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Abstract of the Dissertation

Multi-Agent Systems for Cooperative Tracking

by

Jonathan Beaudeau

Doctor of Philosophy

in

Electrical Engineering

Stony Brook University

2014

This dissertation is a culmination of research in several parallel, yet related avenues

dealing with statistical estimation in the context of dynamic state tracking. The main

contribution of the thesis is to provide a novel scalable framework for tracking of a high-

dimensional target state using a distributed and cooperative network of agents. This

framework is incorporated into a specific application consisting of a multiple target

tracking (MTT) environment, with each agent employing a number of mobile received-

signal-strength (RSS) sensors capable of collecting measurements revealing localized

information regarding the target state environment. The dimensionality of this prob-

lem, which is the dominating factor determining feasibility of any proposed solution,

is effectively managed by dynamically assigning each agent a partition of the full tar-

get space to track. Agents are thus able to individually focus on a small piece of the

full estimation problem and rely on inter-agent communication to compensate for state

subspaces outside their estimation scope which may adversely influence their own mea-

surements. The framework mentioned is coined Multi-Agent Systems for Cooperative

Tracking or MASCOT.

Specific implementation details and associated challenges relating to this framework and

the specific application considered are presented. Namely, inter-agent communication

and the required information fusion necessary for RSS sensors is extensively investi-

gated. Additionally, optimal RSS sensor placement within the described multi-target

environment is addressed, greatly facilitating enhanced performance of the main sub-

space partitioning algorithm. The MASCOT framework has been fully implemented in

the MATLAB modeling language; computer simulation results are presented, demon-

strating algorithm performance and its superiority to earlier methods of handling such a

problem. Finally, specific analysis of performance measures dealing with general statis-

tical estimation (Bayesian estimation particularly) are presented as well as some novel

results regarding a connection linking Frequentist/Bayesian estimation paradigms.
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1

Introduction

This dissertation provides a presentation of Multi-Agent Systems for Cooperative Tracking and

details theoretical developments and experimental results obtained. As the specific nature of the

thesis addresses multiple related topics, the dissertation is divided into separate sections addressing

each item individually.

The main focus of the thesis deals with sequential estimation/tracking of a dynamic, high-

dimensional state. While a major goal of this work is to provide a viable framework that can

be directed towards high-dimensional systems in any applicable setting, much of the research has

been done in a problem-specific context that is of particular interest to the author. It is in fact,

the particular application considered which provides the underlying motivation for any results ob-

tained. As such, the majority of this dissertation will make specific reference to the problem at hand.

1.1 Main Problem Description

The problem considered involves a system consisting of a large number of moving point-targets. It

is desired to estimate the state of all targets (position, velocity, etc.) at each point in time based

on some set of observations taken at that time and at times preceding it; this can be identified as a

filtering problem in statistical estimation. A linear model is assigned to the motion of each target

and it is further assumed that the targets do not interact with one another. The system described

thus far does not necessarily pose a problem with dimensionality; in many cases the assumption of

non-interaction allows targets to be treated as isolated entities, enabling an effective partitioning

of the environment into multiple single-target systems. It is the nature of the observations which

complicates the problem, as any observation taken is assumed to have some dependence on the

state of all targets within the system. This can present a significant challenge with dimensionality.

Since each observation is coupled to all states within the system it is no longer possible to directly

divide the problem into isolated single-target tracking scenarios.
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A system possessing the properties discussed, with an additional structure imposed on the ob-

servations, is of particular interest here. Specifically, it is assumed that there is some control over

how each measurement is taken. This can be stated in another way: the form of the transforma-

tion from the target space to the observation space can be manipulated to some extent. Armed

with this additional structure on the problem, it becomes possible to combat the obstacle of high

dimensionality by seeking target-to-observation transformations admitting sparse representations.

This is a key concept underlying the work presented and will be discussed in further detail within

later sections.

A specific problem environment is now introduced which will be seen to possess all the qualities

of the more general system just discussed. The environment consists of a number of targets to

be tracked that are moving within a two-dimensional plane, each transmitting a constant signal

of fixed strength. Observations, or more appropriately coined measurements in this context, are

taken using sensors also located in the target space, which receive a portion of the transmitted

signal energy from each target. The received signal strength at a sensor from an isolated target

is inversely related to the spatial distance between the sensor-target pair. The net signal received

from multiple targets at a given sensor is an additive combination of individual signal components.

This measurement model can be seen to fall under the category of RSS sensing; a detailed math-

ematical formulation of the model will be presented later, the important concept to note here is

that the level of coupling between each sensor and a given target is dependent on the spatial con-

figuration of the two when a measurement is taken. All sensors within the environment are mobile

and may have some limited awareness of their own locations. Additionally, each sensor is equipped

with the ability to communicate with other sensors that currently reside within a neighboring re-

gion. Implementation details regarding the means for mobility, location-awareness, and inter-sensor

communication are not specifically considered here; it is simply assumed the capability has been

previously established based on currently existing technology.

1.1.1 MASCOT

It should now be obvious that the application-specific environment presented, which can be cate-

gorized as a mobile-sensor-network, matches well with the more general system initially described.

While each measurement is affected by every target, sensors have the ability to position themselves

in such a way so as to control the instantaneous correlation between a measurement and each tar-

get in the scene. It will be shown how this concept, coupled with the communication abilities of

each sensor, allows for a feasible distributed solution to this inherently high-dimensional problem,

using a divide-and-conquer approach. But first the concept of an agent in this specific context is

introduced. A single agent represents a grouping of some number of sensors within the environ-

ment, acting as a unit, to accomplish a common estimation task. Associated with each agent is an
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entity of computational resource that enables this task to be completed. The sensor grouping is

dynamic and can change over time as the estimation environment evolves. In this fashion, one can

then envision a network of these abstract agents, at any given time each tasked with estimating

a portion of the target space, via the measurements from the sensors within their group, along

with communicated information concerning the remaining space of the system, generated by the

other agents in the network. Agents can manipulate the locations of their own sensors and de-

termine what received information is relevant to completing their own task, in order to optimize

performance. Development of this framework, specifically geared towards a system employing RSS

sensors, is the main idea of the thesis, and is termed (M)ulti-(A)gent (S)ystems for (CO)operative

(T)racking.

1.2 Detail-Oriented Challenges

Prior to work on the main goal of the thesis, a number of auxiliary topics were investigated relating

to the practical implementation details of a mobile sensor network responsible for tracking a target.

These topics fall under two main concepts and are discussed in what follows.

1.2.1 Measurement Interference

The situation with one or more sources of interference corrupting the measurements received by

sensors was considered within a setting similar to the initial problem description, but with the

problem reduced to a single-target tracking scenario. Initially the interference was assumed to

originate from a single static source and an algorithm has been developed to compensate for this

interference by localization of the source via a Rao-Blackwellized Particle Filter. A conference paper

[1] was published for ICASSP 2011 presenting these results within a multi-sensor non-centralized

target tracking environment. This was later extended to handle multiple, mobile interference

sources with unknown dynamics. A general model was constructed to represent the net effect these

“interferers” exert on the sensor measurements and an approach was formulated again within a

Rao-Blackwellized PF framework to allow successful tracking to be maintained. The main results

for this work were published [2] in the EUSIPCO 2013 conference. The latter extension can in some

sense be seen as a very similar problem as the one initially outlined in section 1.1, if the interference

sources are viewed as separate “foreign” targets. This can actually be a more challenging, and less

approachable problem than when employing MASCOT, since in this case there is only a single

agent; no external information has been received regarding the interferers and the agent must make

inference regarding their influence on the measurements based on its sensors alone. It is believed

that the approach outlined in [2] (and discussed in further detail in a later section) can be a valuable
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supplement to MASCOT, particularly in the early phase of tracking where valid estimates have not

yet been established for most agents.

1.2.2 Asynchronous Sensor Measurements

Within any sensing network collecting measurements that are time-sensitive, care must be taken

when extracting information about a target to be estimated based on measurements originating from

different sources. There is no guarantee these measurements were taken at the same time instants,

and thus they will necessarily reflect different states of the target. Blindly assuming the target is in

the same state for each measurement (corresponding to perfect synchronization of the measurement

time instances) can result in significant performance degradation of any tracking algorithm. There

exist several options for dealing with this issue; the most obvious being the explicit attachment of a

timestamp to each transmitted measurement. Knowing the instants at which each measurement was

taken allows the unit responsible for “measurement fusion” to easily make appropriate adjustments

that will compensate for this asynchronism. However, there is additional communication overhead

associated with timestamping the measurements and there is also the possibility of error within the

timestamps themselves. Another option that is here termed “receiver timestamping” involves an

explicit assumption made by the fusion center; namely that measurements are transmitted some

fixed time after they are taken. With awareness regarding distances between the fusion center and

transmitting sensors, along with the current time, the fusion center can form a reasonable estimate

of when the measurement was made immediately upon its reception. However, neither of these

options fully resolve the greater problem at hand to now be described. The fusion center represents

the estimated target trajectory as a finite sequence of states at discrete instants in time. Assuming

perfect synchronization between each set of measurements received from multiple sensors, the most

natural approach would be to compute an estimate of the target state at exactly these measurement

instants. New estimates are computed for these instances immediately upon reception of the full

measurement set. However, this is not possible in the case of asynchronous measurements; there

is now ambiguity as to which time instances should be used in representation of the estimated

trajectory. One option, which is conceptually the simplest, is to update the estimated trajectory

each time a new measurement is received. Essentially, this treats a multi-sensor tracking problem as

a single-sensor problem with non-uniform (and possibly non-deterministic) time intervals between

each estimate of the target. This can be a viable solution if the number of sensors in the system is

small and if there is a reasonable spacing between each measurement instant. However, it becomes

impractical if either of these conditions are not satisfied; small spacing between measurements

requires a prohibitively high processing speed if the tracking is to be maintained in real-time, since

the fusion center must have completed a target estimate update for the previous measurement

before it receives a new one, or be forced to queue it until it is done processing. If the number
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of sensors in the system is too large, processing may not be able to keep up with the incoming

measurement stream regardless of the queue size. Even if the spacing is large relative to processor

speed, it may still be desirable to minimize computational cost of the tracking algorithm. A more

efficient alternative is to utilize a “batch” style method of processing to update the target estimate

at fixed time intervals using any measurements that have been received since the last update.

Two styles of algorithms implementing this method along with a comparison of performance and

efficiency results against the “sequential” method just mentioned have been developed and were

presented in a conference paper [3] for ICASSP 2012. The algorithms were again developed in the

context of mobile distributed sensor networks employing PF algorithms to track a single target.

1.3 Performance Metrics and Underlying Bounds

As part of initial investigations, an attempt was made to compute performance bounds (particu-

larly on the mean-square-error, or MSE) for several of the detail-oriented algorithms discussed in

section 1.2. It quickly became apparent that for the specific RSS measurement model considered,

conventional Bayesian bounds do not necessarily provide a sufficient characterization of the best

attainable performance. To understand why, consider a simple example consisting of a single RSS

sensor attempting to track a single target. Assuming the sensor measurements are corrupted by

independent and stationary noise, the instantaneous SNR of each measurement is dependent solely

on the actual distance between the sensor and target. As such, actual performance of a tracking

algorithm will vary greatly depending on the specific trajectory realized by the target (which is

assumed to follow a non-deterministic dynamic model). Bayesian bounds do not allow for this

dependence; they reveal to us only the best possible “expected” performance of an estimator for

random target trajectories generated under the dynamic model (prior) and random observations

generated according to the measurement model, or the Bayesian Mean Square Error (BMSE). There

is no information available in this bound indicating the best performance attainable for a specific

trajectory realization, as the BMSE represents an average over all possible trajectories. Yet this

information can be of considerable value as it can indicate if there are certain target trajectories

which can lead to considerably poor (or excellent) performance. Essentially, this information can

tell us how ”sensitive” the estimation problem will be due to variations in the trajectory realization.

In some instances it is postulated that this information can be used to manipulate the estimation

environment in such a way that will produce a more favorable outcome, i.e., an obvious example

in the simple scenario that was mentioned would be to position the sensor as close as possible to

the target in order to maximize the measurement SNR.

Characterization of this best-possible “realization-dependent” performance was investigated at
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great length in a generalized random-parameter estimation setting. Some informative theoretical

results were obtained and are presented here.
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2

Dynamic State Estimation with

MASCOT

2.1 Overview

The overall concept of dynamic state estimation is deceptively simple. At the most basic level, there

is some unknown quantity we wish to estimate, or infer the value of, based on measurements we

make which are correlated with it. Our unknown is not generally constant, but instead varies over

time in some possibly non-deterministic way. We may also have some information regarding the

dynamic behavior of the unknown that we may use in conjunction with our measurements to form

a better inference. Our most logical option for inference at this point is to strike a balance between

the information regarding the unknown we obtain from our measurements that is manifested via

correlation, how we believe the state will evolve over time based on its dynamics, and the values we

believe it has assumed before and after the point in time at which we wish to make inference. This

mindset is essentially the core of Bayesian dynamic estimation, and the aforementioned “balanced

inference” is embodied within our posterior probability density function of the unknown.

To be a bit more precise, we have a random scalar state xt that varies over discrete units of time

t. We also have a set of random scalar measurements, yt, that were taken at each point in time

from t = 1 to t = K. Then our optimal inference of xt with respect to some loss criteria, will be

based on f(xt|y1:K), the posterior probability density function (pdf), of xt conditioned on our set of

measurements. Without delving into specific assumptions on xt at the moment, it is noted that any

information regarding the state dynamics must be embedded within the posterior. This is made

clear (under Markovian assumptions on the state) through factorization of the posterior, which

admits some terms dependent only on “neighboring” values of xt in time (xt−1, xt+1), and not on

the sequence of measurements. It should be noted at this point that the scope of this research has

been limited to the filtering problem, or estimation of xt based on y1:t, and no further reference will
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be made to smoothing (xt from y1:K with K ≥ t) or prediction (K ≤ t). Although the Bayesian

estimation framework indeed offers the promise of optimal inference in the form of the posterior,

this is rarely an easily attainable object. Even for the simple case of a scalar state, the posterior is

frequently mathematically intractable, and one must resort to numerical methods of computation

or fall back upon suboptimal means of inference. Nonetheless, there do exist a large number of

effective computational methods for dealing with this intractability; Monte Carlo simulation meth-

ods, particularly Particle Filtering approaches, have been widely accepted as a viable solution for

sequential estimation problems, see [4] and [5] for a comprehensive treatment of the subject. It

will be seen that particle filtering does play a key role in the specific implementation of MASCOT

considered here.

As the dimensionality of xt grows however, the severity of the tractability situation is rapidly

magnified; the computational cost of numerical evaluation rises exponentially and the performance

of suboptimal techniques, particularly particle filtering [6], can suddenly deteriorate. This is not a

unique phenomenon for statistical estimation and in fact occurs in a wide range of mathematical

problems; this issue was originally coined the ”Curse of Dimensionality” by Richard Bellman in

1961 when working with dynamic programming optimization problems. Regardless of this issue,

there are a large class of important application-specific problems which indeed posses unknown

states carrying a large number of dimensions. In [7], a Bayesian Monte Carlo approach is used to

estimate hundreds of parameters of an ODE modeling the Janus Kinase/Signal Transducer and Ac-

tivator of Transcription (JAK/STAT) pathway, which represents a major mechanism for chemical

signaling through a biological cell membrane. Another example can be found in [8] where a form of

particle filtering is used to estimate the failure rate of a Static Random-Access-Memory (SRAM)

yield which is influenced by a large number of variation sources. Multiple target tracking (which

is a focus in this thesis), feature tracking, facial recognition, and signal identification are all repre-

sentative of high-dimensional dynamic state estimation with a highly active research community.

Continuous advances in technology constantly reveal new applications where this obstacle is faced,

making feasible solutions increasingly desirable.

It should be recognized that in the most general case, the dynamic filtering problem for even

a scalar state is inherently a high-dimensional problem; each additional observation can be seen

as representing another dimension of the posterior and thus the dimensionality grows linearly over

time. However, this does not hold true when a simple restriction is made on the class of system

dynamics considered. Specifically, those systems whose state value at time t depend only on a finite

number of past states, do not generate indefinite growth in dimension for the filtering problem. In

fact, a system possessing the Markovian property, whereby the current value of the state depends

only on its previous value, admits a filtering solution that remains constant in dimensionality. To
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clarify what is meant by this, consider the well-known decomposition of the posterior distribu-

tion made possible under the Markovian assumption and with assumed conditionally independent

observations (yt depends on xt only):

f(xt|y1:t) ∝ f(yt|xt)f(xt|y1:t−1) = f(yt|xt)
∫
f(xt|xt−1)f(xt−1|y1:t−1)dxt−1 (2.1)

Here the posterior is proportional to the product of the observation likelihood, f(yt|xt), with

dimension 1, and the predictive density f(xt|y1:t−1) with dimension t− 11. Thus while the overall

posterior remains as a t-dimensional function, its computation can be effectively partitioned into

the product of two uncoupled functions with lesser dimension; performing further recursions on

f(xt|y1:t−1) enable the effective dimensionality of the problem to be reduced to that of xt itself.

Notice that this reduction in dimensionality is a direct result of the assumed sparsity of the

problem; that xt is dependent only on a localized region of its history. This is in fact an observation

which can be applied in a very general sense, to any problem of high dimension. When the structure

of a system admits a sparse representation, its exploitation can be used to effectively combat the

problem of dimensionality by transforming the system to a space of reduced dimension. A clear

example of this dimension reduction can be found in a long-standing methodology [9] for large-

scale multivariate analysis, called Principal Components Analysis (PCA). Essentially, this method

approximates a large matrix of data X as the product of two smaller matrices, P′ and T; this can

be viewed as projecting the data down to a lower-dimensional subspace via the projection matrix

P′ with the matrix T describing the coordinates within this hyperplane. The amount by which

the dimension can be reduced using this method depends directly on the number of ”principal”

components that are needed to sufficiently describe the data; the sparser the underlying system

actually is, the smaller the resulting dimensionality will be.

2.2 The general idea of MASCOT

Leveraging sparsity in a high-dimensional state space is the backbone of the MASCOT framework,

which will now be presented in a general sense then later specialized to the application of interest.

In order to avoid notational ambiguity, let us first form a specific construction of the space RL. To

do this, form L distinct copies of the real-number set R as R1,R2, . . . ,RL. Recall the definition of

a Cartesian product: for two sets A and B, the product A×B is the set of all ordered pairs (a, b)

where a ∈ A and b ∈ B. We can then construct RL as,

RL = R1 × R2 × · · · × RL =
L∏
l=1

Rl (2.2)

1Notice that here the dimensionality of the function is meant to reference the number of input scalar arguments

we are conditioning on. The state itself (xt) is assumed to be scalar.
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An element of RL based on this construction as then an ordered n-tuple x̃ = (x1, x2, . . . , xL),

subsequently written as a column vector (but where it is understood that a specific ordering has

been proscribed to the space). Equipped with this construction we can form a distinct subspace of

RL by way of an ordered index set S ⊂ {j : j ∈ 1, 2, . . . , L}. Namely, we can define the subspace X
as,

X =
∏
j∈S

Rj (2.3)

The projection function proji (x̃) takes the element x̃ ∈ RL as input and returns the ith component,

i.e., proji (x̃) = xi. With this in mind, we can then write proj{S}i (x̃) = x{S}i where {S}i is the ith ele-

ment in S. It should then be clear from the preceding definition that for every element x̃ in RL there

is a corresponding element in X that can be written as a |S|×1 vector =
[
x{S}1x{S}2 . . . x{S}|X|

]>
.

As an example, assume we have the vector X =
[
3.2 1.2 −.12 2.1 8.7

]
in R5 and the index set

S = {1, 4}. The corresponding element in X is then
[
3.2 2.1

]
.

Let us then assume we wish to estimate an L-dimensional state at time t, Xt ∈ RL, using L

agents, each with their own set of “private” measurements of the state (here it is assumed mea-

surements are not shared across agents). The i-th agent directly estimates the vector XSi,t in the

subspace XSi,t , of the full state space, with the remainder of the state, XFi,t ∈ XFi,t , treated as

nuisance parameters. Notice the symbols Si,t and Fi,t; these are indexing sets used to identify

the specific dimensions of RL from which the subspaces associated with agent i are constructed.

Namely, these sets are defined as:

Si,t =
{
j : [Xt]j estimated by agent i

}
Fi,t = Sci,t (2.4)

where here [Xt]j refers to the j-th component of Xt. Using these sets, the subspaces associated

with agent i are constructed using the Cartesian product as follows:1

XSi,t =
∏
j∈Si,t

Rj XFi,t =
∏
j∈Fi,t

Rj (2.5)

Thus here it can be stated that XSi,t = R|Si,t| where |Si,t| is the cardinality of Si,t, although the

ordering of XSi,t is distinct, while for R|Si,t| it is not. The full state-space is thus partitioned

amongst all the agents, implying that:

L∏
i=1

XSi,t = RL (2.6)

1Keeping in mind the initial construction of RL in (2.2)
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The collection of all agent in-focus subspaces, XSi,t , which is labeled Θt, can indeed be viewed as

a partition of the state space at time t, i.e.,

Θt =
{
XS1,t XS2,t . . . XSL,t

}
(2.7)

While agents do not directly estimate the vector XFi,t , they rely on information communicated

from all other agents, labeled Ψ
(
XFi,t

)
to compensate for any “interference” effect XFi,t may

have on the agent’s own measurements. The external information is a generalized notion and can

represent a number of different forms; the two most obvious being a point estimate X̂Fi,t or a

probability density f
(
XFi,t

)
.

The partition Θt is not fixed but is instead dynamically chosen at each time t as follows:

Choose Θt such that:

Ot (Θt) =

L∑
i=1

DM
(
XSi,t , ψ

(
XFi,t

))
Bi
(
XSi,t , ψ

(
XFi,t

)) ∣∣∣∣XSi,t
=X̂Si,t

XFi,t
=X̂Fi,t︸ ︷︷ ︸

B(Θt)

+λ1DA (Θt) (2.8)

is minimized

Where Bi is a measure of the ”predicted accuracy” that agent i will have in estimating XSi,t ,

evaluated at a pointwise prediction of XSi,t ( labeled X̂Si,t and based on agent i’s own processing)

along with a pointwise prediction of XFi,t (labeled X̂Fi,t) that is derived from ψ
(
XFi,t

)
. One

natural choice for Bi would be to use an estimation error bound (such as the CRLB); this will be

illustrated for the specific application considered in section 2.6. The functions DM and DA associate

a cost with the dimensionality “spread” of the partition, i.e., one (rather arbitrary) example choice

for DA would be:

DA (Θt) = exp

[
λ2 max

XSi,t
∈Θt

dim
(
XSi,t

)]
(2.9)

The scaling parameters (λ1, λ2) can control the trade-off between estimation accuracy and dimen-

sionality reduction. It is interesting to note however, that a higher dimensionality may not always

correlate with better performance; this will be seen in an example scenario. The function DM is of

particular interest here; this associates a cost with the dimensionality of a given agents partition

by scaling Bi and is considered significantly less arbitrary than DA. Just as the CRLB is a natural

choice for Bi, it is believed that one can develop an optimal choice for DM based on the specific

tracking algorithm. Some initial work has been done in this area regarding the specific applica-

tion considered (see 2.6) leading to a function which has been found to perform well, however this

remains an open area.
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2.3 Introduction to the Multi-Target-Tracking Application

While the MASCOT algorithm was just introduced in a general setting, work has been focused on

its implementation within a multi-target tracking (MTT) context using a network of mobile sensors.

This specific tracking environment along with the nature of the dynamical and measurement models

considered is what initially motivated development of the MASCOT framework.

The environment considered consists of L moving targets that exist within a 2-dimensional

plane. The state of the l-th target at time t is denoted as xl,t and can be decomposed as xl,t =[
x

[1]
l,t x

[2]
l,t x

[3]
l,t x

[4]
l,t

]>
where (x

[1]
l,t , x

[2]
l,t ) represent the target’s position coordinates and (x

[3]
l,t , x

[4]
l,t )

represent its velocity coordinates. Motion of a target is modeled as:

xl,t = Axl,t−1 + wl,t (2.10)

where wl,t is a 4×1 vector representing the state process noise and is here assumed to be Gaussian

distributed with zero mean and covariance matrix Q defined as:

Q = σ2
w


1
3T

3 0 1
2T

2 0
0 1

3T
3 0 1

2T
2

1
2T

2 0 T 0
0 1

2T
2 0 T

 (2.11)

A is termed the state transition matrix and is:

A =


1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1

 (2.12)

In eqs. (2.11) and (2.12) the parameters σ2
w and T represent the state process noise intensity and

the underlying time interval respectively. This model represents a discretization of a continuous-

time, second order model that will be described here for a target moving in a single coordinate

(it will be obvious how the derivation is extended to cover a 2D state). Let the variable τ here

denote continuous time in contrast to the discrete variable t which is used to represent a sampling

instant of τ , i.e., τt = tT . Let p (τ) denote the position of the target, v (τ) = ∂p(τ)
∂τ its velocity,

and a (τ) = ∂v(τ)
∂τ its acceleration which is assumed random. Namely, a (τ) = w (τ) where w (τ) is

white-noise with autocorrelation Rw (τ) = σ2
wδ (τ). The state equations for this model are then,

x (τ) =

[
p (τ)
v (τ)

]
;

∂

∂τ
x (τ) =

[
0 1
0 0

]
+

[
0
1

]
w (τ) (2.13)

Equation (2.13) is of the form,

∂

∂τ
x (τ) = Fx (τ) + gw (τ) (2.14)
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It is straightforward to show that,

x (τ) = eF(τ−τt)x (τt) +

∫ τ

τt

eF(η−τt)gw (η) ∂dη (2.15)

One can then develop the model in (2.10) directly from (2.15) with the relation,

A = eFT

wt =

∫ τt+1

τt

eF(τt+1−η)gw (η) dη (2.16)

The covariance matrix of wt is,

Q = E
[
wtw

>
t

]
= E

[(∫ τt+1

τt

eF(τt+1−η)gw (η) dη

)(∫ τt+1

τt

eF(τt+1−η′)gw
(
η′
)
dη′
)>]

=

∫ τt+1

τt

∫ τt+1

τt

eF(τt+1−η)gg>
(
eF(τt+1−η)

)>
E
[
w (η)w

(
η′
)]
dηdη′ (2.17)

Noting that F =

[
0 1
0 0

]
and E [w (η)w (η′)] = σ2

wδ (η) in this specific model we then arrive at the

forms embedded within (2.12) and (2.11),

A = exp

([
0 1
0 0

])
=

[
1 T
0 1

]
(2.18)

and,

Q =

∫ τt+1

τt

∫ τt+1

τt

[
1 τt+1 − η
0 1

] [
0 0
0 1

] [
1 0

τt+1 − η′ 1

]
σ2
wδ
(
η − η′

)
dηdη′

=

∫ τt+1

τt

[
(τt+1 − η)2 τt+1 − η
τt+1 − η 1

]
σ2
wdη

= σ2
w

[
−1

3 (τt+1 − η)3 |τt+1
τt −1

2 (τt+1 − η)2 |τt+1
τt

−1
2 (τt+1 − η)2 |τt+1

τt η|τt+1
τt

]
= σ2

w

[
1
3T

3 1
2T

2

1
2T

2 T

]
(2.19)

All targets are assumed to continuously transmit a constant signal of fixed energy. Information

is collected regarding the targets using sensors that receive an additive combination of all signals

transmitted by the targets. A measurement taken by the i-th sensor at time t is modeled as follows:

yi,t =
L∑
l=1

Φ

‖qi,t − x1:2
l,t ‖α + ε

+ vi,t (2.20)

where qi,t and x1:2
l,t are the position coordinates of the i-th sensor and the l-th target respectively, ε

is a fixed saturation parameter which limits the total amount of signal power the sensor can receive

from a given target, Φ is the transmitted signal power, α is a path-loss coefficient dependent on

the physical transmission medium, and vi,t ∼ N(0, σ2
v) is the sensor noise. All sensors are mobile
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2.4 Basic Target Tracking Background

and capable of adjusting their positions to enhance signal reception.

Note the model described represents a specific flavor of the tracking problem that is applicable

to a wide variety of applications incorporating RSS measurements, including RF and acoustic signal

sensors. Work has been focused on tracking; it is assumed that valid measurements are received from

all targets at each time instant (there are no “misses” or “false alarms”) and that the total number

of targets in the environment is known and constant over time (targets do not suddenly exit/enter

the scene). While this does exclude a fair amount of applications (particularly those involving

radar-scanning) it maintains the emphasis on track estimation rather than target-detection.

2.4 Basic Target Tracking Background

One of the earliest approaches to target tracking using Bayesian estimation principles involves

incorporation of a Kalman-filter [10] to track the state of a single target based on one or more ob-

servations. The Kalman filter involves recursive computation of an estimated mean and covariance

for the target’s current state, based on the newly received measurement, along with the estimated

mean and covariance of the target determined at the prior time step. It is well-known that the

Kalman filter is optimal under the assumption of linear state dynamics and measurement models

with Gaussian-distributed noise. This optimality does not hold for more general models and can in

fact yield rather poor results when applying the Kalman-filter to a non-linear non-Gaussian prob-

lem. To combat nonlinearities within the models, the Extended Kalman Filter was developed which

essentially carries out the Kalman Filtering steps on a linearization of the dynamic/measurement

models about the current mean and covariance estimates. This extension can be effective for situa-

tions where the nonlinearities present are mild, but can deteriorate rapidly for more general models

particularly those involving non-Gaussian noise. A more recent development called the Unscented

Kalman Filter (UKF) [11] uses a set of deterministic points (sigma points) that are generated by

representing the target state as a discrete distribution based on its estimated mean and covariance

in the previous time. These points are propagated through the nonlinear dynamic/measurement

models and the resulting transformed points are used within the conventional KF steps to determine

an estimate for the target mean and covariance of the current time. While possibly more compu-

tationally intensive, the UKF has been found to yield superior performance to that of the EKF

in most cases. However, difficulties still arise when dealing with systems containing non-Gaussian

noise. A form of sequential Monte Carlo techniques, called particle-filtering, is able to more ef-

fectively deal with generalized models for the target motion and sensor measurements. Particle

filtering uses a discrete random measure (or collection of randomly drawn particles and associated

weights) to represent the posterior distribution of the target state at each point in time. While

the ideal distribution to use for drawing the particles is the posterior itself, this is generally not
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2.4 Basic Target Tracking Background

possible. Instead, the random measure is generated using a technique called importance sampling:

particles are drawn from a ”proposal” distribution that is easier to sample from than the posterior,

and weighted in such a way that expectation over a random measure from this proposal corresponds

to expectation over a random measure from the target posterior.

Since particle filtering plays a crucial role in the application-specific implementation of MAS-

COT discussed, its use will now be illustrated in detail for a simple case. Assume there is a single

target, xt which follows the model as outlined in section 2.3. The posterior distribution of the

target state at time t, conditioned on all observations received up to the present time, is denoted as

f(xt|y1:t), and is approximated using a discrete representation consisting of M particles as follows:

f(xt|y1:t) ≈
M∑
m=1

w
(m)
t δ

(
xt − x

(m)
t

)
(2.21)

where δ(·) is the Dirac-delta function, x
(m)
t is the m-th particle, and w

(m)
t is the weight of the m-th

particle. Particles are generated from the proposal distribution, i.e. x
(m)
t ∼ q(xt|y1:t), and it is

desired to formulate an expression for the weights, w
(m)
t . Let us denote the expectation of a test

function h(xt) under the true posterior as I [h(xt)], or:

I [h(xt)] = Ef [h(xt)] =

∫
h(xt)f(xt|y1:t)dxt (2.22)

We also write Î [h(xt)] for the random variable generated by replacing f(xt|y1:t) in (2.22) with its

particle representation formed using the proposal,

Î [h(xt)] =

∫
h(xt)

(
M∑
m=1

w
(m)
t δ

(
xt − x

(m)
t

))
dxt

=
M∑
m=1

w
(m)
t h(x

(m)
t ) (2.23)

It is then desired to choose the weights such that the expectation of Î [h(xt)] (under the proposal)

forms an unbiased estimator of I [h(xt)].

Eq
[
Î [h(xt)]

]
=

M∑
m=1

Eq
[
w

(m)
t h(x

(m)
t )

]
=

M∑
m=1

∫
w

(m)
t h(x

(m)
t )q(x

(m)
t |y1:t)dx

(m)
t (2.24)

From (2.24) it should be obvious that choosing

w
(m)
t =

1

M

f(x
(m)
t |y1:t)

q(x
(m)
t |y1:t)

(2.25)
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2.4 Basic Target Tracking Background

yields the desired result. Since the ratio in (2.25) may be known only up to a multiplicative

constant, the ”true” weights in (2.21) are replaced with normalized weights,

ŵ
(m)
t =

w
(m)
t

M∑
i=1

w
(m)
t

(2.26)

yielding the relation ŵ
(m)
t = cw

(m)
t with c some unknown constant.

The most frequently chosen proposal distribution in a target-tracking context is the transition

prior, f(xt|xt−1), since it is described by the target state dynamical model and in most cases is

easy to sample from. It can be shown that this choice for the proposal yields the following recursive

expression for the particle weights:

ŵ
(m)
t =

ŵ
(m)
t−1f(yt|x(m)

t )
M∑
i=1

ŵ
(i)
t−1f(yt|x(i)

t )

(2.27)

The main problem with the use of the transition prior as the proposal lies in the fact that f(xt|xt−1)

has no dependency on the current measurement; there is no guarantee that sampled particles

will fall in a region of high probability mass within the observation likelihood, f(yt|x(m)
t ). As

a result, particle degeneracy can occur, whereby a large number of the particles have negligible

weights; eventually the filter can “collapse” yielding only a single particle with non-zero weight.

To combat this problem, a technique called ”resampling” is employed whereby a new particle set

is generated from the current weighted set. There are several ways to conduct resampling, each

with their own benefits and drawbacks. The most basic form uses sampling-with-replacement; for

each new particle, an index ki ∈ Z within the range [1,M ] is drawn from the discrete distribution

Prob(ki) = w
(ki)
t . The i-th particle in the new set is then set to x

(i)
t = x

(ki)
t ; it should be clear

that the new set will consist of particles from the original set that tend to have higher weights.

By resampling at appropriate times, there is a better chance that a larger number of particles

will maintain non-zero weights, since they are “guided” into regions of higher mass within the

observation likelihood. Resampling does not come without its own problems; due to the continued

replication of high-probability particles over time, “sample-impoverishment” can occur whereby

there is a very low-variance in the values of the particles themselves, i.e., the support of the

posterior is not adequately covered by the particle set. Numerous solutions have been proposed to

deal with this ”degeneracy-impoverishment” tradeoff, the most well-known being to resample only

when some measure of the particle diversity has fallen below a certain threshold. See [4] and [12]

for a more comprehensive treatment of this subject.

Returning to the simple single-target example described, a full particle filtering algorithm based

16



2.5 Cooperative-Agent Systems for Multi-Target Tracking

Step 1: For (m = 1 : M), draw x
(m)
t ∼ N(Ax

(m)
t−1,Q)

Step 2: Compute w
(m)
t = w

(m)
t−1N

[
yt | Φ

‖qt−x(m)
t ‖α+ε

, σv

]
Step 3: Normalize weights by setting ŵ

(m)
t = w

(m)
t

/ ∑M
i=1w

(i)
t

Step 4: Generate target state estimate as x̃t =
∑M

m=1 ŵ
(m)
t x

(m)
t

Step 5: If necessary, resample particles by:

For (i = 1 : M)

Set x
(i)
t = x

(ki)
t and w

(i)
t = 1

M where Prob (ki = j) = ŵ
(j)
t

Table 2.1: Basic PF Algorithm for tracking a single target

on using the transition prior as the proposal, can be outlined for estimation of the target state at

each point in time. Here it is assumed that tracking has been properly initialized with some well

defined means to ensure the initial particle set represents a reasonable approximation to the initial

target state posterior. Then update of the estimated target state at time t proceeds as in Table

2.1.

Using a particle filter for this model may not be entirely necessary since the state and measure-

ment noise are Gaussian, however the algorithm does handle well the nonlinearity present within

the measurement model. Notice also that in this simple example, there is only one measurement

captured from a single sensor each time instant. While it can be said in general that the use of a

larger number of concurrent measurements will result in improved performance, it is particularly

true in the case of RSS measurements. To see why, consider a single noiseless measurement of

the target. For a given value of yk, there is a circular locus with radius r =
√

Φ
yt
− ε, of possible

target locations centered around the sensor location which could have produced this value. This

represents a rather severe ambiguity and manifests itself as multi-modality within the observation

likelihood. With two or three concurrent sensor measurements (assuming the measurements are

not taken from co-located sensors) this ambiguity is immediately, and dramatically, reduced.

2.5 Cooperative-Agent Systems for Multi-Target Tracking

The concept of employing multiple autonomous agents to cooperatively handle a task of high com-

plexity has become a widely studied topic [13]. Numerous applications abound across a diverse array

of fields, including machine learning [14], network security management [15], medical data process-

ing [16], and particularly sensor networks [17]. Utilization of a multi-agent system (MAS) within

a target-tracking environment offers a number of benefits including improved reliability through

redundancy, greater information processing capability, and network-induced enhancements in flex-

ibility, control, and scalability.
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2.5 Cooperative-Agent Systems for Multi-Target Tracking

The specific nature of a multi-target tracking problem lends itself well to a MAS with an under-

lying distributed processing format. As the number of targets within the environment grows, the

computational requirements can quickly surpass what can be supported by a conventional central-

ized processing scheme. This is particularly true in the case of sensor networks which are mobile; a

large amount of energy is necessarily expended on conveying individual sensor information back to

the data fusion center, which can easily lie outside the physical range that would allow for direct

communication if the span of the tracking environment is large enough. More importantly, there

exists an important benefit that is realized by distributed processing in this context which is rather

unique to the multi-target tracking problem. Namely, the structure of the underlying state-space

model is such that it can be naturally partitioned into many smaller weakly correlated subspace

representations. To further clarify this, consider the fairly degenerate situation where targets are

spaced at a nearly-infinite distance away from one another. For the RSS-type measurements con-

sidered, a sensor positioned relatively close to one target will not be affected by the other targets; as

a result the tracking of each target can be considered separately as individual single-target tracking

problems. It is obvious in this case there exists the natural partition of the full state space, into

near-independent subspaces each corresponding to an individual target.

This key concept, of exploiting a “distributed representation” of the target space in order to

approach the tracking problem has been recognized previously and studied at great lengths in [18].

There, a solution is presented which adaptively switches between estimation of a number of targets

within the full-dimensional “joint space”, to dimensionally separated partitions each representing

the marginal distributions or “marginal space” of individual targets. Determination of when to

switch models is mainly based on the current estimated inter-target distances. A problem arises

when switching from the joint to marginal space, which is done by marginalization of the joint

distribution into individual target distributions; as no information is present within the sensor

measurements that distinguishes one target from another, there will be multiple modes in all of

the target marginals corresponding to each of the possible target configurations which could have

produced a given value for the measurement. There is a solid focus on addressing this identity

management problem within the paper that is elaborated further within [19]. Work in the previ-

ous two papers mentioned is quite similar to MASCOT, however there are many key differences

between the aforementioned results and the MASCOT framework. A heuristic based on the in-

stantaneous cross-target coupling within the sensor measurements is used to determine the switch

between the joint/marginal state space representations in [18], whereas the adaptive state-space

partitioning that takes place as part of MASCOT relies on optimization of an objective function

as outlined in equation (2.8). This objective naturally seeks the sparsest partition (allowing for

the greatest reduction in dimensionality) that can be realized without excessively compromising

estimation accuracy. Another major difference which distinguishes MASCOT lies in the fact that
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2.5 Cooperative-Agent Systems for Multi-Target Tracking

the partitions formed never truly represent marginal distributions; the estimating agent will always

incorporate externally communicated probabilistic information regarding other target states into

its own estimation process. It is also believed that MASCOT is better suited for a mobile sensor

network implementation (which was not explicitly considered in [18]; trajectory-planning can be

geared towards enhanced “pre-conditioning” of the partition-objective function as will be demon-

strated for the target application.

It should be mentioned that a vast number of more conventional approaches exist which ad-

dress MTT scenarios that are better suited for centralized implementation, see [20] for a fairly

comprehensive overview of these methods. A large collection of algorithms have also recently been

proposed that are based on Random Finite Set (RFS) theory [21] which use randomly varying sets

to represent the target and measurement spaces. This formulation of the MTT problem can lead

to a significantly more flexible representation of environments with an unknown number of targets

and allows for occurrences such as sudden target appearance/disappearance, missing measurements

and false alarms. Full incorporation of RFS theory in an MTT context has led to development

of the “Multitarget Bayes Filter”, that can be viewed as a generalization of the statistically op-

timal posterior filter in classical Bayesian theory. Unfortunately, the mathematical intractability

that exists with the classical filter is dramatically amplified in the multitarget case and in many

cases, even Monte Carlo techniques are prohibitively expensive in terms of computational resource

necessary for sufficient approximation accuracy. Simplifications based on propagating moments of

the multi-target distribution forward in time [22], as opposed to the distribution itself, have been

developed which significantly reduce this cost; this reduction can be viewed as conceptually similar

to Kalman filtering in a classical context, which propagates forward only the first two moments

of the actual target posterior distribution. While RFS-theoretic based methods offer a promising

direction in MTT research, they are outside of the main scope of this thesis. The focus in the cur-

rent work is in further development and application of MASCOT to an environment with a fixed

and known number of targets and where measurements are “globally influenced”, i.e. one cannot

directly associate any given measurement with a single target and therefore sensor misses/false

alarms are not applicable here. As a result, application of an RFS-theoretic approach within the

MASCOT framework would unnecessarily complicate matters and is withheld as an area for po-

tential extension in the future.

Much of the work completed in [23] and [24] forms a basis for the proposed MASCOT system.

In these papers, the concept of “switched” subspace-partitioning of the target state was outlined

in the context of particle filtering. While similar to [18] at an abstract level, it is the belief here

that [23] is a more effective implementation owing to a significantly higher-level of inter-agent col-

laboration. Specifically, for a given agent (filter), individual target predictions (each representing

separately partitioned subspaces of the full target space) made at the previous time by other agents

19



2.6 Detailed MASCOT Implementation in the MTT Environment

are communicated to this agent and incorporated within computation of the weight-update equa-

tion that is necessary for the estimation of its own target state at the current time. This idea

has been developed further within MASCOT; rather than conveying target estimates, probabilis-

tic information is communicated by the other agents and properly fused into the marginal target

posteriors. The general concept of this agent cooperation is illustrated in figure 2.1.

Agent 1 Processing 
Unit

Agent 2 Processing 
Unit

Agent 1 Sensor 1

Agent 1 Sensor 2

Agent 1 Sensor 3

Agent 2 Sensor 1

Agent 2 Sensor 2

Agent 2 Sensor 3RSSI 
R

SSI 

RSSI 

Target 1

Target 2

Figure 2.1: MASCOT Agent Cooperation

2.6 Detailed MASCOT Implementation in the MTT Environment

This subsection begins with a systematic definition of all notation required to describe MASCOT

in the context of a MTT environment.

Consider the model as described in section 2.3 with a total of L targets; the state of the l-th

target at time t is again described by the 4D vector xl,t ∈ R4. As in section 2.2 let us make a specific

construction of the space R4L that will be used to describe the state of all L targets. Forming L

distinct copies of R4 labeled R4
1,R4

2, . . . ,R4
L, we have the construction,

R4L = R4
1 × R4

2 × . . .R4
L =

L∏
l=1

R4
l (2.28)
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Notice the difference between (2.28) and (2.2); this time the space is constructed with multiples of

R4 rather than R and is done since individual (scalar) coordinates corresponding to a particular

target are always grouped together which greatly simplifies notation. The state of all targets at

time t is then described by the stacked vector in R4L defined as Xt =
[
x>1,t x>2,t · · · x>L,t

]
. A

total of L agents is used to estimate the full target state; associated with the i-th agent at time t

are two indexing sets Si,t and Fi,t defined as,

Si,t = {j : j ∈ 1, 2, . . . , L and xj,t estimated by agent i at time t} (2.29)

Fi,t = Sci,t (2.30)

Equipped with these sets, we can construct the subspaces XSi,t and XFi,t as,

XSi,t =
∏
j∈Si,t

R4
j XFi,t =

∏
j∈Fi,t

R4
j (2.31)

An important relation can also be stated here,

XFi,t =
L∏
j 6=i

XSj,t (2.32)

Notice again that, in contrast to how these sets were defined in 2.2, whereby j referred to a specific

scalar component of the full state space, here j refers to a specific target, which is instead a

grouping of 4 scalar components in Xt. Components of the state vector directly estimated by agent

i, XSi,t ∈ XSi,t can then be related back to the specific scalar components in Xt as,[
XSi,t

]
4(j−1)+1:4j

= [Xt]4({Si,t}j−1)+1:4{Si,t}j
for j = 1 . . . |Si,t| (2.33)

The set Si,t is labeled as the “in-focus” target index set of agent i at time t, and its complement,

Fi,t is labeled as the set of “foreign” target indices at time t not estimated by agent i and instead

treated as measurement interference. It should be clear that the collection of subspaces XSi,t for

all agents, denoted by Θt, represents a partition of the full target space, i.e,

Θt =
{
XS1,t , XS2,t , · · · XSL,t

}
, (2.34)

L∏
i=1

XSi,t = R4L (2.35)

A fixed “pool” of K sensors is used to generate observations regarding the MTT environment.

Each sensor is dynamically assigned to one of the agents at time t (Recall that agents treat their own

sensor observations as private). While there are numerous possible ways to conduct sensor-to-agent

assignment, the approach taken here is to maintain a fixed and equal number of sensors allocated

per target. To be more precise, the fixed sensor pool is divided into L groups, each containing K
L
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sensors; each group is assigned to the same target. Let us then define yj,t as the K
L dimensional

vector containing the j-th group of measurements. It is also sensible to maintain the sensor-target

association over time, i.e., sensor group j is associated with target j for all t. As an example,

let us assume K = 4 and L = 2. At time t = 1, agent 1 estimates target 1 only and is thus

allocated sensors 1 and 2. If at time t = 2, the partition changes such that agent 1 is responsible

for estimating both targets, it will be allocated all 4 sensors. With this assignment method in mind,

the set Yi,t associated with the i-th agent is defined as:

Yi,t = {yj,t : j ∈ Si,t} (2.36)

Each sensor within the group producing the measurements yj,t possesses a unique location; the

vector qj,t is used to vertically stack all locations within this group, i.e., the 2D component [qj,t]k

refers to the location of the k-th sensor within sensor group j at time t. Note that an alternate

notation which will not distinguish between particular groups within Yi,t will also be used; namely

{Yi,t}k will refer to simply the k-th measurement in this set, and {qSi,t}k to its corresponding

location.

The aim of agent i at time t is to represent the distribution f(XSi,t |Yi,1:t) with a random

measure consisting of M particles and denoted by χi,t = {X(m)
Si,t

, w
(m)
Si,t
}Mm=1. However, the dynamic

partitioning of the state space must be kept in mind here; XSi,t may not refer to the same state

dimensions as XSi,t−1 . For the moment, it is assumed that the target space partition remains

the same when advancing from t − 1 to t, i.e., Θt = Θt−1. Particles are then drawn as X
(m)
Si,t
∼

πi(X
(m)
Si,t
|X(m)

Si,t−1
,Yi,t) and the weights are computed according to:

w
(m)
Si,t

= w
(m)
Si,t−1

f(Yi,t|X(m)
Si,t

)f(X
(m)
Si,t
|X(m)

Si,t−1
)

πi(XSi,t |X
(m)
Si,t−1

,Yi,t)
(2.37)

The key obstacle here lies in the fact that the measurement set Yi,t in general depends not only

on XSi,t but in fact the entire target state, Xt. The step taken in [23] to get past this issue was to

rewrite (2.37) as:

w
(m)
Si,t

= w
(m)
Si,t−1

f(Ysi,t|X
(m)
Si,t

,XFi,t)f(X
(m)
Si,t
|X(m)

Si,t−1
,XFi,t)

πi(XSi,t |X
(m)
Si,t−1

,XFi,t−1 ,Yi,t)
(2.38)

and directly substitute a prediction made for XFi,t , labeled X̂Fi,t into (2.38), based on the estimates

obtained for XFi,t−1 from the other agents. To better clarify this, the concept of inter-agent

communication is now defined; this mechanism was present in [23] to a limited extent but plays

a much greater role in the MASCOT framework. At each time t, agent i receives information

ψ
(
XFi,t−1

)
from all other agents (or possibly only those within a certain range) regarding its foreign

states at the preceding time t − 1. This information is fused into agent i’s estimation process in
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order to form an estimate for XSi,t , labeled X̂Si,t . In the case of [23], the information exchanged

consisted of solely these estimates formed by the other agents, i.e., the vector X̂Fi,t−1 ∈ XFi,t−1

formed by concatenating individual estimates from each of the other agents:

ψ
(
XFi,t−1

)
= X̂Fi,t−1 =

[
X>S1,t−1

X>S2,t−1
. . . X>Si−1,t−1

X>Si+1,t−1
. . .X>SL,t−1

]>
(2.39)

Notice that (2.39) is consistent with the construction of XFi,t−1 according to (2.32). Equipped

with this information, a prediction for XFi,t can then be made by agent i by propagating forward

individual target estimates within X̂Fi,t−1 :[
X̂Fi,t

]
4(j−1)+1:4j

= A
[
X̂Fi,t−1

]
4(j−1)+1:4j

for j = 1 . . . |Fi,t−1| (2.40)

While this method can be effective for situations where there is a small influence on the mea-

surement set Yi,t from XFi,t , the algorithm breaks down when this influence increases due to

its inability to represent the uncertainty inherent in the foreign component estimates from other

agents. As such, it is highly desirable to retain the form for the weight-updates in (2.37) and make

approximations when possible to attain tractability.

This is indeed what is proposed here; to compute (2.37) with the modification that f(Yi,t|X(m)
Si,t

)

is approximated by f
(
Yi,t|X(m)

Si,t
, ψ
(
XFi,t−1

))
for updating of the particle weights. It is observed

that the k-th measurement in the set Yi,t can be written as:

{Yi,t}k = hk
(
XSi,t ,XFi,t

)
+ vk,t (2.41)

where vk,t is the sensor noise and here assumed ∼ N(0, σ2
v). Thus, to obtain an expression for

f
(
Yi,t|X(m)

Si,t
, ψ
(
XFi,t−1

))
, we can apply the method of transformation of random variables, given

the known statistics of vk,t and the estimated statistics of XFi,t derived from ψ
(
XFi,t−1

)
. Specifi-

cally, the particle set representations of the posterior distributions of XFi,t−1 that are possessed by

other agents within their in-focus partitions at time t− 1 are used to formulate an approximation

for the predictive distribution of XFi,t . This represents a core principle of MASCOT; that for a

given agent, the probabilistic information, ψ
(
XFi,t−1

)
, regarding XFi,t−1 is communicated by the

other agents and used within the weight-update equation to form the agent’s estimate of its own

target partition. The specific information communicated can be in a number of different forms and

can be considered as a form of ”posterior handover” between the agents, see [25] for a detailed

treatment of the subject. It has been chosen to communicate simple Gaussian approximations of

the posteriors between agents; at time t, agent i receives the information ψ
(
XFi,t−1

)
from other

agents as:

ψ
(
XFi,t−1

)
= {[x̂j,t−1,Cj,t−1] : j ∈ Fi,t−1} (2.42)
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To clarify further, for target j which is contained within XFi,t−1 , agent i receives a mean and

covariance estimate from some other agent (say agent k such that j ∈ Sk,t−1), agent i then treats

target j as if xj,t−1 ∼ N (x̂j,t−1,Cj,t−1) when updating its particle weights at time t. Specifically,

an estimate for the predictive distribution of xj,t is first made by agent i as:

xj,t ∼ N
(
xj,t | Ax̂j,t−1,ACj,t−1A

> + Q
)

(2.43)

This follows by referring back to the transition model in (2.10) and noting that if for some random

vector z = Au + v where u ∼ N(û,Cu) and v ∼ N (0,Q) then z ∼ N
(
Aû,ACuA

> + Q
)
.

Let us then return to computation of the likelihood function f(Yi,t|X(m)
Si,t

, ψ
(
XFi,t−1

)
) and

determine how ψ
(
XFi,t−1

)
can be used. Referring back to the measurement model in (2.20) we can

write:

{Yi,t}k = h
(s)
k (XSi,t) + h

(f)
k (XFi,t) + vk,t

h
(s)
k

(
XSi,t

)
=
∑
j∈Si,t

Φ∥∥∥∥{qSi,t

}
k
− x1:2

j,t

∥∥∥∥α + ε

h
(f)
k

(
XFi,t

)
=
∑
j∈Fi,t

Φ∥∥∥∥{qSi,t

}
k
− x1:2

j,t

∥∥∥∥α + ε

(2.44)

Where the x1:2
j,t symbol is meant to convey that only the first two elements of this 4-D subvector

(corresponding to the location coordinates) are taken. In computation of the likelihood, recall that

the scalar h
(s)
k (XSi,t) is treated as deterministic, since we are conditioning on specific values of the

particles X
(m)
Si,t

.

While in the most general multi-sensor case it is still believed that f(Yi,t|X(m)
Si,t

, ψ
(
XFi,t−1

)
) is

mathematically intractable, the author has found closed form expressions for specific cases where

the sensor noise component vk,t is neglected, i.e., f(Yi,t − vk,t|X
(m)
Si,t

, ψ
(
XFi,t−1

)
), and the mea-

surement vector is either scalar or consists of two measurements. An approximation to the full

likelihood can be computed by assuming sensor-independence (which is not technically correct but

does produce reasonable results) and through convolution of this expression with the sensor noise

pdf. Additionally, the closed form expressions obtained have allowed for development of a Gaussian

approximation to the likelihood, which performs reasonably well under typical tracking conditions.

While the details regarding these developments can be found in Chapter 6, the main result used

here is that the likelihood can be approximated as follows:

f(Yi,t|X(m)
Si,t

, ψ
(
XFi,t−1

)
)

≈
∏

j∈Yi,t

N

(
{Yi,t}j | h

(s)
j

(
X

(m)
Si,t

)
+ h

(f)
j

(
X̂Fi,t

)
,
{
σ?

2
(
qSi,t, ψ

(
XFi,t−1

))}
j

)
(2.45)
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where N
(
x | x̄, σ2

)
is the pdf of a scalar Gaussian random variable with argument x, mean x̄ and

variance σ2 and where,

h
(f)
j

(
X̂Fi,t

)
=
∑
k∈Fi,t

Φ∥∥∥∥{qSi,t

}
j
− (Ax̂k,t−1)1:2

∥∥∥∥α + ε

(2.46)

{
σ?

2
(
qSi,t, ψ

(
XFi,t−1

))}
j

= σ2
v +

∑
k∈Fi,t

{
Dk

Si,t

}
j

Φ2α2

∥∥∥∥{qSi,t

}
j
− (Ax̂k,t−1)1:2

∥∥∥∥2α−4

(∥∥∥∥{qSi,t

}
j
− (Ax̂k,t−1)1:2

∥∥∥∥α + ε

)4 (2.47)

{
Dk

Si,t

}
j

=
({

qSi,t

}
j
− (Ax̂k,t−1)1:2

)> (
ACk,t−1A

> + Q
)({

qSi,t

}
j
− (Ax̂k,t−1)1:2

)
(2.48)

Equipped with this expression for f(Yi,t|X(m)
Si,t

, ψ
(
XFi,t−1

)
), weights for the particles can then be

properly computed as in (2.37), allowing agent i to finally form its own information that will be

transmitted to the other agents as:

ψ
(
XSi,t

)
=

{
[x̂j,t,Cj,t] =

[
M∑
m=1

w
(m)
Si,t

x
(m)
j,t ,

M∑
m=1

w
(m)
Si,t

(
x

(m)
j,t − x̂j,t

)(
x

(m)
j,t − x̂j,t

)>]
: j ∈ Si,t

}
(2.49)

Notice that we can also write,

X̂Si,t =
M∑
m=1

w
(m)
Si,t

X
(m)
Si,t

(2.50)

Equation (2.50) represents the final estimate produced by agent i for the state XSi,t and is embedded

in the transmitted information ψ
(
XSi,t

)
. One could also form the covariance matrix CSi,t =∑M

m=1w
(m)
Si,t

(
X̂Si,t −XSi,t

)(
X̂Si,t −XSi,t

)>
for the entire state XSi,t , however it was chosen in

(2.50) to transmit only individual target covariance matrices since target motion is here modeled

as independent.

Recall the preceding development assumed Θt = Θt−1. The case where the partition changes

from t−1 to t can be somewhat more complicated, however is alleviated to some extent by following

the preceding notation as outlined. Several distinct cases of what may occur are outlined here with

two simple scenarios; the full range of possible conditions can be covered by their straightforward

extension. Let us first suppose that the in-focus space of agent i is reduced in size by one target

when advancing from t− 1 to t, i.e., ∃ k s.t. k ∈ Si,t−1 ∧ k /∈ Si,t. Here, the particle filter algorithm

can proceed at time t as outlined previously with the minor adjustment that agent i now must use

the same information [x̂k,t−1,Ck,t−1] ∈ ψ
(
XSi,t−1

)
it broadcast to other agents regarding the state

of target k at time t − 1 to update its own weights at time t, i.e., this information becomes part

of ψ
(
XFi,t−1

)
. The second case considered consists of a target addition to XSi,t from time t − 1

to t, i.e., ∃ k s.t. k /∈ Si,t−1 ∧ k ∈ Si,t. Here the situation is somewhat more complex; the particle
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representation
{

X
(m)
Si,t

, w
(m)
Si,t

}
m=1:M

must grow in dimension by 4 to accommodate the additional

target. There is also some ambiguity as to how to properly represent the joint distribution of XSi,t so

this is examined further here: we wish to represent f
(
XSi,t |Yi,1:t

)
based on

{
X

(m)
Si,t−1

, w
(m)
Si,t

}
m=1:M

and [x̂k,t−1,Ck,t−1] ∈ ψ
(
XFi,t−1

)
. Since the underlying assumption is that the actual dependency

between XSi,t−1 and xk,t−1 is relatively weak (else it would have been less likely that k /∈ Si,t−1),

the product of the two distributions are taken for purposes of particle generation. This can be done

in a number of ways, but the approach taken here is to maintain a fixed particle size; assuming the

transition prior is normally used for the proposal π, particle propagation at time t is done by:

X
(m)
Si,t

= X
(m)
Si,t

′
∪ x

(m)
k,t (2.51)

where the union is meant to convey that for each particle X
(m)
Si,t

a single particle x
(m)
k,t is drawn and

appended to the particle X
(m)
Si,t

′
, where:

X
(m)
Si,t

′
=
{

x
(m)
j,t ∼ N

(
Ax

(m)
j,t−1,Q

)
: j ∈ Si,t−1 ∧ j ∈ Si,t

}
x

(m)
k,t ∼ N

(
Ax̂k,t−1,ACk,t−1A

> + Q
)

(2.52)

It should be clear that the weights can then be updated in a similar fashion as in the preceding

examples.

As part of MASCOT, and outlined in a more general context within section 2.2, agents employ

dynamic partitioning of the target state space according to (2.8). A sensible choice for the function

Bi would be the trace of the Cramer-Rao-Lower-Bound (CRLB) matrix, J−1
(
X1:2

Si,t
| ψ
(
XFi,t−1

))
,

for all agents in a given candidate partition Θ′t. Note the symbol X1:2
Si,t

is used to emphasize that only

the location coordinates of each target subvector within XSi,t are taken. It can then be written1

for each element of X1:2
Si,t

:

E
[({

X̂1:2
Si,t

}
k
−
{

X1:2
Si,t

}
k

)({
X̂1:2

Si,t

}
k
−
{

X1:2
Si,t

}
k

)>]
�
[
J−1

(
X1:2

Si,t | ψ
(
XFi,t−1

))]
k,k

(2.53)

where expectation is over the measurements Yi,t only, and
{

X̂1:2
Si,t

}
k

is any estimator of
{

X1:2
Si,t

}
k

that can be produced by agent i given the externally communicated information ψ
(
XFi,t−1

)
. Note

the use of the subscript notation
{

X1:2
Si,t

}
k

here; this is meant to read as the 2 × 1 subvector in

X1:2
Si,t

corresponding to the location coordinates of the k-th target within that vector, i.e.,{
X1:2

Si,t

}
k

=
[
XSi,t

]
4(k−1)+1:4(k−1)+2

(2.54)

Later the subscript k(w) will be used, as in
{

X1:2
Si,t

}
k(w)

which is meant to refer to the w-th coor-

dinate of the k-th subvector. Whenever the k(w) indexing notation is used to refer to a coordi-

nate within a vector or matrix it is understood that targets and coordinates are always stacked

1For two matrices A and B, the relation A � B means the matrix A−B is positive semidefinite.
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vertically. For example, if we take all vector elements from X1:2
Si,t

and stack them into a single

vector, U, of size |X1:2
Si,t
| × 1 ordered by coordinate and by target number, it is understood that

[U](2(k−1)+w) =
{

X1:2
Si,t

}
k(w)

. To keep notation compact, the shorthand [U]k(w) is used to im-

plicitly refer to [U](2(k−1)+w). With this in mind, we can see that J−1
(
X1:2

Si,t
| ψ
(
XFi,t−1

))
is a

2|Si,t| × 2|Si,t| matrix, and
[
J−1

(
X1:2

Si,t
| ψ (Fi,t−1)

)]
k,k

refers to the 2× 2 block on its diagonal.

Bi then acts as a lower bound on the best accuracy agent i can achieve in estimating the target

locations at time t within its in-focus set given its current set of measurements. Let us now formu-

late an expression for J−1
(
X1:2

Si,t
| ψ
(
XFi,t−1

))
assuming the external information ψ

(
XFi,t−1

)
is a

Gaussian distribution as in (2.42):

J−1
(
X1:2

Si,t | ψ
(
XFi,t−1

))
= E

[
vSi,tv

>
Si,t

]−1
, (2.55)

where, [
vSi,t

]
k(w) =

∂ log f
(
Yi,t|X1:2

Si,t
, ψ
(
XFi,t−1

))
∂
{

X1:2
Si,t

}
k(w)

 (2.56)

and expectation is taken over agent i’s set of measurements here, i.e.,

E [?] =

∫
(?) f

(
Yi,t | X1:2

Si,t , ψ
(
XFi,t−1

))
dYi,t (2.57)

Referring back to (2.45), the log-likelihood is rewritten as:

log f
(
Yi,t | X1:2

Si,t , ψ
(
XFi,t−1

))
=

∑
yj∈Yi,t

log f
(
yj | X1:2

Si,t , ψ
(
XFi,t−1

))
≈

∑
yj∈Yi,t

log

(
N

(
yj | h(s)

j

(
X1:2

Si,t

)
+ h

(f)
j

(
X̂Fi,t

)
,
{
σ?

2 (
qSi,t , ψ

(
XFi,t−1

))}
j

))
(2.58)

Given that,

N
(
x | x̄, σ2

)
=

1√
2πσ

exp

[
−(x− x̄)2

2σ2

]
(2.59)

We can express (2.58) as:

log f
(
Yi,t | X1:2

Si,t , ψ
(
XFi,t−1

))
≈

∑
yj∈Yi,t

 −
(
yj −

[
h

(s)
j

(
X1:2

Si,t

)
+ h

(f)
j

(
X̂Fi,t

)])2

2
{
σ?2

(
qSi,t , ψ

(
XFi,t−1

))}
j

− log
(√

2π
{
σ?
(
qSi,t , ψ

(
XFi,t−1

))}
j

)  (2.60)
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Taking the derivative of this expression with respect to
{

X1:2
Si,t

}
k(w)

, we have:

∂ log f
(
Yi,t | X1:2

Si,t
, ψ
(
XFi,t−1

))
∂
{

X1:2
Si,t

}
k(w)

≈
∑

yj∈Yi,t


(
yj −

[
h

(s)
j

(
X1:2

Si,t

)
+ h

(f)
j

(
X̂Fi,t

)])
{
σ?2

(
qSi,t , ψ

(
XFi,t−1

))}
j

 ∂h
(s)
j

(
X1:2

Si,t

)
∂
{

X1:2
Si,t

}
k(w)

 (2.61)

The derivative term is evaluated using (2.44):

∂h
(s)
j

(
X1:2

Si,t

)
∂
{

X1:2
Si,t

}
k(w)

=
∂

∂
{

X1:2
Si,t

}
k(w)

 ∑
k′∈Si,t

Φ∥∥∥∥{qSi,t

}
j
− x1:2

k′,t

∥∥∥∥α + ε



=

αΦ
({

qSi,t

}
j(w) − x

(w)
k,t

)∥∥∥∥{qSi,t

}
j
− x1:2

k,t

∥∥∥∥α−2

(∥∥∥∥{qSi,t

}
j
− x1:2

k,t

∥∥∥∥α + ε

)2 (2.62)

Referring back to (2.55), we then can write:

E
[
vSi,tv

>
Si,t

]
k(w),l(z)

=

E


 ∑
yj∈Yi,t


(
yj −

[
h

(s)
j

(
X1:2

Si,t

)
+ h

(f)
j

(
X̂Fi,t

)])
{
σ?2

(
qSi,t , ψ

(
XFi,t−1

))}
j

 ∂h
(s)
j

(
X1:2

Si,t

)
∂
{

X1:2
Si,t

}
k(w)



×

 ∑
yj∈Yi,t


(
yj −

[
h

(s)
j

(
X1:2

Si,t

)
+ h

(f)
j

(
X̂Fi,t

)])
{
σ?2

(
qSi,t , ψ

(
XFi,t−1

))}
j

∂h(s)
j

(
X1:2

Si,t

)
∂
{

X1:2
Si,t

}
l(z)




=
∑

yj∈Yi,t

yp∈Yi,t


(

∂h
(s)
j

(
X1:2

Si,t

)
∂
{
X1:2

Si,t

}
k(w)

)(
∂h

(s)
p

(
X1:2

Si,t

)
∂
{
X1:2

Si,t

}
l(z)

)
{
σ?
(
qSi,t , ψ

(
XFi,t−1

))}2

j

{
σ?
(
qSi,t , ψ

(
XFi,t−1

))}2

p

× E
[(
yj − h(s)

j

(
X1:2

Si,t

)
− h(f)

j

(
X̂Fi,t

))(
yp − h(s)

p

(
X1:2

Si,t

)
− h(f)

p

(
X̂Fi,t

))]  (2.63)

Referring to (2.46) and noting that:

E
[(
yj − h(s)

j

(
X1:2

Si,t

)
− h(f)

j

(
X̂Fi,t

))(
yp − h(s)

p

(
X1:2

Si,t

)
− h(f)

p

(
X̂Fi,t

))]
=

{{
σ?
(
qSi,t , ψ

(
XFi,t−1

))}2

j
, if j = p.

0, otherwise.
(2.64)
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We have finally that:

E
[
vSi,tv

>
Si,t

]
k(w),l(z)

=
∑

yj∈Yi,t

(
∂h

(s)
j

(
X1:2

Si,t

)
∂
{
X1:2

Si,t

}
k(w)

)(
∂h

(s)
j

(
X1:2

Si,t

)
∂
{
X1:2

Si,t

}
l(z)

)
{
σ?
(
qSi,t , ψ

(
XFi,t−1

))}2

j

=
∑

yj∈Yi,t

α2Φ2
({

qSi,t

}
j(w) − x

(w)
k,t

)({
qSi,t

}
j(z)
− x

(z)
l,t

)(∥∥∥∥{qSi,t

}
j
− x1:2

k,t

∥∥∥∥∥∥∥∥{qSi,t

}
j
− x1:2

l,t

∥∥∥∥)α−2

({
σ?
(
qSi,t , ψ

(
XFi,t−1

))}
j

(∥∥∥∥{qSi,t

}
j
− x1:2

k,t

∥∥∥∥α + ε

)(∥∥∥∥{qSi,t

}
j
− x1:2

l,t

∥∥∥∥α + ε

))2

(2.65)

The matrix formed based on the preceding expression for each of the elements must then be inverted

to yield the CRLB matrix, J−1
(
X1:2

Si,t
| ψ
(
XFi,t−1

))
as noted in (2.55).

Let us now consider a possible expression for DM

(
XSi,t , ψ

(
XFi,t−1

))
which can be considered

as a regularizing function that allows MASCOT to favor partitions with lowest dimensionality.

This function is of great significance, since in the absence of it, the function Bi will generally favor

partitions with higher dimensionality. While the choice of an error-bound for Bi is reasonable,

it must be understood that it provides only a benchmark for the best-achievable accuracy any

estimator can attain; it provides no information regarding how well a specific suboptimal estimator,

i.e., the particle filter, will do and can be misleading. Ideally, the function DM should be naturally

derived based on the estimation algorithm chosen, i.e., a prediction of how well the particle filter

will perform given the value of the eror bound, number of particles, and dimensionality of the

system. Work done in [26],[27],[28], [29], and many others offers insight into how adequate particle

sampling coverage is affected by the dimensionality of the problem. Unfortunately, there does not

seem to be a precise, tractable, formula for estimating how “far from optimal” a given particle filter

will be. One possibility involves leveraging the result in [29] which shows for the particular problem

considered in that paper, the Monte-Carlo error grows at the rate of O
(
e
α
4 d√
N

)
where α ≥ 2 min (T, 1)

and T is the time interval unit. While the problem considered here is not entirely similar to that

in [29], this expression indeed has been found empirically to work well as DM . To be more precise,

it is proposed here to set DM

(
XSi,t , ψ

(
XFi,t

))
= e|Si,t|; notice here the assumption 1 that α = 2,

and d = 2|Si,t|. A rigorous derivation of DM that should also depend on the number of particles

and properties of the observation likelihood is left as an open area for future work.

Finally, equipped with an expression for Bi and DM , the objective for a given candidate parti-

tion Θ′t is then computed as in (2.8). The candidate partition, Θ?
t yielding the lowest value of Ot

is chosen to represent Xt at time t, i.e., Θt = Θ?
t .

To illustrate how MASCOT works, let us consider an example consisting of two targets and two

1Although d is actually 4|Si,t|, the velocity terms are conditionally linear and Rao-Blackwellization can be applied

to reduce the effective dimension to 2
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agents (L = 2), with a pool of K = 4 sensors, and for simplicity ε = 0, α = 2. For this example,

let us set DM
(
XSi,t , ψ

(
XFi,t−1

))
= 1 and (λ1, λ2) = (0, 0) corresponding to a desire for maximum

estimation accuracy without regard for dimensionality. At each time t, there are only two possible

unique partitions of Xt:

Θ
(1)
t =

{
R4

1 × R4
2

}
Θ

(2)
t =

{
R4

1,R4
2

}
(2.66)

The candidate partition Θ
(1)
t consists of a single agent estimating both targets , i.e., XS1,t =

Xt and XS2,t = ∅ while the candidate partition Θ
(2)
t assigns a single target to each agent, i.e.,

XS1,t = x1,t and XS2,t = x2,t. The quantity E
[
vS1,tv

>
S1,t

]
under candidate partition Θ

(1)
t (labeled

E
[
vS1,tv

>
S1,t

]Θ
(1)
t

is then a 4× 4 matrix with the elements:

E
[
vS1,tv

>
S1,t

]Θ
(1)
t

1,1
=

∑
yj∈Y1,t

4Φ2
({

qS1,t

}
j(1) − x

(1)
1,t

)2

σ2
v

∥∥∥∥{qS1,t

}
j
− x1:2

1,t

∥∥∥∥8

E
[
vS1,tv

>
S1,t

]Θ
(1)
t

1,2
= E

[
vS1,tv

>
S1,t

]Θ
(1)
t

2,1
=

∑
yj∈Y1,t

4Φ2
({

qS1,t

}
j(1) − x

(1)
1,t

)({
qS1,t

}
j(2) − x

(2)
1,t

)
σ2
v

∥∥∥∥{qS1,t

}
j
− x1:2

1,t

∥∥∥∥8

E
[
vS1,tv

>
S1,t

]Θ
(1)
t

2,2
=

∑
yj∈Y1,t

4Φ2
({

qS1,t

}
j(2) − x

(2)
1,t

)2

σ2
v

∥∥∥∥{qS1,t

}
j
− x1:2

1,t

∥∥∥∥8

E
[
vS1,tv

>
S1,t

]Θ
(1)
t

1,3
= E

[
vS1,tv

>
S1,t

]Θ
(1)
t

3,1
=

∑
yj∈Y1,t

4Φ2
({

qS1,t

}
j(1) − x

(1)
1,t

)({
qS1,t

}
j(1) − x

(1)
2,t

)
σ2
v

∥∥∥∥{qS1,t

}
j
− x1:2

1,t

∥∥∥∥4∥∥∥∥{qS1,t

}
j
− x1:2

2,t

∥∥∥∥4

E
[
vS1,tv

>
S1,t

]Θ
(1)
t

1,4
= E

[
vS1,tv

>
S1,t

]Θ
(1)
t

4,1
=

∑
yj∈Y1,t

4Φ2
({

qS1,t

}
j(1) − x

(1)
1,t

)({
qS1,t

}
j(2) − x

(2)
2,t

)
σ2
v

∥∥∥∥{qS1,t

}
j
− x1:2

1,t

∥∥∥∥4∥∥∥∥{qS1,t

}
j
− x1:2

2,t

∥∥∥∥4

30



2.6 Detailed MASCOT Implementation in the MTT Environment

E
[
vS1,tv

>
S1,t

]Θ
(1)
t

2,3
= E

[
vS1,tv

>
S1,t

]Θ
(1)
t

3,2
=

∑
yj∈Y1,t

4Φ2
({

qS1,t

}
j(2) − x

(2)
1,t

)({
qS1,t

}
j(1) − x

(1)
2,t

)
σ2
v

∥∥∥∥{qS1,t

}
j
− x1:2

1,t

∥∥∥∥4∥∥∥∥{qS1,t

}
j
− x1:2

2,t

∥∥∥∥4

E
[
vS1,tv

>
S1,t

]Θ
(1)
t

2,4
= E

[
vS1,tv

>
S1,t

]Θ
(1)
t

4,2
=

∑
yj∈Y1,t

4Φ2
({

qS1,t

}
j(2) − x

(2)
1,t

)({
qS1,t

}
j(2) − x

(2)
2,t

)
σ2
v

∥∥∥∥{qS1,t

}
j
− x1:2

1,t

∥∥∥∥4∥∥∥∥{qS1,t

}
j
− x1:2

2,t

∥∥∥∥4

E
[
vS1,tv

>
S1,t

]Θ
(1)
t

3,4
= E

[
vS1,tv

>
S1,t

]Θ
(1)
t

4,3
=

∑
yj∈Y1,t

4Φ2
({

qS1,t

}
j(1) − x

(1)
2,t

)({
qS1,t

}
j(2) − x

(2)
2,t

)
σ2
v

∥∥∥∥{qS1,t

}
j
− x1:2

2,t

∥∥∥∥8

E
[
vS1,tv

>
S1,t

]Θ
(1)
t

3,3
=

∑
yj∈Y1,t

4Φ2
({

qS1,t

}
j(1) − x

(1)
2,t

)2

σ2
v

∥∥∥∥{qS1,t

}
j
− x1:2

2,t

∥∥∥∥8

E
[
vS1,tv

>
S1,t

]Θ
(1)
t

4,4
=

∑
yj∈Y1,t

4Φ2
({

qS1,t

}
j(2) − x

(2)
2,t

)2

σ2
v

∥∥∥∥{qS1,t

}
j
− x1:2

2,t

∥∥∥∥8 (2.67)

where it is noted that
{
σ?
(
qSi,t , ψ

(
XFi,t−1

))}
j

= σv ∀ j since XF1,t = ∅1 Moving on to candidate

partition Θ
(2)
t , it is noted that the quantities E

[
vS1,tv

>
S1,t

]Θ
(2)
t

and E
[
vS2,tv

>
S2,t

]Θ
(2)
t

are both 2× 2

matrices with elements:

E
[
vS1,tv

>
S1,t

]Θ
(2)
t

w,z
=

∑
yj∈Y1,t

4Φ2
({

qS1,t

}
j(w) − x

(w)
1,t

)({
qS1,t

}
j(z)
− x

(z)
1,t

)
σ2

v +
4Φ2

({
qS1,t

}
j
−(Ax̂2,t−1)1:2

)>
(AC2,t−1A>+Q)

({
qS1,t

}
j
−(Ax̂2,t−1)1:2

)
∥∥∥∥{qS1,t

}
j
−(Ax̂2,t−1)1:2

∥∥∥∥8

∥∥∥∥{qS1,t

}
j
− x1:2

1,t

∥∥∥∥8

E
[
vS2,tv

>
S2,t

]Θ
(2)
t

w,z
=

∑
yj∈Y2,t

4Φ2
({

qS2,t

}
j(w) − x

(w)
2,t

)({
qS2,t

}
j(z)
− x

(z)
2,t

)
σ2

v +
4Φ2

({
qS2,t

}
j
−(Ax̂1,t−1)1:2

)>
(AC1,t−1A>+Q)

({
qS2,t

}
j
−(Ax̂1,t−1)1:2

)
∥∥∥∥{qS2,t

}
j
−(Ax̂1,t−1)1:2

∥∥∥∥8

∥∥∥∥{qS2,t

}
j
− x1:2

2,t

∥∥∥∥8

(2.68)

Notice that in both equations (2.67) and (2.68), the in-focus targets of each partition (x1,t,x2,t ∈
XS1,t) for Θ

(1)
t and x1,t ∈ XS1,t ,x2,t ∈ XS2,t for Θ

(2)
t are unknown at time t; these quantities are eval-

1Note that Bi = 0 if XSi,t = ∅.
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uated at predictions of each target, i.e., for Θ
(2)
t , x1,t is replaced with Ax̂1,t−1 in E

[
vS1,tv

>
S1,t

]Θ
(2)
t

w,z
.

The substitution was intentionally omitted from the preceding equations to differentiate between

targets from XSi,t and those from XFi,t .

It is clear that each of the objective functions, Bi (Θt), have a strong dependence on the rela-

tive offsets between the sensors and targets; when evaluating candidate partition objectives, it is

sensible to compute these values assuming sensors will be arranged in an optimal configuration for

the corresponding partition. Optimal sensor positioning is for the moment considered a separate

issue and is addressed in section 2.7. For now, let us assume each sensor pair is positioned along a

circle of fixed radius r about one of the targets (this is an optimal configuration for a single target

scenario with two sensors but suboptimal here). As discussed previously and noted by (2.36), sen-

sors are allocated to each agent in such a way that the sensor-target association remains fixed over

time. For this example, let us denote the k-th pair of sensor measurements by yk,t, then we have

the following sensor allocation for each candidate partition:

Y
Θ

(1)
t

1,t = {y1,t,y2,t} Y
Θ

(1)
t

2,t = ∅

Y
Θ

(2)
t

1,t = {y1,t} Y
Θ

(2)
t

2,t = {y2,t} (2.69)

To clarify further, if at time t, the partition Θ
(1)
t is chosen, then sensors are allocated according to

Y
Θ

(1)
t

i,t , otherwise if Θ
(2)
t is chosen, sensors are allocated according to Y

Θ
(2)
t

i,t .

While the partitioning objective function has a relatively complex form even in the case of

this simple two-target configuration, let us consider a specific scenario to see if any informative

observations can be made. Let us assume that the two targets both lie along the horizontal axis

and are initially separated by a distance 2d ≥ 2r, i.e., x1,t =
[
d 0

]>
and x2,t =

[
−d 0

]>
. Sensor

positioning is done in both candidate partitions according to:

[q1,t]1 = x1,t +
[
r√
2

r√
2

]>
[q1,t]2 = x1,t +

[
r√
2
− r√

2

]>
[q2,t]1 = x2,t −

[
r√
2
− r√

2

]>
[q2,t]2 = x2,t −

[
r√
2
− r√

2

]>
(2.70)

In positioning the sensors and in subsequent evaluation of the candidate objectives, let us assume

each agent makes “perfect” predictions, i.e., x̂j,t = xj,t but also predicts the covariance matrix of

each target ∈ XFi,t , Cj,t = ACj,t−1A+Q to be σ2
fI. It can be shown that the matrices E

[
vSi,tvSi,t

]
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take on the form:

E
[
vS1,tvS1,t

]Θ(1)
t =

4Φ2

σ2
v



1
r6 +

(4d+
√

2r)
2

2(4d2+2
√

2dr+r2)
4 0

2(2
√

2d+r)
r3(4d2+2

√
2dr+r2)

2 0

0 1
r6 + r2

(4d2+2
√

2dr+r2)
4 0 2

r2(4d2+2
√

2dr+r2)
2

2(2
√

2d+r)
r3(4d2+2

√
2dr+r2)

2 0 1
r6 +

(4d+
√

2r)
2

2(4d2+2
√

2dr+r2)
4 0

0 2

r2(4d2+2
√

2dr+r2)
2 0 1

r6 + r2

(4d2+2
√

2dr+r2)
4


(2.71)

E
[
vS1,tvS1,t

]Θ(2)
t = E

[
vS2,tvS2,t

]Θ(2)
t =


4Φ2

r6

σ2
v +

4Φ2σ2
f(

r2

2
+
(

2d+ r√
2

)2
)3




I2 (2.72)

To find the objective functions for each candidate partition, O
Θ

(l)
t

t , these matrices must be inverted

and the matrix trace operator is then applied. This yields a simple form for Θ
(2)
t in this scenario,

as both its matrices in (2.72) are diagonal,

Bt
(

Θ
(2)
t

)
=
r6

Φ2

σ2
v +

4Φ2σ2
f(

r2

2 +
(

2d+ r√
2

)2
)3

 (2.73)

The objective function for Θ
(1)
t is considerably more complex owing to the necessary 4× 4 matrix

inversion and its final form is not shown (it is a relatively high order polynomial in d and r).

One clear observation that can be made here is that Bi → r6σ2
v

Φ2 as d → ∞ in either candidate.

This can be seen easily in the case of Θ
(2)
t since the term involving σ2

f in (2.73) decays rapidly as d

increases. While not so obvious for Θ
(1)
t , it is straightforward to show that all terms involving d in

(2.71) decay to 0, leaving us with E
[
vS1,tvS1,t

]Θ(1)
t → 4Φ2

σ2
vr

6 I4 as d→∞, which clearly produces the

same result upon taking the trace of its inverse. The candidate that should be chosen by MASCOT

(with a lower value for Ot) is difficult to quantify even in this simple scenario due to the complex

form of Bi
(

Θ
(1)
t

)
and is significantly influenced by the various parameters (Φ, σv, σf , r). Clearly,

as the target separation increases, choosing Θ
(2)
t will be more favorable since, as shown, the two

candidate objectives converge to the same value, thus there is no longer any benefit in choosing Θ
(1)
t

which would yield a higher-dimensional partition and cause a larger value for DM in Ot. However,
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the situation can be significantly different when the targets are in close proximity. Figures 2.2

and 2.3 illustrate this variation in Bi (Θt) for different values of Φ. Notice how as Φ increases,

the candidate Θ
(1)
t yields increasingly better performance over Θ

(2)
t for smaller target separations;

this is intuitive since at higher power levels, there will be a larger amount of interference in sensor

measurements from the foreign target.
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Figure 2.2: Plot of logBt (Θt) for (σv, σf ) = (0.01, 0.04) for various values of Φ and r = 2. Blue lines

indicate Θ
(1)
t , and red indicate Θ

(2)
t .
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Figure 2.3: Plot of the ratio
Bi

(
Θ

(1)
t

)
Bi

(
Θ

(2)
t

) for (σv, σf ) = (0.01, 0.04) for various values of Φ and r = 2.

Figure 2.4 examines the ratio
Bi
(

Θ
(1)
t

)
Bi
(

Θ
(2)
t

) for a range of (σf , r) at the fixed target separation d = 2
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and fixed power Φ = 16. Notice that a green plane for
Bi
(

Θ
(1)
t

)
Bi
(

Θ
(2)
t

) = 1 separates locations where Θ
(2)
t

is favorable (above) and where Θ
(1)
t is favorable (below). It can be seen that higher values of σf

result in Θ
(1)
t to be favored; this can be expected since there is less certainty in the exchanged

information between the two agents (for Θ
(2)
t ) resulting in a higher level of interference to sensor

measurements. A similar explanation can be stated for decreasing values of r; if the sensors are

closer to their “target of interest”, they will also be closer to the interfering target if there is small

target-separation, resulting in a higher performance degradation.

Figure 2.4: Plot of the ratio
Bt

(
Θ

(1)
t

)
Bt

(
Θ

(2)
t

) for d = 2,Φ = 16 for various values of σf and r.

The full MASCOT algorithm as outlined in the application-specific context presented within

this section is summarized in algorithm table 2.2.

2.7 Target Tracking with a Mobile Sensor Network

With recent advances in technology, the concept of a network of mobile autonomous units, each

fitted with specialized sensing devices, cooperatively acting to track and follow some target, has

become a physically achievable reality [30]. There are numerous benefits to employment of a

mobilized suite of sensors to track a target, with perhaps the most important being the fact that the
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Complete the following steps for each time t:

S1: For each agent i, collect information ψ
(
XFi,t−1

)
=
{
ψ
(
XSj,t−1

)
: j 6= i

}
S2: For each agent i, make a prediction of the state Xt using XSi,t−1 and ψ

(
XFi,t−1

)
S3: For each possible candidate partition Θ

(u)
t do:

Determine the candidate sensor allocation for each agent, Y
Θ

(u)
t

i,t .

Determine the optimal sensor positions under this allocation, q
Θ

(u)
t

Si,t
for each agent i.

Compute the objective,

Ot

(
Θ

(u)
t

)
=

G∑
i=1

DM
(
XSi,t , ψ

(
XFi,t−1

))
Bi
(
XSi,t , ψ

(
XFi,t−1

))
+ λ1D

(
Θ

(u)
t

)
where,

Bi
(
XSi,t , ψ

(
XFi,t−1

))
= tr

(
E
[
vv>

]−1
)

, v =
∂ log f

(
Yi,t|XSi,t

,ψ
(
XFi,t−1

))
∂X1:2

Si,t

DM
(
XSi,t , ψ

(
XFi,t−1

))
= exp (|Si,t|)

Choose Θ
(?)
t yielding the minimum value for Ot as the partition for time t.

S4: Move all sensors to their calculated optimal positions under the allocation q
Θ

(?)
t

Si,t
.

S5: Collect measurements Yi,t for each agent i.

S6: For each agent i,

For each target k that satisfies k ∈ Si,t ∧ k ∈ Si,t−1 , draw x
(m)
k,t ∼ Ax

(m)
k,t−1

For each target k that satisfies k ∈ Si,t ∧ k /∈ Si,t−1,

draw x
(m)
k,t ∼ N

(
Ax̂k,t−1,ACk,t−1A

> + Q
)

where [x̂k,t−1,Ck,t−1] ∈ ψ
(
XFi,t−1

)
For each particle X

(m)
Si,t

=
{

x
(m)
k,t : k ∈ Si,t

}
,m = 1 . . .M compute,

w
(m)
Si,t

= w
(m)
Si,t−1

f
(
Yi,t | X(m)

Si,t
, ψ
(
XFi,t−1

))
where:

f
(
Yi,t | X(m)

Si,t
, ψ
(
XFi,t−1

))
≈
∏

j∈Yi,t

N

(
{Yi,t}j | h

(s)
j

(
X

(m)
Si,t

)
+ h

(f)
j

(
X̂Fi,t

)
,
{
σ?

2 (
qSi,t , ψ

(
XFi,t−1

))}
j

)
h

(f)
j

(
X̂Fi,t

)
=

∑
k′∈Fi,t−1

Φ

(∥∥∥∥{qSi,t

}
j
−
(
Ax̂k′,t−1

)1:2
∥∥∥∥α + ε

)−1

{
σ?

2
(
qSi,t, ψ

(
XFi,t−1

))}
j

= σ2
v +

∑
k′∈Fi,t−1

{
Dk′

Si,t

}
j

Φ2α2

∥∥∥∥{qSi,t

}
j
−
(
Ax̂k′,t−1

)1:2
∥∥∥∥2α−4

(∥∥∥∥{qSi,t

}
j
−
(
Ax̂k′,t−1

)1:2
∥∥∥∥α + ε

)4

{
Dk′

Si,t

}
j

=
({

qSi,t

}
j
−
(
Ax̂k′,t−1

)1:2
)> (

ACk′,t−1A
> + Q

) ({
qSi,t

}
j
−
(
Ax̂k′,t−1

)1:2
)

Normalize the weights and if necessary, perform resampling after S7.

S7: For each agent i, form the information ψ
(
XSi,t

)
that is then broadcast to other agents as:

ψ
(
XSi,t

)
= {[x̂k,t,Ck,t] : k ∈ Si,t} where,

x̂k,t =

M∑
m=1

w
(m)
Si,t

x
(m)
k,t and Ck,t =

M∑
m=1

w
(m)
Si,t

(
x̂k,t − x

(m)
k,t

)(
x̂k,t − x

(m)
k,t

)>
Table 2.2: MASCOT Multi-Target Tracking PF Algorithm Implementation Summary
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sensors can be dynamically positioned so as to extract the maximum possible information regarding

the target state, thereby enhancing overall tracking performance. Over the years, this topic has

become a very active area for research since actual implementation of such a system is not a trivial

task. There are a large number of new engineering challenges faced, particularly involving sensor

mobility and resource management. Determination of an optimal trajectory for the sensors can

be an ambiguous task, which will in general depend on the specific optimality criteria chosen, the

actual target track estimation methodology employed, and specific characteristics of the underlying

target environment. A wide variety of solutions have been developed to handle sensor management,

many with a sensible common theme of “information-driven” mobility as in [31],[32],[33], and [34],

whereby sensor motion is carried out with the specific intent of optimizing the projected quality

of measurements or the “information gain”, at the new sensor locations. Other methods place an

emphasis on a more balanced approach, paying specific attention to energy efficiency [35] or sensor

coverage [36].

Current literature is relatively sparse in considering sensor positioning for an MTT environment.

The work in [37] is a notable exception and provides a thorough investigation of the problem for

a scenario involving sensors that provide range-only measurements corrupted by Gaussian noise.

There, closed-form expressions are found for optimal sensor configurations with an arbitrary number

of sensors or targets. While [37] can possibly be applied to RSSI sensor systems, it cannot be done

so directly; one must first produce range estimates for each sensor-target pair from the RSSI

measurements and act as if these estimates are themselves measurements that can be adequately

modeled as having been corrupted by Gaussian noise. It is shown in the paper that the problem

can be seen as a separable simultaneous optimization of criteria associated with each individual

target, implying the interesting result that any optimal solution found for a group of targets will

also be optimal for individual targets when considered in isolation.

There is a fundamental difference between that work and what will be presented. Here, sensor

positioning is considered as a joint task with estimation, as can be seen in step 3 of 2.2. To be more

precise, the optimality criteria for sensor positioning is based directly on the RSSI measurements.

This is significantly more challenging due to the superpositionality of the sensors, however, it is

believed to yield a significant benefit over the style of [37] since the affect of sensor positions on

performance is more accurately represented. It will be clear that the results in [37] no longer hold

true in this case; the optimal sensor configuration for a group of targets can be vastly different than

optimums for isolated individual targets.

While the initial approach and model basis taken here for sensor trajectory-planning is based on

[38], this paper diverges quickly due to the presence of interference, XFi,t that will interfere with an

agent’s sensor measurements of XSi,t . It is the aim here to address the problem described; namely

the investigation of optimal sensor positioning for a given agent’s XSi,t , based directly on RSSI
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measurements, and with the presence of an arbitrary number of interfering sources represented as

XFi,t .

As mentioned, sensor positioning is done here as an integral part of MASCOT and thus it

is sensible to choose an optimality criterion for this task that fits with the partitioning criterion

embodied in equations (2.8) and (2.53). Rather than use the CRLB directly however, it has been

chosen to maximize the determinant of the Fisher information matrix (FIM); this is termed D-

optimality in current literature and is in contrast to A-optimality, which instead minimizes the

trace of the CRLB matrix. A-optimality can be sensitive to scale changes in the problem, and

although this is not an issue here, D-optimality does produce a simpler and more manageable form

for the problem.

Let us then formulate the task of sensor position optimization within the MASCOT framework.

Referring to Table 2.2, we wish to determine for each candidate partition, Θ
(u)
t , the optimal sensor

positions q
Θ

(u)
t

Si,t
of allocated sensors Y

Θ
(u)
t

i,t for the i-th agent. We thus have the optimization problem:

q̄
Θ

(u)
t

Si,t
= argmax

q
Θ

(u)
t

Si,t

G
Θ

(u)
t

Si,t
G

Θ
(u)
t

Si,t
, det

(
E
[
v

Θ
(u)
t

Si,t
v

Θ
(u)
t ,>

Si,t

])

subject to ‖
{

q
Θ

(u)
t

Si,t

}
k

− xl,t‖ ≥ r for k = 1 . . . |qΘ
(u)
t

Si,t
| ∧ ∀l ∈ Si,t (2.74)

where the symbol1 v
Θ

(u)
t

Si,t
was defined in (2.56) and the symbol |qΘ

(u)
t

Si,t
| refers to the cardinality of

this set. While not explicitly written in (2.74), we regard the objective function G
Θ

(u)
t

Si,t
here as a

function of q
Θ

(u)
t

Si,t
. Note the constraint that each sensor within Y

Θ
(u)
t

i,t must maintain a minimum

separation of r from every target location within XSi,t .

With the stated assumptions on the communicated information ψ
(
XFi,t−1

)
that is described by

(2.42), it was shown that

(
E
[
v

Θ
(u)
t

Si,t
v

Θ
(u)
t ,>

Si,t

])
takes the form in (2.65). To compute G

Θ
(u)
t

Si,t
we must

find the determinant of this 2|Si,t| × 2|Si,t| matrix. While it is highly desirable to find a simplified

form for this determinant, it represents a formidable task if |Si,t| > 1. What will be shown here is

that a simple, intuitive form does exist for when there is a single target in XSi,t . Additionally, a

method for generalizing to multiple targets in XSi,t will be described and is solved for |XSi,t | = 2.

The ultimate goal is to find a simplified form for an arbitrarily sized XSi,t , however this still remains

a valuable area open to future investigation.

1The additional superscript Θ
(u)
t here simply means this term is for the given candidate partition Θ

(u)
t
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2.7.1 Positioning for Single-Target Estimation with Interference

Assume that a single target xl,t is contained within XSi,t . The expression in (2.65) then simplifies

to the sum of |Yi,t| 2× 2 matrices:

E
[
v

Θ
(u)
t

Si,t
v

Θ
(u)
t ,>

Si,t

]
= α2Φ2

∑
yj∈Yi,t


∥∥∥∥{qSi,t

}
j
− x1:2

l,t

∥∥∥∥2(α−2)

{
σ?2

(
qSi,t , ψ

(
XFi,t−1

))}
j

(∥∥∥∥{qSi,t

}
j
− x1:2

l,t

∥∥∥∥α + ε

)4

×

 ({
qSi,t

}
j(1) − x

(1)
l,t

)2 ({
qSi,t

}
j(1) − x

(1)
l,t

)({
qSi,t

}
j(2) − x

(2)
l,t

)
({

qSi,t

}
j(1) − x

(1)
l,t

)({
qSi,t

}
j(2) − x

(2)
l,t

) ({
qSi,t

}
j(2) − x

(2)
l,t

)2

  (2.75)

Then making the following definitions:

cj,t =

Φ2α2

∥∥∥∥{qSi,t

}
j
− x1:2

l,t

∥∥∥∥2(α−2)

{
σ?2

(
qSi,t , ψ

(
XFi,t−1

))}
j

(∥∥∥∥{qSi,t

}
j
− x1:2

l,t

∥∥∥∥α + ε

)4 (2.76)

dj,t =

[
dj,1,t
dj,2,t

]
=

({qSi,t

}
j(1) − x

(1)
l,t

)({
qSi,t

}
j(2) − x

(2)
l,t

) (2.77)

We can write:

det

(
E
[
v

Θ
(u)
t

Si,t
v

Θ
(u)
t ,>

Si,t

])
=

 ∑
yj∈Yi,t

cj,td
2
j,1,t

 ∑
yj∈Yi,t

cj,td
2
j,2,t

−
 ∑
yj∈Yi,t

cj,tdj,1,tdj,1,t

2

=
∑

yj ,yp∈Yi,t

cj,tcp,t
(
d2
j,1,td

2
p,2,t − dj,1,tdj,2,tdp,1,tdp,2,t

)
=

1

2

∑
yj ,yp∈Yi,t

cj,tcp,t‖dj,t ⊗ dp,t‖2 (2.78)

where the symbol ⊗ is used to denote the outer product between two vectors.

Equation (2.78) is similar in form to equation (10) in [37]. Indeed, if we set L = 0 (no interferers),

we end up with the following for a single target:

det

(
E
[
v

Θ
(u)
t

Si,t
v

Θ
(u)
t ,>

Si,t

])
=

Φ4α4

2σ4
v

∑
yj,yp∈Yi,t

(‖dj,t‖‖dp,t‖)2(α−2) ‖dj,t ⊗ dp,t‖2

((‖dj,t‖α + ε) (‖dp,t‖α + ε))4 (2.79)

It is fairly easy to prove (and has been done so rather elegantly in [37] even if under a some-

what different model) that the optimal sensor formation in this situation consists of the sensors

uniformly distributed around a circle of radius r centered at xl,t. It is also clear here that one

can achieve any desired degree of precision by making r arbitrarily small. It is not obvious if the

same holds for (2.78); that if the inclusion of interference may place the optimal solution outside
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the active constraint region, i.e., for the j-th optimal sensor location,
{
qSi,t

}
j
, this would mean∥∥∥∥{qSi,t

}
j
− x1:2

l,t

∥∥∥∥ > r. While no attempt to prove analytically that the radius constraint is active

at an optimal solution will be made here, it is noted that individual terms in the sum tend to∞ as∥∥∥∥{qSi,t

}
j
− x1:2

l,t

∥∥∥∥ → 0. Regardless of the interference locations (as long as they are not co-located

with the target), the objective function can be made arbitrarily large by tending each of these terms

to zero. For this reason, for the remainder of this analysis, we will always assume the constraint is

active for all sensors: {
qSi,t

}
j

= x1:2
l,t + r [cos (θj,t) sin (θj,t)]

> (2.80)

Complexity of the problem grows remarkably by the addition of interference 1 owing to several

complicating factors. First and foremost, the
{
σ?

2 (
qSi,t , ψ

(
XFi,t−1

))}
j

term in the denominator

of cj,t renders the combined form of (2.78) intractable to a closed-form solution. Additionally, it

can be seen that the interference creates “competing constraints” in the objective; minimization

of the
{
σ?

2 (
qSi,t , ψ

(
XFi,t−1

))}
j

terms can push the ‖dj,t ⊗ dp,t‖2 terms away from their optimal

values. It is rather obvious to see that this problem is generally nonconvex. Furthermore, it is noted

that the objective function can be cast as a multiplicative programming problem, by maximizing

exp
[
GΘ

(u)
t

]
, which is known to be NP -hard [39].

At this point, one could choose to proceed by selecting a numerical optimization technique to

approach the problem. Although nonconvex, there does exist specific structure in the problem

that can be exploited towards a viable solution. Namely, it can be recognized that while (2.78)

is nonconvex, it can be decomposed into a sum-of-products of individually convex terms, i.e., the

j-th term in the sum and the outer product are both convex over a restricted region. As a result,

methods that make use of this property, namely [40] and [41], can be employed. Another option

would be to apply an evolutionary algorithm, including techniques such as Genetic Algorithm [42],

or Particle Swarm Optimization [43].

While the wide-range of numerical optimization options to choose from has been presented, it

is of great desire to formulate a solution that is as computationally inexpensive as possible. The

dynamic nature of the environment creates the need to adjust the sensor configuration at every

time step for every possible partition Θ
(u)
t . Also, having the optimal configuration under the chosen

criteria will not in general guarantee optimal tracking performance; the CRLB is known to be a

loose bound particularly for problems with severe nonlinearities 2 as is present in RSS measure-

ments. As such, it is the goal here to formulate a fast, intuitive approach to sensor positioning that

is relatively close to the optimum under the criteria chosen, without necessitating the high expense

1The addition of even one source eliminates the possibility of a closed-form solution.
2If the parameter ε is set to 0, the measurement model will have a singularity at r = 0
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involved in the use of a numerical method. To this end, a solution is now presented that is based

on a divide-and-conquer approach; each of the terms involved in (2.78) are considered separately,

then their global interaction is considered.

It is clear that the cj,t terms in (2.78) represent a dominating factor in optimization of the

objective. Indeed, if the outer product term were absent from this expression, the problem would

consist solely of optimizing each sensor location with respect to the interference sources by min-

imizing
{
σ?

2 (
qSi,t , ψ

(
XFi,t−1

))}
j

for all j. The outer product can in a way be seen to force a

compromise to be made between optimality of each sensor w.r.t. the net interference configuration

and orthogonality of the net sensor configuration. Let us for the moment neglect this compromise

and focus on the expression for
{
σ?

2 (
qSi,t , ψ

(
XFi,t−1

))}
j

given in (2.47) for the j-th sensor. We

can first establish that in the presence of only a single interference source, the optimal location of

sensor j will be at the farthest point on the r-circle from the interference. To be more precise, with

Fi,t = {p}, (2.47) takes the form:

{
σ?

2 (
qSi,t , ψ

(
XFi,t−1

))}
j

= σ2
v +


Φασp

∥∥∥∥{qSi,t

}
j
− x̂1:2

p,t

∥∥∥∥α−1

(∥∥∥∥{qSi,t

}
j
− x̂1:2

p,t

∥∥∥∥α + ε

)2


2

(2.81)

Notice that several simplifications were made in arriving at (2.81) from (2.47); namely it is assumed

here that agent i processes the information ψ
(
XFi,t−1

)
described by (2.42) and forms the mean

prediction x̂p,t and covariance estimate Cp,t ≈ σ2
pI where,

σ2
p = max

([
ACp,t−1A + Q

]
1,1
,
[
ACp,t−1A

> + Q
]

2,2

)
(2.82)

While this is mainly done here to simplify the subsequent analysis, it can be justified by arguing

that this represents a conservative estimate of the true interference covariance prediction. Gener-

alization of the following results to incorporate the true prediction remains an open area for future

investigation.

It is fairly clear that (2.81) is minimized by maximizing

∥∥∥∥{qSi,t

}
j
− x̂1:2

p,t

∥∥∥∥. With the expression

for
{
qSi,t

}
j

as in (2.80) and expressing the interference location in polar coordinates as,

x̂1:2
p,t = x1:2

l,t +
[
r̂p,t cos λ̂p,t r̂p,t sin λ̂p,t

]>
(2.83)

we have: ∥∥∥∥{qSi,t

}
j
− x̂1:2

p,t

∥∥∥∥ =

√
r2 + r̂2

p,t − 2rr̂p,tcos
(
θj,t − λ̂p,t

)
(2.84)

which is maximized by choosing θj,t = r̂p,t± π. The situation is considerably more complicated for

more than one interference source; there is now an interaction between all the sensor-interference

distances, i.e., the farthest point from one interferer may be detrimentally close to another. One
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possible solution that is proposed here is to optimize a weighted combination of the sensor-interferer

distances, namely one can formulate a solution by solving the problem:

θ̃j,t = argmax
θj,t

∑
p∈Fi,t

gp,t

∥∥∥∥{qSi,t

}
j
− x̂1:2

p,t

∥∥∥∥2

subject to
{
qSi,t

}
j

= x1:2
l,t +

[
r cos θj,t r sin θj,t

]>
(2.85)

where gp,t are weighting coefficients chosen to affect the solution’s optimality with respect to min-

imizing (2.47). With
{
qSi,t

}
j

expressed as (2.84), it can be shown that the solution to (2.85) is:

θ̃j,t = atan2

 ∑
p∈Fi,t

gp,tr̂p,t sin
(
λ̂p,t

)
,
∑
p∈Fi,t

gp,tr̂p,t cos
(
λ̂p,t

) (2.86)

We can then select a solution to minimize (2.47) as,

θj,t =
nπ

2
+ θ̃j,t , n = argmin

n∈N
σ?
{(

qSi,t , ψ
(
XFi,t

))}
j

r
cos

(
nπ
2 + θ̃j,t

)
cos
(
nπ
2 + θ̃j,t

) (2.87)

The reason this configuration can work reasonably well is intuitive; the objective in (2.85) ensures

the sensor is not positioned too close on the r-circle to any given interferer. The weighting coef-

ficients can be chosen in a number of different ways; one possibility can be to choose them such

that each term in (2.85) forms a “linear” approximation to each term within (2.47). Another would

be to simply assign the maximum weight to the term involving the interference source closest to

the target location. This solution is herein labeled as BASIC and has been found to yield fair

performance considering its simplicity.

The second method proposed here is to form a piecewise-linear approximation to (2.47). In what

follows, it is assumed the parameter values α = 2 and ε = 0 for the measurement model in (2.20).

While the results can be extended to cover more general values, the derivation is considerably

lengthier and has not been fully attempted yet. The form for (2.47) then becomes:

{
σ?

2 (
qSi,t , ψ

(
XFi,t−1

))}
j

= σ2
v +

∑
p∈Fi,t

 Φ2α2σ2
p∥∥∥∥{qSi,t

}
j
− x̂1:2

p,t

∥∥∥∥6

 (2.88)

It is proposed to approximate each term of the sum in (2.88) as follows:

σ?
2

j,p,t (θj,t) ,

 Φ2α2σ2
p∥∥∥∥{qSi,t

}
j
− x̂1:2

p,t

∥∥∥∥6

 ≈ m?
j,p,t (θj,t)

(
θj,t − λ̂p,t

)
+ b?j,p,t (θj,t) (2.89)
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With the functions m?
j,p,t and b?j,p,t defined as:

b?j,p,t (θj,t) =
∑
p∈Fi,t

bj,p,t1
[
θ−j,p,t ≤ θj,t < θ+

j,p,t

]
m?
j,p,t (θj,t) =

∑
p∈Fi,t

mj,p,t

(
1

[
θ−j,p,t ≤ θj,t < λ̂p,t

]
− 1

[
λ̂p,t ≤ θj,t < θ+

j,p,t

])
(2.90)

where 1 [x] denotes the indicator function for the argument and where the individual slope constant

mj,p,t is the scaled magnitude1 of the derivative evaluated at the point θHj,p,t where σ?
2

j,p,t (θj,t) takes

on half its maximum value:

θHj,p,t = λ̂p,t + arccos


(

1− 2
1
3

)(
r2 + λ̂2

p,t

)
+ 2

2
3 rλ̂p,t

2rλ̂p,t


mj,p,t = c

∣∣∣∣∣∣∣−
6φ2α2σ2

l rr̂p,t sin
(
θHj,p,t − λ̂p,t

)
(
r2 + r̂2

p,t − 2rr̂p,t cos
(
θHj,p,t − λ̂p,t

))4

∣∣∣∣∣∣∣ (2.91)

and the remaining terms are defined as:

bj,p,t =
Φ2α2σ2

l(
r2 + λ̂2

p,t − 2rλ̂p,t

)3

θ±j,p,t = λ̂p,t ±
bj,p,t
mj,p,t

(2.92)

Note that all points of θj,t here are understood to be with respect to modulo 2π.

An approximation to the minimum of (2.47) is then easily found by minimizing over each distinct

segment of the piecewise function. Namely, the set of all points
(
θ−j,p,t, λ̂p,t, θ

+
j,p,t

)
are arranged into

a sorted array Ψt. The z-th non-overlapping line segment formed by two adjacent points of this

array is labeled Ψz,t, written as
[
Ψ

(−)
z,t ,Ψ

(+)
z,t

]
. The critical point of each segment, denoted as Ψ

(?)
z,t

is then declared to be:

Ψ
(?)
z,t =



Ψ
(−)
z,t if

∑
p∈Si,t

m?
j,p,t

(
Ψ

(−)
z,t

)
> 0

Ψ
(+)
z,t if

∑
p∈Si,t

m?
j,p,t

(
Ψ

(−)
z,t

)
< 0

1
2

(
Ψ

(+)
z,t + Ψ

(−)
z,t

)
if
∑
p∈Si,t

m?
j,p,t

(
Ψ

(−)
z,t

)
= 0

(2.93)

The optimal point is then simply argminz σ
(?2)

(
Ψ

(?)
z,t

)
An example scenario was simulated with two separate runs, the first consisting of two interferers

(L = 2) and the second with six (L = 6). In both cases, r̂p,t = 2 for all p except the first, for

1With c = 1 the approximation tends to underestimate. Substantial improvement has been found with c = 1√
2
.

The half-max point was chosen as it models the ”region of significant influence” of each interferer well.
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which r̂2,t = 1.5. The values for λ̂p,t were fixed at 0,π2 ,π8 ,and 3π
2 , and π for the second through sixth

interferers. The value for λ̂1,t was varied uniformly over 0 to 2π for 50 different values, with each

marking a separate trial of the given run (and producing different objective values). The value for

λ̂1 was varied uniformly over 0 to 2π for 50 different values, with each marking a separate trial of the

given run (and producing different objective values). The remaining parameter values were fixed

at M = K, α = 2, ε = 0, Φ = 10, σ2
v = 0.01, and σ2

l = 0.01 for all l. Figure 2.5 shows the objec-

tive value for the two proposed solutions, Basic and Piecewise, along with a numerically computed

optimal which was found by conducting a line-search over 1000 points within the closed interval

[0, 2π] at each distinct configuration. It is interesting to note that Basic performs reasonably well
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Figure 2.5: Comparison of proposed solutions for minimizig the term σk (sk,)
2

with respect to the k-th

sensor angle.

for L = 2 but rapidly degrades at L = 6, whereas Piecewise maintains adequate performance in

both scenarios.

Let us now consider how the aforementioned results can be used to form a viable solution to-

wards optimization of the original objective function in (2.78) for an arbitrary number of sensors.

While the Piecewise algorithm’s final result is to provide an approximation to the global minimum

value for
{
σ?
(
qSi,t , ψ

(
XFi,t−1

))}
j

it also partitions this function into 3L distinct line segments,

each with their own local minimum. We can use this information to our advantage; namely we can

maximize the original partition over a discrete set of |Yi,t|-tuples derived from the set Ψt as opposed
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Step 1: For each segment Ψi ∈ Ψ form
{

Ψ
(m)
i

}
m=1:M

where, Ψ
(m)
i = Ψ

(−)
i + max

(
mπ
K ,

m
(

Ψ
(+)
i −Ψ

(−)
i

)
M

)
.

Step 2: Augment Ψ to Ψ(a) with all
{

Ψ
(m)
i

}
m=1:M

Step 3: Choose θ1 as argminΨ(a) σ(?)
(
Ψ(a)

)
. Set k = 2.

Step 4: Form all K-tuples θ̂τ = {θ1:k−1, τ} with τ ∈ Ψ(a).

Step 5: Compute G(τ) for the k sensor arrangement θ̂τ .

Step 6: Set θ1:k = argmaxθ̂τ G(τ). If k < K go to Step 3.

Table 2.3: Fast-Piecewise Algorithm Summary

to maximization over R|Yi,t|. The full algorithm which accomplishes this is labeled Fast-Piecewise

and is outlined in table 2.3.

Performance of Fast-Piecewise can be compared with two well-known numerical methods,

namely the Quasi-Newton method along with the Genetic Algorithm. The same example sce-

nario (and same parameter set) described for evaluating the single-sensor Piecewise algorithm was

used here, however this time the number of sensors were also varied. The log of the objective func-

tion GSi,t (labeled as O in the figure) at each different position of λ̂1,t was plotted, again keeping

the remaining interferers fixed at specific positions; the results are illustrated in figure 2.6. It is

seen that Fast-Piecewise performs equally well to the alternative techniques yet is also dramatically

more efficient, with computation speeds as high as 60X that of GA observed.

Notice that little has been said yet regarding the first method initially mentioned, referred to as

Basic. It is not as clear how one can apply this technique of minimizing
{
σ?

2 (
qSi,t , ψ

(
XFi,t−1

))}
j

for a single sensor, towards optimization of the full objective function G
Θ

(u)
t

Si,t
; the weighting coeffi-

cients in (2.85) are somewhat arbitrary and it is unclear how to select them in a general multi-sensor

case. However, if the target environment is such that only a single interference term dominates the

expression in (2.47), we can make the approximation:

{
σ?

2 (
qSi,t , ψ

(
XFi,t−1

))}
j
≈ σ2

v +

{
Dη

Si,t

}
j

Φ2α2

∥∥∥∥{qSi,t

}
j
− x̂1:2

η,t

∥∥∥∥2α−4

(∥∥∥∥{qSi,t

}
j
− x̂1:2

η,t

∥∥∥∥α + ε

)4 (2.94)

where it is again assumed that all sensor locations qSi,t are positioned about a circle of radius r

centered at the single TOI, xl,t ∈ Si,t, and the index η is chosen as 1 ,

η = argmin
η∈Fi,t

‖x1:2
l,t − x̂1:2

η,t‖ (2.95)

1Another possibilty is to choose the interferer that would contribute the maximum amount of signal to the

measurement if the sensor were positioned as close as possible to it on the r-circle
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Figure 2.6: Comparison of proposed solution to numerical/evolutionary techniques.

Essentially, all interference terms are neglected except for the one that is closest to the TOI.

With this simplification, we can make use of the result from (2.84) to form a solution for multiple

sensors. To see how this can be done, let us momentarily neglect the interference contribution; than

our net objective will be to maximize the sum of cross-products between all sensors in Yi,t. As

discussed earlier, it can easily be shown that this sum will be maximimum for sensors configurations

on the r-circle that yield an orthogonal system; expressing the term ‖dj,t ⊗ dp,t‖2 in (2.78) as

r2 sin (θj,t − θp,t)2, assuming |Yi,t| = K we would like to find critical points to maximize the sum1

by solving the set of equations,

∂

∂θk,t

 K∑
k,p

sin (θk,t − θp,t)2

 = 0 k = 1 . . .K (2.96)

This yields the condition for all k,

K∑
k=1

sin (θk,t − θp,t) cos (θk,t − θp,t) = 0 (2.97)

1The cj,t terms are constant here since we are assuming the interference can be neglected
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Leveraging the well-known identity,

K−1∑
i=0

cos

(
2π

K
i

)
sin

(
2π

K
i

)
= 0 (2.98)

yields the result stated in [37], that one possible optimal configuration consists of distributing

sensors evenly around the r-circle, i.e., θk,t = ξ + 2π
K i for i = 0 . . .K − 1 and ξ ∈ [0 2π]. It can also

be shown that the following identity also holds,

K−1∑
i=0

cos
( π
K
i
)

sin
( π
K
i
)

= 0 (2.99)

This suggests an alternative optimal configuration, whereby sensors are evenly distributed around a

half-circle, which will fit well with joint optimization for the interference component. To be precise,

we can use this configuration to satisfy “unweighted” optimality1 for the cross-product terms while

positioning sensors as far away as possible from the interferer. This can be done by selecting the

sensor angles as,

θk,t = ∠ (xl,t,xη,t) + π

(
1− K − 1

2K

)
+
π

K
i , i = 1 . . .K (2.100)

where ∠ (xl,t, x̂η,t) denotes the angle between the TOI, xl,t and xη,t the interference location. This

configuration spaces the sensors with maximum orthogonality but rotates the half circle to face

away from the interference, providing the maximum separation. This solution is herein labeled

Max-Sep and it is obvious this represents the simplest and maximally efficient solution.

A scenario was setup in simulation to compare performance between GA, Fast-Piecewise, and

Max-Sep in specifically varying sensor configurations where K = 4. Namely, four interference

sources are located centered about the target, each with radius D except the first whose radius

= 1.5. The first interferer angle, ∠ (xl,t, x̂1,t) is uniformly varied over the interval [02π], while the

remaining interferer angles are
[
0 π/2 π

]
. Remaining parameters include the tracking radius,

r = 1 for all sensors, Φ = 10, and σp = 0.1 for all interferers. The log-ratio of the Fast-Piecewise

and Max-Sep solution objectives to GA are plotted in figure 2.7; and as can be expected, the

performance of Max-Sep deteriorates as the “dominating source” assumption breaks down (as D

decreases), but does perform fairly when it holds. It is finally interesting to note that Max-Sep can

in fact perform similarly or better than Fast-Piecewise when the assumption holds strongly. Figure

2.8 illustrates the same scenario, however this time r = 6, the first interferer rotates about D = 8.5,

and the remaining interferers are positioned at much farther distances. We can immediately see

from the axis scale that both algorithms exhibit nearly identical performance as GA; there is also

little discernible difference between the two suboptimal solutions. This suggests a hybrid approach

whereby Fast-Piecewise is employed when multiple interferers are relatively close to the TOI, and

Max-Sep otherwise.

1The sum would be optimal if the interference “weighting” terms ck,t were not present
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Figure 2.7: Comparison of two suboptimal solutions to GA over varying target-interference separation.

2.7.2 Positioning for Joint Estimation of Two Targets

The case of optimal sensor positioning for the most general scenario; whereby there are multiple

interferers affecting sensor measurements of XSi,t that consists of more than one target, is vastly

more complicated than the preceding development. This complication is due to the need of finding

the determinant of the 2|Si,t| × 2|Si,t| matrix involved in the objective described in (2.74). For the

case of |Si,t| = 2 with α = 2 and ε = 01 if one attempt’s direct simplification of the determinant, a

compact informative form can be attained. However, an alternative formulation of the problem at

hand based on the results in [44] will be posed that elucidates how one may obtain a closed form

expression for arbitrarily sized Si,t
2.

Referring back to the approximation for f(Yi,t|X(m)
Si,t

, ψ
(
XFi,t−1

)
) in (2.45), this can be rewritten

as,3

f(Yi,t|XSi,t , ψ
(
XFi,t−1

)
)

≈ (2π)−|Yi,t|/2 det
[
RSi,t

]−1/2
exp

{
−1

2
[ȳi,t − h (Xt)]

>R−1
Si,t

[ȳi,t − h (Xt)]

]
(2.101)

where ȳi,t here refers to the |Yi,t| × 1 column vector of vertically-stacked elements in Yi,t. RSi,t is

the |Yi,t| × |Yi,t| covariance matrix of the measurement set for agent i, and h (Xt) is the |Yi,t| × 1

1General values for α and ε were not attempted but it is expected that one can arrive at a similar form using the

method described
2This is of great value for not only sensor positioning, but also for efficient computation of the partitioning

objective function as described in in 2.2
3Note the superscript is intentionally dropped in X

(m)
Si,t

for clarity (it is assumed XSi,t is “known” here)
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Figure 2.8: Comparison to GA over larger target-interference separations.

vector as follows:

RSi,t = E
[
ȳi,tȳ

>
i,t

]
= diag

(
σ?

2

1 , σ
?2

2 , . . . , σ
?2

|Yi,t|

)
[h (Xt)]k =

L∑
j=1

Φ∥∥∥∥{qSi,t

}
k
− x1:2

j,t

∥∥∥∥α + ε

k = 1 . . . |Yi,t| (2.102)

Notice the shorthand σ?
2

j =
{
σ?

2 (
qSi,t , ψ

(
XFi,t−1

))}
j

is used here. The FIM that was defined in

(2.55) can then be rewritten as,

J−1
(
X1:2

Si,t | ψ
(
XFi,t−1

))
= E

( ∂

∂X1:2
Si,t

log f
(
Yi,t | XSi,t , ψ

(
XFi,t−1

)))( ∂

∂X1:2
Si,t

log f
(
Yi,t | XSi,t , ψ

(
XFi,t−1

)))>
(2.103)

Where for a column vector v and scalar function f (v), the notation ∂f(v)
∂v is understood to refer to

the column vector with elements
[
∂f(v)
∂v

]
k

= ∂
∂[v]k

f (v). The likelihood derivative vector in equation

(2.103) is,

∂

∂X1:2
Si,t

log f
(
Yi,t | XSi,t , ψ

(
XFi,t−1

))
=

[
∂

∂X1:2
Si,t

h> (Xt)

]
R−1

Si,t
[ȳi,t − h (Xt)] (2.104)

Allowing the FIM to be written as,

J
(
X1:2

Si,t |ψ
(
XFi,t−1

))
= G>Si,tR

−1
Si,t

GSi,t (2.105)
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where the matrix GSi,t,t is,

GSi,t,t =
[
g

(1)
t ,g

(2)
t , . . . ,g

2|Si,t|
t

]
with g

(k)
t =

∂

∂
[
X1:2

Si,t

]
k

h (Xt) (2.106)

Let us then partition the vector X1:2
Si,t

according to individual targets allowing us to form a partition

of J
(
X1:2

Si,t
|ψ
(
XFi,t−1

))
as,

G>1,tR
−1
Si,t

G1,t G>1,tR
−1
Si,t

G2,t . . . G>1,tR
−1
Si,t

G|Si,t|,t
G>2,tR

−1
Si,t

G1,t G>2,tR
−1
Si,t

G2,t . . .
...

. . .

G>|Si,t|,tR
−1
Si,t

G1,t . . . G>|Si,t|,tR
−1
Si,t

G|Si,t|,t

 (2.107)

where here the matrix Gk,t is defined as,

Gk,t =

[
∂

∂ [xk,t]1
h (Xt) ,

∂

∂ [xk,t]2
h (Xt)

]
=


u

(1)
1,k,t u

(2)
1,k,t

u
(1)
2,k,t u

(2)
2,k,t

...
...

u
(1)
|Yi,t|,k,t u

(2)
|Yi,t|,k,t

 for k ∈ Si,t (2.108)

and where the vector uj,k,t = 1
r4
j,k,t

[
d

(1)
j,k,t,d

(2)
j,k,t

]>
is defined using,

dj,k,t ,

({qSi,t

}
j(1) − x

(1)
k,t

)({
qSi,t

}
j(2) − x

(2)
k,t

) rj,k,t , ‖
{
qSi,t

}
j
− xk,t‖ (2.109)

In what follows, the t subscript is dropped; it should be clear from context which variables depend

on time. To simplify the subsequent derivation, the matrix Ḡk is defined as,

Ḡk = R
−1/2
Si

Gk where R
−1/2
Si

= diag

(
1

σ?1
,

1

σ?2
, . . . ,

1

σ?|Yi|

)
(2.110)

In the case where |Si,t| = 2, we can form the LDL decomposition of J
(
X1:2

Si,t
|ψ
(
XFi,t−1

))
as,

J
(
X1:2

Si,t |ψ
(
XFi,t−1

))
=

[
I 0

Ḡ>2
(
Ḡ∗
)>

I

] [
Ḡ>1 Ḡ1 0

0 Ḡ>2 (I−PG1) Ḡ2

] [
I G∗1Ḡ2

0 I

]
(2.111)

where G∗1 =
(
Ḡ>1 Ḡ1

)−1
Ḡ>1 is the pseudoinverse of Ḡ1 and PG1 = Ḡ1

(
Ḡ>1 G1

)−1
Ḡ>1 is the

orthogonal projection onto the linear subspace generated by Ḡ1. An expression for the matrix PG1

can be obtained by first noting that,

Ḡ>1 Ḡ1 =


|Yi,t|∑
j=1

(
u

(1)
j,1

σ?j

)2 |Yi,t|∑
j=1

u
(1)
j,1u

(2)
j,1

σ?
2

j

|Yi,t|∑
j=1

u
(1)
j,1u

(2)
j,1

σ?
2

j

|Yi,t|∑
j=1

(
u

(2)
j,1

σ?j

)2

 (2.112)
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(
Ḡ>1 Ḡ1

)−1
=

1

D1


|Yi,t|∑
j=1

(
u

(2)
j,1

σ?j

)2

−
|Yi,t|∑
j=1

u
(1)
j,1u

(2)
j,1

σ?
2

j

−
|Yi,t|∑
j=1

u
(1)
j,1u

(2)
j,1

σ?
2

j

|Yi,t|∑
j=1

(
u

(1)
j,1

σ?j

)2

 (2.113)

where

D1 ,
1

2

|Yi,t|∑
j,k

‖uj,1 ⊗ uk,1‖2

σ?
2

j σ
?2

k

 (2.114)

Postmultiplying equation (2.113) by Ḡ>1 we obtain a matrix with the elements,

[(
Ḡ>1 Ḡ1

)−1
Ḡ>1

]
1:2,m

=
1

D1



(
u

(1)
m,1

σ?m

) |Yi,t|∑
j=1

(
u

(2)
j,1

σ?j

)2

−

(
u

(2)
m,1

σ?m

) |Yi,t|∑
j=1

u
(1)
j,1u

(2)
j,1

σ?
2

j(
u

(2)
m,1

σ?m

) |Yi,t|∑
j=1

(
u

(1)
j,1

σ?j

)2

−

(
u

(1)
m,1

σ?m

) |Yi,t|∑
j=1

u
(1)
j,1u

(2)
j,1

σ?
2

j

 (2.115)

Further premultiplying by Ḡ1 yields the elements of PG1 as,

[PG1 ]n,m =
1

D1


(

u
(1)
n,1

σ?n

)(u
(1)
m,1

σ?m

) |Yi,t|∑
j=1

(
u

(2)
j,1

σ?j

)2

−

(
u

(2)
m,1

σ?m

) |Yi,t|∑
j=1

u
(1)
j,1u

(2)
j,1

σ?
2

j



+

(
u

(2)
n,1

σ?n

)(u
(2)
m,1

σ?m

) |Yi,t|∑
j=1

(
u

(1)
j,1

σ?j

)2

−

(
u

(1)
m,1

σ?m

) |Yi,t|∑
j=1

u
(1)
j,1u

(2)
j,1

σ?
2

j


 (2.116)

By straightforward algebraic manipulations this can be simplified as,

[PG1 ]n,m =
1

D1

|Yi,t|∑
j=1

‖un,1 ⊗ uj,1‖‖um,1 ⊗ uj,1‖
σ?nσ

?
mσ

?2

j

(2.117)

Subtracting the identity matrix by PG1 and postmultiplying by Ḡ2 yields the matrix with elements:

[
(I−PG1) Ḡ2

]
n,m

=

D1

(
u

(m)
n,2

σ?n

)
−

|Yi,t|∑
j,k

u
(m)
k,2 ‖un,1 ⊗ uj,1‖‖uk,1 ⊗ uj,1‖

σ?nσ
?2

k σ
?2

j


D1

(2.118)
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Finally premultiplying (2.118) by Ḡ>2 produces:[
Ḡ>2 (I−PG1) Ḡ2

]
n,m

=

|Yi,t|∑
p=1

(
u

(n)
p,2u

(m)
p,2

σ?2

p

)
︸ ︷︷ ︸

Sn,m,a

− 1

D1

|Yi,t|∑
j,k,p

u
(n)
p,2u

(m)
k,2 ‖up,1 ⊗ uj,1‖‖uk,1 ⊗ uj,1‖

σ?2

p σ
?2

k σ
?2

j


︸ ︷︷ ︸

Sn,m,b

(2.119)

The determinant of this 2× 2 matrix can then be written as:

det
([

Ḡ>2 (I−PG1) Ḡ2

])
= (S1,1,a − S1,1,b) (S2,2,a − S2,2,b)− (S1,2,a − S1,2,b)2

=
(
S1,1,aS2,2,a − S2

1,2,a

)︸ ︷︷ ︸
L1

− (S1,1,aS2,2,b + S2,2,aS1,1,b − 2S1,2,aS1,2,b)︸ ︷︷ ︸
L2

+
(
S1,1,bS2,2,b − S2

1,2,b

)︸ ︷︷ ︸
L3

(2.120)

Evaluating the first two terms in equation (2.120) we arrive at,

L1 =

|Yi,t|∑
p=1

(
u

(1)
p,2

σ?p

)2
|Yi,t|∑

p=1

(
u

(2)
p,2

σ?p

)2
−

|Yi,t|∑
p=1

(
u

(1)
p,2u

(2)
p,2

σ?2

p

)2

=
1

2

|Yi,t|∑
j,k

‖uj,2 ⊗ uk,2‖2

σ?
2

j σ
?2

k

, D2 (2.121)

L2 =
1

D1

|Yi,t|∑
j,k,p,l

‖up,1 ⊗ uj,1‖‖uk,1 ⊗ uj,1‖
σ?2

p σ
?2

k σ
?2

j σ
?2

l

(
u

(2)
p,2u

(2)
k,2u

(1)
l,2

2
+ u

(1)
p,2u

(1)
k,2u

(2)
l,2

2
− 2u

(1)
p,2u

(2)
k,2u

(1)
l,2 u

(2)
l,2

)
︸ ︷︷ ︸

LT2

(2.122)

The term LT2 in (2.122) can be simplified to,

LT2 = u
(1)
p,2u

(2)
l,2

(
u

(1)
k,2u

(2)
l,2 − u

(2)
k,2u

(1)
l,2

)
+ u

(1)
l,2 u

(2)
k,2

(
u

(2)
p,2u

(1)
l,2 − u

(1)
p,2u

(2)
l,2

)
= u

(1)
p,2u

(2)
l,2 ‖uk,2 ⊗ ul,2‖+ u

(1)
l,2 u

(2)
k,2‖ul,2 ⊗ up,2‖ (2.123)

Substituting (2.123) back into (2.122) we can express L2 as,

L2 =
1

D1

|Yi,t|∑
j,k,p,l

‖up,1 ⊗ uj,1‖‖uk,1 ⊗ uj,1‖‖‖uk,2 ⊗ ul,2‖u
(1)
p,2u

(2)
l,2

σ?2

p σ
?2

k σ
?2

j σ
?2

l︸ ︷︷ ︸
L2,1

+
1

D1

|Yi,t|∑
j,k,p,l

‖up,1 ⊗ uj,1‖‖uk,1 ⊗ uj,1‖‖‖ul,2 ⊗ up,2‖u(1)
l,2 u

(2)
k,2

σ?2

p σ
?2

k σ
?2

j σ
?2

l

(2.124)
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Splitting the sum in this fashion allows us to recognize that the first term, L2,1 can be rewritten

using the mapping k → p′, p→ k′:

L2,1 =

|Yi,t|∑
j,k′,p′,l

‖uk′,1 ⊗ uj,1‖‖up′,1 ⊗ uj,1‖‖‖up′,2 ⊗ ul,2‖u
(1)
k′,2u

(2)
l,2

σ?
2

k′ σ
?2

p′ σ
?2

j σ
?2

l

(2.125)

This allows a final simplification of (2.124) to:

L2 =
1

D1

|Yi,t|∑
j,k,p,l

‖up,1 ⊗ uj,1‖‖uk,1 ⊗ uj,1‖‖‖ul,2 ⊗ up,2‖‖ul,2 ⊗ uk,2‖
σ?2

p σ
?2

k σ
?2

j σ
?2

l

(2.126)

The last term in (2.120) involves a product of two triple sums, meaning that one can write:

L3 =
1

D2
1

|Yi,t|∑
j,n,k,m,l,p

 ‖up,1 ⊗ uj,1‖‖uk,1 ⊗ uj,1‖‖ul,1 ⊗ um,1‖‖un,1 ⊗ um,1‖
σ?

2

j σ
?2

n σ
?2

k σ
?2

mσ
?2

l σ
?2

p

×
(
u

(1)
k,2u

(1)
p,2u

(2)
l,2 u

(2)
n,2 − u

(1)
k,2u

(2)
p,2u

(1)
l,2 u

(2)
n,2

) 
=

1

D2
1

|Yi,t|∑
j,n,k,m,l,p

‖up,1 ⊗ uj,1‖‖uk,1 ⊗ uj,1‖‖ul,1 ⊗ um,1‖‖un,1 ⊗ um,1‖‖up,2 ⊗ ul,2‖u
(2)
n,2u

(1)
k,2

σ?
2

j σ
?2

n σ
?2

k σ
?2

mσ
?2

l σ
?2

p

(2.127)

Splitting the sum in (2.127) in half, with one term invoking the mapping l → p′, p → l′ yields the

expression,

L3 =
1

2D2
1

|Yi,t|∑
j,n,k,m,l,p

 ‖uk,1 ⊗ uj,1‖‖un,1 ⊗ um,1‖‖up,2 ⊗ ul,2‖u
(2)
n,2u

(1)
k,2

σ?
2

j σ
?2

n σ
?2

k σ
?2

mσ
?2

l σ
?2

p

× (‖up,1 ⊗ uj,1‖‖ul,1 ⊗ um,1‖ − ‖up,1 ⊗ um,1‖‖ul,1 ⊗ uj,1‖)︸ ︷︷ ︸
LT3

 (2.128)

An identity regarding cross products is now derived that will allow LT3 to be simplified. Namely,

we have that:

‖u1,i ⊗ u2,i‖‖u3,i ⊗ u4,i‖ − ‖u1,i ⊗ u4,i‖‖u3,i ⊗ u2,i‖ = ‖u3,i ⊗ u1,i‖‖u4,i ⊗ u2,i‖ (2.129)
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To prove this is true, note that the left-hand side of (2.129) can be written as,∣∣∣∣∣u
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Applying this identity to LT3 in (2.128), then repeating the same sum-splitting procedure this time

with the mapping j → m′,m→ j′ allows for the following steps:
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1

2D2
1

|Yi,t|∑
j,n,k,m,l,p

‖uk,1 ⊗ uj,1‖‖un,1 ⊗ um,1‖‖up,2 ⊗ ul,2‖‖ul,1 ⊗ up,1‖‖um,1 ⊗ uj,1‖u(2)
n,2u

(1)
k,2

σ?
2

j σ
?2

n σ
?2

k σ
?2

mσ
?2

l σ
?2

p

=
1

4D2
1

|Yi,t|∑
j,n,k,m,l,p

 ‖up,2 ⊗ ul,2‖‖ul,1 ⊗ up,1‖‖um,1 ⊗ uj,1‖u(2)
n,2u

(1)
k,2

σ?
2

j σ
?2

n σ
?2

k σ
?2

mσ
?2

l σ
?2

p

× (‖uk,1 ⊗ uj,1‖‖un,1 ⊗ um,1‖ − ‖uk,1 ⊗ um,1‖‖un,1 ⊗ uj,1‖)


=

1

4D2
1

|Yi,t|∑
j,n,k,m,l,p

‖up,2 ⊗ ul,2‖‖ul,1 ⊗ up,1‖‖um,1 ⊗ uj,1‖2‖un,1 ⊗ uk,1‖u
(2)
n,2u

(1)
k,2

σ?
2

j σ
?2

n σ
?2

k σ
?2

mσ
?2

l σ
?2

p

=
1

2D1

|Yi,t|∑
n,k,l,p

‖up,2 ⊗ ul,2‖‖ul,1 ⊗ up,1‖‖un,1 ⊗ uk,1‖u
(2)
n,2u

(1)
k,2

σ?2

n σ
?2

k σ
?2

l σ
?2

p

(2.131)

We are now in a position to complete the final simplification to L3, namely by once more splitting

the sum and applying the mapping k → n′, n→ k′ to one of the terms, yields:
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(2.132)
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Combining equations (2.121), (2.126), and (2.132) yields for the determinant,
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(2.133)

The LDL decomposition allows us to use this result to obtain det
(
J
(
X1:2

Si,t
|ψ
(
XFi,t−1

)))
which is

simply the product of (2.133) and D1. The preceding expression is in fact of substantial value as it

allows the Fast-Piecewise algorithm specifically developed for |Si,t| = 1 to be leveraged. In fact, a

recursive form for (2.133) has been developed that yields highly efficient computation and dramatic

improvement over the employment of an optimization method such as GA. The implementation

details and performance results will not be mentioned here but are planned for submission as a

future publication. What follows instead is an exploratory consideration of the previous results

that does not make use of Fast-Piecewise but allows one to formulate a reasonable configuration

based on qualitative discussion.

It can be shown that (2.133) vanishes for K < 4 meaning intuitively that two targets cannot

be tracked with than less 4 sensors. Resting on the observation that this expression is a sum of

cross-products between target-sensor vector pairs, one possibility is to split the K sensors into two

groups, each optimized for one of the targets. This intuitively works well for larger separations 1

as sensors close to one target will be largely unaffected by the influence from the other; it can be

shown that (2.133) essentially reduces to the sum of (2.78) for both targets (with each sensor in

the appropriate summation depending on which target it’s centered about) as ‖x1,t − x2,t‖ → ∞.

It is not immediately obvious if a better choice exists for when the targets are close, particularly

in the case where ‖x1,t − x2,t‖ ≤ r, i.e., when the r-circles from each respective target overlap.

To get a better sense of reasonable configurations in this case, numerical optimization using

Genetic Algorithm (with solutions again constrained only to maintain sensor-target separation ≥ r)
was conducted for four different target separations with a fixed sensor radius of r = 3 for K = 4

sensors. The results are shown in figure 2.9 for the case where there are no external interferers; filled

dots within the centers of the plotted circles demarcate target locations, while different symbols

correspond to sensor locations within a given computed configuration. Interestingly, one can observe

that each configuration follows roughly the solution described above, regardless of target separation;

every two out of four sensors lie on a given target’s r circle and the two vectors formed by said target

with each of these sensors are approximately orthogonal. We can in fact develop an analytic solution

1Recalling the constraint that all sensors must be spaced at least r from all targets.
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which follows this configuration format and is guaranteed to satisfy the sensor-target separation

constraint at least in the case of K = 2 sensors for any target separation as follows:

q1,t = x1,t + r
[
cos (∠1,t,c) sin (∠1,t,c)

]
q2,t = x1,t + r

[
cos
(
∠1,t,c + π

2

)
sin
(
∠1,t,c + π

2

)]
q3,t = x2,t + r

[
cos
(
∠2,t,c − π

2

)
sin
(
∠2,t,c − π

2

)]
q4,t = x2,t + r

[
cos (∠2,t,c − π) sin (∠2,t,c − π)

]
(2.134)

where ∠i,t,c is the angle atan2 (zt − xi,t) modulo 2π between xi,t and the “positive” intersection

point, zt, of the two r-circles centered about x1,t and x2,t. The positive point meaning that which

is oriented at a positive angle with respect to the line joining the two targets (and starting at x1,t).

One final possibility for two targets is to again split the total number of sensors into two groups

and position them in the same fashion as in (2.100). In other words, when positioning a group of

sensors corresponding to one target, the other target is treated as if it were interference. While

this may not be optimal as the targets approach one another, it does allow the other approaches

outlined for a single target to be trivially employed in this case and becomes increasingly significant

as the total number of targets in the environment grows.

2.8 Performance Results

The results presented here aim to detail computer simulation results for each portion of MASCOT

separately, then as a whole.

2.8.1 Agent Cooperation

In this section, two example scenarios are presented illustrating the performance of MASCOT

agent cooperation as outlined in 2.6 and a comparison is made between “probabilistic information”

information exchange (subsequently labeled COOP) and simple point-estimate exchange (labeled

BASIC) in the computation of the particle weights according to (2.37). In either scenario, agents

implement a partial version of the algorithm described in 2.2; there is no adapative partitioning

here and each agent is simply allocated a single TOI to estimate. For this reason, a simpler notation

than in section 2.6 will be adopted here regarding target locations. Namely, the l-th target state is

denoted xl,t and estimated by agent l; this can be transposed back to section 2.6 by simply writing

that XSl,t = {xl,t}. Also, sensors are not positioned optimally here; they are simply uniformly

spaced on a circle of radius r centered about the target.
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Figure 2.9: Optimal sensor configurations for two targets computed with Genetic Algorithm.

Specific trajectories for the targets were chosen to allow for controllable variation of their loca-
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tions. The first scenario consists of two targets with dynamics modeled by{
xl,t = Glxl,t−1, if ωt+ π ≤ 3π

2

xl,t = Axl,t−1 + vl,t, if ωt+ π > 3π
2 ,

(2.135)

with,

Gl =


1 0 cos(ω) (−1)l sin(ω)

0 1 (−1)l+1 sin(ω) cos(ω)

0 0 cos(ω) (−1)l sin(ω)

0 0 (−1)l+1 sin(ω) cos(ω)

 , (2.136)

and,

xl,1 =
[
−d (−1)

l+1
d −

√
λω sin(ω) −

√
λω cos(ω)

]>
. (2.137)

In words, the two targets were initially separated by an amount d and each followed a turning

maneuver which caused them to converge at a final separation that was governed by the parameter

λ. Upon completion of the maneuver, the targets switched to a constant-velocity trajectory with

process noise perturbations. Figure 2.10 illustrates sample trajectories generated with various

values for λ. The process noise intensity σw of vl,t was fixed at 0.002 during the “free-motion”

portion of each path. Also, the agents did not use prior knowledge about the specific maneuver

considered here. They assumed that the target dynamics followed the model in (2.10) at all times.

In order to gain better insight as to the performance benefit realized with the proposed method,

the following metrics are defined,

‖X̄‖ =
1

T

T∑
t=1

‖x1:2
1,t − x1:2

2,t ‖, ‖X̂l‖ =
1

T

T∑
t=1

‖x̂1:2
l,t − x1:2

l,t ‖. (2.138)

The value ‖X̄‖ is recognized as simply the mean over all simulation time of the distance between

the two targets, while ‖X̂l‖ is the mean error of the lth target estimate. A lower value of ‖X̄‖
corresponds to a more challenging scenario; the targets are closer together for a longer period of

time and there is a higher degree of inter-target interference between sensor measurements.

The scenario was run for 4000 trials, each for a duration of T = 200 steps. In each trial a

particular value of λ was used, starting with λ = 195 and incrementing by 0.2 at every new trial.

The parameters d and ω were fixed at 15 and 0.01, respectively. Other fixed parameter values

include σu = 0.005, σv = 0.02, α = 2, ε = 0, Φ = 10, r = 4. The number of particles was set

to M = 300, and each agent had K = 4 sensors. Particle resampling was done adaptively, i.e.,

resampling was initiated at time t if the effective particle size fell below a fixed threshold. This

condition is explicitly written as, (
M∑
m=1

(
w

(m)
l,t

)2
)−1

≤ M

16
. (2.139)
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Figure 2.10: Sample trajectories of simulation scenario.

Note that, as mentioned previously, the issue of identity management between targets is considered

a separate problem, is not addressed here, and may not be of concern depending on the application.

The simulation trials where identity “loss” occurred were simply detected and discarded from the

presented results.

In Fig. 2.11, we see a plot of the resulting ‖X̄‖ against ‖X̂l‖ for each trial using BASIC and

COOP (Proposed Method). One can immediately notice the superiority of the new method. There

is a much larger sensitivity on ‖X̄‖ in BASIC, whereas COOP only begins to deteriorate at very low

values of ‖X̄‖. When ‖X̄‖ is small, a single target partition for each agent may be less appropriate;

this would be when MASCOT (or even the symbiotic approach in [24] would merge two targets

into a higher-dimensional filter.

The next scenario consisted of 20 targets with the following dynamics:

xl,t = G+
l xl,t−1, if 1 < l ≤ 10 and ωt+ π ≤ 3π

2

xl,t = Axl,t−1 + ul,t, if 1 < l ≤ 10 and ωt+ π > 3π
2

xl,t = G−l xl,t−1, if 11 < l ≤ 20 and ωt+ π ≤ 3π
2

xl,t = Axl,t−1 + ul,t, if 11 < l ≤ 20 and ωt+ π > 3π
2

xl,t = Axl,t−1 + ul,t, if l = 1 or l = 11

(2.140)
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Figure 2.11: Error plot of the first simulation scenario.

with,

G∗l =


1 0 cos(ω) − (∗) sin(ω)
0 1 (∗) sin(ω) cos(ω)
0 0 cos(ω) − (∗) sin(ω)
0 0 (∗) sin(ω) cos(ω)

 , (2.141)

and the symbol ∗ standing for + or −,

xl,1 =

[
− ld

2
ld
2

√
λlω sin(ω) −

√
λlω cos(ω)

]>
if 1 < l ≤ 10[

− ld
2 − ld

2

√
λlω sin(ω)

√
λlω cos(ω)

]>
if 11 < l ≤ 20[

− ld
2

ld
2 −v0 0

]>
if l = 1[

− ld
2 − ld

2 −v0 0
]>

if l = 11

, (2.142)

where, {
λl = ς lλ0, if 1 ≤ l ≤ 10

λl = ς l−10λ0, if 11 ≤ l ≤ 20
. (2.143)
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Again, this trajectory plan was chosen to allow for an initial separation between the targets. The

separation was determined by the parameter d and with a spatial convergence over time that was

controlled by the parameters ω, λ0, and ς.

In order to compare the performance of COOP with that of BASIC, a single fixed trajectory

(shown in Fig. 2.12) was generated and used during the simulation runs, i.e., only the sensor

measurements were randomly generated for each run. The parameters for this trajectory were set

to d = 22.0, λ0 = 100.0, v0 = 0.2, and ς = 1.1. The other simulation parameters were identical to

the ones from the first scenario.
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Figure 2.12: Target trajectory plot for the second scenario.

Note that targets 1 and 11 pose the greatest challenge since they maintain a relatively smaller

distance from the largest number of targets. In Fig. 2.13 the “multi-target footprint” of target 1

is displayed in the considered trajectory. The top plot presents a count of how many of the other

targets were within a given proximity from target 1 at that time. The bottom plot shows the

“Signal-To-Total Measurement Ratio” (STMR) as a function of time. The STMR is defined as the

ratio of the measurement contribution from target 1 (the signal) to the total measurement.

Figure 2.14 displays the MSE of target 1 computed over 50 trials for various values of σv with

BASIC and COOP. It can be seen that the error of BASIC sharply increases roughly around the

time at which the STMR exhibits a sudden drop (corresponding to target 11 approaching within
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Figure 2.13: Cross-Target statistics for Target 1 in scenario 2.

close proximity of target 1). In all the cases, the performance of COOP is clearly superior to that

of BASIC, and COOP experiences a nearly imperceptible increase in error for lower values of σv

when the value of STMR drops.
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2.8.2 Full MASCOT Implementation for Two Targets

The next scenario is used to illustrate the complete performance of the MASCOT algorithm, in-

cluding agent cooperation, appropriate sensor positioning, and adaptive target space partitioning.

Note in all subsequent results presented, it is assumed the sensors are positioned according to

(2.100) whenever |Si,t| ≤ 2.1 This was chosen over other solutions presented due to its simplicity

and allows key points of the adaptive partitioning to be illustrated clearly. The scenario consists

of two targets initialized at an initial separation, which spatially converge as time progresses, and

ultimately diverge. As in the previous scenarios, this trajectory is a forced maneuver primarily

meant to demonstrate algorithm performance, however, the particle filter’s do not have knowledge

of the specific maneuver dynamics, i.e., the maneuvers are seen simply as a realization of the state

process noise. The simulation was run with parameters set to Φ = 30, α = 2, ε = 0, σw = 0.08,

σv = 0.04, the total number of sensors K = 8, the target-sensor minimum separation r = 2, the

number of particles per agent M = 8000, and resampling was done whenever the effective particle

size is less than M/4. Shown in 2.15 are the target trajectories overlayed with the corresponding

estimates; note that filled symbols mark the points at which the filter has chosen to jointly estimate

(Θ1
t ) the two targets. In this case, joint estimation is chosen only when targets are within close

proximity, while the partition is separated whenever they are further apart. While first intuition

would be to simply establish the rule that partitions should merge whenever they are close enough

together, this is not necessarily true. This can be seen in figure 2.16 where the log ratio of the

objective function for the two possible partitions is plotted as a function of target separation for

two different values of Φ. It is clear that if Φ = 30, the filter decides to conduct joint estimation

when the targets are close enough, however when Φ = 10 corresponding to a situation whereby each

target interferes less with the others measurements, the filter does not conduct joint estimation at

any separation.

To illustrate the benefit of MASCOT, the RMSE of each target location estimate was taken

for 50 trials and compared to a filter which estimates both targets simultaneously, along with a

filter which estimates each target individually (using agent-cooperation). The result is plotted in

figure 2.17. It is interesting to note that joint estimation exhibits inferior performance at earlier

times even though the earlier analysis in 2.6 suggested it would perform at least as well if not

better than separated estimation at large target distances. This is a direct manifestation of the

particle filter’s deterioration due to dimensionality that is not captured in the error bound, yet is

successfully avoided here through the regularization term DM . It can indeed be seen that MASCOT

is able to reap the benefit of both possible partitions and avoid their respective weaknesses, thereby

maximizing performance while minimizing computational demand.

1Although under the framework presented, it is possible for |Si,t| to be any number, this is hard limited here to

be at most 2.
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The final scenario illustrating MASCOT performance consists of six targets, with all parameters

the same as the previous scenario, which follow the trajectory illustrated in 2.18. This scenario is

considered relatively challenging due to the close proximity of multiple targets simultaneously, i.e.,

the interference component of each agent’s measurements is significantly large. Figure 2.19 plots
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Figure 2.17: RMSE Performance Comparison between MASCOT adaptive filter and basic

joint/separated estimation of both targets..

the distance from one target to another as a function of simulation time where we can see that

this proximity is maintained for significant periods of time. The RMSE was again taken for 50

trials and is plotted for each target in figure 2.20; again the full Mascot filter is compared to the

non-adaptive cooperative one1. While the non-adaptive filter does perform well, it is evident that

significant error starts to occur at points of maximum interference. It is also immediately apparent

that MASCOT is able to cope with these events resulting in the lower RMSE seen at each one.

It is also important to note here that in this case, the sensor configuration employed is far from

optimal for when MASCOT is employing a partition that consists of more than one target; sensors

will position themselves as if the other target were interference while ignoring the true interfering

sources. Essentially, this places a “handicap” on the best-attainable performance with MASCOT

since it may choose a single-target partition in cases where there may be joint-target partitions

that are substantially more favorable (yet which were not found under the basic sensor positioning

method). As such, it is logical to expect a significant increase in performance by using the results

mentioned in 2.7.2 to implement the Fast-Piecewise positioning method for joint-target estimation.

1Comparison to a joint filter was not done here since there is ambiguity as to which targets to pair together
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Figure 2.18: Six Target Trajectory for Full Mascot Simulation.

2.9 Concluding Remarks

In this chapter, the MASCOT framework has been outlined in generality and then fully specialized

to a complete multi-agent system capable of tracking multiple targets using mobile RSSI sensors.

Major features of the system addressed include agent cooperation via fusion of exchanged infor-

mation, dynamic state space partitioning along with optimal sensor positioning in the presence of

multiple localized interference sources (which is an important problem in its own rite). Performance

results were demonstrated indicating the clear advantage of MASCOT in handling high-dimensional

environments. Major areas that remain open are initialization and target detection. The way that

MASCOT has been described here assumes that there is some initial time at which a fixed number
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2.9 Concluding Remarks

of targets were properly detected and a reasonably accurate initial estimate for the full target state

Xt had been computed. It is always assumed that all targets within the environment that have a

non-negligible effect on the sensor measurements are accounted for by some agent at all times; the

presented implementation of MASCOT is not expected to perform well and will likely experience

rapid performance deterioration if one or more interfering sources exist that have not been suffi-

ciently localized by the algorithm, particularly at the time of target initialization. This is considered

as external to the scope of MASCOT and focus is maintained on the situation where this ambiguity

does not occur; if a target (or cluster of targets) exists within the environment, then it (or they) was

being properly tracked in isolation (away from other existing targets) at some earlier point in time.

Some work has been done as part of the dissertation in addressing unknown interfering sources [1]

but incorporation into MASCOT was never fully attempted. Additionally, dynamic target detec-

tion (whereby the total target number is unknown, and targets can suddenly appear/disapper from

the scene) was not considered as part of the thesis. It is believed that extension of the MASCOT

algorithm using RFS-theoretic methods can be effective in handling this.
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Figure 2.19: Inter-target distance as a function of time in the six-target scenario. Different pat-

terned/colored lines each represent a different target.
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Figure 2.20: RMSE of Six-Target Full MASCOT Scenario with Comparison to Non-Adaptive Coop-

erative Filter.
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3

Target Tracking in the Presence of

Interference

3.1 Overview

This chapter details research that has been conducted relating to a topic that, while similar in

nature to the target application of the previous chapter, currently lies outside of the scope of the

proposed MASCOT algorithm. Specifically, the focus is on maintaining successful tracking of a

target state using a set of measurements which may be affected by unknown sources of interference.

It is difficult to say too much here without referring to a specific model, so the following rather

general form for a given scalar measurement yt taken at time t is initially adopted here:

yt = h(xt) + vt + bt (3.1)

where h(xt) is some function of the target state xt (that is assumed to be moving in a 2D plane)

at time t, vt is random sensor noise of which statistics (the pdf) are typically known, and bt is

an unknown (random) interference component. With zero knowledge concerning bt, one might

argue that the problem is ill-posed and that xt is not “estimable” based solely on yt; indeed one

cannot make rational inference concerning some unknown quantity based on an observation that is

essentially “infinitely” variable. Thus we must proceed by assigning some model to the interference;

obviously our resulting inference about xt in reality will only be reasonable if the true behavior of

bt is faithful to said model. Ideally, this model should be as general as possible, allowing us to cover

a broad range of real interference sources, but again this must be balanced with the underlying

intent to estimate xt; a model that is too general may not allow this to be done.

An obvious, and fairly rational decision to make in model selection for bt is to assume that this
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3.2 Interference Compensation through Source Localization

interference is generated by a combination of localized interference sources, or:

bt =

L,t∑
l=1

h (xl,t) (3.2)

where xl,t represents the location of the l-th interferer, and there are a total of Lt (unknown)

sources at time t. This represents an important, albeit challenging problem; the task of tracking a

single target using measurements that are affected by other “foreign” interfering targets within the

environment. This problem was addressed and solved successfully within the MASCOT framework,

however there it is assumed that the number of interferers is always known and does not change with

time. Here the problem is addressed from a more general viewpoint; assuming as little as possible

about the interference. One approach towards a solution lies in attempting to simultaneously track

the target of interest and perform detection/localization of these “interferers”. This idea forms the

basis of the approach in [1] within an algorithm which employs a PF-based approach and its details

are now reviewed.

3.2 Interference Compensation through Source Localization

At time t − 1, a representation of the posterior distribution of xt−1 is formed using the random

measure χt = {w(m)
t−1 ,x

(m)
t−1}Mm=1. Suppose a prediction of the target state at time t denoted x̃t is

then made based on the particle set. Assuming that no interference was present at t− 1 and that

the prediction x̃t is reasonably accurate, a decision about the existence of interference in the new

measurement yt can be made by forming the following detection criterion:

T (x̃t, yt) , (yt − h (x̃t))
2
H1

≷
H0

γ (3.3)

where H0,H1 represent respectively the null and affirmative hypothesis concerning the existence of

interference in yt and γ is the related detection threshold. In theory, determination of γ would pro-

ceed according to some desired performance criteria. For example [see pg. 65 in [45] ], maximizing

the probability of detection (PD) for a given false-alarm probability (PFA = ρ) would produce the

following constraint on γ: ∫
{(yt,x̃t)≥γ}

f (yt, x̃t;H0) dytdx̃t = ρ (3.4)

Unfortunately, this represents a difficult, and likely intractable constraint to compute in practice.

Theoretical determination of a proper threshold was not determined in the paper [1] and instead, a

reasonable value for γ based on a combination of the known measurement statistics and empirical

observations was chosen in order to proceed with algorithm development.

In [1], the specific case of a single, static interference source with location denoted as lt at time t
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3.2 Interference Compensation through Source Localization

At time t? complete the steps:

S1 : Form an initial estimate of the interferer location l̃t? based on the value of

yt? − h (x̃t?) using a triangulation based approach.

S2 : Propagate particles x
(m)
t? ∼ f

(
xt? |x(m)

t?−1

)
.

S3 : For each particle x
(m)
t? , generate an interferer particle l

(m)
t? ∼ N

(̃
lt? ,Σt?

)
where

Σt? is a pre-specified particle initialization covariance matrix that expresses an

uncertainty in the initial estimate l̂t? .

S4 : Compute particle weights according to w
(m)
t? ∝ w

(m)
t?−1f

(
yt? |x(m)

t? , l̂
(m)
t?

)
.

S5 : Normalize the weights and compute estimates:

x̂t? =

M∑
m=1

w
(m)
t? x

(m)
t? l̂t? =

M∑
m=1

w
(m)
t? l

(m)
t? Σ̂t? =

M∑
m=1

w
(m)
t?

(
l
(m)
t? − l̂t?

)(
l
(m)
t? − l̂t?

)>
For t ≥ t?:

S6 : Propagate particles x
(m)
t ∼ f

(
xt|x(m)

t−1

)
and l

(m)
t ∼ N

(̂
lt−1,Σt−1

)
.

S7 : Repeat steps S4 and S5 replacing t? with t.

S8 : Resample if necessary.

Table 3.1: PF Algorithm for tracking a single target with static interference compensation

was considered. An RSS-type measurement model in the same form as equation (3.1) was adopted.

The paper considered an environment with multiple sensors employed at separate locations each

producing synchronized measurements that are collected in the vector yt; with a sufficient number

of sensors, crude localization of a target can be performed based on a triangulation-style approach.

Assuming a decision has been made that interference exists within yt? (which is now generated

through the vector function h(xt?), i.e. [yt? ]k = [h(xt?)]k + [b?t ]k + [v?t ]k ), where t? is the initial

detection time of interference, then the algorithm can proceed as follows: Note that here the variable

l̂t refers to an estimate of the interference location that was computed at time t, not its value at

time t (since the location is assumed to be static for all time). This algorithm can be viewed as a

simplified application of the approach detailed in [12] for handling unknown constant parameters

within a particle filter. A simulation study was conducted to investigate its performance under

various conditions where reasonable accuracy was observed; see the original paper for detailed

results. Though it was not specifically addressed in the paper, it should be fairly obvious that

this algorithm can be extended in a relatively straightforward manner to deal with multiple static

interferers, as long as it is assumed that only a single source can appear/disappear at any given

time and that existing interferers have been sufficiently localized. It may seem at first glance that

this would require an exponentially increasing number of particles as the total number of detected

interferers increases similar to the dimensionality problem experienced in MTT, however this is

not necessarily the case. As long as the last detected source (say lk,t) can be localized to sufficient
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3.3 Compensation by Dynamic Bias Tracking

accuracy before another one (lk+1,t) is detected, then the particle set for lk,t can be collapsed into

a single point estimate l̂k,t or a Gaussian density as done in MASCOT, at the time of a new source

detection, allowing a constant size particle set to be maintained.

3.3 Compensation by Dynamic Bias Tracking

While remaining a viable approach for the specific scenario discussed, the previous algorithm is

limited in that it cannot handle dynamic interference sources. Incorporating interferer dynamics

into the algorithm and attempting to proceed with source detection/localization as before simply

yields an MTT tracking scenario, along with its associated curse of dimensionality. Another possible

approach rests on the assumption of statistical independence of the target along with all existing

interference sources (which is reasonable in most cases considered). Writing the measurement

update equation that is typical in Bayesian tracking algorithms:

f(xt | y1:t) ∝ f (yt | xt) f (xt | y1:t−1) (3.5)

Then the interference sources can be handled by marginalization, i.e. by computing the likelihood

(yt | xt) through:

(yt | xt) =

∫
f(yt | xt, l1:Lt,t)dl1:Lt,t (3.6)

Note how this approach is similar in some ways to the discussion surrounding (2.37). In general, this

represents a difficult, likely intractable, problem to solve. Nonetheless, this approach was pursued

and seemingly effective approximations were developed to accomplish this in [46] for the case of

specific passive sonar detection and tracking in the presence of interference.

Since it is assumed there is no specific interest in tracking the actual locations of all possible

interferers, it is highly desirable to seek methods for coping with the corrupted measurements

which do not require this to be done. Any algorithm which accomplishes this can reap dramatic

savings in computational expense since it will not suffer from the dimensionality increase necessary

in tracking a state space augmented with the interferer locations. The idea here is to express the

measurement model for yt in its original form as in (3.1) and treat bt as a dynamic bias component

of the measurement, essentially ignoring the underlying interference sources which generated it.

This shifts the problem into the domain of a fairly well studied area; that of compensating for

biased sensor measurements. Some related work on this subject includes [47],[48], [49], and [50],

albeit in contexts outside of the current scope for various reasons. An interesting approach was

also outlined in [51] although the author was unable to reproduce similar results and is concerned

about the validity of the method in a general context.

A series of papers were written,([52],[53],[54]), that address sensor-bias within a particle-filtering
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3.3 Compensation by Dynamic Bias Tracking

Complete the following steps for time t:

S1 : Propagate x
(m)
t ∼ f

(
xt | x(m)

t−1

)
and σ

(m)
t ∼ f

(
σt | σ(m)

t−1

)
S2 : Form C

(m)
bt|t−1

= C
(m)
bt−1|t−1

+
(
σ

(m)
t

)2
I and S

(m)
t = C

(m)
bt|t−1

+ σ2
vI

S3 : Compute the bias estimates:

b̂
(m)
t = b̂

(m)
t−1 +

[
C

(m)
bt|t−1

(
S

(m)
t

)−1
](

yt − h
(
x

(m)
t

)
− b̂

(m)
t−1

)
S4 : Form C

(m)
bt|t

=

(
I−

[
C

(m)
bt|t−1

(
S

(m)
t

)−1
])

C
(m)
bt|t−1

S5 : Compute the weights w
(m)
t ∝ w(m)

t−1f
(
y | x(m)

t , σ
(m)
t

)
where,

y ∼ N
(
h
(
x

(m)
t

)
+ b̂

(m)
t−1,S

(m)
t

)
S6 : Normalize the weights.

S7 : Form the estimates x̂t =

M∑
m=1

w
(m)
t x

(m)
t and σ̂t =

M∑
m=1

w
(m)
t σ

(m)
t .

Table 3.2: PF Algorithm for tracking a single target with unknown interference modeled as a dynam-

ically varying bias.

framework using the concept of Rao-Blackwellization (see [55] and [56]). The work completed in

these papers formed the basis for [57] which models the sensor-bias component as a random variable

that obeys the dynamics:

bt = bt−1+ | σt | gt (3.7)

where gn,t ∼ N(0, I) and

σt = σt−1 + εt (3.8)

Here εt ∼ N (0, σe) is a perturbation to the parameter σt whose absolute-value represents the

standard deviation of the bias at time t.

Similar to the algorithm outlined for the case of static interference, a random measure

{w(m)
t ,x

(m)
t , σ

(m)
t }Mm=1 is used to represent the target state posterior at time t. Then conditioned

on the value of a specific particle, we have:

yt = h
(
x

(m)
t

)
+ bt + vt (3.9)

The measurement vector yt is thus conditionally linear-Gaussian and the bias component vector

can be estimated through Kalman-filtering. Assuming the measurement noise is vt ∼ N
(
0, σ2

vI
)
,

and initial statistics for the bias as [b0]k ∼ N ([b0]k ,Cb0) then the algorithm listed in table 3.2 was

proposed.
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3.4 Performance Results

3.4 Performance Results

The proposed algorithm was tested in a scenario similar to the one used for testing in the single-

interference case as described in [1]. Essentially, a grid of sensors are on standby until detection

of a target is made. Upon detection, four of the standby sensors with the largest signal power are

assigned to track the target, and maintain position uniformly spaced about a circle with radius 3

m centered about a prediction of the target in the current time step. The specific dynamic model

that was considered for the target is:

xt = Axt−1 + But

where xt is the state vector defined as xt = [x1,t x2,t ẋ1,t ẋ2,t]
>, with the first two components

representing position coordinates and the second two representing the velocity of the target. The

component ut is a 2 × 1 vector representing the target process noise and is assumed ∼ N
(
0, σ2

u

)
.

The matrices A and B were defined as:

A =

[
I2 TsI2

02 I2

]
B =

[
T 2
s
2 I2

TsI2

]

with Ts as the sampling period. The measurement component produced by a target, h (xt), is

modeled as:

[h (xt)]k =
Φdα0

‖sk,t − x1:2
t ‖α

(3.10)

where sk,t is the k-th sensor location, Φ is the emitted signal power by the target measured at a

distance d0, and α is a path-loss coefficient depending on the physical transmission medium and

assumed known. Parameters during simulation were set to M = 700, σ = 10−4, and σv = 10−3,

Φ = 1, d0 = 1, and α = 2.

Simulations were first run using “synthetic” bias components which obeyed the model in (3.7).

One specific scenario examined involves “turn-on” of the interference components approximately 50

time steps after tracking of the target has stabilized. Figure 3.1 shows a single trajectory plot and

3.2 shows the associated location error (norm of the location coordinates) of a single realization

with the perturbation parameter set to σ2
e = 0.02 for the “interference-compensated” algorithm

described, alongside a “blind” particle filter that does not account for the interference. It is clear

for this realization that the uncompensated filter immediately fails upon turn-on, while reasonable

tracking performance is maintained for the compensated filter. The actual interference bias for the

first sensor along with the corresponding estimates for this trajectory obtained by the proposed

method are also shown in figure 3.3; note how there is a relatively large variance in this signal

which may not be entirely realistic for “real” localized interference sources.
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Figure 3.1: Single Realization Trajectory Plot for the Interference Compensated Tracker
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Figure 3.2: Norm Error Plot for a Single Realization of the Interference Compensated Tracker

A simulation to compute the RMSE (mean norm error of the target location) over 100 trials was

then conducted for various values of σe and is plotted in 3.4. It can be seen that there is a gradual

increase in error over time, particularly with large values of σe; this is not entirely unexpected

since there is a higher likelihood that the instantaneous variance of the bias (σ2
t ) component will

be higher at later times. This does represent a possible drawback to the model, which allows

for an unbounded increase in σt, and is not realistic for an environment with a finite number of

interference sources.

Performance of the proposed filter was then tested against a “real” scenario involving 10 sources
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Figure 3.4: RMSE over 100 trials for a synthetic bias with various σe

of interference that simultaneously deploy from the target location at a particular time and move

freely according to the same model used for the target. A value of σe = 2 was empirically determined

to perform best for this particular situation. Figure 3.5 (where the interferer’s are marked with ’x’s)

shows a single trajectory realization, where it can be seen that while the non-compensated filter

fails immediately upon interference deployment, the compensated algorithm maintains reasonable

tracking for quite some time.

Simulation of the RMSE over 100 trials for this case was also conducted, where it was found

that a gradual accumulation of error over time occurs similarly to when a synthetic bias is used;
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this is plotted in figure 3.6.
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Figure 3.6: RMSE Over 100 Trials for the 10-Interferer Scenario

3.5 Concluding Remarks

Based on the preceding results, particularly in the case of a large number of real interference

sources, this algorithm does appear to have potential as a viable solution to the problem. There

are however, still some significant issues that would need to be resolved. Namely, the algorithm
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3.5 Concluding Remarks

exhibits a high sensitivity to process/measurement noise and quickly degrades at higher levels.

Furthermore, it is not clear what the optimal value for the perturbation parameter σe should be,

although one could perform marginalization of this parameter to eliminate the need for a precise

value. Assuming these issues can be adequately resolved, an immediate application would be within

the MASCOT framework discussed in Section 2 as a means for initialization of individual agents.

To clarify this concept further, recall that MASCOT relies on cooperation between agents that are

assumed to possess fairly accurate estimates of their own state partitions. At times, particularly

upon initialization and shortly thereafter, this may not be true in general and can severely limit the

best attainable performance with MASCOT, since agents must be able to track their own targets

in the presence of a potentially large number of unknown interfering targets. Employment of this

algorithm would enable a coarse tracking of the targets to be maintained until the agents are able

to negotiate properly and form more stable/accurate estimates.
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4

Multi-Mobile-Sensor Target Tracking

with Asynchronous Measurements

4.1 Overview

A key underlying assumption up to this point involves the perfect synchronization of measurements

originating from different sensors. It should be fairly obvious that performance degradation can

occur if a violation of this assumption is not accounted for; fusion of measurements that were

taken at different instants, as if they occurred simultaneously, can result in considerable error if the

target is not in the same state at each point. Since there is frequently some level of unavoidable

asynchronism present in a real system, attributed to a number of sources including communication

delays across a transmission medium, sensor processing delays, and timing clock drift, this is an

important issue to consider in the design of any practical tracking system. When dealing with a

multi-sensor environment, there are two distinct types of asynchronicity that need to be addressed.

However, in order to properly express this distinction, it first needs to be mentioned what exactly

is meant by a synchronous set of measurements. Suppose that a group of K sensors each take

measurements at periodic intervals of duration T , with each sensor immediately transmitting its

own measurement back to a centralized data fusion center. A fully synchronous system involves the

combination of alignment of each sensor’s measurement interval (all sensors take measurements at

t = kT for integer k), along with reception of these measurements at the fusion center within

the same measurement interval. Out-of-sequence measurements (OOSM) are the first type of

asynchronicity which arises when the latter condition is not satisfied; while sensor measurements

were taken synchronously, some may arrive at the fusion center at a later interval, for example,

a measurement from one of the sensors taken at t = kT is not received until t = (k + 2)T . The

question arises in this case as to how the late-arriving information should be incorporated (if at all)

when the estimated target track may have already been updated using measurements from other
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4.2 Proposed Solutions

sensors that were received on-time; i.e. it is doubtful that there would be a significant benefit from

updating a track using highly delayed information. The second type of asynchronicity arises when

the sensor measurement intervals themselves are not aligned, i.e. sensor 1 takes measurements at

t = kT while sensor 2 takes them at t = kT + τ . While this distinction between the two types is

noted here, they can obviously occur together and further complicate resolution of this issue.

This has become an increasingly active area of study and significant progress has been made in

tackling the problem. In the case of linear-Gaussian tracking, the optimal solution for updating the

current target state estimate and covariance matrix estimate based on a late-arriving measurement

by “retrodiction” of the current estimate to the time at which the measurement was taken, was

derived in [58]. In [59] a number of algorithms were presented that focus on decentralized tracking,

also dealing with linear-Gaussian tracking, which address “multi-lag” (measurements received that

correspond to instants that occurred multiple intervals before the current one) and extend the

solution to the multiple-model tracking case (for example, tracking a target which may at any

time conduct one of several predefined maneuvers). Some interesting results were presented in [60]

which show how sensor measurement instances can be intentionally staggered to benefit estimation

performance; a specific algorithm was proposed again in the context of linear-Gaussian tracking. In

[61] an algorithm is proposed which selectively fuses OOSM, choosing not to update track estimates

based on those measurements which can potentially harm rather than benefit performance. A

treatment of asynchronous measurements within the context of particle filtering (which can perform

reasonably in environments where the other algorithms will deteriorate due to the linear-Gaussian

assumptions made) is relatively sparse in the literature; [62] and [63] are exceptions but utilize

techniques that are rather heuristic in nature. Most relevant is the approach outlined in [64] which

introduces a reformulation of the original tracking problem that is more suitable for asynchronous

measurements. The algorithm presented is in the context of a static sensor network with binary

measurements; this forms the basis for the work in [3] which will now be presented.

4.2 Proposed Solutions

Let us consider an environment with a single target, and in which multiple agents exist tasked

with tracking this target, each operating asynchronously and independently from one another. For

each agent, there is an associated base time; which represents the instants at which measurements

are taken by an agent. The constraint in this scenario is imposed that each agent estimates the

target state at its own base time at a minimum (a particular agent may also form estimates at

other agent’s base times). A new notation is here introduced which defines each agent’s base time

in terms of “absolute time”; within the absolute interval of time t = (k − 1)T to t = kT , the base

time (or corresponding measurement instant) of agent i is t = (k− 1)T + τi. For simplicity, agents
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4.2 Proposed Solutions

are notationally ordered such that τi−1 ≤ τi for all i. Variables which take on a value at this time

instant will have a subscript (t, i) referring to the corresponding base time for the i-th agent.

In terms of absolute time, the target dynamics are modeled according to:

xt2 = A (t2, t1) xt1 + ut2,t1 (4.1)

where t2 ≥ t1 represent two instants of absolute time, xt2 is a 4 × 1 vector defined by xt2 =

[x1,t2 , x2,t2 , ẋ1,t2 , ẋ2,t2 ]> with x1,t2 and x2,t2 the location coordinates of the target at time t = t2

and ẋ1,t2 , ẋ2,t2 the corresponding velocity coordinates. The symbol A(t2, t1) denotes a known 4× 4

transition matrix, defined by

A(t2, t1) =

[
I2 (t2 − t1)I2

02 I2

]
(4.2)

with I2 and 02 as the identity and zero 2× 2 matrices, respectively. The state noise ut2,t1 is a 4× 1

vector whose distribution is assumed Gaussian with covariance matrix

Q(t2, t1) = σ2
u


(t2−t1)3

3
(t2−t1)2

2 0 0
(t2−t1)2

2 (t2 − t1) 0 0

0 0 (t2−t1)3

3
(t2−t1)2

2

0 0 (t2−t1)2

2 (t2 − t1)

 (4.3)

where σ2
u is the equivalent continuous time process noise intensity. Now using the notation defined

before, and assuming a total of N agents exist, the target dynamics with respect to agent base

times can be expressed as:

xt,1 =A (t+ τ1, t− T + τN ) xt−1,N + ut+τ1,t−1+τN

xt,i =A (t+ τi, t+ τi−1) xt,i−1 + ut+τi,t+τi−1

i = 2, · · · , N

t = kT, τ1 < τ2 < · · · < τN < T (4.4)

Within each time interval, agent i takes a measurement of the target at its own base time as

described by,

yt,i =
Φdα0

‖st,i − lt,i‖α
+ vt,i (4.5)

where lt,i = [x1,t,i x2,t,i]
> is the location of the target at time instant (k − 1)T + τi, st,i is the

location of the i-th agent (sensor) at time instant (k − 1)T + τi, Φ is the emitted signal power

of the target measured at distance d0, and α is the path-loss coefficient which depends on the

transmission medium and is assumed known. The observation noise vt,i can have an arbitrary

(known) distribution but is here assumed to be Gaussian with variance σ2
v .
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4.2 Proposed Solutions

In the scenario considered here, agents cooperate by broadcasting their own measurements to

the rest of the network. An agent then uses its own measurement along with others received

(which were taken at different base times) to estimate the target location. There are four distinct

possibilities of how measurements can be fused and these are illustrated in figure 4.1. Note that all

figures used here have been taken directly from [3]; without loss of generality, it is assumed that

there are a total of 4 agents in the environment. Notice in each case there are actually 4 unknowns

that need to be represented; the target state xt,i at each of the four possible agent base times.
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Figure 4.1: (a) “True” asynchronous method (b) “False” asynchronous method (c) asynchronous

sequential method (d) asynchronous batch method

• True Synchronous Method: This corresponds to an alignment of agent’s base times, i.e. τi = τj

for all i and j. A basic particle filter is used to track the target for each agent in this

case. Specifically, agent i forms the random measure {x(m)
t,i , w

(m)
t,i }Mm=1 representing the target

posterior at the agent’s base time. Propagation of the particles at each time instant and
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4.2 Proposed Solutions

computation of the weights proceeds as:

x
(m)
t,i ∼ f

(
xt,i | x(m)

t−1,i

)
w

(m)
t,i ∝ w

(m)
t−1,i

N∏
i=1

f
(
yt,i | x(m)

t,i

)
(4.6)

Since this represents fusion of synchronous measurements, this situation is used as a bench-

mark for the remaining scenarios.

• False Synchronous Method: Here the agent base times are misaligned, however each agent

proceeds with estimation as if all the measurements were at that agent’s own base time, i.e.,

in an identical manner as the True Synchronous Method. This scenario allows us to examine

the resulting performance degradation from incorrectly assuming measurement synchronicity.

• Asynchronous Sequential Method: Agent base times are again misaligned, however in this

case a particular agent updates its estimate of the target state each time it takes or receives

a measurement. In other words, agent i estimates the state xt,i along with xt,j for all j 6= i.

Thus agent i forms the random measure of the target posterior {x(m)
t,j , w

(m)
t,j }Mm=1 where t = kT

for integer k and j = 1, · · · , N . The particles at each agent are propagated according to:

x
(m)
t,1 ∼ f

(
xt,1 | x(m)

t−1,N

)
x

(m)
t,j ∼ f

(
xt,j | x(m)

t,j−1

)
, j = 2, · · · , N (4.7)

and the particle weights of each agent at each base time instant (k − 1)T + τj follow:

w
(m)
t,1 ∝ w

(m)
t−1,Nf

(
yt,1 | x(m)

t,1

)
w

(m)
t,j ∝ w

(m)
t,j−1f

(
yt,j | x(m)

t,j

)
, j = 2, · · · , N (4.8)

To further clarify these expressions, it is reiterated that agent i updates its random measure

at every base time instant. If the current time corresponds to the first base time or t =

(k− 1)T + τ1, then agent i propagates its previous particle set which actually corresponds to

the last base time in the previous absolute time interval, or t = (k−2)T + τN . For other base

times, agent i propagates its previous particle set that now corresponds with the preceding

base time within the current absolute time interval.

• Asynchronous Batch Method: Once again agent base times are misaligned, but in this situa-

tion a particular agent updates its target estimate only at its own base time (it estimates the

state xt,i only) by fusing its own current measurement with the most recent measurements it

received from other agents. Particles for agent i at its base time are propagated as:

x
(m)
t,i ∼ f

(
xt,i | x(m)

t−1,i

)
, m = 1, 2, · · · ,M (4.9)
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Since an agent does not estimate the target state at other base times aside from its own,

it cannot directly fuse measurements together as was done in the asynchronous sequential

method. Specifically, agent i can no longer compute f
(
yt,j | x(m)

t,j

)
for j 6= i as in (4.8). One

way to approach this is to replace x
(m)
t,j in this factor with an estimate x̂

(m)
t,j based on each of

the agent’s current particles, or

x̂
(m)
t,j = E

[
xt,j | x(m)

t,i

]
(4.10)

where x̂
(m)
t,j can be viewed as a prediction of the target state at time t = (k − 1)T + τj , if

τj > τi or a retrodiction if τj < τi. This allows the agent’s measurements to be properly fused

via the modified weight update equation:

w
(m)
t,i ∝ w

(m)
t−1,if

(
yt,i | x(m)

t,i

) N∏
n=1,n 6=i

f
(
yt,n | x̂(m)

t,n

)
(4.11)

This solution is hereafter labeled as Batch-1.

Another alternative to this approach rests on the concept of an “asynchronous particle fil-

ter” that was developed in [64]. This approach consists of modifying which distribution the

agent’s particle filter is a representation of. Specifically, for agent i, the random measure

{x(m)
t,i , w

(m)
t,i }Mm=1 now represents the density f

(
x

(m)
t,i | y1:t

)
, where yt is a vector representing

the collection of measurements that were made within the time interval from (k− 1)T to kT

and is expressed as yt = [yt,1, yt,2, · · · , yt,N ]>. It is fairly easy to show that the weight update

equation needs to be modified to:

w
(m)
t,i ∝ w

(m)
t−1,if

(
yt | x(m)

t,i ,x
(m)
t−1,i

)
(4.12)

since the vector yt depends not only on the state of the target at time (k− 1)T + τi, or x
(m)
t,i ,

but also on the target’s state at the base time within the previous interval, or x
(m)
t−1,i , since

the vector yt contains measurements that were taken at “intermediate” times between the

times corresponding to these two states. For the sake of tractability a similar approximation

as in [64] is used for this likelihood. Specifically, the joint likelihood is approximated as the

factorization:

f
(
yt | x(m)

t,i ,x
(m)
t−1,i

)
≈

N∏
n=1

f
(
yt,n | x(m)

t,i ,x
(m)
t−1,i

)
(4.13)

and each term is then decomposed according to

f
(
yt,n | x(m)

t,i ,x
(m)
t−1,i

)
=

∫
f (yt,n | xt,n) f

(
xt,n | x(m)

t,i x
(m)
t−1,i

)
dxt,n (4.14)

With the state process noise vector assumed to be Gaussian as mentioned earlier in the

model definition, it was shown in [64] that the transition density f
(
xt,n | x(m)

t,i x
(m)
t−1,i

)
, is
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also a Gaussian distribution. However, evaluation of the integral in (4.14) for an arbitrarily

distributed measurement noise remains intractable. The approach that was taken in [3] in an

attempt to handle this was to argue that for small process noise intensity σ2
u, the transition

density is sharply peaked and will admit a fairly accurate approximation of (4.14) using

Monte Carlo integration with relatively few sample points. So to approximate (4.14), an

intermediate random measure for each particle x
(m)
t,i is formed as {x̂(k,m)

t,j }Kk=1 where

x̂
(k,m)
t,j ∼ f

(
xt,j | x(m)

t,i ,x
(m)
t−1,i

)
(4.15)

This set of intermediate particles acts as a representation of the “intermediate” transition

density (evaluated at a given particle x
(m)
t,i , specifically:

[
f (xt,j | xt,i,xt,i)

]
xt,i=x

(m)
t,i

xt−1,i=x
(m)
t−1,i

≈
K∑
k=1

δ
(
xt,j − x̂

(k,m)
t,j

)
(4.16)

yielding an approximation to (4.14) for the j-th base time as:∫
f (yt,j | xt,j) f

(
xt,j | x(m)

t,i x
(m)
t−1,i

)
dxt,j ≈

K∑
k=1

f
(
yt,j | x(k,m)

t,j

)
f
(
x

(k,m)
t,j | x(m)

t,i x
(m)
t−1,i

)
, ŵ

(k,m)
t,j (4.17)

This expression allows (4.12) to be computed as:

w
(m)
t,i ∝ w

(m)
t−1,if

(
yt,i | x(m)

t,i

) N∏
j=1,j 6=i

(
K∑
k=1

ŵ
(k,m)
t,j

)
(4.18)

With (4.18) the PF algorithm can then proceed as usual, i.e., particle propagation followed

by weight update and possible resampling. This solution is hereafter labeled as Batch-2.

4.3 Performance Results

The algorithms discussed were tested in a similar setting as in Chapter 3 and initially outlined in

[1], i.e., a single target is tracked using 4 agents which are deployed at each time on a ball of radius

3m centered at the predicted target location. The process noise intensity σ2
u was set to 0.005 and

the measurement noise variance to 0.005 for all experiments. Other values of σ2
v were tested and

it was found that as σ2
v increases, the asynchronism of the measurements becomes less relevant for

the performance since the error due to the noise becomes larger than the error due to incorrectly

assuming that the measurements occurred at the same instant.

To evaluate the performance deterioration that can occur as a result of asynchronicity, an initial
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simulation experiment was conducted which runs only the “true” and “false” synchronous methods

alongside one another (no compensation) for three specific scenarios each involving different sets

of agent base times and all using 400 particles. Specifically, recalling that the i-th base time is

(k − 1)T + τi, the set of τi for scenario 1 is {0, 0.25, 0.50, 0.75}; for scenario 2 is {0, 0.1, 0.5, 0.51};
and for scenario 3 is {0, 0.05, 0.15, 0.75}. An illustration of the specific time offsets used in each

scenario is shown in figure 4.2 and a comparison in RMSE performance over 100 trials for each of

the sets is illustrated in figure 4.3.

T

4=0.
75

τ 1=0 τ 2=0.
25

τ 3=0.
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Figure 4.2: Time offset illustration for 3 asynchronous simulation scenarios

It can be seen that scenario 1, corresponding to evenly spaced measurements throughout the

interval, yields the greatest performance deterioration for the “false” method (PF that incorrectly

assumes measurements are synchronized). Although the performance is also degraded with the

remaining two sets of measurement times, there is no significant difference between them. Figure

4.4 shows performance of the proposed algorithms (note 10 particles are used in the integration

step for the Batch-2 method) applied to scenario 1; it is interesting to note that performance is

roughly the same for each different method in this case.

To evaluate computational load of the various algorithms, the normalized run-time (which is

defined as the ratio between the average run-time for the considered algorithm over the average run-

time obtained using the “true” synchronous method as a reference, i.e., a value of 100% indicates
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Figure 4.3: Baseline RMSE performance for different sets of measurement times
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Figure 4.4: Performance for scenario 1 with asynchronous-compensation algorithms

equal run-time for the two algorithms) was monitored over various particle counts and is shown in

figure 4.5. It is clear from the figure that the batch-1 method is the best in terms of computational

load, and does not require much additional processing time compared to the “true” synchronous

method. Also the sequential method outperforms the batch-2 algorithm only for a low number
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of particles. It was initially believe that this result can likely be attributed to the sequential

method’s stronger dependency on particle count, with the Batch-2 method requiring roughly the

same amount of “overhead” regardless of the particle count. Further consideration of the situation

has brought this statement into doubt; since Batch-2 essentially creates KNM “child” particles

in each step to compute the integration. It is now believed that the higher computational load

present in the sequential method is dominated by the additional amount of resampling which needs

to be performed that is difficult to optimize, whereas the integration step in Batch-2 can be easily

parallelized.
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Figure 4.5: Normalized run-time as a function of the total number of particles

4.4 Concluding Remarks

It should be clear from the results presented that a number of effective solutions were developed

in [3] to handle asynchronous measurements in the context considered. Revisitation of this topic

has nonetheless revealed opportunities for future research development. Particularly, it is believed

that the results obtained in the context of MASCOT relating to the RSS likelihood function can be

applied to analytically evaluate the integral in (4.14) under specific restrictions, thereby eliminating

the need for Monte Carlo integration as in the Batch-2 method. Another area of specific interest
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lies in addressing the possibility of unknown and randomly varying base times for each agent which

can certainly occur in a realistic tracking environment.
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5

Bayesian Performance Metrics

5.1 Overview

A reasonable and frequently employed construct for statistical inference is the MMSE estimator

θ̂ = φ(y): the estimate of θ based on y which will yield, on the average, the minimum squared-error.

Thus we seek this construct as the solution to our inference problem, though we may not always

succeed due to mathematical intractability. In this case, sub-optimal methods are adopted which

normally attempt to emulate φ(y) as closely as possible. Whether we can obtain φ(y) or not (and

particularly when we cannot) it is highly desirable to “baseline” the problem; to develop a bound

indicating the best possible performance we can hope to achieve in the problem given our known

statistics. In fact, this bound may not guarantee our ability to attain this level of performance,

but it will guarantee that we can do no better. Equipped with this performance bound gives us a

relatively reliable indicator of how close some particular sub-optimal estimator we have developed

is to being optimal; if we are very close, it may not be worth the time or resource to continue

searching for improvements.

The value of developing performance bounds for statistical inference was recognized long ago

and a large amount of work now exists which focuses on the establishment of bounds to all sorts of

problems. In nearly all of the literature, there is a distinct boundary between classical performance

bounds (which address inference of a non-random yet unknown parameter) and Bayesian bounds

(that deal with random unknown parameters). The most well-known classical bound being the

Cramer-Rao-Lower-Bound (CRLB) is formulated in [65]; the Bayesian analogue to this bound was

developed by Van Trees [66]. These bounds can be “loose” in many problems meaning that they

are not achievable by any estimator and as a result, tighter bounds can be found, with the tightest

bound being the performance of the truly optimal estimator; many of these have been chronicled in

[67]. It is important to mention here that these bounds relate to either the mean-square error (MSE)

in the classical case, or the Bayesian mean-square error (BMSE), which are each valid for a specific
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class of estimators; namely those which are unbiased in a classical sense or “average” unbiased

in a Bayesian sense. As discussed in section 1.3 a fundamental challenge was encountered when

investigating tracking performance of the algorithms discussed herein that demanded the author’s

attention. This challenge is of a general nature and relates not only to the contexts discussed within

the thesis but in fact to any problem dealing with estimation of a random quantity. To elucidate

the dilemma, suppose we are concerned with the estimation of some scalar random parameter θ0

that is drawn once and used as a fixed input parameter to draw y. We observe y and wish to make

inference about θ0; we have the following known statistics regarding the problem:

θ0 ∼ f(θ) y ∼ f(y | θ0) (5.1)

This problem can be interpreted and approached at from both a classical and Bayesian view-

point. From the classical view, there is no importance as to how θ0 was originally generated; all

we are concerned with is that it is now unknown but fixed, i.e., there is some true value taken on

by θ0 we wish to determine. In this case, the MSE of any estimator, θ̂0, developed will be bound

by the classical CRLB; assuming the estimator is unbiased, i.e. b(θ0) = Ey
[(
θ0 − θ̂0

)]
= 0, its

variance can be no less than the inverse Fisher Information, or:

MSE(θ0) = Ey
[(
θ0 − θ̂0

)2
]
≥ JD(θ0)−1 (5.2)

Note here that Ey denotes an expectation taken over the random measurements according to

f(y | θ), Eθ denotes an expectation taken over the random parameter according to the prior f(θ),

and the following information terms are defined here which will be used frequently in what follows:

JD(θ) = Ey
[
−∂2 log f(y | θ)

∂θ2

]
Fisher Information

JP = Eθ
[
−∂2 log f (θ)

∂θ2

]
Prior Information

JB = Eθ
[
Ey
[
−∂2 log f (y, θ)

∂θ2

]]
Bayesian Information

Here f(y, θ) = f(y | θ)f(θ) is the joint density of the parameter/measurement pair; note only the

Fisher Information term has a dependency of the actual value of θ.

In a Bayesian sense, θ0 is random and our prior belief of likely values it may assume is embodied

within f(θ). We can again form an estimator θ̂0 that takes into account this prior knowledge and

the BMSE is bounded by the Bayesian MSE; assuming the estimator is “average unbiased”, or∫
b(θ0)f(θ)dθ = 0, then its BMSE can be no less than the Bayesian Information, or:

BMSE = Eθ [MSE(θ0)] ≥ J−1
B (5.3)

Now, the disconnect can be made clear: in the classical sense we can bound performance of θ̂0 and

this bound will depend on the true value of θ0. But there is no meaning for prior information in this
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bound according to (5.2). In the Bayesian sense, the bound indeed depends on the prior information

f(θ), yet there is now no dependency on particular realizations of θ0 (hence the absence of any

argument from BMSE); any information regarding performance (averaged over the measurements

alone) at specific parameter realizations has been averaged out in the process of forming the BMSE.

Yet there is a clear interest in having information pertaining to performance at specific realizations

of θ0, particularly in a target tracking setting which is inherently based on the incorporation of prior

knowledge concerning the target dynamics. It will be shown how this information can indeed be

obtained by recognizing that there exists a quantifiable link between a Bayesian environment and

a classical one; optimal Bayesian estimation is equivalent to classical biased estimation governed

by the form of the prior knowledge.

5.2 Introduction to the Bayesian-Bias Connection

5.2.1 Related Work: The Optimal Bias Function

The connection between a biased estimator of a deterministic parameter and Bayesian estimation

when this parameter is subsequently assumed random with respect to a given prior distribution

has been recognized before. It was shown in [68] and later extended in [69] that an alternate bound

for the Bayesian MSE can be developed by finding the bias function, b(θ), which minimizes the

expectation of the biased Cramer-Rao-Lower-Bound (CRLB),

CRLB

[
θ, b(θ),

∂b(θ)

∂θ

]
=

[
1 + ∂b(θ)

∂θ

]2

JD(θ)
+ b(θ)2, (5.4)

over the prior distribution of θ. Equation (5.4) is a bound on the MSE of any estimator θ̂ of θ that

is assumed deterministic but unknown, and where θ̂ has specific bias function at θ, b(θ), specifically:

Ey
[(
θ − θ̂

)2
]
≥ CRLB

[
θ, b(θ),

∂b(θ)

∂θ

]
when Ey

[(
θ − θ̂

)]
= b(θ) (5.5)

Observe that the CRLB is denoted with arguments in (5.4) to clarify that it is in fact a functional

of the specific estimator bias function and its first derivative with respect to θ. This classical bound

can be applied to a random parameter by treating each value of θ in the argument of (5.4) as a

realization of the parameter. The bias function b(θ) is then interpreted as a conditional bias given

that θ has realized that particular value, i.e.,

b(θ) =

∫
(θ̂ − θ)f(y|θ)dy (5.6)
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Any estimator θ̂ of a random parameter θ from measurements y with this bias function then obeys

the following inequality on Bayesian MSE:

BMSE =

∫∫
(θ̂(y)− θ)2f(y|θ)f(θ)dydθ

≥
∫
CRLB

[
θ, b(θ),

∂b(θ)

∂θ

]
f(θ)dθ (5.7)

Thus any estimator will have a BMSE that is lower-bounded as:

BMSE ≥ inf
b∈H1

∫
CRLB

[
θ, b(θ),

∂b(θ)

∂θ

]
f(θ)dθ (5.8)

where H1 is the first-order Sobolev space, or the space of all weakly-differentiable functions in L2,

the space of all square-integrable functions. The function-space is carefully defined this way to

ensure the existence of a unique minimizer b?(θ); see pages 3-4 of [69] for further details.

Developing a lower bound on the BMSE can thus be seen as a functional optimization problem

whose solution yields a differential equation describing the “optimal bias function”, along with the

resulting minimum BMSE, coined the “Optimal Bias Bound”. This problem was originally solved

in [68] for the specific case of a single scalar parameter θ with bounded support over (θ0, θ1) and

boundary conditions
[
∂b(θ)
∂θ |θ=θ0 = ∂b(θ)

∂θ |θ=θ1 = −1
]

(which are naturally implied by the bounded-

ness assumption) and is restated here for convenience [69]:

JD(θ)b(θ) =
∂2b(θ)

∂2θ
+

(
1 +

∂b(θ)

∂θ

)(
∂ log f(θ)

∂θ
− ∂ log JD(θ)

∂θ

)
(5.9)

A function b?(θ) satisfying (5.9) and the aforementioned assumptions is then a unique minimizer of

(5.8). In general, no estimator may exist possessing the optimal bias, however this still represents

a bound on the BMSE viewed in terms of a specific form of the deterministic bias function.

While the original solution presented in [69] rested on the assumption of bounded support over

θ, it will now be shown that (5.9) describes the optimal bias even in cases with unbounded support

as long as JD(θ) is nonzero for all θ and f(θ) vanishes as θ → ±∞. To show this is true, let us first

make the definition:

Z

[
b(θ),

∂b(θ)

∂θ

]
=

∫ ∞
−∞
CRLB

[
θ,b(θ),

∂b(θ)

∂θ

]
f(θ)dθ (5.10)

and find the function b (θ) which minimizes this functional. Z [b, b′] will be minimized when its

first variation δZ [b, b′] = 0 (see [70] for a review of the theory of variational calculus). First letting

F (θ, b(θ), b′(θ)) = CRLB
[
θ,b(θ),∂b(θ)∂θ

]
f(θ) and using a Taylor series approximation to compute

δZ about b(θ) yields:

4Z
[
b(θ), b′(θ)

]
= ε

∫ ∞
−∞

∂F

∂b
v(θ)dθ + ε

∫ ∞
−∞

∂F

∂b′
v′(θ)dθ (5.11)

94



5.2 Introduction to the Bayesian-Bias Connection

Where v(θ) is the “direction” of variation, 4Z is the principle linear part of δZ and 4Z → δZ

as the constant ε → 0. A minimizer, b?(θ) of Z must satisfy 4Z
[
b?(θ), ∂b

?(θ)
∂θ

]
= 0 for any v(θ).

Then making use of the basic product derivative property to express the second term in the RHS

of (5.11) as: ∫ ∞
−∞

∂F

∂b′
v′(θ)dθ =

[
∂F

∂b′
v(θ)

]∞
−∞
−
∫ ∞
−∞

∂

∂θ

(
∂F

∂b′

)
v(θ)dθ (5.12)

Substituting (5.12) into (5.11) and expanding F produces:

4Z = ε

(∫ ∞
−∞

2

[
b(θ)f(θ)− ∂

dθ

(
[1 + b′(θ)] f(θ)

JD(θ)

)]
v(θ)dθ +

[
2

[1 + b′(θ)] f(θ)

JD(θ)
v(θ)

]∞
−∞

)

Applying the stated assumptions forces to zero the second term in the RHS of (5.13). Since4Z = 0

at its minimum, one arrives arrive at the final result by expanding the first RHS term in (5.13) and

noting that the integrand must vanish for any v(θ):[∂2b(θ)
∂θ2 f(θ) +

(
1 + ∂b(θ

∂θ

)
∂f(θ)
∂θ

]
JD(θ)−

[
1 + ∂b(θ)

∂θ

]
f(θ)∂JD(θ)

∂θ

JD(θ)2
=

b(θ)f(θ)− f(θ)

JD(θ)

(
∂2b(θ)

∂θ2
+

(
1 +

∂b(θ)

∂θ

)(
∂ log f(θ)

∂θ
− ∂ log JD(θ)

∂θ

) )
= 0 (5.13)

which is equivalent to (5.9)

5.2.2 Generalization of the Optimal Bias Function

Generalizing the concept of an “optimal bias” function can provide one with deeper insight into the

relationship between the optimal Bayesian estimator and biasedness in a deterministic estimation

setting. Assume we have some deterministic bound B so that,

MSE
[
θ̃ | θ

]
≥ B [θ, b(θ)]

for any estimator θ̃(y) with bias function b(θ) (this notation means the MSE of the estimator θ̃

conditioned on the parameter realization θ). Let us also make the assumption that there exists an

optimal bias function, unique up to probability measure zero on the space of θ, b?(θ) ∈ H1 that is

a minimizer of the expectation over f(θ) of the bound functional B:∫
B [θ, b(θ)] f(θ)dθ ≥

∫
B [θ, b?(θ)] f(θ)dθ , BB (5.14)

The right-hand side of (5.14) represents a bound on the BMSE, so we necessarily have:

BMSE
[
θ̂(y)

]
≥ BB (5.15)
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for any estimator θ̂(y) possessing any bias function. It is asserted that if in fact this bound is

achievable, then b?(θ) is possessed, almost everywhere, by at least the optimal Bayesian estimator,

θ̃B(y). One also has that:

MSE
[
θ̃B | θ

]
= B [θ, b?(θ)] almost everywhere on θ (5.16)

To show this, let us first establish that b?(θ) must be possessed by at least one estimator if BB is

achievable. If this were not the case, then by the uniqueness assumption of b?(θ) we would have

the strict inequality: ∫
B [θ, b(θ)] f(θ)dθ >

∫
B [θ, b?(θ)] f(θ)dθ (5.17)

for any bias b(θ) that is possessed by some estimator. This implies BB is not achievable, and is a

contradiction. The optimal Bayesian estimator must then have bias b?(θ) for if it did not, it would

not achieve BB, which is again a contradiction. We then have for the optimal Bayesian estimator

that: ∫
MSE

[
θ̃B|θ

]
f(θ)dθ =

∫
B [θ, b?(θ)] f(θ)dθ (5.18)

which implies (5.16) since f(θ) ≥ 0 and B is a bound on any estimator with bias b?(θ).

This suggests the “deterministic” interpretation of an optimal Bayesian estimator, θ̃B(y), as that

estimator with bias function bB(θ) having uniformly minimum mean square error almost everywhere

under f(θ); out of all estimators with bias bB(θ), MSE
[
θ̂B | θ

]
is minimum for all θ. The actual bias

bB(θ) is not arbitrary, but is such that the greatest lower bound (achievable) on the Bayesian MSE

under f(θ) is minimized. In fact, this seems to suggest an approach to evaluating performance of an

optimal Bayesian estimator at specific parameter realizations without ever explicitly constructing

the estimator itself. If there is some Bayesian bound constructed as done in the preceding discussion,

based on an underlying deterministic bound and a prior distribution which is known to be achievable

for a specific problem, then it is theoretically possible to determine the optimal bias function,

automatically yielding the optimal realization-specific MSE. Unfortunately, this is generally not

feasible, since there are few problems actually possessing currently known achievable and easily

computable bounds. Nonetheless, specific problems have indeed been found for which tighter

bounds are achievable, for example see [71], and it is expected that one may directly apply the theory

developed here to these special cases. [72] offers a promising technique based on Reproducing-

Kernel-Hilbert-Space-Methods (RKHS) that perhaps can be used in conjunction with this towards

specific application of the preceding development in a less restricted set of problems. This concept

will be explored with the CRLB and Bayesian Cramer Rao Bound (BCRLB), which are both known

to be achievable for a restricted class of estimation problems.

96



5.3 The Bias Connection in Estimation Problems of a Single Random Parameter

5.3 The Bias Connection in Estimation Problems of a Single Ran-

dom Parameter

5.3.1 Theoretical Results

The fact that the bias function provides the connection between classical and Bayesian estimation is

most apparent in the case of efficient estimation problems; ones in which there exists an estimator

which achieves the BCRLB.

Assuming that the standard regularity conditions hold, namely that the probability density

functions governing the problem are twice differentiable, and:

E

[
∂ log f(y|θ)

∂θ

]
= E

[
∂ log f(θ)

∂θ

]
= 0

The BCRLB then reads:

BMSE
[
θ̂
]
≥ BCRLB = J−1

B (5.19)

An efficient estimator which achieves the BCRLB exists if and only if there exists a function θ̂(y)

for which the following holds:

∂ log f (y|θ)
∂θ

+
∂ log f (θ)

∂θ
= K(θ̂(y)− θ) (5.20)

where K is a constant and θ̂(y) does not depend on θ. The optimal Bayesian estimator is then θ̂(y)

and K = JB.

Using this condition for efficiency under the BCRLB, an important result can be stated: Any

efficient Bayesian estimator of θ which achieves the BCRLB is equivalent to a classical biased esti-

mator with bias function b?(θ) = J−1
B

(
∂ log f(θ)

∂θ

)
. Furthermore, if the BCRLB is indeed achievable,

the MSE of any estimator with this bias at a given realization of θ is bounded by:

MSE
[
θ̂ | θ

]
≥ JD(θ)−1

(
1 + J−1

B

∂2 log f(θ)

∂θ2

)2

+

(
J−1
B

[
∂ log f(θ)

∂θ

])2

(5.21)

This can be shown simply by referring to (5.20) and directly evaluating what b?(θ) must be. We

know that if this condition holds, then θ̂(y) is the optimal Bayesian estimator. Thus:

b?(θ) =

∫
(θ̂(y)− θ)f(y|θ)dθ

=

∫
J−1
B

(
∂ log f (y|θ)

∂θ
+
∂ log f (θ)

∂θ

)
f(y|θ)dθ

= J−1
B

(∫
∂ log f (y|θ)

∂θ
f (y|θ) dθ +

∂ log f (θ)

∂θ

)
= J−1

B

(
∂ log f(θ)

∂θ

)
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Where the last expression follows from the assumed regularity condition Ey

[
∂ log f (y|θ)

∂θ

]
= 0 and

the independence of
∂ log f(θ)

∂θ
on y. As we now have an expression for b?(θ) we can simply use

this in (5.4) to arrive at (5.21). Note this has a similar form to the earlier discussion involving a

generalized bound B.

Let us further solidify these notions by applying this to the simplest possible scenario, where

θ ∼ N(A, σA) with A known, y ∼ N(θ, σy) and we wish to estimate θ. Both the Fisher and Prior

information terms JD(θ) and JP are constant in this case and we have BCRLB =
σ2
Aσ

2
y

σ2
A + σ2

y

. Since

∂ log f(θ)

∂θ
=
−1

σ2
A

(θ −A), the optimal bias function is:

b?(θ) =
−σ2

y

σ2
y + σ2

A

(θ −A) (5.22)

with realization-specific MSE bounded as:

MSE [ θ̂ | θ ] ≥

σ2
y

[
1 +

(
σ2
Aσ

2
y

σ2
A + σ2

y

)(
−1

σ2
A

)]2

+

[
−σ2

y

σ2
y + σ2

A

(θ −A)

]2

=
σ2
y

(σ2
A + σ2

y)
2

[
σ4
A + σ2

y(θ −A)2
]

(5.23)

Letting α =
σ2
A

σ2
A + σ2

y

we have:

MSE
[
θ̂ | θ

]
≥ α2σ2

y + (1− α)2(θ −A)2 (5.24)

This is a well-known result and is indeed the MSE at specific realizations of θ of the posterior

mean MMSE. A “risk-reward” tradeoff [73] can clearly be seen in (5.24); the MSE will be lower

than the unbiased CRLB in a neighborhood around θ = A but increases without bound as θ is

realized farther from this interval. This trade-off holds in general; we can find biased estimators

that do better than the CRLB at localized parameter regions but which may yield significantly

worse performance at other regions. See [74] and [75] for analysis of this bias-variance tradoff in a

non-Bayesian setting. What can also be easily shown in this case is that b?(θ) is indeed a solution

to the differential equation in (5.9). We have:(
1

σ2
y

)( −σ2
y

σ2
y + σ2

A

(θ −A)

)
= (0) +

(
1 +

(
−σ2

y

σ2
y + σ2

A

))((
−1

σ2
A

(θ −A)

)
− (0)

)
(5.25)

which is clearly true, confirming b?(θ) is a solution.

While simple, the preceding example is instructive as it solidifies the notion of a generalized
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optimal bias bound B mentioned earlier. Although the BCRB was not initially constructed from

a deterministic bias-specific bound, it is easily seen that it coincides with the expectation over

the prior of the bound in (5.21) when it is achievable. To this end we first make the following

observation regarding JD(θ) which follows directly from (5.20):

JD (θ) =

∫ ∞
−∞

−∂2 log f (y|θ)
∂θ2

f(y|θ)dy =

∫ ∞
−∞
− ∂

∂θ

{
K
(
θ̂ (y)− θ

)
− ∂ log f (θ)

∂θ

}
f (y | θ) dy

= JB +
∂2 log f (θ)

∂θ2

As such, (5.21) can be rewritten as:

MSE
[
θ̂ | θ

]
≥

(
1 + J−1

B
∂2 log f(θ)

∂θ2

)2(
JB + ∂2 log f(θ)

∂θ2

) +

(
J−1
B

[
∂ log f(θ)

∂θ

])2

= J−1
B + J−2

B

∂2 log f (θ)

∂θ2
+ J−2

B

(
∂ log f (θ)

∂θ

)2

(5.26)

Taking an expectation over the prior yields:

J−1
B − J

−2
B JP + J−2

B

∫ ∞
−∞

(
∂ log f (θ)

∂θ

)2

f (θ) dθ (5.27)

Yet the regularity assumption implies the third term is equal to J−2
B JP , leaving us with a single

term for (5.27), J−1
B . Based on this observation alone, we could have deduced that the optimal

Bayesian estimator must achieve (5.21) for all θ, since in this context, the expectation over (5.21) is

indeed an achievable Bayesian bound constructed from a corresponding bias-specific deterministic

bound, and therefore obeys (5.16).

An interesting bound on the estimation of a deterministic parameter while still assuming a prior

distribution and treating the parameter as if it were random, was presented in [76]. This bound

can also be interpreted as the minimum MSE of any estimator of a random parameter at specific

realizations. It is restated here:

MSE
[
θ̂ | θ

]
≥

(
1 + ∂ log(b(θ)f(θ))

∂θ b(θ)
)2

−Ey

[
∂2 log f(y|θ)

∂θ2

]
+ ∂2 log f(θ)

∂θ2

(5.28)

This bound differs from that of (5.21) in that it is for an arbitrary bias, not related to Bayesian

optimality, and does not require the estimation problem to be efficient. It can be shown that it is

naturally deduced from the inequality:

∫ (
θ̂(y)− θ

)2
f(y|θ)dy ≥

(∫ (
θ̂(y)− θ

)
∂ log f(y,θ)

∂θ f(y|θ)dy
)2

∫ (∂ log f(y,θ)
∂θ

)2
f(y|θ)dy

(5.29)
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for any estimator θ̂(y). This leads us to an alternative expression for the optimal realization-specific

MSE in an efficient problem. It is reminded here that the symbol θ̂B is used to denote the optimal

Bayesian estimator, in contrast to the previous use of θ̂ which denotes any estimator of θ. Than,

any efficient estimator of θ which achieves the BCRLB has MSE at a particular realization of θ

equal to:

MSE
[
θ̂B | θ

]
=

(
∂ log f(θ)

∂θ

)2
+ JD(θ)

Eθ

[(
∂ log f(θ)

∂θ

)2
+ JD(θ)

]2 (5.30)

This can be shown by noting an efficient estimator must satisfy (5.20) which is substituted for θ̂(y)

in (5.29), and is now an equality. We then arrive at the expression:

MSE
[
θ̂B | θ

]
=
(
J−1
B

)2 ∫ (∂ log f(y, θ)

∂θ

)2

f(y|θ)dy (5.31)

Based on what was shown in [76]:

Ey

[(
∂ log f(y, θ)

∂θ

)2
]

=

(
∂ log f(θ)

∂θ

)2

− Ey

[
∂2 log f(y|θ)

∂θ2

]
=

(
∂ log f(θ)

∂θ

)2

+ JD(θ)

Thus we have:

MSE
[
θ̂B | θ

]
=
(
J−1
B

)2 [(∂ log f(θ)

∂θ

)2

+ JD(θ)

]

Expanding the form of J−1
B in this expression yields the desired result, which is somewhat surprising

yet intuitive. It appears to tell us that in the case of Bayesian efficiency, while having more informa-

tion present in the data ( higher JD(θ) ) will improve our overall minimum BMSE, MSE
[
θ̂B | θ

]
at “unexpected” realizations with low f(θ) may be relatively worse if JD(θ) is higher; the data

“more strongly contradicts” our prior beliefs. To clarify, the following argument is provided: it

will be seen shortly how the optimal bias tends to be larger at values of θ with low f(θ). Thus at

these “outlier” realizations, the optimal estimator will “favor” higher f(θ)-values in spite of what

is indicated by the data. Essentially, one cannot reap the full benefit of more informative data at

outlier realizations due to the bias.

These results can also be extended to estimation of a function of the parameter θ where effi-

ciency can indeed be achieved whenever the posterior distribution has maximum-entropy under a

specific set of constraints. Let us now consider an estimator θ̂(y) of the function g(θ) of a random

parameter θ. The BCRLB in this case takes on the form:

BMSE ≥
Eθ

[
∂g(θ)

∂θ

]2

J−1
B

(5.32)
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The bias function in this case is defined as:

b(θ) =

∫ (
θ̂ − g(θ)

)
f(y|θ)dy (5.33)

Then it can be stated that any efficient Bayesian estimator of g(θ) which achieves the BCRLB in

(5.32) is equivalent to a classical biased estimator with bias function

b∗(θ) = J−1
B Eθ

[
∂g(θ)

∂θ

](
∂ log f(θ)

∂θ

)
(5.34)

Proving this is true proceeds identically to what was just shown in estimating θ itself when (5.32)

is used in place of (5.19) and the condition for efficiency (5.20) is slightly modified to read:

∂ log f (y|θ)
∂θ

+
∂ log f (θ)

∂θ
= K(θ̂(y)− g(θ)) (5.35)

for some function θ̂(y) which does not depend on θ, and K = JB

Eθ

[
∂g(θ)
∂θ

] .
We can again formulate a bound on the minimum MSE with this given bias at a particular

realization of θ similar to that for estimation of θ. However, instead an alternate form with a

similar theme as in [76] will be developed. Let us start by extending (5.28) to estimation of g(θ)

as follows:

f(θ)

∫ (
θ̂(y)− g(θ)

)
f(y|θ) = b(θ)f(θ) (5.36)

Differentiating with respect to θ we have:∫ (
θ̂(y)− g(θ)

) ∂ log f(y, θ)

∂θ
f(y|θ)dy − ∂g(θ)

∂θ
f(θ) =

∂b(θ)

∂θ
+
∂g(θ)

∂θ
+ b(θ)

∂ log f(θ)

∂θ
(5.37)

Applying the Cauchy-Schwarz inequality this becomes:

∫ (
θ̂(y)− g(θ)

)2
f(y|θ)dy ≥

(
∂b(θ)
∂θ + ∂g(θ)

∂θ + b(θ)∂ log f(θ)
∂θ

)2

∫ (∂ log f(y,θ)
∂θ

)2
f(y|θ)dy

(5.38)

This leads to the result: that any estimator of g(θ) possessing the bias function of the efficient

Bayesian estimator which achieves the BCRLB in (5.32) has MSE bounded at a particular realiza-

tion of θ as:

MSE(θ) ≥

(
Eθ

[
∂g(θ)
∂θ

]
Eθ

[
∂ log f(θ)

∂θ

2
+JD(θ)

] ∂2f(θ)
∂θ2

1
f(θ) + ∂g(θ)

∂θ

)2

(
∂ log f(θ)

∂θ

)2
+ JD(θ)

(5.39)

This can be seen by simple substitution of the expression for the optimal bias function given in

(5.34) into (5.38). As in the case of estimation of θ, this leads to the result that any efficient

101



5.3 The Bias Connection in Estimation Problems of a Single Random Parameter

estimator of g(θ) which achieves the BCRLB has MSE at a particular realization of θ equal to:

MSE(θ) = Eθ

[
∂g(θ)

∂θ

]2

(
∂ log f(θ)

∂θ

)2
+ JD(θ)

Eθ

[(
∂ log f(θ)

∂θ

)2
+ JD(θ)

]2 (5.40)

As done in the case of estimating θ directly, it should be clear that:

∫
( θ̂(y)− g(θ) )2 f(y|θ)dy ≥

(∫ (
θ̂(y)− g(θ)

)
∂ log f(y,θ)

∂θ f(y|θ)dy
)2

∫ (∂ log f(y,θ)
∂θ

)2
f(y|θ)dy

(5.41)

for any estimator θ̂(y) of g(θ). But if θ̂(y) is Bayesian efficient, we know that (5.35) is satisfied.

Straightforward substitution of this expression into (5.41) directly confirms the result. It can in

fact be shown that for efficient estimation, the right hand side of (5.40) is equivalent to the one

shown in (5.39).

5.3.2 Single Parameter Estimation Performance Analysis with the Bias Con-

nection

Let us now consider an informative example of how these results can be applied to yield realization-

specific performance information concerning random parameter estimation. Assume are given N

i.i.d samples y1, y2, ..yN from a Gaussian distribution with known mean θ and parameterized by the

precision τ = 1
σ2 . We assume a prior for τ as Gamma with parameters (α, β) and wish to estimate

the variance 1
τ . Let us start by computing the score functions:

∂ log f(y|τ)

∂τ
=

∂

∂τ
log

 1

(2π)
N
2

τ
N
2 e

− 1
2
τ

N∑
i=1

(yi − θ)2

 =
N

2τ
− 1

2

N∑
i=1

(yi − θ)2

∂ log f(τ)

∂τ
=

∂

∂τ
log

[
βα

Γ(α)
τα−1e−βτ

]
=
α− 1

τ
− β

So we then have,

∂ log f(y|τ)

∂τ
+
∂ log f(τ)

∂τ
=
α− 1 + N

2

τ
+
N

2τ
− 1

2

N∑
i=1

(yi − θ)2

= −
(
α− 1 +

N

2

)


N∑
i=1

(yi − θ)2 + β

α− 1 + N
2

− 1

τ
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We can see that the condition for efficiency is satisfied and the optimal Bayesian estimator of 1
τ is

θ̂(y) =

N∑
i=1

(yi − θ)2 + β

α− 1 + N
2

It can be shown that this is indeed the posterior mean MMSE estimator. Note that the posterior

mean (which is always the optimal Bayesian estimator) has never explicitly entered our discussion;

it was implicitly constructed through the underlying bounds alone. Next we evaluate the Fisher

Information:

JD(τ) = Ey

(N
2τ
− 1

2

N∑
i=1

(yi − θ)2

)2
 = Ey

N2

4τ2
− N

2τ

N∑
i=1

(yi − θ)2 +
1

4

(
N∑
i=1

(yi − θ)2

)2


= −N
2

4τ2
+

1

4
Ey

[
N

N∑
k=1

(yk − θ)4 + (N2 −N)
∑∑
i 6=j

(yi − θ)2 (yj − θ)2

]

= −N
2

4τ2
+

1

4
Ey

[
3N

τ2
+
N2 −N
τ2

]
=

N

2τ2

With expectation under the prior as:∫
JD(τ)f(τ)dτ =

N

2

∫ ∞
0

βα

Γ(α)
τα−3e−βτdτ =

Nβ2

2(α− 1)(α− 2)

The Prior Information term is:∫
∂ log f(τ)

∂τ

2

f(τ)dτ =

∫ ∞
0

(
α− 1

τ
− β

)2 βα

Γ(α)
τα−1e−βτdτ

=

∫ ∞
0

(α− 1)2 βα

Γ(α)
τα−3e−βτdτ − 2

∫ ∞
0

(α− 1)
βα

Γ(α)
τα−2e−βτdτ + β2

=
β2(α− 1)

α− 2
− (2β2) + β2 =

β2

α− 2

The Bayesian Information is then the sum of the previous two terms:

JB =
Nβ2

2(α− 1)(α− 2)
+

β2

α− 2
=
β2 (N + 2(α− 1))

2(α− 1)(α− 2)

and the BCRLB is:

BCRLB =
Ey
[
∂
∂τ

(
1
τ

)]2
JB

=

[
−
∫ ∞

0

βα

Γ(α)
τα−3e−βτdτ

]2 2(α− 1)(α− 2)

β2 (N + 2(α− 1))

=
2β2

(α− 1)(α− 2) (N + 2(α− 1))

103



5.3 The Bias Connection in Estimation Problems of a Single Random Parameter

The bias of the efficient estimator is then:

b?(τ) =

[ (
2β2

(α− 1)(α− 2)(N + 2(α− 1))

)(
−(α− 1)(α− 2)

β2

)(
α− 1

τ
− β

) ]

=
−2

N + 2(α− 1)

(
α− 1

τ
− β

)
Finally using (5.40) we calculate the realization-specific MSE of the Bayesian estimator:

MSE [τ̂B | τ ] =

[
−β2

(α− 1)(α− 2)

]2 (α−1
τ − β

)2
+ N

2τ2(
β2(N+2(α−1))
2(α−1)(α−2)

)2 =
4
[(

α−1
τ − β

)2
+ N

2τ2

]
[N + 2(α− 1)]2

The Bayes efficient bias function b(τ) for several values of N with α = 10 and β = 3 is shown

in Figure 5.1 plotted alongside the prior density for reference. We can clearly see that the bias is

minimum at the mode of the prior and decreases as N grows. It is not entirely clear why we end

up with this particular functional form until we rescale the τ -axis in terms of 1
τ . This is shown in

figure 5.2 along with a rescaled version of the prior. From this we can see how the bias function

acts to linearly “attract” estimates of 1
τ back to its most likely value under the prior.

Figure 5.1: Efficient Bias Function b(τ) for estimation of g(τ) = 1
τ with α = 10, β = 10

We next examine the realization-specific MSE shown in figures 5.3 and 5.4 for values of N = 1

and N = 20 respectively. Note in this case the plots are reparametrized to show the error in terms

of σ rather than τ . It is clear the MSE is minimum and well below the CRLB at the prior mode.

Also interesting to note in the case of N = 1 even as σ departs to the right from the prior mode,

the Bayes estimator MSE remains below the CRLB; this is not true for N = 20. In both cases as

σ → 0 the CRLB → 0 while a finite error remains for the Bayes estimator.
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5.3 The Bias Connection in Estimation Problems of a Single Random Parameter

Figure 5.2: Efficient Bias Function b(τ) for estimation of g(τ) = 1
τ with α = 10, β = 10 rescaled in

terms of 1
τ

Figure 5.3: Realization specific MSE for estimation of 1
τ = σ2 with N = 1 sample, α = 10, β = 3

The ratio of realization-specific MSE to the CRLB is shown in figure 5.5. While it is obvious

here the CRLB is approached asymptotically (view the 100K sample curve) larger sample sets below

some threshold progressively diminish localized-superefficiency (herein defined as achieving an MSE

lower than the unbiased CRLB, i.e. more efficient) of the Bayes estimator while still contributing

to a larger error outside of the high f(τ) region. Existence of this type of behavior is dependent

on the shape of the prior and it can be seen that this is not present with a less informative (higher

variance) one, (α = 3, β = 3) shown in figure 5.6.

We can take this one step further and examine the interaction between the hyperparameters,
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5.3 The Bias Connection in Estimation Problems of a Single Random Parameter

Figure 5.4: Realization specific MSE for estimation of 1
τ = σ2 with N = 20 samples, α = 10, β = 3

Figure 5.5: Ratio of MSE
CRLB for various N, α = 10, β = 3

sample size, and ratio of realization-specific MSE, MSE [τ̂B | τ ], to CRLB at key values of σ. To

this end we first express the reparametrization of this ratio (this is arbitrarily done for convenience

and the analysis could have easily been left in terms of τ).

T (σ) ,
MSE [τ̂B | τ ]

CRLB(σ)
=

(
4
(
[α− 1]σ2 − β

)2
+ 2Nσ4

(N + 2α− 2)2

)(
N

2σ4

)
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Figure 5.6: Ratio of MSE
CRLB for various N, α = 3, β = 3

Taking the derivative with respect to σ in order to find its minimum we have:

∂

∂σ
T (σ) =

(
16
[
(α− 1)σ2 − β

]
(α− 1)σ + 8Nσ3

(N + 2α− 2)2

)(
N

2σ4

)

−

(
4
[
(α− 1)σ2 − β

]2
+ 2Nσ4

(N + 2α− 2)2

)(
2N

σ5

)
=

8Nβ
(
(α− 1)σ2 − β

)
(N + 2α− 2)2 σ5

The only non-negative zero is at σ?(α, β) =
√

β
α−1 which is the minimizer of T (σ). Note this

corresponds to τ = α−1
β , the mode of the prior, which is as we expected. The minimum value of

this ratio is then:

G(α,N)
.
= T (σ?) =

N2

(N + 2α− 2)2

and this represents the largest realization-specific “gain” occurring at the prior mode, of the

Bayesian estimator over an efficient unbiased estimator. Figure 5.7 shows G(α,N) for several

values of N . We can also quantify estimator performance in low f(τ) regions by defining two

measures:

G̃(α,N)
.
= lim

σ→∞
T (σ) =

[
2 (α− 1)2 +N

]
N

(N + 2α− 2)2

L(α, β,N)
.
= σ?(α, β)− σ̂(α, β,N)

where σ̂(α, β,N) is the solution of [T (σ) = 1] over (0, σ?).

G̃(α,N) represents the asymptotic “efficiency” of the Bayes estimator as σ →∞ while L(α, β,N)

is the width of the interval to the left of σ? where super-efficiency is achieved. The calculations for

L(α, β,N) are lengthy and not shown here, it is plotted in figure 5.8 for several values of N . Also

shown in figure 5.9 is G̃(α,N) which does not depend on β.
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Figure 5.7: Minimum value of MSE/CRLB ratio

Figure 5.8: Width of super-efficiency interval for β = 3

We can make several observations concerning the influence of the hyperparameters and sample

size on realization-specific MSE for this example. The width of super-efficiency decreases rapidly

as the prior becomes more informative due to increasing α and is weakly affected by increasing

N. The asymptotic efficiency G̃(α,N) is highly sensitive to both α and N . With very small data

sets (single-digit) the Bayes estimator performs significantly better than the uniformly minimum

variance unbiased estimator (UMVUE) even for large values of σ (these are outliers with respect
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Figure 5.9: Efficiency of Bayes estimator as σ →∞

to the prior) and yields a large gain in efficiency close to the prior mode. However, as the sample

set grows the situation reverses; efficiency gains around the prior mode decrease and inefficiency

grows at outliers of the prior. This is inline with the observation made about (5.30); a “stronger”

data set will “fight” our prior more and result in generally worse performance at outliers of f(τ).

One should be cautious to draw conclusions based on this analysis concerning the superiority

of the Bayes estimator over a UMVUE even for this specific example. The two estimators are

representative of parallel paradigms in estimation theory and thus any direct performance com-

parison is entirely subjective. This analysis is meant to serve more as a supplement in evaluating

how a Bayes estimator will perform at specific parameter realizations, and how this performance

is influenced by variables in the problem (form of prior, sample size, etc.). It can be argued that

many of the results presented herein are for a narrow scope of estimation problems. Unbiased

estimators achieving efficiency under the CRB are relatively rare; it was proven in [77] that in a

typical estimation problem with additive noise, the signal must be affine in the parameters and the

noise, Gaussian. While reparametrization of the problem can somewhat relax this restriction in

the case of the BCRB, the set of efficient estimators under this bound is also relatively restrictive.

If there does not exist an estimator which can achieve the BCRB, then the bias function of the

MMSE estimator will have a different form than shown in this paper, thus invalidating the bounds

placed on realization-specific MSE. However, the generalized results and the methodology employed

can indeed be applied to successively tighter (and achievable in some restricted sense) Bayesian
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bounds covering a wider range of distributions. Specific problems have been found for which tighter

bounds are achievable, for example see [71]. It is expected that one may directly apply the theory

developed here to these cases. In [72], a promising technique is offered that perhaps can be used

towards specific application of the preceding development in a much less restricted set of problems.

Furthermore, it can be said that even in the case of the CRB itself, the requirement of unbiasedness

(or having a known bias) creates a limitation on its usefulness. This is not believed to be true; the

CRB is frequently used by practitioners in problems where existence of an unbiased estimator has

not been established. While this may not be entirely valid, it does allow one to establish a useful

“starting point” for performance evaluation.

5.4 Extension to Sequential Estimation

5.4.1 Overview

The ultimate goal of the work completed in the preceding sections of this chapter is to establish

a foundation for development of results which can be geared towards the application of focus in

this thesis; namely target-tracking in a Bayesian sequential estimation (specifically discrete-time

filtering) context. Overall motivation for this has been discussed previously and is reiterated here:

synthesis of the ability to extract information regarding best-attainable performance of a tracking

algorithm conditioned on a specific trajectory realized by the target.

A substantial amount of literature exists that establishes conventional classical/Bayesian bounds

for sequential estimation and is thoroughly covered in [67]. Feasible computation of the BCRLB,

which is called the Posterior-Cramer-Rao-Bound (PCRB) in this context, for discrete-time filtering,

prediction, and smoothing was made possible by the results in [78],[79], and [80]. Note that the

analysis which is conducted here does not exactly fit into the same category as the aforementioned

bounds. The disparity is made clear by examining the differences in how simulations are conducted

in each scenario. Consider experimental evaluation of the Bayesian MSE for some random param-

eter; the BMSE can be computed by averaging the error over a large number of trials, with each

consisting of a specific value of the parameter that is drawn from the prior, and observations drawn

from the likelihood function conditioned on the drawn parameter value. This is in contrast to the

scenario under consideration, where one must compute the realization-specific MSE by averaging

over trials each consisting of the same parameter value. This is more inline with a classical esti-

mation scenario, however the distinction lies in allowing estimation to be conducted utilizing prior

information.

A similar analysis to the approach that is followed here can be found in section 4.3.1 of [79]

and originally considered in [81] to some extent. There, the concept of fictitious measurements is

used to incorporate prior knowledge into a classical estimation scenario; bounds are established
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based on the ability of an estimator to utilize this additional information in conjunction with the

actual measurement set to yield improvements in performance. This approach does appear to il-

lustrate the improvement in best possible estimator performance that is afforded by the additional

prior information at given parameter realizations. However, it is not clear whether this method

is capable of predicting how performance will vary for an arbitary parameter realization; i.e. it is

an optimistic bound. An alternative approach is presented herein that is more naturally based on

“optimal” estimator bias for a given prior and it is shown how this approach is capable of predicting

this performance variation.

5.4.2 Notation and Preliminary Definitions

Two distinct notations are assumed for the results presented in the foregoing section. In presenting

general vector parameter estimation results, a K-dimensional vector of random parameters is de-

noted by θ=[θ1 θ2 ... θK ]>∈RK , which is to be estimated by an N-dimensional vector of scalar ob-

servations Y=[y1 y2 ... yN ]>∈RN . Later when we specialize to sequential estimation, the notation

is modified to represent a T -duration sequence of parameter vectors (or target trajectory), denoted

X1:T =
[
X>1 X

>
2 ...X

>
T

]>
, where it is understood that the components of this trajectory vector are

themselves K-dimensional vectors (i.e. X1:T ∈ RK × RT ). The trajectory is then estimated based

on a T -sequence of Q-dimensional vector observations, denoted Y1:T =
[
Y >1 Y >2 ...Y >T

]> ∈ RQ×RT .

In the general case, an estimator is a mapping θ̂ : RN → RK from the observation space to the

parameter space. It is assumed the parameter/observation vector pair has a differentiable joint

probability density function fY,θ(Y, θ) with corresponding likelihood function fY|θ(Y |θ) and prior

density fθ(θ). Expectation over the parameter/observation space is denoted as EY,θ, expectation

conditioned on a particular θ as EY|θ, and expectation over the prior only as Eθ. The bias of an

estimator is here viewed as a functional which maps an estimator to the parameter space and is

defined as:

b(θ) = EY|θ

[
(θ̂(Y )− θ)

]
=

∫
RN

(θ̂(Y )− θ)fY|θ(Y |θ)dY (5.42)

The conditional (or realization-specific) MSE matrix of an estimator is a functional that maps an

estimator to RK × RK , defined as:

MSE(θ) =EY|θ

[
(θ̂(Y)− θ)(θ̂(Y)− θ)>

]
=

∫
RN

(θ̂(Y)− θ)(θ̂(Y)− θ)>fY|θ(Y |θ)dY (5.43)

The vector “score” S(·) :RK→RK is defined for all assumed probability densities as:

[
S(·)
]
i

=
∂ log f(·)(·)

∂θi
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For example, an element of the joint score SY,θ reads:

[SY,θ]i =
∂ log fY,θ(Y, θ)

∂θi

It is assumed that regularity conditions are satisfied for all densities, i.e. :

EY,θ[SY,θ] = 0,EY|θ[SY|θ] = 0,Eθ[Sθ] = 0

The vector operator of first partial derivatives with respect to a K × 1 vector θ is also denoted as

5θ =
[
∂
∂θ1

∂
∂θ2

... ∂
∂θK

]>
Information matrices that we will subsequently work with are denoted as:

JB = EY,θ

[
−5θ5>θ log f(Y,θ)

]
Bayesian Information

JD(θ) = EY|θ

[
−5θ5>θ log f(Y|θ)

]
Fisher Information

JP = Eθ

[
−5θ5>θ log f(θ)

]
Prior Information

The Bayesian Cramer Rao Bound (BCRLB) bounds the Bayesian MSE and is expressed as:

BMSE = EY,θ [MSE(θ)] � J−1
B (5.44)

where A � B is understood to mean that A−B is positive semidefinite and it is assumed that JB

is nonsingular. The BCRLB is achievable if there exists a function (estimator) θ̂(Y) such that the

following equality holds for some matrix C independent of Y and θ:

(θ̂(Y )− θ) = CSY,θ (5.45)

θ̂(X) is then the optimal Bayesian estimator and it can be shown that C = J−1
B . Following the

approach in [76] the following identity is derived:

EY|θ

[
SY,θS>Y,θ

]
= JD(θ) + SθSθ

> (5.46)

This can be developed by starting with the following trivial identity:∫
∂

∂θi
f(Y,θ)dY =

∫
∂ log f(Y, θ)

∂θi
f(Y,θ)dY =

∂f(θ)

∂θi

Differentiating by θj we then have:( ∫
∂ log f(Y,θ)

∂θi

∂ log f(Y|θ)

∂θj
f(Y|θ)dY +

∫
∂2 log f(Y,θ)

∂θj∂θi
f(Y|θ)dY

)
=
∂2 log f(θ)

∂θj∂θi
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The first term on the left-hand side is:∫
∂ log f(Y,θ)

∂θi

∂ log f(Y|θ)

∂θj
f(Y|θ)dY =∫

∂ log f(Y,θ)

∂θi

∂ log f(Y,θ)

∂θj
f(Y|θ)dY − ∂ log f(θ)

∂θj

∫
∂ log f(Y,θ)

∂θi
f(Y|θdY

and the second term is:∫
∂2 log f(Y,θ)

∂θj∂θi
f(Y|θ)dY =

∫
∂2 log f(Y|θ)

∂θj∂θi
f(Y|θ)dY +

∂2 log f(θ)

∂θj∂θi

Simplifying the full expression we have:(
EY|θ

[
∂2 log f(Y|θ)

∂θj∂θi

]
+ EY|θ

[
∂ log f(Y,θ)

∂θi

∂ log f(Y,θ)

∂θj

]

− ∂ log f(θ)

∂θj

∂ log f(θ)

∂θi

)
= 0

which is equivalent to the identity in (5.46).

5.4.3 Vector Parameter Estimation

Similar to the case for a scalar parameter, a straightforward extension can be made to a vector

parameter. Specifically, any efficient Bayesian estimator of the K-dimensional parameter vector θ

which achieves the BCRLB is equivalent to a classical biased estimator with bias function b?(θ) =

J−1
B Sθ. This can easily be shown by first noting that by assumption, θ̂(Y ) is efficient and satisfies

(5.45), as a result:

b?(θ) = EY|θ

[
(θ̂(Y )− θ)

]
= EY|θ [CSY,θ] = EY|θ

[
CSY|θ

]
+ EY|θ [CSθ] = CSθ

This leads to an important result concerning realization-specific performance; namely that any

efficient Bayesian estimator of the K-dimensional parameter vector θ has MSE matrix at a given

parameter realization:

MSE(θ) = J−1
B

(
JD(θ) + SθSθ

>
)

J−1
B (5.47)

One can easily see this by noting that due to (5.45) , (θ̂(Y )− θ) = J−1
B SY,θ so we have:

MSE(θ) = EY|θ

[
(θ̂(Y )− θ)(θ̂(Y )− θ)>

]
= J−1

B EY|θ

(
SY,θS>Y,θ

)
J−1
B (5.48)

Substituting (5.46) into (5.48) confirms (5.47). From (5.47) we can see that this can also be written

as:

MSE(θ) = J−1
B JD(θ)J−1

B + b?(θ)b?(θ)> (5.49)
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5.4.4 Sequential Estimation

The preceding results are now applied to the case of efficient discrete-time filtering. Let us consider

estimation of the (K×1) parameter vector at time T denoted XT based on the sequence of (Q×1)

vector observations occurring from t = 1 to T ; Y1:T =
[
Y>1 Y>2 ...Y>T

]>
. A trajectory of the state

is also defined as X1:T =
[
X>1 X>2 ...X>T

]>
, which represents a realization of all states up to time

T . An estimator of XT based on Y1:T is the mapping X̂T : RTQ → RK that maps the trajectory of

observation vectors from time 1 to T to a vector in the parameter space at time T . The Bayesian

MSE matrix of X̂T depends on the joint statistics of the observation and parameter trajectories,

f(Y1:T ,X1:T ), and can be bounded with the BCRLB by considering the (KT ×KT ) Bayesian MSE

matrix of the full parameter trajectory up to time T as follows:

BMSE1:T � J−1
B,1:T (5.50)

where J(·),1:T denotes the corresponding trajectory information matrix at time T , i.e. JD,1:T (X1:T ) =

EY1:T |X1:T

[
SY1:T |X1:T

S>Y1:T |X1:T

]
. Partitioning JB,1:T into (T × T ) blocks each with dimension

(K ×K), it should be clear that the BMSE matrix of θ̂T alone is bounded as:

BMSET � J−1
B,T (5.51)

where J−1
B,T or

[
J−1
B,1:T

]
T,T

denotes the (T, T )-th block of J−1
B,1:T . It is worth pointing out with this

notation that J−1
B,T 6= [JB,1:T ]−1

T,T . The optimal bias function at time T is a (K × 1) vector which

depends on the specific state trajectory from time 1 to T and is written as bT (X1:T ). Its value can

be determined by considering the bias of the full trajectory, which is a (TK × 1) vector:

b?1:T (X1:T ) = J−1
B,1:TSX1:T

(5.52)

It can then be stated that any efficient Bayesian estimator for the discrete-time filtering problem

conditioned on a particular trajectory, X1:T , has MSE matrix at time T equal to:

MSET (X1:T ) =
[

J−1
B,1:TJD,1:T (X1:T )J−1

B,1:T + b?1:T (X1:T )b?1:T (X1:T )>
]
T,T

(5.53)

This can be seen as a trivial extension of the results in section 5.4.3 by noting that estimation

of XT in the filtering problem is equivalent to estimation of the T -th segment of K components

within the parameter vector X1:T . The main difference here being that the full observation vector

Y1:T consists of T segments of (Q × 1) vectors, whereas estimation in section 5.4.3 was based on

the single-segment vector Y of N components.

Direct computation of (5.53) requires inversion of the full Bayesian trajectory information ma-

trix which grows in dimension with increasing T . The problem is greatly simplified for Markovian

processes with conditionally independent measurements, and in this case, a recursive form for com-

putation of J−1
B,T (also known as the PCRB) was developed in [78]. It will be shown how a recursive
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form can also be developed for (5.53). As there is a reliance on many of the same terms as in

[78] and [82] to express this form, some of the derivation will be identical. For brevity, details are

omitted whenever deemed unnecessary.

Let us assume the state evolution is Markovian and the observation vector at time T , YT , is

dependent only on XT . One can then express the joint density of the observation and parameter

trajectories as:

f(Y1:T ,X1:T ) = f(X0)

T∏
t=1

f(Xt|Xt−1)

T∏
t=1

f(Yt|Xt) (5.54)

The trajectory information matrix can be partitioned as:

JB,1:T =
[
A1:T B1:T

B>1:T D1:T

]
(5.55)

where A1:T is ((T − 1)K × (T − 1)K), B1:T is ((T − 1)K ×K) and D1:T is (K ×K). Using block

inversion we can express J−1
B,1:T as :

J−1
B,1:T =


[
J−1
B,1:T

]
1,1

[
J−1
B,1:T

]
1,2[

J−1
B,1:T

]T
1,2

J−1
B,T

 (5.56)

with, [
J−1
B,1:T

]
1,1

=
(
A1:T −B1:TD−1

1:TB>1:T

)−1

[
J−1
B,1:T

]
1,2

= −A−1
1:TB1:T

(
D1:T −B1:TA−1

1:TB>1:T

)−1

J−1
B,T =

(
D1:T −B1:TA−1

1:TB>1:T

)−1
(5.57)

Due to the Markovian assumption, JB,1:T has the form:

JB,1:T =



JB,0(X0) V1 0 . . . 0

V>1 W1 + U2 V2
. . .

...

0
. . .

. . .
. . . 0

...
. . . V>T−1 WT−1 + UT VT

0 . . . 0 V>T WT


(5.58)

where,

VT = EY,θ

[
−5XT−1

5>XT
log f(XT |XT−1)

]
(5.59)

UT = EY,θ

[
−5XT−1

5>XT−1
log f(XT |XT−1)

]
(5.60)

WT = EY,θ

[
−5XT

5>XT
log f(XT |XT−1)

]
+ EY,θ

[
−5XT

5>XT
log f(YT |XT )

]
(5.61)
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So JB,1:T can be further partitioned as:

JB,1:T =

[[
A1:T−1 B1:T−1

B>1:T−1 D1:T−1+UT

]
B1:T

B>1:T D1:T

]
(5.62)

where D1:T = WT and B1:T =
[
0 V>T

]>
.

Referring back to (5.57), we have:

J−1
B,T =

(
D1:T −B1:TA−1

1:TB>1:T

)−1

=

(
WT −

[
0 V>T

]
A−1

1:T

[
0

VT

])−1

=
(
WT −V>T

[
A−1

1:T

]
2,2

VT

)−1
(5.63)

with
[
A−1

1:T

]
2,2

as the lower-right block of the inverse of the partitioned A1:T shown as the upper

left matrix in (5.62). Evaluating block inversion on this partition yields:[
A−1

1:T

]
2,2

=
(

(D1:T−1 + UT )−B>1:T−1A
−1
1:T−1B1:T−1

)−1

= (UT + JB,T−1)−1 (5.64)

Yielding the recursive form for J−1
B,T :

J−1
B,T =

(
WT −V>T (UT + JB,T−1)−1 VT

)−1
(5.65)

For what follows, we will also need to develop a recursive form for the ((T − 1)K ×K) upper right

block
[
J−1
B,1:T

]
1,2

of (5.56). Referring again to the partition of A1:T in (5.62) we can write:

[
J−1
B,1:T

]
1,2

= −A1:TB1:TJ−1
B,T = −

[[
A−1

1:T

]
1,2[

A−1
1:T

]
2,2

]
VTJ−1

B,T (5.66)[
A−1

1:T

]
1,2

= −A1:T−1B1:T−1 (UT + JB,T−1)−1 (5.67)

But it should be clear that: [
J−1
B,1:T−1

]
1,2

JB,T−1 (UT + JB,T−1)−1

= −A−1
1:T−1B1:T−1 (UT + JB,T−1)−1 =

[
A−1

1:T

]
1,2

(5.68)

Resulting in: [
J−1
B,1:T

]
1,2

= −
[

[J−1
B,1:T−1]1,2JB,T−1

IK×K

]
(UT + JB,T−1)−1 VTJ−1

B,T (5.69)
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which is in fact the recursion: [
J−1
B,1:T

]
1,2

=
[
J−1
B,1:T−1

]
1:T−1,T−1

GT (5.70)

where
[
J−1
B,1:T−1

]
1:T−1,T−1

is defined as the (T−1)-th right column block of J−1
B,1:T−1 with dimension

((T − 1)K ×K) and GT is the (K ×K) matrix:

GT = −JB,T−1 (UT + JB,T−1)−1 VTJ−1
B,T (5.71)

Also, by noting that the lower (K ×K) block of
[
J−1
B,1:T

]
1,2

is
[
J−1
B,1:T

]
T−1,T

we have:[
J−1
B,1:T

]
T−1,T

= − (UT + JB,T−1)−1 VTJ−1
B,T (5.72)

Now shifting attention to the prior score vector SX1:T
, this term can be decomposed as:

SX1:T
= ŜX1:T−1

+ ZT (5.73)

with:

ŜX1:T−1
=


5X0 log f(X0) +5X0 log f(X1|X0)
5X1 log f(X1|X0) +5X1 log f(X2|X1)

...
5XT−1

log f(XT−1|XT−2)
0

 (5.74)

ZT =


0
...

5XT−1
log f(XT |XT−1)

5XT
log f(XT |XT−1))

 (5.75)

So we can split (5.52) into two terms as:

b?1:T (X1:T ) = J−1
B,1:T ŜX1:T−1

+ J−1
B,1:TZT (5.76)

Referring back to (5.53) we wish to determine the lower right K ×K block:[
b?1:T (X1:T )b?1:T (X1:T )T

]
T,T

= [b?1:T (X1:T )]T [b?1:T (X1:T )]>T

= b?T (X1:T )b?T (X1:T )> (5.77)

First we examine the T -th (K × 1) element of the (TK × 1) column vector J−1
B,1:T ŜX1:T−1

:

[
J−1
B,1:T ŜX1:T−1

]
T

=

( >∑
i=1

[
J−1
B,1:T

]
T,i

[
ŜX1:T−1

]
i

)

=
[
J−1
B,1:T

]>
1,2

SX1:T−1
= G>T

[
J−1
B,1:T−1

]
T−1,1:T−1

SX1:T−1
(5.78)
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since the T -th (K × 1) element of ŜX1:T−1
is 0 and the partition of J−1

B,1:T for any T is symmetric,

i.e. [
J−1
B,1:T−1

]>
1:T−1,T−1

=
[
J−1
B,1:T−1

]
T−1,1:T−1

We can also write:

b?T (X1:T ) = [b?1:T (X1:T )]T =
[
J−1
B,1:TSX1:T

]
T

=
[
J−1
B,1:T

]
T,1:T

SX1:T

=
[
J−1
B,1:T ŜX1:T−1

]
T

+
[
J−1
B,1:TZT

]
T

(5.79)

and obviously,

b?T−1(X1:T−1) =
[
b?1:T−1(X1:T−1)

]
T−1

=
[
J−1
B,1:T−1

]
T−1,1:T−1

SX1:T−1
(5.80)

Noting that the first T − 2 (K × 1) elements of ZT are zero,

b̂T ,
[
J−1
B,1:TZT

]
T

=
[
J−1
B,1:T

]
T,T−1

[ZT ]T−1 +
[
J−1
B,1:T

]
T,T

[ZT ]T (5.81)

Thus we have the recursive form for the optimal bias function:

b?T (X1:T ) = G>T b?T−1(X1:T−1) + b̂T (5.82)

The first term of (5.53) can be simplified by noting that due to the assumption of conditionally

independent observations (i.e.YT is dependent only on XT ), JD,1:T (X1:T ) must be block-diagonal.

Note the arguments of JD,1:T (X1:T ) and JD,T (XT ) are made implicit in the subsequent derivation

for space reasons, their actual value should be clear from context. One can then form the partition:

JD,1:T =

[
JD,1:T−1 0(T−1)K×K

0K×(T−1)K JD,T

]
(5.83)

Utilizing block-multiplication with the partition of J−1
B,1:T defined in (5.56) we arrive at the expres-

sion:

J−1
B,1:TJD,1:T =


[
J−1
B,1:T

]
1,1

JD,1:T−1

[
J−1
B,1:T

]
1,2

JD,T[
J−1
B,1:T

]
2,1

JD,1:T−1 J−1
B,TJD,T

 (5.84)

Postmultiplying this by J−1
B,1:T and taking the lower right block (which is the (T, T )-th element)

gives us: [
J−1
B,1:TJD,1:TJ−1

B,1:T

]
T,T

=
[
J−1
B,1:T

]
2,1

JD,1:T−1

[
J−1
B,1:T

]
1,2

+ J−1
B,TJD,TJ−1

B,T (5.85)

Examining the first term on the RHS of (5.85):[
J−1
B,1:T

]
2,1

JD,1:T−1

[
J−1
B,1:T

]
1,2

=

G>T

[
J−1
B,1:T−1

]
T−1,1:T−1

JD,1:T−1

[
J−1
B,1:T−1

]
1:T−1,T−1

GT (5.86)
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Complete the following steps at t = 0:

S1 : Set JB,0 = J0(X0)

S2 : Set b?0(X0) = J0(X0) (5X0 log p(X0))

S3 : Set Mq,0 = 0K×K

Complete the following steps for t > 0:

S4 : Determine the (K ×K) matrices VT , UT , and WT using (5.59)-(5.61).

S5 : Compute J−1
B,T using (5.65).

S6 : Compute
[
J−1
B,1:T

]
T−1,T

using (5.72).

S7 : Determine b̂T using (5.81) with terms from the previous steps and ZT from (5.75).

S8 : Compute b?T (X1:T ) using the recursion (5.82).

S9 : Determine the (K ×K) matrix: Md,T =J−1
B,TJD,T (XT )J−1

B,T .

S10 : Compute Mq,T using the recursion (5.90).

S11 : Finally compute MSET (X1:T ) using (5.91) and the preceding terms.

Table 5.1: Recursive Algorithm for Realization-Specific MSE Computation at time T .

But it is easy to show that:[
J−1
B,1:T−1

]
T−1,1:T−1

JD,1:T−1

[
J−1
B,1:T−1

]
1:T−1,T−1

= (5.87)[
J−1
B,1:T−1JD,1:T−1J

−1
B,1:T−1

]
T−1,T−1

, Mq,T−1 (5.88)

Defining the second term in the RHS of (5.85) as Md,T we then have the recursion:[
J−1
B,1:TJD,1:TJ−1

B,1:T

]
T,T

= Mq,T (5.89)

where:

Mq,T = G>TMq,T−1GT + Md,T (5.90)

Putting everything together, we finally arrive at the expression:

MSET (X1:T ) = Mq,T + b?T (X1:T )b?T (X1:T )> (5.91)

where the optimal bias b?T (X1:T ) is recursively computed from (5.82) and Mq,k from (5.90). While

requiring significantly less computational burden than direct calculation by way of inverting JB,1:T ,

determination of this realization specific MSE matrix at each time consists of a number of steps.

The complete approach for calculation at time T based on the recursions developed is summarized

as follows:
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5.4.5 Application to a Maneuvering Target Tracking Problem

What follows is an application of the preceding results to a simple discrete-time 2-D target tracking

problem. Let us first define the state vector, representing the target location and velocity, by the

vector XT =
[
x1,T x2,T v1,T v2,T

]>
. Movement of the target at time T is modeled by the

transition equation:

XT = AXT−1 + εT (5.92)

Where A is the state transition matrix:

A =


1 0 T0 0
0 1 0 T0

0 0 T0 0
0 0 0 T0

 (5.93)

with T0 is the step duration and εT ∼ N(0,Qε) is the (4× 1) state noise with:

Qε = σ2
ε


T 3

0
3 0

T 2
0
2 0

0
T 3

0
3 0

T 2
0
2

T 2
0
2 0 T0 0

0
T 2

0
2 0 T0

 (5.94)

Also, X0 ∼ N
([

0 0 v1,0 v2,0,
]>
,Qε

)
corresponding to the target located initially about the

origin, moving with constant velocity. A linear 4× 1 observation vector is assumed as follows:

YT = RXT + ςT (5.95)

where ςT ∼ N(0,Qς) is the 4 × 1 observation noise, and Qς is here assumed to be σ2
ς I. For our

example, we choose R to be a function of location only:

R =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 (5.96)

This is obviously a linear-Gaussian discrete-time filtering problem and it can easily be shown that

(5.45) is satisfied; the Kalman filter is Bayes optimal and achieves the PCRB. The terms (5.59)-

(5.61) are independent of time and have the simple form:

VT = −A>Q−1
ε

UT = A>Q−1
ε A

WT = Q−1
ε A + R>Q−1

ς R
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The realization-dependent terms ZT−1 and ZT are given by:

ZT−1 = A>Q−1
ε (XT −AXT−1)

ZT = −Q−1
ε (XT −AXT−1)

Recursive computation (not shown here) of the trajectory-specific MSE for the Bayes optimal

estimator can then be carried out as outlined in the previous section.

To compactify presented simulation results, the sum of location-related terms for the PCRB

and trajectory-specific MSE are shown rather than the individual components:

M̂SET (XT ) =
2∑
j=1

[MSET (XT )]j,j

P̂CRB =

2∑
j=1

[PCRB]j,j

Figure 5.10 shows a single trajectory generated from the process equation with fixed σε = 0.1 and

σς = 0.1. Figure 5.11 shows the theoretical M̂SET (XT ) along with the experimental average error

of the optimal Kalman filter for this trajectory. Note the dependence on N of the experimental

error; N is the total number of trial runs for the Kalman filter where each trial consists of a different

realization of the random observation trajectory. The absolute difference between the two is plotted

in figure 5.12 for several values of N where the convergence of experimental to theoretical error is

clear. Also shown in figure 5.13 to demonstrate similar convergence is the bias for the first location

component, [b?T (X1:T )]1.
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Figure 5.10: Single trajectory generated from the model with σε = 0.1 and σς = 0.1

Figure 5.15 shows P̂CRB for various values of σε with σς fixed at 0.1. Also plotted for each σε

is M̂SET (XT ) for a number of trajectories randomly generated from the modeled state dynamics.
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Figure 5.11: MSE of trajectory in figure 5.10 with σε = 0.1 and σς = 0.1
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Figure 5.12: |Experimental - Theoretical| MSE for trajectory in figure 5.10 with σε = 0.1 and σς = 0.1

Since these trajectories obey the model, it is not unexpected that their specific MSE is close to the

PCRB. Figure 5.14 shows the norm of the optimal bias,

‖ b?T (X1:T ) ‖=
4∑
j=1

[b?T (X1:T )]j

for various assumed σε but leaving this value fixed at 10−6 when generating the trajectories so

as to clarify the comparison. Note how the bias norm significantly decreases as the assumed σε

increases; this is due to the estimator “shifting” weight at each T from its prediction based on the

prior estimate, to the incoming measurement.

The impact on M̂SET (XT ) is next examined for trajectories which deviate from the assumed
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Figure 5.13: First location component of bias function for trajectory in figure 5.10 with σε = 0.1 and

σς = 0.1
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Figure 5.14: Logarithmic plot of ‖ b?T (X1:T ) ‖ for various assumed values of σε with all trajectories

generated using fixed σε = 10−6

model dynamics. Specifically, let us consider trajectories X̌T which initially follow the assumed

process dynamics (straight-line motion) for some fixed time, then abruptly undergo a constant turn

rate (CT) maneuver for a given duration, afterwards returning to the originally assumed dynamics

for some time before the next maneuver. The model for a discretized CT maneuver as in [83] is

adopted here. Note the estimated state vector is not modified here to include turn rate; this model

serves only as a means to generate test trajectories and the actual estimation problem (assumed

dynamics, measurement equation, noise statistics) remains the same. This test trajectory is then
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Figure 5.15: PCRB plotted for various σε. Heavy lines are the PCRB, thin dotted lines are the MSE

for specific trajectories generated from the model.

described by

X̌T = FX̌T−1 + εT

F =

{
A if 0 ≤ T < Tm,j or Tm,j + km,j < T < Tm,j+1

Am if Tm,j ≤ T ≤ Tm,j + km,j

with

Am =


1 0 sin(ωT0)

ω − (1−cos(ωT0))
ω

0 1 (1−cos(ωT0))
ω

sin(ωT0)
ω

0 0 cos(ωT0) − sin(ωT0)

0 0 sin(ωT0) cos(ωT0)

 (5.97)

where ω is the turn rate, Tm,j is the start time of the j-th maneuver, and km,j is its duration.

Trajectories with two specific maneuvers are considered here, both with ω = 0.12, one at T = 50

and another at T = 140, both lasting for 20 simulation steps. As done with trajectories matching

the process dynamics, the PCRB and trajectory-specific MSE is evaluated for various values of σε.

Simulations were first run (shown in figure 5.16 ) with σε of a generated trajectory adjusted to

match the assumed dynamics used for the estimator (i.e. M̂SET (XT ) is calculated for trajectories

generated with the same σε). It is interesting to note how the level of impact maneuvers have

significantly changes with σε. While performance for small σε is moderately better during the non-

maneuvering phases, it is severely degraded during the maneuver. As σε is increased, performance

becomes insensitive to the maneuvers at the cost of a larger “steady-state” error.
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Figure 5.16: PCRB and MSE of the maneuvering trajectories plotted for various σε. Heavy lines are

the PCRB, thin lines are trajectory-specific MSE. The assumed σε matches actual σε of the trajectories.

It can be shown in this specific example that further increases to σε have a diminishing effect on

this steady-state error and there is convergence to some level which is a function of the measurement

noise; this can in a way be interpreted as “unbiasedness” for the filtering problem. Figure 5.17 shows

sample trajectories generated for each σε with height at each point as the value of M̂SET (XT ).
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Figure 5.17: Sample trajectories with their respective MSE for various σε.

To get a clearer picture of figure 5.17 the same experiment is repeated, this time leaving σε =

10−4 fixed during the generation of all the maneuvering trajectories and varying σε only during

calculation of MSET (X1 : T ). Figures 5.18 and 5.19 show the corresponding results.

It is enlightening to examine the action of the bias during the trajectory maneuvers. Figure

125



5.4 Extension to Sequential Estimation

0 20 40 60 80 100 120 140 160 180 200
−200

−150

−100

−50

0

50

100

Time

2
0

⋅l
o

g
(M

S
E

)

 

 

σ
ε
 = 10

−4

σ
ε
 = 10

−2

σ
ε
 = 1

Figure 5.18: PCRB and MSE of the maneuvering trajectories plotted for various assumed σε. Heavy

lines are the PCRB, thin lines are trajectory-specific MSE. All trajectories were generated with fixed

σε = 10−4
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Figure 5.19: Sample trajectories with their respective MSE for various assumed σε which is fixed at

10−4 during trajectory generation.

5.20 shows the bias norm for several trajectories generated with σε fixed at 10−4. We immediately

see that assuming a smaller σε in the model dynamics imposes a dramatically larger bias norm

during the maneuvers.

Figure 5.21 shows the bias vector alongside individual trajectories where we can clearly see the

bias “acts to oppose” the change in trajectory; this “force” is “stronger” when σε is assumed to be

smaller.
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Figure 5.20: Logarithmic plot of ‖ b?T (X1:T ) ‖ for trajectories generated with σε = 10−4. This value

is again varied within the assumed model dynamics.
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Figure 5.21: Sample trajectories with σε fixed at 10−4 and varied only within model dynamics, plotted

alongside location components of the bias vector (arrows).

5.5 Concluding Remarks

In this chapter a clear connection has been demonstrated relating optimal Bayesian estimation of

a random parameter, to biased estimation of the same parameter when viewed as deterministic,

for efficient estimation problems. The specific form of the bias function and resulting MSE for

a given realization of the parameter was derived for scalar and vector parameters/observations.

A recursive formula was then developed to allow for its application in the case of discrete-time

filtering (i.e. target-tracking). Utilization of this method permitted a “deterministic” analysis to
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5.5 Concluding Remarks

be conducted within a Bayesian target tracking problem, offering insight into the performance of the

Kalman filter conditioned on particular target trajectories. Such insight enabled easy evaluation of

performance with trajectories falling outside the assumed model dynamics (maneuvering targets)

and determination of the impact on performance exerted by changes to these model assumptions.

An obvious avenue for further research on this topic involves the generalized extension to problems

that do not satisfy the efficiency conditions (i.e. non-linear filter). While it is believed that progress

in this area can be made by recasting the problem in the framework of Reproducing-Kernel-Hilbert-

Space theory, this is left as an area open to future research.
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6

Investigation of RSS-Type

Multi-Target Fusion Likelihood

Function

This chapter details the investigation that has been conducted in pursuit of a tractable form for

(2.37) using the specific measurement model outlined in (2.44); see the discussion surrounding these

equations for the underlying motivation. To avoid obfuscation of the mathematical derivations

presented in this section with the extended notation necessary for the methods presented earlier

in the report, a relatively isolated notation is adopted here. Firstly, the dependence on t in the

subsequent chapter is dropped; all quantities are assumed to be for a given time. Recall that Yi,t

represents the set of measurements for all sensors assigned to agent i at time t; here it is assumed

that K sensors produce measurements stacked into the vector y (the i-th element of this vector is

yi here). Additionally, the location of the k-th sensor is denoted as qk. The vector XSi,t represents

all targets of interest (TOIs) estimated by agent i; here without loss of generality it is assumed that

there is a single TOI moving in the 2D plane, whose location coordinates are noted as x. Finally,

the vector XFi,t represents the targets not estimated by agent i, but instead treated as interference;

it is assumed there are a total of L interferers with the location of the i-th interferer noted as li,t.

It is desired to develop an expression for the joint conditional probability density of the vector

random variable y, given the location x, whose individual components are generated as:

yl = h (x) +
L∑
i=1

Φ

‖qk − li‖α + ε
+ vk (6.1)

where ε, and Φ are known constants, vk is independent Gaussian noise for the k-th sensor, and

li is assumed to be distributed as a bivariate random variable, i.e., li ∼ N
(̂
li ∼ Ci

)
, where

Ci =

[
σ2

1,i ρtσ1,iσ2,i

ρtσ1,iσ2,i σ2
2,i

]
. Namely, the conditional distribution we wish to develop an expression
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for is written as f
(
y | x, l̂1:L,C1:L

)
.

Finding this density in the most general scenario, i.e., for multiple sensors and interferers, repre-

sents a formidable task and likely does not yield to a closed form. However, specific configurations

have been investigated here successfully which will be incrementally presented.

6.0.1 Single Sensor Theoretical Results

Let us assume there exists a single sensor measurement, y located at q, along with a single interfering

source, l. Also, we let us remove the contribution of sensor noise from (6.1) (set vk = 0 here and

focus on the contribution due to the interfering target, denoted as yl and given by,

yk =
Φ

‖q− l‖α + ε
(6.2)

By introducing the auxiliary variable, θ, the coordinates of l = [l1 l2]> can be written as

l = g(yl, θ)

=

(
Φ

yl
− ε
) 1
α
[
cos θ
sin θ

]
+

[
q1

q2

]
. (6.3)

Since there is a clearly invertible mapping between the pair (yl, θ) and l, the method of transfor-

mation of random variables can be applied to yield the expression

f
(
yl, θ | l̂,C

)
= |det (J(l))|l=g(yl,θ)

× f
(
g(yl, θ) | l̂, Ĉ

)
, (6.4)

where |J(l)| is the Jacobian of the transformation from (yl, θ) to l. For convenience, let us make

the following definition:

ηyl =
Φ

yl
− ε. (6.5)

Allowing us to write,

det (J(l)) =

∣∣∣∣∣ ∂l1∂yl
∂l1
∂θ

∂l2
∂yl

∂l2
∂θ

∣∣∣∣∣
=

∣∣∣∣∣∣∣
η
( 1
α
−1)

yl

(
−Φ
αy2

l

)
cos(θ) −η

1
α
yl sin(θ)

η
( 1
α
−1)

yl

(
−Φ
αy2

l

)
sin(θ) η

1
α
yl cos(θ)

∣∣∣∣∣∣∣
=

Φ

αy2
l

η
( 2
α
−1)

yl . (6.6)

After further introducing the auxiliary random vector dt =

[
l1 − q1

l2 − q2

]
, the measurement component

ylt can be rewritten as

yl =
Φ

(d>d)
α
2 + ε

, (6.7)
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where d ∼ N
(
d̂, Ĉ

)
with d̂ =

[̂
l1 − q1

l̂2 − q2

]
. By making use of equations (6.3)-(6.7), we obtain the

joint density of the pair (yl, θ) in the form

f
(
yl, θ | l̂,C

)
=

[
Φ

αy2
l

η
( 2
α
−1)

yl

]
N

(
η

1
α
yl

[
cos θ
sin θ

] ∣∣∣∣ d̂, Ĉ

)
, (6.8)

where N
(
? | d̂,C

)
denotes that the 2 × 1 vector argument symbolized with a ? has a bivariate

normal probability density with mean d̂ and covariance matrix C.

6.0.2 Solution Method 1

The desired expression is obtained by marginalizing θ, i.e., the bivariate normal density needs to be

integrated along the circle centered at the origin with radius η
1
α
yl . This integral has been well-studied

under various contexts, with related literature found in [84], [85], and [86]. The most relevant study

appears in [87], where a closed form solution involving an infinite series of Bessel function products

is presented for the case where the individual components of the random vector have different

variances, but are uncorrelated. A more general solution, allowing for nonzero correlation between

components, can be obtained by noting that,

N

(
η

1
α
yl

[
cos θ
sin θ

] ∣∣∣∣ d,C

)
=

1

2πσ1σ2

√
1− ρ2

exp
[
T1

(
ηyl , θ, d̂,C

)]
, (6.9)

with,

T1

(
ηyl , θ, d̂,C

)
= − 1

2 (1− ρ2)

 k1 +

(
k2 −

√
k2

5 + k2
6

)
η

2
α
yl +

(√
k2

3 + k2
4

)
η

1
α
yl cos (θ − φ1)

+ 2

(√
k2

5 + k2
6

)
η

2
α
yl cos2 (θ − φ2)

 , (6.10)

where the constants and phases are defined as

k1 =
d̂2

1

σ2
1

+
d̂2

2

σ2
2

− 2ρtd̂1d̂2

σ1σ2
, k2 =

1

2

(
1

σ2
1

+
1

σ2
2

)
,

k3 = 2

(
ρtd̂2

σ1σ2
− d̂1

σ2
1

)
, k4 = 2

(
ρd̂1

σ1σ2
− d̂2

σ2
2

)
,

k5 =
1

2

(
1

σ2
1

− 1

σ2
2

)
, k6 = − ρ

σ1σ2
,

φ1 = atan2

(
k4

k3

)
, φ2 =

1

2
atan2

(
k6

k5

)
. (6.11)

With the argument in this form, the result derived in [88] can be leveraged,∫ 2π

0

einθ exp
[
a cos (θ − α) + 2b cos2 (θ − β)

]
dθ = 2πebeinα

∞∑
j=−∞

e2ij(α−β)I2j+n (a) Ij (b) , (6.12)
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where i =
√
−1 and Ij(·) is the jth order Modified Bessel function of the first kind. By matching

the corresponding terms in (6.12) with those in the integral, and noting that for j an integer,

I−j (x) = Ij (x), and I2j (−x) = I2j (x), the final form is obtained,

fyl

(
yl | l̂,C

)
=

Φη
( 2
α
−1)

yl

ασ1σ2

(√
1− ρ2

)
y2
l

e
−
k1+k2η

2
α
yl

2(1−ρ2)

×

 I0

(
−
√
k2

5 + k2
6

2
(
1− ρ2

t

) η 2
α
yl

)
I0

(√
k2

3 + k2
4

2 (1− ρ2)
η

1
α
yl

)
+ 2

∞∑
j=1

 Ij

(
−
√
k2

5 + k2
6

2
(
1− ρ2

t

) η 2
α
yl

)

× I2j

(√
k2

3 + k2
4

2 (1− ρ2)
η

1
α
yl

)
cos
(

2j ( φ1 − φ2)
) 

 , (6.13)

with ηyl as defined in (6.5) and the parameters k1-k6 and phases φ1, φ2, defined in (6.11).

6.0.3 Solution Method 2

An alternative expression for (6.13) in the case where ρ = 0 1 can be found by rewriting equation

(6.8) as,

f(yl, θ) =
Φη

2
α
−1

yk

2πασ1σ2y2
k

exp

[
− 1

2σ2
1

(
η

1
α
yk cos θ − d̂1

)2

− 1

2σ2
2

(
η

1
α
yk sin θ − d̂2

)2
]

=
Φη

2
α
−1

yk

2πασ1σ2y2
k

e

[
− 1

2

(
d̂21
σ2

1
+
d̂22
σ2

2

)]
e

[
− 1

2σ2
1

(
η

2
α
yk

cos2 θ−2η
1
α
yk
d̂1 cos θ

)
− 1

2σ2
2

(
η

2
α
yk

sin2 θ−2η
1
α
yk
d̂2 sin θ

)]
(6.14)

Simplifying the argument of the second exponential term produces:

− 1

2σ2
1

(
η

2
α
yk cos2 θ − 2η

1
α
yk d̂1 cos θ

)
− 1

2σ2
2

(
η

2
α
yk sin2 θ − 2η

1
α
yk d̂2 sin θ

)

= −σ
2
2 − σ2

1

2σ2
1σ

2
2

η
2
α
yk cos2 θ + η

1
α
yk

(
d̂1

σ2
1

cos θ +
d̂2

σ2
2

sin θ

)
− η

2
α
yk

2σ2
2

(6.15)

This can be expressed in the form,

f(yl, θ) =
Φη

2
α
−1

yk

2πασ1σ2y2
k

e

[
− 1

2

(
d̂21
σ2

1
+
d̂22+k2

σ2
2

)]
e[%1 cos2 θ+%2 cos θ+%3 sin θ] (6.16)

with,

%1 = −σ2
2−σ2

1

2σ2
1σ

2
2
η

2
α
yk , %2 = η

1
α
yk
d̂1

σ2
1

, %3 = η
1
α
yk
d̂2

σ2
2

(6.17)

1This can likely be extended to arbitrary ρ but was not attempted here
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To marginalize out θ, one can proceed with computation of the integral
∫ 2π

0 e%1 cos2 θ+%2 cos θ+%3 sin θdθ

by first expanding the exponential into an infinite series, using the identity ex =

∞∑
0

xn

n!
. This pro-

duces:

e%1 cos2 θ+%2 cos θ+%3 sin θ =
∞∑
n=0

(
%1 cos2 θ + %2 cos θ + %3 sin θ

)n
n!

(6.18)

which can be reduced further by iteratively applying the binomial theorem. Letting a = %3 sin θ,

b = %1 cos2 θ, c = %2 cos θ, and d = b+ c:

∞∑
n=0

(a+ d)n

n!
=
∞∑
n=0

1

n!

[
n∑
k=0

(
n

k

)
an−kdk

]
=

=
∞∑
n=0

1

n!

[
n∑
k=0

(
n

k

)
an−k(b+ c)k

]

=
∞∑
n=0

1

n!

[
n∑
k=0

(
n

k

)
an−k

[
k∑
l=0

(
k

l

)
bk−lcl

]]

=
∞∑
n=0

n∑
k=0

k∑
l=0

an−kbk−lcl

l!(n− k)!(k − l)!

=
∞∑
n=0

n∑
k=0

k∑
l=0

%n−k3 %l2%
k−l
1

l!(n− k)!(k − l)!
sinn−k θ cos2k−l θ (6.19)

It is then necessary to integrate this expression over θ for each term in the summation. Isolating

the terms that depend on θ gives way to the integral,
∫ 2π

0 sinn−k θ cos2k−l θdθ. Setting j = n − k
and h = 2k − l, this has the form, ∫ 2π

0
sinj θ cosh θdθ (6.20)

With odd j and even h, sinj θ is anti-symmetric about θ = π while cosh θ is symmetric about

θ = π, thus the integrand is anti-symmetric about θ = π for odd j and the integral over any

interval centered at θ = π vanishes . If h is odd, the integrand is anti-symmetric about θ = π
2

over the interval [0, π] and anti-symmetric about θ = 3π
2 over the interval [π, 2π]; by splitting the

original integration over these two intervals it is obvious the result again vanishes. We are thus left

with the only non-zero case; when both j and h are even. Making repeated use of the following

two power-reduction formulae,∫ b

a
sinj θ cosh θdθ = − sinj−1 θ cosh+1 θ

(j + h)

∣∣∣∣b
a

+
j − 1

j + h

∫ b

a
sinj−2 θ cosh θdθ (6.21)

∫ b

a
cosh θdθ =

sin θ cosh−1 θ

h

∣∣∣∣b
a

+
h− 1

h

∫ b

a
cosh−2θdθ (6.22)
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It can be seen that (6.20) can be reduced as follows:∫ 2π

0
sinj θ cosh θdθ =

(
j − 1

j + h

)(
j − 3

j + h− 2

)(
j − 5

j + h− 4

)
. . .

(
1

h+ 2

)∫ 2π

0
cosh θdθ

=
[(j − 1) (j − 3) . . . 1] [(h− 1) (h− 3) . . . 1]

(j + h) (j + h− 2) (j + h− 4) . . . (h) (h− 2) . . . (2)
(2π) (6.23)

Noting that for even j and h one has,

Γ(
j + 1

2
) =

(
j − 1

2

)(
j − 3

2

)
. . .

(
1

2

)
Γ(

1

2
)

=
√
π

(
1

2

) j
2

(j − 1) (j − 3) . . . (1) (6.24)

and, (
j + h

2

)
! =

(
j + h

2

)(
j + h

2
− 1

)(
j + h

2
− 2

)
. . .

(
h

2

)(
h− 2

2
− 1

)
. . . (1)

=

(
1

2

) j+h
2

(j + h) (j + h− 2) . . . (h) (h− 2) . . . (2) (6.25)

Using (6.24) for each term in the numerator and (6.25) for the term in the denominator of (6.23),

one arrives at: ∫ 2π

0
sinj θ cosh θdθ = 2

Γ
(
j+1

2

)
Γ
(
h+1

2

)
Γ
(
h+j

2 + 1
) = 2B

(
j + 1

2
,
h+ 1

2

)
(6.26)

where B (x, y) denotes the complete Beta function. To use (6.26) in (6.19) it is first recognized

that for a given term in the summation to be non-zero, l must be even and n and k must both be

either even or odd. This constraint can be achieved with the qualifying expression,

δ(n,k,l) ,
1

4

[
1 + (−1)l

] [
(−1)n+k + (−1)2k

]
=

{
1 if l even and n, k both even or odd

0 else
(6.27)

As a result, it can now be written:

L[%1, %2, %3] ,
∫ 2π

0
e%1 cos2 θ+%2 cos θ+%3 sin θdθ =

∞∑
n=0

n∑
k=0

k∑
l=0

2δ(n,k,l)%
n−k
3 %l2%

k−l
1

l!(n− k)!(k − l)!
B

(
n− k + 1

2
,
2k − l + 1

2

)
(6.28)

Substituting the arguments for L [%1, %2, %3] as defined in (6.17) allows the sum to be expressed as:

L

[
−σ

2
2 − σ2

1

2σ2
1σ

2
2

η
2
α
yk ,

d̂1

σ2
1

η
1
α
yk ,

d̂2

σ2
2

η
1
α
yk

]
=

∞∑
n=0

n∑
k=0

k∑
l=0

 2η
n+k−l
α

yl δ(n,k,l)

l!(n− k)!(k − l)!

(
−σ

2
2 − σ2

1

2σ2
1σ

2
2

)k−l(
d̂1

σ2
1

)l(
d̂2

σ2
2

)n−k
B

(
n− k + 1

2
,
2k − l + 1

2

) 
(6.29)
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6.1 Single Sensor Numerical Results

Recognizing that n+k−l
2 is always an integer, it is noted that truncating the outer summation

over n to N terms results in a polynomial of order N with respect to η
2
α
yk . This observation was

used to develop a feasible algorithm for approximating the series to high numerical precision and

is discussed further in section 6.1.

Using equations (6.16),(6.17), and (6.28) produces for f
(
yl | l̂,C

)
:

f(yl | l̂,C) =

 Φη
2
α
−1

yk

2πασ1σ2y2
k

exp

−1

2

 d̂2
1

σ2
1

+
d̂2

2 + η
2
α
yk

σ2
2

L

[
−σ

2
2 − σ2

1

2σ2
1σ

2
2

η
2
α
yk ,

d̂1

σ2
1

η
1
α
yk ,

d̂2

σ2
2

η
1
α
yk

] 
(6.30)

For the most part, this form has been found to yield inferior numerical convergence results to

that of the first solution due to the doubly-nested summation, which can require an excessively

large number of terms to achieve a given precision. However, as will be shown, there are specific

parameter values that do not allow the first solution to be accurately computed easily due to the

numerical precision required. In that case, this form does provide a viable alternative.

6.1 Single Sensor Numerical Results

Due to the presence of Bessel functions in the expression, the ability to evaluate (6.13) accurately

is heavily dependent on the specific values of parameters in the model, namely the values for k1 - k6

defined in (6.11). While fast convergence with excellent accuracy is achieved for smaller parameter

values, larger values for these parameters generate more numerical difficulty owing to the resulting

large-argument Bessel function computation that is necessary. In certain cases, equation(6.13)

becomes nearly impossible to compute to reasonable precision and one must resort to the alternative

form given if this accuracy is required.

What follows is a comparison between (6.13) when ρ = 0 and the empirical density f̂
(
yl | l̂,C

)
which is generated by first drawing samples of l̂, then computing the corresponding sample of yl

using (6.2), and generating a histogram plot of the resulting sample set. Specific parameter values

have been selected to demonstrate the numerical accuracy that can be achieved, along with the

varying shape that this expression takes on depending on the parameters. In all cases, the number

of samples drawn is set to N = 5 × 105, the number of bins for the empirical histogram is set to

200, the sensor is located at the origin, Φ = 10, and α = 2,

6.1.1 Large Estimate Variances

The situation with l̂ close to the sensor is first examined; in this case there is a high likelihood that

many of the target samples drawn will yield very high values for the sensor measurement, limited
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6.1 Single Sensor Numerical Results

only by ε. As such, one can expect the shape of the density to be highly sensitive to this parameter.

Figure 6.1 shows one example scenario with l̄ =
[
−0.2 0.1

]>
and C =

[
1 0
0 0.1

]
, where the sensor

location and drawn target (interferer) estimate samples are plotted.
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Figure 6.1: Sensor and Target-Estimate Scatter Plot for [σ1, σ2] = [1, 0.1] and l̂ = [−0.2, 0.1]>
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Figure 6.2: Measurement Distribution Plot with [σ1, σ2] = [1, 0.1] and l̂ = [−0.2, 0.1]>

Figure 6.2 shows the empirical and theoretical distributions for varying values of ε and with 200

Bessel function product terms computed in the summation of (6.13). Note how the support of each

distribution is different; indeed this function is supported only on the interval [0, Φ
ε ]. It is also evi-

dent that there is no discernible difference between the empirical and theoretical distributions; the

approximation accuracy is high for these parameter values. A somewhat different situation is en-
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6.1 Single Sensor Numerical Results

countered when increasing the sensor-to-target-estimate distance (but leaving all other parameters

the same as in the previous figures), as shown in Fig. 6.3.
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Figure 6.3: Sensor and Target-Estimate Scatter Plot for [σ1, σ2] = [1, 0.1] and l̂ = [1, 2]>

While (6.13) is well-approximated for larger values of yl, smaller values result in larger arguments

for the Bessel series product terms causing a rapid deterioration in numerical accuracy. Taking more

terms in the series does not alleviate this situation, as an unacceptable loss of numerical precision

has already occurred. This problem is illustrated in Fig. 6.4.
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Figure 6.4: Measurement Distribution Plot using Solution 1 with ε = 0.1,[σ1, σ2] = [1, 0.1] and

l̂ = [1, 2]>

Attention is turned to the second method in order to combat these numerical issues. The sum

is not computed directly (accumulating term by term) since this will again introduce difficulties
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6.1 Single Sensor Numerical Results

with numerical precision. Instead, for a chosen N one can approximate (6.29) by evaluating the

polynomial:

L

[
−σ

2
2 − σ2

1

2σ2
1σ

2
2

η
2
α
yk ,

d̂1

σ2
1

η
1
α
yk ,

d̂2

σ2
2

η
1
α
yk

]
≈

N∑
u=0

au

(
η

2
α
yk

)u
(6.31)

where au is calculated as:

au =
N∑
n=0

n∑
k=0

k∑
l=0

 1

[
u =

n+ k − l
2

]
2δ(n,k,l)

l!(n− k)!(k − l)!

(
−σ

2
2 − σ2

1

2σ2
1σ

2
2

)k−l

(
d̂1

σ2
1

)l(
d̂2

σ2
2

)n−k
β

(
n− k + 1

2
,
2k − l + 1

2

)  (6.32)

In words, au is the accumulation of all terms in the finite-sum approximation of (6.29) which have

a common exponent for

(
η

2
α
yk

)u
. Each of these coefficients can be computed in one pass, by accu-

mulating individual coefficients separately within an array. Essentially, this method delays explicit

computation of the polynomial until all coefficients have been fully aggregated, and dramatically

helps to mitigate numerical errors that result from the loss of precision in adding numbers to-

gether with greatly varying orders of magnitude. Figure 6.5 shows equation (6.30) computed using

N = 130 plotted alongside the empirical distribution, where it can be seen that the numerical issues

have been adequately resolved.
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Figure 6.5: Measurement Distribution Plot using Method 1 with ε = 0.1,[σ1, σ2] = [1, 0.1] and l̂ =

[1, 2]>
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6.1.2 Small Estimate Variances

As the target estimate variances are decreased, the situation becomes increasingly challenging;

large values of k1-k6 push the values of the Bessel functions in the first method well into the large-

argument region and make computation with sufficient accuracy intractable. The second method

provides little immediate relief; the numerical range of the coefficients au in (6.32) and the polyno-

mial terms in (6.31) can be extremely large and quickly surpasses the typical 64-bit precision range

of ±10308. To be more precise, the large majority of the coefficients will have an order of magnitude

less than this range while the polynomial terms may be larger than the maximum representable

number; this poses the greatest numerical difficulty since each polynomial term/coefficient product

may indeed be of sufficient order to affect the net sum in (6.31).

Nonetheless, with careful scaling (a “sliding” intermediate logarithmic weighting is used to en-

sure each product term remains within floating-point numerical range until the final sum/exponential

multiplication in (6.30) is performed) it has been found that method 1 does indeed converge

to sufficient accuracy for large enough N . An example of this case is shown in Fig. 6.6 with

l̂ =
[
−1.0 −2.0

]>
and C =

[
1 0
0 0.01

]
. Notice the large inaccuracies present in moderate values

for N in Fig. 6.7. Nonetheless, convergence is indeed achieved for N = 1400 and accuracy is high,

however this has come at a significant computational expense.
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Figure 6.6: Sensor and Target-Estimate Scatter Plot for ε = 0.1,[σ1, σ2] = [1, 0.01] and l̂ = [−1,−2]>
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Figure 6.7: Measurement Distribution Plot using solution 2 with ε = 0.1,[σ1, σ2] = [1, 0.01] and

l̂ = [−1,−2]> for various values of N

6.1.3 Analytical Approximations For A Single Sensor

6.1.3.1 Diagonal Covariance

It is highly desirable to find reasonable approximations for (6.13) that will allow for practical

computations. One possible approach involves restricting the component variances of l to be equal,

i.e, σ1 = σ2 = σ. This results in a dramatic simplification of (6.13) by noting that then k5 = k6 = 0,

and for j ≥ 0, Ij(0) = 0, and I0(0) = 1, yielding,

f
(
yl | l̂, Ĉt

)
=

Φη
( 2
α
−1)

yl

ασ2y2
l

e
− 1

2σ2

(
d̂2

1+d̂2
2+η

2
α
yl

)

×I0

(
‖d̂‖
σ2

η
1
α
yl

)
. (6.33)

When the constant factor ‖d̂‖
σ2
t

within the Bessel function argument in (6.33) is large, one can use

the large argument approximation for Modified Bessel functions, I0(x) ≈ ex√
2πx

. As a result, (6.33)

can be approximated as

f
(
yl | l̂t,Ct

)
≈ Φη

3−2α
2α

yl

ασ
√

2π

e
− 1
σ2

(
‖d̂‖−η

1
α
yl

)2

y2
l

√
‖d̂‖

, (6.34)

which is valid on the domain of f
(
yl | l̂, Ĉ

)
,
[
0 ≤ yl ≤ Φ

ε

]
. With the given assumptions for the

parameter values (particularly with small σ), the exponential in the numerator in (6.34) decays on

both sides of y∗l = Φ
‖d̂‖α+ε

much faster than the remaining factors can change appreciably. We can
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thus make the approximation that the remaining factors are constant with values obtained at y∗l .

We now approximate the argument of the numerator exponential with the first two terms of its

Taylor series expansion about y∗l . It can then be shown that fyl

(
yl | l̂, Ĉ

)
≈ N

(
y∗l , σ

∗2
)

with,

σ∗ =
Φασ‖d‖α−1(
‖d̂‖α + ε

)2 . (6.35)

In Fig. 6.8, a comparison of the empirical histogram with the Gaussian approximation is

presented for several values of σ, with the remaining parameters fixed at Φ = 10, α = 1.6, and

d̂ = [3, 4]>.
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Figure 6.8: Gaussian approximation of f
(
yl | l̂, Ĉ

)
, where the solid line is the true density and the

dashed line is the approximation of the density.

With this approximation in hand, we can return to the general multi-target scenario as expressed

in (6.1) but still for only a single sensor. This expression can be further decomposed into the

individual components contributing to the net measurement yl as:

yl = h (x) +

L∑
i=1

ςi + vk (6.36)

where again h (x) represents the target contribution that we aim to condition on, vk is the sensor

noise, and ςi represents the contribution to the measurement yl from the i-th target. It must be
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recognized that severe complications will arise in formulation of the actual likelihood function for

this model. Each ςi is alone distributed with form as in (6.13), but there is now an additional

inter-dependency between each individual contribution since all measurement components are with

respect to the common sensor location. However, as a first-order approximation, one can neglect

this complication and assume each ςi is independently distributed under the premise that each

component is well approximated by a Gaussian with parameters defined around equation (6.35).

With the sensor noise distributed as N
(
0, σ2

v

)
, one has that yl is approximately distributed as

N
(
ȳl, σ̄

2
)

with:

ȳk = h (x) +
L∑
i=1

Φ

‖d̂i‖α + ε

σ̄ =

√√√√α2Φ2

L∑
i=1

max (σl,1, σl,2)2 ‖d‖2(α−1)

(‖d‖α + ε)4 + σ2
v (6.37)

To investigate the performance of this approximation, let us take a scenario with Φ = 10,

ε = 0.1, h (x) = 1, σv = 0.01 and with 6 foreign target estimate means uniformly distributed (with

a small random jitter applied) about a circle of radius r centered at the sensor location. Figure 6.9

shows a scatter plot of the case where r = 3 and the target estimate variances are ideally small. A

comparison of the empirical distribution and Gaussian approximation for this case is shown in Fig.

6.10 where it can be seen that the approximation is reasonably accurate.

To illustrate the limitations of using this approximation, let us examine two cases where the

parameters begin to deviate from the original assumptions. Figures 6.11 and 6.12 show the same

case except where σl for all targets is increased by a factor of 5. Here it can be seen that the

empirical distribution has departed from the approximation in the form of a skew to the right; the

distribution decays more rapidly than a Gaussian to the left and is heavier-tailed on the right side.

The third case shows a more severe departure from this approximation. In this case the variances

are returned to that of the first example, but the radius about the sensor location is decreased to

r = 1.0. Figure 6.13 shows the scatter plot for this case and Fig. 6.14 shows the corresponding

distribution. Notice in this specific realization there is one target estimate mean that is located very

close to the sensor (specifically at a distance of 0.2 units); this represents a large deviation from

the assumption of moderate sensor-target distance and has a significant impact on the likelihood

function.

It has been shown that potentially severe deterioration of the Gaussian approximation in (6.37)

will occur with either large target-estimate variances, or nearly co-located sensor/target configura-

tions. While these situations represent abnormal conditions and must be handled differently, they

are not typical of the tracking environment that is considered within MASCOT. Prior to coop-

erative tracking, each filter is assumed to have well established tracking for its own target (small
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Figure 6.9: Sensor and 6 Target-Estimate Scatter Plot for ε = 0.1, σ = [0.2, 0.1, 0.3, 0.2, 0.1, 0.3] and

r = 3
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Figure 6.10: Sensor and 6 Target-Estimate Distribution Plot for ε = 0.1, σ = [0.2, 0.1, 0.3, 0.2, 0.1, 0.3]

and r = 3

estimate covariance matrix). As the sensors are mobile, they are designed to maintain a fixed

distance from their own target while maintaining as large a distance as possible from others so

as to avoid excessive interference in the measurements. In this case, the measurement component

distributions are reasonably approximated by (6.35) and allow (6.37) to provide a fairly accurate

and practical approximation of the multi-target likelihood function for a single sensor.

6.1.3.2 General Covariance Matrix

The situation is significantly more complicated if the full generality of Ĉ is maintained. Rather

than attempting to develop an approximation directly from (6.13), let us return to the expression
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Figure 6.11: Sensor and 6 Target-Estimate Scatter Plot for ε = 0.1, σ = [1.0, 0.5, 1.5, 1.0, 0.5, 1.5] and

r = 3
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Figure 6.12: Sensor and 6 Target-Estimate Distribution Plot for ε = 0.1, σ = [1.0, 0.5, 1.5, 1.0, 0.5, 1.5]

and r = 3

for the joint density in (6.8). Recall that we must compute the integral,

∫ 2π

0

fyl,θ

(
yl, θ | l̂,C

)
dθ =

 Φη
( 2
α−1)

yl

2πασ1σ2y2
l

√
1− ρ2

∫ 2π

0

exp
[
T1

(
ηyl , θ, d̂, Ĉ

)]
dθ,

to obtain f
(
yl | l̂,C

)
. Integrals of this form can be approximated analytically through application

of the method of Laplace, i.e.,∫ 2π

0
eλg(θ)dθ ≈

(√
2π

λ|∂
2g(θ)
∂θ2 |θ=θ∗

)
eλg(θ

∗) as λ→∞, (6.38)
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Figure 6.13: Sensor and 6 Target-Estimate Scatter Plot for ε = 0.1, σ = [0.2, 0.1, 0.3, 0.2, 0.1, 0.3] and

r = 1
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Figure 6.14: Sensor and 6 Target-Estimate Distribution Plot for ε = 0.1, σ = [0.2, 0.1, 0.3, 0.2, 0.1, 0.3]

and r = 1

where

θ∗ = arg max
θ
g(θ).

To clarify how this can be applied to (6.38), using again the parameters in (6.11), we can write,

T1

(
ηyl , θ, d̂,C

)
= T2

(
ηyl , d̂,C

)
+ T3

(
ηyl , θ, d̂,C

)
, (6.39)

where

T2

(
ηyl , d̂,C

)
= − 1

2(1− ρ2)

(
k1 +

(
k2 −

√
k2

5 + k2
6

)
η

2
α
yl

)
, (6.40)
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T3

(
ηyl , θ, d̂,C

)
= − 1

2(1− ρ2)

( (√
k2

3 + k2
4

)
η

1
α
yl cos (θ − φ1) + 2

(√
k2

5 + k2
6

)
η

2
α
yl cos2 (θ − φ2)

)
.

(6.41)

We can then form the approximation,

f
(
yl | l̂,C

)
≈

 Φη
( 2
α
−1)

yl

2πασ1σ2y2
l

√
1− ρ2



√√√√√ 2π∣∣∣∣∂2T3(ηyl ,θ,d̂,Ĉ)

∂θ2

∣∣∣∣
θ=θ∗


× exp

[
T2

(
ηyl , d̂,C

)
+ T3

(
ηyl , θ

∗, d̂,C
)]

(6.42)

Note that it is somewhat more appropriate to express (6.41) as

T3

(
ηyl , θ, d̂,C

)
= λ1G1

(
ηyl , θ, d̂,C

)
+ λ2G2

(
ηyl , θ, d̂t,C

)
, (6.43)

where

G1

(
ηyl , θ, d̂,C

)
= cos(θ − φ1), (6.44)

G2

(
ηyl , θ, d̂,C

)
= cos2(θ − φ2), (6.45)

and

λ1 =
−
√
k2

3 + k2
4

2(1− ρ2)
η

1
α
yl , λ2 =

−
√
k2

5 + k2
6

(1− ρ2)
η

2
α
yl . (6.46)

We observe that we must have both λ1 and λ2 large for reasonable approximation accuracy. A

complication can occur when the two constants have the same order of magnitude that can signif-

icantly degrade the accuracy of (6.42), in which case, an extended version of the Laplace Method,

as in [89], is needed. Nonetheless, it has been found empirically that for most parameter values of

interest (with sufficiently small σ1 and σ2), (6.42) does provide excellent accuracy.

Note that an explicit expression for θ∗ has not been given here. While an exact analytical

form does exist, it is considerably complicated and prone to numerical instability. We can instead

choose to apply a basic numerical approach (which has been found to work well in this setting), or

seek an approximation to θ∗ that will not compromise the accuracy of (6.42). In fact, by pursuing

the latter method, we can develop a significantly simpler form for approximation of fyl

(
yl | l̂,C

)
,

which is now described in detail.

We can begin by noting that θ∗ must satisfy the condition,[
∂

∂θ
T1

(
ηyl , θ, d̂,C

)]
θ=θ∗

= 0. (6.47)
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Recall that T1

(
ηyl , θ, d̂,C

)
represents the argument of the exponential in N

(
η

1
α
yl

[
cos θ
sin θ

] ∣∣∣∣ d̂,C

)
and can be expressed as,

T1

(
ηyl , θ, d̂,C

)
= − 1

2(1− ρ2)

 1

σ2
1

(
η

1
α
yl cos θ − d̂1

)2

+
1

σ2
2

(
η

1
α
yl sin θ − d̂2

)2

− 2ρ

σ1σ2

(
η

1
α
yl cos θ − d̂1

)(
η

1
α
yl sin θ − d̂2

)  , (6.48)

from which we obtain by the condition in (6.47),(
ρ

σ1σ2
cos θ∗ +

1

σ2
1

sin θ∗
)(

η
1
α
yl cos θ∗ − d̂1

)
=

(
ρ

σ1σ2
sin θ∗ +

1

σ2
2

cos θ∗
)(

η
1
α
yl sin θ∗ − d̂2

)
.

(6.49)

This can be rewritten as a condition on ηyl that is satisfied when θ∗ is indeed a critical point,

η
1
α
yl = h(θ∗) =

[(
ρd̂1

σ1σ2
− d̂2

σ2
2

)
cos θ∗ +

(
d̂1

σ2
1
− ρtd̂2

σ1σ2

)
sin θ∗

]
[(

1
σ2

1
− 1

σ2
2

)
sin θ∗ cos θ∗ +

(
ρ

σ1σ2

)
cos 2θ∗

] . (6.50)

Equipped with (6.50), we can implicitly construct a first-order Taylor series approximation to θ∗,

θ∗ ≈ θ∗0 +

[
∂h(θ∗)

∂θ

]−1

θ∗=θ∗0

(
η

1
α
yl − h(θ∗0)

)
, (6.51)

where θ∗0 represents the point about which this expansion is taken. This point is here chosen to

coincide with the value of h(θ∗0) that will minimize T1

(
h(θ∗0), θ∗0, d̂,C

)
. It can be shown that this

yields the maximum of f
(
yl | l̂,C

)
and its value is,

θ∗0 = arccos

(
d̂1

‖d̂‖

)
at h(θ∗0) =

√
d̂2

1 + d̂2
2, (6.52)

Towards finding a compact analytical approximation to fyl

(
yl | l̂,C

)
, let us also make use of

the first-order Taylor series expansions about θ∗0 for all the trigonometric terms in (6.48), i.e.,

cos θ ≈ cos θ∗0 − sin θ∗0 (θ − θ∗0) ,

sin θ ≈ sin θ∗0 + cos θ∗0 (θ − θ∗0) . (6.53)

By following similar steps as in the preceding development of the approximation given in (6.42),

except in this case retaining the original form of T1

(
ηyl , θ, d̂,C

)
, we arrive at,

fyl

(
yl | l̂,C

)
≈

 Φη
( 2
α
−1)

yl

2πασ1σ2y2
l

√
1− ρ2



√√√√√ 2π∣∣∣∣∂2T1(ηyl ,θ,d̂,C)

∂θ2

∣∣∣∣
θ=θ∗

 exp
[
T1

(
ηyl , θ

∗, d̂,C
)]
. (6.54)
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The exponential term in (6.54) can be greatly simplified by substituting (6.52) and (6.53) into

(6.48) yielding

exp
[
T1

(
ηyl , θ

∗, d̂,C
)]
≈ exp

[
−K

(
‖d̂‖ − η

1
α
yl

)2
]

(6.55)

K =

(
d̂2

1 + d̂2
2

)
2
(
d̂2

1σ
2
1 + 2d̂1d̂2ρtσ1σ2 + d̂2

2σ
2
2

) =
‖d̂‖2

2d̂>Cd̂
(6.56)

As long as K is relatively large, this term will rapidly decay to zero for values of η
1
α
yl away from

‖d̂‖ allowing us to approximate the remaining terms in (6.54) that multiply the exponential, as a

constant evaluated at η
1
α
yl = h (θ∗0) and θ∗ = θ∗0. Proceeding in this fashion, we can show that the

expression in (6.54) can be reduced by applying two more approximations,

∣∣∣∣∂2T1

(
ηyl , θ, d̂,C

)
∂θ2

∣∣∣∣
θ=θ∗

≈ d̂2
1σ

2
1 + 2d̂1d̂2ρσ1σ2 + d̂2

2σ
2
2

(1− ρ2)σ2
1σ

2
2

Φη
( 2
α
−1)

yl

2πασ1σ2y2
l

√
1− ρ2

≈

(
‖d̂‖α + ε

)2

√
2παΦ‖d̂‖(α−1)

. (6.57)

Allowing the following approximation,

f
(
yl | l̂,C

)
≈

(
‖d̂α‖+ ε

)2√
K

√
παΦ‖d̂‖(α−1)

× exp

[
−K

(
‖d̂‖ − η

1
α
yl

)2
]

. (6.58)

This result is similar to the one in (6.34) developed for the case where σ1 = σ2. By following the

same argument as in that situation, we have the generalized Gaussian approximation given by

f
(
yl | l̂,C

)
≈ N

(
ŷk, σ̂

2
)

, (6.59)

with,

ŷl =
Φ

‖d̂‖α + ε
σ̂l =

Φα‖d̂‖(α−1)

√
2K
(
‖d̂‖α + ε

)2 . (6.60)

Equipped with the exact form (6.13) along with its subsequent approximation (6.59), we can form

the general expression for the measurement likelihood as

f
(
yk | x, l̂,C

)
= f

(
yl − h (x) | x, l̂,C

)
∗ f (vk) , (6.61)

where ∗ represents a convolution of densities and it is understood that h (x) is not random here

due to conditioning. When the Gaussian approximation given in (6.59) is used and assuming

vk ∼ N
(
0, σ2

v

)
, the measurement likelihood simplifies to N

(
yk | h (x) + ŷl, σ̂

2 + σ2
v

)
. If a non-

Gaussian form such as (6.58) is used, one can always perform numerical integration to compute the

convolution, which has been found to perform reasonably well when vk is Gaussian.
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Returning to the original model in (6.1) where there exist L interferers, one can use the Gaussian

approximation presented to form the desired expression as1,

f
(
yk | h ((x) , l̂1:L,C1:L

)
≈ N

(
yk | h (x) + ỹ, σ̃2

)
(6.62)

where,

ỹ =
L∑
i=1

ŷli σ̃2 =
L∑
i=1

σ̂2
li

+ σ2
v (6.63)

where the individual terms (ŷli , σ̂li) are computed for the i-th interferer using equation (6.60). This

approximation lends itself well to efficient computation and is of high value in performing agent

cooperation within MASCOT.

6.2 Multiple Sensors

Considering a more generalized version of the model described involving multiple sensors reveals

some interesting results. It is now desired to establish a form for the joint measurement likelihood

f
(
y|x, l̂1:L,C1:L

)
. Here it is understood that x represents the location of the target being tracked

by the agent, l̂1:L represent interference location estimates communicated by other agents in the

tracking environment, and C1:L represent the respective covariance matrices of these communicated

estimates.

The standard bootstrap particle filter algorithm assumes the joint likelihood can be factored

as
K∏
k=1

f
(
yk|x, l̂1:L,C1:L

)
, which is valid since the measurements are indeed independent when

conditioned on the actual target location (or a particle representation of it) and with assumed

independent sensor noise components. Such independence does not hold in this case; each mea-

surement is not only dependent on x, but is also a nonlinear function of the unknown random

locations of the interferers l1:L. As such, there will always be some level of correlation between

individual sensor measurements for a given agent. The actual nature of this correlation is strongly

influenced by several factors, including the total number of targets in the environment and the

current “spatial configuration” of all sensors and targets.

To further illustrate this concept, let us consider the relatively simple case of two sensors track-

ing one target x, and receiving information from another agent regarding a single interferer l, within

the environment. The measurement model for this scenario is as follows:

y1 =
Φ

‖q1 − x‖α + ε
+

Φ

‖q1 − l‖α + ε
+ v1

y2 =
Φ

‖q2 − x‖α + ε
+

Φ

‖q2 − l‖α + ε
+ v2 (6.64)

1Assuming the approximation is valid for each interferer. Otherwise one can always perform repeated convolution.
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where qk =
[
q1
k q2

k

]
, and vk are again the respective location, and noise component of the k-th

sensor. The interferer is assumed randomly distributed as l ∼ N
(̂
l,C

)
, where x̄f and C. For the

time being it is also assumed there is no sensor noise present (vk = 0 ∀k).

Formulation of the joint likelihood f (y|x) proceeds by rewriting (6.64) as:

(q1
1 − l1)2 + (q2

1 − l2)2 =

(
Φ

y1 − h (q1,x)
− ε
) 2
α

(q1
2 − l1)2 + (q2

2 − l2)2 =

(
Φ

y2 − h (q2,x)− ε

) 2
α

(6.65)

where h (qk,x) is the contribution from x to the k-th sensor measurement. If we view (6.65) in

terms of the two variables l1 and l2 with y fixed, then we can immediately recognize that these

equations describe two circles; one centered at (q1
1, q

2
1) and the other at (q1

2, q
2
2) with radii:

r1 =
(

Φ
y1−h(q1,x) − ε

) 1
α

r2 =
(

Φ
y2−h(q2,x) − ε

) 1
α (6.66)

For given values of r1 and r2, the interferer location l must coincide with one of two possible

intersection points of these circles. If the circles do not intersect, then there is no value for l which

could have generated y and hence, in the absence of sensor noise, this measurement vector is im-

possible.

Given the vector y which generates the radius pair (r1, r2), one can solve for the set of inter-

section points l?[r1, r2] (which may be empty) by referring to Fig. 6.15.

` θ

D1

Possible Target Location

Sensor 2 Location

Sensor 1 Location

D2

Possible Target Location

Δr

r1

r2

z
u

Figure 6.15: Two Sensor, Single Target Measurement Geometry
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6.2 Multiple Sensors

Note the coordinate system comprised of the auxiliary variables (u, v) whose origin has been

translated from (0, 0) to coincide with q1 and then rotated counter-clockwise by θ to align with the

line segment connecting the two circle centers. The length of this line is denoted ∆r and is equal

to
√(

q1
1 − q1

2

)2
+
(
q2

1 − q2
2

)2
. One can find the distance from the center of the first circle, labeled

D1 in the diagram, along ∆r to the perpendicular line intersecting the points in l?[r1, r2]; this is in

fact the radical line of the two circles. This can be done by describing the circles in terms of (u, v)

and ∆r as follows:

u2 + z2 = r2
1

(u−∆r)
2 + z2 = r2

2 (6.67)

The intersecting points must have u = D1; making this substitution and combining the two equa-

tions yields:

(D1 −∆r)
2 + (r2

1 −D2
1) = r2

2

D1 =
∆2
r + r2

1 − r2
2

2∆r
(6.68)

D2 can now be solved for by simply substituting D1 into either circle equation and is equal to

±
√
r2

1 −D2
1. In terms of (u, v), the intersection points are thus located at (D1,±D2). The in-

tersection points can be described in terms of the original coordinate system by applying the

same transformation operations that were applied to (u, v) in reverse order; first rotating counter-

clockwise by θ, then translating by (q1
1, q

2
1). This can be expressed as:

l? =

[
q1

1

q2
1

]
+

[
cos θ − sin θ
sin θ cos θ

] [
D1

±D2

]
(6.69)

with, cos θ =
q1
2−q1

1
∆r

and sin θ =
q2
2−q2

1
∆r

one has for the final expression:

l? =


1

2∆2
r

{(
q1

2 − q1
1

) (
∆2
r + r2

1 − r2
2

)
∓
(
q2

2 − q2
1

)√
4∆2

rr
2
1 −

(
∆2
r + r2

1 − r2
2

)2}
1

2∆2
r

{(
q2

2 − q2
1

) (
∆2
r + r2

1 − r2
2

)
±
(
q1

2 − s1,1

)√
4∆2

rr
2
1 −

(
∆2
r + r2

1 − r2
2

)2}
 (6.70)

Note this expression is valid only when the circles intersect, or when the following condition is

satisfied:

max(r1, r2)−min(r1, r2) ≤ ∆r ≤ r1 + r2 (6.71)

When there is equality for this condition there will be only one solution for l?, two if the inequality

is strict, and none if it is violated.
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Continuing on with this approach, one can in fact develop a closed-form expression for the joint

likelihood by simple application of the transformation-of-random-variables approach:

f(y|x) =
∑
i

f
(
l?,i [r1, r2]

)
| J(y) |l=l?,i[r1,r2]

(6.72)

The notation in (6.72) is meant to indicate a sum over all possible solutions of l?[r1, r2]; if no

solutions exist then simply f (y|x) = 0. Additionally, f
(
l?,i [r1, r2]

)
here is the joint density of

the random variable l evaluated at the i-th solution l?,i[r1, r2] for given (r1, r2) as in (6.66) and as

mentioned previously is assumed ∼ N(̂l,C). The term J(y) represents the Jacobian matrix of the

transformation from (l1, l2) to y:

J(y) =

[
∂y1

∂l1
∂y1

∂l2
∂y2

∂l1
∂y2

∂l2

]

=

(
Φ2α2 (‖s1 − l‖‖s2 − l‖)

α
2
−1
)( (

q1
1 − l1

) (
q2

2 − l2
)
−
(
q2

1 − l2
) (
q1

2 − l1
))

[‖s1 − l‖α + ε]2 [‖s2 − l‖α + ε]2
(6.73)

While (6.72) can be unwieldy, it is considerably simpler than the marginal likelihood of a single

sensor as in (6.13); no special functions or infinite series are required to represent the joint likelihood

and it is in fact valid even for non-diagonal estimate covariance matrices C.

A specific scenario is further explored with w1 = [0, 0]>, q2 = [−1,−2]>, l̂ = [1, 1]>, C = σ2I

with σ = 0.2, ε = 0.5, Φ = 10, α = 2, and where the measurement component from x is neglected,

i.e., h (q1,x) = h (q2,x) = 0. A scatter plot of the target samples along with the sensor locations

for this scenario is shown in Fig. 6.16. Also plotted in Fig. 6.17 is a scatter plot of the measurement

samples alongside the marginal histograms for each component.

Shown in Figs. 6.18 and 6.19 are two views of the expression for the likelihood (6.72) plotted

as a solid surface, alongside a 3D histogram of the data (that has been properly scaled) plotted as

a wireframe mesh; note there is little discernible difference between the two.

It can be seen from these figures that in this case a strong, albeit nonlinear, correlation exists

between separate sensor measurements. Correlation between measurements is actually intuitive,

since if we knew the interferer location, l, y1 and y2 would in fact be deterministically related via the

nonlinear measurement equations. There is however, a complex interplay between the sensor and

interferer locations which determines this correlation; while one can generally expect a larger value

the closer the two sensors are to one another, it is difficult to predict the influence on correlation

the interferer’s location has.

Recall this analysis was undertaken without the presence of sensor noise; re-introduction of

noise significantly complicates analytical computation of the likelihood function and is not at-

tempted here. However, one can still make the qualitative hypothesis that while the noise will not
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Figure 6.16: 2 Sensor 1 Target Scatter Plot for q1 = [0, 0]>, q2 = [−1,−2]>, l̄ = [1, 1]>, ε = 0.5,

Φ = 10, and symmetric estimate covariance σ = 0.2
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Figure 6.17: Measurement Scatter Plot with marginal histograms for 2-Sensor Single Target Scenario

entirely eliminate sensor measurement correlation, it can act to significantly weaken the correlation

depending on the relative magnitude of its variance with respect to the measurements. Figure 6.20

shows the original likelihood overlayed in white with a 2D scaled empirical histogram generated us-

ing identical parameters as in the previous example, but with independent Gaussian noise (σ = 0.1)

added to both sensor measurements. We immediately see that the sensor noise acts to “blur” the

original distribution; the correlation is still discernible but has been significantly diminished.

Developing an exact expression for the measurement likelihood in the most general case, with

multiple sensors and multiple foreign targets, represents a daunting task even when drawing upon

simplifying assumptions that were made previously. It is nonetheless a desirable prospect, since
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6.2 Multiple Sensors

Figure 6.18: Distribution Plot for 2-Sensor Single Target Scenario

Figure 6.19: Second View of Distribution Plot for 2-Sensor Single Target Scenario

possession of such an expression would enable direct computation of the particle weight update

equation in (2.37) for the MASCOT algorithm. While it is believed that pursuit of an exact

expression with an approach similar to that presented for the noiseless two-sensor single-target
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6.2 Multiple Sensors

Figure 6.20: Two Sensor, Single Target Measurement Distribution Showing the Effects of Sensor Noise

scenario may yield extensions to more complicated scenarios, this is left as an open area for future

research.

Arguably, the most important characteristic of the likelihood that should be reproduced as

accurately as possible, is the distribution support. This can be seen clearly in the context of a

bootstrap particle filter; if the likelihood model does not adequately cover the support of the actual

likelihood, then it will be possible for a measurement to occur yielding zero weight for nearly all of

the particles, thereby leading to one form of particle degeneracy and subsequent tracking failure.

Obviously, it would be ideal for the model to exactly match the truth, but in the case where this is

not feasible, it would seem reasonable to proceed conservatively. This is stated in reference to the

observation that lacking full knowledge of the likelihood, the model can in some sense be interpreted

as a prior distribution. An “informative” prior in this case corresponds to a peaky likelihood with

minimal support whereas a flat or conservative prior will spread probability mass across a large

region of the likelihood. As was discussed in further detail in a more general context in Chapter 5,

there is a tradeoff involved in selection of any prior. Choosing a peakier likelihood can significantly

boost tracking performance for outcomes which are more likely to occur, at the elevated risk of

track divergence in the case of outliers. To see why this is true, consider the bootstrap particle

filter employing a peaky likelihood model and suppose a measurement is taken that corresponds to

a specific mean target location. On the average, the filter will strongly favor particles lying close

to this location, essentially eliminating particles outside a small neighborhood about the mean. As

long as the true target location lies within this neighborhood, and assuming particle degeneracy has

not occurred (some particles were indeed propagated into this neighborhood), the estimate variance

and error can be very small. The risk manifests in the filter’s high sensitivity to deviations from
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this ideal situation; measurements that have even a relatively small noise component present can

strongly bias the filter away from the target truth causing a large error. There is also an obviously

higher risk in particle degeneracy since there is now a much smaller region in the target space that

will yield nonzero weights. A flatter likelihood avoids this risk at the expense of reduced “particle

differentiation”; a larger region of particles will have nontrivial weights causing a larger variance

in the filter estimate (and associated MSE). Thus a balance must be struck between the protec-

tion offered by a conservative likelihood which helps mitigate the risk of degeneracy and a “more

aggressive” one which can reap larger performance benefits. Nonetheless, one should proceed with

caution before introducing any information into the likelihood model. While additional information

can be highly beneficial if it is accurate, misrepresentation of the likelihood with an “excessively

peaky” model can cause severe performance degradation.

In light of this discussion, let us return to the search for a reasonable representation of the

multi-sensor joint likelihood function. As we have seen for the two-sensor, single-target case, the

measurements are in general, each dependent on the unknown foreign target locations and thus

dependent on each other. It is argued that this dependency represents specific information con-

cerning the joint likelihood, and further argued that one can choose to neglect this information by

acting as if the measurements are in fact independent. The independence assumption represents

an ignorance about the true form of the likelihood and its underlying inter-dependencies. Doing so

allows one to write the likelihood model as:

f?(y|x) =
K∏
k=1

f?(yk|x) (6.74)

where this notation is used to make the distinction between the modeled likelihood, f?· (·), and the

true likelihood f·(·). One can loosely assert that f?(y|x) ≈ fy|x(y|x) under certain conditions, but

this is not the prime focus here. The model is meant to serve primarily as a conservative prior,

capturing only the information that is indeed possessed about the true likelihood.

The terms f?(y|x) represent models of the marginal likelihoods and these can in fact be rea-

sonably approximated using the methods discussed in section 6.0.1. Using equation (6.56) in

conjunction with (6.60) and (6.59) we have,

f?(y|x) =
K∏
k=1

N
(
yk | ȳk, σ̄2

k

)
ȳk = h (qk,x) +

L∑
l=1

Φ

‖dk,l‖α + ε

σ̄2
k = α2Φ2

L∑
l=1

‖d̂k,l‖2(α−2)d̂>k,lCd̂k,l(
‖d̂k,l‖α + ε

)4 + ζ2
k

d̂k,l = qk − ll =
[
q1
k − l̂1l q2

k − l̂2l
]>

(6.75)
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where l̂ is the communicated estimate of the l-th foreign target with Cl =

[
σ2
l,1 ρlσl,1σ1,2

ρlσl,1σ1,2 σ2
l,2

]
the

corresponding covariance matrix, qk is the k-th sensor location, and the sensor noise is ∼ N(0, ζk).

Two specific scenarios involving this model are now examined. In both cases, the sensors are

positioned at s1 = [0, 0] and s2 = [−1,−2], with ε = 0.1, Φ = 10, α = 2, and ζk = 0.01. In the

first scenario, two interfering targets are located at l1 = [1, 1] and l2 = [1, 4] with C1 = (0.04)I

and C2 = (0.01)I. A scatter plot of this scenario is shown in Fig. 6.21. Figure 6.22 shows the

scaled 3D empirical histogram as a solid surface, with a mesh overlay representing the Gaussian

likelihood model. Although there is little resemblance between the two distributions, the Gaussian

approximation does capture a large majority of the histogram’s support. This is precisely what

was sought to be accomplished; the Gaussian approximation in this case will act as a conservative

model for the likelihood.
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Figure 6.21: Two Sensor, Two Target Scatter Plot with s1 = [0, 0], s2 = [−1,−2],ε = 0.1, Φ = 10,

ζk = 0.01

As the number of foreign targets within the environment increases, it has been found in most

cases that the measurement correlation becomes vanishingly small. This is not entirely unexpected;

for a given measurement vector y there are a much larger number of possible target location

configurations. The second example considers the case with 6 targets in the configuration as shown

in Fig. 6.23 with C1 = C4 = (0.04)I, C2 = C5 = (0.01)I, and C3 = C6 = (0.09)I. The Gaussian

model and empirical histogram for this case are plotted in Fig. 6.24, where we can see there is

a much closer resemblance between the two distributions than in the two target case; this can be

directly attributed to the significantly weakened correlation between measurements resulting from

the additional foreign targets.
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Figure 6.22: Two Sensor, Two Target Distribution Plot with s1 = [0, 0], s2 = [−1,−2],ε = 0.1, Φ = 10,

ζk = 0.01
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Figure 6.23: Two Sensor, Six Target Scatter Plot

It has been shown that the Gaussian model presented in (6.75) offers a reasonable, conservative

“first-order” model for the multi-sensor cooperative joint likelihood function under typical tracking

conditions. It should also be obvious from the preceding figures that the model can in a sense be

interpreted as a multivariate Gaussian fit to the joint likelihood. This interpretation opens up the

possibility for model refinements by making adjustments to the Gaussian parameters. It is believed

that an approximation can be developed that may be able to capture a “linearized” form of the

measurement correlation; this would be incorporated into the model as a non-diagonal covariance

matrix (which is Diag[σ̄2
k] in the current model), and thus remains an area open for future possible

research.
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Figure 6.24: Two Sensor, Six Target Distribution Plot
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7

Conclusion and Future Work

In this dissertation, the MASCOT framework has been introduced and detailed in a generalized

setting and further refined for implementation within an MTT environment that involves a dis-

tributed network of agents, each endowed with mobile RSSI sensors to cooperatively track the

high-dimensional full target space using particle filtering. The framework outlined in 2.2 is com-

plete in the sense that all elements for its implementation have been resolved. Adaptive partitioning

of the state space was introduced in that section and further refined for the specific application con-

sidered within section 2.6. The problem of agent cooperation was also addressed by first examining

the measurement likelihood of a sensor corrupted by interference sources with known Gaussian dis-

tributions. A closed form expression was found and subsequent Gaussian approximation developed,

allowing its feasible use within an online particle filter. The results of this investigation were lever-

aged within MASCOT by treating the targets not estimated by a given agent as interferers, with

the Gaussian information provided by other agents within the environment. Finally, optimal sensor

positioning was then considered for this specific environment. Several solutions were presented for

positioning sensors about a single target corrupted by an arbitrary number of interferers. The joint

2-target scenario for sensor positioning was also investigated in detail, admitting a solution similar

to the single target case. Performance results demonstrating each separate element of MASCOT

were presented and concluded with a scenario demonstrating the final algorithm as outlined in 2.2.

As the focus within this dissertation was on state-estimation, the significant problem of target

estimate initialization and detection (which also covers the case whereby the number of targets

is dynamic) was not addressed and a known fixed number of targets was assumed. While some

work presented here involves a more generalized form of interference compensation which can be

leveraged to handle the scenario whereby the number of targets is unknown, this remains a logical

and important area for future work. Auxiliary topics parallel to MASCOT regarding tracking us-

ing asynchronous measurements and dynamic interference compensation, along with a theoretical

investigation of Bayesian performance bounds, were also presented and linked with the main the-
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sis. Areas open to future work in these areas were outlined in their respective chapters, with one

common objective being their incorporation into the MASCOT framework.

The main system presented is indeed a complete solution for handling a high-dimensional track-

ing problem and can be extremely effective in mitigating the dimensionality problem while main-

taining adequate tracking performance. It is hoped that a future opportunity will arise allowing

this system to be implemented in real hardware and applied in an otherwise infeasible environment.

It is believed that MASCOT can be extended to any general multi-dimensional estimation problem

allowing for a much broader range of application specifically in multi-joint object tracking, financial

portfolio management, and medical image analysis.
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cle filtering in agent networks: A survey, classification,

and comparison. Signal Processing Magazine, IEEE, 30(1):61–

81, 2013. 23

[26] M.F. Bugallo and P.M. Djuric. Particle filtering in high-

dimensional systems with Gaussian approximations. In

Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE In-

ternational Conference on, pages 8013–8017, May 2014. 29

[27] Chris Snyder, Thomas Bengtsson, Peter Bickel, and Jeff Ander-

son. OBSTACLES TO HIGH-DIMENSIONAL PARTICLE

FILTERING. 29

[28] F. Daum and J. Huang. Curse of dimensionality and particle

filters. In Aerospace Conference, 2003. Proceedings. 2003 IEEE,

4, pages 1979–1993, March 2003. 29

[29] P. Bui Quang, C. Musso, and F. Le Gland. An insight into the

issue of dimensionality in particle filtering. In Information

Fusion (FUSION), 2010 13th Conference on, pages 1–8, July 2010.

29

[30] K. Dantu, M. Rahimi, H. Shah, S. Babel, A. Dhariwal, and

G. Sukhatme. Robomote: enabling mobility in sensor net-

works. In Information Processing in Sensor Networks, 2005. IPSN

2005. Fourth International Symposium on, pages 404–409, 2005. 35

[31] S. Martinez and F. Bullo. Optimal sensor placement and mo-

tion coordination for target tracking. Automatica, 42(4):661–

668, April 2006. 37

162

http://dx.doi.org/10.1007/978-1-4757-3437-9_1
http://dx.doi.org/10.1007/978-1-4757-3437-9_1
http://www.sciencedirect.com/science/article/pii/0169743987800849
http://www.sciencedirect.com/science/article/pii/0169743987800849


REFERENCES

[32] R. Olfati-Saber. Distributed Tracking for Mobile Sensor

Networks with Information-Driven Mobility. In American

Control Conference, 2007. ACC ’07, pages 4606–4612, 2007. 37

[33] B. Grocholsky, A. Makarenko, and H. Durrant-Whyte.

Information-theoretic coordinated control of multi-

ple sensor platforms. In Robotics and Automation, 2003.

Proceedings. ICRA ’03. IEEE International Conference on, 1,

pages 1521–1526 vol.1, 2003. 37

[34] Hu Haifeng and Yang Zhen. Mobile-Agent-Based Information-

Driven Multiresolution Algorithm for target tracking in

Wireless Sensor Networks. In Software Engineering, Artifi-

cial Intelligence, Networking, and Parallel/Distributed Computing,

2007. SNPD 2007. Eighth ACIS International Conference on, 1,

pages 521–525, 2007. 37

[35] Yi Zou and K Chakrabarty. Distributed Mobility Manage-

ment for Target Tracking in Mobile Sensor Networks. Mo-

bile Computing, IEEE Transactions on, 6(8):872–887, 2007. 37

[36] S. Maheswararajah and S. Halgamuge. Mobile Sensor Manage-

ment For Target Tracking. In Wireless Pervasive Computing,

2007. ISWPC ’07. 2nd International Symposium on, pages –, 2007.

37

[37] David Moreno-Salinas, Antonio M. Pascoal, and Joaquin Aranda.

Optimal Sensor Placement for Multiple Target Position-

ing with Range-Only Measurements in Two-Dimensional

Scenarios. Sensors, 13(8):10674–10710, 2013. 37, 39, 47
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