

SSStttooonnnyyy BBBrrrooooookkk UUUnnniiivvveeerrrsssiiitttyyy

The official electronic file of this thesis or dissertation is maintained by the University
Libraries on behalf of The Graduate School at Stony Brook University.

©©© AAAllllll RRRiiiggghhhtttsss RRReeessseeerrrvvveeeddd bbbyyy AAAuuuttthhhooorrr...

On the Design of High Performance Data
Center Networks

A Dissertation Presented

by

Zhiyang Guo

to

The Graduate School

in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

in

Electrical Engineering

Stony Brook University

May 2014

Stony Brook University

The Graduate School

Zhiyang Guo

We, the dissertation committee for the above candidate for the

Doctor of Philosophy degree, hereby recommend

acceptance of this dissertation

Yuanyuan Yang - Dissertation Advisor
Professor, Department of Electrical and Computer Engineering

Sangjin Hong - Chairperson of Defense
Associate Professor, Department of Electrical and Computer Engineering

Dmitri Donetski
Associate Professor, Department of Electrical and Computer Engineering

Esther M. Arkin
Professor, Department of Applied Mathematics and Statistics

This dissertation is accepted by the Graduate School

Charles Taber
Dean of the Graduate School

ii

Abstract of the Dissertation

On the Design of High Performance Data Center
Networks

by

Zhiyang Guo

Doctor of Philosophy

in

Electrical Engineering

Stony Brook University

2014

Massive modern data centers consisting of tens of thousands of servers
have emerged to form the backbone of a variety of powerful distribut-
ed computing frameworks, in which efficient communication is often
required among huge data sets stored in tens of thousands of servers
across a data center. This renders the performance of the data center
network (DCN) essential to the successful operation of a data center.

This dissertation focuses on several important issues in the design s-
pace of high performance data center networks. First, we present a
systematic study on optical packet switch, which is a key component in
next generation DCNs. The study can be divided into two parts. In the
first part, we present an efficient analytical model for a novel hybrid
optical/electrical packet switch called OpCut. In the second part, we
study the multicast scheduling problem in all-optical packet switches.
We propose a novel optical buffer structure, a Low Latency Multicast

iii

Scheduling (LLMS) Algorithm that guarantees delay upper bound, and
a pipeline and parallel architecture that enables line-rate scheduling.

Second, we study how to deploy high performance multicast commu-
nication in data center networks. Multicast can tremendously benefit
many cloud-based services that require one-to-many group communi-
cation, such as redirecting search queries to multiple indexing servers
and replicating file chunks in distributed file systems, through releasing
the sender from duplicated transmission tasks, thus, significantly im-
proving network latency. Exploring the unique novel features and tech-
niques in data centers, our research focuses on the following issues: (1)
Achieving cost-efficient provisioning of nonblocking multicast fat-tree
DCNs by exploring server redundancy in data centers; (2) Developing
a practical multicast flow scheduling algorithm that ensures guaranteed
flow bandwidth and high network throughput under volatile data center
traffic.

Third, we study the recently developed hybrid packet/circuit (Hypac)
switched DCN architecture, which arguments the traditional electri-
cal packet switched (EPS) network with a high-speed optical circuit
switched (OCS) network. Considering that the OCS/EPS networks
have unique strengths and weaknesses, we propose a time-efficient Col-
laborative Bandwidth Allocation (CBA) algorithm that configures both
networks in a complementary manner. Also, we show that given suf-
ficient bandwidth from both networks, a Hypac DCN can guarantee
100% throughput with a bounded delay using the proposed CBA al-
gorithm. Through comprehensive evaluations, we demonstrate CBA
significantly improves the performance of Hypac DCNs in many as-
pects.

In summary, this dissertation combines algorithm design, mathemat-
ical modeling, network optimization, theoretical analysis and simula-
tion techniques to provide a thorough investigation on the above issues.
The outcome of this research would benefit many cloud applications
that rely on group communication, and have a significant impact on the
fundamental design principles for future DCNs.

iv

Contents

List of Figures ix

List of Tables xiii

Acknowledgements xiv

List of Publications xvi

1 Introduction and Related Work 1
1.1 Data Center Networks in Cloud Computing 1
1.2 Design Goals of DCNs . 2
1.3 A Taxonomy for DCN Research 4

1.3.1 Switching . 5
1.3.2 Topology Design . 6
1.3.3 Load balancing . 6
1.3.4 Control and Management 7
1.3.5 Novel Architectures . 8

1.4 Our Research and Contributions 9
1.5 Dissertation Outline . 14

2 Performance Modeling of Hybrid Optical Packet Switches with Shared
Buffer 15
2.1 Introduction and Related Work . 16
2.2 The OpCut Switch . 18
2.3 Aggregation Model - An Overview 19
2.4 The Model for Bernoulli Traffic 23

2.4.1 Preliminary - Cut-through 23
2.4.2 Getting Started - Analyzing Two Queues 24
2.4.3 Aggregating Two Queues 27
2.4.4 Iteration - More Queues 28
2.4.5 Using the Model . 30

v

2.5 The Model for ON-OFF Markovian Traffic 31
2.6 Aggregation Model for WDM Optical Cut-through Switch 35
2.7 Validation of the Aggregation Model 37

2.7.1 Single-Wavelength OpCut Switch 38
2.7.2 WDM OpCut Switch . 43

2.8 Conclusions . 43

3 Low-Latency Multicast Scheduling in Optical Packet Switches 45
3.1 Introduction and Related Work . 46
3.2 Interconnect Architecture and Buffer Management 50

3.2.1 Interconnect Architecture 50
3.2.2 Buffer Management . 51

3.3 Low Latency Multicast Scheduling (LLMS) 53
3.3.1 Preliminaries . 53
3.3.2 General Description . 54
3.3.3 Implementation Details . 55
3.3.4 A Scheduling Example . 59
3.3.5 Prioritized LLMS . 60

3.4 Pipeline and Parallel Architecture 62
3.5 Performance Evaluations . 68

3.5.1 Performance under Bernoulli Traffic 70
3.5.2 Performance under Gathered Traffic 73
3.5.3 Performance under Unicast Traffic 75
3.5.4 Performance under Internet Traffic 76

3.6 Conclusions . 80

4 Exploring Server Redundancy in Constructing Cost-Effective Nonblock-
ing Multicast Fat-tree Data Center Networks 81
4.1 Introduction . 82
4.2 Related Work . 84
4.3 Preliminaries . 85

4.3.1 Fat-tree DCNs . 86
4.3.2 Server Redundancy in HA Data Centers 87
4.3.3 Multirate Network Model 88

4.4 Nonblocking Condition for Multicast Fat-tree DCNs in Redundant
Data Centers . 90
4.4.1 Sufficient Condition for 2-Redundant Fat-tree DCNs 91
4.4.2 Sufficient Condition for General Redundant Fat-tree DCNs . 97
4.4.3 Extensions . 101

4.5 Server Reassignment in Faulty Redundant Data Centers 102
4.5.1 Uneven Congestion Caused by Server Failure 102

vi

4.5.2 Optimal Server Reassignment 105
4.6 Comparison of Network Costs . 111
4.7 Conclusions . 113

5 On-line Multicast Scheduling with Bounded Congestion in Fat-tree Da-
ta Center Networks 115
5.1 Introduction . 116
5.2 Related Work . 118
5.3 Preliminary . 119

5.3.1 Fat-Tree DCNs . 119
5.3.2 Hose Traffic Model . 120
5.3.3 Multicast Flow Scheduling in DCNs 121

5.4 Network Model . 122
5.5 On-line Multicast Scheduling with Bounded Congestion 124

5.5.1 Notations . 124
5.5.2 Bounded Congestion Multicast Scheduling Algorithm . . . 125
5.5.3 Scheduling Example . 128

5.6 Theoretical Analysis . 129
5.6.1 Discussions . 137

5.7 Performance Evaluations . 138
5.8 Conclusions . 146

6 Collaborative Network Configuration in Hybrid Electrical/optical Data
Center Networks 147
6.1 Introduction . 148
6.2 Related Work . 150
6.3 The Hypac DCN . 151

6.3.1 A General Hypac DCN Architecture 151
6.3.2 Challenges in Current Hypac DCNs 152

6.4 Network Model and Problem Formulation 153
6.4.1 Modeling the OCS network 154
6.4.2 Modeling the EPS network 154
6.4.3 Network Control . 156
6.4.4 Problem Formulation . 158

6.5 The Collaborative Bandwidth Allocation (CBA) Algorithm 159
6.5.1 Overview . 159
6.5.2 The OCS Network Configuration 160
6.5.3 The EPS Network Bandwidth Allocation 164
6.5.4 Complexity Analysis . 168

6.6 Network Condition for Guaranteed Performance 170
6.7 Performance Evaluation . 172

vii

6.8 Conclusion . 175

7 Conclusions 176

viii

List of Figures

1.1 A taxonomy for DCN research. 13

2.1 An N ×N OpCut switch. 19
2.2 Simulation and analytical results for the OpCut switches of differ-

ent switch and buffer sizes under Bernoulli traffic. (a) Cut-through
ratio. (b) Packet loss ratio. (c) Average packet delay. 39

2.3 Simulation and analytical results for the OpCut switch of different
switch sand buffer sizes under ON-OFF Markovian traffic. (a) Cut-
through ratio. (b) Packet loss ratio. (c) Average packet delay. 40

2.4 Simulation and analytical results for the WDM OpCut switches of
different sizes (N) with different buffer space (B) and number of
wavelengths (k) under Bernoulli traffic. (a) Cut-through Ratio. (b)
Packet Loss Probability (c) Average Packet Delay. 41

3.1 Architecture of a single-wavelength, input-buffered N ×N optical
multicast packet interconnect. 49

3.2 Multicast-enabled FDLS (M-FDLs). Left: Structure of M-FDLs.
Right: Three possible states of switching modules: bar, split and
cross. 51

3.3 Schematic illustrations of a switching module: (a) bar state; (b)
cross state; (c) split state. 53

3.4 A scheduling example for a 4×4 interconnect. (a) The output copies
corresponding to S1 are transmitted (marked by blocks of the same
color), then the scheduler rotates the scheduling vectors and mask
vectors. (b) At the beginning of the next time slot, the scheduler
schedules all arriving packets. 59

3.5 An example for the prioritized LLMS (D = 5). 61
3.6 Ring of cascaded schedulers. The solid line and dashed line indicate

the sequence of sub-schedulers packets go through in different time
slots. 63

3.7 Pipeline operation for the first three time slots (D = 6). 64
3.8 Pipeline and parallel architecture (N = 4). 65

ix

3.9 Performance for a 16× 16 interconnect under Bernoulli traffic with
b = 0.5. (1) packet drop ratio; (b) average delay. 71

3.10 Performance for a 16× 16 interconnect under the same output load
(0.95) with different values of b. (1) packet drop ratio; (b) average
delay. 71

3.11 Performance comparison of traffic of different priorities for a 16×
16 interconnect under Bernoulli traffic using prioritized LLMS. (1)
packet drop ratio; (b) average delay. 72

3.12 Performance for a 16× 16 interconnect under gathered traffic with
probability destined for each output b = 0.5. (1) packet drop ratio;
(b) average delay. 74

3.13 Performance comparison of traffic of different priorities for a 16×
16 interconnect under gathered traffic using prioritized LLMS. (1)
packet drop ratio; (b) average delay. 76

3.14 Performance for a 16 × 16 interconnect under unicast traffic. (1)
packet drop ratio; (b) average delay. 77

3.15 Performance comparison of traffic of different priorities for a 16×
16 interconnect under unicast traffic using prioritized LLMS. (1)
packet drop ratio; (b) average delay. 77

3.16 Performance for a 16 × 16 interconnect under Internet traffic. (a)
packet drop ratio; (b) average delay. 79

3.17 Performance comparison of traffic of different priorities for a 16×
16 interconnect under Internet traffic using prioritized LLMS. (1)
packet drop ratio; (b) average delay. 79

4.1 A fat-tree data center network. When an active server crashes, its
applications (whose connections are represented in bold lines) fail
over to its backup server (dashed lines) immediately. 85

4.2 A level-3 fat-tree can be built by replacing each core switch with a
nonblocking level-2 fat-tree network. 87

4.3 A ftree(2, 3, 3) multirate fat-tree network. There are three existing
connections in the network C1(ω = 0.6), C5(ω = 0.2) and C9(ω =
0.5) marked by lines of different colors and styles. 90

x

4.4 Server assignment in a simple 4-redundant fat-tree DCN. (a) Serv-
er distribution, in which each server has 4 independent identical
instances (including itself) denoted by the same shape; (b) Arbi-
trarily pair 4 identical instances of each server. Assume servers
from different pairs are not identical instances, the resulting prob-
lem becomes Assignment(1); (c) Constructing the SDG;(d) Solve
the problem using Eulerian traversal algorithm, then only consider
the active servers (denoted by larger shapes in the figure) chosen
for next iteration. 104

4.5 A faulty 2-redundant fat-tree DCN. Each active server is denoted
by a colored node, and its backup server is denoted by a blank node
with the same letter. (a) Active server e in the 3rd edge switch fails
over to its backup in the 4th switch. (b) Shifting the operation of
the active server h in the 2nd switch and active server g in the 4th

switch to their backups. (c) Each edge switch again has two active
servers. 104

4.6 The auxiliary graph G′(V,E) for the 2-redundant faulty data center
in Fig. 4.5. The capacity of each edge is denoted by the number
inside. After the failover, edge e3,4 is removed, with node 4 and
node 3 assigned +1 and −1 demand, respectively. A feasible flow
from source node 4 to sink node 3 can be found by sending one unit
of flow through edge e4,2 and edge e2,3. 106

4.7 Sufficient multirate multicast nonblocking condition on the number
of core switches m in ftree(m,n, r) DCNs with different sizes,
redundancy levels and normalized inter-level link bandwidths S. . . 111

5.1 Unbalanced traffic load distribution leads to reduced bisection band-
width and unpredictable network performance. Unused links omit-
ted for clarity. 117

5.2 A level-3 fat-tree DCN, which can be reduced to a level-2 fat-tree if
ToR switches and aggregation switches in each pod are considered
as a nonblocking edge switch. 120

5.3 Scheduling process of an incoming flow (1, {2, 3, 4}, ω). (a) Check
uplinks out of source edge switch 1; (b) Iteratively find a set of core
switches with minimum cardinality inaccessible set; (c) Scheduling
result. 128

5.4 Relationship between congestion bound C and the number of core
switches m in a ftree(m, 512, 40) DCN with core switch link band-
width S = 10 under: (a) multicast traffic; (b) unicast traffic. 137

xi

5.5 Cumulative density function (CDF) of core switch link congestion
in a ftree(64, 256, 32) DCN under: (a) Uniform unicast traffic; (b)
Staggered unicast traffic; (c) Uniform mixed traffic; (d) Staggered
mixed traffic. 139

5.6 Total network throughput vs. time for a ftree(64, 256, 32) DCN
under. (a) Uniform unicast traffic; (b) Staggered unicast traffic; (c)
Uniform mixed traffic; (d) Staggered mixed traffic. 142

6.1 A general Hypac DCN architecture, in which the EPS network is
augmented with a rack-to-rack OCS network. 149

6.2 A fat-tree EPS network can be modeled as a flow graph, in which
each ToR adds a source node and a sink node and each bidirectional
link is unfolded into two unidirectional links. 154

6.3 Each scheduling period is divided into three stages: traffic accumu-
lation, configuration (assume H = T) and transmission, which can
be pipelined between consecutive scheduling periods. A packet is
marked in grey with an arc connecting its arrival and transmission
time. 156

6.4 Two sets of configurations with the same total transmission time:
(a) Four configurations with large overhead and no bandwidth loss;
(b) Three configurations with bandwidth loss. 161

6.5 The bipartite multigraph of the given matrix can be covered with
two colors. 163

6.6 An example of transforming a transmission matrix X into a group
of items. 165

6.7 Three possible EPS network bandwidth allocations. 167
6.8 Delay performance under different arrival rates λ. (a) Average pack-

et delay. (b) Average task completion time. 173
6.9 (a) Bandwidth received by flow fij over time; (b) Accumulated traf-

fic from ToR i to ToR j. 174

xii

List of Tables

2.1 Notations in Aggregation Model 20

3.1 Low Latency Multicast Scheduling (LLMS) 57

5.1 Notations used in the BCMS algorithm 122
5.2 Description of Bounded Congestion Multicast Scheduling (BCMS) . 126

6.1 Important Notations Used in the CBA Algorithm 157
6.2 The EPS Network Bandwidth Allocation 169

xiii

Acknowledgements

I am deeply appreciative of the many individuals who have supported my work
and continually encouraged me through my Ph.D. journey. Without their encour-
agement, thoughtful feedback, and patience, I would not have been able to see it
through.

First and foremost, I would like to express my sincere gratitude to my advisor,
Prof. Yuanyuan Yang, for her continuous support of my Ph.D study and research.
She patiently provided the vision, encouragement and advise necessary for me to
proceed through the doctorial program and complete my dissertation. I have learned
a great deal from her unique perspective on research, her sharp insight, and her
personal integrity and expectations of excellence. I could not have imagined having
a better advisor and mentor for my Ph.D. study.

Besides my advisor, I would like to thank the rest of my dissertation committee:
Prof. Dimitri Donetski, Prof. Esther M. Arkin, and Prof. Sangjin Hong, for their
encouragement and insightful comments. I also would like to thank the individuals
in the ECE department who have made my stay at Stony Brook pleasant: Rachel
Ingrassia, Alex Harris and Anthony Olivo.

I am grateful towards my many student colleagues for all the fun and memory
we had together during the past six years. Many thanks go to my lab mates: Dawei
Gong, Ji Li, Cong Wang, Zhenhua Li, Jun Duan, Hao Li and Zheming Zhang, for
their helpful discussion and the countless hours we spent together in the lab. I am
also thankful for the companionship of my dear friends: Xiaoying Wang, Cunyou
Lv, Jinghui Jian, Zhichao Chen and Shuo Li. Without their company, my Ph.D.
journey would be much less colorful and fun, and for that I owe them my heartfelt
appreciation. Special thanks also go to my host family, Mr. Ernest Edricks and Mrs.
Carolyn Edricks. Their kind hospitality makes me feel that I am never too far away
from home.

xiv

Finally, I wish to dedicate this dissertation to my parents, Guangxiu Pei and
Haiyan Guo, and my wife, Xiao Fu, for their unconditional love and support. Their
encouragement was in the end what made this dissertation possible, and I would
like to express my deepest gratitude and love for their dedication and the many
years of support.

xv

List of Publications

Journal Publications and Book Chapters

• Z. Guo, J. Duan and Y. Yang, “On-line Multicast Scheduling with Bound-
ed Congestion in Fat-tree Data Center Networks,” IEEE Journal on Selected
Areas in Communications (J-SAC), vol. 32, no. 1, Jan. 2014.

• Z. Guo and Y. Yang, “On Nonblocking Multirate Multicast Fat-tree Data Cen-
ter Networks with Server Redundancy,” to appear in IEEE Transactions on
Computers (TC)

• Z. Zhang, Z. Guo and Y. Yang, “Bufferless Routing in Optical Gaussian
Macrochip Interconnect,” to appear in IEEE Transactions on Computers (TC)

• Z. Guo and Y. Yang, “High Speed Multicast Scheduling in Hybrid Optical
Packet Switches with Guaranteed Latency,” IEEE Transactions on Comput-
ers. (TC), vol.62, no.10, pp.1972-1987, Oct. 2013

• Z. Zhang, Z. Guo and Y. Yang, “Efficient All-to-All Broadcast in Gaussian
On-Chip-Networks,” IEEE Transactions on Computers (TC), vol.62, no.10,
pp.1959-1971, Oct. 2013

• Z. Guo and Yuanyuan Yang, “Low-Latency Multicast Scheduling Algorithm
for All-Optical Interconnects,” to appear in IEEE Transactions on Communi-
cations (TCOM)

• Z. Guo and Y. Yang, “Exploring Server Redundancy in Nonblocking Multi-
cast Data Center Networks,” to appear in IEEE Transactions on Computers
(TC).

xvi

• Z. Guo and Y. Yang, “Multicast Communication in Data Center Networks,”
in Data Center Handbook, Springer, to appear in 2014.

Conference Publications

• Z. Guo and Y. Yang, “ Collaborative Network Configuration in Hybrid Elec-
trical/optical Data Center Networks,” IEEE IPDPS, 2014

• Z. Guo, J. Duan and Y. Yang, “Oversubscription Bounded Multicast Schedul-
ing in Fat-tree Data Center Networks,” IEEE IPDPS, 2013

• Z. Guo and Y. Yang, “High-Speed Multicast Scheduling for All-Optical Pack-
et Switches” IEEE NAS, 2013

• Z. Guo and Y. Yang, “Multicast Fat-tree Data Center Networks with Bounded
Link Oversubscription,” IEEE INFOCOM, 2013

• Z. Zhang, Z. Guo and Y. Yang, “Bounded-Reorder Packet Scheduling in Op-
tical Cut-through Switch,” IEEE INFOCOM, 2013

• Z. Zhang, Z. Guo and Y. Yang, “Bufferless Routing in Optical Gaussian
Macrochip Interconnect,” IEEE HOTI, 2012

• Z. Guo, Z. Zhang and Y. Yang, “Exploring Server Redundancy in Nonblock-
ing Multicast Data Center Networks,” IEEE INFOCOM, 2012

• Z. Guo and Y. Yang, “On Nonblocking Multirate Multicast Fat-tree Data Cen-
ter Networks with Server Redundancy,” IEEE IPDPS, 2012

• Z. Guo and Y. Yang, “Pipelining Multicast Scheduling in All-Optical Packet
Switches with Delay Guarantee,” IEEE ITC, 2011

• Z. Guo, Z. Zhang and Y. Yang, “Performance Modeling of Hybrid Optical
Packet Switches with Shared Buffer,” IEEE INFOCOM, 2011

• Z. Guo, X. Luo and Y. Jin, “Improving Network Resource Utilization in Hy-
brid Packet/Circuit Multicasting for IPTV Delivery,” OFC/NFOEC, 2008

• Z. Guo and Y. Yang, “Achieving Performance Guarantee via Joint Traffic
Scheduling in Hybrid Electrical/Optical Data Center Networks,” IEEE HOTI,
2014 (under review)

xvii

• Z. Guo and Y. Yang, “Augmenting Data Center Network with A Fast Re-
configurable Optical Multistage Interconnect,” IEEE Globecom, 2014 (under
review)

• Z. Li, Z. Guo and Y. Yang, “BCube Connected Crossbars(BCCC): An Ex-
pandable Network for Data Centers Using Dual Port Commodity Servers,”
ACM/IEEE ANCS, 2014 (under review)

• J. Duan, Z. Guo and Y. Yang,“Cost Efficient and Performance Guaranteed
Virtual Network Embedding in Fat-Tree Data Center Networks, ACM/IEEE
ANCS, 2014 (under review)

xviii

Chapter 1

Introduction and Related Work

This chapter explains the background, related work, design goals and contributions
of the dissertation.

1.1 Data Center Networks in Cloud Computing

Massive modern data centers consisting of tens of thousands of servers, such as
Microsoft’s Azure platform [1], Google’s App engine and Amazon’s EC2 platfor-
m [2], have emerged to form the backbone of cloud computing, which has trans-
formed the IT industry in a profound way. Cloud computing [3, 4] fulfills the long
held dream of computing as a utility, which relieves developers from the risk of
over-provisioning or under-provisioning of their services, as they can dynamically
expand or contract their presence according to user demand in a “pay-as-you-go”
manner. Moreover, the scalable and elastic computing provided by cloud also al-
lows companies with large batch-oriented tasks to get results as quickly as programs
can scale, since using 1000 servers for one hour costs no more than using one serv-
er for 1000 hours [3]. As a result, cloud computing drastically increases developer
productivity, application performance, and cost-efficiency. Attracted by these ap-
pealing features, many companies are moving their services such as e-commerce,
scientific computing and social networking to the cloud.

Ideally speaking, a cloud, or data center, should create an illusion that there is
an infinite pool of available computing and storage resource, from which tenants
can draw from. To achieve this goal, service agility- the ability to assign any server

1

to any service [5], of a data center is of paramount importance, as it is a deter-
mining factor in many vital metrics of a cloud such as job completion time, server
utilization, operation cost, etc. Meanwhile, service agility critically hinges on the
performance of the data center network (DCN), because network congestion cre-
ates partition among servers, which severely restricts the ability of a data center to
send workloads to any servers.

To further understand the importance of DCNs, we also need to understand
the characteristics of common cloud services and applications. Cloud application-
s broadly fall into two categories: interactive applications and batch applications.
Interactive applications need fast response times to keep users engaged. One ex-
ample is search, where each query is sent to many servers in a data center, then
the responses are sent to a few machines to produce aggregated results, both via
a DCN [6]. Batch applications, such as analytic and data mining, though impose
less stringent requirement on response time in comparison, often deploy distribut-
ed computation frameworks like MapReduce [7], which involve the cooperation of
many servers and put high traffic loads on network. Additionally, both types of
cloud-hosted applications usually rely on distributed file service, such as Google
File System (GFS) [11], which also relies on DCN to provide transparent, scalable
access for any server to the data stored at any other server. As efficient communi-
cation among servers is integral to most cloud applications and services, the DCN
performance is essential to the success of cloud computing.

1.2 Design Goals of DCNs

The cloud computing paradigm imposes a series of stringent requirements on the
design of DCNs. Generally speaking, a DCN should be scalable, expandable, man-
ageable and cost-efficient, as well as provides predictably high bandwidth and per-
formance isolation between applications. Additionally, it should be tailored to ef-
fectively accommodate common traffic patterns, such as one-to-many traffic and
many-to-many traffic, generated by popular cloud applications and services. Next,
we illustrate these requirements in detail.

• Scalability: Today’s data centers contain hundreds of thousands of servers,
whereas the most high-end switches have only hundreds of ports [18]. Find-

2

ing a good network architecture that prevents the DCN from becoming a lim-
iting factor in determining the number of servers deployed in a data center is
vitally important.

• Expendability: As the scale of data centers is increasing constantly, it is
imperative that the network does not impose an obstacle for data center size
expansion [20]. Data center operators should be able to add new servers and
switches into an existing DCN with little alteration of the overall network
structure.

• Cost-efficiency: A data center represents a significant investment in capital
outlay and ongoing costs, in which the DCN occupies a significant portion
[5, 12–14]. The cost of a DCN comes from two parts: the equipment cost,
which goes to switches, load balancers, links, power supplies, etc, and oper-
ation costs, which mostly incurred by power consumption and management
of network equipments. How to achieve cost-efficiency is a primary concern
in DCN design, as it is important to the profitability of a data center.

• Manageability: The large scale of a DCN makes it difficult for data center
operators to manually manage each individual network device. Manual con-
figuration is not only error-prone, but significantly increases the operation
costs of a DCN[5]. Hence, an important requirement of the DCN design is
good manageability. Ideally, network devices should be able to “plug-and-
play” without much human intervention.

• Predictability and performance isolation: A data center is usually shared
by numerous applications and services that may be owned by different ten-
ants. Such shared nature of data centers leads to very volatile traffic patterns
in the DCNs [8–10]. Meanwhile, it means that the network performance
experienced by an application can be significantly influenced by other appli-
cations [59]. Network performance variability hurts application performance
and causes provider revenue loss. It is also a major hindrance to cloud adop-
tion for a wide range of applications that require reliable inter-server commu-
nication [52, 59]. Additionally, it forces applications to tailor their workloads
to where bandwidth is available, which in turn degrades service agility. Ide-
ally, a DCN should never be the limiting factor in the transmission rate be-

3

tween end-hosts, and tenants should receive guaranteed bandwidth regardless
of traffic conditions.

• Effective support of different traffic patterns: The most common traffic
pattern generated by cloud applications is one-to-one traffic, that is, a server
communicates with another server. One-to-one traffic pattern can be effec-
tively supported by unicast, an intrinsic network primitive in DCNs. On the
other hand, many critical data center applications, frameworks and services,
like distributed file services [11] and MapReduce [7], also generate other
traffic patterns, such as one-to-any, one-to-many [31–34] and many-to-many,
which cannot be well-supported by unicast. An important design goal of D-
CNs is to effectively support these common traffic patterns.

1.3 A Taxonomy for DCN Research

A DCN is a very complex ecosystem with numerous interacting building blocks,
therefore, its design space is enormous. This section gives a high-level illustration
of the different aspects of current DCN research.

To better illustrate the various design concerns of DCNs, we first compare the
DCN research with the Internet research, which has received ongoing attention for
decades. The most significant difference between the Internet and DCNs is that a
DCN is usually managed by a single entity, whereas there is no single sovereignty
for the Internet. The unified environment of DCNs makes it possible to deploy a
centralized platform that collectively configures all the network equipments, see,
for example, the recent movement towards software defined networking [43–45],
which enables more effective management of network resources with global knowl-
edge of the network condition. This clearly contrasts the intrinsically-distributive
Internet at large. For the same reason, it is much easier to implement changes spread
across several design domains in a DCN architecture, which explains the fast evo-
lution of DCN research in the past few years, whereas modification to even a single
layer in the Internet incurs such difficulty that the research of the Internet is said to
be “ossified” [50]. Finally, the structure of DCNs usually follow a defined topology
such as fat-tree [18], whereas the topology of the Internet is non-deterministic and
constantly changing.

4

Next, we divide the current DCN research into several domains as shown in
Fig.1.1, and describe prominent work in each domain. It should be noted that since
many issues in the DCN research are closely coupled, most research proposals cov-
er several domains and there are often overlapping areas between the boundaries of
different research domains. For example, architectures like VL2 [23] and BCube
[19] propose novel solutions for several domains like topology design, manage-
ment and load balancing, while OpenFlow[51], a novel switch control technology,
constitutes an integral part in the domain of DCN management.

1.3.1 Switching

Switches are key components of a DCN, whose performance and cost largely deter-
mine the overall performance and cost of the DCN, hence, the design of switches
suitable for cloud computing have attracted much attention[53–58].

In order to face the ever-increasing bandwidth demand and keep the power
consumption low in DCNs, switches for cloud computing purpose must be able
to provide high throughput, low-latency data transmission with small energy foot-
print. Traditional electrical switches cannot meet these requirements, because cop-
per wires are inherently inefficient in high-rate data transmission due to their high
error rate and severe heat dissipation. Much effort has been dedicated to develop-
ing optical switches for data centers, see, for example, [54–56]. Optical switches
are vastly superior to the electrical counterparts in terms of energy-efficiency and
bandwidth capacity, however, their practical implementation also faces a series of
challenges such as the lack of effective optical memory [61].

Another line of research aims towards more efficient, uniform switch control
in DCNs. Traditionally, the control software (or, the control plane) of a switch
is tightly coupled with the switching hardware (the data plane), and is often pro-
prietary and closed for modification. This creates many problems for data center
operators, because it imposes an obstacle for flexible deployment of different traffic
engineering policies. Recently, a novel switch control framework called OpenFlow
[43, 44, 51] has attracted much attention from the research community and industry.
OpenFlow advocates a clear separation between the data plane and the control plane
of switches, and promotes an uniform abstraction of different switch data planes.
OpenFlow is an integral piece and a representative achievement in the software

5

defined networking (SDN) movement, which will be described later.

1.3.2 Topology Design

The network topology plays a vital role in determining the cost and performance
of a DCN. It also largely determines scalability, extendability and resilience of the
network. The search for effective topologies for data center interconnection has
motivated many research efforts in recent years [18–24].

One important design goal of DCN topologies is cost-effectiveness. The gen-
eral theme of work in this area is to “scale out” instead of “scale up”, which
means to find topologies that can connect hundreds of thousands of servers us-
ing only modest-sized commodity switches [18]. This is motivated by the fact
that large, high-end switches are orders of magnitudes more expensive than com-
modity switches in today’s market. Meanwhile, a good DCN topology should also
provide sufficient bandwidth capacity and good fault-tolerance, which is common-
ly achieved by providing rich path multiplicity between servers, see, for example,
many proposed DCN topologies like fat-tree [18], BCube [19], Dcell[22], etc.

On the other hand, much attention has been put to designing topologies that
enable convenient data center expansion, meaning that, servers can be added with-
out needing to significantly alter the network structure. BCN [21] and Ficonn [20]
belong to this category.

1.3.3 Load balancing

As mentioned before, DCN topologies, such as fat-tree and Bcube, provide large
bandwidth capacity by deploying rich path parallelism between servers. However,
how to efficiently utilize the bandwidth capacity of these multiple paths remain-
s a challenging issue. Traffic load balancing, that is, the traffic load should be
evenly spread across each of the multiple paths, is the key to efficient bandwidth
utilization[15].

The currently adopted load balancing approaches in practical data centers are
Equal-Cost Multi-Path(ECMP)[16] and Valiant Load Balancing(VLB) [17]. Both
follow a simple idea: assign each flow to a path randomly or according to a hash
function. Such approaches are often referred to as oblivious routing or randomized

6

routing. However, as shown in [15], oblivious routing leads to unbalanced traffic
load distribution, due to the possibility that multiple “elephant” flows, that is, flows
with large bandwidth demand, are assigned to the same path.

To reduce the effect of multiple elephant flows colliding on the same path,
Multi-path TCP (MP-TCP)[60], a modification to the original TCP protocol, is pro-
posed, which splits a large flow into several smaller flows, each can be transmitted
via a separate path, thus reduces the possibility of collision of large flows. Al-
so, some researchers propose reactive flow scheduling, which periodically re-route
certain flows based on network condition. The most notable work here is Hedera
[15], which introduces a centralized controller that dynamically reschedules flow
routes to maximize the network throughput. The controller periodically identifies
elephant flows and network congestion, and re-route elephant flows on optimized
paths.

Another approach is online flow scheduling, which selects the path for each flow
adaptively when the flow starts according to the network condition. An example of
online scheduling is to greedily route a flow along the path with least congestion.
The challenge for both reactive scheduling and online scheduling is the high over-
head for collecting the status of the whole network given the scale of DCNs, which
involves research in the network control and management domain.

1.3.4 Control and Management

Managing and configuring a large DCN is a daunting task. As manual configuration
is expensive and error-prone, there has been much effort towards more efficient
DCN control and management.

One line of research focuses on minimizing the human factor in managing DC-
Ns. For example, an automatic addressing scheme, DAC[26], presents a platform
that automatically identifies the addresses for switches and servers based on their
topology properties by solving a graph isomorphism problem. Other efforts aim to
simplify the installment of new devices and achieve “plug-and-play”. For example,
Portland [24] assigns a pseudo-MAC address (PMAC) that encodes topology infor-
mation to a host, and establish a mapping between the actual MAC address and P-
MAC for a network device through a gossip-like protocol. VL2 [23] uses IP routing
and forwarding technologies and TCP’s end-to-end congestion control mechanism,

7

but manages to create a virtual lay-2 network environment by employing a directo-
ry system which maintains mapping between application-specific address (AA) and
Location-specific address (LA).

The most notable development in the DCN control technology is the movement
towards software defined networking (SDN) [44–46], led by the Open Networking
Foundation (ONF) [43]. The main characteristics of SDN include: (1) SDN advo-
cates a separation of the control Plane from the data plane of the network; (2) The
control intelligence of the network is logically centralized; (3) The network infras-
tructure is abstracted to expose a common set of APIs for cloud applications. SDN
brings many appealing features, such as better programmability of the network,
increased network reliability and granular traffic control. Several SDN platforms
have been proposed by universities and leading companies, such as NOX [44] and
Google’s B4 [46]. As our research relies on many features of SDN, a more detailed
discussion of SDN will be given in later sections.

1.3.5 Novel Architectures

As mentioned before, traditional electrical networks struggle to accommodate the
rapidly-increasing data volume in today’s data centers, therefore, many researcher-
s focus on constructing novel network architectures by using other transmission
technology, such as wireless communication and optical communication, as a com-
plementary augmentation of the electrical networks.

Wireless data center networking are discussed in [47–49], in which wireless
“flyways” are established by adding wireless links between server racks to allevi-
ate the traffic congestion problem. This is motivated by the observation that the
servers in a data center are densely packed, and wireless devices are very efficient
in providing high bandwidth over short ranges. Moreover, Wireless links can be set
up without the cost of wiring, which makes it much more convenient to adapt the
topology to the requirements of real-time transmissions.

Many also try to leverage optical fiber communication in DCNs. Optic offers
significant advantage in power efficiency and bandwidth capacity [40–42]. The
resulted hybrid optical/electrical, also referred to as Hybrid packet/circuit (Hypac)
switched DCNs, augment the electrical packet switched (EPS) network with a rack-
to-rack optical circuit switched (OCS) network. The goal is to combine the best

8

features of both networks: the EPS network can provide flexible and packet-grained
transmission, and enables each server to communicate with multiple other servers
simultaneously; The OCS network, on the other hand, can deliver high bandwidth
transmission with lower power consumption between any pair of server racks with
established connections. Hence, Hypac DCNs are able to maintain the flexibility of
packet switching, while allocating on-demand large bandwidth to the places where
it is most needed by dynamically establishing OCS connections.

1.4 Our Research and Contributions

In this section, we explain the motivations for our research, and describe the contri-
butions made in this dissertation.

The overarching objective of our work is to explore the unique novel features
and techniques available in data centers to design cost-effective, multicast-
capable DCNs with predictably high performance. The content of this disser-
tation can be roughly divided into three overlapping parts. The first part focuses
on optical packet switching (OPS) [122–127]. Switches are critical components
of a DCN, and OPS has been shown to be one of the most promising candidates
in the next-generation switching technology, due to its potential to provide fine-
grained transmission with huge bandwidth capacity and energy-efficiency. In this
dissertation, we present a comprehensive study on optical packet switching for data
center interconnection, including performance modeling, scheduling algorithm de-
sign and scheduler architecture design. The goal is to achieve low-latency, high-
throughput, reliable (low-loss) and multicast-capable optical packet switching
for data center communication.

The second part of our research focuses on deploying multicast communication
in DCNs [128–134]. Many online applications and back-end infrastructural compu-
tations hosted by data centers require one-to-many group communication [31, 32].
Examples include redirecting search queries to multiple indexing servers, distribut-
ing executable binaries to a group of servers participating in MapReduce alike co-
operative computations [7], replicating file chunks in distributed file systems [11],
and so on.

However, network-level multicast has not been implemented in data centers due
to the high network cost and complexity pertaining to management and schedul-

9

ing of multicast traffic by traditional IP multicast. Without network-level support
for multicast, duplicated packets have to be sent to every individual recipient in a
group communication separately via unicast, which leads to long communication
delay and wastes tremendous bandwidth. In contrast, implementing such group
communication by multicast can avoid sending unnecessary duplicated packets in
the network and deliver packets to all the recipients in one-shot, thus greatly reduce
bandwidth consumption and transmission delay, and significantly improve applica-
tion throughput. The lack of support for multicast in today’s DCNs has impeded
many critical data center applications to reach their full potential and imposed a
grave hindrance to the cloud adoption for a wide variety of popular application-
s. This dissertation investigates a wide range of important topics related to the
design of multicast-capable DCNs, including multicast scheduling at switch level,
cost-effective topology construction, multicast traffic load balancing and bandwidth
guarantee. Our objective is to deploy cost-effective multicast in DCNs with guar-
anteed performance through exploring unique novel features and techniques
in data centers.

The third part of our research focuses on hybrid packet/circuit (Hypac) switched
DCNs [135]. Hybrid packet/circuit (Hypac) switched DCNs, which argument the
electrical packet switched (EPS) network with an optical circuit switched (OCS)
network, have been proposed to combine the strengths of both types of networks.
However, one problem with current Hypac DCNs is that the slow reconfiguration
time of the OCS network results in severe performance drawbacks, such as degrad-
ed network predictability and deficiency in handling correlated traffic. We propose
that such a problem can be mitigated through efficient configurations of both the
electrical and optical networks. In our research, we design efficient network con-
figuration algorithms with the objective to exploit the full potential of Hypac
DCNs and achieve predictably high network performance.

Next, we list the contributions of this dissertation below.

• Performance Modeling of Hybrid Optical Packet Switches [122]. We
present an efficient analytical model called the aggregation model that com-
prehensively analyzes various performance metrics for a novel type of OPS,
called OpCut, under different types of traffic. Through inductive aggregation,
the aggregation model can achieve a polynomial complexity to the switch
size. We develop the aggregation model for the OpCut switch under both

10

Bernoulli traffic and ON-OFF Markovian traffic. The effectiveness of our
model is validated by extensive simulations. The results show that the aggre-
gation model is very accurate in all tested scenarios.

• Low-Latency Multicast Scheduling for Optical Packet Switches [123, 124,
127]. The support of high-throughput, low latency, reliable multicast traffic
scheduling at switch level is the first step towards deploying multicast in DC-
Ns. Here, we study multicast scheduling problem for optical packet switches.
Given the intrinsic complexity of multicast traffic, the limited optical buffer
capacity and the stringent time constraint on scheduling, multicast schedul-
ing for OPS is a very challenging problem. We address these challenges by
presenting the design of a novel optical buffer structure, a time-efficient al-
gorithm and a pipelined and paralleled scheduler architecture that achieves
O(1)-time scheduling.

• Exploring Server Redundancy in Constructing Cost-Effective Nonblock-
ing Multicast Fat-tree Data Center Networks. [128–131]. Fat-tree is the
most widely adopted topology in DCNs [18, 23, 24], because it can scale
to hundreds of thousands of servers using only cheap commodity switches.
However, it is still costly for fat-tree DCNs to support nonblocking (i.e. free
of congestion) multicast communication, due to the large number of core
switches required [27–30]. Since multicast is an essential communication
pattern in many cloud services and nonblocking multicast communication
can ensure the high performance of such services, reducing the cost of non-
blocking multicast fat-tree DCNs is very important. On the other hand, server
redundancy is ubiquitous in todays data centers to provide high availability of
services. In this dissertation, we explore server redundancy in data centers to
reduce the cost of nonblocking multicast fat-tree data center networks (DC-
Ns). Our findings reveal important properties of multicast fat-tree DCNs and
provide valuable theoretical guidelines that enable cost-efficient provisioning
of fat-tree DCNs for data center operators.

• On-line Multicast Scheduling with Bounded Congestion in Fat-tree Data
Center Networks [132–134]. Without an efficient flow scheduling algorithm
that appropriately routes flows to achieve traffic load balance, heavy conges-

11

tion may occur throughout a DCN, which prevents full utilization of link
bandwidth and causes unpredictable network performance. Here, we study
on-line multicast flow scheduling in fat-tree DCNs, where multicast flow re-
quests arrive one by one without a priori knowledge of future traffic. To
address the drastic traffic fluctuation in data centers, we consider a very gen-
eral traffic model called hose traffic model, where the only assumption is that
the total bandwidth demand of traffic that enters (leaves) an ingress (egress)
link of each server at any time is bounded by the capacity of its network in-
terface card. We present a low-complexity on-line multicast flow scheduling
algorithm for fat-tree DCNs, which can achieve bounded congestion and traf-
fic load balance under any arbitrary sequence of multicast flow requests that
satisfy the hose model.

• Collaborative Network Configuration in Hybrid Electrical/optical (Hy-
pac) DCNs [135]. In Hypac DCNs, the OCS network can only offer slow-
reconfiguring, circuit-grained transmission. Meanwhile, the EPS network is
shared in a best-effort fashion and is largely oblivious to the accompanying
OCS network. This dichotomy between the OCS/EPS networks results in
severe performance drawbacks, such as degraded network predictability and
deficiency in handling correlated traffic [42]. Since the OCS/EPS networks
have unique strengths and weaknesses, and are best suited for different traffic
patterns, coordinating and collaborating the configuration of both networks
is critical to eliminate these drawbacks and reach the full potential of Hy-
pac DCNs. Leveraging the useful features of software defined networking,
we propose a time-efficient algorithm called Collaborative Bandwidth Al-
location (CBA) that configures both networks in a complementary manner,
which, given sufficient bandwidth from both networks, can guarantee 100%
throughput with a bounded delay.

Fig.1.1 gives an overview on where our work fits in the taxonomy for DCN re-
search. This dissertation combines algorithm design, mathematical modeling, net-
work optimization, analytical and simulation techniques to provide a comprehen-
sive study on the design of high performance DCNs. The outcome of this research
will not only benefit numerous cloud computing applications and facilitate cloud
adoption for many future applications that rely on group communication, but also

12

���������

	
�
�
��

������

�
������������

�
���
������

����������

�
����

�������������

���

��������

��	��
�

��������������

�����

�����

������

	������������

�����������

���������!"#

���

������$�

������

%��������&�'��'�

�$$��$������

	����

"�������('�	����(����

����(���$

�����&&�(��)��

������(*��$�+����(����

&��������� ��

	����(���������

�(�������$������

����������,��������

�����������)��� �����*�

���&�$������������'��(�

��

��������	�
���
�	�
�

Figure 1.1: A taxonomy for DCN research.

13

have a significant impact on fundamental design principles and infrastructures for
the development of future DCNs.

1.5 Dissertation Outline

The rest of the dissertation is organized as follows. Chapter 2 and chapter 3 present
our study on optical packet switches. Chapter 2 presents an analytical model that
accurately predicts the performance of the OpCut switch under different traffic pat-
terns. Chapter 3 presents our design of high-throughput, low-loss and scalable mul-
ticast traffic scheduling in optical packet switches.

Chapter 4 and chapter 5 focus on deploying network-level multicast communi-
cation in fat-tree DCNs. Chapter 4 present our findings on exploring server redun-
dancy in data centers to achieve cost-effective nonblocking multicast communica-
tion in fat-tree DCNs. In chapter 5, we propose a time-efficient, on-line multicast
flow scheduling algorithm for fat-tree DCNs that can guarantee bounded network
congestion under arbitrary traffic patterns. In chapter 6, we present our work on
collaborative network configuration in Hypac DCNs. Finally, chapter 7 concludes
the dissertation.

14

Chapter 2

Performance Modeling of Hybrid
Optical Packet Switches with Shared
Buffer

Optical packet switching is considered as a most promising building block in future
DCNs [53]. However, the capacity of practical optical buffer, i.e., Fiber Delay Lines
(FDLs), is very limited currently, which makes it difficult to keep packet loss to
an acceptable level in all-optical packet switching. Thus, hybrid optical/electronic
switch architectures, such as the switch proposed in [62] which we refer to as the
OpCut switch, are good alternatives due to their potential to achieve ultra-low pack-
et loss and packet delay. This chapter presents an efficient analytical model called
the aggregation model that comprehensively analyzes various performance metrics
of the OpCut switch under different types of traffic. By inductively aggregating
more queues in the buffer into a block, the aggregation model can achieve a poly-
nomial complexity to the switch size. We first develop the aggregation model for
the OpCut switch under both Bernoulli traffic and ON-OFF Markovian traffic. We
then extend the model to analyzing the performance of the WDM OpCut switch,
where there are multiple wavelengths on each fiber. The effectiveness of our model
is validated by extensive simulations. The results show that the aggregation model
is very accurate in all tested scenarios.

The rest of this chapter is organized as follows. Section 2.1 explains the back-
ground and related work on switch performance modeling. Section 2.2describes

15

the structure of OpCut. Section 2.3 gives the basic idea of the aggregation mod-
el. Section 2.4 and Section 2.5 present the details of the aggregation model under
Bernoulli traffic and ON-OFF Markovian traffic, respectively. Section 2.6 extends
the model to the WDM OpCut switch. We validate the effectiveness of the proposed
model through extensive simulations and present the simulation results in Section
2.7. Finally, Section 2.8 concludes this chapter.

2.1 Introduction and Related Work

Optical networking has been widely adopted to transport high volume traffic in core
networks due to the huge bandwidth of optics. Currently deployed optical networks
primarily use optical circuit switching (OCS), which may not fit the dynamic bursty
traffic of typical Internet applications due to low resource utilization. To overcome
this problem, much research has been conducted in the past few years towards the
development of optical burst switching (OBS) and optical packet switching (OPS)
networks, which offer more flexible alternatives. Compared to OBS, OPS networks
can achieve better scalability and higher bandwidth by switching data on a packet-
by-packet basis. A major challenge for OPS networks is how to resolve output
contention in OPS switches, which occurs when multiple optical packets simulta-
neously go to the same output of an OPS switch, because the limited capacity of
optical buffer built by FDLs. Various contention avoidance and resolution schemes
have been proposed to deal with this problem [61], yet none of those schemes is
able to reduce packet loss to a reasonable level under heavy traffic load.

To address these challenges, a hybrid optical/electronic packet switch archi-
tecture [62, 63] combining optical cut-through with shared electronic buffer was
proposed as a promising candidate for practical deployment. It utilizes the large
capacity of electronic buffer to resolve contention while letting packets cut through
the switch optically as much as possible. This switch architecture was shown to
have the potential to achieve ultra-low packet loss and average packet delay with a
minimal number of O/E/O conversions. In this chapter, we will systematically study
the analytical performance of this switch architecture. In the rest of the chapter, we
will simply call it OpCut switch.

There has been much work on the performance modeling of various types of
switches in the literature. Based on the media packets are transmitted, switches can

16

be divided into two categories: electronic switches, such as [64–68], and optical
switches, such as [69, 72, 73]. Among electronic switches, shared buffer switches
[65–68] have received much attention due to its efficient buffer resource alloca-
tion. However, since all the queues in a shared buffer are strongly dependent on
each other, the performance modeling of shared buffer switches is difficult. Thus,
approximation models based on different assumptions on the packet distribution
were proposed. For example, the model in [66] assumed that all the queues are
independent of each other. In [67], an analytical model that recursively aggregates
queues in the shared buffer was proposed, and was shown to provide more accurate
predication on switch performance than previous models.

Performance modeling for optical switches has also been well studied and main-
ly focuses on two types of optical switches: optical burst switches (OBS) [69] and
optical packet switches (OPS) [72, 73]. In [69], an OBS switch was modeled by the
queueing network, where burst arrivals are described by a Markov process. In [73],
the performance of bufferless WDM optical packet switches with limited-range
wavelength conversion was studied by finding the number of used wavelengths on
each output fiber recursively.

Despite of the myriad amount of work on performance modeling of electronic
switches and optical switches, there has been very limited study on the performance
modeling of hybrid optical/electronic switches, such as the OpCut switch. In [62],
the performance of the OpCut switch with an infinite buffer was analyzed under
Bernoulli traffic. Although the model can give some quantitative characteristics of
the OpCut switch, the infinite buffer is not realistic, and some important properties,
such as cut-through ratio and packet loss caused by buffer overflow, are not con-
sidered. Given the potential of the OpCut switch to achieve ultra-low latency and
packet loss, we feel a comprehensive analytical model for the OpCut switch that
analyzes various important properties under different types of traffic is needed to
fully evaluate the performance of the OpCut switch.

Our work is motivated by the lack of such a model. We will present an effi-
cient analytical model called the aggregation model that can accurately predict the
performance of the OpCut switch with any buffer size under both Bernoulli traffic
and ON-OFF Markovian traffic. By inductively aggregating queues in the shared
buffer into a block, the aggregation model has only a polynomial complexity to the
switch size and buffer size. Our simulation results verify that the aggregation mod-

17

el achieves a near-perfect accuracy in predicating system dynamics, such as packet
loss ratio and average packet delay.

2.2 The OpCut Switch

We consider an N × N OpCut switch as shown in Fig. 2.1. The OpCut switch
is “hybrid” in the sense that it is equipped with a recirculating shared electronic
buffer. An optical packet that arrives at the switch input is sent to its destined out-
put directly, trying to “cut-through” the switch in optical domain. When there is
contention at an output, i.e., multiple optical packets contend for the same output,
one packet is chosen randomly to cut-through the switch by the scheduler, while
the leftover packets are picked up by optical receivers and converted to electronic
form then stored in the shared electronic buffer. The buffer is shared by all leftover
packets and only drops packets when there is no space left, thus has lower packet
loss than other types of buffers of the same buffer size. The leftover packets are
multiplexed and stored in the queues in the buffer corresponding to their destina-
tions. N logic FIFO queues, queue 1, queue 2, . . ., queue N, are maintained in the
buffer with queue i storing the leftover packets destined for output i, 1 ≤ i ≤ N .
While the size of each queue is variable, the total size of N queues is always equal
to the buffer size B. The packets in the buffer are converted back to optics later by
optical transmitters and sent to the switch output. To make the analysis tractable, we
assume that there are a sufficient number of optical transmitters/receivers, so that
there is no contention for transmitters/receivers, and packet loss is caused only by
buffer overflow (in our case, N transmitters/receivers are sufficient). By allowing
packets to “cut-through” optically, the OpCut switch has the potential to achieve
ultra-low latency and packet loss with a minimal number of O/E/O conversions.

The switch is time-slotted and the operations are performed in a two-phase man-
ner as follows.

• Phase 1: Cut-through. Upon receiving incoming packets, all the inputs send
requests to all the outputs. Then each output randomly picks one of the re-
quests to grant the transmission of a packet, and other leftover packets will
be stored in the buffer.

• Phase 2: Buffer management.

18

Buffer

N

1 1

N

Output fiberInput fiber

Electronic

Optical
Switching
Fabric

N

N

1

1

N

N

1

1

Transmitter Receiver

Figure 2.1: An N ×N OpCut switch.

– Step 1: Packet transmission. If an output is not occupied in the “cut-
through” phase and the queue corresponding to it is nonempty, the head
packet buffered in the queue is sent out to the output through an optical
transmitter.

– Step 2: Receive packets. The leftover packets are put into the queues
according to their destinations.

– Step 3: Drop packets if necessary. After the previous two steps, buffer
is now in the “intermediate state.” If the number of packets that have
to be buffered exceeds buffer size B, some of them have to be dropped
according to the random drop with pushout policy, which, if the buffer
size is exceeded by V , will drop V packets randomly out of the total
B + V packets. Note that, both new packets and old packets already in
the buffer are equally likely to be dropped.

2.3 Aggregation Model - An Overview

In this section, we discuss some challenges in performance modeling of the OpCut
switch and introduce the aggregation model.

The difficulty of analytically modeling the behavior of the OpCut switch lies in
the strong dependency among the queues in the shared buffer. The numbers of pack-

19

Table 2.1: Notations in Aggregation Model
N Number of input/output fibers of the switch
k Number of wavelengths per fiber
B Size of shared buffer
(X, Y) State of queue 1 (X) and queue 2 (Y)
(X0, Y0) Initial state of queues 1 and 2 before receiving

leftover packets
(Xm, Ym) Intermediate state of queues 1 and 2
(X1, Y1) Final state of queues 1 and 2 after packet drop
lx Leftover packets in arrived packets for output 1
ly Leftover packets in arrived packets for output 2
a Buffered packets to be sent from queue 1
b Buffered packets to be sent from queue 2
U Packets stored in I-queue block
u Packets stored in (I + 1)th queue
U∗ Packets stored in (I + 1)-queue block
S Packet arrivals for first I outputs
s Packet arrivals for (I + 1)th output
S∗ Packet arrivals for first I + 1 outputs
L Leftover packets in newly arrived packets

for first I outputs
l Leftover packets in newly arrived packets

for (I + 1)th queue
L∗ Leftover packets in newly arrived packets

for first I + 1 outputs
O Buffered packets to be sent to first I outputs
o Buffered packets to be sent to (I + 1)th output
O∗ Buffered packets to be sent to first I + 1 outputs
LI
S Leftover packets among S arriving packets

destined for first I outputs
CTI(O|S, L, U) Probability that O buffered packets are

transmitted from I-queue block in state (S, L, U)
(α, β, γ) State of inputs under ON-OFF Markovian traffic
CTI(O|α, γ, L, U) Probability that O buffered packets are

transmitted from I-queue block in state
(α, γ, L, U) under ON-OFF Markovian traffic

20

ets buffered in the N queues at any moment are a set of random variables strongly
depending on each other. The strong dependency comes from inputs, buffer queues
and outputs. For example, if there are x packets destined for output 1 in a time slot,
there cannot be more than N − x packets destined for other outputs in the same
time slot. Similarly, for a buffer of size B, the fact that there are y packets in the
ith queue rules out the possibility that there are more than B − y packets in other
queues. The dependency also comes from the fact that there cannot be more packets
going through an output than its capacity in any time slot, which means that if an
output is occupied by a “cut-through” packet, it is out of consideration for leftover
packets in the buffer in that time slot. Since the number of joint states of queue
lengths is an exponential function of the switch size, there is no scalable method to
accurately represent all these states.

Fortunately, the OpCut switch has a very useful property that despite of the
strong dependency, queues in the shared buffer interact in such a way that much
unnecessary details can be omitted when finding the behavior of the queues. Take
a tagged queue for example. It is only concerned with the total number of packets
stored in other queues: if there are x packets stored in other queues, its maximum
capacity is B − x, and it does not need to know how exactly those packets are
distributed among other queues. If we already have an accurate model describing
the behavior of the (N − 1)-queue “block,” the characteristic of the tagged queue
and thus the entire switch can be determined. This property allows us to analyze
the OpCut switch in an inductive way: Finding the behavior of two queues, say,
queues for output 1 and output 2, first. Then, aggregate these two queues into a
block, whose behavior can be deduced from the behavior of its components. Next,
consider this block and the third queue, then repeat the aggregation procedure. This
process can be carried on till all the queues are included in a block, by then we have
an accurate estimation of the entire switch.

To characterize the interference between the two phases in the OpCut switch,
we need to find the distribution of leftover packets and the occupancy condition
of outputs, which can be derived from the distribution of the input traffic. Then we
consider two arbitrarily chosen queues and their corresponding outputs, say, queues
for output 1 and output 2. The states of these two queues can be represented by a
a pair of random variables (X,Y), where X is the number of buffered packets in
queue 1 and Y is the number of buffered packets in queue 2. Regarding (X,Y) as

21

a two-dimensional Markov chain, we can find the transition rate of (X, Y), thus the
steady-state distribution of (X, Y), given the distribution of leftover packets and
occupancy condition of outputs. Next, combine the two queues into one block. The
state of the block can be described by a variable U that denotes the total number
of buffered packets in these two queues, whose transition also has Markov property
over time. To fully describe the behavior of the block, the following aspects need
to be specified: the steady-state distribution of this block and the probability mass
function (p.m.f.) of the total number of buffered packets to be sent out from this
block. The former can be obtained by merging the corresponding sub-states of two
queues. To describe the latter, we define a conditional probability CT2(O|S, L, U),
which denotes the probability that O buffered packets are transmitted from this
block that contains U packets currently, given that there are S arrived packets des-
tined for the first two outputs in this time slot, among which L leftover packets are
put into buffer.

After obtaining the characteristics of the two-queue block, we move on to the
three-queue case, queue 1 through queue 3. We regard the first two queues as
a block, thus the state of these three queues can be represented by two variables
(U, u), where u is the number of buffered packets in the third queue. With the
information on the two-queue block we found in the previous step, the transition
rate and steady-state distribution of this two-dimensional Markov chain (U, u) can
be deduced. After the aggregation of the two-queue block and the third queue, we
obtain the conditional probability CT3(O|S, L, U) to describe the new block, where
U is the total number of buffered packets in the three-queue block. This process
continues till all the queues are included in a single block, then we have an accurate
description of the switch behavior. Useful information such as packet loss ratio and
average packet delay can be extracted from this N -queue block. Since there are N

steps in this model and in each step only two components are considered, as will
be seen later, the aggregation model is very efficient and has only a polynomial
complexity to the switch size and buffer size. The aggregation model has several
variations depending on different types of traffic. In the next two sections, we will
give the aggregation model under Bernoulli traffic and ON-OFF Markovian traffic,
respectively. The notations used are summarized in Table 2.1.

22

2.4 The Model for Bernoulli Traffic

In this section, we derive the aggregation model under Bernoulli traffic and analyze
the performance of the OpCut switch in terms of cut-through ratio, packet loss ratio
and average packet delay.

Bernoulli traffic is a widely used traffic model in various network settings [71,
73]. It can be described as follows.

• The packet arrival at each input is Bernoulli with parameter ρ, i.e., in a time
slot, the probability that there is a packet arrival at an input is ρ and there is
no correlation between time slots.

• The destination of a packet is uniformly distributed over all N outputs;

• The arrival at each input is independent of each other.

We now give the detailed description of the aggregation model under Bernoulli
traffic. We first consider the cut-through phase.

2.4.1 Preliminary - Cut-through

Since the portion of the packets that cut through the switch is an important perfor-
mance metric of the OpCut switch and only leftover packets failed to cut through
will be sent to buffer, we need to first find the cut-through ratio and the characteris-
tics of leftover packets in the cut-through phase.

Under Bernoulli traffic, the arrival at each input is independent of each other
and there is no correlation between time slots. Thus, the probability of k packet
arrivals among N inputs in a time slot is

P (k) =

(
N

k

)
ρk(1− ρ)N−k (2.1)

If two or more of these packet arrivals destined for the same output, one of the pack-
ets will “cut-through” and the rest will be stored in the buffer as leftover packets.
The probability of r packets cutting through among k packet arrivals is

P (r|k) = S(k, r)(N)r∑k
s=1 S(k, s)(N)s

23

where S(k, r) is the Stirling number of the second kind, which denotes the number
of ways to partition a set of k distinct elements into r nonempty subsets, and (N)r =

N !/(N − r)!.
The cut-through ratio C of the OpCut switch is defined as the ratio of packets

cutting through to the total number of packet arrivals. The expected cut-through
ratio is given by

E(C) =
N∑
k=0

k∑
r=0

rP (r|k)P (k)

N × ρ
(2.2)

We will simply call it cut-through ratio in the rest of the chapter.
In order to describe the probability mass function (p.m.f.) of leftover packets,

we define LI
S as the number of leftover packets among S arriving packets destined

for first I outputs. Consider the one queue case first. The p.m.f. of L1
S can be

determined by

P (L1
S = l) =

1 l = max{0, S − 1}

0 otherwise
(2.3)

Now consider the general case when I ≥ 1. Given that there are S packet
arrivals destined for first I outputs, having L leftover packets is equivalent to that
S − L packets cut-through. Since there are at most I packets cut through among
the first I outputs in a time slot, the p.m.f. of LI

S is obtained as

P (LI
S = L) =

S(S,S−L)(I)S−L∑I

k=1 S(S,k)(I)k
S − L ≤ I

0 otherwise
(2.4)

2.4.2 Getting Started - Analyzing Two Queues

After obtaining the p.m.f. of leftover packets for all I-queue blocks, 1 ≤ I ≤ N ,
we are now in the position to derive the aggregation model. We begin with the
queues for output 1 and output 2, queue 1 and queue 2. Using (X, Y) to represent
the number of buffered packets in queue 1 and queue 2. Suppose there are currently
X0 packets in queue 1 and Y0 packets in queue 2. Since the packet arrival at each
input is Bernoulli with parameter ρ and the destinations of packets are uniformly

24

distributed over all outputs, the number of packet arrivals towards output 1 and
the number of packet arrivals towards output 2 follow the multinomial distribution.
Thus the probability that there are x packet arrivals destined for output 1 and y

packet arrivals destined for output 2 is

Px,y(x, y) =
N !

x!y!(N − x− y)!

(ρ

N

)x+y
(
1− 2ρ

N

)N−x−y

(2.5)

With x packets towards output 1, the number of its leftover packets lx = max{x−
1, 0}. If output 1 is not occupied in the cut-through phase, i.e., x = 0, and queue
1 is nonempty, a buffered packet will be sent from queue 1 to output 1 in this time
slot, Thus the number of buffered packets to be sent from queue 1 can be expressed
as a = min{X0,max{1 − x, 0}}. Clearly, a = 0 or 1. Similarly, given there
are y packet arrivals towards output 2, the number of leftover packets to be stored
in queue 2 ly = max{y − 1, 0} and the number of buffered packets to be sent to
output 2 can be expressed as b = min{Y0,max{1 − y, 0}}. Also, b = 0 or 1.
After receiving leftover packets and sending out a buffered packet (if any), queue
1 will have Xm = X0 + lx − a packets, and queue 2 will have Ym = Y0 + ly − b

packets. Hence, the transition probability of the Markov chain from state (X0, Y0)

to state (Xm, Ym), given there are x and y packets destined for output 1 and output
2 respectively, is

Λ(Xm, Ym|X0, Y0, x, y) =1 Xm = X0 + lx − a, Ym = Y0 + ly − b

0 otherwise
(2.6)

If there is no buffer overflow, the next state of the Markov chain is (Xm, Ym). Oth-
erwise, some of the packets will be dropped according to the random drop with
pushout policy, and the two queues may store fewer packets than Xm and Ym. Note
that it would be difficult, if not impossible, to know exactly how many packets will
be dropped from queue 1 and queue 2, because at this moment, we have no informa-
tion about other queues. Therefore, we make an assumption called “zero external
interference,” which states that “if Xm + Ym ≤ B, no packets will be dropped
from queue 1 and queue 2; otherwise, Xm + Ym − B packets will be dropped from

25

these two queues.” This assumption is equivalent to only considering queue 1 and
queue 2 in the buffer, and the rest or “external queues” will not grow to a size large
enough to interfere with queue 1 and queue 2. Validation of this assumption was
provided in [67]. According to the random drop with pushout policy, each pack-
et is equally likely to be dropped when buffer overflows. Hence the probability
that the switch drops vx packets from queue 1 and vy packets from queue 2, where
vx + vy = Xm + Ym −B, 0 ≤ vx ≤ Xm and 0 ≤ vy ≤ Ym is

PD(vx, vy;Xm, Ym) =

(
Xm

vx

)(
Ym

vy

)(
Xm+Ym

Xm+Ym−B

) (2.7)

Combining the above discussions, the transition rate of the Markov chain from state
(X0, Y0) to (X1, Y1) consists of the following two cases. Case 1: When X1 + Y1 <

B, the transition rate is∑
x,y

Λ(X1, Y1|X0, Y0, x, y)Px,y(x, y)

where Px,y(x, y) is given in Equation (2.5). Since packets stored in the two queues
do not exceed buffer size in this case, no packets would have been dropped from
queue 1 and queue 2 according to “zero external interference assumption.” Hence
the probability that the Markov chain will go from (X0, Y0) to (X1, Y1) is the prob-
ability that the number of packets stored in queue 1 changes from X0 to X1 and that
stored in queue 2 changes from Y0 to Y1. Case 2: If X1 + Y1 = B, by the random
drop with pushout policy, some packets may have been dropped from two queues.
In other words, the two queues may have visited some intermediate state (Xm, Ym)

before reaching state (X1, Y1), where Xm ≥ X1, Ym ≥ Y1. The probability that the
two queues changes from state (X0, Y0) to state (X1, Y1) is equal to the probability
that state (X0, Y0) transits to some intermediate state (Xm, Ym), then drops exactly
Xm − X1 packets from queue 1 and Ym − Y1 packets from queue 2. Thus, the
transition rate when X1 + Y1 = B is∑

(Xm,Ym)

∑
x,y

Λ(Xm, Ym|X0, Y0, x, y)Px,y(x, y)

×PD(Xm −X1, Ym − Y1;Xm, Ym)

26

After we obtain the transition rates for all states, the steady-state distribution of the
Markov chain π(X, Y) can be obtained. With the accurate description of character-
istics of the two queues, we can aggregate the two queues into a block.

2.4.3 Aggregating Two Queues

In this subsection, we show how to aggregate two queues into a block. Let U
denote the number of packets stored in the block. U = X + Y , where (X, Y)

is called a sub-state of U . Merging all sub-states, the probability that the block
is in state U , or π(U), is

∑
i π(Xi, Yi), where (Xi, Yi) is the ith sub-state of U

if Xi + Yi = U . Recall that only unoccupied outputs in the cut-through phase
can receive buffered packets. To characterize the occupancy status of output 1
and output 2, we also use a conditional probability CT2(O|S, L, U), which can
be interpreted as the probability that O buffered packets can be sent out from
this two-queue block, given that there are currently U packets in the block and
S packet arrivals destined for the first two outputs, among which L packets are left-
over packets. We define (x, y, lx, ly, X, Y) as a sub-state of (S, L, U), if x + y =

S, lx + ly = L and X + Y = U . Let Θ(O|x, y, lx, ly, X, Y) be the probabil-
ity that O buffered packets are sent out from the two-queue block in sub-state
(x, y, lx, ly, X, Y). Θ(O|x, y, lx, ly, X, Y) = 1 when O = a + b, where a and b are
the numbers of buffered packets from queue 1 and queue 2, respectively, otherwise,
it is 0. Given sub-state (x, y, lx, ly, X, Y), we have a = min{X,max{1 − x, 0}},
and b = min{Y,max{1 − y, 0}}. Let P (x, y, lx, ly, X, Y) be the probability that
the block is in sub-state (x, y, lx, ly, X, Y). It can be determined by

P (x, y, lx, ly, X, Y) =

Px,y(x, y)π(X, Y)

lx = max{x− 1, 0}, ly = max{y − 1, 0}

0 otherwise

Merging all the sub-states, we have the probability that the block is in state (S, L, U),
P (S, L, U) =

∑
i P (xi, yi, lxi

, lyi , Xi, Yi), where (xi, yi, lxi
, lyi , Xi, Yi) is the ith

sub-state of (S, L, U). Then,

CT2(O|S, L, U) =
∑
i

Θ(O|xi, yi, lxi
, lyi , Xi, Yi)P (xi, yi, lxi

, lyi , Xi, Yi)

P (S, L, U)

27

After we obtain the characteristics of the two queue block, we can use them in the
next iteration of the aggregation model when we aggregate the two-queue block
with the third queue. Next, we will explain the general case that I-queue block is
aggregated with the (I + 1)th queue.

2.4.4 Iteration - More Queues

Suppose that the first I queues have been aggregated and the characteristics of this
I-queue block has been obtained. We now study the first I+1 queues by considering
the block of the first I queues and the (I + 1)th queue.

Assumed that the first I +1 queues are in state (U0, u0) initially, with U0 and u0

being the number of packets in the first I queues and the (I+1)th queue respectively.
Since the number of packet arrivals towards the first I outputs and that towards the
(I +1)th output also follow multinomial distribution. The probability that there are
S packet arrivals for the first I outputs and s packet arrivals for the (I +1)th output
is

PS,s(S, s) =
N !

S!s!(N − S − s)!

(
Iρ

N

)S (ρ

N

)s
(
1− (I + 1)ρ

N

)N−S−s

Consider the (I+1)th queue first. When there are s packets destined for the (I+1)th

output, the number of leftover packets for queue (I + 1) l = max{s − 1, 0}, and
the number of buffered packets to be sent out in this time slot o = min{u,max{1−
s, 0}}. After receiving leftover packets and sending out the buffered packet, the
number of buffered packets in the (I + 1)th queue becomes um = u0 − o+ l.

Next, consider the block of I queues. With the conditional probability CTI(O|S, L, U)

from the last iteration (for example, Equation (2.8) when I = 2) and the p.m.f. of
leftover packets from Equation (2.4), the transition rate of the Markov chain for the
block of I+1 queues can be obtained in a similar way to the two-queue case. We a-
gain make the “zero external interference assumption,” which means that the buffer
randomly drops packets only when in the intermediate state Um + um > B. The
probability that the I + 1 queues change from state (U0, u0) to intermediate state
(Um, um), given S and s packets destined for the first I outputs and the (I + 1)th

28

output respectively is

Λ(Um, um|U0, u0, S, s) =

∑

L,O CTI(O|S, L, U0)P (LI
S = L)

Um = U0 −O + L and um = u0 − o+ l

0 otherwise

We now derive the transition rate of Markov chain (U, u) in two different cases.
After receiving leftover packets and sending out buffered packets, the I-queue block
and the (I + 1)th queue are in an intermediate state (Um, U

′
m). If Um + um < B,

there are no packets dropped by “zero external interference assumption.” Hence,
the intermediate state (Um, um) is the final state (U1, u1). The transition rate from
(U0, u0) to (U1, u1) is thus obtained as∑

S,s

Λ(U1, u1|U0, u0, S, s)PS,s(S, s)

If U1 + u1 = B, some packets may have been dropped from the intermediate state
(Um, um) before the (I + 1)-queue block reaches state (U1, u1). The transition rate
in this case can be written as∑
Um,um

∑
S,s

Λ(Um, um|U0, u0, S, s)PS,s(S, s)× PD(Um − U1, um − u1;Um, um)

where PD(Um − U1, um − u1;Um, um) is the probability that Um − U1 packets are
dropped from the I-queue block and um−u1 packets are dropped from the (I+1)th

queue, which is given by Equation (2.7). After obtaining the transition rate of the
Markov chain, the steady-state distribution, π(U, u), can be found.

The steady-state distribution of U∗, which is the number of buffered packets in
the (I + 1)-queue block, can be obtained by merging all the sub-states π(Ui, ui).
We can also find the behavior of I + 1 queues described by conditional probability
CTI+1(O

∗|S∗, L∗, U∗). We call (S, s, L, U, u) a sub-state of (S∗, L∗, U∗), if S +

s = S∗, L = L∗ − max{s − 1, 0} and U + u = U∗. Similar to the two-queue
case, let Θ(O∗|S, s, L, U, u) be the probability that O buffered packets are sent out
from the first (I + 1) queues in sub-state (S, s, L, U, u). Since there can be o =

min{u,max{1− s, 0}} packets sent out from (I + 1)th queue, Θ(O∗|S, s, L, U, u)

29

is simply the probability that there are O∗ − o packets that can be sent out from
the first I queues, which is the CTI(O

∗ − o|S, L, U) found in the last iteration.
Next, let P (S, s, L, U, u) be the probability of that the I + 1 queues are in sub-state
(S, s, L, U, u).

P (S, s, l, U, u) = P (LI
S = l)PS,s(S, s)π(U, u)

Merging all the corresponding sub-states of (S∗, L∗, U∗), we have the probability
that the I + 1 queues are in state (S∗, L∗, U∗)

P (S∗, L∗, U∗) =
∑
i

P (Si, si, Li, Ui, ui)

where (si, s
′
i, li, Ui, ui) is the ith sub-state of (S∗, L∗, U∗). Then,

CTI+1(O
∗|S∗, L∗, U∗) =

∑
i

Θ(O∗|Si, si, Li, Ui, ui)P (Si, si, Li, Ui, ui)/P (S∗, L∗, U∗)

We now have a complete description of the behavior of the (I + 1)-queue block,
and continue to the next iteration.

2.4.5 Using the Model

After aggregating all the queues into one block, the steady-state distribution of the
entire buffer π(U) and the conditional probability CTN(O|S, L, U) can be obtained.
With this information, we are now in the position to derive the packet loss ratio and
average packet delay of the switch.

Packet Loss ratio. The packet loss ratio of the OpCut switch denoted by α with
respect to traffic load ρ is given by

α =
N∑

S=0

N∑
L=0

B∑
U=0

N∑
O=0

π(U)CTN(O|S, L, U) (2.8)

×P (LN
S = L)PS(S)[U + L−O −B]+

where PS(S) is the probability that there are a total of S, 0 ≤ S ≤ N , packet
arrivals in a time slot, which is given by Equation (2.1). The notation []+ means
[x]+ = x if x > 0, otherwise [x]+ = 0. To see why Equation (2.8) holds, note that

30

given the switch in state U , after receiving l packets and sending out o packets, the
buffer is in intermediate state Um = U + l − o. If the number of packets in the
intermediate state exceeds the buffer size, exactly U + l − o − B packets will be
dropped, otherwise no packets will be dropped.

Average Packet Delay. The delay of a packet in a switch is generally defined as
the number of time slots it stays in the buffer before being sent out. In our case, a
packet could be sent out or dropped, thus we redefine the delay of a packet as the
number of time slots a packet stays in the buffer before being sent out or dropped. If
a packet cuts through optically, its delay is 0. As Little’s formula holds for general
stable systems, it can be applied to analyzing the average packet delay of the OpCut
switch, which is stable. To use Little’s formula, we first need the average buffer
size S

E(S) =
B∑

U=0

π(U)× U

By Little’s formula, the average packet delay

D =
E(S)

N × ρ
(2.9)

By now we have obtained a complete set of performance metrics for the OpCut
switch under Bernoulli traffic in terms of cut-through ratio, packet loss ratio and
average packet delay (Equations (2.2), (2.8) and (2.9)). The complexity of the ag-
gregation model under Bernoulli traffic is mainly determined by the size of the state
space. Since there are N iterations in the aggregation model, and in each iteration
the size of the state space is O(B2), the complexity of the aggregation model under
Bernoulli traffic is O(NB2).

2.5 The Model for ON-OFF Markovian Traffic

So far we have derived the aggregation model under Bernoulli traffic for single
wavelength OpCut switch. In this section, we will show how to apply the idea
of aggregation to ON-OFF Markovian traffic for single wavelength OpCut switch.
ON-OFF Markovian traffic is another widely used traffic model in the literature
[74]. Under ON-OFF Markovian traffic, the input alternates between two states
“idle” and “busy.” If input is in “busy” state, there is a packet arrival in the current

31

time slot, otherwise, there is no packet arrival. Since the transition is Markovian,
each input can be modeled as a two-state Markovian chain. When in “idle” state,
the probability that it will go to “busy” state in the next time slot is q while the
probability that it will stay in “idle” state is 1 − q. Similarly, the probability that
an input will switch from “busy” state to “idle” state is p and the probability that
it will stay in “busy” state is 1 − p. Packets arrived in consecutive busy time slots
and sharing the same input and output are called a burst. The average load for each
input is thus ρ = q/(p + q). In this section, we show that the aggregation model
can also be used to accurately analyze the performance of the OpCut switch under
ON-OFF Markovian traffic.

Though the general scheme of the aggregation model for ON-OFF Markovian
traffic is similar to that for Bernoulli traffic, the dependence among arrivals in con-
secutive time slots at each input makes it more complex, thus modification to the
aggregation model is necessary to adapt it to ON-OFF Markovian traffic. We briefly
outline the differences between two models next. Recall that we consider a block
of first I queues and the (I +1)th queue in each iteration of the aggregation model,
thus a triple (α, β, γ) can be defined to represent the state of inputs, where α is the
number of busy inputs that send packets destined for first I outputs, β is the number
of busy inputs that send packets to output I + 1, and γ is the total number of busy
inputs. Note that there is exactly one packet arriving at each busy input. Thus this
triple also tells us the exact number of packets towards first I outputs and the num-
ber of packets towards the (I+1)th output. For any I , 1 ≤ I ≤ N−1, (α, β, γ) is a
three-dimensional Markov chain, of which the transition rate and steady-state distri-
bution π(α, β, γ) can be obtained [67]. Taking the dependence between arrivals in
consecutive time slots into consideration, the cut-through ratio of the OpCut switch
under ON-OFF Markovian traffic can be derived by subtracting the expected num-
ber of leftover packets from the total packet arrivals as follows. Let li be the number
of leftover packets destined for output i, 1 ≤ i ≤ N . Due to the symmetric statis-
tical characteristics, l1, l2, . . . , lN are random variables with the same distribution,
although depending on each other. By probability theory, the expected number of
leftover packets E(L) = E(l1 + l2 + · · · + lN) = NE(l1). With the steady-state

32

distribution (α, β, γ) when I = 1, we have

E(l1) =

γ∑
α=0

γ−α∑
β=0

N∑
γ=0

π(α, β, γ)[α− 1]+ (2.10)

By subtracting leftover packets from the total packet arrivals, we have the cut-
through ratio

E(C) = 1− E(L)

N × ρ
= 1− E(l1)

ρ
(2.11)

Next, we explain how to modify the current aggregation model to adapt it to the
OpCut switch under ON-OFF Markovian traffic.

Taking into consideration the dependency between arrivals in consecutive time
slots, the state of the first I-queue block and the (I +1)th queue for 1 ≤ I ≤ N − 1

can be represented by five variables (α, β, γ, U, u), where α, β and γ denote the
inputs state defined above, and U and u are the numbers of packets in first I queues
and the (I + 1)th queue, respectively. Since the state of inputs is completely inde-
pendent of the number of packets currently stored in buffer, the transition rate from
state (α0, β0, γ0, U0, u0) to state (α1, β1, γ1, U1, u1) is the product of the following
two terms. (1) The transition rate from state (α0, β0, γ0) to state (α1, β1, γ1) for the
given I . (2) The conditional probability that the I + 1 queues will go from state
(U0, u0) to state (U1, u1), given that there are α0 packets for the first I queues and
β0 packets for the (I+1)th packets among the total of γ0 packet arrivals, which can
be found as follows. When U1 + u1 < B, no packets would have been dropped by
“zero external interference assumption.” The conditional probability is

Λ(U1, u1|U0, u0, α0, β0, γ0) =

∑

L,O CTI(O|α0, γ0, L, U0)P (LI
α0

= L)

U1 = U0 −O + L and u1 = u0 − o+ l

0 otherwise

where the number of buffered packets sent from the (I+1)th queue o = min{U0,max{1−
β0, 0}}, and the number of leftover packets destined for the I + 1th queue l =

max{β0 − 1, 0}. The conditional probability CTI(O|α0, γ0, L, U0) that O packets
will be sent out from the first I queues in the given state (α0, γ0, L, U0) can be ob-
tained from the last iteration for I ≥ 2. When I = 1, CT1(O|α0, γ0, L, U0) is 1 if

33

O = min{U0,max{1− α0, 0}} and 0 otherwise. When U1 + u1 = B, it is possible
that the (I + 1)th queue dropped packets before reaching the final state (U1, u1),
thus the state transition probability is∑

Um,um

Λ(Um, um|U0, u0, α0, β0, γ0)× PD(Um − U1, um − u1;Um, um)

where Λ(Um, um|U0, u0, α0, β0) is given by Equation (2.12) and PD(Um−U1, um−
u1;Um, um) is given by Equation (2.7). After obtaining the steady-state distri-
bution of the I-queue block and the (I + 1)th queue, we can aggregate the first
I + 1 queues into one block, whose state is represented by (α∗, γ∗, L∗, U∗), where
α∗ = α + β, U∗ = U + u, L∗ = L + l. Update the conditional probability
CTI+1(O

∗|α∗, γ∗, L∗, U∗)

in a similar way to the Bernoulli case. That is, separate all the sub-states and ob-
tain the conditional probability based on each sub-state, and then sum them up. The
difference is that there will be more states due to the introduction of the new vari-
able γ. Repeat the iteration of the aggregation process till we have the steady-state
distribution π(γ, U) of the buffer and the conditional probability CTN(O|γ, L, U),
which is the probability that O packets will be sent out from the buffer in this time
slot, given that there are γ busy inputs, L leftover packets and U buffered packets of
the N -queue block. The packet loss ratio and average packet delay can be derived
in a similar way to Bernoulli traffic, where the average packet delay has the same
expression as Equation (2.9) and the packet loss ratio is given by

α =
N∑

γ=0

γ∑
L=0

N∑
O=0

π(γ, U)CTN(O|γ, L, U) (2.12)

×P (LN
γ = L)[U + L−O −B]+

Note that as we need additional variables to represent the states of inputs in ON-
OFF Markovian traffic, compared to Bernoulli traffic case, the state space of the
aggregation model under ON-OFF is larger. The complexity of the aggregation
model under ON-OFF Markovian traffic is O(B2N4).

34

2.6 Aggregation Model for WDM Optical Cut-through
Switch

So far we have considered the case that each fiber of the OpCut switch has a single
wavelength. To fully utilize the huge bandwidth of optics, the bandwidth of an op-
tical fiber can be divided into multiple wavelengths where each wavelength carries
independent data [70], so that the system capacity is greatly increased compared
to the single wavelength system. This is called wavelength division multiplexing
(WDM). In this section, we show that the aggregation model can also be adapted to
analyzing the performance of the WDM OpCut switch. We will mainly focus on the
aggregation model for the WDM OpCut switch under Bernoulli traffic. The model
for the WDM OpCut switch under ON-OFF Markovian traffic can be similarly de-
rived, but is much more extensive. Thus, we omit it here. The WDM OpCut switch
has N inputs/outputs, each of which has k wavelengths. An electronic buffer of
size B is shared by all leftover packets, where N queues are maintained, with each
corresponding to an output fiber. In the WDM OpCut switch, up to N × k packets
may arrive in a time slot in optical format, one on each wavelength channel. Due to
the use of wavelength converters, each output fiber can receive up to k packets in
each time slot. At first glance, the WDM OpCut switch might be similar to WDM
optical packet switches with shared buffer implemented by FDLs, which have been
extensively studied, see, for example, [67, 72]. However, the WDM OpCut switch
is fundamentally different from the switches with FDL buffer, because its electron-
ic buffer is random access memory and can also have a large capacity, while the
FDLs can only delay packets for a fixed length of time in a pipelined fashion and
accommodate very limited number of packets, In addition, the queues in the shared
electronic buffer interact in a completely different way from shared FDLs. The idea
of aggregation can be adapted to the WDM OpCut switch. To do so, some mod-
ifications have to be made in order to accurately analyze the performance of the
WDM OpCut switch. Different from the single-wavelength OpCut switch consid-
ered so far, if an output fiber has received s packets (s ≤ k) during the cut-through
phase in the WDM OpCut switch, it still can receive up to k − s buffered packets
from the corresponding queue later in that time slot. Only when there are more
than k packet arrivals towards an output fiber in the same time slot, will the leftover
packets be put into the corresponding queue in the shared electronic buffer. This

35

unique characteristics of the WDM OpCut switch makes it necessary to reconsider
the cut-through ratio and equations governing the queue behavior in the aggrega-
tion model. To find the expected cut-through ratio for the WDM OpCut switch, we
first calculate the expected number of leftover packets then subtract it from the total
packet arrivals. Define Hi as the number of packets destined for output fiber I , and
LI as the number of leftover packets for the Ith queue. The expectation of Li for
any i can be expressed as

E(LI) =
Nk̇∑

h=k+1

(h− k)P (Hi = h)

Since packets under Bernoulli traffic have uniformly distributed destinations, HI is
a Binomial random variable B(N × k, ρ/N). Due to the symmetry of Bernoulli
traffic, E(Li) = E(Lj),∀i, j, thus E(L) = NE(Li). After obtaining the expect-
ed number of leftover packets, the cut-through ratio of the WDM OpCut can be
obtained.

E(C) = 1− E(L)

N × k × ρ
(2.13)

Since the WDM OpCut switch can receive up to k packets at each output fiber
in each time slot, we need to reconsider the characteristic of leftover packets. To
describe the behavior of leftover packets, we define LI

S as the number of leftover
packets among S packet arrivals destined for the first I output fibers. When I = 1,
the p.m.f. of L1

S can be expressed as

P (L1
S = l) =

1 l = max{0, s− k}

0 otherwise

Then, we move on to the general case when I ≥ 1. LI
S can also be derived induc-

tively as follows. First, let SI denote the number of arriving packets for the first I
output fibers. The conditional probability that there are h packets destined for out-
put I among S arriving packets destined for the first I outputs P (HI = h|SI = S)

can be determined as follows

P (HI = h|SI = S) =

(
S

h

)
(1/I)h(1− 1/I)S−h

36

The p.m.f of LI
S for I ≥ 1 can thus be derived inductively.

P (LI
S = l) =

S∑
h=0

P (LI−1
S−h = l − z)P (HI = h|SI = S)

where z is the number of leftover packets for the Ith queue, and z = max{0, h−k}.
The equation holds because the number of leftover packets towards the first I

queues in a time slot is the sum of the number of leftover packets for the first
I − 1 queues and the number of leftover packets for the Ith queue. After obtain-
ing the p.m.f. of leftover packets, the remaining differences between the WDM
OpCut switch and the single-wavelength OpCut switch in mathematical terms are
the equations governing the number of buffered packets sent from each queue. In
the WDM OpCut switch, the number of buffered packets sent from a queue is
o = min{u,max{k − s, 0}}, where u is the number of buffered packets in the
queue, and s is the packet arrivals destined for the corresponding output fiber. S-
ince the queues in the shared electronic buffer of the WDM OpCut switch interact
with each other in the same way as those in the single-wavelength OpCut switch,
the aggregation model can be readily adapted to the WDM case with the above
modifications. The equations of the packet loss ratio and average packet delay for
the WDM OpCut switch share the same expressions as those for the OpCut switch
with a single wavelength, which are given by Equation (2.8) and Equation (2.9).
Together with Equation (2.13), we now have a complete set of performance metrics
for the WDM OpCut switch. Note that the state space of the aggregation model for
the WDM OpCut switch under Bernoulli traffic is equal to the single-wavelength
case. Thus, the complexity of this model is also O(NB2).

2.7 Validation of the Aggregation Model

In this section we will mainly focus on the validation of the proposed aggregation
model via simulations. We have conducted extensive simulations for the OpCut
switch of various sizes under different traffic load, and compare the simulation
results with the analytical results obtained from the aggregation model. In this
section, we present numerical results to illustrate how different parameters of the
OpCut switch affect the switch performance under Bernoulli traffic and ON-OFF

37

Markovian traffic in terms of cut-through ratio, packet loss ratio and average packet
delay.

Since packets loss is a very rare event, we set the number of time slots in our
simulation according to packet loss. If packet loss is in the order of 10−4 or higher,
the simulation is run for 107 time slots. If the packet loss is lower than 10−4, the
simulation is run till it has encountered 103 lost packets. The simulation consists
of two parts. The first part studies the performance of the single-wavelength OpCut
switch under Bernoulli traffic and ON-OFF Markovian traffic, and the second part
studies the WDM OpCut switch under Bernoulli traffic.

2.7.1 Single-Wavelength OpCut Switch

For the single-wavelength switch, We have conducted simulations for four different
switch size N and buffer size B with N = 4, B = 4; N = 8, B = 4; N = 8, B = 8

and N = 16, B = 16, and obtained their cut-through ratio, packet loss ratio and
average packet delay, respectively. Fig. 2.2 shows the performance with respect to
different traffic load for the OpCut switch under Bernoulli traffic. First, note that the
results obtained from the aggregation model almost overlap with simulation results
in every testing scenario, indicating our model is indeed very accurate for both small
and large switches. In addition to being accurate, it should be mentioned that the
analytical model is orders of magnitude faster than the simulation: computing one
point in Fig. 2.2 may take hours of simulation time, while it takes the aggregation
model only a few seconds for the same computation.

From Fig. 2.2(a), we observe that the cut-through ratio drops as traffic load
increases, which is expected since with more packet arrivals at the same time, more
contentions would occur at the output, leading to fewer packets cutting through.
From Fig. 2.2(b) and (c), we can see that packet loss ratio and average packet delay
slowly rise with the increase of traffic load. This is because that with more packets
arriving, more leftover packets will be put into buffer, thus packets are more likely
to be dropped due to buffer overflow. With longer queues, the average delay a
packet experiences also increases. Notice that the average packet delay increases
with traffic load at first and stops increasing until it reaches a certain level. The
reason is that we count the average delay as the number of time slots for a packet
to be sent to the output or dropped. When traffic is light, packets will be sent to
buffer after waiting for a certain amount of time since buffer overflow is rare, while

38

0.7 0.75 0.8 0.85 0.9
0.6

0.65

0.7

0.75

0.8
OpCut under Bernoulli traffic

Arrival rate

C
ut

 th
ro

ug
h

ra
tio

N=4, B=4
N=8, B=4
N=8, B=8
N=16, B=16

(a)

0.7 0.75 0.8 0.85 0.9
10

−3

10
−2

10
−1

10
0

OpCut under Bernoulli traffic

Arrival rate

P
ac

ka
ge

 lo
ss

(b)

0.7 0.75 0.8 0.85 0.9
0

0.5

1.0

1.5
OpCut under Bernoulli traffic

Arrival rate

A
ve

ra
ge

 d
el

ay

(c)

Figure 2.2: Simulation and analytical results for the OpCut switches of different
switch and buffer sizes under Bernoulli traffic. (a) Cut-through ratio. (b) Packet
loss ratio. (c) Average packet delay.

39

0.7 0.75 0.8 0.85 0.9
0.65

0.7

0.75

0.8
OpCut under Markov traffic

Arrival rate

C
ut

 th
ro

ug
h

ra
tio

N=4, B=4
N=8, B=4
N=8, B=8
N=16, B=16

(a)

0.7 0.75 0.8 0.85 0.9
10

−0.9

10
−0.8

10
−0.7

10
−0.6

10
−0.5

OpCut under Markov traffic

Arrival rate

P
ac

ka
ge

 lo
ss

(b)

0.7 0.75 0.8 0.85 0.9
0.5

1.0

1.5
OpCut under Markov traffic

Arrival rate

A
ve

ra
ge

 d
el

ay

(c)

Figure 2.3: Simulation and analytical results for the OpCut switch of differen-
t switch sand buffer sizes under ON-OFF Markovian traffic. (a) Cut-through ratio.
(b) Packet loss ratio. (c) Average packet delay.

40

0.7 0.75 0.8 0.85 0.9
0.8

0.85

0.90

0.95

1.0
WDM OpCut under Bernoulli traffic

Arrival rate

C
ut

 th
ro

ug
h

ra
tio

N=4, B=4, K=4
N=8, B=4, K=4
N=8, B=8, K=8
N=16, B=16, K=8

(a)
0.7 0.75 0.8 0.85 0.9

10
−4

10
−3

10
−2

10
−1

WDM OpCut under Bernoulli traffic

Arrival rate

P
ac

ka
ge

 lo
ss

(b)
0.7 0.75 0.8 0.85 0.9
0

0.1

0.2

0.3
WDM OpCut under Bernoulli traffic

Arrival rate

A
ve

ra
ge

 d
el

ay

(c)

Figure 2.4: Simulation and analytical results for the WDM OpCut switches of d-
ifferent sizes (N) with different buffer space (B) and number of wavelengths (k)
under Bernoulli traffic. (a) Cut-through Ratio. (b) Packet Loss Probability (c) Av-
erage Packet Delay.

41

packets are more likely to be dropped when traffic load is heavy. Overall, we can
observe that packet loss ratio and average delay are kept at a very low level (packet
loss ratio is approximately 10−2 and average packet delay is less than one time slot
) under all traffic loads. This indicates that the OpCut switch can achieve ultra-low
packet loss and average packet delay even under heavy traffic load.

Comparing the performance of the OpCut switches with the same switch size
but different buffer size in Fig. 2.2(b) and (c) (for example, N = 8, B = 4 and
N = 8, B = 8), we can see that a larger buffer size reduces packet loss ratio for a
very limited amount. This is because that a large percentage of packets cut-through
directly and only leftover packets will be sent to buffer, thus the buffer usage is
kept at a low level even under heavy traffic load. This also indicates that the OpCut
switch is a stable system and buffer overflow is a rare event. Larger buffer actually
increases average delay when traffic load is heavy, which is due to that the average
delay is calculated as the average number of time slots that a buffered packet has
to wait till being dropped or sent to the output. Since a larger buffer leads to fewer
dropped packets, the average delay increases.

Fig. 2.3 shows the performance with respect to different traffic loads for the
OpCut switch under ON-OFF Markovian traffic. The average burst length, which is
the consecutive number of packet arrivals at each input, is set to 5 in our simulation.

From Fig. 2.3, we can again observe a near-perfect agreement between simula-
tion results and analytical results of the model for all switch sizes and traffic loads.
Note that in the figure cut-through ratio decreases with traffic load, while packet
loss and average packet delay increases with traffic load, for a similar reason to
the Bernoulli traffic case. Comparing the performance of the OpCut switch under
Bernoulli traffic and Markovian traffic, we observe that ON-OFF Markovian traffic
has higher packet loss and longer average packet delay under the same traffic load.
For example, when N = 4, B = 4 and ρ = 0.8, packet loss ratio under ON-OFF
Markovian traffic is higher than that under Bernoulli traffic by about 10−1, and av-
erage delay is longer by half a time slot. The increase in packet loss is due to buffer
overflow caused by the burstiness of Markovian traffic. This difference of packet
loss between two types of traffic becomes more evident when traffic load is heavier.
This is because that when traffic is light, buffer is under-utilized, and bursty traffic
usually will not cause buffer overflow. In contrast, when traffic load is heavy, buffer
storage is close to its limit, thus bursty packets are more likely to be dropped. The

42

reason why packets have longer average delay under ON-OFF Markovian traffic is
that instead of evenly distributed among queues as Bernoulli traffic, leftover pack-
ets tend to concentrate among a few queues during a certain period of time due to
the dependency of packet arrivals in consecutive time slots. Hence, under ON-OFF
Markovian traffic, the queues in the shared buffer tend to be unbalanced, leading to
longer average packet delay.

2.7.2 WDM OpCut Switch

In this subsection, we verify the effectiveness of our model for the WDM OpCut
switch under Bernoulli traffic. We consider the WDM OpCut switch of different
switch and buffer sizes, as well as different number of wavelengths on each in-
put/output: N = 4, B = 4, k = 4; N = 4, B = 4, k = 8; N = 8, B = 8, k = 4 and
N = 16, B = 16, k = 4. Fig. 2.4 plots the three performance metrics of the WDM
OpCut switch: cut-through ratio, packet loss ratio and average packet delay, re-
spectively. Both analytical results and simulation results are presented with respect
to traffic load. First, we note a good agreement between the analytical model and
the simulation for the WDM OpCut switch of different sizes and number of wave-
lengths, indicating the aggregation model works well in modeling the performance
of the WDM OpCut switch. Comparing the performance of the single-wavelength
switch with that of the WDM switch under Bernoulli traffic, we can see that the
WDM switch performs better in terms of all three performance metrics, We also
compare the performance of the WDM switch with N = 4, B = 4, k = 4 with
that with N = 4, B = 8, k = 8. In general, a larger number of wavelengths k on
each fiber improves the performance of the switch. The reason is that despite that
the number of arriving packets increases with k under the same traffic load, more
wavelengths mean larger capacity at each output, which allows more packets to be
sent out from each output in a time slot, leading to better performance.

2.8 Conclusions

In this chapter we have presented an analytical performance model called the ag-
gregation model for the WDM OpCut switch, an optical packet switch with shared
electronic buffer. The aggregation model resolves the strong dependency among

43

queues in the shared buffer by inductively aggregating more queues into a block,
achieving a low polynomial complexity to the switch size. We applied the aggrega-
tion model to the single-wavelength OpCut switch under both Bernoulli and ON-
OFF Markovian traffic. Then we extended the model to the WDM OpCut switch,
where there are multiple wavelength channels on each input/output. Effectiveness
of the aggregation model is validated by comparing the simulation results with an-
alytical results. It is shown that the aggregation model can achieve near-perfect
accuracy in approximating various performance metrics of the OpCut switch in all
testing scenarios regardless of switch size and traffic type.

44

Chapter 3

Low-Latency Multicast Scheduling
in Optical Packet Switches

This chapter presents our results on high-throughput, low-latency and scalable mul-
ticast traffic scheduling in all-optical packet switches. The previously discussed hy-
brid electronic/optical interconnects require optical-to-electronic-to-optical (OEO)
conversion, which leads to undesirable packet delay, power consumption and addi-
tional cost in high speed switching. On the other hand, fiber-delay-line (FDL) [78]
provides a viable solution to store optical packets due to its transparency to traf-
fic bit-rate and low power dissipation. We first propose a novel FDL buffer called
multicast-enabled fiber-delay-lines (M-FDLs), which can provide flexible delay for
copies of multicast packets using only a small number of FDL segments. We then
present a Low Latency Multicast Scheduling (LLMS) Algorithm that considers the
schedule of each arriving packet for multiple time slots. We show that LLMS has
several desirable features, such as a guaranteed delay upper bound and adaptivity to
transmission requirements. To relax the time constraint of LLMS, we further pro-
pose a pipeline and parallel architecture for LLMS that distributes the scheduling
task to multiple pipelined processing stages, with N processing modules in each
stage, where N is the size of the interconnect. Finally, by implementing it with
simple combination circuits, we show that each processing module can complete
the packet scheduling for a time slot in O(1) time. The performance of LLMS is e-
valuated extensively against statistical traffic models and real Internet traffic traces,
and the results show that the proposed LLMS algorithm can achieve superior per-

45

formance in terms of average packet delay and packet drop ratio.
The rest of this chapter is organized as follows. Section 3.1 presents the in-

troduction and related work. Section 3.2 presents the architecture of the adopted
all-optical multicast interconnect and optical buffer. Section 3.3 describes the de-
tails of the all-optical multicast scheduling (LLMS) algorithm. Section 3.4 presents
the pipeline and parallel technique and the corresponding hardware implementation
that reduces the time complexity of LLMS. Section 3.5 presents the performance
evaluation results. Finally, Section 3.6 concludes the chapter.

3.1 Introduction and Related Work

Driven by emerging applications requiring high-bandwidth transmission from one
source to multiple destinations, such as video conference, video-on-demand (VoD)
and IP-based Television (IPTV) [75], optical multicast switching has attracted much
research effort. A series of all-optical switching architectures and techniques have
been proposed to support multicast at the interconnect/router level, such as wavelength-
assisted switching [76, 77], Broadcast-and-Select (BS) switching [79, 80], and
wavelength-division-multiplexing (WDM) switching [81–83], etc. However, de-
spite the considerable amount of work on multicast-capable optical packet switch-
ing architectures, relatively little attention has been paid to multicast packet schedul-
ing in such interconnects, which is critical for high-speed all-optical packet inter-
connects. Motivated by this observation, in this chapter we study multicast schedul-
ing in all-optical packet interconnects/switches.

Since a practical “optical RAM” able to mimic the buffers used in electronic in-
terconnects is still not available currently, how to resolve output contention, which
occurs when multiple optical packets simultaneously go to the same output, poses a
serious challenge for multicast scheduling in optical packet interconnects. Various
contention resolution techniques have been proposed [61]. Bufferless approach-
es such as wavelength conversion and deflection routing [61] resolve contentions
by sending conflicted packets to different wavelengths or other outputs. However,
these approaches have been found ineffective for avoiding packet loss under con-
gested network conditions and demanding a lot of network resources.

Multicast scheduling in optical packet interconnects with FDL buffer is fun-
damentally different from the well-studied multicast scheduling in electronic in-

46

terconnects [84, 85, 89, 90], for the reason that all the approaches for electronic
interconnects rely on electronic RAM to resolve output contention, while FDLs
can merely delay packets for a fixed period of time. Two major challenges must
be properly addressed in multicast scheduling with FDL buffer. First, since FDL
is very bulky in general, only a few can be used in a single optical interconnect.
Therefore, efficient optical buffer is needed to avoid the performance degradation
resulted from limited buffering capability of FDL. Second, scheduling in optical
packet interconnects requires electronic processing that involves calculating the de-
lay for each packet in the FDL buffer and configuring the switching fabric, where
a complex scheduler may pose a bottleneck in high-speed switching. For example,
a scheduler with O(N) time complexity, where N is the interconnect size, requires
the electronic processing component to run N times faster than the port speed nor-
malized by the packet length on the fiber. Suppose we have an optical packet switch
with 100 Gbit/s port speed and the packet length is 64 bytes. Then, the number of
packets arriving at each input port would peak at around 200 million per second
(i.e., each time slot lasts around 5 ns). To process packets at such a rate, a scheduler
with O(N) time complexity would have to work at a clock frequency much higher
than state-of-art FPGAs can accommodate even for small switches with N = 8

ports. This means that we will face a serious scalability problem as the port count
and port speed increase. It is therefore critical to design a scheduler of lower time
complexity for high speed optical packet interconnects.

Most existing multicast scheduling schemes require O(N) time complexity.
Wavelength-assisted routing [76, 77] is a commonly used multicast scheduling
scheme, in which each multicast packet is sent to a multicast module, a FDL loop
device used to generate copies of the packet and provide necessary delay. However,
wavelength-assisted routing based schemes are generally quite complex and pro-
vide only limited multicasting ability, as each multicast module cannot be shared
by multiple packets simultaneously. Moreover, wavelength-assisted routing cannot
provide delay guarantee since a packet may have to be recirculated many times in
the multicast module before being sent out. Output buffering [91] is another wide-
ly adopted scheme. In [91], a buffer consisting of an N × B switch and B FDL
segments is placed at each output of an N × N interconnect. The length of these
FDL segments increases linearly, in which the shortest segment is able to delay
optical signal for one time slot and the longest one can delay optical signal for B

47

time slots. During each time slot, the scheduler assigns packets to FDL segments
with proper delay in each output buffer, such that they will exit the optical buffer
at different times. Though output buffering delivers optimal performance in terms
of average delay and packet drop ratio, the stringent hardware requirement makes
output buffering unscalable for large interconnects.

To avoid performance bottleneck caused by slow scheduling in high speed elec-
tronic and optical switches, many previous work focused on designing scheduler
architectures with low time complexity through parallel and/or pipeline processing
[92–94]. For example, [92] presents a multi-processing scheduler with O(N) time
complexity for input-queued electronic switches, which uses multi-input-queue (MIQ)
and parallel arbitration to speedup the scheduling process. A scheduler for output-
queued switches was proposed in [93], which achieves O(log2 N) time complexity
using a parallel prefix-sum operation. Its time complexity was further reduced to
O(1) in [91, 94] through a pipeline processing architecture consisting of (log2 N +

1) pipeline stages. However, the pipeline processing incurs O(log2N) delay over-
head.

In this chapter, we systematically address the above challenges in multicas-
t scheduling for high speed optical packet interconnects. Our contributions can be
summarized as follows.

• We propose an efficient optical buffer called multicast-enabled FDLs (M-
FDLs) that enables flexible packet duplication and controllable delay using
much shorter FDL segments than the incremental buffer [91]. Such optical
buffer is very helpful to multicast scheduling in optical packet interconnects.

• Using the M-FDLs buffer, we present an algorithm called Low Latency Mul-
ticast Scheduling (LLMS) Algorithm for all-optical packet interconnects. By
considering the schedule of each arriving packet for multiple time slots, LLM-
S allows more efficient packet transmission than scheduling algorithms that
resolve output contention for a single time slot. LLMS can also immediate-
ly detect the congestion and promptly drop packets with overlong delay to
let upper layer protocols quickly respond to the network condition. Such a
feature is desirable for delay-sensitive multicast applications. LLMS is able
to achieve the performance very close to the optimal performance of output
buffering [91] in terms of average delay and packet drop, while requiring

48

Multicast-capable Optical Switching Fabric...M-FDLs ...121 Label Processor SchedulerM-FDLsM-FDLs12N 12N121 Control planeData plane Configuration signalOptical labelOptical payload Destination information ElectronicOptical
Figure 3.1: Architecture of a single-wavelength, input-buffered N×N optical mul-
ticast packet interconnect.

orders of magnitude shorter FDL segments.

• We propose a pipeline and parallel processing architecture that distributes
the scheduling task to multiple pipelined stages, with N processing modules
operating in parallel in each stage. Combined with a simple combination
circuit implementation, the time complexity for each processing module can
be reduced to O(1). The proposed architecture enables the switch to schedule
packets at the line rate, and solves the dilemma that the processing speed of
electronic scheduler struggles to catch up with the ever-increasing port speed
in optical packet interconnects. Also, it does not incur additional pipeline
overhead, which is very desirable compared to the scheduler proposed in [91,
94] that has O(log2N) pipeline overhead.

• The LLMS algorithm can be easily extended to provide differentiated Quality-
of-Service (QoS), which presents a desirable extra feature. We show that the
prioritized LLMS scheduling, though based on a simple preemptive strategy,
achieves good QoS differentiation in traffic and, more importantly, can be
implemented by the pipeline and parallel processing architecture with very
little modification.

49

3.2 Interconnect Architecture and Buffer Manage-
ment

In this section, we briefly describe the adopted interconnect architecture and the
operation of the proposed optical buffer, multicast-enable FDLs (M-FDLS).

3.2.1 Interconnect Architecture

We consider a simple single-wavelength, input-buffered optical multicast packet
interconnect, whose high level view is depicted in Fig. 3.1.

We assume the interconnect operates in a time-slotted manner and uses optical
packets of the same duration with low bit rate headers to facilitate processing at the
scheduler. Each optical packet consists of two parts: payload and label (or header).
The optical label contains the destination outputs of the packet, and is much shorter
than the optical payload. It is also encoded at a low fixed bit rate to allow easy
optoelectronic conversion and electronic processing. The payload duration is fixed
to a time slot, such that its data volume is proportional to the user-defined bit-rate
ranging from Mbs per second to hundreds of Gbs per second. In an all-optical
packet switched network, the payload of each packet transmits across the network
transparently, and is only electronically recovered at end points.

The adopted interconnect consists of the optical switching fabric and M-FDLs
as input buffers in the data-plane, and optical label processors and electronic sched-
uler in the control plane. When an optical packet arrives at an input port, the input
port aligns the incoming packet related to the switch master clock in order to syn-
chronize packet flows, which is necessary for packet header recovery. Then, the
packets label is stripped off and sent to the label processor, which can be performed
passively by the optical correlation technique. The label processor then converts
all-optical headers to electronic form, and sends them to the electronic scheduler,
which calculates the schedule for each packet. Based on scheduling results, control
signals are issued to the FDL buffers and switching fabric to properly configure the
interconnect. Finally, updated headers are reinserted, and the packets are sent out
of the switch.

Similar to many existing work in the literature, such as European KEOPS switch
[79, 80], we adopt the broadcast-and-select optical switching fabric. Since coupler-

50

�
�
�

�������

����	
��

������������������� 	��������������

Figure 3.2: Multicast-enabled FDLS (M-FDLs). Left: Structure of M-FDLs. Right:
Three possible states of switching modules: bar, split and cross.

s and SOAs inevitably introduce signal distortion, after packets are delivered to
corresponding output ports, they will go through proper regeneration (e.g., reampli-
fication and reshaping) to reduce signal degradation [79].

3.2.2 Buffer Management

Next, we present a novel optical buffer called multicast-enable FDLs (M-FDLs)
that provides flexible delay for each incoming multicast packet. Fig. 3.2 shows
the buffer structure. The M-FDLs buffer consists of cascaded unit-length FDL seg-
ments. Each unit-length FDL segment can provide a delay of T , which is the du-
ration of a time slot. To provide flexible delays ranging from T to dT , a total of d
FDL segments are needed.

The FDL segments are connected by 1× 2 switching modules. To support con-
trollable delay and flexible packet duplication for multicast packets, each switching
module can be set to one of three possible states: when it is in “bar” state (the de-
fault state), packets simply go through it and move to the next FDL segment; when
it is in “split” state, a copy of packet will be sent to the interconnect for transmis-
sion through an optical multiplexer, while the packet continues to move forward
in the M-FDLs; when it is in “cross” state, packets will move out of the M-FDLs
completely and be sent to the interconnect for transmission.

Duplicating packets in a switching module causes considerable split power loss,
which is an important concern in the design of M-FDLs. Here, we borrow some
ideas from the design of switching cells in multicast optical cross point switches
(OXS) [95], and present an implementation of switching modules that uses active
vertical couplers (AVC) to achieve lossless packet duplication.

As shown in Fig. 3.3, a switching module is built using two AVCs (called

51

AVC1 and AVC2) perpendicularly intersecting each other, which are formed using
a light-amplifying active waveguide layer grown on top of the passive waveguide.
When a switching module is at “bar” state, optical signal simply passes through
the bottom passive waveguide with negligible insertion loss and SNR degradation,
as shown in Fig. 3.3(a). When a switching module is at “cross” state, optical
signal is coupled into the upper active waveguide. By adjusting the injecting carrier
density at a proper level, the signal power is completely transferred from AVC1
to AVC2, amplified in the process, and as a result, the packet exits the M-FDLs
buffer completely, as shown in Fig. 3.3(b). Finally, when a switching modules set
to “split” state, the optical signal is coupled into active waveguide with about equal
parts of input signal power at the end of both couplers, as shown in Fig. 3.3(c).
The gain of the active waveguide is set to be sufficient to overcome the split loss,
therefore realizing lossless packet duplication.

Even though insertion loss caused by packets splitting is no longer an issue, each
splitting operation decreases the optical signal-to-noise ratio (OSNR) of a packet.
However, the noise accumulation is very slow, since a high OSNR of 25 dB can still
be achieved after more than 40 stages of splitting [95]. This is sufficient for current
multicast optical packet switches, because a packet can be split at most N times,
where N is the switch size, and as mentioned before, the size of multicast optical
switching fabrics is limited in practice.

We now use an example to illustrate how the M-FDLs works. Assume that a
multicast packet arrives at time slot t, and is scheduled to deliver a copy of it to some
of its destination outputs in the (t + i)th time slot and to the rest of its destination
outputs in the (t+ j)th time slot (i < j ≤ d). At the beginning of the (t+ i)th time
slot, the packet moves to the ith coupler, and the scheduler sets the ith coupler to
“split,” such that a copy of the packet will be sent to the switching fabric. At the
beginning of the (t + j)th time slot, the scheduler sets the jth coupler to “cross”
state, thus the packet moves out of the M-FDLS and be transmitted completely.

Compared with existing FDL buffers for multicast packet switching, M-FDLs
has some clear advantages. On one hand, M-FDLs does not have the problem
of limited multicast processing capability in the recirculating loop buffer in the
wavelength-assisted routing scheme [76, 77], since each M-FDLs can be shared
by all the incoming multicast packets in a pipelined fashion. On the other hand,
M-FDLs can achieve the same buffer depth using much shorter FDL segments,

52

��������
����	
���
���	�����	
���
���	���	���� ����������� ����	���	�����	��

��	��
�	���� ����	���	�����	��

��	��
�����������

��� ��� ���

Figure 3.3: Schematic illustrations of a switching module: (a) bar state; (b) cross
state; (c) split state.

compared to the incremental buffer used in the output buffering scheme [91]. For
example, as mentioned earlier, to achieve flexible delays ranging from 1T to 30T ,
an incremental optical buffer in [91] requires FDL segments with a total length that
can delay packets for 465 time slots, while each M-FDLs only requires 30 unit-
length FDL segments, which is a substantial saving. Based on the input-buffered
optical multicast packet interconnect and M-FDLs buffer described above, we will
present the Low Latency Multicast Scheduling (LLMS) Algorithm in the next sec-
tion.

3.3 Low Latency Multicast Scheduling (LLMS)

3.3.1 Preliminaries

In this subsection, we introduce some commonly used terms in multicast schedul-
ing. In multicast scheduling, the vector of destinations of a multicast packet is
called its fanout. For clarity, an arriving input packet is usually distinguished from
its corresponding output copies, i.e., the copies of the input packet destined for the
outputs in its fanout.

The most straightforward multicast solution was the use of copy networks, in
which all output copies are delivered by unicast. However, since optical switching
fabric such as Broadcast-and-Select (BS) has a intrinsic multicasting capability, i.e.,
the ability to transmit packets from one input port to multiple output ports simul-
taneously, treating multicast as multiple unicasts wastes bandwidth and prolongs
packet delay.

There are several service disciplines to transmit multicast packets from input
ports to output ports, which can be roughly divided into two categories: one shot

53

and fanout splitting. With one shot, all the output copies of an input multicast packet
must be sent to the corresponding output ports in one time slot, whereas in fanout
splitting, a multicast packet could be delivered to the outputs in multiple time slots,
and in each time slot, only some of the outputs in its fanout receive the packet copy.
It has been shown that one shot discipline may severely limit the throughput of the
interconnect. Thus, we adopt fan-out splitting discipline.

3.3.2 General Description

In this subsection, we give a general description on how the Low Latency Multicast
Scheduling (LLMS) algorithm works.

As mentioned earlier, the optical packet interconnect we consider is input-buffered,
where a M-FDLs is placed in each input port. Each M-FDLs is capable of providing
flexible delay within a range as well as producing duplicated copies for each enter-
ing packet. On the other hand, there can be at most one packet exiting from each
output in each time slot. Hence, the schedule in each time slot must be contention-
free, that is, no more than one packets are sent towards the same output port in a
time slot. Therefore, the main objective of the proposed scheduling algorithm is
to interleave arriving packets onto contention-resolved schedules in one or more
future time slots, such that they are delivered with low transmission latency.

According to the operations of the adopted interconnect, the label of an arriving
packet will be sent to the scheduler to be processed the moment the packet enters
the corresponding M-FDLs. Every packet has to go through the first FDL segment
inside the corresponding M-FDLs buffer. When a packet reaches the first coupler,
it has the option to send a copy to the interconnect or exit the buffer. In this way,
all arriving packets will be delayed for at least a period of T (where T is the time
slot length), which allows the scheduler to make proper decisions. We adopt a
centralized scheduler, which keeps track of all the arriving packets in the current
time slot and all the packets currently inside M-FDLs. The scheduler makes the
following decisions for each arriving packet: (1) in which future time slot will the
packet be sent to the switching fabric; (2) if it is to enter switching fabric, which
outputs the packet will be delivered to, such that no output contention could occur.
Then, according to the schedule, the scheduler sends coordinated control signals
to the switching fabric and M-FDLs for contention-free packet transmission. For

54

example, suppose a packet is scheduled to be delivered to a subset of its destination
output ports t time slots after it enters the M-FDLs. Then, right before the packet
reaches the tth coupler of the M-FDLs, the corresponding coupler duplicates the
packet and a copy is sent to the switching fabric, which is properly configured to
deliver the packet to the corresponding output ports.

To ensure low packet latency, the scheduler adopts a greedy strategy that deliv-
ers the output copies of a packet as early as possible. If a packet cannot be delivered
to all its destination output ports before it reaches the end of the M-FDLs, the re-
maining output copies will be dropped. We should also consider the limitation of
the switching fabric, which can send up to one packet from each input port to out-
puts. Therefore, the scheduler should prevent multiple packet copies from entering
the same input port simultaneously, which can be done by setting the constraint that
at most one packet copy is allowed to exit each M-FDLs in a time slot. Next, we
describe the implementation details of the LLMS algorithm.

3.3.3 Implementation Details

In this subsection, we describe in detail the Low Latency Multicast Scheduling
(LLMS) algorithm.

Consider an interconnect of size N ×N as shown in Fig. 3.1, and assume that
packets arrive at the beginning of each time slot. LLMS considers the schedule
for the next D time slots by keeping D scheduling vectors, indexed by 1, 2, . . . , D,
with each vector corresponding to the scheduling results in a future time slot. Note
that D cannot be larger than the maximum delay each M-FDLs can provide. For
example, a scheduling vector of index t is denoted by St, which is used for keeping
track of scheduling results of the time slot that is t time slots after the current time
slot. S1 is used to record scheduling results of the next time slot. A scheduling
vector has N entries, indexed by 1, 2, . . . , N , with each corresponding to an output.
The oth entry of St is denoted by St(o). If a copy of some packet for output o is
scheduled to be transmitted in the tth time slot, we say that output copy o of the
packet is assigned to entry St(o).

Each entry can be represented by a four-tuple (full, input, location, split),
where the one-bit field full is set to 1 if this entry has been assigned, otherwise
it is 0. input is used to record the corresponding input index of the packet in that

55

entry. location is used to record the index of the scheduling vector that the copy is
assigned to initially, while the split field is used to configure the state of couplers
in M-FDLs. For example, suppose an output copy of some packet is assigned to the
tth scheduling vector, then the location field of the assigned entry is set to t. If the
packet still has leftover output copies that remain to be scheduled, then the split

field of the assigned entry is set to 1, which indicates that a copy will be created
by setting the tth coupler to “split” after t time slots while the packet continues to
move along the M-FDLs afterwards. Otherwise, the split field is set to 0, indicating
that the tth coupler will be set to “cross” and the packet will exit the M-FDLs after
t time slots.

Since the switching fabric can only transmit up to one packet from each input
to output ports within a time slot, at most one packet can come out of the same
M-FDLs in one time slot. Also, each output can receive at most one packet in each
time slot to avoid output contention. Therefore, an entry of index o in a scheduling
vector is said to be eligible for an output copy of some packet from input i if and
only if all the following three conditions are met.

1. The entry is not full, i.e., no packet has been previously assigned to this entry.

2. The output copy is destined for the oth output.

3. No packets from input i have been previously assigned to this scheduling
vector, such that at most one packet from the same input is scheduled to be
transmitted in the same time slot.

To ensure that the third condition is satisfied, we use D one-bit mask vectors of
length N , each corresponding to one scheduling vector. The ith entry of the tth

mask vector is denoted as Mt(i), which is set to 1 if some packet from the ith input
has been assigned to the tth scheduling vector. The scheduler will check mask
vectors before assigning output copies to ensure no packet from the same input has
been previously assigned to this scheduling vector, and all the copies with the same
input index in each scheduling vector are copies of the same packet.

In order to reduce the delay each packet experiences in buffers, the basic op-
eration of the scheduler is to find the earliest possible eligible entries for arriving
packets in each time slot. To prevent packets of an input port with a smaller index

56

Table 3.1: Low Latency Multicast Scheduling (LLMS)
Input to LLMS: Arriving packets P , scheduling vectors S,
mask vectors M , priority register pr
// Packet Transmission
Configure couplers and switching fabric according to
the 1st scheduling vector S1

For t = 2 to D Do
St−1 = St;
Mt−1 = Mt;

EndFor
Clear SD,MD;
// find the earliest eligible entries for the arriving packets
For packet Pi from input i,
i = [pr, pr mod N + 1, (pr + 1) mod N + 1, · · · ,
(pr +N − 2) mod N + 1]. Do

For scheduling vector St, t = [1, 2, . . . , D] Do
For each output o in Pi’s fanout, Do

If St(o) is empty and Mt(i) == 0
Assign the entry to the output copy of Pi;

EndIf
EndFor
If some copies of Pi get assigned in St

set Mt(i) = 1;
EndIf

EndFor
If there are still outputs in Pi’s fanout left undelivered

Drop these output copies of Pi;
EndIf

EndFor

57

from always being scheduled earlier, the round robin policy is used to allocate pri-
ority to the packets arriving at different inputs to be scheduled in each time slot. We
choose round robin policy for two reasons. Firstly, as the packet that is scheduled
first will generally be transmitted with shorter delay than others, we need to ensure
that all packets receive similar performance regardless of their inputs. Round robin
policy has been widely applied in switch scheduling and shown to be effective in
maintaining fairness. Secondly, as will be shown later, round robin can be readily
implemented in hardware using a shuffle network, which does not incur extra time
cost.

To indicate which input has the highest priority, a register pr is used. We up-
date pr according to a cyclic-priority rule, i.e., the value of pr changes to (pr + 1)

mod N at the end of each time slot. The scheduler checks the optical label of each
packet in the order of their input index [pr, pr mod N + 1, (pr + 1) mod N +

1, · · · , (pr+N −2) mod N +1], and tries to assign their output copies to the ear-
liest eligible entries among D scheduling vectors. For example, consider a switch
with size N = 4 and current priority pr = 2. Then, the arriving packet from input
2 is scheduled first. Next, packets from inputs 3, 4 and 1 will be scheduled one by
one. pr is updated to 3 in the next time slot, then 4, 1, 2 . . . in the subsequent time
slots. When an output copy cannot be assigned after searching all D scheduling
vectors, it will be dropped by the scheduler. Note that some copies of the packets
arriving later can be scheduled to be transmitted prior to copies of the earlier pack-
ets if there is no output contention, to reduce the average delay. It is easy to see
that the time complexity of LLMS is O(N2D) in the worst case, where N is the
interconnect size and D is the number of scheduling vectors.

At the beginning of each time slot, the scheduler configures the corresponding
couplers in the M-FDLs buffers and switching fabric for packet transmission, ac-
cording to the first scheduling vector S1. Next, the scheduler shifts all the schedul-
ing vectors and mask vectors forward by one position, i.e., the content of St is
moved to St−1, t = 2, 3, . . . , D. Then, the last scheduling vector and mask vector is
emptied, because packets existing in M-FDLs buffers would have been transmitted
within next D − 1 time slots. Finally, the scheduler starts the scheduling process
as described above for the current time slot. For example, assume that entry S1(2)

has the value of (1, 1, 3, 1), which indicates that the packet entered the M-FDLs
three time slots ago from the 1st input and now reaches the 3rd coupler (because

58

(4) (1)(1)(2,4) (3) (0,0,0) (1,4,3) (0,0,0) (1,4,3)(0,0,0) (0,0,0) (0,0,0) (1,1,4)1234
input Packets inside M-FDLs

Scheduling vectors Mask vectors(1,1,4) (1,3,3) (1,4,3) (1,3,3)(1,3,1) (1,1,3) (1,2,1) (1,2,1)1T 2T 3T 4T 1 2 3 4 1 2 3 41 1 0(1,2)(3,4) 1 1 10 1 110 0 00 0 0(2,4) 1234
LLMS Scheduler M-FDLs transmitted

(a)

input (1,1,2) (1,4,3) (1,2,2) (1,4,3)(0,0,0) (1,3,3) (1,3,3) (1,1,4)(1,1,4) (1,3,3) (1,4,3) (1,3,3)1 2 3 4 1 2 3 41 1 10 11 1 00 1 0(0,0,0) (1,1,4) (1,4,4) (1,2,4) 1 011 11234
LLMS Scheduler

Scheduling vectors Mask vectors
(1,2)(3,4)(2,3)(3)

arriving packets
(b)

Figure 3.4: A scheduling example for a 4 × 4 interconnect. (a) The output copies
corresponding to S1 are transmitted (marked by blocks of the same color), then the
scheduler rotates the scheduling vectors and mask vectors. (b) At the beginning of
the next time slot, the scheduler schedules all arriving packets.

the scheduling vectors are shifted forward by one position each time slot). The
scheduler sets the 3rd coupler to “split,” and connects input 1 with output 2 at the
beginning of the time slot, such that a copy of the packet is delivered to output 2.
The coupler will be reset to the default state “bar” after the packet goes through.
Clearly, the delay of any transmitted output copy is bounded by the number of
scheduling vectors D in LLMS. The detailed description of LLMS is given in Table
3.1.

3.3.4 A Scheduling Example

A scheduling example of LLMS algorithm for a 4 × 4 interconnect is shown in
Fig. 3.4. The number of scheduling vectors D is set to 4. Packets are denoted
by their fanouts, e.g., the packet destined for outputs 3 and 4 is denoted as (3, 4).
The packets in M-FDLs are denoted by the time they have been delayed, and the
maximum delay each M-FDLs provides is 4T , where T is the length of a time
slot. Entries in scheduling vectors shown in the figure are 3-tuple recording the
(full, input, location) information of the assigned packets. The split field is omit-
ted here, as it does not participate in the scheduling process.

The initial content of scheduling vectors and mask vectors at the beginning of
the current time slot is depicted in Fig. 3.4(a). Note that LLMS allows the packets
arrived later to be transmitted before the packets arrived earlier, thus eliminates the
Head-of-Line (HOL) blocking. For example, packet (1) from input 3 arrived one
time slot later than packet (2, 4), yet is scheduled to be transmitted earlier. Such a
feature enables more efficient buffer management and reduces packet delay.

59

In the meanwhile, it is worth mentioning that in-order transmission of packets
in the same flow (i.e., packets sharing the same input and fanout) is guaranteed in
LLMS. For example, suppose packet A arrives at some input port with a previous
packet B in the same flow still in the M-FDLs buffer. We can prove by contradiction
that any output copy of A cannot be scheduled before B in LLMS, given that the
output copy of B has not been dropped. Assume that an output copy of packet A is
assigned an eligible entry that is earlier than the corresponding output copy of B.
Since each eligible entry for packet A would also be eligible for B as they belong to
the same flow, such a scheduling result contradicts with the scheduling procedure of
LLMS, which always assigns the earliest eligible entries for each packet among the
scheduling vectors. Therefore, we can see that in-order transmission is guaranteed
in LLMS, as it is impossible to deliver a later packet prior to its predecessor in the
same flow.

The scheduler then configures the interconnect and M-FDLs according to the
first scheduling vector, and rotates the scheduling vector and mask vector forward
by one position, as shown in Fig. 3.4(a). Packets transmitted completely will be
removed from the buffer, while those with remaining fanout stay in the M-FDLS
and will be delayed by another T . Packet (1) from input 3 (grey blocks) and packet
(3, 4) from input 2 (yellow blocks) will be transmitted completely, while packet
(1, 2) from input 1 (green blocks) will send one copy to output 2, and stays in
the M-FDLs for future transmission. Assume the current priority indicator pr is
1. The scheduling results of the arriving packets are shown in Fig. 3.4(b). Take
packet (1, 2) (yellow block) as an example. Its two output copies are scheduled for
transmission in the 2nd and 4th scheduling vectors, respectively. The packet will
reach the second coupler when the 2nd scheduling vector is rotated to the front, and
accordingly the scheduler will change the 2nd coupler to “split” and connects input
1 with output 1, such that a copy of the packet will be delivered to output 2. The
packet will move out of M-FDLs in four time slots when all its output copies are
transmitted.

3.3.5 Prioritized LLMS

In practice, Internet traffic consists of flows with different Quality-of-Service (QoS)
requirements. For example, some video-on-demand service providers offer good

60

12 …...scheduling vectors1 2 N…...…...…...3swappriorityP prioritized LLMS scheduler…...2435 2431ABCDE3B 4D dropped
Figure 3.5: An example for the prioritized LLMS (D = 5).

QoS guarantee for premium members, while trying to serve free viewers in a best-
effort manner. Therefore, it is desirable for interconnects to be able to provide
differentiated QoS for flows of varied priorities. In this subsection, we propose a
simple yet efficient modification to LLMS, denoted as prioritized LLMS, that is
able to schedule each packet according to the priority of the corresponding flows.

Similar to the original LLMS, the prioritized LLMS also tries to find the earliest
eligible entry among the scheduling vectors for output copies of each packet. Recall
that an eligible entry has to be empty in the original LLMS, as denoted in the first
of the three conditions. In the prioritized LLMS, we modify the condition to be
that an entry is eligible for an arriving packet if it is empty or has been assigned
to some packet with lower priority. Correspondingly, if the eligible entry found
for an arriving packet is empty, then the packet is assigned in the same way as the
original LLMS. Otherwise, if the eligible entry has been assigned to some packet
with lower priority, the scheduler will swap the two packets, that is, assigns the
entry to the packet with higher priority, then continues to schedule the packet with
lower priority among the rest of the scheduling vectors. Low priority packets will
be dropped if no eligible entry can be found.

Next, we use a simple example to illustrate the operation of the prioritized LLM-
S in Fig. 3.5. As the prioritized LLMS operates similarly to the original LLMS,
we only show their differences. We assume that each packet carries signaling bits
representing the priority of the corresponding flow, with higher priority denoted by
a smaller number, as shown in Fig. 3.5. At the beginning of a time slot, the priori-

61

tized LLMS scheduler tries to schedule an arriving packet P destined for output 1
with priority 2. The earliest eligible entry found for packet P has already been as-
signed to an earlier packet B with priority 3, thus the scheduler swaps packet P and
B, then continues to schedule packet B among the rest of the scheduling vectors.
Similarly, the scheduler swaps packet B with a packet with lower priority D, then
tries to schedule D from the scheduler vectors left. As an eligible entry for packet
D cannot be found, the packet is thus dropped.

It can be observed that packets from flows with high priority will generally be
assigned to the front of scheduling vectors, whereas low priority packets occupy
the back of the scheduling vectors. Correspondingly, the packets from high priority
flow will be scheduled with lower latency and drop ratio. Therefore, with simple
modification to the original LLMS algorithm, the prioritized LLMS can provide
differentiated QoS according to the priorities of traffic flows efficiently.

3.4 Pipeline and Parallel Architecture

In this section, we first present a pipelining technique that distributes scheduling
tasks to a sequence of sub-schedulers, each of which can finish its scheduling task
in O(N2) time. Then, we show the procedures within each sub-scheduler can be
further distributed to N processing modules that operate in parallel, which can be
built using simple combination gates. We also give the combination circuit imple-
mentation for each processing module. We show that with such an implementation,
each processing module in the proposed pipeline and parallel architecture achieves
O(1) time complexity.

The most time consuming part in LLMS involves a nested loop of three layers,
when the scheduler tries to find the earliest eligible entries among D scheduling
vectors for at most N arriving packets, each with a fanout of cardinality up to N .
Also, it takes O(ND) time to shift all scheduling vectors. To schedule packet-
s among D scheduling vectors, we construct D sub-schedulers (SS), indexed by
1, 2, . . . , D, and concatenate them to a directional cascaded ring, as shown in Fig.
3.6.

In each time slot, the arriving packets are processed through a sequence of sub-
schedulers along the ring in a pipelined fashion. Each SSt, t ∈ [1, 2, . . . , D], has
one built-in scheduling vector St and mask vector Mt, and takes as inputs the re-

62

���

SS2

SS3

SSD-1

SS1

Remaining
output copiesDropped

output
copies

Initial SS for
sequence 1

Scheduling sequence 1
Scheduling sequence 2

Initial SS for
sequence 2

Figure 3.6: Ring of cascaded schedulers. The solid line and dashed line indicate the
sequence of sub-schedulers packets go through in different time slots.

maining output copies of the processed packets that have not been scheduled. Each
SS is responsible for the scheduling of the processed packets according to the built-
in scheduling vector and mask vector, then passes the remaining copies as outputs
to the next SS. The output copies that cannot be scheduled after going through all
the D SS will be dropped. We denote the first sub-scheduler in the sequence as the
initial SS. Starting from the initial SS, the tth SS in the sequence is responsible for
the scheduling for the time slot which is t time slots after the current time slot.

To relax the time constraints of LLMS, all sub-schedulers operate in a pipelined
fashion. Fig. 3.7 illustrates the pipeline example for an optical multicast intercon-
nect with D = 6 scheduling vectors, in which the time each SS takes to schedule
the packet arrivals in one time slot is denoted as a step. The packet arrivals in the
kth time slot are denoted as P k. Assume SS1 is chosen as the initial sub-scheduler
in the first time slot. SS1 is responsible for the assignment of packet arrivals P 1 to
its scheduling vector. When it finishes, the remaining output copies that cannot be
assigned by SS1 are passed to SS2 as inputs. As shown in Fig. 3.7, the scheduling
of P 1 is completed after all the sub-schedulers have been visited.

According to LLMS, the scheduling process for the current time slot cannot
begin till all the packet arrivals from the previous time slot have been scheduled and
the scheduling vectors have been shifted. As all the sub-schedulers must be visited
during the scheduling process for one time slot, each step has to be completed
within 1/D time slot. However, a key observation is that only the results of the

63

SS1SS3SS2SS4steps P1 P1 P1 P11 2 3 4 5 6P2 P2 P2 P2P3 P3Initial SS for time slot 1Initial SS for time slot 2 timeslot 2timeslot 1 timeslot 3SS5SS6
timeslot 4P1 P1 P2 P2P3 P37 8P4 P4Scheduling sequence 1Scheduling sequence 2

Figure 3.7: Pipeline operation for the first three time slots (D = 6).

first scheduling vector S1 need to be ready for interconnect configuration in each
time slot. After interconnect configuration, the information stored in S1 will no
longer be needed. This observation makes it possible to pipeline the scheduling for
consecutive time slots to further reduce the time constraints of LLMS, as explained
next.

In LLMS, all the scheduling vectors and mask vectors need to be shifted forward
by one position at the beginning of each time slot, which involves massive data
transfer among the vectors. To simplify the operation, we clear the initial SS then
simply “shift” the scheduling sequence clockwise by one position at the beginning
of every time slot, that is, choose the one next to the initial SS as the initial SS in
the next time slot. For example, as depicted in Fig. 3.6, assume SS1 is the initial
SS for the scheduling sequence in the current time slot, and the arriving packets
go through the sequence of SS’s along the solid line. In the next time slot, SS2 is
chosen as the initial SS. In this way, SS1 becomes the last SS in the sequence and
all other SS’s are one position closer to the initial SS, indicated by the dashed line
in Fig. 3.6. The simple rotation avoids massive data transfer and only takes O(1)

time, while producing equivalent results to that of shifting all the vectors forward.
Moreover, due to the fact that only the result of the initial SS needs to be ready

for transmission at the beginning of the next time slot, we do not have to wait till
the scheduling for the previous time slot to complete before starting the scheduling
for the next time slot. In other words, the scheduling in consecutive time slots can
also be pipelined. At the beginning of the 2nd time slot, the scheduler configures
the interconnect according to the scheduling vector of SS1, then clears the register
storing the scheduling vector and mask vector in SS1. Next, it shifts the initial
SS of the processing sequence for the 2nd time slot to SS2. Instead of waiting

64

I1I2I3I4
SS1 P21P22P23P24

SS2Shuffle network
...

PD1PD2PD3SSD
PD4P11P12P13P14Input mask register

Scheduling registerI1’I2’I3’I4’
r11r12r13... R’1R1 R’2R2 R’3R3 R’4R4

Figure 3.8: Pipeline and parallel architecture (N = 4).

for the completion of the scheduling for the 1st time slot, the scheduling for the
2nd time slot can start as soon as SS2 is available, as shown by the dashed line in
Fig. 3.7. Similarly, the scheduler configures the interconnect according to SS2 and
initiates the processing sequence from stage 3 at the beginning of the 3rd time slot.
To avoid conflict (i.e., the packet arrivals from two time slots enter the same SS),
each SS needs to complete a step within a half time slot, which is a constant factor
independent of the interconnect size N and the number of scheduling vectors D.

In each step, each SS has to schedule up to N arrival packets among the N

entries in its scheduling vector, which takes O(N2) time. In high-speed switching,
this requirement may be too stringent when N is large. Therefore, we also propose
a processing architecture, which distributes the processing task of each SS to N pro-
cessing modules operating in parallel. We show that combined with the pipelining
technique and combination circuit implementation, the proposed processing archi-
tecture can reduce the time complexity of LLMS to O(1).

The architecture for a 4× 4 interconnect is shown in Fig. 3.8, which consists of
D cascaded sub-schedulers, with N processing modules in each SS. Each process-
ing module Pkn, (n = 1, 2, . . . , N) in SSk has a scheduling register Vkn storing the
nth entry of the corresponding scheduling vector, and all the processing modules in
SSk share one register recording the input mask vector.

At the beginning of each time slot, input port i sends a binary request rij(j =

1, 2, . . . , N) to the jth processing module in the initial SS according to the fanout
information of the incoming packet, that is, rij = 1 if the incoming packet is des-
tined for output j, otherwise rij = 0. The set of requests towards output j, i.e.,
rij(i = 1, 2, . . . , N), are denoted as Rj . For processing module Pkj , a request rij is
said to be eligible if scheduling register Vkj is empty and no previous packet from

65

input i has been assigned to stage k. The basic operation for each processing mod-
ule is to assign the eligible request with the smallest input index to its scheduling
register.

In each time slot, processing module Pkj in the initial stage k takes request
set Rj as the input, and outputs the set of remaining requests R′

j after processing,
which is then fed to the next stage in the sequence as input. This process repeats
until all the D stages have been visited. If there are still requests left unassigned,
the corresponding output copies will be dropped. Since inputs with a smaller index
are always scheduled at higher priority, we also adopt a simple shuffle network as
in [91] to dynamically change the priority of each input port. In this way, all input
ports have an equal chance to get its requests assigned first.

For each processing module, it takes O(N) time to search among N requests,
which is a non-trivial task. Next, we show this operation can be implemented by the
following simple combination circuit with O(1) time complexity. For processing
module Pkj , we have following variables.

1. Request vector, denoted as rij, i = 1, 2, . . . , N , is the input to the processing
module; the remaining request vector after processing, denoted as r′ij , is the
output to the processing module;

2. full bit of the entry in the scheduling register, denoted as F , where F = 1 if
the entry of the scheduling vector is occupied, otherwise it is 0; updated full

bit after processing is denoted as F ′;

3. Input mask vector, denoted as Mi, where Mi = 1 if a packet from input i
has been assigned to stage k previously, otherwise it is 0; updated input mask
vector after processing is denoted as M ′

i ;

4. Scheduling results denoted as Qi, i = 1, 2, . . . , N . Qi = 1 if request rij is
assigned to the scheduling register in the processing module, otherwise it is
0;

For a processing module Pkj , Qi is set to 1 only when all the following three
conditions are met:

1. The scheduling register must be empty, i.e., F = 0;

66

2. None of the requests from inputs with an index smaller than i can be assigned
to the scheduling register, that is, rxj ∩Mk(x) = 0 for x ∈ {1, 2, · · · , i− 1};

3. The request from input i must be able to get assigned to the scheduling regis-
ter, rij ∩Mk(i) = 1.

Thus we can give the logic expression for Qi as follows, from which r′ij, F
′ and M ′

i

can be easily derived.

Qi = F ∩ (r1j ∩M1) ∩ · · · (ri−1,j ∩Mi−1) ∩ (rij ∩Mi)

With pipeline and parallel processing, the time complexity of each processing
module to implement LLMS becomes O(1), and the hardware cost (i.e., the number
of logic gates) of the proposed architecture is O(N2D). It is worth mentioning that
the proposed architecture can implement the prioritized LLMS algorithm in Section
3.3.5 with a small modification: each processing module can use a comparator to
compare the priority of incoming requests with that of currently assigned to its
scheduling register, and simply swap the assigned one with the incoming request if
the incoming one has higher priority.

Note that, the parallel pipelined architecture for output buffering scheme in [91]
also achieves O(1) time complexity. However, each packet has to go through mul-
tiple processing stages before it can be scheduled in the processing architecture,
which introduces large pipelining overhead. In comparison, the scheduling result-
s are immediately available at the initial stage of the processing sequence in the
proposed scheduling architecture, therefore no scheduling overhead is introduced.

As mentioned before, the size of multicast capable optical switching fabrics is
limited (no larger than 64×64 currently [87]). Therefore, one or a small number of
high end FPGAs are sufficient to implement the proposed scheduler in practice. To
see the hardware feasibility of the proposed architecture under high-speed switch-
ing, let us look at a 64 × 64 optical packet interconnect with 40 Gb/s port speed.
Assume the packet length is 128 bytes and there are D = 16 scheduling vectors.
Then the processing architecture requires approximately 65,000 logic gates and 80
MHZ clock frequency, which can be easily accommodated by the state-of-art FP-
GAs.

67

3.5 Performance Evaluations

We have conducted extensive simulations to evaluate the performance of LLMS,
which consists of two parts. In the first part of the simulation, we evaluate the effect
of the number of scheduling vectors D (i.e., the maximum delay) on the packet drop
ratio, which is defined as the percentage of dropped output copies among the total
output copies of all packets arrived during the simulation period, and the average
delay, which is calculated by the average interval between the arrival and departure
of all successfully transmitted output copies.

Due to the similarity between the adopted switching architecture and the input
queued (IQ) electronic interconnect, we compare the performance of LLMS with
several well-known multicast scheduling algorithms for IQ electronic interconnects,
including FIFOMS [84], MCMS [89] and MLRRMS [90] algorithms. In our sim-
ulation, we also include a simple FIFO scheduling algorithm on the output queued
interconnect (OQFIFO) as a performance benchmark. Scheduling algorithms for
electronic interconnects usually assume infinite buffer size because of the avail-
able large size electronic buffer, which means that no packets will be dropped in
the scheduling process, therefore only average delay performance will be evalu-
ated when comparing LLMS with these algorithms. To evaluate the performance
of LLMS in the terms of both average delay and packet drop ratio, we also com-
pare LLMS with the output buffering scheme for optical packet interconnects [91].
These algorithms can be briefly described below.

FIFOMS is an iterative multicast scheduling algorithm. In an iteration, each
unmatched input scheduler selects the HOL packet in each VOQ with the smallest
timestamp and sends the requests to the corresponding outputs. The process con-
tinues till there is no possible match between inputs and outputs. FIFOMS was
shown to be superior to many well-known scheduling algorithms in terms of packet
latency.

MCMS considers the scheduling of the HOL packet in each input queue for
multiple time slots (the number of time slots considered is set to 64 in our simu-
lation). It was demonstrated that the latency performance of MCMS outperform-
s most of previous scheduling algorithms such as WSPLIT, revision scheme and
windows-based algorithms.

MLRRMS schedules the HOL packets in each input queue first. If there are

68

any output and input left idle, the scheduler then tries to send the packets behind
the HOL packet in each idle input to idle outputs. This process continues until ei-
ther the maximum look-ahead depth d is reached or all packets in the queues are
examined, or no idle outputs are found in the schedule. MLRRMS can effectively
alleviate HOL blocking, thus achieves high switch throughput. However, one ma-
jor constraint of MLRRMS is that the internal memory access rate of input buffers
must run d times faster than switch port bit rate. Such a constraint makes MLR-
RMS impractical to implement in high speed switches. Nevertheless, we include
its simulation results to evaluate LLMS. The maximum search depth d is set to 1

in the simulation as in [90], which means that the scheduler examines the first two
packets in each queue.

The output queued interconnect is known to have optimal delay performance
when no packets are dropped, but requires N times faster switching ability and
memory speed. Despite its much stronger hardware requirement, in our simulation,
we include a simple FIFO scheduling algorithm on the output queued interconnect
(OQFIFO) as a performance benchmark to demonstrate the good performance of
LLMS.

The output buffering (OUTBUF) scheme places an output buffer consisting of
an N × D high speed optical interconnect and D FDLs with incremental delay in
front of each output port. When there are multiple packets destined for the same
output, the scheduler determines the proper FDL segment that each packet should
go to, such that they would exit the FDL buffer without contention. When oper-
ating in time-slotted manner, OUTBUF can emulate the OQFIFO scheduling with
the constraints that each output queue is of size D, thus can achieve optimal per-
formance in both average delay and packet drop ratio. However, as shown earlier,
OUTBUF requires a prohibitive amount of FDL segments. We use it as a perfor-
mance benchmark to test how close our algorithm can be to the optimal results in
the terms of packet drop ratio and average delay.

In the second part of the simulation, we study the performance of the prioritized
LLMS algorithm. Similar to [88], we consider two priority classes in the traffic,
with the arrival ratio of high priority traffic to low priority traffic ρ1 : ρ2 set to 1 : 3,
i.e., 25% of packets are high priority packets and the remaining are low priority
packets. The effectiveness of prioritized LLMS is demonstrated by comparing the
packet drop ratio and average delay of traffic belonging to different priority classes.

69

In each simulation run, there is a sufficient warmup period (typically one fourth
of the total simulation time) to obtain stable statistics. The simulation runs for a
fixed amount of simulation time (106) unless the scheduling algorithms become
unstable (i.e., the interconnect reaches a stage where it cannot sustain the offered
load). For cases in which the packet drop ratio is in the order of 10−4, we extend the
simulation period to 107 time slots for more reliable results. In order to compare the
performance of the algorithms in various networking environments, simulation are
conducted for different interconnect sizes (8×8, 16×16 and 32×32) under several
different types of traffics, including Bernoulli traffic, gathered traffic, unicast traffic,
and real Internet traffic. For statistical traffic patterns (i.e., Bernoulli traffic, gath-
ered traffic and unicast traffic) used, all inputs are assumed to have identical packet
arrival process, and for Internet traffic simulation, a different trace file is fed into
each input to simulate the packet arrival process. Since we observe similar results
for all interconnect sizes, only the results for the 16× 16 interconnect are shown.

3.5.1 Performance under Bernoulli Traffic

Bernoulli traffic is one of the most commonly used traffic models in the simulation
of scheduling algorithms. Bernoulli traffic can be described using two parameters,
λ and b. λ is the probability that an input port is busy in a time slot, i.e., the rate
packets arrive at some input port at the beginning of a time slot. Given an arriving
multicast packet, determining whether the packet is destined to a specific output
can be considered as a Bernoulli trial. The trial is called a “success” if the output
is a destination of the packet. As there are N outputs, finding the set of destination
outputs of a packet requires N independent and identical Bernoulli trials, with b

being the success probability in each trial. The number of destinations outputs of
the packet follows a binomial distribution with expected value bN . b is set to 0.5 in
the simulation. For an N×N interconnect, the average fanout of a multicast packet
is bN and the output load µ is λbN .

We first compare on the packet drop ratio of both LLMS and OUTBUF under
Bernoulli traffic in Fig. 3.9(a) for different values of D. For LLMS, D means the
number of scheduling vectors, whereas D is the longest delay of each output buffer
in OUTBUF. As can be seen from the figure, packet drop only occurs at very high
traffic loads (over 0.8) under Bernoulli traffic, which can be explained as follows.

70

0.80 0.82 0.84 0.86 0.88 0.90 0.92 0.94 0.96 0.98 1.00
10-6

10-5

10-4

10-3

10-2

10-1

100 Drop ratio under Bernoulli traffic

D
ro

p
ra

tio

Output load

 OUTBUF_16
 OUTBUF_64
 OUTBUF_128
 LLMS_16
 LLMS_64
 LLMS_128

A
ve

ra
ge

 d
el

ay
 (t

im
e

sl
ot

s)

0.5 0.6 0.7 0.8 0.9 1.0
0

10

20

30

40

50

60

70

80

90

100
Average delay under Bernoulli traffic (b=0.5)

Output load

 OQFIFO
 FIFOMS
 MCMS
 MLRRMS
 OUTBUF_64
 OUTBUF_128
 LLMS_64
 LLMS_128

(a) (b)

Figure 3.9: Performance for a 16 × 16 interconnect under Bernoulli traffic with
b = 0.5. (1) packet drop ratio; (b) average delay.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.000

0.005

0.010

0.015

0.020

0.025
Drop ratio under different values of b

D
ro

p
ra

tio

b

 OUTBUF_16
 OUTBUF_32
 LLMS_16
 LLMS_32

A
ve

ra
ge

 D
el

ay
 (t

im
e

sl
ot

s)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

2

4

6

8

10

12

14

16

18

20
Average delay under different values of b

b

 OUTBUF_16
 OUTBUF_32
 LLMS_16
 LLMS_32

(a) (b)

Figure 3.10: Performance for a 16 × 16 interconnect under the same output load
(0.95) with different values of b. (1) packet drop ratio; (b) average delay.

When the traffic load is light, the scheduling vectors are relatively empty, and the
expected number of arriving packets competing for the scheduling vectors in each
time slot is small. Therefore, most output copies can be assigned in the vectors and
few packets will be dropped. On the other hand, when the traffic load is heavy,
the scheduling vectors are mostly occupied, and the expected number of arriving
packets in each time slot is larger, leading to increased packet drop ratio.

The drop ratio reduces drastically when we increase D from 16 to 64, but only a
slight improvement is observed when we further increase D to 128, indicating that
most packets can be scheduled for transmission within 64 time slots. LLMS closely
matches OUTBUF in the terms of packet drop ratio when D is sufficiently large
(e.g., D = 64). When D is small (e.g., D = 16), the packet drop ratio of LLMS

71

0.80 0.82 0.84 0.86 0.88 0.90 0.92 0.94 0.96 0.98 1.00

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050
Drop ratio under Bernoulli traffic using

 prioritized LLMS

D
ro

p
ra

tio

Output load

 High,D=16
 Low,D=16
 No priority,D=16
 High,D=64
 Low,D=64
 No priority,D=64

0.5 0.6 0.7 0.8 0.9 1.0

0

10

20

30

40

50
Average delay under Bernoulli traffic

using prioritized LLMS

A
ve

ra
ge

 d
el

ay
 (t

im
e

sl
ot

s)

Output load

 High,D=16
 Low,D=16
 No priority,D=16
 High,D=64
 Low,D=64
 No priority,D=64

(a) (b)

Figure 3.11: Performance comparison of traffic of different priorities for a 16× 16
interconnect under Bernoulli traffic using prioritized LLMS. (1) packet drop ratio;
(b) average delay.

is slightly higher than that of OUTBUF, which indicates that LLMS can achieve
near-optimal packet drop ratio under Bernoulli traffic. The reason why LLMS has
higher packet drop ratio than OUTBUF is that a packet cannot be assigned to an
entry in a scheduling vector even when it is empty, if a previous packet from the
same input is scheduled to be transmitted in the same vector, which leads to more
dropped packets under LLMS compared with OUTBUF.

Fig. 3.9(b) compares the average packet latency of LLMS under Bernoulli traf-
fic with other algorithms. It can be seen that, as the traffic load increases, MLRRM-
S, MCMS and FIFOMS become saturated due to HOL blocking, which coincides
with the theory that the IQ interconnect cannot maintain sustainability under al-
l admissible multicast traffic conditions [86]. At the same time, we can see that
the proposed LLMS algorithm closely matches the performance of OUTBUF, and
significantly outperforms all other algorithms when the traffic load is heavy.

When the traffic load approximates 1, LLMS achieves better delay performance
than OQFIFO. The reasons are two folds: first, LLMS can detect and promptly
drop output copies with overlong latency instead of keeping them in the buffer, thus
significantly reduces the average packet latency; second, the outputs not used by
buffer transmission are open for cut-through scheduling with zero latency, further
reducing the average packet latency.

We also observe that LLMS 64 performs better than LLMS 128 in terms of av-
erage packet latency. The reason is that with more scheduling vectors, the scheduler

72

is less prone to drop packets and more tolerant to packet latency. For example, an
output copy of some packet that expects to have a delay of 70 time slots would be
dropped by LLMS 64, while it would be scheduled for transmission by LLMS 128.
Such trade-off between the packet drop ratio and the average packet latency can be
easily adjusted by changing the number of scheduling vectors, making LLMS high-
ly adaptive to various transmission requirements.

Given the same output load (0.95), Fig. 3.10 compares the performance of
LLMS and OUTBUF under different values of b. We observe that b has negligible
impact on the performance of OUTBUF, which is expected because the output load
stays the same with different b. Meanwhile, packet drop ratio and average delay
under LLMS slightly increase when b is smaller, which can be explained as fol-
lows. Given that at most one packet can exit an M-FDLs buffer in each time slot, a
scheduled packet would block other packets arriving at the same input from using
the scheduling vectors it occupies, which we refer to as input blocking. Under the
same output load, the input blocking level increases when b is smaller, because of
the larger packet arrival rate at each input, which causes increased packet drop ratio
and average delay.

Fig. 3.11 compares the performance of prioritized LLMS algorithm for traffic
belonging to different priority classes. The performance of non-prioritized LLMS is
also presented for comparison purpose (dash lines). We consider prioritized LLMS
with the number of scheduling vectors D set to 16 and 64, respectively. We can see
from Fig. 3.11(b) that all high priority packets are delivered with negligible drop
ratio under all tested output loads. The difference in average delay performance
between high priority traffic and low priority traffic is also very significant, as shown
in Fig. 3.11(b). Meanwhile, low priority traffic only suffers a marginal increase
of packet drop ratio and average delay, compared to the non-prioritized LLMS.
These results confirm that prioritized LLMS is very effective in providing service
differentiation to traffic of different priorities.

3.5.2 Performance under Gathered Traffic

As multicast applications, such as IPTV and Video on Demand (VoD), often gen-
erate sustained and long-lasting flows that may gather among fewer active input
ports and engage more output ports at a given switch, we also examine the perfor-
mance of the LLMS scheduler under gathered traffic. The gathered traffic scenario

73

is known to be difficult to schedule for input-queued switches, and has been widely
adopted in the simulation studies on multicast scheduling [96]. We adopt a similar
setting as [96] in our simulation, where the number of active input ports M is set
to 5 and the number of active output ports N is fixed at 16. We assume the fanout
of a multicast packet is chosen uniformly at random among all possible fanout sets
with the average fanout hm = 8. Let λ be the rate of packet arrival at each input,
then output load µ = λMhm/N . Next, we explore the sensibility of the scheduling
performance to output load µ.

0.6 0.7 0.8 0.9 1.0

10-5

10-4

10-3

10-2

10-1

100 Drop ratio under gathered traffic

D
ro

p
R

at
io

Output Load

 OUTBUF_16
 OUTBUF_64
 OUTBUF_128
 LLMS_16
 LLMS_64
 LLMS_128

0.5 0.6 0.7 0.8 0.9 1.0

0

20

40

60

80

100

120

140

Average delay under gathered traffic

 OQFIFO
 FIFOMS
 MCMS
 MLRRMS
 OUTBUF_64
 OUTBUF_128
 LLMS_64
 LLMS_128

A
ve

ra
ge

 d
el

ay
 (t

im
e

sl
ot

s)

Output load

(a) (b)

Figure 3.12: Performance for a 16 × 16 interconnect under gathered traffic with
probability destined for each output b = 0.5. (1) packet drop ratio; (b) average
delay.

Fig. 3.12 shows the performance for a 16 × 16 interconnect under gathered
traffic with probability destined for each output b = 0.5. From the figure, we can
see that both output-queued scheduling algorithms (OQFIFO and OUTBUF) have
comparable performance under the gathered traffic to the Bernoulli traffic scenario
in terms of packet drop ratio and average delay, while other algorithms relying on
input queue perform notably worse. The underlying reason is that input-queued
scheduling algorithms, like FIFOMS and MCMS, can only send one packet for
transmission from each input port within a time slot. Since traffic is concentrated
among a few active input ports in gathered traffic, it is likely that the output copy of
a buffered packet cannot be transmitted even though the corresponding input port
and output port is idle, because it is blocked by the HOL packet in the same queue
that fails to be scheduled for transmission. Among all the input-queued scheduling

74

algorithms, MLRRMS has the best delay performance under gathered traffic, which
is because it will try to send packets behind the HOL packet of each queue to fill
as many idle output as possible, which reduces the time each packet has to stay in
buffer.

Meanwhile, we observe that LLMS is able to achieve significantly better perfor-
mance than other input-queued algorithms in terms of average delay, and achieve
comparable performance to OUTBUF when output load is below 0.9. Due to the
limitation imposed by the input-queued structure, MLRRMS, FIFOMS and MCMS
saturate before the output load reaches 0.85 under gathered traffic, which means
that the number of queued packets will keep increasing until buffer overflow. In
such cases, it could take quite a long time for the upper layer protocol to detect
congestion at the switch and drop packets if the buffer size is large. In contrast, the
proposed LLMS enables swift congestion detection and promptly drops packets
with overlong delay shortly after arrival, which allows the upper layer protocols to
adjust to network condition in time.

Fig. 3.13 shows that prioritized LLMS is quite effective at performance dif-
ferentiation in gathered traffic too: packet drop in high priority traffic occurs only
under high output load (µ = 0.85), and is 1/10 that of low priority traffic when out-
put load µ = 1. The average delay of high priority traffic is also much lower than
that of low priority traffic. On the other hand, we also observe that there are about
2% high priority packets being dropped under gathered traffic when output load is
1, which is higher than Bernoulli traffic scenario, where there is nearly no packet
drop in high priority traffic. Such difference is also caused by the fact that arriving
packets are concentrated in a few input ports, which could more easily overwhelm
the capacity of each M-FDLs buffer, leading to higher packet drop ratio and longer
average delay.

3.5.3 Performance under Unicast Traffic

Since a substantial portion of traffic in the Internet is unicast, where each packet
is forwarded to a single destination, in this subsection, we show that LLMS is also
capable of dealing with unicast traffic efficiently. For a unicast packet, it has an
equal probability (1/N) being destined for each output port. It is easy to see that
when the traffic only consists of unicast packets, the output load µ is equal to arrival

75

0.6 0.7 0.8 0.9 1.0

10-5

10-4

10-3

10-2

10-1

100
Drop ratio under gathered traffic using
 prioritized LLMS

D
ro

p
ra

tio

Output load

 High,D=16
 Low,D=16
 No priority,D=16
 High,D=64
 Low,D=64
 No priority,D=64

0.5 0.6 0.7 0.8 0.9 1.0

0

10

20

30

40

50

60

70

Average delay under gathered traffic
using prioritized LLMS

A
ve

ra
ge

 d
el

ay
 (t

im
e

sl
ot

s)

Output load

 High,D=16
 Low,D=16
 No priority,D=16
 High,D=64
 Low,D=64
 No priority,D=64

(a) (b)

Figure 3.13: Performance comparison of traffic of different priorities for a 16× 16
interconnect under gathered traffic using prioritized LLMS. (1) packet drop ratio;
(b) average delay.

rate λ.
The effect of D on the packet drop ratio and average delay of both LLMS and

OUTBUF under unicast traffic for a 16× 16 interconnect is illustrated in Fig. 3.14.
We can see that, with D = 64, packet drop only occurs at very high traffic load (over
0.95) and can be kept at very low level. We also show that the average packet laten-
cy of LLMS under unicast traffic in Fig. 3.14(b). We can observe that MLRRMS,
MCMS and FIFOMS become saturated before the traffic load reaches 1. In com-
parison, LLMS consistently achieves low latency under all traffic loads, and closely
matches OUTBUF in terms of both average packet delay and packet drop ratio,
indicating that it can also achieve near-optimal performance under unicast traffic.
Fig. 3.15 demonstrates that the prioritized LLMS achieves similar effectiveness to
Bernoulli traffic in providing QoS differentiation under unicast traffic.

3.5.4 Performance under Internet Traffic

Due to the complexity of Internet traffic, it is very difficult, if not impossible, to
completely capture its characteristics using statistical traffic models. For this rea-
son, we have also tested the proposed LLMS algorithm under real Internet traffic
traces obtained from the backbone network link monitors.

The anonymized traffic traces used here were obtained from the CAIDA’s pas-
sive OC192 network link monitors [97]. All trace files consist of one line per IP

76

0.80 0.82 0.84 0.86 0.88 0.90 0.92 0.94 0.96 0.98 1.00
10-6

10-5

10-4

10-3

10-2

Drop ratio under unicast traffic

D
ro

p
ra

tio

Output load

 OUTBUF_16
 OUTBUF_64
 OUTBUF_128
 LLMS_16
 LLMS_64
 LLMS_128

0.5 0.6 0.7 0.8 0.9 1.0
0

10

20

30

40

50

60

70

80

90

100
Average delay under unicast traffic

A
ve

ra
ge

 d
el

ay
 (t

im
e

sl
ot

s)

Output load

 OQFIFO
 FIFOMS
 MCMS
 MLRRMS
 OUTBUF_64
 OUTBUF_128
 LLMS_64
 LLMS_128

(a) (b)

Figure 3.14: Performance for a 16×16 interconnect under unicast traffic. (1) packet
drop ratio; (b) average delay.

0.80 0.82 0.84 0.86 0.88 0.90 0.92 0.94 0.96 0.98 1.00
10-6

10-5

10-4

10-3

10-2

10-1

100
Drop ratio under unicast traffic using
 prioritized LLMS

D
ro

p
ra

tio

Output load

 High,D=16
 Low,D=16
 No priority,D=16
 High,D=64
 Low,D=64
 No priority,D=64

0.5 0.6 0.7 0.8 0.9 1.0
0

10

20

30

40

50

60 Average delay under unicast traffic using
 prioritized LLMS

A
ve

ra
ge

 d
el

ay
 (t

im
e

sl
ot

s)

Output load

 High,D=16
 Low,D=16
 No priority,D=16
 High,D=64
 Low,D=64
 No priority,D=64

(a) (b)

Figure 3.15: Performance comparison of traffic of different priorities for a 16× 16
interconnect under unicast traffic using prioritized LLMS. (1) packet drop ratio; (b)
average delay.

packet arrival in the form of <packet index, time stamp, protocol, source IP address,
destination IP address>, where time stamp of each packet records the exact time
when the packet is intercepted by the link monitor.

In the simulation, we feed each input with a separate trace file, in which all
packets are assumed to have a fixed size of 64 bytes and fit into one time slot.
Note that due to lack of regulation in real Internet traffic, it is likely that certain
outputs are heavily oversubscribed, that is, they receive more packets than that can
be transmitted over the simulation period. Also, it is impossible to regulate the
traffic load in each output. Therefore, different from the simulation under statistical

77

traffic models, where the traffic is admissible (no oversubscription at outputs) and
the scheduling algorithms are evaluated against the output traffic load, we test the
algorithms against the packet arrival rate at the inputs in real Internet traffic as in
[50].

To adjust the arrival rate, we process each trace file using a similar method as
in [50], elaborated as follows. First, we calculate the average throughput of a trace
by dividing the total traffic volume by the time span of the trace. Then, we set
the length of each time slot according to the throughput of the trace to achieve a
desired arrival rate. For example, if the throughput of a trace is 500 Mb/s and we
want to achieve the arrival rate of 0.8, then the time slot length is set as ((64 ×
8)/500M)× 0.8 = 0.8192µs. Finally, we find a mapping from packets to different
time slots according to the time stamp of packets. If the time stamp of multiple
packets fall in the same time slot, they are placed in consecutive time slots. After
the above procedures, each processed traffic trace is used to simulate the packet
arrival process in an input port.

With the absence of the forwarding table, determining how to map the destina-
tion IP address of packets to output ports of the interconnect is not a trivial task.
Since forwarding tables in the routers are updated relatively infrequently, we can
assume that it stays invariable during the simulation period. We use the destination
IP address of a packet to determine whether it is a unicast packet or a multicast
packet. If the destination IP of a packet is a class D address, then it is a multicast
packet. Otherwise, it is a unicast packet. For unicast packets, we use a simple hash
function to determine the output port for each packet, which returns the modulus of
summation of the four IP address fields in each destination IP to the interconnect
size N . For example, a packet with destination IP address 243.124.121.4 will be
sent to port (243+124+121+4) mod N +1. For a multicast packet, we assume
its fanout f (i.e., the number of its destination outputs) is uniformly distributed be-
tween 1 and N , then we randomly choose f output ports as its destination outputs.

From Fig. 3.16(a), we can see that there is a noticeable increase in the packet
drop ratio compared to previous traffic patterns. The reason is three-fold. First,
we use the packet arrival rate at the input instead of the output load in this simu-
lation. As real Internet traffic consists of both unicast flows and multicast flows,
the output load is considerably higher than the arrival rate. Second, the real Inter-
net traffic consists of many flows, in which packets arrive in consecutive time slots

78

0.5 0.6 0.7 0.8 0.9 1.0

10-4

10-3

10-2

10-1

100 Drop ratio under Internet traffic

D
ro

p
ra

tio

Arrival rate

 OUTBUF_16
 OUTBUF_64
 OUTBUF_128
 LLMS_16
 LLMS_64
 LLMS_128

0.5 0.6 0.7 0.8 0.9 1.0
0

50

100

150

200

250

Average delay under Internet traffic

A
ve

ra
ge

 d
el

ay
 (t

im
e

sl
ot

s)

Arrival rate

 OQFIFO
 FIFOMS
 MCMS
 MLRRMS
 OUTBUF_64
 OUTBUF_128
 LLMS_64
 LLMS_128

(a) (b)

Figure 3.16: Performance for a 16 × 16 interconnect under Internet traffic. (a)
packet drop ratio; (b) average delay.

0.5 0.6 0.7 0.8 0.9 1.0

10-4

10-3

10-2

10-1

100
Drop ratio under Internet traffic using
 prioritized LLMS

D
ro

p
ra

tio

Arrival rate

 High,D=16
 Low,D=16
 No priority,D=16
 High,D=64
 Low,D=64
 No priority,D=64

0.5 0.6 0.7 0.8 0.9 1.0
0

10

20

30

40

50

60 Average delay under Internet traffic using
 prioritized LLMS

A
ve

ra
ge

 d
el

ay
 (t

im
e

sl
ot

s)

Arrival rate

 High,D=16
 Low,D=16
 No priority,D=16
 High,D=64
 Low,D=64
 No priority,D=64

(a) (b)

Figure 3.17: Performance comparison of traffic of different priorities for a 16× 16
interconnect under Internet traffic using prioritized LLMS. (1) packet drop ratio;
(b) average delay.

and share the same output ports. Such traffic bursts are more likely to cause packet
drop. Finally, real Internet traffic could be inadmissible during the simulation peri-
od, as some output ports could be oversubscribed. Nevertheless, for a switch with
N = 16, which is typical size for optical interconnects [79], a M-FDLs buffer with
approximately D = 128 FDL segments for each input port is sufficient to keep the
packet drop ratio at a reasonably low level under the most congested Internet traffic
condition.

As for average packet latency shown in Fig. 3.16(b), FIFOMS, MCMS and
MLRRMS, perform considerably worse under real Internet traffic than under other

79

traffic models. FIFOMS saturates before the packet arrival rate reaches 0.55, while
both MCMS and MLRRMS saturate before the arrival rate reaches 0.9. Meanwhile,
we can see that LLMS manages to achieve low average packet latency for the same
reason as that under statistical traffic models. Again, LLMS closely matches OUT-
BUF in both packet drop ratio and average delay, indicating that it is able to achieve
near optimal performance under Internet traffic.

From Fig. 3.17, we can see that prioritized LLMS can deliver high priority
traffic with negligible drop ratio and much lower delay under Internet traffic, which
has practical implications. For example, suppose a typical network congested with
a large volume of IPTV or VoD traffic, prioritized LLMS is able to deliver high
priority packets of applications sensitive to latency and packet drop, e.g., an on-line
conference, across the network with little interference, which is highly desirable.

3.6 Conclusions

In this chapter, we have studied multicast scheduling problem for input-buffered
optical multicast interconnects. We first proposed an efficient optical buffer called
multicast-enabled FDLs (M-FDLs), which can provide flexible delay for output
copies of each multicast packet while requiring only a small number of FDL seg-
ments. We also designed a Low Latency Multicast Scheduling (LLMS) Algorithm,
the main features of which can be summarized as follows: (1) guarantee a fixed
delay upper bound for all transmitted packets; (2) achieve close to optimal aver-
age delay and packet drop ratio even under the most congested traffic conditions;
(3) enable fast congestion detection and promptly drop output copies with long de-
lay; (4) require much shorter FDL length compared to existing multicast scheduling
schemes for all-optical packet interconnects; (5) easily extendable to provide QoS
differentiation. We also presented a pipeline and parallel processing architecture
and the combination circuit design for LLMS, where it takes each processing mod-
ule O(1) complexity to finish scheduling in each time slot. The proposed processing
architecture does not incur any latency overhead and enables packet scheduling at
the line rate, which is essential to optical packet interconnects with ever-increasing
port speed. Finally, we evaluated the performance of LLMS through extensive sim-
ulation using both statistical traffic models and real Internet traffic traces.

80

Chapter 4

Exploring Server Redundancy in
Constructing Cost-Effective
Nonblocking Multicast Fat-tree Data
Center Networks

In this chapter, we investigate how to deploy nonblocking multicast cost-effectively
in fat-tree DCNs by exploring server redundancy in data centers. First, we present a
multirate network model that accurately describes the communication environment
of the fat-tree DCNs. We then show that the sufficient condition on the number of
core switches required for nonblocking multicast communication under the multi-
rate model can be significantly reduced when the fat-tree DCNs are 2-redundant,
i.e., each server in the data center has exactly one redundant backup. We also study
the general redundant fat-tree DCNs where servers may have different numbers
of redundant backups depending on the availability requirements of services they
provide, and show that a higher redundancy level further reduces the cost of non-
blocking multicast fat-tree DCNs. Finally, to complete our analysis, we consider a
practical faulty data center, where one or more active servers may fail at any time.
We give a strategy to re-balance the active servers among edge switches after server
failures so that the same nonblocking condition still holds.

The rest of the chapter is organized as follows. Section 4.1 gives the introduc-
tion and background. The related work are discussed in Section 4.2. Section 4.3

81

briefly introduces the background of fat-tree DCNs and the multirate network mod-
el adopted. Section 4.4 presents the sufficient multicast nonblocking condition on
the number of core switches in redundant fat-tree DCNs under the multirate model.
Section 4.5 generalizes the results to faulty data centers. Section 4.6 compares the
cost of the nonblocking condition for fat-tree DCNs with different sizes. Finally,
Section 4.7 concludes the chapter.

4.1 Introduction

Reducing the cost of DCNs is a first order design concern for maximizing data cen-
ter profits. Much research effort has been devoted to the search for cost-efficient
and scalable data center network fabrics in recent years [25, 98–100], among which
fat-tree, a special instance of Clos networks, is widely adopted as the topology
for DCNs [18, 23], for the reason that it enables to build large-scale communica-
tion networks from many small commodity switches rather than fewer larger and
more expensive switches. Due to the huge price difference between commodity and
non-commodity switches, such property of fat-trees provides a strong economical
incentive.

One of the primary concerns in a fat-tree DCN is that whether it can provide
full bisection bandwidth, i.e., the capability to connect an arbitrary server with any
other server(s) in the network at the full bandwidth of their local network inter-
face. To achieve such congestion-free communication, a fat-tree DCN needs to be
nonblocking, that is, it must be able to establish an arbitrary connection without
causing any contention in the network at any time. Extensive research [27–30] has
been conducted on finding the most cost-effective solution to achieve nonblocking
communications in such Clos-type networks. While these studies indicate that non-
blocking unicast communication can be achieved with a reasonably small number
of core switches in a fat-tree network, nonblocking multicast fat-tree still has high-
er cost than its unicast counterpart, mainly due to the non-uniformity of multicast
traffic pattern that requires a large number of core switches. Since multicast is an
essential communication pattern in many data center services, such as redirecting
search queries to a set of index servers or replicating file chunks in distributed sys-
tems, and nonblocking multicast communication can provide guaranteed high per-
formance of such services, it is critical to reduce the cost of nonblocking multicast

82

fat-tree DCNs.
On the other hand, some types of data centers, referred to as high availabili-

ty (HA) data centers, have extremely stringent availability requirements, which are
commonly used for key data storage, financial data distribution and banking system-
s, etc. [101, 102]. The consequence of downtime for these services is catastrophic,
thus 6-nines (99.9999%) or almost error free is a common availability target for
HA data centers [3]. To achieve near-perfect service availability, HA data center
implementations build server redundancy into the data center to eliminate single
points of failure [101–103]. Active servers (i.e., servers that are currently running
applications) in such data centers have fully redundant instances provided as stand-
by backups, which can be brought online immediately when their associated active
servers fail. For example, when an active server with a particular application loses
network access or crashes, the application will be unavailable until the problem is
fixed. Data centers with server redundancy implemented can remedy this situation
by immediately restarting the application on one of its backup servers without re-
quiring administrative intervention, thus shielding the external observation of the
failure. Server redundancy, though it incurs extra hardware cost, is necessary in
guaranteeing overall system availability in data centers.

Given the existence of server redundancy in HA data centers, in this disser-
tation we consider how to utilize such existing redundancy to reduce the cost of
nonblocking multicast fat-tree DCNs. To achieve fully nonblocking multicast com-
munication, a fat-tree DCN needs to be sufficiently provisioned to handle all types
of multicast traffic. As all the simultaneous connections from a single edge switch
in a fat-tree DCN will compete for the same group of core switches when establish-
ing connection paths, the demand for core switches is the most stringent when some
edge switch is congested, i.e., all the servers associated with the edge switch are
active simultaneously and requesting broadcast connections at the full bandwidth
capacity of their local network interfaces. Such congestion at edge switches and the
non-uniformity of multicast traffic pattern account for the high cost of nonblocking
multicast fat-tree DCNs. We will show that data centers with server redundancy
can effectively mitigate such congestion by evenly distributing active servers and
standby backup servers among edge switches, thus limiting the maximum possible
number of simultaneous connections from any edge switch.

First, we will present a multirate network model that accurately describes the

83

communication environment in fat-tree DCNs. Initially, we assume that there is no
server failure in data centers to make the problem tractable. Our analysis shows
that in this case the sufficient condition on the number of core switches required for
nonblocking multicast communication can be significantly reduced when the fat-
tree DCN is 2-redundant, i.e., each active server has one redundant backup server.
We then generalize the result to practical fat-tree DCNs where servers may have
different numbers of redundant backups depending on the availability requirements
of the services they provide, and show that a higher redundancy level further reduces
the cost of nonblocking multicast fat-tree DCNs.

Next, we will consider data centers where one or more active servers may fail
at any time. It can be observed that server failure causes uneven congestion in
edge switches, which may make a redundant data center that is nonblocking during
normal operation blocking in case of failure. We show that such uneven congestion
can be re-balanced by reassigning servers among edge switches. To optimally solve
the server reassignment problem, we propose a graph modeling method and show
that the problem can be transformed to finding the minimum cost network flow
in the graph. We also prove that the reduced nonblocking condition still holds in
case of server failure with server reassignment. Finally, we compare the sufficient
multicast nonblocking condition on the number of core switches in fat-tree DCNs
with different sizes and redundancy levels, and show that substantial cost saving
can be achieved through exploring server redundancy.

4.2 Related Work

Multicast capability of three-stage Clos networks has been investigated in the lit-
erature. The most significant results on multicast nonblocking conditions of C-
los networks are summarized as follows. Masson [104] and Hwang [105] gave
the sufficient conditions on strictly nonblocking and rearrangeable nonblocking
multicast Clos networks. Yang and Masson [29] gave a sufficient condition for
wide-sense nonblocking multicast Clos networks denoted as v(m,n, r), with m >

3(n − 1) log r
log log r

, which yields the currently best available design for this type of
multicast network. In [30], this condition was also shown to be necessary under
several commonly used routing strategies.

The analysis of Clos networks for circuit switching telephone traffic adopts a

84

......

...

...

...

...

active server failoveredge switches
core switches

n

1

1 2 m uplinkdownlinkreceiving linktransmittinglinkstandby server ...

n

2
...

n

r

Figure 4.1: A fat-tree data center network. When an active server crashes, its ap-
plications (whose connections are represented in bold lines) fail over to its backup
server (dashed lines) immediately.

single-rate network model, in which each link is dedicated to a single connection
at one time. However, most modern networks operate in a packet switching man-
ner, where packets from different connections are allowed to share a link through
multiplexing techniques. To accurately describe such networks, Melen and Turner
[28] presented a multirate network model, which can support connections with dif-
ferent data rates and a connection can consume an fraction of the bandwidth of the
link carrying it, instead of exclusively occupy the link. They also gave the strictly
nonblocking conditions for multirate unicast Clos networks. Liew and Chan [106]
improved the nonblocking condition for unicast Clos networks under both the dis-
crete bandwidth model and the continuous bandwidth model. Later, Yang [107]
generalized the results on single-rate multicast networks to the multirate model,
and gave the wide-sense nonblocking condition for multirate Clos networks under
multicast traffic. For a comprehensive summary on nonblocking Clos networks,
readers may refer to [27].

4.3 Preliminaries

In this section, we first introduce the background of fat-tree DCNs and server re-
dundancy in data centers. Then, we present the multirate multicast network model.
We also give some definitions, notations and observations that will be useful in our
analysis of the nonblocking condition for multirate multicast fat-tree DCNs.

85

4.3.1 Fat-tree DCNs

The fat-tree network is widely adopted as a topology for data center interconnection.
Fig. 4.1 illustrates the topology of a level-2 fat-tree. Each edge in the fat-tree
network consists of two directed links. The lower level consists of r = (n +m)×
(n + m) edge switches and the upper level consists of m = r × r core switches,
where r is the number of edge switches, each connecting n servers, and m is the
number of core switches. We will use the notion ftree(m,n, r) to denote such
a fat-tree. As can be seen in Fig. 4.1, given the number of edge switches r and
the number of servers associated with each edge switch n, the connection capacity
of a fat-tree network ftree(m,n, r) depends on the number of core switches m.
Deploying more core switches will certainly improve the connection capacity of
the fat-tree network, but will also increase the cost.

As mentioned in [18], limited by the switch size, a level-2 fat-tree can support
5K to 8K hosts. To connect more hosts, we can replace a core switch with a level-2
fat-tree network of smaller switches, expanding the network to a level-3 fat-tree.
Since a high-level fat-tree is recursively built from the basic level-2 fat-tree blocks,
and any property of a level-2 fat-free still pertains to a high-level fat-tree, we focus
on level-2 fat-tree DCNs. In a level-2 fat-tree DCN ftree(m,n, r), an edge switch
connects to each core switch through two directed links. We denote the links from
edge switches to core switches as uplinks and the links from core switches to edge
switches as downlinks. Such a fat-tree network can interconnect N = nr server-
s, with each server connected to an edge switch also through two directed links,
denoted as transmitting link and receiving link.

A fat-tree DCN structure based on a special instance of fat-tree called level-3,
k-ary tree was presented in [18], which can be built using only commodity switches
with k GigE ports. In such a fat-tree DCN, servers are placed in different pods, and
all the severs inside a pod are connected by a level-2 ftree(k/2, k/2, k/2) network.
As inter-pod bandwidth is likely to be the bottleneck of a fat-tree DCN, a common
approach is to adopt inter-switch links with higher bandwidth than that of server-
to-switch links to reduce congestion. For example, the fat-tree DCN in [23] uses
1G server-to-switch links and 10G switch-to-switch links in order to provide large
connection capacity between edge switches.

86

����

��� ��� ���
���

����

���
��� ��� ���

Figure 4.2: A level-3 fat-tree can be built by replacing each core switch with a
nonblocking level-2 fat-tree network.

4.3.2 Server Redundancy in HA Data Centers

To provide high service availability, HA data centers build redundancy into every
component of the data centers, including server, network, power and cooling, etc.
In this subsection, we briefly introduce server redundancy in HA data centers.

Practical HA data centers usually adopt an active/standby server redundancy
model [101, 102]. In such a model, each active server, i.e., the server that is cur-
rently running applications, has one or more idle standby servers provided in case of
failure. When an active server fails, one of its associated standby servers is brought
online, and takes over all the applications from the active server, such a process is
called failover. Fig. 4.1 also shows an example of failover.

A variety of maintenance tasks are required to ensure successful and timely
failover in case of server failure, among which two most important ones are serv-
er monitoring and data synchronization. Server monitoring is implemented by the
“heartbeat” mechanism, in which each server sends a message in a given interval
confirming that it is alive. Data synchronization between each active server and its
standby servers is achieved through data disk sharing via a storage area network
(SAN), or data replication techniques such as EMC Symmetrix Remote Data Facil-
ity [101]. Note that, traffic from both heartbeat and data replication is transmitted
through a dedicated private network that is separated from the DCN [101, 102].

Each active server and its corresponding standby backups are identical instances
of each other, meaning that, they share homogeneous software/hardware configura-
tions and data storage to ensure successful failover. In addition, they are required
to be independent to avoid being taken off-line simultaneously, i.e., they should not

87

share the same edge switch, power supply, etc. In our analysis, we say a data center
network is 2-redundant, if every server has another redundant instance provided in
the data center network, under the constraints that they must be associated with dif-
ferent edge switches. By the same token, we say a data center network k-redundant,
if every server has another k − 1 independent redundant instances. In many prac-
tical data centers, servers have different numbers of redundant instances depending
on the availability requirement of services provided [108]. We say such data center
networks general redundant, or simply redundant for brevity.

4.3.3 Multirate Network Model

In this subsection, we introduce the multirate multicast network model.
First, it is reasonable to assume all switches in a fat-tree DCN have multicast

capability, that is, the ability to establish a connection from an arbitrary input port
to a group of output ports simultaneously. As a fat-tree network can be recursively
constructed, each switch requiring multicast capability can be replaced by a mul-
ticast fat-tree network of the same size. Therefore, eventually, we may only need
to build multicast capability into small commodity switch modules, which involves
only minor increases in hardware complexity.

In the multirate network model, a connection can take only a fraction of the
total bandwidth of a link, and the available bandwidth left on the link can be used
for other connections. For example, assume two connections a and b share a link of
bandwidth 1 by time division multiplexing (TDM), meaning that they take turns to
send packets. If the packets from a occupy the link 3

4
of time and b takes other 1

4
of

time, mathematically it is equivalent to saying that “the bandwidth of flow a is 0.75
and the bandwidth of flow b is 0.25.”

As mentioned earlier, in order to reduce congestion, many fat-tree DCNs adopt
inter-level links with higher bandwidth than links directly connected to servers. To
simplify notations, we set the bandwidth of transmitting/receiving links of each
server to 1, and denote the bandwidth of inter-switch links normalized by the server
link bandwidth as S. We define the weight of a link as the sum of the transmission
bandwidth of all connections passing through the link. Also, a link is called ω-
idle, where 0 < ω ≤ 1, if there is at least ω available bandwidth left on the link.
Note that the number of servers associated with an edge switch, n, generally ranges
from hundreds to thousands due to the large scale of today’s data centers. Also,

88

it is impractical to use core switches with very high port bandwidth (e.g., an 128-
port 10GigE switch would cost orders of magnitude higher than an 128-port GigE
switch [18]), hence, we assume that S is much smaller than n in fat-tree DCNs.

A multicast connection request with weight ω is a connection request from a
source server to a set of destination servers that requires ω transmission band-
width. If a connection is destined for more than one destination server on some
edge switch, then it is only necessary for the source server to have one connection
path to that switch, within which the path can be multicast to as many servers as
necessary. Therefore, a multicast connection request can be described in terms of
connections between a source server and a set of edge switches along with the trans-
mission bandwidth requirement. Formally, a multirate multicast connection request
from a server i ∈ I = {1, 2, . . . , nr} is denoted as (Ii, ω), where Ii ⊂ {1, 2, . . . , r}
denotes the subset of edge switches to which server i is to be connected in the multi-
cast connection. The weight of the multicast connection, denoted by ω, 0 < ω ≤ 1,
is the transmission bandwidth required by the connection.

We consider a discrete bandwidth model as in [106], in which the weight ω of
all connections belongs to a given finite set B = {b, 2b, . . . , Db}. To simplify the
notation, we shall always assume that b = 1/D is an integer in our analysis, as the
case that 1/b is not an integer can be derived similarly. The multirate network re-
duces to a circuit switching network when b = 1. We call the number of destination
edge switches of (Ii, ω) the fanout of the connection and denote it as |Ii|. Note that
since only the connection paths routed through core switches would affect the non-
blocking condition, we can omit the connection paths within the same edge switch
in our analysis. Hence, the maximum possible fanout of any multicast connection
in a fat-tree DCN is r− 1. Meanwhile, we refer to a set of multicast connections as
a multicast assignment, if the total weight of each transmitting/receiving link in the
network does not surpass its bandwidth capacity. A nonblocking multicast network
is a network that can realize all possible multicast assignments without congestion.

To fulfill a connection request (Ii, ω), the connection paths will be routed through
a set of core switches via ω-idle uplinks, then reach the corresponding destination
edge switches Ii via a set of ω-idle downlinks. Therefore, we need to look at the
network state from the perspective of both uplinks and downlinks. For a given
connection request (Ii, ω), we refer to the set of core switches connected by ω-idle
uplinks from the edge switch associated with server i as the available core switches.

89

� �

� �

�

��������	
���

�������	
���

���������	 �������
�	 ���������	����������	
Figure 4.3: A ftree(2, 3, 3) multirate fat-tree network. There are three existing
connections in the network C1(ω = 0.6), C5(ω = 0.2) and C9(ω = 0.5) marked by
lines of different colors and styles.

Also, to characterize the connection state of a core switch j, 1 ≤ j ≤ m, we define
the term destination set, Mj,ω ⊆ {1, 2, . . . , r}, as the set of edge switches that core
switch j connects to through downlinks with weight greater than 1 − ω. In oth-
er words, the connection paths to the edge switches in Mj,ω cannot be established
through core switch j with respect to connection request (Ii, ω).

To better illustrate these notations, we show a small multirate fat-tree network
ftree(2, 3, 3) in Fig. 4.3. We set the bandwidth capacity of all the links in the
network to 1. There are three existing connections distributed among edge switches
C1(ω = 0.6), C5(ω = 0.2) and C9(ω = 0.5), marked by lines of different colors.
Now, suppose there is a connection request (I3, ω = 0.6) from server 3. We can
see that only core switch 2 is available for the request, as only the uplink to core
switch 2 is 0.6-idle. Also, we can see that the destination sets of core switches are
M1,0.6 = {2, 3} and M2,0.6 = {1, 2}, respectively.

In the next section, we will show that the cost of nonblocking multicast fat-tree
DCNs can be significantly reduced through exploring server redundancy in data
centers.

4.4 Nonblocking Condition for Multicast Fat-tree D-
CNs in Redundant Data Centers

In this section, we derive the sufficient multicast nonblocking condition on the num-
ber of core switches required in redundant fat-tree DCNs under the multirate model.
To make the analysis tractable, we assume that no server failure could occur in the

90

data center in this section. As will be seen in the next section, in case of server
failure, through server reassignment, the results in this section will still hold. We
first study an ideal case that the fat-tree DCN is 2-redundant, that is, every server
has one independent redundant instance provided in the data center network. We
then generalize the results to practical fat-tree DCNs, where servers may have d-
ifferent numbers of redundant instances depending on the availability requirement
of services provided. We also extend the results to multicast traffic with restricted
fanout.

4.4.1 Sufficient Condition for 2-Redundant Fat-tree DCNs

In this subsection, we show that the sufficient multicast nonblocking condition on
the number of core switches required can be significantly reduced when the fat-tree
DCN is 2-redundant.

In a 2-redundant fat-tree DCN, each server has another independent redundant
instance in the network. Given that they are identical instances, i.e., they share
the same hardware/software configurations, we can assign either one of the two
instances as active server and the other as standby backup. The following lemma
shows that in arbitrary 2-redundant fat-tree DCNs, we can always find a way to
assign active servers, such that the standby servers and active servers are evenly
distributed among edge switches.

Lemma 4.1. In any 2-redundant fat-tree DCN, it is always possible to assign active
servers to edge switches, such that each edge switch has n

2
active servers when n is

even, or at most ⌈n
2
⌉ active servers when n is odd, where n is the number of servers

associated with each edge switch.

Proof. We can model the edge switches and their associated servers in a 2-redundant
fat-tree DCN ftree(m,n, r) by a Server Distribution Graph (SDG), G(V,E), ac-
cording to the following procedures. First, denote edge switch i as node vi ∈ V in
the SDG, for 1 ≤ i ≤ r. For each pair of redundant servers with one server associ-
ated with edge switch i and its redundant instance associated with edge switch j, we
add an edge ek ∈ E between node vi and node vj . Note that any two servers asso-
ciated with the same edge switch cannot be the redundant instance of each other, as
each active server and its standby backup server must be independent. Therefore,
the resulting SDG for any 2-redundant data center is a multigraph (i.e., multiple

91

edges between two nodes may exist) with each node having a degree of exactly n

(i.e., n-regular). An SDG is not necessarily connected, and each component of the
graph is also an n-regular multigraph.

We then give an algorithm called Eulerian Traversal on the SDG to assign active
servers, and show that the lemma holds for arbitrary 2-redundant fat-tree DCNs.
First, we consider the case where n is even. In this case, every node in the SDG has
an even degree. According to the property of Eulerian graphs, each component of
the SDG contains an Eulerian cycle, which is a cycle that traverses every edge in a
connected graph exactly once. It is easy to find an Eulerian cycle in O(|V | + |E|)
time for any Eulerian graph G(V,E).

After obtaining an Eulerian cycle in each component of the SDG, we proceed
as follows.

• For each Eulerian cycle, pick an arbitrary node, say, vi1 , on the circle as the
starting point.

• Traverse the circle from vi1 in either clockwise or counterclockwise direction.

• Assign the edge starting from a node in the traversal to that node. For exam-
ple, for a traversal (vi1

ei1→ vi2
ei2→ · · ·

eik−1→ vik
eik→ · · · vi1 , where vik and eik are

the kth encountered node and edge, respectively, edge eik is assigned to node
vik .

In total, each node vi will be encountered n/2 times during the traversal ac-
cording to the algorithm, as every node in the graph has a degree of n and each
encounter accounts for a degree of 2. In addition, each encounter increases the
number of edges assigned to node vi by 1. Thus, node vi has a total of n/2 edges
assigned to it. We then choose the servers corresponding to the assigned edges in
the SDG as active servers on edge switch i and the rest of servers as standby servers.
Hence, the lemma holds when n is even.

We now prove that the lemma also holds when n is odd. In a 2-redundant
fat-tree DCN ftree(m,n, r), each server has exactly one independent redundant
instance, thus there must be an even number of edge switches (i.e., r is even) given
n is odd. Therefore, the SDG in this case is an n-regular multigraph with an even
number of nodes. Grouping two nodes into a pair arbitrarily, we can find r/2 pairs
of nodes in the SDG. Add a virtual edge between the two nodes in each pair, then

92

the graph obtained is an (n+1)-regular multigraph. Since n+1 is even, the Eulerian
traversal algorithm can be applied to the graph. We then ignore all the virtual edges
and assign active servers for each edge switch in the same way as that when n is
even. Clearly, there are at most ⌈n

2
⌉ active servers in each edge switch.

Lemma 4.1 shows that we can always evenly distribute active servers and stand-
by servers among edge switches when the fat-tree DCN is 2-redundant. In a fat-tree
DCN, all the simultaneous connections from an edge switch will compete for the
same set of core switches when establishing connection paths. Hence, the demand
for core switches is the most stringent when some edge switch is congested, i.e.,
all associated servers connected to the switch are active, and requesting broadcast
connections with full bandwidth capacity of their transmitting links simultaneously.
Such congestion at edge switches accounts for the large number of core switches for
nonblocking multicast communication in fat-tree DCNs. Since at most half of the
servers associated with each edge switch can be active simultaneously according
to Lemma 4.1, the congestion at edge switches can be effectively mitigated. No-
tice that whether n is even or odd has negligible difference for a reasonably large
fat-tree network, thus we will assume n is even in the following sections for clarity.

Suppose there is a new multicast request (Ii, ω) in the ftree(m,n, r) DCN,
which is currently providing a set of multicast connections. Next, we focus on the
network condition under which the given request can be satisfied. Suppose the new
multicast connection request (Ii, ω) is requesting to connect to r′ destination edge
switches, where r′ = |Ii|, 1 ≤ r′ < r and ω ∈ B. Connection request (Ii, ω) will
be routed to some core switches via a set of ω-idle uplinks, then routed towards the
destination edge switches through a set of ω-idle downlinks. We need to look at
the network state from the perspective of both uplinks and downlinks. To make the
problem tractable, we set a routing constraint that every connection in the network
can be routed through at most x (1 ≤ x < r) core switches. As will be shown
later, such constraint is indeed feasible given a sufficient number of available core
switches.

First, we consider the number of uplinks that cannot be used by the connection
request, or equivalent, the number of core switches that are not available to the
given connection request. Let J2(ω, x) denote the maximum number of inaccessible
core switches regarding the given request (Ii, ω) in a 2-redundant fat-tree DCN,

93

under the condition that every connection in the network is routed through at most
x (1 ≤ x < r) core switches. We have the following lemma regarding J2(ω, x).

Lemma 4.2. Given a new multicast connection request (Ii, ω) in an arbitrary 2-
redundant ftree(m,n, r) DCN, we have

J2(ω, x) =

⌊
(n/2− ω)x

S − ω + b

⌋
.

Proof. Without loss of generality, assume the new connection request is from the
first active server on the corresponding edge switch. By Lemma 4.1, there are n/2

active servers on the edge switch. Since the new connection request (Ii, ω) must
be valid, that is, the transmitting link of the corresponding source server and the
receiving links of the corresponding destination servers must be ω-idle, the most
congested case would be that the transmitting link of the first active server currently
carries connections of a total weight 1 − ω, and each of the remaining n/2 − 1

active servers having multicast connections with full bandwidth of its transmitting
link. Since we limit each connection to be routed through at most x core switches,
the maximum total bandwidth consumption of all the uplinks by the existing con-
nections out of edge switch i is (n/2− ω)x. If an uplink carries at least S − ω + b

traffic, it does not have sufficient bandwidth for the new connection request, hence,
the corresponding core switch is inaccessible for the new connection request. Con-
sequently, the number of uplinks out of the edge switch that carry a weight of at
least S − ω + b cannot be more than

⌊
(n/2−ω)x
S−ω+b

⌋
. That proves the lemma.

We have considered the network state from the perspective of uplinks. Similarly,
we can look at the network state from the perspective of downlinks, as shown in the
following corollary.

Corollary 4.1. Given a new multicast connection request (Ii, ω) in an arbitrary
2-redundant ftree(m,n, r) DCN, for each destination edge switch k in set Ii, there
are at most J2(ω, 1) downlinks to edge switch k that cannot be used by the connec-
tion request.

Proof. For the same reason as in Lemma 4.2, the total weight of all the connections
carried on the receiving links of all active servers in any destination edge switch in
Ii is at most n/2−ω. However, For a given multicast connection, a source server can

94

connect to multiple core switches, whereas a destination server can receive packets
from exactly one core switch, hence, x = 1. Therefore, we can use J2(ω, 1) to denote
the number of downlinks with weights greater than S − ω to each destination edge
switch.

Yang [29] gave the the necessary and sufficient condition that connection re-
quest (Ii, ω) can be satisfied through a set of x available core switches without
congestion, as shown in the following lemma.

Lemma 4.3. We can satisfy a multicast connection request (Ii, ω), using some x

(x ≥ 1) available core switches, say, j1, j2, . . . , jx, from among the available core
switches, if and only if

Ii ∩ (
x∩

k=1

Mjk,ω) = ∅.

Lemma 4.3 indicates that to satisfy a connection request (Ii, ω), a connection
path from the source server to each of the destination edge switches must be avail-
able through at least one of the x available core switches. Yang and Masson [29]
gave a method to find no more than x available core switches that satisfy the condi-
tion in Lemma 4.3. Using a similar technique, we can derive the following lemma.

Lemma 4.4. Given a new connection request (Ii, ω) with fanout r′, 1 ≤ r′ < r, in a
2-redundant ftree(m,n, r) DCN, if there exist more than m′ = J2(ω, 1)r

′1/x, 1 ≤
x ≤ r′ available core switches, then there will always exist x core switches through
which this new connection request can be satisfied.

Proof. Suppose we have m′ available core switches for a connection request (Ii, ω).
Since we are only concerned with the destination edge switches in the connection
request, we intersect the destination sets of these m′ core switches with Ii, such that
each destination set only includes the edge switches in Ii. The destination sets after
intersection are still denoted as Mj,ω, j = 1, 2, . . . ,m′ for convenience.

We apply a minimum cardinality rule when choosing the set of core switches to
satisfy the connection request. In the first iteration, we find the core switch with the
destination set of minimum cardinality, denoted as Mj1,ω. From Corollary 4.1, we
know that there are at most J2(ω, 1) downlinks from core switches to each desti-
nation edge switch that cannot be used by the connection request. Therefore, there
are at most J2(ω, 1)r′ elements in all Mj,ωs. The cardinality of the chosen destina-
tion set cannot be more than the average cardinality of all the destination sets, thus

95

|Mj1,ω| ≤
J2(ω,1)r′

m′ . In the next iteration, we concentrate on the destination switches
that cannot be reached through Mj1,ω. To do this, we intersect Mj1,ω with each of
the destination sets and obtain another m′ sets, denoted as M (1)

j,ω , j = 1, 2, . . . ,m′.

It is clear that there are at most J2(ω, 1)|Mj1,ω| elements in all these sets. We again
choose the set with minimum cardinality Mj2,ω. By the same token, we have

|Mj2,ω| ≤
J2(ω, 1)|Mj1,ω|

m′ ≤
(
J2(ω, 1)

m′

)2

r′.

In general, in the kth iteration (1 ≤ k ≤ x),

|Mjk,ω| ≤
(
J2(ω, 1)

m′

)k

r′.

In order to satisfy the connection request using no more than x core switches, we
must have

|Mjx,ω| ≤
(
J2(ω, 1)

m′

)x

r′ < 1.

By solving the inequality, we obtain that

m′ > J2(ω, 1)r
′1/x.

The lemma is thus proved.

We are now ready to give the sufficient nonblocking condition on the number of
core switches m for a 2-redundant multicast fat-tree DCN ftree(m,n, r).

Theorem 4.1. A 2-redundant ftree(m,n, r) DCN is nonblocking for any multicast
assignments under the multirate model, if

m > min
1≤x<r

max
ω∈B

{J2(ω, x) + J2(ω, 1)(r − 1)1/x} (4.1)

Proof. From Lemma 4.2, we know that J2(ω, x) is the maximum possible number
of core switches that are not available for a new connection request (Ii, ω), given
that every connection is routed through at most x core switches. Also, Lemma 4.4
shows that a connection request (Ii, ω) with fanout r′ will be satisfied through x

available core switches, given that there are more than J2(ω, 1)r
′1/x available core

switches. Since the fanout of any connection in the fat-tree DCN is at most r − 1,

96

we have that for a given x, if

m > J2(ω, x) + J2(ω, 1)(r − 1)1/x

we can satisfy the new connection request. Considering all possible values of x and
ω, we obtain the nonblocking condition for 2-redundant multicast fat-tree DCNs.

In addition, we can represent the nonblocking condition in Theorem 4.1 in terms
of basic network parameters, as shown in the following corollary.

Corollary 4.2. A 2-redundant ftree(m,n, r) DCN is nonblocking for any multicast
assignments under the multirate model, if

m > min
1≤x<r

{⌊
(n/2− 1)x

S + b− 1

⌋
+

⌊
(n/2− 1)

S + b− 1

⌋
(r − 1)1/x

}
(4.2)

Proof. Based on our assumption, n is much larger than S in fat-tree DCNs. Thus,
J2(ω, x) is maximized when ω = 1, which proves the corollary.

For given n and r, we can use Theorem 4.1 to find an optimum x such that a
minimum m can be determined for nonblocking multicast communication in arbi-
trary 2-redundant fat-tree DCNs. Next, we extend the result to general redundant
fat-tree DCNs.

4.4.2 Sufficient Condition for General Redundant Fat-tree DC-
Ns

In this subsection, we extend the result to general redundant fat-tree DCNs, in which
servers may have different numbers of redundant instances.

From Lemma 4.1, we know that it is always possible to distribute active servers
and standby servers evenly in arbitrary 2-redundant fat-tree DCNs. Next, we show
that the lemma can be extended to arbitrary k-redundant (k > 2) fat-tree DCNs. We
begin with the assumption that k = 2i.

Lemma 4.5. In an arbitrary k-redundant (k = 2i) fat-tree DCN, it is always possi-
ble to assign active servers, such that each edge switch has at most n

k
active servers.

97

Proof. Notice that Lemma 4.1 is a special case of the above lemma when i =

1. We denote the server assignment for arbitrary 2-redundant fat-tree DCNs in
Lemma 4.1 as Assignment(1) problem, and the server assignment for arbitrary k-
redundant (k = 2i) fat-tree DCNs as Assignment(i) problem. We prove the lemma
by recursively using the Eulerian traversal algorithm. For better illustration, we
also show an example of server assignment problem in a simple 4-redundant fat-
tree DCN in Fig. 4.4.

For a server a in a k-redundant fat-tree DCN, there are k identical instances (in-
cluding itself) independent of each other. We denoted the k instances as a1, a2, . . . , ak
(see Fig. 4.4(a) for an example). Since k = 2i, we can group two identical instances
together in a pair arbitrarily, and obtain 2i−1 pairs. Without loss of generality, we
denote the obtained server pairs as {a1, a2}, . . . , {ak−1, ak}.

For assignment purpose, we first assume that the two servers in each of the 2i−1

pairs are identical instances to each other, but servers from different pairs are not
identical. For example, as shown in Fig. 4.4(b), a1 and a2 are treated as identical
instances to each other (yellow nodes), but they are not considered identical to a3

and a4 (green nodes). Under this assumption, we obtain an Assignment(1) problem,
where each server has another identical instance. This problem can be solved by
constructing a SDG and using the Eulerian traversal algorithm, as in Fig. 4.4(c).
After that we have each edge switch with n/2 associated active servers by Lemma
4.1. In the next iteration, we try to assign active servers only from the active servers
selected in the previous iteration. In this way, each server now has k

2
identical

instances (including itself), and the problem becomes an Assignment(i-1) problem.
For example, in Fig. 4.4(d), if we only consider the active servers chosen, the
problem would become an Assignment(1) problem.

Clearly, Assignment(i) problem can be solved in i iterations. Note that each iter-
ation reduces the number of active servers on each edge switch by half. Therefore,
there are n

2i
= n

k
active servers in each edge switch after i iterations. The lemma is

thus proved. 1

Lemma 4.5 shows that a higher redundancy level further reduces the congestion
at edge switches in a fat-tree DCN. In fact, the condition that k = 2i in Lemma 4.5

1We assume n is divisible by k implicitly. The proof for the case that n is not divisible by k is a
trivial extension from the original proof, thus is omitted.

98

can be removed. Let Jk(ω, x) denote the maximum number of inaccessible core
switches for the new request (Ii, ω) in an arbitrary k-redundant fat-tree DCN, under
the condition that every connection is routed through at most x core switches. We
can have the following lemma regarding Jk(ω, x).

Lemma 4.6. Given a k-redundant ftree(m,n, r) DCN, and a new multicast re-
quest (Ii, ω), we have

Jk(ω, x) =

⌊
(n
2i
− ω)x

S − ω + b

⌋
,

where i = argmaxj{j|2j ≤ k}.

Proof. It is straightforward to see that the server distribution graph (SDG) of a
k-redundant fat-tree DCN always contains a subgraph that is the SDG of some 2i-
redundant fat-tree DCN, i = argmaxj{j|2j ≤ k}. In other words, we can always
arbitrarily choose 2i out of k identical instances for each server in a k-redundant da-
ta center, then only assign active servers from these servers. The resulting problem
would be an Assignment(i) problem. By Lemma 4.5, the lemma holds.

In practice, depending on the availability requirement of services provided, dif-
ferent servers in data centers usually have a different number of redundant instances
[108]. Next, we will generalize the result to general redundant fat-tree DCNs where
servers have different redundancy levels.

Theorem 4.2. A general redundant ftree(m,n, r) DCN is nonblocking for any
multicast assignments under the multirate model, where every server is at least k-
redundant, if

m > min
1≤x<r

{⌊
(n
2i
− 1)x

S + b− 1

⌋
+

⌊
(n
2i
− 1)

S + b− 1

⌋
(r − 1)1/x

}
(4.3)

where i = argmaxj{j|2j ≤ k}.

Given Lemma 4.6, the above theorem can be similarly proved as Corollary 4.2.
Theorem 4.2 shows that the sufficient nonblocking condition for general redun-

dant multicast fat-tree DCNs depends on the least redundant servers. It is worth
pointing out that Theorem 4.2 can be used flexibly in building practical fat-tree D-
CNs. For example, if it is not cost-effective to provide redundant backups for every

99

server, data center owners have the option to select a set of highly redundant servers
that host critical services, and make sure the fat-tree DCN is sufficiently equipped
to guarantee nonblocking multicast communication for these servers based on The-
orem 4.2. As long as high priority services are allowed to overtake low priority
services when realizing connections, the network is guaranteed to be nonblocking
for the selected set of servers (or equivalently, the selected set of services).

Given the values of n and r in a general redundant ftree(m,n, r) DCN, we
could use Theorem 4.2 to find the minimum m to build a nonblocking multicast fat-
tree DCN. However, it is also of interest to determine a bound on m as an explicit
function of n and r. The following Corollary addresses this issue.

Corollary 4.3. A general redundant ftree(m,n, r) DCN is nonblocking for any
multicast assignments under the multirate model, where every server is at least k-
redundant, if

m > 3

⌈
(n
2i

− 1)

S + b− 1

⌉
log r

log log r
(4.4)

where i = argmaxj{j|2j ≤ k}

Proof. The condition shown in Inequality (5.3) can be relaxed to

m > min
1≤x<r

{⌈
(n
2i
− 1)

S + b− 1

⌉
(x+ r1/x)

}
. (4.5)

For any constant u > 0, we let x = log r
u log log r

in (5.4). Then,

r1/x = r
u log log r

log r = (log r)
1
u .

Letting u = 2, (5.4) can be written as

m >

⌈
(n
2i
− 1)

S + b− 1

⌉[
2

log r

log log r
+ (log r)

1
2

]
.

Since log r
log log r

is of higher order than (log r)
1
2 , we have that

m > 3

⌈
(n
2i
− 1)

S + b− 1

⌉
log r

log log r

is sufficient for nonblocking multicast communication in fat-tree DCNs.

100

From the above proof, we can see that the bound given in Corollary 4.3 is in the
same order as the original nonblocking condition in Theorem 4.2. Since a single-
rate, circuit switching fat-tree network can be viewed as a special instance of the
multirate network model, our nonblocking condition can also be applied to circuit
switching fat-tree networks. If we set the the value of b and S to 1, as well as
disregard server redundancy (i = 0) in Inequity (4.4), the multirate fat-tree network
would reduce to a simple circuit switching network, and the condition in Corollary
4.3 would become m > 3(n − 1) log r

log log r
, which is consistent with the bound for

nonblocking multicast Clos networks obtained in [29].

4.4.3 Extensions

In this subsection, we generalize the above results to restricted fanout multicast
assignments.

Notice that traffic in data center networks is usually “skewed,” i.e., a server
may have frequent communication with a small group of destination servers while
rarely communicating with others [8]. Hence, it is also meaningful to consider the
sufficient nonblocking condition for multicast assignments with restricted fanout, in
which each multicast connection can have connection paths to at most d, 1 ≤ d < r,
edge switches. We will state the corollaries to the above results that address such
generalizations without a proof, as they can be easily derived from the theorems
and corollaries above.

Corollary 4.4. A general redundant ftree(m,n, r) DCN is nonblocking for any
multicast assignments under the multirate model, if every server is at least k-redundant
and each multicast connection has at most d fanout, (1 ≤ d < r), the network is
nonblocking if

m > min
1≤x<d

{⌊
(n
2i
− 1)x

S + b− 1

⌋
+

⌊
(n/2− 1)

S + b− 1

⌋
d1/x

}
. (4.6)

In particular, this condition can be written as

m > 3

⌈
(n
2i
− 1)

S + b− 1

⌉
log d

log log d
(4.7)

where i = argmaxj{j|2j ≤ k}.

101

It is interesting to note that for the restricted fanout case, when d = 1 we have
the special case of unicast capability of fat-tree DCNs. The above result then takes
the form of sufficient strictly nonblocking condition on unicast capability of fat-tree
DCNs in the presence of server redundancy.

Corollary 4.5. Setting d = 1 in Corollary 4.4 yields

m > 2

⌊ n
2i
− 1

S + b− 1

⌋
. (4.8)

where i = argmaxj{j|2j ≤ k}.

Compared with [106], which states that the nonblocking condition on m for a
multirate unicast Clos network is m > 2

⌊
n−1

S+b−1

⌋
, Corollary 4.5 shows that the

nonblocking condition on m for unicast fat-tree DCNs can be reduced through ex-
ploring server redundancy as well.

4.5 Server Reassignment in Faulty Redundant Data
Centers

So far we have assumed that no failure could occur in the data center for tractability.
In this section, we consider faulty data centers, where one or more active servers
could fail at any time. First, we show that although server failure causes uneven con-
gestion among edge switches, which could invalidate the nonblocking conditions
established previously, such uneven congestion can be re-balanced by reassigning
servers among edge switches. Then, we propose a graph modeling approach for re-
dundant faulty data centers, and show that the optimal server reassignment problem
in case of server failure can be transformed to finding the minimum cost network
flow in the corresponding auxiliary graph. Finally, we prove that a server reassign-
ment can always be found for arbitrary redundant faulty data centers, such that the
previous nonblocking condition still holds.

4.5.1 Uneven Congestion Caused by Server Failure

There are various sources of failures in a data center, including links, switches and
servers. Maintaining nonblocking communication under a single core switch fail-
ure is fairly simple: one extra core switch is sufficient to ensure that the condition

102

in Theorem 2 still holds upon the failure. Here, we focus on server failure, which is
the very purpose why server redundancy is provided. As indicated in [109], server
failure has become the norm rather than exception in large scale data centers. When
one or more active servers fail in a redundant data center, they immediately fail over
to their standby backups, which become active and replace the failed servers. The
failover mechanism masks the external observation of server failure, thus guaran-
tees high availability of data centers. However, it can also cause uneven congestion
in some edge switches.

For better illustration, we give a simple example in Fig. 4.5, which shows a
2-redundant fat-tree DCN consisting of four edge switches, with each edge switch
connecting to four servers. Each active server is denoted by a colored node, and its
backup server is denoted by a blank node with the same letter. Now, assume that
active server e in the 3rd edge switch fails, as shown in Fig. 4.5(a). Its backup server
located at the 4th switch would have to become active in order to replace the failed
server. In this case, three servers associated with the 4th switch are active, which
leads to heavy congestion in that switch. As indicated in Lemma 4.1, when there
is no server failure in a 2-redundant data center, only half of the servers associated
with each edge switch are active, which is the key to reducing multicast nonblocking
condition. Therefore, the uneven congestion brought by server failure could cause
congestion in a fat-tree DCN even if it satisfies the previous nonblocking condition.

As mentioned above, when backup servers replacing failed active servers are
located in an already congested edge switch, the uneven congestion in the faulty
data center could invalidate the nonblocking condition. However, a key observation
is that when an active server fails over to its backup, it aggravates the congestion
at the edge switch associated with the backup, but reduces the congestion at the
edge switch of the failed server. For example, only one server connected to the 3rd

switch is active after the server failure, as shown in Fig. 4.5(a). On the other hand,
it takes relatively little effort to shift the operation of an active server to its backup,
as all active servers and their backups are identical instances that require constant
synchronization in order to guarantee successful failover. Hence, we can re-balance
the uneven congestion through reassigning servers, that is, shifting the operation
and traffic load of certain active servers to their backups. For example, as shown
in Fig. 4.5(b), after shifting the operation of active server h in the 2nd switch and
active server g in the 4th switch to their backups, each edge switch again has two

103

� � � �

� � � �

����

����

����

�
��������

��
������

�� �� �� ���� �� �� �� �� �� �� �� �� �� �� ��

����

Figure 4.4: Server assignment in a simple 4-redundant fat-tree DCN. (a) Server
distribution, in which each server has 4 independent identical instances (including
itself) denoted by the same shape; (b) Arbitrarily pair 4 identical instances of each
server. Assume servers from different pairs are not identical instances, the resulting
problem becomes Assignment(1); (c) Constructing the SDG;(d) Solve the problem
using Eulerian traversal algorithm, then only consider the active servers (denoted
by larger shapes in the figure) chosen for next iteration.1 2 3 4a b c d d f g h c e h b a e g f

edge switch active serverbackup server failed server
failover1 2 3 4a b c d d f g h c e h b a e g f1 2 3 4a b c d d f g h c e h b a e g f

(a)(b)(c)
Figure 4.5: A faulty 2-redundant fat-tree DCN. Each active server is denoted by a
colored node, and its backup server is denoted by a blank node with the same letter.
(a) Active server e in the 3rd edge switch fails over to its backup in the 4th switch.
(b) Shifting the operation of the active server h in the 2nd switch and active server g
in the 4th switch to their backups. (c) Each edge switch again has two active servers.

104

active servers and the DCN is nonblocking as shown in Fig. 4.5(c).
The above example shows that it is possible to reassign a set of servers in a re-

dundant faulty data center, such that the obtained nonblocking condition still holds
in case of server failure. Note that, each transaction is essentially a failover pro-
cess, which is different from virtual machine (VM) migration. In VM migration,
the memory image of a VM must be transferred to a server (possibly chosen from a
pool of alive servers) before the VM can be restarted, which incurs large overhead.
On the other hand, as active servers and their backups are constantly synchronized
to ensure instant failover in an HA data center, each transaction incurs much less
service downtime and overhead, given that the cost of failover is amortized through
periodical synchronization. Meanwhile, most server failures are transient, lasing
from seconds to minutes [109], and only a few failures are permanent. The data
center operator can choose to initiate server reassignment only when the benefit of
reassignment outweighs the overhead.

4.5.2 Optimal Server Reassignment

In this subsection, we see how to obtain such reassignment optimally and efficient-
ly. We call the process of shifting the operation of an active server to its backup
a transaction. Then a server reassignment can be defined as a set of transaction-
s, through which the uneven congestion caused by server failure is re-balanced, in
the sense that the number of active servers in each edge switch is no more than
that given in Lemma 4.5, when there is no server failure in the data center. Since
each transaction would incur some overhead and briefly disrupt the corresponding
applications, it is desirable that a server reassignment has as few transactions as
possible. Therefore, we define an optimal server reassignment as a server reassign-
ment that consists of the minimum possible number of transactions. Finding the
optimal server reassignment in a redundant faulty DCN is nontrivial, especially in
a large-scale data center network with the possibility of multiple servers failing at
the same time. Next we give a graph modeling approach for redundant faulty DC-
Ns, and show that the optimal server reassignment problem can be transformed to
finding the minimum cost network flow in the auxiliary graph.

A redundant faulty fat-tree DCN ftree(m,n, r) can be modeled as a directed
graph G′(V,E) according to the following procedures. First, denote edge switch i

as node vi ∈ V , for 1 ≤ i ≤ r. If x active servers in edge switch i have backup

105

12 431 1 -1 +1211 1
Figure 4.6: The auxiliary graph G′(V,E) for the 2-redundant faulty data center
in Fig. 4.5. The capacity of each edge is denoted by the number inside. After the
failover, edge e3,4 is removed, with node 4 and node 3 assigned +1 and −1 demand,
respectively. A feasible flow from source node 4 to sink node 3 can be found by
sending one unit of flow through edge e4,2 and edge e2,3.

servers located at edge switch j, we add a directed edge ei,j from node i to node j

with its capacity ui,j set to x. Then, for each node vi ∈ V , we assign an integer bi
representing the available demand at that node, which is set to 0 by default. When
a failed active server in edge switch i fails over to its backup in edge switch j, we
reduce bi and ui,j by 1, and increase node demand bj by 1 at the same time. Clear-
ly, the change in bi denotes the change in the number of active servers connected
to switch i caused by server failure, and the total demand of all the nodes in the
auxiliary graph G′(V,E) is always 0, i.e.,

∑
i∈V bi = 0. If bi > 0, then node i is a

source node, and if bi < 0, node i is a sink node. Otherwise, if bi = 0, node i is an
intermediate node. Fig. 4.6 shows the auxiliary graph G′(V,E) for the 2-redundant
fat-tree DCN in Fig. 4.5.

Suppose each edge ei,j carries fi,j units of flow in G′(V,E). Then a network
flow is called feasible if the required flows from all the source nodes to the sink
nodes are delivered, and the following flow bound constraint (5.4) and flow balance
constraint (4.10) are satisfied.

0 ≤ fi,j ≤ ui,j, ∀ei,j ∈ E (4.9)∑
j:ei,j∈E

fi,j −
∑

j:ej,i∈E

fj,i = bi,∀vi ∈ V (4.10)

Associate each edge ei,j with a cost ci,j , then the minimum cost flow problem is to

106

find a feasible flow, if any, with minimum cost, that is,

minimize
∑
ei,j∈E

ci,jfi,j

Next, we show that server reassignment problem in a redundant faulty data cen-
ter can be transformed to finding a feasible network flow in the auxiliary graph
G′(V,E).

Lemma 4.7. There exists a server reassignment when one or more active servers
fail in a redundant faulty data center, if and only if a feasible network flow can be
found in its auxiliary graph G′(V,E).

Proof. Based on the integrality theorem of network flow, as long as all the capacities
in a flow network are integers, there is a feasible network flow, if any, consisting of
only integers. Given such an integer feasible network flow, a server reassignment
can be found as follows. If there are fi,j units of flow on edge ei,j , we shift fi,j active
servers in switch j to switch i. For example, as shown in Fig. 4.6, a feasible flow
is found by sending a unit of flow through edges e4,2 and e2,3. Correspondingly, we
shift one active server in edge switch 4 to its backup in edge switch 2, then shift one
active server in edge switch 2 to its backup in edge switch 3.

Note that, edge switch i has a total of ui,j active servers whose backup servers
are connected to edge switch j. Since the flow bound constraint states that fi,j ≤
ui,j , we can always find fi,j active servers in edge switch j with backup connected
to switch i. Therefore, the server reassignment is valid.

We now show that such a server reassignment is able to re-balance the uneven
congestion among edge switches. Denote the total units of flow that enter node vi

as ini and the total units of flow that leave node vi as outi. Clearly, outi is the
number of active servers in switch i whose operation is shifted to other switches
by the server reassignment, and ini is the number of backup servers in switch i that
become active by the server reassignment. Therefore, if ini−outi > 0, edge switch
i will have ini − outi additional servers after the reassignment, otherwise, it will
have outi − ini fewer active servers. Since the flow balance constraint in (4.10)
states that outi − ini = bi, and the change in bi is the change in the number of
active servers connected to switch i caused by server failure, we can see that after
the reassignment, each edge switch again has the same number of active servers as

107

that when there is no server failure, in other words, the uneven congestion caused
by server failure is re-balanced.

On the other hand, suppose we have a valid server reassignment that re-balances
the uneven congestion among edge switches in a redundant faulty data center. For
each transaction in the server reassignment, we can send one unit of flow in the
corresponding directed edge. It is easy to check that the resulting flow is feasible.
Thus the lemma is proved.

From the proof of Lemma 4.7, we can see that each server reassignment in
a redundant faulty fat-tree data center corresponds to a feasible network flow in
the auxiliary graph G′(V,E). Moreover, the number of transactions in a server
reassignment is equal to the total number of flows over all the edges, i.e.,

∑
ei,j∈E fi,j

. Therefore, finding the optimal server reassignment can be easily transformed to
the minimum cost network flow problem, as shown in the following corollary.

Corollary 4.6. Assign each edge in the auxiliary graph G′(V,E) a uniform cost 1,
then the optimal server reassignment problem is equivalent to finding the network
flow with the minimum cost, i.e., min

∑
ei,j∈E fi,j.

Minimum cost flow problem is one of the classic network flow problems that
have received extensive attention in last few decades. Efficient algorithms with
polynomial time complexity have been proposed to solve the problem. Given a
graph G(V,E) with unity cost on each edge, [110] gave the minimum cost flow
algorithm with the best time complexity O(|V ||E| log2 |V |). As the auxiliary graph
G′(V,E) for a fat-tree DCN ftree(m,n, r) consists of r nodes, each of which has
n edges, the optimal server reassignment problem can be solved in O(r2n log2 r)

time. Readers may refer to [111] for a comprehensive review of minimum cost flow
problem.

We have shown that the optimal server reassignment problem in a redundant
faulty data center can be transformed to finding the minimum cost network flow
in the auxiliary graph. However, it remains to be seen that whether a valid server
reassignment can always be found for arbitrary redundant data centers in the event
of server failure. For easy presentation, we begin the analysis with 2-redundant
faulty data centers and then extend it to general redundant faulty data centers.

First, the auxiliary graphs of arbitrary 2-redundant faulty fat-tree DCNs share a
common property that will be useful in our analysis, which is described below.

108

Property 4.1. For each node vi in the auxiliary graph G′(V,E) of a 2-redundant
faulty fat-tree DCN ftree(m,n, r), we have∑

j:ei,j∈E

ui,j −
∑

j:ej,i∈E

uj,i = bi (4.11)

Proof. For each node vi ∈ V , let oci denote the total capacity of all the edges out
of vi, that is, oci =

∑
j:ei,j∈E ui,j . Similarly, let ici denote the total capacity of all

the edges towards vi, ici =
∑

j:ej,i∈E uj,i. We can see that oci and ici are equal
to the number of active servers and backup servers in edge switch i, respectively.
Suppose there is no server failure in the data center at the beginning, then each edge
switch has n/2 active servers and backup servers by Lemma 4.1, that is, oci = ici =

n/2, ∀vi ∈ V . Whenever an active server in switch i fails over to switch j, ui,j and
bi is reduced by 1, and bj is increased by 1. We can see that (4.11) holds for both
nodes vi and vj . Thus, the property is proved.

Lemma 4.8. We can always find a server reassignment, when one or more active
servers fail in a 2-redundant faulty fat-tree DCN.

Proof. We prove this lemma by showing that a feasible network flow exists in the
auxiliary graph G′(V,E) for an arbitrary 2-redundant faulty fat-tree DCN.

As mentioned previously, the total demand of all the nodes
∑

i∈V bi in the aux-
iliary graph G′(V,E) is zero, which is one of the necessary conditions for flow
feasibility in G′(V,E).

We define an S-T cut as a partition of V , in which S and T are two nonempty,
disjoint subsets of V that satisfy S ∪ T = V . The capacity of an S-T cut is defined
by

C(S, T) =
∑
i:vi∈S

∑
j:vj∈T

ui,j

According to the max flow min cut theorem [111], a directed graph G(V,E) has
feasible flow(s), if and only if, for an arbitrary S-T cut, the total demand of the
nodes in S is no larger than the capacity of the cut, i.e.,

∑
vi∈S bi ≤ C(S, T). Next,

we prove this is true for the auxiliary graph G′(V,E) of any 2-redundant faulty
fat-tree DCN.

Without loss of generality, we pick an arbitrary S-T cut. Based on Property 4.1
of auxiliary graph G′(V,E), the total demand of nodes in the set S,

∑
i:vi∈S bi, can

109

be written as ∑
i:vi∈S

(
∑

j:vj∈S

ui,j +
∑

j:vj∈T

ui,j −
∑

j:vj∈S

uj,i −
∑

j:vj∈T

uj,i)

=
∑
i:vi∈S

∑
j:vj∈T

ui,j −
∑
i:vi∈S

∑
j:vj∈T

uj,i (4.12)

As the capacity of the S-T cut is the first term in (4.12), C(S, T) ≥
∑

i:vi∈S bi stands
for an arbitrary S-T cut. The lemma is thus proved

Next, we show that Lemma 4.8 can be extended to general redundant faulty data
centers.

Corollary 4.7. We can always find a server reassignment, when one or more active
servers fail in a general redundant faulty fat-tree DCN.

Proof. As shown in Theorem 4.2, the maximum number of active servers in an edge
switch depends on the least redundant servers. Assume that every server is at least
k-redundant in the data center. Then a server reassignment exists, if we can prove
that a server reassignment can always be found in arbitrary 2i-redundant (i ≥ 1)

data centers, where i = argmaxj{j|2j ≤ k}.
As shown in the proof of Lemma 4.5, the server assignment problem in the k-

redundant (k = 2i) fat-tree DCN can be solved by recursively applying Eulerian
Traversal algorithm i times. Each iteration only considers the edges chosen in the
previous iteration, and reduces the number of edges by half. In the last iteration,
all the servers corresponding to the edges recursively chosen from the last i − 1

iterations would form a 2-redundant data center. Since a server reassignment always
exists in arbitrary 2-redundant data centers, we can find a server reassignment for
any k-redundant (k = 2i, i ≥ 1) data centers. The corollary is thus proved.

Corollary 4.7 shows that with server reassignment, the number of active servers
in each edge switch remains the same as in Lemma 4.5. Since other lemmas in the
previous section still stand, Theorem 4.2 holds for arbitrary redundant faulty data
centers with server reassignment.

Theorem 4.3. The sufficient multicast nonblocking condition in Theorem 4.2 still
holds for redundant faulty fat-tree DCNs with server reassignment.

110

Theorem 4.3 states that the uneven congestion caused by server failure in any
faulty redundant data center can always be re-balanced through server reassignmen-
t, such that the DCN can remain nonblocking in case of server failure given that it
satisfies the condition established in Theorem 4.2.

4.6 Comparison of Network Costs

1 2 3 4

500

1000

1500

m

S

 no redundancy
 2-redundant
 4-redundant

(a) n = 40, r = 128

1 2 3 4

500

1000

1500

2000

m

S

 no redundancy
 2-redundant
 4-redundant

(b) n = 128, r = 40

1 2 3 4

500

1000

1500

2000

m

S

 no redundancy
 2-redundant
 4-redundant

(c) n = 40, r = 512

1 2 3 4

1000

2000

3000

4000

5000

6000

7000

m

S

 no redundancy
 2-redundant
 4-redundant

(d) n = 512, r = 40

Figure 4.7: Sufficient multirate multicast nonblocking condition on the number of
core switches m in ftree(m,n, r) DCNs with different sizes, redundancy levels
and normalized inter-level link bandwidths S.

In this section, we compare the sufficient multicast nonblocking condition on
the number of core switches m in fat-tree DCNs ftree(m,n, r) with different sizes
and redundancy levels. We also evaluate the impact of the inter-level link bandwidth
S on the multicast nonblocking condition.

The main advantage of fat-tree networks is to build large interconnects from

111

smaller switches. Hence, we adopt commodity edge switches with 40 duplex ports
for connecting servers, i.e., n = 40. Considering the number of servers inside a
data center can vary from several hundreds to tens of thousands, we investigate a
medium size fat-tree DCN with r = 128 and a large size fat-tree DCN with r = 512.
We set the bandwidth of transmitting/receiving link of each server to 1, and denote
the normalized inter-level link bandwidth as S. The smallest bandwidth fraction
that a connection can carry, b, is set to 0.2.

Fig. 4.7 shows the sufficient multirate multicast nonblocking condition on the
number of core switches m in ftree(m,n, r) DCNs with different sizes, redundan-
cy levels and normalized inter-level link bandwidths S. It can be observed from Fig.
4.7 that, for fat-tree DCNs of both sizes, the sufficient number of core switches m to
support nonblocking multicast communication can be significantly reduced through
exploring server redundancy. When the ftree(m,n, r) DCN is 2-redundant, m can
be reduced by around 50%, compared to the case without considering server redun-
dancy. When the fat-tree DCN is at least 4-redundant, m can be further reduced by
75%. Considering the fact that core switches are usually the most expensive com-
ponents in data center networks due to their large port count and high port speed,
the cost saving towards building nonblocking multicast fat-tree DCNs through ex-
ploring server redundancy is very substantial.

It can be observed that the combination of n and r also has a significant impact
on the multicast nonblocking condition for a fat-tree DCN ftree(m,n, r). As can
be seen in Fig. 4.7, for fat-tree DCNs of the same size, the nonblocking condition on
m is much smaller, when we use more edge switches with fewer servers connected
to each switch (larger r and smaller n) than the opposite case (smaller r and larger
n). However, since a core switch is connected to all the edge switches, having
a large number of edge switches r also means that we need large core switches,
which are usually much more expensive than small commodity switches. Thus, it
is essential that a cost-effective combination of n and r is chosen when building a
fat-tree DCN.

To support a large number of ports in core switches, the method to build a level-
2 nonblocking multicast fat-tree network can be recursively applied to build more
levels of nonblocking fat-tree networks. In this case, server redundancy can reduce
the cost of nonblocking multi-level fat-tree networks even further. For example, to
obtain a level-3 nonblocking fat-tree network, a level-2 nonblocking fat-tree net-

112

work block can be used to replace each core switch in the original level-2 fat-tree
network. Since each core network block supports all types of multicast traffic with-
out contention, it can be shown by induction that the recursively built larger network
will also be nonblocking for multicast. The total cost saving by exploring server re-
dundancy in this case would account for both requiring a fewer number of core
network blocks and building each nonblocking core network block at lower cost,
which is even more substantial than building a basic level-2 nonblocking fat-tree
network.

Fig. 4.7 also shows that the normalized inter-level link bandwidth S has a sig-
nificant impact on the multicast nonblocking condition. The sufficient number of
core switches m for nonblocking multicast fat-tree DCNs drops drastically when
S increases. The reason is that adopting higher inter-level link bandwidth allows
more connections to be carried on each inter-level link simultaneously, thus reduces
the number of core switches m required for nonblocking multicast communication.
However, having high inter-level link bandwidth may require non-commodity, high
speed core switches, which are generally orders of magnitude more expensive than
commodity switches.

Overall, the factors that affect the cost of a nonblocking multicast fat-tree DC-
N ftree(m,n, r) include server redundancy level, the combination of n and r, the
market price of switches, the hierarchy of the network and the inter-level link band-
width. Though the price of switches changes constantly with the development of
technology [5], based on the results obtained in this chapter, data center designers
can always find the most economical way to build nonblocking multicast fat-tree
DCNs based on the current market trend.

4.7 Conclusions

In this chapter, we have explored server redundancy in HA data centers to reduce
the cost of nonblocking multicast fat-tree DCNs. We present a multirate network
model that accurately describes the communication environment of fat-tree DCN-
s. Initially, we consider fault-free data centers for tractability. We show that the
sufficient condition on the number of core switches for nonblocking multicast com-
munication can be significantly reduced when the fat-tree DCN is 2-redundant. We
also extend the results to general redundant fat-tree DCNs where servers may have

113

different numbers of redundant instances. Then, we consider redundant faulty data
centers where one or more servers can fail at any time. We formulate the serv-
er reassignment problem as a network flow problem and prove that the obtained
nonblocking condition under fault-free assumption still holds in the event of server
failure with server reassignment. Based on the theorems, we provide an efficient
multicast routing algorithm with linear time complexity to configure multicast con-
nections in fat-tree DCNs. We also compare the sufficient multicast nonblocking
condition on the number of core switches m in fat-tree DCNs with different sizes
and redundancy levels. The comparison results demonstrate the substantial cost
saving of exploring server redundancy.

114

Chapter 5

On-line Multicast Scheduling with
Bounded Congestion in Fat-tree Data
Center Networks

In the previous chapters, we mainly focus on reducing the cost of nonblocking
multicast fat-tree DCNs. Nonblocking networks guarantee congestion-free com-
munication, however, they also incur very high hardware cost. On the other hand,
network oversubscription is a commonly adopted technique in practical data cen-
ters to avoid under-utilization of network resource and reduce cost. An oversub-
scribed fat-tree DCN requires much fewer core switches, thus incurs significantly
lower cost than the nonblocking counterparts [18]. However, without an efficient
flow scheduling algorithm that appropriately routes multicast flows to achieve traffic
load balance, heavy congestion may occur throughout the network in an oversub-
scribed fat-tree DCN, which prevents full utilization of link bandwidth and causes
unpredictable network performance.

In this chapter, we study multicast flow scheduling in oversubscribed fat-tree
DCNs, where multicast flow requests arrive one by one without a priori knowledge
of future traffic. To address the drastic traffic fluctuation in data centers, we consider
a very general traffic model called hose traffic model, where the only assumption
is that the total bandwidth demand of traffic that enters (leaves) an ingress (egress)
link of each server at any time is bounded by the capacity of its network interface
card. We present a low-complexity on-line multicast flow scheduling algorithm

115

for fat-tree DCNs. The algorithm can achieve bounded congestion and efficient
bandwidth utilization under any arbitrary sequence of multicast flow requests that
satisfy the hose model. We also derive the bound on congestion that the algorithm
can achieve in a fat-tree DCN.

The rest of the chapter is divided into six sections. Section 5.1 provides the
introduction of research issue. Section 5.2 discusses the related work. Section 5.3
briefly introduces the background of fat-tree DCNs and discusses the requirements
of multicast flow scheduling in fat-tree DCNs. Section 5.4 gives the network model
and some useful notations. Section 5.5 presents the BCMS algorithm. Section 5.6
analyzes the bound on congestion and algorithm complexity. Section 5.7 provides
the performance evaluation results. Finally, Section 5.8 concludes the chapter.

5.1 Introduction

Though Fat-tree DCNs have the potential to deliver huge aggregated bandwidth
through providing rich path multiplicity between any pair of hosts, uneven traffic
load distribution, a common phenomenon in fat-tree DCNs usually caused by inef-
ficient traffic scheduling, prevents full utilization of network bandwidth [15]. Be-
sides degraded network utilization, unbalanced traffic load distribution also causes
variability in the bandwidth offered by the DCN to tenant applications, leading to
unpredictable network performance.

To illustrate the detrimental effects of uneven traffic load distribution in fat-
tree DCNs, we show a simple communication pattern in a small fat-tree DCN with
every link of 1Gbps bandwidth capacity in Fig. 5.1. Suppose there are four flows, A
through D, each having a source server and a destination server located at different
edge switches and demanding 1Gbps bandwidth. We notice that flow A and flow B

are routed through the same link towards core switch 2, and flow C and flow D are
routed through the same link from core switch 3, which causes heavy congestion
among certain core switch links. As a result, the bandwidth obtained by each flow is
capped at 500Mbps. In this example, all flows could have reached their bandwidth
demand of 1Gbps with the improved scheduling: flow A could have been forwarded
through core switch 1 and flow D could have been switched through core switch
4. We can see that, due to unbalanced traffic distribution, the network suffers a
50% bisection bandwidth loss, and all flows suffer long delay and high packet drop

116

Core 1 Core 4
Edge 1

Core 2
Edge 3 Edge 4

Core 3
Edge 2

Flow AFlow BFlow CFlow Dcongestion congestion
Figure 5.1: Unbalanced traffic load distribution leads to reduced bisection band-
width and unpredictable network performance. Unused links omitted for clarity.

due to congestion. The bandwidth available to each flow could suffer from further
reduction if the scheduler cannot identify heavy congestion in the network and keep
assigning incoming flows on congested core switch links. Therefore, it is essential
for a scheduling algorithm adopted by a fat-tree DCN to achieve good traffic load
balance.

Due to the volatility and unpredictability of data center traffic [8–10], we focus
on on-line multicast scheduling, where multicast flow set-up requests arrive over
time and future demands are unknown. In order to address the drastic traffic vol-
ume fluctuation, which is quite common in data centers [8–10], we will consider
multicast scheduling under a very general traffic model called hose traffic model,
where the only assumption is that the total bandwidth demand of traffic that en-
ters (leaves) an ingress (egress) link of each server at any time is bounded by the
capacity of its network interface card.

First, we will present Bounded Congestion Multicast Scheduling (BCMS), an
on-line multicast flow scheduling algorithm with very low-complexity, which is
able to guarantee bounded congestion (the ratio of the aggregated bandwidth de-
mands of flows routed through a link to the link capacity) as well as maintain good
traffic load balance and efficient network utilization for fat-tree DCNs. Then, we
will derive the bound on congestion on any link in a fat-tree DCN under arbitrary
multicast traffic patterns satisfying hose model under the proposed BCMS algorith-
m.

Given that BCMS possesses the desirable property of guaranteeing the worst-
case congestion across the network even under the most malicious traffic patterns,
our results can also greatly enhance network performance predictability, which is
desired by many tenant applications. Finally, we will evaluate the performance of

117

the BCMS algorithm under various types of traffic patterns in an event-driven DCN
simulator. The simulation results demonstrate that BCMS achieves superior perfor-
mance in terms of aggregated network bandwidth delivered to hosts and evenness
of traffic load distribution.

5.2 Related Work

Multicast in DCNs has drawn a considerable amount of attention. Several work
have been proposed to address reliability and scalability issues in the transmission
of multicast packets in data centers [33, 34]. As data centers usually adopt com-
mercial switches that cannot provide high reliability, an efficient packet repairing
scheme [33] was proposed, which relies on unicast to retransmit dropped multi-
cast packets caused by switch buffer overload or switch failure. In the meantime,
because the commercial switches in data centers can only hold a small number of
multicast group states, bloom filter [34] is proposed to compress the multicast for-
warding table in switches, which improves the scalability of the data center network
to support more multicast groups.

Multicast scheduling has also been the subject of research in the context of
traditional networking environments such as ATM and MPLS networks, which can
be roughly divided into two categories [35–38]. The first category of the work
targets efficient spanning tree construction for multicast groups and develops low-
complexity heuristic algorithms for solving Steiner tree problem, which is known
to be NP-Hard in general graphs. The Steiner tree problem in a general graph G

requires a minimum-cost tree spanning a given set of vertices X in the graph. The
TM algorithm [35] and the KMB algorithm [36] are two well-known polynomial
time approximation algorithms for the Steiner tree problem in general graphs, both
of which can achieve an approximation guarantee of factor 2 in an undirected graph
and an approximation guarantee of O(k) in a directed graph, where k = |X|.

The second category of the work focuses on competitive algorithm design, which
compares the performance of on-line multicast routing algorithms to that of the off-
line optimal algorithms that know the whole sequence of traffic requests in advance
[37, 38]. A common goal in this line of research is to achieve low competitive ra-
tio, which is the worst-case performance ratio between on-line and optimal off-line
algorithms, in terms of certain performance metric. In [37], an online multicast

118

routing algorithm was proposed that has a competitive ratio of O(log n log d) with
respective to the maximum link congestion, where n is the network size and d is the
maximum size of a multicast group. In [38], an algorithm was given that achieves
O(log n) competitive ratio with respect to the total number of accepted multicast
group requests under the constraint that the congestion on any link is not allowed
to exceed 100%.

Note that all the aforementioned algorithms were developed in the context of
traditional networks, thus may not be suitable for implementation in fat-tree DCNs.
In this chapter, we consider on-line multicast flow scheduling in fat-tree data cen-
ter networking environment. We explore novel traffic control techniques available
to data centers, such as OpenFlow framework, and the topological property of fat-
tree networks to achieve efficient bandwidth utilization in designing the algorithm.
Another significant advantage of our algorithm compared with previous algorithm-
s is that it can guarantee bounded congestion on any link in a fat-tree DCN even
under the most malicious traffic patterns. As network congestion is a determining
factor in DCNs to deliver predictable performance and bandwidth guarantees to
tenants, which are indispensable for many cloud applications, such bounded con-
gestion property of our algorithm is particularly desirable for data center communi-
cations.

5.3 Preliminary

In this section, we introduce some notations describing fat-tree DCNs and hose
traffic model. Then we identify the main requirements that a multicast scheduling
algorithm must satisfy in data center networking environment.

5.3.1 Fat-Tree DCNs

We have given the description of fat-tree DCNs in the previous chapter. For clarity,
we give a brief review of its notations. As shown in Fig. 5.2, a high-level fat-tree is
recursively built from the basic level-2 fat-tree blocks, and any property of a level-2
fat-free is still pertaining to a high-level fat-tree, we focus on level-2 fat-tree DCNs
in this chapter. In a level-2 fat-tree DCN, an edge switch connects to each core
switch through two directed links. We denote the links from edge switches to core

119

core
...

aggregation ToR ...
...

...

... ...
...

...

...

...
10GigE linkGigE link

pod edge switch
Figure 5.2: A level-3 fat-tree DCN, which can be reduced to a level-2 fat-tree if
ToR switches and aggregation switches in each pod are considered as a nonblocking
edge switch.

switches as uplinks and the links from core switches to edge switches as downlinks.
Both uplinks and downlinks are indistinguishably referred to as core switch links in
some occasions. Also, each server connected to an edge switch port through two
directed links, denoted as egress link and ingress link, respectively.

5.3.2 Hose Traffic Model

It has been shown that DCNs exhibit highly variable traffic over time and space[8–
10]. Over a long period, DCN traffic shows a clear diurnal pattern: traffic peaks
during the day and falls off at night, there can be an order of magnitude difference
between the peak and minimum load in the DCN during a 24-hour time period.
DCN traffic is also volatile and unpredictable over short periods. The traffic matrix
in a DCN shifts frequently and its overall volume changes dramatically in short
instants.

Due to the highly volatile nature of data center traffic, we consider a very general
traffic model referred to as hose traffic model, where each host server is assigned a
maximum ingress bandwidth capacity and a maximum egress bandwidth capacity.
Any traffic matrix that is consistent with the ingress/egress bandwidth capacity must
be included in this model. Hose traffic model was originally proposed to specify
the bandwidth requirements for point-to-point communication in a Virtual Private
Network (VPN) [112], and has been used to describe unicast traffic in data centers
[13, 14] due to its great flexibility in describing volatile traffic conditions. We can
see that all the allowed traffic matrices in hose model constitute a polytope, and we
will take into account the “worst” multicast traffic patterns allowed by hose model

120

in our algorithm.

5.3.3 Multicast Flow Scheduling in DCNs

Data center networking environment presents numerous challenges in multicas-
t traffic scheduling. On the other hand, novel traffic control techniques available to
DCNs, like recently developed OpenFlow control framework [44, 45], offer many
useful features that can greatly facilitate the design of multicast scheduling algo-
rithms. Next, we identify some requirements and opportunities presented by data
center networking environment in designing multicast scheduling algorithms for
fat-tree DCNs.

• Scheduling in flow granularity: OpenFlow offers scalable, flow-level control
of switching by abstracting each switch (data plane) as a flow-table. Each
multicast flow can be managed by simply adding a flow entry in relevant
switches along its route in an OpenFlow network. In this way, switches are
spared from maintaining numerous routing states and group membership in-
formation associated with multicast traffic in the network as in IP multicast,
which solves the scalability problem of managing multicast traffic.

• Feasibility of centralized, adaptive scheduler: OpenFlow is a centralized con-
trol framework, where all the flows set-up requests are handled by a central-
ized scheduler. OpenFlow also has an effective network-wide status moni-
toring mechanism, thus it can quickly responded to network congestion [?].
With centralized-decision making and global knowledge of network condi-
tion, OpenFlow allows adaptive, convergence-free flow route creation, which
can greatly simplify multicast scheduling.

• Avoid traffic rerouting and splitting: Though traffic splitting and traffic rerout-
ing can be used for better load balance purpose [15, 60], they cause heavy
control overhead. In addition, splitting a flow into multiple paths may lead
to out-of-order transmission, which is undesirable for many applications.
Rerouting existing traffic flows risks disruption of important cloud services
that may be time-sensitive (e.g., MapReduce). Therefore, a scheduling algo-
rithm should be able to achieve efficient network utilization without counting
on traffic splitting and rerouting.

121

Table 5.1: Notations used in the BCMS algorithm
Notation Definition
m Number of core switches
n Number of hosts per edge switch
r Number of edge switches
S Normalized bandwidth capacity of core switch links
i Source edge switch of the multicast flow
D Set of destination edge switches of the multicast flow
ω Reserved bandwidth of the multicast flow
MC,ω

j Inaccessible set of core switch j
C Bound on congestion of a network under the hose model
x Maximum number of core switches a flow routes via
b Granularity of flow bandwidth
UC,ω Maximum number of (C, ω)-unavailable uplinks
DC,ω Maximum number of (C, ω)-unavailable downlinks

• Computational requirements: Due to the large scale of today’s data center,
a myriad of flows are injected to the network per second, which could easi-
ly overwhelm the processing capability of the central flow scheduler. On the
other hand, DCN traffic consists of a small number of long-lived, throughput-
sensitive “elephant” flows and numerous delay-sensitive “ant” flows. As
“ant” flows usually have very small bandwidth demand, they incur minimal
impact on network condition. Hence, one way to lower the stringent com-
putational requirement of the central scheduler is selective scheduling, that
is, let the central scheduler handle only “elephant” flows, and apply Open-
Flow flow-match wildcards or hash-based routing for “ant” flows at local
edge switches [15, 17]. Through selective scheduling, we can have a reason-
able time budget (several milliseconds) for computing the route of each flow
[17] .

5.4 Network Model

We adopt the same multirate network model as the previous chapter. In this section,
we introduce some notations that will be used in the remainder of the chapter, which
are summarized in Table 5.1.

122

We consider a level-2 fat-tree DCN, denoted as ftree(m,n, r), with m core
switches at the top, and r edge switches, each of which connects n host servers, at
the bottom. We assume all switches in such a fat-tree DCN have multicast capabil-
ity. Similar to the previous chapter, we set the bandwidth capacity of ingress/egress
links of each server to 1, and denote the normalized bandwidth capacity of core
switch links as S(≥ 1).

We consider a centralized scheduler that keeps track of available bandwidth
capacity on every link of the network. The input to the scheduler is a sequence
of multicast flow set-up requests, and the scheduler determines the route of each
multicast flow. The flow set-up requests arrive one at a time and there is no knowl-
edge of the characteristics of future demands. We assume flow arrivals satisfy hose
traffic model, which dictates that the total bandwidth demand of all the flows en-
tering/leaving a server must not exceed the bandwidth capacity of its ingress/egress
link at any time.

A multicast flow can be abstracted as a triple (i,D, ω), in which i ∈ {1, 2, . . . , r}
is the edge switch connecting to the source server and D ⊆ {1, 2, . . . , r} is the set
of edge switches that the flow is destined for. ω, 0 ≤ ω ≤ 1 is the amount of band-
width demanded by the multicast flow. The number of destination edge switches of
a multicast flow (i,D, ω), |D|, is called its fanout. Note that since servers connect-
ed to the same edge switch can freely communicate with each other, we can ignore
intra-edge switch traffic, hence, the maximum possible fanout of any multicast flow
is r− 1. The reason why we do not specify the exact source and destination servers
of a multicast flow is that any packet entering an edge switch can multicast within
the switch to as many other ports as necessary given the multicast capability of the
switch.

We denote the congestion of a link as the ratio of the total bandwidth demand
of all the flows being routed on the link to its bandwidth capacity. Note that it is
possible for the congestion of a link to exceed 100%, which means that the total
bandwidth demand of traffic flows occupying a network link may surpass the link
capacity. In this case, the network is oversubscribed and packet losses could occur.
As oversubscription is widely adopted in DCNs to avoid network resource under-
utilization and reduce cost [18], links with congestion that is larger than 100% are
common in DCNs and contending flows on these congested links receive only a
fraction of their demanded bandwidth. For example, suppose two flows, each with

123

0.75 bandwidth demand are routed through a link with capacity 1, then each flow
receives 0.5 bandwidth.

The goal of this chapter is to design an on-line multicast scheduling algorithm
that can guarantee bounded congestion on any links in a fat-tree DCN. Such an
algorithm has many desirable properties. First, by setting a limit on how much
traffic load can be put on each link, the algorithm can achieve balanced traffic load
distribution, thus improve the utilization of network bandwidth resource. Second,
since the maximum congestion on any link is bounded, the algorithm can ensure
that the network does not suffer from heavy link congestion even under worst-case
traffic conditions, which greatly enhances network predictability. We will describe
the algorithm in detail in the next section.

5.5 On-line Multicast Scheduling with Bounded Con-
gestion

In this section, we present Bounded Congestion Multicast Scheduling (BCMS), an
on-line multicast scheduling algorithm that is able to achieve bounded congestion
as well as efficient bandwidth utilization even under worst-case traffic conditions in
a fat-tree DCN.

5.5.1 Notations

Before explaining the details of the algorithm, we introduce some notations that
will be used.

Suppose that there is an incoming multicast flow set-up request (i,D, ω) from
edge switch i. We say a core switch link (C, ω)-available if its congestion is no
larger than C after the new flow (i,D, ω) is added to the link. Otherwise, we say
the link (C, ω)-unavailable. For example, suppose a link with bandwidth capacity 1

is carrying two flows, each demanding 0.6 bandwidth. The link is (2, 0.7)-available,
because its congestion would remain below 2 after an incoming flow with 0.7 de-
manded bandwidth is added.

With respect to the new request (i,D, ω), we refer to the set of core switch-
es connected by (C, ω)-available uplinks from edge switch i as (C, ω)-available

124

core switches, denoted by T . Also, we define the term inaccessible set, MC,ω
j ⊆

{1, 2, . . . , r}, as the subset of destination edge switches in D that core switch j

is currently connecting to via (C, ω)-unavailable downlinks. In other words, the
paths to the edge switches in MC,ω

j cannot be established through core switch j

with respect to the incoming flow (i,D, ω) without causing the congestion of cor-
responding downlinks to exceed C.

5.5.2 Bounded Congestion Multicast Scheduling Algorithm

In this subsection, we explain in detail the Bounded Congestion Multicast Schedul-
ing (BCMS) algorithm.

BCMS takes a centralized approach by leveraging the OpenFlow control frame-
work of data centers, in which a central flow scheduler collects the bandwidth de-
mand of incoming flows, monitors the data center network condition (i.e., the cur-
rent available bandwidth of network links), computes the routing paths for each
flow, and configures the switches. Suppose there is an incoming multicast flow
(i,D, ω), we explain how BCMS schedules the incoming flow step by step in the
following. The details of BCMS are also summarized in Table 5.2.

One of the main features of BCMS is that it can guarantee bounded congestion
on any links in a fat-tree DCN. We call the maximum congestion on any links in
a fat-tree DCN under BCMS for an arbitrary sequence of flow set-up requests that
satisfy hose model the congestion bound of the network, represented by C. As will
be shown in the next section, the value of C in a fat-tree DCN ftree(m,n, r) can
be solely determined by the configuration of the fat-tree DCN, that is, the values
of m, n, r and core switch link bandwidth S. Therefore, for a given fat-tree DCN
ftree(m,n, r), we can use the congestion bound C as a guideline for BCMS to
find appropriate routes for multicast flows, such that the total traffic load put on
each core switch link is limited.

Since every multicast flow must route towards a set of core switches through
uplinks first, the first step of BCMS identifies the set of (C, ω)-available uplinks
out of source edge switch i, and correspondingly, the set of (C, ω)-available core
switches T . After being sent to core switches, the flow will be forwarded to all
destination edge switches in D via downlinks. The second step of BCMS iteratively
finds an appropriate subset of core switches from T , through which (i,D, ω) can be

125

Table 5.2: Description of Bounded Congestion Multicast Scheduling (BCMS)
Bounded Congestion Multicast Scheduling
Input: Incoming flow (i,D, ω), current network condition,
bound on congestion C
Output: Connection paths that deliver (i,D, ω).

Step 1: //check the condition of uplinks out of source edge switch i
Identify the set of (C, ω)-available core switches with respect to
(i,D, ω), denoted as T ;

Step 2: //select appropriate core switches
do {

Find the core switch(es) in T with minimum cardinality
inaccessible set;
if there are multiple core switches found

then select the one that would deliver the maximum bandwidth
to corresponding destination edge switches;

End if
Remove destination edge switches that can be reached by the
selected core switch from D;
Update the inaccessible set of remaining core switches in T ;

}
while There are still destination edge switches remaining in D;
Establish connection path between source edge switch i to
selected core switches, denoted as T ′;

Step 3: //further balance traffic load
for every destination switch of flow (i,D, ω), do{

Find the core switch in T ′ that delivers maximum bandwidth;
Connect the edge switch and the corresponding core switch;

}
Deliver (i,D, ω) through the established path;
Update congestion of all involved links;
End

delivered via (C, ω)-available downlinks. The goal is to find the set of core switches
to deliver (i,D, ω), such that the schedule does not cause the congestion of any link
in the network to exceed C as well as achieves efficient bandwidth utilization and
load balance.

126

For the second step, we adopt a greedy strategy called minimum cardinality s-
trategy proposed in [29], which chooses the core switch with the inaccessible set
of minimum cardinality in each iteration. In other words, the core switches chosen
in each iteration can send the flow to the most remaining destination edge switches
without causing the congestion of any link to exceed C. The underlying rationale
of such a strategy is that we should utilize the multicast capability of core switches
to duplicate the multicast flow as much as possible, which reduces the total band-
width consumption of multicast flows and allows more network resources to better
accommodate future traffic. At the end of the iteration, we update the set of remain-
ing destination edge switches D by removing the destination edge switches that can
be reached by the core switch selected in this iteration via (C, ω)-available down-
links. The iteration continues till D is empty. We denote the set of core switches
chosen as T ′. As will be shown later, T ′ can always be found for any incoming
multicast flow request, provided it satisfies the hose model.

Notice that the congestion bound C corresponds to the “worst” traffic patterns in
the hose model. Hence, it is highly likely that we find multiple (C, ω)-available core
switches with minimum cardinality inaccessible set in each iteration, especially un-
der non-congested traffic condition, because an idle link and a fairly congested link
could both be considered as (C, ω)-available especially when C is large. Therefore,
we need to take extra measures in order to maintain good traffic load balance. To
achieve this objective, if multiple core switches are found with minimum cardinality
inaccessible set in one iteration, BCMS evaluates the congestion in each core switch
found, and breaks the tie by choosing the one that would deliver the maximum total
bandwidth to the remaining destination edge switches via (C, ω)-available down-
links. For simplicity, we assume proportional fairness when calculating the actual
bandwidth a flow receives in a congested link, which means that the bandwidth is
distributed to each contending flow proportionally to its bandwidth demand.

After step 2, we obtain a set of core switches T ′ such that every edge switch in
D can find at least one (C, ω)-available downlinks from some core switches in T ′.
The final step of BCMS further improves traffic load balance by letting each edge
switch in D connect to the core switch in T ′ that would deliver maximum bandwidth
to that edge switch. After the connection paths for (i,D, ω) are established, BCMS
updates the congestion of all involved links in the network, and sends configuration
signals to corresponding switches.

127

core 1edge 1 core 2 edge 2 core 3edge 3 core 4edge 4(a)core 1edge 1 core 2edge 2 core 3edge 3 core 4edge 4(b)core 1edge 1 core 2edge 2 core 3edge 3 core 4edge 4(c)(C,ω)-availableidle(C,ω)-unavailable (C,ω)-availablecongested
Figure 5.3: Scheduling process of an incoming flow (1, {2, 3, 4}, ω). (a) Check
uplinks out of source edge switch 1; (b) Iteratively find a set of core switches with
minimum cardinality inaccessible set; (c) Scheduling result.

5.5.3 Scheduling Example

For illustration purpose, we give a small scheduling example in a fat-tree DCN
ftree(4, 4, 4). Suppose the congestion bound of the fat-tree DCN is C, and there is
an incoming flow (1, {2, 3, 4}, ω). Next, we show how BCMS schedules this flow
step by step, as shown in Fig. 5.3. For clarity, only relevant links are drawn in each
step.

As shown in Fig. 5.3(a), BCMS first checks the condition of uplinks out of
source edge switch 1, and finds the set of (C, ω)-available core switches, marked by
bold outlines. In the second step, BCMS iteratively finds the (C, ω)-available core
switch with the minimum cardinality inaccessible set. As shown in Fig. 5.3(b), the
inaccessible sets of core switches 2, 3 and 4 are {4}, {2, 3} and {2}, respectively.

In the first iteration, BCMS finds both core switches 2 and 4 with the minimum

128

cardinality inaccessible set, and breaks the tie by choosing core switch 2, because
the downlinks from core switch 2 to destination edge switches 2 and 3 are relative-
ly less congested than that of core switch 4. After choosing core switch 2, only
destination edge switch 4 remains and the algorithm updates the inaccessible sets
of core switches 3 and 4, which are both empty. Then BCMS breaks the tie by
choosing core switch 3, as it has less congested downlink towards edge switch 3.
Hence, core switches 2 and 3 are chosen in the second step to route the flow. In the
final step, every destination edge switch selects one of the two core switches with
less congested links to establish the connection path, and the schedule of the flow
is shown in Fig. 5.3(c).

5.6 Theoretical Analysis

In this section, we first prove that BCMS guarantees bounded congestion in a fat-
tree DCN for an arbitrary sequence of multicast flow requests, provided that they
satisfy hose traffic model. We then derive the congestion bound C in a fat-tree
ftree(m,n, r). We also apply the results to a special case where only unicast traffic
exists. Finally, we analyze the time complexity of BCMS.

Before deriving the congestion bound, we make two reasonable assumptions.
First, to simplify notations, we assume the bandwidth demand ω of each flow be-
longs to a finite set of discrete values B = {b, 2b, . . . , Db}. Also, we assume that
1/b is an integer and Db = 1 in our analysis. The analysis below can be easily
extended to the case where flow bandwidth demand is continuous and 1/b is not an
integer. Moreover, when b is sufficiently small, the discrete bandwidth model is an
accurate approximation for flow bandwidth demand in practical DCNs, where each
flow consists of fix-sized packets.

Second, we assume that every multicast flow request will be routed through at
most x (1 ≤ x ≤ r) core switches under the BCMS algorithm. In other words,
the number of core switches chosen in the second step of the BCMS algorithm
|T ′| ≤ x. As will be proved later, this assumption always holds with the value of x
being determined by the configuration of the fat-tree DCN ftree(m,n, r).

Now, we move on to deriving the congestion bound C under BCMS in a given
fat-tree DCN ftree(m,n, r). Recall that the inaccessible set of core switch j, MC,ω

j ,
is the set of edge switches in D that cannot be reached through the core switch with

129

respect to an incoming multicast flow (i,D, ω), the sufficient and necessary network
condition for BCMS to deliver (i,D, ω) while keeping the congestion of all network
links bounded by a certain number C is given in the following lemma.

Lemma 5.1. A fat-tree DCN ftree(m,n, r) can deliver an incoming multicast flow
(i,D, ω) without causing the congestion of any links to exceed C, if and only if some
x (x ≥ 1) (C, ω)-available core switches with respect to the flow, say, j1, j2, . . . , jx,
can be found, whose inaccessible sets satisfy the following condition.

x∩
k=1

MC,ω
jk

= ∅ (5.1)

Proof. Clearly, to route an incoming multicast flow (i,D, ω) while keeping con-
gestion of all links bounded by C, there must exist connection paths that consist
of (C, ω)-available core switch links from source edge switch i to all destination
edge switches in D. In other words, the core switch links chosen to route (i,D, ω)

must be (C, ω)-available. Suppose we have some x(x ≥ 1) (C, ω)-available core
switches. The flow can be successfully established if and only if an (C, ω)-available
downlink to every destination edge switch in D can be found from at least one of the
x core switches. Therefore, Equation (6.1) gives the necessary and sufficient con-
dition for BCMS to deliver a multicast flow (i,D, ω) while keeping the congestion
of every link bounded by C in a fat-tree DCN. Hence, the lemma is proved.

With respect to the incoming multicast flow (i,D, ω), we use UC,ω to denote the
maximum number of (C, ω)-unavailable uplinks associated with source edge switch
i, or equivalently, the number of core switches that are not available to (i,D, ω)

under constraint that the congestion of any links cannot exceed C. We also use
DC,ω to denote the maximum number of (C, ω)-unavailable downlinks associated
with each destination edge switch in set D. Then, we have the following lemma
regarding UC,ω and DC,ω.

Lemma 5.2. Suppose there is an incoming multicast flow (i,D, ω) in a ftree(m,n, r)

DCN. We have the maximum number of (C, ω)-unavailable uplinks out of source
edge switch i

UC,ω =

⌊
(n− ω)x

C · S + b− ω

⌋

130

Also, the maximum number of (C, ω)-unavailable downlinks DC,ω associated with
each destination edge switch k in set D is

⌊
n−ω

C·S+b−ω

⌋
.

Proof. According to hose traffic model, the aggregated bandwidth demand of flows
being transmitted/received by each server cannot surpass the egress/ingress link
capacity. Since there are n servers connected to each edge switch, the maximum
total bandwidth demand of existing flows being transmitted from edge switch i is
n − ω. Also, according to our assumption, each flow will be routed through at
most x core switches, hence, the maximum total bandwidth demand imposed to
all the uplinks out of edge switch i is (n − ω)x. Recall that each core switch
link has bandwidth capacity S. Thus, if a link is (C, ω)-unavailable, then the total
bandwidth demand of existing flows carried by the link must be at least C · S +

b− ω. Consequently, the maximum possible number of (C, ω)-unavailable uplinks
connected to the corresponding edge switch of (i,D, ω) is

⌊
(n−ω)x

C·S−ω+b

⌋
.

By the same token, the total bandwidth demand of existing flows being received
by edge switch k in set D is no more than n − ω. The difference here is that a
flow can only pass from one downlink to the ingress link of a server. Thus, the
maximum number of (C, ω)-unavailable downlinks associated with edge switch k

DC,ω is equivalent to the condition for UC,ω with x ≡ 1, which can be denoted by⌊
n−ω

C·S+b−ω

⌋
. The lemma is thus proved.

Next, we analyze the minimum number of (C, ω)-available core switches re-
quired to successfully deliver an incoming multicast flow (i,D, ω) while keeping
the congestion of every link in the fat-tree DCN bounded by C, that is, satisfy the
condition in Lemma 5.1.

Lemma 5.3. Given an incoming multicast flow (i,D, ω) with fanout r′, 1 ≤ r′ ≤ r,
if there are at least m′ =

⌊
n−ω

C·S+b−ω

⌋
r′1/x, 1 ≤ x ≤ r′, (C, ω)-available core

switches, then BCMS can always find no more than x (C, ω)-available core switches
through which the flow can be delivered while keeping the congestion of every link
bounded by C in the fat-tree DCN.

Proof. Suppose there are m′ (C, ω)-available core switches for an incoming mul-
ticast flow request (i,D, ω) with fanout r′. Without loss of generality, we assume
that the flow is destined for edge switches 1, 2, . . . , r′. Next, we show that BCMS

131

can always find x (C, ω)-available core switches, whose inaccessible sets satisfy
the condition in Lemma 5.1.

From Lemma 5.2, we know that there are at most DC,ω downlinks from core
switches to each destination edge switch that cannot be used by the flow request,
which means that there are at most DC,ω 1s, 2s, . . . , r′s in all inaccessible sets
MC,ω

j s. Hence, initially there are at most DC,ωr
′ elements in total among all MC,ω

j s.
Recall that the second step of BCMS adopts the minimum cardinality strategy

when choosing the set of core switches to route the flow. In the first iteration, we
find the (C, ω)-available core switch with the inaccessible set of minimum cardi-
nality, denoted as MC,ω

j1
. The cardinality of the chosen inaccessible set cannot be

more than the average cardinality of all the inaccessible sets, thus |MC,ω
j1

| ≤ DC,ωr
′

m′ .
Without loss of generality, we assume MC,ω

j1
contains elements 1, 2, . . . , |MC,ω

j1
|.

In the next iteration, we focus on the destination switches left in D that cannot
be reached through the selected core switch. To do this, we intersect Mj1,ω with
each of the inaccessible sets and obtain another m′ sets. As the intersection of two
sets is the set that contains common elements belonging to both sets, there are at
most DC,ω 1s, 2s, . . . , |MC,ω

j1
|s among the m′ inaccessible sets after the intersection.

Hence, there are at most DC,ω|MC,ω
j1

| elements in all these sets. We again choose
the set with minimum cardinality MC,ω

j2
. By the same token, we have

|MC,ω
j2

| ≤
DC,ω|MC,ω

j1
|

m′ ≤
(
DC,ω

m′

)2

r′

In general, in the kth iteration (1 ≤ k ≤ x), we have

|MC,ω
jk

| ≤
(
DC,ω

m′

)k

r′

In order to deliver the flow to all its destination edge switches using no more than
x core switches, Lemma 5.1 must hold. Equivalently, we must have

|MC,ω
jx

| ≤
(
DC,ω

m′

)x

r′ < 1

132

By solving the inequality, we obtain

m′ > DC,ωr
′1/x

By Lemma 5.2, DC,ω =
⌊

n−ω
C·S+b−ω

⌋
. The lemma is thus proved.

The property of the fat-tree network topology must be taken into account in
order to find the congestion bound. Through examining the structure of the fat-tree
network, we have the following important observation regarding the relationship
between the number of core switches m and the congestion bound C in a fat-tree
DCN ftree(m,n, r).

Property 5.1. Given the number of edge switches r, the number of servers con-
nected to each edge switch n and a certain flow scheduling strategy, the conges-
tion bound monotonically decreases with the increase of core switches m in a
ftree(m,n, r) DCN.

To see why this property stands, suppose there are two fat-tree DCNs ftree1 and
ftree2, both have exactly the same configuration except for that ftree1 has more
core switches provisioned. Suppose the servers in both DCNs generate an identical
sequence of flow set-up requests. Given the same scheduling strategy, each flow in
ftree1 has the option to choose from a larger number of parallel paths between any
pair of edge switches than that in ftree2, hence, less flows would be routed through
each link, which makes the congestion bound of ftree1 strictly smaller than that of
ftree2.

The above property allows us to convert the problem of finding the congestion
bound C in a given ftree(m,n, r) DCN to a more tractable, equivalent problem,
which is to find the minimum number of core switches m required to guarantee a
given congestion bound C in a fat-tree DCN with r edge switches, each connecting
n servers. By Lemma 5.2 and Lemma 5.3, we can find the minimum number of
core switches required to guarantee the congestion bound of C in a ftree(m,n, r)

under the BCMS algorithm for any sequence of multicast flow requests that satisfy
the hose model, as shown in the following theorem.

Theorem 5.1. The BCMS algorithm can ensure the congestion bound of C in a
ftree(m,n, r) DCN for an arbitrary sequence of multicast flow requests satisfying

133

hose model, if the number of core switches

m > min
1≤x<r

{⌊
(n− 1)x

C · S + b− 1

⌋
+

⌊
(n− 1)

C · S + b− 1

⌋
(r − 1)1/x

}
(5.2)

Proof. For an incoming multicast flow (i,D, ω), Lemma 5.2 gives the maximum
possible number of (C, ω)-unavailable core switches under the condition that every
flow is routed through at most x core switches. Then, Lemma 5.3 reveals that the
flow can always be delivered through at most x core switches, provided that there
are more than m′ = DC,ωr

′1/x (C, ω)-available core switches. Therefore, combin-
ing these two lemmas, we can obtain the sufficient number of core switches needed
to deliver (i,D, ω) while keeping the congestion of all network links bounded by
C.

Since the fanout of a multicast flow can range from 1 to r−1, and the bandwidth
demand ω is a discrete value in B, we need to ensure that the DCN is capable of
accommodating any incoming flow types. Clearly, m′ is maximum when the flow
fanout is r − 1. Also, according to the network model, n is much larger than S

in fat-tree DCNs, and congestion bound C should be reasonably small to maintain
good network performance, hence, UC,ω is maximized when ω = 1. Finally, we
should find the optimum value for x, the maximum number of core switches that
each flow will route through, such that the minimum number of core switches is
used.

To sum it up, Inequality (5.2) gives the minimum sufficient number of core
switches to ensure the congestion bound of C in a fat-tree DCN ftree(m,n, r)

under the hose traffic model when the BCMS algorithm is adopted.

Note that a circuit switching fat-tree network can be viewed as a special instance
of the network model adopted in this chapter, that is, if we set the values of b, S
and C to 1, i.e., each link can carry at most one flow, then the fat-tree network
model in this chapter would reduce to a simple circuit switching network. In this
case, the condition in Theorem 5.1 degenerates to the condition for the nonblocking
multicast Clos networks in [29].

We can also simplify the condition in Inequality (5.2), as shown in the following
corollary.

134

Corollary 5.1. The BCMS algorithm can ensure the congestion bound of C in a
ftree(m,n, r) DCN, if the number of core switches

m > 3

⌈
(n− 1)

C · S + b− 1

⌉
log r

log log r
(5.3)

Proof. The condition in Inequality (5.2) can be relaxed to

m > min
1≤x<r

{⌈
(n− 1)

C · S + b− 1

⌉
(x+ r1/x)

}
(5.4)

For any constant u > 0, we let x = u log r
log log r

in (5.4). Then,

r1/x = r
u log log r

log r = (log r)
1
u

Letting u = 2, Inequality (5.4) can be written as

m >

⌈
(n− 1)

C · S + b− 1

⌉[
2

log r

log log r
+ (log r)

1
2

]
Since log r

log log r
is of higher order than (log r)

1
2 , we have that

m > 3

⌈
(n− 1)

C · S + b− 1

⌉
log r

log log r

core switches are sufficient to ensure the congestion bound of C in ftree(m,n, r)

under BCMS.

Next, we show the above results can be easily applied back to fat-tree DCNs
with only unicast traffic by considering a unicast flow as a special multicast flow
with only one destination server. In this case, the BCMS algorithm would become
a greedy scheduling strategy, in which each flow chooses the path that consists of
a (C, ω)-available uplink and a (C, ω)-available downlink and has the maximum
available bandwidth. We will state the corollary that gives the minimum number of
core switches required to achieve the congestion bound of C in a unicast fat-tree
DCN under the BCMS algorithm without a proof, as it can be similarly derived.

Corollary 5.2. The BCMS algorithm can ensure the congestion bound of C in a

135

ftree(m,n, r) DCN with only unicast traffic, if the number of core switches

m > 2

⌊
n− 1

C · S + b− 1

⌋
(5.5)

Again, it is easy to see that the condition in Corollary 5.2 coincides with the
strict-sense nonblocking condition for unicast Clos circuit switching networks [113],
if the values of b, S and C are set to 1.

Theorem 5.1 and Corollary 5.2 give the minimum number of core switches m
required to guarantee a certain congestion bound C in a ftree(m,n, r) DCN under
multicast and unicast traffic, respectively. Now, considering that C strictly decreas-
es with the increase of number of core switches m, we can use the above results
in the opposite way and determine the minimum congestion bound C in any giv-
en fat-tree DCN ftree(m,n, r) under the BCMS algorithm. From Theorem 5.1,
we can also see that the value of congestion bound C and that of x, the maximum
number of core switches each flow routes though under the BCMS algorithm, are
solely determined by the configuration of the fat-tree DCN ftree(m,n, r), that is,
the values of m, n and r, and the normalized core switch link bandwidth capacity
S.

Finally, we analyze the time complexity of the BCMS algorithm, which is given
by the following theorem.

Theorem 5.2. The BCMS algorithm finishes scheduling each multicast flow in
O(m log r) time, where m is the number of core switches and r is the number of
edge switches in a fat-tree DCN ftree(m,n, r).

Proof. In step 1 of BCMS, the algorithm checks the condition of every uplink out
of the source edge switch of the incoming flow, which takes linear time to the total
number of core switches m in a ftree(m,n, r) DCN. The most involved part of
BCMS is step 2, which determines the time complexity of the algorithm. In each
iteration, the algorithm first finds the core switch(es) with the minimum cardinality
inaccessible set, then breaks the tie by selecting the core switch that would deliver
the maximum bandwidth to corresponding edge switches. Clearly, the procedure in
each iteration also costs O(m) time.

To determine how many iterations are needed to schedule a flow, recall that
Lemma 5.3 proves that under the minimum cardinality strategy, any incoming flow

136

50 100 150 200 250
0
2
4
6
8
10
12
14
16

C
on

ge
st

io
n

bo
un

d
C

core switches m

(a) Multicast

20 40 60 80 100 120
0

2

4

6

8

10

12

C
on

ge
st

io
n

bo
un

d
C

core switches m

(b) Unicast

Figure 5.4: Relationship between congestion bound C and the number of core
switches m in a ftree(m, 512, 40) DCN with core switch link bandwidth S = 10
under: (a) multicast traffic; (b) unicast traffic.

(i,D, ω) will be routed through at most x core switches, with x being the optimum
value that minimizes the condition in Theorem 5.1. To find the minimum value
of the right hand side of Inequality (5.2), x should be chosen such that the two
addends are equal. Hence, we can see that x is roughly logarithmically proportional
to the number of edge switches r, i.e., x = O(log r). Since step 2 of BCMS will
terminate in no more than x iterations, the worst-case time complexity for this step
is O(m log r). In step 3, every destination edge switch in D chooses the core switch
that would deliver maximum bandwidth from at most x core switches. As each
edge switch in D can perform this procedure simultaneously in parallel, this step
only costs O(log r) time. Overall, the time complexity of BCMS is O(m log r).

Note that the complexity of the algorithm is polynomial to the number of core
switches and edge switches (pods), which usually ranges from tens to hundreds
even in a large fat-tree DCN. Therefore, BCMS is very time-efficient in computing
flow schedules.

5.6.1 Discussions

For demonstration purpose, in Fig. 5.4, we show the relationship between con-
gestion bound C under the BCMS algorithm and the number of core switches m

in a medium size fat-tree DCN with r = 40 edge switches (pods), each of which
connecting to n = 512 servers, obtained from Theorem 5.1.

We can draw several interesting observations from the above example. First,

137

when the congestion bound C = 1, the total traffic load on each network link must
be within the link capacity. In other words, the DCN is nonblocking, meaning that
the DCN can be considered as a huge crossbar switch that allows all connected
servers to communicate with each other without congestion. Not surprisingly, such
ideal fat-tree DCNs incur prohibitively high cost, for example, 224 40 × 40 core
switches with 10Gbps ports are required to build a nonblocking multicast fat-tree
DCN of r = 40 edge switches with n = 512 servers in each edge switch. Even
under an optimistic assumption that each core switch only costs $5k, the expense
for core switches alone would be millions of dollars.

Second, we can observe that the number of core switches required decreases
drastically in an oversubscribed fat-tree DCN even when the congestion bound C

is small, but such drop in the number of core switches slows down when C reaches
a certain level. This observation suggests that data center providers should find the
perfect balance between DCN cost and performance by introducing an appropriate
amount of oversubscription.

Third, the above results, for the first time, give an accurate description of worst-
case network congestion down to the link level in multicast fat-tree DCNs, under
the condition that all flows are routed by a practical scheduling algorithm, which
reveals important performance-cost trade-off of fat-tree DCNs under multicast traf-
fic. These results can be used to facilitate the design of fat-tree DCNs. Building a
DCN in practice is a complex optimization problem with numerous variables. Data
center providers must decide the performance requirement of a DCN according to
the Service Level Agreement (SLA) of various cloud services. Many implemen-
tation details such as wiring, cooling and power consumption, etc, also need to be
considered. There have been several optimization models for DCN construction
[13, 14]. Our results above can provide a theoretical guideline in estimating po-
tential network congestion, thus can be integrated in these models when building
cost-effective, high-performance fat-tree DCNs.

5.7 Performance Evaluations

We have developed an event-driven flow simulator to evaluate the performance of
BCMS in fat-tree DCNs under different traffic patterns. In our simulation, we tar-
get a medium-size fat-tree DCN built by 32-port GigE commercial switches that

138

0 2 4 6 8
0.0

0.2

0.4

0.6

0.8

1.0

 BCMS
 TM
 VLBC

D
F

Core switch link oversubscription

(a)

0 2 4 6 8 10 12
0.0

0.2

0.4

0.6

0.8

1.0

 BCMS
 TM
 VLB

C
D
F

Core switch link oversubscription

(b)

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

 BCMS
 TM
 Randomized SchedulingC

D
F

Core switch link oversubscription

(c)

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

 BCMS
 TM
 Randomized Scheduling

C
D
F

Core switch link oversubscription

(d)

Figure 5.5: Cumulative density function (CDF) of core switch link congestion in a
ftree(64, 256, 32) DCN under: (a) Uniform unicast traffic; (b) Staggered unicast
traffic; (c) Uniform mixed traffic; (d) Staggered mixed traffic.

can accommodate 8,912 host servers as in [18]. In the fat-tree DCN, there are 32
pods, each containing 16 Top-of-Rack (ToR) switches and 16 aggregation switch-
es. Each ToR switch has half of the ports connecting servers and the remaining
half of the ports connected to aggregation switches. There are 64 32-port core
switches, each of which has one port connecting to each of the 32 pods. All the
links in the DCN have 1Gb/s bandwidth. Clearly, this configuration corresponds to
ftree(64, 256, 32) DCN according to our network model.

Due to the fact that a myriad of packets are injected into the network every
second in even a small cluster with hundreds of hosts [15], packet-level simula-
tion is impractical for large scale data centers. Therefore, we have developed an
event-driven flow simulator as in [15, 60]. Flow-level simulation, though cannot
fully capture inter-flow dynamics or buffer behavior, offers a good approximation
of packet-level performance of DCNs [60].

139

The simulator accepts as input a communication pattern among hosts and uses
it, along with a specification of flow bandwidth demand and arrival rates, to gen-
erate simulated traffic. New flows arrive with an exponentially distributed length,
and start times follow a Poisson arrival process with a given mean. The bandwidth
demand of each incoming flow follows a uniform distribution between (0, 1] G-
b/s. The simulation proceeds in an event-driven manner, in which a priority queue
is used to store different types of events, such as flow arrival and termination, in
their temporal order. When triggered by the head event of the queue, the simulator
will add or remove flows from involved links accordingly, then update the network
condition and current time stamp. Currently, since no data center traffic traces are
publicly available due to privacy and security concerns, we generate synthetic traf-
fic to evaluate our algorithm as in [15, 60]. In order to create traffic patterns that
can stress and saturate the core network, we assume there is no local traffic, that is,
all flows are between different edge switches (pods). The description of each traffic
pattern is elaborated as follows.

We first consider the case when only unicast traffic exists in the DCN. For uni-
cast traffic, we create two traffic patterns similar to [15] according to the following
style:

• Uniform unicast traffic: Each unicast flow (i,D, ω) is originated from some
server connected to a randomly chosen edge switch i and destined for another
edge switch chosen with uniform probability.

• Staggered unicast traffic: We first randomly pick H hotspot edge switches
amongst all the edge switches. Each flow has α probability to be destined for
one of these hotspot switches, and 1−α probability to be destined for the rest
of the network. In our simulation, we set H = 5 and α = 0.4.

We also investigate the case when there is a mixture of unicast traffic and multi-
cast traffic in the network. We notice that multicast flows with small fanout, such as
file chunk replication, are much more than multicast flows with large fanout, such
as map-reduce binary distribution in data centers. Therefore, we assume the fanout
of multicast flows follows a power law distribution, more formally, the probability
that a flow (i,D, ω) has a fanout of |D| is a · b|D|. In our simulation, a is set to 1

and b is set to 0.5. Under this setting, half of the traffic consists of unicast flows,

140

as each unicast flow can be seen as a special multicast flow with fanout 1. We also
create two traffic patterns for such mixed traffic, shown as follows:

• Uniform mixed traffic: A flow (i,D, ω) orientates from a source edge switch
i chosen uniformly at random amongst all edge switches {1, 2, . . . , r}. The
fanout |D| is decided according to the power law probability distribution as
shown above. Once the fanout |D| is decided, the set of destination edge
switches D ⊆ {1, 2, . . . , r}/i is chosen uniformly at random amongst all
subsets of {1, 2, . . . , r}/i having cardinality of |D|.

• Staggered mixed traffic: We randomly pick H hotspot edge switches amongst
all the edge switches. To generate a flow (i,D, ω), we first randomly choose
the source edge switch i and decide the fanout |D| according to the power law
probability distribution. Each destination edge switch in D has α probability
to be one of the hotspot switches, and 1 − α probability to be in the rest of
the network. In our simulation, we set H = 5 and α = 0.4.

Initially, the mean flow duration is set to be much longer than the interval be-
tween flow arrivals in order to accumulate traffic load in the network. When the
traffic load reaches a preset level, then the flow arrival rate and duration are ad-
justed such that the network is stably loaded at the preset level. In order to ensure
the generated traffic patterns satisfy the hose traffic model, a flow arrival is placed
in the event queue only if the total flow bandwidth demand at the corresponding
source server and destination servers would not surpass the link capacity after the
flow is added. Since we would like to evaluate the performance of BCMS under
congested traffic conditions, the network is stably loaded at the level that 90% of
the ingress link capacity of each server is occupied by existing flows on average in
this simulation.

For comparison purpose, we implement Valiant Load Balancing (VLB) [17] for
unicast flow scheduling, in which each flow is routed towards its destination server
via a randomly chosen core switch. Due to the lack of previous multicast scheduling
algorithms for fat-tree DCNs, we also adopt a randomized scheduling algorithm for
multicast flows as benchmark, described as follows. Suppose there is an incoming
multicast flow (i,D, ω), the randomized scheduling algorithm randomly chooses
x core switches, with x being an integer uniformly chosen from (1,min(r, |D|)].

141

Then we divide the destination edge switches in D into x non-empty and non-
overlapping subsets, and each of the x core switches forwards the flow to one of
the subsets. We can see that the randomized scheduling is identical to VLB when
scheduling unicast flows. VLB and randomized scheduling algorithms are non-
adaptive algorithms, because they are oblivious to the current network condition
when scheduling incoming flows.

0 10 20 30 40
600

800

1000

1200

1400

1600

1800

2000

2200

N
et

w
or

k
th

ro
ug

pu
t (

G
b/

s)

Simulation time (s)

 BCMS
 TM
 VLB

(a)

0 10 20 30 40
600

800

1000

1200

1400

1600

1800

2000

2200

N
et

w
or

k
th

ro
ug

pu
t (

G
b/

s)

Simulation time (s)

 BCMS
 TM
 VLB

(b)

0 10 20 30 40
600

800

1000

1200

1400

1600

1800

2000

2200

N
et

w
or

k
th

ro
ug

pu
t (

G
b/

s)

Simulation time (s)

 BCMS
 TM
 Randomized Scheduling

(c)

0 10 20 30 40
600

800

1000

1200

1400

1600

1800

2000

2200

N
et

w
or

k
th

ro
ug

pu
t (

G
b/

s)

Simulation time (s)

 BCMS
 TM
 Randomized Scheduling

(d)

Figure 5.6: Total network throughput vs. time for a ftree(64, 256, 32) DCN under.
(a) Uniform unicast traffic; (b) Staggered unicast traffic; (c) Uniform mixed traffic;
(d) Staggered mixed traffic.

As mentioned earlier, the multicast scheduling problem can be modeled as the
problem of finding a Steiner tree in the network, which is NP-hard. In this sim-
ulation, we also compare the performance of BCMS with the TM algorithm [35],
which is a well-known polynomial time heuristic algorithm for solving the Stein-
er tree problem in general graphs. However, it should be noted that the multicast
scheduling problem studied in this chapter is different from the Steiner tree problem
in that the destination edge switches of a multicast flow can only be the leaves of

142

the spanning tree, because they are not allowed to relay data to other edge switches
in fat-tree DCNs. We impose the above constraint in the implementation of the TM
algorithm, which proceeds as follows. First, it finds the destination edge switch
with the minimum-cost path to the source, in which the cost of a link l is set to ec,
where c is the current congestion of link l as in [37, 38]. It connects the source
and the destination and sets them as the selected tree, then extends a branch to the
destination edge switch with the minimum-cost path to the selected tree. The T-
M algorithm repeats these extension steps until all destinations are covered, then
outputs the selected tree. Since it takes O(m) time to find the minimum-cost path
from the selected tree to a destination edge switch in a ftree(m,n, r) DCN, the
TM algorithm has O(mr) time complexity, higher than the complexity of BCMS,
which is O(m log r). Clearly, the TM algorithm is also adaptive, as it chooses the
route of each flow according to the current link congestion.

First, we measure the cumulative density function (CDF) of the congestion of
all core switch links. In order to obtain accurate results, all statistics are collected
when the network is stable and we run the simulation for 10 times to obtain the
average CDF of core switch link congestion, as shown in Fig. 5.5. From the figure,
we can see that the CDF of core switch link congestion spreads across a wide range
under VLB and randomized scheduling, meaning that these scheduling algorithms
cannot prevent heavy congested links even though there are still idle core switch
links in the network. Therefore, the network suffers from unbalanced traffic load
distribution under non-adaptive flow scheduling algorithms like VLB. In compari-
son, the CDF under BCMS rises sharply from 0 to 1 over a very narrow range of
core switch link congestion for all tested traffic patterns, which confirms that the
traffic load distribution is much more balanced amongst core switch links, as ev-
ery core switch link is similarly oversubscribed. We also find that under VLB and
randomized scheduling, some core switch links suffer from more severe congestion
under staggered traffic patterns where the destination edge switches of flows are
non-uniformly distributed. The reason is that since there are more flows concen-
trating on hotspot edge switches than other switches, it is more likely that multiple
“elephant” flows are placed on core switch links towards these hotspot edge switch-
es under non-adaptive scheduling algorithms like VLB and randomized scheduling,
causing heavy congestion on these links.

BCMS also achieves better performance than the TM algorithm under all tested

143

traffic patterns, as shown in Fig. 5.5. The advantage of BCMS over TM is more ev-
ident when multicast traffic exists in the network, because the minimum cardinality
strategy adopted in BCMS can significantly reduce duplicated traffic of a multicast
flow through effectively utilizing the multicast capability of core switches. When
there is only unicast traffic, the congestion of core switch links under BCMS is s-
lightly lower in general than that under the TM algorithm, because BCMS finds a
path that maximizes received bandwidth for each unicast flow, which leads to better
traffic load balance than the minimum-cost path approach adopted in TM. More-
over, there is no upper bound on the link congestion in TM, which means that it
is possible for some flows to go through heavily congested links under malicious
traffic patterns. In comparison, the link congestion under BCMS is bounded under
arbitrary traffic patterns as shown earlier. This feature gives BCMS the capability to
always maintain a benevolent network environment. Since heavily congested links
cause many detrimental consequences such as unpredictable network performance
and unfair bandwidth sharing as mentioned earlier, we can see that BCMS holds sig-
nificant advantages over all compared algorithms in terms of network predictability
and fairness.

Next, we consider network throughput, defined as the total bandwidth delivered
to destination servers by all the existing flows in the network. As mentioned ear-
lier, we assume proportional fairness when calculating flow bandwidth, i.e., each
contending flow on an oversubscribed link gets the bandwidth proportional to its
demand. Fig. 5.6 shows the variation over time of the total network throughput
for ftree(64, 256, 32) DCN. We can see that at the beginning of the simulation, the
network is populated with an increasing number of flows till traffic load reaches
the preset level. Adaptive algorithms like TM and BCMS achieves higher network
throughput than non-adaptive algorithms such as VLB during this period, because
BCMS and TM can make discrete flow placements to increase network throughput
when the traffic is not very congested.

When the network reaches a stable state, both TM and BCMS achieve consis-
tent throughput close to the network bisection bandwidth (i.e., 2048Gb/s), which
is much higher than non-adaptive algorithms, under all tested traffic patterns. The
reason is that under congested traffic patterns as used in our simulation, any residue
bandwidth capacity on idle core switch links is wasted, since it could have been
used to transmit flows on other heavily congested links if given an efficient flow

144

scheduling algorithm. As can be seen in Fig. 5.5, a considerable number of core
switch links are under-subscribed (i.e., the congestion is smaller than one) under
VLB and randomized scheduling, while almost all core switch links are reasonably
oversubscribed under BCMS and TM.

Even though both BCMS and TM can achieve throughput close to network bi-
section bandwidth under very congested traffic patterns, it is worth pointing out
that BCMS allocates bandwidth to individual flows more fairly than TM, because
as shown earlier, it achieves better load balance than TM. Also, each multicast flow
gains more bandwidth under BCMS than TM on average, given that the minimum
cardinality strategy adopted in BCMS significantly reduces bandwidth consumption
caused by duplicated traffic in multicast flows.

Since the centralized scheduler has to accommodate a large number of flow set-
up requests per second in a data center, the runtime of the scheduling algorithm
must be reasonably short. Here, we also study the runtime of BCMS. We use a
modest quad-core 2.2 GHZ machine in our simulation. For a medium-size fat-
tree DCNs with 8192 hosts, the maximum runtime of scheduling a multicast flow
over a sufficiently long simulation period is only 9 ms, and the average runtime
is approximately 3 ms, which is very short. We expect the scheduler in practical
data centers to be a fairly high performance machine, thereby keeping the average
runtime well under 1 ms.

One problem with centralized scheduling is that it may be difficult to scale in
a large DCN, even though BCMS is very time-efficient. For example, it has been
found that the number of flows arriving every second on a small 1500-server cluster
is about 100K, which is considerably larger than the volume that a central scheduler
can handle [17]. In addition, the sub-10ms flow install overhead may be unaccept-
able for delay-sensitive traffic.

On the other hand, as mentioned earlier, DCN traffic can be roughly considered
as a mixture of a small number of throughput-sensitive “elephant” flows and nu-
merous delay-sensitive “ant” flows. To solve the scalability problem, we can let the
central BCMS flow scheduler handle only “elephant” flows, and apply OpenFlow
flow-match wildcards or hash-based routing for “ant” flows at local edge switches,
as in Hedera [15] and DevoFlow [17]. Since these “ant” flows usually have very
small bandwidth demand, thus minimum impact on the congestion of core switch
links, the BCMS algorithm can avoid heavy link congestion though it is not direct-

145

ly involved in the scheduling of delay-sensitive “ant” flows. Furthermore, BCMS
can greatly benefit “ant” flows by creating a benevolent network environment that
guarantees low-latency communication.

5.8 Conclusions

In this chapter, we present a low-complexity on-line multicast scheduling algorith-
m called BCMS for fat-tree DCNs, which leverages centralized control and glob-
al knowledge of network condition of OpenFlow framework for data centers to
achieve efficient bandwidth utilization. We show that BCMS can guarantee bound-
ed congestion in a fat-tree DCN for an arbitrary sequence of multicast flow requests
under hose traffic model. We also derive the congestion bound for a given fat-tree
DCN under BCMS. Our results, for the first time, give an accurate description on the
worst-case network congestion down to link level in fat-tree DCNs under multicast
traffic. Finally, we compare the performance of BCMS with several non-adaptive
scheduling algorithms and a well-known adaptive multicast scheduling algorithm
called the TM algorithm through simulations. The simulation results demonstrate
that BCMS achieves significantly better traffic load balance and higher network
throughput than non-adaptive algorithms. It also outperforms the TM algorithm in
terms of traffic load balance and time complexity.

146

Chapter 6

Collaborative Network
Configuration in Hybrid
Electrical/optical Data Center
Networks

Recently, there has been much effort on introducing optical fiber communication
to data center networks (DCNs) because of its significant advantage in bandwidth
capacity and power efficiency. However, due to limitations of optical switching
technologies, optical networking alone has not yet been able to accommodate the
volatile data center traffic. As a result, hybrid packet/circuit (Hypac) switched D-
CNs, which argument the electrical packet switched (EPS) network with an optical
circuit switched (OCS) network, have been proposed to combine the strengths of
both types of networks. However, one problem with current Hypac DCNs is that
the EPS network is shared in a best-effort fashion and is largely oblivious to the
accompanying OCS network, which results in severe drawbacks, such as degrad-
ed network predictability and deficiency in handling correlated traffic. Since the
OCS/EPS networks have unique strengths and weaknesses, and are best suited for
different traffic patterns, coordinating and collaborating the configuration of both
networks is critical to reach the full potential of Hypac DCNs, which motivates the
study in this chapter. First, we present a network model that accurately abstracts
the essential characteristics of the EPS/OCS networks. Second, considering the re-

147

cent advances in network control technology, we propose a time-efficient algorithm
called Collaborative Bandwidth Allocation (CBA) that configures both networks in
a complementary manner. Third, we show, for the first time, that given sufficient
bandwidth from both networks, a Hypac DCN can guarantee 100% throughput with
a bounded delay. Finally, we conduct comprehensive simulations, which demon-
strate that CBA significantly improves the performance of Hypac DCNs in many
aspects.

The rest of the chapter is divided into six sections. Section 6.1 gives the in-
troduction of our work. Section 6.2 introduces some related work. Section 6.3
discusses the challenges faced by existing Hypac DCNs. Section 6.4 gives the net-
work model and the formulation of the collaborative network configuration prob-
lem. Section 6.5 presents the proposed CBA algorithm. Section 6.6 gives the suf-
ficient network condition for a Hypac DCN to guarantee 100% throughput with a
bounded delay. Section 6.7 presents the performance evaluation results, and finally
Section 6.8 concludes the chapter.

6.1 Introduction

It is very challenging for electrical DCNs to accommodate the fast increasing band-
width demand in today’s data centers without imposing exorbitant hardware cost
and power consumption. Meanwhile, the significant advantage of optical fiber
communication in power efficiency and huge bandwidth capacity has led to sev-
eral proposals of all-optical DCNs recently [39]. However, due to the limitations of
optical switching technologies, optical networking alone cannot effectively handle
the volatile traffic in data centers. For example, optical circuit switching (OCS)
and optical burst switching require connections to be established before communi-
cation, which are not suitable for latency-sensitive traffic. Optical packet switching
enables packet granularity transmission as electrical networks. However, its imple-
mentation is hindered by the lack of practical optical buffers at current stage.

These factors have motivated the emergence of hybrid electrical/optical (re-
ferred to as Hypac for short) DCN architectures [40, 41]. As shown in Fig. 6.1,
a Hypac DCN augments the electrical packet switched (EPS) network with a rack-
to-rack optical circuit switched (OCS) network. The goal is to combine the best
features of both networks: the EPS network can provide flexible and fine-grained

148

ToR switch 1... ToR switch 2... ToR switch 3... ToR switch 4...T T T TCopper link ServerT Optical transceiver
Core switch 1 Core switch 2

Optical fiber linkElectrical packet switchOptical circuit switch
electronic packets light path

Figure 6.1: A general Hypac DCN architecture, in which the EPS network is aug-
mented with a rack-to-rack OCS network.

transmission, which enables each server to communicate with multiple other server-
s simultaneously; The OCS network, on the other hand, can deliver high bandwidth
transmission with lower power consumption between any pair of server racks with
established connections. Hence, Hypac DCNs are able to maintain the flexibili-
ty of packet switching, while allocating on-demand large bandwidth to the places
where it is most needed by dynamically establishing OCS connections. It has been
demonstrated [40, 41] that the introduction of optics results in orders of magnitude
less power consumption and hardware cost than pure electrical DCN architectures
with comparable performance.

However, one big problem with current Hypac DCNs is that the EPS network
is still shared in a best-effort way, and is completely oblivious to the accompany-
ing OCS network. As will be commented in detail later, the lack of coordination
between the two networks causes severe performance deficiencies in current Hy-
pac DCNs, including incompetence in handling correlated traffic and degraded net-
work predictability [42]. Since the EPS network and the OCS network have unique
strengths and weaknesses, they are best suited for transmitting different traffic pat-
terns. The coordination and collaboration between the two types of networks is
essential in order to exploit the full potential of Hypac DCNs. In the meantime,
emerging network control technologies, such as Software Defined Networking (S-
DN) [43], provide many useful features, such as guaranteed bandwidth provisioning
between host servers. These features can be utilized to achieve more effective allo-
cation of the EPS network bandwidth than best-effort sharing. Leveraging the new
opportunities enabled by novel traffic control technologies, we study the collabora-

149

tive network configuration problem in Hypac DCNs in this chapter.
The challenge of this problem lies in that the two networks have fundamentally

different characteristics. To tackle the challenge, we first develop a network mod-
el that accurately captures the essential characteristics of the EPS/OCS networks.
Then we investigate the key factors that lead to bandwidth loss in the OCS network,
and demonstrate that the EPS network can be utilized to significantly improve the
optical bandwidth utilization. Based on these findings, we develop a time-efficient
Collaborative Bandwidth Allocation (CBA) algorithm that effectively combines the
strengths of both networks.

Ideally speaking, a DCN should provide similar performance to a congestion-
free (or nonblocking) network that guarantees 100% throughput and no queueing
delay. Though previous work has demonstrated through experiments and simula-
tions that a Hypac DCN can deliver near 100% throughput and low latency under
tested traffic patterns [40], no conclusive analysis is given on whether such per-
formance is guaranteed under all traffic patterns. In this chapter, we prove that
it is indeed feasible for a Hypac DCN to emulate a constrained nonblocking net-
work, which guarantees 100% throughput under all possible traffic patterns. By
constrained, we mean a bounded delay is imposed to compensate for the schedul-
ing overhead of the OCS network. We also give the sufficient network condition
to achieve such emulation under the proposed CBA algorithm. Finally, we evaluate
CBA through simulations and show that it significantly improves network perfor-
mance in many aspects compared to current Hypac DCNs.

6.2 Related Work

Due to the limitation of optical switching technology, Hybrid packet/circuit (Hypac)
switched DCNs have been proposed to combine the best features of optics and
electronics. C-through [40] arguments the electrical packet switched DCN with a
rack-to-rack MEMS optical switch. Helios [41] shares a similar architecture to c-
through, but uses WDM links to deliver higher transmission bandwidth. In both
Hypac DCNs, the EPS network is used in a best-effort way and is unaware of the
added OCS network.

Meanwhile, novel network control frameworks have been developed for DC-
Ns, which enable more effective control of the EPS network than the traditional

150

best-effort bandwidth sharing. For example, software defined networking (SDN),
represented by the OpenFlow framework [43], provides many useful features, such
as centralized control, global knowledge of network condition, bandwidth isolation
and so on. Seawall [52] is a bandwidth allocation framework that can distribute
guaranteed bandwidth to categorized traffic based on administrator-specified poli-
cies.

To effectively utilize the OCS network bandwidth, our proposed CBA algorithm
finds multiple configurations per scheduling period using a matrix decomposition
method, which has been adopted in high-speed switches [114–117]. However, the
problem we study is fundamentally different from the previous work, because the
key questions to be considered, such as how to find a proper traffic partition for the
EPS/OCS networks and how to coordinate the configuration of two fundamentally
different networks, are unique to Hypac DCNs and have not been studied before.

6.3 The Hypac DCN

In this section, we describe the general architecture and discuss the challenges in
current Hypac DCNs.

6.3.1 A General Hypac DCN Architecture

Fig. 6.1 shows a general Hypac DCN architecture, in which an electrical packet
switched (EPS) network is augmented with an optical circuit switched (OCS) net-
work. The EPS network in existing Hypac DCNs adopts a tier-2 fat-tree network
due to its good scalability and simple structure [40, 41]. As shown in Fig. 6.1, a
fat-tree network places multiple core switches at the root, which provides several
parallel paths between any pair of ToR switches. Sometimes a multi-tier fat-tree
network is used if the data center size is large, which can be recursively built from
basic 2-tier fat-trees [18]. In this chapter, we focus on a tier-2 fat-tree EPS network
as in c-through [40] and Helios [41] .

In current Hypac DCN design, the OCS network is implemented using a large
MEMS optical switch. Commercial MEMS switches with hundreds of ports and
research prototypes with more than 1000 ports are currently available, which are
adequate for most data centers today. In such switches, each switch port connect-

151

s to a ToR switch to transmit the aggregate traffic of all the associated servers,
instead of directly connecting to each individual server. MEMS optical switches
need to mechanically adjust micro mirrors to reconfigure connections, which in-
curs a non-negligible switching overhead (several milliseconds). The OCS network
is configured in a periodical manner through a central controller, which needs to
acquire up-to-date traffic demand information from all the server racks for calcu-
lating the new configuration. This also introduces a considerable control overhead.
Therefore, the scheduling period must be sufficiently long to properly amortize the
control overhead (e.g., more than 1 seconds in c-through[40]).

One important motivating factor of Hypac DCNs is that data center traffic com-
monly consists of a small number of long-lived, throughput-intensive “elephant”
flows and numerous latency-sensitive “ant” flows [8, 9]. Hypac DCNs are particu-
larly effective in handling such traffic: the EPS network can be used to transmit the
volatile portion of traffic at packet-granularity, while the slow switching OCS net-
work allocates high-bandwidth light paths to transmit the stable portion of traffic. In
this way, Hypac DCNs maintains the flexibility that allows servers to communicate
freely at any moment, while deliver cost-efficient large bandwidth via dynamically
established light paths. Moreover, since the EPS network is alleviated from the du-
ty of providing high bandwidth, it can be oversubscribed to achieve significant cost
reduction.

6.3.2 Challenges in Current Hypac DCNs

In current Hypac DCNs [40, 41], the network controller configures the OCS net-
work by finding a maximum-weighted matching (MWM) on a bipartite graph of ToR
switches in each scheduling period, with edge weights denoted by the correspond-
ing inter-rack traffic demand. The EPS network, on the other hand, is unmodified
from traditional electrical DCNs and completely oblivious to the OCS network.
Such an approach causes severe performance deficiencies [42], as discussed below.

First, the MWM-based configuration generates only one OCS configuration per
scheduling cycle, which remains unchanged throughout the entire scheduling peri-
od. However, Since each scheduling period is usually quite long given the consider-
able reconfiguration overhead, there has to be a large amount of traffic accumulation
between connected ToRs to maintain high optical bandwidth utilization. For exam-

152

ple, the typical scheduling period in c-through [40] is 1s. Suppose the optical link
bandwidth is 10Gb/s, each connected pair of ToRs needs to accumulate 10Gb traffic
in order to fully utilize the optical link, which is difficult to achieve in practice. As
a result, optical bandwidth is significantly under-utilized under light traffic load.

Additionally, as it would generally take a long time for two ToR switches to
accumulate enough traffic to be connected again after their traffic is depleted from
the previous connection, servers will experience high delay variability and unpre-
dictable network performance due to the sporadic optical bandwidth, which is a
major obstacle to the cloud adoption for many reliability-driven applications.

More importantly, it has been shown that current Hypac DCNs are inefficient
in handling correlated traffic [42], which is generated by many common distributed
services in data centers, such as MapReduce, where the completion time depends
on the slowest flow. The reason is that the OCS network prioritizes transmission
between hosts with high traffic demand at the cost of stranding the rest [42]. In this
chapter, we show that these challenges can be effectively addressed by adopting
more effective OCS network configuration algorithm and collaborating the config-
uration of both networks.

6.4 Network Model and Problem Formulation

In this section, we present a network model for Hypac DCNs that accurately de-
scribes the essential characteristics of the EPS/OCS networks. We also describe
the network control plane and formulate the collaborative network configuration
problem.

Before introducing the model, we make a few reasonable assumptions. Since
each ToR switch can forward packets to any of the associated servers, we consider
a ToR switch as a single entity rather than individual servers connected to the ToR.
We consider a Hypac DCN with N ToR switches, and assume all ToR switches
share homogeneous setting, that is, each ToR switch connects the same number of
servers and has the same port speed. We consider a single-wavelength OCS network
as in c-through [40] and leave the multi-wavelength case for future study.

153

123 min cutCore switches
... 123123ToRs 2 3 ToRs Core switches ToRssources sinks1Bidirectional links

Figure 6.2: A fat-tree EPS network can be modeled as a flow graph, in which each
ToR adds a source node and a sink node and each bidirectional link is unfolded into
two unidirectional links.

6.4.1 Modeling the OCS network

One key characteristic of the OCS network, such as the MEMS switch, is that it
is connection-oriented, which means that each switch port can be connected to at
most one other port at the same time. Hence, we can represent a feasible OCS
network configuration using a binary configuration matrix O = {oij}, in which
the entries in each line (row or column) sum to at most 1 and oij = 1 means that
there is a connection from ToR i to ToR j. Another important feature of the OCS
network is that it imposes a certain amount of switching overhead, which is a period
of network “downtime” during switching state changes, denoted by σ. Finally, for
simple illustration, we set the total bandwidth capacity of all the servers associated
with a ToR switch to 1, and denote the normalized optical link bandwidth capacity
by S. For example, if there are 40 servers connected to a ToR switch via 1Gb ports,
and the OCS network connects to each ToR via a 100Gb port, we say the normalized
optical link bandwidth is 2.5.

6.4.2 Modeling the EPS network

Different from the OCS network, the EPS network enables a ToR to communicate
with multiple other ToRs simultaneously via different paths, and each link can be
shared by packets from different sources through multiplexing. The traffic from
ToR i to ToR j is said to belong to the same flow fij . One characteristic of the
EPS network is that the bandwidth each flow receives can vary over time depend-
ing on the overall network condition. The instantaneous bandwidth received by all
the flows in the EPS network can be represented as a matrix B(t), in which ele-
ment bij(t) represents the amount of bandwidth received by flow fij at time t. For

154

simplicity, bandwidth here is also normalized as in the OCS network.
Apparently, the total bandwidth allocated to all the flows must be constrained by

the network capacity. We can construct an auxiliary flow graph G with each vertex
representing a switch and each edge representing a link in the EPS network. For
each ToR, we add a source vertex and a sink vertex to G. The bandwidth received
by flow fij is the value of a flow between the corresponding source and sink vertex.
For example, the flow graph of a fat-tree DCN is shown in Fig. 6.2, in which each
bidirectional link is unfolded into two unidirectional links.

According to the max-flow min-cut theorem, the flow bandwidth matrix must
satisfy the following constraint∑

i∈X

∑
j∈Y

bij(t) ≤ CUTX,Y , ∀X ⊂ Z, Y = Z −X,

where Z is the set of all ToRs and CUTX,Y is the cut with minimum bandwidth
capacity in the network between X and Y . This constraint indicates that the max-
imum bandwidth of flows sent from any set of ToRs to the rest of the network is
equal to the the minimum cut bandwidth capacity allowed by the network.

The constraint can be used to determine the feasible region of flow bandwidth
matrices for general EPS networks. In this chapter, we focus on a fat-tree EPS
network, whose simple structure makes it relatively easy to define the feasible re-
gion of B(t). It is not difficult to see that all the core switch links connecting a
ToR switch constitute the minimum cut for flows entering and leaving the ToR, as
shown in Fig. 6.2. According to the constraint above, the maximum bandwidth of
flows entering/leaving a ToR must be no larger than C at any moment, where C is
the normalized total bandwidth of all the core switch links connecting each ToR.
It is worth mentioning that the value of C is the reciprocal of the oversubscrip-
tion ratio of the fat-tree network, an important metric for evaluating the network
performance, which is defined as the ratio of worst-case aggregate bandwidth de-
mand of servers to the network bisection bandwidth [18]. Since it is very costly
to provision large bandwidth in the EPS network, fat-tree DCNs are often heavily
oversubscribed (e.g., higher than 8:1 oversubscription ratio is common) [18], hence,
C is usually much smaller than 1.

In the network model, we assume any flow bandwidth matrix B(t) = {bij(t)}
that has the maximum line sum, i.e., the sum of a row or column, no larger than C

155

Stage 1: traffic accumulationStage 2: bandwidth allocationStage 3: transmission timeith period (i+1)th period 0 T 2T 3T 4TOCSEPSdowntime no connectionBandwidth received from both networks
Figure 6.3: Each scheduling period is divided into three stages: traffic accumu-
lation, configuration (assume H = T) and transmission, which can be pipelined
between consecutive scheduling periods. A packet is marked in grey with an arc
connecting its arrival and transmission time.

can be realized by the EPS network. This assumption is a close approximation to
that in the real world, because near 100% link bandwidth utilization in fat-tree D-
CNs [15] and flow-level bandwidth allocation can be achieved using novel network
control frameworks [52].

6.4.3 Network Control

Finally, we describe the network control plane of Hypac DCNs, in which a cen-
tralized controller periodically collects traffic information and calculates the OCS
network configuration. In general, a scheduling period can be divided into three
sequential stages: traffic accumulation, configuration and transmission.

The first stage is traffic accumulation. Due to the volatility of data center traffic,
we consider all traffic patterns that satisfy the hose constraint are possible. The
hose constraint sets a very general “non-overbooking” rule that the traffic volume
entering (leaving) a network node within unit time is bounded by its access band-
width capacity, e.g., a server connected by 1Gb/s link can inject/receive at most
1Gb traffic into/from the network in unit time, which has been commonly used for
describing data center traffic in DCN design and optimization [13]. The duration
of the traffic accumulation stage is set to T , which is largely determined by the
control overhead incurred by each configuration. As will be discussed later, T has
significant impact on the network performance.

In the second stage, the network controller gathers information on the current

156

Table 6.1: Important Notations Used in the CBA Algorithm
N Number of ToR switches
T Duration of accumulation stage and transmission stage
D Traffic demand matrix at present, dij is traffic

volume from ToR i to ToR j
K Number of OCS network configurations in a schedule
Ok kth OCS network configuration, okij = 1 denotes a

connection from ToR i to ToR j
Xk Transmission matrix for Ok denoting actual traffic

volume scheduled for transmission
S Normalized bandwidth capacity of an optical link
ϕk Weight of Ok

σ Switching overhead
B(t) Flow bandwidth distribution in the EPS network at time t
E Traffic allocation matrix of EPS network
C Total normalized bandwidth capacity of core switch

links connecting each ToR

inter-rack traffic demand, which can be done by sending queries to each ToR [41].
The inter-rack traffic demand is denoted by a traffic demand matrix D = {dij},
whose entry dij is the accumulated traffic volume from ToR i to ToR j. For sim-
plicity, entries are represented in terms of the time needed to transmit the traffic
under 1 unit of normalized bandwidth. For example, suppose ToR i has 1Gb data
to send to ToR j, and 1 unit of normalized bandwidth is 10Gb/s, then dij = 0.1s.
Using the gathered traffic information, the controller then calculates the proper con-
figuration for the OCS/EPS networks. The duration of this stage is denoted by H ,
as shown in Fig. 6.3. Depending on the data center scale, algorithm complexity and
controller hardware, H could be longer than T . In this case, ⌈H/T ⌉ controllers are
required for pipelined processing of multiple batches.

In the third stage, traffic is transmitted according to results calculated in stage
2, whose duration is also T . Any remaining traffic that cannot be transmitted rolls
over and adds to the traffic demand matrix of a future scheduling period. Also,
stages in consecutive periods are pipelined, as shown in Fig. 6.3. Additionally,
Fig. 6.3 shows a graphic representation of the bandwidth received by a flow from
both networks: the bandwidth from the OCS network follows an on-off pattern
with a certain period of downtime associated with each reconfiguration, whereas
bandwidth from the EPS network is continuous and varying over time.

157

6.4.4 Problem Formulation

Next, we formulate the the collaborative network configuration problem. For clari-
ty, a summary of useful notations is presented in Table 6.1.

Different from previous work, collaborative network configuration requires the
controller to not only calculate the OCS network configuration(s), but also deter-
mine the traffic volume to be transmitted via the EPS network. We use a traffic
allocation matrix E = {eij} to denote the traffic volume scheduled to be sent via
the EPS network in the transmission stage, whose entry eij =

∫ t+T

t
bij(t)dt is the

traffic volume sent from ToR i to ToR j assuming the transmission stage starts at
time t. Since the line sum of B(t) is no larger than C as specified in the network
model, E is feasible if and only if its line sum is bounded by CT . Once E is deter-
mined, it can be fed to the aforementioned control frameworks like Seawall [52] to
allocate bandwidth to flows during the transmission stage.

To avoid the optical bandwidth under-utilization caused by the maximum weight-
ed matching based configuration adopted in current Hypac DCNs [40, 41], we use
a matrix decomposition method to find a set of K weighted configurations Ok

(k ∈ {1, 2, . . . , K}) for the OCS network during each scheduling period. Let the
weight ϕk of Ok denote the traffic volume a connection is able to transmit over the
duration ϕk

S
, then the total traffic volume to be sent via the OCS network through

these configurations can be written as
∑K

k=1 ϕkOk.
In order to transmit the accumulated traffic completely, the sum of traffic sched-

uled to be transmitted via the EPS network and the OCS network must be no less
the corresponding entries in the traffic demand matrix D, that is,

K∑
k=1

ϕko
k
ij + eij ≥ dij,∀i, j ∈ {1, 2, . . . , N} (6.1)

The overall transmission time required for the K weighted OCS network con-
figurations Ok (k ∈ {1, 2, . . . , K} is the total holding time of these configurations
plus the total switching overhead, that is, 1

S

∑K
k=1 ϕk + σK. The objective of the

collaborative network configuration problem is to find E and a set of weighted
configurations Ok, such that the overall transmission time required is minimized.
There are several reasons for choosing such an objective. On one hand, minimizing
transmission time is important to ensure traffic is transmitted with low latency. On

158

the other hand, if the transmission time is larger than T , a portion of traffic will roll
over to the next scheduling period. Minimizing the total transmission time means
that the amount of traffic left is also minimized, which reduces the possibility of
future network congestion.

6.5 The Collaborative Bandwidth Allocation (CBA)
Algorithm

In this section, we investigate the key factors that cause bandwidth loss in the OC-
S network and how the EPS network can be best used to reduce optical bandwidth
loss. Based on the findings, we then present an efficient algorithm called Collabora-
tive Bandwidth Allocation(CBA), which leverages the flexible bandwidth allocation
of the EPS network to significantly improve optical bandwidth utilization.

6.5.1 Overview

We first give a general description of the proposed CBA algorithm.
Given a traffic demand matrix D, CBA operates in two phases: the OCS net-

work configuration phase and the EPS network bandwidth allocation phase. In the
OCS network configuration phase, CBA uses a matrix decomposition method to
find a set of weighted OCS network configurations to accommodate the traffic de-
mand matrix D, with the objective that the total transmission time required is as
short as possible. There are two important aspects that need to be considered. On
one hand, it is important to make sure all connected ToR pairs have enough traffic
to maintain high bandwidth utilization during each configuration. As will be ex-
plained later, having a larger number of configurations makes it easier to achieve
such a goal, which leads to higher optical bandwidth utilization. On the other hand,
reconfiguring the OCS network imposes switching overhead, which could consid-
erably increase the total transmission time if the number of configurations is large.
Hence, the trade-off between these two aspects must be carefully considered when
configuring the OCS network.

The CBA algorithm manages to find the optimal balance between switching
overhead and bandwidth utilization by adaptively setting the maximum number of

159

configurations according to the parameters of the specific OCS network (e.g., net-
work size, switch overhead, scheduling period, etc). It then uses an efficient “fil-
tering” mechanism to ensure every connected ToR pair has sufficient amount of
accumulated traffic in each configuration.

The second phase utilizes the flexible bandwidth allocation of the EPS network
to minimize the total transmission time of the configurations obtained in the previ-
ous phase. First, CBA identifies the part of traffic that cause bandwidth loss in each
OCS network configuration, then shifts it to the EPS network. In order to reduce
switching overhead, which is a non-negligible part of the overall transmission time,
CBA also tries to remove configurations with little traffic by shifting their traffic
completely to the EPS network. We show that this problem can be modeled as
a Multidimensional, Multiple-choice Knapsack Problem (MMKP) [118], which is
NP-hard, and propose an efficient heuristic algorithm to find a good solution. Next,
we describe the CBA algorithm in detail.

6.5.2 The OCS Network Configuration

In this phase, CBA decomposes the traffic demand matrix D to obtain a set of
weighted OCS network configurations. Before explaining the detail of the algorith-
m, we use a simple example to illustrate some important issues in the algorithm
design. As mentioned before, it is likely that the accumulated traffic between a pair
of connected ToRs is insufficient to maintain full bandwidth utilization during the
holding time of a configuration. We use a transmission matrix Xk to denote the
actual traffic volume to be sent by an OCS network configuration Ok. As shown in
Fig. 6.4 , the traffic demand matrix D is decomposed into several transmission ma-
trices1. The accompanying diagram shows the holding time of configurations and
the bandwidth utilization of connections from the source ToRs (shown vertically) in
each configuration, where shaded regions between configurations denote switching
overhead and white area denote unutilized bandwidth.

In Fig. 6.4 (a), D is decomposed into four configurations with no bandwidth
loss. However, frequent reconfiguration causes long switching overhead. In Fig.
6.4 (b), an alternative decomposition of D gives three configurations with shorter
overall switching overhead, but bandwidth under-utilization exists in every con-
figuration, given that some connections become idle earlier than others after their

160

=D= + + +
=D= + +From ToR 123123 time

switching overhead
unutilized bandwidth

(a)
(b)

4 1 1 1 2 31 3 2 1 1 1 1 1 1 11 1 4 1 1 1 2 31 3 2 1 1 2 4 33 1 2 1
3 33

Figure 6.4: Two sets of configurations with the same total transmission time: (a)
Four configurations with large overhead and no bandwidth loss; (b) Three configu-
rations with bandwidth loss.

scheduled traffic is depleted. Both decompositions lead to the same total transmis-
sion time.

We make several important observations from the example. First, having a larg-
er number of configurations results in finer transmission granularity, which makes
it easier to maintain high bandwidth utilization in each configuration. However, it
also introduces longer switching overhead, whose impact can be quite substantial
if slow-switching optical networks, such as MEMS switches [40, 41] , are adopted.
Hence, it is important to find a good balance between bandwidth utilization and
switching overhead. Second, the weight (and thus holding time) of a configuration
is determined by the largest entries (LEs) in the corresponding transmission matrix,
that is, the connection with the most scheduled traffic, and bandwidth loss is caused
by the gap between LEs and other entries in the transmission matrix. Therefore, in
order to reduce optical bandwidth loss, we should find a decomposition such that
every connection in each configuration has a similar amount of traffic to transmit.

The design of CBA is guided by the above observations. To keep the overall
switching overhead at a reasonable level, the CBA algorithm first determines the
maximum number of configurations allowed for each decomposition according to
the parameters of the OCS network, such as the switching overhead σ and the net-

1In practice, diagonal entries dii should be 0, because local traffic does not go through the
network. They are set to be nonzero in the example for easy illustration.

161

work size N . It also adopts an efficient “filtering” mechanism to group entries with
similar value in each traffic matrix. The detail is shown as follows.

Given a traffic demand matrix D, we first calculate its maximum line sum,
denoted by M , that is,

∑N
i=1 dij ≤ M,

∑N
j=1 dij ≤ M, ∀i, j ∈ {1, 2, . . . , N}.

Then, we divide D into a coarse part and a fine part by representing D as the sum
of a weighted quotient matrix with only integer entries Q = {qij} (coarse part) and
a residue matrix R = {rij} (fine part), that is,

D =
M

µN
×Q+R (6.2)

where qij = ⌊ dij
M/µN

⌋, and rij = dij − M
µN

× qij. In the above equation, µ is a factor
whose value is determined by the network parameters. How to find the optimal
value of µ will be discussed later.

It is easy to see that only entries larger than ⌊ M
µN

⌋ in D would appear in Q.
Meanwhile, any entry in R must be less than ⌊ M

µN
⌋. Next, we schedule Q and

R separately. To decompose Q, we construct a bipartite multigraph GQ from Q

according to the following procedure. Rows and columns of Q are translated to
two sets of vertices A and B in GQ, and each entry qij is translated to qij edges
connecting vertices i ∈ A and j ∈ B, as shown in the example in Fig. 6.5.

Then, we find a minimum edge coloring of GQ, which assigns the minimum
number of colors to each edge such that no two adjacent edges have the same color,
using existing algorithms [119]. Clearly, edges with the same color constitute a
matching in the bipartite graph, thus can be mapped back to a valid configuration,
where an edge connecting i ∈ A and j ∈ B is translated to 1 at the corresponding
entry and all other entries are 0s. As a result, the coarse part can be covered by the
configurations obtained, with a weight of M

µN
for each configuration. Meanwhile,

we also obtain the transmission matrix X ′
k corresponding to each configuration

O′
k, which is equal to M

µN
×O′

k. The apostrophe in symbols indicates that they are
intermediate results that may be modified in the next phase.

To decompose the residue matrix R, we choose any N non-overlapping permu-
tation matrices as configurations, each of which has exactly one entry in each row
or column equal to 1. These N matrices adds up to an all-1 matrix, which can be
predefined arbitrarily without computation. The transmission matrix X ′

k of a con-
figuration O′

k is the entrywise product of R and O′
k, whose entry x

′k
ij = rij × o

′k
ij ,

and the weight ϕ′
k equal to the largest entry in X ′

k. Combining the configurations

162

1 0 0 1 1 1 0 00 1 0 10 0 2 0
Figure 6.5: The bipartite multigraph of the given matrix can be covered with two
colors.

generated for Q and R, we have a set of configurations and corresponding trans-
mission matrices that covers the traffic demand matrix D.

Now, we analyze some important properties of CBA and discuss how to deter-
mine the value of µ. First, we have the following lemma on the decomposition of
Q.

Lemma 6.1. For arbitrary traffic demand matrix D, the coarse part (i.e., M
µN

×Q)
can be covered by µN configurations with the same weight M

µN
.

Proof. Given the maximum line sum M of D, the maximum row sum of Q satisfies
N∑
i=1

qij =
N∑
i=1

⌊
dij

M/µN

⌋
≤

⌊∑N
i=1 dij

M/µN

⌋
≤

⌊
M

M/µN

⌋
≤ µN

and similarly, the maximum column sum
∑N

j=1 qij ≤ µN .
Since all entries in Q are integers, we know the maximum vertex degree in the

bipartite multigraph GQ is at most µN . According to König’s theorem [120], every
bipartite graph has a minimum edge coloring with the same number of colors as
its maximum degree. Therefore, the coarse part can be covered by at most µN
configurations with the same weight M

µN
.

Regarding the total transmission time of all the configurations obtained by CBA,
we have the following lemma.

Lemma 6.2. Give a traffic demand matrix D, the maximum total transmission time
of the obtained configurations can be represented as a function of µ:

f(µ) =
M

S
(1 +

1

µ
) + (µ+ 1)Nσ (6.3)

163

Proof. As shown previously, the coarse part can be covered by at most µN config-
urations with the same weight M

µN
. Given the normalized optical link bandwidth S,

we know the total holding time of these µN configurations is at most M
S

. Mean-
while, the residue matrix R is decomposed into N non-overlapping configurations,
each of which has the weight equal to the largest entry in the corresponding trans-
mission matrix. Since any entry in R is smaller than M

µN
, the total holding time of

these N configurations is also at most M
µS

. Overall, the traffic matrix can be covered
by a maximum of (µ + 1)N configurations, which introduces (µ + 1)σN switch-
ing overhead. Add all these terms together, and we can get the maximum possible
transmission time shown in the lemma.

By solving the equation df(µ)
dµ

= 0, we have the following corollary:

Corollary 6.1. The maximum transmission time is minimized with µ =
√

M
σNS

.

Corollary 6.1 gives several interesting findings on the properties of the OCS
network. First, µ increases with the maximum line sum of the traffic demand ma-
trix M , which is generally proportional to the length of traffic accumulation stage
T . Therefore, we can see that a longer scheduling period allows more configu-
rations, which leads to higher optical link bandwidth utilization. Second, besides
switching overhead σ, µ also decreases with the optical link capacity S, because the
bandwidth loss equivalent to having one extra switching overhead would be more

substantial with higher S. By setting µ to
√

M
σNS

as in Corollary 6.1, CBA can find
an optimal balance between bandwidth utilization and switching overhead, which
leads to short overall transmission time.

6.5.3 The EPS Network Bandwidth Allocation

By shifting the part of traffic that causes optical bandwidth loss to the EPS net-
work, CBA uses the flexible EPS network to improve bandwidth utilization of the
configurations obtained from Phase 1. It also seeks to reduce the switching over-
head by removing the configurations with little scheduled traffic and sending their
traffic via the EPS network. Overall, the goal of this phase is to minimize the total
transmission time required.

Problem Formulation: We show that this problem can be formulated as a
Multiple-class Multidimensional Knapsack Problem (MMKP) [118], in which there

164

largest entry 2nd largest entry w=2,R={0,1,2,0,1,2} w=3+σS,R={1,2,3,1,2,3}complete item partial itemI2 I3transmission matrix w=1,R={0,0,1,0,0,1}I1w=0.5,R={0,0,0.5,0,0,0.5}partial item1 0 0 0 2 00 0 3 1 0 0 0 1 00 0 1 0 0 0 0 0 00 0 0 1 0 0 0 2 00 0 2 1 0 0 0 2 00 0 2.5
Figure 6.6: An example of transforming a transmission matrix X into a group of
items.

are a multidimensional knapsack and multiple groups of items with different values
and volumes. The objective is to maximize the total value of items included in the
knapsack under the constraints that at most one item from each group can be put
in the knapsack and the total volume of items in the knapsack does not exceed the
knapsack’s capacity. We explain the problem formulation in detail next.

As mentioned in the network model, the traffic to be sent through the EPS net-
work during the transmission stage T can be represented by an N × N matrix E.
The maximum line sum of E is bounded by CT , which is the maximum traffic
volume that can enter/leave a ToR during the transmission stage. Therefore, the
EPS network can be considered as a “knapsack” with 2N dimensions, where each
dimension represents a row or column in E and has CT capacity.

From Fig. 6.4, we can see that the weight of a configuration is dominated by
the largest entries (LEs) in its transmission matrix. Therefore, if some traffic can be
shifted from the LEs of a transmission matrix to the EPS network, then the weight
of the corresponding configuration can be reduced. Following this observation,
we can transform a transmission matrix into a group of “items” to be put into the
knapsack (i.e., the EPS network). Each item is represented as (w,P), in which w

is the item “value” representing the reduction in the configuration weight, and the
item “volume” P is a vector of 2N length recording the traffic volume required to
be shifted to the EPS network in order to achieve such reduction. For clarity, we
illustrate the transformation procedure using a small example shown in Fig. 6.6.

Suppose there is a 3×3 transmission matrix X . First, we calculate the difference
between the LE and the second largest entry in X , denoted by ∆. We know that
if δ(δ ≤ ∆) amount of traffic is shifted from the LE (red circle) of X to the EPS
network, the configuration weight can be reduced by δ. The above relationship can
be represented using a series of items as shown in Fig. 6.6. We call the items with

165

δ < ∆ partial items and the item with δ = ∆ a complete item, and denote the first
complete item by I1. Note that, because shifting traffic from the LE to the EPS
network would reduce the remaining capacity of two lines (the corresponding row
and column) in E, there are two non-zero entries in P of each item.

After shifting ∆ traffic volume from the LE to the EPS network, X now has
two equal-valued LEs. We repeat the above procedure to find the second complete
item I2 and the partial items in between, except that now we must shift traffic from
both LEs in order to further reduce the configuration weight, thus P of each item
has four nonzero entries, as shown in Fig. 6.6. Finally, we use the same procedure
to generate I3 and the partial items between I2 and I3. Since the traffic in X would
be completely shifted to the EPS network if I3 is put in the “knapsack,” we can
also remove the switching overhead it causes. Therefore, an extra σS is added
to the value w in I3, which is the weight reduction equivalent to eliminating one
switching overhead given the optical link bandwidth S.

Given K transmission matrices X ′
k, k ∈ {1, 2 . . . , K} from Phase 1, we can use

the above procedure to transform them into K groups of items. We can see that
the objective of minimizing the total transmission time is equivalent to picking at
most one item from each group to put into the knapsack, such that the total value of
items in the knapsack is maximized. Therefore, the problem can be formulated as a
Multiple-class, Multidimensional Knapsack Problem (MMKP), which is NP-hard.

Heuristic Algorithm: Given that existing heuristic algorithms for solving MMKP
are very complex, they cannot scale with the large data center size [118], hence, we
design a time-efficient heuristic algorithm, shown as follows.

We again use a simple example to illustrate some important design concerns.
As shown in Fig. 6.7, suppose there are four transmission matrices and the maxi-
mum line sum of E is 1. Fig. 6.7 presents three possible solutions for allocating
EPS network bandwidth. Solution (a) reduces the total configuration weight by 1
through shifting 1 unit of traffic from two entries of X1 to E. Further reduction
is impossible even though there is unallocated bandwidth in the EPS network, be-
cause all the lines in E required to reduce the weight of other configurations are
full. Solution (b) fully utilizes the EPS network and reduces the total holding time
by 2. By shifting all the entries in X4 completely to E, the optimal solution (c)
allows the corresponding configuration to be removed and achieves a total weight
reduction of 2 + σS.

166

1 1 11 1 1 0.1 0.20.80.911Transmission matricesE (a) (b) (c)
X1 X2 X3 X40 0 0 0 0 2 0 00 0 2 00 0 0 0 1.3 0 0 0 0 1.2 0 00 0 0 00 0 0 00 0 0 0 0 0 0 00 0 2 00 0 0 20 0 0 0 0 1 0 00 0 1 00 0 0 0 1 0 0 0 0 1 0 00 0 1 00 0 0 1

0.1 0 0 0 0 0.2 0 00 0 0 00 0 0 01 0 0 0 0 1 0 00 0 1 00 0 0 1
Figure 6.7: Three possible EPS network bandwidth allocations.

There are two important observations from the above example. First, some lines
in E are more “valuable” than others if a larger amount of traffic is contending for
them. If reducing the weight of a configuration requires shifting traffic to many
valuable lines, then it should have a low priority when considered for transmission
via the EPS network (e.g., X1 in Fig. 6.7). Second, if a transmission matrix is com-
pletely shifted to the EPS network, we can reduce the overall switching overhead
as well. Therefore, configurations with little traffic should be given a high priority
for transmission through the EPS network (e.g., X4 in Fig. 6.7).

Phase 2 of CBA is guided by the above observations. Suppose there are K

transmission matrices X ′
k, k ∈ {1, 2, . . . , K} from phase 1. CBA uses the afore-

mentioned procedure to transform each transmission X ′
k to a group of complete

items Ik,j, 0 ≤ j ≤ N . Then, a priority is assigned to each item, which decides the
order the item is considered during the EPS network bandwidth allocation.

To calculate the item priority, CBA evaluates the “value” of each line in E first.
This is done by calculating the line sum of traffic demand matrix D first. The
results can be represented by a vector V ′ with 2N entries, each of which represents
the sum of a line. Then, each entry in V ′ is divided by the sum of all the entries
of V ′, the obtained value vector V is also a vector of 2N length, in which the sum
of all the elements is equal to 1. In the second step, CBA calculates the total traffic
volume in a traffic matrix X ′

k, that is, the sum of all its entries, denoted as |X ′
k|.

The priority of an item Ik,j = {w,P } is then set to w/(V · P) + NσS
|X′

k|
, where the

dot product of two vectors V · P =
∑2N

i=1 vipi.
Next, CBA iteratively finds the proper item in each group to put in E. It uses a

priority queue pq to efficiently locate the item with the highest priority for consid-

167

eration. Initially, CBA inserts the first complete items of the K groups into pq. In
each iteration, the item with the largest priority, say, Ik,j , is dequeued from pq for
consideration. CBA maintains the invariant that at most one item from each group
is in pq at any time, and items from the same group are considered in a strictly as-
cending order, which means that when Ik,j is dequeued, all the previous complete
items in the group would have been dequeued.

After Ik,j is dequeued, CBA tries to reach Ik,j from the previous item Ik,j−1

by shifting traffic from X ′
k to E accordingly (Ik,0 is assumed to be a special item

representing the original transmission matrix).
There are two possible cases. If the EPS network is able to accommodate all the

traffic to be shifted, CBA updates X ′
k and E, then enqueues the next complete item

Ik,j+1 if any. When Ik,j is the final complete item in the group, CBA removes X ′
k

as its traffic has been completely shifted to the EPS network.
Otherwise, CBA identifies the minimum remaining capacity of the lines of E

required by the traffic to be shifted, and shifts traffic from X ′
k by that amount.

Since it is impossible to further reduce the weight of X ′
k in this case, CBA outputs

the finalized transmission matrix represented as Xk, and updates the remaining
capacity of E. When pq is empty, CBA outputs the finalized E and terminates. For
a summary of the above algorithm, please refer to Table 6.2.

6.5.4 Complexity Analysis

Next, we analyze the time complexity of CBA. The time complexity of Phase 1 is
determined by the edge coloring procedure, which takes O(N2 logN) time to find
a coloring consisting of at most O(N) colors for the bipartite multigraph GQ [119].
Adding the N configurations required to schedule the residue matrix R, and there
are at most (µ+ 1)N transmission matrices generated in this phase.

In the EPS network bandwidth allocation phase, CBA decomposes each trans-
mission matrix into at most N complete items, which requires iteratively finding
the difference between the LEs and the second largest entries in each transmission
matrix. This procedure takes O(N) time provided that we sort all the entries of
each transmission matrix in advance, which incurs a one-time-only O(N logN)

time. As there are O(N) transmission matrices, the time of this procedure is also
O(N2 logN).

168

Table 6.2: The EPS Network Bandwidth Allocation
Input: Transmission matrices X ′

k, k ∈ {1, 2, . . . , K} from Phase 1
Output: Finalized transmission matrices Xk, E
Step 1: Transform each X ′

k into a group of complete items Ik,j and assign
priority to each item;
Step 2: Insert the first complete item of each group Ik,1 into pq
Step 3:
while(pq is not empty) {

Dequeue the item with maximum priority, say, Ik,j;
Move towards Ik,j from Ik,j−1;
if (EPS network has enough capacity) {

Shift traffic from X ′
k to E accordingly;

If Ik,j is the final item in that group, remove X ′
k;

If not, enqueue the next item Ik,j+1; }
else {

Check minimum remaining capacity of lines in E required;
Shift traffic from X ′

k by that amount;
Output finalized transmission matrix Xk; }

}
Step 4: Output finalized traffic allocation matrix E

Next, calculating the priority of O(N2) items takes O(N2) time, as the vector
product can be obtained in constant time with distributed computation. Also, each
item will be enqueued and dequeued at most once. Provided that a heap structure
is adopted for the priority queue, each enqueue operation takes O(logN) time and
dequeue takes O(1) time. After each dequeue operation, CBA checks the remaining
capacity of lines in E, which can be done in constant time if a series of parallel
comparators is used.

Overall, with proper data structures and hardware implementation, the overall
time complexity of CBA is O(N2 logN). It is asymptotically faster than the Ed-
monds’ algorithm for finding a maximum weighted matching adopted in current
Hypac DCNs [40, 41], which has O(N3) time complexity.

169

6.6 Network Condition for Guaranteed Performance

Though extensive experiments and simulations have demonstrate that Hypac DCNs
can achieve close to 100% throughput and low latency under tested traffic patterns
[40, 41], an interesting and important question to ask is that whether such a perfor-
mance can be guaranteed under all traffic patterns. In this section, we prove that it
is indeed feasible for Hypac DCNs to guarantee 100% throughput with a bounded
delay. We give the sufficient condition on system parameters, such as the length
of a scheduling period, bandwidth capacity of the EPS/OCS networks and switch-
ing overhead, for a Hypac DCN to achieve guaranteed performance under the CBA
algorithm.

Recall that each scheduling period of a Hypac DCN has three stages, among
which both the traffic accumulation stage and transmission stage have the same
length T , and the configuration stage takes H time. The traffic arriving during an
accumulation stage forms a batch, which can be similarly represented by a traffic
demand matrix D(T) = {dij(T)}. Under the hose traffic constraint, a ToR can
send or receive at most T units of traffic during T time, that is, the maximum line
sum of D(T) is T . Then we have the following property regarding a Hypac DCN.

Property 6.1. The sufficient and necessary condition for a Hypac DCN to achieve
100% throughput and a bounded delay of 2T + H is that any arbitrary traffic de-
mand matrix D(T) can be transmitted within T time.

Proof. Without loss of generality, we assume the system has no backlog traffic ini-
tially. In the first scheduling period, any packet in the first batch will be transmitted
by the end of stage 3 with at most 2T +H delay, given that the above condition is
satisfied, as shown in Fig. 6.3. Also, no backlog traffic will be left over to the next
batch. Hence, any traffic arriving in the next batch will also be transmitted with
2T + H delay. By induction, the above condition is sufficient to guarantee 100%

throughput and a delay bound of 2T +H .
We prove necessity by contradiction. Suppose there exists one adversarial traf-

fic demand matrix that requires longer than T transmission time, which means a
portion of traffic will be rolled over to the next batch. Theoretically, it is possible
that the adversarial traffic demand matrix is found for every batch, then the network
would be unstable and bounded packet delay cannot be achieved.

170

Next, we analyze the network condition for a Hypac DCN to achieve such per-
formance guarantee under the CBA algorithm. Recall that Phase 2 of the CBA
algorithm reduces the total transmission time of the OCS network configurations
by shifting a part of traffic from the transmission matrices to the EPS network,
which subjects to the constraint that the maximum line sum of E can be no larger
than CT . We have the following lemma on the minimum amount of reduction in
total transmission time the EPS network can achieve.

Lemma 6.3. Phase 2 of CBA can reduce the total transmission time of all the
configurations from Phase 1 by at least CT

S
.

Proof. One observation we make is that there must be at least one line (i.e., row or
column) in E that reaches the maximum line sum of CT when Phase 2 terminates, if
not all the transmission matrices have been completely shifted to the EPS network.
This can be proved by contradiction. Assume the maximum line sum in E is smaller
than CT after Phase 2 terminates. According to the CBA algorithm, a transmission
matrix Xk will be considered as final only if one or more lines in E reach the
maximum line sum CT when shifting traffic from the transmission matrix to the
EPS network. This contradicts with the assumption, hence, we know at least one
line in E has the maximum sum of CT .

Without loss of generality, suppose line j in E has the line sum of C · T after
CBA terminates. Since there can be at most one non-zero entry in each line of a
transmission matrix, at most one entry in line j of E will be increased when shifting
traffic from a transmission matrix to the EPS network. In other words, any traffic
shifted from a transmission matrix to line j reduces the weight of the configuration
by the same amount. Therefore, the total configuration weight is reduced by at least
CT , which accounts for a reduction of CT

S
in transmission time given the optical

link bandwidth S. The lemma is thus proven.

Combining the above lemmas and the results in the previous section, we have
the following theorem.

Theorem 6.1. Under the CBA algorithm, a Hypac DCN satisfying the following
condition

S ≥ (1− C)2

(
√
1− C + λ2 − λ)2

(6.4)

171

where λ =
√

Nσ
T

, is sufficient to schedule any D(T) within time T , thus can
guarantee 100% throughput and a bounded delay of 2T +H .

Proof. We give a sketchy proof of this theorem. Details are omitted due to lim-
ited space. From Lemma 6.3, we know any arbitrary traffic batch D(T) can
be transmitted within T time if the total transmission time of the OCS network
configurations from Phase 1 is no larger than T + CT

S
. Given the fact that the

maximum line sum of D(T) is T , we can obtain the maximum total transmis-
sion time of the configurations from Phase 1 by substituting the value of µ as in
Corollary 6.1 in Lemma 6.2. The theorem can be proven by solving the inequality
T
S
(1 +

√
σNS
T

) + (
√

T
σNS

+ 1)Nσ ≤ T + CT
S

.

From the theorem, we can see that the data center size N , the length of T and
switching overhead σ are all important factors in the sufficient condition for a Hy-
pac DCN to guarantee 100% throughput. A longer scheduling period leads to a
smaller optical link bandwidth S required for the performance guarantee, because
as indicated in Corollary 6.1, we can have more configurations with longer T , which
in turn results in higher optical bandwidth utilization. When T is large enough such
that λ is negligible, S = 1 − C is sufficient to guarantee 100% throughput. This
is consistent with the finding in the BirkhoffCvon Neumann switches [114], which
states that any traffic demand matrix can be decomposed into a sufficient number
of configuration matrices without bandwidth loss.

On the other hand, it is important to note that a long scheduling period also leads
to longer packet delay from the traffic accumulation stage. Meanwhile, we notice
that reducing the switching overhead has similar effects to increasing T without
introducing extra packet delay. Therefore, finding optical interconnects faster than
the MEMS switches, such as optical multistage networks [121], is critical in further
improving the performance of Hypac DCNs.

6.7 Performance Evaluation

We build a packet-level network simulator to evaluate the performance of CBA,
which, though cannot capture every detail of the practical DCN environment, pro-
vides valuable insights on network properties of interests. As packet-level simula-
tion is computational intensive, we consider a small-sized data center with 32 ToRs

172

0.5 1.0 1.5 2.0 2.5 3.0 3.5
0

10

20

30

40

 CBA (T=0.5s)
 CBA (T=1s)
 c-through (T=0.5s)
 c-through (T=1s)

Average packet delay under different
 arrival rates

Av
er

ag
e

pa
ck

et
 d

el
ay

 (s
)

Arrival rate

(a)

0.5 1.0 1.5 2.0 2.5 3.0 3.5
0

20

40

60

80

100

120

140

160
Average task completion time under
 different arrival rates

A
ve

ra
ge

 ta
sk

 c
om

pl
et

io
n

tim
e

(s
)

Arrival rate

 CBA (T=0.5s)
 CBA (T=1s)
 c-through (T=0.5s)
 c-through (T=1s)

(b)

Figure 6.8: Delay performance under different arrival rates λ. (a) Average packet
delay. (b) Average task completion time.

for tractability, each of which is connected to 40 servers via 1Gb/s ports, as in [40].
The EPS network is a tier-2 fat-tree, with the aggregate core switch link bandwidth
for each ToR set to 10Gb/s. This corresponds to an oversubscription ratio of 4:1,
or, C = 0.25. We also set the optical link bandwidth to 40 Gb/s, that is, S = 1, and
the reconfiguration overhead for the OCS network to 1 ms.

In the transmission stage, CBA configures the OCS network according to the set
of weighted configurations obtained and configures the EPS network by allocating
bandwidth proportional to the entries in E to corresponding flows. For compari-
son, we implement the popular Hypac DCN c-through [40]. As mentioned earlier,
c-through configures the OCS network using a Maximum Weighted Matching algo-
rithm that connects ToR pairs with the most accumulated traffic in each scheduling
period. Here, we assume the EPS network in c-through allocates equal bandwidth
to all active flows from each ToR (a flow fij is active if there is traffic from ToR
i to ToR j). If flows received by a ToR have a total bandwidth more than C, the
bandwidth of these flows is downsized proportionally, and any bandwidth vacancy
at a ToR due to downsizing will be redistributed to other active flows. This process
repeats till the bandwidth received by all the flows is stabilized.

We have tested CBA under a comprehensive set of traffic patterns. Due to lim-
ited space, only representative results for all-to-all data shuffle are shown here.
Data shuffle is a necessary procedure in many communication-intensive MapRe-
duce/Hadoop operations [7]. A data shuffle task involves multiple hosts, in which
every host sends a flow consisting of a certain amount of data to every other host

173

40 80 120 160 200 240 280
0

5

10

15

20
Bandwidth received by flow fij (= 3)

Ba
nd

w
id

th
 (G

b/
s)

Time (s)

 CBA (T=0.5s)
 c-through (T=0.5s)

(a)

40 80 120 160 200 240 280
0

10

20

Accumulated traffic from ToR i to ToR j
(= 3)

Ac
cu

m
ul

at
ed

 tr
af

fic
 (G

b)

Time (s)

 CBA (T=0.5s)
 c-through (T=0.5s)

(b)

Figure 6.9: (a) Bandwidth received by flow fij over time; (b) Accumulated traffic
from ToR i to ToR j.

participating in the shuffle. It generates strongly correlated traffic, as its comple-
tion depends on the slowest flow [42]. To make the simulation tractable, we as-
sume the arrival of data shuffle tasks follows a Poisson distribution with arrival
rate λ, in which the probability density function of the interval between arrivals t

is f(t) = λe−λt and the average number of task arrivals per second is λ. Here,
we make a simplifying assumption that each task involves m random chosen ToRs,
where m is an integer uniformly chosen from 2 to 32. We also assume the amount of
data to be transferred from one ToR to every other ToR in a data shuffle task follows
a uniform distribution from 10Mb to 2Gb. All packets have the same size of 1024
Bytes. Each simulation is run for a sufficiently long period (1000s in simulation
time) to ensure accurate results.

First, we measure the average packet delay under different arrival rates λ. As
shown in Fig. 6.8(a), c-through suffers long packet delay when λ is small, because
that one OCS network configuration would hold for an entire transmission stage,
which results in severe bandwidth under-utilization if there is not enough traffic
accumulation between connected ToR pairs. The bandwidth wasting can be some-
what mitigated by adopting a shorter scheduling period, as there is a sharp decrease
in packet delay when changing T from 1s to 0.5s. However, given the consider-
able control and switch overhead imposed by reconfiguring the OCS network, the
bandwidth under-utilization problem cannot be fundamentally solved by reducing
the scheduling period. On the other hand, CBA achieves much lower packet delay
under all tested arrival rates, particularly when λ is small, due to that CBA gen-

174

erates multiple configurations in one scheduling period, leading to higher optical
bandwidth utilization.

We then measure the average task completion time, defined as the period be-
tween the arrival of a task and the completion of its last traffic flow. As shown in
Fig. 6.8(b), the simulation results confirm that c-through is inadequate in handling
strongly correlated traffic, as pointed out in [42]. Meanwhile, the average task com-
pletion time under CBA is shown to be only a small fraction of that in c-through.
One major reason is that the EPS network is utilized to effectively complement the
OCS network in CBA, which prevents small flows from being stranded.

To have a closer look at the performance of CBA and c-through, we examine a
300s trace recording the bandwidth, i.e., the traffic volume transmitted per second,
of a flow fij between a pair of randomly chosen ToRs in Fig. 6.9(a). We can see
that the flow bandwidth is characterized by sparse “spikes” in c-through, due to
sporadic available optical bandwidth. In comparison, the flow receives bandwidth
from the OCS network much more frequently under CBA. As a result, as shown in
Fig 6.9(b), CBA manages to keep the accumulated traffic from ToR i to ToR j at
a much lower level than c-through. This observation indicates that CBA enables a
much “smoother” transmission that has lower delay variability (jitter). Therefore,
CBA leads to more predictable network performance than c-through.

6.8 Conclusion

In this chapter, we present a thorough study on the collaborative network config-
uration problem, which holds the key to addressing the various challenges faced
by Hypac DCNs currently. First, we develop a network model that accurately
abstracts the key characteristics of the OCS/EPS networks. Then, we propose a
low-complexity scheduling algorithm called CBA, which effectively leverages the
strengths of optical and electrical transmission to configure the two networks col-
laboratively. Additionally, we give the sufficient condition for a Hypac DCN to
achieve 100% throughput and bounded delay under CBA. Finally, we evaluate C-
BA through simulation, which demonstrates that CBA not only drastically reduces
average packet delay, but also significantly improves network predictability and the
performance under correlated traffic.

175

Chapter 7

Conclusions

Cloud computing has transformed the IT industry in a profound way. Large data
centers have emerged to power the world’s financial market, perform analytic and
data mining tasks of unprecedent scale, and host services that billions of people use
in their daily life. As the tasks and services hosted on cloud rely on the collaboration
and communication between numerous servers, the network is a determining factor
in their performance.

This dissertation studies several critical and closely coupled areas in designing
high-performance, low-cost and multicast-capable DCNs. First, we study optical
packet switching (OPS) [122–127], a key component in achieving high bandwidth
and energy-efficiency in future DCNs. In [122], we propose an aggregation model
that can accurately predict the performance of OpCut, a hybrid optical/electrical
packet switch, in terms of average latency and packet drop under different traffic
patterns. In [123, 124, 126], we study how to effectively transmit multicast traffic
in all-optical packet switches. We designed a novel FDL buffer structure called M-
FDLs, based on which we proposed a time-efficient, low-latency multicast schedul-
ing algorithm. We also designed a parallel and pipelined scheduler architecture that
achieves line-rate scheduling, which fundamentally solves the scalability problem
of the electrical scheduler in high-speed OPS. Incorporating multicast capability in-
to switches is the first step towards multicast-capable DCNs, which we study next.

The second part of our research focuses on how to deploy multicast commu-
nication with guaranteed bandwidth in fat-tree DCNs in a cost-effective manner
[128–134]. In [128–131], we have explored server redundancy in HA data centers

176

to reduce the cost of nonblocking multicast fat-tree DCNs. We give theory and al-
gorithms to help operators achieve significant cost reduction in building nonblock-
ing multicast fat-tree DCNs, even under the condition of possible server failures.
In [132–134], we present a low-complexity on-line multicast scheduling algorithm
called BCMS for oversubscribed fat-tree DCNs, which leverages centralized con-
trol and global knowledge of network condition of the SDN framework for data
centers to achieve traffic load balance. We show that BCMS can guarantee bounded
congestion in an oversubscribed fat-tree DCN for an arbitrary sequence of multicast
flow requests under hose traffic model.

Third, we study how to achieve predictably high network performance in Hy-
pac DCNs [135]. We find that collaborative network configuration holds the key
to addressing the various challenges currently faced by Hypac DCNs. We design
a low-complexity scheduling algorithm called CBA, which not only drastically re-
duces average packet delay, but also significantly improves network predictability
by utilizing the optical and electrical networks in a complementary manner. More-
over, we show that using CBA, a Hypac DCN can achieve 100% throughput and
bounded delay.

In summary, this dissertation combines theoretical analysis, algorithm design,
network optimization, and simulation techniques to provide a systematic and thor-
ough study on the design of high-performance, cost-effective and multicast-capable
DCNs. Our results reveal interesting and important findings on the fundamental de-
sign principles of DCNs, and have the potential to greatly boost the performance of
numerous cloud computing applications, as well as facilitate the cloud adoption for
many future applications that rely on group communication with predictable high
bandwidth.

177

Bibliography

[1] R. Miller, “Ballmer: Microsoft has 1 Million Servers,”
http://www.datacenterknowledge.com/archives/2013/07/15/ballmer-
microsoft-has-1-million-servers/

[2] “Amazon Web Services,” http://aws.amazon.com/ec2

[3] M. Armbrust, et al. “Above The Clouds: A Berkeley View of Cloud Comput-
ing.” Technical Report UCB/EECS-2009-28, EECS Department, U.C. Berke-
ley, Feb. 2009.

[4] Q. Zhang, L. Cheng, R. Boutaba, “Cloud Computing: State-of-the-art and
Research Challenges”, Journal of Internet Services and Applications, 2010

[5] A. Greenberg, et al, “The Cost of a Cloud: Research Problems in Data Center
Networks,” ACM SIGCOMM CCR Jan. 2009.

[6] M. Alizadeh, et al, “Dctcp: Efficient Packet Transport for The Commoditized
Data Center”. In SIGCOMM, 2010.

[7] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on Large
Clusters.” 6th Symposium on Operating System Design and Implementation
(OSDI), Dec. 2004.

[8] Y. Chen, et al, “A First Look at Inter-Data Center Traffic Characteristics via
Yahoo! Datasets,” IEEE INFOCOM ’11, Mar. 2011.

[9] T. Benson, A. Anand, A. Akella and M. Zhang. “Understanding Data Center
Traffic Characteristics.” 1st ACM Workshop on Research on Enterprise Net-
working (WREN), 2009.

[10] S. Kandula, S. Sengupta, A. Greenberg and P. Patel. “The Nature of Datacenter
Traffic: Measurements & Analysis.” IMC’09, 2009.

[11] S. Ghemawat, H. Gobioff and S. Leung, “The Google File System,” ACM
SOSP’03, Oct. 2003.

178

[12] L. Popa, S. Ratnasamy, G. Iannaccone, et al., “A Cost Comparison of Data-
center Network Architectures,” Proc. ACM Co-NEXT 2010, pp. 16-28, 2010.

[13] A.R. Curtis, S. Keshav and A. Lopez-Ortiz,“LEGUP: Using Heterogeneity to
Reduce The Cost of Data Center Network Upgrades.” ACM CoNext, 2010.

[14] A. R. Curtis, et al. “REWIRE: An Optimization-based Framework for Un-
structured Data Center Network Design,” IEEE INFOCOM, 2012.

[15] M. Al-Fares, et al. “Hedera: Dynamic Flow Scheduling for Data Center Net-
works.” NSDI, 2010.

[16] C. HOPPS, “Analysis of an Equal-Cost Multi-Path Algorithm,” RFC 2992,
IETF, 2000.

[17] Andrew R. Curtis and Alejandro Lopez-Ortiz. “Capacity provisioning a
Valiantload-balanced network.” IEEE INFOCOM’ 09, 2009.

[18] M. Al-Fares, A. Loukissas and A. Vahdat, “A Scalable, Commodity Data Cen-
ter Network Architecture,” Proc. ACM SIGCOMM’08, Aug. 2008.

[19] C. Guo, et al. “BCube: A High Performance, Server-centric Network Archi-
tecture for Modular Data Centers,” ACM SIGCOMM’09, Aug. 2009.

[20] D. Li, et al. ”FiConn: Using Backup Port for Server Interconnection in Data
Centers,” Proc. IEEE INFOCOM, 2009.

[21] D. Guo, et al. “Expandable and Cost-Effective Network Structures for Data
Centers Using Dual-Port Servers,” IEEE Trans. Computers, vol. 62, No. 7,
pp. 1303-1317, Jul. 2013

[22] C. Guo, et al. “DCell: A Scalable and Fault-Tolerant Network Structure for
Data Centers,” ACM SIGCOMM’08, Aug. 2008.

[23] A. Greenberg et al. “VL2: A Scalable and Flexible Data Center Network.”
Proc. ACM SIGCOMM’08, Aug. 2009.

[24] R.N. Mysore, et al., “PortLand: A Scalable Fault-Tolerant Layer 2 Data Center
Network Fabric,” Proc. ACM SIGCOMM’09, pp. 39-50, Aug. 2009.

[25] K. Bilal, et al., “A Taxonomy and Survey on Green Data Center Networks,”
Future Generation Computer Systems, 2013

[26] K. Chen. “Generic and Automatic Address Configuration for Data Center Net-
works.” ACM SIGCOMM, 2010

179

[27] J.S. Turner and R.Melen, “Multirate Clos networks,” IEEE Communications
Magazine, vol. 41, no. 10, pp. 38-44, Oct. 2003.

[28] R. Melen and J.S. Turner, “Nonblocking Multirate Networks,” SIAM Journal
of Computing, vol. 18, no. 2, pp. 301-13, Apr. 1989.

[29] Y. Yang and G.M. Masson, “Nonblocking Broadcast Switching Networks,”
IEEE Transactions on Computers, vol. 40, no. 9, pp. 1005-1015, Sept. 1991.

[30] Y. Yang and G. M. Masson, “The Necessary Conditions for Clos-type Non-
blocking Multicast Networks,” IEEE Transactions on Computers, vol. 48, pp.
1214-1227, 1999.

[31] D. Li, J. Yu, J. Yu and J. Wu, “Exploring Efficient and Scalable Multicast
Routing in Future Data Center Networks,” IEEE INFOCOM ’11, Mar. 2011.

[32] D. Li, Y. Li, J. Wu, S. Su and J. Yu. “ESM: Efficient and Scalable Data Center
Multicast Routing,” IEEE Trans. NETWORKING, vol. 20, No. 3, pp. 944-955,
Jun. 2012.

[33] D. Li, et al, “RDCM: Reliable Data Center Multicast,” IEEE INFOCOM,
2011.

[34] D. Li, et al., “Scalable Data Center Multicast Using Multi-class Bloom Filter,”
IEEE ICNP, 2011.

[35] H. Takahashi and A. Matsuyama, “An Approximate Solution for The Steiner
Problem in Graphs,” Mathematica Japonica, vol. 24, pp. 573-577, 1980.

[36] L. Kou, G. Markowsky and L. Berman, “A Fast Algorithm for Steiner Trees,”
Acta Informatica, vol. 15, pp. 141-145, 1981.

[37] B. Awerbuch, Y, Azar, “Competitive Multicast Routing,” Wireless Networks
vol. 1, no. 1, pp. 107-114, 1995.

[38] B. Awerbuch, Y. Azar, and S. Plotkin. “Throughput competitive online rout-
ing.” In 34th IEEE Symposium on Foundations of Computer Science, 1993.

[39] C. Kachris and I. Tomkos, “A Survey on Optical Interconnects for Data Cen-
ters,” IEEE Communications Surveys & Tutorials, vol. 14, no. 4, pp. 1021-
1036, 2012.

[40] G. Wang, et al, “c-Through: Part-time Optics in Data Centers.” ACM SIG-
COMM’10, Aug. 2010.

180

[41] N. Farrington, et al., “Helios: A Hybrid Electrical/Optical Switch Architecture
for Modular Data Centers.” ACM SIGCOMM CCR no. 4, pp. 339-350, 2011.

[42] H. H. Bazzaz, et al., “Switching The Optical Divide: Fundamental Chal-
lenges for Hybrid Electrical/Optical Datacenter Networks.” ACM Symposium
on Cloud Computing. 2011.

[43] “Open Networking Foundation”, https://www.opennetworking.org/

[44] N. Gude, et al. “NOX:Towards an Operating System for Networks.” In SIG-
COMM CCR, July 2008.

[45] Andrew R. Curtis, et al. “DevoFlow: Scaling Flow Management for High-
performance Networks.” ACM SIGCOMM, 2011.

[46] Sushant Jain, et, al. “B4: Experience with a Globally-Deployed Software De-
fined WAN.” ACM SIGCOMM, 2013.

[47] Y. Cui, ”Wireless Data Center Networking,” IEEE Wireless Communications,
vol.18, no.6, pp.46,53, Dec. 2011

[48] H. Huang, “The Architecture and Traffic Management of Wireless Collabo-
rated Hybrid Data Center Network” ACM SIGCOMM, 2013

[49] D. Halperin, et al. “Augmenting Data Center Networks with Multi-gigabit
Wireless Links” ACM SIGCOMM CCR, 2011.

[50] M. Handley. “Why the Internet Only Just Works.” BT Technology Journal,
2006.

[51] N. Mckeown, et al. “OpenFlow: Enabling Innovation in Campus Networks,”
ACM SIGCOMM CCR, 2008.

[52] A. Shieh, S. Kandula, A. Greenberg and C. Kim. “Sharing the Data Center
Network.” USENIX NSDI, 2011.

[53] C. Kachris, et al. “ A Survey on Optical Interconnects for Data Centers.” IEEE
Communications Surveys & Tutorials, 2011

[54] X. Ye, et al., “DOS: A Scalable Optical Switch for Datacenters,” ACM/IEEE
ANCS, 2010

[55] R. Proietti, et al., “40 Gb/s 8x8 Low-latency Optical Switch for Data Centers,”
OSA OFC/NFOEC, 2011.

181

[56] H. J. Chao, Z. Jing, and K. Deng, “PetaStar: A Petabit Photonic Packet
Switch,” IEEE JSAC, vol. 21, pp. 1096C1112, 2003

[57] R. Luijten, W. E. Denzel, R. R. Grzybowski, and R. Hemenway, “Optical in-
terconnection networks: The OSMOSIS project,” in The 17th Annual Meeting
of the IEEE Lasers and Electro-Optics Society, 2004.

[58] R. Hemenway, R. Grzybowski, C. Minkenberg, and R. Luijten, “Optical
Packet-switched Interconnect for Supercomputer Applications,” J. Opt. Netw.,
vol. 3, no. 12, pp. 900C913, Dec. 2004

[59] H. Ballani, P. Costa, T. Karagiannis and A. Rowstron, “Towards Predictable
Datacenter Networks,” ACM SIGCOMM, 2011.

[60] C. Raiciu, et al, “Improving Datacenter Performance and Robustness with
Multipath TCP” ACM SIGCOMM, 2011.

[61] A.G.P. Rahbar and O.W.W. Yang, “Contention Avoidance and Resolution
Schemes in Bufferless All-optical Packet-Switched networks: a survey,” IEEE
Communications Surveys & Tutorials vol. 10, no. 4, pp. 94-107,

[62] Z. Zhang and Y. Yang, “Performance Analysis of Optical Packet Switches En-
hanced with Electronic Buffering,” IEEE International Symposium on Parallel
& Distributed Processing, pp. 1-9, May 2009.

[63] L. Liu, Z. Zhang and Y. Yang, “Packet Scheduling in A Low Latency Optical
Packet Switch,” Proc. of the 11th International Conference on High Perfor-
mance Switching and Routing (HPSR 2010), Dallas, TX, June 2010.

[64] S.-T. Chuang, A. Goel, N. McKeown and B. Prabhakar, “Matching Output
Queueing with A Combined Input Output Queued Switch,”in Proc. IEEE IN-
FOCOM 1999, pp. 1169-1178, vol. 3, Mar. 1999.

[65] G. Bianchi and J.S.Turner, “Improved Queueing Analysis of Shared Buffer
Switching Networks,” IEEE/ACM Trans. Netw., vol. 1, no. 4, pp. 482-490,
Aug. 1993.

[66] J.A. Schormans and J.M. Pitts, “Overflow Probability in Shared Cell Switched
Buffers,” IEEE Communi. Lett., vol. 4, no. 5, pp. 167-169, May 2000.

[67] Z. Zhang and Y. Yang, “A Novel Analytical Model for Switches with Shared
Buffer,” IEEE/ACM Trans. Netw., vol. 15, no. 5, pp. 1191-1203, Oct. 2007.

182

[68] S. Fong and S. Singh, “Modeling Cell Departure for Shared Buffer ATM
Switch,” Proc. IEEE Int. Conf. Communications (ICC ’98), vol. 3, pp. 1824-
1828, Jun. 1998.

[69] L. Xu, H.-G. Perros and G.-N. Rouskas, “A Queueing Network Model of An
Edge Optical Burst Switching Node,” in Proc. IEEE INFOCOM 2003, pp.
2019- 2029, vol.3, Apr. 2003

[70] L. Xu, H.G. Perros and G. Rouskas, “Techniques for Optical Packet Switching
and Optical Burst Switching,” IEEE Commun. Mag., vol. 39, no. 1, pp. 136-
142, Jan. 2001.

[71] M. Karol, M. Hluchyj and S. Morgan, “Input Versus Output Queueing on A
Space-division Packet Switch,” IEEE Trans. Commun., vol. 35, no. 12, pp.
1347- 1356, Dec 1987.

[72] T. Zhang, K. Lu and J.R. Jue, “Shared Fiber Delay Line Buffers in Asyn-
chronous Optical Packet Switches,” IEEE JSAC, vol. 24, no. 4, pp. 118-127,
2006

[73] Z. Zhang and Y. Yang, “Performance Modeling of Bufferless WDM Pack-
et Switching Networks with Limited-range Wavelength Conversion,” IEEE
Trans. Commun., vol. 54, no. 8, pp. 1473-1480, Aug. 2006.

[74] S. Sharma and Y. Viniotis, “Optimal Buffer Management Policies for Shared-
buffer ATM Switches,” IEEE/ACM Trans. Netw., vol. 7, no. 4, pp. 575-587,
Aug 1999.

[75] Z. Guo, X. Luo, Y. Jin, et al, “Improving Resource Utilization in Hybrid Pack-
et/circuit Multicasting for IPTV Delivery,” OFC 2008, 2008.

[76] Q. Huang and W. Zhong, “A Wavelength-routed Multicast Packet Switch with
a Shared-FDL Buffer,” Journal of Lightwave Technology, vol. 28, pp. 2822-
2829, Oct. 2010.

[77] Q. Huang and W.D. Zhong, “An Optical Wavelength-routed Multicast Packet
Switch Based on Multi-timeslot Multi-wavelength Conversion,” IEEE Pho-
tonic Technology Letter, vol. 20, no. 18, pp. 1518-1520, 2008.

[78] H. Yang and S.J.B. Yoo, “All-optical Variable Buffering Strategies and Switch
Fabric Architectures for Future All-optical Data Routers,” IEEE Journal of
Lightwave Technology, vol. 23, pp. 3321-3330, Oct. 2005.

183

[79] P. Gambini, et al., “Transparent Optical Packet Switching: Network Archi-
tecture and Demonstrators in the KEOPS Project,” IEEE Journal on Selected
Areas Communications, vol. 16, no. 7, pp. 1245-1259, Sep. 1998.

[80] C. Guillemot, et al., “Transparent Optical Packet Switching: The European
ACTS KEOPS Project Approach,”IEEE Journal of Lightwave Technology,,
vol. 16, no. 12, pp. 2117-2134, Dec. 1998.

[81] X. Qin and Y. Yang, “Multicast Connection Capacity of WDM Switching Net-
works with Limited Wavelength Conversion,” IEEE/ACM Trans. Networking,
vol. 12, no. 3, pp. 526-538, June 2004.

[82] C. Zhou and Y. Yang, “Wide-sense Nonblocking Multicast in a Class of Reg-
ular Optical WDM Networks,” IEEE Trans. Communications, vol. 50, no. 1,
pp. 126-134, Jan. 2002.

[83] Y. Wang and Y. Yang, “Multicasting in A Class of Multicast-capable WDM
Networks,” Jounral of Lightwave Technology, vol. 20, no. 3, pp. 350-359,
March 2002.

[84] D. Pan and Y. Yang, “FIFO-based Multicast Scheduling Algorithm for Virtual
Output Queued Packet Switches,” IEEE Trans. Computers, vol. 54, no. 10, pp.
1283-1297, Oct. 2005.

[85] B. Prabhakar, N. McKeown and R. Ahuja, “Multicast Scheduling for Input-
queued Switches,” IEEE Journal on Selected Areas in Communications vol.
15, no. 5, pp. 855-866, June 1997.

[86] M.A. Marsan, A. Bianco, P. Giaccone, E. Leonardi and F. Neri, “Multi-
cast Traffic in Input-queued Switches: Optimal Scheduling and Maximum
Throughput,” IEEE/ACM Trans. Networking, vol. 11, no. 3, pp. 465-477, June
2003.

[87] A. Wonfor, H. Wang, R.V. Penty, and I.H. White, “Large Port Count High-
speed Optical Switch Fabric for Use Within Datacenters [Invited],” IEEE/OSA
Journal of Optical Communications and Networking, vol.3, no.8, pp.A32-
A39, Aug. 2011.

[88] H. Harai and M. Murata, “Optical Fiber-delay-line Buffer Management in
Output-buffered Photonic Packet Switch to Support Service Differentiation,”
IEEE Journal on Selected Areas in Communications, vol. 24, no. 8, pp. 108-
116, Aug. 2006.

184

[89] W.T. Chen, C.F. Huang, Y.L. Chang and W.Y. Hwang, “An Efficient Cell-
scheduling Algorithm for Multicast ATM Switching Systems,” IEEE/ACM
Trans. Networking, vol.8, no.4, pp. 517-525, 2000.

[90] Y. Hao, S. Ruepp, M.S. Berger, and L. Dittmann, “Integration of Look-ahead
Multicast and Unicast Scheduling for Input-queued Cell Switches,” IEEE H-
PSR 2012 pp.24-27, June 2012

[91] H. Harai and M. Murata, “High-speed Buffer Management for 40 Gb/s-based
Photonic Packet Switches,” IEEE/ACM Trans. Networking, vol. 14, pp. 191-
204, Feb. 2006.

[92] N. McKeown, “The iSLIP Scheduling Algorithm for Input-queued Switches,”
IEEE/ACM Trans. Networking,, vol.7, no.4, pp.188C201, Apr.1999

[93] A. Prakash, S. Sharif, and A. Aziz, “An O(log2N) Parallel Algorithm for
Output Queueing,” IEEE INFOCOM 2002, pp.1623C1629, Jun. 2002.

[94] H.Furukawa, H. Harai, M. Ohta and N. Wada, “Implementation of High-
speed Buffer Management for Asynchronous Variable-length Optical Packet
Switch,”OFC 2010, Mar. 2010

[95] S. Yu, S.-C. Lee, O. Ansell and R. Varrazza, “Lossless Optical Packet Multi-
cast Using Active Vertical Coupler Based Optical Crosspoint Switch Matrix,”
IEEE Journal of Lightwave Technology, vol. 23, no. 10, pp. 2984-2992, Oct.
2005.

[96] A. Bianco,et al., “On the Number of Input Queues to Efficiently Support Mul-
ticast Traffic in Input Queued Switches,” IEEE High Performance Switching
and Routing 2003 Jun. 2003.

[97] K. Claffy, D. Andersen and P. Hick, “The CAIDA Anonymized 2010 Internet
Traces,”
http://www.caida.org/data/passive/passive 2010 dataset.xml

[98] K. Bilal, et al., “Quantitative Comparisons of the State of the Art Data Center
Architectures,” Concurrency and Computation: Practice and Experience, vol.
25, no. 12, pp. 1771-1783, 2013.

[99] K. Bilal, et al., “On the Characterization of the Structural Robustness of Data
Center Networks,” IEEE Transactions on Cloud Computing vol.1, no.1, Jan.
2013

[100] M. Manzano, et al., “On the Connectivity of Data Center Networks,”IEEE
Communications Letters, vol 17, no. 11, Nov. 2013

185

[101] “Data Center High Availability Clusters Design Guide.”
http://www.cisco.com/en/US/docs/solutions/Enterprise/Data Center/HA
Clusters/HA Clusters.html

[102] “A Technology and Networking Guide for High Avail-
ability Clusters Extended Across Multiple Data Centers,”
www.cisco.com/global/EMEA/cds/corporate marketing/
HA Clusters White Paper.pdf

[103] S. Distefano, F. Longo and M. Scarpa, “Availability Assessment of HA S-
tandby Redundant Clusters,” 29th IEEE Symposium on Reliable Distributed
Systems, pp. 265-274, Oct. 2010.

[104] G.M. Masson and B.W. Jordan, “Generalized Multi-stage Connection Net-
works,” Networks, vol. 2, pp. 191-209, 1972.

[105] F.K. Hwang, “Rearrangeability of Multiconnection Three-stage Networks,”
Networks, vol. 2, pp. 301-306, 1972.

[106] S.C. Liew, Ming-Hung Ng and C.W. Chan, “Blocking and Nonblocking Mul-
tirate Clos Switching Networks,” IEEE/ACM Transactions on Networking,
vol. 6, no. 3, pp. 307-318, Jun. 1998.

[107] Y. Yang, “An Analysis Model on Nonblocking Multirate Broadcast Net-
works,” ACM International Conference on Supercomputing, pp. 256-263,
1994.

[108] N. Bonvin, T.G. Papaioannou and K. Aberer, “Cost-efficient and Differenti-
ated Data Availability Guarantees in Data Clouds,” IEEE ICDE’ 10, pp. 980-
983, Mar. 2010.

[109] K. Vishwanath and N. Nagappan, “Characterizing Cloud Computing Hard-
ware Reliability” Proceedings of the 1st ACM symposium on Cloud computing
(SoCC ’10), 2010.

[110] R.E. Tarjan, “Dynamic Trees As Search Trees Via Euler Tours Applied to
The Network Simplex Algorithm.” Mathematical Programming 1997.

[111] R.K. Ahuja, T.L. Magnanti and J. B. Orlin, Network Flows: Theory, Algo-
rithms and Applications, Prentice Hall, 1993.

[112] N. G. Duffield, et al, “A Flexible Model for Resource Management in Virtual
Private Networks,” ACM SIGCOMM, 1999.

186

[113] C. Clos, “A study of non-blocking switching networks”. Bell System Techni-
cal Journal, Mar. 1953.

[114] C. Chang, W. Chen and H. Huang, “Birkhoff-von Neumann Input-buffered
Crossbar Switches for Guaranteed-rate Services,” IEEE Transactions on Com-
munications, vol. 49, no. 7, pp.1145-1147, Jul. 2001.

[115] I. Keslassy, M. Kodialam, T. V. Lakshman and D. Stiliadis, “On Guaranteed
Smooth Scheduling for Input-Queued Switches,” IEEE/ACM Transactions on
Networking vol. 13, no. 6, pp. 1364-1375, Dec. 2005.

[116] B. Towles and W. J. Dally, “Guaranteed Scheduling for Switches with Con-
figuration Overhead.” IEEE/ACM Transactions on Networking vol. 11, no. 5,
pp. 835-847, Oct. 2003.

[117] B. Wu, K.L. Yeung, M. Hamdi and L. Xin, “Minimizing Internal Speedup for
Performance Guaranteed Switches With Optical Fabrics,” IEEE/ACM Trans-
actions on Networking, vol. 17, no. 2, pp. 632-645, Apr. 2009.

[118] M. Akbar, and et al., “Solving The Multidimensional Multiple-choice K-
napsack Problem by Constructing Convex Hulls.” Computers and Operations
Research vol. 33, no. 5, May 2006.

[119] R.Cole and J. Hopcroft, “On Edge Coloring Bipartite Graphs” SIAM J. Com-
put., vol. 11, pp.540-546, 1982.

[120] Jonathan L. Gross, J. Yellen, “Graph Theory and Its Applications”, CRC
Press, pp. 568, 2005.

[121] H. Wang and K. Bergman, “A Bidirectional 2×2 Photonic Network Building-
Block for High-performance Data Centers,” Optical Fiber Communication
Conference and Exposition (OFC/NFOEC) Mar. 2011.

[122] Z. Guo, Z. Zhang and Y. Yang, “Performance Modeling of Hybrid Optical
Packet Switches with Shared Buffer, IEEE INFOCOM, 2011.

[123] Z. Guo and Y. Yang, “Pipelining Multicast Scheduling in All-Optical Packet
Switches with Delay Guarantee, 23rd International Teletraffic Congress (ITC),
Sept. 2011.

[124] Z. Guo and Y. Yang, “High-Speed Multicast Scheduling for All-Optical
Packet Switches, IEEE NAS 13, July 2013.

[125] Z. Zhang, Z. Guo and Y. Yang, “Bounded-Reorder Packet Scheduling in Op-
tical Cut-through Switch, IEEE INFOCOM, 2013.

187

[126] Z. Guo and Y. Yang, Low-Latency Multicast Scheduling Algorithm for All-
Optical Interconnects, to appear in IEEE Transactions on Communications,
2014.

[127] Z. Guo and Y. Yang, “High Speed Multicast Scheduling in Hybrid Optical
Packet Switches with Guaranteed Latency, IEEE Transactions on Computers.
vol. 62, no.10, pp.1972-1987, Oct. 2013

[128] Z. Guo, Z. Zhang and Y. Yang, “Exploring Server Redundancy in Nonblock-
ing Multicast Data Center Networks, IEEE INFOCOM, 2012.

[129] Z. Guo and Y. Yang, “On Nonblocking Multirate Multicast Fat-tree Data
Center Networks with Server Redundancy, IEEE IPDPS, 2012.

[130] Z. Guo and Y. Yang, “Exploring Server Redundancy in Nonblocking Multi-
cast Data Center Networks, to appear in IEEE Transactions on Computers.

[131] Z. Guo and Y. Yang, “On Nonblocking Multirate Multicast Fat-tree Data
Center Networks with Server Redundancy, to appear in IEEE Transactions on
Computers

[132] Z. Guo, J. Duan and Y. Yang, “Oversubscription Bounded Multicast Schedul-
ing in Fat-tree Data Center Networks, IEEE IPDPS, 2013.

[133] Z. Guo and Y. Yang, “Multicast Fat-tree Data Center Networks with Bounded
Link Oversubscription, IEEE INFOCOM Mini, 2013.

[134] Z. Guo, J. Duan and Y. Yang, “On-line Multicast Scheduling with Bounded
Congestion in Fat-tree Data Center Networks, IEEE Journal on Selected Areas
in Communications (J-SAC), vol. 32, no. 1, Jan. 2014.

[135] Z. Guo and Y. Yang, “ Collaborative Network Configuration in Hybrid Elec-
trical/optical Data Center Networks, IEEE IPDPS, 2014

188

	 List of Figures
	 List of Tables
	Acknowledgements
	List of Publications
	1 Introduction and Related Work
	1.1 Data Center Networks in Cloud Computing
	1.2 Design Goals of DCNs
	1.3 A Taxonomy for DCN Research
	1.3.1 Switching
	1.3.2 Topology Design
	1.3.3 Load balancing
	1.3.4 Control and Management
	1.3.5 Novel Architectures

	1.4 Our Research and Contributions
	1.5 Dissertation Outline

	2 Performance Modeling of Hybrid Optical Packet Switches with Shared Buffer
	2.1 Introduction and Related Work
	2.2 The OpCut Switch
	2.3 Aggregation Model - An Overview
	2.4 The Model for Bernoulli Traffic
	2.4.1 Preliminary - Cut-through
	2.4.2 Getting Started - Analyzing Two Queues
	2.4.3 Aggregating Two Queues
	2.4.4 Iteration - More Queues
	2.4.5 Using the Model

	2.5 The Model for ON-OFF Markovian Traffic
	2.6 Aggregation Model for WDM Optical Cut-through Switch
	2.7 Validation of the Aggregation Model
	2.7.1 Single-Wavelength OpCut Switch
	2.7.2 WDM OpCut Switch

	2.8 Conclusions

	3 Low-Latency Multicast Scheduling in Optical Packet Switches
	3.1 Introduction and Related Work
	3.2 Interconnect Architecture and Buffer Management
	3.2.1 Interconnect Architecture
	3.2.2 Buffer Management

	3.3 Low Latency Multicast Scheduling (LLMS)
	3.3.1 Preliminaries
	3.3.2 General Description
	3.3.3 Implementation Details
	3.3.4 A Scheduling Example
	3.3.5 Prioritized LLMS

	3.4 Pipeline and Parallel Architecture
	3.5 Performance Evaluations
	3.5.1 Performance under Bernoulli Traffic
	3.5.2 Performance under Gathered Traffic
	3.5.3 Performance under Unicast Traffic
	3.5.4 Performance under Internet Traffic

	3.6 Conclusions

	4 Exploring Server Redundancy in Constructing Cost-Effective Nonblocking Multicast Fat-tree Data Center Networks
	4.1 Introduction
	4.2 Related Work
	4.3 Preliminaries
	4.3.1 Fat-tree DCNs
	4.3.2 Server Redundancy in HA Data Centers
	4.3.3 Multirate Network Model

	4.4 Nonblocking Condition for Multicast Fat-tree DCNs in Redundant Data Centers
	4.4.1 Sufficient Condition for 2-Redundant Fat-tree DCNs
	4.4.2 Sufficient Condition for General Redundant Fat-tree DCNs
	4.4.3 Extensions

	4.5 Server Reassignment in Faulty Redundant Data Centers
	4.5.1 Uneven Congestion Caused by Server Failure
	4.5.2 Optimal Server Reassignment

	4.6 Comparison of Network Costs
	4.7 Conclusions

	5 On-line Multicast Scheduling with Bounded Congestion in Fat-tree Data Center Networks
	5.1 Introduction
	5.2 Related Work
	5.3 Preliminary
	5.3.1 Fat-Tree DCNs
	5.3.2 Hose Traffic Model
	5.3.3 Multicast Flow Scheduling in DCNs

	5.4 Network Model
	5.5 On-line Multicast Scheduling with Bounded Congestion
	5.5.1 Notations
	5.5.2 Bounded Congestion Multicast Scheduling Algorithm
	5.5.3 Scheduling Example

	5.6 Theoretical Analysis
	5.6.1 Discussions

	5.7 Performance Evaluations
	5.8 Conclusions

	6 Collaborative Network Configuration in Hybrid Electrical/optical Data Center Networks
	6.1 Introduction
	6.2 Related Work
	6.3 The Hypac DCN
	6.3.1 A General Hypac DCN Architecture
	6.3.2 Challenges in Current Hypac DCNs

	6.4 Network Model and Problem Formulation
	6.4.1 Modeling the OCS network
	6.4.2 Modeling the EPS network
	6.4.3 Network Control
	6.4.4 Problem Formulation

	6.5 The Collaborative Bandwidth Allocation (CBA) Algorithm
	6.5.1 Overview
	6.5.2 The OCS Network Configuration
	6.5.3 The EPS Network Bandwidth Allocation
	6.5.4 Complexity Analysis

	6.6 Network Condition for Guaranteed Performance
	6.7 Performance Evaluation
	6.8 Conclusion

	7 Conclusions

