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Abstract of the Dissertation 

Statistical Frameworks for Integrative Analysis of Genetic Data  

by 

Lizhen Peng 

Doctor of Philosophy 

in 

Applied Mathematics and Statistics 

Stony Brook University 

2015 

 

We studied three major interconnected projects focusing on establishing frameworks for 

integrative analysis of genetic data, based on regularized regression models, support vector 

machines regressions, Cox proportional hazard models, multiple kernel learning models, and 

kernel Cox regressions, incorporated with dimensionality reduction and feature selections. In 

Project 1 we employed several machine learning algorithms for clinical predictions utilizing 

omics data across cancer types, to explore the potential benefits of including genetic 

measurements with traditional clinical information in supporting the doctors’ decision making 

process.  To predict the survival of patients with cancer, we established two predictive models. 

First we applied the multivariate Cox proportional hazard (Cox) models with univariate Cox 

screen or correlation screen, plus L1 penalized log partial likelihood (LASSO) for feature 

selection. Secondly, we also examined the factors that could affect prediction of dichotomized 

survival data by different machine learning algorithms, especially the multiple kernel learning 
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(MKL) algorithms for its data fusion capability. Our analysis indicates that incorporating omics 

data with clinical information can significantly improve prediction accuracy. Our study provides 

a sound framework and resources for reliable prognostic modeling and therapeutic decision 

making. In Project 2 we assessed comprehensively, by using genome-wide DNA methylation 

data as markers, the contribution of epigenetic effects on asthma and blood related quantitative 

traits. To evaluate the clinical utility of epigenetic markers, we constructed and compared 

various prediction models by including top ranked methylation loci from the genome-wide 

association scan, together with selected sets of known genetic markers from published genome-

wide association studies. We observed a significant increase in correlation between actual and 

predicted IgE level when methylation markers were included. We also assessed the performance 

of cross platform prediction using methylation markers. Taken together, results from our 

assessment suggest that methylation has great potential in predicting clinical phenotypes. Finally, 

in Project 3, we explored the kernel Cox regression models and survival support vector machines 

to improve the prediction accuracy of patients with metastatic castrate resistant prostate cancer 

(mCRPC) treated by docetaxel. We studied the effects of utilizing clinical kernels to obtain 

better results than linear and Gaussian kernels, with clinical variables for prognostic modeling. 
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Chapter 1 Introduction 

High-throughput assay technologies have enabled various genomic profiles available for 

study, which include mRNA gene expression, DNA methylation (mDNA), reverse phase protein 

array (RPPA), and microRNA for over than 30 cancer types. However, the benefits of integrating 

genomic profiles with traditional clinical variables, for clinical management of cancer, have not 

yet been systematically studied.  

In this work, we established three comprehensive analytic frameworks for integrative analysis of 

genetic data, for different research goals. This chapter will provide an overview of these three 

interconnected main projects (Figure 1.1) followed by a brief introduction of our general 

approaches in model assessment and selection. 

Figure 1.1 Illustration of Our Projects 
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1.1 Literature Review 

Providing accurate patient prognosis is critical in clinical decision making for it will 

enable doctors to group patients into different risk groups and subsequently, choose the best 

treatment strategies. Commonly, prognosis is based on clinical variables such as age and cancer 

stage, and more recently a few gene expression-based markers have been adapted in clinical 

practice. Researchers have made extensive efforts to incorporate genetic measurement into 

prognostic modeling. For instance, important biomarkers in breast cancer, such as ER, PR, HER2 

protein levels and HER2 genomic amplification have shown high clinical value [1]. However, 

this and other previous studies have either focused on a small number of selected genes/proteins 

or have used only single-platform genomic data, due to the high cost of large scale genetic 

profiling.  

1.2 Overview of Three Interconnected Projects 

Clinical predictions utilizing multi omics data across cancer types 

First, for predicting survival for patients with cancer, we studied several different cancer 

types including ovarian serous cystadenocarcinoma (OV), kidney renal clear cell carcinoma 

(KIRC), glioblastoma multiforme (GBM), lung squamous cell carcinoma (LUSC), and skin 

cutaneous melanoma (SKCM), by applying multivariate Cox proportional hazard (Cox) models 

with univariate Cox screen or correlation screen, plus L1 penalized log partial likelihood 

(incorporated in   LASSO) for feature selection. We also explored the factors that could affect 

prediction of dichotomized survival data, utilizing several methods: (i) Support Vector Machines 

(SVMs), (ii) K-nearest neighbor (KNN), (iii) Random Forest (RF), and most importantly (iv) 



 

3 

 

MKL algorithms to optimize their prediction performance.  

Recently, the availability of multi Omics data have provided scientists with 

complementary views on survival analysis for cancers and at the same time, highlighted a 

particular challenge: to integrate genetic data in different measurements and from different 

sources. In this study, we proposed statistical frameworks for integrative analysis of genetic data, 

to study the potential benefits of including genetic measurements with traditional clinical 

information.   

In order to predict survival time of patients with cancer, we studied several cancer types 

including ovarian serous cystadenocarcinoma (OV), kidney renal clear cell carcinoma (KIRC), 

glioblastoma multiforme (GBM), and lung squamous cell carcinoma (LUSC). First we applied 

multivariate Cox proportional hazard (Cox) models with L1 penalized log partial likelihood 

(LASSO) for feature selection. We studied the Cox models with only clinical information and 

models incorporating both genetic data and clinical information, to identify the marginal 

improvement of adding genetic profiles.  

In addition to analyzing censored survival data, we also examined the factors that could 

affect prediction of dichotomized survival data. There are many machine learning algorithms for 

classifying binary outcomes, and we picked three most popular and well-established methods for 

comparison purpose: (i) Support Vector Machines (SVM), (ii) K-nearest neighbor (KNN), (iii) 

Random Forest (RF). But none of these methods are capable of integrating data coming from 

different feature sets (different representations), that is why we are most interested in studying 

the multiple kernel learning (MKL) algorithms for data fusion. 

Predicting serum IgE level and blood cell proportions from methylation profile 
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Secondly, we also studied the impact of integrating genetic and epigenetic profiles on 

predicting blood cell proportions of patients with asthma. To evaluate the clinical utility of 

epigenetic markers, we constructed and compared various prediction models by including top 

ranked methylation loci from the genome-wide association scan, together with selected sets of 

known genetic markers from published genome-wide association studies.  

DNA methylation at CpG sites is an important epigenetic modification that may regulate 

gene expression. There is a growing interest in understanding how the methylation inheritance 

contributes to the development of complex diseases or traits. It has been shown that methylation 

modification may influence individual asthma risk and related phenotypes. The primary purpose 

of this study is to comprehensively assess—by using genome-wide DNA methylation data as 

markers—the contribution of epigenetic effects on asthma and blood related quantitative traits. 

To evaluate the clinical utility of epigenetic markers, we constructed and compared various 

prediction models by including top ranked methylation loci from the genome-wide association 

scan, together with selected sets of known genetic markers from published genome-wide 

association studies. A new prediction model based upon Best Linear Unbiased Prediction 

(BLUP) was further proposed where all CpG sites (on the Illumina Infinium 27K methylation 

array and 450K array) were simultaneously modeled. The overall prediction accuracies of the 

proposed methods were extensively evaluated via the cross-validation analysis. We observed a 

significant increase in correlation between the actual and the predicted IgE level when 

methylation markers were included. By using an independent sample based on Illumina 450K 

methylation array, we also assessed the performance of cross platform prediction using 

methylation markers. Taken together, results from our assessment suggest that methylation has 

great potential in prediction of clinical phenotypes. 
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Survival prediction with Kernel Methods  

Our third project mainly focuses on improving the survival prediction for patients with 

metastatic castrate resistant prostate cancer (mCRPC). We implemented Kernel Cox regressions, 

especially the case with Clinical kernel, which is supposed to be better than linear and Gaussian 

with clinical variables. The potential benefit of this study is to establish better prognostic models, 

to help support clinical decisions, and to better understand the mechanism of mCRPC disease 

progression.  

1.3 Model Assessment and Selection 

To evaluate the performance of a learning method, we need to evaluate its prediction 

capability on test data independent to the original training set. In practice, it is extremely 

important to assess model performance to guide the choice of learning method or model. In this 

section we describe and illustrate the key methods for performance assessment, including both 

cross validation and information criteria (AIC, BIC), and show how they are applied in model 

selections. We begin this section with a discussion of the bias-variance dilemma.  

Ideally, we would wish that both the bias and variance of our proposed model are as small 

as possible, as we prefer that with smaller expected mean square error. So in order to minimize 

expected MSE, we hope that we can push both bias and variance to be as small as possible. But 

in reality, this is not attainable, since both bias and variance are a function of model complexity, 

but with different trends.  

For analytical approaches, popular model assessment methods are the Akaike information 

criterion (AIC) [2] and the Bayesian information criterion (BIC) [3]. For any statistical model, 
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the AIC value is 2ln( ) 2AIC L k   , where L  denoted as the likelihood function for the model, 

and k  is the number of parameters in the model. We prefer to choose the model with the 

minimum AIC value from a given set of candidate models. The BIC works in a similar as the 

AIC. It is also based on the likelihood function and a penalty term. Its formula is closely related 

to AIC, but with a slightly different penalty incorporating the sample size (N) as well: 

2ln( ) ln( )BIC L k N   . Adding parameters can possibly increase the likelihood, but it may 

also bring in the problem of over-fitting. Introducing a penalty term for the number of parameters 

in the model in BIC and AIC criterion can help resolve the over-fitting issue. In general, the 

penalty term is larger in the BIC than in the AIC.  

Except analytical methods, cross validation as an assessing approach, has also been 

widely used to check model error by testing on an independent data. In K-fold cross validation, 

first randomly partitioning the original sample into K equal size subsets, using (K – 1) subsets as 

training data for modeling and retaining one subset as the validation data for testing; then repeat 

the cross-validation process K rounds. Multiple rounds of cross-validation are performed to 

reduce variability of different partitions, and to average all validation results as the final result. 

The simplest version of K-fold cross validation is a 2-fold cross validation. And the leave-one-

out cross validation is an extreme case that retains only one observation from the original sample 

as the validation data, while using the all but one data pints for the training.  
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Chapter 2 Clinical Predictions Utilizing Multi Omics Data  

The recent availability of multiple types of genome-wide data provides scientists with 

complementary views on survival analysis for cancer patients and highlights a particular 

challenge: to integrate genetic data in different measures and from multiple sources. The ultimate 

goal of this study is to establish statistical frameworks for integrative analysis of genetic data, 

and thereby understand the potential benefits of incorporating genetic measurements with 

traditional clinical information, for better patient prognostic analysis in support of clinical 

strategies.    

For the five cancer types we have studied,Ovarian serous cystadenocarcinoma (OV), 

Kidney renal clear cell carcinoma (KIRC), Lung squamous cell carcinoma (LUSC), 

Glioblastoma multiforme (GBM), Skin Cutaneous Melanoma (SKCM),- we found  that no gene 

expression signatures were routinely used in clinical practice for lung cancer and kidney cancer. 

For GBM and OV, currently findings have limited influence on clinical decision making, 

although MGMT promoter methylation, and the status of other few markers, are frequently used 

for patients with GBM and CA125 for patients with OV [46, 47].  

In this chapter, we will first introduce the Cancer Genome Atlas (TCGA), where we 

obtained all the clinical and omics data for our study. Then we will provide an intensive and 

detailed workflow for TCGA data collection and preprocessing. Special attentions might be 

warranted for our methodologies and results, where we will show the added benefit of multi-

source omics data for prediction of clinical prognostic factors (e.g. blood IgE levels and cell 

proportions), for survival prediction by kernel Cox regression, and for prediction of 

dichotomized survival data, by several machine learning algorithms, such as SVM, RF, KNN 
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and MKL.  

 
Figure 2.1 Illustration of Clinical Predictions Utilizing Multi Omics Data 

 

2.1 Introduction 

The Cancer Genome Atlas  

Since its inception in 2005, the Cancer Genome Atlas (TCGA) project has made 

significant contributions to accelerating the interconnection study and integrative analysis of 

cancer genome data, using genome sequencing and bioinformatics (https://tcga-

data.nci.nih.gov/tcga/) [1, 2]. As an ideal test bed for conducting and comparing different 

analyses, TCGA provides the public with comprehensive profiling data (e.g. Gene Expression 

(mRNA), DNA methylation (mDNA), microRNA expression (miRNA), and reverse phase 

protein array (RPPA)) for tumor samples of more than 30 cancer types [1]. 

With the rapid development of new genetic measurement methods, multi Omics data can 
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be quantified in a high-throughput manner. Multi-dimensional genetic data can be analyzed in 

many different ways. Besides the initial focus on investigating each individual data type 

separately, there are increasing number of researches have been conducted with focus from other 

perspectives such as studies of interconnections between two or more types of regulations [3-10]. 

For instance, the correlation structure of mRNA with DNA methylation, CNV and miRNA have 

been studied in [4, 5, 10]. 

Overview of the Study 

A few exploratory research projects has been conducted to access the prognostic power 

of genetic data for clinical utilization [11]. However, the marginal gains of predictive 

performance were very limited in these studies, by only incorporating one type of genetic data on 

top of clinical information at each time. Our overall goal is to improve the prediction 

performance, by examining different methods and algorithms, as well as examining several novel 

techniques for feature selection and integration.  

We studied several different cancer types, ovarian serous cystadenocarcinoma (OV), 

kidney renal clear cell carcinoma (KIRC), glioblastoma multiforme (GBM), lung squamous cell 

carcinoma (LUSC) and Skin Cutaneous Melanoma (SKCM). First we applied multivariate Cox 

proportional hazard (Cox) models with L1 penalized log partial likelihood (LASSO) for feature 

selection. We studied the Cox models with only clinical information and models incorporating 

both genetic data with selected probes and clinical information, to identify the marginal 

improvement of adding genetic profiles.  

In addition to analysis on censored survival data, we also examined the factors that could 

affect prediction of dichotomized survival data. There are many machine learning algorithms for 
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classifying binary outcomes, and we picked three most popular and well-established methods for 

comparison purpose: (i) Support Vector Machines (SVM), (ii) K-nearest neighbor (KNN), (iii) 

Random Forest (RF). But none of these methods are capable of doing integrative analysis. So we 

are most interested in studying predictions by MKL, which showed a greater predictive power. 

Table 2.1 List of available cancer types on TCGA Data Portal [6] 

Available Cancer Types # Cases Shipped 

by BCR* 

# Cases 

with Data* 

Date Last Updated 

(mm/dd/yy) 

Acute Myeloid Leukemia [LAML] 200 200 04/29/15 

Adrenocortical carcinoma [ACC] 80 80 04/24/15 

Bladder Urothelial Carcinoma [BLCA] 412 412 04/24/15 

Brain Lower Grade Glioma [LGG] 516 516 05/01/15 

Breast invasive carcinoma [BRCA] 1100 1098 05/01/15 

Cervical squamous cell carcinoma and endocervical 

adenocarcinoma [CESC] 

308 308 05/01/15 

Cholangiocarcinoma [CHOL] 36 36 05/01/15 

Colon adenocarcinoma [COAD] 461 461 04/24/15 

Esophageal carcinoma [ESCA] 185 185 04/27/15 

FFPE Pilot Phase II [FPPP] 38 38 04/30/15 

Glioblastoma multiforme [GBM] 529 528 05/01/15 

Head and Neck squamous cell carcinoma [HNSC] 528 528 05/01/15 

Kidney Chromophobe [KICH] 66 66 04/24/15 

Kidney renal clear cell carcinoma [KIRC] 536 536 05/01/15 

Kidney renal papillary cell carcinoma [KIRP] 291 291 05/01/15 

Liver hepatocellular carcinoma [LIHC] 377 377 05/01/15 

Lung adenocarcinoma [LUAD] 521 521 04/24/15 

https://tcga-data.nci.nih.gov/tcga/tcgaCancerDetails.jsp?diseaseType=LAML&diseaseName=Acute%20Myeloid%20Leukemia
http://tcga-data.nci.nih.gov/tcga/dataAccessMatrix.htm?mode=ApplyFilter&showMatrix=true&diseaseType=LAML&tumorNormal=TN&tumorNormal=T&tumorNormal=NT
https://tcga-data.nci.nih.gov/tcga/tcgaCancerDetails.jsp?diseaseType=ACC&diseaseName=Adrenocortical%20carcinoma
http://tcga-data.nci.nih.gov/tcga/dataAccessMatrix.htm?mode=ApplyFilter&showMatrix=true&diseaseType=ACC&tumorNormal=TN&tumorNormal=T&tumorNormal=NT
https://tcga-data.nci.nih.gov/tcga/tcgaCancerDetails.jsp?diseaseType=BLCA&diseaseName=Bladder%20Urothelial%20Carcinoma
http://tcga-data.nci.nih.gov/tcga/dataAccessMatrix.htm?mode=ApplyFilter&showMatrix=true&diseaseType=BLCA&tumorNormal=TN&tumorNormal=T&tumorNormal=NT
https://tcga-data.nci.nih.gov/tcga/tcgaCancerDetails.jsp?diseaseType=LGG&diseaseName=Brain%20Lower%20Grade%20Glioma
http://tcga-data.nci.nih.gov/tcga/dataAccessMatrix.htm?mode=ApplyFilter&showMatrix=true&diseaseType=LGG&tumorNormal=TN&tumorNormal=T&tumorNormal=NT
https://tcga-data.nci.nih.gov/tcga/tcgaCancerDetails.jsp?diseaseType=BRCA&diseaseName=Breast%20invasive%20carcinoma
http://tcga-data.nci.nih.gov/tcga/dataAccessMatrix.htm?mode=ApplyFilter&showMatrix=true&diseaseType=BRCA&tumorNormal=TN&tumorNormal=T&tumorNormal=NT
https://tcga-data.nci.nih.gov/tcga/tcgaCancerDetails.jsp?diseaseType=CESC&diseaseName=Cervical%20squamous%20cell%20carcinoma%20and%20endocervical%20adenocarcinoma
https://tcga-data.nci.nih.gov/tcga/tcgaCancerDetails.jsp?diseaseType=CESC&diseaseName=Cervical%20squamous%20cell%20carcinoma%20and%20endocervical%20adenocarcinoma
http://tcga-data.nci.nih.gov/tcga/dataAccessMatrix.htm?mode=ApplyFilter&showMatrix=true&diseaseType=CESC&tumorNormal=TN&tumorNormal=T&tumorNormal=NT
https://tcga-data.nci.nih.gov/tcga/tcgaCancerDetails.jsp?diseaseType=CHOL&diseaseName=Cholangiocarcinoma
http://tcga-data.nci.nih.gov/tcga/dataAccessMatrix.htm?mode=ApplyFilter&showMatrix=true&diseaseType=CHOL&tumorNormal=TN&tumorNormal=T&tumorNormal=NT
https://tcga-data.nci.nih.gov/tcga/tcgaCancerDetails.jsp?diseaseType=COAD&diseaseName=Colon%20adenocarcinoma
http://tcga-data.nci.nih.gov/tcga/dataAccessMatrix.htm?mode=ApplyFilter&showMatrix=true&diseaseType=COAD&tumorNormal=TN&tumorNormal=T&tumorNormal=NT
https://tcga-data.nci.nih.gov/tcga/tcgaCancerDetails.jsp?diseaseType=ESCA&diseaseName=Esophageal%20carcinoma
http://tcga-data.nci.nih.gov/tcga/dataAccessMatrix.htm?mode=ApplyFilter&showMatrix=true&diseaseType=ESCA&tumorNormal=TN&tumorNormal=T&tumorNormal=NT
https://tcga-data.nci.nih.gov/tcga/tcgaCancerDetails.jsp?diseaseType=FPPP&diseaseName=FFPE%20Pilot%20Phase%20II
http://tcga-data.nci.nih.gov/tcga/dataAccessMatrix.htm?mode=ApplyFilter&showMatrix=true&diseaseType=FPPP&tumorNormal=TN&tumorNormal=T&tumorNormal=NT
https://tcga-data.nci.nih.gov/tcga/tcgaCancerDetails.jsp?diseaseType=GBM&diseaseName=Glioblastoma%20multiforme
http://tcga-data.nci.nih.gov/tcga/dataAccessMatrix.htm?mode=ApplyFilter&showMatrix=true&diseaseType=GBM&tumorNormal=TN&tumorNormal=T&tumorNormal=NT
https://tcga-data.nci.nih.gov/tcga/tcgaCancerDetails.jsp?diseaseType=HNSC&diseaseName=Head%20and%20Neck%20squamous%20cell%20carcinoma
http://tcga-data.nci.nih.gov/tcga/dataAccessMatrix.htm?mode=ApplyFilter&showMatrix=true&diseaseType=HNSC&tumorNormal=TN&tumorNormal=T&tumorNormal=NT
https://tcga-data.nci.nih.gov/tcga/tcgaCancerDetails.jsp?diseaseType=KICH&diseaseName=Kidney%20Chromophobe
http://tcga-data.nci.nih.gov/tcga/dataAccessMatrix.htm?mode=ApplyFilter&showMatrix=true&diseaseType=KICH&tumorNormal=TN&tumorNormal=T&tumorNormal=NT
https://tcga-data.nci.nih.gov/tcga/tcgaCancerDetails.jsp?diseaseType=KIRC&diseaseName=Kidney%20renal%20clear%20cell%20carcinoma
http://tcga-data.nci.nih.gov/tcga/dataAccessMatrix.htm?mode=ApplyFilter&showMatrix=true&diseaseType=KIRC&tumorNormal=TN&tumorNormal=T&tumorNormal=NT
https://tcga-data.nci.nih.gov/tcga/tcgaCancerDetails.jsp?diseaseType=KIRP&diseaseName=Kidney%20renal%20papillary%20cell%20carcinoma
http://tcga-data.nci.nih.gov/tcga/dataAccessMatrix.htm?mode=ApplyFilter&showMatrix=true&diseaseType=KIRP&tumorNormal=TN&tumorNormal=T&tumorNormal=NT
https://tcga-data.nci.nih.gov/tcga/tcgaCancerDetails.jsp?diseaseType=LIHC&diseaseName=Liver%20hepatocellular%20carcinoma
http://tcga-data.nci.nih.gov/tcga/dataAccessMatrix.htm?mode=ApplyFilter&showMatrix=true&diseaseType=LIHC&tumorNormal=TN&tumorNormal=T&tumorNormal=NT
https://tcga-data.nci.nih.gov/tcga/tcgaCancerDetails.jsp?diseaseType=LUAD&diseaseName=Lung%20adenocarcinoma
http://tcga-data.nci.nih.gov/tcga/dataAccessMatrix.htm?mode=ApplyFilter&showMatrix=true&diseaseType=LUAD&tumorNormal=TN&tumorNormal=T&tumorNormal=NT
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Lung squamous cell carcinoma [LUSC] 510 504 05/01/15 

Lymphoid Neoplasm Diffuse Large B-cell 

Lymphoma[DLBC] 

48 48 04/24/15 

Mesothelioma [MESO] 87 87 04/24/15 

Ovarian serous cystadenocarcinoma [OV] 586 586 05/01/15 

Pancreatic adenocarcinoma [PAAD] 185 185 04/24/15 

Pheochromocytoma and Paraganglioma [PCPG] 179 179 05/01/15 

Prostate adenocarcinoma [PRAD] 498 498 04/28/15 

Rectum adenocarcinoma [READ] 172 171 05/01/15 

Sarcoma [SARC] 261 261 04/30/15 

Skin Cutaneous Melanoma [SKCM] 470 470 04/28/15 

Stomach adenocarcinoma [STAD] 445 443 04/28/15 

Testicular Germ Cell Tumors [TGCT] 150 150 04/24/15 

Thymoma [THYM] 124 124 05/01/15 

Thyroid carcinoma [THCA] 507 507 04/24/15 

Uterine Carcinosarcoma [UCS] 57 57 05/01/15 

Uterine Corpus Endometrial Carcinoma [UCEC] 548 548 05/01/15 

Uveal Melanoma [UVM] 80 80 05/01/15 

 

2.2 Data Collection and Processing 

2.2.1 Data Collection 

In this project, we quantified the predictive power of cancer prognosis using the 

Concordance Index (C-index) for survival. All data were downloaded from the Broad GDAC 

https://tcga-data.nci.nih.gov/tcga/tcgaCancerDetails.jsp?diseaseType=LUSC&diseaseName=Lung%20squamous%20cell%20carcinoma
http://tcga-data.nci.nih.gov/tcga/dataAccessMatrix.htm?mode=ApplyFilter&showMatrix=true&diseaseType=LUSC&tumorNormal=TN&tumorNormal=T&tumorNormal=NT
https://tcga-data.nci.nih.gov/tcga/tcgaCancerDetails.jsp?diseaseType=DLBC&diseaseName=Lymphoid%20Neoplasm%20Diffuse%20Large%20B-cell%20Lymphoma
https://tcga-data.nci.nih.gov/tcga/tcgaCancerDetails.jsp?diseaseType=DLBC&diseaseName=Lymphoid%20Neoplasm%20Diffuse%20Large%20B-cell%20Lymphoma
http://tcga-data.nci.nih.gov/tcga/dataAccessMatrix.htm?mode=ApplyFilter&showMatrix=true&diseaseType=DLBC&tumorNormal=TN&tumorNormal=T&tumorNormal=NT
https://tcga-data.nci.nih.gov/tcga/tcgaCancerDetails.jsp?diseaseType=MESO&diseaseName=Mesothelioma
http://tcga-data.nci.nih.gov/tcga/dataAccessMatrix.htm?mode=ApplyFilter&showMatrix=true&diseaseType=MESO&tumorNormal=TN&tumorNormal=T&tumorNormal=NT
https://tcga-data.nci.nih.gov/tcga/tcgaCancerDetails.jsp?diseaseType=OV&diseaseName=Ovarian%20serous%20cystadenocarcinoma
http://tcga-data.nci.nih.gov/tcga/dataAccessMatrix.htm?mode=ApplyFilter&showMatrix=true&diseaseType=OV&tumorNormal=TN&tumorNormal=T&tumorNormal=NT
https://tcga-data.nci.nih.gov/tcga/tcgaCancerDetails.jsp?diseaseType=PAAD&diseaseName=Pancreatic%20adenocarcinoma
http://tcga-data.nci.nih.gov/tcga/dataAccessMatrix.htm?mode=ApplyFilter&showMatrix=true&diseaseType=PAAD&tumorNormal=TN&tumorNormal=T&tumorNormal=NT
https://tcga-data.nci.nih.gov/tcga/tcgaCancerDetails.jsp?diseaseType=PCPG&diseaseName=Pheochromocytoma%20and%20Paraganglioma
http://tcga-data.nci.nih.gov/tcga/dataAccessMatrix.htm?mode=ApplyFilter&showMatrix=true&diseaseType=PCPG&tumorNormal=TN&tumorNormal=T&tumorNormal=NT
https://tcga-data.nci.nih.gov/tcga/tcgaCancerDetails.jsp?diseaseType=PRAD&diseaseName=Prostate%20adenocarcinoma
http://tcga-data.nci.nih.gov/tcga/dataAccessMatrix.htm?mode=ApplyFilter&showMatrix=true&diseaseType=PRAD&tumorNormal=TN&tumorNormal=T&tumorNormal=NT
https://tcga-data.nci.nih.gov/tcga/tcgaCancerDetails.jsp?diseaseType=READ&diseaseName=Rectum%20adenocarcinoma
http://tcga-data.nci.nih.gov/tcga/dataAccessMatrix.htm?mode=ApplyFilter&showMatrix=true&diseaseType=READ&tumorNormal=TN&tumorNormal=T&tumorNormal=NT
https://tcga-data.nci.nih.gov/tcga/tcgaCancerDetails.jsp?diseaseType=SARC&diseaseName=Sarcoma
http://tcga-data.nci.nih.gov/tcga/dataAccessMatrix.htm?mode=ApplyFilter&showMatrix=true&diseaseType=SARC&tumorNormal=TN&tumorNormal=T&tumorNormal=NT
https://tcga-data.nci.nih.gov/tcga/tcgaCancerDetails.jsp?diseaseType=SKCM&diseaseName=Skin%20Cutaneous%20Melanoma
http://tcga-data.nci.nih.gov/tcga/dataAccessMatrix.htm?mode=ApplyFilter&showMatrix=true&diseaseType=SKCM&tumorNormal=TN&tumorNormal=T&tumorNormal=NT
https://tcga-data.nci.nih.gov/tcga/tcgaCancerDetails.jsp?diseaseType=STAD&diseaseName=Stomach%20adenocarcinoma
http://tcga-data.nci.nih.gov/tcga/dataAccessMatrix.htm?mode=ApplyFilter&showMatrix=true&diseaseType=STAD&tumorNormal=TN&tumorNormal=T&tumorNormal=NT
https://tcga-data.nci.nih.gov/tcga/tcgaCancerDetails.jsp?diseaseType=TGCT&diseaseName=Testicular%20Germ%20Cell%20Tumors
http://tcga-data.nci.nih.gov/tcga/dataAccessMatrix.htm?mode=ApplyFilter&showMatrix=true&diseaseType=TGCT&tumorNormal=TN&tumorNormal=T&tumorNormal=NT
https://tcga-data.nci.nih.gov/tcga/tcgaCancerDetails.jsp?diseaseType=THYM&diseaseName=Thymoma
http://tcga-data.nci.nih.gov/tcga/dataAccessMatrix.htm?mode=ApplyFilter&showMatrix=true&diseaseType=THYM&tumorNormal=TN&tumorNormal=T&tumorNormal=NT
https://tcga-data.nci.nih.gov/tcga/tcgaCancerDetails.jsp?diseaseType=THCA&diseaseName=Thyroid%20carcinoma
http://tcga-data.nci.nih.gov/tcga/dataAccessMatrix.htm?mode=ApplyFilter&showMatrix=true&diseaseType=THCA&tumorNormal=TN&tumorNormal=T&tumorNormal=NT
https://tcga-data.nci.nih.gov/tcga/tcgaCancerDetails.jsp?diseaseType=UCS&diseaseName=Uterine%20Carcinosarcoma
http://tcga-data.nci.nih.gov/tcga/dataAccessMatrix.htm?mode=ApplyFilter&showMatrix=true&diseaseType=UCS&tumorNormal=TN&tumorNormal=T&tumorNormal=NT
https://tcga-data.nci.nih.gov/tcga/tcgaCancerDetails.jsp?diseaseType=UCEC&diseaseName=Uterine%20Corpus%20Endometrial%20Carcinoma
http://tcga-data.nci.nih.gov/tcga/dataAccessMatrix.htm?mode=ApplyFilter&showMatrix=true&diseaseType=UCEC&tumorNormal=TN&tumorNormal=T&tumorNormal=NT
https://tcga-data.nci.nih.gov/tcga/tcgaCancerDetails.jsp?diseaseType=UVM&diseaseName=Uveal%20Melanoma
http://tcga-data.nci.nih.gov/tcga/dataAccessMatrix.htm?mode=ApplyFilter&showMatrix=true&diseaseType=UVM&tumorNormal=TN&tumorNormal=T&tumorNormal=NT
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Firehose (http://gdac.broadinstitute.org/) as of December 2014. The obtained data include 

clinical information, mRNA, mDNA, RPPA and miRNA. We refer to the TCGA website and 

Firehose website for more detailed information.  

In short, the clinical information contain survival status and survival time of patients, plus 

age, gender, cancer grade, etc.; for mRNA we download log2 lowess normalized (cy5/cy3) 

collapsed by gene symbol, or normalized reads, depending on which measurement is available 

for certain cancer type;  for mDNA, we extract the beta values, which are scores calculated from 

methylated (M) and unmethylated (U) bead types and measure the percentages of methylation 

(HumanMethylation450 BeadChips, or HumanMethylation27 BeadChips, whichever is 

available); for miRNA, we download Distance Weighted Discrimination (DWD) Batch adjusted 

measurement, or normalized reads, whichever is available, and for RPPA, we download Z-

scores, measured by reverse phase protein array.  

2.2.2 Data Processing 

We generated a flowchart of data processing for cross cancer types (Figure 2.2). There 

are three main groups of data. First we have (A) clinical outcomes (overall survival information), 

and later we will remove samples with overall survival time missing or equal to 0. Then there are 

feature candidates (B) clinical information, such as age, gender, grade and stage information of 

patients and (C) genomic measurements, including mDNA, mRNA, miRNA and RPPA. For 

clinical information, any missing values for the covariates will be imputed by Random Forest 

missing values imputation algorithm (randomForest R package). For omics data, the 

preprocessing is more complicated. First we remove duplicated measurement for a single patient, 

keep only the measurements associated with tumor samples, and discard ones for normal 
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samples. And then for these probes that contain more than 10% missing value, we drop them 

from genomic data matrix, and impute the left missing observations by a random forest 

algorithm.  

In principle, we can analyze the mDNA with feature size of 450,000, or 27,000, or 

mRNA with feature size of 20,000 directly. We conduct an un-supervised screening followed by 

a supervised screening, to narrow down their feature space, since that the number of genes 

related to cancer survival is not expected to be super large.  

For a small number of probes with extremely low variations, the Cox model fitting does 

not converge. Such genes can either be directly removed (which is adopted in this study) or fitted 

under a small ridge penalization. This step is the so-called un-supervised screening.  

For supervised screening, here we first need to merge omics data with clinical outcomes 

and extract these with overlapped samples, and then fit a Cox regression model for survival to 

each probe, select the top 2500 features.  

Now all omics profiles, mDNA (2500 probes), mRNA (2500 probes), miRNA (several 

hundreds), and RPPA (about 200 probes), have relatively small feature sizes. We move on to the 

modeling step. We employed supervised screening (Univariate Cox regression for prognosis with 

only omics data; Correlation screen for prognosis with clinical covariates and Omics data), to 

ensure that the number of features will not exceed the number of events for downstream analysis. 

The very last step of the analysis is to fit a Cox regression with LASSO L1 penalty to further 

shrinking the covariates. Prognosis performance is accessed by the C-index. 
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Figure 2.2 An overview of data processing for survival prediction. 

 

In addition to prognosis with overall survival data, we also dichotomized the continuous 

survival data by a cutoff time and examined the power of omics data in predicting binary 

survival outcomes, by several machine learning algorithms.  Here are the cutoffs we chose for 

assigning the binary labels for clinical outcomes, (A) for OV, cutoff is 3 years; (B) for KIRC, 

cutoff is 4 years; (C) for LUSC, cutoff is 2 years; (C) for GBM, cutoff is 1 year; and for (E) for 

SKCM, cutoff is 3 years. We excluded the samples with censored survival before the cutoff. The 

binary indicator for survival: 1 stands for samples living longer than the cutoff (strictly greater 

than) while 0 stands for shorter than the cutoff (less than or equal to). 

2.3 Methods  

Now we will introduce the methods employed for overall survival prognosis and 

algorithms for dichotomized survival prediction. 
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2.2.1 Overall Survival Modeling and Performance Comparison 

Cox with LASSO 

Survival analysis models the time duration until events occur; in cancer prognosis study, 

such event is death. The Cox proportional hazards model (Cox), introduced by Cox in 1972 [43], 

has achieved widespread use in the analysis of time-to-event data with censoring covariates. By 

saying there are right-censored data, a general case for survival analysis, it means we know the 

date of event or death is after a certain date observed, for example the study has ended at a 

certain date therefore we have no information on future events (deaths) of patients who are still 

alive by then. Covariates in our study can be clinical information, such as gender, age, treatments 

and multi-dimensional genomic profiles. The proportional hazard assumes that the covariates in 

the Cox model are multiplicatively related to the hazard function [44]. And remarkably, although 

the baseline hazard is unspecified, utilizing the method of partial likelihood, the Cox model can 

be estimated [43]. 

Let T denote the observed time, and C indicate the time corresponding to an event (if C = 

1 the event has occurred and if C = 0 it is censored). Survival function 𝑆(𝑡) is defined as 𝑆(𝑡) =

𝑃(𝑇 > 1) = 1 − 𝑃(𝑡). Lifetime distribution function is defined as 𝐹(𝑡) = 𝑃(𝑇 ≤ 1) = 1 −

𝑆(𝑡). The hazard function is defined as 𝜆(t) = lim
𝑑𝑡→0

𝑃(𝑡≤𝑇<𝑡+𝑑𝑡)

𝑑𝑡∙𝑆(𝑡)
=

𝑓(𝑡)

𝑆(𝑡)
=

−𝑆(𝑡)′

𝑆(𝑡)
. In Cox model: 

 𝝀(𝐭|𝑿) = 𝝀𝟎(𝒕)𝒆𝒙𝒑(𝑿𝜷)  

The partial likelihood can be constructed as 𝐿(𝛽) = ∏ 𝜃𝑖𝑖:𝐶𝑖=1 / ∑ 𝜃𝑗𝑗:𝑌𝑗≥𝑌𝑖
, where 𝜃𝑗 =

𝑒𝑥𝑝(𝛽𝑇𝑋𝑗) and 𝑋1, … , 𝑋𝑛 are the covariate vectors for the n individuals. Model parameters 

estimations are solved by maximizing partial likelihood over β. Denote the log partial likelihood 
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by 𝑙(𝛽) = log 𝐿(𝛽), then estimate 𝛽 via �̂� = 𝑎𝑟𝑔𝑚𝑖𝑛 𝑙(𝛽).  

However, when predicting survival based on genomic data, we could not apply the Cox 

regression directly due to the issues of high dimensionality. There are several existing methods 

that have successfully overcome this issue [12-15], by adopting regularizations. We will apply 

the L1 penalized shrinkage-based Cox regression in our study for cancer prognosis [12], in 

which we estimate 𝛽 via 

 �̂� = 𝒂𝒓𝒈𝒎𝒊𝒏 𝒍(𝜷), 𝐬𝐮𝐛𝐣𝐞𝐜𝐭 𝐭𝐨 ∑ |𝜷|𝒋  ≤  

where 𝒔 > 0, is a user-specified parameter.  

A key component to performance assessment, is to evaluate the prediction accuracy of 

risk algorithms in the concept of discrimination, which is known as the ability to distinguish 

whether a subject who will develop an event or not, often referred as the ‘C-statistic’. In the area 

of modern clinical medicine, it is of great interest for researchers to evaluate the predictive power 

of proposed biomarkers [29, 30, 31, 32].  

For a censored survival outcome, the C-statistic is essentially a rank-correlation measure, 

calculated by some linear function of the modified Kendall’s tau [36].There are various C-

statistics proposed in the literature, which cope with censored survival data [37, 38, 39]. We 

choose the concordance index (C-index) [40] to assess the predictive power of our clinical 

covariates or Omics, which is implemented in R package survcomp. 

 For binary outcome, area under the curve (AUC) is a popular measurement that has been 

well-studied and quantified [33]. The model with AUC of 0.5 indicates that it is no better than 
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chance at determining the survival outcome of a patient; and a value close to 1.0 indicates that 

the model perfectly determines the prognosis of a patient. We refer to Li’s work [34, 35] and 

others, for more relevant discussions. Overall accuracy is the alternative way to measure a 

model’s predictive power.  

2.2.2 Classification Methods for Dichotomized Survival Analysis 

For ovarian cancer with dichotomized survival data, we examined four classification 

algorithms: Random Forest, K-nearest neighbor, Support Vector Machine and Multiple Kernel 

Learning (MKL). We picked the MKL as the final method for analyzing all cancer types, for it 

outperformed the other methods.   

The performance was accessed in the same fashion as that of overall survival prediction, 

randomly splitting prepared data sets into training and testing sets for 100 times, and calculating 

AUCs for each of algorithms. After identifying MKL as the best choice, for all cancer types, we 

used MKL to access their performance, and narrow down the splitting time to 30 times per case, 

taking the computation time into consideration. Later, we will systemically introduce MKL in 

section 2.5.2.  

2.2.3 Identification of miRNA Corresponding DMR mDNA Probes 

The human pan-cancer methylation database, MethHC, provides lists of differentially 

methylated regions (DMR) for many cancer types, in three forms, top 250 hyper-methylated 

genes, top 250 hypo-methylated genes and top 250 most differentially methylated genes, 

respectively (http://methhc.mbc.nctu.edu.tw/) [16]. Among these DMR lists, we are particularly 

interested in examining miRNA corresponding methylation probes, for its robustness might give 

http://methhc.mbc.nctu.edu.tw/
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great survival predictive performance. For 3 out of 5 cancer types in our study, (KIRC, LUSC 

and SKCM), there are well established DMR lists from the database, which we can employ 

directly. However, for the other two cancer types (OV and GBM), there is no such lists existing 

yet, so we adapt its methods for DMR genes, and established our own lists, by t-test for testing 

the difference between tumor and normal samples, pick the top genes with p-value less than 0.05. 

2.2.4 Identification of Hub Probes in miRNA and RPPA by remMap 

The regularized multivariate regression for identifying Master predictors (remMap) 

method has been proposed in 2010, to fit multivariate response regression models for high 

dimensional data with regularization that deals with the high dimensionality and incorporates 

network structures [17]. It has been employed to investigate the relationships among different 

biological molecules based on multiple omics data. In our study, we are interested in identifying 

the miRNA lists sorted by the number of RPPAs regulated by its corresponding miRNA, and the 

RPPA lists sorted by the number of miRNAs regulating its corresponding RPPA. We then select 

the top probes in the lists for modeling, which are the hub regions that we later used in our 

prognosis for comparison purposes. 

2.2.5 Multiple Kernel Learning (MKL) 

When applying SVMs, it is often unclear what the best kernel for the each individual task 

is. In order to figure it out, researchers may want to combine several possible kernels, by giving 

each kernel a certain weight. One of the ultimate goals of MKL is to learn the kernel in an SVM 

from training data. Recently, many approaches have been proposed to combine multiple kernels 

via different ways. Of course, simply adding kernels is that using uniform weights is possible 

solution, but probably won’t be the optimal. An extreme case can be that giving a kernel positive 



 

20 

 

weight, while it is not correlated with the labels at all, will only add nothing but noise [27]. MKL 

is a way that can optimize kernel weights while training the SVM, which can leads to good 

classification accuracies. Plus, MKL can also be useful for identifying relevant and meaningful 

features [27, 41, 42]. Until now, there are many multiple kernel learning algorithms have been 

proposed, and research focused on organizing and highlighting the similarities and differences 

between them, have been done [26]. It has been shown that overall using multiple kernels instead 

of a single one is useful [26]. 

MKL allows the scientists to optimize over linear or non-liner combinations of kernels, 

and also to generalize feature selection to kernel selection, by enforcing sparse confidents. These 

different kernels can correspond to using information from multiple sources, such as different 

genetic measurements or feature subsets, which is desirable for the settings of our study. 

A key reason of applying MKL to classify dichotomized survival data, is its capability of 

combining data from different sources with different notions of similarity. Instead of creating a 

new kernel, MKL can combine established kernels for each individual source. It has been widely 

applied in many fields, such as object recognition in images [19], event recognition in video [18], 

and biomedical data fusion [20]. 

The overall MKL framework is: (i) extract features from all available sources; (ii) 

construct kernel matrices, based on different features, different kernel types, and different kernel 

parameters; (iii) find the optimal kernel combination and the kernel classifier.  

Linear and Non-Linear Functional Forms  

There are different ways of kernel combination and we group the existing MKL 



 

21 

 

algorithms into two categories, based on the functional forms: linear MKL and non-linear MKL. 

Let’s briefly review kernel classifier. Define 𝑲: 𝑿 ×  𝑿 → 𝑹, called kernel, such that  

 𝝓(𝒙𝒊) ∙ 𝝓(𝒙𝒋) = 𝑲(𝒙𝒊, 𝒙𝒋) (1) 

𝑲 is a similarity measure.  

Linear MKL can either be unweighted sum or weighted sum. There is an example of 

linearly parameterized combination function: 

 
𝑲µ = ∑ 𝝁

𝒎
𝑲𝒎

𝒑

𝒎=𝟏
(𝒙𝒊, 𝒙𝒋) (2) 

Hence 𝑲µ is a new kernel, a linear combination of a set of 𝒑 kernels, where 𝛍𝒎 is a 

vector of coefficients for each kernel.  This new function 𝑲µ is still a kernel, since kernels are 

additive, according to the properties of reproducing kernel Hilbert spaces [21]. 

Although linear MKL is quite popular, but it may also be restrictive. Nonlinear MKL can 

possibly use nonlinear functions of kernels, such as, multiplication, power, and exponentiation, 

polynomial combination, kernel ridge regression, and so on [22,23,24,25]. An example of kernel 

ridge regression and polynomial combination, can be formulates as [22] 

 𝑲µ = ∑ 𝝁𝒌𝟏⋯𝒌𝒑
𝑲𝟏

𝒌𝟏 ⋯ 𝑲𝒑

𝒌𝒑

𝟎≤𝒌𝟏+⋯+𝒌𝒑≤𝒅,   𝒌𝒑≥𝟎,   𝒊∈[𝟎,𝒑]

 (3) 

where 𝛍𝒌𝟏⋯𝒌𝒑
≥ 𝟎. However, the number of coefficients 𝛍𝒌𝟏⋯𝒌𝒑

 is in 𝑶(𝒑𝒅), which may be too 

large to learn. To reduce the learning complexity, the combined kernel can be simplified: 
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 𝑲µ = ∑ 𝝁𝟏
𝒌𝟏 ⋯ 𝝁𝒑

𝒌𝒑
𝑲𝟏

𝒌𝟏 ⋯

𝒌𝟏+⋯+𝒌𝒑=𝒅

𝑲𝒑

𝒌𝒑
 (4) 

where 𝝁 = (𝝁𝟏 ⋯ 𝝁𝒑) 𝑻 ∈ 𝑹𝒑.  

Major Learning Algorithms for MKL 

In this section, we will introduce the following categorization proposed by Gonen and 

Alpaydın, where they categorize the existing MKL algorithms into 5 major groups [26]. These 

five major categories are: A) fixed rules, which are functions without any parameters without 

any training; B) heuristic approaches that use a parameterized combination function and based 

on some measure from each kernel to learn the parameters; C) optimization approaches, which 

also use a parametrized combination function and by solving an optimization problem to learn 

the parameters; D) bayesian approaches that treat the kernel combination parameters as random 

variables and assume priors on these parameters, and perform inference to learn both kernel 

combination parameters and base kernel parameters; and E) boosting approaches, which will 

iteratively add a new kernel until obtain the a cutoff of performance improvement. Now we go 

over some examples of fixed rules briefly.  

Multiple kernels can be written as a combination function of existing kernels: 

 𝑲µ = 𝒇µ(𝑲𝟏, … , 𝑲𝒑) (5) 

where 𝒇µ: 𝑹𝒑 → 𝑹 , as discussed in the functional forms section, can be linear or nonlinear.   

Fixed rules obtain 𝑲µ using function 𝒇µ. Since each kernel itself is positive semidefinite, 

by definition, 𝒗𝑻𝑲𝒊𝒗 ≥ 𝟎, for all 𝒗 ∈ 𝑹𝑵, 𝑵 is the sample size. Easily, we can derive that both 
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𝑲µ of summation and multiplication are also positive semidefinite.  

 
{

𝒗𝑻𝑲𝝁𝒗 = 𝒗𝑻𝑲𝟏𝒗 + 𝒗𝑻𝑲𝟐𝒗 ≥ 𝟎 

𝒗𝑻𝑲𝝁𝒗 = 𝒗𝑻𝑲𝟏𝑲𝟐𝒗 ≥ 𝟎
 (6) 

In the same fashion, we can derive that both summation and multiplication of 𝒑 kernels 

are also valid kernels 

 

{

𝑲µ(𝒙𝒊, 𝒙𝒋) = ∑ 𝑲𝒎

𝒑

𝒎=𝟏
(𝒙𝒊

𝒎, 𝒙𝒋
𝒎)

𝑲µ(𝒙𝒊, 𝒙𝒋) = ∏ 𝑲𝒎(𝒙𝒊
𝒎, 𝒙𝒋

𝒎)
𝒑

𝒎=𝟏
 
 (71) 

2.4 Results 

2.4.1 Prediction of Overall Survivals from Clinical Variables and Omics data 

We examined five cancer types: OV, KIRC, LUSC, GBM, and SKCM, for their TCGA 

data sets included survival data with long enough follow-up time and big enough sample sizes of 

multiple genetic profiles, such as mDNA, mRNA, miRNA and RPPA. Table 2.2 summarized all 

TCGA samples for our study, number in each cell is the sample size for its associated cancer and 

feature candidate.  

Table 2.2 Summary of TCGA Samples 

Cancer Survival Clinical mDNA mRNA miRNA RPPA 

OV 576 576 592 581 453 412 

KIRC 526 526 319 533 516 454 

LUSC 473 473 370 533 478 195 

GBM 591 591 420 511 575 214 

SKCM 428 428 470 468 448 204 
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In the following several sub-section, we will present survival prediction comparison of 

clinical covariates, genetic data and their combinations, plus several feature selections, crossing 

these five cancer types listed here. For each cancer, we chose clinical information only (patient 

age, patient gender, tumor stage and grade, and Karnofsky performance score, varies cross 

cancer types, upon its availability) Cox models’ performance as baseline for comparison and 

focused on the potential marginal gains of Cox models incorporating genetic data (mDNA, 

mRNA, miRNA, and RPPA), upon existing clinical variables. We modified the multivariate Cox 

method to fit both clinical and molecular features, in two ways. (A).We performed a feature-

selection step against the residuals of the clinical-variable-only models, and combine the selected 

features that have better goodness of fit, to build a new multivariate integrative Cox model. (B) 

Or, when a relatively small size of subset of features were selected by other feature selection 

methods, such as univariate Cox regression, or remMap selection, we chose to throw both 

clinical variables and subset of genetic features into Cox model, simultaneously, and directly 

allow LASSO to pick its features. We used the R package “survival” to build Cox models and 

the R package “glmnet” to perform LASSO with penalty parameter λ chosen by fivefold cross-

validation within the training data set. We repeated each procedure 100 times to generate 100 C-

indexes and compared their predictive power by its coordinating median C-index. 

Overall survival prediction of OV 

First, we generated prognosis models by clinical variables, and each type of genetic data 

alone, and then integrated clinical variables with one type of genetic data at time as feature 

combined models. Figure 2.3 shows our preliminary results for OV case. As we can see, there is 

no case for which models without clinical variables can outperform the model with only the 



 

25 

 

clinical variables.   

  

Figure 2.3 Preliminary comparison of survival prediction of OV 

 

 

In order to obtain better prognosis models utilizing genetic data, we further explored 

models with the top miRNA corresponding DMR mDNA probes. Since there is no well-

established DMR gene lists available from MethHC database, we performed t-test to select ideal 

probes. By t-test, we selected 18 mDNA probes of miRNA genes. Here comes the performance 

of miRNA corresponding DMR mDNA probes (denoted as methyG in plot) Figure 2.4(a). We 

can see the predictive power improvements from methyG, compared to that from mDNA profile. 

So we can now update our comparison result with adding predictive performance from methyG, 

as shown in Figure 2.4(b). 
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Figure 2.4 Updated comparison of survival prediction of OV. (a) Comparison of perform of 

clinical variables and methyG, (b) Secondary comparison, after taking methyG into 

consideration.  

 

We then updated miRNA and RPPA in our prognosis models with remMap selected 

miRNA and RPPA. We find out that for miRNA, models with top30, top20,top10, top5 probes in 

the hub range, are all better than clinical only, while top30<top20<top10<top5. And the 

predictive power is also improved for RPPA, but still can’t outperform the model of clinical 

information only. It does not hurt to try other top probes selection methods and examine its 

effects. So we also used simple univariate Cox selection approach to identify the top most 

influential probes and its performance is quite similar to that from remMap selected probes.  
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 Figure 2.5 Final comparison of survival prediction of OV 

 

 

We summarize our final comparison for OV in Figure 2.5. We find out the for OV 

cancer, clinical variables alone can give a good prognosis power, with C-index of 0.6188. And 

also 5 out of 5 cases, the models built from genetic data sets alone showed significant predictive 

power (range: 0.5502-0.5627). However, incorporating genetic information can’t add a 

significant marginal gains, even with multiple feature selection techniques applied. It does show 

that miRNA corresponding DMR mDNA probes, and remMap selection and univariate Cox 

selection, are promising approaches for achieving better prognostic power. It is worth exploring 

for other cancer types.  

Overall survival prediction of KIRC 

Similar as we examined OV cancer, we first built prognosis models by clinical variables, 

and each type of genetic data alone, and then built our integrative models. Figure 2.6 shows a 

comparison of survival predictive performance for KIRC. Overall, prognosis power for KIRC are 
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better than patients with OV. As we can see from it, the clinical-variable-only model, showed a 

pretty good predictive power, with C-index of 0.754, which is significantly higher than 0.5. And 

also 5 out of 5 of our models built from genetic data sets alone showed significant predictive 

power (range: 0.6518-0.7086). And 5 out of 5 of our integrative models give us better prediction 

than the clinical-variable-only model, with the highest predictive power of 0.7922 from 

methylation profile and the second highest predictive power of 0.7919 from miRNA 

corresponding top miRNA corresponding DMR mDNA probes (methyG), both are marginally 

gained of 5%.  

 

Figure 2.6 Preliminary comparison of survival prediction of KIRC 

 

Since among all integrative Cox models, that from miRNA and RPPA, were not as good 

as others, in terms of marginal gains, so it is worth to try feature selections for miRNA and 

RPPA. We then updated our preliminary comparison with model performance from univariate 
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Cox selected miRNA and RPPA, and summarized in Figure 2.7. Updated model performance 

showed that models from both miRNA only and miRNA incorporating clinical information, are 

better than before. And also for RPPA: models from both miRNA only and miRNA 

incorporating clinical information, are better than before. 

  

Figure 2.7 Secondary comparison of survival prediction of KIRC 

 

We checked how good the prognosis can be from remMap identified miRNA and RPPA 

probes, with results presented in Figure 2.8. None of them outperformed the above models with 

univariate Cox selected miRNA and RPPA probes. By examining at the remMap identified lists 

in details, we realized that for KIRC, it is difficult to outperform whole RPPA, by top remMap 

identified probes, except the case of top 130 out of 155 RPPA, which employed the number of 

RPPAs regulated by the corresponding miRNA= 20, as a cutoff. Comparing to the list for OV, 

the top RPPAs with the largest number of RPPAs regulated by the corresponding miRNA, is 

only 16, this may indicate that for KIRC, remMap can’t serve as a selection tool for narrow 
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down the number of RPPA probes, since all of them are claimed to be important. So we realized 

that our previous univariate Cox selection based on the whole RPPA profile, is equivalent to that 

we add a univariate Cox selection, after remMap identification, which serves as a tool to future 

narrow down the number of probes by only keep the high related ones. It perfectly explains why 

the predictive powers are better than remMap only. Similarly idea explains the results for model 

performance from miRNA  

 

Figure 2.8 Exploring predictive power of models from remMap selected miRNA and RPPA for 

KIRC. (A) Predictive powers from top 100, top60, top 50, top 40 and top30 miRNA probes 

identified by remMap, sorted by number of RPPAs regulated by the corresponding miRNA, and 

top 40 give the best and the only result that is slightly better than that from the whole miRNA 

profiles. (B) Predictive powers from top 130, top100, top 50, top 30, top20, top10 and top5 

RPPA probes identified by remMap, sorted by number of miRNAs regulating the corresponding 

RPPA, and top 130 give the best and the only result that is slightly better than that from the 

whole miRNA profiles. 

 

Overall survival prediction of LUSC 

Similar as in our examination of the OV and KIRC cancers, we first built prognosis 



 

31 

 

models by clinical variables, or genetic data individually, and then the integrated variables. 

Figure 2.9 shows a comparison of survival predictive performance for LUSC. As we can see, the 

clinical-variable-only model, showed a significant predictive power, with C-index of 0.5506. 

And also 5 out of 5 cases, the models built from genetic data sets alone showed significant 

predictive power (range: 0.545-0.62). And 5 out of 5 of our integrative models give us better 

prediction than the clinical-variable-only model, with the highest predictive power of 0.61415 

from mRNA profile and the second highest predictive power of 0.6121 from RPPA, both are 

marginally gained of 11.5% and 11.2%, respectively. 

 

Figure 2.9 Preliminary comparison of survival prediction of LUSC 

 

We can of course also update our preliminary comparison with model performance from 

univariate Cox selected miRNA and RPPA, and further investigate with remMap identified 

miRNA and RPPA lists. 
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GBM overall survival prediction 

Similar as we examined OV, KIRC and LUSC cancer, we first built prognosis models by 

clinical variables, genetic data individually, and then built our integrative models. Figure 2.10 

shows a comparison of survival predictive performance for GBM. As we can see from it, the 

clinical-variable-only model, showed a significant predictive power, with C-index of 0.6636. 

Also 5 out of 5 cases, the models built from genetic data sets alone showed significant predictive 

power (range: 0.5285-0.6012). And 3 out of 5 of our integrative models provide better prediction 

than the clinical-variable-only model, with the highest predictive power 0.6777 from miRNA 

corresponding DMR mDNA probes. 

 

Figure 2.10 Preliminary comparison of survival prediction of GBM 

 

We can also further examine and update our preliminary comparison with predictions 
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from univariate Cox selected miRNA and RPPA probes, and models with remMap identified 

miRNA and RPPA lists. 

Overall survival prediction of SKCM 

Similar as we examined OV, KIRC, LUSC, and GBM cancer, we first built prognosis 

models from clinical variables, and each type of genetic data individually, and then built our 

integrative models. Figure 2.11 shows a comparison of survival predictive performance for GBM. 

As we can see from it, the clinical-variable-only model, showed a significant predictive power, 

with C-index of 0.6279. Also 5 out of 5 our models built from genetic data sets alone showed 

significant predictive power (range: 0.5739-0.6155). And 4 out of 5 of our integrative models 

give us better predictions than the clinical-variable-only model, with the highest predictive 

power 0.6716 from methylation profile. Among 5 of the integrative prognosis models, model 

from clinical information incorporating with entire RPPA, couldn't adding any marginal gains in 

predictive power.  
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Figure 2.11 Preliminary comparison of survival prediction of SKCM 

 

Later, we can also update our preliminary comparison by examining model performance 

from univariate Cox selected miRNA and RPPA probes, and further investigating models with 

remMap identified miRNA and RPPA lists. 

Comparison of Cox model and kernel Cox regression 

We also explored another computational method Kernel Cox regression to compare their 

performance with Cox models, from clinical variable only, cross four cancer types. Kernel Cox 

models were built using the R package “survpack”. It shows quite consistent performance 

between Cox models and Kernel Cox regression for clinical variables only models in Figure 

2.12.  
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Figure 2.12 Predictive Power Comparison of Cox Model and kernel Cox Regression Cross 

Cancer types. 

 

Summary for overall survival predictions  

In this project, we extensively evaluated the predictive powers of our single sourced 

models and integrative models were via different ways of comparison. We summarize our all the 

models and results in Table 2.3, for OV, KIRC, LUSC, GBM and SKCM cancer types. Out of 25 

integrative of multivariate Cox models, 20 out of 25 of them outperformed their baseline models 

from clinical variables only (color labeled in green). We conclude that among five cancer types, 

KIRC is the best case, with respect to the predictive power by both the baseline model from 

clinical information only (median C-index = 0.754) and the integrative model from clinical 

information incorporated with genetic measurements (median C-index range: 0.7610 ~ 0.7922), 

with its highest marginal gain of ~5%. While for LUSC, by Cox model, we discovered the 

highest marginal gain cross five cancer types, which is ~11.6%.  

Table 2.3 Summary of predictive performance of Cox models for overall survival time cross 

cancer types. Each cell in the table is the median C-index of 100 repeated training and testing for 

its corresponding model and cancer type. Green color labeled cells are the cases that integrative 
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models outperformed its baseline models with only clinical variables. 

   Models 

 

 

Cancers  

~ Clinical 

Variables 

~ Genetic Measurements ~ Clinical Variables + Genetic Measurements 

mDNA DMR mRNA miNRA RPPA 

Clinical 

+ 

mDNA 

Clinical 

+  

DMR 

Clinical 

+  

mRNA 

Clinical 

+  

miNRA 

Clinical 

+  

RPPA 

OV 0.6188 0.5627 0.5502 0.5557 0.5034 0.5104 0.6086 0.6259 0.5809 0.6235 0.6155 

KIRC 0.754 0.7086 0.6518 0.7043 0.6632 0.739 0.7922 0.7919 0.7704 0.7613 0.7815 

LUSC 0.5506 0.545 0.5677 0.5965 0.62 0.5584 0.5773 0.5731 0.6145 0.5986 0.6121 

GBM 0.6636 0.5286 0.6012 0.6011 0.5718 0.5556 0.6407 0.6777 0.6753 0.6769 0.6432 

SKCM 0.6279 0.606 0.5936 0.58 0.6155 0.5739 0.6716 0.6623 0.6484 0.6537 0.6219 

 

Feature selections for miRNA and RPPA to further improve predictive power, have been 

extensively explored by both univariate Cox regression and remMap identification. As we 

identified that Cox models from corresponding DMR mDNA probes, are better than that from 

mDNA profile, which indicates that a few mDNA probes can be super robust in predicting 

overall survival time, while incorporating a large size of probes may bring more noise than 

useful information. We suspected that it could be the similar cases for other genetic profiles too. 

Let’s review the predictive powers from genetic profiles and its integrative cases of OV, in 

Figure 2.3, before exploring feature selection for miRNA and RPPA data.  It shows that the 

performance of Cox model from miRNA, is no better than a pure guess, with median C-index of 

0.5034, and that from RPPA is slightly better than a pure guess, with median C-index of 0.5104, 

meaning that it does contain a small amount of using information. However, in there 

corresponding integrative models with clinical variables, the predictive powers dropped 

dramatically, comparing to the baseline, with median C-index of 0.5819 and 0.5852, 

respectively. That indicates adding these two types of genetic data on top of clinical variables, 

only brings noise, which is contradict to their individual performance. So we conducted feature 

selection to narrow down the size of probes adding to the models and evaluate their performance 

again, by trying both univariate Cox regression and remMap identification. Luckily, both 
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improved model performance, by a larger median C-index, close to, or higher than its baseline, 

meaning that feature selections are essential to our integrative models, even for relatively small 

feature sized miRNA and RPPA, comparing to mDNA and miRNA. Since both univariate Cox 

regression and remMap identification improved the predictive performance to a quite similar 

level, it is hard to conclude which feature selection method is better, in terms of performance 

gained. But, biologically, remMap identified probes are more meaningful.  

For the tumor type of KIRC, we also explored these two types of feature selection 

technique, trying to further improve its predictive powers from integrative models, which were 

already very well (median C-index range: 0.7596 ~ 0.7922, refer to Figure 2.5). Because among 

all integrative Cox models, that from miRNA and RPPA, were not as good as others, in terms of 

marginal gains, so it is worth to try feature selections for miRNA and RPPA. After univariate 

Cox regression for selection top important probes of miRNA and RPPA, the predictive power of 

their corresponding models (both genetic only model and integrative model) were all improved, 

as in Figure 2.7. In order to get a biologically more meaningful selected feature and also to 

compare two feature selection techniques, we then checked how good the prognosis it can be 

from remMap identified miRNA and RPPA probes. It is interesting to find out that remMap 

identified all 155 RPPA probes with large number of RPPAs regulated by the corresponding 

miRNA (45 out of 155 with number greater than 30; 134 out of 155 with number greater than 20; 

all probes with number great than 10), while for OV, there are only 26 out 152 RPPA probes 

identified with numbers of RPPAs regulated by the corresponding miRNA, greater than 10 and 

no probe with numbers greater than 20. It may indicate that since all are biologically important 

probes, remMap for KIRC, did not truly serve as a feature selection, which explained the 

possible reason why it did not outperform models with univariate Cox selected RPPA probes, 
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(Figure 2.8).  

So our univariate Cox selection based on the whole RPPA profile, is equivalent to that we 

add an additional univariate Cox selection step, after remMap identification, which serves as a 

tool to future narrow down the number of probes by only keep the high related ones. Similarly 

idea explains the results for model performance from miRNA too.  

We can conclude that feature selections for miRNA and RPPA with relatively smaller 

feature space, can certainly further improve survival predictive performance. We identified that 

top important probes of mDNA, miRNA and RPPA were super robust, comparing to whole 

profile. 

2.4.2 Prediction of Dichotomized Survival Data 

Adapting our workflow for overall survival prediction, we modified it for dichotomized 

survival data, as shown in Figure 2.13. We first examined three popular classification algorithms: 

Random Forest, K-nearest neighbor and Support Vector Machine (by R packages, 

“randomForest”, “class”, and “kernlab”, respectively) for dichotomized survival data of ovarian 

cancer. A preliminary comparison was done for clinical variables, RPPA data, and their 

combination (Figure 2.14). The performance evaluation was accessed in the same fashion as that 

of overall survival prediction, randomly splitting prepared data sets into training and testing sets 

for 100 times, and calculating AUCs for each of algorithms. It is hard to conclude which method 

was the best, since three were quite consistent, except that SVM was slightly better than the other 

two.  
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Figure 2.13 An overview of data processing for dichotomized survival prediction 

 

 

Figure 2.14 Classification Algorithm Comparison for Dichotomized Survival Prediction. (A) RF, 

(B) KNN and (C) SVM  
 

As discussed before, Multiple Kernel Learning (MKL) has substantial advantages, 

comparing to Support Vector Machines, when dealing with data from different sources. We 

decided to employ MKL for classification of dichotomized survival data prediction and access 

our model performance via overall accuracy. For this type of prediction, we narrowed down the 

splitting time to 30 per model per cancer type, considering the cost of computational time.  

Prediction of Dichotomized Survival Data by SimpleMKL  
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We build the MKL models via SimpleMKL, using the matlab package “SimpleMKL 

toolbox” [45]. We conducted feature selection for genetic data to choose about 20 most 

important variables for each data set, by applying random forest variable importance list, using R 

package “randomForest”. Predictive performance crossing cancer types has been summarized in 

the following five figure, Figure 2.15~ Figure 2.19, for OV, KIRC, LUSC, GBM, and SKCM, 

respectively. It showed a great performance from all integrative models of OV, significantly 

higher than the baseline, in terms of median overall accuracy of 30 times repeats, with the 

highest power from (Clinical + RPPA + miRNA), and (Clinical + RPPA), marginal gains of 

~10.5% and 6.8%. And for KIRC, we also identified that all integrative models are significantly 

better than clinical-variable-only model, with the best performance with marginal gains of ~ 11%, 

from (Clinical + RRPA) and (Clinical + RPPA + DMR) models. While for LUSC, there was 

only one integrative model from (Clinical + RPPA + DMR) outperformed its baseline, with a 

marginal gain of ~ 9%. The predictive powers of integrative models for GBM and SKCM, were 

not promising.  



 

41 

 

 

Figure 2.15 Predictive performance comparison of dichotomized survival data for OV 

 

Figure 2.16 Predictive performance comparison of dichotomized survival data for KIRC 
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 Figure 2.17 Predictive performance comparison of dichotomized survival data for LUSC 

 

Figure 2.18 Predictive performance comparison of dichotomized survival data for GBM 
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Figure 2.19 Predictive performance comparison of dichotomized survival data for SKCM 

 

Summary for dichotomized survival predictions 

SimpleMKL algorithm worked very well as a powerful classification approach to 

predictive dichotomized survival data, for some cancer types, such as OV, KIRC and LUSC, but 

might not be a good choice for prediction of GBM and SKCK. Since we only examined a MKL 

algorithm, which is SimpleMKL, it is also worth exploring other MKL algorithms in the future.  

2.5 Discussion 

We employed several different methods for overall survival prognosis and algorithms for 

dichotomized survival prediction, knowing some of them have never been applied in this way 



 

44 

 

before. Our findings are quite interesting and promising for future investigations in this field and 

further benefit clinical decision makings. Except multivariate Cox regressions for integrative 

analysis of overall survival time, Kernel Cox also appears very promising for survival 

predictions. When dealing with clinical variables only, different kernels, such as linear, 

Gaussian, and especially clinical kernels are worth exploring, with focus in improving its 

predictive power. For dichotomized survival time prediction, as a classification problem, there 

are already plenty of existing and well established algorithms available. However, most of them 

can not handle features from very different representations, except the MKLs that are powerful 

enough to train models and to choose the best kernels or kernel combinations for each data 

resource, and hence providing a more accurate predictive performance. We explored the 

SimpleMKL algorithm in our study, however there are still quite a lot of other MKL algorithms 

worth trying in the future, such as SpicyMKL, OnlineMKL and so on, which might further 

improve the prediction performance.   
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Chapter 3 Predicting Serum IgE level and Blood Cell Proportions 

from Methylation 

 

DNA methylation at CpG sites is an important epigenetic modification that may regulate 

gene expression. There is growing interest in understanding how the methylation inheritance 

contributes to the development of complex diseases or traits. It has been shown that methylation 

modification may influence individual asthma risk and related phenotypes. The primary purpose 

of this study is to comprehensively assess—by using genome-wide DNA methylation data as 

markers—the contribution of epigenetic effects on asthma and blood related quantitative traits. 

To evaluate the clinical utility of epigenetic markers, we constructed and compared various 

prediction models by including top ranked methylation loci from the genome-wide association 

scan, together with selected sets of known genetic markers from published genome-wide 

association studies. A new prediction model based upon Best Linear Unbiased Prediction (BLUP) 

was further proposed where all CpG sites (on the Illumina Infinium 27K methylation array and 

450K array) were simultaneously modeled. The overall prediction accuracies of the proposed 

methods were extensively evaluated via the cross-validation analysis. We observed a significant 

increase of correlation coefficient between actual and predicted IgE level when methylation 

markers were included. By using an independent sample based on Illumina 450K methylation 

array, we also assessed the performance of cross platform prediction using methylation markers. 

Taken together, results from our assessment suggest that methylation has great potential in 

prediction of clinical phenotypes. 
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Figure 3.1 Illustration of Serum IgE level and Blood Cell Proportions Predictions 

 

3.1 Introduction 

DNA methylation is a crucial factor in regulating gene expression. It changes the 

structure of DNA by attaching methyl groups to target DNA region (generally in CpG islands), 

and therefore controls gene function without changing DNA sequence. It becomes increasingly 

important for us to understand mechanism of DNA methylation, which may associated with the 

development of human diseases or traits. With the advent of emerging high-throughput assay 

technologies, a methylation profiling on the entire genome can be collected. Most efforts have 

focused on a large-scale searching for methylation variations that are associated with a 

phenotype and gene expression data 1, also known as epigenome-wide association studies 

(EWAS). However, the ability to predict trait phenotypes by leveraging information on genome-

wide methylation data has not been well investigated to date. Assessing the performance of 

predicting unobserved trait values using current epigenetic and genetic data will not only drive 

progress in personalized medicine but also help us to better understand the mechanisms of 
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complex diseases.  

In genetic analysis, it is now a routine step to predict phenotypic values based on top 

single nucleotide polymorphism (SNPs) or other genetic markers selected from genome-wide 

association studies (GWAS). However, the prediction accuracy is often low such that for many 

complex traits only a small proportion of phenotypic variance can be explained by the top 

associated SNPs. Based on mixed effect model and calculation of genetic similarity matrix, 

several methods have recently been proposed for simultaneously using all SNPs in whole 

genome 2, 3. Although performance improvement of the new methods has been reported based on 

both simulated and real data, they are still limited by the heritability estimated based on the SNP 

panel and total sample size 4 . The availability of methylation data raises two interesting 

questions in terms of prediction: first, whether the addition of epigenetic information can 

significantly improve the prediction performance; and second, how to best determine the 

prediction models utilizing the current methylation data. 

Therefore, instead of identifying specific differently methylated regions (DMRs), the 

main goal of this study is to investigate the performance of predicting various phenotypes based 

on epigenome-wide methylation patterns. The first phenotype we investigate is the serum IgE 

level. The total serum IgE level is an important indicator in allergic inflammatory diseases in 

human such as Asthma. An elevated serum IgE level is often seen in the asthmatic patient, and 

those with low IgE level have low prevalence of Asthma. To our knowledge, no study has 

examined the association between serum IgE level and whole-genome DNA methylation 

markers.  

In this study, we also extended the predictive model based on genome-wide methylation 
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profiles to predict blood cell proportions. The purpose of deconvoluting cell type proportions is 

two-fold. First, cell type is an important immune response, and quantifying the cell mixture is 

essential to identify the disease subtypes, status and the underlying immune-biology 5 . Second, 

the estimated cell mixture can be incorporated into EWAS analyses to delineate DMRs from the 

methylation change due to the case-control differences in blood composition. We construct 

several prediction models that can incorporate top methylation sites as well as whole genome 

methylation markers. We test these models on the phenotypes and methylation data (Illumina 

Infinium HumanMethylation27 and HumanMethylation450 BeadChips) collected for our asthma 

study, and compare their performance using cross-validation. We find that methylation markers 

have better ability in predicting asthma related phenotypes and blood related traits than available 

genetic data. The results also indicate that the model that considers genome-wide methylation 

sites achieve the best accuracy. Unlike gene mutations, the process of DNA methylation is 

reversible, which thus can be utilized in therapy development. This study shows the importance 

of epigenetic alternations in the development of asthma, and demonstrates that the prediction 

method can serve as an important tool for understanding the nature of diseases.  

3.2 Methods 

Methylation assays 

DNA samples were quantified and bisulfite converted according to manufacturer’s 

instructions and assayed using the HumanMethylation27 BeadChips or HumanMethylation450 

BeadChip (Illumina Inc, San Diego, CA, USA). Data were visualized using the BeadStudio 

software, and examined using both sample-dependent and sample-independent quality control 
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criteria. Individual data points with detection pvalue>0.01 were set as missing data.  

Methylation normalization and correction for batch effects 

Raw methylation data was exported from the GenomeStudio software. For the Illumina 

HumanMethylation27 BeadChip data, quantile normalization of intensity was applied to all 

methylated and unmethylated probes for all samples together. The methylation β values were 

recalculated as the ratio of methylated probe signal/(total signal + 100). For 

HumanMethylation450 BeadChip, we used the pipeline developed by Touleimat and Tost 7. 

Individual data points with detection P>0.01 or number of beads <3 were treated as missing data, 

as were samples with more than 20% missing probes. Probe overlaps with any frequent SNP 

(MAF >5% in 1000 Genomes Project phase 1 EUR population) in the probe sequence or in 

position +1 or +2 of the query site (depending on Infinium I or Infinium II status) were removed. 

The lumi package 8 was used for background and colour bias correction. Quantile normalization 

across samples was applied to probes within each functional category (CpG island, shelf, shore, 

etc.) separately to correct the shift of methylation beta value between Infinium I and Infinium II 

probes by aligning the distribution of Infinium II probes to the reference distribution built upon 

Infinium probes.  

3.3.1 Variance component model 

The prediction of phenotypes can be carried out by considering the following linear 

mixed model (in matrix notation):  

 𝒚 = 𝐗𝛃 + 𝐦 + 𝛆  (1) 

where 𝒚 is the phenotypic vector being analyzed, β is a vector of fixed effects,  m is a vector of 
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random additive effects attributable to methylation and it follows  𝑁(0, 𝑲𝑚𝜎𝑚
2 ), ε is the vector of 

random residual effects and follows 𝑁(0, 𝑰𝜎𝜀
2). X is the incidence matrix for the fixed effects. 𝑰 is 

an identify matrix and 𝑲𝑚 can be interpreted as the relationship matrix between individuals 

attributable to DNA methylation. Therefore, the variance of phenotypic observation can be 

decomposed into 𝑽𝑦 = 𝑲𝑚𝜎𝑚
2 +  𝑰𝜎𝜀

2. Here we use correlation coefficient as the realized 

relationship for each pair of individuals. The variance components 𝜎𝑚
2  and 𝜎𝜀

2 can be estimated 

using restricted maximum likelihood (REML). Similarly, the above mixed model can be 

extended to incorporate genetic data using the following model: 

 𝒚 = 𝐗𝛃 + 𝐦 + 𝐠 + 𝛆  (2) 

where g is a vector of random genetic effect which can be based on whole genome SNP 

information and 𝒈~𝑁(0, 𝑲𝑔𝜎𝑔
2).  𝑲𝑔 is the realized relationship matrix of SNP data and can be 

estimated by 𝑲𝑔 = 𝑮𝑮𝑇/𝑁, where 𝑮 is a standardized genotype matrix9. However, we noticed 

that most functions implemented in current R packages can only estimate one variance 

component at each time. Estimating multiple components iteratively is very time consuming and 

may have convergence issue. Therefore, we developed our own efficient function which can 

estimate multiple variance components in a model simultaneously based on REML, in R. If only 

a small number of candidate SNPs are available (as in our data analysis), we can easily 

incorporate them into covariates. 

3.3.2 Mixed model based prediction 

In order to perform prediction on phenotypic values, the above described random effect 

model needs to be converted into the following fixed effect model: 
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 𝒚 = 𝐗𝛃 + 𝒁𝒎𝒖𝒎 + 𝛆  (3) 

where 𝑍𝑚 is the incidence matrix of methylation, i.e., methylation score matrix (Beta values). 

𝒖𝑚 is a vector of fixed effects of CpG sites included. In REML analysis, the best linear unbiased 

predictors (BLUP) of the random effect can be obtained as �̂� = 𝑽𝒎𝑽𝒚
−𝟏(𝒚 − 𝑿�̂�),  where �̂� is 

the best linear unbiased estimators (BLUE): �̂� = (𝑿𝑻�̂�−𝟏𝑿)−𝟏𝑿𝑻�̂�−𝟏𝒚. By equating the random 

and fixed effects models, we can get 𝒖�̂� = 𝒁𝑻𝑲𝒎
−𝟏�̂�/𝑁, where 𝑁 is the total number of CpG 

sites. Therefore, we can predict the effect of methylation in a test data set by plugging in the 

BLUP of 𝒖, i.e., �̃� = 𝒁𝑡𝑒𝑠𝑡𝒖�̂�. The prediction of unknown phenotypes in the test dataset can be 

performed through: 

 �̃�𝒕𝒆𝒔𝒕 = 𝑿𝒕𝒆𝒔𝒕�̂� + �̃�𝒏𝒆𝒘 = 𝑿𝒕𝒆𝒔𝒕�̂� +  𝒁𝒕𝒆𝒔𝒕𝒁𝑻𝑲𝒎
−𝟏�̂�/𝑵 (4) 

3.3.3 Cross-validation of predictive models 

We construct six models in predicting IgE (Table 2.1). Gender, DDAST and candidate 

SNPs that are associated with IgE were adjusted as covariates separately or jointly in these 

models. To evaluate the accuracy of prediction, we employ a leave-one-family-out cross-

validation (CV) by iteratively excluding samples from one family from the training set. This 

strategy will help eliminate spurious prediction improvement due to familial correlation. Instead 

of using formula (4), the CV prediction can be carried out more efficiently by employing an 

equivalent form: �̃�𝑡𝒆𝒔𝒕 = 𝑋𝑡𝒆𝒔𝒕β̂ + 𝐊21𝐊11
−1�̂�, where 𝐊21and 𝐊11 are the corresponding 

submatrices of similarity matrix of whole samples. In model (E), epigenome-wide association 

analyses (EWAS) are first preformed to select top methylation sites. The EWAS scan and top 

methylation site selection is repeated for each training set generated in the cross-validation 
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process. The prediction in model (E) is then based on 

 �̃�𝒕𝒆𝒔𝒕 = 𝑿𝒕𝒆𝒔𝒕�̂� + 𝑾𝒕𝒆𝒔𝒕�̂� (5) 

𝑊𝒕𝒆𝒔𝒕 and α̂ are the incidence matrix and effect vector for the selected top methylation sites, 

respectively. 

3.3.4 LASSO, Ridge and Elastics Net regression models 

For ordinary least square regression, we obtain the estimates, by objective function of 

minimize the least squares of error. When are assumptions for least square regression hold, it 

generates good models for data with relative small number of feature. Cancer genome data fall 

into the category of high dimension, while in this situation the number of features (p) is 

extremely large, comparing to sample size (n). For example, DNA methylation pattern (mDNA), 

characterized based on Illumina Infinium HumanMethylation450 BeadChip panel, interrogates 

about 450k CpG sties in total, while sample size is several hundreds. 

Regression of high dimensional data, (A) there might be redundant features, which 

contributes no additional information, other than noises; (B) it brings trouble for interpretation 

and visualization; (C) from computational perspective, it increases difficulty to store and process 

data; (D) last but not the least, complexity of decision rule tends to grow with number of feature. 

Therefore, when dealing with high dimensional data, we are facing unique challenges. Problems 

include how to select feature and test variable relationships and how to build a model based on 

high-dimensional data while in the meantime protecting against over-fitting. 

The LASSO, least absolute shrinkage and selection operator10, and Elastic Net11 are 

shrinkage and selection methods that are applied frequently for high dimensional data linear 
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regression. Statistically, the phrase high dimensional data describe situations in which the 

number of measurements (p) is large, especially relative to the number of experimental units (n). 

In the fitting of linear regression models, the elastic net combines both L1 and L2 12. 𝑦 = Xβ + ε, 

where 𝑦 is the phenotypic vector being analyzed, 𝑿 is an input measurements matrix, and ε is the 

vector of random residual effects, which follows 𝑁(0, 𝑰𝜎𝜀
2). By minimizing the residual sum of 

squares subject to the constraints, the LASSO and Elastic Net naturally tend to set some of the 

coefficients to be zero, which helps interpret the model. The estimate β̂ from the elastic net 

method are defined as  

 �̂� = 𝐚𝐫𝐠 𝐦𝐢𝐧 {∑ (𝒚𝒊 − ∑ 𝛃𝒋𝐱𝒊𝒋𝒋 )
𝟐𝒏

𝒊=𝟏 + 𝝀𝟐||𝛃||
𝟐

+ 𝝀𝟏||𝛃||
𝟏

} 

  = 𝐚𝐫𝐠 𝐦𝐢𝐧 {(𝒚 − 𝑿𝛃)𝑻(𝐲 − 𝐗𝛃) +  𝝀𝟐||𝛃||
𝟐

+ 𝝀𝟏||𝛃||
𝟏

} 

(6) 

Where ||β||
𝟐

= ∑ 𝛃𝒋
𝟐

𝒋  and ||β||
𝟏

= ∑ |𝛃𝒋|𝒋 . When 𝝀𝟐 = 0, the model only contains L1 penalty 

and becomes LASSO. The Elastic Net method overcomes the limitations of the  LASSO method 

by the additional quadratic penalty ||β||
𝟐

= ∑ 𝛃𝒋
𝟐

𝒋 . When 𝝀𝟏 = 0, the model only contains L2 

penalty and becomes ridge regression. While there are two steps involved in the naive version of 

elastic net method to find an estimator: first for each fixed 𝝀𝟐 it solves the coefficients for the 

ridge regression, and then does a LASSO type shrinkage. Unnecessary extra bias is introduced 

by this type of estimation with doubled amount of shrinkage and hence incurs bad predictive 

performance. To improve the predictive performance, rescaled coefficients are introduced into 

the naive version by multiplying the estimated coefficients by (1 +  𝝀𝟐). Adaptive  LASSO is 

also introduced by adding weights to L1 penalty13.   

http://en.wikipedia.org/wiki/Least_squares#Lasso_method
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3.3.6 Support Vector Machine Regression Prediction 

Support Vector Machines (SVMs) [18], originally introduced by Vapnik and co-workers 

[19-22], have been successively extended by other researchers for a variety of classification and 

regression purposes. The detailed derivation of SVMs for classification problems can be find 

from Vapnik’s work [19-22]. Vandewalle reviewed the basic work on SVM [23], we will now 

give a brief summary based on his reviews.  

As a powerful machine learning technique, SVM has been shown to perform well in 

multiple areas, including biological data analysis, such as gene microarray expression data [15]. 

SVM utilizes “Kernels” to achieve a general mapping to a feature space, automatically, which 

can be linear or non-linear [24].  The operations in the feature space of kernel functions, can be 

done easily by computing the inner products between all pairs of data, with no worry about 

computing the coordinates of the data (e.g. [25]). A SVM constructs a hyperplane in a high- or 

infinite-dimensional space, and separate a given set of training data by maximize the distance to 

the nearest training data point of any class. Support vector regression (SVR) is one type of 

support vector machine (SVM), when it is employed for regression problems [26].  

Let {𝒚𝒌, 𝒙𝒌}𝒌=𝟏
𝑵  denote N data points from a training set, where 𝒙𝒌 ∈ 𝑹𝒏 is the k-th input 

and 𝒚𝒌 ∈ 𝑹  is the k-th output. SVM aims at constructing a classifier:  

 
𝒚𝒌 = 𝒔𝒊𝒈𝒏[∑ 𝛂𝒌𝒚𝒌

𝑵

𝒌=𝟏
𝛙(𝒙, 𝒙𝒌) + 𝒃] (2) 

where 𝛂𝒌 are positive constants and 𝒃 is a constant. For 𝛙(. , . ) one can choose following 

optionss: 𝛙(𝒙, 𝒙𝒌) = 𝒙𝒌
𝑻𝒙 (linear SVM); 𝛙(𝒙, 𝒙𝒌) = (𝒙𝒌

𝑻𝒙 + 𝟏)𝒅 (polynomial SVM of degree 
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d); 𝛙(𝒙, 𝒙𝒌) = 𝐞𝐱𝐩 {−||𝒙𝒌 − 𝒙||
𝟐

𝟐
/𝝈𝟐} (RBF SVM), where 𝝈 is constant.  

3.3 Results 

3.2.1 Cross validation for the prediction of IgE 

We collected our data from 195 siblings and their parents in 95 nuclear pedigrees 

identified by a proband of asthma. The sample has 355 subjects (183 male) with a mean age in 

children of 12.2 years (ranging from 2 to 39) and adults of 42 (27 to 61). DNA extracted from 

peripheral blood leukocytes (PBL) and lymphoblastoid cell line (LCL) was used in the assay. 

The methylation pattern was characterized based on Illumina Infinium HumanMethylation27 

BeadChip panel, which interrogates 27,578 CpG sties in total. All the data used in the prediction 

analysis has been processed through proper pre-processing steps including background 

correction and normalization. 

From the catalogue of published GWAS provided by the National Human Genome 

Research Institute (www.genome.gov/gwastudies), we identified two top SNPs (rs2251746 and 

rs2571391) that are significantly associated with IgE and also available in our SNP dataset. 

These two SNPs were included in our prediction model together with two other covariates, 

gender and DDAST (doctor diagnosed asthma). As shown in Table 2.1, using two SNPs slightly 

improves the prediction accuracy (by comparing model C to model A, R2 was improved from 

0.083 to 0.106). When all methylation sites were included in the analysis using our proposed 

method (model D), we observe a significant increase of cross-validation correlation coefficient 

between actual and predicted IgE level (R2 was improved from 0.106 before to 0.327 after 

including methylation data). In model E, we considered a more classical prediction model by 

http://www.genome.gov/gwastudies
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including different number of top methylation markers (identified from a genome wide scan). It 

is, however, always difficult to decide an optimal number of predictors because too few will 

limit predication capability while too many can cause over-fitting.  

Figure 3.2 shows the predictive performance of model E, by increasing the number of 

methylation markers from 1 to 20, with R2 between 0.20 and 0.342. The highest CV correlation 

0.342 was reached when 16 markers were included, and it is very close to the proposed model 

(D), which uses the whole methylation profile while avoids a grid search. Results from this study 

suggest that DNA methylation explains much larger variability in IgE level than known genetic 

variants (2% due to top genetic markers in large GWAS vs. 15% due to top 3 CpG sites), 

suggesting that methylation has important influence in asthma and has great potential in 

prediction of clinical phenotypes. We also explored the prediction model with the interaction 

term between level of eosinophils (EOS), which is known to be associated with IgE and top 

methylation sites. The CV correlation from model F (Figure 3.1) is highest (0.419) when around 

five methylation makers and their interactions are considered but rapidly decreases when more 

markers are added into the model.  

Table 3.1 Prediction models for predicting IgE and performance summary 

Model Cross validation r2 

(A) Gender+DDAST 0.083 

(B) Gender+DDAST+rs2251746 0.099 

(C) Gender+DDAST+rs2251746+rs2571391 0.106 

(D) Gender+DDAST+rs2251746+rs2571391+ Methylation  profile 0.327 

(E) Gender+DDAST+rs2251746+rs2571391+top methylation sites 0.20 ~ 0.342 

(F) Gender+DDAST+  rs2251746+rs2571391+EOS +  top 

methylation sites + (METHY×EOS) 
Maximum  r2 : 0.419 
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Figure 3.2 Predictive performances of IgE obtained from model E and model F. 

 

Table 3.2 summarizes the predictive performance of the proposed prediction model (D) 

in predicting cell proportions using cross validation. The model is similar to model D for 

predicting IgE but without adjusting for DDAST and top IgE SNPs. For both data sets (with and 

without batch effect correction), it is found that the model with methylation profile only can 

provide highest accuracy in predicting Neutrophils (NEU), followed by Eosinophils (EOS) and 

Lymphocytes (LYM), and have poor perdition Monocytes (MON).  

Table 3.2 Cross validation (LOFO) predictive performance of cell proportions using methylation 

profile where 27K are used as training data  

Cell type Cross validation r2 

 
Top 1 Top 5 Top 10 Top 50 27K_VC 

NEU 0.588 0.685 0.656 0.649 0.709 

EOS 0.505 0.607 0.598 0.593 0.678 

LYM 0.529 0.632 0.627 0.618 0.621 

MON 0.07 0.165 0.202 0.183 0.001 
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3.2.2 Cross-platform validation for the prediction of cell proportions 

We also evaluated the predictive performance of cell proportions across different 

methylation assay platforms. Two additional data sets used for this purpose are the 149 

Caucasian subjects selected equally from the top and bottom deciles of IgE distribution in 1614 

unselected volunteers (students and staff from Swansea University); and in 160 (80 male) 

subjects in an asthmatic family panel from the Saguenay–Lac-Saint-Jean region (SLSJ) of 

Quebec6 with a mean age in children of 16 years (ranging from 5 to 50; 40 DDAST) and adults 

of 44 years (31 to 79). Table 3.3 presents the results from the predictions model where the 

previous 27K data were used as training dataset and each of the two 450K data sets were used as 

a testing data set. For each dataset we applied six prediction models include models with top 1, 5, 

10, 50 probes and ~25K overlapping probes between 27K and 450K array, respectively. Overall, 

the prediction on Lymphocytes achieved best performance, followed by Eosinophils and 

Neutrophils. It is shown that the variance component based model which includes all 25K probes 

provided optimal prediction accuracy for all cell types except Monocytes. The variance 

component prediction model was further applied to include all probes in 450K arrays.  

Table 3.3 Cross data validation predictive performance of cell proportions using 27K 

methylation profile as training data and testing on both Swansea and SLSJ data.  

Cell 

type 

Testing 

data set 

Prediction probes/models r2 

    Top 1 Top 5 Top 10 Top 50 25K_VC Top5+25K VC 

LYM Swansea 0.078 0.078 0.000 0.014 0.873 0.873 

  SLSJ 0.003 0.003 0.014 0.010 0.846 0.846 

EOS Swansea 0.573 0.573 0.535 0.541 0.873 0.774 

  SLSJ 0.581 0.581 0.537 0.707 0.699 0.699 

NEU Swansea 0.179 0.179 0.043 0.058 0.750 0.750 

  SLSJ 0.110 0.110 0.018 0.025 0.837 0.837 
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MON Swansea 0.119 0.119 0.121 0.116 0.119 0.119 

  SLSJ 0.033 0.033 0.034 0.034 0.033 0.033 

 

Table 3.4 presents the results from the predictions model where Swansea 450K and SLSJ 

450K were alternatively used as training dataset to predict each other. For each dataset we 

applied five prediction models include models with top 1, 5, 10, 50 probes and ~25K overlapping 

probes between 27K and 450K array, and all 450K probes, respectively. Overall, the prediction 

on Lymphocytes achieved best performance, followed by Eosinophils and Neutrophils. Figure 

3.3 shows the plots of the predicted cell proportions in Swansea data set (model trained using the 

SLSJ data) versus the observed cell proportions, and the predicted cell proportions in SLSJ data 

set (model trained using the Swansea data) versus the observed cell proportions. 

Table 3.4 Cross data validation predictive performance of cell proportions where Swansea and 

SLSJ are used to predict each other.  

Cell 

type 

Testing 

data set 

Prediction probes/models r2 

    Top 1 Top 5 Top 10 Top 50 25K_VC 450K_VC 

LYM Swansea 0.007 0.007 0.001 0.000 0.902 0.885 

  SLSJ 0.007 0.007 0.000 0.013 0.805 0.801 

NEU Swansea 0.023 0.023 0.037 0.016 0.809 0.768 

  SLSJ 0.003 0.003 0.050 0.000 0.735 0.768 

EOS Swansea 0.008 0.008 0.009 0.010 0.606 0.813 

  SLSJ 0.021 0.021 0.037 0.023 0.468 0.760 

MON Swansea 0.118 0.118 0.125 0.470 0.014 0.000 

  SLSJ 0.067 0.067 0.053 0.263 0.022 0.000 

 

3.2.3 Machine learning methods for the prediction of cell proportions  

For the same two data sets, Swansea 450K and SLSJ 450K data, we also evaluate the 

predictive performance of cell proportions using methylation profile by applying several 

machine learning methods. Table 3.5 presents the correlation determination results from the 
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LASSO and Elastic Net predictions where Swansea 450K and SLSJ 450K were used as training 

dataset to predict each other. For each dataset we applied five prediction models include LASSO, 

Ridge, and Elastic Net (alpha=0.2), respectively. Overall, the prediction on Eosinophils achieved 

best performance (R2=89.1%), followed by Neutrophils and Lymphocytes. It is also shown that 

the Elastic Net outperforms LASSO and Ridge.  

Table 3.6 presents the results from Support Vector Regression predictions where 

Swansea 450K and SLSJ 450K were used as training dataset to predict each other. For each 

dataset we applied seven prediction models include models with top 10, 100, 1K, 10K probes 

and  25K overlapping probes between two data sets, and the utilized the whole 450K profiles, 

respectively. It also shows correlation determination between predicted cell proportions and 

observed cell proportions, by applying SVR. In predicting Eosinophils, the best performance has 

been achieved that 91.5% of variance can be explained by SVR with top 10K selected feature, 

followed by Neutrophils and Lymphocytes. 

Table 3.5 LASSO, Ridge and Elastic Net predictive performance of cell proportions where 

Swansea and SLSJ are used to predict each other. 

Cell type Testing data set Prediction probes/models 

     LASSO Ridge Elastic Net (alpha=0.2) 

EOS Swansea 0.882 0.740 0.867 

  SLSJ 0.888 0.609 0.891 

NEU Swansea 0.692 0.825 0.833 

  SLSJ 0.823 0.780 0.841 

LYM Swansea 0.800 0.900 0.809 

  SLSJ 0.838 NA 0.849 

MON Swansea 0.457 0.196 0.432 

  SLSJ 0.387 0.110 0.484 
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Table 3.6 SVR Predictive performance of cell proportions based on methylation profile and 

gender information. 

 

By now, we have compared the prediction accuracy of mixed linear models, variance 

component models, LASSO, Ridge, Elastic Net and SVR, and found out that regularized least 

square regressions and SVR outperforms others, in which SVR achieved the highest R2 of 0.915, 

slightly better than that of the best performance of Elastic Net with R2 of 0.891. 

3.2.4 Prediction based on Houseman’s top DMR CpGs 

We also applied the above methods to build predicate model based on the top 500 DMR 

CpGs identified through the algorithm proposed in Houseman et al. (2012). We evaluated the 

performance of prediction through cross-data and cross-platform validation. The corresponding 

results from applying various models introduced in previous sections are summarized in Table 

3.7. Overall, similar performance was achieved for predicting cell type proportions. It indicates 

that using the whole methylation sites in the training model will not affect the predictive 

performance due to noise and outliers in high-dimensional data, which is one major concern in 

the prediction using whole genome-wide markers. Among different methods tested including 

Cell 

type 

Testing 

data set 

Prediction probes/models 

    Top10 Top100 Top1K Top10K 25K 450K 

EOS Swansea 0.905 0.771 0.907 0.915 0.888 0.734 

  SLSJ 0.867 0.730 0.899 0.899 0.890 0.587 

NEU Swansea 0.909 0.673 0.815 0.872 0.863 0.816 

  SLSJ 0.835 0.765 0.838 0.844 0.831 0.771 

LYM Swansea 0.891 0.792 0.910 0.903 0.910 0.898 

  SLSJ 0.835 0.766 0.858 0.859 0.856 0.802 

MON Swansea 0.491 0.092 0.596 0.700 0.605 0.187 

  SLSJ 0.376 0.410 0.520 0.680 0.731 0.104 
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LMM, elastic LASSO and other machine learning methods, there is no universally best method 

for all scenarios.  LASSO and SVR showed very promising results in predicting lymphocytes 

and neutrophils, respectively. However, these two methods yielded poor reproductive 

performance when predicting neutrophils and eosinophils, respectively. LMM models (either 

trained on 27K or 450K data) and ridge regression achieved relatively robust prediction.  This is 

as expected because both LMM and ridge regression are based on L2 penalty, where the 

information from all markers will be incorporated in the testing model. When number of 

predictors is limited (e.g. 500 CpGs here), applying a model that further induces sparsity such as 

L1 may be risky, where important predictors with small or medium effects may not be picked out 

and included in the final testing model. This results further demonstrate the advantage of the 

whole genome-wide prediction models which does not need to be constrained on a preselected 

panel, and their results tend to provide more reproducible results across different cell types – and 

more importantly, across different sources of data. 

Table 3.7 Predictive performance of cell proportions based on 500 probes and gender 

information, by various of models. 

 

Cell type 
Testing 

data set 
Prediction models with 500 probes 

    
LMM Train 

on 27K 

LMM Train 

on 450K 

 

LASSO 
Ridge 

Elastic 

Net (alpha 

= 0.2) 

SVR 

LYM Swansea 0.803 0.819 0.896 0.767 0.705 0.794 

  SLSJ 0.811 0.685 0.851 0.662 0.616 0.843 

NEU Swansea 0.791 0.806 0.378 0.904 0.923 0.757 

  SLSJ 0.793 0.728 0.811 0.846 0.857 0.828 

EOS Swansea 0.745 0.794 0.608 0.836 0.481 0.754 

  SLSJ 0.590 0.662 0.611 0.821 0.826 0.728 

MON Swansea 0.488 0.547 0.393 0.492 0.371 0.427 

  SLSJ 0.392 0.302 0.242 0.519 0.370 0.362 
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Figure 3.3 Cross data validation predictive performance of cell proportions where Swansea and 

SLSJ are used to predict each other, based on predictive models with ~25K overlapping probes 

between 27K and 450K array 

 

3.4 Discussion 

We have presented several prediction methods to analyze DNA methylation data from 

peripheral blood leukocytes (PBL) and lymphoblastoid cell line (LCL), to predict asthma related 

phenotypes, serum IgE level and cell type proportions, both within the same platform and cross 

platforms. For IgE level prediction, we find that methylation markers have better predictive 

performance than genetic markers identified from genome-wide association studies. For cell 

proportions study, we explored mixed model based prediction, LASSO and other machine 

learning based methods. Among all the non-LMM based methods, elastic net outperforms 
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LASSO in general, across all of the different cell types. Due to the potential significant non-

linear interactions between methylation sites, we want to perform SVR with not only the liner 

kernel, but also the Gaussian kernel. Our results show that in SVR predictive performance, the 

linear kernel outperforms the Gaussian kernel, except that for top 100 selected features, Gaussian 

kernel generated better correlation coefficients than linear kernel, consistently. Our results 

showed that the model based on genome-wide methylation panel could predict three cell types 

(EOS, NEU and LYM) with high accuracy and reliability. The predictive performance is less 

accurate for MON prediction and much lower for basophils (results not listed)—due to the 

scarcity in cell counts. Among the methods examined, we found that, if based on all 27K or 

450K methylation markers, Elastic Net and SVR often achieve slightly better predictive 

performance on both cross-validation and independent test data. If based on a pre-select marker 

set such as the 500 CpGs from Houseman’s, it is found that LMM-based method can achieve 

better performance. Therefore, for the prediction with full panel of methylation markers, we 

recommend to use elastic net and SVR with linear kernel. We also strongly recommend applying 

LMM as a benchmark method in all analysis due to its reliability. While for the prediction with a 

small subset of markers, the algorithms based on non-spare solutions such as LMM and ridge 

regression should be preferred. 

Over-fitting can be especially important for prediction based on high-dimensional data. 

This issue is controlled by regularization in the predictive models.  In the linear mixed model, 

regularization is incorporated implicitly and the penalty parameter is estimated automatically. In 

fact, the likelihood for ridge regression penalized model is mathematically equivalent to the 

likelihood for LMM. One advantage of the LMM formulation is that, as a byproduct, we can 

estimate the individual variance components, and thus the proportion of phenotypic variance 
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explained by variation from each variant attributes. In this sense, this estimate can be treated as 

an epigenetic counterpart of the hereditability in GWAS and will be useful in decomposing the 

contribution from epigenetic and genetic factors-if both the genetic and epigenetic panels are 

modeled. Furthermore, LMM provides a natural way to extend the predictive model to integrate 

multiple types of omic data (e.g. SNP, copy-number varation, gene expression and DNA 

methylation), by treating each of them as a variance component.  In model evaluation, we used 

both cross-validation and performed validation on independent test datasets. The predictive 

performance demonstrated that our methods are applicable to methylation data generated from 

different platforms and even from different sources. While we focused on epigenome-wide 

prediction in this study, we do see the value in using a panel of pre-select methylation markers 

for prediction, such as the 500 DMR CpGs supplied in Houseman et al. (2012). Using small 

number of markers is computationally efficient, less susceptible to the over-fitting issue, and thus 

tend to be more reliable, especially when the sample size is limited.  

In summary, our analysis shows the importance of epigenetic alternations in the level of 

blood related complex traits, and demonstrates that the prediction method can serve as an 

important tool for understanding the status and stages of diseases. We demonstrated that 

methylation profile could be used to reliably predict proportions of three blood cell types, e.g. 

EOS, NEU and LYM. In our study, we have datasets with sample size around 150 each. With 

larger samples in ongoing epidemiology studies, we expect that our methods could be future 

improved by leveraging information from more samples and finer tuning of model parameters.   
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Chapter 4 Current and Future Work 

In this chapter, we introduce a current project with focus on predicting overall survival 

time of patients with metastatic castrate resistant prostate cancer (mCRPC), utilizing clinical 

information alone and also discuss our future directions for integrative analysis.  

Figure 4.1 Illustrate of Survival Prediction with Kernel Methods 

 

In order to improve the predictive performance, we explored kernel Cox regression from 

clinical variables, exploring the efficiencies of linear, Gaussian and clinical kernels. Our 

preliminary findings are included in the following sections. The potential benefit of this study is 

to establish better prognostic models in support of clinical decisions, and better understanding 

the mechanism of mCRPC disease progression.  

4.1 Introduction to Survival Prediction with Kernel Methods 

As the most common cancer among men, prostate cancer ranks third in terms of mortality 

after lung cancer and colorectal cancer [1]. The mainstay of treatment for metastatic disease has 
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been androgen deprivation therapy (ADT), though inevitably patients develop resistance. This 

condition is called metastatic castrate-resistant prostate cancer (mCRPC) and accounts for one 

third of all patients with metastatic disease. Although a number of options exist for treatment of 

mCRPC including chemotherapies and supportive care, the most effective single therapy or 

sequence of therapies remains unclear. Innovative research approaches using the phase III trials 

made available through Project Data Sphere may hold meaningful promise for improving the 

treatment of patients with mCRPC. 

Factors that are highly related to the risk of prostate cancer include: age, race, a family 

history of the disease, and genetic background. The goal of this project is to develop models for 

predicting the overall survival for patients with mCRPC, based on just clinical variables. 

Prognostic models are then served as tools for doctors to use and to determine the best treatment 

options for patients. It has been showed that better prognostic models can be built, by leveraging 

the most up-to-date and well-sampled mCRPC data [2], which highlights the importance of 

prognostic research to integrate the current clinical context and patient health status into 

treatment choices and clinical management decision making. In this project, we leverage 4 

clinical trials compiled by Project Data Sphere to develop models for predicting overall survival 

of chemotherapy-naive mCRPC patients receiving docetaxel. Models will be evaluated 

according to the C-index.  

4.2 Methods 

4.2.1 Kernel Cox regression 

Kernel Cox regression models were originally proposed for linking gene expression 
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profile to overall survival, with linear kernels, by Li and Luan [3], who extended the SVM for 

categorical data to censored survival data. In their study, they also claimed that kernel Cox 

regression models are more efficient and powerful than Cox regression models, with respect to: 

(A) It can automatically perform feature selection to identify genes highly related to survival and 

further identify the optimal combination of the features in predicting the risk of cancer; (B) there 

is no limitation for the number of genes used in the prediction of patient's overall survival, in 

terms of computational or methodological cost.  

The following are the formulations and derivations of kernel Cox regression models, 

originally proposed for relating gene expression to overall survival, in the framework of SVM, 

utilizing kernels. Following the definition of Cox regression, and assuming the generalized Cox 

model with the hazard function for the ith patient being  

 𝝀𝒊(𝐭|𝒙𝒊) = 𝝀𝟎(𝒕)𝒆𝒙𝒑(𝒇(𝒙𝒊)) (1) 

Same as in the usual Cox model, 𝜆0(𝑡) is the unspecified baseline hazard function, while 𝑓(𝑥𝑖) is 

a function of gene expression data 𝑥𝑖.  

For gene expression data, the standard Cox model is not feasible for estimating 

unspecified function, due to that the dimension of 𝑥𝑖 vector being much larger than the sample 

size. They then proposed to solve this problem, through kernel tricks, by defining the function 

𝑓(𝑥𝑖) as the following 

 
𝒇(𝒙𝒊) = 𝒃 + ∑ 𝒂𝒊𝑲(𝒙, 𝒙𝒊)

𝒏

𝒊=𝟏
 (2) 

where b can be absorbed into the baseline function, and choosing the simplest case of natural 
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inner product kernel, 𝐾(𝑥, 𝑥𝑖) =< 𝑥𝑖 , 𝑥𝑗 >, so we then have  

 
𝒇(𝒙𝒊) = ∑ 𝒂𝒊𝑲(𝒙, 𝒙𝒊)

𝒏

𝒊=𝟏
= ∑ (∑ 𝒂𝒊𝒙𝒊𝒋)𝒙(𝒋)

𝒏

𝒊=𝟏

𝒑

𝒋=𝟏
= ∑ 𝜷𝒋

𝒑

𝒋=𝟏
𝒙(𝒋) (3) 

It is easy to replace the kernel with other kernel options that we are familiar with, such as 

polynomial or Gaussian kernels. 

4.2.2 Clinical kernel for Cox regression 

In order to apply kernel Cox regression models on clinical data to obtain better predictive 

performance, it will make more sense for us to utilize a new kernel, instead of the linear kernel, 

since clinical datasets are quite different from gene expression profiles, in terms of containing 

continuous, ordinal, and categorical variables. Linear kernel in this situation has some 

disadvantages. Researchers have proposed clinical kernel and clinical polynomial kernel for 

overall survival analysis, which were shown to have improved performance, comparing to 

survival SVM [4]. The clinical kernel is an additive summation of 𝑝 kernels 𝐾(𝑝), with each 

calculated differently based on the types of clinical variables.  

 
𝑲𝒄𝒍𝒊𝒏(𝒙𝒊, 𝒙𝒋) = ∑ 𝑲𝒄𝒍𝒊𝒏

(𝒑)
(𝒙𝒊

𝒑
, 𝒙𝒋

𝒑
)

𝒅

𝒑=𝟏
 (4) 

For continuous and ordinal clinical variables, the kernel is defined as [5] 

 
𝑲𝒄𝒍𝒊𝒏,𝟏

(𝒑)
(𝒙𝒊

𝒑
, 𝒙𝒋

𝒑
) =

(𝒎𝒂𝒙(𝒑) − 𝒎𝒊𝒏(𝒑)) − |𝒙𝒊
𝒑

− 𝒙𝒋
𝒑

|

𝒎𝒂𝒙(𝒑) − 𝒎𝒊𝒏(𝒑)
 (5) 

Here 𝑚𝑎𝑥(𝑝)𝑎𝑛𝑑 𝑚𝑖𝑛(𝑝)are the maximal and minimal values of clinical variable 𝒑, of the 

training data.  
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For nominal variables, the kernel is defined as  

 
𝑲𝒄𝒍𝒊𝒏,𝟐

(𝒑)
(𝒙𝒊

𝒑
, 𝒙𝒋

𝒑
) = {

𝟏, 𝒊𝒇 𝒙𝒊
𝒑

= 𝒙𝒋
𝒑

𝟎, 𝒊𝒇 𝒙𝒊
𝒑

≠ 𝒙𝒋
𝒑 (5) 

They also proposed clinical polynomial kernel, based on clinical kernel, in the same ways 

generating polynomial kernel from linear kernel [4].  

We applied functions from the R package “survpack” for kernel Cox regression to our 

clinical data, with linear and Gaussian kernels implemented in the package. We hope to extend 

this R package to including clinical kernel, which is supposed to be more suitable for 

incorporating clinical variables in the Cox regression. 

4.3 Future work 

Currently, efficiently combining multiple types of molecular data remains a technical 

challenge due to the over-fitting issue and the co-linearity issue of large-scale biological data. 

Therefore, one future direction is to build prognostic models that better integrating clinical 

variables and multi Omics data, carrying potential key complementary information, for not only 

dichotomized survival data, but also censored overall survival data. In that regard, our future 

work is to develop more effective feature selection strategies to overcome over-fitting and co-

linearity issues. For dichotomized survival prediction, we should extend our study to other MKL 

methods, such as SpicyMKL, GeneralizedMKL, and onlineMKL, and also developing our own 

customized MKL algorithms. For overall survival prediction, based on clinical variables only, 

we can further explore kernel Cox regression with Clinical kernels.  
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