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Abstract of the Dissertation

System Evaluation and Design of
Delay-Sensitive Wireless Networks

by

Xi Deng

Doctor of Philosophy

in

Computer Engineering

Stony Brook University

2013

Wireless networks have now been widely used and enjoyed in many
aspects of human life and the society. Delay-sensitive wireless net-
work, in a strict sense, is not a particular type of wireless net-
works. It represents a large number of wireless networks whose
performance is greatly affected by the packet end-to-end delay, de-
fined as the duration between a packet’s generation at the source
node and its delivery to the destination. Such network has been
growing rapidly in recently years due to the tremendous demands
from network applications. Emerging multimedia applications in-
cluding Video-on-demand (VOD) and Voice-over-IP (VoIP) have
become one of the major traffic types that require a large amount
of data packets to be delivered in a timely and continuously fash-
ion; various monitoring applications, such as emergency detection
and battlefield surveillance, also call for delay-sensitive networks,
where a faster delivery of monitoring data may save tremendous
economical or military loss by preventing some critical hazards.

Compared to wired network, achieving low packet delay is a more
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challenging work in wireless networks because the resources in wire-
less networks are much more constrained. This dissertation focuses
on the study of resource constraints at network nodes. Compared
to transmissions, resource constrained network nodes have not been
paid full attention to in previous works as their impact may not
be significant at earlier wireless networks. With increasing de-
mand of delay-sensitive networks, these limitations now become
performance bottlenecks and worthy study. The contributions of
this dissertation are two-fold. First, we designed and implemented
a general, flexible hardware-aware network platform which takes
hardware processing behavior into consideration to accurately eval-
uate network performance. Similar to the lack of study of network
node resources, there also lacks of an experimental and evaluation
tool that is suitable for this particular study. With our platform,
the nodal processing can now be accurately modeled and evaluated
in the form of network simulations. This platform facilitates the
remaining part of this dissertation and any other nodal process-
ing related researches for the whole research community as well.
Second, we considered practical issues in delay-sensitive wireless
sensor networks as most sensor nodes are resource-constrained de-
vices. We studied the impact on packet delay caused by two types
of resource constraints: limited hardware processing capability and
half-duplex antenna. Algorithms have been designed to minimize
the negative impact of these resource constraints to better support
delay-sensitive applications.
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Chapter 1

Introduction

Wireless networks have now been widely used and enjoyed in many aspects
of human life and the society. Delay-sensitive wireless network, in a strict
sense, is not a particular type of wireless networks. It represents a large
number of wireless networks whose performance is greatly affected by the
packet end-to-end delay, defined as the duration between a packet’s generation
at the source node and its delivery to the destination. Such network has
been growing rapidly in recently years due to the tremendous demands from
network applications. Emerging multimedia applications including Video-on-
demand (VOD) and Voice-over-IP (VoIP) have become one of the major traffic
types that require a large amount of data packets to be delivered in a timely
and continuously fashion; various monitoring applications, such as emergency
detection and battlefield surveillance, also call for delay-sensitive networks,
where a faster delivery of monitoring data may save tremendous economical
or military loss by preventing some critical hazards.

Compared to wired network, achieving low packet delay is a more challeng-
ing work in wireless networks because the resources in wireless networks are
much more constrained. Resource constraints reside in both the transmission
medium and network nodes. As for transmission, wireless network is known
to have lower bandwidth than wired networks. The sharing nature of wire-
less channel is another limitation as wireless transmission can be interfered
by other transmissions or noises, resulting in more protection mechanism and
thus longer packet delay. As for network nodes, resources include computation
capability, memory, antenna and energy, affecting the packet delay in differ-
ent ways. Wireless network consists of various types of nodes with some (e.g.
sensor nodes) very restrict on these resources. Weak computation capability
prolongs the nodal processing of network algorithms and protocols, which is
a part of packet delay. Small memory disables the network node to store a
considerable amount of information necessary to perform certain network op-
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timization for delay reduction. Half-duplex antenna substantially slows down
the transmission procedure. Battery powered devices in wireless networks with
limited power supply tend to adopt more energy conservation approaches that
may increase the packet delay.

This dissertation focuses on the study of resource constraints at network
nodes. Compared to transmissions, resource constrained network nodes have
not been paid full attention to in previous works as their impact may not be sig-
nificant at earlier wireless networks. With increasing demand of delay-sensitive
networks, these limitations now become performance bottlenecks and worthy
study. The contributions of this dissertation are two-fold. First, we designed
and implemented a general, flexible hardware-aware network platform which
takes hardware processing behavior into consideration to accurately evaluate
network performance. Similar to the lack of study of network node resources,
there also lacks of an experimental and evaluation tool that is suitable for
this particular study. With our platform, the nodal processing can now be
accurately modeled and evaluated in the form of network simulations. This
platform facilitates the remaining part of this dissertation and any other nodal
processing related researches for the whole research community as well. Sec-
ond, we considered practical issues in delay-sensitive wireless sensor networks
as most sensor nodes are resource-constrained devices. We studied the impact
on packet delay caused by two types of resource constraints: limited hardware
processing capability and half-duplex antenna. Algorithms have been designed
to minimize the negative impact of these resource constraints to better support
delay-sensitive applications.

1.1 Construction of Hardware-aware Network

Experimental Platform

Accurate performance evaluation of delay-sensitive networks requires consider-
ation of every factor that contributes to the packet delay. Hardware processing
is often neglected in the network evaluation. Many protocols and algorithms
are evaluated either regardless of the impact of hardware processing or sim-
ply regarding the entire processing as a constant overhead. In addition, when
computation resource is limited, algorithms are designed of low complexity
to keep processing impact low. In this case, a common assumption is that
the processing speed is much faster than the communication speed so that
processing will not substantially affect the overall network performance.

Such assumption does not hold with recent research advances. Sophisti-
cated network algorithms and applications, such as header compression, packet
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encryption, image and video processing, are introduced into network to im-
prove network performance and functionality, greatly increasing the complex-
ity of hardware processing, which has a significant impact on network latency
and bandwidth. On the other hand, nodes in wireless network are more com-
putational resource-constrained, and hence more prone to be affected by such
complex processing. Thus it is necessary to reconsider hardware processing in
network performance evaluation.

Current evaluation tools can be mainly categorized into network simu-
lators and emulators. Popular general network simulators include NS-2 [2],
GlomoSim [3] and OPNET [1]. While they are powerful in modeling network
traffic and protocols, they do not have explicit support on hardware processing.
Network emulators [13, 15, 19, 23] employ real hardware to represent network
nodes. The modeling is accurate but lacking flexibility. We thus design a
hardware aware network platform to provide highly flexible hardware mod-
eling capability. As in Chapter 2, the platform adopts a network-hardware
co-simulation approach in which the NS-2 network simulator supervises the
network-wide traffic flow and the SystemC hardware simulator simulates the
underlying hardware processing in network nodes. In addition, as a case study,
we implemented wireless all-to-all broadcasting with network coding on the
platform. We analyze the hardware processing behavior during the algorithm
execution and evaluate the overall performance of the algorithm. Our exper-
imental results demonstrate that hardware processing can have a significant
impact on the algorithm performance. We expect that this hardware-aware
platform will become a very useful tool for more accurate network simulations
and more efficient design space exploration of processing-intensive applica-
tions.

1.2 Algorithm Design in Delay-Sensitive Wire-

less Sensor Networks

Recent years have witnessed the development and proliferation of wireless
sensor networks (WSNs), attributed to the technological advances of Micro-
Electro-Mechanical Systems (MEMS) and wireless communications. While
early WSNs mainly focus on energy efficiency, delay sensitive WSNs have extra
requirements on minimizing the communication delay during data delivery.
Recent study in this area has mainly focused on the algorithm design of efficient
routing strategies and data aggregation to reduce such delay and provide real-
time delivery guarantees [29–32].

With the technology development, previous technologies whose original
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purposes are for energy efficiency are now adopted in delay-sensitive applica-
tions. The first technology we consider is compression. In WSNs, compression
reduces the data amount by exploiting the redundancy resided in sensing data.
Such redundancy comes from the strong spatial and temporal correlation ex-
isted in the sensor network [39]. Compress includes lossy compression and
lossless compression. Lossy compression can achieve very high compression
ratio by presenting only an approximate profile of the data [45–48]. A ba-
sic example of lossy compression is to provide only statistics (e.g. average)
of readings from all sensors. Lossless compression, on the other hand, can
reconstruct the original data from the compressed data. With the needs to
obtain more accurate data of the physical world, lossless compression tends to
become more important in the research world.

Besides energy saving, compression also contributes to delay reduction as
it reduces the packet length and thus communication delay. However, the
limited computing resources at sensor nodes make the processing time of com-
pression a nontrivial factor in the total delay a packet experiences and must
be carefully examined when adopting compression. In Chapter 3, we first
study the effect of compression on data gathering in WSNs under a practical
compression algorithm. We observe that compression does not always reduce
packet delay in a WSN as commonly perceived, whereas its effect is jointly
determined by the network configuration and hardware configuration. Based
on this observation, we then design an adaptive algorithm to make on-line de-
cisions such that compression is only performed when it can benefit the overall
performance. We implement the algorithm in a completely distributed manner
that utilizes only local information of individual sensor nodes. Our extensive
experimental results show that the algorithm demonstrates good adaptiveness
to network dynamics and maximizes compression benefit.

Clustering is another technique that originates from energy concerns. A
typical cluster-based network is divided into two or more hierarchy. In the
lower hierarchy, nodes are divided into clusters where a node acts as the cluster
head to collect data from other cluster members. In the upper hierarchy,
cluster heads communicate with each other and send collected packets to a
data sink. While cluster heads take part in much more transmissions than
cluster members and have faster energy consumption, they are either rotated
within the network as in homogeneous clustering [67, 68] or assigned to devices
with more power supply as in heterogeneous clustering [69, 85, 86].

Clustering is also known due to its good scalability as it simplifies the
communication pattern. However, in such networks, frequent interactions be-
tween the intra-cluster communication and the inter-cluster communication
are inevitable, which may severely downgrade the communication efficiency
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and hence the network performance if not handled properly. Proper synchro-
nization among these two types of communications is required. In Chapter
4, we propose two approaches to schedule the communications in clustered
wireless sensor networks aiming at delay-sensitive applications. In the first ap-
proach, an efficient cycle-based synchronous scheduling is proposed to achieve
low average packet delay and high throughput by optimizing the cycle length
and transmission order. In the second approach, a novel clustering structure
is introduced to eliminate the necessity of communication synchronization so
that packets are transmitted with no synchronization delay, yielding very low
end-to-end packet delay. Our extensive experimental results demonstrate the
superior performance of both approaches. These two approaches are then in-
tegrated as a hybrid scheme which allows smooth switching between them.
The hybrid scheme takes advantage of both approaches and enables cluster-
based sensor networks to serve as the fundamental network infrastructure for
information collection.
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Chapter 2

Construction of A Flexible
Platform for Hardware-Aware
Network Experiments

In this chapter, we present the design and implementation of a general, flexible
hardware-aware network platform which takes hardware processing behavior
into consideration to accurately evaluate network performance. We describe
the synchronization and communication issue during the co-simulation be-
tween the network simulator NS-2 and the hardware simulator SystemC. To
verify our motivation and illustrate the platform usage, we study all-to-all
broadcasting based on network coding using our platform.

The chapter is organized as follows. Section 2.1 gives the background in-
troduction. Section 2.2 introduces the related work in network simulation
and emulation. Section 2.3 gives the detailed description of the platform ar-
chitecture and the implementation. Section 2.4 describes a case study on the
platform that evaluates the performance of wireless all-to-all broadcasting with
network coding, and Section 2.5 presents the experimental results of the case
study. Finally, Section 2.6 concludes the chapter.

2.1 Introduction

As network capability is improved by new technologies in terms of bandwidth,
latency and services, many emerging applications, such as video-on-demand
services and voice-over-IP, are now running on networks. Such applications put
tremendous demand on network resources and also pose challenges on hard-
ware to process a large volume of traffic at a high speed. In the meanwhile,
more and more sophisticated network algorithms, such as header compression,
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packet aggregation and encryption, are introduced into network protocols to
improve network performance, which greatly increases the complexity of hard-
ware processing as well. Although complex hardware processing may be nec-
essary to realize certain network functions, it has a significant impact on net-
work latency, bandwidth and power consumption. This effect may vary among
different hardware and network configurations. In general, computational re-
source limited network devices, including many mobile devices, are more prone
to be affected by such complex processing. As a result, hardware-aware al-
gorithm designs and designated hardware components may be required for
such devices to optimize the overall performance of the network system. How-
ever, traditional network performance evaluation tools usually do not posses
hardware-aware capability and it is difficult to use such tools to identify hard-
ware performance bottleneck. Thus, a platform with hardware awareness is
needed to study the effect of hardware processing in networks.

Currently, most network algorithms are developed, validated and evaluated
by either simulation or emulation before their implementations are incorpo-
rated into practical products. Simulators, generally focusing on network traffic
and packet transmissions, provide limited modeling capability for hardware
processing. In particular, processing functions are implemented at software
level and the hardware behavior is usually simplified as a fixed delay. Such
modeling is apparently inadequate and inaccurate when the processing is com-
plex and unpredictable, potentially leading to large disparity in network per-
formance evaluation. Alternatively, emulators perform real-time simulations
by performing the nodal processing and network transmissions with physical
computers and network systems, thus they can obtain more accurate results
on the behavior and performance of the simulated network. In traditional
network emulators, the nodes in the simulated network are represented by
actual hardware on a one-to-one or one-to-many mapping. In the case of one-
to-one mapping, where each network node occupies one computer or network
device, the processing is performed in hardware. Although this is the most
realistic network environment, the network size in the emulation is strictly
constrained by the number of hardware systems. In the case of one-to-many
mapping, one or more network nodes are simulated as virtual nodes in one
computer system, allowing certain scalability on the network size. However,
since many virtual nodes share the same hardware utility, such as CPU or
memory, hardware processing may not be realistically simulated. Besides, in
both cases, the hardware systems used to represent network nodes have fixed
hardware configuration and little hardware reconfigurable ability, which does
not allow emulators to examine network performance under different hard-
ware conditions. Moreover, some emulations may require certain expensive
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computational resources, which may not be always available or affordable.
From the above discussions, we can see that simulation provides inadequate

supports for processing modeling, while emulation may be expensive and in-
flexible or not scalable. Thus, neither are suitable as a general platform to
study the impact of hardware processing.

In this chapter, we present a general, flexible network platform for hardware-
aware network simulations. The platform seamlessly integrates a network
simulator to simulate the network environment and a hardware simulator to
simulate the nodal hardware operations above the physical layer. Such inte-
gration of two simulators with different simulation levels is generally called
co-simulation. In our case, the network-hardware co-simulation provides a
complete experimental platform where hardware processing can be easily mod-
eled and examined in a specific network scenario with sufficient flexibility of
reconfiguring both the network infrastructure and the underlying hardware
architecture. We also present a case study on wireless all-to-all broadcasting
with network coding on this platform. In the case study, we describe the de-
tailed procedure to perform the co-simulation. Our experimental results reveal
that the processing time incurred by network coding has a significant impact
on the overall performance, which increases the broadcasting time up to six
times in the worst case. Due to its easy access to accurate, detailed informa-
tion on hardware operations, which cannot be captured by the pure network
simulation, and its flexibility of reconfiguring hardware components, which the
network emulation lacks, we believe the platform will be a very useful tool for
network algorithm/protocol designers and network related hardware designers.

2.2 Previous Related Work

As discussed earlier, two commonly used approaches to evaluating network
performance are simulation and emulation. One representative of network
simulators is NS-2 [2], which is widely used by the networking research com-
munity due to its good modeling capability for a variety of network scenarios
and protocols. However, network simulators can provide only very limited
modeling capability for hardware processing. NS-2 provides a primitive way
to model hardware processing as delays by its timer mechanism. More sophis-
ticated hardware modeling is out of consideration and difficult to implement
in NS-2. Another powerful simulator OPNET [1] employs the process edi-
tor to model hardware processing using a state-transition diagram approach.
However, it cannot model detailed hardware processing either.

In addition, a simulator may be combined with some hardware facility
to carry out network emulations for more realistic network modeling. Com-
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pared to pure network emulation, such combination aims to take advantage of
resourceful network models in the simulator. For instance, NS-2 has been ex-
tended to have the emulation facility as described in [9]. The extension enables
the simulator to interact with live network traffic, which may be generated by
actual hardware. However, this approach requires the users to provide the
desired real-time traffic or hardware, thus cannot serve as a general network
emulator. In addition, the difficulty in synchronization with real-time traffic
prohibits the entire emulation from being performed at high speed.

On the other hand, network emulators employ actual computer systems and
networks to provide a more realistic network environment. In the emulation,
physical nodes represent the network nodes and a virtual network is created
to regulate the network topology and protocols among all the nodes. Emu-
lators for general networks, see, for example, [5, 6, 14, 21, 22], usually adopt
real PCs as the physical nodes. Then hardware processing is actually exe-
cuted rather than simulated, yielding more accurate results. However, the real
execution implies that the processing is tightly associated with the hardware
configuration of the physical nodes and may become inaccurate if the hardware
configuration changes. There are also network emulators for a specific type
of networks, such as Emulab [15], Motelab [19], ORBIT [23] and Emstar [13].
For example, the 802.11a/b/g testbed in Emulab scatters two different types
of nodes with real wireless interfaces in an office building, allowing a number
of configuration parameters. Compared to Emulab and other similar testbeds,
which aim at constructing a specific real network environment, our proposed
platform emphasizes on supporting general, flexible hardware modeling, which
is usually neglected in other simulators and emulators.

Finally, a simple network-hardware co-simulation method was adopted in
[12] for a specific simulation environment with networked embedded systems.
Its main focus is to study the behavior of embedded systems when they are
connected to a practical network environment. In such a system, there is a
natural partition between the network modeling and the hardware modeling,
which makes co-simulation much easier. However, it is difficult to use such an
approach for general networks as there may not exist such a clear interface be-
tween the network and the hardware. In this chapter, we will focus on general
network-hardware co-simulation and treat the network traffic and the hard-
ware nodes as an integrated system. In such a system, any network protocols
and algorithms can be modeled in hardware so that network performance can
be studied in a more realistic environment.
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2.3 Platform Implementation

In this section, we describe the implementation of our network platform, which
is based on network-hardware co-simulation. In the co-simulation, we adopt
NS-2 simulator as the network simulator and SystemC hardware simulator as
the hardware simulator. NS-2 is a popular software-level network simulator
which is capable of creating various networks with flexible configurations; Sys-
temC is a system-level hardware description language which can describe the
specific hardware without going into the details of the underlying hardware im-
plementation. At the network level, NS-2 manages the global network scenario
and sends the packets to SystemC for hardware simulation when necessary.
The interface to SystemC is similar to the interface of an ordinary network
module so that NS-2 can acquire the hardware processing ability without sig-
nificant changes of its own framework. At the hardware level, SystemC models
and simulates the specific hardware processing taking the network traffic as
its input and returns the processed packets to NS-2. With co-simulation, two
simulators cooperate and work as a single simulator performing both network
and hardware operations.
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Figure 2.1: The overview of the platform and an example showing its usage.

Fig. 2.1(a) illustrates the overview of our platform. Similar to most net-
work simulators, the platform requires a script provided by the user to specify
the network environment. Such specification includes network topology, net-
work traffic, protocols used in the network and interfaces to hardware models.
The user script is written in OTcl, the language used in NS-2, to provide a
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convenient user interface considering NS-2’s current popularity. Fig. 2.1(b)
shows an example where the user script specifies a wireless network consisting
of wireless routers, laptops and mobile phones. The script is interpreted di-
rectly by NS-2 and accordingly, NS-2 and SystemC will perform the network
and hardware simulation cooperatively. As shown in Fig. 2.1(c), the devices
in the wireless network are reduced to uniform network nodes which perform
packet transmissions in NS-2 while the hardware processing in the network de-
vices is concurrently executed in SystemC. At the end of the simulation, both
simulators generate simulation trace files, which are returned to the user for
performance evaluation and potential optimization on the hardware design.

Before we go into the details, we first briefly discuss why it is necessary
to use co-simulation to incorporate hardware modeling capability in the net-
work simulation. A possible alternative is to implement hardware modeling
as a function call when it is necessary to simulate hardware processing. The
processing results and delay can then be calculated and returned to NS-2. Un-
fortunately, such an approach is only applicable when hardware processing is
rather simple and independent of network traffic. The traffic can affect both
processing results and delay. For example, in packet compression, when a new
packet is generated, the ongoing compression process may be prolonged due
to the addition of this new packet, changing both compression results and de-
lay. As will be seen in our case study later, multiple processes executed in a
single processor can affect the completion time of each process. Therefore, it
is necessary to perform co-simulation in order to obtain a complete hardware
modeling capability.

In the co-simulation, NS-2 and SystemC are executed separately in two
processes due to their different simulation behaviors. As shown in Fig. 2.2,
three major issues need to be addressed in the co-simulation implementation.
First, as each simulator has its own simulation timer, time synchronization of
the two simulators must be maintained when packet exchanges between two
simulators occur. Second, inter-process communication must be handled effi-
ciently so that the communication overhead would not affect the simulation
speed. Third, to practically perform the co-simulation, the interfaces between
user modules and the schedulers in both simulators must be extended to pro-
vide special functions for co-simulation. Next we discuss these three issues in
detail.

2.3.1 Time Synchronization

Time synchronization is a critical issue in the co-simulation. As both NS-2
and SystemC are event-driven simulators, each simulation is managed by the
scheduler, which schedules and executes all the events in the order of time.
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In the co-simulation, the events must be scheduled and executed by a global
scheduler with a global timer. However, it is difficult to implement a global
scheduler because the schedulers of the two simulators have different specifica-
tions on the events. Our solution is to insert a synchronization mechanism in
both schedulers so that they can schedule their own events and in the mean-
while maintain the time synchronization between them.

Besides the events originally generated in the two simulators, the co-simulation
incurs another type of new events, that is, the events of sending messages
between the two simulators. For presentational convenience, we classify the
events in the co-simulation into two categories: Type I events, the original
events in the two simulators and Type II events, the events of sending mes-
sages between the two simulators. Each event is associated with a time stamp
indicating the exact simulated time this event is executed, called the time of
the event. The event with the earliest time in the co-simulation is called the ex-
ecutable event and there could be multiple executable events. Only executable
events can be executed and the simulation time advances to the time of the
executable event when executed. In each simulator, the scheduler maintains
the list of events locally generated, among which the earliest Type I event is
called the schedule event and its time is called the schedule time of the simu-
lator. By definition, a Type II event is generated when a simulator decides to
send a message to the other simulator, during the execution of a Type I event.
Therefore, the time of the generated Type II event is the same as the Type
I event currently being executed. Moreover, since this Type I event must be
an executable event, all Type II events generated during its execution become
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executable events instantly.
At the beginning of the co-simulation, both simulators have only Type

I events. After exchanging the schedule time between the two simulators,
the simulator with earlier schedule time starts the simulation while the other
simulator pauses and waits for the messages. Executable Type I events are
then executed according to the local scheduling strategy until there are no more
such events, which means that the schedule time of this simulator surpasses
either the schedule time of the other simulator or the time of Type II events.
Then all the Type II events (if any) are executed and the messages are sent to
the other simulator. Notice that in this case Type I events are executed prior
to Type II events with the same time stamp. In fact, neither NS-2 nor SystemC
defines the execution order of events with the same simulation time, so such
scheduling does not violate the principles of original schedulers. On the other
hand, since each execution of Type II events leads to a message transmission
and a control switching between the two simulators, putting all the Type
II events together can minimize the inevitable time cost for communication
setups. After executing Type II events, the current simulator completes its
execution cycle and pauses while the other simulator begins its execution cycle
by receiving the messages. The execution cycles will be performed in turn
among two simulators until no more events are left in either simulator. Then
the co-simulation terminates. Table 2.1 gives the pseudo code of the event
scheduling algorithm.

As shown in Table 2.1, two processes corresponding to the simulations of
NS-2 and SystemC are executed concurrently. In NS-2 process, one while loop
(line 5) does the scheduling and another while loop (line 7) checks if there
are any executable events. The generation of Type II events is implicitly im-
plemented in the event execution (line 12) and the implementation detail will
be described in the next section. If there exist executable Type I events, the
scheduler will pick up an event to execute (lines 12 through 13); otherwise,
the communication procedure starts by calling functions send to/wait from
(lines 8 through 10). Function send to executes all Type II events and sends
corresponding messages to the other simulator. After that, it sends the lo-
cal schedule time for synchronization purpose. Function wait from will force
NS-2 to wait until receiving the message from SystemC. Then it calls the cor-
responding functions to process the messages. Message processing is similar
to the execution of an event, thus local simulation time t1 could be correctly
updated after the message processing. Since we always execute the executable
events which have the earliest executing time, the synchronization is strictly
guaranteed. The scheduling in SystemC process is similar. The main differ-
ence is that SystemC process will yield to NS-2 process when both schedulers
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Table 2.1: Scheduling Algorithm in NS-2 and SystemC

1. t1 = schedule time(NS-2);
2. t2 = schedule time(SystemC);

3. NS-2:
4. wait from SystemC(t2);
5. while(exist(event)){
6. update(t1);
7. while(t1 > t2||t1 > time(Type II events)){
8. send to SystemC(Type II events);
9. send to SystemC(t1);
10. wait from SystemC(t2);

}
11. get executable event e;
12. execute(e);

}

13. SystemC:
14. send to NS-2(t2);
15. wait from NS-2(t1);
16. while(exist(event)){
17. update(t2);
18. while(t2 ≥ t1||t1 > time(Type II events)){
19. send to NS2(Type II events);
20. send to NS-2(t2);
21. wait from NS-2(t1);

}
22. get executable event e;
23. execute(e);

}
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have the same schedule time to avoid the potential deadlock in this situation.

2.3.2 Interprocess Communication

As mentioned earlier, Type II events send messages between the two simula-
tors. How to efficiently communicate between the two simulators executed in
two processes is another critical issue in the co-simulation.

Since NS-2 and SystemC are executed in two processes, their communica-
tion is accomplished through an interprocess queue. Fig. 2.3 illustrates the
communication model between NS-2 and SystemC, where the entire procedure
can be divided into three phases: message buffering, message transmission and
message handling.

NS−2

Buffer Buffer

SystemC

1

n

Scheduler

Message
Queue

Module

Module

Module 1

Module n

Scheduler

Figure 2.3: Communication model in the co-simulation, where a module corre-
sponds to a functional unit in a network node. The communication is divided
into three phases: message buffering, message transmission and message han-
dling.

As mentioned in the last subsection, Type II events are generated during
the execution of Type I events. The creation of Type II events implies a
message transmission between the two simulators. As shown in Table 2.1,
instead of starting the message transmission immediately, the scheduler will
wait until all the executable Type I events are executed. Therefore, a message
will be temporarily stored in the buffer whenever a Type II event is generated
during the execution.

Message transmission occurs when there are no more executable Type I
events in the scheduler. Since the two simulators reside in different processes,
messages cannot be sent directly. We use the message queue as the interprocess
communication mechanism so that messages can be conveniently and efficiently
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sent and managed. The message queue is responsible for receiving messages
from one simulator and sending messages to the other simulator.

To complete the message transmission, some additional information should
be attached to the actual message. The message format used in the co-
simulation includes four fields: mid, length, time and data. mid specifies
the destination module this message should be delivered to, where a module
corresponds to a functional unit in the network node. To correctly receive
the messages, every module in SystemC must have a corresponding module in
NS-2 and the two modules are assigned the same mid before the simulation.
length indicates the length of field data, facilitating the receiving of messages.
time records the time when the message is created. When the simulator on
the receiving side receives this message, the simulation time will be advanced
according to time. data contains the actual message stored as a string. The
receiver is responsible for converting the string to the proper data format.

The receiving procedure does not require any buffer. The messages received
will be immediately delivered to the corresponding module indicated in mid.
Since both simulators are event-driven, message delivery is considered as the
execution of an event.

2.3.3 Module-Scheduler Interface Design

In both NS-2 and SystemC, the scheduler schedules the events, while other
functional modules execute the events. The synchronization and communi-
cation are mainly accomplished by the scheduler, and message buffering and
message handling require the cooperation between the scheduler and func-
tional modules. The interface between the scheduler and functional modules
must be extended to provide extra functions for the co-simulation. In partic-
ular, the scheduler should provide the store function for functional modules
to temporarily store the messages in the local buffer while functional modules
are required to provide corresponding handlers to handle the receiving of mes-
sages. Due to the differences in the frameworks of two simulators, we describe
the interfaces in NS-2 and SystemC separately next.

NS-2 Interface

In NS-2, the communication among different modules is realized by call-
ing functions send/recv which send/receive data packets between the mod-
ules. Two similar functions sendmsg/recvmsg are provided to process the
co-simulation messages. Function sendmsg is provided and implemented by
the scheduler. During the execution of a type I event, once a Type II event
is generated, a formatted message is created and passed as an argument for
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function sendmsg to run. Function recvmsg is provided by functional modules
while its interface is added as a virtual function in the base class, from which
all the functional modules in NS-2 inherit, so that the scheduler can call this
function in different modules. The implementation of recvmsg is module de-
pendent, thus, each co-simulation module expecting the reception of message
needs to define its own implementation of recvmsg.

SystemC Interface

In SystemC, a special module ns module is created to communicate between
the scheduler and other modules. In the simulation, ns module can be consid-
ered as a regular module which runs NS-2 simulator, thus the communication
between the two simulators becomes the communication between ns module
and other modules. In SystemC, channels are the communication media and
modules use ports to access the channels. In the implementation, two spe-
cial ports send/recv are created as the interface between ns module and other
modules.

ns module communicates with NS-2 through functions sendmsg/recvmsg.
Different from NS-2, SystemC does not allow the immediate processing of the
received message. Therefore, when function recvmsg is called by the scheduler,
ns module will store the message in its buffer and send a processing request to
the scheduler. When the request is granted, ns module will send the message
to other modules through port recv. When other modules send a message to
ns module through port send, ns module will call function sendmsg to send
the message to the buffer.

2.3.4 Platform Usage and Summary

The proposed platform can greatly benefit the design space exploration and
early stage optimization. As shown in Fig. 2.4, in a conventional design with-
out such a platform, a network protocol or algorithm is initially designed and
evaluated by network simulation to obtain network level performance. After
the evaluation, the algorithm will then be implemented in a system testbed to
validate the practical performance including both network performance and
hardware performance. With only evaluations at the network level, the design
may not correctly consider the impact of hardware, which leads to performance
disparity. As a result, modifications are needed to accommodate the system
requirements and such modifications may have to be performed on the testbed
due to the inaccuracy of the simulation. However, hardware level modification
and further validation on the testbed are generally time consuming and dif-
ficult. In the worst case, the entire process may be degenerated to a testbed
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design/implementation process only, invalidating the original design obtained
by network simulation.
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Figure 2.4: The conventional design flow vs the proposed design flow with the
platform.

We can see the gap between the network simulation and the testbed imple-
mentation prevents the efficient interaction between network and system level
designs. Our platform can perfectly fill this gap. The algorithm design can
be directly evaluated on the platform to perform either pure network simula-
tion (by setting the processing delay to 0 at SystemC) or network-hardware
co-simulation. With the hardware correctly modeled, the algorithm can be
designed from a system perspective at the very early stage, reducing the po-
tential modifications in testbed implementation. On the other hand, modifica-
tions can also be validated with co-simulation based on the adequate feedback
from the testbed. This way, the whole design process becomes much more
flexible and efficient with the support of the platform.

To utilize the platform, network protocols and algorithms should be con-
verted into SystemC modules to simulate hardware processing. In practice,
algorithms can be executed either in hardware or software. If an algorithm
is executed in a specific hardware module, for example, an FPGA, hardware
processing can be easily modeled given the strong hardware modeling ability
of SystemC. When it is run in software on a processor, an accurate modeling of
the execution becomes more complex and requires strong hardware modeling
ability, causing a potential burden for network designers. Fortunately, tech-
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niques that automatically convert software into SystemC modules have been
extensively studied [24–27]. Users thus can utilize such tools to generate the
desired SystemC modules for the co-simulation. We will show an example of
such modeling in the following case study.

With the SystemC modules constructed, we can perform network-hardware
co-simulation to evaluate the system performance from both network perspec-
tive and hardware perspective. The evaluation results can then be analyzed
to assist the optimization and refinement on the network protocol, underlying
hardware system or a combination of them.

Finally, we summarize the primary features of the platform as follows.

1. The platform provides powerful modeling capability for both network
and hardware through the co-simulation of NS-2 and SystemC.

2. The platform adopts NS-2 user interface, facilitating the easy use by a
large number of users familiar with NS-2.

3. The co-simulation is mainly accomplished by the schedulers of two sim-
ulators. Since NS-3 has similar scheduling implementation as NS-2, the
network simulator in our platform can be easily upgraded to NS-3 which
is currently released but still under development.

4. The platform provides great flexibility in hardware modeling such that
the users can flexibly partition simulated functions between hardware
and software. Besides, a set of automation tools provided by the Sys-
temC community facilitate the construction of hardware models for net-
work protocols/algorithms on any system architectures.

5. The platform is executed purely in software, without any requirement
on specific hardware support.

2.4 Case Study of Wireless All-to-All Broad-

casting Using Network Coding

The co-simulation of NS-2 simulator and SystemC simulator provides a config-
urable environment for studying network behaviors with hardware awareness.
In this section, we present a case study on the platform that goes through the
entire procedure of the co-simulation to demonstrate its usage and capability.

We consider all-to-all broadcasting in a wireless network that uses network
coding in packet transmissions. All-to-all broadcasting is the most bandwidth
consuming communication operation that can reveal network performance in
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the most stressed scenario. Network coding is a promising generalization of
routing that allows a network node to generate output packets by encoding its
received packets to reduce bandwidth consumption in the network and improve
network throughput. While network coding leads to improved throughput, due
to the extra work in coding/decoding packets, it inevitably increases the pro-
cessing complexity of network nodes as well. However, this type of processing
overhead is difficult to accurately simulate in conventional network simulators,
often leading to inaccurate performance results.

As the case study, we examine a network algorithm that implements wire-
less all-to-all broadcasting with network coding on our platform by taking
hardware processing into consideration. The purpose of this case study is to 1)
reveal the necessary details on conducting a network-hardware co-simulation,
and 2) examine the impact of hardware processing on the performance of this
network coding algorithm.

Next we first introduce the all-to-all broadcasting algorithm based on net-
work coding and analyze its hardware processing by decomposing it into dif-
ferent functional units. Then we present the hardware modeling of intra-node
processing on the platform. We will give the experimental results in Section
2.5.

2.4.1 Wireless All-to-All Broadcasting with Network Cod-
ing

The concept of network coding was first introduced by Alswede, et al. in [4]
to increase multicast capacity in wired multicast networks. The basic idea
is that instead of using the traditional way to forward information flows at
intermediate nodes, network coding combines independent information flows to
better utilize network bandwidth and achieve higher throughput. Later, linear
coding was introduced and proved to be sufficient to achieve the theoretical
optimum of the information rate [7]. While much work has been done on
finding optimal coding schemes, a random network coding scheme was also
proposed in [8] to provide near-optimal performance and make network coding
more practical.

Although earlier work on network coding was for wired networks, recently,
this promising technique has been extended to wireless networks. By utilizing
the characteristics of the broadcast channel, information in a wireless network
is mixed and forwarded at intermediate nodes to improve network performance
in terms of throughput, energy efficiency, etc. In [10] the benefit of network
coding in wireless networks was first studied. Since then, many algorithms have
been proposed to utilize network coding in both wireless unicast and multicast.
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More recent work has been focused on the algorithms that can implement
wireless network coding in practical networks. For example, random coding
has been adopted in unicast and multicast to achieve energy efficiency and
increase throughput [11, 18], while algorithms using opportunistic coding for
wireless unicast and multicast were proposed in [16, 17].

Since this case study attempts to examine the processing impact on the
network algorithm rather than to design a new network coding algorithm, we
adopt the algorithm introduced in [11], where random network coding is used
to achieve high efficiency on all-to-all broadcasting. This algorithm is the first
distributed algorithm in its category and can be easily applied to a wireless
network environment.

Consider a wireless ad hoc network with n nodes, each sending a packet to
all other nodes. For simplicity, we assume the packets are of the same length.
Let xi denote the packet that node i needs to send. With network coding,
the packet sent or received by a node is a linear combination y of the packets
such that y = Σn

i=1gixi, where gi is the coding coefficient on xi and vector
g = {g1, g2, . . . , gn} is the coding vector of packet y. In each transmission,
a new packet and its coding vector are generated by randomly and linearly
combining the existing packets and their coding vectors. The coding vector is
sent along with the packet. If the coding vector associated with the incoming
packet is linearly independent of all the coding vectors received earlier, the
packet is called innovative. When a node receives n innovative packets, which
means that the n corresponding coding vectors form a full rank n× n matrix,
the original packets can be obtained by solving the following equation y1

...
yn

 =

 g11 · · · g1n
...

. . .
...

gn1 · · · gnn


 x1

...
xn

 .

When there are multiple packets to send from each node, we group the
packets into generations such that a generation contains a single packet from
each node. The all-to-all broadcasting starts from the first generation and
proceeds to the next generation when the previous one is successfully decoded.

The algorithm in [11] is mainly concerned with the energy consumption
of all-to-all broadcasting by counting the number of transmissions performed
to achieve broadcasting. Fewer transmissions usually cost shorter time and
thus yield better throughput. However, to actually evaluate the algorithm in
terms of throughput, several practical issues that were ignored in the original
algorithm should be reconsidered.

The first issue is transmission scheduling. The algorithm requires that
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every node keeps broadcasting its coded packets to neighbor nodes until all
packets are decoded. While the original algorithm adopts a TDMA-based
approach, which may not be applicable in large networks, we adopt the com-
monly used MAC 802.11 in our experiment. At the network layer, we allow
each node to generate a coded packet for transmission in a fixed time inter-
val, which is used to reduce the impact of potential transmission collisions.
In MAC 802.11, broadcasting packets are transmitted without acknowledg-
ments, making transmissions unreliable. Although carrier-sensing can prevent
neighbor nodes from concurrent transmissions, it cannot prevent non-adjacent
nodes from concurrent transmissions due to the hidden-terminal problem. A
short time interval may lead to severe transmission collisions and hence down-
grade the performance. On the other hand, a long time interval would reduce
channel utilization and hence the throughput. Therefore, we set the time in-
terval to (Nnb+1)(Ttran+Dmax), where Nnb is the number of neighbors, Ttran is
the transmission time of a packet and Dmax is the longest backoff delay before
transmission. This is equivalent to the time interval when an ideal scheduling
strategy fairly schedules all the transmissions that saturate the channel with-
out collisions. Notice that such setting may not be the optimal strategy but
serves as a necessary parameter for the evaluation, which focus more on the
effect of processing than on the broadcast performance itself.

The second issue is to decide when each node should proceed to the next
generation. A natural approach is that each node notifies the neighbors when
the packets are decoded, then when a node has received the notifications from
all its neighbor nodes, it can proceed to the next generation. However, since
broadcasting in MAC 802.11 is unreliable transmission, there is no way to
confirm if the notification is correctly received by neighbors. Our solution is to
impose a limit on the maximum number of transmissions mt and the minimum
number of notifications mn. Once a node decodes all the packets, it sends
the coded packets along with the notification at least mn times. After that,
it continues to transmit until the node receives the notifications from all its
neighbors or the number of transmissions reaches mt. Thus mt allows the node
to proceed eventually whilemn allows neighbors to receive the notification with
a high probability. The pseudo code of the enhanced algorithm is shown in
Table 2.2.

2.4.2 Function Decomposition of Intra-node Processing

After describing the implementation issues of the algorithm, we now consider
modeling the intra-node hardware processing in order to perform network-
hardware co-simulation. Next, we decompose the intra-node processing into
separate functions and describe the main operations of each function.
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Table 2.2: Intra-node Procedure in All-to-all Broadcasting
Transmitting procedure:
while TRUE

if the packets are decoded
proceed to the next generation when permitted

end if
Generate a coding vector randomly
Encode the packet
Send the packet
Wait for next time interval

end while

Receiving procedure:
while receive a packet

if it is from another generation
Discard the packet and wait for the next packet

end if
Store the notification of sender if any
if the packet is innovative

Store the packet in the buffer
end if
if the buffer has n packets

Decode the packets
Enable notification and start the transmission counter

end if
end while

23



In the all-to-all broadcasting algorithm, the intra-node processing can be
divided into the following five routines based on their functions:

1. Receiving routine. The incoming packets are stored in a temporary
buffer.

2. Checking routine. This routine checks whether the packets in the buffer
are innovative. An innovative packet has a coding vector independent
of the coding vectors already received. The dependency check is accom-
plished by checking whether the rank of the matrix composed of the
coding vectors increases when the incoming coding vector is added to
the matrix. If a packet is innovative, it will be stored in the receiving
buffer; otherwise, the packet will be disposed immediately.

3. Encoding routine. When a node is scheduled to transmit, a new encoded
packet will be created by performing a random linear combination among
all the packets in the receiving buffer of the node.

4. Transmitting routine. The prepared packet will be broadcast by the
node.

5. Decoding routine. This routine starts when n innovative packets are
received, where n is the generation size. The decoding routine is similar
to the checking routine except that Gaussian Elimination is performed
on both coding vectors and the packet data.

We assume that the receiving and transmitting routines are performed by
specific transceiver, and their processing times are mainly determined by the
network transmission and are unnecessary to be considered in the hardware
modeling. Besides, the execution of the decoding routine occurs only when all
packets in a generation can be decoded and thus is ignored due to its relatively
small impact on the broadcasting time. In the following analysis, we consider
the checking and encoding routines.

The checking routine computes the rank of the code matrix by Gaussian
Elimination. Given generation size n, the matrix size is at most n × n. A
primitive implementation of checking routine will take O(n3) time, while the
encoding routine encodes a packet in O(n(n+P )) time, where P is the packet
length. To speedup the process, we adopt the optimization technique proposed
in [18]. For the checking routine, the code matrix is stored in row echelon
form so that the time complexity is reduced to O(n2). A new encoded packet
is always pre-computed when the MAC layer is transmitting the last packet
to minimize the processing delay. When an innovative packet arrives, the pre-
computed packet should be updated by another encoding routine, which takes
O(n+ P ) time.
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2.4.3 Hardware Modeling for Intra-node Processing

Now we describe the hardware modeling for intra-node processing. We con-
struct a SystemC module representing the hardware system of the node as
shown in Fig. 2.5. Such a module will be created for each node in the sim-
ulation and consists of four units. The ns module as already mentioned in
Section 2.3, takes charge of the packet exchange with NS-2. The checking
and encoding units simulate the hardware execution of two routines, whose
behavior is determined by the particular system architecture of the network
node. The os module manages the scheduling of multiple tasks in the system.
As can be seen, the modeling focuses on the behavior of checking and encod-
ing routines as they have a major impact on the algorithm performance. To
realize co-simulation, we also need to construct a connecting point in NS-2 to
incorporate the hardware module in the network simulation. Since the two
routines are at network layer, we construct a connecting network layer agent
in each node. The agent inherits the same interface used in other agents and
its main function is to exchange the packets between other modules in NS-2
and the SystemC module. From the network perspective, the agent can be
considered as an ordinary NS-2 agent that implements the network coding
algorithm with accurate hardware timing.

Packets
from
NS−2

ns_module os_module

encoding_module

checking_module

Packets
toNS−2

Packets

Request
schedule

Request
schedule

Simulate the

Packet forwarder
execution of routines

Schedule the

checking routine

Simulate the
encoding routine

Figure 2.5: Structure of SystemC module simulating intra-node hardware pro-
cessing.

To achieve accuracy in hardware simulation, the modeling of the two func-
tioning routines is very important. As a hardware description language, Sys-
temC can easily model the processing if routines are implemented in some
designated hardware. Here we consider that routines are executed at software
level on a MIPS processor, which is widely used in commercial wireless routers
such as Cisco Linksys series.

The SystemC community has provided a variety of modeling techniques
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to model the processing. The most accurate approach is the utilization of
Instruction Set Simulator (ISS) to simulate the hardware operation of the
MIPS processor. The routines are executed in the ISS the same way as in
the real processor. While this approach can be quite time consuming, a much
faster alternative adopted in our work is to use SystemC’s transaction level
modeling (TLM) to estimate the execution time of each routine during the
software level execution. This estimation is accomplished by annotating the
source code of the routine with associated timing delta for each source line.
The reported estimation accuracy is generally above 90% [24–26].

The approach we adopt is similar to the one described in [25], thus we give
only a brief introduction here. To obtain the timing delta of the source code, we
first cross-compile the source code into the binary code for MIPS with GNU
Compiler Collection (gcc). For each source line, we find the corresponding
binary code and estimate the execution cycles based on the pipeline structure,
instruction issue mechanism, cache behavior, branch prediction, etc. As the
binary code can be directly executed on the target processor, such estimation
provides very high accuracy with a correct description of the architecture.
With the estimation, instrumentation code is then inserted in the source code
to simulate the hardware delay. For the efficiency consideration, the insertion
is performed once for each basic block, in which statements are sequentially
executed without conditional branches. The instrumented source code is then
wrapped in a SystemC module, which represents the hardware module for the
corresponding routine.

In our example, the target processor is a MIPS32 M14Kc core with a 5-
stage pipeline. It is a scalar processor with a fixed 1-cycle branch penalty.
For simplicity, we omit the cache behavior simulation in the cycle estimation.
Nevertheless, such estimation provides an accuracy of above 93% as reported
in [25].

In the network algorithm, the execution of checking and encoding rou-
tines could overlap, which requires the modeling of multiple task scheduling.
We treat the routines of checking or encoding a packet as an individual task
and construct os module to schedule the task executions. Specifically, in the
SystemC modules that simulate the routines, the original delay simulation
statements are replaced by a function call to os module with the requested de-
lay passed as a parameter. os module that maintains the status of all running
modules will then decide when to process the requests based on the scheduling
policy.
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2.5 Experimental Evaluation

In this section, we present the experimental results for the wireless all-to-all
broadcasting algorithm with network coding and analyze the impact of hard-
ware processing on its overall performance. In addition, we examine the exe-
cution time of the co-simulation running this algorithm to better understand
the runtime performance of the platform.

2.5.1 Experiment Setup

We evaluate the broadcasting algorithm in two networks: a 5 × 5 grid with
25 nodes and a 6 × 6 grid with 36 nodes. The distance between neighboring
nodes is 10m and each node can broadcast only to its neighbors in the grid.
The channel bandwidth B is set to be either 54Mb/s, 11Mb/s or 2Mb/s
to represent different network conditions. The MAC layer adopts simplified
MAC 802.11 where a random delay is inserted before the transmission when
the channel is sensed idle. Packets are of a fixed length, which is set to be
100B or 1000B to reveal the impact of the packet length.

For hardware modeling, we assume that each node has a MIPS32 processor
as we previously modeled with CPU frequency at 240MHz, a typical frequency
used in System-on-Chip (SoC) for routers. The task scheduling policy is non-
preemptive if not specified otherwise.

In the algorithm, mt is set equal to number of nodes and mn = 4. The
performance metric is the time when ten generations of packets are successfully
received by all nodes in the network. Each experiment is repeated 10 times
and the average is used for evaluation.

2.5.2 Verification of Synchronization Mechanism

We verify the synchronization mechanism in co-simulation by comparing the
simulation results of the broadcasting algorithm in only NS-2 simulation with
those in co-simulation on the proposed platform with the processing delay set
to 0. For fairness consideration, we use the same seed for random number
generation. The results show that both approaches complete the broadcasting
with the same finish time, showing that co-simulation will not disturb the
network behavior with the absence of processing delay.

2.5.3 Impact of Hardware Processing

To illustrate the impact of hardware processing on the overall performance,
we compare the simulation results when processing delay is not considered
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and when the hardware processing is simulated in the co-simulation. Fig. 2.6
depicts the performance comparison under different network configurations.
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Figure 2.6: Comparison of broadcasting finish time with different network
configurations, where n represents the number of nodes or the generation size,
P is the packet length and B is the channel bandwidth.

In Fig. 2.6, the finish time without processing delay is approximately in
reverse proportion to the bandwidth, which in turn is reversely proportional
to the packet transmission time given the fixed packet length. Therefore,
we can infer from such correlation that the number of transmissions in the
broadcasting does not vary a lot with different transmission speeds so that
the finish time is mainly determined by the packet transmission time or the
bandwidth.

On the contrast, when the processing delay is simulated, although the finish
time decreases with the increase of the bandwidth, the reverse proportion does
not hold. For example, in Fig. 2.6(a), the finish time drops less than 20%
when the bandwidth increases from 11Mb/s to 54Mb/s, which indicates a
varying impact of processing delay on the overall performance with different
bandwidths. In fact, the processing delay causes an increase of 27%, 47% and
345% on the finish time when the bandwidth is 2Mb/s, 11Mb/s and 54Mb/s,
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respectively. Thus, the processing delay can severely degrade the broadcasting
performance.

Fig. 2.6 also shows the performance comparison under different generation
sizes and packet lengths. We see that the processing impact is relatively steady
under different configurations except for the case when B = 54Mb/s. Higher
impact can be observed with a shorter packet length and a larger generation
size, both contributing to relatively higher overhead of the coding vector and
longer execution time of the checking routine. The highest impact can be found
at the configuration with P = 100B, n = 36: the finish time even exceeds the
value with a lower bandwidth 11Mb/s. This corresponds to the fact that such
configuration has the longest execution time of both checking and encoding
routines, which is even longer than the time interval. Thus, the broadcast
finish time is mainly determined by the processing instead of the time interval.
In this case, a smaller time interval may generate packets before the received
packets are examined, reducing the percentage of innovative packets and hence
the broadcast performance.

2.5.4 Processing Delay

To better understand the effect of processing time, we examine the processing
time of both encoding and checking routines in the whole simulation for a node
in the center of the grid, as plotted in Fig. 2.7. The two cases we examine are
B = 2Mb/s, n = 25, P = 100B and B = 54Mb/s, n = 36, P = 1000B. The
corresponding time intervals are 2550µs and 850µs respectively as the node
has 4 neighbors. As can be seen from the figure, the execution time increases
when the number of innovative packets in the nodes increases and such pattern
is repeated 10 times, corresponding to the broadcasting of 10 generations.

Specifically, the execution time of the encoding routine is much longer
than that of the checking routine since the encoding routine depends on both
packet length and generation size while the checking routine depends only on
the latter. In addition, there are also some “abnormal” points in Fig. 2.7 that
do not match the complexity analysis, which is due to the contention in the
use of CPU. With a single CPU adopted in the node, routines have to wait
for the completion of the ongoing routine in the CPU, prolonging the entire
execution time. Typically, we see there are more obviously abnormal points
for the checking routine in Fig. 2.7(b), as in this case the encoding routine
has a relatively longer execution time, increasing the possibility of contention
for the checking routine.

In Fig. 2.7(a), we see the maximum execution time is around 600µs, shorter
than the time interval 2550µs. However, we still see a 20% performance degra-
dation. This indicates that the execution of both routines always incur certain
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Figure 2.7: Distribution of the processing time of encoding and checking rou-
tines.
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delay on the transmission and reception of innovative packets. On the other
hand, in Fig. 2.7(b), the execution time of the encoding routine can easily be-
come longer than the time interval 850µs. Although such delay severely affects
the performance, it still has less time to finish the broadcast than other cases
with lower bandwidths. This observation suggests that higher bandwidth is
still encouraged in this broadcast algorithm in spite of the more severe impact
of processing.

To validate our hardware modeling, we further compare the simulated exe-
cution time with the real execution time on the same MIPS processor we have
modeled. We measure the execution time of encoding routine on 25 packets
with different packet lengths. Fig. 2.8 shows the time difference between the
real execution time and the simulated execution time, normalized to the real
execution time. For fairness, the time difference is the average of 50 individ-
ual comparisons, each with a different random seed. One can see that our
simulation provides very high accuracy, over 90% in all cases. Moreover, the
simulation has a better accuracy with larger packet length. Since packets are
stored and processed sequentially, longer packets can better enjoy the spatial
locality, leading to higher cache hit ratio. Thus the simulation without cache
behavior yields to results closer to the real execution time.
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Figure 2.8: Time difference between the real execution and simulation, nor-
malized to the real execution time.
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2.5.5 Impact of Task Scheduling

The observation of the interaction between two routines in previous experi-
ments enables us to examine the impact of task scheduling on the broadcasting
performance. Since the round-robin scheduling is not suitable as the execution
time of either routine is too short to be broken into multiple execution slices,
we only consider preemptive scheduling here.

The preemptive scheduling always allows the routine with the highest pri-
ority to run. In this experiment, we fix the priority of the encoding routine to
2 and change the priority of the checking routine from 1 to 3 to provide differ-
ent priority strategies. Note that when the priority is set to 2, the scheduling
becomes non-preemptive, which is the scheduling we adopted in previous ex-
periments. When we set the priority of the checking routine to 1, we can see
that the broadcasting cannot be completed. In this case, the encoding routine
with higher priority will always occupy the CPU, preventing the checking rou-
tine from receiving innovative packets. Therefore, we set the priority of the
checking routine to 3 in the preemptive scheduling in this experiment.

Table 2.3 provides the performance comparison under preemptive schedul-
ing and non-preemptive scheduling, in which a negative value corresponds to
an increased finish time by adopting the preemptive scheduling. We can see
that the preemptive scheduling outperforms non-preemptive scheduling with
a smaller generation size and a higher bandwidth. A smaller generation size
means relatively short execution time of the checking routine, while a higher
bandwidth leads to a shorter time interval of which the checking routine will
occupy too much fraction. In this case, letting the checking routine run first
speeds up the reception of innovative packets without substantial increase in
the execution time of the encoding routine, thus reducing the finish time.
Otherwise, two schedulings yield very similar results.

Table 2.3: Performance comparison between preemptive and non-preemptive
scheduling (where the value is the reduction on finish time under preemp-
tive scheduling divided by finish time under non-preemptive scheduling, and
a negative value means preemptive scheduling increases the finish time)

B = 54Mb/s B = 11Mb/s B = 2Mb/s

n = 25, P = 100B 13.9% 8.2% -0.9%

n = 25, P = 1000B 3.5% 9.3% -0.3%

n = 36, P = 100B 7.5% 0.6% -0.7%

n = 36, P = 1000B -0.4% -0.2% -0.3%
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2.5.6 Impact of Accurate Modeling

To better show the necessity and impact of accurate modeling with co-simulation
, we compare the co-simulation result with the result when the experiment is
performed in pure NS-2 with the total processing delay largely estimated. In
this simulation, we estimate the processing delay based on the time complexity
of the routines. Thus, the processing delays of checking and encoding routines
are calculated as c1 · r · n and c2 · r(n + P ), where r is the rank of the cur-
rent coding matrix. We then use the processing delay obtained in SystemC
to calculate the constants c1 and c2, each being the average of 500 samples.
With these calculations, the estimated processing delay is actually a close ap-
proximation of the processing delay in SystemC. For fair comparison, we also
design an os module in NS-2 to implement the non-preemptive scheduling.

Fig. 2.9 presents the results with estimated processing delays normalized
to the co-simulation results. To further show the impact of deviated delay
estimation, we also perform experiments when the simulated delay is either
0.8 or 1.2 times of the delay estimated above. One can see that when n = 25
and P = 100B, the results with estimated delays are very close to the co-
simulation results. However, when n and P increases, the difference becomes
more obvious, especially with higher bandwidth. When n = 36, P = 1000B
and B = 54Mb/s, the finish time with estimated delays is about 30% larger
than the co-simulation result. In addition, through the results with deviated
delay estimation, we also see that if the processing is not correctly estimated,
which is common without the assistance of the real hardware or the SystemC
model, the result difference becomes much larger. Such obvious difference in-
dicates that the accurate modeling through co-simulation is required to obtain
the accurate results, especially when the actual processing is complicated.

We further compare the detailed behavior of individual nodes during the
broadcasting with both simulation approaches. Fig. 2.10 shows the decoding
time of the first generation at two nodes under co-simulation and NS-2 with
estimated delays when n = 25, P = 100B and B = 54Mb/s. The decoding
time is defined as the time instant when the node receives n innovative coded
packets and can decode the current generation of packets. The experiment is
repeated 10 times with different seeds for random coding coefficient genera-
tion. The clear difference one can observe in Fig. 2.10 is that results under
NS-2 simulation are rather stable while results under co-simulation have large
variations. On the contrary, the two simulation approaches yield very simi-
lar finish time under the same configurations. Such contrast indicates that in
spite of the close results sometimes obtained in two simulation approaches on
certain performance metric, the detailed behavior can still have large discrep-
ancies. Therefore, to examine the detailed network/hardware behavior, the
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Figure 2.9: The broadcasting finish time with the processing delays estimated
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the packet length and B is the channel bandwidth. The results are normalized
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co-simulation, which models processing delays accurately, is irreplaceable.
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Figure 2.10: The decoding time of the first generation at node 3 and node 11
under co-simulation and NS-2 simulation with estimated delays. The network
is configured as n = 25, P = 100B and B = 54Mb/s. Node 3 and node 11 are
at the coordinates (0,3) and (2,1) in the grid, respectively.

2.5.7 Evaluation Summary and Potential Optimization

From the above evaluation results, we can see that the processing of network
coding in low-end routers has a non-negligible impact on the overall perfor-
mance of the broadcasting algorithm. Such impact grows with the increase
of channel bandwidth, but there is no linear correlation between them. The
actual impact is determined by a combination of the network algorithm, hard-
ware architecture, OS scheduling policy and network configurations, and thus
can only be examined on a hardware-aware platform. Finally, despite of such
impact, higher network bandwidth should be used as it is likely to yield better
overall performance.

Based on the evaluation, we can also perform the following potential opti-
mizations.

• From the perspective of network, the transmission scheduling can be
further examined to accommodate the existence of hardware processing
delay.

• From the perspective of OS, variable priority could be adopted to further
improve the performance.

• From the perspective of hardware, we may choose processors with higher
processing capacity or multi-processors to reduce the processing delay.
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We may also use specific hardware such as FPGA to speedup the pro-
cessing.

• All these optimizations can be evaluated on the proposed platform be-
fore proceeding to the real implementation, shortening the overall design
cycle.

2.5.8 Execution Time of Co-Simulation

As we provide the capability of co-simulation to simulate more accurate net-
work scenarios, the speed of the co-simulation is a concern, which is jointly
determined by the simulation speeds of both NS-2 and SystemC. In general,
hardware simulation is considered much slower than network simulation, pos-
ing a challenge on our co-simulation scheme: If SystemC simulation is per-
formed at a much slower speed, co-simulation will not be able to support
experiments for large scale networks that can be originally simulated in NS-2.
In this subsection we analyze the execution time of co-simulation to better
understand the capability of the platform in terms of simulation speed.

As aforementioned, the co-simulation is performed in two concurrent pro-
cesses, each corresponding to the execution of a simulator. According to the
scheduling algorithm described in Section 2.3, at any time instant, when one
process runs the simulation, the other is actually waiting for messages from its
counterpart. Thus, the co-simulation logically runs in a sequential way with
two processes performing the actual simulation and the communication alter-
natively. We define a simulation slice as the continuous time period in which
a process performs simulation without message exchanging. Similarly, we also
call each communication as a simulation slice in communication. The execu-
tion time of co-simulation can then be divided into a sequence of simulation
slices.

We measure the execution time of each simulation slice in our network
coding example by a system function in the program, whose resolution is at
µs. In the experiment, the packet length is set to 1000B and the generation
size is set to 36. The computer used in the experiment is equipped with two
64-bit dual-core Intel Xeon processors at 3.8GHz, 8G DDR-2 400 SDRAM and
2M L2 Cache.

Table 2.4 summarizes the statistics of the execution time measured for
each simulation slice in both simulators and in communication. The total
execution time is about 54.95s. We can see that the execution time of SystemC
is about 10 times as that of NS-2, which is partly due to that the network
coding algorithm is implemented in SystemC. To reveal the actual simulation
slowdown with co-simulation, we also obtain the execution time when the
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algorithm is implemented only in NS-2, which is 23.8s under the same network
configurations. In comparison, the co-simulation increases less than 2 times
of the execution time, indicating the hardware simulation speed is comparable
with the network simulation speed. This is because our hardware modeling at
transaction level accurately estimates the processing time without involving
too much detailed hardware operations. Therefore, we believe that appropriate
hardware modeling can effectively keep the simulation slowdown within an
acceptable degree in the co-simulation.

We also observe that each simulation slice occupies a very small portion
in the total execution time, which indicates frequent inter-process commu-
nications during the co-simulation. These communications may cause large
overhead if not efficiently implemented. As in the table, with the message
queue mechanism, the total communication time is within 1% of the total
execution time, showing the efficiency of the implementation.

Table 2.4: Statistics of execution times of simulation slices in both simulators
and in communication (where the time unit is µs)

Simulation Slice Sum Ave Max Min

NS-2 4986091 327 13578 16
SystemC 49562317 3247 41488 16

Communication 404549 13 1352 1

2.6 Conclusions

In this chapter, we have presented an efficient, flexible network platform to sup-
port the hardware-aware performance study of network algorithms/protocols.
Based on the co-simulation of NS-2 and SystemC, the platform provides a net-
work environment where both network traffic and intra-node processing can
be well modeled and configured. We have run a case study of wireless all-to-all
broadcasting with network coding on the platform to demonstrate the usage of
the platform. From the case study, we observed that hardware processing has
a great impact on the performance evaluation of network algorithms, which
may severely affect the actual performance obtained. We also showed that
the impact from hardware processing can be effectively examined under dif-
ferent network and hardware configurations with the support of the platform.
Therefore, we believe such a platform is a very useful tool for studying and
developing network algorithms and protocols.
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Chapter 3

On-Line Adaptive Compression
in Delay Sensitive Wireless
Sensor Networks

Lossless compression could be a processing intensive network algorithm for
wireless sensors. In this chapter, we first utilize the platform introduced in
Chapter 2 to evaluate the actual impact of compression on packet delay during
data collection. Based on the evaluation we then design two adaptive com-
pression algorithms to maximize the compression benefit in practical wireless
sensor networks.

The organization of this chapter is as follows. Section 3.1 introduce the
background and motivation. Section 3.2 introduces the LZW compression
algorithm and the approach to measuring its execution time in sensor nodes.
Section 3.3 characterizes the compression effect on packet delay under various
network configurations. Section 3.4 describes the on-line adaptive algorithm
in detail, including the analysis of the queueing model and the algorithm
implementation in sensor nodes. Section 3.5 examines the performance of
compression under the proposed adaptive algorithm. Section 3.6 discusses the
enhancement and evaluates the enhanced adaptive algorithm. Finally, Section
3.7 discusses the related work and Section 3.8 concludes the chapter.

3.1 Introduction

Delay sensitive wireless sensor networks require real-time delivery of sensing
data to the data sink. Such networks are widely adopted in various real-
time applications including traffic monitoring, hazard detection and battle-
field surveillance, where decisions should be made promptly once the emer-
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gent events occur. Compared to general WSNs where energy efficiency is the
primary design concern, delay sensitive WSNs demand more on minimizing
the communication delay during data delivery. Recent study in this area has
mainly focused on the algorithm design of efficient routing strategies and data
aggregation to reduce such delay and provide real-time delivery guarantees
[29–32]. In this chapter, we approach this problem from a different and or-
thogonal angle by considering the effect of data compression. Compression
was initially adopted as an effective approach to saving energy in WSNs. In
fact, it can also be used to reduce the communication delay in delay sensitive
WSNs.

In WSNs, compression reduces the data amount by exploiting the redun-
dancy resided in sensing data. The reduction can be measured by the com-
pression ratio, defined as the original data size divided by the compressed data
size. A higher compression ratio indicates larger reduction on the data amount
and results in shorter communication delay. Thus, much work in the litera-
ture has been endeavored to achieve better compression ratio for sensing data.
However, from the implementation perspective, most of the compression algo-
rithms are complex and time-consuming procedures running on sensor nodes
which are very resource constrained. As the processing time of compression
could not be simply neglected in such nodes, the effect of compression on the
total delay during data delivery becomes a tradeoff between the reduced com-
munication delay and the increased processing time. As a result, compression
may increase rather than decrease the total delay when the processing time
is relatively long. In this chapter, we will first analyze this effect in a typical
data gathering scheme in WSNs where each sensor collects data continuously
and delivers all the packets to a data sink. Then we will design an on-line
adaptive algorithm that performs compression only when compression can ac-
tually reduce the total delay to guarantee the network to achieve the shortest
total delay under all conditions.

To analyze the effect of compression, we need to first obtain the processing
time of compression, which depends on several factors, including the compres-
sion algorithm, processor architecture, CPU frequency and the compression
data. Among numerous compression algorithms, in this chapter we use the
Lempel-Ziv-Welch (LZW) [33] as an example, which is a lossless compression
algorithm suitable for sensor nodes. We implement the algorithm on a TI
MSP430F5418 microcontroller [36], which is used in the current generation
of sensor nodes. Our experiments on typical sensing data reveal that the
compression time in such a system is comparable to the transmission time of
packets, thus cannot be simply ignored. With our hardware aware network
platform, we are able to accurately measure the overall network performance
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through the co-simulation. Our simulation results show that compression may
lead to several times longer overall delay under light traffic loads, while it can
significantly reduce the delay under heavy traffic loads and increase maximum
throughput.

Since the effect of compression varies heavily with network traffic and hard-
ware configurations, we design an on-line adaptive algorithm that dynamically
makes compression decisions to accommodate the changing state of WSNs. In
the algorithm, we adopt a queueing model to estimate the queueing behavior
of sensors with the assistance of only local information of each sensor node.
Based on the queueing model, the algorithm predicts the compression effect
on the average packet delay and performs compression only when it can reduce
packet delay. By conducting extensive simulations on our experimental plat-
form, we show that the adaptive algorithm can make decisions properly and
yield near-optimal performance under various network configurations. We fur-
ther propose an algorithm enhancement that removes the dependency on the
network topology with only a small additional transmission overhead. Simu-
lations show that the enhanced adaptive algorithm can achieve better perfor-
mance in more practical networks.

3.2 LZW Compression in Sensor Nodes

LZW algorithm has been shown to be a suitable compression algorithm for
sensor networks. Compared to other compression algorithms, LZW is rela-
tively simple but yields a good compression ratio for sensing data as shown in
[34]. In this section, we briefly introduce the LZW algorithm.

LZW compression is a dictionary based algorithm that replaces strings of
characters with single codes in the dictionary. The first 256 codes in the dictio-
nary by default correspond to the standard character set. As shown in Table
3.1, the algorithm sequentially reads in characters and finds the longest string
s that can be recognized by the dictionary. Then it encodes s using the cor-
responding codeword in the dictionary and adds string s+c in the dictionary,
where c is the character following string s. This process continues until all
characters are encoded. A more detailed description of the LZW algorithm
can be found in [33].

We will focus on the compression process, as the decompression process
is performed at the sink node, which is more powerful thus can perform the
decompression in relatively short time. To adapt the LZW compression to
sensor nodes, we set the dictionary size to 512, which has been shown to yield
good compression ratios in real-world deployments [34].

To achieve a good compression ratio, which is the ratio of the original data
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Table 3.1: LZW compression algorithm

STRING = get first character
while there are still input characters

C = get next character
look up STRING+C in the dictionary
if STRING+C is in the dictionary

STRING = STRING+C
else

output the code for STRING
add STRING+C to the dictionary
STRING = C

end if
end while
output the code for STRING

size to the compressed data size, the string should be long enough to provide
sufficient redundancies. Thus, the LZW algorithm is more suitable for WSNs
that collect heavier load data, such as images and audio clips. Even in the
compression algorithms specifically designed for this type of data, the pro-
cessing in the algorithms could be complex and time-consuming. Hence, our
evaluation result on the LZW algorithm can also provide guidance for adopting
these algorithms. In addition, in large scale WSNs, distant nodes require mul-
tiple hops of transmissions to reach the sink and the nodes closer to the sink
may endure unaffordable traffic. In this case, aggregation is often used (e.g.,
in cluster-based networks) to reduce the traffic and such aggregated packets
consisting of several lighter load packets are also suitable for compression.

3.3 Experimental Study of Compression Ef-

fect on Packet Delay

In this section, we study the compression effect on packet delay for data gath-
ering in WSNs. We consider the all-to-one data gathering scenario where all
sensors continuously generate packets and deliver them to a single sink. The
performance metric used is the end-to-end packet delay, which is the interval
from the time a packet is generated at the source to the time the packet is
delivered to the sink. To evaluate the compression effect, we compare the
end-to-end packet delay with compression and without compression. In the
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rest of the chapter, we refer to these two schemes as compression scheme and
no-compression scheme, respectively.

3.3.1 Experimental Setup

We examine the compression process on a TI MSP430F5418 microcontroller,
which is used in the current generation of sensor nodes. It is a 16-Bit Ultra-
Low-Power MCU with 128KB Flash and 16KB RAM. The CPU has a peak
working frequency of 18MHz, a very high frequency among the current gener-
ation of sensor nodes.

The experiments are conducted in our implemented platform. To simplify
the evaluation, we examine the performance on a 2D grid wireless network.
Two networks of a 5×5 grid and a 7×7 grid with the sink at the center of each
grid are considered. In the simulation, the transmission range is set to 16m
and the distance between neighboring nodes is 10m and 15m, respectively,
to create different network topologies. The packet generation on each sensor
node follows an i.i.d. Poisson process, and we assume a fixed packet length
for all the packets generated in a single experiment. Two different packet
lengths (256B and 512B) are used to create different compression ratios and
processing delays.

At the network layer, we adopt the multi-path routing strategy proposed
in [37]. Specifically, each sensor is assigned a level number, which indicates
the minimum number of hops required to deliver a packet from this sensor
to the sink. Such information can be obtained at the initial setup in the
sensor deployment. A sensor with a level number i is called a level i node.
A level i node only forwards the packets to its level i − 1 neighbors. Such
a routing strategy is easy to implement, though may not necessarily yield
the best real-time performance. However, since no inter-packet compression is
involved in our compression strategy, the choice of the routing strategy will not
substantially affect the performance evaluation that aims at the compression
algorithm.

As we consider delay sensitive networks where packet delay rather than
energy efficiency is the primary concern, we adopt the commonly used 802.11
protocol as the MAC layer protocol, and the wireless bandwidth is set to
1Mb/s. The data set is automatically generated by the tool described in [38],
which provides a good approximation on the real sensing data in the evaluation
of several representative network applications. We use such synthetic data so
that our simulation can be performed sufficiently long to capture the steady
state behavior of the network without exhausting the simulation data.

Compression is performed on each packet when it is generated at the source
node. Since each sensor is equipped with a sequential processor, multiple pack-
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ets are served in the First-Come-First-Serve order and a sufficiently large buffer
is assumed so that no packets are dropped at the compression stage. The com-
pression process is simulated according to the estimation approach described
in Section 3.2. The CPU frequency is 18MHz. With these settings, we obtain
that the average compression ratio is 1.25 and 1.6 when the packet length is
256B and 512B, respectively. The average processing delay is 0.016s for 256B
packets and 0.045s for 512B packets. The delays are further compared with
the measurements on the real hardware and the simulation accuracy is over
95%. Besides, the processing delay could be increased if lower CPU frequen-
cies or more complex compression algorithms are adopted. For example, it is
suggested that the Burrows-Wheeler Transform (BWT) [54] can be performed
on the sensing data to assist the subsequent LZW compression to obtain better
compression ratio. Such processing delay can greatly affect the performance
of high resolution mission-critical applications, including real-time multime-
dia surveillance and other applications with timeliness requirement, where the
extra delay could be critical for some packets to meet their deadlines.

3.3.2 Experimental Results

End-to-End Packet Delay

Based on the routing strategy, a packet generated at a level i node requires
i-hop transmissions to reach the sink, resulting in different packet delays for
nodes at different levels. In this subsection, we examine the average packet
delay for all the nodes at the same level. Fig. 3.1 shows the average delays of
different levels in the 5× 5 network with neighboring distance set to 15m and
the packet length set to 512B.

The primary observation drawn from the figure is that compression has a
two-sided effect on the real-time performance depending on the packet gen-
eration rate. When the rate is low, compression clearly increases the average
delay at each level. For example, when the rate is 2, the average delay of level
1 is increased by about 2.7 times from 13.6ms to 51.5ms when compression
is adopted. Such increase is also observed for other levels, the least of which
is 75% for level 4. Note that under such light traffic load, the delay is almost
the packet transmission time due to little contention for the wireless channel.
Since the packet transmission time reduced by compression is much less than
the increase caused by the compression processing time, the overall delay in-
creases, indicating a negative effect of compression. We also notice that such
increase is smaller for nodes at higher levels, which can be explained by the
fact that nodes at higher levels require more hops of transmissions to reach
the sink while each transmission is shortened due to compression. Hence, their
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Figure 3.1: Average packet delays for packets generated at different levels.

delay increase caused by compression processing becomes a smaller portion in
the total packet delay.

On the other hand, when the packet generation rate becomes higher, the
average delays in both cases increase and the increase in the no-compression
case grows much faster than that in the compression case. When the rate is
higher than 3.5, the compression effect becomes positive and yields significant
reduction on average delay. This can be explained as follows. If we consider
each node in the network as a queue, the packet generation rate and the packet
transmission time are the arrival rate and the service time of the queueing
system, respectively. When the traffic is heavy, the transmission time grows
rapidly due to channel contentions. Therefore, the utilization of the queueing
server, the product of the arrival rate and service time, also grows rapidly,
which eventually causes great increase in the average waiting time and the
average packet delay. On the other hand, compression shortens the packet
length and the transmission time, thus effectively reducing the utilization and
the packet delay, which explains the much slower growth of the packet delay
with compression.

Another observation we can draw is that the delays of different levels are
quite similar. It implies that the main effect of compression is on the transmis-
sions from level 1 nodes to the sink. This is due to the fact that level 1 nodes
undergo the heaviest traffic and hence the longest transmission delay. In this
case, compression can achieve much more benefit for the transmissions of level
1 nodes than those nodes at higher levels. Thus, based on this observation,
it is reasonable to use the average delay among all the nodes in the network
to approximate the delays of nodes at different levels. Fig. 3.2 thus shows
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the average end-to-end delay with different network configurations. While the
result reveals a similar trend on the end-to-end delay, we will explore more
deeply in the next two subsections to examine the details of the compression
effect.
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Figure 3.2: Average packet delays under various configurations, where d rep-
resents the neighboring distance.

Maximum Packet Generation Rate

In this subsection, we examine the maximum packet generation rate allowed
at each node. In Fig. 3.1, we observe that the packet delay grows rapidly
when the packet generation rate is relatively high. For example, the aver-
age delay without compression reaches 0.7s when the generation rate is 4.25,
while the delay with compression is 0.6s when the generation rate is 5.25. This
corresponds to the situation when the utilization of the queueing server ap-
proaches 1. To guarantee the success of transmissions, the utilization should
be kept below 1. Thus, the generation rate when the utilization approaches
1 is the maximum generation rate allowed in the network. Fig. 3.3 shows
the maximum generation rate under different network configurations. Clearly,
compression increases the maximum generation rate under all configurations.
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In particular, although the maximum generation rate in the no-compression
case varies dramatically under different configurations, the relative increase
generated by compression remains similar, about 20% to 25%. A small dif-
ference is observed for different packet lengths, for example, the increase is
5% lower for the packet length of 256B than that for the packet length of
512B in the same network configuration. Since the average compression ratio
is smaller when the packet length is 256B, this result indicates that a higher
compression ratio leads to a higher maximum generation rate.
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Figure 3.3: Maximum generation rates under various configurations, where d
represents the neighboring distance.

Since compression may have either a positive or a negative effect on the
packet delay, it would be interesting to find the generation rate, at which
the packet delay remains unchanged in both no-compression and compression
cases. We call this rate the threshold rate. Fig. 3.4 shows the relationship
between the threshold rates and the maximum generation rates in the com-
pression case under different network configurations. When the packet gen-
eration rate is between the threshold rate and the maximum generation rate,
compression can improve the end-to-end packet delay. We can see that the
length of this range does not vary much under different configurations, though
the threshold rate itself exhibits great variations.
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Figure 3.4: Different threshold rates under various configurations, where d
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Summary of the Experimental Study

The above experimental results demonstrate that the delay caused by com-
pression processing is clearly a non-negligible factor in end-to-end packet delay
for current generation sensor nodes. Such delay can cause severe performance
degradation under light traffic load. On the other hand, when the traffic
load is heavier, compression can effectively reduce packet delay and increase
maximum throughput. Thus, compression is preferred only when the packet
generation rate is higher than the threshold rate. However, the threshold rate
varies with network configurations and traffic and thus cannot be obtained in
advance. Therefore, it is necessary to design an on-line adaptive algorithm to
determine when to perform compression on incoming packets at each node.

3.4 On-Line Adaptive Compression Algorithm

In this section, we present an on-line adaptive compression algorithm that can
be easily implemented in sensor nodes to assist the original LZW compression
algorithm. The goal is to accurately predict the difference of average end-to-
end delay with and without compression by analyzing the local information
at a sensor node and make right decisions on whether to perform packet com-
pression at the node. The adaptive algorithm is distributively implemented
on each sensor node as Adaptive Compression Service (ACS) in an individual
layer created in the network stack to minimize the modification of existing net-
work layers. Next we first introduce the architecture of ACS and then describe
the algorithm in detail.
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3.4.1 Architecture of ACS

The architecture of ACS is described in Fig. 3.5. Located between the MAC
layer and its upper layer, ACS consists of four functional units: a controller, an
LZW compressor, an information collector and a packet buffer. The controller
manages the traffic flow and makes compression decisions on each incoming
packet in this layer. The LZW compressor is the functional unit that performs
the actual packet compression by the LZW algorithm. The information collec-
tor is responsible for collecting local statistics information about the current
network and hardware conditions. The packet buffer is used to temporarily
store the packets to be compressed.

Buffer Compressor
LZW

Mac layer

Controller

Information
Collector

P P

PP

P

DD

Adaptive Compression Service

Upper Layer

P: Packet
D: Statistics Data

Figure 3.5: Architecture of ACS, which resides in a created layer between the
MAC layer and its upper layer.

With ACS, the traffic between the MAC layer and the upper layer is now
intervened by the controller in ACS. All outgoing packets coming down from
the upper layer are received by the controller, which maintains two states. In
the No-Compression state, all packets are directed to the MAC layer without
further processing; in the Compression state, only compressed packets, which
are received from other nodes, will be directly sent down to the MAC layer, and
other packets are sent to the packet buffer for compression. On the other hand,
for incoming packets from the MAC layer, only the arrival time is recorded by
the collector and the packets themselves are sent to the network layer without
delays.

Since compression is managed by the node state, the function of the adap-
tive algorithm is to determine the node state according to the network and
hardware conditions. In our adaptive algorithm, we utilize a queueing model

48



Table 3.2: Notations

N Number of sensor nodes in the WSN
R Radius of the circular region, also the number of levels
ni Number of nodes in level i
λg Packet generation rate
λe Arrival rate of external packets from neighbors
pkj Transition probability, the probability that a packet

is served by node k and transferred to node j
λi Mean arrival rate for nodes in level i
Ttran The minimum time of a successful transmission
Ldata Length of the data packet
Lctl Sum of length of all control packets in a transmission
nsus Number of suspensions in the backoff stage
Tmac MAC layer service time
cmac Coefficient of variance (COV) of the MAC layer service time

T Average packet waiting time of the queue
λ Arrival rate of the queue
ρ Utilization of the queue
cA COV of the interarrival time
cB COV of the service time
rc Average compression ratio
Tp Average compression processing time
cp COV of the processing time
pc Ratio of compressed packets in all packets
Tcom Average packet waiting time at the compression queue
∆Tmac(i) Delay reduction in level i
∆Tmin Lower bound of total delay reduction

to estimate current conditions based on only local information of sensor nodes.
In the next section, we introduce the queueing model.

3.4.2 Queueing Model for a WSN

The queueing model for a WSN includes both the network model and the
MAC model, which defines the network topology, traffic model and MAC layer
protocol. For a clear presentation, we list the notations that will be used in
the model in Table 3.2.
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Network Model: Topology and Traffic

We consider a wireless sensor network where N sensor nodes are randomly
distributed in a finite two-dimensional region. For calculation convenience, we
consider a region of a circular shape with radius R (As will be seen in the
experimental results, when the region shape changes, it will not substantially
affect the performance of the proposed algorithm). Every node has an equal
transmission range r. A data sink is located at the center of the circular region
and all sensor nodes send the collected data to the sink via the aforementioned
multi-path routing strategy.

If the node density is sufficiently high, we can assume that each node
can always find a neighbor whose distance to the sink is shorter than its own
distance to the sink by r. Thus, nodes between two circles with radius (i−1)·r
and i · r can deliver packets to the sink with i transmissions. According to the
routing strategy, these nodes are considered as level i nodes. Without loss of
generality, we assume r = 1 and there are a total of R levels of nodes. Denote
the number of nodes at level i as ni. Then the average number of nodes at
level i can be calculated by

E[ni] =
πi2 − π(i− 1)2

πR2
N =

(2i− 1)N

R2
(3.1)

Such a network can then be represented by an open queueing network
where each sensor node is modeled as a queue with an external arrival rate
λg, which corresponds to the packet generation rate. Denote λi

j as the arrival
rate of node j at level i. When i < R, by queueing theory, we have

λi
j = λg +

ni+1∑
k=1

λi+1
k pkj (3.2)

where pkj is the transition probability from node k at level i+ 1 to node j at
level i.

As all λi
j’s have the same expected value, we denote it as λi. Summing λi

j

and taking expectation on both sides of the equation lead to

E[ni]λ
i = E[ni]λg + λi+1E

[
ni∑
j=1

ni+1∑
k=1

pkj

]
(3.3)

Since
∑ni

j=1

∑ni+1

k=1 pkj = ni+1, the above equation can be written as

λi = λg + E

[
ni+1

ni

]
λi+1 = λg +

2i+ 1

2i− 1
λi+1 (3.4)
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Thus, each node can estimate the arrival rates of nodes at other levels
based on their own arrival rates. To evaluate the performance of the queueing
system, we also need another important parameter, the average packet service
time, which includes the possible packet compression time and the MAC layer
service time. While the compression time can be obtained directly from the
LZW algorithm, the calculation of the MAC layer service time requires an
understanding of the MAC model.

MAC Model

The MAC layer packet service time is measured from the time when the packet
enters the MAC layer to the time when the packet is successfully transmitted
or discarded due to transmission failure. To analyze the packet service time,
we first briefly describe the Distributed Coordination Function (DCF) of IEEE
802.11 [55] used as our MAC layer protocol.

DCF employs a backoff mechanism to avoid potential contentions for the
wireless channel. To transmit a packet, a node must conduct a backoff proce-
dure by starting the backoff timer with a count-down time interval, which is
randomly selected between [0, CW ) where CW is the contention window size.
The timer is decremented by 1 in each time slot when the channel is idle and
is suspended upon the sensing of an ongoing transmission. The suspension
will continue until the channel becomes idle again. When the timer reaches
zero, the node completes the backoff procedure and starts transmission. The
entire procedure is completed if the transmission is successfully acknowledged
by the receiver. Otherwise, the transmission is considered failed, which in-
vokes a retransmission by restarting the backoff timer. In each retransmission,
the contention window size CW will be doubled until it reaches the upper
bound defined in DCF. Finally, the packet will be discarded if the number of
retransmissions reaches the predefined limit.

In our MAC layer, we also adopt the RTS/CTS mechanism to reduce trans-
mission collisions. Thus, it requires at least 4 transmissions to successfully
transmit a data packet: the transmissions of RTS, CTS, data and ACK pack-
ets. Let Ttran denote the minimum packet transmission time, which can be
calculated as the sum of all packet lengths divided by network bandwidth Bw

Ttran =
Ldata + Lctl

Bw
, (3.5)

where Lctl = LRTS + LCTS + Lhdr + LACK and Lhdr is the header size of the
data packet. Let Tsus denote the average duration of the timer suspension in
the backoff stage and Tcol denote the average time spent in transmission colli-
sions. The suspension duration is actually the time waiting for other nodes to
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complete a packet transmission. Under the assumption of the constant packet
length, we can approximately have Tsus = Ttran. On the other hand, with the
RTS/CTS mechanism, the collision mainly occurs during the transmission of
RTS and continues until the timeout for CTS. Hence Tcol ≈ LRTS+LCTS

Bw
. The

overall MAC layer packet service time can then be calculated as

Tmac = nsusTsus + ncolTcol + Ttran

= (nsus + 1)Ttran + ncolTcol

≈ (nsus + 1)Ttran (3.6)

where nsus represents the number of suspensions and ncol is the number of
transmission collisions. The last step approximation in Equation (3.6) is due
to the relatively small value of both ncol and Tcol. We also exclude the backoff
time and some interframe spaces in the above equation due to the same reason.

Queueing Analysis for a Sensor Node

The queueing model of a sensor node is different in different node states. In
the No-Compression state, each node is considered as a single queue. Its
arrival process is a combination of the local packet generation process and
the departure processes of its neighbors that send packets to the node. As
the simulation results in [60] showed, the departure process of nodes adopting
IEEE 802.11 MAC protocol can be approximated as a Poisson process. Thus,
we assume that the arrival process of each node is a Poisson process and
each node is an M/G/1 (i.e., exponential interarrival time distribution/general
service time distribution/single server) queue. In the Compression state, the
queueing model of each node can be modified as a system of two queues as
shown in Fig. 3.6 with the compression queue and the transmission queue
corresponding to ACS and the MAC layer, respectively. The compression
queue can be modeled as a M/G/1 queue because its arrival process, as a
split of the arrival process of the sensor node, can also be considered as a
Poisson process. On the other hand, since its departure process, a part of
the arrival process of the transmission queue, is not a Poissonian, we model
the transmission queue as a GI/G/1 queue where GI represents the general
independent interarrival time distribution.

For M/G/1 queue, according to the well known Pollaczek-Khinchin for-
mula, the average number of packets N in a M/G/1 queue can be calculated
as

NM/G/1 = ρ+
ρ2

1− ρ
· 1 + c2B

2
, (3.7)

where ρ is the utilization of the queue and cB is the coefficient of variance
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Figure 3.6: Queueing model of a sensor node with compression.

(COV) of the service time. By Little’s Law, given the arrival rate λ, the
average packet waiting time, which is the packet delay in the node, can be
derived as

TM/G/1 =
N

λ
=

2ρ− ρ2(1− c2B)

2λ(1− ρ)
(3.8)

To derive the average packet waiting time for the transmission queue, we
use the diffusion approximation method [64], which is briefly introduced here.
Consider an open GI/G/1 queueing network with n nodes. Given the arrival
rate λk for node k, k ∈ [1, n], the COV of the interarrival time at node j, cAj,
can be approximated as

c2Aj = 1 +
n∑

k=0

(c2Bk − 1) · p2kj · λk · λ−1
j (3.9)

where cBk represents the COV of the service time at node k and cB0 represents
the COV of the external interarrival time. In Fig. 3.6, we assume the COV of
the service time at the compression queue is cp and the portion of compressed
packets in all packets is pc. Then we obtain the COV of the service time at
the transmission queue as

c2A = 1 + (c2p − 1)(1− pc) (3.10)

The average packet waiting time can then be approximated by

TGI/G/1 =
ρ

λ(1− ρ̂)
(3.11)

where

ρ̂ = exp
(
− 2(1− ρ)

c2A · ρ+ c2B

)
(3.12)
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3.4.3 Adaptive Compression Algorithm

We are now in the position to describe the adaptive compression algorithm,
which can be divided into two stages: information collection and node state
determination.

Information Collection

In ACS, the information collector is responsible for collecting three types of
statistics information:

1. Compression statistics, including the average compression ratio rc, the
average compression processing time Tp and the COV of the processing
time cp. Upon each packet compression, the compression ratio, the pro-
cessing time and its square are recorded. The statistics is updated after
every m packets are compressed. In our experiments, we set m = 100.
Since the compression statistics can only be collected when nodes per-
form compression, the network should include an initial phase when all
nodes perform compression to obtain the initial values. We assume the
sensing data has a stable distribution so that the collecting method above
is sufficient to provide proper statistics.

2. Packet arrival rates, which include the arrival rate of external packets
from neighbors λe and the packet generation rate λg. The calculations
follow a time-slotted fashion. In each time slot, the total number of pack-
ets arrived is counted and the arrival rates are calculated by dividing the
total counts by time. Noting that not all external packets are compressed
in the adaptive algorithm, we also record the ratio of compressed packets
in the external packets as pc.

3. MAC layer service time. Since the MAC layer service is considered as an
arbitrary process in the queueing model, its mean Tmac and COV cmac

are calculated and recorded for the subsequent analysis. The calculation
is done along with the calculation of arrival rates in the same time slot
to reduce the implementation complexity.

State Determination

In ACS, the controller determines the appropriate node state according to the
statistics information collected. Since most of information is collected in a
time-slotted manner, the decision on the node state is made at the end of each
time slot. Depending on the current node state, the decision process is slightly
different. Thus we first consider the case when the node is currently in the
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No-Compression state. Then the task of the controller is to decide whether
performing compression on this node can reduce packet delays. From the
experimental results in Section 3.3, we know that compression introduces an
extra delay due to compression processing and reduces the packet delay from
the current node to the sink. We now discuss these two delays separately.

The incoming packets of the compression queue are the uncompressed por-
tion of the arrival packets at the node. With the information provided by the
collector, the arrival rate can be calculated by λc = λe(1 − pc) + λg, while
the service rate is 1

Tp
, and the utilization equals λcTp. By Equation (3.8), the

increased compression time for a packet can be derived as

Tcom =
1

2
·
2Tp − λcT

2
p (1− c2p)

1− λcTp

. (3.13)

As the ultimate goal of compression is to reduce average delay, which is equiv-
alent to reducing the sum of delays of all packets, we define normalized delay
as the total delay for all packets in a unit time. Thus, for a time interval t, the
total increased delay due to compression is λctTcom, and the normalized delay
increase is λcTcom.

Now let’s look at the delay reduction in packet delivery after compression.
While it is difficult to accurately calculate this reduction, we can easily obtain
a lower bound. Given the compression ratio rc and the length of the original
packet L, the packet length is shortened by L − L

rc
after compression and its

transmission time is reduced by at least L(rc−1)
rc·Bw

. For a level i node, there are i
transmissions for this packet after compression. Thus, the total reduction is at
least ∆Tmin = i·L(rc−1)

rc·Bw
. We compare this lower bound with the increased com-

pression time Tcom. If Tcom ≤ ∆Tmin, the node is switched to the Compression
state.

When Tcom > ∆Tmin, we need to calculate the normalized delay reduction.
In fact, if only one node performs compression, there will be no extra reduction
other than the reduced transmission time because the surrounding traffic will
not change. However, according to our network model, nodes at the same level
should share very similar traffic conditions, thus although made independently,
their state determination is likely to coincide. Therefore, when we consider
the delay reduction due to compression on a node, it is reasonable to assume
that other nodes at the same level will also perform compression. In this sense,
compression actually affects the transmissions of all packets in the node rather
than only the uncompressed packets. Furthermore, such effect not only resides
in the local node, but also in the downstream nodes on the routing path when
they receive those compressed packets. Thus, we need to examine the delay
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reduction level by level.
We first examine the delay reduction in the local node. Without loss of

generality, we assume the node is at level i. The packet delay before compres-
sion can be obtained by Equation (3.8), where λ = λg + λe, ρ = λ · Tmac and
cB = cmac. When compression is performed, the transmission queue is mod-
eled as a GI/G/1 queue and the packet delay is calculated by Equations (3.11)
and (3.12). According to Fig. 3.6, the arrival rate of the transmission queue
does not change after the compression. cA can be calculated by Equation (4)
and cB is approximated to be cmac. Next, we derive the average service time
after compression from Tmac. Based on the analysis in Section 3.4.2, the ser-
vice time Tmac is approximately proportional to the packet transmission time
Ttran and hence Ldata + Lctl. We assume the original packet length is L and
the compressed packet length is then L/rc where rc is the compression ratio
obtained in the collector. Thus Ldata is reduced from L− pc(L−L/rc) to L/rc
by compression while Lctl keeps unchanged. The average service time after
compression can then be calculated as

T ′
mac = Tmac ·

L/rc + Lctl

L− pc(L− L/rc) + Lctl

=
Tmac(L+ Lctl · rc)

L(rc + pc − rc · pc) + Lctl · rc
(3.14)

With all these parameters known, the packet delay after compression can be
obtained and so is the delay reduction, denoted as ∆Tmac(i).

Now we estimate the delay reduction at a level k node (k < i) on the
routing path. According to the analysis in Section 3.3, higher level nodes
enjoy more compression benefit through the transmissions on longer routes,
indicating that they tend to perform compression more aggressively. Given
the local node in the No-Compression state, it is reasonable to assume that
the nodes with the same packet generation rates at level k are also in the
No-Compression state. Then the packet delay at this node is calculated with
Equation (3.8). By Equation (3.4), we can derive the arrival rate by λg and λe.
The calculation of the service time Tmac mainly depends on the value of nsus

and Ttran. While Ttran can be calculated in a similar way to the local node, nsus

cannot be derived intuitively. In [62], it was shown that nsus is proportional
to the utilization ρ, if ρ is shared by all nodes in its interfering range. For
our network, we approximately assume that nodes in the interfering range of
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a level k node are all in level k. Then we have

nk
sus

ni
sus

=
ρk

ρi
=

λk

λi
· T

k
mac

T i
mac

=
λk

λi
· (n

k
sus + 1)T k

tran

(ni
sus + 1)T i

tran

,

nk
sus =

c · ni
sus

ni
sus − c · ni

sus + 1
, c =

λkT k
tran

λiT i
tran

(3.15)

where parameters for level i and level k nodes are labeled with the superscript
i and k respectively. With nsus and Ttran, the service time can be obtained
and so is the reduction, which we denote as ∆Tmac(k).

The normalized delay reduction can be calculated as

∆Tmac =
i∑

j=1

λj∆Tmac(j). (3.16)

The decision on the state of the node is then made by comparing ∆Tmac with
λcTcom. The procedure of the state determination in pseudo code is given
Table 3.3.

When the node is currently in the Compression state, all the calculations
above will also be performed. The only difference is that we compare the re-
duced processing time with the increased transmission time due to compression
cancellation.

3.5 Performance Evaluations

With the proposed on-line adaptive compression algorithm, each node can
dynamically decide whether a packet is compressed or not, adapting to the
current network and hardware environment. In this section, we present the
performance evaluation results for the proposed adaptive compression algo-
rithm. We compare the performance of our adaptive scheme with other two
schemes: the No-compression scheme in which no packets are compressed at
all, and the Compression scheme where all packets are compressed in data
gathering.

The experiments are conducted in three networks: a 7 × 7 grid, a 9 × 9
grid and a 11 × 11 grid. The sink is located at the center of the grid. The
transmission range is 1.5 times of the neighboring distance. Then the three
networks have 3, 4 and 5 levels of nodes, respectively. The original packet
length is set to 512B. Other parameters are similar to the configuration in the
previous experiments in Section 3.3.

In the simulation, the packet generation rate starts at a rate lower than

57



Table 3.3: State determination procedure, performed at the end of each time
slot for a node in the No-Compression state

For each node at level i:
if state = No-Compression then

read statistics from the information collector
compute Tcom and ∆Tmin

if Tcom ≤ ∆Tmin then
set state to Compression

else
set i to the node’s level number
set ∆Tmac to zero
while i > 0

calculate λi

compute reduction ∆Tmac(i)
add λi∆Tmac(i) to ∆Tmac

decrease i by one
end while
if λcTcom ≤ ∆Tmac then

set state to Compression
end if

end if
end if
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the threshold rate and then increases linearly every 300 seconds. Such increase
continues until the maximum rate is reached, at which time, the simulation
also ends. The time slot length used in the information collector is 30s. Fig.
3.7 shows the average end-to-end delays for three schemes in different net-
works. We can see that the delay for the adaptive scheme is always close
to the lower one of the No-Compression and Compression schemes, indicating
overall good adaptiveness of the algorithm on the network traffic. In particular,
when the generation rate is lower than the threshold rate, the adaptive scheme
chooses not to compress packets and thus yields nearly the same results as the
No-compression scheme. When the generation rate is slightly higher than
the threshold, the adaptive scheme yields similar results to the Compression
scheme except some points with slightly longer delays in the 9×9 grid and the
11 × 11 grid. The largest increase in delay is only 10% when the generation
rate is 0.9 in the 11× 11 grid. Such consistently good performance in different
networks indicates a good scalability of the algorithm on the network size.
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Figure 3.7: The overall average packet delays under three schemes in three
different networks.

We further examine the delays for different levels to provide a comprehen-
sive illustration. Fig. 3.8 depicts the average delays for different levels in the
9 × 9 grid network. It can be noticed that for nodes at level 1, the adaptive
scheme outperforms other two schemes when the generation rate exceeds the
threshold rate. For nodes at levels 3 and 4 at the same generation rate, how-
ever, the average delays under the adaptive scheme are slightly longer than
that under the Compression scheme. This can be explained by the observation
that the threshold rates for higher level nodes are lower than the thresholds for
lower level nodes. When the generation rate is between two different threshold
rates, higher level nodes perform compression while the lower level nodes do
not. Therefore, without suffering from the compression processing delay, lower
level nodes can still enjoy the benefit of the reduced average packet length as
they receive packets from higher level nodes, resulting in shorter delays than
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that under Compression scheme. On the other hand, since lower level nodes
do not perform compression, the average packet length and the subsequent
transmission delay become longer, increasing the end-to-end delay for other
nodes. Such increase is also more evident for higher level nodes as the gen-
erated packets in these nodes endure more hops of prolonged transmissions
during the delivery to the sink.
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Figure 3.8: The average delays for packets generated at different levels under
three schemes in a 9× 9 grid network.

3.6 Enhanced Adaptive Algorithm

So far we have shown that the adaptive algorithm can correctly estimate the
compression benefit based on only local information and achieve good perfor-
mance. It should be noticed that such estimation relies on the derivation of
the arrival rate and MAC layer service time of other nodes under the assump-
tion that exactly R levels of nodes are distributed in the circular region with
radius R. Though valid with sufficiently high node density, this assumption
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may not always hold in practical scenarios. For example, a node between circle
R and R− 1 may not find an R-hop but an R+1-hop route to reach the sink,
making itself an R + 1 level node. In this case, the derivation of arrival rates
of other nodes becomes inaccurate for such nodes, deteriorating the algorithm
performance. In this section, we introduce an enhanced algorithm to solve this
problem.

The adaptive algorithm calculates the arrival rates of other nodes by Equa-
tion (3.4), which requires the estimation on the number of nodes in each level,
or the ratios of the nodes between two adjacent levels. Let ri denote the ratio
between the number of nodes in levels i and i + 1. The original estimation
ri =

2i+1
2i−1

may not be applicable in some practical scenarios. Instead, we could
obtain ri from the arrival rates

ri =
λi − λg

λi+1
, (3.17)

where λi is the average arrival rate of nodes in level i and λg is the packet
generation rate. Therefore, if the average arrival rates of all k (k ≤ i) levels
can be obtained, a level i node can correctly estimate the required ratios and
thus the compression benefit.

In the adaptive algorithm, nodes in level i utilize their own arrival rates to
represent the average arrival rate of level i. Such approximation is made based
on that the compression decision on a node only directly affects its neighbors
within a limited range. Therefore, a level i node can obtain all λk for k < i by
acquiring the arrival rates of its downstream nodes on the route to the sink.
Since MAC 802.11 requires acknowledgement for each packet transmission,
these arrival rates can be easily included in the ACK packets and passed
backward on the route. Such piggybacking minimizes the modification on the
MAC layer protocol. Note that this process creates very small communication
overhead as the added data is bounded by the number of levels in the network.
Moreover, as we assume a static network topology, ratio ri will stay unchanged
so that the extra transmissions can be terminated once every node receives the
required arrival rates.

We now evaluate the performance of the enhanced adaptive algorithm in
a more practical scenario. In the simulations, 90 and 180 nodes are randomly
distributed in a circular region with radius 3 to create two different network
topologies which consist of 5 and 4 levels of nodes, respectively. The packet
length is set to be 512B and 256B and other parameters are similar to previous
experiments.

Fig. 3.9 shows the average end-to-end delay under both the original and
enhanced versions of the adaptive algorithm. To better examine the com-

61



0.4 0.5 0.6 0.7 0.8
0

0.5

1

Packet generation rate (/s)

N
or

m
al

iz
ed

 a
ve

ra
ge

 d
el

ay

180 nodes, 512B

0.6 0.8 1
0

0.5

1

Packet generation rate (/s)

N
or

m
al

iz
ed

 a
ve

ra
ge

 d
el

ay

180 nodes, 256B

0.6 0.8 1 1.2 1.4
0

0.5

1

Packet generation rate (/s)

N
or

m
al

iz
ed

 a
ve

ra
ge

 d
el

ay

90 nodes, 512B

1 1.5 2
0

0.5

1

Packet generation rate (/s)

N
or

m
al

iz
ed

 a
ve

ra
ge

 d
el

ay

90 nodes, 256B

 

 

Adaptive
Enhanced

Threshold rateThreshold rate

Threshold rate Threshold rate

Figure 3.9: Average packet delays under various configurations. The value is
normalized to the corresponding values in an idealized scheme where packets
are compressed only if the packet generation rate exceeds the threshold rate.
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pression performance, we assume an ideal scheme where the threshold rate is
obtained beforehand and packets are compressed only if the packet generation
rate exceeds the threshold rate. The threshold rate is obtained by comparing
the results under Compression and No-compression schemes as in Section 3.3
and is represented by the vertical dashed line in Fig. 3.9. Then the experimen-
tal results are normalized to the corresponding delays in the idealized scheme.
We observe that the average delay in the enhanced algorithm is approximately
equal to the delay in the ideal scheme, with less than 10% difference. On the
other hand, the original algorithm creates an obvious increase in packet de-
lay when the packet generation rate is lower than the threshold rate. This
can be explained by the inaccurate estimation on ri, which exaggerates the
compression benefit and leads to over-aggressive compression decision. Fur-
thermore, such inaccuracy for sparser node density will become greater, which
well explains the larger increase in the 90-node scenario.
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Figure 3.10: The compression proportion of each level. The number of nodes
is 90 and the packet length is 512B.

To better understand the behavior of two adaptive algorithms, we record
the compression proportion of each level, which is calculated as the number of
compressed packets divided by the number of generated packets in each level.
Notice that this proportion may be larger than 1 because the packets com-
pressed at nodes in one level could be generated at nodes in other levels. Fig.
3.10 shows the compression proportion of the two algorithms when the number
of nodes is 90 and the packet length is 512B. With the enhanced algorithm,
compression is first performed in upper level nodes when the packet generation
rate grows, which is consistent with the observation in Section 3.3 that the
threshold rates in upper levels are smaller than those in lower levels. When

63



the packet generation rate is sufficiently high, the proportion of compressed
packets in most levels goes to 1 and thus most nodes perform compression.
By contrast, with the original algorithm, due to the inaccurate estimation, a
large amount of packets are compressed when the packet generation rate is
much smaller than the threshold rate. Besides, the proportion of compressed
packets in level 2 is larger than 1 in most cases, which means that many pack-
ets generated in upper level nodes are compressed after transmitted to nodes
in level 2. Such behavior actually remedies the false decisions made in upper
level nodes, still yielding near-optimal performance when the threshold rate
is exceeded as shown in Fig. 3.9. In addition, we observe that level 1 nodes
rarely perform compression in both algorithms. However, it does not affect
the performance heavily as most packets are already compressed when they
are transmitted to nodes in level 1.

3.7 Related Works

In this section, we discuss some existing compression approaches for WSNs and
their feasibility to be adopted in our adaptive algorithm. In addition, since
the algorithm relies heavily on the performance analysis in IEEE 802.11 based
networks, we also briefly review the previous analysis on the IEEE 802.11
MAC protocol.

3.7.1 Compression in WSNs

Due to the limited energy budget in sensor networks, compression is considered
as an effective method to reduce energy consumption on communications and
has been extensively studied. In the meanwhile, the spatial-temporal correla-
tion in the sensing data makes it suitable for compression. In general, works
related to compression in WSNs can be classified into three categories. The
first category is the theoretical work. Akyildiz, et al. proposed a theoretical
framework to model the correlation and its utilization in several possible ways
[39]. Scaglione and Servetto proved that the optimal compression efficiency
can be achieved by source coding with proper routing algorithms [40]. The
relationship between compression and hierarchical routing was also discussed
in [41]. Pattem, et al. analyzed the bound on the compression ratio achieved
by lossless compression and showed that a simple, static cluster-based system
design can perform as well as sophisticated adaptive schemes for joint routing
and compression [42]. In [43], a framework of distributed source coding (DSC)
was given to compress correlated data without explicit communications. How-
ever, the implementation of DSC in practice could be difficult as it requires
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the global knowledge of the sensing data correlation structure.
The second category consists of lossy compression algorithms in the sense

that the compressed data may not be fully recovered by decompression. A
series of algorithms utilized the data correlation to reduce the amount of data
to be gathered while keeping the data within an affordable level of distortion.
The approaches include data aggregation [45, 46], where only summarized data
are required, approximate data representation using polynomial regression [47],
line segment approximation [48] and low-complexity video compression [49].

The third category is lossless compression which can reconstruct the origi-
nal data from the compressed data. Coding by Ordering [50] is a compression
strategy that utilizes the order of packets to represent the values in the sup-
pressed packets. PINCO [51] was proposed to compress the sensing data by
sharing the common suffix for the data. This approach is more useful for data
with long enough common suffices, such as node ID and time stamp. In [34],
the implementation of LZW compression algorithm in sensor nodes was exten-
sively studied and showed to have a good compression ratio for different types
of sensing data. Another compression algorithm, Squeeze.KOM [52], used a
stream-oriented approach that transmits the difference, rather than the data
itself to shorten the transmission. In addition, a survey on several compression
algorithms was given in [53].

Compared to the previous work, the purpose of this chapter is not to
design another compression algorithm. Rather, we propose an adaptive com-
pression framework, which determines when compression should be performed
depending on the compression performance and the network condition. Such
framework is not restricted to the LZW algorithm adopted in the chapter and
is suitable for any source compression approaches.

3.7.2 Performance Analysis of IEEE 802.11

The proposed adaptive algorithm is based on the analysis of IEEE 802.11 DCF,
which has been extensively studied in the literature. Bianchi [56] presented a
Markov chain model to analyze the throughput performance under saturated
traffic condition where nodes always have packets to send. In [57], a modifi-
cation on this model was made and the analysis was extended to model both
throughput and delay performance. Similar analysis under different assump-
tions can be found in [58, 59]. While these works considered saturated traffic
condition, the unsaturated condition was further examined in [60]. Recently,
the analysis was extended to consider the performance of multi-hop networks
[61–63], which is closely related to the analysis in this chapter. In [61], one
hop delay was considered in multi-hop networks where nodes are divided into
source nodes and relay nodes. The source node generates packets and only
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sends packets generated by itself while the relay node does not generate pack-
ets and only forwards the received packets. In [62], the end-to-end delay was
analyzed in a torus network where each node could be a source, destination
or relay node. A packet received by a node is absorbed by the node with
the probability of p(n) and forwarded to the neighbors with the probability of
1− p(n). Compared to these simplified traffic models, a similar traffic model
to our work was adopted in [63]. An analytical framework based on Markov
chain was proposed to accurately predict the distribution of end-to-end delay
by considering a series of parameters, including traffic pattern, MAC layer
protocols and link quality. However, the calculation in their analysis is quite
intensive and requires powerful processors, such as Xeon CPU as originally
used in [63]. Therefore, such analysis is unaffordable for sensor nodes. In con-
trast, our analysis is more focused on understanding the correlation between
the packet length and the end-to-end delay, as well as the correlation between
delays in different levels. With the analysis, we can easily estimate the packet
delay based on local measurements, rather than obtaining the packet delay
directly from theoretical analysis.

3.8 Conclusions

In this chapter, we have studied the effect of the compression on end-to-end
packet delay in data gathering in WSNs. We accurately examine the effect of
compression by measuring the execution time of a lossless compression algo-
rithm LZW on microcontroller TI MSP430F5418. Through extensive simula-
tions, we found that compression has a two-sided effect on packet delay in data
gathering. While compression increases the maximum achievable throughput,
it tends to increase the packet delay under light traffic loads and reduce the
packet delay under heavy traffic loads. We also evaluated the impact of dif-
ferent network settings on the effect of compression, providing a guideline for
choosing appropriate compression parameters.

We then proposed an on-line adaptive compression algorithm and an en-
hancement to make compression decisions based on the current network and
hardware conditions. The adaptive algorithm runs in a completely distributed
manner. Based on a queueing model, the algorithm utilizes local information
to estimate the overall network condition and switches the node state between
Compression and No-Compression according to the potential benefit of com-
pression. The enhanced algorithm further utilizes some extra information from
other nodes to obtain more accurate estimation. Our extensive experimental
results show that the proposed adaptive algorithm can fully exploit the benefit
of compression while avoiding the potential hazard of compression. Finally, it
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should be pointed out the proposed adaptive algorithm is not restricted to the
LZW compression algorithm, and in fact, it can be applied to any practical
compression algorithms by simply replacing the compressor in ACS.
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Chapter 4

Communication
Synchronization in
Cluster-Based Sensor Networks

Clustering is one of the most suitable structure to support large-scale wireless
sensor networks. In this chapter, we consider the communication synchroniza-
tion problem in cluster-based sensor networks with delay requirements. We
propose a hybrid scheduling scheme that integrates a synchronous scheduling
algorithm that achieves low packet delay with high energy efficiency, and an
asynchronous algorithm that achieves lower packet delay with great scheduling
flexibility.

The chapter is organized as follows. Section 4.1 and Section 4.2 discusses
the background and related works. Section 4.3 and Section 4.4 describe the
design of synchronous and asynchronous approaches, respectively. The inte-
gration of the two approaches is then elaborated in Section 4.5. Section 4.6
presents the experimental results for the proposed approaches. Finally, Section
4.7 concludes the chapter.

4.1 Introduction

The emerging Cyber-Physical System (CPS) has been gradually changing the
society and the world by interacting with people’s everyday life. Its research
and use can be found in various applications of different societal services, in-
cluding efficient energy control systems, intelligent traffic monitoring, medical
care system and etc. [65]. In general CPS, information of physical world is
collected and analyzed for the computing system to make appropriate deci-
sions and controls responding to any physical situations and changes. While
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there are design challenges in different aspects of CPS, we focus on providing
a fundamental infrastructure for information collection in CPS.

Wireless sensor network, as originally designed to perform sensing tasks,
is a natural fit for information collection in CPS. Compared to conventional
WSNs, WSNs adopted in CPS faces more stringent design challenges.

• WSNs should have good scalability to adapt to the increasing geograph-
ical range covered by CPS.

• WSNs should be performed in a low-latency fashion to support real-time
interaction with the physical world.

• WSNs should still be energy efficient to support long and stable service
for CPS. Notice that previous energy efficient solutions in WSNs may not
be suitable in CPS as they may not satisfy the other two requirements
simultaneously.

Of all kinds of topologies in WSNs, clustering is a good candidate to meet
the above challenges, considering its wide use in WSNs to increase scalability,
improve energy efficiency and provide QoS guarantees. With clustering, sensor
nodes are organized into clusters and a cluster head (CH) node is selected for
each cluster according to certain rules, while other nodes act as members in the
clusters. In cluster-based data gathering, data collected by cluster members
are first sent to CHs, which in turn deliver the data to the data sink either by
direct communication or through relays on intermediate CHs. While clustering
is initially introduced to achieve energy efficiency, it can also help maintain low
packet latency in delay-sensitive data gathering. This is because that packets
from different members can be combined as aggregated packets at CHs to
reduce the transmission overhead of packet headers and control packets (e.g.,
ACK packets), leading to shortened transmission delay and increased energy
efficiency. In addition, clustering simplifies the routing from the source node
to the sink, and shorter routing paths reduce network traffic as well.

To support low-latency data gathering, however, cluster-based WSNs en-
counter a new communication synchronization problem due to their more
complex communication patterns compared to WSNs with a flat topology.
In general, the communication in a cluster-based WSN includes intra-cluster
communication among sensors in the same cluster and inter-cluster commu-
nication among different CHs. Intra-cluster communication in each cluster is
usually controlled by the CH with a Time-Division-Multiple-Access (TDMA)
based protocol to avoid transmission collisions. For inter-cluster communi-
cation, CHs can be considered to form a smaller relay network where either
TDMA or Carrier-Sense-Multiple-Access (CSMA) based protocols can be uti-
lized. To avoid interference between intra- and inter-cluster communications,
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different channels are used for two types of communications, which implies
that CHs have to switch between two channels accordingly as most of sensors
can operate on only one radio channel at a time. Let i-state and o-state denote
that a CH uses the channel for intra-cluster communication and inter-cluster
communication, respectively. Such state switching thus incurs a synchroniza-
tion problem which is critical for delay-sensitive applications: the sending CH
and the receiving CH should be in o-state simultaneously and any inter-cluster
packet transmission may endure an unacceptable long delay before the receiver
switches to o-state. In such a case, the inter-cluster packet that consists of
multiple sensing packets may become useless and be discarded, causing severe
performance loss.

Previous work that targets at the energy efficiency of clustering handles
this synchronization problem by simply grouping the intra- and inter-cluster
communications involved in all clusters into two global and non-overlapping
periods. In this approach, since the intra- and inter-cluster communications
are guaranteed to be performed separately, the synchronization problem can be
avoided. However, by intentionally separating two types of communications,
such an approach may cause low channel utilization and hence long end-to-
end delays, rendering it not suitable for delay-sensitive applications. In this
paper, we first propose two communication scheduling approaches to solving
the synchronization problem from different angles and support delay-sensitive
data gathering applications with different requirements. We then discuss the
integration of the two approaches and its suitability to use in CPS.

We first propose a TDMA based, synchronous scheduling approach to
achieve low end-to-end packet delay by converting the cluster synchronization
problem into a scheduling problem in generic wireless networks. Due to the
NP-completeness of the scheduling problem, we propose an efficient heuris-
tic scheduling algorithm. Compared to other cycle-based approaches in the
literature, our approach owns three unique features. First, the cluster heads
can individually decide their intra-cluster packet collection time, rather than a
globally synchronized collection time. Second, since all packets are sent to the
sink, we schedule transmissions according to the order of nodes in the routing
path to minimize the queueing delay. Third, we efficiently overlap the trans-
missions so that the cycle length and the average end-to-end packet delay can
be reduced as much as possible. Experiments show our approach can achieve
50% shorter average packet delay than the existing approach.

The cycle based approach may have some restrictions in a harsh environ-
ment due to its vulnerability to the clock drift, topology changes and irregular
interferences occurred in WSNs [28]. We thus propose a CSMA based approach
that solves the communication synchronization problem asynchronously. The
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approach is constructed on a new clustering structure with a new type of
node, called relay node, rather than the conventional CH-member structure.
The relay nodes stay in o-state and replace the CHs to receive and forward
the aggregated packets. With the assistance of relay nodes, inter-cluster com-
munications are automatically synchronized. Compared to the first approach,
the asynchronous approach better utilizes the wireless channel and yields even
lower packet delay. The performance of both approaches has been verified
through extensive ns-2 simulations.

While these two approaches can fulfill different performance requirements,
they are then integrated as a hybrid scheduling scheme that fully exploits the
benefit from both approaches and allows dynamic switching among them to
adapt to various network conditions. When emergency occurs or wireless signal
quality if poor, the second approach is preferred to enjoy lower latency and
higher interference tolerance; when the emergency ends, the first approach can
be used to achieve higher energy efficiency based on the nature of TDMA. We
believe the hybrid approach is suitable to support the fundamental network
for information collection in CPS.

4.2 Related Work

Clustering is a popular topology control approach to achieving energy efficiency
and scalability in WSNs. In this section, we briefly review the cluster formation
algorithms and then discuss some existing work concerning communication
protocols in cluster-based networks.

Cluster formation algorithms have been extensively studied in the litera-
ture. Their primary purpose is to consider load balance and energy efficiency
to prolong network lifetime. While some algorithms consider a heterogeneous
environment where CHs are more powerful than regular sensor nodes [66, 69],
other algorithms consider a homogeneous environment where CHs are ordinary
sensors [70]. In this chapter, we mainly focus on clustering in a homogeneous
environment. Typical algorithms in this category include LEACH [67] and
HEED [68] LEACH selects CHs randomly and distributes energy consump-
tion evenly among all nodes by cluster head rotation. HEED selects CHs by
considering the residual energy in the nodes and the communication cost. A
comprehensive survey on different clustering algorithms can be found in [70].

There is also some work on communication protocols in cluster-based net-
works. While intra-cluster communication in these protocols is always TDMA-
based, the inter-cluster communication adopts different approaches in different
works. In [71], a round-based data collection scheme with direct sink access
was proposed. It was assumed that CHs can directly access the sink, which has
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the capability of multiple packet reception. The intra- and inter-cluster packet
delay was considered separately and the end-to-end delay was not studied. A
similar round-based protocol was proposed in [72], where the routing path for
inter-cluster communication consists of either cluster heads or a combination
of CHs and members. In [73], a pure TDMA-based scheme was proposed to
achieve optimized energy efficiency and minimum delay, in which the packet
delay is directly associated with the length of TDMA frame. In addition, the
MAC protocol defined in IEEE 802.15.4 can be utilized in cluster-based net-
works [74]. In particular, a cluster-tree topology is constructed with each CH
corresponding to a coordinator, which maintains a superframe with 16 slots.
The members are allowed to communicate with the CH in any slot in the su-
perframe. In general, superframes for different coordinators do not overlap so
that the interference among different clusters can be avoided.

In the above protocols, communication synchronization is handled by either
setting a complete transmission schedule for every CH, or globally separating
the intra- and inter-cluster communications. As will be seen in the perfor-
mance evaluation section later, compared to our proposed approaches, these
approaches do not perform well in delay-sensitive data gathering.

At last, many communication protocols in cluster-based networks adopt hy-
brid approaches that utilize both TDMA and CSMA. Such hybrid approaches
are also commonly seen in general WSNs, such as S-MAC [75], T-MAC [76], Z-
MAC [83] and funneling-MAC [84]. S-MAC maintains continuous duty cycles
and employs CSMA in each cycle for transmissions. T-MAC follows a simi-
lar hybrid approach and improves S-MAC in terms of energy consumption by
using a listening window at the beginning of each cycle. Z-MAC tries to per-
tain the advantage of both TDMA and CSMA such that the hybrid approach
acts like CSMA with light traffic and behaves as TDMA when traffic becomes
heavier. This goal is realized by assigning ownership to each time slot and
giving the owner higher priority to access the channel. funneling-MAC also
utilizes the hybrid approach to solve the funneling problem, i.e., nodes closer
to the sink have much heavier traffic and need more communication control.
Therefore, TDMA is used for these nodes to avoid frequent contentions while
CSMA is used for other nodes with less contentions. These protocols, however,
are designed for general WSNs and cannot be directly applied in cluster-based
WSNs.

4.3 Synchronous Scheduling

In this section, we present Cycle-Based Scheduling (CBS), a TDMA based,
synchronous scheduling approach. To begin with, we describe the assumptions
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for the system, which are also shared by the asynchronous scheduling approach.

4.3.1 Assumptions

The network considered is a WSN with n sensor nodes randomly distributed
in a 2D region. We consider a typical data gathering application in WSNs
where all sensor nodes send collected data to a single sink. We also make the
following assumptions on the WSN.

• The clustering topology is pre-constructed by a clustering algorithm,
such as the algorithms mentioned in Section 4.2, which indicates that the
size of the different clusters may be different. In addition, we assume the
topology of the relay network is stable during the data gathering. This
is reasonable if the CHs are properly selected with adequate energy.

• Sensors can transmit on different radio channels. However, they can only
transmit or receive packets on one channel in any instant. Different radio
channels do not interfere with each other.

• Sensors have the same sensing rate λ and sensing packets are of the same
length. The packet generation process is assumed to be Poisson.

Under the above assumptions, which are applicable in many real-world
networks, next we describe the details of CBS.

4.3.2 Basic Communication Cycle

CBS schedules communications in consecutive cycles and each node is assigned
some fixed conflict-free intervals to transmit and receive packets in each cycle.
Nodes only wake up in the assigned intervals and sleep otherwise to reduce
energy consumption. Each node is assigned a single interval for transmission
so that the synchronization overhead between the transmission pair is mini-
mized. The goal of the scheduling is to minimize the average end-to-end packet
delay. We consider this problem by separating the intra- and the inter-cluster
communications.

Intra-cluster communication

Intra-cluster communication includes all transmissions from cluster members
to the CH. Since interferences from other clusters can be avoided by assigning
different radio channels to adjacent clusters, the communications within a
cluster are independent and hence it is reasonable to only consider a single
cluster.

73



We limit all communications for a cycle in a consecutive period so that the
CH needs not to frequently switch between intra- and inter-cluster communi-
cations. As will be seen later, the duration of this period is relatively short
compared to the cycle length, we simply consider a general TDMA scheme for
the intra-cluster period. The whole period is divided into multiple identical
time slots whose length τ is set equal to the time required for a packet trans-
mission. Packets are sent in these time slots directly from cluster members to
the CH. Each node is assigned the same k time slots given their same packet
generation rate. For simplicity, we assume the CH is also assigned k time slots
for necessary control packets. Assume the cluster has m nodes, the duration
of the intra-cluster period is thus m · k · τ .

For such scheduling, we are concerned with the determination of k and
the packet collection delay, which is defined as the elapsed time between the
packet is generated and the end of the intra-cluster period in which the packet
is collected.

Lemma 1. The lower bound of k is ⌈λT ⌉, where T is the cycle length.

Proof. The expected number of packets generated by each node in a cycle is
λT . Since a cluster member can transmit one packet in a time slot, in order
to collect all packets in one intra-cluster period, it must satisfy k ≥ λT . Since
k can only be an integer, the lower bound of k is ⌈λT ⌉.

Lemma 2. If k is large enough for collecting all packets in a cycle, the expected
collection delay is T+m·k·τ

2
.

Proof. Consider a packet generated by node i, whose time slots assigned end
at si. Since k is large enough for collecting all packets in a cycle, this packet
must be generated between the end of slot si of two consecutive intra-cluster
periods and this interval is T . Since the packet generation process is Poisson,
the time a particular packet is generated within a fixed interval is uniform
[81], thus the expected generation time in this interval is T

2
and the expected

collection time is T
2
+(m · k− si)τ . Therefore, the expected collection time for

all packets will be

E(Dc) =
T

2
+m · k · τ − E(si)

=
T +m · k · τ

2
(4.1)

Lemma 2 indicates that the intra-cluster period can be placed at any posi-
tion in the cycle without affecting the collection delay, which is only dependent
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on the cycle length and the period duration. It also suggests that k can be
selected at its lower bound ⌈λT ⌉ to minimize the collection delay, which mono-
tonically increases with k.

Inter-cluster Communication

Inter-cluster communication includes transmissions in the relay network, which
consists of CHs and the sink. For data gathering, as the relay network is
stable, the CHs are organized into a fixed routing tree rooted at the sink at
the same time when the clusters are formed. The construction of the routing
tree is independent of our scheduling approach and thus is not discussed in this
chapter. Within a cycle, each CH is assigned an interval to send all packets,
including packets collected by itself and packets received from other CHs, to its
parent. The practical length of this interval should be slightly longer than the
transmission time of all packets to accommodate the necessary control packets
such as ACK and potential synchronization errors. However, since we are
focusing on the cycle scheduling, we set the length equal to the transmission
time of all packets for simplicity.

The relay network can be viewed as a general wireless network except that
the CH is not available during intra-cluster period. We introduce an intra
node for each CH to represent the intra-cluster packet collection. Intra node
i generates mi · k packets in each cycle with zero queueing delay before the
packets are sent out. It transmits packets to the CH within an interval whose
duration equals mi · k · τ . The transmission does not affect other nodes ex-
cept for the associated CH. Thus the considered problem becomes to schedule
intervals for all nodes in the transformed network.

4.3.3 Interval Schedule

To obtain an efficient interval schedule, we first present an analytical model for
the problem and then show an illustration example. Guided by the example,
we will propose our scheduling approach.

Mathematical Model

The network is represented by a graph G = (V,E). V is the set of nodes,
including the sink, the CHs and the corresponding intra nodes. Denote pi
as the parent of node i in the routing tree and (i, j) as a transmission link
between node i and node j, then E = {(i, pi)|i ∈ V }. Since every node has a
fixed parent, it is easy to see |V | = |E|+ 1.
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To model the interference of transmissions, we construct a conflict graph
G′ = (V ′, E ′). V ′ represents all the transmission links in E. For simplicity, we
use i to represent link (i, pi) such that V ′ = V \{vs}, where vs represents the
sink. E ′ is constructed such that if (i, j) ∈ E ′, nodes i and j cannot transmit
at the same time due to that the distance between any two of nodes i, j, pi and
pj is within the transmission radius. Such construction is valid if we assume
that the receiver may send ACK packets and transmissions will not only be
affected by the sender, but also by the receiver. For an intra node i, there
is only one conflict edge (i, pi) corresponding to the fact that the CH cannot
send packets during the transmission of its corresponding intra node.

The interval scheduling problem is to find a feasible time interval (si, fi) for
each node i in V ′, where si and fi are the starting and finishing time instant
with 0 ≤ si ≤ fi. The cycle length is then set as t = maxi∈V ′ fi. Here we
normalize the cycle into time slots with length k · τ so that the actual cycle
length T = k · τ · t. Since the interval equals the transmission time of all
packets, we have fi = si + ni, where ni is the maximum number of packets
node i sends in a cycle and can be obtained by

ni =

{
mi if i is an intra node∑

j∈Ci
nj if otherwise

Here, Ci denotes the child set of node i. For an interval of node i to be feasible,
its transmission link should not conflict with any other transmission links, thus
∀(i, j) ∈ E ′, si ≥ fj or sj ≥ fi.

The end-to-end packet delay can be broken down into transmission delay
and queueing delay. The transmission delay from an intra node to the corre-
sponding CH is simply the collection delay in the intra-cluster period while
the transmission delay from CH i to its parent pi is ni. The queueing delay,
defined as the waiting time of a packet at a node before it is sent out , will be
(spi − fi + t) mod t for a parent pi. Thus the average packet delay is

D = k · τ ·
∑

i∈V ′ ni(di + (spi − fi + t) mod t)

nvs

(4.2)

where

di =

{
t+m
2

if i is an intra node

ni if otherwise

The optimal scheduling problem was proved to be NP-complete by reducing
the K-Colorability problem to the scheduling problem [82]. Therefore, we will
design a heuristic algorithm. Before that, we examine an example to reveal
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some interesting property in the scheduling problem.

Example of Chain Topology

This example considers a network with chain topology as shown in Fig. 4.1(a).
Each CH has a corresponding intra node, which generates one packet in a cycle.
Thus, node i will send i packets in a cycle.

1 2 3 4 5 6

Sink

(a) Chain network consists of 6 CHs.
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(b) Intuitive scheduling
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(c) Improved scheduling
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(d) Optimal scheduling

Figure 4.1: An example network with chain topology.

Fig. 4.1(b) shows an intuitive scheduling, where node i is sequentially
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assigned an interval of i and all intra nodes are assigned an interval of 1 at
the beginning of the cycle. This is actually a not-so-bad scheduling as it
eliminates the queueing delay in the relaying: a CH will immediately send out
all the packets upon its receiving from its child. The average packet delay
D = 32.5.

The intuitive scheduling does not consider the fact that packets have zero
queueing delay on the intra node. An improved scheduling in Fig. 4.1(c)
schedules the intervals for intra nodes as close as possible to the corresponding
CHs. The average packet delay D = 29.2.

In the improved scheduling, the collection delay on intra node, which is 11.5
according to Eq. (4.1), takes a large part in the total delay. Since the delay
mainly depends on the cycle length, we can further reduce the average packet
delay by reducing the cycle length. Fig. 4.1(d) shows the optimal scheduling
that minimizes the cycle length. In the scheduling, the cycle length is exactly
the sum of the interval lengths of nodes 4, 5 and 6. Since these nodes are
conflicting with each other, their intervals cannot overlap and thus the cycle
length reaches its minimum. On the other hand, the intervals of nodes 1, 2
and 3 are placed at the end of the cycle so that no extra queueing delay is
introduced. The average packet delay D = 25.7.

Following this example, we obtain three guidelines to design the scheduling
algorithm.

• Interval assignment should follow the order of the nodes in the routing
path.

• Intervals for intra nodes should be as close as possible to the intervals
for the corresponding CH.

• The cycle length can be reduced by overlapping as much intervals as
possible. However, the reduction is bounded by the intervals that cannot
be overlapped due to the conflicts. In fact, although each interval will
have a number of conflicted intervals, it is the longer intervals that decide
the lower bound of the cycle length.

Algorithm

The algorithm is summarized in Tables 4.1 and 4.2. Table 4.1 describes a
basic scheduling algorithm that strictly schedules the nodes according to their
orders in the routing path: a node is always scheduled before its parent. From
the second guideline, we see that nodes should be scheduled as late as possible.
Thus, the algorithm actually schedules nodes in the reverse order so that nodes
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can be scheduled closer to the end of the cycle. For illustration, we define
function I(·) on nodes such that

I(i) =

{
1 if i is scheduled

0 if i is not scheduled

During the scheduling, a set Vt is maintained to include nodes whose par-
ents are already scheduled. The algorithm tries to find the earliest possible
scheduling interval for all nodes in Vt and the node with the earliest starting
time is scheduled. Then the algorithm schedules the next node with no earlier
starting time until all nodes are scheduled or no intervals can be scheduled
within the required range. Then the reverse schedule is obtained.

Table 4.1: Basic Scheduling Algorithm

Input: node set to be scheduled Vs, schedule range (S, F )
Output: updated schedule
Vt = {i|i ∈ Vs, I(i) = 0, I(pi) = 1}
while Vt! = ∅

order Vt by distance to sink
find earliest schedulable interval (si, fi), si ≥ S

for each node in Vt.
j = argmini∈Vt si
if fj > F return
schedule node j with (sj, fj)
S = sj
update Vt

end while

Table 4.2 utilizes this basic algorithm to perform the actual scheduling. The
idea is to first determine a tentative cycle length and then try to schedule all
the intervals within this cycle. Given the third guideline, we start to schedule
the intervals from the nodes that are closer to the sink. For assistance, we
construct two node sets Vn and Vc. Let

Vn = {i|I(i) = 0, I(pi) = 1, i ∈ V ′}.

Initially we assume I(vs) = 1 so that Vn includes all nodes that directly send
packets to the sink. Clearly, these intervals cannot be overlapped. In addition,
their conflicting intervals cannot be overlapped with these intervals either. For
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that, we construct

Vc = Vn ∪ {j|(i, j) ∈ E ′, I(j) = 0, i ∈ Vn}.

We then schedule Vc with the basic scheduling algorithm with no range re-
quirement and obtain the tentative cycle length. For other nodes that are
not scheduled, since they are not in the current Vc, it is guaranteed that their
scheduled intervals can be overlapped with intervals for nodes in Vn. Thus
we can schedule the rest of nodes from the beginning of the cycle. Thus we
update Vn and Vc according to current schedule and repeat the basic schedul-
ing algorithm. Since nodes that are closer to the sink have longer intervals,
in most cases the updated Vc can be scheduled at the beginning part of the
cycle, leaving the rest part of the cycle available for further scheduling. We
then schedule the rest of nodes to fill in the available part of the cycle to avoid
queueing delays. This process is repeated until all nodes are scheduled. The
finiteness of this process is guaranteed by the construction of Vn, which guar-
antees that all children of already scheduled nodes will be scheduled in the
next iteration. In fact, our experiments show that two iterations will suffice in
most cases as the tentative cycle length is large enough for the rest of nodes to
schedule sequentially. Notice that since the basic scheduling algorithm sched-
ules nodes reversely, the actual schedule should be in the exactly reverse order
of the obtained schedule.

Analysis

With this cycle-based scheduling, we are also interested in determining the
maximum packet generation rate. Recall k ≥ λT . We have

k ≥ λT = k · λτt,

λ ≤ 1

τt
.

Therefore, the maximum packet generation rate is 1
τt
. On the other hand,

when the generation rate does not exceed the maximum rate, it is always
satisfied that k ≥ λT . Thus, we can always set k = 1 to minimize the packet
delay.

4.4 Asynchronous Scheduling Approach

In this section, we present the second scheduling approach, which is called New
Cluster Scheduling (NCS), adopts an asynchronous approach that essentially
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Table 4.2: Actual Scheduling Algorithm

Input: graph G = (V,E) and conflict graph G′ = (V ′, E ′).
Output: interval schedules for nodes in V ′

t = 0
construct Vn, Vc

while Vc! = ∅
schedule Vc with range [0,∞)
tc = maxi∈Vc fi
if tc < t

Vu = {i|i ∈ V ′, I(i) = 0}
schedule Vu with range [tc, t]

end if
t = max(t, tc)
update Vn, Vc

end while
reverse the whole schedule

avoids the synchronization problem by introducing a new clustering structure.
Next we first introduce the new clustering structure and then describe the
approach in detail.

4.4.1 New Clustering Structure

Instead of designing another algorithm to globally schedule all the inter-cluster
communications for synchronization, NCS attempts to simplify the synchro-
nization by changing the communication pattern. To achieve this goal, NCS
introduces a new clustering structure, which includes a new type of node: relay
node.

The new clustering structure is illustrated in Fig. 4.2, in which a cluster
contains a CH node, a relay node and multiple cluster members. The relay
nodes always stay in o-state and only participate in inter-cluster communica-
tions. During data gathering, while cluster members still send sensing packets
to the corresponding CH, the CH no longer sends the aggregated packet to
the next-hop CH but sends to the relay node of its own cluster instead. Upon
receiving the packets, the relay node further combines them with its own sens-
ing packets and forwards the packets to the next-hop relay node until the
packets reach the sink. With such communication pattern, the communica-
tion synchronization is greatly simplified. CHs can continue intra-cluster data
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collection immediately after sending out the aggregated packet, reducing the
data collection delay. In the meanwhile, inter-cluster communication can be
performed without any restrictions, incurring no waiting delays for synchro-
nization. The wireless channel thus can be better utilized and lower packet
delay can be achieved.

Relay node

Member node

Cluster head

Sensing packet

Aggregated packet

Figure 4.2: The new clustering structure includes CHs, relay nodes and mem-
bers. The packet transmissions for the center cluster are shown.

On the other hand, the new clustering structure does not substantially
increase the complexity of the cluster formation process. A network with the
new clustering structure can be simply converted from a network with the
conventional clustering structure by selecting the member with the highest
residual energy as the relay node in each cluster. The routing algorithms for
creating routes among different CHs in conventional cluster-based networks
can also be utilized to create routes among CHs and relay nodes.

4.4.2 Approach Details

NCS adopts the same TDMA protocol as CBS for intra-cluster communica-
tions and CSMA protocol for inter-cluster communications. While member
nodes and relay nodes are fixed in i-state and o-state, respectively, CHs still
need to switch between two states, which is the major task of NCS. Since
there is no synchronization required among different CHs, the state switching,
or the duration at each state, can be determined independently for each CH.
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We first determine the inter-cluster duration a CH stays in o-state. When a
CH switches to o-state, it cannot transmit a packet immediately. Consider the
case that CH 1 is sending a packet to CH 2 at o-state while CH 3, a neighbor
of CH 2, switches to o-state. If CH 3 is not in the transmission range of CH 1,
it will not detect the ongoing transmission, which would be interrupted by any
transmission initiated at the CH before the end of the current transmission.
In this case, the protection from RTS/CTS handshake fails as they were not
received by the CH who was in i-state then. We call the period in which such
collisions may occur the blind period and its duration equals the transmission
time of a packet of a maximum allowable packet length. After this blind period,
the CH then sends the aggregated packet to the next-hop relay node on the
routing path. Once the transmissions are completed, the CH can immediately
switch back to i-state to continue data collection.

Next we consider the intra-cluster duration of a CH in i-state. Since the
CH does not participate in inter-cluster communications for other CHs, the
duration in i-state only affects its own collection delay. Intuitively, to minimize
the collection delay, the CH can switch to o-state immediately after the end
of the time frame in which a packet is collected. However, such an approach
yields relatively small aggregated packets, which underutilizes the wireless
channel due to the overhead of packet headers and control packets, lowering
the maximum achievable throughput. Alternatively, we use a fixed collection
duration, denoted as Tc. A larger Tc indicates less frequent data collection,
yielding a smaller number of larger aggregated packets. Consequently, the
channel is better utilized and higher throughput can be achieved. On the
other hand, a larger Tc also leads to longer collection delay and hence the
end-to-end packet delay. Therefore, adjusting Tc can obtain different tradeoffs
between the packet delay and the maximum achievable throughput.

Tc determines the number of time slots in an intra-cluster period. Following
a similar analysis to that in Section 4.3.2, we see that the necessary number of
time slots for a member in an intra-cluster period is k = ⌈λ(Tc+To)⌉, where To

represents the duration of the last inter-cluster period. When Tc > m · k · τ , a
portion of the intra-cluster period is actually wasted. For energy efficiency, we
organize the intra-cluster period into time frames with each consisting m time
slot, allowing each node to send a packet in a time frame. Then the CH can
remain active only in the last k frames and sleep in other times. The entire
process for a CH is described in Fig. 4.3.

4.4.3 Delay Guarantee

Thanks to the relay nodes, NCS avoids the synchronization delays during the
inter-cluster communications, allowing the relay network to operate similarly
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Figure 4.3: Timing of data gathering at a CH in NCS.

to a general WSN. Therefore, although it does not directly provide delay guar-
antees, it greatly facilitates the utilization of real-time routing protocols at the
upper layer, such as SPEED [29] and MMSPEED [30], which relies heavily on
the one-hop packet delays. These delays could be very long and irregular
in a cluster-based network where communications incur synchronization de-
lays, degrading the performance of the real-time routing protocols. On the
contrast, with NCS eliminating the synchronization delays, real-time routing
protocols can be easily implemented to provide optimal performance on delay
guarantees.

4.5 Integrating CBS and NCS

CBS and NCS are designed to satisfy different network requirements, with
each having its own tradeoff. CBS is more energy efficient due to the nature of
TDMA: nodes can sleep in any idle slots to preserve energy. On the other hand,
NCS yields lower end-to-end packet delay as will be shown in the evaluation in
Section 4.6. Moreover, the CSMA based protocol makes NCS more tolerant to
interference and collisions. In a general CPS application, we envision that the
targeted emergencies do not occur often. As a result, CBS will be sufficient
to monitor the environment in most time, and the network can switch to
NCS to track the emergency for prompt reaction. Thus, A hybrid scheduling
scheme that integrates CBS and NCS can meet the CPS requirements of both
achieving low latency when necessary and preserving a long life time.

The major challenge in the hybrid scheme is the switching between the
adoptions of CBS and NCS. Intuitively, scheduling switching can be performed
concurrently with the next round clustering which reconstructs clusters. How-
ever, such reconstruction is both energy and time consuming, causing inter-
rupts on the current monitoring task as well. Therefore, the switching should
be smoothly performed on the current clusters, which we discuss in this sec-
tion.
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4.5.1 Switching from CBS to NCS

The switching from CBS to NCS occurs when the emergency or severe channel
interference is detected by the sink through the analysis of the received data.
This process can be divided into two major tasks: to adapt the current cluster
structure to NCS while maintaining the connectivity, and to notify all clusters
to perform the switching smoothly.

Cluster Structure Adaption

Switching to NCS requires a node in each cluster to be selected as the relay
node. Such selection should be very carefully done since in NCS, the relay
nodes are responsible for the connectivity of the relay network. In practice,
we select the current CH as the relay node for each cluster so that the topol-
ogy of the relay network keeps unchanged and the network naturally remains
connected during the switching. Such selection also eliminates the potential
updates of the inter-cluster routing information for all clusters, minimizing the
inter-cluster communication overhead. In addition, maintaining a connected
relay network during the switching facilitates the possible cluster reorgani-
zation: in each newly constructed cluster, the CH just need to find a relay
node to keep the cluster connected. We do not further articulate the cluster
reorganization process as it is beyond the scope of the chapter.

With the CH becoming the relay node, we select the node with the highest
residual energy from the remaining nodes as the new CH. A new intra-cluster
scheduling can then be easily performed according to the specification of NCS.

Switching Notification

Switching is initiated by the sink, which spreads the switching notification in
the reverse order of data collection: the sink and the CHs are responsible for
notifying their direct children. The notification can be simply piggybacked in
the ACK packet when a data packet is received from an un-notified child. The
notified child can then switch to NCS accordingly and notify its own children
in the next cycle until the switch is completed on the whole network.

4.5.2 Switching from NCS to CBS

When the sink decides that the network can return to regular monitoring, a
switching from NCS to CBS is necessary to increase energy efficiency. Simi-
larly, we also consider the two major tasks in the switching: cluster structure
adaption and switching notification.
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The more challenging task is the cluster structure adaption, which is es-
sentially the CH selection problem for CBS. Letting the relay node or the
current CH in NCS become the next CH in CBS can have certain advantages.
Selecting the relay node can easily maintain the network connectivity while
selecting the current CH can maintain the current TDMA scheduling with a
slight modification of adding a slot for the relay node. However, both may not
be the optimal decision from the perspective of energy efficiency. Since the re-
lay node and the CH in NCS both are major energy consumers, their residual
energy may not be sufficient for the subsequent monitoring. In this case, se-
lecting them as the CH can deplete their batteries quickly, causing connection
failure and subsequent clustering reconstruction. Therefore, we propose a CH
selection algorithm to determine the adaption.

CH Selection

Through the CH selection, we attempt to maximize the remaining network
lifetime while maintaining network connectivity. The remaining lifetime can
be defined as the interval between the current instant and the time when the
first CH exhausts the energy and a cluster reconstruction is needed. Achieving
this goal requires global optimization because locally selecting the node with
the highest residual energy as a CH for each cluster cannot guarantee the
connectivity. A possible solution may be to gather the energy of all nodes
at the sink, calculate the CH selection for all clusters and disseminate the
selection to all clusters. However, the information gathering and dissemination
cost both time and energy; the centralized algorithm itself is inflexible to adapt
to the network dynamics. Alternatively, we propose a heuristic approach to
determining CHs distributively. This distributed algorithm may not obtain
global optimization due to lack of global information, however, it can achieve
a slightly modified goal: ensure network lifetime longer than some threshold.
This threshold can be set to be the expected duration before the next switching
so that the network can be alive as long as this goal can be achieved in every
switching from NCS to CBS.

Guaranteeing the global connectivity by local CH selection is not an easy
task. Recalling that a routing tree must be determined before CBS can be used,
we perform the CH selection based on the routing tree. For a typical cluster
that needs to select a CH h, a parent list is maintained as P = {p1, . . . , pk},
in which any node could be potentially the parent of h in the routing tree.
The construction of this list will be described later in Section 4.5.2. A cluster
also records a child list C = {C1, . . . , Cl}, where Ci is a cluster whose CH is
potentially a child of h in the routing tree. This child list is created before
the switching. Each relay node randomly chooses a next-hop relay node on
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the routing path as a candidate parent, which in turn adds this relay node in
the child list. In addition, the cluster should know all the neighboring nodes
that can communicate with any node in the cluster, which can be obtained
by exchanging information at the cluster creation stage. Finally, the cluster
is aware of the residual energy of all cluster members, which can be easily
obtained by the CH.

With the above information, we can now describe the algorithm, which is
run on the relay node. The notations used in the algorithm are listed in Table
4.3 and the pseudo code is listed in Table 4.4.

Table 4.3: Notations used in the CH selection algorithm

Notation Definition
N Node set of the current cluster
P Parent list
C Child cluster list
tl Lifetime threshold
ϵ Energy consumption in unit time
ei Residual energy in node i
Bi Neighbor set of node i
wi Weight of node i

The algorithm starts with the selection of the parent CH. The relay node
randomly selects a candidate parent from the parent list P (line 2). Given the
selected parent, the candidate CH can only be a node that can communicate
with the parent. Meanwhile, to ensure the remaining network lifetime to be
longer than the threshold tl, the residual energy in the candidate should be
more than ϵ · tl, where ϵ is the energy consumption in a unit time. Thus we
can obtain the candidate CH set by S = {i|i ∈ N ∩Bp, ei > ϵ · tl} (line 3). For
each node in this set, we calculate the number of nodes this node can reach
in each cluster in the child list (lines 5-7) and choose the minimum number
as the weight of this node (line 8). Then the node with the maximum weight
is tentatively selected as the CH (line 11). The idea behind such selection
is that the more nodes this CH can reach in the child clusters, the higher
the probability that the child clusters can select proper CHs to ensure the
connectivity. There is also a possibility that the maximum weight is zero,
indicating that there is at least one child cluster in which none of the nodes
can connect to a node in the candidate set. In this case, we remove the selected
parent from the parent list (line 15) and repeat the above procedure until a
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Table 4.4: CH selection algorithm

1: While P is not empty do
2: p = random select(P )
3: construct set S = {i|i ∈ N ∩Bp, ei > ϵ · tl}
4: for each node i in S do
5: for each cluster Cj in C do
6: wi

j = |Cj ∩Bi|
7: end for
8: wi = minwi

j

9: end for
10: w = maxwi

11: h = argmaxi wi

12: if w is not zero
13: return h as the CH
14: end if
15: remove p from P
16: end while

feasible CH is selected. Otherwise, we conclude that connectivity cannot be
maintained and a cluster reconstruction is necessary.

Switching Procedure

The entire switching is completed in three steps. The first step starts at the
sink, which notifies all the neighboring relay nodes about the switching. For
illustration purpose, we call relay nodes that take i hops to reach the sink
hop-i nodes. These relay nodes perform the CH selection algorithm and send
the selection along with the switching notification to all hop-2 relay nodes they
can communicate with. The hop-2 relay nodes will then insert all the received
selection in their parent list and perform their own CH selection. This iteration
will continue until all relay nodes receive the notification and complete the CH
selection. Notice that if a cluster selects a CH, it also determines the parent
CH in the routing tree in CBS. Then after this step, the routing tree in CBS
is actually determined.

The second step starts at the leave clusters with each relay node notify-
ing the parent cluster the selected CH. Eventually the sink obtains the new
clustering structure and perform the scheduling in CBS. Till now, the whole
network is still operated in NCS and the third step performs the actual switch-

88



ing. Starting at the sink, each relay node notifies its children (if any) their
scheduling and lets the new CH manage the cluster under CBS.

4.6 Experimental Evaluations

In this section we evaluate the performance of CBS and NCS and their inte-
gration through ns-2 simulations. For comparison purpose, we also evaluate
two existing scheduling approaches used in cluster-based WSNs, for which we
first give a brief description.

4.6.1 Compared Scheduling Approaches

The first approach we compare is a modified version of the scheduling approach
used in IEEE 802.15.4, which we simply call 802.15.4 in this section. To adapt
802.15.4 in a cluster-based network, it is required to construct a cluster tree
from the routing tree by adding members as the children of the corresponding
CHs. Each CH or coordinator then maintains a non-conflicting superframe
for its children in the cluster tree. For fair comparison, we assume the same
cluster tree as in CBS are used and the length of the superframe for node i
equals ni, which is the maximum number of packets received in a cycle in CBS.
The superframes are scheduled using the basic scheduling algorithm in CBS
without considering the node order in the routing tree. In a superframe, we
assume that each slot is collision-free so that a packet transmission in a slot
never fails. When multiple children contend in a time slot, we randomly select
a child to transmit while others wait for the next slot.

The second approach is a simple synchronous approach that defines a global
frame for all clusters. The global frame includes intra- and inter-cluster pe-
riods. In the intra-cluster period, CHs collect data from members using the
same protocol as in NCS. At the end of the intra-cluster period, all clusters
enter the inter-cluster period simultaneously. The duration of intra-cluster
period is also calculated in the same way as in NCS, while the duration of
inter-cluster period To is considered as a parameter in the experiments. Al-
though the scheduling approach is quite simple, similar ideas of this global
frame have already been adopted in practice [71, 72] and we call this approach
GF in the following evaluation.

4.6.2 Experiment Setup

We first describe the cluster formation algorithm adopted before elaborating
other network configurations. According to the system model in Section 4.3.1,
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there are no restrictions on the cluster formation algorithm. For simplicity, in
our experiments we form clusters based on their geographical positions, which
are assumed already known to the nodes. Specifically, we assume the whole
region is a unit square, which is divided into square cells with side length l
and the sensors in the same cell form a cluster. The number of clusters is
then ⌈1

l
⌉2. The CH and relay node are randomly selected in each cluster. The

transmission range is set to be
√
5l, which is the maximum distance between

two nodes in neighbor cells. Such a range allows nodes within a cell or any
two neighbor cells to communicate with each other and hence guarantees the
connectivity in all clusters and the relay network.

To evaluate the network performance, we consider two networks with 300
nodes and 1200 nodes randomly scattered in the unit square. The sink is
positioned at a corner of the square to create relatively long routing paths.
The side length l is selected to be 1

5
and 1

10
, resulting in 25 and 100 clusters,

respectively. The cluster size ranges from 5 to 18. Some approach dependent
parameters are listed in Table 4.5. Sensing packets have a uniform length of
30B and the transmission bandwidth is set to 1Mbps. For 802.15.4 and CBS,
we assume 0 header length to focus on comparison of cycle scheduling. For NCS
and GF, we adopted the default header length of MAC 802.11 in ns2, which
are 44B, 38B, 52B and 44B for RTS, CTS, DATA and ACK. The performance
metrics evaluated are packet delay and network throughput. Packet delay is
defined as the average end-to-end delay for all packets received at the sink while
the network throughput can be interpreted as the maximum packet generation
rate with which the network can operate steadily. The evaluation time is set
to 100 seconds to obtain the network performance at the stable state. Each
experiment is repeated 10 times to obtain the average value.

Table 4.5: Parameters of approaches.

Approach Parameter 300-node network 1200-node network
NCS Tc 0.2s 2s
GF To 2s 16s

The inter-cluster communication in NCS and GF utilizes the common IEEE
802.11 MAC protocol. Practical WSNs may adopt some simplified versions of
802.11, however, the variation among these versions only affects the inter-
cluster communications but does not substantially affect the overall perfor-
mance evaluation. We thus adopt the default controlling packet length of
MAC 802.11 in ns2, which is 44B, 38B, 52B and 44B for RTS, CTS, DATA
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header and ACK, respectively. For TDMA based 802.15.4 and CBS, we assume
0 header length to focus on comparison of cycle scheduling. To construct the
routing tree, the CH or the relay node randomly selects a node in the neighbor
cells that are closer to the sink as its next-hop. The aggregated packets at the
source are not further aggregated at the intermediate nodes in the routing
tree.

4.6.3 Performance Results

Fig. 4.4 shows the average packet delay among four approaches with allow-
able packet generation rates. The standard deviations of these delays are less
than 0.02 and 0.2 for 300-node and 1000-node network respectively, indicat-
ing stable performance of the examined approaches. We first examine the
result in the network with 300 nodes. We can observe that NCS yields the
shortest packet delay when the network is not saturated under lower packet
generation rates. Due to the introduction of relay nodes, packets are trans-
mitted quickly at each hop without undertaking any extra delay caused by the
state switching. On the opposite, GF, which also uses 802.11 for inter-cluster
communications, yields the longest packet delay. In GF, the synchronization
of the inter-cluster periods for different CHs incurs many concurrent packet
transmissions with high contentions, eventually resulting in long delay. Two
TDMA based approaches have shorter delay than GF since they completely
avoid the transmission contention. However, since the transmissions in these
two approaches are strictly scheduled, packets inevitably incur some queue-
ing delay before they can be relayed by the intermediate nodes in the routing
path. Thus both have longer delay than NCS. In particular, delay in CBS is
about 30% shorter than that in 802.15.4, due to the efficient design of the cy-
cle scheduling. While the cycle length of two approaches does not have much
difference, packets in CBS endure less queueing delay with the ordered interval
scheduling.

The performance comparison is similar in the network with 1200 nodes,
where GF exhibits poor performance with allowable generation rate under
0.05, which was not shown in the figure. While NCS still shows the shortest
delay, we observe that CBS obtains a higher performance gain compared to
802.15.4, whose delay is nearly twice of CBS. This contrast indicates that the
scheduling in CBS enjoys more benefits in larger-scale networks.

Fig. 4.5 shows the network throughput, or the maximum packet genera-
tion rate for four approaches in both networks. GF has the worst throughput,
besides its longest delay as seen in Fig. 4.4. This is because that GF requires
a long inter-cluster period to accommodate long delay and therefore causes
low allowable packet generation rate. NCS also has lower throughput com-
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Figure 4.4: End-to-end packet delay of four scheduling approaches under dif-
ferent packet generation rates.
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pared to two TDMA-based approaches. This is mainly due to the intrinsic of
CSMA-based 802.11 protocol, which spends much longer time than the actual
transmission time in transmitting packets. For two TDMA-based approaches,
CBS slightly outperforms 802.15.4. The similar performance is due to the fact
that the cycle length, a dominating factor for the throughput, is similar in
both approaches.
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Figure 4.5: Network throughput with four scheduling approaches.

Recall in NCS, the data collection duration affects the number and length
of aggregated packets and eventually the maximum achievable throughput. In
the next experiment, we further reveal the relationship between the maximum
generation rate and the data collection duration in Fig. 4.6. Clearly, the
maximum generation rate increases faster when the duration is relatively short.
Specifically, it increases about 2 times when the duration is increased from 0.1s
to 0.5s, and only 14% when the duration continues to increase to 1s. Since
increasing the data collection duration directly increases the collection delay,
such observation indicates that the data collection duration should be chosen
properly to achieve the best tradeoff between the maximum generation rate
and the packet delay.

4.6.4 Integration Performance

We evaluate the integration performance in the network with 300 nodes. In
the integration, we are concerned with the achievable network lifetime, which
is defined as the duration between the network creation and the time instant
when the relay network is no longer connected. This terminating situation
corresponds to the following three cases: 1) the first node depletes its energy
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Figure 4.6: Maximum generation rate achieved with different collection dura-
tions in NCS.

during data gathering; 2) a cluster cannot complete the CH selection algorithm
in Section 4.5 during the switching from NCS to CBS; 3) A relay node or a
CH loses connection with its parent during the switching.

To evaluate the network lifetime, we simulate the switching by setting
the consecutive time durations in CBS and NCS to be randomly distributed
between 30 ∼ 90 minutes and 30 ∼ 90 seconds, respectively. The packet gener-
ation rate is fixed at 1 packet/s. To model the energy consumption, we assume
the power ratio for sending, receiving and idle listening is set to 1.67:1:0.88
as adopted in [77]. In CBS, we assume each data packet is associated with
an ACK packet. The length of all control packets is of default values in ns-2.
The initial energy of every node is normalized to energy consumed in 24-hour
continuous packet receiving. This value is reasonable if we assume the receiv-
ing power of a sensor is of order of 10mW and the battery energy is of order
of 1000J . Similarly, the threshold energy is set to the energy consumed in
90-minute packet receiving.

With the above parameters, network lifetime is heavily affected by the
performance of the CH selection algorithm, which in turn is affected by the
transmission range. A too small transmission range will cause failure of net-
work connection and hence the CH selection algorithm. On the other hand,
when the transmission range is set to

√
5l, the connectivity is guaranteed in

the experiment and the CH selection algorithm can be reduced to selecting
the node with the highest residual energy. Thus we evaluate the selection al-
gorithm by varying the transmission range to change the connectivity. Here
we assume the transmission power does not change with different transmission
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ranges to focus on the performance of the CH selection algorithm. In addi-
tion, since network lifetime could be as long as several hundreds of hours, we
simplify the simulation such that in each CBS duration, we only simulate the
network for 1 minute and use the obtained energy consumption to estimate
the actual energy consumption for the whole duration. That is, if the CBS
duration lasts for m minutes and a node consumes energy e in a minute, its
total energy consumption for this duration is m·e. We expect such approxima-
tion will not cause much difference on the results because of the fixed packet
generation rate and hence the stable traffic pattern.

Fig. 4.7 shows the network lifetime under different transmission ranges.
We use the box plot to better reveal its variation. For comparison, the dashed
line represents the lifetime when only CBS is adopted and CHs cannot be
changed. It can be seen that when the transmission range is short and the
selection of CH to maintain connectivity is limited, the lifetime with scheduling
switching is similar to or sometimes worse than the lifetime under CBS. In
this case, transmissions in NCS consume more energy and lower the lifetime.
However, when the transmission range slightly increases, its benefit becomes
more evident with lifetime growing exponentially. When the range is above
1.72 · l, the lifetime reaches a maximum at about 720 hours, approximately 16
times of the lifetime under CBS. Notice that 16 is the number of nodes in the
cluster closest to the sink, which consumes more energy than other clusters.
This maximum lifetime demonstrates that the algorithm can efficiently and
fairly dissipate the energy consumption among all possible nodes in the cluster
to maximize network lifetime. On the other hand, the increasing network
lifetime also indicates that the switching between CBS and NCS does not
affect the connectivity of the network.

4.7 Conclusions

In this chapter, we have presented a hybrid scheme that integrates two commu-
nication scheduling approaches CBS and NCS to enable cluster-based WSNs
to serve as network infrastructure of information collection in CPS. In CBS, a
cycle based schedule for each CH is constructed based on the pre-determined
routing tree. CBS minimizes the cycle length while maintaining the node or-
der in the routing tree, which minimizes the intra-cluster collection delay and
allows continuous packet forwarding from the source to the sink. In NCS,
a CH-relay-member structure is proposed to replace the conventional CH-
member structure. The introduction of relay nodes releases the CHs from the
heavy burden of packet relaying so that the intra- and inter-cluster communi-
cations can be performed more efficiently. Our simulation results have shown
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Figure 4.7: Box plot of network lifetime under different transmission ranges.
The dashed line represents the network lifetime when CBS is adopted.

that the proposed approaches exhibit much better performance than existing
scheduling approaches in terms of packet delay and throughput. The hybrid
scheme integrates CBS and NCS without any interruption on data gathering
during switching, allows the network to enjoy the benefits of both approaches
to meet the stringent requirement for CPS.
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Chapter 5

Conclusions

This dissertation focuses on the study of system evaluation and design for
delay-sensitive wireless networks. At the evaluation part, we designed and
implemented a general flexible network platform with hardware processing
awareness to fill the gap between network simulations and the testbed im-
plementation. The platform is constructed based on the co-simulation of the
well-known network simulator NS-2 and the system-level hardware simulator
SystemC. While both simulators are event-driven, we implemented the co-
simulation by solving two critical issues: synchronization and communication.
We also designed an easy interface to facilitate researchers to develop their
own algorithms on the platform. To demonstrate the design motivation and
the usage of the platform, we performed a case study on all-to-all broadcasting
with network coding on this platform. We described the whole process of incor-
porating the processing modeling into the simulation. Extensive simulations
revealed that hardware processing does not merely add the processing time to
the packet delay. It will also intervene with the communication scheduling and
cause more severe performance impact. With our platform, better algorithms
can be designed by considering the interaction between communication and
processing.

At the design part, we targeted at two important technologies - compression
and clustering as widely used in wireless sensor networks. We first examined
the compression effect on overall network performance in data collection using
LZW as the example algorithm. Results showed that compression can have a
long processing delay and its impact on the packet delay is dependent on the
network traffic. Based on these observations, algorithms have been designed
based on queueing theory to adaptively adjust compression strategy so that
the compression benefit can be maximized. Second, we considered the com-
munication synchronization problem caused by half-duplex antenna in cluster-
based WSNs. We proposed both synchronous and asynchronous scheduling
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algorithms to efficiently schedule the intra- and inter-cluster communications
within the network. We further combined two algorithms together to better
support monitoring applications with both energy and delay requirements.

This dissertation is motivated by the increasing demands of delay-sensitive
network applications and the observation that resource constraints in the net-
work nodes can substantially affect the packet delay. The research we per-
formed in this dissertation combines simulation methodology, hardware mod-
eling, analysis and algorithm designs. The implemented platform can facili-
tate future researches on processing-intensive network applications while the
designed algorithms can be applicable to a wide range of sensor applications
with delay requirements. We expect our research to have a significant impact
on design principles and system evaluation in delay-sensitive wireless networks.
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