . , respectively denote the
state of the process and the action chosen in this state at time n. At each time epoch, the decision
maker may select a particular action or, in a more general way, a probability distribution on the
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set of available actionsA(x). Decisions of the first type are called non-randomized and decisions
of the second type are called randomized. To formally define policies, letHt := (X×A)t ×X be
the set of histories (or information vectors) up to and including timet = 0,1, . . . , andB(Ht) =
(B(X)⊗B(A))t ⊗B(X). We now define different classes of policies considered for DTMDPs in
this thesis.

• A (randomized) policyπ is a sequence of transition probabilitiesπt , t = 0,1, . . . , from Ht to
A such thatπt(A(xt)|x0,a0, . . . ,xt−1,at−1,xt) = 1.

• A policy π is called(randomized) Markovif πt( · |x0,a0, . . . ,xt−1,at−1,xt) = πt( · |xt) for all
t = 0,1, . . . .

Let ∆ be the set of all policies and∆M be the set of all Markov policies. Then, we immediately
have,∆M ⊆ ∆. Also, let H :=

⋃

t=0,1,...Ht be the set of histories that contain countable number of
jumps. Observe that the setH is endowed with aσ -algebra defined by the products of the Borelσ -
algebrasB(X) andB(A). In view of Ionescu Tulcea theorem (Hernández-Lerma and Lasserre [15,
p. 178]), an initial probability measureγ on X and a policyπ define a unique probability measure
P

π
γ on the space of historiesH. We denote byEπ

γ the expectations with respect to the probability
measurePπ

γ .

5.1.1 Cost Criteria

We now give a brief description of the different cost criteria considered in this thesis for
DTMDPs. Given an initial distributionγ onX, for any policyπ ∈ ∆,

(i) thefinite horizon expected total discounted costis given by

Vβ ,T(γ,π) := E
π
γ

T−1

∑
t=0

β tc(xt ,at), (5.1)

whereT is the finite planning horizon andβ ∈ [0,1[ is the discount factor.

(ii) Formula (5.1) withβ = 1 defines thefinite-horizon expected total costdenoted byV1,T(γ,π).

(iii) Formula (5.1) withT = ∞ defines theexpected total discounted costdenoted byVβ (γ,π).

(iv) Formula (5.1) withβ = 1 andT = ∞ defines theexpected total costdenoted byV0(γ,π).

(v) the average cost per unit timeis given by

W(γ,π) = limsup
T→∞

V1,T(γ,π)
T

. (5.2)
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5.2 Sufficiency of Markov policies in DTMDPs

The following theorem shows that, given an initial distribution γ on X, for any policyπ
there exists a Markov policyσ such that both the policies have the same marginal distributions
on the state-action pairs. This fundamental result in DTMDPs given by Derman and Strauch [4]
establishes that the search for optimal policies, when considering cost criteria that depend only on
marginal distributions on the state-action pairs, can be restricted to the class of Markov policies.

Theorem 5.2.1(Derman and Strauch [4], Strauch [33]). Given an initial distributionγ on X, for
any policyπ consider the Markov policy satisfying, for all t= 0,1,2, . . . ,

σt(B|z) =
P

π
γ (xt ∈ dz,at ∈ B)

P
π
γ (xt ∈ dz)

, P
π
γ (xt ∈ ·)−a.e.,z∈ X,B∈B(A). (5.3)

Then, for all t= 0,1,2, . . . ,

P
π
γ (xt ∈ Z,at ∈ B) = P

σ
γ (xt ∈ Z,at ∈ B), Z ∈B(X),B∈B(A). (5.4)

Therefore, for optimality criteria G∈ {Vβ ,V0,W},

G(γ,π) = G(γ,σ). (5.5)

Proof. Observe that, for any policyφ and initial distributionγ,

E
φ
γ c(xt ,at) =

∫

X

∫

A
c(x,a)Pφ

γ (xt ∈ dx,at ∈ da).

This fact and the definitions of the optimality criteria inG imply that (5.5) is correct if (5.4) holds.
The rest of the proof shows (5.4).

Observe that, if for anyt = 0,1,2, . . . ,

P
σ
γ (xt ∈ Z) = P

π
γ (xt ∈ Z), Z ∈B(X), (5.6)

then, for allZ ∈B(X), andB∈B(A),

P
σ
γ (xt ∈ Z,at ∈ B) =

∫

Z
σt(B|z)P

σ
γ (xt ∈ Z) =

∫

Z
σt(B|z)P

π
γ (xt ∈ Z) = P

π
γ (xt ∈ Z,at ∈ B), (5.7)

where the first equality holds sinceσ is a Markov policy, the second equality follows from (5.6),
and the last one follows from (5.3). Thus, to complete the proof we establish (5.6). The proof of
(5.6) is based on induction.

For t = 0, Pσ
γ (x0 ∈ Z) = P

π
γ (x0 ∈ Z) = γ(Z) for all Z ∈B(X). Assume (5.6) holds for some

t ≥ 0. Then, for allZ ∈B(X),
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P
π
γ (xt+1 ∈ Z) =

∫

X

∫

A

∫

Z
p(dy|z,a)Pπ

γ (xt ∈ dz,at ∈ da)

=

∫

X

∫

A

∫

Z
p(dy|z,a)Pσ

γ (xt ∈ dz,at ∈ da) = P
σ
γ (xt+1 ∈ Z),

where the first and last equalities are straightforward and the second equality holds due to (5.7)
and (5.6). Thus, (5.6) holds for allt = 0,1, . . . .
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