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Abstract of the Thesis

Machine Learning, Evolutionary Algorithms, and the
Inference of Mathematical Truths

by

Asher Hensley

Master of Science
in

Electrical Engineering

Stony Brook University

2013

In this thesis we set out to find whether the true data generating formula
behind a set of data points can be automatically inferred from the data
points alone. We start with the topic of machine learning and quickly realize
that black box models can only approximate the real world which creates the
motivation to move on to evolutionary algorithms as a vehicle to implement
symbolic regression. Through a series of experiments we discover that the
mean-squared error cost function is easily fooled by decoy solutions and is
unable to make use of all the information presented in the training examples.
Based on this result we develop the concept of feature signatures which
uniquely define a set of training examples and possess several desirable
properties, the most important being invariance to linear transformations.
Armed with this concept we conduct several more numerical experiments
based on common analytical functions and real world data sets which
ultimately lead to the experimental evidence we need to support the thesis.
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Chapter 1

Introduction

“...mathematics is the foundation of all exact knowledge of natural
phenomena.”

David Hilbert, 1900 [1]
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1.1 The World Around Us

Finding models that accurately describe the world around us can be a
tricky thing. Humans have been trying to do it for centuries to understand
phenomena like the motion of heavenly bodies, weather cycles, crop yields, and
the spread of disease [2]. Early human reasoning attributed such processes to
the gods, which in some cases was thought to be the sun [3]. Additional
support for this hypothesis came from the occurrence of rare catastrophic
events, or “Black Swans” [4]. However with the invention of mathematics
came the ability to describe the world with numbers which was the beginning
to revealing truth behind natural processes [2].

Today, we are still describing the world with numbers, but our ability to
collect these numbers is far more advanced than our ability to understand these
numbers [5]. As of this writing, genome sequencing machines are generating 15
petabytes of compressed genetic data per year [6], the Large Hadron Collider
at CERN is generating 40 terabytes of data per second [5], and the next
generation radio telescopes are expected to generate 70 petabytes per year [7].
The question is, now that we have all the data we could ever want, how do we
understand it?

1.2 Big Data

The first problem of Big Data is how define it. Several authors have tried,
and the current definition of the Big Data problem is the entire process
recording, cleaning, extracting, processing, visualizing, and interpreting large
data sets which cannot be tackled using traditional methods [8, 9, 10, 11].
However, most of these aspects of Big Data are irrelevant for us in this work.
Although it’s important to know that Big Data exists and have a general
idea of what it is, from here we will oversimplify and ignore the fact that we
are drowning data and focus on the problem of knowledge extraction.

One of the current methods is to use machine learning techniques to find
patterns in the data and make predictions about future measurements [12].
Although this covers a wide class of problems, we are going to again ignore
the majority and only consider the regression problem being: given a set
of continuous valued measurements, build a model that will predict future
continuous valued measurements. One approach to the regression problem is
to solve for the parameters of a black box model using either linear or nonlinear
optimization methods. Some examples of “off the shelf” black box models are
Neural Networks and Support Vector Machines. The question is, if we can
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predict future measurements from an unknown system, does that qualify as
knowledge?

1.3 Black Box Regression

The term regression is due to Sir Francis Galton who used it to refer to
the regression towards the mean of a population as more samples are taken
[13]. There are two problems with this view of the world, (1) lack of human
understanding of the process at hand and (2) the ability of the model to
generalize. The first issue is a direct result of the black box model paradigm.
The black box model design process is defined as follows, “No physical insight
is available or used, but the chosen model structure belongs to families that
are known to have good flexibility and have been successful in the past” [14].
This is to say that black box models are an approximation of nature.

The second issue is the model’s ability to predict new measurements which
is where we can run into trouble with statistical methods. There is a whole
theory to deal with this problem using cross validation with hold out data
points, which is used extensively in the literature (see [15] and [16]). But is
this really the path to mathematical truth?

1.4 Problem Statement

In this study we will examine the topic of extracting mathematical truth
from data closely. The problem to be solved is: given a set of training examples
(x and y), determine the true function f(x) = y explicitly. This is an inverse
problem where we want to infer the “white box” model f(?) which is defined
as, “the case when a model is perfectly known; it has been possible to construct
it entirely form prior knowledge and physical insight” [14]. It will be up to
the computer to find the correct solution using only the knowledge and insight
that can be gained from the training examples.

In order to proceed, the reader must be willing to accept the following
condition: behind every set of data points, there is a true formula relating the
independent and dependent variable(s). Although this is not true in general we
will be focusing on problems of this type. This problem typically arises when
trying to understand data generated by natural time invariant processes. Some
of examples of this type of problem are determining the relationship between
(1) voltage and current, (2) force and mass, (3) pressure and volume, and
(4) temperature and viscosity. This is automated knowledge extraction from
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data in its purest form, and it is thought this technique will one day automate
science [17].

Finally, before continuing we need introduce the notion of a decoy, which
is defined as: a model that fits all the known data yet is not the true data
generating formula. Decoys arise where there are multiple solutions that
explain the training data. If we take a step back and think for a moment, it
becomes clear that any black box model is a decoy. These models fit the
training examples but do not reveal any truth about the underlying process.
The main challenge we will need to overcome in this study is to recognize the
true solutions from the decoy solutions.

1.5 Related Work

For us, the path forward for inferring white box modes from data alone
will begin with symbolic regression. Symbolic regression is a type of
evolutionary algorithm (or genetic programming technique) which was made
popular by the work of Koza [18, 19]. Under this approach, the input to the
algorithm is a set of training examples which are representative of the system
or process that is trying to be learned. The output is a symbolic equation
which describes the system or process that generated the training examples.
This is the short description which should be sufficient for the time being.
Evolutionary algorithms and symbolic regression will be described in detail
later in Chapter 3.

However, the inspiration for this study comes from the work of Schmidt
[20, 21, 22, 23]. In [21] Schmidt reported that evolutionary algorithms were
able to discover known laws of physics from experimental data collected from
masses on springs and pendulums. This was followed up by [23] where a
nice theory of symbolic regression was given to solve problems of the form
g(x, y) = 0. This is the implicit problem where the dependent variable of
the given data set is in general unknown, and the algorithm needs to find the
function g(?) that describes the entire data set using unsupervised learning
[23]. The contribution of this work was in the use of invariants as a way
of ignoring trivial solutions [21]. For example, Schmidt used implicit partial
derivatives as a way to measure the ability of candidate solutions to predict
the correct relationships between variables [23].

This work is one of the success stories of genetic programming along with
several other examples outlined by Koza in [24] which were deemed to be
human competitive. However, symbolic regression has not been widely
accepted by the data science community as an “off the shelf” tool because
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the theoretical aspects of evolvable algorithms are not well understood and
there are scalability issues [17]. In fact there are many open problems in the
area of symbolic regression such as [25]:

• optimal algorithm configuration

• solution generalization

• convergence criteria

• how to handle numerical constants

• solution bloating

• predicting convergence behavior from problem to problem

The relationship between solution bloating and generalization has received
significant attention in the literature [26]. The general consensus among
researchers is simple solutions tend to offer better generalization properties
[27]. In [28] Amil et al used the Vapnik-Chervonekis dimension as a metric
for controlling solution bloating combined with complexity penalization. In
[29] Vladislavleva et al. used a nonlinearity order based on Chebyshev
polynomial approximations as complexity measure for symbolic regression
solutions. In [30] Castelli et al. proposed a rotationally invariant Graph
Based Complexity (GBC) measure which is shown to be a good predictor of
generalization performance. Additionally Keijer and Babovic proposed
dimensionally aware genetic programming in [31] which takes into account
the data units while scoring candidate solutions.

If we take a step back from the multi objective problem of minimizing
solution complexity and maximizing solution generality a pattern emerges.
For a population of solutions there exists an optimal solution for a given level
of complexity. If the accuracy of every optimal solution is plotted as a function
of complexity we will get the curve called the Pareto front. A formal definition
of Pareto optimality can be found in [32] where it is pointed out by Zitzler
et al. that one of the goals of evolutionary computing to approximate the
Pareto set without doing a brute force search of the solution space. Smits and
Kotanchek introduce a symbolic regression variant in [33] called ParetoGP
where the Pareto front is accounted for and exploited during the evolutionary
process. Additionally, one observation reported by Schmidt in [21] was the
true solution was often found to be at the top of a large cliff on the Pareto
front.
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Finally Ferreira has answered the solution bloating question with a variant
on genetic programming called gene expression programming (GEP) [34, 35].
The GEP algorithm is very elegant in its handing of variable sized solutions
while maintaining a constant length representation. Additionally, symbolic
regression solutions generated using standard genetic programming must be
checked for validity, whereas any expression generated by the GEP algorithm
is guaranteed to valid [34]. The GEP algorithm will be the main algorithm
for symbolic regression in this study, and a more in depth presentation will be
given in Chapter 3.

1.6 Thesis

One approach to finding the true data generating solution behind a set of
data points is to construct the Pareto front and look for the largest cliff.
However, construction of the Pareto set for a given problem even using
evolutionary methods is still very computationally intensive and is very much
like a brute force type of search for the true solution. Therefore, one of the
goals in this work will be to infer the true solution directly without finding
the Pareto set. Instead we aim to understand what types of features in the
data allow for the true solution to be consistently found, and then address
the question of whether the true solution can be found when these features
are absent. Based on the research I have conducted in this area I can
confidently state the following thesis:

Truth can be extracted from experimental data if and only if it exists and we
can recognize it.

1.7 Outline

The remainder of this work will present experimental evidence to support
this thesis as follows:

• Chapter 2: Machine Learning, In this chapter we will explore several
approaches to regression in the area of machine learning and gain an
understanding of their shortcomings which will serve as our motivation
to move away from black box models. This will be illustrated through a
simple experiment.

• Chapter 3: Evolutionary Algorithms, In this chapter we will
briefly introduce Genetic Programming and give an depth presentation
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of the Gene Expression Programming (GEP) algorithm from the
symbolic regression perspective, which will be the main algorithm for
this work. Here we will also see the shortcomings of symbolic regression
through a simple experiment.

• Chapter 4: Convergence Experiments, In this chapter we will
explore the convergence behavior of the GEP algorithm and try to
understand why the correct solution can be found in some data sats
and not others.

• Chapter 5: Feature Spaces, In this chapter we will take what was
learned from the experiments in Chapter 4 and derive a new cost
function based on mapping the training data to higher dimensional
space. Through a short series of experiments we will find this new cost
function has the ability to lead the GEP algorithm to the true data
generating formula behind a set of data points.

• Chapter 6: The Analytical World vs. The Real World, In this
chapter we will compare the performance of our new cost function to
traditional symbolic regression in series of 11 experiments. The first 5
experiments are based on common analytical functions while the last 6
experiments are based on real world data sets from multiple
experiments in physics and chemistry (courtesy of the UCI machine
learning repository)

• Chapter 7: Conclusion, In this chapter we offer conclusions and
discuss future work.
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Chapter 2

Machine Learning

“We cannot expect to find a good child-machine at the first attempt. One must
experiment with teaching one such machine and see how well it learns”

Alan Turing, 1950 [36]
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2.1 Introduction

To design predictive regression models, a common place to start is the area
of machine learning. Regression is the process of configuring a predetermined
mathematical model to fit and predict empirical measurements usually by
solving a linear or non-linear optimization problem. Here we will do a brief
survey and discuss the following methods: least squares, radial basis functions,
and neural networks. A basic summary of each method is given below in Table
2.1. Although these methods are quite useful in many situations, what they
all share in common is that the designer must first define the model based
on experience and/or intuition. Because regression models are predefined, the
result is always a set of numbers corresponding to the unknowns of the model.
As we will see via a simple experiment, this approach makes it difficult to
gain any real insight on the inner workings of the process at hand. This is
by no means an exhaustive presentation of this topic, nor is it meant to be.
This chapter is meant to provide the motivation to move away from black box
models.

Method Least
Squares

Radial
Basis
Functions

Neural
Networks

Expressive
Power

Medium High High

Model
Complexity

Low Medium High

Human
Interpretability

High Medium Low

Error Space Convex Convex Non-
Convex

Optimization Linear Linear Non-
Linear

Learning Style Supervised Semi-
Supervised

Supervised

Learning
Process

Direct Iterative Iterative

Optimality Optimal Sub-
Optimal

Optimal

Table 2.1: Black Box Regression Method Summary
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2.2 Least Squares

2.2.1 Historical Perspective

When confronted with a linear system of equations, the number of
equations should equal the number of unknowns for a unique solution.
However, when there are more equations than unknowns we face an
interesting problem: how do we solve? The solution to this problem dates
back to the turn of the 19th century where the first publication is often
credited to Adrien Marie Legendre in his famous Nouvelles methods pour la
determination des orbites des cometes [37]. However there is evidence that
Carl Friedrich Gauss actually solved this problem first in 1798, which is
supported by his famous prediction of where the asteroid Ceres would appear
after being lost by the glare of the sun in 1801 [38]. Despite this, the method
of least squares would not be where it is today without the contributions of
several other key mathematicians such as Laplace, Euler, and Bernoulli [37].

2.2.2 Linear Models

The main contribution by Legendre was to recognize if there cannot be
a unique solution to an over determined system of equations, there must be
some optimal solution that will minimize the squared error [37]. This is
particularly useful for fitting curves to noisy measurements. Typically, we will
have a set of data points, say M measurements, which we will use design a
model. Each measurement will consist of an input and output pair called a
training example which we denote using the notation (x(k), y(k)) for the kth

measurement. Note that here the superscript k does not mean exponentiation
and the lowercase bold font means column vector. To refer to the ith element
of the kth measurement we will use x

(k)
i . For the types of data we will consider

in this work, the outputs y(k) will be scalar.
Given M measurements, the N dimensional input vector x is typically

related to the output y as using the following model:

y(k) = w0 +
N∑
i=1

wix
(k)
i + ε(k) (2.1)

where the weight w0 is a bias term, and ε(k) is the model error for the kth

training example. Commonly the input vector x is modified to be an N + 1
dimensional vector with x0 = 1, so the above model can be written as an inner
product:
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y(k) = wTx(k) + ε(k) (2.2)

There are several ways to solve for the weight vector w, and it can actually
be shown that the least squares solution is also the Maximum Likelihood
(ML) solution [15] when certain probabilistic assumptions are made
regarding the error samples (normal, independent, and identically
distributed) [39]. Typically the weights are found by minimizing the squared
error cost function:

J(w) =
1

2

M∑
k=1

(y(k) −wTx(k))2 (2.3)

This is done is the usual way by taking the gradient, setting it equal to 0, and
solving for w. It can be shown the closed form solution for w is:

w = (XTX)−1XTy (2.4)

where X is referred to as the design matrix and is defined by:

X =
[
x(1) x(2) x(3) · · · x(M)

]T
(2.5)

and y is a column vector of the desired outputs for the model:

y =
[
y(1) y(2) y(3) · · · y(M)

]T
(2.6)

Matlab is particularly well suited to solve this type of problem because of
its elegant handling of matrices. It is unnecessary to implement the explicit
solution because Matlab offers the matrix left divide operator. This will yield
the solution to an over determined system of equations directly (see Appendix
A).

2.2.3 Assumptions

In most cases the assumption that the error residuals are normally
distributed and iid1 is suspect, which makes any results of subsequent
statistical analysis (i.e. confidence intervals, prediction variance, and
statistical significance of coefficients) somewhat questionable. However, even

1iid is an acronym for independent and identically distributed
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if this is the case, the resulting solution typically provides useful results [39].
There can also be problems when there are outliers in the data or when the
input variables are too correlated (i.e. multicollinearity). Because of this,
there are a vast amount of publications on regularization procedures and
outlier detection/removal. The interested reader is referred to [40] for a
general overview of this area and [41, 42, 43] for special attention to outlier
analysis, iteratively reweighted least squares, and ridge regression.

2.3 Radial Basis Function Networks

2.3.1 Universal Approximation

Radial basis function networks began as an approach to exact interpolation
due to the work of Powell [44], but were later modified to do regression
and classifications tasks by the work of Broomhead and Moody in [45, 46]
respectively. It was then shown by Park in [47, 48] that with a minimal number
of restrictions these types of networks could do universal approximation. An
excellent treatment of this topic can be found in Bishop’s book on pattern
recognition in [49].

An extension to this idea is captured by a class of techniques called sparse
kernel machines, which is also covered by Bishop extensively in [15]. Of
particular interest are support vector machines [16], and relevance vector
machines [50] which the interested reader is encouraged to pursue. We will
revisit the idea of kernels later in chapter 5 when consider new feature spaces.

2.3.2 Gaussian Basis Functions

Most of the available literature on radial basis functions (and neural
networks for that matter) typically present complex diagrams to illustrate
the input/output relationships of these systems. This type of presentation
seems superfluous when the model can readily be written as,

y(k) = w0 +
N∑
i=1

wiφj(x
(k)) (2.7)

where φj(?) is the jth radial basis function. This is commonly chosen to be
the Gaussian,
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φj(x) = exp

{
−1

2
(x− µj)

TΣ−1j (x− µj)

}
(2.8)

where µj and Σj are the jth mean vector and covariance matrix. Note that
the least squares method described in the previous section is the special case
when φj(x) = xj. What we are doing here is taking the each input vector x,
creating a new input vector,

Φ =
[
φ1(x) φ2(x) · · · φN(x)

]T
(2.9)

setting up a new design matrix, and finding the least squares solution for the
weight vector w. The question then becomes how to configure each basis
function.

2.3.3 K-Means Clustering

An attractive approach is to use a clustering algorithm to partition the
training data in to K separate groups and use the sample mean and covariance
from each group to initialize the basis functions. This offers a fast and direct
two step solution to the model design: (1) initialize basis functions and then
(2) solve for the weights.

There has been a lot of research on the clustering problem, which often
arises in pattern classification problems. An excellent treatment of this area
can be found in [51]. However, for this situation where we merely want to
initialize a set a basis functions, a simple clustering algorithm is preferred.
One such algorithm is the K-Means algorithm, which was applied in [46] to
radial basis function initialization. The batch version of K-Means clustering
is described in [52].

It can be shown (see [53]) that the sum of squares error will always decrease
[49]. The K-Means clustering algorithm can also be done using online updates
using the Robbins-Monroe procedure [49, 54]. Upon convergence, the mean
for each basis function is computed using the sample mean,

µj =
1

Mj

∑
m∈Sj

x(m) (2.10)

and the covariance for each basis function is computed with the sample
covariance,
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Σj = αI +
1

Mj − 1

∑
m∈Sj

(x(m) − µj)(x
(m) − µj)

T (2.11)

where Mj is the number of elements in the jth cluster Sj and α is a smoothing
parameter. In practice, the solution may not have the desired smoothness
so the addition of the smoothing parameter α provides a tuning parameter,
which can be varied until an acceptable solution has been reached. Alternate
matrices other than αI can also be used if we want to address the spread of
each input variable separately, however this is beyond the scope of this work.

To implement a radial basis function network in Matlab, we have used the
built in k-means clustering algorithm from the Statistics toolbox, computed
the basis function parameters, and set up the design matrix. The weights are
then computed using the least square solution (see Appendix A).

2.3.4 Supervised vs. Unsupervised Learning

The use of unsupervised learning is not necessarily optimal, but the use of
supervised procedures will force us to solve a nonlinear optimization problem at
which point neural networks start to become more attractive [49]. Therefore
with this approach we have a tradeoff: we have sacrificed optimality for a
faster and more simplistic training process. As with most regression models,
the training data used to design the model is extremely important. The use of
a clustering algorithm during the training process will cause the basis functions
to converge to locations where measurements are more likely.

If the training data is not a good representation of the overall population,
there will be problems when out of sample data points are encountered. The
effects can be severe with the Gaussian kernel because measurements that
have a large distance from the training set will be driven to zero. In addition,
understanding the behavior of each dimension of the input variable is
important when estimating means and covariances. The problem of model
order selection must be addressed in practice however, this is beyond the
scope of this work.

2.4 Neural Networks

2.4.1 Multilayer Perceptrons

It has been argued the neural network (i.e. the multilayer perceptron)
originated with the work of Alan Turing in 1948 [51]. However the work of
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Rosenblatt [55, 56] is commonly referenced as the beginning of neural
networks, where the learning problem was addressed with the two layer
perceptron [51]. There were several contributions to the learning problem
after the work of Rosenblatt [57, 58, 59, 60], however they would receive
little attention [51]. It wouldnt be until the work of Rumelhart et al in [61]
that the backpropagation learning algorithm would gain support by the
machine learning community [51]. Since then, a significant number of papers
have been published in this area, arguably more than the topic deserves. As
a result of its popularity, the biological plausibility of the backpropagation
algorithm has been called into question and criticized by Grossberg in [62]
and called highly implausible by Stork in [63] [51].

2.4.2 Regression Networks

Despite the controversy, neural networks have excellent expressive power
and tend to perform well on most regression problems. The typical architecture
for a three layer, vector input, scalar output regression network is as follows,

y(k) = α0 +

nH∑
j=1

αjfnet

(
wj,0 +

M∑
i=1

x
(k)
i wj,i

)
(2.12)

where wj,i is the weight from the ith input dimension to the jth hidden node,
and αj is the weight from the jth hidden node to the output. The function
fnet(?) is commonly referred to as the activation function and is typically the
tangent sigmoid,

fnet(a) =
2

1 + e−2a
− 1 (2.13)

The term nH corresponds to the number of hidden units in the architecture
and is a design parameter of the network. The network design process consists
of learning the input to hidden and hidden to output weights using error
backpropagation so as to minimize the error between the network output and
the desired response. There are many ways to do this, many of which will
be discussed in the following sections as we lead up the preferable Levenberg-
Marquardt algorithm.
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2.4.3 Gradient Descent Backpropagation

The simplest technique is to use gradient descent to iteratively learn the
network weights by using the following update rule,

w(k+1) ← w(k) − η∇J(w(k)) (2.14)

where η is the learning rate, w(k) are the set of weights from the kth

iteration, and J(?) is the cost function commonly taken to be the sum of
squares criterion,

J(w) =
1

2

M∑
k=1

(
y(k) − α0 +

nH∑
j=1

αjfnet

(
wj,0 +

M∑
i=1

x
(k)
i wj,i

))2

(2.15)

The gradient of the criterion function is computed with respect to the network
weights for each update,

∇J(w) =
[

∂
∂w1

J(w) ∂
∂w2

J(w) · · · ∂
∂wL

J(w)
]T

(2.16)

which can be computed directly by making the proper substitutions into the
above criterion function 2. Although this is a very stable algorithm, it can be
painfully slow to converge and is easily trapped in local minima because the
error space is not convex. Setting the learning rate correctly is somewhat of
a balancing act in that small learning rates cause slow convergence, and fast
learning rates can cause the search to overshoot the optimal solution.

2.4.4 Gradient Descent with Momentum

One approach to dealing with getting trapped in local minima and slow
convergence is to add momentum to the search. This idea is loosely based on
principles of physics, and is essentially a smoothing filter that is applied to the
weight update rule to help the search escape local minima,

w(k+1) ← w(k) − [µm∆w(k−1) + (1− µm)η∇J(w(k))] (2.17)

2Note here all network weights have been organized into a 1× L set
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Here µm ∈ 0, 1 is the momentum constant (not to be confused with the mean
of a Gaussian basis function from the section on Radial Basis Functions), and
∆w(k−1) is the weight change that occurred at the (k− 1)th iteration. Note, a
momentum constant of 0 will return to the standard gradient descent search.
Although this approach addresses many of the shortcomings of the simple
gradient descent search, it is generally considered ad-hoc and is still typically
slower to converge than second order methods based on the Hessian matrix
[64].

2.4.5 The Hessian and Newton’s Method

The Hessian matrix H arises when we do a quadratic Taylor approximation
of the criterion function around some point in weight space a,

J(w) ≈ J(a) + (w − a)T∇J(a) +
1

2
(w − a)TH(w − a) (2.18)

where,

Hi,j =
∂

∂wiwj

J(w)

∣∣∣∣
w=a

(2.19)

One of the classic optimization algorithms based on the Hessian is Newtons
method,

w(k+1) ← w(k) −H−1k ∇J(w(k)) (2.20)

which can offer very fast convergence properties, however calculating the
Hessian matrix (and its inverse) directly can be computationally expensive.
In addition Newtons method can become unstable if the quadratic
approximation is poor, and can actually lead to a maximum if the Hessian is
not positive definite [49]. As an alternative, quasi-Newton algorithms such
as the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm, have been
proposed which approximate the inverse Hessian recursively on each update
offering lower computational cost and improved stability [65, 66].
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2.4.6 The Levenberg-Marquardt Algorithm

The Levenberg-Marquardt (LM) algorithm takes another approach and
approximates the Hessian using,

H ≈ (JTJ + µI) (2.21)

where J is the Jacobian matrix, which for a single output network is defined
by,

J =


∂e1
∂w1

∂e1
∂w2

· · · ∂e1
∂wL

∂e2
∂w1

∂e2
∂w2

· · · ∂e2
∂wL

...
...

. . .
...

∂eM
∂w1

∂eM
∂w2

· · · ∂eM
∂wL

 (2.22)

The term µ is a regularization variable (not to be confused with the momentum
coefficient), commonly referred to as the combination coefficient. The update
rule for the Levenberg-Marquardt algorithm is,

w(k+1) ← w(k) − (JT
k Jk + µI)−1JT

k ek (2.23)

The beauty of this algorithm rests in its ability to be two algorithms; when µ is
large the update rule approximates a gradient descent search with a learning
rate of µ−1, and when µ is small the update rule approximates the Gauss-
Newton algorithm, which is a version of the Newton algorithm where the
Hessian is approximated as JTJ. On its own, the Gauss-Newton algorithm
can be unstable when the quadratic approximation of the criterion function is
poor.

The way the LM algorithm addresses this is to decrease µ for every search
step the in the correct direction, which causes the search to shift to the Gauss-
Newton update only when a minimum is close and the quadratic approximation
is good. When there is a step in the wrong direction, the LM algorithm inflates
µ to effectively slow down the search. Typically, the change in µ is done with
a constant β, where for a correct step µ ← µβ−1 and for an incorrect step,
µ ← µβ. When an incorrect step is taken, the update is not accepted, µ
is inflated, and the iteration is repeated until a correct step is taken, or a
maximum number of repetitions is reached.

We have implemented a simple Matlab function to design a neural network
regression model using the Levenberg-Marquardt algorithm supplied with the
Neural Network Toolbox. Neural networks are sensitive to the range of input
values due the nature of the sigmoid activation function, therefore here we
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have normalized the input and output values by subtracting out the mean
and dividing by the standard deviation. The model output is then scaled
appropriately to the correct range (see Appendix A) 3.

2.4.7 Remarks

Of all the regression models presented thus far, neural networks are by far
the most complex. As we have seen, the input data is processed in multiple
parallel paths, which can be controlled by the number of hidden units.
Although the form of the model is clearly defined, it can be difficult to grasp
exactly what is going on inside the processing chain, especially with
multi-dimensional inputs and outputs. Despite this, neural networks continue
to be valuable tool in regression and pattern recognition applications due to
their expressive power.

3This routine has been written for scalar inputs only and will need to be modified to
handle vector inputs.
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2.5 Experiment 2-1: Viscosity of Hydrogen

Setup

So far we have presented several different types of regression methods, all
which can be extremely useful. However, in this work we seek to discover
meaningful relationships between the input and output variables that is more
than just a curve fit. To illustrate the shortcomings of this class of methods,
we will do a simple experiment using synthetic data based on the Sutherland’s
gas viscosity equation,

µ = λ
T 3/2

T + C
(2.24)

where T is the temperature in Kelvins, and λ and C are empirical constants,
which vary depending on the gas in question. For hydrogen,
λ = 0.636236562 × 10−6 and C = 72. For this experiment, we will generate
200 random data points using the above relation, add noise, then design least
squares (LS), radial basis function (RBF), and neural network (NN)
regression models. Subsequently we will examine each model to see if any
insight can be gained on the underlying process as if we a measuring a new
process with no prior knowledge.

This experiment has been executed by the Matlab program in Appendix
A. We have generated 200 random temperatures from 0 to 555 degrees Kelvin
and evaluated the viscosity equation with additive Gaussian noise with a zero
mean and a 1× 10−6 standard deviation. Then using our previously designed
regression programs we have built LS, RBF, and NN regression models. The
LS model has no special parameters, however for the RBF model we have
chosen 3 basis functions and set the smoothing parameter to 1e6, and for the
NN model we have selected 3 hidden units.

The resulting Least Squares, Radial Basis Function, and Neural Network4

regression models are shown in the results section on the following page. The
models are also plotted in Figures 2-1 through 2-3 over the measured data and
truth data.

4The neural network equation assumes the input data has been normalized.
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Results

Least Squares Model:

µ(T ) = 1.16× 10−6 + 2.35× 10−8T (2.25)

Radial Basis Function Model:

µ(T ) =− 9.3× 10−4 + 1.1× 10−2e
− (T−95.5)2

2×1.004×106

− 2.5× 10−2e
− (T−311.3)2

2×1.003×106 + 1.5× 10−2e
− (T−474.2)2

2×1.002×106

(2.26)

Neural Network Model:

µ(T ) = −0.015− 0.47

(
2

1 + e−2(0.56−1.6T )
− 1

)
− 0.11

(
2

1 + e−2(−1.17−5.8T )
− 1

)
− 0.35

(
2

1 + e−2(−3.57−4.6T )
− 1

) (2.27)

Discussion

The obvious result is none of the algorithms found the true solution. Nor
should they be because each model architecture was designed before any data
was observed. In general the LS model under fit the data and the RBF and
NN models over fit the data. It could be argued that with more data, alternate
model architectures, and the use of cross validation procedures a better result
could be attained. In general this is true, and for this experiment we have
not attempted any such methods. Additionally, there are ways of pruning and
growing these models [15, 49, 50, 51, 67], however it should be clear that it
is impossible to infer the true data generating formula behind the data from
this class of techniques alone.

This data set was very challenging in that there are literally an infinite
number of solutions that fit the data because there are no real defining features.
In running each algorithm we have done nothing more than select the first
solution that minimized the error between the model and the data given the
current algorithm architecture. In order to infer the true model we need to do
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Figure 2-1: Experiment 2-1 Results (Least Squares - Left)

Figure 2-2: Experiment 2-1 Results (Radial Basis Functions - Middle)

Figure 2-3: Experiment 2-1 Results (Neural Networks - Right)

more. The next step will be to allow the model the adapt to the data during
the learning process. These black box machine learning methods cannot offer
such flexibility because they are mere approximators. This is the motivation for
symbolic regression which where we will turn our attention to in the following
chapter.

2.6 Summary

In this chapter we have done a brief survey of a few key machine learning
regression methods. We have provided the background, the theory, and the
Matlab implementation (in Appendix A) for several common techniques and
have also done a simple experiment to illustrate their shortcomings. From the
results we can conclude this class methods are incapable of finding the true
data generating formula behind a given set of data. From here we will turn
our attention to evolutionary algorithms and symbolic regression to see if we
can obtain better results on the viscosity of hydrogen experiment.
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Chapter 3

Evolutionary Algorithms

“...one general law, leading to the advancement of all organic beings, namely,
multiply, vary, let the strongest live and the weakest die. ”

Charles Darwin, 1859 [68]
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3.1 Introduction

Evolutionary algorithms are stochastic search methods used to find
solutions to variety of problems in regression, classification, optimization, as
well as many other areas. Evolutionary algorithms are based the principles of
natural selection where a population of candidate solutions are constantly
evolved to try and solve the problem at hand. In this chapter we will focus
on generating symbolic equations, often referred to as ”symbolic regression”.
However, the concepts that will be presented are applicable to many other
types of problems. We will first set the stage by discussing Genetic
Programming (GP), which has its strengths and weaknesses. However this
will lead us to the Gene Expression Programming (GEP) algorithm which
has several desirable properties that GP algorithms do not have. We will
then conclude this chapter by repeating the Hydrogen Viscosity experiment
with the GEP algorithm and providing a brief summary.

3.2 Genetic Programming

Genetic Programming has its foundations in Genetic Algorithms (GA),
which is where most discussions on this subject begin. This is a little
confusing because the GP algorithm is also a genetic algorithm because any
algorithm based on a population of candidate solutions evolving and
adapting to a problem, commonly referred to as a ”fitness landscape”, can
technically be called a genetic algorithm. However, the class of algorithms
covered by GAs are a specific type of genetic algorithm. To clarify this, we
will refer to all algorithms based on population evolution as evolutionary
algorithms, not genetic algorithms. The name genetic algorithms will be
reserved for the class of algorithms called GAs, which we will not be
explicitly covering. Instead we would like to merely point out that GAs were
introduced by Holland in 1975 [51], and the interested reader is encourage to
review [69].

Genetic programming can be traced back to the work of Koza [18, 19]
in which symbolic regression was only one aspect. Genetic programming in
general is based on using code snippets to write computer programs to solve
a particular problem. Although there are several publications in this area, an
excellent treatment of GP theory can be found in [70]. At first this topic may
seem challenging, however the concept is actually quite simple and is described
by [51] in literally 2 pages. The remainder of this section briefly describes the
GP algorithm and sets the stage for the GEP algorithm.
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3.2.1 The Population of Solutions

As is the case with all evolutionary methods we begin with a population.
This consists of generating several random guesses as to what the solution to
the given problem is. For symbolic regression problems, this consists of
generating several parse trees with nodes randomly selected from a function
set or terminal set. The function set and terminal sets are defined prior to
running the algorithm, and are typically influenced by the type of problem to
be solved. For example, common function sets for problems expected to have
algebraic solutions are F = {+,−,×,÷}. Whereas if the solution is expected
to transcendental, a better function set may be
F = {+,−,×,÷, exp(?), sin(?), log(?)}.

The terminal set is comprised of elements that end a branch on the parse
tree. This is usually the independent variables of the data set and/or constants.
For example, if we want to discover a function of the form f(x, y) = z, then the
terminal set would be T = {x, y}, where the variables x and y represent the
”data” we have measured. The variable z is also measured, and the problem
is to find the mapping (x, y) 7→ z. Another approach is to assume there
is no explicit dependent variable and to try and find the implicit equation
f(x, y, z) = 0. This has been successfully done by Schmidt in [21, 20, 23] for
variety of physics problems based on pendulums and masses on springs.

3.2.2 Numerical Constants

Aside from independent variables, constants can also be included in the
terminal set. This can either be known constants such as π, or randomly
generated constants. This is one of the tricky areas in genetic programming
which Koza has called “a skeleton in the GP closet” [25]. For example if we are
trying to discover a function with a large constant like 1034.59, this can be very
difficult without large constants in the terminal set. One common approach
is to use the Ephemeral Random Constants technique, which is slightly out of
scope here, but the interested reader is welcome to consult [18, 19]. There are
some shortcomings to this approach which have been addressed in [71, 72, 73],
however the constants problem is still considered open in the GP community
[25, 74].

3.2.3 Solution Fitness

Once the population is initialized using the function and terminal sets,
each candidate solution is tested against this fitness criterion. For symbolic
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regression problems this is typically the Mean Square Error (MSE) between
the output of the candidate solution and the dependent variable. This provides
a score for each member of the population which allows the solutions to be
ranked. Naturally, some solutions will be terrible, so it common to employ
a survival threshold which solutions must meet otherwise they are removed
completely from the population. The algorithm then evolves the remaining
solutions using the genetic operators: replication, mutation, crossover, and
insertion to make the next generation. The next generation is then scored
based on the fitness criteria, a new generation is created, and so on until
convergence. The computer’s representation of each candidate solution can
vary depending on the given language, but it has been recognized that the
LISP language offers a convenient representation [51].

3.2.4 Shortcomings

Here we have given a basic description of the GP algorithm. In the next
section we will present the GEP algorithm in detail and address the specifics
of evolution and convergence. There are many parallels between the GP and
GEP algorithm, and our preference to the latter is because the GEP
algorithm handles many of the defects of the GP algorithm. Mainly, the
GEP algorithm always results in legal expressions and the solution size
bounded. With the GP algorithm, because we are manipulating the parse
tree directly in the evolutionary process we must constantly check for illegal
expressions. Similarly, parse trees can grow without bound via the crossover
operation which must also guarded against. As a result, implementations of
the GP algorithm must be contain a lot of rules to make sure the algorithm
behaves, although the concept is actually quite simple. As we will see, the
GEP algorithm does not have these problems by design resulting in a far
more elegant implementation.

3.3 Gene Expression Programming

Gene Expression Programming (GEP) is an extension to Genetic
Algorithms (GA) and Genetic Programming (GP) introduced by Candida
Ferreira. Several papers have been published in this area
[34, 75, 76, 77, 78, 79, 80] which have ultimately led to the comprehensive
book [35]. The major contribution of GEP is that is it uses fixed length
linear chromosomes to encode parse trees of varying size using the Karva
language. GAs use fixed length linear chromosomes also, however the
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resulting parse trees are also a fixed size which seriously impedes their ability
to maneuver the search space. As we have seen, GPs vary the parse tree size
by manipulating the parse trees directly, however they often result in illegal
expressions and still lack the ability the efficiently search the solution space.
Additionally, the GP parse trees must be bounded by additional rules
otherwise they will grow without bound and will typically generate ”bloated”
solutions. GEP overcomes these problems by using a fixed length
representation which can generate variable length solutions, with the
addition of multiple new reproduction operations.

GEP can also be used for many types of problems outside the scope of
this study such as decision tree induction, design of neural networks, and
combinatorial optimization [35, 81, 82]. Here we will just focus on function
discovery via symbolic regression according to our implementation which
may slightly differ from Ferreira’s implementation. So instead of referring the
reader to [35] and only presenting results, the next section is a self contained
introduction to the GEP algorithm. The reader is encouraged to consult [35]
or [34] if there are any areas that are unclear or if other GEP applications
are of interest.

3.3.1 Evolutionary Process

The concept of GEP is similar to GAs and GPs; there is a population of
candidate solutions all competing for survival in an ”environment”. Solutions
are randomly generated, tested against a ”fitness” criteria, the solutions who
don’t meet the threshold are discarded, and solutions who do reproduce to
create the next generation. The process then repeats with the next generation,
and the next until a convergence criteria is met.

The steps for the GEP algorithm are as follows:

1. Initialize Population

2. Score Solutions Using Fitness Criterion

3. Test For Convergence

4. Replication

5. Mutation

6. 1-Pt Recombination

7. 2-Pt Recombination

8. Gene Recombination
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9. Insertion Sequence Transpose

10. Root Insertion Sequence Transpose

11. Inversion

12. Go To Step 2

Unfit solutions are pruned out during the replication process and the remaining
solutions are replicated according to how well they perform against the fitness
criterion. This is the beginning of the next generation of solutions where most
times there is a lot of solution redundancy. The entire set of solutions is
then processed by each operator sequentially (mutation, recombination, etc.)
where solutions are randomly chosen to be changed, meaning one solution can
be affected by multiple operators. This process promotes genetic diversity and
removes redundancy from the population.

What makes GEP different is the the way the solutions are represented
and the reproduction process. Ferreira has introduced several new operations
that help promote solution diversity which are straight forward to implement
in the GEP framework. To try and and apply these operators in a GP
algorithm would be prohibitively complex. The simplest way to understand
how GEP works is by example. In this section we will present the algorithm
by first discussing the Karva language representation and then moving onto
the GEP operations for single and multi gene systems. For this study, we
have implemented the entire algorithm in Matlab all of which has been
included in Appendix B.

3.3.2 Solution Structure

As with all evolutionary algorithms, GEP begins with a randomly
initialized population. Each candidate solution is composed of chromosome
which can have one ore more genes. Each gene is made up of a head and a
tail. The head size is a design parameter of the model and the tail size is
determined by the maximum arity (i.e number of arguments) of the building
blocks in the function library. For now, let us consider a single gene with an
arbitrary head size of hs. Given the head size and maximum arity, the tail
size ts can be computed using the following relation:

ts = hs(ma − 1) + 1 (3.1)

where ma is the maximum arity of the function library. For example, if the
head size is 5 and the maximum arity is 2, then the tail size would be 6. The
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chromosome map for this single gene example with head elements H and tail
elements T would then be written as

(H,H,H,H,H, T, T, T, T, T, T ) (3.2)

At this point we need to define 2 sets: the function set and the terminal set.
A typical function set are the basic arithmetic operators, {+,−,×,÷} which
is usually a good place to start. The terminal set is the set of independent
variables we want to relate the the dependent variable(s). For now let us use
the terminal set {a, b} as an example. Upon initialization, the H elements
of the chromosome are randomly set to any element of the function set or
terminal set with equal probability. In our example so far, this would mean
for each H position is Equation 3.2,

p(H = +) = p(H = −) = · · · = p(H = a) = p(H = b) =
1

6
(3.3)

However, the T elements can only be drawn from the terminal set, so

p(T = a) = p(T = b) =
1

2
(3.4)

By doing so, every chromosome will always result in a legal expression [34].

3.3.3 Gene Expression

As an example, assume the following was generated:

(H,H,H,H,H, T, T, T, T, T, T ) = (+, a,×,+, b, a, b, a, b, b, a) (3.5)

The right hand side of the above equation is the Karva representation of the
parse tree shown in Figure 3-1. Karva notation is simply a list describing a
parse tree from top to bottom and left to right. Here the first item on the list
is + which has 2 arguments. The first argument is the next item on the Karva
list a and the second argument is the following item ×. Because a is a terminal
it has no arguments, however × has 2 arguments which are filled using the
next 2 items on the Karva list, and so on. This process repeats until there are
no more empty arguments. The parse tree can then be used to determine the
symbolic equation, which in this case is

(+, a,×,+, b, a, b, a, b, b, a) 7→ a+ b(a+ b) (3.6)
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Depending on the arguments on the Karva list, not every element will
necessarily be expressed in the parse tree. In this example, the last 4 elements
were not expressed because there were not enough empty arguments. However
this can change when we start introducing the evolution operators. As we will
see, minor changes due to mutation and recombination can act as switches
causing previously unexpressed parts of a gene to become active. This is the
reason for Equation 3.1; in the event that every H element is from the function
set, there will be enough terminals to satisfy every argument.

+

a !

+ b

a b

Figure 3-1: Parse tree representation of {+, a,×,+, b, a, b, a, b, b, a}

3.3.4 Replication

After the initial population has been generated, and at the beginning of
each new generation, the replication process is done. This consists of
computing the ”fitness” of every candidate solution in the current population
and generating a new population using roulette wheel selection with elitism.
The new generation is then passed on to the other operators such as
mutation and recombination.

The baseline fitness function for this study was chosen to be the Mean
Square Error cost function:

ΦMS(f) = K

(
1 +

1

N

N∑
k=1

(
y(k) − f

(
x(k)
))2)−1

(3.7)

where f is the candidate solution under test, and K is the maximum fitness
value.
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3.3.5 The Founder Effect

Before discussing roulette wheel selection with elitism, we should mention
our implementation of the GEP algorithm includes a founder threshold. The
founder threshold only applies to the initial population, and is simply the
minimum number of candidate solutions that meet the survival threshold (or
minimum fitness score). At initialization, the algorithm has no knowledge of
the environment and typically gets low fitness scores. This stage is critical in
determining the trajectory of the algorithm, and the founder threshold helps
guarantee that good candidates will be available in the population, thus
allowing the algorithm to begin with good momentum. In [35] Ferreira uses
m = 1 and argues that ”this does not hinder the evolutionary process”,
however we have left this as a design parameter which can be varied. If the
initial population does not meet the founder threshold, new populations are
generated until the founder threshold is met.

3.3.6 Roulette Wheel Selection and Elitism

Once the founder threshold has been satisfied and the algorithm is
running, after every generation we create the next generation using roulette
wheel selection with elitism. Elitism means an identical copy of the solution
with the highest fitness score is always included in the next generation. This
guarantees the algorithm will never diverge. in the event the evolutionary
operators fail to produce an improved solution, the algorithm will maintain
the same position in the search space.

The number of individuals in each generation is constant and is a design
parameter. If this is set to M , then after elitism M−1 copies of the candidates
in the previous generation are made through the replication process. This
is done randomly using roulette wheel selection which means solutions with
higher fitness scores are more likely to be selected. This is done by first taking
all the fitness scores xfit from the previous generation (including the elite
member’s) and creating the probability mass function (PMF),

p(n) = xfitn

( M∑
k=1

xfitk

)−1
(3.8)

M − 1 draws are taken from this distribution (with replacement) and copied
to the corresponding individuals of the new generation. This is done by
generating M − 1 draws from the uniform distribution U(0, 1) stored in some
vector u and then computing,
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g = P−1(u) (3.9)

where g is a vector of M−1 draws from p(n) and P (n) is the cumulative mass
function (CMF),

P (n) =
n∑

k=1

p(k) (3.10)

This is a standard result in probability theory, a proof of which can be found
in any standard text such as [83]. There are some nuances to this because u
is continuous and g is discrete which must be handled using interpolation (see
Appendix B).

3.3.7 Mutation

After the replication process, the M − 1 members of the new population
(elite member is excluded) are subjected to the mutation process. Here we set
a constant mutation rate Rm and compute the number of affected solutions
Nm using

Nm = round(Rm(M − 1)) (3.11)

We next select Nm individuals (without replacement), apply the mutation
operator, and return them to the population. If an candidate solution is
selected for mutation, 1 or more head and/or tail elements are randomly
selected and randomly changed to another value in the relevant set. For
example, if a tail element is chosen, only entries from the terminal set can be
used for mutation. The number of mutation points is a design parameter of
the algorithm.

To get a better idea of how this works, consider our previous example:
(+, a,×,+, b, a, b, a, b, b, a). Assume the algorithm has been configured to do
a simple one-point mutation, causing the second element {a} to be selected
and replaced with the {÷} operator. Obviously the new Karva
representation will be (+,÷,×,+, b, a, b, a, b, b, a) which looks very similar to
(+, a,×,+, b, a, b, a, b, b, a). However the parse tree will be completely
restructured causing 2 previously unexpressed tail elements to turn on
resulting in the following mutation,

a+ b(a+ b) 7→ a+ b

b
+ ab (3.12)
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3.3.8 Recombination

After mutation, the population is subjected to the recombination process
which is a reproductive process like crossover. There are 3 types of
recombination, 1-point, 2-point, and gene. Here we will discuss 1-point and
2-point recombination and defer gene recombination to the section on
multigenic systems. Similar to the mutation process, the recombination rate
is a design parameter of the algorithm and is chosen before initialization.
Each type of recombination typically has it’s own rate which for 1-point and
2-point we’ll refer to as R1 and R2. It should be stressed that 1-point and
2-point recombination are separate processes which are done sequentially.

In each case, the number of affected individuals is computed using

Nk = 2× round(Rk(M − 1)), k = 1, 2 (3.13)

to ensure there is an even number. Subsequently Nk individuals are randomly
selected (without replacement), the recombination process is applied to each
sequential pair, and each set of offspring pairs are returned to the population
in place of the parents. Consider the case where the following 2 parents are
selected: (

P1

P2

)
=

(
+, a,×,+, b, a, b, a, b, b, a
−,+, a, b,×, b, b, a, a, a, b

)
(3.14)

In a 1-point recombination, the parent matrix is randomly split into 2
partitions:

(
P1

P2

)
=

(
P11 P12

P21 P22

)
=

(
+, a,× +, b, a, b, a, b, b, a
−,+, a b,×, b, b, a, a, a, b

)
(3.15)

and the children (Q1,Q2)
T are generated by swapping rows on either the first

or second partition:

(
Q1

Q2

)
=

(
P11 P22

P21 P12

)
=

(
+, a,× b,×, b, b, a, a, a, b
−,+, a +, b, a, b, a, b, b, a

)
(3.16)

In a 2-point recombination, the parent matrix is randomly split into 3
partitions:
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(
P1

P2

)
=

(
P11 P12 P13

P21 P22 P23

)
(3.17)

and the children are generated by swapping rows of the center partition:(
Q1

Q2

)
=

(
P11 P22 P13

P21 P12 P23

)
(3.18)

Because of the Karva notation recombination always results in a legal
expression, thus greatly simplifying the evolutionary process.

3.3.9 Random Numerical Constants

The GEP algorithm handles the constants problem using Random
Numerical Constants (RNC) which is an addition to the basic GEP
algorithm. In the basic GEP algorithm, numerical constants must be created
from scratch which can be a challenge for non integer constants. The RNC
approach handles this by adding a third domain after the tail which we will
refer to as the C domain. The size is identical to the tailsize, and if we add
onto our previous example (headsize of 5, maximum arity of 2), the
chromosome map will be written as:

(H,H,H,H,H, T, T, T, T, T, T, C, C, C,C,C,C) (3.19)

At initialization, the C elements are random filled from the set (0, 1, 2, . . . , 8, 9)
which are indices to a vector of random variables. This vector is generated
once at initialization and reused again and again as the algorithm evolves.
The way these constants are accessed is by including the ? character in the
terminal set which points to each index in order of appearance. For example,
consider function:

(+,×, ?, ?, b, a, ?, b, b, ?, a, 9, 4, 0, 7, 2, 4) (3.20)

At initialization we will have generated a 10 element vector of random values
from our favorite probability distribution which we will denote z. Once the
RNCs are taken into account, the above function is mapped to 1

1To be consistent with Matlab syntax, each index of z has been incremented by one when
expressed
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(+,×, z10, z5, b, a, z1, b, b, z8, a) 7→ z10 + z5b (3.21)

The relationship between density selection and achievable constants may be a
factor, but has not been addressed in the literature. For example, if the vector
z is populated from U(0, 1) what are the chances we will find the constant
1004.234532? As we will see this is a very difficult problem.

3.3.10 Multiple Genes

For complex problems, single gene systems are typically inadequate so we
must at some point turn to multi gene systems. Multi gene systems are quite
simply single gene systems linked together by arithmetic operators. These
linking operators can be evolvable, however for our implementation we have
chosen to use the addition operator {+}, although it can be easily changed in
the configuration script. For example, if we want to extend the template in
Equation 3.19 to a 3 gene system, the chromosome map would be written as:

(G1,G2,G3) = (H5,T6,C6,H5,T6,C6,H5,T6,C6) (3.22)

where

H5 = (H,H,H,H,H) (3.23)

T6 = (T, T, T, T, T, T ) (3.24)

C6 = (C,C,C,C,C,C) (3.25)

For multi gene systems, each gene is expressed individually as we have seen
previously, then the resulting equations are combined using the linking
operator. The mutation and recombination operations work the same, there
are now more indices to chose from. The main difference is instead of
creating a random vector of constants for the RNCs we now make a random
matrix Z so each gene has a difference set of constants. In the previous
example we have Z ∈ R10×3, making the C element index point the row and
the gene index point to the column of Z.
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3.3.11 Transpose

The transpose operation is the first process so far that is unique to the
GEP algorithm. There are 2 types that we will consider: Insertion Sequence
(IS) transpose and Root Insertion Sequence (RIS) transpose 2. These
operations begin much the same as the previous operations, the number of
affected individuals in the population must be identified using the predefined
IS and RIS transpose rates. These rates are multiplied by the population size
minus 1, rounded, and that number of candidate solutions are randomly
selected (without replacement) for processing. As with 1-point and 2-point
recombination, the IS and RIS transpose operators are separate and
sequential operations.

If an individual is selected for an IS transpose operation, a gene is selected
at random and a sequence length L is selected at random from a predefined
set, such as {2, 3, 4}, which is a design parameter of the algorithm. Next,
L sequential elements from the {H,T} domain (called the transposon) are
randomly chosen from the gene and copied to a new randomly selected position
in the head. For example, assume the second gene of a multi gene system
G2 = (H5,T6,C6) has been selected for the case of L = 2:

(+,×,−, ?, b, a, ?,b,b, ?, a, 9, 4, 0, 7, 2, 4) (3.26)

Here, the transposon (b,b) has been ”randomly” selected and bolded. Assume
a head index of 3 is randomly selected, and the transposon is inserted in the
head to yield:

(+,×,b,b,−, ?, b, a, ?,b,b, ?, a, 9, 4, 0, 7, 2, 4) (3.27)

However, now the gene is of the form (H7,T6,C6) which is illegal, so the last
2 elements of the head (?, b) are discarded to get:

(+,×,b,b,−, a, ?,b,b, ?, a, 9, 4, 0, 7, 2, 4) (3.28)

which is the final result. For this example, the IS transpose operation has done
the following mapping:

bZ10,2 + (a− Z5,2) 7→ b+ b(a− Z10,2) (3.29)

2There is a third type called gene transpose, however we have omitted this operation
from our GEP implementation.
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3.3.12 Inversion

The last operator we will discuss is the inversion operator. As before,
when its time to apply this operator several candidate solutions are randomly
chosen from the pool of available solutions. For each chosen solution, a gene
is randomly chosen and the first k elements are flipped from left to right. The
number k is randomly chosen from a predefined set that must be configured at
initialization. For example consider the following candidate solution discussed
previously:

(+,×,−, ?, b, a, ?, b, b, ?, a, 9, 4, 0, 7, 2, 4) (3.30)

the inversion operation on this solution for the case of k = 3 would yield the
following result:

(−,×,+, ?, b, a, ?, b, b, ?, a, 9, 4, 0, 7, 2, 4) (3.31)

Observe how the first 3 elements have been flipped from left to right. This
implementation differs slightly from that of [35], where the starting point of
the inversion sequence can be anywhere in the head of the gene.

3.3.13 Criticism

As with all evolutionary algorithms, the GEP algorithm has a lot of
moving parts which makes it difficult to define its theoretical properties
exactly. Finding the optimal model configuration for a given problem is
challenging and is considered an open problem in evolutionary computing
[25]. The GEP algorithm has been criticized by Oltean in [84] where it is
pointed out that the GEP algorithm is more sensitive to the algorithm
configuration (head size, number of genes, etc.) than other similar
approaches. Additionally the linking operator for multi gene systems tends
to constrain the search space, and the use of transcendental functions tend to
overcomplicate the search space [84].
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3.4 Experiment 3-1: Viscosity of Hydrogen

Setup

Here we have repeated the Viscosity of Hydrogen experiment from chapter
2 using the GEP algorithm. We have generated 200 random samples from the
equation

µ(T ) = λ
T 3/2

T + C
(3.32)

uniformly over the interval from 0 to 555 degrees Kelvin, where
λ = 0.636236562 and C = 72. We’ve also added Gaussian noise to the
generated data with σ = 1, creating the data set shown in Figure 3-2. The
GEP algorithm configuration is shown in Table 3.1, and the MATLAB code
used to run this experiment can be found in Appendix B. Due to the noise
that we’ve added, it’s unrealistic to expect the algorithm to reach the
maximum fitness. Therefore the convergence threshold τ has been
compensated using,
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Figure 3-2: Experiment 3-1 Data
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Algorithm Parameters
Terminal Set {a, ?}
Function Set {+,−,×,÷,

√
| ? |}

Genes 2
Head Size 6
Tail Size 7
Gene Size 20
Chrm Size 40
Runs 25
Population Size 200
Max Generations 100
Mutation Rate 0.1
1-Pt Recombination Rate 0.3
2-Pt Recombination Rate 0.3
Gene Recombination Rate 0.3
IST Rate 0.1
RIST Rate 0.1
Inversion Rate 0.1
Min Founders 1
Survival Threshold 10
Convergence Threshold 510
Maximum Fitness 1000

Table 3.1: Experiment 3-1 Algorithm Configuration

τ =

⌊
K

1 + E(n2)

⌋
(3.33)

where K is the maximum fitness (1000 in this case), E(n2) is the second
moment of the noise, and b?c means round down or take the floor. For this
experiment our estimate of E(n2) was slightly off yielding a convergence
threshold of 510 instead of 500.

Results

The GEP algorithm was unable to find the correct function in every run we
did in this experiment. The functions that were found are plotted in Figure
3-3 and the learning curves are plotted in Figure 3-4. The algorithm has
over fit the data as we can clearly see each solution immediately diverges
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as soon as it leaves the training interval. This could be a property of the
training data in that there are no defining features in the training interval.
Additionally we have not constrained the solution to be zero for negative
temperatures thus creating a situation where several decoy solutions meet the
convergence criteria, when in fact they diverge outside the training interval.
This is confirmed in Figure 3-4 where we can clearly see a handful of runs met
the convergence criteria but are incorrect. The resulting solutions from each
run (in order of fitness) are in the following section.

−100 0 100 200 300 400 500 600 700 800 900 1000
−10

−5

0

5

10

15

20

T (
o
K)

µ

 

 

Training Data

Functions Discovered

True Function

Figure 3-3: Experiment 3-1 Functions Discovered

0 10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

600

Generation

M
a
x
 F

it
n
e
s
s

 

 

Learning Curves

Convergence Threshold

Figure 3-4: Experiment 3-1 Learning Curves

40



Algorithm Solutions

√
|a|
∣∣∣∣ 1

a2
+ 0.31

∣∣∣∣− 0.73 (3.34)

0.55
√
|a− 1.0| − 1.0 a

1.2 a− 1.2
√
|a− 0.86|

(3.35)

0.56 a√
|a|
− 1.1 (3.36)

0.55 (|1.1 a− 0.73| |a|)
1
4 − 0.97 (3.37)

√
|0.31 a− 1.0| − 1.0 a

a− 0.2
(3.38)

√
|0.31 a+ 0.54| −

1.5
√
|a|

a
− 0.93 (3.39)

0.59
√
|a|+

√
|a|
a
− 1.3 (3.40)

√∣∣∣√|a| − 0.31 a
∣∣∣− 1.5

√
|a|

a
+

0.19

a
(3.41)

0.6
√
|a| − 1.9 (3.42)

√
|0.34 a+ 0.033| − 1.4 (3.43)

1.8

a
+
√
|0.34 a− 0.92| − 1.5 (3.44)

0.59

√∣∣∣|a| 14 − 1.0 a
∣∣∣− 1.5 (3.45)

0.59
√
|a− 0.86|+ 8.5

a2
− 1.6 (3.46)

0.022 a+ 1.5 (3.47)
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0.6
√
|a| − 1.7 (3.48)

√∣∣∣1.8√|a| − 0.35 a
∣∣∣− 0.96

a
(3.49)

0.6
√
|a| − 1.0 a

a− 0.33
− 0.73 (3.50)

√
|0.39 a+ 0.42| − 2.0 (3.51)

0.65
√
|a| − 2.4 (3.52)

(
6.7 · 10−3

)
a+ 0.42

√
|a− 0.36| − 0.79 (3.53)

0.019 a+

√∣∣∣0.45
√
|a| − 1.4

∣∣∣ (3.54)

0.65
√
|a|+ 0.11

a
− 2.5 (3.55)

√
|0.43 a+ 0.13| − 0.2

a
− 2.6 (3.56)

0.12 a

|a|
1
4

+ 0.035 (3.57)

0.011 a+ 0.33
√
|a| − 0.54 (3.58)
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3.5 Summary

In this chapter we began by giving a high level introduction to evolutionary
algorithms using the GP algorithm. The shortcomings of the GP algorithm
provided motivation to use the GEP algorithm for our experiments. After
discussing the GEP algorithm in detail we repeated the hydrogen viscosity
experiment and found that the GEP algorithm performed poorly when faced
with the task of mining the true hydrogen viscosity equation from the data.
There are several possible reasons for this, which will the topic of the next
chapter.

The big problem with evolutionary algorithms is they have so many
parameters that must be set, it’s hard to know for sure the algorithm is
optimally configured for the given problem without exhaustive verification.
At this point its hard to say whether our experiment failed because of the
problem to be solved or the algorithm was not optimally configured.
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Chapter 4

Convergence Experiments

“When things get too complicated, it sometimes makes sense to stop and
wonder: Have I asked the right question?”

Enrico Bombieri, 1992 [85]
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4.1 Introduction

As we have seen the GEP algorithm could not successfully find the
Hydrogen Viscosity formula explicitly in Chapter 3. This was an unexpected
result given how simple this formula appears. There are several possible
reasons for this result such as,

1. Explicit equations cannot be discovered reliably

2. Noise sensitivity

3. The numerical constants could not be found

4. Insufficient training data

5. Too many local fitness maximums

In this chapter we will explore these possibilities through a series of numerical
experiments to see if we can gain some insight and discover where symbolic
regression using the GEP algorithm breaks down. We have done a total of
7 experiments ranging from simple to complex which we will briefly discuss
before presenting the results.

Experiment 4-1: A Simple Equation

In this experiment we have attempted to find following simple equation to
test hypothesis 1:

f(x) =
1

x2 + 1
, x ∈ [−10,+10] (4.1)

Experiment 4-2: A Simple Equation + Noise

This experiment is repeat of Experiment 4-1 to test hypothesis 2:

f(x) =
1

x2 + 1
+ n, x ∈ [−10,+10] (4.2)

Experiment 4-3: Unnecessary Constants

This experiment is a repeat of Experiment 4-2 where we have enabled
random numerical constants to see if this plays a role in creating local fitness
maximums in the search space (hypothesis 5):

f(x) =
1

x2 + 1
+ n, x ∈ [−10,+10] (4.3)
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Experiment 4-4: Necessary Constants

Here we have repeated the conditions of Experiment 4-3 to test hypothesis
3 with the equation

f(x) =
π

x2 + 1
+ n, x ∈ [−10,+10] (4.4)

Experiment 4-5: Information Removal

In this experiment we have repeated Experiment 4-4 eleven times, each time
shortening the interval of x to determine at which point there is not enough
information for the algorithm to reliably find the correct solution (hypothesis
4):

(1) f(x) =
π

x2 + 1
+ n, x ∈ [−8,+10] (4.5)

(2) f(x) =
π

x2 + 1
+ n, x ∈ [−6,+10] (4.6)

(3) f(x) =
π

x2 + 1
+ n, x ∈ [−4,+10] (4.7)

(4) f(x) =
π

x2 + 1
+ n, x ∈ [−2,+10] (4.8)

(5) f(x) =
π

x2 + 1
+ n, x ∈ [−1,+10] (4.9)

(6) f(x) =
π

x2 + 1
+ n, x ∈ [0,+10] (4.10)

(7) f(x) =
π

x2 + 1
+ n, x ∈ [1,+10] (4.11)

(8) f(x) =
π

x2 + 1
+ n, x ∈ [2,+10] (4.12)

(9) f(x) =
π

x2 + 1
+ n, x ∈ [4,+10] (4.13)

(10) f(x) =
π

x2 + 1
+ n, x ∈ [6,+10] (4.14)

(11) f(x) =
π

x2 + 1
+ n, x ∈ [8,+10] (4.15)
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Experiment 4-6: Simplified Viscosity of Hydrogen

In this experiment we have done a simplified viscosity of hydrogen
experiment over a larger range of temperatures and set the constant C equal
to 1 instead of 72 to determine if finding the correct solution is any easier for
the algorithm (revisiting failure hypothesis 3):

µ(T ) = 0.636
T 3/2

T + 1
, T ∈ [−5× 105, 10× 106] (4.16)

We have considered only the real part of the viscosity, thus enforcing the
condition that for negative temperatures the viscosity must be zero.

Experiment 4-7: Imaginary Viscosity of Hydrogen

In this experiment we have let the algorithm try to fit the imaginary part
of the viscosity for negative temperatures to see if the pole a T = −1 provides
any additional information (revisiting failure hypothesis 4):

µ(T ) = 0.636
T 3/2

T + 1
, T ∈ [−20,+20] (4.17)
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4.2 Experiment 4-1: A Simple Equation

Setup

Let’s assume for a moment that the Hydrogen Viscosity equation was too
difficult for the GEP algorithm to find. For this first experiment, we have
asked the algorithm to learn:

f(x) =
1

x2 + 1
(4.18)

based on 200 random x values from the uniform distribution U(−10,+10) as
shown in Figure 4-1 and configured the GEP algorithm as shown in Table 4.1.

Results

We ran 10 independent runs, all of which converged to Equation 4.18 within
20 generations as shown by the learning curves in Figure 4-2. This proves
the GEP algorithm is capable of finding the true formula behind a set of
data points when the conditions are right, and that explicit equations can be
discovered reliably. Why then did Experiment 3-1 fail?
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Figure 4-1: Experiment 4-1 Data
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Algorithm Parameters
Terminal Set x
Function Set {+,−,×,÷}
Genes 1
Head Size 10
Tail Size 11
Gene Size 21
Chrm Size 21
Runs 10
Population Size 200
Max Generations 100
Mutation Rate 0.1
1-Pt Recombination Rate 0.3
2-Pt Recombination Rate 0.3
Gene Recombination Rate 0.3
IST Rate 0.1
RIST Rate 0.1
Inversion Rate 0.1
Min Founders 1
Survival Threshold 10
Convergence Threshold 999
Maximum Fitness 1000
Random Numerical Constants Off
Fitness Function 1000/(1 +MSE)

Table 4.1: Experiment 4-1 Algorithm Configuration
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4.3 Experiment 4-2: A Simple Equation +

Noise

Setup

The outcome of Experiment 4-1 was promising, however we must address
the noise sensitivity question. Here we have repeated Experiment 4-1 with
noise as follows:

f(x) =
1

x2 + 1
+ n (4.19)

where is n ∼ N(µ, σ) (i.i.d.) with µ = 0 and σ = 0.1. We used the same 200
x values from Experiment A as well as the same algorithm parameters (see
Table 4.1) aside from the convergence threshold. As we have seen when noise
is present, a perfect fitness score is unrealistic, so the convergence threshold τ
has been compensated using,

τ =

⌊
K

1 + E(n2)

⌋
(4.20)

where K is the maximum fitness (1000 in this case) and E(n2) is the second
moment of the noise.
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Results

We did 10 independent runs using the data shown in Figure 4-3 and the
algorithm again converged to Equation 4.18 in every case. What came as a
surprise was the algorithm converged roughly twice as fast with the addition
of noise as shown in Figure 4-4.
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Figure 4-4: Experiment 4-2 Learning Curves
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4.4 Experiment 4-3: Unnecessary Constants

Setup

So far we have not used any Random Numerical Constants (RNC) which
has substantially reduced the search space. In this experiment we have
repeated Experiment 4-2 with the addition of RNCs even though the formula
we are trying to find does not have any numerical constants other than the
number 1. The algorithm parameters are the same as those shown in Table
4.1 accept Random Numerical Constants have been set to ’On’. In practice it
will be unknown if numerical constants exist in the true solution, however
typically it is more likely than not.

Results

With the addition of RNCs to the configuration, the GEP algorithm had
a significantly more difficult time converging. It found the correct solution
2 out of 10 times, while the others were close approximations. Because we
have limited the number of generations to 100, it’s very likely the algorithm
did not have enough time to converge. This argument is supported by the
learning curves shown in Figure 4-5, which did not achieve maximum fitness
as fast as Experiments 4-1 and 4-2. With additional of RNCs, there appears
to be many more local fitness maximums which are giving the algorithm some
trouble finding the correct solution.
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Algorithm Solutions

f1(a) =
1.1

a2 + 0.16 a+ 1.1
(4.21)

f2(a) =
0.16

0.16 a2 + 0.16
+ 0.025 (4.22)

f3(a) =
1.8

1.8 a2 + 1.8
(4.23)

f4(a) =
1.8

2.1 a2 + 1.9
(4.24)

f5(a) =
0.47

0.22 a2 + 0.56
(4.25)

f6(a) =
a

a3 + 1.1 a
(4.26)

f7(a) =
0.86

1.1 a2 − 0.16 a+ 1.1
+ 0.063 (4.27)

f8(a) =
0.068

0.03 a2 + 0.093
(4.28)

f9(a) =
0.063

0.063 a2 + 0.063
(4.29)

f10(a) =
1.8

2.6 a2 + 1.8
(4.30)
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4.5 Experiment 4-4: Necessary Constants

Setup

As we saw in Experiment 4-3, the addition of RNCs to the algorithm
impeded convergence. Additionally, it’s possible the GEP algorithm had
trouble finding the correct solution because there were no numerical
constants in the true equation. In this experiment we have repeated
Experiment 4-3, but modified the true equation to include a numerical
constant:

f(x) =
π

x2 + 1
(4.31)

To account for the slower convergence, we have also increased the maximum
number of generations to 200.

Results

Upon analyzing the learning curves plotted in Figure 4-6, we can see the
convergence behavior is roughly the same as Experiment 4-3, but by allowing
an extra 100 generations, the algorithm was able to fine tune the solutions
and reach the correct solution (approximately) on every run. The solutions
generated on each run were as follows:
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Algorithm Solutions

f1(a) =
1.9

0.62 a2 + 0.59
(4.32)

f2(a) =
1.9

0.69 a2 + 0.58
(4.33)

f3(a) =
1.9

0.62 a2 + 0.61
(4.34)

f4(a) =
3.1

0.96 a2 + 0.97
(4.35)

f5(a) =
3.1

0.96 a2 + 0.96
(4.36)

f6(a) =
1.9

0.62 a2 + 0.6
(4.37)

f7(a) =
3.2

a2 + 1.0
(4.38)

f8(a) =
1.9

0.62 a2 + 0.59
(4.39)

f9(a) =
3.1

a2 + 0.97
(4.40)

f10(a) =
1.8

0.57 a2 + 0.59
(4.41)
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4.6 Experiment 4-5: Information Removal

Setup

So far we have seen the GEP algorithm find the correct solution to a pair
of simple equations under a variety of conditions (i.e. with/without noise,
with/without RNCs, etc.). This is promising evidence that it is possible for
the GEP algorithm to find the true formula of a simple system explicitly.
However, the question of why the Hydrogen Viscosity experiment failed still
remains unanswered. In this experiment, we will try to better understand the
effects of information removal.

So far we have randomly sampled the independent variable on the
interval of [−10,+10], which for Equation 4.18 is essentially the entire region
where dependent variable is non-zero. However, in the case of the Hydrogen
Viscosity formula we only sampled the independent variable on the interval
of [0, 555]. To capture the complete non zero region of the dependent
variable we would have to sample the entire right side of the real number line
[0,∞]. Additionally we have ignored the fact that, for negative temperatures,
the viscosity is complex. As we saw, the algorithm was oblivious to this and
was able to find multiple relations that fit the data.

Based on what we’ve seen so far in this chapter, it’s reasonable to
conclude the reason for the algorithm’s success is because there are few
solutions, aside from the true solution, that adequately fit the data. In the
Hydrogen Viscosity experiment, this was clearly not the case. To test this
theory we have rerun Experiment 4-4 eleven times and continuously
decreased the independent variable sample interval to determine if there’s a
correlation with the algorithm’s ability to find the correct solution.

Results

The results for this experiment are shown in Table 4.2 and Figures 4-7
through 4-17. In each case, 200 samples for the independent variable were
randomly drawn from U(xmin, xmax). The score for each run was determined
by counting the number of solutions of the form:

f(x) =
c1

c2 x2 + c3
(4.42)

at convergence or the 200th generation, whichever came first. The constants ck
were ignored when comparing solutions. We have assumed that if the solution
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run xmin xmax score solutions
1 −8 +10 10/10 1
2 −6 +10 9/10 2
3 −4 +10 10/10 1
4 −2 +10 8/10 3
5 −1 +10 8/10 3
6 0 +10 5/10 4
7 +1 +10 2/10 5
8 +2 +10 0/10 4
9 +4 +10 0/10 5
10 +6 +10 0/10 7
11 +8 +10 0/10 6

Table 4.2: Experiment 4-5 Results

is of the correct form, the true formula would have benn found eventually.
The number of different solution forms are shown in the forms column, again
ignoring constants.

These results are not surprising, and confirm that the training data must
be properly sampled to find the correct solution. Once we hit the zero crossing
in run 6 there was not enough information to find the true solution reliably,
which caused the algorithm to become overly creative. This implies there are
”features” in the training data that help lead the algorithm to the correct
solution by making it unique from the other solutions in the search space.
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Figure 4-7: Experiment 4-5 Results from run 1 (left)

Figure 4-8: Experiment 4-5 Results from run 2 (right)
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Figure 4-9: Experiment 4-5 Results from run 3 (left)

Figure 4-10: Experiment 4-5 Results from run 4 (right)
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Figure 4-11: Experiment 4-5 Results from run 5 (left)

Figure 4-12: Experiment 4-5 Results from run 6 (right)
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Figure 4-13: Experiment 4-5 Results from run 7 (left)

Figure 4-14: Experiment 4-5 Results from runs 8 (right)
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Figure 4-15: Experiment 4-5 Results from runs 9 (left)

Figure 4-16: Experiment 4-5 Results from runs 10 (right)
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Figure 4-17: Experiment 4-5 Results from run 11
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4.7 Experiment 4-6: Simplified Viscosity of

Hydrogen

Setup

As we saw in Chapter 3, the convergence behavior of the GEP algorithm
in the Hydrogen Viscosity experiment was erratic which suggests our training
data did not have the correct ”features” to find the true solution reliably. In
the previous experiment we saw a similar as result as we began to decrease
the size of the independent variable sampling interval. In this experiment we
will attempt to solve the Hydrogen Viscosity problem again by sampling on
the interval [−5×105, 10×106] degrees Kelvin and hope the training data has
the correct features to uniquely determine the correct solution. Additionally,
instead of random sampling we have taken 200 linearly spaced samples with a
noise σ = 0.01 to simplify the problem (see Figure 4-18). Recall, the hydrogen
viscosity equation is written as,

µ(T ) = λ
T 3/2

T + C
(4.43)

where λ and C were empirical constants equal to 0.636 and 72 respectively.
However finding the constant 72 is likely to be difficult and should be treated
separately, so for this experiment we have also let C = 1.
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Figure 4-18: Experiment 4-6 Data
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Algorithm Parameters
Terminal Set {a, ?}
Function Set {+,−,×,÷,<(

√
?)}

Genes 1
Head Size 10
Tail Size 11
Gene Size 32
Chrm Size 32
Runs 10
Population Size 200
Max Generations 200
Mutation Rate 0.1
1-Pt Recombination Rate 0.3
2-Pt Recombination Rate 0.3
Gene Recombination Rate 0.3
IST Rate 0.1
RIST Rate 0.1
Inversion Rate 0.1
Min Founders 1
Survival Threshold 1
Convergence Threshold 991
Maximum Fitness 1000

Table 4.3: Experiment 4-6 Algorithm Configuration

Note that this is the real part of the training data which is zero for negative
temperatures. The algorithm parameters are shown in Table 4.3. We have
added the function <(

√
?) to the function set to avoid complex outputs.
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Results

Unfortunately the algorithm failed to find the correct solution on every
run. The learning curves are shown in Figure 4-19 followed by the algorithm
solutions, sorted in order of fitness. The convergence behavior here was not
consistent which suggests the training data does have the correct features for
the algorithm to succeed. Upon examining the most fit solution, f1(a) we
found that it actually exceeded the convergence threshold, meaning

E(n2) ≈ 1

M

M∑
k=1

‖f1(T (k))− µ(T (k))‖2 (4.44)

Since f1(a) is clearly the wrong solution, we can conclude the algorithm is
being fooled by decoy solutions.
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Figure 4-19: Experiment 4-6 Learning Curves
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Algorithm Solutions

f1(a) = 0.64 a<

(√
1

a

)
(4.45)

f2(a) = <
(√

0.4 a− 1.7
)
− 0.049 (4.46)

f3(a) = 0.65<
(√

0.95 a− 2.3
)

(4.47)

f4(a) = <
(√

0.4 a− 1.4
)
− 0.024 (4.48)

f5(a) = <
(√

0.41 a− 2.8
)
− 0.27 (4.49)

f6(a) = 0.64<
(√

a
)
− 2.5 (4.50)

f7(a) = 0.64<
(√

a
)

+ 0.024 (4.51)

f8(a) = 0.65<
(√

a− 1.0<
(√

a
)

+ 0.024

)
− 6.6 (4.52)

f9(a) = 0.65<
(√

a
)
− 6.8 (4.53)

f10(a) = 0.65<
(√

a
)
− 5.3 (4.54)
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4.8 Experiment 4-7: Imaginary Viscosity of

Hydrogen

Setup

In order to differentiate the hydrogen viscosity equation from other
solutions in the search space, we have allowed for negative temperatures in
this experiment. This is meant to see if the pole on the imaginary axis at
T = C will provide enough information for the algorithm to find the correct
solution, where again we have taken C = 1. This is basically a repeat of
Experiment 4-6 with the function set {+,−,×,÷,

√
?} and N = 200 linearly

sampled data points in the interval [−20,+20] used as training data.
Additionally the fitness function has been modified to account for the real
and imaginary parts of the data using,

ΦMS(f) = K

(
1 +

1

M

M∑
k=1

(<(e(k))2 + =(e(k))2)

)−1
(4.55)

where the errors e(k) are the residuals between the training examples and the
solution under test f . In this case the noise on the training data was complex
(σ = 0.01) so the convergence threshold τ was set using,

τ =

⌊
K

1 + E(n2
R) + E(n2

I)

⌋
= 980 (4.56)

Results

The resulting solutions are shown in Figures 4-20 through 4-211 and the
learning curves are shown in Figure 4-22, followed the solutions for each run
sorted by fitness. Out of the 10 runs we did, f1(a), f2(a), and f4(a) found the
true solution (approximately). On the other hand f3(a) was not the correct
solution form, but was able to score a higher fitness than f4(a). The pole at
T = 1 has clearly provided a unique feature the algorithm can use to find the
correct solution.

1Here we have only shown the data form [−10,+10] to show more detail around the pole
on the imaginary axis.
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Figure 4-20: Experiment 4-7 Results (real part)

Figure 4-21: Experiment 4-7 Results (imaginary part)
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Figure 4-22: Experiment 4-7 Learning Curves
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Algorithm Solutions

f1(a) =

√
a

1.5
a

+ 1.5
(4.57)

f2(a) =

√
a

1.5
a

+ 1.5
(4.58)

f3(a) = 0.62

√
a2

a+ 1.1
(4.59)

f4(a) =
a

3
2

2.0 a+ 1.9
(4.60)

f5(a) =

√
0.35 a− 0.35

(
a

a+ 0.74

) 1
4

(4.61)

f6(a) =
√

0.42 a− 0.58 (4.62)

f7(a) =
√

0.42 a− 0.59 (4.63)

f8(a) = 0.68
√
a− 0.14 (4.64)

f9(a) = 0.045
√

244.0 a− 0.23 (4.65)

f10(a) = 0.059
√

122.0 a (4.66)
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4.9 Summary

In these experiments we have discovered that

1. Explicit formulas can be discovered if the training examples have
descriptive features which are yet to be defined.

2. Noise does not affect convergence when the above condition is satisfied.

3. Numerical constants complicate the search space.

The simple equation we began with obviously had the right features, but
it would appear hydrogen viscosity training examples did not. However, by
considering negative temperatures and accounting for the imaginary part of
the viscosity we were able to improve our probability of success. Unfortunately
this is unrealistic in practice. In fact, by considering the imaginary part, this
was arguably a different data set.

At this point, the question is: can additional information be extracted from
a data set which lacks the correct features? Schmidt used partial derivative
ratios for implicit models of the form f(x, y) = 0 as way to detect trivial
solutions (i.e. x − x = 0) in dynamical systems [21, 20, 23] which, in a
sense, guided the search down the correct path. Here we have the problem of
detecting decoy solutions, which approximate the true solution very closely,
but are incorrect. While this seems like this would be a problem with the data
set, it may be possible to constrain the search space to penalize decoys.

For all the experiments in this chapter we have been using single gene
systems with a head size of 10 (tail size of 11), and function sets with the
correct operators. By doing this, we have already constrained the search space.
This configuration was not chosen to fit the problem, but it’s possible we
were lucky for the simple equation we chose. Selecting the optimal algorithm
configuration is a common problem in evolutionary computing, which has also
been addressed by Schmidt in [22] for the problem of domain alphabet learning.
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Chapter 5

Feature Spaces

“How can computers be made to do what needs to be done, without being told
exactly how to do it?”

Arther Samuel, 1959 [86]
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5.1 Introduction

In an attempt to separate the decoy solutions from the true solution in
the symbolic regression problem (assuming one exists), we will next consider
mappings to higher dimensional feature spaces. Kernel mappings for
regression and pattern recognition are a standard and considered state of the
art in the literature [87, 88, 89, 90, 91], however using kernel based fitness
functions for evolutionary algorithms is somewhat less common. Hu et. al
[92] discusses using Gaussian kernel based fitness functions to recognize
native protein sequences in the field of computational biology, however we
were unable to find any work in the area of symbolic regression. Most studies
are going in the other direction using evolutionary algorithms to design
kernel functions for support vector machine problems [93, 94, 95, 96]. In this
chapter we will first discuss some basic kernel mappings, and then derive a
generaized feature extraction process that will allow us recognize true
solutions from empirical. The efficacy of this process will be tested in two
simple experiments.

5.2 Kernel Functions

5.2.1 The Kernel Trick

The inspiration for mapping a set of training examples from the
measurement space to a higher dimensional feature space begins with kernel
functions. The general form of a kernel function is the following,

k(x,x′) = φ(x)Tφ(x′) (5.1)

Kernels functions are often substituted into algorithms involving scalar
products, which is commonly referred to as the kernel trick [15]. For
example, anytime the inner product xTx is computed, a kernel function can
be substituted in its place. In fact xTx is itself kernel function for the
identity φ(x) = x [15]. Kernels are used in several machine learning
algorithms such as support vector machines and Gaussian processes.

We can describe the response of a kernel function to a set of training
examples by creating a matrix called the Gram matrix,

Km,n = k
(
x(m),x(n)

)
(5.2)
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With this concept, there is an opportunity for an improved cost function robust
to decoys.

5.2.2 Cost Functions Based on the Gram Matrix

In the case where the desired response of the formula we are trying to
discover is 1-dimensional, the Gram matrix is nothing more than the outer
product,

Km,n = ΦyΦ
T
y (5.3)

where

Φy =
[
φ
(
y(1)
)

φ
(
y(2)
)
· · · φ

(
y(M)

)
)
]T

(5.4)

The Gram matrix based on model predictions is then:

K̂m,n = ΦŷΦ
T
ŷ (5.5)

where

Φŷ =
[
φ
(
f
(
x(1)
))

φ
(
f
(
x(2)
))
· · · φ

(
f
(
x(M)

))]T
(5.6)

based of these matrices we can measure the similarity of the training examples
and the proposed solution using:

Φ(f ) =
∑
m,n

(Km,n − K̂m,n)2 (5.7)

However, if the mean-square error between the training examples and the
candidate function is small, this cost function will still be fooled by decoy
solutions. We need to impose a constraint beyond minimizing the error which
will penalize decoy solutions. As it turns out, this can be achieved by taking
the curvature of the training examples into account.

5.3 Feature Signatures

5.3.1 Derivative Approximations

Using partial derivatives, Schmidt has shown that implicit physical laws
can be mined from dynamical systems [23]. This is a slightly different problem,
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however a similar approach may work in our case. Currently we are dealing
with 1-dimensional data sets which do not have partial derivatives. However,
what if we could compare the curvature of the entire candidate function to the
training examples simultaneously? This imposes a far more strict constraint
than simply minimizing the error and may be the basis for a unique formula
signature. To do this, we first define:

ẏ(k) =
dy(k)

dx(k)
=
y(k+1) − y(k)

x(k+1) − x(k)
(5.8)

which is the approximate derivative of the dependent variable with respect to
the independent variable. Before we proceed we will make the following
assumptions about the training examples, (1) the independent variable is
uniformly sampled, and (2) the dependent variable is smooth. This simplifies
the above approximation to:

ẏ(k) =
dy(k)

dx(k)
=
y(k+1) − y(k)

∆x
(5.9)

For notational simplicity, the set of M − 1 numerical training derivatives will
be denoted by the vector ẏ.

5.3.2 Mapping to Higher Dimensions

To completely characterize the curvature of the ordered, uniformly
sampled training examples, we next cancel out the ∆x term in every sample
by computing the following signature matrix:

S = ẏ(ẏT )−1 =


ẏ1
ẏ1

ẏ1
ẏ2
· · · ẏ1

ẏM−1
ẏ2
ẏ1

ẏ2
ẏ2
· · · ẏ2

ẏM−1

...
...

. . .
...

ẏM
ẏ1

ẏM
ẏ2
· · · ẏM−1

ẏM−1

 (5.10)

where, (
ẏ(k)
)−1

= 1/ẏ(k) (5.11)

This effectively applies a mapping from R 7→ RM−1 for each training example.
The matrix Ŝ can be computed using the predictions from candidate solutions
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in the same fashion and the average distance from S to Ŝ can be computed
using:

ΦFS(f) =
K

1 + E(d)
(5.12)

where K is again the maximum fitness, and

E(d) =

(
1

N

N∑
n=1

M∑
m=1

(Sm,n − Ŝm,n)2

)1/2

(5.13)

5.3.3 Invariance

Applying this mapping has following desirable properties, (1) invariance
to the scale of the training examples, (2) invariance to linear tranformations
on candidate solutions. The first property is obvious because the S matrix is
based on ratios of differences. However the second property may not be so
obvious, and if so it may not be clear why this property is desirable. To prove
linear transformation invariance, consider any element of the signature matrix
based on an arbitrary candidate solution f :

Ŝ(f)
m,n =

f
(
x(m+1)

)
− f

(
x(m)

)
f (x(n+1))− f (x(n))

(5.14)

Define the function g which is a linear transform on the function f :

g(x) = af(x) + b (5.15)

where coefficients a and b are arbitrary. If we compute the signature matrix
based on g,

Ŝ(g)
m,n =

g
(
x(m+1)

)
− g

(
x(m)

)
g (x(n+1))− g (x(n))

(5.16)

it’s obvious that,

Ŝ(g)
m,n =

af
(
x(m+1)

)
+ b− af

(
x(m)

)
− b

af (x(n+1)) + b− af (x(n))− b
(5.17)
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which is the same as,

f
(
x(m+1)

)
− f

(
x(m)

)
f (x(n+1))− f (x(n))

= Ŝ(f)
m,n (5.18)

5.3.4 Post Optimization

Now that we have shown invariance to linear transforms, the question to
ask is: why would we want this? The consequence of this property is that
any candidate function f will have the same fitness score as any linear
transformation of f . Because of this, any solution found using the signature
fitness criterion ΦFS(f) must be assumed to have unknown coefficients which
we will refer to as c1 and c2. The benefit of this property is the problem of
finding the true data generating solution has been divided into 2 simpler
problems, (1) find any formula f that maximizes ΦFS(f) using the GEP
algorithm and (2) solve for c1 and c2 by minimizing the error between y and
c1f(x) + c2 using the preferential optimization method. Next we will
investigate the efficacy of this approach through 2 simple experiments.
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5.4 Experiment 5-1: Penalization Analysis

Setup

To understand the sensitivity of the signaure fitness criterion, we have
rerun the hydrogen viscosity experiment 10 times with the mean square error
fitness function and recomputed the fitness of the final answers with ΦFS(f).
This will tell us if decoy solutions with high ΦMS(f) scores are penalized by
ΦFS(f). For this experiment the algorithm has been run according to the
configuration in Table 5.1.

Algorithm Parameters
Terminal Set {a, ?}
Function Set {+,−,×,÷,

√
?}

Genes 1
Head Size 10
Tail Size 11
Gene Size 32
Chrm Size 32
Runs 10
Population Size 200
Max Generations 200
Mutation Rate 0.1
1-Pt Recombination Rate 0.3
2-Pt Recombination Rate 0.3
Gene Recombination Rate 0.3
IST Rate 0.1
RIST Rate 0.1
Inversion Rate 0.1
Min Founders 1
Survival Threshold 1
Convergence Threshold 999
Maximum Fitness 1000
Random Numerical Constants On
Constants Range [0,100]

Table 5.1: Experiment 5-1 Algorithm Configuration
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In this experiment we have used the complete hydrogen viscosity equation,
repeated here for convenience:

µ(T ) = 0.663
T 3/2

T + 72
(5.19)

and have asked the algorithm the find this equation from 200 linearly spaced
samples from 1 to 10,000 degrees Kelvin (no noise).

Results

As expected, the algorithm was unable to find the correct solution and
instead returned the following:

f1(a) = 0.64
√
a− 0.59 (5.20)

f2(a) = 0.63
√
a (5.21)

f3(a) = 0.63
√
a (5.22)

f4(a) = 0.63
√
a (5.23)

f5(a) = 0.63
√
a (5.24)

f6(a) = 0.63
√
a (5.25)

f7(a) = 0.17

√
(1.1 · 104)

(√
211.0− 1.0 a+ 83.0

) 1
4 (5.26)

f8(a) = −122.0 (5.27)

f9(a) =

√
34.0
√
a+ 133.0− 122.0 (5.28)

f10(a) =
a√

a+ 144.0
+ 1.0 (5.29)
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Solutions 1-6 are actually good approximations when T � 72 which may be
due to the large temperatures we included in the training data. The question
is now, given these solutions and fitness scores, how would ΦFS(f) score these
solutions? The answer is plotted in Figure 5-1, where it’s clear that ΦFS(f)
had a very different interpretation of the solutions found by ΦMS(f). An
interesting result is the solution with lowest ΦMS(f) score had the highest
ΦFS(f) score (i.e. f10(a)). Upon closer inspection of f10(a), it’s the only
solution with a ratio and is the closest in its form to the true solution.
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Figure 5-1: Experiment 5-1 Fitness Scores
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5.5 Experiment 5-2: Signature Learning

Setup

We have repeated the hydrogen viscosity experiment yet again using the
configuration from the previous section using ΦFS(f).

Results

The algorithm found the correct form of the solution 2 out of 10 runs as
shown in the boxes below (sorted in order of fitness):

f1(a) = c1
a

3
2

a+ 72.1
+ c2 (5.30)

f2(a) = c1
a

3
2

a+ 71.77
+ c2 (5.31)

f3(a) = c1
a√

a+ 150.6
+ c2 (5.32)

f4(a) = c1
a√

a+ 150.6
+ c2 (5.33)

f5(a) = c1
a√

10.44 a+ 1567.0
+ c2 (5.34)

f6(a) = c1
a√

a+ 149.6
+ c2 (5.35)

f7(a) = c1
a√

2.0 a+ 298.2
+ c2 (5.36)

f8(a) = c1
a√

a+ 148.6
+ c2 (5.37)

f9(a) = c1
a√

a+ 147.6
+ c2 (5.38)

f10(a) = c1
a
√

2.0 a+ 9.44

a+ 83.01
+ c2 (5.39)
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5.6 Summary

In this chapter we have introduced a new fitness function which was able
to deliver the correct solution form of the hydrogen viscosity formula using the
GEP algorithm. This fitness function works by mapping the training examples
to a higher dimensional space which can be interpreted as creating a unique
signature. From here we will take a step back from the hydrogen viscosity
problem and start to examine other formulae to (1) determine if this result
was reached by chance and (2) find where this new approach breaks down.
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Chapter 6

The Analytic World vs. the
Real World

“An algorithm must be seen to be believed”

Donald Knuth, 2011 [97]
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6.1 Introduction

In this chapter we have conducted 2 sets of experiments: (1) Analytic
Experiments and (2) Real World Experiments. The first group covers the
common analytic function types namely: polynomial functions, ration
functions, trigonometric functions, logarithmic functions, and exponential
functions. In each case we have selected a simple example from each function
type which we have asked the GEP algorithm to discover it using ΦMS(f)
and ΦFS(f). The second group is from a set of experiments pulled from the
UCI machine learning repository in the areas of physics and chemistry for
which the true data generating function is assumed to be unknown. For each
data set we pulled from the UCI repository there was a reference function
provided however these are based on regression models that may not
necessarily be true. Therefore we have chosen to ignore these solutions and
score each solution based on the error due to predictions on hold-out data
points.

6.2 Analytic Experiments

Here we have done a total of 5 experiments where we have asked the GEP
algorithm to discover several common analytic function types. These functions
were as follows:

Polynomial : f(x) = x3 − 4x (6.1)

Rational : f(x) =
0.5x3 − 5

x2 + 1
(6.2)

Trigonometric : f(x) = 98.6 sin(x) (6.3)

Logarithmic : f(x) = ln(7846(1 + x)) (6.4)

Exponential : f(x) = exp(−2(x− 1)) (6.5)

In each case we have only given the algorithm access to a limited domain of
the function’s data thus creating an ambiguity. Each experiment was run with
the algorithm configuration shown in Table 6.1. Parameters that were varied
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based on experiment are labeled as such and will be given in the relevant
sections.

Algorithm Parameters
Terminal Set {a, ?} 2-Pt Recombination Rate 0.3
Function Set Varies Gene Recombination Rate 0.3
Genes 1 IST Rate 0.1
Head Size 10 RIST Rate 0.1
Tail Size 11 Inversion Rate 0.1
Gene Size 32 Survival Threshold 1
Chrm Size 32 Convergence Threshold 999.9
Runs 10 Maximum Fitness 1000
Population Size 200 Training Samples 50
Mutation Rate 0.1 Max Generations 250
1-Pt Recombination Rate 0.3 Min Founders 1

Table 6.1: Analytic Experiments Configuration
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6.2.1 Experiment 6-1: Polynomial

Setup

In this experiment we begin with the simple polynomial:

f(x) = x3 − 4x, x ∈ [−1,+3] (6.6)

which should be very easy for both fitness criterions to find the correct answer.
A plot of the training examples for this experiment is shown in Figure 6-1. The
function set is the following:

F = {+,−,×,÷} (6.7)

−1 −0.5 0 0.5 1 1.5 2 2.5 3
−5

0
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10

15
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y

Figure 6-1: Experiment 6-1 Training Examples
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Results

The resulting fitness scores for each of the 10 runs we did in this experiment
are shown below in Table 6.2. Both ΦMS(f) and ΦFS(f) were able to find the
correct solution at least once although it appears ΦFS(f) struggled slightly
in that it found the correct answer only 1 out of 10 runs. However, despite
this result ΦFS(f) gave very low scores to the incorrect solutions, whereas
ΦMS(f) gave far more optimistic scores. This result is consistent with our
expectations that ΦFS(f) can recognize truth, however the low probability of
success implies more trials or extended convergence time may be necessary to
find the correct solution. The solution for each run is given in the following
two sections in order of fitness score.

Run ΦMS(f) ΦFS(f)
1 1000 1000
2 1000 11
3 372 12
4 429 8
5 372 10
6 1000 45
7 1000 16
8 372 13
9 372 11
10 141 17

Table 6.2: Experiment 6-1 Scores
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ΦMS(f) Outcomes:

ΦMS

(
a3 − 4.0 a

)
= 1000 (6.8)

ΦMS

(
a3 − 4.0 a

)
= 1000 (6.9)

ΦMS

(
a3 − 4.0 a

)
= 1000 (6.10)

ΦMS

(
a3 − 4.0 a

)
= 1000 (6.11)

ΦMS

(
a3 − 0.24 a2 − 2.8 a

)
= 429.2086 (6.12)

ΦMS

(
a3 − 1.0 a2 − 2.0 a

)
= 371.8584 (6.13)

ΦMS

(
a3 − 1.0 a2 − 2.0 a

)
= 371.8584 (6.14)

ΦMS

(
a3 − 1.0 a2 − 2.0 a

)
= 371.8584 (6.15)

ΦMS

(
a3 − 1.0 a2 − 2.0 a

)
= 371.8584 (6.16)

ΦMS

(
0.079 a5

)
= 140.5618 (6.17)
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ΦFS(f) Outcomes:

ΦFS

(
c1
(
4.0 a− 1.0 a3

)
+ c2

)
= 1000 (6.18)

ΦFS

(
c1
(
a3 + a2 − 6.25a

)
+ c2

)
= 44.8651 (6.19)

ΦFS

(
c1
(
−13.0 a3 + a2 + 48.0 a

)
+ c2

)
= 16.589 (6.20)

ΦFS

(
c1
(
144.0 a3 − 71.0 a2 − 400.0 a

)
+ c2

)
= 16.0698 (6.21)

ΦFS

(
c1
(
−0.349 a3 + 0.182a2 + a

)
+ c2

)
= 13.4581 (6.22)

ΦFS

(
c1
(
a3 + 20.6a2 − 52.4a

)
+ c2

)
= 12.2249 (6.23)

ΦFS

(
c1
(
0.26 a3 − 1.0 a

)
+ c2

)
= 11.3396 (6.24)

ΦFS

(
c1
(
−74.0 a2 + 177.0 a

)
+ c2

)
= 10.7279 (6.25)

ΦFS

(
c1
(
a3 + 23.0 a2 − 57.0 a

)
+ c2

)
= 9.614 (6.26)

ΦFS

(
c1

(
2.0 a− 86.0 a2

a+ 94.0

)
+ c2

)
= 8.1504 (6.27)
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6.2.2 Experiment 6-2: Rational

Setup

In this experiment we generated samples from the following rational
function:

f(x) =
0.5x3 − 5

x2 + 1
, x ∈ [−5, 0] (6.28)

A plot of the training examples for this experiment is shown in Figure 6-2.
The function set we used for this experiment was as follows:

F = {+,−,×,÷} (6.29)

−5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

x

y

Figure 6-2: Experiment 6-2 Training Examples
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Results

In this particular experiment neither ΦMS(f) nor ΦFS(f) was able to guide
the algorithm to the correct solution. Further experimentation with more
convergence time and/or different algorithm configurations is necessary in this
case. The solutions for each run is given in the following two sections in order
of fitness score. From a visual inspection of the returned solutions, they are all
lacking the complexity of the target formula which suggests the target formula
was not in the search space of the algorithm.

Run ΦMS(f) ΦFS(f)
1 735 19
2 735 14
3 735 20
4 654 20
5 733 20
6 749 21
7 712 20
8 780 16
9 748 21
10 595 21

Table 6.3: Experiment 6-2 Scores
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ΦMS(f) Outcomes:

ΦMS

(
a

96.0
29.0
a
−7.2 − 7.2

+
30.0

96.0
29.0
a
−7.2 − 7.2

)
= 780.171 (6.30)

ΦMS

(
30.0

3.3 a− 6.1

)
= 748.966 (6.31)

ΦMS

(
30.0

2.6 a− 7.2

)
= 747.6229 (6.32)

ΦMS

(
29.0

2.0 a− 7.2

)
= 734.5204 (6.33)

ΦMS

(
29.0

2.0 a− 7.2

)
= 734.5204 (6.34)

ΦMS

(
29.0

2.0 a− 7.2

)
= 734.5204 (6.35)

ΦMS

(
29.0

2.0 a− 7.2

)
= 733.1892 (6.36)

ΦMS

(
7.2

a− 1.5

)
= 712.4692 (6.37)

ΦMS

(
−
(
4.8 · 10−3

)
a2 − 0.37 a− 3.3

)
= 654.3691 (6.38)

ΦMS

(
0.034 a2 − 0.034 a− 2.9

)
= 594.7123 (6.39)
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ΦFS(f) Outcomes:

ΦFS

(
c1
(
29.0 a2 + 144.0 a

)
+ c2

)
= 20.5801 (6.40)

ΦFS

(
c1
(
3.0 a2 + 14.0 a

)
+ c2

)
= 20.5253 (6.41)

ΦFS

(
c1
(
3.0 a2 + 14.0 a

)
+ c2

)
= 20.5253 (6.42)

ΦFS

(
c1
(
50.0 a2 + 244.0 a

)
+ c2

)
= 20.486 (6.43)

ΦFS

(
c1
(
0.96 a2 + 4.5 a

)
+ c2

)
= 20.2835 (6.44)

ΦFS

(
c1
(
14.0 a2 + 68.0 a

)
+ c2

)
= 20.0574 (6.45)

ΦFS

(
c1
(
45.0 a2 + 211.0 a

)
+ c2

)
= 19.6612 (6.46)

ΦFS

(
c1
(
46.0 a2 + 222.0 a

)
+ c2

)
= 19.3367 (6.47)

ΦFS

(
c1
(
a3 − a2 −

(
1.9 · 102

)
a
)

+ c2
)

= 15.9873 (6.48)

ΦFS (32.0c1 + c2) = 14.2168 (6.49)
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6.2.3 Experiment 6-3: Trigonometric

Setup

In this experiment we have used a simple sine function with a non-trivial
amplitude:

f(x) = 98.6 sin(x), x ∈
[
0,

3π

2

]
(6.50)

This will test to see if either ΦMS(f) or ΦFS(f) over think the solution to this
problem even when the sine and cosine operators are provided in the function
set. A plot of the training examples for this experiment is shown in Figure
6-3. The function set we used for this experiment was as follows:

F = {+,−,×,÷, sin(?), cos(?)} (6.51)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−100

−50

0

50

100

x

y

Figure 6-3: Experiment 6-3 Training Examples
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Results

Here ΦMS(f) struggled to find the correct solution, while ΦFS(f) succeeded
on every run. In the case of ΦMS(f), the top 3 solutions are all very similar yet
the fitness score varies considerably. This goes to show that small differences
in the amplitude have a large effect of the fitness score. On the other hand,
the ΦFS(f) was unaffected because of its invariance to linear transformations.
As a result the correct form of the solution was found on every run.

Run ΦMS(f) ΦFS(f)
1 1000 1000
2 243 1000
3 363 1000
4 721 1000
5 507 1000
6 919 1000
7 293 1000
8 41 1000
9 257 1000
10 495 1000

Table 6.4: Experiment 6-3 Scores
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ΦMS(f) Outcomes:

ΦMS (98.601 sin(a)) = 999.9996 (6.52)

ΦMS (99.019 sin(a)) = 919.3031 (6.53)

ΦMS (99.48 sin(a)) = 720.6495 (6.54)

ΦMS (99.0 sin(a)− 1.5 cos(a)− 0.62) = 507.1791 (6.55)

ΦMS

(
sin(a)2 + 99.0 sin(a) + cos(a)

)
= 494.6506 (6.56)

ΦMS (92.0 sin(a) + 2.0 a sin(a) + 1.8) = 363.39 (6.57)

ΦMS (92.0 sin(a) + 2.0 a sin(a) + 1.0) = 292.9888 (6.58)

ΦMS

(
92.0 sin(a) + sin(a)2 + 2.0 a sin(a)

)
= 257.3214 (6.59)

ΦMS (94.0 sin(a) + a sin(a)) = 243.2872 (6.60)

ΦMS (33.0 cos(0.4 cos(0.02 a) cos(0.02))) = 40.6812 (6.61)

93



ΦFS(f) Outcomes:

ΦFS (c1 sin(a) + c2) = 1000 (6.62)

ΦFS (c1 sin(a) + c2) = 1000 (6.63)

ΦFS (c1 sin(a) + c2) = 1000 (6.64)

ΦFS (c1 sin(a) + c2) = 1000 (6.65)

ΦFS (c1 sin(a) + c2) = 1000 (6.66)

ΦFS (c1 sin(a) + c2) = 1000 (6.67)

ΦFS (c1 sin(a) + c2) = 1000 (6.68)

ΦFS (c1 sin(a) + c2) = 1000 (6.69)

ΦFS (c1 sin(a) + c2) = 1000 (6.70)

ΦFS (c1 sin(a) + c2) = 1000 (6.71)

94



6.2.4 Experiment 6-4: Logarithmic

Setup

In this experiment have used the following logarithmic function with a
non-trivial shift in amplitude:

f(x) = ln(7846(1 + x)), x ∈ [−0.8,+1] (6.72)

A plot of the training examples for this experiment is shown in Figure 6-4.
The function set we used for this experiment was as follows:

F = {+,−,×,÷, ln(?)} (6.73)

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
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Figure 6-4: Experiment 6-4 Training Examples
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Results

The scores for this experiment are shown below in Table 6.5. For the first
time in this set of experiments, both ΦMS(f) and ΦFS(f) scored highly. In
examining the the solutions found by ΦMS(f), the 1st and 2nd place runs both
found the correct answer, however the remaining solutions scored almost as
well yet were incorrect. However, in nearly every case the solutions found by
ΦFS(f) delivered the correct form of the solution.

Run ΦMS(f) ΦFS(f)
1 993 1000
2 972 986
3 972 1000
4 997 1000
5 971 1000
6 970 1000
7 968 784
8 921 1000
9 999 1000
10 972 1000

Table 6.5: Experiment 6-4 Scores
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ΦMS(f) Outcomes:

ΦMS (log(a+ 1.0) + 8.9) = 998.6848 (6.74)

ΦMS

(
log
((

7.4 · 103
)
a+ 7.4 · 103

))
= 996.7127 (6.75)

ΦMS

(
log
(
82.0 a2 +

(
6.8 · 103

)
a+ 7.3 · 103

))
= 992.556 (6.76)

ΦMS (1.1 a+ 8.8) = 972.2012 (6.77)

ΦMS (a+ log(a+ 6.0) + 7.0) = 972.0812 (6.78)

ΦMS

(
a+ log

(
3.0 a2 + 333.0 a+ 6.7 · 103

))
= 971.5509 (6.79)

ΦMS (1.1 a+ 8.8) = 971.4592 (6.80)

ΦMS

(
a+ log

(
(3.8 · 1018) a+ 2.5 · 1015

a

)
− 34.0

)
= 969.8767 (6.81)

ΦMS (a+ 8.8) = 968.2035 (6.82)

ΦMS (a+ 9.0) = 921.2855 (6.83)
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ΦFS(f) Outcomes:

ΦFS (c1log(c2 (a+ 1.0))) = 1000 (6.84)

ΦFS (c1log(c2 (a+ 1.0))) = 1000 (6.85)

ΦFS (c1log(c2 (a+ 1.0))) = 1000 (6.86)

ΦFS (c1log(c2 (a+ 1.0))) = 1000 (6.87)

ΦFS (c1log(c2 (a+ 1.0))) = 1000 (6.88)

ΦFS (c1log(c2 (a+ 1.0))) = 1000 (6.89)

ΦFS (c1log(c2 (a+ 1.0))) = 1000 (6.90)

ΦFS (c1log(c2 (a+ 1.0))) = 1000 (6.91)

ΦFS (c1log(c2 (a+ 1.005))) = 985.5742 (6.92)

ΦFS

(
c1 log

(
c2
a2 + 31.8a+ 30.9

(0.127a+ 4.1)

))
= 783.5202 (6.93)
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6.2.5 Experiment 6-5: Exponential

Setup

In this experiment have used the following exponential function:

f(x) = exp(−2(x− 1)), x ∈ [−1.5, 0] (6.94)

A plot of the training examples for this experiment is shown in Figure 6-5.
The function set for this experiment was as follows:

F = {+,−,×,÷, exp(?)} (6.95)

−1.5 −1 −0.5 0
0

50

100

150

x

y

Figure 6-5: Experiment 6-5 Training Examples
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Results

Here again we see in Table 6.6 ΦMS(f) struggled to find its way, while
ΦFS(f) recognized the correct formula on nearly every run.

Run ΦMS(f) ΦFS(f)
1 30 1000
2 20 1000
3 32 427
4 4 606
5 46 1000
6 32 1000
7 31 551
8 43 1000
9 28 1000
10 44 427

Table 6.6: Experiment 6-5 Scores
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ΦMS(f) Outcomes:

ΦMS

(
a+ ee

ea

ea + 61.0 a2
)

= 45.6437 (6.96)

ΦMS

(
e2.4 e

a

+ 58.0 a2 − 0.097
)

= 44.4815 (6.97)

ΦMS

(
14.0 a4 + 0.89 a3 − 0.89 a2 − 47.0 a

)
= 43.1889 (6.98)

ΦMS

(
a6 + 58.0 a2

)
= 32.4447 (6.99)

ΦMS

(
54.0 a2 + 0.097 a+ 5.8

)
= 31.8 (6.100)

ΦMS

(
58.0 a2 − 2.0 a3 − 1.0 a2 ea + 0.89

)
= 31.2 (6.101)

ΦMS

(
60.0 a2 + 0.89

)
= 29.757 (6.102)

ΦMS

(
58.0 a2 e−0.037 a

)
= 28.1432 (6.103)

ΦMS

(
29.0 e−1.0 e

ea

e−2.0 a − 1.0 a
)

= 20.336 (6.104)

ΦMS

(
e0.035 a e

a2

a+100.0
e−3.5 a

)
= 3.7195 (6.105)
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ΦFS(f) Outcomes:

ΦFS

(
c1e
−2.0 a + c2

)
= 1000 (6.106)

ΦFS

(
c1e
−2.0 a + c2

)
= 1000 (6.107)

ΦFS

(
c1e
−2.0 a + c2

)
= 1000 (6.108)

ΦFS

(
c1e
−2.0 a + c2

)
= 1000 (6.109)

ΦFS

(
c1e
−2.0 a + c2

)
= 1000 (6.110)

ΦFS

(
c1
(
a+

(
5.5 · 105

)
e−2.0 a

)
+ c2

)
= 999.9871 (6.111)

ΦFS

(
c1
(
a4 + a2 − 0.92 a

)
+ c2

)
= 605.5516 (6.112)

ΦFS

(
c1

(
a+

1.2 · 104

a e−1.0 a + 26.0

)
+ c2

)
= 550.7 (6.113)

ΦFS

(
c1a e

59.0

a− 48.0
a + c2

)
= 427.145 (6.114)

ΦFS

(
c1 + c2

1.0 a e−1.0 a

2.0 a+ 9.4

)
= 426.7693 (6.115)
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6.3 Real Experiments

In the real world the fundamental law describing how observed data is
generated is typically unknown for new experiments. Here we have asked the
GEP algorithm to infer the formula describing how the input is mapped to
the output for the following set of experiments acquired from the UCI machine
learning repository1:

1. Vapor pressure of bromine

2. Thermal conductivity of air at low pressures

3. Emission of electrons from heated tantulum

4. Magnetic flux after torsion

5. Index of refraction of ethyl alcohol

6. Resistance vs. centigrade temperature

These experiments are subset of what’s available and were chosen because the
independent variable was sampled linearly at equal intervals and the number
of data points was adequate (there were several data sets where this is not the
case (i.e. very few data points, and/or uneven sampling)). The data sets we
used can be found in Appendix E formatted into a callable MATLAB routine
returning each data set in a single structure.

The format of the results in this section will differ from the set of analytical
experiments where we knew the correct solution ahead of time. The analysis
approach was to:

1. Partition the experimental data into training and test data.

2. Run the algorithm multiple times on the training data using ΦMS(f)
and ΦFS(f).

3. Select the solution with the highest fitness score from each criterion
function.

4. Estimate if the correct solution was found by computing the error
between test data and the predictions from each solution and through a
visual inspection.

1http://archive.ics.uci.edu/ml/datasets/Function+Finding
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Algorithm Parameters
Terminal Set {a, ?} 1-Pt Recombination Rate 0.3

Function Set {+,−,×,÷,
√

(?), exp(?)} 2-Pi Recombination Rate 0.3
Genes 1 Gene Recombination Rate 0.3
Head Size 10 IST Rate 0.1
Tail Size 11 RIST Rate 0.1
Gene Size 32 Survival Threshold 1
Chrm Size 32 Convergence Threshold 999.9
Runs 10 Maximum Fitness 1000
Population Size 200 Training Samples Varies
Mutation Rate 0.1 Max Generations 250
Inversion Rate 0.1 Min Founders 1

Table 6.7: Real Experiments Configuration

The algorithm parameters for each experiment were the same in every case
and are shown in Table 6.7. To determine the unknown coefficients for the
solutions found by ΦFS(f) we have used the Nelder-Mead simplex algorithm to
minimize the mean square error between the solution and the training examples
as follows:

(ĉ1, ĉ2)
T = arg min

(c1,c2)T

(
1

N

N∑
k=1

(
y(k) −

(
c1f
(
x(k)
)

+ c2
))2)

(6.116)

104



6.3.1 Experiment 6-6: Vapor Pressure

Setup

In this experiment we have asked the GEP algorithm to find an equation
that describes the relationship between the vapor pressure on Bromine (in
millimeters of mercury) versus temperature Centigrade. The data used from
this experiment is shown below in Table 6.8, courtesy of the UCI machine
learning repository2.

Temperature Vapor Pressure of Bromine
-95 -6.1193
-90 -5.2591
-85 -4.4482
-80 -3.6849
-75 -2.9701
-70 -2.2828
-65 -1.6503
-60 -1.03
-55 -0.46522
-50 0.086178
-45 0.60432
-40 1.0919
-35 1.5623
-30 2.0082
-25 2.4336
-20 2.8391
-15 3.2268
-10 3.6

Table 6.8: Experiment 6-6 Data Set (courtesy of the UCI machine learning
repository)

2We have taken the natural log of the original vapor pressure data
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Results

The most fit solutions returned by ΦMS(f) and ΦFS(f) were as follows:

ΦMS

(
−
(
6.7 · 10−4

)
a2 + 0.033 a+ 3.4

)
= 983 (6.117)

ΦFS

(
c1
(
177.0 e−0.013 a − 1.0 a

)
+ c2

)
= 947 (6.118)

where c1 = −0.0197 and c2 = 7.7415. Although both had strong scores,
ΦFS(f) yielded a better explanation of the data as shown in Figure 6-6 where
it faithfully captured the curvature of the training examples. In this case the
function returned by ΦMS(f) was not really a decoy in that it did not explain
the data very well in the training interval. If more generations were available,
a better solution could have possibly been reached, however the scale of the
data resulted a small mean square error which created an overly optimistic
fitness score. The test errors for each solution were:

eMS = 0.1616 (6.119)

eFS = 1.74× 10−4 (6.120)
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Figure 6-6: Experiment 6-6 Results
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6.3.2 Experiment 6-7: Thermal Conductivity

Setup

In this experiment, we have asked the GEP algorithm to tell us the relation
between the temperature rate of change with respect to the current squared in
a heating element to air pressure in millimeters of mercury. The data set we
have used is shown below in Table 6.9, courtesy of the UCI machine learning
repository.

Air Pressure Temperature Change/100
0.01 16.7
0.02 13.55
0.03 11.55
0.04 10
0.05 8.93
0.06 8.2
0.07 7.7
0.08 7.35
0.09 6.95
0.1 6.63
0.11 6.29
0.12 6.1
0.13 5.91
0.14 5.71
0.15 5.52
0.16 5.38
0.17 5.23
0.18 5.11
0.19 5
0.2 4.85

Table 6.9: Experiment 6-7 Data Set (courtesy of the UCI machine learning
repository)
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Results

The most fit solutions returned by ΦMS(f) and ΦFS(f) were as follows:

ΦMS

((
50.0

a
+

14.0

a2
+

0.41

a
3
2

− 1.0

) 1
4

)
= 998 (6.121)

ΦFS

(
c1

(√
e

0.33√
a − 1.0 a

)
+ c2

)
= 490 (6.122)

where c1 = 5.18 and c2 = −1.6. Here we saw the MS criterion provide a better
explanation of the test data than the FS criterion. However, because the
fitness score on the FS solution was so low, it’s clear that the true formula was
not found even before analyzing the test examples. The plot of each solution
is shown below in Figure 6-7, the resulting mean squared error of the test data
for each model was:

eMS = 1.25 (6.123)

eFS = 12.6 (6.124)
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Figure 6-7: Experiment 6-7 Results
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6.3.3 Experiment 6-8: Emission of Electrons

Setup

In this experiment we have asked the GEP algorithm to discover the
relation between the emission of electrons from heated Tantulum and
absolute temperature. The data set for this experiment is shown in Table
6.10, courtesy of the UCI machine learning repository.3.

Absolute Temperature ln(Electrons Amps/cm2)
1000 -29.2658
1100 -24.7919
1200 -21.0504
1300 -17.8726
1400 -15.9111
1500 -12.7543
1600 -10.6209
1700 -8.7982
1800 -7.1384
1900 -5.624
2000 -4.2831
2100 -3.0748
2200 -1.959
2300 -0.93649
2400 0
2500 0.8671

Table 6.10: Experiment 6-8 Data Set (courtesy of the UCI machine learning
repository)

3We have taken the natural log of the original electron current data
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Results

The most fit solutions returned by ΦMS(f) and ΦFS(f) were as follows:

ΦMS

(√
2.0 a+

√
1.4
√
a− 93.0− 67.0

)
= 723 (6.125)

ΦFS

(
c1

√
83.0 a− 1.0 a

3
2 + 7.3 + c2

)
= 575 (6.126)

where c1 = 0.463 and c2 = −132.19. Interestingly ΦFS(f) returned a lower
score than theΦMS(f), yet the ΦFS(f) clearly provided a better explanation
of the data. ΦFS(f) is quite conservative when scoring its solutions and only
returns a high score when it’s justified. ΦMS(f) was fooled in this experiment
by the scale of the data which led the algorithm to believe it had found a good
solution erroneously. Both solutions are plotted below in Figure 6-8, and the
resulting mean squared errors were,

eMS = 10.44 (6.127)

eFS = 0.76 (6.128)
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Figure 6-8: Experiment 6-8 Results

110



6.3.4 Experiment 6-9: Magnetic Flux After Torsion

Setup

In this experiment we have asked the GEP algorithm to discover the
relation between magnetic flux after torsion versus position on a 112cm rod.
The data set we used for this experiment is shown in Table 6.11, courtesy of
the UCI machine learning repository.

Position on Rod (cm) Magnetic Flux (cgs)/100
2 5.53
8 17.54
14 26.55
20 33.61
26 39.05
32 43.08
38 45.99
44 47.46
50 47.92
56 47.12
62 45.5
68 43.37
74 40.49
80 37.01
86 32.75
92 27.59
98 21.34
104 13.71
110 3.92

Table 6.11: Experiment 6-9 Data Set (courtesy of the UCI machine learning
repository)
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Results

The most fit solutions returned by ΦMS(f) and ΦFS(f) were as follows:

ΦMS

(√
−1.0 a2 + 100.0 a− 200.0

)
= 219.781 (6.129)

ΦFS

(
c1
((

7.6 · 103
)
a− 76.0 a2

)
+ c2

)
= 229.352 (6.130)

where c1 = 0.0002 and c2 = 17.78. Here both ΦMS(f) and ΦFS(f) struggled
to find a good explanation of the data. It’s unlikely that more generations
would have helped to find better solutions. This appears to be a problem of
model order, meaning the true explanation either does not exist or was not in
the in search space of the algorithm. Each solution is plotted in Figure 6-9
and the mean squared errors were,

eMS = 264.06 (6.131)

eFS = 53.87 (6.132)
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Figure 6-9: Experiment 6-9 Results
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6.3.5 Experiment 6-10: Index of Refraction

Setup

In this experiment the dependent variable we have asked the algorithm to
predict is the index of refraction of ethyl alchohol (relative to air) for sodium
light and the independent variable is Centigrade temperature. The data set
we have used is shown in Table 6.12, courtesy of the UCI machine learning
repository.

Temperature Index of Refraction Temperature Index of Refraction
14 1.3629 46 1.3497
16 1.3621 48 1.3489
18 1.3613 50 1.348
20 1.3605 52 1.3472
22 1.3597 54 1.3463
24 1.3588 56 1.3454
26 1.358 58 1.3446
28 1.3572 60 1.3437
30 1.3564 62 1.3428
32 1.3556 64 1.3419
34 1.3547 66 1.341
36 1.3539 68 1.34
38 1.3531 70 1.3391
40 1.3522 72 1.3382
42 1.3514 74 1.3373
44 1.3505 76 1.3363

Table 6.12: Experiment 6-10 Data Set (courtesy of the UCI machine learning
repository)
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Results

The most fit solutions returned by the MS and FS criterions we as follows:

ΦMS

(
1.4

a
1
64

)
= 999.9 (6.133)

ΦFS

(
c1

(
a+
√

79 e0.032 a + 3700
)

+ c2

)
= 940 (6.134)

where c1 = −0.0004 and c2 = 1.3925. Clearly ΦMS(f) was tricked into thinking
it had a good solution due to the magnitude of the dependent variable. On the
other hand, the solution found by ΦFS(f) was near perfect. The high score
given by ΦFS(f) is a strong indicator that the solution is likely to be correct.
Solutions are plotted in Figure 6-10 and the mean squared errors were,

eMS = 9.76× 10−5 (6.135)

eFS = 1.98× 10−9 (6.136)
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Figure 6-10: Experiment 6-10 Results
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6.3.6 Experiment 6-11: Resistance vs. Temperature

Setup

In this final experiment we have tried to automatically discover the relation
between the resistance of nickel and Centigrade temperature. We have made
use the of the data set shown in Table 6.13, courtesy of the UCI machine
learning repository.

Temperature Resistance of Nickel
-25 11.03
-20 11.25
-15 11.475
-10 11.7
-5 11.935
0 12.173
5 12.42
10 12.66
15 12.92
20 13.173
25 13.435
30 13.7
35 13.965
40 14.24
45 14.52
50 14.8
55 15.08
60 15.385
65 15.69
70 16
75 16.32

Table 6.13: Experiment 6-11 Data Set (courtesy of the UCI machine learning
repository)
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Results

The most fit solutions returned by ΦMS(f) and ΦFS(f) were as follows:

ΦMS (0.051 a+ 12.0) = 997.5764 (6.137)

ΦFS

(
c1
√

177.0− 1.0 a+ c2
)

= 907.0701 (6.138)

where c1 = −1.29 and c2 = 29.3. Here ΦMS(f) was unable to fit the subtle
curvature of the data, yet was convinced it had a near perfect solution. On the
other hand, ΦFS(f) returned a strong score and fit the test data near perfectly.
Each solution is plotted in Figure 6-11 and the mean squared errors were,

eMS = 0.0357 (6.139)

eFS = 2.3× 10−4 (6.140)
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Figure 6-11: Experiment 6-11 Results
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6.4 Summary

In this chapter we have presented the results from a total of 11 numerical
experiments. The first 5 experiments were analytical in nature and based on
several common function types. The last 6 were based on real world data
courtesy of the UCI machine learning repository where the true underlying
form of the data generating equation was assumed to be unknown. In each
experiment we did 10 trials using the mean-square error fitness function
ΦMS(f) and 10 trials using the feature signature fitness function ΦFS(f).
The results of these experiments can be summarized as follows:

• Experiment 6-1: Polynomial, Both fitness functions were able to find
the correct form of the solution at least once. ΦMS(f) came out ahead
(4 out of 10) of the ΦFS(f) (1 out of 10) however it was unclear exactly
why. Despite this result, we have concluded the recognition performance
of ΦFS(f) is valid, however more trials may be necessary in practice.

• Experiment 6-2: Rational, This data set presented a real challenge to
both fitness functions as neither was able to discover the true form of the
solution. It was concluded from the simplicity of the solutions found by
ΦMS(f) and ΦFS(f), that the true formula was not in the search space
and that additional experiments with different algorithm configurations
is necessary.

• Experiment 6-3: Trigonometric, In this experiment we saw ΦMS(f)
struggle to find the correct answer while ΦFS(f) succeeded on every trial
thanks to its invariance to linear transformations.

• Experiment 6-4: Logarithmic, This was the first experiment where
both fitness criterions consistently scored highly in the allowed learning
interval. We did see ΦMS(f) deliver the correct solution 2 out of 10
times however we saw several incorrect solutions scoring almost as well.
This is an important general result in that the scaling of the dependent
variable needs to be carefully considered when implementing ΦMS(f).
On the other hand, ΦFS(f) is invariant to scale and was successful 8 out
of 10 times.

• Experiment 6-5: Exponential, This was the final analytical
experiment where we saw ΦMS(f) struggle to find the correct answer
again, and ΦFS(f) found the correct solution form 5 out of 10 times,
again thanks to its invariance to linear transformations.
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• Experiment 6-6: Vapor Pressure, In this experiment the best
solution reached using ΦMS(f) had a high fitness score yet did a poor
explanation of the data (again a scaling problem). Additionally, more
generations could have been beneficial. The solution reached using
ΦFS(f) did an excellent job explaining the test data, returned a strong
score, and was very confident it found the correct formula.

• Experiment 6-7: Thermal Conductivity, In this experiment both
fitness criterions failed to adequately explain the data. Interestingly the
errors in the training interval were very close yet the score returned by
ΦFS(f) was far more conservative than the score returned by ΦMS(f).

• Experiment 6-8: Emission of Electrons, The solution found using
ΦMS(f) in this experiment returned a poor solution which under fit the
data. More generations would again have been beneficial here. The
solution found by ΦFS(f) did a better job but had a low fitness score
indicating it had not quite explained the curvature of the data. This is
evident in the error on the first few data points in the test set.

• Experiment 6-9: Magnetic Flux, This was a very challenging data
set for both fitness criterions, both scored poorly, and it was concluded
the true formula either did not exist or was not in the search space.

• Experiment 6-10: Index of Refraction, This was yet another
example of where the scaling of the dependent variable tricked ΦMS(f)
into returning a poor solution with a high fitness score. The data was
quite simple and nearly linear in nature, yet ΦFS(f) was able to
correctly find an excellent solution describing the data with a strong
score indicating the algorithm’s confidence in the result.

• Experiment 6-11: Resistance vs. Temperature, In this final
experiment, the data exhibited a subtle curvature which ΦFS(f) was
quick to pick up on, delivering a very low test error and strong
score.ΦMS(f) was unable to pick up on this and returned a simple
linear model which clearly under fit the test data, again due to the
scaling of the training examples.
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Chapter 7

Conclusion
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Alas, we have reached the end of our journey through the world of
machine learning, evolutionary algorithms, and the problem of inferring
mathematical truths. Our brief visit to machine learning only scratched the
surface of what’s out there, but provided the necessary motivation to look for
the solution to our problem elsewhere. The ideas set forth by the GEP
algorithm and symbolic regression gave us the momentum we needed to move
to the concepts of features spaces and signatures. Then finally everything
came together through a series of analytical and real world experiments.

Now that we are here, what can be said? Obviously black box models are
approximations of the real world, although in many types of problems this
approach works exceptionally well. However, if we are looking for something
more, white box models are much more attractive. This was established by
the results of Experiment 2-1.

Minimizing the squared error between the training examples and the model
is pretty standard in most optimization problems. For the case of symbolic
regression, we found this approach to be appropriate in a limited number
of cases, namely in Experiments 4-1, 4-2, 4-3, 4-4 and 6-1. However many
other experiments revealed that this cost function is inefficient at driving the
evolutionary process and is easily fooled by the scaling of the training examples
(i.e. Experiments 3-1, 4-6, 5-1, 6-3, 6-4, 6-5, 6-6, 6-8, 6-10, and 6-11).

The aha moment came after Experiment 4-5 where we found that there
needs to be sufficient information in the training examples to reach the
correct formula. This was corroborated by Experiment 4-7. The question
then became: what do you do when the training examples lack the necessary
information. This is what ultimately led us to the idea of feature signatures,
which automates the process of extracting information.

The breakthrough came when we realized that the problem of formula
recognition could be sub-divided into 2 smaller problems namely (1) find the
correct form of the solution and (2) optimize the coefficients. Through the
series of experiments conducted in chapter 6, it’s clear that we can find the
data generating formula behind a set of data points if it exists and we know
how to go looking.

Additionally, the invariance to linear transformations came to be a powerful
feature of ΦFS(f) which can be viewed as shrinking the search space because
the true formula or any linear transformation of the true formula yields the
correct answer. In the case of ΦMS(f) there is only 1 correct answer, which is
like finding a needle in a haystack.

There are still some unanswered questions concerning model order selection
and/or solution existence which we discovered in Experiments 6-2, 6-7, and
6-9. However, we found that ΦFS(f) is very conservative when it comes to
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scoring candidate solutions. Constant failure and low fitness scores are a sign
that a formula does not exist in the current search space or in general. Or
possibly there are several variables that we are not observing (which we did
not discuss).

Based on this, is the work of teaching computers how to do science done?
Not even close. Here we have only scratched the surface by solving a very small
problem. Computers need to get much smarter if we plan to have fighting
chance against the amount of data we are swimming in. Hopefully this will
make a small dent in this area and be a source of inspiration to the future.

Future Work

The new cost function we have developed ΦFS(f) has not been tested with
noisy data. In fact, because it relies on derivatives it will most certainly run
into trouble. Therefore the next obvious step is to study the effects of noise
and whether the correct solution can be inferred if noisy data is smoothed.
Additionally in this work we have only considered univariate problems, so in
the future multivariate problems must be addressed. The multivariate problem
is far more complex and it the size of the search space is much bigger. Another
interesting area to explore is in how well the algorithm can prune irrelevant
variables from multivariate data sets. Finally, dynamic systems need to be
addressed where the functional relationship between the input(s) and output(s)
vary over time. All of these additional problems are very complex and the
results obtained through further research in this area will undoubtedly be
fascinating.
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A.1 LS.m

ffunction mdl = LS(X,y)
%****************************************************************
% FUNCTION: w = LS(X,y)
% INFO: Designs least squares regression model
% INPUT: -X = Observations matrix
% -y = Response vector
% OUTPUT: -mdl = Least squares model struct w/ fields:
% .fun = model function handle
% .fit = training data fit
% .weights = weight vector
% AUTHOR: A. Hensley, 13-Apr-2013
%****************************************************************

%Setup design matrix
X = [X(:,1).ˆ0 X];

%Solve for weights
w = X\y;

%Configure Model
mdl.fun = @(z)[z(:)*0+1 z(:)]*w;
mdl.fit = X*w;
mdl.weights = w;
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A.2 RBF.m

function mdl = RBF(X,y,N,alpha)
%****************************************************************
% FUNCTION: w = RBF(X,y,N,alpha)
% INFO: Designs radial basis function regression model
% INPUT: -X = Observations matrix
% -y = Response vector
% -N = Number of basis functions
% -alpha = Smoothing parameter
% OUTPUT: -mdl = RBF model struct w/ fields
% .fun = function handle
% .fit = training data fit
% .clust = cluster indices
% .weights = weight vector
% AUTHOR: A. Hensley, 13-Apr-2013
%****************************************************************

%Setup Basis Functions
I = kmeans(X,N);
phi = cell(1,N);
ms = zeros(1,N);
Cs = cell(1,N);
for kk = 1:N

m = mean(X(I==kk,:))’;
C = alpha*eye(size(X,2))+cov(X(I==kk,:));
phi{kk} = @(x)exp(-0.5*((x(:)-m)’/C)*(x(:)-m));
ms(kk) = m;
Cs{kk} = C;

end

%Setup function handle for PHI vector
PHI = ’@(x)[’;
for kk = 1:N

PHI = [PHI ’ phi{’ num2str(kk) ’}(x)’];
end
PHI = eval([PHI ’]’]);

%Setup RBF Design Matrix
[Mx,Nx] = size(X);
Xn = zeros(Mx,N);
hw = waitbar(0,’’);
for kk = 1:Mx

Xn(kk,:) = PHI(X(kk,:));
waitbar(kk/Mx,hw,’Setting Up RBF Design Matrix’)

end
Xn = [Xn(:,1).ˆ0 Xn];
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delete(hw)

%Solve for Weights
w = Xn\y;

%Configure Output
mdl.fun = @(z)[1 PHI(z)]*w;
mdl.fit = Xn*w;
mdl.clust = I;
mdl.weights = w;
mdl.mu = ms;
mdl.C = Cs;

134



A.3 NN.m

function mdl = NN(X,y,nH)
%****************************************************************
% FUNCTION: w = NN(X,y)
% INFO: Designs neural network regression model
% INPUT: -X = Observations vector
% -y = Response vector
% OUTPUT: -mdl = Neural Network model struct w/ fields:
% .obj = NN object
% .fit = training data fit
% .mX = mean of input data X
% .sX = standard deviation of input data X
% .my = mean of output data y
% .sy = standard deviation of output data y
% AUTHOR: A. Hensley, 13-Apr-2013
%****************************************************************

%Normalize
mX = mean(X);
my = mean(y);
sX = std(X);
sy = std(y);
X = (X-mX)/sX;
y = (y-my)/sy;

%Create a Fitting Network
net = fitnet(nH);

%Train the Network
[net,tr] = train(net,X’,y’);

%Process Test Data
mdl.fit = my + sy*net(X’)’;
mdl.obj = net;
mdl.mX = mX;
mdl.my = my;
mdl.sX = sX;
mdl.sy = sy;
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A.4 Experiment 2-1: Viscosity of Hydrogen

%Experiment 2-1: Viscosity of Hydrogen
%**************************************************************************
%Setup
close all hidden
clc

%Sutherland’s Viscosity Model (Hydrogen)
lamda = 0.636236562e-6;
C = 72;
ufun = @(T)lamda*T.ˆ(3/2)./(T+C);

%Generate Data Set
nsamp = 200;
Tmax = 555;
Tmin = 0;
t = sort(Tmin+(Tmax-Tmin)*rand(nsamp,1));
n = 1e-6*randn(nsamp,1);
umeas = ufun(t)+n;

%Least Squares
mdlA = LS(t,umeas);

%Radial Basis Functions
mdlB = RBF(t,umeas,3,1e6);

%Neural Network
mdlC = NN(t,umeas,3);

%Plot Results
ti = -100:1000;
lw = 2;
figure,
subplot(1,3,1),hold on,grid on
plot(t,umeas*1e6,’bo’)
plot(ti,ufun(ti)*1e6,’color’,[0 0.6 0],’linewidth’,lw)
plot(ti,mdlA.fun(ti)*1e6,’r’,’linewidth’,lw)
set(gca,’box’,’on’,’fontsize’,12)
axis tight
axis([-100 1000 -5 30])
title(’Least Squares’)
ylabel(’Viscosity (\muPa-s)’)
xlabel(’Temperature (ˆoK)’)
legend(’Data’,’Truth’,’Model’,’location’,’northwest’)

subplot(1,3,2),hold on,grid on
fitB = zeros(1,length(ti));
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for kk = 1:length(fitB)
fitB(kk) = mdlB.fun(ti(kk));

end
plot(t,umeas*1e6,’bo’)
plot(ti,ufun(ti)*1e6,’color’,[0 0.6 0],’linewidth’,lw)
plot(ti,fitB*1e6,’r’,’linewidth’,lw)
set(gca,’box’,’on’,’fontsize’,12)
axis tight
axis([-100 1000 -5 30])
title(’Radial Basis Functions’)
xlabel(’Temperature (ˆoK)’)

subplot(1,3,3),hold on,grid on
fitC = zeros(1,length(ti));
hw = waitbar(0,’Running Neural Network Model...’);
for kk = 1:length(fitC)

temp = (ti(kk)-mdlC.mX)/mdlC.sX;
fitC(kk) = mdlC.my+mdlC.sy*mdlC.obj(temp);
waitbar(kk/length(fitC),hw,’Running Neural Network Model...’);

end
delete(hw)
plot(t,umeas*1e6,’bo’)
plot(ti,ufun(ti)*1e6,’color’,[0 0.6 0],’linewidth’,lw)
plot(ti,fitC*1e6,’r’,’linewidth’,lw)
set(gca,’box’,’on’,’fontsize’,12)
axis tight
axis([-100 1000 -5 30])
title(’Neural Network’)
xlabel(’Temperature (ˆoK)’)
set(gcf,’paperpositionmode’,’auto’,’outerposition’,[164 342 814 403])

%********************************************************************
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Appendix B

Chapter 3 Programs
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B.1 GEP Algorithm

B.1.1 Call Structure

• reg data.m

• setup config.m

• gepfun.m

– popgen.m

∗ rand idx.m

– popexp.m

∗ symconv.m

– popeval.m

∗ fitfun.m

– fit chk.m

– nextgen.m

∗ rep fun.m

∗ mutate fun.m

∗ recomb1 fun.m

∗ recomb2 fun.m

∗ recombG fun.m

∗ ist fun.m

∗ rist fun.m

∗ inv fun.m

∗ rnctrnsp fun.m

∗ rncinv fun.m
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B.1.2 reg data.m

function reg = reg_data(fun,nsamp,range,nvar)
%**************************************************************************
% FUNCTION: reg = reg_data(fun,nsamp)
% INFO: Generates regression data for model defined by @fun
% INPUT: fun = model function (handles)
% nsamp = number of samples to generate (scalar)
% range = range to generate sample (vector)
% OUTPUT: reg = regression data (struct)
% AUTHOR: A. Hensley, 28-Nov-2012
% HISTORY:
%**************************************************************************
% Rev 1.0 28-Nov-2012 Hensley Initial Release
%**************************************************************************

%Generate Input Samples
data = range(1)+diff(range)*rand(nsamp,nvar);

%Configure Output
reg.X = data;
reg.y = fun(data);

140



B.1.3 setup config.m

function config = setup_config(parm)
%**************************************************************************
% FUNCTION: config = setup_config(nvars)
% INFO: Sets up config structure for GEP algorithm
% INPUT: parm = struct of parameters with the following fields:
% .nvars = number of input variables (mandatory)
% .genes = number of genes (optional, default = 10)
% .headsize = chromosome headsize (optional, default = 10)
% .rnc = random numerical constant flag (optional, default =
% false).
% .popsize = population size (optional, default = 100);
% .maxgen = maximum number of generations (optional, default
% = 100).
% .convcrit = convergence criteria between 0 and 1 which is
% percent of maximum fitness (1000) required to declare
% convergence (optional, default = 0.999)
% .selthr = minimum finess value for survival (optional,
% default = 1e-2).
% .library = function library cell array (optional, default =
% {’+’,’-’,’*’,’/’}). Supported library functions are as
% follows:
% ’+’ = addition
% ’-’ = subtraction
% ’*’ = multiplication
% ’/’ = division
% ’E’ = exp()
% ’L’ = log()
% ’S’ = sin()
% ’C’ = cos()
% ’T’ = tan()
% ’P’ = ()ˆ()
% ’Q’ = sqrt()
% .founders = minimim number of survivors for generation 0.
% .trials = number of times to run GEP algorithm.
% .linkop = linking operation(s)
% .mutate = mutation rate
% .rncfun = numerical constants function handle
% .fitfun = fitness function(default = mean-square)
% {’numhits’,’mean-square’,’r-square’,’complex-mse’}
%
% OUTPUT: config = configuration struct for GEP algorithm
% AUTHOR: A. Hensley, 11-Jan-2013
% HISTORY:
%**************************************************************************
% Rev 1.0 11-Jan-2013 Hensley Initial Release
%**************************************************************************
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%Set Defaults
nvars = nan;
genes = 10;
headsize = 10;
rnc = false;
popsize = 100;
maxgen = 100;
convcrit = 0.9999;
selthr = 1e-2;
library = {’+’,’-’,’*’,’/’};
trials = 1;
founders = 1;
linkop = ’+’;
mutate = 0.1;
rncfun = @(m,n)2*rand(m,n);
fitfun = ’mean-square’;

%Extract Info From Parameter Struct
fields = fieldnames(parm);
for kk = 1:length(fields)

cur = parm.(fields{kk});

switch fields{kk}

case ’nvars’
nvars = cur;

case ’genes’
genes = cur;

case ’headsize’
if headsize<4

error(’Minimum Headsize is 4’)
end
headsize = cur;

case ’rnc’
rnc = cur;

case ’popsize’
popsize = cur;

case ’maxgen’
maxgen = cur;

case ’convcrit’
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convcrit = cur;

case ’selthr’
if selthr==0

error(’selthr must be > 0’)
end
selthr = cur;

case ’library’
library = cur;

case ’founders’
founders = cur;

case ’trials’
trials = cur;

case ’linkop’
linkop = cur;

case ’mutate’
mutate = cur;

case ’rncfun’
rncfun = cur;

case ’fitfun’
fitfun = cur;

otherwise
error(’Unrecognized Field >> setup_config.m’)

end
end

%Error Chk
if isnan(nvars)

error(’Number of variables is undefined >> setup_config.m’)
end
if nvars>26

errordlg(’Unable to handle more than 26 preditor variables’)
end

%Switches
config.switch.mutate = true;
config.switch.recomb1 = true;
config.switch.recomb2 = true;
config.switch.recombG = true;
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config.switch.IST = true;
config.switch.RIST = true;
config.switch.geneT = false;
config.switch.inv = true;
config.switch.rnc = rnc;
config.switch.rnc_trnsp = true;
config.switch.rnc_inv = true;

%Setup Variables & Operators
config.nvars = nvars;
input_args = num2cell(char(97:97+nvars-1));
config.input_args = input_args;
if config.switch.rnc

config.T = [input_args ’?’];
else

config.T = input_args;
end
config.F = library;
[config.Fmap,maxarg] = set_library(library,’#’);
config.Ftemp = set_library(library,’$’);
config.TF = [config.F config.T];
config.TFmap = [config.Fmap config.T];
config.TFtemp = [config.Ftemp config.T];
config.maxarg = maxarg;
config.arg = [cell2mat(input_args’) repmat(’,’,size(input_args’,1),1)]’;
config.arg = config.arg(:)’;
config.arg = config.arg(1:end-1);
config.empty = ’#’;
config.empty_temp = ’$’;

%Gene Preferences
config.genes = genes;
config.headsize = headsize;
config.tailsize = config.headsize*(config.maxarg-1)+1;
if config.switch.rnc

config.constsize = config.tailsize;
else

config.constsize = 0;
end
config.genesize = config.headsize+config.tailsize+config.constsize;
config.chrmsize = config.genesize*config.genes;
config.totalsize = config.chrmsize;
config.linkop = linkop;

%Make Chrm Map
H = repmat(’H’,1,config.headsize);
T = repmat(’T’,1,config.tailsize);
C = repmat(’C’,1,config.constsize);
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config.chrm_map = repmat([H T C],1,config.genes);
config.gene_start = 1:config.genesize:config.chrmsize;

%Evolution Preferences
config.trials = trials;
config.popsize = popsize;
config.maxgen = maxgen;
config.mutate = mutate;
config.mutate_pts = 2;
config.recomb1 = 0.3;
config.recomb2 = 0.3;
config.recombG = 0.3;
config.IST_rate = 0.1;
config.ISE_set = 1:3;
config.RIST_rate = 0.1;
config.RIST_set = 1:3;
config.geneT_rate = 0.1;
config.inv_rate = 0.1;
config.inv_set = 2:4;
config.rnctrnsp_rate = 0.1;
config.rnctrnsp_set = 1:3;
config.rncinv_rate = 0.1;
config.rncinv_set = 2:4;
config.founder_pop = founders;

%Convergence/Selection Preferences
config.fitfun = fitfun; %{’numhits’,’mean-square’,’r-square’,’complex-mse’};
config.fitfunmax = 1000;
config.hit_prec = 0.01;
config.selthr = selthr;
config.convcrit = convcrit*config.fitfunmax;

%Constant Setup
config.rncfun = rncfun;
cnum = 10;
config.const_set = num2str(0:cnum-1);
config.const_set(isspace(config.const_set)) = [];
config.empty_const = ’?’;
if config.switch.rnc

config.const = config.rncfun(cnum,config.genes);
%onfig.const = config.crng(1) + config.crng(2)*randn(cnum,config.genes);

else
config.const = [];

end

%Support Function
function [Fout,varargout] = set_library(Fin,chr)
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N = length(Fin);
Fout = cell(1,N);
maxarg = 0;
for kk = 1:N

cur = Fin{kk};
switch cur

case ’+’
Fout{kk} = [’(’ chr ’+’ chr ’)’];
maxarg = max(maxarg,2);

case ’-’
Fout{kk} = [’(’ chr ’-’ chr ’)’];
maxarg = max(maxarg,2);

case ’*’
Fout{kk} = [’(’ chr ’*’ chr ’)’];
maxarg = max(maxarg,2);

case ’/’
Fout{kk} = [’(’ chr ’/’ chr ’)’];
maxarg = max(maxarg,2);

case ’E’
Fout{kk} = [’exp(’ chr ’)’];
maxarg = max(maxarg,1);

case ’L’
Fout{kk} = [’log(’ chr ’)’];
maxarg = max(maxarg,1);

case ’S’
Fout{kk} = [’sin(’ chr ’)’];
maxarg = max(maxarg,1);

case ’C’
Fout{kk} = [’cos(’ chr ’)’];
maxarg = max(maxarg,1);

case ’T’
Fout{kk} = [’tan(’ chr ’)’];
maxarg = max(maxarg,1);

case ’P’
Fout{kk} = [’(2)ˆ(’ chr ’)’];
maxarg = max(maxarg,1);

case ’Q’
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Fout{kk} = [’sqrt(abs(’ chr ’))’];
maxarg = max(maxarg,1);

case ’Y’
Fout{kk} = [’real(sqrt(’ chr ’))’];
maxarg = max(maxarg,1);

case ’Z’
Fout{kk} = [’sqrt(’ chr ’)’];
maxarg = max(maxarg,1);

case ’A’
Fout{kk} = [’(’ chr ’)ˆ2’];
maxarg = max(maxarg,0);

case ’B’
Fout{kk} = ’const(2)’;
maxarg = max(maxarg,0);

case ’D’
Fout{kk} = ’const(3)’;
maxarg = max(maxarg,0);

otherwise
error(’Unrecognized Function’)

end
end

if nargout>1
varargout{1} = maxarg;

end
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B.1.4 gepfun.m

function result = gepfun(X,y,config)
%**************************************************************************
% FUNCTION: result = gepfun(X,y,config)
% INFO: Run GEP algorithm
% INPUT: X = design matrix with colums corresponding to variables and
% rows corresponding to observations.
% y = response vector
% config = configuration structure
% OUTPUT: result = configuration struct for GEP algorithm
% AUTHOR: A. Hensley, 11-Jan-2013
% HISTORY:
%**************************************************************************
% Rev 1.0 11-Jan-2013 Hensley Initial Release
%**************************************************************************

%Storage
result.fit = zeros(1,config.trials);
result.fun = cell(1,config.trials);
result.it = zeros(1,config.trials);
result.expr = cell(1,config.trials);
result.mdl = cell(1,config.trials);
result.history = cell(1,config.trials);
result.lastgen = cell(1,config.trials);
result.lastfit = cell(1,config.trials);

for kk = 1:config.trials

%Init Population
for jj = 1:100

gen = popgen(config.popsize,config);
[fun,symb,parsimony] = popexp(gen,config);
fit = popeval(fun,X,y,config);
unfit = fit_chk(fit,config);
%disp(fit)
if sum(˜unfit)>=config.founder_pop

break
end
disp([’Founder Pop ’ num2str(jj) ’ Failed’])

end
if jj==100

error(’Unable to Init Founder Population’)
end

%Setup
history.fit = zeros(1,config.maxgen);
history.fun = cell(1,config.maxgen);
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history.std = zeros(1,config.maxgen);
converge = false;
hw = waitbar(0,’Initializing...’);
figure,

for it = 1:config.maxgen;

%Update
if it>1

[fun,symb,parsimony] = popexp(gen,config);
fit = popeval(fun,X,y,config);

end

%Most Fit
history.fit(it) = max(fit);
history.std(it) = std(fit);
mostfit = find(fit==max(fit),1);
mdl = fun(mostfit);
[˜,mdl_eval] = popeval(mdl,X,y,config);

%Update Figure
subplot(2,2,1)
plot(y),hold on,plot(mdl_eval,’r’),grid on,hold off
title(’Model’)
subplot(2,2,2),hold on
plot(-parsimony,fit,’o’,’markersize’,4),grid on
set(gca,’box’,’on’)
subplot(2,2,3)
plot(y-mdl_eval),grid on
title(’Error’)

%Current Solution
syms a
eval([’f = ’ symb{mostfit} ’;’]);
history.fun{kk} = vpa(expand(f),3);
disp(history.fun{kk})
disp(max(fit))

%Update Waitbar
waitbar(it/config.maxgen,hw,...

[’Generation ’ num2str(it) ’ (Fitness: ’ num2str(max(fit)) ’)’]);

%Chk for Convergence
if max(fit)>=config.convcrit

converge = true;
disp(’Algorithm Converged’)
break

end
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%Next Generation
if it<config.maxgen

gen = nextgen(gen,fit,config);
end

end
delete(hw)
close

%Check for Convergence
if ˜converge

disp(’Algorithm Could Not Converge’)
end

%Save Results/Simplfy Expression
syms a
eval([’f = ’ symb{mostfit} ’;’]);
result.expr{kk} = symb{mostfit};
result.fit(kk) = max(fit);
result.fun{kk} = vpa(expand(f),3);
result.it(kk) = it;
result.mdl{kk} = mdl;
result.history{kk} = history;
result.lastgen{kk} = gen;
result.lastfit{kk} = fit;
disp(’Final Answer:’)
disp(result.expr{kk})
disp(result.fun{kk})

end
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B.1.5 popgen.m

function x = popgen(n,config)
%**************************************************************************
% FUNCTION: x = popgen(n,config)
% INFO: Generates n candidtate solutions based config preferences
% INPUT: n = number of candidate solutions to generate (scalar)
% config = configuration parameters for GEP algorithm (struct)
% OUTPUT: x = candiate solution chromosomes (cell array)
% AUTHOR: A. Hensley, 28-Nov-2012
% HISTORY:
%**************************************************************************
% Rev 1.0 28-Nov-2012 Hensley Initial Release
%**************************************************************************

%Init
x = cell(1,n);
for kk = 1:n

for jj = 1:config.genes

%Generate Head
h = config.headsize;
nh = length(config.TF);
cur_head = [config.TF{rand_idx(nh,h)}];

%Generate Tail
t = config.tailsize;
nt = length(config.T);
cur_tail = [config.T{rand_idx(nt,t)}];

%Generate Constants
if config.switch.rnc

nc = length(config.const_set);
cur_const = config.const_set(rand_idx(nc,t));

else
cur_const = [];

end

%Assemble Chromosome
x{kk} = [x{kk} cur_head cur_tail cur_const];

end
end
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B.1.6 rand idx.m

function idx = rand_idx(m,varargin)
%**************************************************************************
% FUNCTION: idx = rand_idx(m)
% INFO: Selects random index
% INPUT: m = largest possible index (scalar)
% n = number of indices to generate (scalar)
% OUTPUT: idx = idicies (scalar/vector)
% AUTHOR: A. Hensley, 28-Nov-2012
% HISTORY:
%**************************************************************************
% Rev 1.0 28-Nov-2012 Hensley Initial Release
%**************************************************************************
if nargin>1

n = varargin{1};
else

n = 1;
end
idx = floor(1+m*rand(1,n));
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B.1.7 popexp.m

function [f s parsimony] = popexp(x,config)
%**************************************************************************
% FUNCTION: f = popexp(x,config)
% INFO: Converts chromosomes to functional expressions
% INPUT: x = chromosomes (cell array)
% config = configuration parameters for GEP algorithm (struct)
% OUTPUT: f = function handles (cell array)
% AUTHOR: A. Hensley, 28-Nov-2012
% HISTORY:
%**************************************************************************
% Rev 1.0 28-Nov-2012 Hensley Initial Release
%**************************************************************************

%Setup
N = length(x);
f = cell(1,N);
s = cell(1,N);
parsimony = zeros(1,N);
for kk = 1:N

%Segment/Reshape
curG = reshape(x{kk}(1:config.chrmsize)’,[],config.genes)’;
expG = cell(1,config.genes);

for jj = 1:config.genes

%Current Gene
z = curG(jj,:);

%Set Counter
ii = 1;

%Begin Gene Expression
while ii<=config.headsize+config.tailsize

%Lookup T/F
cursym = symconv(z(ii),config);

if ii==1

%Init
ft = [’@’ cursym];
ii = ii+1;

else
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%Fill Empty Slots
idxA = find(ft==config.empty,1);
if ˜isempty(idxA)

ft = [ft(1:idxA-1) cursym ft(idxA+1:end)];
ii = ii+1;

else

%Update Place Holders
idxB = strfind(ft,config.empty_temp);
if ˜isempty(idxB)

ft(idxB) = config.empty;
else

break
end

end
end

end
parsimony(kk) = parsimony(kk)+ii-1;

%Chk for Constants
const_loc = strfind(ft,config.empty_const);
if ˜isempty(const_loc)

c_idx = curG(jj,config.headsize+config.tailsize+1:end);
c_val = config.const(:,jj);
for uu = 1:length(const_loc)

const_loc = const_loc(1);
c = c_val(str2double(c_idx(uu))+1);
c = [’(’ num2str(c) ’)’];
ft = [ft(1:const_loc-1) c ft(const_loc+1:end)];
const_loc = strfind(ft,’?’);

end
end

%Save Current Gene
expG{jj} = ft(2:end);

end

%Assemble Final Expression
expL = [];
for ii = 1:config.genes-1

expL = [expL expG{ii} config.linkop];
end
expL = [expL expG{end}];
f{kk} = eval([’@(’ config.arg ’)’ vectorize(expL)]);
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s{kk} = expL;

%Error Chk
if nargin(f{kk})˜=config.nvars

error(’Bad Expression Generated’)
end

end
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B.1.8 symconv.m

function expr = symconv(sym,config)
%**************************************************************************
% FUNCTION: fexpr = symconv(sym,map)
% INFO: Converts symbol to function/terminal using map
% INPUT: sym = symbol to convert (char)
% config = configuration parameters for GEP algorithm (struct)
% OUTPUT: expr = function/terminal ready for evaluation
% AUTHOR: A. Hensley, 28-Nov-2012
% HISTORY:
%**************************************************************************
% Rev 1.0 28-Nov-2012 Hensley Initial Release
%**************************************************************************
idx = strcmp(sym,config.TF);
expr = config.TFmap{idx};
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B.1.9 popeval.m

function [fit varargout] = popeval(fun,X,y,config)
%**************************************************************************
% FUNCTION: f = popeval(fun,X,y,config)
% INFO: Evaluates fitness of current population
% INPUT: fun = current population (cell array)
% X = predictors (matrix)
% y = response (vector)
% config = configuration parameters for GEP algorithm (struct)
% OUTPUT: f = fitness results(vector)
% AUTHOR: A. Hensley, 28-Nov-2012
% HISTORY:
%**************************************************************************
% Rev 1.0 28-Nov-2012 Hensley Initial Release
%**************************************************************************

%Error Chk
if nargout>1 && length(fun)>1

error(’Error in popeval: fun variable has too many elements’)
end

%Assign Inputs
for jj = 1:length(config.input_args)

eval([config.input_args{jj} ’=X(:,jj);’])
end

%Setup Eval
N = length(fun);
fit = zeros(1,N);
implicitSearch = false;
if all(y==0)

implicitSearch = true;
end

%Compute Fitness
for kk = 1:N

eval([’cur = fun{kk}(’ config.arg ’);’]);
if imag(sum(cur))˜=0

fit(kk) = 0;
continue

end
if implicitSearch

fit(kk) = fitfun(X,fun{kk},config);
else

fit(kk) = fitfun(y,cur,config);
end
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end

%Handle Varargout
if nargout>1

varargout{1} = cur;
end
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B.1.10 fitfun.m

function f = fitfun(T,P,config)
%**************************************************************************
% FUNCTION: f = fitfun(T,P,type)
% INFO: Executes chosen fitness function
% INPUT: T = Target values (vector)
% X = Predicted Values (matrix)
% config = configuration parameters for GEP algorithm (struct)
% OUTPUT: f = fitness score (vector)
% AUTHOR: A. Hensley, 06-Dec-2012
% HISTORY:
%**************************************************************************
% Rev 1.0 06-Dec-2012 Hensley Initial Release
%**************************************************************************

%Setup
K = config.fitfunmax;

%Implicit
if isa(P,’function_handle’)

%Only 2 Vars For Now
if size(T,2)>2

error(’Implicit proc not configured for more than 2 vars’)
end

dT = diff(T);
x = T(1:end-1,1);
dx = dT(:,1);
y = T(1:end-1,2);
dy = dT(:,2);
dP_da = (P(x+dx,y)-P(x,y))./dx;
dP_db = -(P(x,y+dy)-P(x,y))./dy;

e1 = dT(:,2)./dT(:,1)-dP_da./dP_db;
e2 = dT(:,1)./dT(:,2)-dP_db./dP_da;

if all(isnan(e1))||all(isnan(e2))
f = 0;
return

end

f = K/(1+nansum(e1.ˆ2)+nansum(e2.ˆ2));

if imag(f)˜=0
f = 0;

159



end

return
end

%Error Chk
if any(isnan(T)) || any(isnan(P))

f = 0;
return

end
if any(isinf(T)) || any(isinf(P))

f = 0;
return

end

%Explicit
switch config.fitfun

case ’numhits’

E = abs(T-P)<=config.hit_prec;
f = sum(E/length(T))*K;

case ’mean-square’

E = mean((P-T).ˆ2);

if isreal(E)
f = K./(1+E);

else
f = 0;

end

case ’r-square’

R = corrcoef(T,P);
f = R(2,1)ˆ2*K;

case ’complex-mse’

Ei = mean((real(P)-real(T)).ˆ2);
Er = mean((imag(P)-imag(T)).ˆ2);
f = K./(1+Er+Ei);

case ’complex-mse-mag’

E = mean(abs(P-T).ˆ2);
f = K./(1+E);
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case ’hamming-mse’

H = hamming(length(T));
H = H/sum(H);
E = H’*(abs(P-T).ˆ2);
f = K./(1+E);

case ’kernel’

N = length(T);

if length(P)==1
P = P*ones(N,1);

end

dT = diff(T(:));
dP = diff(P(:));

Kt = dT*(1./dT’);
Kp = dP*(1./dP’);

E = sqrt(nanmean(nansum((Kt-Kp).ˆ2)));
f = K/(1+E);

if ˜isreal(f)
f = 0;

end

otherwise
errordlg(’Fitness Method Not Implemented’)

end

r3 = @(z)round(z*1000)/1000;
if length(unique(r3(P)))==1;

f = 0;
end
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B.1.11 fit chk.m

function unfit = fit_chk(fit,config)
%**************************************************************************
% FUNCTION: unfit = fit_chk(fit,config)
% INFO: Checks fitness of current population.
% INPUT: fit = current generation fitness (struct)
% config = configuration parameters for GEP algorithm (struct)
% OUTPUT: unfit = fitness mask (cell array)
% AUTHOR: A. Hensley, 06-Dec-2012
% HISTORY:
%**************************************************************************
% Rev 1.0 06-Dec-2012 Hensley Initial Release
%**************************************************************************
unfit = fit<config.selthr | isnan(fit) | isinf(fit) | imag(fit)˜=0;
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B.1.12 nextgen.m

function ngen = nextgen(gen,fit,config)
%**************************************************************************
% FUNCTION: ngen = nextgen(gen,fit,config)
% INFO: Updates generation
% INPUT: gen = current population (cell array)
% fit = current generation fitness (struct)
% config = configuration parameters for GEP algorithm (struct)
% OUTPUT: ngen = next generation (cell array)
% AUTHOR: A. Hensley, 28-Nov-2012
% HISTORY:
%**************************************************************************
% Rev 1.0 28-Nov-2012 Hensley Initial Release
%**************************************************************************

%Elitism
mostfit = find(fit==max(fit),1);
safe = gen(mostfit);
leastfit = find(fit==min(fit),1);
gen(leastfit) = [];
fit(leastfit) = [];

%Replication
ngen = rep_fun(gen,fit,config);
clear gen

%Mutation
if config.switch.mutate

ngen = mutate_fun(ngen,config);
end

%Recombination (1-pt)
if config.switch.recomb1

ngen = recomb1_fun(ngen,config);
end

%Recombination (2-pt)
if config.switch.recomb2

ngen = recomb2_fun(ngen,config);
end

%Recombination (Gene)
if config.switch.recombG

ngen = recombG_fun(ngen,config);
end

163



%Insertion Sequence Transpose
if config.switch.IST

ngen = ist_fun(ngen,config);
end

%Root Insertion Sequence Transpose
if config.switch.RIST

ngen = rist_fun(ngen,config);
end

%Gene Transpose (NOT IMPLEMENTED)
% if config.switch.geneT
% new = genet_fun(surv,config);
% ngen = [ngen new];
% end

%Sequence Inversion
if config.switch.inv

ngen = inv_fun(ngen,config);
end

%Constant Transpose
if config.switch.rnc_trnsp && config.switch.rnc

ngen = rnctrnsp_fun(ngen,config);
end

%Constant Inversion
if config.switch.rnc_inv && config.switch.rnc

ngen = rncinv_fun(ngen,config);
end

%Add Most Fit
ngen = [ngen safe];
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B.1.13 rep fun.m

function ngen = rep_fun(gen,fit,config)
%**************************************************************************
% FUNCTION: ngen = rep_fun(gen,fit,config)
% INFO: Applies replication operator
% INPUT: gen = current population (cell array)
% fit = current generation fitness (struct)
% config = configuration parameters for GEP algorithm (struct)
% OUTPUT: ngen = next generation (cell array)
% AUTHOR: A. Hensley, 06-Dec-2012
% HISTORY:
%**************************************************************************
% Rev 1.0 06-Dec-2012 Hensley Initial Release
%**************************************************************************

%Prune
unfit = fit_chk(fit,config);
fitF = fit;
genF = gen;
fitF(unfit) = [];
genF(unfit) = [];

if isempty(fitF)
disp(’Population Extinct’)
return

end

%Replicate
fitpdf = fitF/sum(fitF);
fitcdf = [0 cumsum(fitpdf)];
fitsup = 0:length(fitpdf);
new = rand(1,length(fit));
idx = ceil(interp1(fitcdf,fitsup,new));
ngen = genF(idx);

165



B.1.14 mutate fun.m

function ngen = mutate_fun(surv,config)
%**************************************************************************
% FUNCTION: new = mutate_fun(surv,config)
% INFO: Applies mutation operator to survivors
% INPUT: surv = survivor chromosomes (cell array)
% config = configuration parameters for GEP algorithm (struct)
% OUTPUT: ngen = updated generation (cell array)
% AUTHOR: A. Hensley, 01-Dec-2012
% HISTORY:
%**************************************************************************
% Rev 1.0 01-Dec-2012 Hensley Initial Release
%**************************************************************************

%Setup
N = length(surv);
nmut = round(config.mutate*N);
idx = rand_idx(N,nmut);
new = cell(1,nmut);

%Begin
for kk = 1:nmut

%Determine Mutation Points
cur = surv{idx(kk)};
pts = rand_idx(length(cur),config.mutate_pts);
type = config.chrm_map(pts);

%Apply
for jj = 1:length(pts)

switch type(jj)

case ’H’

ii = rand_idx(length(config.TF));
cur(pts(jj)) = config.TF{ii};

case ’T’

ii = rand_idx(length(config.T));
cur(pts(jj)) = config.T{ii};

case ’C’

ii = rand_idx(length(config.const_set));
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cur(pts(jj)) = config.const_set(ii);

otherwise

error(’Bad Chrm Map’)

end

end

%Update Output Variable
new{kk} = cur;

end

%Update Population
ngen = surv;
ngen(idx) = new;
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B.1.15 recomb1 fun.m

function ngen = recomb1_fun(surv,config)
%**************************************************************************
% FUNCTION: new = recomb1_fun(surv,config)
% INFO: Applies 1-point recombination operator to survivors
% INPUT: surv = survivor chromosomes (cell array)
% config = configuration parameters for GEP algorithm (struct)
% OUTPUT: new = recombined chromosomes (cell array)
% AUTHOR: A. Hensley, 01-Dec-2012
% HISTORY:
%**************************************************************************
% Rev 1.0 01-Dec-2012 Hensley Initial Release
%**************************************************************************

%Setup
N = length(surv);
nrecomb = 2*round(config.recomb1*N);
[˜,idx] = sort(rand(length(surv),1));
idx = idx(1:nrecomb);
new = cell(1,nrecomb);

%Begin
for kk = 1:2:nrecomb

%Select Parents
parentA = surv{idx(kk)};
parentB = surv{idx(kk+1)};

%Recombination
xpt = rand_idx(config.totalsize,1);
childA = [parentA(1:xpt) parentB(xpt+1:end)];
childB = [parentB(1:xpt) parentA(xpt+1:end)];

%Update Output Variable
new{kk} = childA;
new{kk+1} = childB;

end

%Update
ngen = surv;
ngen(idx) = new;
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B.1.16 recomb2 fun.m

function ngen = recomb2_fun(surv,config)
%**************************************************************************
% FUNCTION: new = recomb2_fun(surv,config)
% INFO: Applies 2-point recombination operator to survivors
% INPUT: surv = survivor chromosomes (cell array)
% config = configuration parameters for GEP algorithm (struct)
% OUTPUT: new = recombined chromosomes (cell array)
% AUTHOR: A. Hensley, 01-Dec-2012
% HISTORY:
%**************************************************************************
% Rev 1.0 01-Dec-2012 Hensley Initial Release
%**************************************************************************

%Setup
N = length(surv);
nrecomb = 2*round(config.recomb2*N);
[˜,idx] = sort(rand(length(surv),1));
idx = idx(1:nrecomb);
new = cell(1,nrecomb);

%Begin
for kk = 1:2:nrecomb

%Select Parents
parentA = surv{idx(kk)};
parentB = surv{idx(kk+1)};

%Recombination
xpt = sort(rand_idx(config.totalsize,2));
childA = [parentA(1:xpt(1)) parentB(xpt(1)+1:xpt(2)) parentA(xpt(2)+1:end)];
childB = [parentB(1:xpt(1)) parentA(xpt(1)+1:xpt(2)) parentB(xpt(2)+1:end)];

%Update Output Variable
new{kk} = childA;
new{kk+1} = childB;

end

%Update
ngen = surv;
ngen(idx) = new;
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B.1.17 recombG fun.m

function ngen = recombG_fun(surv,config)
%**************************************************************************
% FUNCTION: new = recombG_fun(surv,config)
% INFO: Applies gene recombination operator to survivors
% INPUT: surv = survivor chromosomes (cell array)
% config = configuration parameters for GEP algorithm (struct)
% OUTPUT: ngen = updated generation (cell array)
% AUTHOR: A. Hensley, 02-Dec-2012
% HISTORY:
%**************************************************************************
% Rev 1.0 02-Dec-2012 Hensley Initial Release
%**************************************************************************

%Setup
N = length(surv);
nrecomb = 2*round(config.recombG*N);
[˜,idx] = sort(rand(length(surv),1));
idx = idx(1:nrecomb);
new = cell(1,nrecomb);

%Begin
for kk = 1:2:nrecomb

%Select Parents
parentA = surv{idx(kk)};
parentB = surv{idx(kk+1)};

%Recombination
temp = config.gene_start(rand_idx(config.genes,1));
xpt = [temp temp+config.genesize];
childA = [parentA(1:xpt(1)-1) parentB(xpt(1):xpt(2)-1) parentA(xpt(2):end)];
childB = [parentB(1:xpt(1)-1) parentA(xpt(1):xpt(2)-1) parentB(xpt(2):end)];

%Update Output Variable
new{kk} = childA;
new{kk+1} = childB;

end

%Update
ngen = surv;
ngen(idx) = new;
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B.1.18 ist fun.m

function ngen = ist_fun(surv,config)
%**************************************************************************
% FUNCTION: new = ist_fun(surv,config)
% INFO: Applies insertion sequence transpose operator to survivors
% INPUT: surv = survivor chromosomes (cell array)
% config = configuration parameters for GEP algorithm (struct)
% OUTPUT: new = transposed chromosomes (cell array)
% AUTHOR: A. Hensley, 02-Dec-2012
% HISTORY:
%**************************************************************************
% Rev 1.0 02-Dec-2012 Hensley Initial Release
%**************************************************************************

%Setup
N = length(surv);
ntransp = round(config.IST_rate*N);
[˜,idx] = sort(rand(length(surv),1));
idx = idx(1:ntransp);
new = cell(1,ntransp);
setsize = length(config.ISE_set);

%Begin
for kk = 1:ntransp

%Select Chromosome
cur = surv{idx(kk)};

%Select Gene
gene_idx = rand_idx(config.genes);
a = config.gene_start(gene_idx);
gene_mask = a:a+config.headsize+config.tailsize-1;
gene = cur(gene_mask);

%Select Transposon
mask = (1:rand_idx(setsize,1))-1;
head_tail = config.headsize+config.tailsize;
pnt = rand_idx(head_tail-length(mask)+1);
is = gene(pnt+mask);

%Select Insertion Point (Not allowed to be 1)
ins = rand_idx(config.headsize-1)+1;

%Apply
head = gene(1:config.headsize);
headT = [head(1:ins-1) is head(ins:end)];
headT = headT(1:config.headsize);
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%Update Chromosome
gene(1:config.headsize) = headT;
cur(gene_mask) = gene;
new{kk} = cur;

end

%Update
ngen = surv;
ngen(idx) = new;
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B.1.19 rist fun.m

function ngen = rist_fun(surv,config)
%**************************************************************************
% FUNCTION: new = rist_fun(surv,config)
% INFO: Applies root insertion sequence transpose operator to survivors
% INPUT: surv = survivor chromosomes (cell array)
% config = configuration parameters for GEP algorithm (struct)
% OUTPUT: new = transposed chromosomes (cell array)
% AUTHOR: A. Hensley, 02-Dec-2012
% HISTORY:
%**************************************************************************
% Rev 1.0 02-Dec-2012 Hensley Initial Release
%**************************************************************************

%Setup
N = length(surv);
ntransp = round(config.RIST_rate*N);
[˜,idx] = sort(rand(length(surv),1));
idx = idx(1:ntransp);
new = cell(1,ntransp);
setsize = length(config.RIST_set);

%Begin
for kk = 1:ntransp

%Select Chromosome
cur = surv{idx(kk)};

%Select Gene
gene_idx = config.gene_start(rand_idx(config.genes));
head_mask = gene_idx:gene_idx+config.headsize-1;
head = cur(head_mask);

%Select Insertion Point (Not allowed to be 1)
pnt = rand_idx(config.headsize-1,1)+1;

%Find Next Function
temp = head;
temp(1:pnt-1)=’#’;
pnt = find(ismember(temp,cell2mat(config.F)),1);
if isempty(pnt)

new{kk} = cur;
continue

end

%Get Transposon
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mask = pnt+((1:rand_idx(setsize,1))-1);
mask(mask>config.headsize) = [];
ris = head(mask);

%Apply
headT = [ris head];
headT = headT(1:config.headsize);

%Update Output Variable
cur(head_mask) = headT;
new{kk} = cur;

end

%Update
ngen = surv;
ngen(idx) = new;
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B.1.20 inv fun.m

function ngen = inv_fun(surv,config)
%**************************************************************************
% FUNCTION: new = inv_fun(surv,config)
% INFO: Applies inversion operator to survivors
% INPUT: surv = survivor chromosomes (cell array)
% config = configuration parameters for GEP algorithm (struct)
% OUTPUT: ngen = updated generation (cell array)
% AUTHOR: A. Hensley, 02-Dec-2012
% HISTORY:
%**************************************************************************
% Rev 1.0 02-Dec-2012 Hensley Initial Release
%**************************************************************************

%Setup
N = length(surv);
ninv = round(config.inv_rate*N);
[˜,idx] = sort(rand(length(surv),1));
idx = idx(1:ninv);
new = cell(1,ninv);
setsize = length(config.inv_set);

%Begin
for kk = 1:ninv

%Select Chromosome
cur = surv{idx(kk)};

%Select Gene
gene_idx = rand_idx(config.genes);
a = config.gene_start(gene_idx);
head_mask = a:a+config.headsize;
head = cur(head_mask);

%Select Inversion Sequence
seq_str = 1;
seq_end = config.inv_set(rand_idx(setsize));
mask = seq_str:seq_end;
mask(mask>length(head)) = [];

%Apply
head(mask) = fliplr(head(mask));

%Update Chromosome
cur(head_mask) = head;
new{kk} = cur;
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end

%Update
ngen = surv;
ngen(idx) = new;
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B.1.21 rnctrnsp fun.m

function ngen = rnctrnsp_fun(surv,config)
%**************************************************************************
% FUNCTION: ngen = rnctrnsp_fun(surv,config)
% INFO: Applies transpose to constants domina
% INPUT: surv = survivor chromosomes (cell array)
% config = configuration parameters for GEP algorithm (struct)
% OUTPUT: new = transposed chromosomes (cell array)
% AUTHOR: A. Hensley, 02-Dec-2012
% HISTORY:
%**************************************************************************
% Rev 1.0 02-Dec-2012 Hensley Initial Release
%**************************************************************************

%Setup
N = length(surv);
ntransp = round(config.rnctrnsp_rate*N);
[˜,idx] = sort(rand(length(surv),1));
idx = idx(1:ntransp);
new = cell(1,ntransp);
setsize = length(config.rnctrnsp_set);

%Begin
for kk = 1:ntransp

%Select Chromosome
cur = surv{idx(kk)};

%Select Gene
gene_idx = config.gene_start(rand_idx(config.genes));
a = gene_idx+config.headsize+config.tailsize;
b = a+config.constsize-1;
const_mask = a:b;
const = cur(const_mask);

%Select Insertion Point (Not allowed to be 1)
pnt = rand_idx(config.constsize-1,1)+1;

%Get Transposon
mask = pnt+((1:rand_idx(setsize,1))-1);
mask(mask>config.constsize) = [];
seq = const(mask);

%Apply
constT = [seq const];
constT = constT(1:config.constsize);
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%Update Output Variable
cur(const_mask) = constT;
new{kk} = cur;

end

%Update
ngen = surv;
ngen(idx) = new;
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B.1.22 rncinv fun.m

function ngen = rncinv_fun(surv,config)
%**************************************************************************
% FUNCTION: ngen = rncinv_fun(surv,config)
% INFO: Applies inversion to constants domain
% INPUT: surv = survivor chromosomes (cell array)
% config = configuration parameters for GEP algorithm (struct)
% OUTPUT: new = transposed chromosomes (cell array)
% AUTHOR: A. Hensley, 02-Dec-2012
% HISTORY:
%**************************************************************************
% Rev 1.0 02-Dec-2012 Hensley Initial Release
%**************************************************************************

%Setup
N = length(surv);
ninv = round(config.rncinv_rate*N);
[˜,idx] = sort(rand(length(surv),1));
idx = idx(1:ninv);
new = cell(1,ninv);
setsize = length(config.rncinv_set);

%Begin
for kk = 1:ninv

%Select Chromosome
cur = surv{idx(kk)};

%Select Gene
gene_idx = config.gene_start(rand_idx(config.genes));
a = gene_idx+config.headsize+config.tailsize;
b = a+config.constsize-1;
const_mask = a:b;
const = cur(const_mask);

%Select Insertion Point (Not allowed to be 1)
pnt = rand_idx(config.constsize,1);

%Get Sequence
seq_len = config.rncinv_set(rand_idx(setsize));
invmask = pnt+(1:seq_len);
invmask(invmask>config.constsize) = [];
seq = const(invmask);

%Apply
const_inv = const;
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const_inv(invmask) = fliplr(const_inv(invmask));

%Update Output Variable
cur(const_mask) = const_inv;
new{kk} = cur;

end

%Update
ngen = surv;
ngen(idx) = new;
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B.2 Experiment 3-1: Viscosity of Hydrogen

%Experiment 3-1: Viscosity of Hydrogen
%**********************************************************************
%Setup
close all hidden
clc

%Sutherland’s Viscosity Model (Hydrogen)
lambda = 0.636236562e-6;
C = 72;
ufun = @(T)lambda*T.ˆ(3/2)./(T+C);

%Generate Data Set
nsamp = 200;
Tmax = 555;
Tmin = 0;
nvars = 1;
reg = reg_data(ufun,nsamp,[Tmin Tmax],nvars);
n = 1e-6*randn(nsamp,1);
reg.y = reg.y+n;
reg.y = reg.y*1e6;

figure,plot(reg.X,reg.y,’.’)
[˜,I] = sort(reg.X);
hold on,plot(reg.X(I),ufun(reg.X(I))*1e6,’r’)

%Configure Algorithm
N = 25;
parm.nvars = nvars;
parm.genes = 2;
parm.library = {’+’,’-’,’*’,’/’,’Q’};
parm.selthr = 10;
parm.maxgen = 100;
parm.trials = N;
parm.popsize = 200;
parm.headsize = 6;
parm.rnc = true;
parm.convcrit = floor(1000/(1+mean((n*1e6).ˆ2)))/1000;
parm.rncfun = @(m,n)rand(m,n);

%Run
config = setup_config(parm);
result = gepfun(reg.X,reg.y,config);
save Experiment3_1.mat
%**********************************************************************
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C.1 Experiment 4-1: A Simple Equation

%Experiment 4-1: A Simple Equation
%****************************************************************

%Make Data Set
fc = @(x)1./(1+x.ˆ2);
nsamp = 200;
xmax = 10;
xmin = -10;
nvars = 1;
reg = reg_data(fc,nsamp,[xmin xmax],nvars);
reg.y = reg.y;

%Save to MAT File
save simple.mat

%Configure Algorithm
N = 10;
parm.nvars = nvars;
parm.genes = 1;
parm.library = {’+’,’-’,’*’,’/’};
parm.selthr = 10;
parm.maxgen = 100;
parm.trials = N;
parm.popsize = 200;
parm.headsize = 10;
parm.rnc = false;
parm.convcrit = 0.999;
parm.rncfun = @(m,n)2*rand(m,n);

%Run
config = setup_config(parm);
result = gepfun(reg.X,reg.y,config);
save Experiment4_1.mat

%****************************************************************
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C.2 Experiment 4-2: A Simple Equation +

Noise

%Experiment 4-2: A Simple Equation + Noise
%****************************************************************

%Load Data Set
load simple.mat

%Add Noise
n = 0.1*randn(nsamp,1);
reg.y = reg.y+n;

%Configure Algorithm
N = 10;
parm.nvars = nvars;
parm.genes = 1;
parm.library = {’+’,’-’,’*’,’/’};
parm.selthr = 10;
parm.maxgen = 100;
parm.trials = N;
parm.popsize = 200;
parm.headsize = 10;
parm.rnc = false;
parm.convcrit = floor(1000/(1+mean(n.ˆ2)))/1000;
parm.rncfun = @(m,n)2*rand(m,n);

%Run
config = setup_config(parm);
result = gepfun(reg.X,reg.y,config);
save Experiment4_2.mat

%****************************************************************
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C.3 Experiment 4-3: Unnecessary Constants

%Experiment 4-3: Unnecessary Constants
%****************************************************************

%Load Data Set
load simple.mat

%Add Noise
n = 0.1*randn(nsamp,1);
reg.y = reg.y+n;

%Configure Algorithm
N = 10;
parm.nvars = nvars;
parm.genes = 1;
parm.library = {’+’,’-’,’*’,’/’};
parm.selthr = 10;
parm.maxgen = 100;
parm.trials = N;
parm.popsize = 200;
parm.headsize = 10;
parm.rnc = true;
parm.convcrit = floor(1000/(1+mean(n.ˆ2)))/1000;
parm.rncfun = @(m,n)2*rand(m,n);

%Run
config = setup_config(parm);
result = gepfun(reg.X,reg.y,config);
save Experiment4_3.mat

%****************************************************************
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C.4 Experiment 4-4: Necessary Constants

%Experiment 4-4: Necessary Constants
%****************************************************************

%Load Data Set
load simple.mat

%Add Noise & Constant
n = 0.1*randn(nsamp,1);
reg.y = pi*reg.y+n;

%Configure Algorithm
N = 10;
parm.nvars = nvars;
parm.genes = 1;
parm.library = {’+’,’-’,’*’,’/’};
parm.selthr = 10;
parm.maxgen = 100;
parm.trials = N;
parm.popsize = 200;
parm.headsize = 10;
parm.rnc = true;
parm.convcrit = floor(1000/(1+mean(n.ˆ2)))/1000;
parm.rncfun = @(m,n)2*rand(m,n);

%Run
config = setup_config(parm);
result = gepfun(reg.X,reg.y,config);
save Experiment4_4.mat

%****************************************************************
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C.5 Experiment 4-5: Information Removal

%Experiment 4-5: Information Removal
%****************************************************************

%Load Data Set
load simple.mat

%Setup Loop
nsamp = 200;
xmax = 10;
xmin = [-8,-6,-4,-2,-1,0,1,2,4,6,8];
ext = ’abcdefghijk’;
nvars = 1;

%Configure Algorithm
N = 10;
parm.nvars = nvars;
parm.genes = 1;
parm.library = {’+’,’-’,’*’,’/’};
parm.selthr = 10;
parm.maxgen = 200;
parm.trials = N;
parm.popsize = 200;
parm.headsize = 10;
parm.rnc = true;
parm.rncfun = @(m,n)2*rand(m,n);

%Loop
for kk = 1:length(xmin)

%Reconfigure Input Data
reg = reg_data(fc,nsamp,[xmin(kk) xmax],nvars);
n = 0.1*randn(nsamp,1);
reg.y = pi*reg.y+n;

%Run Algorithm
parm.convcrit = floor(1000/(1+mean(n.ˆ2)))/1000;
config = setup_config(parm);
result = gepfun(reg.X,reg.y,config);

%Save Results
save([’Experiment8’ ext(kk) ’.mat’])

end

%NOTES
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% a: [-8 10]
% b: [-6 10]
% c: [-4 10]
% d: [-2 10]
% e: [-1 10]
% f: [0 10]
% g: [1 10]
% h: [2 10]
% i: [4 10]
% j: [6 10]
% k: [8 10]

%****************************************************************
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C.6 Experiment 4-6: Simplified Viscosity of

Hydrogen

%Experiment 4-6: Simplified Viscosity of Hydrogen
%****************************************************************

%Sutherland’s Viscosity Model (Hydrogen)
lambda = 0.636236562e-6; C = 1;
ufun = @(T)lambda*T.ˆ(3/2)./(T+C);

%Generate Data Set
nsamp = 200;
Tmin = -500000; Tmax = 1000000;
nvars = 1;
reg.X = linspace(Tmin,Tmax,nsamp)’;
reg.y = real(ufun(reg.X));
sigm = 1e-7;
n = sigm*randn(length(reg.X),1);
reg.y = reg.y+n;
reg.y = reg.y*1e6;

%Configure Algorithm
N = 10;
parm.nvars = nvars;
parm.genes = 1;
parm.library = {’+’,’-’,’*’,’/’,’Y’};
parm.selthr = 1;
parm.maxgen = 200;
parm.trials = N;
parm.popsize = 200;
parm.headsize = 10;
parm.rnc = true;
parm.convcrit = floor(1000/( 1+mean(real(n*1e6).ˆ2)+...

mean(imag(n*1e6).ˆ2) ))/1000;
parm.rncfun = @(m,n)2*rand(m,n);

%Run
config = setup_config(parm);
result = gepfun(reg.X,reg.y,config);
save Experiment4_6.mat

%****************************************************************
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C.7 Experiment 4-7: Imaginary Viscosity of

Hydrogen

%Experiment 4-7: Imaginary Viscosity of Hydrogen
%****************************************************************

%Sutherland’s Viscosity Model (Hydrogen)
lambda = 0.636236562e-6; C = 1;
ufun = @(T)lambda*T.ˆ(3/2)./(T+C);

%Generate Data Set
nsamp = 200;
Tmin = -20; Tmax = 20;
nvars = 1;
reg.X = linspace(Tmin,Tmax,nsamp)’;
reg.y = ufun(reg.X);
j = sqrt(-1); sigm = 1e-7;
n = sigm*(randn(length(reg.X),1)+j*randn(length(reg.X),1));
reg.y = reg.y+n;
reg.y = reg.y*1e6;

%Configure Algorithm
N = 10;
parm.nvars = nvars;
parm.genes = 1;
parm.library = {’+’,’-’,’*’,’/’,’Z’};
parm.selthr = 1;
parm.maxgen = 200;
parm.trials = N;
parm.popsize = 200;
parm.headsize = 10;
parm.rnc = true;
parm.convcrit = floor(1000/( 1+mean(real(n*1e6).ˆ2)+...

mean(imag(n*1e6).ˆ2) ))/1000;
parm.rncfun = @(m,n)2*rand(m,n);
parm.fitfun = ’complex-mse’;

%Run
config = setup_config(parm);
result = gepfun(reg.X,reg.y,config);
save Experiment4_7.mat

%****************************************************************
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D.1 Experiment 5-1: Sensitivity Analysis

%Experiment 5-1: Sensitivity Analysis
%**************************************************************************

%Sutherland’s Viscosity Model (Hydrogen)
lambda = 0.636236562;
C = 72;
ufun = @(T)lambda*T.ˆ(3/2)./(T+C);

%Generate Data Set
nsamp = 200;
Tmax = 1e5;
Tmin = 1;
nvars = 1;
reg.X = linspace(Tmin,Tmax,nsamp)’;
reg.y = ufun(reg.X);

%Configure Algorithm
N = 10;
parm.nvars = nvars;
parm.genes = 1;
parm.library = {’+’,’-’,’*’,’/’,’Z’};
parm.selthr = 1;
parm.maxgen = 200;
parm.trials = N;
parm.popsize = 200;
parm.headsize = 10;
parm.rnc = true;
parm.rncfun = @(m,n)100*rand(m,n);
parm.fitfun = ’mean-square’;

%Run
config = setup_config(parm);
result = gepfun(reg.X,reg.y,config);
save Experiment5_1.mat

%Feature Space Mapping
mdlEval = zeros(nsamp,N);
err = zeros(1,N);
K1 = (diff(reg.y)*(1./diff(reg.y)’));
K1 = K1-eye(size(K1))+diag(diff(reg.y));
for kk = 1:N

mdlEval(:,kk) = result.mdl{kk}{1}(reg.X);
K2 = diff(mdlEval(:,kk))*(1./diff(mdlEval(:,kk))’);
K1 = K2-eye(size(K2))+diag(diff(mdlEval(:,kk)));
err(kk) = sqrt(mean(sum((K1-K2).ˆ2)));
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end
new = 1000./(1+err);

%Plot Results
figure,
[˜,I] = sort(result.fit,’descend’);
plot(result.fit(I),’ro-’),hold on
plot(new(I),’bo-’)
set(gcf,’paperpositionmode’,’auto’,’outerposition’,[360 362 628 386])
set(gca,’fontsize’,14)
xlabel(’Solution’)
ylabel(’Fitness’)
grid on
legend(’Mean Square Error’,’Feature Space Dist’)

%**************************************************************************
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D.2 Experiment 5-2: Feature Space Learning

%Experiment 5-2: Feature Space Learning
%**************************************************************************

%Sutherland’s Viscosity Model (Hydrogen)
lambda = 0.636236562;
C = 72;
ufun = @(T)lambda*T.ˆ(3/2)./(T+C);

%Generate Data Set
nsamp = 200;
Tmax = 1e5;
Tmin = 1;
nvars = 1;
reg.X = linspace(Tmin,Tmax,nsamp)’;
reg.y = ufun(reg.X);

%Configure Algorithm
N = 10;
parm.nvars = nvars;
parm.genes = 1;
parm.library = {’+’,’-’,’*’,’/’,’Z’};
parm.selthr = 1;
parm.maxgen = 200;
parm.trials = N;
parm.popsize = 200;
parm.headsize = 10;
parm.rnc = true;
parm.rncfun = @(m,n)100*rand(m,n);
parm.fitfun = ’kernel’;

%Run
config = setup_config(parm);
result = gepfun(reg.X,reg.y,config);
save Experiment5_2.mat

%**************************************************************************

194



Appendix E

Chapter 6 Programs

195



E.1 Analytic Experiments

function AnalyticExperiments()
%**************************************************************************
%Analytic Experiments Master Function
%**************************************************************************
%Setup
close all
clc
rng(’shuffle’)

%Run Experiments
AnalyticExperimentsSub(’poly’,’mean-square’)
AnalyticExperimentsSub(’poly’,’kernel’)
AnalyticExperimentsSub(’rat’,’mean-square’)
AnalyticExperimentsSub(’rat’,’kernel’)
AnalyticExperimentsSub(’trig’,’mean-square’)
AnalyticExperimentsSub(’trig’,’kernel’)
AnalyticExperimentsSub(’trig-taylor’,’mean-square’)
AnalyticExperimentsSub(’trig-taylor’,’kernel’)
AnalyticExperimentsSub(’log’,’mean-square’)
AnalyticExperimentsSub(’log’,’kernel’)
AnalyticExperimentsSub(’log-taylor’,’mean-square’)
AnalyticExperimentsSub(’log-taylor’,’kernel’)
AnalyticExperimentsSub(’exp’,’mean-square’)
AnalyticExperimentsSub(’exp’,’kernel’)
AnalyticExperimentsSub(’exp-taylor’,’mean-square’)
AnalyticExperimentsSub(’exp-taylor’,’kernel’)

function AnalyticExperimentsSub(type,fitfun)
%**************************************************************************
%Analytic Experiments Sub-Function
%**************************************************************************

%Preferences
fset = {’+’,’-’,’*’,’/’};
hsize = 10;
nsamp = 50;
nvars = 1;
legloc = ’northwest’;

switch type

case ’poly’

f = @(x)x.ˆ3-4*x;
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trnDomain = [-1,+3];
pltDomain = [-2,+4];
fstr = ’xˆ3-4x’;

case ’rat’

f = @(x)(0.5*x.ˆ3-5)./(x.ˆ2+1);
trnDomain = [-5,0];
pltDomain = [-6,+5];
fstr = ’(0.5xˆ3-5)/(xˆ2+1)’;

case ’trig’

f = @(x)98.6*sin(x);
fset = {’+’,’-’,’*’,’/’,’S’,’C’};
trnDomain = [0,3*pi/2];
pltDomain = [-pi,+2*pi];
fstr = ’98.6sin(x)’;

case ’trig-taylor’

f = @(x)98.6*sin(x);
trnDomain = [0,3*pi/2];
pltDomain = [-pi,+2*pi];
fstr = ’98.6sin(x)’;
hsize = 20;

case ’log’

f = @(x)log(7846*(1+x));
fset = {’+’,’-’,’*’,’/’,’L’};
trnDomain = [-0.8,+1];
pltDomain = [-1,+2];
fstr = ’log(7846(1+x))’;

case ’log-taylor’

f = @(x)log(7846*(1+x));
trnDomain = [-0.8,+1];
pltDomain = [-1,+2];
fstr = ’log(7846(1+x))’;
hsize = 20;

case ’exp’

f = @(x)exp(-2*(x-1));
fset = {’+’,’-’,’*’,’/’,’E’};
trnDomain = [-1.5,0];
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pltDomain = [-1.7,+1];
fstr = ’exp(-2(x-1))’;
legloc = ’northeast’;

case ’exp-taylor’

f = @(x)exp(-2*(x-1));
trnDomain = [-1.5,0];
pltDomain = [-1.7,+1];
fstr = ’exp(-2(x-1))’;
legloc = ’northeast’;
hsize = 20;

otherwise
error(’Bad Function Type’)

end

%Generate Data Set
trnX = linspace(trnDomain(1),trnDomain(2),nsamp)’;
pltX = linspace(pltDomain(1),pltDomain(2),nsamp)’;
reg.X = trnX;
reg.y = f(reg.X);

%Plot Data Set
figure,
plot(pltX,f(pltX),’k--’)
hold on
plot(reg.X,reg.y,’.-’),hold on
set(gca,’fontsize’,14)
xlabel(’x’),ylabel(’f(x)’)
legend(fstr,’Training Data’,’location’,legloc)
set(gcf,’paperpositionmode’,’auto’,’outerposition’,[360 362 628 386])
grid on
axis tight
drawnow
print(gcf,’-depsc’,[’Figure-AnalyticExp-’ type ’-TrnData.eps’])
close

%Configure Algorithm
N = 10;
parm.nvars = nvars;
parm.genes = 1;
parm.library = fset;
parm.selthr = 1;
parm.maxgen = 250;
parm.trials = N;
parm.popsize = 200;
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parm.headsize = hsize;
parm.rnc = true;
parm.rncfun = @(m,n)100*rand(m,n);
parm.fitfun = fitfun;

%Run Algorithm
config = setup_config(parm);
result = gepfun(reg.X,reg.y,config);

%Save Results
save([type ’-’ fitfun ’.mat’])
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E.2 Real Experiments

function RealExperiments()
%**************************************************************************
%Real Experiments Master Function
%**************************************************************************
%Setup
close all
clc
rng(’shuffle’)

%Run Experiments
RealExperimentsSub(’case12’,’mean-square’)
RealExperimentsSub(’case12’,’kernel’)
RealExperimentsSub(’case46a’,’mean-square’)
RealExperimentsSub(’case46a’,’kernel’)
RealExperimentsSub(’case50’,’mean-square’)
RealExperimentsSub(’case50’,’kernel’)
RealExperimentsSub(’case56b’,’mean-square’)
RealExperimentsSub(’case56b’,’kernel’)
RealExperimentsSub(’case105’,’mean-square’)
RealExperimentsSub(’case105’,’kernel’)
RealExperimentsSub(’case161a’,’mean-square’)
RealExperimentsSub(’case161a’,’kernel’)
RealExperimentsSub(’case171a’,’mean-square’)
RealExperimentsSub(’case171a’,’kernel’)

function RealExperimentsSub(type,fitfun)
%**************************************************************************
%Real Experiments Sub-Function
%**************************************************************************

%Preferences
fset = {’+’,’-’,’*’,’/’,’Z’,’E’};
hsize = 10;
nvars = 1;
legloc = ’northwest’;
if ismember(type,{’case50’,’case105’,’161a’})

legloc = ’northeast’;
end

%Prep Data Set
data = getRealData();
reg.X = data.(type)(4:end-3,1);
reg.y = data.(type)(4:end-3,2);
test.X = [data.(type)(1:3,1); data.(type)(end-2:end,1)];
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test.y = [data.(type)(1:3,2); data.(type)(end-2:end,2)];

%Plot Data Set
figure,
plot(reg.X,reg.y,’b.’)
hold on
plot(test.X,test.y,’ro’),hold on
set(gca,’fontsize’,14)
xlabel(’x’),ylabel(’f(x)’)
legend(’Training Data’,’Test Data’,’location’,legloc)
set(gcf,’paperpositionmode’,’auto’,’outerposition’,[360 362 628 386])
grid on
axis tight
drawnow
print(gcf,’-depsc’,[’Figure-PhysicsExp-’ type ’-Data.eps’])
close

%Configure Algorithm
N = 10;
parm.nvars = nvars;
parm.genes = 1;
parm.library = fset;
parm.selthr = 1;
parm.maxgen = 250;
parm.trials = N;
parm.popsize = 200;
parm.headsize = hsize;
parm.rnc = true;
parm.rncfun = @(m,n)100*rand(m,n);
parm.fitfun = fitfun;

%Run Algorithm
config = setup_config(parm);
result = gepfun(reg.X,reg.y,config);

%Save Results
save([type ’-’ fitfun ’.mat’])
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E.3 Real Experiment Data Sets

function data = getRealData()
%**************************************************************************
% Experimental Data Sets
% Source: UCI Machine Learning Repository
%**************************************************************************
% Data Sets:
% 1 CASE 46A: Vapor pressure of bromine
% 2 CASE 50: Thermal Conductivity of Air at Low Pressures
% 3 CASE 56B: Emission of electrons from heated tantulum
% 4 CASE 105: Magnetic flux after torsion
% 5 CASE 161A: Index of refraction of ethyl alcohol
% 6 CASE 171A: Resistance vs. Centigrade temperature
%**************************************************************************
% CASE 46a:
% Source: National Research Council of the United States of America,
% {\em International Critical Tables of Numerical Data: Physics,
% Chemistry and Technology}, McGraw-Hill, 1926, Vol. III, p. 201.
%
% Description: Vapor pressure of bromine in mm of mercury vs.
% temperature in Centrigrade.
%
% Reference Relation: $\log y =k_{1}/(x+273.1)+k_{2}$
%**************************************************************************

data.case46a = [...
-95.0 0.0022
-90.0 0.0052
-85.0 0.0117
-80.0 0.0251
-75.0 0.0513
-70.0 0.1020
-65.0 0.1920
-60.0 0.3570
-55.0 0.6280
-50.0 1.0900
-45.0 1.8300
-40.0 2.9800
-35.0 4.7700
-30.0 7.4500
-25.0 11.4000
-20.0 17.1000
-15.0 25.2000
-10.0 36.6000];

data.case46a(:,2) = log(data.case46a(:,2));
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%**************************************************************************
% CASE 50:
% Source: {\em Physical Review}, Vol. II, 1913, ‘‘Thermal Conductivity
% of Air at Low Pressures,’’ A. Trowbridge, p. 61.
%
% Description: Slope of a line relating temperature rise and the square
% of the current in a heating element vs. pressure in mm of mercury.
%
% Reference Relation: $1/yˆ{2}=k_{1}x+k_{2}$
%
% Comments: The relation $1/yˆ{2.25}=k_{1}x+k_{2}$ fits much better.
%**************************************************************************

data.case50 = [...
0.01 1670
0.02 1355
0.03 1155
0.04 1000
0.05 893
0.06 820
0.07 770
0.08 735
0.09 695
0.10 663
0.11 629
0.12 610
0.13 591
0.14 571
0.15 552
0.16 538
0.17 523
0.18 511
0.19 500
0.20 485];

data.case50(:,2) = data.case50(:,2)/100;

%**************************************************************************
% CASE 56b:
% Source: National Research Council of the United States of America,
% {\em International Critical Tables of Numerical Data: Physics,
% Chemistry and Technology}, McGraw-Hill, 1926, Vol. VI, p. 55.
%
% Description: Emission of electrons from heated tantulum in
% amps/cm$ˆ{2}$ vs. absolute temperature.
%
% Reference Relation: $y=k_{1}xˆ{2}eˆ{-k_{2}/x}$
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%
% Comments: The reference relation is Richardson’s equation.
%**************************************************************************

data.case56b = [...
1000 1.95e-13
1100 1.71e-11
1200 7.21e-10
1300 1.73e-08
1400 1.23e-07
1500 2.89e-06
1600 2.44e-05
1700 1.51e-04
1800 7.94e-04
1900 3.61e-03
2000 1.38e-02
2100 4.62e-02
2200 1.41e-01
2300 3.92e-01
2400 1.00e+00
2500 2.38e+00];

data.case56b(:,2) = log(data.case56b(:,2));

%**************************************************************************
% CASE 105:
% Source: {\em Physical Review}, Vol. VIII, 1916, ‘‘On the
% Demagnetization of Iron and Steel Rods by Strain and Impact,’’ Guy G.
% Becknell, p. 515.
%
% Description: Magnetic flux after torsion in cgs units vs. position in
% cm where measurement was taken on a 112 cm rod.
%
% Reference Relation: $(x+k_{1}y)ˆ{2}+k_{2}x+k_{3}y+k_{4}=0$
%
% Comments: The reference relation is a parabola with the axes rotated;
% the tangent of the angle of rotation ($k_{1}$), according to the
% source, is .00147.
%**************************************************************************

data.case105 = [...
2 553
8 1754
14 2655
20 3361
26 3905
32 4308
38 4599
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44 4746
50 4792
56 4712
62 4550
68 4337
74 4049
80 3701
86 3275
92 2759
98 2134
104 1371
110 392];

data.case105(:,2) = data.case105(:,2)/100;

%**************************************************************************
% CASE 161a:
% Source: {\em Physical Review}, Vol. XX, 1922, ‘‘The Variation of the
% Index of Refraction of Water, Ethyl Alcohol, and Carbon Bisulphide,
% with the Temperature,’’ Elmer E. Hall and Arthur R. Payne, p. 257.
%
% Description: Index of refraction of ethyl alcohol, relative to air,
% forr sodium light vs. Centigrade temperature.
%
% Reference Relation: $y=k_{1}xˆ{3}+k_{2}xˆ{2}+k_{3}x+k_{4}$
%
% Comments: The source calls the reference relation empirical. A
% residual plot shows that the data is not linear.
%**************************************************************************

data.case161a = [...
14 1.36290
16 1.36210
18 1.36129
20 1.36048
22 1.35967
24 1.35885
26 1.35803
28 1.35721
30 1.35639
32 1.35557
34 1.35474
36 1.35390
38 1.35306
40 1.35222
42 1.35138
44 1.35054
46 1.34969
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48 1.34885
50 1.34800
52 1.34715
54 1.34629
56 1.34543
58 1.34456
60 1.34368
62 1.34279
64 1.34189
66 1.34096
68 1.34004
70 1.33912
72 1.33820
74 1.33728
76 1.33626];

%**************************************************************************
% CASE 171a:
% Source: {\em Physical Review}, Vol. XXX, 1910, ‘‘Note on the Relation
% between the Temperature and the Resistance of Nickel,’’ C. F. Martin,
% p. 523.
%
% Description: Resistance vs. Centigrade temperature.
%
% Reference Relation: $\log y =k_{1}x+k_{2}$
%
% Comments: I have taken only two of three data sets tabulated in the
% source, since Martin says the third fits the reference relation
% poorly. Note that Martin explictly states that he does not yet have
% enough evidence to claim a general law. He does seem to believe that
% the reference relation holds for the two data sets I have collected,
% however. The reference relation shows clear lack of fit.
%**************************************************************************

data.case171a = [...
-25 11.030
-20 11.250
-15 11.475
-10 11.700
-5 11.935
0 12.173
5 12.420

10 12.660
15 12.920
20 13.173
25 13.435
30 13.700
35 13.965
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40 14.240
45 14.520
50 14.800
55 15.080
60 15.385
65 15.690
70 16.000
75 16.320];
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