

SSStttooonnnyyy BBBrrrooooookkk UUUnnniiivvveeerrrsssiiitttyyy

The official electronic file of this thesis or dissertation is maintained by the University
Libraries on behalf of The Graduate School at Stony Brook University.

©©© AAAllllll RRRiiiggghhhtttsss RRReeessseeerrrvvveeeddd bbbyyy AAAuuuttthhhooorrr...

Harnessing Multicore Parallelism for High Performance Data Replication

A Dissertation presented

by

Tan Li

to

The Graduate School

in Partial Fulfillment of the

Requirements

for the Degree of

Doctor of Philosophy

in

Electrical Engineering

Stony Brook University

December 2015

Stony Brook University

The Graduate School

Tan Li

We, the dissertation committee for the above candidate for the

Doctor of Philosophy degree, hereby recommend

acceptance of this dissertation

Dantong Yu - Dissertation Advisor
Adjunct Professor, Department of Electrical and Computer Engineering

Wendy Tang - Chairperson of Defense
Associate Professor, Department of Electrical and Computer Engineering

Shudong Jin
Adjunct Professor, Department of Electrical and Computer Engineering

Mike Ferdman
Assistant Professor, Department of Computer Science

Robert J. Harrison
Professor and Endowed Director of Institute for Advanced Computational Science

This dissertation is accepted by the Graduate School

Charles Taber
Dean of the Graduate School

ii

Abstract of the Dissertation

Harnessing Multicore Parallelism for High Performance Data Transfer

by

Tan Li

Doctor of Philosophy

in

Electrical Engineering

Stony Brook University

2015

High speed data replication is vital to the data intensive scientific com-

puting that often requires transferring large volumes of observation and

simulation data efficiently among geographically dispersed facilities. En-

terprise cloud services also depend on effective data replication to scale

out of their own data centers, and to optimize work completed per dol-

lar invested. In addition, end consumers are also extremely sensitive to

the latency and responsiveness to share data within the network of friends,

web-based services and their personal mobile devices. Recent hardware ad-

vances offer the opportunity to enable ultra high-speed data replication by

aggressively adding more CPU cores, higher network bandwidth and faster

iii

storage into a single commodity server. However, existing monolithic soft-

ware is designed for the architecture in the past several decades, and not

capable of mitigating the system I/O bottlenecks. New effective resource

scheduling algorithms and software designs are indispensable to match the

I/O bare-metal capability with the actual application’s performance.

Designing an end-to-end efficient solution for high speed data replica-

tion is non-trivial because of a variety of interconnected factors: 1) the

optimal resource scheduling on multicore system is proven to be NP-hard,

and even the heuristic algorithm incurs prohibitive computation cost; 2)

data replication involves many components along the end-to-end I/O paths,

including PCI buses, CPU interconnect links, various I/O controllers and

chipsets, each of which can potentially become a performance bottleneck; 3)

heterogeneous I/O devices might demonstrate different system performance

under various workloads and access patterns. It is up to data replication

applications to choose and apply appropriate optimization techniques and

to adjust their access patterns to achieve maximum system performance;

and 4) the requirement of scaling up to many requests and users necessi-

tates the maximal exploitation of the system parallelism and concurrency

that are available in state-of-the-art computer architecture. In conclusion,

these challenges give rise to the significant effort to rethink, redesign and

re-implement the entire software suite.

We first analyze the state-of-the-art I/O devices and multi-core systems

by using benchmark tools and monitoring various performance event coun-

ters. In addition, we propose a new metric (i.e., the NUMA scheduling

factor) and a performance modeling method to describe the accurate I/O

performance patterns and to guide the downstream resource scheduling and

mapping. Based on our findings, we propose a variety of mathematical and

empirical resource scheduling methods to improve the overall system per-

formance. We model the resource mapping for end-to-end data replication

iv

as a min-sum-max resource allocation problem (MSMRAP), prove its pro-

hibitive computation complexity, and give possible solutions. Finally, we

integrate the proposed optimization strategies into a complete data replica-

tion solution that employs the asynchronous programming paradigm and

supports the resources-aware task scheduling and data preprocessing to

maximize the capacity of state-of-the-art hardware systems. The evalua-

tion results obtained from a fully-featured WAN network testbed confirm

the effectiveness and remarkable performance advantages of our proposed

software system for a comprehensive set of workloads, i.e., 28%- 160%

higher bandwidth for transferring large files, a factor of 1.7x-66x speed-

up for small files, and up to 108% more throughput for mixed workloads,

compared to the widely adopted tools, GridFTP, BBCP and Aspera.

This dissertation leverages the large body of multicore research already

accomplished within the HPC community and implement multicore-aware

schedulers to improve processor, memory, and I/O affinities for individ-

ual tasks (file caching, compression, encryption, and network transport)

involved in the end-to-end data replication. Traditional synchronous pro-

cessing, storage I/O, and network send/receive, even easy to implement,

become bottlenecks in harnessing multi-/many-core architectures. Asyn-

chronous operations, commonly found in RDMA, advanced storage I/O,

and exascale computing, demonstrate their superior performance and great

flexibility over their synchronous counterparts. We designed an asyn-

chronous high throughput data replication system for multicore/many-core

computer platforms to allow users to plug in comprehensive libraries for

data compression, encryption, transformation, and checksum for different

processing environments. This dissertation paves a way for advancing large

scale data transfers in excess of 100 Gbps, and bridging the gap between

the bare metal network performance and effective end-to-end data transfer

capability. The expected research outcomes will have preeminent visibility

v

in high-speed networks, data management middleware, cloud computing,

and exascale supercomputing.

vi

- To my beloved wife, Wenjing Zhang, and my parents

vii

Contents

List of Figures xi

List of Tables xiv

Publications xvi

1 Introduction 1

1.1 Motivation . 1

1.1.1 Poor NUMA-aware support 4

1.1.2 Outdated design of existing data replication software 7

1.2 Challenges . 8

1.3 Research Contribution . 13

1.4 Significance and Broader Impacts 15

1.5 Dissertation Overview . 16

2 Background 17

2.1 NUMA Terminology . 18

2.2 NUMA Characterization . 19

2.3 Mathematical Formulation of Multicore Scheduling 21

2.4 Multicore-aware and contention-aware scheduler 22

2.5 Parallelism and Concurrency at Various Levels 24

2.6 Existing Multicore-aware Data Replication Software 26

2.6.1 TCP-based tools . 26

2.6.2 UDP-based tools . 27

2.6.3 RDMA-based tools 27

viii

3 NUMA effects Analysis and Quantification 29

3.1 Experimental setup . 29

3.2 Observation of NUMA Effects on Network Performance . . . 32

3.3 Analysis for NUMA Remote Access Penalty 34

3.3.1 Observation of NUMA effects on memory benchmark 35

3.3.2 Penalty indicated by LLC misses and memory access

stalls . 36

3.3.3 Underlying reasons of NUMA Penalty 39

3.4 NUMA scheduling factor . 42

3.5 Summary . 44

4 NUMA I/O Performance Modeling 45

4.1 System Configurations for Characterization 46

4.1.1 Server hardware specifications 46

4.1.2 Benchmarks and affinity settings 47

4.2 Experimental characterization 49

4.2.1 Memory performance characterization 49

4.2.2 I/O performance characterization and analysis 52

4.2.3 Analysis of performance mismatching 61

4.3 NUMA characterization methodology for I/O operations . . 62

4.3.1 Proposed methodology for the NUMA I/O perfor-

mance model . 63

4.3.2 Implementation and application of the proposed method 66

4.4 Summary . 70

5 Multicore Resoure Scheduling for Data Replication 71

5.1 Mathematical Model . 72

5.1.1 Problem formulation 72

5.1.2 Computational complexity analysis 74

5.1.3 Divide and conquer solution 75

ix

5.2 NUMA-aware BBCP Implementation and Evaluation 76

5.2.1 Implementation of resource scheduling module 77

5.2.2 Evaluation on high performance testbed 78

5.2.3 Exploring the behavior under contention 80

5.3 Summary . 82

6 Resource-Aware Asynchronous Data Replication with Mul-
ticore Systems 84

6.1 Framework and Protocol Design 85

6.1.1 Features for Ensuring High Performance Transfer . . 86

6.1.2 Initialization (INI) Layer 87

6.1.3 Request Management (RM) Layer 89

6.1.4 Protocol and Event Processing (PEP) layer 89

6.1.5 Data Access and Transmission (DAT) Layer 93

6.2 Implementation . 94

6.2.1 Daemon Implementation 95

6.2.2 Optimizations . 97

6.3 Experimental evaluation . 100

6.3.1 Testbed and Workload Specifications 102

6.3.2 Evaluation of Proposed Optimizations 104

6.3.3 Comparative Evaluation with Other Tools 108

6.4 Summary . 116

7 Conclusion and Future Work 117

7.1 Conclusion . 117

7.2 Future Works . 121

7.2.1 NUMA-aware thread and memory migration 121

7.2.2 Interrupt affinity control 122

7.2.3 Load balancing and work stealing among test queues 123

7.3 Summary . 123

x

List of Figures

1-1 Thread-dependency-agnostic versus thread-dependency-aware

scheduling in a four-node NUMA system 4

1-2 Possible topologies of 4P AMD Opteron Magny Cours Pro-

cessors. 6

1-3 Multi-file transfer protocol in FTP and BBCP tool 8

1-4 Data replication research fields 9

2-1 I/O modes in Linux . 24

3-1 System topology of evaluation system 30

3-2 System connectivity for network performance characterization 31

3-3 Remote network adapter access by iperf benchmark 32

3-4 Iperf bandwidth and CPU usage on NUMA system 33

3-5 Primary STREAM Trid characterizations 36

3-6 Prefetch and snoop characterization of STREAM 40

3-7 Hardware counter characterization of iperf 43

4-1 System connection diagram 48

4-2 Memory bandwidth performance model with STREAM bench-

mark . 51

4-3 STREAM bandwidth performance models of AMD testbed . 53

4-4 TCP bandwidth performance characteristics 56

4-5 RDMA bandwidth performance characteristics 59

4-6 Disk I/O bandwidth performance characteristics 60

xi

4-7 Data path of different operations 61

4-8 Simulate I/O behavior with memcpy operation 65

4-9 Proposed bandwidth performance model 66

5-1 Graph model of NUMA scheduling problem at data sender . 73

5-2 Communication between BBCP entities 78

5-3 BBCP performance over 40 Gbps network link 79

5-4 BBCP performance under contention 82

6-1 Design of asynchronous task processing and data flow 85

6-2 A schematic overview of the proposed framework 86

6-3 Task grouping mechanism 90

6-4 Protocol design in PEP layer 92

6-5 RAMSYS implementation 95

6-6 State transition diagram of data transfer task in RAMSYS . 98

6-7 Different I/O multi-threading mode in RAMSYS 99

6-8 Block state transition of RAMSYS AIO module at data source101

6-9 LAN testbed connectivity 102

6-10 WAN testbed connectivity 102

6-11 The distribution of file sizes for mixed workloads 104

6-12 Comparisons between optimized and unoptimized RAMSYS

over LAN . 105

6-13 Comparison of multithreaded modes in RAMSYS over LAN 107

6-14 Bandwidth and locking comparison between AIO and sync

disk accesses . 109

6-15 Comparison of bandwidth (a) and CPU usage (b) on bulk

data transfers over LAN testbed 110

6-16 Comparison of bandwidth (a) and CPU usage (b) on bulk

data transfers over WAN testbed 111

xii

6-17 Small file transfer comparison between Aspera and RAM-

SYS over WAN testbed . 113

6-18 Comparison of mixed workload transfer over LAN 114

6-19 Comparison of mixed workload transfer over WAN 115

xiii

List of Tables

3.1 Server specifications . 31

3.2 Network specifications . 31

3.3 Iperf benchmark test parameters 33

4.1 Server specifications . 47

4.2 Bandwidth NUMA factor of of the Intel platform 52

4.3 Parameters for network I/O tests, including TCP and RDMA 55

4.4 Bandwidth NUMA factor of TCP and RDMA operations on

the Intel testbed . 58

4.5 Performance model for device write 66

4.6 Performance model for device read 67

4.7 Bandwidth NUMA factor of the Intel platform using the

proposed method . 67

5.1 List of notations used in problem formulation 72

6.1 Server specifications - LAN 103

6.2 Server specifications - WAN 103

6.3 Linux kernel source file description in small file workload . . 104

6.4 Execution time of transferring Linux kernel files over LAN

testbed . 112

6.5 Execution time of transferring Linux kernel files over WAN

testbed . 113

6.6 Breakdown of bandwidth increments compared to GridFTP 116

xiv

Acknowledgements

I am deeply appreciative of the guidance of my committee members, the

help from my follow students, and the support from my wife and parents.

Above all, I would like to express my deepest gratitude to my adviser,

Dantong Yu, for inspirational and timely advice and constant encourage-

ment throughout my PhD study. I have learned a great deal from his

unique perspective on research and his personal integrity and expectations

of excellence. I would also like to thank my co-adviser, Shudong Jin for for

guiding my research, patiently correcting my paper writing, and helping me

to develop my academic background. I really appreciate the vital supports

from both of my advisers. I am very fortunate to have had Wendy Tang,

Mike Ferdman and Robert Harrison on my committee. Special thanks to

them for sparing their precious time to help me with the dissertation and

defense.

I am indebted to other faculty and staff members in the Department

of Electrical and Computer Engineering. I want to thank the Graduate

Director, Yuanyuan Yang, for introducing me into the department. Thank

Rachel Ingrassia and Susan Hayden for navigating the steps to TA/RA

paperwork, applying for jobs, completing the dissertation, and graduating.

My fellow students’ support has been continuous fuel during my long

journey in finishing this doctoral program. I would like to thank the re-

search group members, Yufei Ren, Zhenzhou Peng and Shun Yao. Special

thank also goes to the ESNET supporting team, Mellanox Technologies,

LSI Corporation and Fusion-IO Inc for their equipment donations. Thank

you to everyone who has made this dissertation possible.

xv

Publications

Journal Publications

• Tan Li, Yufei Ren, Dantong Yu, Shudong Jin, “RAMSYS: Resource-

Aware Asynchronous Data Replication with Multicore SYStems”,

IEEE Transactions on Parallel and Distributed Systems (TPDS), un-

der review.

• Yufei Ren, Tan Li, Dantong Yu, Shudong Jin, Thomas Robertazzi,

“Design, Implementation, and Evaluation of a NUMA-Aware Cache

for iSCSI Storage Servers”, IEEE Transactions on Parallel and Dis-

tributed Systems (TPDS), vol.26, no. 2, pp. 413-422, Feb. 2015,

doi:10.1109/TPDS.2014.2311817.

• Yufei Ren, Tan Li, Dantong Yu, Shudong Jin, Thomas Robertazzi,

“Design and Testbed Evaluation of RDMA-Based Middleware for

High-Performance Data Transfer Applications”, Journal of Systems

and Software, Volume 86, Issue 7, July 2013, Pages 1850-1863, ISSN

0164-1212, 10.1016/j.jss.2013.01.070.

Conference Publications

• Tan Li, Yufei Ren, Dantong Yu, Shudong Jin, “Resources-conscious

Asynchronous High-speed Data Transfer in Multicore Systems: De-

sign, Optimizations, and Evaluation”, In Proceedings of Parallel and

Distributed Processing Symposium (IPDPS), 2015 IEEE International

xvi

, vol., no., pp.1097,1106, 25-29 May 2015 28th International, (IPDPS

’15), May, 2015.

• Yufei Ren, Tan Li, Dantong Yu, Shudong Jin, Thomas Robertazzi,

“Design and Performance Evaluation of NUMA-Aware RDMA-Based

End-to-End Data Transfer Systems”, In Proceedings of the Inter-

national Conference on High Performance Computing, Networking,

Storage and Analysis, (SC ’13), Denver, Colorado, November 2013.

• Tan Li, Yufei Ren, Dantong Yu, Shudong Jin, Thomas Robertazzi,

“Characterization of Input/Output Bandwidth Performance Models

in NUMA Architecture for Data Intensive Applications”, In Proceed-

ings of the International Conference on Parallel Processing, (ICPP

’13), Lyon, France, October 2013.

• Yufei Ren, Tan Li, Dantong Yu, Shudong Jin, Thomas Robertazzi,

Brian L. Tierney, Eric Pouyoul, “Protocols for Wide-Area Data-

intensive Applications: Design and Performance Issues”, In Proceed-

ings of the International Conference on High Performance Comput-

ing, Networking, Storage and Analysis, (SC ’12) , Salt Lake City,

Utah, November 2012.

Workshop Publications

• Yufei Ren, Tan Li, Dantong Yu, Shudong Jin, Thomas Robertazzi,

“Middleware Support for RDMA-based Data Transfer in Cloud Com-

puting”, In Proceedings of the High-Performance Grid and Cloud

Computing Workshop, Shanghai, China, May 2012.

xvii

Chapter 1

Introduction

In this chapter, we present the motivations of the research in the context

of the ever-growing hardware capacity and identify the multiple challenges

in multicore-aware high-speed data replication. Subsequently, we offer the

main contributions of the dissertation to resolve these challenges.

1.1 Motivation

Data intensive applications often adopt high performance replication tools

to reduce the data distribution time and the overall computation cost: 1)

Scientific applications, which mainly aim to answer the most fundamental

questions facing human society, are generating increasingly large amount

of data that must be distributed, accessed, and analyzed by scientists col-

laborations worldwide. Furthermore, these collaborations often coordinate

hundreds of geographically distributed computation, storage, and network-

ing resources to share, manage, and process big data for accelerated science

discovery. For example, the Brookhaven National Lab (BNL) participates

into the ATLAS experiment at the European Large Hadron Collider (LHC)

near Geneva, in Switzerland that produces petabytes of raw and processed

data every year and involves 3, 000 particle physicists around the world [1].

1

Effective data replication mechanism is indispensable to support the col-

laboration and data processing of such a scale. 2) Companies, such as

Amazon, Facebook, Google and Microsoft, are making significant invest-

ments in extremely large scale data centers and providing cloud services.

Valuable enterprise data in those clouds have a number of formats and

sizes: for example, relational databases, files, web pages, and packaged

applications. Fast and reliable moving these data regardless their size and

formats among different data centers becomes vital to their business success

for virtually all industries. It is economies-of-scale to amortize hardware

expense by accommodating as many user requests as possible and maximiz-

ing the aggregate input/output (I/O) performance from dedicated storage

and network resources. 3) An increasing number of individual consumers

utilize public cloud service to store, manage and share their personal data,

including documents, images, photos and videos. The latency and respon-

siveness of uploading, downloading and syncing their data largely affect

user experience and satisfaction [2]. Highly efficient data replication is a

widely-adopted strategy to ensure the high Quality of Service (QoS) and

to increase the concurrency of cloud services.

On the other hand, the recent advancements in computer hardware

equip server systems with a large number of cores, a deep memory hierar-

chy, and ultra high-speed input/output (I/O). It essentially removes many

hardware capability constraints and provides an opportunity for next gen-

eration data replication services. Among these advance computer architec-

tures, multi-socket systems with Non-Uniform Memory Access (NUMA)

became prevalent in a wide spectrum of computing platforms, from desk-

top computers, high-end servers to the computing nodes in data center

clusters and supercomputers. Each socket has dedicated on-chip modules

that connect with various hardware components, i.e. memory controllers, a

portion of system cache, interrupt controllers, and other peripheral devices.

2

Main memory and peripheral interfaces are distributed among processor

nodes. Scalable interconnect technologies, such as Intel’s QuickPath Inter-

connect (QPI) and AMD’s HyperTransport (HT), link all nodes with high-

speed communication channels. These architectures, compared to their

homogeneous peers, provide higher performance at a much lower cost in

terms of die area and power consumption [3, 4]. Therefore, even though

individual CPU chips/cores have moderate performance improvement over

their prior generations, the introduction of the NUMA architecture still ren-

ders a Moore’s Law growth in the aggregate capacity of the new processors.

Furthermore, memory subsystem and inter-node bus has been improving

rapidly in the last decade. For example, the Intel Xeon Sandy Bridge ag-

gregates four DDR3 memory channels and two QPI interfaces and delivers

51.2 Gbyte/s maximum memory bandwidth and 128 Gbyte/s QPI band-

width. Lastly, the capability of network and storage I/O devices are also

growing dramatically. 40 Gbps Ethernet adapters has already been avail-

able to commodity servers for the past five years. The line rate of new Eth-

ernet reaches 100 Gbps in the market of high-end server adapters, switches

and routers [5]. In addition, solid-state drive array delivers more than

80 Gbps I/O bandwidth to a single host [6]. Currently high-end servers

and gateway nodes are often equipped with multiple network adapters and

large disk arrays to provide abundant aggregate bandwidth to parallel data

transfers.

However, existing data replication methodology and software fail to

utilize the hardware capabilities effectively to improve the application-

perceived or user-perceived performance. The biggest cloud service vendor,

Amazon, employs a compromised solution to copy user data in a storage

drive, and sends it via UPS [7]. IBM acquired a successful commercial so-

lution, Aspera, that only scales to 1/10 Gbps networks [8]. We summarize

the reasons for the suboptimal performance as follows:

3

I/O device

I/O device

Thread-dependency-agonistic scheduling Thread-dependency-aware scheduling

NUMA node Interconnect bus User thread

Inter-node communication Intra-node communication

Figure 1-1: Thread-dependency-agnostic versus thread-dependency-aware
scheduling in a four-node NUMA system

1.1.1 Poor NUMA-aware support

Existing data replication applications rely on the default OS behavior which

often adopts a thread-dependency-agnostic scheduling, i.e., it dynamically

chooses a CPU to run a user thread, and potentially migrates it later to

another NUMA node to balance the overall system load. However, thread

scheduling and migration that ignore the characteristics of NUMA archi-

tecture undermine the performance of I/O-intensive applications. Hence,

instead of using default OS scheduling, high-speed data replication software

must resort to implementing its own thread-dependency-aware scheduler.

As shown in Figure 1-1, an applications own scheduler has more knowl-

edge about its data access patterns and I/O devices in use, and thereby

can schedule all its threads and memory to the NUMA node that is closely

aligned with its target devices. Consequently, the scheduler reduces the

overhead of inter-node communication, and improves both the applications

performance and the systems overall efficiency.

A plethora of research efforts has been trying to enable NUMA-awareness

by benchmarking and modeling performance. Most of the current perfor-

mance models and resource assignment algorithms for NUMA architec-

ture [9–11] are based on hop-distance, directly or indirectly. It is one of the

4

most popular NUMA metrics, and represents the number of physical links

along the data access path between two devices. More hops on this path

usually imply a higher accessing cost. However, hop-distance is not a good

indicator to the NUMA penalty, especially for I/O performance, because

of the following reasons:

• The architectural details of many modern NUMA systems often are

not intuitive to users. In [12], the AMD architecture designers il-

lustrated three possible topologies of the 4P AMD Opteron Magny

Cours platform. These topologies are shown in Figure 1-2(a,b,c). For

the same type of 4P processors, the authors of [13] described another

topology variant as Figure 1-2(d). The exact design of a NUMA sys-

tem depends on the choices that are made by system architects and

is therefore implementation-specific, even for the same technology

specification. The different link width between the nodes with the

same number of hops also significantly impact the NUMA penalty, as

shown in research [14].

• Even if the full topological details are known in advance, hop-distance

is still not an accurate metric for actual data transfers among CPU,

memory, and I/O modules. Maximizing data locality does not always

minimize the execution time of data intensive applications, especially

in a multi-user/multi-task cluster environment. The authors of [15]

demonstrated, for their eight-node AMD host, an overhead because

of the cache coherency traffic led to a higher penalty to cores on the

edges compared to the middle ones in the host topology. Even local

memory access has a significant performance difference over CPU

nodes within the same CPU socket.

• The work in [16] indicated that the Intel Nehalem and Westmere

platforms take fairness into consideration and reserve a large fraction

5

N1 N5

N0 N4

N3 N6

N2 N7

I/O

I/O I/O

I/O

N1 N5

N0 N4

N3 N6

N2 N7

I/O I/O

N1 N5

N0 N4

N3 N6

N2 N7

I/O

I/O I/O

I/O

N1 N5

N0 N4

N6

N2 N7

I/O

I/O I/O

I/O

N3

(a) (b)

(c) (d)

x8
x16

Figure 1-2: Possible topologies of 4P AMD Opteron Magny Cours Proces-
sors. The oval circles in the plot represent the NUMA nodes, including
both CPU and memory. The lines between them denote high-speed Hy-
perTransport (HT) interconnections. The width of a link can be 8 or 16
bits.

of the node resources specially for remote memory accesses. Hence,

allocating all tasks locally cannot necessarily take the full advantage

of the aggregate system memory bandwidth. Moreover, excessive use

of local resources will introduce contention and congestion among

concurrent tasks on shared queues and buses, and thus degrade the

overall system performance [17].

Compared to hop-distance, an accurate NUMA cost model is more suit-

able to represent every detailed aspect of the system performance features.

STREAM benchmark [18] is the most widely adopted tool to understand

and model the NUMA penalty to memory accesses. However, as we will

present later in Section 4.2, the STREAM benchmark can neither reveal

the precise attributes of the I/O bandwidth performance pattern on a given

6

architecture, nor can it explain the enormous NUMA penalty to the remote

I/O adapter accesses. Therefore, new methodologies are indispensable to

understand the underlying reasons of the NUMA penalty and accurately

model the I/O access cost on a multicore system.

1.1.2 Outdated design of existing data replication soft-

ware

Although there have been numerous attempts to take advantage of multi-

threading and multi-streaming techniques, the existing software designs

still lack efficiency. 1) The Linux scp and FTP are single-threaded/single-

stream tools that run only on a single CPU core, and a single instance of

these tools does not scale to multiple cores. 2) GridFTP [19], a popular

data replication tool in scientific computing, uses a single thread pool to

handle all network and storage I/Os and to control events. This arrange-

ment leads to frequent context switching and cache re-warming, and is also

hard to scale to multicore systems. 3) BBCP software [20], another widely

adopted tool in the Department of Energy, employs a single thread for

storage I/O, regardless of the characteristics of its involved storage device.

4) UDT tool [21] builds on the UDP protocol, and suffers from excessive

user-level control overheads. It also uses a single thread for all storage

I/Os. 5) Aspera [8] is a widely-used UDP-based commercial tool, targets

gigabit performance, and does not scale well to the bulk data transfer in the

40/100 Gbps networks. 6) Our previous work on the RFTP tool [22] de-

pends on specific RDMA hardware to offload data transfer tasks to RDMA

I/O devices. More importantly, these tools do not incorporate the asym-

metrical NUMA architecture, and cannot attain optimal performance.

Another ineffectiveness of existing data replication protocols is that

they often treat a single file as an individual transaction that spends sev-

7

Data source Data sink

1. Directory traversal

and classification

3. Send out all

directory metadata

2. Prepare data structure

4. Receive directory

metadata and re-build the

directory structure

³6\QF�'
RQH´

7. Send out all file

payload

5. Send out all file

metadata
6. Store metadata of all

files with the given order

³7UDQVIH
U�'RQH´

³6\QF´

³$OO�6HQW´

8. Receive and store all

files to disk

9. Flush all data to disk

Type, path, access mode...

Type, size, ID, access mode...

Figure 1-3: Multi-file transfer protocol in FTP and BBCP tool

eral round trips to synchronize each file metadata with the remote peer.

Figure 1-3 exemplifies this process with the protocol of transferring multi-

ple files in FTP and BBCP software [20]. For transferring large files, the

latency and overheads of processing meta data are relatively small com-

paring to those for transferring the actual data payloads. However, this

design leads to excessive overheads in the case of moving a massive num-

ber of small files, especially across high-latency wide-area networks. The

scenarios become even more challenging for real workloads that are mixed

with large and small files.

1.2 Challenges

While multicore processors and I/O subsystems provide the necessary phys-

ical performance, designing and implementing efficient data replication is

quite challenging and often complicated by the heterogeneity with the hard-

ware and software components involved along the end-to-end data replica-

tion path. Figure 1-4 provides a comprehensive view of relevant research

8

Hardware

OS

Application

Workload

Storage I/O Network I/O Exterior Network

Database
Source Code Files
Software Packages

Video/Images
Scientific Data

Short/Long Transactions
Burst/Consistent Traffic

Kernel-bypass
Sync/Async I/O

Multi-streaming
I/O Multiplexing

User Request Management
Synchronization Protocol

Buffer Management
Multi-tasking

Multi-threading
Event Driven

Cache Management
TCP/IP Stack

RDMA

Thread/Memory Scheduling
Interrupt Handling

SSD/HDD
Storage Area Network Network Adapter

Multicore Processor, DMA
CPU Interconnect

I/O controller, PCIe Bus
Hardware Event Counter

Internet
Data Center

Local Area Network (LAN)
Wide Area Network (WAN)

Figure 1-4: Research fields at various system levels along end-to-end data
replication path

areas that reside in multiple system levels. A highly efficient data repli-

cation pipeline requires smoothly interaction among those modules, and

any defect can potentially cause considerable deterioration in performance.

This section details the challenges of our research bottom-up as follows:

1) In-depth understanding of NUMA effects and I/O access

patterns. An in-depth understanding of NUMA effects and I/O access

patterns requires comprehensively and thoroughly characterizing every as-

pect of multicore system. The most popular approaches include hard-

ware event monitoring and I/O benchmarking. Various hardware counters

are used to keep track of the events (for example, cache misses, cache

stall cycles, floating-point operations, branch mispredictions, CPU cycles,

and instructions executed) and are commonly incorporated into the task-

concerning software systems and applications, including adaptive CPU

scheduling, performance monitoring/debugging, workload pattern identi-

9

fication, and adaptive applications that manage and schedule the allocated

resources by themselves [23]. However, the number of these hardware events

is excessive, and their naming, implication and availability vary wildly from

one specification and OS to others. An appropriate screening and utiliza-

tion of these hardware counters demands a good understanding to the sys-

tem and tedious characterization efforts. On the other hand, many research

efforts resort to benchmarking every case of I/O access and consequently

require accessing expensive high-speed I/O devices, tuning I/O configura-

tions, and attaining extra high-end server for network tests. The approach

often incurs prohibitive cost as well as onerous workloads, especially for

the high-node-count (HNC) systems with many I/O hardware components.

On the other hand, it is more complicated to measure I/O bandwidth than

to memory bandwidth because the actual usable bandwidth of peripher-

als depends on all resources along the data path between the I/O device

and its requesting processor. These resources include PCIe buses, CPU

interconnect links, various I/O controllers and chipsets, and the specific

PCIe devices (SSD, HDD, Storage Area Network, Network Adapter, and

etc.) that contain the requested data as shown in the hardware level of

Figure 1-4. The performance bottleneck can potentially reside in any of

them.

2)Inefficient general-purpose OS scheduler fail to recognize the

inter-dependency among threads. The general-purpose OS scheduler

often ignores NUMA alignment, and performs application-agnostic thread

binding. This strategy leads to excessive inefficient I/O and memory ac-

cesses and thereby suboptimal performance in high-throughput computing.

Instead of relying on default OS behavior, high performance data repli-

cation applications must implement their own thread-dependency-aware

resource scheduler. However, thread/memory scheduling on multicore sys-

tem is already known to be a challenging problem. The NUMA effect and

10

the requirement to mitigate it will incur further complexity to the schedul-

ing algorithm. Any approach must entail two aspects: 1) Online dynamic

scheduling. This method requires complicated logic and frequent system

profiling and computation to determine the optimal resource allocation

and assignment. The overhead is often non-negligible for a large number of

small I/O transactions, each of which has a small duration. 2) Offline per-

formance modeling. This aspect usually uses benchmark tools to capture

the characteristics of system performance, and then utilizes the generated

model to guide the future resource scheduling. The intuitive approach for

data replication applications is to individually benchmark every subsystem

involved in a memory or PCIe access with all possible NUMA configura-

tions. This leads to the similar aforementioned problem in the Section 1.2.

Both aspects will be covered in this dissertation. Besides, a highly efficient

resource scheduling also needs to consider I/O interrupt binding and cache

management.

3)Scalable application design to maximize system parallelism.

Modern high-end systems often have multiple host adapters for both net-

work communication and external storages. Each type of I/O operations

and its associated adapters may exhibit unique behavior under various ac-

cess patterns, e.g., kernel-bypass, sync/async storage I/O, network multi-

streaming and I/O multiplexing. To obtain the maximum aggregate per-

formance, data replication software needs efficient task/buffer management

and parallel access to those resources. For this purpose, the software must

incorporate new paradigm and design framework, e.g., multi-threading,

multi-tasking, event driven, and buffer reuse, that are more difficult and

error-prone than the traditional ones, to assure a high-speed end-to-end

replication pipeline. Meanwhile, a light-weight protocol is also required

to negotiate resource assignment and data replication parameters to sup-

port multiple concurrent requests while ensure high performance for each

11

individual task. At last, the data replication applications need to supply

various modules, such as progress reporting and error handling, to interact

with users and enhance user experience.

4)Consistent high performance across various workloads. De-

livering a large volume of content, e.g., scientific data and high-resolution

images and videos, consumes a large fraction of bandwidth among all appli-

cations in the Internet today. Most studies in high throughput computing

community have focused on efficient storage, transfer, and management

of large files. However, many production workloads and the majority of

consumers primarily manipulates a large number of small files that range

from several hundreds of bytes to megabyte. For example, a standard cloud

application may need to install complex software packages, OS kernels and

databases that consist of thousands of executables, dynamic libraries, and

configuration files. The package and database must either be accessed at

run-time over networks, which results in many small network transaction,

or be installed on a worker node, resulting in a large number of small

disk I/Os. Unfortunately, the data throughput of small file transfers is

often several orders of magnitude worse than that of bulk transfers of large

files [24]. Achieving high performance for transferring large numbers of

small files necessitates two fundamental changes to todays solutions, 1) an

effective protocol to process and synchronize file metadata between data

source and sink using as few message exchanges as possible, and 2) an ef-

ficient pipeline to transfer actual payloads. The capability to handle burst

I/O traffic and different network latencies are other challenging issues that

need to be addressed in data replication design.

12

1.3 Research Contribution

This dissertation proposes a new system for high performance data repli-

cation. We follow a streamlined approach to design and implement a com-

prehensive system, i.e. analyzing system components’ performance, iden-

tifying the areas of improvement, using the quantitative evaluation results

to guide the system integration, and make the contributions as follows:

1)In-depth analysis of the NUMA effects. Chapter 3 quantifies

the NUMA penalty and provides a first-order analysis on the NUMA effects

of modern high-performance systems. We select and monitor various rel-

evant hardware counters while utilizing intensive memory access and I/O

tasks to mimic real world data replications. To the best of our knowledge,

no existing study attempts to undertake such a a quantitative evaluation

effort. The test results expose the significant impacts of the hardware

prefetching contention and the cache coherence traffic inside NUMA sys-

tems. These factors lead to a performance degradation of 53% to 85% in

memory access and 26% to 60% in network communication. Therefore, we

conclude that the bare-metal hardware enhancement cannot mitigate the

NUMA penalty and guarantee a better performance for the current data

replication applications, and confirm that the NUMA-awareness is vital to

achieve superior I/O performance. Meanwhile, we propose a new NUMA

metric, i.e., NUMA scheduling factor, to quantify the NUMA penalty in a

modern multi-core system.

2)New methodology and tool for NUMA-aware resource schedul-

ing. Chapter 4 shows the limitations of existing characterization methods,

including the hop-distance to measure the NUMA penalty and the well-

known STREAM benchmark [18] to analyze I/O performance. We then

design and develop, to the best of our knowledge, the first NUMA charac-

terization software for bulk data I/O tasks. It is capable of characterizing

13

and predicting the relative bandwidth performance levels among various

NUMA configurations without even involving the actual I/O devices and

daunting benchmarking. The method is validated by comparing the gener-

ated model with the real performance result of various I/O operations, in-

cluding TCP, Remote Direct Memory Access (RDMA) and disk read/write,

in node-level. We conclude that our NUMA characterization method and

tool can attain accurate offline I/O bandwidth performance models and

help to improve applications’ I/O behavior and to assist runtime sched-

ulers on all NUMA platforms.

3)Mathematical description of multicore thread scheduling prob-

lem and preliminary implementation. We model the multicore thread

scheduling for the end-to-end data replication as a staged bipartite graph

and explore its potential mathematical solutions in Chapter 5. The com-

putation complexity of this graph model is proven to be NP-hard, even for

the relaxed form of the model. Thereafter, we resort to solve the problem

empirically. We develop and implement a thread scheduling module for

a bulk data transfer software, BBCP. With this module extension, BBCP

can specify its affinity preference of thread-to-CPU v.s. thread-to-memory

along the entire data path for both client and server processes at runtime.

We then thoroughly evaluate the NUMA-aware BBCP over a high-speed

network testbed. The experimental results show that the NUMA-aware

BBCP consistently runs at the wire speed in the selected testbed system

and obtains 10% to 220% bandwidth improvement over the standard BBCP

in memory-based tests. It also achieves remarkable performance benefits

in a storage-area network testbed.

4)A complete new design and implementation for the next gen-

eration high-speed data replication. We integrate the aforementioned

new findings into a novel design of high-speed data replication software in

Chapter 6. Our new design contains a variety of high performance features,

14

in addition to NUMA-awareness, to ensures a superior performance for dif-

ferent types of workload and multicore systems. Our proposed framework

adopts a resource-aware approach to pre-allocate I/O threads, and ensures

that resources are reusable and optimally allocated among multiple users

and data transfer requests. It also provides storage-centric task mapping

and NUMA-aware thread scheduling to ensure the affinitive data move-

ment and communications in multicore systems. The framework design

also seamlessly integrates multiple strategies of optimizations, such as file-

level sorting, block-level asynchronism, and thread-level pipelining. Finally

we provide a reference implementation, termed RAMSYS–Resource-Aware

Asynchronous Data Replication with Multicore SYStem. We compare com-

prehensively our system with the state-of-the-art GridFTP, BBCP and

Aspera software, using full-scale high bandwidth network testbeds in both

local data center and nationwide long-haul networks. The evaluation over

various realistic workloads confirms that our software achieves 1.13x to

1236x speed-up over the other software tools for these workloads.

1.4 Significance and Broader Impacts

Data replication is a widely used technology to copy data over a computer

network to one or more remote locations. This research will greatly improve

data replication performance, and thus yield substantial benefits to other

areas in high performance computing and even to the entire society. (1)

The integrated data replication system can be potentially incorporated into

several scientific applications of national priorities. For example emergency

response and preparedness demand expedited data transfer to the emer-

gency center. Clean energy, bioinformatics and photon science replicate

data from experimental facilities to the data processing centers. Exascale

simulations constantly analyze petabytes of their simulation results, and

15

need to move data off-supercomputers that are not necessarily optimized

for data-intensive high throughput computing. 2) In the business world,

ensuring data security and keeping copies of the data at physically separate

locations is a common practice to safeguarding data during a natural dis-

aster or extreme event. Furthermore, improving data replication efficiency

can largely save the time and increase the ROI (return of investment) of

the valuable data and their supporting infrastructure, such as enterprise

data centers. 3) We expect our research prototype eventually utilizes the

web service interface so that end consumers can control and move data

with their mobile devices. This will help individual consumers to utilize

reliable and cost-effective cloud storages and data sharing services for their

even-growing personal data.

1.5 Dissertation Overview

The remainder of this paper is organized as follows. Chapter 2 contains

the background and design consideratons that are relevant to this work.

We conduct extensive experiments to quantify the NUMA remote access

cost using iperf network benchmark [25], STREAM memory benchmark

and hardware event counters in Chapter 3. Chapter 4 focuses on demon-

strating the ineffectiveness of the existing NUMA benchmark methods, de-

scribing the design of our empirical methodology, and offering the details

of how to apply it to real applications. Chapter 5 provides the mathemati-

cal formulation of resource scheduling in NUMA systems, and follows with

the implementation and evaluation of the proposed NUMA-aware thread

scheduling and optimization in BBCP software. Chapter 6 presents the de-

sign, implementation and extensive evaluation of the new software system,

named RAMSYS, followed by the conclusions in Chapter 7.

16

Chapter 2

Background

In the new era of the prevalence of multi-/many-core technology, the com-

putation efficiency and performance are at an inflection point: on the one

hand, the performance of serial applications and their underlying single-

core servers saturates because of the power constraints and the problem

of energy dissipation; on the other hand, a trivial migration of these ap-

plications to the multi-core and many-core platform does not guarantee

any improvement, and might even cause unexpected aggravation. We con-

tinue observing a widening gap between the bare-metal performance of

a multi-core processor and the effective application-level capacity while

many vendor road maps promise to repeatedly double the number of cores

per chip [26] based on the Moore’s law. Furthermore, many hardware re-

search/development efforts were to accommodate more nodes into a single

system. In [27], the authors described that the coherent HyperTransport

(cHT) protocol used in the AMD Magny-Cours Opteron processors cannot

support more than 8 nodes. Although a new HNC HyperTransport spec-

ification was proposed to overcome this limitation, current AMD Opteron

processors do not really implement this new protocol extension. In fact,

the scalability of the current series of processors was improved by adding

a new bridge chip which could then support up to 32 nodes effectively.

17

With the nodes in the system get bigger, many works illustrated a heavier

NUMA asymmetric to I/O performance. The research [13] benchmarked

TCP performance with the newly released 40 Gbps Ethernet technology

on their two-node Intel testbed and eight-node AMD testbed. Their mea-

surement showed that the placement of TCP processes on remote CPU

cores, at either the sender or receiver side, can lead to as much as 30% loss

of the overall TCP bandwidth performance. In [28], PCIe-attached GPU

hardware was tested by various benchmark tools to compare the bandwidth

performance of shared I/O hub and dedicated I/O hub in NUMA systems.

The results showed that the penalty of incorrect NUMA assignment is sub-

stantial and asymmetric. A 31% reduction in read-back bandwidth and a

13% reduction in download bandwidth were observed for bulk data trans-

fers to GPU devices. The study in [29] illustrated that remote transfers to

SSDs could potentially reduce the maximum achievable throughput by 8%

to 40%, and delay I/O completion time by up to 130%.

Except for NUMA-awareness, an effective multicore resource sched-

uler needs to explore various system parallelism while avoid the penalty

of shared resource contention. Plenty of efforts have been made to propose

proper resource scheduling mechanism, multi-threading and concurrent de-

sign for various applications. They provide good guidance for the research

of high performance data replication systems. In the section, we summarize

the background and related work to this dissertation.

2.1 NUMA Terminology

Advanced server technology can be leveraged to improve system perfor-

mance and reduce overall cost [30–34]. Many current high-end systems

include multiple CPU packages (sockets) on a single motherboard. Pro-

cessor cores, memory banks, and Input/Output (I/O) modules are dis-

18

tributed across different domains (nodes) and assembled together by a

cache-coherent, point-to-point interconnect. Each processor has faster ac-

cess to directly-attached memory modules than to the remote ones that

are linked by these interconnect buses. Such a feature is widely known as

the Non-Uniform Memory Access (NUMA). As NUMA systems scale up,

it is prohibitively difficult to implement a full connection for all processors

in a host due to hardware constraints. For instance, the pin constraint

of the AMD G34 (Generation 3, four memory channels) architecture al-

lows at most four HyperTransport (HT) ports per CPU node. Addition-

ally, for the bottom nodes in the topology, as shown in Figure 1-2, one

port is reserved for I/O peripherals. These design constraints prohibit a

fully-connected topology, and create different physical distances for remote

accesses. In Figure 1-2, the two CPU dies in the ellipses are physically put

in a tightly coupled multi-chip CPU package. We define ”local” node as all

the resources, including CPU cores, memory banks, I/O devices, directly

attached to a single CPU die, and a ”neighbor” node as the resources that

are not local, but in the same CPU package, and ”remote” nodes as the

resources in other packages. For example, as shown in Figure 1-2(a), node

7 is local to itself, a neighbor to node 6, remote to nodes {0, 2, 4} with

one hop, and to nodes {1, 3, 5} with two hops. The similar topology of

the Intel eight-node NUMA architecture can be seen in [35], in which all

NUMA nodes are also partially connected. This implies as well multiple

possible performance levels to access data.

2.2 NUMA Characterization

The first step of utilize NUMA multicore system resource is to understand

and characterize the NUMA effects to data replication performance. Pre-

vious NUMA characterization studies included extensive experiments to

19

evaluate the performance aspect of NUMA memory and peripherals access.

In [36], a memory access cost model was built via the STREAM benchmark,

and then confirmed with several other benchmark tools. In [28], the band-

width performance of PCIe-attached GPU hardware was tested by various

benchmark tools to compare two different design strategies for I/O hubs in

a NUMA system. TCP performance with the newly released 40 Gbps Eth-

ernet technology on two different NUMA architectures was benchmarked

in [13]. However, all these efforts simply attributed the NUMA perfor-

mance asymmetry to the spatial distance between nodes. There was no

prior study on the concrete causes of NUMA remote access cost for con-

temporary high-performance hardware devices and their impacts on data

replication applications.The author of literature [37] proposed a prototype

software comprised of two transaction processing benchmarks and one OS

customization. The data collected by the software was then applied to

the task-dispatching and page-allocation algorithms of an OS, and led to a

decrement of inter-node bus traffic in the NUMA system. Numerous perfor-

mance models [38–40],were also extended to handle NUMA architectures,

and can be utilized to determine the expected performance of a given appli-

cation. However, these models required prior knowledge on memory-access

latency and bandwidth in order to estimate the performance. In our per-

formance model, we require little knowledge about a given system. In [41],

a memory access cost model was built via the STREAM benchmark, and

then confirmed with multiple benchmark tools. The same authors then

integrated them into a benchmark toolkit called cbench [42]. However, in

this work, we show that their methodology based on STREAM benchmark

cannot be applied to the I/O performance model of modern HNC NUMA

hosts. We also provide our own modeling benchmark to characterize the

NUMA multicore systems.

Except for experimental benchmarking, hardware event counters were

20

also often utilized to analyze and improve performance over multicore sys-

tems. These counters can track thousands of events to monitor covering

many aspects of microarchitectures behavior without slowing down the ker-

nel or applications. Many tools to gather hardware performance counter

data are available for Linux, including OProfile, likwid [43], PAPI [44],

perf [45], pfmon [46], Intel VTune etc. The Clavis scheduler [47] is user level

scheduler that supports various scheduling algorithms under Linux operat-

ing system running on multicore and NUMA machines. It uses hardware

counters to monitor the system programs and predetermine the workload

before scheduling. The work in [48] analyzed the impact of scheduling de-

cisions on the dynamic performance of tasks. It utilized hardware event

counts to track dynamic events at each core, then analyzed the data by

core, by task, and by various thread schedulings and time slicings to show

which counters mattered the most and which sorts of multicore schedules

could lead to degraded performance. The dissertation also utilizes hard-

ware event reading to compute NUMA scheduling factor, and thus supports

dynamic resource scheduling on multicore platforms.

2.3 Mathematical Formulation of Multicore

Scheduling

A number of studies focus on mathematically formulating the multi-task

scheduling problem on multicore system [49–52]. They try to optimally

schedule concurrent tasks to multiple cores in the system, such that the

performance degradation is minimized, usually attained by minimizing the

contention for shared resource while keeping good data locality. Unfortu-

nately, even if all possible combinations of co-scheduled applications and

their deleterious effects were known beforehand, optimal scheduling for

21

more than 2 cores on a processor is an NP-complete problem. The research

in [50] targets at figuring out the optimal combinations of application pro-

cess that lead to minimal shared resource contention. The problem is repre-

sented as a graph theoretic formulation whereby finding the minimum edge

cover of a weighted graph. A polynomial-time algorithm for this formula-

tion is then provided to find out the solution efficiently. However, it is only

validated on dual-core and quad-core versions, and hard to scale to high-

core-count systems. Another study [51] formulates the multicore scheduling

problem using a Markov decision process (MDP) that considers power con-

sumption of the processor cores and caches for video decoding applications.

The MDP solution requires complexity that exponentially increases with

both the number of processors and the number of frames in a short look-

ahead window. The work in [52] addresses the problem of parallelizing

and scheduling a set of sporadic parallel tasks. The authors formulate the

problem as a density minimization problem with multiple parallelization

options, and validate the proposed algorithm with both simulation and

benchmark application. The issue is that it does not consider preemption

and migration cost, and NUMA asymmetry. In this dissertation, we model

the data replication task scheduling as min-sum-max resource allocation

problem (MSMRAP), and show that it is a NP-complete problem.

2.4 Multicore-aware and contention-aware sched-

uler

There has been significant interest in the research community in addressing

multicore-aware and contention-aware scheduling. We categorize them as

follows.

1) Hardware level. These studies mostly fall into two categories,

22

performance-aware cache modification, e.g., [53–57], and performance-aware

memory controller scheduling, e.g., [58–61]. The proposed solutions usu-

ally require changes to hardware and OS. As such, the majority of these

techniques were only evaluated in simulation studies. Among them, some

promising solutions have yet to be implemented in real product systems.

2) OS level. Thread scheduling policies at the OS level are grouped

into two categories: thread-dependent policies, in which threads are sched-

uled based on their application types and relations to other threads, and

thread-independent policies, where no application types and dependencies

are considered in scheduling. In most general-purpose OSs, e.g., the de-

fault Completely Fair Scheduler (CFS) in Linux, use thread-independent

policies and tend to schedule threads on less loaded cores for load balanc-

ing or cores with warm cache to exploit cache affinity. Thread-dependent

schedulers appear mostly in research studies [62–65]. These mechanisms

usually require intensive kernel modifications, and have yet to be deployed

into real systems.

3) User level. Application-level schedulers [66–68] to address thread-

to-resource mappings are particularly attractive because they require no

change to hardware and only minimal modification to the operating sys-

tems. Most modern OSs, such as Windows, Linux, and Solaris, already

provide a rich collection of application programming interfaces (APIs) to

enable application-level NUMA optimization [69].

This dissertation focuses on user level benchmark tools and scheduler.

23

Figure 2-1: I/O modes in Linux

2.5 Parallelism and Concurrency at Various

Levels

Except for NUMA-awareness, highly efficient data replication systems are

also required to exploit the parallelism and concurrency that are available

at various system levels. In this section, We discuss a taxonomy of four

operation models [70] and parallelism levels, with the combinations of syn-

chronous/asynchronous I/O and blocking/non-blocking models as show in

Figure 2-1.

• Synchronous blocking I/O. The synchronous blocking I/O model

is the most common model to a user-space application that performs

a system call and blocks itself until the system call is complete. It is

simple to implement and efficient in term of CPU cost for the single

process and single core paradigm. To improve parallelism, program-

mers must utilize multiple threads to keep multiple I/O requests in-

flight. We term it “thread-level parallelism. The overhead of keeping

multiple active threads becomes a disadvantage. For example, we run

iperf tool [25] over our 40 Gbps Ethernet testbed described in Sec-

tion 6.3.1. Iperf test reaches 30 Gbps bandwidth with single thread,

peaks at 40 Gbps (the bandwidth limit) with 8 parallel threads, and

nevertheless deteriorates to only 12.5 Gbps when 500 iperf threads

24

send traffic.

• Synchronous non-blocking I/O. A less efficient variant of syn-

chronous blocking is synchronous non-blocking I/O. Regardless whether

the actual I/O completes, an I/O call/request returns right away, ei-

ther successfully or with an error code indicating that the command

could not be immediately satisfied. This may require an application

to make numerous calls, and triggers numerous context switches, to

busy-wait for the final completion of data retrieval. This model is

potentially extremely inefficient because any gap between the data

becoming available in the kernel and the user post an I/O request to

return it can increase the processing latency.

• Asynchronous blocking I/O. Another blocking paradigm is that

an application makes non-blocking I/O calls and uses blocking calls

afterward to check the status, i.e., fetch notifications. In this model,

an application uses two blocking systems calls, i.e., pollings (select()

or poll()), to determine and detect any new activity/event associated

with an I/O descriptor. To improve parallelism in this paradigm,

application can utilize a polling system that provides notifications for

multiple descriptors simultaneously. We term this as “descriptor-level

parallelism. The application blocks on polling notification instead

of I/O requests. GridFTP tool adapts this model and uses a single

polling thread to manage both disk I/O and network I/O descriptors.

The primary issue with this mode is that the polling thread usually

incurs non-negligible overheads, and becomes bottleneck in the high

performance I/O scenarios.

• Asynchronous non-blocking I/O. Finally, the asynchronous non-

blocking I/O model overlaps I/O activities and other tasks (e.g. com-

puting) within a single thread. An I/O call/request returns imme-

25

diately, indicating that OS successfully initiates I/O activity. The

application program then performs other tasks, such as posting more

I/O requests or handling the completion notification of previous re-

quests, while the background I/O operation proceeds concurrently.

We refer this method as “block-level parallelism. Linux system has

two sets of Asynchronous non-blocking I/O (AIO) implementations.

One is POSIX AIO, an application-level implementation that essen-

tially emulates the behavior of asynchronous I/O with multiple back-

ground threads performing regular blocking I/Os, and hence gives the

calling party an illusion that I/Os are asynchronous. The other one

is Linux native AIO [71] directly supported in the OS kernel level.

In this paper, we only consider the multi-threaded synchronous I/O

model and the asynchronous non-blocking I/O to parallelize storage I/Os

given the apparent shortcomings of the other two modes.

2.6 Existing Multicore-aware Data Replica-

tion Software

There are also extensive works to adapt end-to-end data replication to the

multicore systems in Linux. Scp and FTP tools are known to be single-

threaded. Herein, we show the multi-threaded high-speed data replication

tools as follows.

2.6.1 TCP-based tools

GridFTP defines a general-purpose mechanism for secure, reliable, high-

performance data movement, and it is the most popular tool for high perfor-

mance data replications. It was first reported in the research [19]. Then, the

authors in [72] showed performance limitations of GridFTP through several

26

numerical examples on wide-area area environment. GridFTP-APT pro-

posed in [73,74] could automatic tune the GridFTP parallelism to improve

the performance of GridFTP in various network environments. Based on

GridFTP, the work in [75] an algorithm that dynamically schedules a batch

of wide-area data transfer requests with the goal of minimizing the overall

transfer time. Recent studies with GridFTP can be found in [76–78]. dd

The BaBar Copy Program (BBCP) is another widely-used peer-to-peer

data replication tool over TCP/IP stack. It was first described in [79]. Its

excellent performance has been identified in multiple studies [80–82]. The

Fast Data Transfer service (FDT) [83] is also an high-speed data replication

tool using multiple parallel TCP streams.

2.6.2 UDP-based tools

UDP-based data transfer (UDT) [84] is a reliable UDP based application

level data transport protocol for distributed data intensive applications over

wide area high-speed networks. UDT uses UDP to transfer bulk data with

its own reliability control and congestion control mechanisms. GridFTP

also extends a separate module to integrate UDT in [85]. Aspera is an-

other UDP-based solution as an industrial product. It relies on FASP pro-

tocol [86] to deliver high performance over the Internet. The work in [87]

proposed Performance Adaptive UDP (PA-UDP) protocol to dynamically

and autonomously maximize performance under different systems. These

tools are usually designed for 1/10 Gbps network, and will lead to pro-

hibitive system load while the network performance reaches 40 Gbps or

higher.

27

2.6.3 RDMA-based tools

Remote Direct Memory Access (RDMA) is introduced to eliminate data

copy overhead in high performance networks [88]. A number of protocol

were proposed to take advantage of this technology for both local area and

wide area data replications. For example, the study in [89] provided the

Advanced Data Transfer Service (ADTS) with RDMA send/receive opera-

tions, and the authors in [90] integrated this service with GridFTP. Another

research [22] gave RDMA-based FTP (RFTP) tool using RDMA WRITE

operation, and demonstrated its outstanding performance over various real-

world network testbeds. However, RDMA-based tools need special network

switches, adapters and cables. The cost of these hardware is usually high.

28

Chapter 3

NUMA effects Analysis and

Quantification

The first step to design resource scheduling mechanism for high perfor-

mance data replication is to understand the essence of NUMA effects,

and hardware event counters are powerful tools to discover the interaction

among underlying hardware components. In this chapter, we first demon-

strate the huge performance gap between hardware capability and actual

I/O operations using a state-of-the art NUMA system and widely adopted

benchmark tools. An in-depth analysis, using hardware event counters,

then reveals the underlying causes of the gap, and justifies the need for

NUMA-awareness for modern data replication applications to eliminate

this gap. Based on the new findings, a new metric is proposed to quantify

the real-time NUMA penalty in multicore systems.

3.1 Experimental setup

We focus our experimental study on a Dell PowerEdge R820 host. Table 3.1

summarizes its hardware and OS configurations. This host supports 64

bit PCI-Gen3 peripheral interfaces, each of which can potentially provide

29

Figure 3-1: System topology of evaluation system

64 Gbps bandwidth. The evaluation system contains 32 CPU cores. The

cores are grouped into four CPU packages, a.k.a. CPU nodes. Each NUMA

node herein consists of eight CPU cores, a shared last level cache (LLC), one

memory controller, and one I/O subsystem. QPI interconnect paths enable

communication among nodes. The system topology is shown in Figure 3-1.

The four NUMA nodes are arranged with a ring topology. Only node 0

and node 1 have on-chip I/O hubs or PCI bridges. Node 2 and 3 are

connected to the peripheral devices only via Node 0 and 1. Two parallel

QPI channels are deployed between neighboring nodes. hyperthreading,

irqbalance, and cpuspeed services are disabled during all tests based on the

recommended settings in [91]. All these hardware setups guarantee a high

aggregate memory and network performance.

Figure 3-2 shows the network connectivity of the testbed system. The

system is configured with two 40 Gbps Ethernet adapters. Two back-to-

back Ethernet connections are established between the two tested nodes

with optical fiber cables. The other end of cables is connected to an IBM

test host. All network adapters are PCI Gen3 based. The evaluation sys-

tem is also connected to a storage system via 40 Gbps InfiniBand (IB) [92]

interface. This backend storage-area network (SAN) in the figure is based

on the iSCSI extensions for RDMA (iSER) protocol [93], and can sup-

30

Table 3.1: Server specifications

Processor model
Intel Xeon

CPU E5-4620 @ 2.20GHz
CPU microarchitecture Intel Sandy Bridge EP

CPU cores 4×8
LLC size 16 Mbytes

System memory 4×192GB DDR3 1600MHz
Board chipset Intel C600
QPI bandwidth 2×7.2 GT/s (115.2Gbyte/s)
Operating system CentOS release 6.3 (Final)
Linux Kernel 2.6.32-279.5.2.el6.x86 64

Figure 3-2: System connectivity for network performance characterization

port a maximum read/write bandwidth of 40 Gbps. We also bind network

interrupts in the evaluation host to the directly attached CPU nodes, re-

spectively. This is the optimal configuration for interrupt affinity, as stated

in [91]. Table 3.2 gives other network parameters.

Table 3.2: Network specifications

Network adapter
Dual-port Mellanox ConnectX-3 EN

40 Gigabit Ethernet adapters
Network driver MLNX OFED LINUX-1.5.3-3.1.0
Round trip time 0.06ms

MTU 9000 bytes (Jumbo Frame)

31

Figure 3-3: Remote network adapter access by iperf benchmark

3.2 Observation of NUMA Effects on Net-

work Performance

Here we use iperf 2.0.5, a widely used bandwidth benchmarking tool, to

determine the network bandwidth performance of the evaluation system.

Since iperf mimics the behavior of typical bulk data replication applica-

tions, such as intensive memory data access and protocol stack processing,

and it is a proper tool to discover the NUMA effects on data replications.

In these iperf tests, we found that the location of memory node did not

show noticeable impacts on performance. This is because the operating

block size in the iperf tests is relatively small, and this enables iperf to take

advantage of high-speed caches between CPU and main memory. However,

the network card in this test is physically attached to node 1, and all the

interrupts from the card are also directed to this node. For an example in

Figure 3-3, if we pin the iperf process to node 3, it needs to retrieve data

content from the interrupt handler at node 1. Hence, TCP applications

suffer from the NUMA remote access penalty as well.

Furthermore, the location of the iperf sender node has minor influence to

the data transfer performance because the bottleneck of TCP data transfer

resides in the receiver side, and has direct impact to the end-to-end network

32

Table 3.3: Iperf benchmark test parameters
TCP congestion control Cubic

TCP window size(Kbytes) 128
I/O block size(Kbytes) 128
Test duration(seconds) 300

 0

 20

 40

 60

 80

 100

 120

1 2 4 8
 0

 50

 100

 150

 200

 250

 300

A
gg

re
ga

te
 B

an
dw

id
th

(G
bp

s)

A
gg

re
ga

te
 C

P
U

 u
sa

ge
(%

)

Number of TCP streams

Node0-bandwidth
Node1-bandwidth
Node2-bandwidth
Node3-bandwidth
Node0-CPU
Node1-CPU
Node2-CPU
Node3-CPU

Figure 3-4: Aggregate bandwidth (higher is better) and CPU usage (lower
is better) of iperf benchmark with multiple concurrent streams, ”Node n”
represents that all the test processes are running on node n.

performance. This observation is also confirmed in [13]. We focus on the

receiver behavior and deploy the evaluation system as the receiver, and the

remaining IBM host as the sender, as shown in Figure 3-2. Other iperf test

parameters are listed in Table 3.3.

The iperf receiver processes are pinned into each of the four CPU nodes

by using numactl utility [94]. Each test employs a different number of con-

current TCP streams. Figure 3-4 illustrates the aggregate bandwidth and

CPU usage of each test case. We observe that the location of the CPU that

hosts the benchmark processes has a remarkable impact to the network per-

formance. NUMA nodes (node 0 and node 2) that are one-hop away have

significantly lower bandwidth than the local memory node, and the two-

hop node (node 3) has the worst memory bandwidth. As expected, this is

33

consistent with the system topology. What is not expected is the enormous

NUMA penalty to remote network adapter accesses. With the local bind-

ing configuration, iperf can easily reach the physical bandwidth limitation

(40 Gbps). However, although the evaluated system supports a QPI bus

bandwidth of 115.2 Gbyte/s and a memory bandwidth of 51.2 Gbyte/s, the

bandwidth of the remote binding cases cannot even exceed 20 Gbps. Fur-

thermore, each hop on the QPI bus does not imply the same performance

penalty to network I/O performance, i.e., one-hop performance is only a

half of the local case, but the two-hop case shows only a slight degradation,

or less than 15%, compared with the one-hop case. The bandwidth of lo-

cal access improves significantly with the growth of the number of parallel

threads, while that of remote memory access almost stays constant due to

the NUMA penalty.

3.3 Analysis for NUMA Remote Access Penalty

In the previous subsection, we illustrated that the performance seen by data

replication applications would be much lower than the maximum hardware

capability when remote access was involved. This motivates us to consider,

can the further hardware performance improvement eliminate the NUMA

effects on these applications? Will the NUMA-awareness still be necessary

to future data-intensive applications, including bulk data replication tools?

The answer to these questions entails an in-depth understanding of the

factors lead to NUMA effects, instead of a simple attribution to the physical

distance between nodes.

For these purposes, we use the STREAM memory benchmark for anal-

ysis instead of iperf network benchmark due to following reasons. Firstly,

TCP-based operations in iperf benchmark impose intensive memory ac-

cesses, and this is very similar to the operations in the STREAM bench-

34

mark. Secondly, network I/O bandwidth is often an order of magnitude

lower than memory bandwidth, and thereby the I/O performance differ-

ence among various NUMA configurations is not as obvious as the memory

access cases, as detailed in [95]. Finally, the operations in the STREAM

benchmark are easy to understand, and thus facilitate our comparison and

analysis.

3.3.1 Observation of NUMA effects on memory bench-

mark

In order to obtain an accurate memory performance, STREAM requires

that each data array be four times as big as the largest cache used. In our

case, the LLC is 16 Mbytes per CPU socket, and thereby the array size

should be at least 64 Mbytes, or N = 8, 000, 000 double-precision floating

point numbers. For our tests, we set N = 60, 000, 000. Also, we change

the number of iterations from 10 to 100, for a more accurate performance

measurement. It is not necessary to try all the combinations of CPU-node

binding and memory-node binding since in the evaluated testbed, perfor-

mance levels are only determined by the number of intermediate physical

links (i.e. hops) on the path between two NUMA nodes. Therefore, we pin

all the benchmark threads on node 1, to keep consistency with the former

network data replication tests, and test the performance of node 1 to allo-

cate and access data in memory banks that attached to all four nodes. The

performance of the STREAM Triad operation is shown in Figure 3-5(a).

”MEMn” denotes the case when the test threads are running on node 1,

and access data on node n. ”Bwn” represents the bandwidth performance

when accessing data on node n, and ”Exen” is the corresponding execution

time. Other STREAM operations produce similar results.

As shown in Figure 3-5(a), the performance characteristics given by the

35

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

1 2 4 8
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6
S

T
R

E
A

M
 T

ria
d

S
pe

ed
(M

B
/s

ec
)

E
xe

cu
tio

n
T

im
e(

se
c)

Number of Threads

Bw0
Bw1

Bw2
Bw3

Exe0
Exe1

Exe2
Exe3

(a) Execution time (lower is better) and
bandwidth (higher is better)

 0

 10000

 20000

 30000

 40000

 50000

1 2 4 8

N
um

be
r

of
 L

LC
 m

is
se

s

Number of Threads

local
one-hop
two-hop

(b) Number of LLC misses (lower is bet-
ter)

 0

 100000

 200000

 300000

 400000

 500000

1 2 4 8

N
um

be
r

of
 r

es
ou

rc
e

st
al

l c
yc

le
s

Number of Threads

local
one-hop
two-hop

(c) Resource stall cycles (lower is better)

Figure 3-5: Primary performance analysis for STREAM Triad operation
with multiple concurrent threads

STREAM benchmark are close to that shown by the iperf benchmark. As

expected, the NUMA effects in STREAM results are more observable than

that of iperf results. For example, in the case with eight concurrent test

threads, the bandwidth of one-hop memory access drops as much as 83%

compared to local accesses. Single local thread cannot reach the maxi-

mum memory bandwidth because of the constraint on the total number of

outstanding LLC misses per thread, as shown in [96].

3.3.2 Penalty indicated by LLC misses and memory

access stalls

To get the insight into hardware behavior during the experiments, the

OProfile 0.9.7 [97] software is utilized to monitor various hardware per-

formance counters. This software allows us to determine the number of

36

events that occur during a test run. These events are recorded by various

processor event counter registers, and collected by the OProfile tool. When

a profile is created over a long test run, it provides accurate counts to the

tracked events for comparison, given that the sampling rate is configured

appropriately. However, there is a huge set of hardware event counters,

and the readings for each counter also have different meanings over differ-

ent platforms. Herein, we carefully inspect these event counters, and focus

on the ones that are relevant to system architecture, have primary impact

to the memory and network performance, and also demonstrate noticeably

different patterns across different test scenarios.

The first metric is LLC misses. The LLC miss rate is a common indica-

tor of performance penalty used by many multicore related studies [66,98].

Any memory request that experiences LLC miss must be served by local

or remote memory, and thereby will trigger more memory resource stall

cycles and decrease CPU utilization. If it takes two clock cycles to move

data between two adjacent components inside a processor chip, the la-

tency for a memory access will be roughly 2(N + 4) cycles, according to

study [99], where N is the number of cores. When N = 8, this latency

is equivalent to the penalty of 24 cycles or nearly 10 ns, and a remote

memory access will further amplify this latency, depending on the NUMA

property of individual system. Hence, the number of LLC misses provides

important information to indicate the overall memory access performance.

Figure 3-5(b) shows the total number of LLC misses during the previous

STREAM benchmark tests. Hereafter, all the test threads are running on

node 1. ”local” denotes the case of accessing data affiliated with node 1.

”1-hop” represents the case of accessing data on node 0 and 2, and ”2-hop”

is the case of accessing data on node 3. To move the same amount of data

in the STREAM benchmark, the remote access experiences 47% to 84%

more LLC misses than the local access among various test cases. This im-

37

plies that a remote access incurs more costly memory operations, and thus

leads to a greater performance penalty.

However, LLC misses served by remote DRAM require even more cycles

than the ones served by a local DRAM. For example, as mentioned in

research [100], LLC misses answered from a local DRAM cost about 180

cycles, while those served by a remote DRAM need about 300 cycles. This

prompts us to monitor the RESOURCE STALL counter which tracks the

number of CPU idle cycles during resource-related stalls. Instead of simply

measuring the number of long-latency events, like cache misses, this counter

measures the actual performance penalty due to long-latency events. It

is an iron-law measurement of various performance degradations in the

underlying circuitry. In Figure 3-5(c), we present the number of resource

stall cycles during the STREAM tests. The combination of Figure 3-5(a)

and Figure 3-5(c) confirms that the increment in CPU stall cycles correlates

well with the actual penalty to memory access bandwidth. During these

resource stall cycles, CPU can do nothing but wait for its data. In the case

of remote accesses, a great amount of CPU time is wasted on the resource

stall cycles incurred by the usage of inter-node bus. Meanwhile, during the

STREAM tests, nmon tool [101] is employed to monitor system resource

utilization, and we observe that one benchmark thread always completely

occupies one CPU core with a 100% busy status. Since in every test case

the system executes the same operations with the same workload, and each

test thread requires the same CPU usage, a significantly higher bandwidth

of local memory access implies a much more efficient use of CPU cycles.

The experiment result also shows that the CPU stall cycles in the remote

memory access tests increase almost linearly with the number of concur-

rent threads, while those of the local memory access tests stay relatively

constant. In other words, while data travels through inter-node bus, every

STREAM thread is frequently blocked and waits for data to be transferred

38

from remote memory. This suggests a bottleneck occurs at the inter-node

bus.

3.3.3 Underlying reasons of NUMA Penalty

Resource stall cycles give us an overview of performance overhead, but they

do not explain why this difference exists. In this part, we provide an in-

depth analysis on the detailed causes of the NUMA remote access penalty

that may be imposed on bulk data replication.

Prefetch contention. Contention for resources involved in prefetch

processes begins to draw attention in recent research studies, e.g. [66].

Herein, prefetching resources may involve all hardware resources that could

affect the efficiency and effectiveness of prefetching, including memory con-

troller, QPI bus and instruction/data cache. It is difficult to break down

the performance degradation due to each of them. Therefore, we com-

pare the performance variance before and after all hardware prefetchers

are turned off. Figure 3-6(a) shows the STREAM bandwidth measurements

with no hardware prefetcher and their percentile degradation compared to

the previous tests with prefetchers. In general, disabling prefetchers leads

to performance penalty in all test cases, in terms of more LLC misses, more

resources stall cycles, and lower bandwidth. This can be ascribed to the

fact that prefetchers are quite effective to the sequential memory access op-

erations in the STREAM benchmark. However, a local access experience

a larger performance degradation if prefetch is turned off than a remote

one when there are multiple concurrent threads. In other words, in the

presence of prefetchers, a local access experiences much less prefetch con-

tention among task threads, and thus can make more efficient utilization

of prefetch resources.

In order to analyze the variation in the NUMA performance asymme-

try, we calculate the normalized execution time of the STREAM Triad

39

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

1 2 4 8
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

S
T

R
E

A
M

 T
ria

d
ba

nd
w

id
th

(M
by

te
s/

s)

B
an

dw
id

th
 d

eg
ra

da
tio

n(
%

)

Number of Threads

local bandwidth
1-hop bandwidth
2-hop bandwidth
local degradation

1-hop degradation
2-hop degradation

(a) Bandwidth with no prefetch (higher is
better), and bandwidth degradation after
turning off all the hardware prefetchers
(lower is better)

 0

 1

 2

 3

 4

 5

 6

 7

 8

1 2 4 8

N
or

m
al

iz
ed

 e
xe

cu
at

io
n

tim
e

Number of Threads

Original-1 hop
Original-2 hops

No prefeth-1 hop
No prefeth-2 hops

(b) Normalized execution time with-
/without prefetch (lower is better)

 0

 1e+09

 2e+09

 3e+09

 4e+09

 5e+09

 6e+09

1 2 4 8

N
um

be
r

of
 s

no
op

 r
es

po
ns

es

Number of Threads

local
one-hop
two-hop

(c) Snoop response traffic (lower is bet-
ter)

Figure 3-6: Prefetch and snoop traffic characterization of STREAM Triad
operation with multiple concurrent threads

operation as Equation 3.1, and show the result in Figure 3-6(b). ”Origi-

nal” denotes the cases that all hardware prefetchers are enabled, and ”no

prefetch” means all of them are disabled. This normalized execution time

is the inverse of the normalized bandwidth. The larger the normalized

execution time, the more asymmetric the performance is. When there is

a single test thread, the similar asymmetry is observed in both prefetch

and non-prefetch cases. However, with more than one test threads in the

presence of prefetchers, the contention on prefetching resources starts to

incur more cost on the remote memory access, and results in a greater per-

formance asymmetry. After prefetchers are disabled, the system become

less asymmetric, and this asymmetry stays constant even with many more

40

test threads. One possible explanation is that remote prefetches cost more

time, and are more likely to conflict with each other. This would lead to a

lower prefetch efficiency when multiple competing threads exist.

Normalized execution time =
Execution time in remote case

Execution time in local case
(3.1)

Cache coherence traffic. To explain the performance asymmetry,

we also look into cache coherence traffic. Modern multiprocessors adopt

hardware-based cache coherence protocols to ensure that all changes in dis-

tributed caches are propagated throughout the entire system in a timely

manner. The interconnect between processors in our study, Intel QPI 1.1,

also supports a home snooping cache coherence protocol. The detailed de-

scription for this protocol can be found in [102]. When a core encounters

cache misses in the LLC, it must snoop the other CPU sockets to check

their caches. In the QPI architecture with the home snooping cache co-

herence protocol, a remote snoop requires up to four steps and generates a

significant amount of inter-processor QPI traffic. Although the size of each

snoop request/response is small, the frequency of snoops can be very high.

It occurs for every cache miss, sometimes even for cache write hits as well.

The QPI bus between processors is shared by the snoop traffic and actual

data traffic. In the case of remote cache and memory access, snoop com-

munication frequently holds the bus for cache coherency use. This greatly

increases the bus turnovers and interruptions to actual data replications,

and creates an inter-node bus bottleneck to large data flows.

On the other hand, for local memory and cache accesses, all processors

implement a snoop filter [103] that reduces cache coherence traffic by fil-

tering out local requests because local requests can then be served locally

41

without involving the QPI bus. With this type of filters, a CPU core that

encounters cache misses only needs to synchronize with other cores in the

same CPU package, and thereby the synchronization cost would be greatly

reduced. Sandy Bridge microarchitecture allows for measuring the snoop

traffic using the OFF CORE RESPONSE counter together with the snoop

response filter. The detailed method is covered in [104]. Figure 3-6(c) il-

lustrates the snoop response counts in both local and remote cases with all

prefetchers. One-hop remote access generates 485% to 673% more snoop

traffic than a local access, and two-hop one incurs 487% to 677% more

traffic in various test cases. The snoop traffic recorded without all the

prefetchers also reflects the similar results. This implies that the constant

snoop traffic penalty is the leading cause of the consistent performance

asymmetry described in the non-prefetch cases of Figure 3-6(b).

Herein, our observations and analysis are also quantitatively consistent

with vendor’s document. In Dell’s public document [105], the authors also

utilized the STREAM benchmark to characterize the memory bandwidth of

a Dell PowerEdge R720 server equipped with dual Intel Xeon E5 processors

that are similar to the ones used in our study. This host also has the same

type of QPI as our evaluation system. As they reported, the NUMA remote

memory access (one-hop) bandwidth is reduced by 55% compared to local

access bandwidth. With the number of NUMA nodes increases to four, as

in our evaluation system, the synchronization cost would increase as well,

and cause a performance degradation of 82.5% for one-hop remote memory

access.

3.4 NUMA scheduling factor

In order to confirm the iperf network benchmark shares the same NUMA

effects as described earlier, the hardware counter characterization of iperf

42

 0

 50000

 100000

 150000

 200000

1 2 4 8

N
um

be
r

of
 r

es
ou

rc
e

st
al

l c
yc

le
s

Number of Streams

Node0
Node1
Node2
Node3

(a) Resource stall cycles (lower is better)

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

1 2 4 8

N
um

be
r

of
 L

LC
 m

is
se

s

Number of Threads

Node0
Node1
Node2
Node3

(b) LLC misses (lower is better)

Figure 3-7: Hardware counter characterization of iperf benchmark with
multiple concurrent streams

benchmark is shown in Figure 3-7. As expected, the local access to net-

work cards introduces much fewer CPU stalls and LLC misses, and thereby

avoids the aforementioned multiple NUMA remote access penalties. In ad-

dition, PCI bridge is integrated into CPU chip in our evaluation system.

The fast on-chip data path further boosts the local access performance.

The prefetch and snoop characterizations are not included here because

they are quite similar to that of the STREAM results.

In summary, we conclude that the NUMA remote access penalty is sig-

nificantly pronounced by the joint effect of hardware prefetch contention

and CPU synchronization cost. These bottlenecks have not been elim-

inated even the bare-metal hardware performance keeps increasing, and

thereby, NUMA-awareness is still vital for data replications to take the full

advantage of hardware capability now and in the future.

Based on the findings in this section, we proposed a new NUMA schedul-

ing factor as the Equation 3.2. At first, based on the research [14], a bigger

link width would decrease the NUMA effects. On the other hand, a higher

cache coherency traffic, i.e. snoop traffic, and a longer prefetch latency im-

ply a greater NUMA penalty. Therefore, the proposed NUMA scheduling

factor quantify the degree of this penalty of remote resource access. This

factor provides a good guidance to the system scheduler to decide the best

43

node when it needs to migrate a thread to remote resource in real time.

NUMA factor =
Cache coherency traffics× Prefetch latency

Link width
(3.2)

3.5 Summary

As high-performance networks, such as 40/100 Gbps Ethernets, emerge as

an integral part of large-scale data-intensive computing systems, today’s

data replication tools cannot fully utilize the maximum capacity of modern

NUMA hosts. In this chapter, we characterized the NUMA access by bulk

data replication applications on a state-of-the art host. The experimen-

tal results revealed the penalty of accessing remote resources, due to more

prefetch contention, higher synchronization cost, and a larger amount of

cache coherence traffic. This was not quantitatively evaluated by previous

studies. We thus concluded that the recent hardware performance improve-

ment does not eliminate the NUMA bottleneck, and NUMA-awareness is

still critical to bulk data replications. A new metric, NUMA scheduling fac-

tor is also proposed to support online thread/data mapping in multicore

system.

44

Chapter 4

NUMA I/O Performance

Modeling

Previous Chapter 3 proposes the NUMA scheduling factor to enable real-

time NUMA-awareness. The advantages of this approach are the adap-

tivity to dynamic system load and accurate NUMA penalty quantification

to pick the right node for thread/data migration. However, it also intro-

duces several shortcomings. 1) Difficulty to get cache coherency traffic and

prefetch readings online. Different platforms require different hardware

event counters and filters to obtain those readings. Some servers may even

do not support these events in CPU monitor modules. User may need to

customize the application for different systems. 2) Overhead of dynamic

scheduling. For each thread/data migration, the scheduler needs to get

event readings for all NUMA nodes, computes the scheduling factors, and

then make decision. Especially, users often need to transfer small files,

where each data replication only requires a short time. The scheduling

overhead is unneglectable. The problem becomes even worse in multi-user

and multi-task scenarios, and frequent schedulings and migrations occur in

the system.

The chapter first proves the ineffectiveness of using STREAM bench-

45

mark to build I/O performance model, and then designs and implements

a new benchmark tool. At last, we evaluate the new tool, and identify its

multiple usages in different user cases. With the new proposed tool, the

users can first generate the performance model. The system scheduler then

use this pre-defined model for thread/data mapping and migration. This

avoids repetitively system profiling and computation while ensuring good

NUMA affinity.

4.1 System Configurations for Characteri-

zation

In this section, we describe the configurations of the testbed hardware and

the benchmark software in our experiments.

4.1.1 Server hardware specifications

Table 4.1 lists the system models and configurations. Both servers have

four CPU packages, but in the AMD platform, each package contains two

CPU dies, and thereby two NUMA nodes. The possible CPU topology of

the eight-node AMD server can be any one shown in Figure 1-2. The Intel

platform has a simpler architecture, and we used it in the previous Chap-

ter 3. Its four NUMA nodes are arranged in a ring topology. Only node 0

and node 1 have on-chip I/O hubs or PCI bridges. Both our AMD and Intel

hosts are equipped with two LSI Nytro WarpDrive WLP4-200 SSDs and

a 40 Gbps network adapter with the capability of RDMA over Converged

Ethernet (RoCE) [106]. Each target host is connected to another server to

perform end-to-end network performance tests, as shown in Figure 4-1(a)

and Figure 3-1. All network adapters and SSDs are directly attached to

node 7 in the AMD testbed and node 1 in the Intel testbed, and these

46

Table 4.1: Server specifications
Motherboard HP ProLiant DL585 Dell PowerEdge R820

Processor model
AMD Opteron 6136

Magny-Cours
@ 2.4GHz

Intel Xeon
CPU E5-4620
@ 2.20GHz

CPU cores/NUMA nodes 32/8 32/4
Last-level cache size 5Mbytes 16 Mbytes
System memory 32Gbytes DDR3 768Gbytes DDR3
Board chipset AMD SR5690 Intel C600

Interconnect protocol Hypertransport 3.0 QPI 1.1

Interconnect bandwidth
4.8 GT/s

(9.6 Gbyte/s)
7.2 GT/s

(14.4 Gbytes/s)
I/O Bus PCIe Gen2 x8 lanes PCIe Gen3 x8 lanes

Operating system CentOS 6.3 CentOS 6.3
Linux Kernel 2.6.32.el6.x86 64 2.6.32.el6.x86 64

nodes will be used as the exemplary CPU nodes hereafter in their testbed

servers respectively, as depicted in Figure 4-1.

All network interrupts of the two platforms are delivered to the directly

attached CPU nodes (exemplary nodes). All the network interface are set to

support Jumbo Frame, and Round Trip Time (RTT) of all the network links

is about 0.06 ms. TCP Cubic, a TCP variant is used here. Hyperthreading,

irqbalance, and cpuspeed services are disabled during all tests for simplicity

based on the recommended settings in [91].

4.1.2 Benchmarks and affinity settings

The focus of this chapter is to model the relative user-level bandwidth per-

formance under all possible NUMA scenarios. As stated in [95], improving

the absolute bandwidth can lead to more noticeable NUMA effect, and thus

facilitate our comparison and analysis. Therefore, we optimize our testbed

and benchmark settings as follows.

47

Target NUMA server

Node 0

Node 1

Node 6

Node 7 Network Adapter

LSI SSD Drive

Assistant NUMA server

Node 0

Node 1

Node 6

Node 7Network Adapter

40G link

... ...

(a) AMD testbed. All PCIe devices are connected to node 7.

(b) Intel testbed. All PCIe devices
are connected to node 1.

Figure 4-1: System connection diagram

Memory benchmark

The STREAM benchmark is used to determine the maximum aggregate

memory bandwidth between NUMA nodes. The performance measure-

ments reported by STREAM highly depend on compilers. We optimize the

benchmark compilation according to the recommendation of AMD techni-

cal document [107], and also take advantage of the -fopenmp compiling

flag to enable its multi-threaded capability. The STREAM benchmark ex-

ecutes four types of memory access operations on large data arrays, but

they exhibit similar performance on modern machines. Herein, we choose

48

the Triad operation for our characterization, to keep consistent with tests

in previous chapter. In order to eliminate the CPU cache affect, STREAM

requires that each array be at least four times the largest cache used. In

our case, the largest LLC size here is 16Mbytes per Intel CPU die, and

thereby the array contains at least 64Mbytes, or 8, 388, 608 long integers.

I/O benchmark

Flexible I/O Tester (fio) [108] is the user-level benchmark tool used to char-

acterize system’s PCIe device access performance. This test tool spawns a

number of processes performing I/O jobs with user-defined I/O operations

and desired parameters. It supports a wide spectrum of I/O operations,

such as disk read/write and TCP/UDP data transfer. We also add RDMA

engines into this tool, and extend its capability to support RDMA READ,

RDMA WRITE, and SEND/RECEIVE operations [22]. Furthermore, we

redirect hardware interrupts generated by I/O devices to their local CPU

node.

Even though each type of data accesses aforementioned uses a different

set of resources during the data replication process, they all suffer per-

formance penalty from untuned resource assignment. One main objective

of this dissertation is to discover the patterns among these accesses, and

extract a generic I/O bandwidth performance model from it.

4.2 Experimental characterization

4.2.1 Memory performance characterization

In this section, for each test case, the STREAM benchmark is set to run 100

times, and it reports the maximum observed bandwidth instead of the mean

value. We use numactl to pin each benchmark process/thread to a desired

49

CPU/memory node. Benchmarking every memory data access scenario in a

NUMA system entails the mapping of benchmark threads and their memory

in every possible configuration that an application process might encounter

during its execution. For modern multi-core systems, mapping threads to

individual cores greatly expands the size of testing set. Herein, we assume

that cores attached to the same NUMA node show identical memory and

I/O bandwidth when accessing data on a given node. This assumption

is appropriate in most scenarios as shown in previous literature [13, 41].

Hence, we need only focus on node-level characterization. Meanwhile, the

number of parallel test threads is set to be the number of CPU cores in each

NUMA node, which is four for the AMD testbed and eight for the Intel

testbed. After benchmarking, a N×N bandwidth matrix can be obtained,

where N is the number of configured NUMA nodes in a host. This is shown

in Figure 4-3. We describe our observations of the bandwidth matrix as

follows.

Observation 1. Ineffectiveness of hop-distance in the AMD evaluation

system.

The bandwidth performance of the AMD testbed in Figure 4-2(a) ex-

hibits asymmetry among tests. For example, when STREAM runs on

Node 7 to access data from Node 4, we obtain a bandwidth of 21.34 Gbps,

which is better than the two cases of accessing data residing in Node 2, 3

respectively. However, when the benchmark runs on Node 4 to access data

in Node 7, only 18.45 Gbps is achieved, and this is worse than the perfor-

mance of running the benchmark tool on Node 2, 3. This issue can result

from the asymmetric setup in the AMD hardware, such as the number of

request and response buffers, the configuration of link width for cache co-

herent traffic, and the routing mechanism in the tested topology [109,110].

Furthermore, from the data in Figure 4-3, we can see the local node

50

 0

 10

 20

 30

 40

 50

 60

CPU0 CPU1 CPU2 CPU3 CPU4 CPU5 CPU6 CPU7

A
gg

re
ga

te
 b

an
dw

id
th

(G
bp

s)

Number of Threads

MEM0

MEM1

MEM2

MEM3

MEM4

MEM5

MEM6

MEM7

(a) Performance model of AMD platform

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

CPU0 CPU1 CPU2 CPU3

A
gg

re
ga

te
 b

an
dw

id
th

(G
bp

s)

Number of Threads

MEM0 MEM1 MEM2 MEM3

(b) Performance model of Intel platform

Figure 4-2: Memory bandwidth performance model by STREAM bench-
mark Copy operation. ”CPUn” denotes all STREAM test threads running
on node n, and ”MEMn” denotes all test STREAM threads are accessing
the data in Node n.

has the best performance, and the neighboring node has the second best.

The neighboring node is one hop away from local node, but it has better

performance than all other nodes that are one hop away. That is because

it has on-chip access to local node, and the link width between neighboring

nodes is 24 in total, which is 1.5x-3x bigger that other nodes. Thus it

performs better than other off-chip remote nodes. If we use hop-distance

as the decisive factor of the NUMA cost, then we should have observed: 1)

51

Table 4.2: Bandwidth NUMA factor of of the Intel platform
Node ID 0 1 2 3

NUMA factor 5.94 1 5.89 6.63

The nodes with the highest bandwidth are local nodes. 2) The second best

ones are the nodes that are one hop away. 3) The nodes with two hops

always have the lowest bandwidth.

We can then derive the topology of the evaluated AMD host. However,

the connectivity inferred from the test data does not match any of the

topologies shown in Figure 1-2. We cannot either deduce any reasonable

topology due to the performance asymmetry we just mentioned. Therefore,

it is inappropriate to simply use physical distance to determine the NUMA

cost for modeling memory bandwidth performance.

Observation 2. The enormous NUMA penalty of remote memory access

on the Intel testbed.

Table 4.2 show the bandwidth NUMA factor of the exemplary node in

the Intel platform. Here the bandwidth NUMA factor is referred as the

ratio between local memory access bandwidth versus a remote one, which

is consistent with the latency NUMA factor we mentioned in Chapter 1.

We can see a significant bandwidth performance degradation associated

with remote accesses. The NUMA factor reaches as high as 6.63.

4.2.2 I/O performance characterization and analysis

In the previous section, we confirm that hop distance cannot be used as an

accurate memory bandwidth performance model, especially for the AMD

testbed. Also, an unexpected NUMA factor is also observed on the Intel

one. In this section, we will apply the performance model produced by the

STREAM benchmark into I/O evaluation, to whether it matches with I/O

performance pattern.

52

 0

 10

 20

 30

 40

 50

1 2 4 8

A
gg

re
ga

te
 b

an
dw

id
th

(G
bp

s)

Number of concurrent threads

MEM0
MEM1

MEM2
MEM3

MEM4
MEM5

MEM6
MEM7

(a) CPU-centric model of AMD platform

 0

 10

 20

 30

 40

 50

1 2 4 8

A
gg

re
ga

te
 B

an
dw

id
th

(G
pb

s)

Number of concurrent threads

CPU0
CPU1

CPU2
CPU3

CPU4
CPU5

CPU6
CPU7

(b) Memory-centric model of AMD platform

 0

 10

 20

 30

 40

 50

1 2 4 8

A
gg

re
ga

te
 B

an
dw

id
th

(G
pb

s)

Number of concurrent threads

CPU0
CPU1

CPU2
CPU3

CPU4
CPU5

CPU6
CPU7

(c) Intel model

Figure 4-3: Bandwidth performance models of AMD and Intel testbeds,
produced by STREAM benchmark

53

As stated in Observation 1, the performance of the AMD testbed is

asymmetric and depends on the direction of data flow. Here, we provide

a full characterization of the exemplary node of the two testbeds using

STREAM benchmark, and show the results in Figure 4-3. Figure 4-3(a)

depicts the cases when STREAM benchmark threads run on node 7 to

access data on all nodes on AMD testbed. We call this model a ”CPU

centric” characterization. Figure 4-3(b) illustrates the cases when the data

is on node 7 and is accessed by all nodes on AMD testbed. This is called

”memory centric”. On the other hand, the performance of the Intel testbed,

using node 1 as exemplary node, is symmetric and consistent with its sys-

tem topology. Its CPU centric and memory centric performance patterns

are similar to each other. Therefore, we demonstrate both the CPU centric

and memory centric models for the AMD testbed, but show only one model

for the Intel testbed in Figure 4-3(c).

TCP performance characterization

Here we present the analysis of high-speed network data transfer across

the PCIe interconnect to/from a selected NUMA node with both TCP

and RDMA protocols. This involves measuring write rate (sending data to

I/O devices) and read rate (receiving data from I/O devices). The default

NUMA policy in current Linux kernel is local-preferred, i.e. the I/O appli-

cations can be guaranteed with local memory space if possible. However,

this local node may be remote from I/O devices. The application perfor-

mance model can possibly act as either CPU centric or memory centric

model.

Table 4.3 describes the network test configurations. In order to get an

accurate long-term bandwidth performance, each data stream is required

to transfer 400 Gbytes of data, and the average aggregate performance is

then reported. All test cases will allocate buffers in their local memory

54

Table 4.3: Parameters for network I/O tests, including TCP and RDMA
Data size requested by each test process 400Gbytes

TCP Variant Cubic
I/O block size 128Kbytes

I/O depth for RDMA operations 1
Ethernet frame size 9000

space, and then vary NUMA node where the fio benchmark is executed.

Figure 4-4 shows the aggregate bandwidth performance with various num-

bers of concurrent data streams, and with different NUMA setups on the

AMD and Intel testbeds.

For the the AMD testbed, the network adapters use the PCIe Gen 2.0

8x peripheral interface which supports a maximum of 40 Gbps raw transfer

rate. Due to the 8/10bit encoding used for the PCIe Gen2 protocol, the

available data bandwidth is degraded to 32 Gbps. The real available band-

width is further decreased by the inherent overhead of network protocols

(Ethernet, TCP/IP, RDMA) that support the communication. Therefore,

the maximum bandwidth of 25 Gbps in the tests is very close to the the-

oretical performance limit. On the other hand, the Intel testbed adopts

PCIe Gen 3.0 8x interfaces, and can run steadily at 40 Gbps limit while

there are more than four concurrent streams.

For TCP performance in Figure 4-4, bandwidth grows when the number

of concurrent streams increases until there are four parallel streams. When

the number of concurrent streams further rises, the contention among them

begins to introduce some unexpected behavior. Therefore, sometimes, the

performance of node 5 appears to be the best when there are eight or

sixteen current threads. Overall, it seems that the TCP send performance

in Figure 4-4(a) is close to that in the CPU centric model, while TCP

receive performance in Figure 4-4(b) is close to that in a memory centric

model.

55

 5

 10

 15

 20

 25

 30

1 2 4 8

A
gg

re
ga

te
 B

an
dw

id
th

(G
pb

s)

Concurrent TCP Streams

Node0

Node1

Node2

Node3

Node4

Node5

Node6

Node7

(a) Sender side of AMD

 5

 10

 15

 20

 25

 30

1 2 4 8

A
gg

re
ga

te
 B

an
dw

id
th

(G
pb

s)

Concurrent TCP Streams

Node0

Node1

Node2

Node3

Node4

Node5

Node6

Node7

(b) Receiver side of AMD

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

1 2 4 8

A
gg

re
ga

te
 B

an
dw

id
th

(G
bp

s)

Number of TCP streams

Node0 Node1 Node2 Node3

(c) Receiver side of Intel

Figure 4-4: TCP bandwidth performance characteristics

56

Another finding is, when the data path is bound to node 7 locally, the

performance is not always the best. In many cases, we can get better

performance when we allocate CPU and memory resources on node 6, the

neighbor of node 7. This is because all interrupts from I/O device are

handled locally by node 7. When we run all application processes on node 7,

the contention among multiple tasks will lead to a performance degradation.

On the other hand, Node 6 also has its own on-chip access to the I/O

devices, and does not have the contention of I/O interrupt handling, and

therefore this binding results in an even better performance than the local

node 7.

RDMA performance characterization

Observation 3. Ineffectiveness of STREAM benchmark in both AMD and

Intel systems.

Figure 4-5 shows that the RDMA performance is more stable than that

of TCP. That is because RDMA operations offload most of their pro-

tocol processings to network adapters, and significantly reduce resource

contention. For the test results on the AMD testbed, RDMA WRITE

bandwidth performance is close to that in the CPU centric model, but

RDMA READ does not match with neither the CPU centric model nor

memory centric model in Figure 4-3. For example, in both AMD models

of Figure 4-3, the performance of node {0, 1} cases is better than that

of node {2, 3} cases by 43% to 88%, respectively. When RDMA READ

runs on node {0, 1}, its bandwidth performance is worse than that of node

{2, 3} by 15% to 18.4%. By looking at the TCP receiver performance in

Figure 4-4 again, we can see that the bandwidth of node {2, 3} cases still

slightly outperforms that of node {0, 1} cases. Furthermore, to study the

TCP and RDMA performance on the Intel testbed, we calculate the band-

width NUMA factor while there are eight concurrent streams as Table 4.4.

57

Table 4.4: Bandwidth NUMA factor of TCP and RDMA operations on the
Intel testbed

Node ID 0 1 2 3
TCP 2.0 1 2.09 2.36

RDMA WRITE 1.009 1 1.002 1.314

Compared the data in this table and Table 4.2, the TCP bandwidth NUMA

factor is about 3 times smaller than that in the STREAM benchmark case,

and for the RDMA WRITE case it is even 6 times smaller. Similar results

can also be summarized from the AMD experiment data. Therefore, we

believe that the NUMA factor achieved by the STREAM benchmark over-

estimates the real one for network I/Os. All of the above indicates that

the performance models derived by the STREAM benchmark cannot be

applied to network I/O bandwidth patterns.

Disk I/O performance characterization

In order to further investigate the performance mismatching of the STREAM

benchmark and I/O operations we discovered in RDMA tests, we provide

the bandwidth characterization for PCIe-based SSDs using the fio bench-

mark. We observe that regular kernel-buffered read/write operations per-

form much worse than kernel-bypassed ones, and asynchronous I/O oper-

ations outperform synchronous ones on our testbed. Therefore, we utilize

the libaio engine with the kernel-bypass option to maximize transfer speed

in the section. In order to further increase the aggregate bandwidth, two

LSI SSD cards are accessed simultaneously, and the aggregate bandwidth

performance is reported. Hence, the total number of test processes is at

least two. Each test process transfers 400 Gbytes of data, with a block size

of 128 Kbytes and an I/O depth of 16.

Figure 4-6 depicts the aggregate bandwidth performance with multi-

ple test processes. As expected, the disk write rate closely matches the

58

 5

 10

 15

 20

 25

 30

1 2 4 8

A
gg

re
ga

te
 B

an
dw

id
th

(G
pb

s)

Concurrent RDMA_WRITE streams

Node0
Node1

Node2
Node3

Node4
Node5

Node6
Node7

(a) RDMA WRITE on AMD platform

 5

 10

 15

 20

 25

 30

1 2 4 8

A
gg

re
ga

te
 B

an
dw

id
th

(G
pb

s)

Concurrent RDMA_READ streams

Node0
Node1

Node2
Node3

Node4
Node5

Node6
Node7

(b) RDMA READ on AMD platform

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

1 2 4 8

A
gg

re
ga

te
 B

an
dw

id
th

(G
bp

s)

Concurrent RDMA_READ streams

Node0 Node1 Node2 Node3

(c) RDMA READ on Intel platform

Figure 4-5: RDMA bandwidth performance characteristics

59

 0

 5

 10

 15

 20

 25

 30

 35

 40

2 4 8

A
gg

re
ga

te
 b

an
dw

id
th

(G
pb

s)

Number of concurrent I/O processes

Node0
Node1

Node2
Node3

Node4
Node5

Node6
Node7

(a) Asynchronous write on AMD platform

 0

 5

 10

 15

 20

 25

 30

 35

 40

2 4 8

A
gg

re
ga

te
 b

an
dw

id
th

(G
pb

s)

Number of concurrent I/O processes

Node0
Node1

Node2
Node3

Node4
Node5

Node6
Node7

(b) Asynchronous read on AMD platform

 0

 5

 10

 15

 20

 25

 30

 35

 40

2 4 8

A
gg

re
ga

te
 b

an
dw

id
th

(G
pb

s)

Number of concurrent I/O processes

Node0 Node1 Node2 Node3

(c) Asynchronous read on Intel platform

Figure 4-6: Disk I/O bandwidth performance characteristics

60

Figure 4-7: (a) Data copy process in STREAM benchmark. Both data
source and sink are located in node 1. (b) Data copy process in I/O op-
erations. Data source is in node 0 and sink is in node 1. (c) Data copy
process in proposed method. Data source is in node 0 and sink is in node
1.

TCP/RDMA send rate in previous tests, and the disk read rate is close

to the TCP/RDMA receive rate. However, none of these I/O performance

characteristics is consistent with the STREAM benchmark results in Fig-

ure 4-3. The disk I/O bandwidth results in both testbeds confirm that the

NUMA factors produced by the STREAM benchmark tests are overstated

as well. Meanwhile, we can also observe that the NUMA effects on the

AMD 8-node system is more noticeable than that of the Intel 4-node host,

and this proves that the NUMA sensitivity grows with the system size,

and therefore demands more sophisticated tuning/alignment algorithms to

mitigate its negative effects.

4.2.3 Analysis of performance mismatching

All the above results demonstrate that the NUMA characteristics captured

by the STREAM benchmark do not match with the actual I/O performance

model, especially when application processes read data from I/O devices.

This performance inconsistency may be ascribed to the following reasons:

1) Memory data replication with different message size. In the

STREAM test, the user process requests a large amount of memory to

61

create and initialize two big arrays of double values, and then copies one

array to the other, one item at a time. For this small data block trans-

fer, CPU is supposed to utilize its internal Programed I/O (PIO) to move

data with its cycles. On the other hand, for bulk data replication between

memory and I/O device, CPU will offload the I/O task to a DMA engine,

and the actual data replication will therefore bypass CPU. According to

the AMD specification [110], the difference of routing methods between

accessing CPU core and memory makes us believe that the PIO commu-

nication and DMA communication can have distinct paths within involved

hardware components.

2)Data source and sink locations of I/O operations. The STREAM

benchmark itself does not support NUMA-awareness for either the location

of program code or the location of allocated memory. To enable it to be

aware of the NUMA architecture, we rely on the numactl command line

tool to statically bind all memory and CPU resources during the entire

execution time. Therefore, both data source and sink can only be bound

to the same NUMA node, as illustrated in Figure 4-7(a). Meanwhile, for

I/O operations, source and sink can be in different NUMA nodes, as shown

in Figure 4-7(b). This difference can also lead to different performance

characteristics.

4.3 NUMA characterization methodology for

I/O operations

In the previous section, we showed that hop-distance and NUMA charac-

terization based on the STREAM benchmark cannot capture I/O perfor-

mance attributes. In this section, we describe our new method to more

appropriately characterizing NUMA effects.

62

4.3.1 Proposed methodology for the NUMA I/O per-

formance model

We utilize memcpy operation and libnuma library to move a large bulk

of data between a given source memory node and a target memory node.

Herein, a target NUMA node refers to the node that is directly attached

to I/O devices and needs to be characterized. Without involving the ac-

tual data traffic to physical devices, we can simulate the behavior of I/O

device’s DMA engine with a ”memcpy” process that is bound to the target

NUMA node and copies large message. Figure 4-7(c) gives an example of

this process. The operation of our proposed methodology solves the two

mismatched behaviors we mentioned in Section 4.2.3, and therefore can

be utilized to build a bandwidth performance model for PCIe based I/O

tasks. The detailed procedure of our proposed methodology is shown in

Algorithm 1. It first finds out the number of parallel threads. In order

to take full advantage of the CPU cores in each NUMA node, the num-

ber of parallel threads is set to be the number of CPU cores in the node.

Then multiple test threads are initiated to copy data simultaneously and

independently.

For PCIe based I/O operations, CPU offloads data replication tasks to

the DMA engine in I/O devices. For data write cases, the DMA engine

reads data from the host memory, and stores it into the buffers inside I/O

devices. In data read cases, DMA reads data from the buffers in the I/O

hardware, and writes to the host memory. To simulate these scenarios, we

enforce all the data-copy threads running on the target node to simulate

a DMA engine in I/O devices. In the simulating cases of writing into I/O

devices, the data sink is statically bound to the target node and the source

node varies among the tests, as shown in Figure 4-8(a). In the reading test

cases, we fix the source to the target node and vary the data sink node, as

63

Algorithm 1: NUMA I/O performance modeling

Input: nodes to characterize: k, model to obtain: model
1 n← numa num configured nodes()
2 m←num configured cores() / n
3 for i← 1 to n do
4 for p← 1 to m do
5 if mode = write then
6 Allocate memsrc[p] in NUMA node i
7 Allocate memsnk[p] in NUMA node k

8 if mode = read then
9 Allocate memsrc[p] in NUMA node k

10 Allocate memsnk[p] in NUMA node i

11 for p← 1 to m do
12 Create thread[p], bind to node k, copy from memsrc[p] to

memsnk[p] for 100 times and record the average bandwidth

13 for p← 1 to m do
14 thread join(thread[p]);

15 if mode = write then
16 Generate I/O device write performance model for node k

17 if mode = read then
18 Generate I/O device read performance model for node k

19 return

illustrated in Figure 4-8(b). In both reading and writing cases, the data

source node and the data sink node can be the same. In this way, without

involving I/O devices, we can emulate the I/O data replication with only

memory copy operations, and learn the I/O performance characteristics

without costly I/O benchmark tests.

Figure 4-9 shows the CPU centric (I/O device write) and memory cen-

tric (I/O device read) bandwidth performance with the proposed methodol-

ogy on both platforms. For the performance models of the AMD platform,

we can see that this result matches the I/O bandwidth performance levels

we showed in Section 4.2.2. Some performance differences captured by our

tool are not reflected in I/O test results. The reason is that, as stated in

64

Figure 4-8: Simulate I/O behavior with memory copy operation. Assume
that there are 4 nodes in the system and I/O device is attached to node 1,
so the target node for testing is node 1. (a) I/O device write simulation.
Data sink locates at node 1, and data source varies among test cases. (b)
I/O device read simulation. Data source locates at node 1, and data sink
varies among test cases.

Section 1.2, the I/O bandwidth performance can be impacted by various

factors. In these cases, the I/O bandwidth bottleneck is not related to the

NUMA penalties. We categorize all the nodes into different classes in Ta-

ble 4.5 as the device write model and Table 4.6 as the device read model,

according to their relative performance levels in Figure 4-9. The local and

neighboring nodes are always be assigned to the first class, and the main

task of our methodology is to classify remote nodes. The performance mod-

els in both tables were first obtained by the proposed method, and then

used to compare and analyze the actual I/O performance characteristics.

We also compute the bandwidth NUMA factor of the Intel platform as

Table 4.7. Compared with the STREAM benchmark results in Table 4.2,

the NUMA asymmetry measured by our proposed method significantly

decreases, and it is more close to the real I/O performance characteristics

in Table 4.4.

In conclusion, the proposed methodology successfully solved the prob-

lems described in the three observations, and is more effective in charac-

terizing the I/O performance compared to other popular NUMA-related

65

 0

 20

 40

 60

 80

 100

 120

 140

AMD CPU centric AMD memory centric Intel (memory centric)

A
gg

re
ga

te
 B

an
dw

id
th

(G
pb

s)

Node0
Node1

Node2
Node3

Node4
Node5

Node6
Node7

Figure 4-9: Bandwidth performance model of the exemplary nodes on both
evaluated systems, produced by the proposed methodology

Table 4.5: NUMA I/O bandwidth performance model for device
write(Unit:Gbps)

Class 1 Class 2 Class 3
Operation Node ID 6, 7 0, 1, 4, 5 2, 3
Proposed
memcpy

Range 46.5 – 55.9 42.9 – 46.9 26.0 – 27.3
Avg 51.2 44.5 26.6

TCP sender
Range 19.6 – 20.9 20.0 – 21.0 16.2 – 16.3
Avg 20.3 20.4 16.2

RDMA WRITE
Range 23.3 – 23.3 23.2 – 23. 3 17.0 – 17.1
Avg 23.3 23.2 17.1

SSD write
Range 28.6 – 29.1 28.1 – 28.9 17.9 – 18.0
Avg 28.8 28.5 18.0

metrics and benchmark methods.

4.3.2 Implementation and application of the proposed

method

The methodology used to model the performance of exemplary nodes on

the two platforms can also be generalized to other nodes in the hosts and

also to other NUMA systems. The model method was implemented as

66

Table 4.6: NUMA I/O bandwidth performance model for device
read(Unit:Gbps)

Class 1 Class 2 Class 3 Class 4

Operation
Node
ID

6, 7 2, 3 0, 1, 5 4

Proposed
memcpy

Range 47.1–51.2 46.9–50.3 39.9–40.9 27.9
Avg 49.1 48.6 40.4 27.9

TCP receiver
Range 20.3–22.0 19.6–20.4 19.8–21.1 14.4
Avg 21.2 20.0 20.6 14.4

RDMA READ
Range 22.0–22.0 22.0–22.0 18–18.5 16.1
Avg 22.0 22.0 18.3 16.1

SSD read
Range 34.7–34.7 32.3–32.9 29.7–30.9 18.5
Avg 34.7 33.1 30.1 18.5

Table 4.7: Bandwidth NUMA factor of the Intel platform using the pro-
posed method

Node ID 0 1 2 3
NUMA factor 1.8 1 1.81 2.37

an iomodel test module, and added into the standard numademo software

package. The proposed module can automatically characterize the nodes

that are directly attached to I/O hubs, or specified by users. In addition to

providing a comprehensive representation for a full CPU/memory centric

performance matrix, as shown in Figure 4-9, the module can also generate

a performance model for I/O device access as a form, illustrated as the

following Listing 4.1.

Listing 4.1: Text output of the proposed module on Node 7 of the AMD

testbed

8 nodes a v a i l a b l e

32 CPUs a v a i l a b l e

Number o f element in t e s t ed matrix = 21845333

Required memory s i z e =524288000

Number o f Threads used in t h i s p r o f i l i n g = 4

Node 7 IO model :

67

CPU Centr i c l e v e l s :

C las s1 : 7 6

Clas s2 : 0 1 4 5

Class3 : 2 3

Memory Centr i c l e v e l s :

C las s1 : 7 6

Clas s2 : 0 1 5

Clas s3 : 2 3

Clas s4 : 4

The obtained performance models from our methodology and software

can then bring in the following advantages:

1) Reduce the cost to capture the NUMA characteristics of

the entire system. In the performance model, we assume that all the

nodes in the same class have similar bandwidth performance. While we

want to understand the NUMA impact on system performance, instead of

benchmarking all possible combinations, we can examine only one node

from each class. For example, in the case of Table 4.6, if we characterize

the read speed of I/O devices attached to node 7, we only need to test four

different NUMA configurations, one from each of the four classes. These

representative tests will provide the same results as the entire set of test

cases (eight cases). Hence, the evaluation cost decreases by 50%. This

brings more benefits when the system becomes larger and integrates more

NUMA nodes.

2) Predict the overall performance in multi-user environment.

When an I/O device is shared by multiple users, it is highly possible that

data-access requests come from different NUMA nodes. Assume that we

have achieved the performance model for the node attached to the I/O

device using our method. Let BWi be the average bandwidth perfor-

mance of Class i in the performance model, and αi% be the percentage

of data accesses that come from Class i, where i ∈ [1, · · · , N], and N

68

is the total number of classes. We predict the aggregate performance

for I/O devices using the following model 4.1, ˆBW io. For example, in

the case of RDMA READ in Figure 4-5(c), if two processes transfer data

from node 2 (of class 2) to the network card in the system, and two other

processes access from node 0 (of class 3), the overall bandwidth is esti-

mated as ˆBWio = 50% × 18.036 + 50% × 21.998 = 20.017Gbps. We run

this configuration with the fio benchmark. Since the bandwidth perfor-

mance is stable over the whole data replication process, instead of show-

ing the distribution of multiple repetitive test results, we demonstrate the

average aggregate bandwidth while transferring a large amount of data

(400 Gbytes per process), which is 19.415 Gbps. Hence, the relative error

is ε = |20.017−19.415|
19.415

×100% = 3.1%. This example shows that our model can

estimate the overall performance of I/O devices in a multi-user scenario.

ˆBW io =
N
∑

i=1

αi%×BWi (4.1)

3) Assist resource schedulers on NUMA systems. To design an

application-layer NUMA scheduler, a programmer should have enough in-

formation about a system’s NUMA characteristics. With the help of our

benchmark tool and modeling method, numerous scheduling algorithms [111–

113] can be applied to modern high-end NUMA systems. For example, in a

multi-user environment, binding all I/O tasks to their local node will lead

to severe performance degradation due to the contention of shared resource.

With the knowledge of our performance model, the task scheduler can dis-

tribute application processes to nodes in the same class or the classes with

the same performance. For example, in the case of RDMA WRITE in Fig-

ure 4-5(a), based on our characterization, we know that class 1 and class 2

have almost identical performance. Therefore, instead of allocating all ap-

plication processes to node 7 only, we can evenly split the task processes

69

among all nodes in Class 1 and 2. Therefore, the contention over local

resource is greatly relived, and the overall performance can be improved.

4.4 Summary

In this paper, we addressed the problem of accurately characterizing and

predicting I/O bandwidth performance in modern high-end NUMA sys-

tems. Directly applying a software benchmark to characterize memory and

I/O hardware might lead to unexpected performance inconsistency among

multiple tests, and can potentially generate a large amount of workload. We

illustrated the reasons why existing NUMA-related metrics and tools can-

not address the problem by quantitative comparisons. We then proposed

our own methodology and software to obtain an accurate I/O bandwidth

performance model without involving the physical I/O hardware and time-

consuming I/O benchmarking. To the best of our knowledge, this work

is the first attempt to propose an I/O performance model based on sim-

ple memory operations for NUMA systems. The experimental results con-

firmed that our empirical method can effectively predict the I/O bandwidth

characteristics among various NUMA architectures. At last, we demon-

strated the significance of our methodology by providing three concrete

examples that can take advantage of the performance models generated by

the proposed tool. This performance model can be imported to data repli-

cation applications to support efficient NUMA scheduling. This scheduling

mechanism is a good alternative to the dynamic scheduling method we

proposed in last Chapter 3.

70

Chapter 5

Multicore Resoure Scheduling

for Data Replication

Most existing NUMA-aware design in data intensive applications is to max-

imize data and I/O device locality. However, maximizing locality does not

always deliver maximum performance, as illustrate in Section 1.1.1. An ef-

fective scheduling design should also avoid the penalty of contention. While

there is intensive contention in local NUMA node, the scheduler needs to

dispatch threads/data to other remote nodes with minimal access cost.

This is often a challenging task in both mathematical and empirical stud-

ies. This chapter first explores the mathematical solution of finding the

optimal thread allocation and task mapping on NUMA multicore system,

and analyzes its complexity. For empirical solution, we implement a thread

scheduling module in BBCP software, and evaluate its benefits under dif-

ferent levels of contentions, using the high performance testbed described

in Section 3.1. This illustrates the advantages of adding NUMA-awareness

to data replication applications.

71

Table 5.1: List of notations used in problem formulation
D(u) The total size of requested data on storage node u

C
The maximum number of I/O threads running on

each NUMA node without degrading the overall performance

βd(u, v)
The total size of data scheduled to be transferred

from node u to node v by disk I/O

βn(v, w)
The total size of data scheduled to be transferred

from node v to node u by network I/O

γd(u, v)
The number of disk threads scheduled to be created

to copy data from node u to node v

γn(v, w)
The number of network threads scheduled to be created

to copy data from node v to node w

B0

d(u, v)
The bandwidth of a single disk I/O threads

between node u and node v

B0

n(v, w)
The bandwidth of a single network I/O threads

between node v and node w

Bmax
d (u, v)

The bandwidth limit for disk I/O
between node u and node v

Bmax
n (v, w)

The bandwidth limit for network I/O
between node v and node w

td(u, v)
The total execution time of sending all

the requested data from node u to node v

tn(v, w)
The total execution time of sending all

the requested data from node v to node w

5.1 Mathematical Model

5.1.1 Problem formulation

The detailed notion of this section is listed in Table 5.1. Consider an end

system with N NUMA nodes, and each NUMA node connects to its own

local storage system and network devices. Each storage can have single/-

multiple tasks that need to be transferred out via network adapters. With-

out loss of generality, we divide this data sending process into two steps,

disk I/O and network I/O, as shown in Figure 5-1. The requested data in

the storage attached to NUMA node u, are first passed to system memory

node v by disk I/O threads, and then send out via network interface on

72

Storage CPU/Mem Network

Disk I/O Network I/O

Figure 5-1: Graph model of NUMA scheduling problem at data sender

node w by network threads, where u, v, w = 1, 2, · · · , N .

In addition, we assume that the aggregate bandwidth increases linearly

with the number of threads between two nodes, until reach the bandwidth

limit of the link. Therefore, our objective is to create optimal number

of I/O threads, and assign optimal data size to each thread, which mini-

mizes the execution time of finishing all the data replication tasks. In this

two-stage pipelined process, the execution time of each data replication

task is determined by the longer operation time between disk I/O stage

and network I/O stage. Therefore, this optimization problem can be mod-

eled as a min-sum-max resource allocation problem (MSMRAP) shown in

Model 5.1-5.6.

73

minγ,β

N
∑

u=1

N
∑

v=1

N
∑

w=1

max(
βd(u, v)

γd(u, v) · B0

d(u, v)
,

βn(v, w)

γn(v, w) · B0
n(v, w)

)

(5.1)

Subject to
N
∑

v=1

βd(u, v) = D(u), u = 1, 2, · · ·N

(5.2)

N
∑

u=1

βd(u, v) =

N
∑

w=1

βn(v, w), v = 1, 2, · · ·N

(5.3)

N
∑

u=1

γd(u, v) +
N
∑

w=1

γd(v, w) ≤ C, v = 1, 2, · · ·N

(5.4)

Over 0 ≤ γd(u, v) ≤

⌈

Bmax
d

B0

d

⌉

, 0 ≤ γn(v, w) ≤

⌈

Bmax
n

B0
n

⌉

(5.5)

βd(u, v) ≥ 0, βn(v, w) ≥ 0

(5.6)

5.1.2 Computational complexity analysis

Although all the constraints are linear in the derived MSMRAP problem

we described in section 5.1, solving this problem still incurs significant

computational complexity. The reasons are as follows.

• Mixed integer problem. There two sets of variables in the prob-

lem. One is the data size passed between nodes, βd(u, v) and βn(v, w).

They are continuous variables. The other set is number of worker

threads, γd(u, v) and γn(v, w). They are constrained to be integers.

Therefore, the target problem is classified as a Mixed Integer Pro-

gramming (MIP) problem. It becomes NP-complete if the value space

74

of the integer variables is infinite.

• Complexity of MSMRAP. By applying appropriate relaxation meth-

ods, such as branch-and-bound and cutting plane, we may be able

to transform all the variables to be continuous. However, even with

continuous variables, the derived MSMRAP problem is still computa-

tionally intactable. As proven in the study [114], the problem can be

transformed to CLIQUE problem, which is still NP-complete. More-

over, the item in the objective function is fractional, which introduce

another dimension of complexity.

5.1.3 Divide and conquer solution

The previous Section 5.1.2 shows that the resulted MIP MSMRAP prob-

lem is NP-complete. Nevertheless, there are only two terms in the objec-

tive function, we can add an additional constraint to divide the problem

into two Sum-of-Ratio subproblems, i.e. disk-determined one and network-

determined one. However, the Sum-of-Ratio problem is still NP-complete,

as proven in literature [115]. We need further simplification to the problem.

In practice, the value set of the discrete variables, γd(u, v) and γn(v, w)

is usually small. Firstly, the upper limit of these variables depends on the

total number of cores in a CPU package, which is usually less than 12 in

the state-of-the-art commodity servers. More importantly, for current high

speed disk and network devices, eight parallel threads are usually enough

to reach their optimal performance with proper system tuning. Finally,

the value set of discrete variables can be further reduced by adding more

practical constrains. For example, if there is no requested data on one

storage node, we do not need to assign any disk I/O threads accessing this

node. Another example is that, while there are some disk threads copying

data to one memory node, there much have at least one network thread to

75

carry the data out. This is called thread conservation rule.

Therefore, after shrinking the feasible solution set, we can enumerate

the possible data path exhaustively with proper path searching algorithms.

After this, the original problem can be divide into multiple Linear Program-

ming(LP) subproblems. The global optimal solution can be obtain after

solving all these LP problems. Compared to the approximation algorithms

and heuristic algorithms, the proposed divide-and-conquer algorithm has

following advantages. First, the global optimal solution is guaranteed. Sec-

ond, there are many existing algorithms and tools can solve these LP prob-

lems very efficiently. Third, the resulted independent LP problems are be

processed parallelly on multicore system, which further reduces the over-

all execution time. However, the computation complexity of the proposed

algorithm is not guaranteed to be polynomial, and can become NP-hard

while the value set grows.

5.2 NUMA-aware BBCP Implementation and

Evaluation

In last Section 5.1, we show the significant mathematical difficulty of solving

resource scheduling problem on NUMA multicore systems. This section

turns to implement practical thread/memory scheduling module in real

world data replication software, and evaluate its effectiveness on the state-

of-art testbeds.

Enabling multicore-awareness, especially NUMA-awareness, is also non-

trivial for real world data replication software. Most of existing high-speed

data replication tools do not take multicore technology into consideration.

Even though many of them use multiple threads for high performance par-

allel data replication, these threads are not aware of the underlying NUMA

76

architectures, and subject to the default OS kernel scheduling. The perfor-

mance of data replication tasks highly depends on the run-time scheduling,

and this may result in the aforementioned performance gap in Section 1.1.1.

In this section, the BBCP data movement tool is chosen as the repre-

sentative of high performance data replication software: First, it serves as

a multi-threaded extension of scp, the ubiquitous data replication tool in

all Linux distributions. Anyone can easily use and understand its interface,

and take advantage of the new high performance feature. Second, BBCP is

widely used in data-intensive science programs and petascale supercomput-

ing centers. Multiple recent studies [116–118] have proved its capability to

transfer data at line speed. Third, runtime NUMA-awareness is especially

important for point-to-point data replication applications, of which BBCP

is a good reference example. The detailed reason of this will be explained

in Section 5.2.1.

5.2.1 Implementation of resource scheduling module

Figure 5-2 shows that three different entities are involved during the BBCP

data replication process: a source node, a target node, and a control agent.

The control agent is in charge of initiating a data replication by instantiat-

ing a source node and a target node, and then requesting the target to fetch

data from the source. The control agent is also responsible for relaying all

necessary parameters to the source and target nodes for coordinating data

replications. These three entities are launched from a single command on

the server that hosts the control agent, and usually distributed on different

servers. Hence, it is impossible to simply use the numactl command-line

tool to pin all the entities to the pre-selected nodes on all the servers. To

solve this problem, we implement a NUMA-aware module and integrated

it into BBCP to enable automatic NUMA configurations at runtime and

thereby ensure the resource affinity.

77

Figure 5-2: Communication between BBCP entities

BBCP software supports user-defined configurations for I/O block size,

TCP window size, the number of TCP data streams, etc. As shown in

Figure 5-2, four parallel TCP streams are employed as the default setting,

and four network threads are initiated at both the source and target nodes,

each of which manage one TCP session. All of them share one thread for

disk read/write. Our integration utilizes the libnuma library [94] to control

the placement of these running threads and their corresponding memory,

respectively. During the initiation stage, both source and target nodes will

detect the affinity information of network adapters to be used for transfer.

When the threads for TCP streams are created, they will be enforced to run

on the nodes that are directly connected to the involved network adapters.

With this configuration, we ensure the affinity among all threads belonging

to a data replication task and network adapters. Therefore, the application

can achieve the best NUMA locality automatically. The NUMA scheduling

module also provides an interface for user to define NUMA configurations

and the placement of the source and target nodes.

5.2.2 Evaluation on high performance testbed

In this section, the performance of NUMA-aware BBCP application is char-

acterized on our evaluation testbed. TCP window size and I/O block size

are all set to 512 Kbytes, an optimal configuration for BBCP on the testbed

which is learned from concrete experiments. Moreover, locally attached

78

 0

 10

 20

 30

 40

 50

 60

 70

 80

1 2 4 8
 0

 50

 100

 150

 200

 250

 300

A
gg

re
ga

te
 B

an
dw

id
th

(G
bp

s)

A
gg

re
ga

te
 C

P
U

 u
sa

ge
(%

)

Number of TCP streams

Node0-bandwidth
Node1-bandwidth
Node2-bandwidth
Node3-bandwidth
Node0-CPU
Node1-CPU
Node2-CPU
Node3-CPU

(a) Bandwidth and CPU usage of
memory-based tests

 10

 12

 14

 16

 18

 20

1 2 4 8

A
gg

re
ga

te
 b

an
dw

id
th

(G
bp

s)

Number of streams

NUMA-aware BBCP
Default BBCP

(b) Bandwidth over iSER storage system

 40

 60

 80

 100

 120

 140

 160

1 2 4 8

A
gg

re
ga

te
 C

P
U

 u
sa

ge
(%

)

Number of streams

NUMA-aware BBCP
Default BBCP

(c) CPU usage over iSER storage system

Figure 5-3: BBCP performance over 40 Gbps network link

disks are the performance bottleneck, and any test involving local disks

will not be able to show the effect of NUMA optimization to network I/O

tasks. To eliminate this bottleneck, we use the memory-based tests where

data will be read from ”/dev/zero” at the sender server, and copied into

”/dev/null” at the receiver server. Alternatively, SAN-based device that

aggregates disk bandwidth is also used as the data sink in the evaluation

system, as shown in Figure 3-2.

Figure 5-3(a) shows the measured results of BBCP over a single 40 Gbps

Ethernet link. All tests here were done during a time period of 300 seconds.

All threads are bound to various CPU nodes with the proposed thread

scheduling module. The performance correlates well with the iperf tests in

the previous section. The local binding consumes more CPU resources than

the remote ones because they can transfer up to 200% more data across

network in the same time. This confirms the effectiveness of the proposed

79

module for users to specify any affinity settings with the modified version

of BBCP.

The result of SAN-based tests is shown in Figure 5-3. This box plot

shows the inter-quartile range of the distribution of a set of data points.

The box contains values between the 25th and the 75th percentiles for that

set of data points. The line in the box denotes the mean value. The two

ends of the ”whiskers” are the upper and lower bound respectively. Here,

each test is set to run 35 times, and thus each data set has 35 values.

As shown in this figure, via automatically guarantee the best affinity along

the data path, NUMA-aware BBCP consistently achieves higher bandwidth

with lower CPU usage than the original version of BBCP in all test cases.

Furthermore, the smaller areas covered by the NUMA-aware BBCP boxes

represent that its performance is more stable and consistent, compared

to the original BBCP. The bandwidth performance cannot reach the maxi-

mum capability of the network hardware, 40 Gbps, due to the bottleneck of

single-threaded disk I/O implementation in the BBCP software. However,

as a proof of concept, we can still observe the advantages of application

level NUMA-awareness over the OS default one.

5.2.3 Exploring the behavior under contention

In a multi-user and multi-task environment, the contention for various

shared resources is inevitable, and has profound impacts on the perfor-

mance of data intensive applications [17]. In this section, we evaluate the

performance difference between the NUMA-aware and original BBCP in

the presence of resource contention. As mentioned in previous sections,

without application-level NUMA optimization, BBCP relies on the OS de-

fault thread-independent scheduler for assigning CPU core and allocating

memory. For the NUMA-aware BBCP, all threads are forced to run on the

nodes that are local to network adapters.

80

Two parallel Ethernet links, with an aggregate bandwidth of 80 Gbps,

are used in this experiment, as shown in Figure 3-2. To take the full

advantage of two physical connections, two BBCP instances are launched in

each test run, with one data replication over each link. Moreover, multiple

STREAM benchmark threads are used to create contention for the shared

resources inside the NUMA node. We use the STREAM benchmark here

because its behavior is easily understood, and it facilitates the performance

analysis. During this experiments, various number of STREAM threads

would be statically pinned to each NUMA node associated with network

adapter, i.e., node 0 and 1 in our case.

Figure 5-4 shows the aggregate bandwidth performance without any

contention, and with the contention of four or eight concurrent STREAM

threads. With multiple tasks competing for intra-node resources, both

NUMA-aware and NUMA-unaware cases experience performance degra-

dation. However, the default OS scheduler only considers load balancing

instead of hardware asymmetry, and could result in dispatching a thread

to an inappropriate remote core, and possibly migrating threads from the

local core to an inappropriate remote one, and thereby causing random

results and performance degradation. With the NUMA-aware thread bind-

ing strategy, the BBCP bandwidth performance becomes more stable, and

improves by 5.93% to 10.83% without any contention, and by 10.5% to

219.56% under resource contention, compared with the standard BBCP.

We notice that the performance improvement with no contention is not

significant, especially when there are a small number of threads involved.

This is due to the fact that there are a sufficient number of cores catering

the existing threads in these cases, and the default OS scheduler tends to

dispatch threads to the CPU node which is attached to network adapters.

However, when there are contention workloads in CPU nodes, the load

balancing service will assign a newly spawned thread, or migrate a run-

81

 0

 20

 40

 60

 80

 100

1 2 4 8 16

A
gg

re
ga

te
 B

an
dw

id
th

(G
bp

s)

Number of TCP streams

No contention(NUMA-aware)
No contention(OS default)
4 STREAM contention(NUMA-aware)
4 STREAM contention(OS default)
8 STREAM contention(NUMA-aware)
8 STREAM contention(OS default)

Figure 5-4: BBCP bandwidth performance under multiple levels of con-
tention (higher is better)

ning thread, to an improper remote NUMA node, regardless of NUMA

access pattern in the system. This leads to performance degradation and

instability.

Finally, another notable observation is that the maximum performance

difference appears when there are four competing STREAM threads. When

the number of contention thread increases to eight, the benefits of local

thread mapping diminish with massive data replication threads because of

the intra-node contention for shared resources, such as CPU cores, on-die

memory controller and system request queue. This indicates that a good

thread scheduler should be both NUMA-aware and contention-aware.

5.3 Summary

In the chapter, we formulate the NUMA thread mapping problem into a

MSMRAP mathematical model. A complexity analysis is provided and

possible solution is given. However, the problem is still NP-complete after

adding multiple relaxations. We then turn to empirical methods for solv-

ing the resource schedule problem on NUMA multicore platforms for data

replication applications. We implement a resource mapping module for the

82

BBCP data replication application to enhance it with the NUMA-aware op-

timization. Experiments with our high-performance testbed demonstrate

that the NUMA-aware BBCP achieves significant throughput improve-

ments over the original BBCP implementation, i.e. 10.83% to 220% in

the memory-based tests and 6.45% to 14.3% in the SAN-based tests. This

confirms the effectiveness of the proposed NUMA-aware optimization, and

provides a good hint for the design of high performance data replication

applications.

83

Chapter 6

Resource-Aware Asynchronous

Data Replication with

Multicore Systems

Previous chapters of the dissertation detailed the importance, quantifica-

tion and modeling of NUMA effects and NUMA-awareness for I/O. Chap-

ter 3 also gives an example of NUMA-aware data transfer implementation.

However, this implementation does not deliver much advantage while there

is not competing processes. Except for NUMA-awareness, achieving consis-

tent high performance over various data transfer workload requires deeper

software redesign and intensive optimization integrations. The work in this

chapter proposes an entire new data transfer solution, including framework

and detailed implementation, using multi-threading, asynchrony, event-

driven and resource-aware design. It then provides comprehensive anal-

ysis and evaluation of various optimizations integrated, including NUMA-

awareness. Finally, we compare the performance of the proposed solution

with multiple popular software systems in high performance computing

community and industry with state-of-art real nation-wide testbeds. The

84

Request
handling thread

Task
handling thread

Storage I/O
thread pool

Network I/O
thread pool

User requests

Request/task queue

Event queue

Figure 6-1: Design of asynchronous task processing and data flow

results confirm the significant advantages of the new design for various

practical workloads.

6.1 Framework and Protocol Design

An inherent weakness of most traditional data transfer software design is

that they use single-threaded sequential processing, as demonstrated in

Section 1.1.2. To scale up the end-to-end performance for large datasets,

data transfer applications often fork multiple identical sessions, and in-

volve data-intensive operations that overburden CPU cores, memory, and

I/O subsystems. To disperse load stress and match the distributed nature

of modern multicore systems, we must substantially revise the sequential

design, and introduce asynchronous and multithreaded mechanisms to par-

allelize the entire data transfer processing pipeline.

To address this problem, in Figure 6-1, we present a simplified version

of the data flow. It divides an end-to-end data path into a series of stages,

and spawns dedicated threads for each of them. Explicit task/event queues

are allocated to connect these stages, and thread synchronization primitives

are used to ensure concurrent accesses. Thereby, the most salient feature

of this design is that threads from different stages execute asynchronously.

Figure 6-2 depicts the four-layered framework design of the proposed

85

 Request management (RM)

 Data access and transmission (DAT)

 Initialization (INI)

Capacity-aware and NUMA-
aware thread preallocation

User-assist resource abstraction

User request interface

Buffer management

 Protocol and event processing (PEP)

Capacity-based resource
negotiation

Storage data accessNetwork data access

Storage-centric task
composition and scheduling

Task dispatching Event posting

File metadata synchronization

Figure 6-2: A schematic overview of the proposed framework

multicore-aware data transfer solution. When the system starts, the ini-

tialization layer executes once to preallocate the resources. The remaining

three layers comprise the pipeline for handling data transfer requests. This

layered architecture allows us to present the function components system-

atically. This section first discusses the supported features, and follows

with the description of each layer in the proposed framework.

6.1.1 Features for Ensuring High Performance Trans-

fer

Asynchronous processing. The proposed data flow model is I/O resource-

centric. All data transfer tasks and system I/O devices have their dedicated

thread pools and data structures for managing the involved entities. This

approach naturally separates task management, network and storage I/O

86

processing. Each stage in the model selects a combination of pipelined, con-

current, and event-driven operations to maximize resource utilization. The

whole data flow design can be implemented as a daemon process. All the

threads and memory are allocated and scheduled via a centralized control,

and the threads execute in an asynchronous fashion.

Storage-centric design. The proposed design improves the perfor-

mance of storage systems, usually the bottleneck along the end-to-end data

transfer path. We treat each storage unit adaptively via storage-aware

thread preallocation and storage-centric task scheduling. Data transfer

tasks are grouped by their targeted storages. Here each storage relies on a

pool of pre-allocated I/O threads that are statically bound to the affinitive

cores to serve relevant tasks. This method facilitates orchestrated accesses

to storages, and also enables other potential optimizations, for example,

file-level sorting described later.

Capacity-based scheduling. The bandwidth capacity of I/O devices

is another key aspect to be considered in our design. The resource allocation

module first assigns threads according to the device’s bandwidth capacity.

Subsequently, the capacity of a data transfer task is decided and negotiated

by the proposed protocols in Section 6.1.4. To determine a task’s capac-

ity actually constitutes pinpointing the I/O bottleneck of the entire data

transfer pipeline that involves both the data source and sink. Lastly, the

scheduling module allocates the thread and memory resources to a given

task based on the capacities of the task and I/O devices involved. Con-

clusively, this capacity-based design takes into account the requirements of

individual tasks when assigning pre-allocated resources.

6.1.2 Initialization (INI) Layer

The initialization layer profiles all system I/O resources, and creates an

abstraction and a description of major characteristics for each one. For ex-

87

ample, for each network interface, it contains the network’s logical name,

address, and physical bandwidth capacity; for a storage device, it includes

the storage type (HDD, SSD, or memory), partition name, volume, and

also the bandwidth capacity. We design a user-assisted abstraction wherein

users can guide the abstraction process via a static configuration file. For

example, a network interface can be used for a network connection for

sending and receiving traffic, or for an external storage adapter such as

Lustre [119]. Accordingly, the users or system administrators need to in-

form the transfer application of the exact purpose of an interface when an

automatic detection mechanism cannot easily resolve it. This configura-

tion file can also takes the performance model generated by the proposed

method in previous Chapter 4, and the model can then be used to support

NUMA-aware resource mapping and migration.

The second purpose of the initialization layer is to create the manage-

ment components for each resource. All network I/O threads (senders and

receivers) and storage I/O threads (readers and writers) are pre-allocated,

and then grouped into the thread pools, each of which is attached to the

corresponding abstraction object of an I/O device. The number of I/O

threads per pool is determined by the type of the associated device and

its bandwidth capacity. The higher its bandwidth is, the more threads

the device’s pool obtains. For example, multiple I/O threads will be allo-

cated to the storage device that has a good random access performance,

e.g., SSD drives and memory-based storages (NVRAMS). In contrast, only

a single thread is assigned to the device that performs better on sequen-

tial accesses, e.g. HDD drives. Meanwhile, all threads belonging to the

same I/O device are created and bounded to assure affinity to the same

NUMA node to which the I/O device is attached. Therefore, this capacity-

aware and NUMA-aware preallocation module guarantees pertinent re-

source preparation while enforcing localized thread binding. Furthermore,

88

by pre-allocating and recycling I/O threads upon completion, we avoid the

overhead of dynamically and repetitively creating and terminating threads.

6.1.3 Request Management (RM) Layer

The user service interface module is responsible for retrieving user requests.

It also handles any completion or error event from the lower layers, and

maintains all data transfer sessions. On the other hand, it is in charge of

communicating with users to report the progress of data transfers, perfor-

mance data, and errors.

Upon receiving user requests from the request interface, this module

decomposes them into one or multiple data transfer tasks. Figure 6-3 gives

an example. Each storage device is associated with a task waiting queue for

all tasks of reading/writing data from/into it. A user request is passed from

the upper module and decomposed by the task composition and scheduling

module, and then is regrouped into tasks according to the data location.

Finally, the resultant tasks are dispatched to the corresponding task queues.

Task regrouping here parallelizes task handling across different storages

while ensuring that the storage I/O access within each group is handled by

locally bound threads.

6.1.4 Protocol and Event Processing (PEP) layer

Capacity-based resource negotiation protocol

To coordinate the resource allocation and data transfer between two en-

tities, namely the data source and data sink, we design a communication

protocol for setting up connections and negotiating resource assignments.

An important objective here is to offer sufficient I/O resources to each task

while avoiding any deadlock and also conserving resources. To serve a data

transfer task, we devise four types of I/O threads, i.e. readers and senders

89

User request

Task 1 Task 2

Task queue 1 Task queue 2

Storage 1 Storage 2

Figure 6-3: Task grouping mechanism. Different textures and colors rep-
resent requests over different devices

on the data source, and writers and receivers on the data sink. However,

either the source or sink at each end point is unaware of the availability

of threads at the other end. Therefore, a resource negotiation protocol is

required to coordinate resource allocations at both ends.

Figure 6-4(a) illustrates the protocol of capacity-based resource nego-

tiation. Herein, Cap is the bandwidth capacity of tasks or I/O devices.

The source first determines the task capacity locally, and applies a certain

number of I/O threads according to the ratio of the task’s capacity and

the device’s physical capacity. Once the reader and sender threads are ac-

quired, the source initiates a control channel to the data sink, and notifies

the latter that the source is ready. The results of task capacity and the

number of senders are sent to the sink for negotiating its resource assign-

ments. The sink then computes the final task’s capacity, and gets the I/O

threads accordingly. Finally, after the sink sends back the confirmed data

connections and task capacity, the source relinquishes any excessive senders

and readers with the references to these confirmed parameters. The size of

data block, viz., the processing unit for disk access and network communi-

90

cation, is also negotiated during the aforementioned protocol handshakes.

This mechanism guarantees each task has sufficient thread resources, while

maximizing the number of concurrent tasks. After negotiating resources

and assigning I/O threads, the data source initiates all data connections.

File metadata synchronization and payload transfer protocol

Metadata synchronization and payload transfer plays a vital role to the per-

formance, especially while transferring massive numbers of files in wide-area

networks. Small file transfers may cause the underlying transfer protocol

not reaching the full network utilization due to short-duration transfers and

connection start up/tear down overhead. Thereby, we design a three-step

protocol in the PEP layer, as described in Figure 6-4(b). Herein, “file”

refers to a regular file or a directory.

1) File and directory scan. The data source first scans all requested

files and recursively traverses the involved directories using a Depth-First

Search (DFS) algorithm. During this process, each file gets a file ID based

on its sequence of being traversed. The file ID becomes a part of metadata

and indexes the file among large transfer tasks. The metadata of regular

files and directories will be saved to different data structures.

2) Metadata synchronization and pre-processing. As shown in

Figure 6-4(b), the data source sends an “extend” control message to that

data sink that starts to prepare all necessary data structures. Without

waiting for any acknowledge message from the data sink, the source first

sends all metadata of the file directories, and then sends all metadata of

regular files, hard and symbolic links. The data sink takes different actions

for different types of metadata, i.e., it simply creates the requested path-

s/directories upon the arrival of a directory, stores the metadata of files

with the given order according to the file ID when file metadata arrives,

and recreates the symbolic link to local files if it gets file links. Subse-

91

Data source Data sink

1. Compute task
capacity locally
2. Get reader and sender
threads from the
respective pools
3. Connect to data sink
to setup control channel

4. Accept control
channel from data
source

Block size, task capacity, # of senders 6. Finalize the task
capacity
7. obtain I/O threads
from pool
8. Send off confirmed
parameters

Ack to control channel

Block size, task capacity, # of receivers

5. Send control msg
includes local task
capacity and obtained
senders on data source
side

9. Finalize # of senders
and readers accordingly,
and return any
unnecessary threads to
pool

10. Setup all data links

$

(a) Protocol for capacity-based resource negotiation

Data source Data sink

1. Directory traversal
and classification

3. Send out all
directory metadata

2. Prepare data structure

4. Receive directory
metadata and re-build the
directory structure

³6\QF�'
RQH´

7. Send out all file
payload

5. Send out all file
metadata

6. Store metadata of all
files with the given order

³7UDQVIH
U�'RQH´

³6\QF´

³$OO�6HQW´

8. Receive and store all
files to disk

9. Flush all data to disk

Type, path, access mode...

Type, size, ID, access mode...

(b) Protocol for file metadata synchronization and payload transfer

Figure 6-4: Protocol design in PEP layer

quently, the whole directory structure is rebuilt at the data sink, and all

metadata of regular files are stored and sorted based on file ID. This design

ensures that before the actual data transfer begins, the target directory is

92

already in place. Finally, the data sink sends out a “Sync Done” message

to the source, which marks the end of stage for synchronizing metadata.

Therefore, instead of synchronizing one file per round trip time (RTT), the

method commonly used and referred in Figure 1-3, our mechanism groups

all records of file metadata together and streams them to the sink. Here,

we only utilize only one RTT to signal the start and completion of the stage

for synchronizing metadata. This significantly shortens the latency of syn-

chronizing metadata and getting prepared for transferring file payloads.

3) Pipelined payload transfer. Afterwards, the data source sends

out all files without any further exchange of control messages. The data

sink can identify the incoming data block by the file ID in its header, and

store it into the right file. After all files are sent, the data source and data

sink finalize the data transfer by a single control message exchange. Similar

to meta data synchronization, the proposed protocol here also groups all

file payload transfer into a single stage, and only uses a single round trip

to signal the completion of the entire task.

In summary, by dividing the data transfer process into stages and group-

ing the control messages in each stage, the proposed protocol for synchro-

nizing file metadata and transferring file payloads greatly decreases the

number of control message exchanges, and thereby shortens the total data

transfer time. In addition, our design reuses the control and data links

as much as possible among files, and avoids the overhead of establishing

and tearing down connections for each file which are common in today’s

transfer software.

6.1.5 Data Access and Transmission (DAT) Layer

The buffer management module in the DAT layer uses a NUMA-aware

bulk memory allocation. It first allocates a large trunk of memory for each

task, and then partitions it into small buffers that are then allocated and

93

attached to a task that is ready for processing. The module determines the

number of buffers for each task based on the number of assigned network

threads. Meanwhile, by default, all buffers are pinned on to the NUMA

node that directly connects the targeted network interface because TCP/IP

incurs a more intensive protocol processing load than storage I/O. The

buffers are also reused over the course of data transfer.

The two modules at the bottom of the DAT layer in Figure 6-2 are en-

capsulated by network I/O threads (senders/receivers) and storage I/O

threads (readers/writers). At the data source, readers produce loaded

buffers, and senders consume them and then return them to the list of free

buffers. After the entire data transfer is completed, the I/O threads are re-

turned to their respective pools for reuse, and a completion event is posted

to the upper layer. The I/O threads are designed to be self-suspendable

when waiting for tasks to minimize CPU consumption.

6.2 Implementation

In this section, we describe the implementation of the reference implemen-

tation of the proposed framework, named Resource-Aware Asynchronous

Data Replication with Multicore SYStem (RAMSYS). It comprises two

components, a front-end agent and a background daemon, as shown in

Figure 6-5(a). The agent is responsible for receiving the command line

requests from users, relaying them to the daemon, and then reporting the

progress/performance data or an error message during and after the data

transfer. The entire software adopts a peer-to-peer design, and therefore

naturally supports third-party data transfer.

The general process for handling a user request is as follows: firstly,

RAMSYS accepts a user’s command line request via the Control (CTL)

entity that then initiates ssh connections and forwards requests to both

94

the data source and data sink hosts. Subsequently, the sshd servers at two

end hosts launch Data source (SRC) and Data sink (SNK) agents (entities)

that post the requests to their local daemon processes. The latters retrieve

the request, and start to communicate with the remote peer.

MCDT Daemon MCDT Daemon

ssh connection ssh connection

Control link

Data link

Data source Data sinkControl

MCDT Agent (SRC)

MCDT Agent (CTL)

MCDT Agent (SNK)
Control link

(a) Interaction among different entities

Task queue Task poller

Link dispatcher

Logger

I/O thread pool
(Network and storage)

User session list

Request poller

User communicator

Network device list

Storage device list

Task controller

Data buffer pool

TCP link list

Universal

Per-storage

Per-task

Data structures Threads

Event queue

I/O threads

A
ss

ig
n

R
et

ur
n

(b) Architecture and data structure in daemon

Figure 6-5: RAMSYS implementation

6.2.1 Daemon Implementation

Figure 6-5(b) shows the multithreaded architecture and data structure of

the background daemon process. It acts as the rendezvous point to collect

system-wide requests for data transfer, manages I/O-related resources, and

bootstraps data transfer tasks intelligently. There are three categories of

data structures and threads in the daemon process. We detail them in the

following categories.

95

Universal data structure and threads

This category of data structures and threads is shared globally and corre-

sponds to the system-wide shared resources and entities. Specifically, the

daemon process maintains a list of resource abstractions for all network and

storage devices. The users’ session list contains all user requests that cur-

rently are in processing, and each session element is created for one request.

Among all running threads, the request poller retrieves a request from a

local request pipe, and inserts a session element into the list of user ses-

sions. Thereafter, it analyzes and partitions the request into several tasks,

and then distributes them to different task waiting queues that correspond

to different storage devices. Meanwhile, the link dispatcher listens on a

well-known port, accepts incoming connections, and dispatches the link to

the right task according to the first control message that comes through

the link.

Per-storage data structure and threads

This category of data structure and threads is defined for I/O devices.

Given the storage-centric design, task queues and their polling threads

are created during system initialization and statically attached to their

respective target storages. The universal request poller thread adds task

to a task waiting queue of the target storage. Afterwards, the task poller

thread of the storage activates a request by attaching a dedicated task

controller thread and removes it from the task waiting queue. Furthermore,

in our implementation, each storage and network device has both inbound

and outbound data accesses (reads/writes), and thus, for a clean thread

design, they have two separate thread pools for inbound and outbound

access.

96

Per-task data structure and threads

This type of data structures and threads is assigned to newly arrived tasks.

The task controller thread maintains a task’s status, and manages its data

structure and the associated threads during the life cycle of a task. We

use a state transition diagram in Figure 6-6 to depict the life cycle of a

data transfer task in a daemon process. At the beginning, the task is

kept in the task waiting queue and in the “waiting” state. Once it is

retrieved by a task polling thread, it acquires the “active” state, and the

daemon creates and starts a task controller thread for the active task. The

controller thread then makes reservations for thread resources from the

corresponding I/O thread pool. If the target pool is empty, the target

task enters the “suspend” state, and the task controller thread becomes

inactive. Once the resource pool is not empty upon the completion of

other tasks, the task controller thread then wakes up to query the pool

again, and the corresponding task returns to the “active” state. After

resource negotiation and assignment, the task controller thread obtains all

the required resources, viz., assigned I/O threads. At this point, the task

enters the “transferring” state. When the data transfer is completed, all

assigned I/O threads post completion events to the task controller thread.

The task then moves to the final “exit” state. After collecting all completed

events, the task controller thread returns all I/O threads to the thread

resource pools, wakes up any suspended task and updates the list of user

sessions.

6.2.2 Optimizations

Instead of targeting a specific user case, the design objective of RAMSYS

is to offer high-speed data transfer consistently under different workloads,

and among various storage systems. RAMSYS is based on a highly par-

97

Waiting

Exit

Active TransferringResource
Assigned

Retrieved by
task poller

Suspended

Resource
unavailable

Resource
available Complete/Cancelled/ErrorCancelled

Figure 6-6: State transition diagram of data transfer task in RAMSYS

alleled framework, and integrates a variety of optimizations, wherein each

of them works well for certain users. They must be applied in a unified

fashion to boost the overall system I/O performance across different scenar-

ios. We introduce the design and implementation of these optimizations in

this section and validate their effectiveness in the subsequent experimental

section.

Kernel-bypass storage I/O

The direct I/O operation offers kernel-bypass for accessing storage. By

bypassing kernel page cache, it saves a copy between the kernel cache and

user buffers, so avoids the overhead of context switch and related kernel

management. This is particularly useful when using a large block size to

access high-speed storages, such as SSD and network-based storage.

Adaptive I/O threads management

In RAMSYS, multiple I/O threads may be assigned to serve a single stor-

age. Based on file sizes in a given task, these I/O threads will employ

two different types of mechanism. The first one is the stripping mode for

large files wherein all I/O threads will serve one file at a time, and each

98

Storage
File 1 File 2 File 3

Memory

Buffer pool

Reader thread

Storage
File 1 File 2 File 3

Memory

Buffer pool

Striping mode Pipling mode

Figure 6-7: Different I/O multi-threading mode in RAMSYS

works on a fraction of the file. Figure 6-7 shows an example of assigning

reader threads to transfer a number of files on data source host. Each file

is segmented into three parts, each of which is handled concurrently by a

separate reader thread (represented by the arrows in Figure 6-7). All files

in the stripping model are handled one-by-one sequentially. This mode

performs well while transfer large files, but it is inappropriate for a batch

of small files because segmenting a small file confers no gain, but neverthe-

less incurs the overhead of coordinating all I/O threads for each file. The

approach in this case is to allocate a single I/O thread for one file, and

transfer multiple files in parallel with multiple threads. It is termed the

pipelining mode. For example, in Figure 6-7, three reader threads work on

three different files at the same time. After completing the transfer of one

file, a thread moves on to the subsequent file in the queue. By adaptively

switching between the pipelining and stripping modes, RAMSYS enhances

system parallelism and thus increase the overall throughput.

Asynchronous non-blocking storage I/O support

RAMSYS also implements the asynchronous non-blocking data flow to en-

able parallelism at the data-block-level wherein a single storage I/O thread

concurrently reads/writes multiple blocks of a given file. The heart of

the RAMSYS non-blocking data flow rests upon our efficient storage AIO

99

module that supports the following two aspects:

1) The batch processing of multiple data blocks within a single func-

tion/system call minimizes the synchronization overheads to lock/release

critical regions. Figure 6-8 demonstrates the state transition diagram of

buffers and interactions among sender threads, reader threads, and the

buffer pool at the data sender. To enable batch processing, the I/O thread

will try to retrieve/post multiple buffers from/to buffer pools every time

it acquires the buffer pool’s lock, so as to minimize the synchronization

overhead per-block.

2) An effective mechanism guarantees processing tasks at different pipeline

stages in time, while avoiding unnecessary busy-waiting on any specific

stage. Algorithm 2 details the design of the AIO access in RAMSYS.

If it detects that no desired resource exists in the buffer pool, it then

turns to check for any pending task in other stages. To avoid unneces-

sary non-blocking pollings, especially in large data blocks and low IOPS

cases, the proposed data flow blocks on event processing and resource re-

questing when its current stage is the bottleneck of the entire processing

flow, and chooses non-blocking processing when there are data/events to be

consumed in the subsequent stage. This intelligent switch between block-

ing and non-blocking processing assures timely polling data buffers/events

while avoiding unnecessary idle spins.

6.3 Experimental evaluation

This section first describes the configurations of the testbeds and workloads.

We then evaluate and analyze each optimization in RAMSYS. At last, a

comprehensive performance comparison is provided between RAMSYS and

the other widely used data transfer tools.

100

putEmptyBuff()

Active

Empty

Posted

Loaded

Full

ReadySent

Write()

getFullBuff()

getNEmptyBuff() putNFullBuff()

io_submit() io_getevents()

Sender thread

Buffer pool

Reader thread

Figure 6-8: Block state transition of RAMSYS AIO module at data source

Algorithm 2: Data and event processing algorithm in the AIO mod-
ule of RAMSYS
Input: batch size: batch, total number of buffers: total

1 Number of available empty buffers: active← 0)
2 Number of buffers submitted to I/O context: posted← 0
3 while have not transferred all the data do

4 if active+ posted > total then

5 if active > 0orposted > batch then

6 Get active buffers from empty buffer pool (non-blocking)
7 else

8 Get active buffers from empty buffer pool (blocking)

9 while active > 0 and updated offset not reach the end-of-file do

10 Assign I/O offset to the first buffer in active buffer list
11 Submit the buffer to kernel via libaio API
12 Move the submitted buffer from active list to posted list
13 Update running offset

14 if posted > batch then

15 if posted = total then

16 Wait for completion events of the posted buffers (blocking)
17 else

18 Wait for completion events of the posted buffers
(non-blocking)

19 Return all the completed buffers to the loaded buffer pool

20 return

101

PCIe bus
SAS bl

RAID controller card

SAS cable
Ethernet link

Network adapter

QPI

Node 1 Node 0 SSD cardNode 0 Network adapter

QPI

Q
PI

Q
PI

Q
PI

SSD Card

Node 2 Node 3 Node 1

SuperMicro 4047R 7JRFT IBM System X3650 M4SuperMicro 4047R-7JRFT IBM System X3650 M4

Figure 6-9: LAN testbed connectivity

ANI 100Gbps

Network

NERSC

100G

Router

ANL

100G

Router

40G RoCE

40G RoCE

Figure 6-10: WAN testbed connectivity

6.3.1 Testbed and Workload Specifications

The local area network (LAN) testbed includes two state-of-the-art mul-

ticore systems, as demonstrated in Figure 6-9. Table 6.1 shows the hard-

ware specifications. We configure the SuperMicro host with four RAID0

disks, each with eleven HDDs. All the disks are attached to the LSI RAID

controller card on the motherboard. Meanwhile, the IBM system in the

testbed includes two LSI Nytro WarpDrive cards, each connected to a sep-

arate NUMA node. Two hosts use a 40 Gbps Ethernet adapter for their

network connections. PCI Gen3 connects all I/O devices with CPU nodes.

Both servers run CentOS 6.5 with the 2.6.32-431 Linux kernel.

The wide area network (WAN) testbed belongs to DOE’s ESnet (Energy

Science Network). It provides a 40 Gbps long-haul link that extends 4,000

miles, from the National Energy Research Scientific Computing Center

102

Table 6.1: Server specifications - LAN
Motherboard SuperMicro 4047R (LAN) IBM System 3650 X3

Processor
Intel Xeon

E5-4620 @ 2.60 GHz
Intel Xeon

E5-2660 @ 2.20 GHz
CPU cores 4×8 2×8
Memory 4×80 Gbytes 2×64 Gbytes
Storage 4 × RAID0 HDDs 2 × LSI SSDs

Table 6.2: Server specifications - WAN
Motherboard SuperMicro X10DRi SuperMicro X10DRi

Processor
Intel Haswell Xeon
E5-2643 @ 3.4 GHz

Intel Haswell Xeon
E5-2643 @ 3.4 GHz

CPU cores 2×8 2×8
Memory 2×64 Gbytes 2×64 Gbytes
Storage RAID0 HDDs RAID0 Samsung SSDs

(NERSC) in Oakland, CA, to Argonne National Laboratory (ANL) near

Chicago, IL and then loop-back to the NERSC (Figure 6-10). The two

hosts in the testbed are located at the NERSC, and have a special loop-

back configuration via ANL’s 100 Gbps router to ensure a long network

latency between them [6]. The minimum RTT between these them is 94.5

milliseconds. Table 6.2 lists their hardware configurations respectively. One

host has 24 HDDs, grouped as a single RAID0 disk. The other host has

12 SSDs that are configured as a RAID0 disk, and it is used as the data

source during our WAN evaluation.

We use three types of workloads. 1) Transfer of large bulk data: we fill

the SSD disks with a few large files with sizes ranging from 50 to 200 Gbytes,

and transfer them to the HDD disk array at the destination. 2) Transfer

of massive numbers of small files: we downloaded ten different versions

of Linux kernel source packages from its official site, and extracted their

content and directory hierarchies to the SSD disks. The total data contain

440, 004 files in 28, 285 directories, and its total size is 5.8 Gbytes. Their

detailed description is in Table 6.3. 3) Mixed workloads: we created 1,000

103

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 1 10 100 1000 10000 100000 1e+06 1e+07

N
um

be
r

of
 fi

le
s

File size (KB)

Figure 6-11: The distribution of file sizes for mixed workloads

Table 6.3: Linux kernel source file description in small file workload
Version Files Directories Total size (MB) Avg size (KB)
2.6.32.67 30494 1878 416 13.9
3.2.71 37625 2345 502 13.6
3.4.108 38573 2389 515 13.7
3.12.47 44599 2871 610 13.6
3.14.52 45942 2948 610 13.6
3.18.21 47984 3078 633 13.5
4.1.7 49438 3207 650 13.5
4.2 50781 3376 685 13.8

4.3-rc1 51545 3439 696 13.8

files with different sizes in each RAID0 SSD/HDD disk array, and sent them

over the 40G links to the disk array on the other host. The size of the files

in the mixed workload follows a log-normal distribution, as shown by the

histogram in Figure 6-11. We used Ganglia [120] on the LAN testbed and

Graphite [121] on the WAN testbed to record the overall bandwidth and

the CPU utilization. In addition, we measured the execution time of each

software via the ”time” utility in Linux.

6.3.2 Evaluation of Proposed Optimizations

In this section, we quantitatively evaluate the different optimizations that

are introduced in Section 6.2.2. The performance of RAMSYS are com-

104

pared in two cases: with and without the optimizations, so as to understand

the effectiveness of each one in different types of storage devices and sce-

narios. We use the large file and mixed workloads here because the small

file workload largely depends on the protocol design rather than these op-

timizations.

 0

 2

 4

 6

 8

 10

32KB 128KB 512KB 2MB 8MB
 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

B
an

dw
id

th
 (

G
bp

s)

E
xc

ut
io

n
tim

e
(s

ec
s)

Block size

unsorted-bw
sorted-bw

unsorted-time
sorted-time

(a) Sorted v.s. unsorted with mixed work-
load

 0

 5

 10

 15

 20

32KB 128KB 512KB 2MB 8MB
 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 600

B
an

dw
id

th
 (

G
bp

s)

E
xc

ut
io

n
tim

e
(s

ec
s)

Block size

unaware-bw
aware-bw

unaware-time
aware-time

(b) Aware v.s. unaware with bulk data

 0

 5

 10

 15

 20

32KB 128KB 512KB 2MB 8MB
 0
 50
 100
 150
 200
 250
 300
 350
 400
 450
 500
 550
 600
 650
 700
 750

B
an

dw
id

th
 (

G
bp

s)

E
xc

ut
io

n
tim

e
(s

ec
s)

Block size

unaware-bw
aware-bw

unaware-time
aware-time

(c) Aware v.s. unaware with mixed work-
load

Figure 6-12: Comparisons of bandwidth and single-task latency between
optimized and unoptimized RAMSYS

Effectiveness of file sorting

As discussed in Section 6.2.2, RAMSYS sorts all files in each queue ac-

cording to the file’s starting address. Figure 6-12(a) compares the sorted

and unsorted transfers of 4000 files, i.e. the mixed workload, from a single

RAID0 disk on LAN testbed. We observed an impressive improvement

in bandwidth of 37% to 47% for the sorted transfers over the unsorted

105

ones, and so confirmed the effectiveness of file sorting that can significantly

reduce randomness for accessing storage.

Effectiveness of NUMA-awareness

NUMA-awareness is another critical optimization in RAMSYS. Figure 6-12

compares the results from two types of workloads: transfers of bulk data,

and of mixed-size files. On average, the NUMA optimization delivers a

14.9% increase in bandwidth, and a 12.7% decrease in latency for bulk

data transfer. For processing the mixed workload, we observed a 17.9%

improvement in bandwidth and a 12.5% reduction in latency. Instead of

depending on the default OS scheduling, RAMSYS utilizes its own pre-

allocation and buffer management modules to pin I/O threads and their

data to the NUMA node that connects directly with the I/O device in-

volved. These results confirm the effectiveness of the thread-dependency-

aware scheduling in RAMSYS across different workloads.

Effectiveness of multithreaded modes and file-level parallelism

In RAMSYS, multiple disk reader/writer threads can work in two multi-

threading modes, striping and pipelining, as described in section 6.2.2.

RAMSYS uses the striping mode for transferring large files, and pipelining

for small file transfers. Herein we focus on the comparison of the two

modes on the mixed workload. Figure 6-13 compares the bandwidths while

accessing data from two different types of storage: the SSD tests read data

from SSD, and send it to the memory of the other test host via the 40G

LAN link, while the HDD tests read from HDD disks. Herein, we assign two

reader threads to the HDD storage to compare the two disk I/O modes.

The striping mode achieves a higher bandwidth in the HDD case than

the pipelining mode, since the reader threads of the latter retrieve data

of multiple files simultaneously, and increase the randomness of accessing

106

 0

 1

 2

 3

 4

 5

 6

 7

 8

32KB 128KB 512KB 2MB 8MB

B
an

dw
id

th
(G

bp
s)

Block size

striping
pipelining

(a) HDD access

 0

 5

 10

 15

 20

32KB 128KB 512KB 2MB 8MB

B
an

dw
id

th
(G

bp
s)

Block size

striping
pipelining

(b) SSD access

Figure 6-13: Comparison of bandwidth between striping and pipelining
modes in RAMSYS

HDD. Here, the sequence of accessing HDD plays a more important role

than file-level parallelism wherein the striping mode preserves a better data

sequence than the pipelining mode, and thus, attains a better performance.

In contrary, SSD favors concurrent random accesses over sequential ones.

Therefore, the pipelining mode has an 84% improvement in bandwidth

compared to the striping mode. In summary, the appropriate application

of each mode assures significant benefits in different cases.

Effectiveness of the AIO module

Figure 6-14(a) shows the bandwidth increment percentage of the AIO

block-level parallelism over the synchronous thread-level parallelism for the

LAN bulk data. “Batch size” here means that a thread calls Linux AIO

system call to submit a specific number of block requests before it moves on

to wait for completion, i.e. the storage I/O thread waits until the number

of ready data buffers reaches the batch size, or it reaches the end of the

task, and then processes them with only one system call. AIO outperforms

the synchronous one, especially for a small block size. Its advantages are

summarized the following: 1) The AIO module performs the batch pro-

cessing of multiple data blocks with a single system call, and thus reduces

the per-block cost. 2) More importantly, it only uses a single thread, while

107

the synchronous module utilizes as many as 16 parallel threads in this test.

Therefore, it saves the resource required by multi-threading. 3) The AIO

module also reduces the cost of synchronization over critical regions, since

it batches multiple blocks into a single processing unit, and acquires the

buffer pool lock only once. Figure 6-14(b) depicts the percentage of reduc-

tions in buffer pool lockings/synchronizations by an AIO module compared

with those of a synchronous one. A larger batch size leads to more reduc-

tions in locking. However, it also adds more blocking time because a thread

has to wait for a large number of blocks accumulated for consumption by a

single buffer pool operation, and so can potentially lower the performance.

Another noticeable observation is that the advantage of AIO diminishes

when block size increases. That is because increasing block size reduces

the total number of I/Os, and the cost per-bytes for synchronous access

also declines, while asynchronous I/O adds waiting time for multiple large

data blocks to be produced and consumed.

In addition, the AIO also benefits mixed workloads. Figure 6-14(c)

compares the bandwidth of the AIO and synchronous disk accesses in the

LAN tests. The AIO module demonstrates a stable performance across dif-

ferent block sizes, and there is a noticeable performance margin of between

15% and 110% over the synchronous I/O module.

6.3.3 Comparative Evaluation with Other Tools

This section compares the performance of RAMSYS with three popular

data transfer systems used by the high performance computing community,

GridFTP 5.2.5, BBCP 12.08.17.00.0, and Aspera 3.6.6.112346. To ensure

the best performance for GridFTP, we enabled its thread option, disabled

all authentication operations and utilized its extended block mode (MODE

E) for all data transfers [122]. For the BBCP, we also used its available

options to avoid the overheads of checking DNS and the storage space at

108

 0

 20

 40

 60

 80

 100

32KB 128KB 512KB 2MB 8MB
B

an
dw

id
th

 in
cr

em
en

t (
%

)
Block size

batch=4
batch=8

batch=16
batch=32

(a) Bandwidth increment of bulk data

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

32KB 128KB 512KB 2MB 8MB

Lo
ck

in
g

de
cr

em
en

t (
%

)

Block size

batch=4
batch=8

batch=16
batch=32

(b) Locking decrement of bulk data

 0

 5

 10

 15

 20

32KB 128KB 512KB 2MB 8MB

B
an

dw
id

th
 (

%
)

Block size

sync
async

(c) Bandwidth of mixed workload

Figure 6-14: Bandwidth and locking of AIO disk access module compared
with synchronous I/O module in RAMSYS over LAN testbed

the data sink. In all tests, both GridFTP and BBCP used 16 parallel TCP

streams, viz., the best case that we observe on our testbeds. For Aspera,

we observed only about 1.5 Gbps on LAN testbed and 4 Gbps on WAN

testbed in bulk data and mixed workload tests. This is much less than the

other three tools, and thus is ignored here.

1) Bulk data transfer: we process the bulk data workload by differ-

ent numbers of parallel file transfers on the LAN testbed. Each concurrent

file goes to a separate RAID0 disk on a SuperMicro server, resulting in a

maximum of four concurrent files. During the parallel transfers of multiple

files, we launched multiple instances of GridFTP and BBCP, one for each

file, so to assure concurrency. On the other hand, in all test cases, we only

needed to create a single RAMSYS daemon process to transfer all the data.

Through thorough experiments, we observed that all of three software sys-

109

 0

 5

 10

 15

 20

1 File 2 Files 4 Files

B
an

dw
id

th
 (

G
bp

s)

of parallel files

GridFTP
bbcp

RAMSYS

(a) Bandwidth

 0

 100

 200

 300

 400

 500

 600

 700

GridFTP

BBCP

RAM
SYS

GridFTP

BBCP

RAM
SYS

GridFTP

BBCP

RAM
SYS

C
P

U
 u

sa
ge

 (
%

)

of parallel files

Data SRC
Data SNK

4 Files2 Files1 File

(b) CPU usage

Figure 6-15: Comparison of bandwidth (a) and CPU usage (b) on bulk
data transfers over LAN testbed

tems perform well at 2M block size, as shown in Figure 6-12, and therefore,

we set a block size of 2M for the comparison studies. Figure 6-15 shows

that RAMSYS performs the best in all tests, and scales well when the

number of parallel file transfers increases. For more than two parallel files,

RAMSYS’s bandwidth exceeds 18 Gbps, which is very close to the band-

width limit of data write to the LSI RAID controller in the SuperMicro

host. Both RAMSYS and BBCP outperform GridFTP and use fewer CPU

cycles because they utilize direct I/O operations, and also employ separate

threads for storage and network I/O operations. Furthermore, RAMSYS

also achieves 28% more bandwidth than does BBCP while it still retains a

similar CPU load because it takes advantage of the multithreaded storage

I/O for accessing SSD.

We also verify the advantages of RAMSYS in the bulk data transfer

using the WAN testbed with different block sizes. During the tests, data

are read from the SSD array and sent to the HDD array on the other

host via the 40 Gbps long-haul link. Figure 6-16 shows the bandwidth

and CPU usage of a single large file transfer. RAMSYS still significantly

outperforms the other two in terms of bandwidth, confirming that the

RAMSYS framework and its optimizations are scalable for long-distance

data transfers.

110

 0

 5

 10

 15

 20

 25

 30

128KB 1MB 2MB 4MB 8MB 16MB

B
an

dw
id

th
(G

bp
s)

Block size

GridFTP
BBCP

RAMSYS

(a) Bandwidth

 0

 50

 100

 150

 200

 250

 300

 350

GridFTP

BBCP

M
CDT

GridFTP

BBCP

M
CDT

GridFTP

BBCP

M
CDT

GridFTP

BBCP

M
CDT

GridFTP

BBCP

M
CDT

GridFTP

BBCP

M
CDT

C
P

U
 u

sa
ge

 (
%

)

Block size

Data SRC
Data SNK

16MB8MB4MB2MB1MB128KB

(b) CPU usage

Figure 6-16: Comparison of bandwidth (a) and CPU usage (b) on bulk
data transfers over WAN testbed

2) Massive small file transfer: In this test case, we used Linux ker-

nel source files, to compare the execution time of the four different transfer

tools in preserving the tree structure of the Linux kernel while relocating

all files. GridFTP supports multiple concurrent FTP sessions to transfer

files in a directory, and here, we used eight concurrent FTP sessions. On

the other hand, RAMSYS, BBCP and Aspera only used a single trans-

fer session. We first test one kernel source tree of the kernel 3.18.21 that

contains 47, 984 files in 3, 078 directories. Tables 6.4 and 6.5 compare the

execution time on the LAN and WAN testbeds respectively. The “Ratio”

values in the tables refer to the speed-up factor of RAMSYS over each of

the comparative tools. BBCP performs the worst here due to its inefficient

protocol design described in Section 1.1.2. GridFTP alleviates this draw-

back by dividing the workloads among multiple FTP sessions, and also

enables the pipeline mode to transfer multiple files concurrently for each

session. In addition, the multi-staged file processing protocol described in

Section 6.1.4 affords RAMSYS a highly efficient mechanism for transferring

a massive number of small files within a single FTP session. Not only does

it deliver a 1.7x to 1235.9x speed-up compared to all alternatives in the

LAN tests, but also demonstrates an even bigger improvement over BBCP

and GridFTP for the long-haul WAN tests. Here, BBCP needs very long

111

Table 6.4: Execution time of transferring Linux kernel files over LAN
testbed

Single kernel directory Ten kernel directories
Software Time (seconds) Ratio Time (seconds) Ratio
BBCP 1177 130.8 88982 1235.9

GridFTP 27 3.0 246 3.4
Aspera 16 1.7 134 1.9

RAMSYS 9 1 72 1

time, of about several days, to complete the transfer of ten kernel trees,

and we can not hold the shared WAN testbed to measure BBCP and have

to mark “N.A” for BBCP in Table /reftab:ramsys-small-file-wan.

We also observe that it takes RAMSYS four seconds longer than Aspera

did to transfer a single Linux directory in WAN testbed. On the other hand,

for transferring ten Linux directories, RAMSYS achieve 3.9x speed-up over

Aspera. Figure 6-17 shows the execution time of the two software tools for

transferring different numbers of Linux kernel directories over the WAN

testbed. For less than four directories, RAMSYS spends a large fraction of

running time on authentication with ssh commandline scripts while Aspera

utilizes the more efficient OpenSSL library for authentication. When the

number of files increases, the file transfer time becomes dominant, and

RAMSYS outperforms Aspera. In addition, in the case of eight directories

or more, Aspera spends extra time to exit its program and significantly

increases its total execution time.

All these comparisons confirm the efficiency and scalability of the file

processing protocol in RAMSYS.

3) Mixed workload transfer: To evaluate the capability to handle

a large number of mixed-size files, we generate 4,000 files with their sizes

following a log-normal distribution, load them to each of the four RAID0

disks on the SuperMicro host, viz, 16, 000 files in total, and copy them to

“/dev/null” of the IBM host. Again, for GridFTP and BBCP, we create

112

Table 6.5: Execution time of transferring Linux kernel files over WAN
testbed

Single kernel directory Ten kernel directories
Software Time (seconds) Ratio Time (seconds) Ratio
BBCP 5738 358.6 N.A. N.A.

GridFTP 1136 71 11123 444.92
Aspera 12 0.8 98 3.9

RAMSYS 16 1 25 1

 0

 20

 40

 60

 80

 100

 120

1 2 4 6 8 10

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Number of directories

Aspera
RAMSYS

Figure 6-17: Execution time of Aspera and RAMSYS while transferring
different number of kernel directories over WAN testbed

four concurrent instances, one for each RAID0 disk. Figure 6-18 compares

their overall bandwidth performance and CPU usage with different block

sizes. GridFTP only utilizes 4 CPU cores at most, and thus its bandwidth

performance is lower than that of BBCP and RAMSYS. The CPU usage

on the data source host is higher than that on the data sink host because

this test case involves no disk write at the data sink. RAMSYS obtains

consistently a higher bandwidth performance than do the other two, i.e.,

a 107.7% higher than GridFTP, and 63.2% higher than BBCP on average,

while, in the meantime, with a higher CPU usage. This proves that RAM-

SYS has the best CPU scalability among the three transfer tool, and can

fully utilize the multicore and I/O resources. In particular, when the block

is small (32KB), RAMSYS demonstrates a significantly better capability

of handling a large number of tasks and data blocks than the other two.

Figure 6-19 compares the bandwidth of three tools and their CPU us-

113

 0

 5

 10

 15

 20

 25

 30

32KB 128KB 512KB 2MB 8MB

B
an

dw
id

th
 (

G
bp

s)

Block size

GridFTP
bbcp

RAMSYS

(a) Bandwidth

 0

 100

 200

 300

 400

 500

 600

 700

 800

GridFTP

BBCP

RAM
SYS

GridFTP

BBCP

RAM
SYS

GridFTP

BBCP

RAM
SYS

GridFTP

BBCP

RAM
SYS

GridFTP

BBCP

RAM
SYS

C
P

U
 u

sa
ge

 (
%

)

Block size

Data SRC
Data SNK

8MB2MB512KB128KB32KB

(b) CPU usage

Figure 6-18: Comparison of bandwidth and CPU usage on transferring
mixed workload over LAN

age for processing mixed workloads over the WAN testbed. RAMSYS is

2-3 times faster the other two tools. The BBCP protocol needs to synchro-

nize file metadata one by one between the data source and data sink, and

suffers more from a long RTT compared to the other two, which greatly

compromises its overall performance.

Another interesting observation is that 512 KB appears to be the “sweet

spot” and is favored in all mixed workload cases, as illustrated in Fig-

ures 6-12(a), 6-12(c), and 6-19(a). The reason is that when the block size

is small, there are more data blocks to process, and each block incurs a

constant amount of overhead, thereby RAMSYS incurs more aggregated

overheads. On the other hand, when the block size is too big (for example,

greater than 2 MB), most files in the mixed workload cannot even fill up

a single block. A large portion of a data block is wasted, which also intro-

duces unnecessary overheads. Furthermore, as depicted in Figure 6-11, the

size of a large portion of mixed files is around 512 KB. For these reasons,

a block size of 512 KB is our best practice in mixed file transfer.

To evaluate each individual optimization strategy employed in RAM-

SYS and quantify its gain in performance, we analyze all previous results,

and undertake more experimental comparisons, e.g., RAMSYS without di-

rect I/Os, versus GridFTP. Table 6.6 presents the final results. We make

114

 0

 5

 10

 15

 20

 25

128KB 512KB 1MB 2MB 4MB 8MB

B
an

dw
id

th
(G

bp
s)

Block size

GridFTP
BBCP
MCDT

(a) Bandwidth

 0

 50

 100

 150

 200

 250

 300

 350

GridFTP

BBCP

M
CDT

GridFTP

BBCP

M
CDT

GridFTP

BBCP

M
CDT

GridFTP

BBCP

M
CDT

GridFTP

BBCP

M
CDT

GridFTP

BBCP

M
CDT

C
P

U
 u

sa
ge

 (
%

)

Block size

Data SRC
Data SNK

8MB4MB2MB1MB512KB128KB

(b) CPU usage

Figure 6-19: Comparison of bandwidth and CPU usage on mixed workload
transfer over WAN

several observations: 1) For transferring mixed workloads, asynchronous

processing provides significant advantages in performance, while it is less

effective in the tests of bulk data transfers. The reason is that, in bulk

data cases, we choose to transfer a single file per storage device, so to

avoid the bottleneck in performance due to writing to HDD. On the other

hand, mixed workload tests involve processing more requests and incur

more events than do the bulk ones. So asynchronous processing is more ef-

fective than synchronous processing in this case. 2) In contrast to GridFTP

and BBCP, RAMSYS utilizes multiple parallel reader threads for accessing

data in SSD, and gains another 17.21% more bandwidth for transferring

bulk data. 3) Direct I/O delivers a major gain in performance of trans-

ferring bulk data. It is especially effective for loading data from SSD with

a large block size. 4) During the mixed workload tests, we do not involve

disk writing, direct I/O nor multithreaded storage access. The remaining

optimizations, viz., NUMA-awareness, asynchronous processing, and more

importantly file sorting, are the major contributors to performance.

115

Table 6.6: Breakdown of bandwidth increments compared to GridFTP
Optimizations Bulk data (%) Mixed workload (%)

NUMA-awareness 35.76 17.92
Asynchronous processing 8.27 47.09
Multithreaded storage 17.21 0

Direct I/O 98.85 0
File sorting 0 42.71

Total improvement 160.09 107.73

6.4 Summary

This chapter describes the resource-aware high-speed data transfer soft-

ware, RAMSYS, which uses a novel asynchronous framework design. The

previous monolithic designs do not fit state-of-the-art hardware, such as

multi-/many-core servers, 100 Gbps networks, and NVRAM or SSD based

storages. We introduce a multi-staged end-to-end data transfer design,

wherein each stage is fully resource-driven and implements a flexible num-

ber of components for predefined functions, such as storage I/O, net-

work communication, and request handling. RAMSYS relies on the asyn-

chronous paradigm to maximize the concurrency of components, and thereby

offers improved scalability and resource utilization in modern multicore

systems. Furthermore, the proposed framework is extensible to integrate

various optimization techniques, and we have shown several of them. Our

testbed experimental results have quantitatively justified the effectiveness

of each component in RAMSYS and the optimization techniques. The

combination of the asynchronous processing and the integrated optimiza-

tions ensures superior performance for various workloads, attaining a 1.3x

to 2.6x speedup for transferring large and mixed files, and a 1.7x to 1235.9x

speedup for transferring directory trees over three widely used tools.

116

Chapter 7

Conclusion and Future Work

High performance hardware, such as multi-/many-core servers, 100 Gbps

networks, and NVRAM or SSD based storages, emerges as the catalysis

component to large-scale data-intensive computing systems. The problem

of understanding and scheduling multicore resource is one of the hottest and

most challenging topics in the system research. This dissertation quantita-

tively exposes the ineffectiveness of the existing multicore characterization

methods and the data replication tools, and then pinpoints the mismatches

between the defective designs in software and the new capability in modern

hardware. Based on our mathematical and empirical analysis, we propose

the multicore affinity metric to measure the NUMA remote access penalty

and implement experimental tools and a data transfer system to supporting

high speed data replication. In this chapter, we first conclude the research

contributions of the dissertation, and then propose the future work direc-

tions.

7.1 Conclusion

To utilize the computing capacity in a multi-core system, modern high-

speed data replication applications usually adopt the multi-threaded de-

117

sign and multiplex multiple network interfaces to enhance concurrency and

improve the aggregated performance. On the other head, Non-uniform

memory access (NUMA) multicore system introduce another dimension of

complexity (i.e., architectural complexity) that must be addressed in de-

signing high performance applications. It remains a persistent challenge

to efficiently utilize the abundant resources while offering superior perfor-

mance to different user scenarios in multicore computers. It is crucial to

understand and utilize applications I/O characteristics, thereby to make

decisions with respect to multicore-aware resource allocation, assignment

and optimization to minimize the data I/O overheads and to improve the

overall system throughput. In this dissertation, we detail our new find-

ings and solutions on characterizing and modeling the I/O performance

in NUMA systems, attaining multicore-aware resource scheduling, design-

ing resource-aware asynchronous data pipelines, and ensuring high perfor-

mance over different workloads.

At first, to develop a comprehensive understanding to the characteristics

of I/O access, we run bulk data transfer applications on a state-of-the-art

host while collecting the counter readings of the I/O and multicore related

hardware events. No existing study did this type of the quantification work.

We fist look into the widely-used hardware events, for example, LLC misses

and resource stalk cycles, and identify the high cost incurred by inter-node

buses. Further analysis uncovers the critical impact of prefetch contention

and cache coherency traffic on NUMA effects. Base on our new findings, a

new metric is proposed to quantify the NUMA remote access penalty, and

support dynamic NUMA-aware resource scheduling.

Furthermore, we design an empirical performance modeling method for

NUMA-aware resource scheduling based on pre-profiling. We first demon-

strate the ineffectiveness of the existing performance modeling solutions

on the modern multicore platforms, and reveal the mismatches between

118

these solutions and current hardware. The dissertation then provides an

intelligent I/O performance modeling method without even involving ex-

pensive I/O hardware and time-consuming I/O operations. The model is

verified and confirmed by the actual I/O benchmarking results, including

asynchronous disk I/O, TCP/IP network I/O and the RDMA network I/O.

We present concrete examples to show that this model can be applied to

reduce the tedious I/O characterization workload, predict the aggregate

I/O performance and mitigate resource contentions.

Subsequently, the dissertation claims that the mathematical optimiza-

tion problem of resource scheduling on a multi-core platforms remains

widely open. Different hardware and workload characteristics, the impact

of co-scheduled tasks, NUMA factors and dynamic system loads all con-

tribute to its complexity. This dissertation provides the formal problem

definition of the task scheduling for data replication, and represent it with

a two-staged graph model. Under this definition, attaining a scheduling

solution is then transformed to solving a min-sum-max resource allocation

problem (MSMRAP) that include integer variables. We then show that it

is a NP-complete problem that has a high computation complexity, even

for its relaxed form. We propose a potential solution based on a divide

and conquer algorithm. Its solution space still grows exponentially with

the number of cores and the number of tasks to be co-scheduled. We thus

aimed to solve the problem with an empirical solution. We implement a

NUMA-aware thread and memory scheduling module in BBCP tool. The

evaluation results with our local testbed show significant advantages of the

optimized BBCP by significant throughput improvements over the original

implementation, i.e. 10.83% to 220% in the memory-based tests and 6.45%

to 14.3% in the Storage Area Network tests.

Nevertheless, NUMA-awareness is only one aspect of the multicore op-

timization in data replication applications. More integrated design strate-

119

gies, such as multi-threading, kernel-bypass, asynchrony, and event-driven

techniques are necessary to ensure high parallelism and performance over

different workloads. This dissertation details a complete high-speed data

transfer solution, named Resource-Aware Asynchronous Data Replication

with Multicore SYStem (RAMSYS). We first systematically introduce its

framework design by a layered structure and a staged task processing

pipeline. Each stage is assigned with dedicated threads which are preallo-

cated via the hardware-characteristic-aware initialization module. RAM-

SYS affinitizes its threads and their memory space with designated cores

and reuses them among multiple file transfers to guarantee NUMA-awareness

and minimize resource allocation overhead. Meanwhile, we regroup the

user requests with a storage-centric design, and link the processing stages

via an event-driven driven mechanism to maximize system concurrency.

we also propose a capacity-based resource negotiation protocol, and a file

metadata synchronization and payload transfer protocol to optimize the

resource scheduling process. In addition, the software implementation also

integrates various I/O related optimizations, including file-level sorting,

block-level asynchronism, direct I/O and adaptive multi-threading modes,

to further improve performance across different workloads.

Finally, to confirm the effectiveness of the proposed solution in real

word use cases, we deploy RAMSYS system to our local data center, and

the nation-wide Department of Energy (DOE) networks. Different repre-

sentative workloads with large, small and random sized data files are also

generated over different storage systems to test the performance of various

user scenarios. We first prove the benefit of each optimization included

in RAMSYS by comparing the performance before and after enabling it.

We then run other well-known data replication tools, GridFTP, BBCP and

Aspera, on the same workloads and testbeds to compare with RAMSYS

software. These comprehensive experimental studies demonstrates the un-

120

rivaled advantages of RAMSYS, including 1.3x to 2.6x speedup on large,

small and mixed file transfer, and 3x to 1236x speedup directory tree trans-

fer. The significant performance gain results from the joint effect of high

efficient software framework and customized optimizations to each user

case.

7.2 Future Works

Inspired by the work and research outcomes in this dissertation, the future

works focus on improving the NUMA-aware scheduling and harnessing the

models in this dissertation in real application designs to further enhance the

performance and user experience of sharing data among science, industry,

and end-consumers, in particular, to integrate the NUMA I/O performance

model into the resource affinity configuration setup in RAMSYS and other

data-intensive programs and to apply the proposed NUMA scheduling fac-

tor to support real-time resource scheduling.

7.2.1 NUMA-aware thread and memory migration

A brute-force NUMA-aware scheduling is to bind all relevant threads into

the same processor. However this approach will incur unbalanced work-

loads and resource contention on local resources, and creates a hot spot in

system. Consequently, the penalty of resource contention potentially over-

whelms the benefit of NUMA-awareness. The resource scheduler on NUMA

multicore platform must make a trade-off between NUMA-awareness and

contention-awareness in Section 5.2.3, and make adaptive decision to mi-

grate some local tasks off to remote nodes. One future work targets to

design a balanced scheduling among locality, contention and fairness. Exist-

ing state-of-the-art contention-aware algorithms for NUMA systems work

as follows: they identify the target threads that share the same memo-

121

ry/CPU domain and in the meantime interfere each other’s performance,

and then choose and migrate part of the target threads to a different do-

main. This approach,referred as “NUMA-agnostic migration”, may create

a situation where a running thread access its allocated memory that is

located in a different domain from its own. On the other hand, how to

avoid unnecessary migration is another aspect of the scheduling problem.

Frequent migration of threads is expensive because the associated CPU

overhead is high and more importantly, the cache affinity can be not pre-

served. One improvement is to consider a thread and its memory together

and migrate both to avoid the remote accesses and overloaded memory

controllers. Meanwhile, the target selection for migration must take the

size of memory into consideration because memory migration is extremely

costly. The overall strategy is to minimize such a operation as many as

possible and to avoid the repetitive migrations between the same targets.

7.2.2 Interrupt affinity control

In this dissertation, we detailed the effects of controlling the thread and

memory affinity on NUMA platform and integrated this strategy in the

read-world application. More aspects of resource affinity need further inves-

tigation for their potential use in real-world applications, for example, the

techniques of controlling interrupt affinity, including Receive-side Scaling

(RSS), Receive Packet Steering (RPS) and Receive Flow Steering (RFS).

The problem is that all hardware interrupts end up getting serviced by

CPU 0 by default in most Linux systems. This results in a system bottle-

neck and reduced performance. The interrupts must be distributed among

CPUs to eliminate the system hot spot and in the meantime to preserve

the access locality among the I/O path. Therefore it might be appropriate

to distribute interrupts across cores. Modern network adapters have the

capacity to support multiple interrupt queues, each of which can be served

122

by a separate CPU core. Packets enter the queues according to the hash

value that is calculated from the pair of communicating IP addresses/ports.

As a result, all packets for the same TCP session always end up in the same

queue that has a dedicated interrupt handler. The multi-queue network de-

vice allows us to map interrupts to particular CPUs and cores so to spread

out its load. Such a feature can be potentially incorporated into the data

replication applications for the future 100Gbps/1Tbps network adapters.

7.2.3 Load balancing and work stealing among test

queues

In RAMSYS, a thread is attached to a specific waiting queue associated

with a storage device, and only serves the tasks from the queue. It is possi-

ble that one queue is overwhelmed by a large number of tasks and workload,

while other queues and their serving threads are starving for tasks. This

occurs especially when the system need to on-line process heterogeneous

dynamic workloads. To achieve scalable performance, data intensive appli-

cations often need a real-time dynamic mechanism to balance loads among

multiple task queues. Work stealing is a popular choice of distributed dy-

namic load balancing, but its performance impact to large-scale multi-user

systems is not well understood. The work stealing algorithm with high ef-

ficiency and low overhead is indispensable to fully utilize many-/multi-core

systems for high system throughput given unbalanced workloads.

7.3 Summary

Resource scheduling on multicore platforms is challenging and also critical

to data replication applications. An extensive list of factors, i.e., NUMA

asymmetry, storage characteristics, device capability, multi-task parallelism

123

and load balancing, must be considered together to consistently achieve

high performance for various real world data replication workloads and

network systems. This dissertation first provides in-depth analysis to un-

derstand the behavior of the underlying state-of-the-art hardware, subse-

quently proposes appropriate performance modeling method and metrics

to measure and evaluate target systems and design strategies, and finally

integrate these contributions to a real-word software system to demonstrate

the effectiveness and efficiency of our proposed optimizations and the de-

rived NUMA-aware design for high-speed data replication. Furthermore,

we comparatively evaluate and compare our RAMSYS with the current

widely-used data replication tools. The test results reveal its superior per-

formance over the other existing solutions. At last, we offer several future

work directions to further enrich the multi-/many-core high performance

computing research.

124

Bibliography

[1] D.T. Nukarapu, Bin Tang, Liqiang Wang, and Shiyong Lu. Data
replication in data intensive scientific applications with performance
guarantee. Parallel and Distributed Systems, IEEE Transactions on,
22(8):1299–1306, Aug 2011.

[2] Mahadev Satyanarayanan, P. Bahl, R Caceres, and N. Davies. The
case for vm-based cloudlets in mobile computing. Pervasive Comput-
ing, IEEE, 8(4):14–23, Oct 2009.

[3] Murali Annavaram, Ed Grochowski, and John Shen. Mitigating Am-
dahl’s Law through EPI throttling. In Proceedings of the 32nd annual
international symposium on Computer Architecture, pages 298–309,
May 2005.

[4] Saisanthosh Balakrishnan, Ravi Rajwar, Mike Upton, and Konrad
Lai. The impact of performance asymmetry in emerging multicore
architectures. In Proceedings of the 32nd annual international sym-
posium on Computer Architecture, pages 506–517, May 2005.

[5] IEEE P802.3ba 40 Gb/s and 100 Gb/s Ethernet Task Force. Avail-
able at "http://www.ieee802.org/3/ba/".

[6] B. Tierney, E. Kissel, M. Swany, and E. Pouyoul. Efficient data
transfer protocols for big data. In E-Science (e-Science), 2012 IEEE
8th International Conference on, pages 1–9, Oct 2012.

[7] Amazon.com Inc. AWS Import/Export Snowball. Available at
https://aws.amazon.com/importexport/.

[8] Aspera online page. Available at http://asperasoft.com/.

[9] B.M. Tudor, Yong Meng Teo, and S. See. Understanding off-chip
memory contention of parallel programs in multicore systems. In
Parallel Processing (ICPP), 2011 International Conference on, pages
602–611, Set 2011.

125

"http://www.ieee802.org/3/ba/"
https://aws.amazon.com/importexport/
http://asperasoft.com/

[10] L.L. Pilla, C.P. Ribeiro, D. Cordeiro, Chao Mei, A. Bhatele, P.O.A.
Navaux, F. Broquedis, J. Mehaut, and L.V. Kale. A hierarchical
approach for load balancing on parallel multi-core systems. In Paral-
lel Processing (ICPP), 2012 41st International Conference on, pages
118–127, Sept 2012.

[11] Tong Li, Dan Baumberger, David A. Koufaty, and Scott Hahn. Effi-
cient operating system scheduling for performance-asymmetric multi-
core architectures. In Proceedings of the 2007 ACM/IEEE conference
on Supercomputing, 2007.

[12] Pat Conway, Nathan Kalyanasundharam, Gregg Donley, Kevin
Lepak, and Bill Hughes. Cache hierarchy and memory subsystem
of the AMD Opteron processor. IEEE Micro, pages 16–29, 2010.

[13] Osmin Dumitru, Ralph Koning, and Cees De Laat. 40 Gigabit Ether-
net: Prototyping transparent end-to-end connectivity. In The TER-
ENA Networking Conference 2011 (TNC 2011), 2011.

[14] Baptiste Lepers, Vivien Quema, and Alexandra Fedorova. Thread
and memory placement on numa systems: Asymmetry matters. In
2015 USENIX Annual Technical Conference (USENIX ATC 15),
pages 277–289, Santa Clara, CA, July 2015. USENIX Association.

[15] Abdullah Kayi, Edward Kornkven, Tarek El-Ghazawi, Samy Al-
Bahra, and Gregory Newby. Performance evaluation of clusters with
ccNUMA nodes - a case study. In The 10th IEEE International Con-
ference on High Performance Computing and Communications, pages
320–327, Septempber 2008.

[16] Zoltan Majo and Thomas Gross. Memory system performance in a
NUMA multicore multiprocessor. In Proceedings of the 4th Annual
International Conference on Systems and Storage, pages 1–10, 2011.

[17] Sergey Blagodurov, Sergey Zhuravlev, Mohammad Dashti, and
Alexandra Fedorova. A case for NUMA-aware contention manage-
ment on multicore systems. In Proceedings of the 2011 USENIX
conference on USENIX annual technical conference, 2011.

[18] John D. McCalpin. Memory bandwidth and machine balance in cur-
rent high performance computers. IEEE Computer Society Technical
Committee on Computer Architecture (TCCA) Newsletter, pages 19–
25, December 1995.

[19] William Allcock, John Bresnahan, Rajkumar Kettimuthu, Michael
Link, Catalin Dumitrescu, Ioan Raicu, and Ian Foster. The globus

126

striped gridftp framework and server. In Proceedings of the 2005
ACM/IEEE Conference on Supercomputing, SC ’05, 2005.

[20] Andy Hanushevsky. BBCP online page, 2012. Available at http://
www.slac.stanford.edu/~abh/bbcp/.

[21] Yunhong Gu and Robert L. Grossman. Udt: Udp-based data transfer
for high-speed wide area networks. Comput. Netw., 51(7):1777–1799,
May 2007.

[22] Yufei Ren, Tan Li, Dantong Yu, Shudong Jin, Thomas Robertazzi,
Brian Tierney, and Eric Pouyoul. Protocols for wide-area data-
intensive applications: Design and performance issues. In Super-
computing 2012, November 2012.

[23] Xiao Zhang, Sandhya Dwarkadas, Girts Folkmanis, and Kai Shen.
Processor hardware counter statistics as a first-class system resource.
In Proceedings of the 11th USENIX Workshop on Hot Topics in Op-
erating Systems, HOTOS’07, pages 14:1–14:6, San Diego, CA, 2007.

[24] Douglas Thain and Christopher Moretti. Efficient access to many
small files in a filesystem for grid computing. In Proceedings of the
8th IEEE/ACM International Conference on Grid Computing, GRID
’07, pages 243–250, Washington, DC, USA, 2007. IEEE Computer
Society.

[25] Jon Dugan. iperf benchmark, June 2011. Available at http://

sourceforge.net/projects/iperf/.

[26] Mark D. Hill and Michael R. Marty. Amdahl’s law in the multicore
era. Computer, 41(7):33–38, 2008.

[27] A. Ros, B. Cuesta, R. Fernandez-Pascual, M.E. Gomez, M.E. Acacio,
A. Robles, J.M. Garcia, and J. Duato. Extending Magny-Cours cache
coherence. Computers, IEEE Transactions on, 61(5):593–606, 2012.

[28] Kyle Spafford, Jeremy Meredith, and Jeffrey Vetter. Quantifying
NUMA and contention effects in multi-GPU systems. In Proceedings
of the Fourth Workshop on General Purpose Processing on Graphics
Processing Units, pages 1–7, 2011.

[29] Shoaib Akram, Manolis Marazkis, and Angelos Bilas. NUMA im-
plications for storage I/O throughput in modern servers. In 3rd
Workshop on Computer Architecture and Operating System co-design
(CAOS’12), 2012.

127

http://www.slac.stanford.edu/~abh/bbcp/
http://www.slac.stanford.edu/~abh/bbcp/
http://sourceforge.net/projects/iperf/
http://sourceforge.net/projects/iperf/

[30] Cheng Li, I. Goiri, A. Bhattacharjee, R. Bianchini, and T.D. Nguyen.
Quantifying and Improving I/O Predictability in Virtualized Sys-
tems. In IEEE/ACM International Symposium on Quality of Service
(IWQoS), pages 1–12, June 2013.

[31] Cheng Li, Philip Shilane, Fred Douglis, Darren Sawyer, and Hyong
Shim. Assert(!Defined(Sequential I/O)). In 6th USENIX Workshop
on Hot Topics in Storage and File Systems (HotStorage 14), Philadel-
phia, PA, June 2014. USENIX Association.

[32] Cheng Li, Philip Shilane, Fred Douglis, Hyong Shim, Stephen Smal-
done, and Grant Wallace. Nitro: A Capacity-Optimized SSD Cache
for Primary Storage. In 2014 USENIX Annual Technical Conference
(USENIX ATC 14), pages 501–512, Philadelphia, PA, June 2014.
USENIX Association.

[33] Cheng Li, Philip Shilane, Fred Douglis, and Grant Wallace. Pan-
nier: A Container-based Flash Cache for Compound Objects. In Pro-
ceedings of the 16th International Middleware Conference (ACM/I-
FIP/USENIX Middleware 15), pages 61–73. ACM, 2015.

[34] Cheng Li, Shihong Zou, and Lingwei Chu. Online Learning Based
Internet Service Fault Diagnosis Using Active Probing. IEEE ICNSC,
2009.

[35] Yinan Li, Ippokratis Pandis, Rene Mueller, Vijayshankar Raman,
and Guy Lohman. NUMA-aware algorithms: the case of data shuf-
fling. In The biennial Conference on Innovative Data Systems Re-
search (CIDR), 2013.

[36] Patrick McCormick, Ryan Karl Braithwaite, and Wuchun Feng. Em-
pirical memory-access cost models in multicore NUMA architec-
tures. In 2011 International Conference on Parallel Processing (ICPP
2011), January 2011.

[37] D.R. Kaeli, L. L. Fong, R. C. Booth, K. C. Imming, and J. P. Weigel.
Performance analysis on a CC-NUMA prototype. IBM Journal of
Research and Development, 41(3):205–214, 1997.

[38] Martin Schmollinger and Michael Kaufmann. kNUMA: A model for
clusters of SMP-machines. In Parallel Processing and Applied Math-
ematics, pages 42–55. Springer Berlin Heidelberg, 2002.

[39] K.W. Cameron and Xian-He Sun. Quantifying locality effect in data
access delay: memory logP. In Parallel and Distributed Processing
Symposium, 2003. Proceedings. International, 2003.

128

[40] M. Forsell. A PRAM-NUMA model of computation for addressing
low-tlp workloads. In Parallel Distributed Processing, Workshops
and Phd Forum (IPDPSW), 2010 IEEE International Symposium
on, pages 1–8, 2010.

[41] Patrick McCormick, Ryan Karl Braithwaite, and Wuchun Feng. Em-
pirical memory-access cost models in multicore NUMA architectures.
Technical report, Los Alamos National Laboratory (LANL), January
2011.

[42] Ryan Karl Braithwaite, Wuchun Feng, and Patrick McCormick. Au-
tomatic NUMA characterization using Cbench. In Proceedings of the
third joint WOSP/SIPEW international conference on Performance
Engineering, 2012.

[43] J. Treibig, G. Hager, and G. Wellein. Likwid: A lightweight
performance-oriented tool suite for x86 multicore environments. In
Proceedings of PSTI2010, the First International Workshop on Par-
allel Software Tools and Tool Infrastructures, San Diego, CA, 2010.

[44] J. Dongarra, K. London, S. Moore, P. Mucci, and D. Terpstra. Us-
ing papi for hardware performance monitoring on linux systems. In
Conference on Linux Clusters: The HPC Revolution, Linux Clusters
Institute, Urbana, Illinois, June 2001.

[45] Arnaldo Carvalho de Melo. Performance counters on linux the new
tools. In Linux Plumbers Conference, September 2009.

[46] Stéphane Eranian. What can performance counters do for memory
subsystem analysis? In Proceedings of the 2008 ACM SIGPLAN
Workshop on Memory Systems Performance and Correctness: Held
in Conjunction with the Thirteenth International Conference on Ar-
chitectural Support for Programming Languages and Operating Sys-
tems (ASPLOS ’08), MSPC ’08, pages 26–30, Seattle, Washington,
2008.

[47] Sergey Blagodurov and Alexandra Fedorova. User-level scheduling on
NUMA multicore systems under linux. In Linux Symposium 2011,
2011.

[48] Stephen Ziemba, Gautam Upadhyaya, and Vijay S. Pai. Analyzing
the effectiveness of multicore scheduling using performance counters.
In Proceedings of the Workshop on the Interaction between Operating
Systems and Computer Architecture, 2008.

[49] Richard M. Karp. Reducibility among combinatorial problems. Com-
plexity of Computer Computations, pages 85–103, 1972.

129

[50] Viren Kumar and James Delgrande. Optimal multicore scheduling:
An application of asp techniques. In Proceedings of the 10th Interna-
tional Conference on Logic Programming and Nonmonotonic Reason-
ing, LPNMR ’09, pages 604–609, Berlin, Heidelberg, 2009. Springer-
Verlag.

[51] N. Mastronarde, K. Kanoun, D. Atienza, P. Frossard, and M. van der
Schaar. Markov decision process based energy-efficient on-line
scheduling for slice-parallel video decoders on multicore systems. Mul-
timedia, IEEE Transactions on, 15(2):268–278, Feb 2013.

[52] Jihye Kwon, Kang-Wook Kim, Sangyoun Paik, Jihwa Lee, and
Chang-Gun Lee. Multicore scheduling of parallel real-time tasks
with multiple parallelization options. In Real-Time and Embedded
Technology and Applications Symposium (RTAS), 2015 IEEE, pages
232–244, April 2015.

[53] Shekhar Srikantaiah, Reetuparna Das, Asit Mishra, Chita Das, and
Mahmut Kandemir. A case for integrated processor-cache partition-
ing in chip multiprocessors. In Proceedings of the Conference on High
Performance Computing Networking, Storage and Analysis, 2009.

[54] Moinuddin K. Qureshi and Yale N. Patt. Utility-based cache par-
titioning: A low-overhead, high-performance, runtime mechanism
to partition shared caches. In Proceedings of the 39th Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO
39, pages 423–432, Washington, DC, USA, 2006. IEEE Computer
Society.

[55] Yuejian Xie and Gabriel H. Loh. Pipp: Promotion/insertion pseudo-
partitioning of multi-core shared caches. In Proceedings of the 36th
Annual International Symposium on Computer Architecture, ISCA
’09, pages 174–183, Austin, TX, USA, 2009.

[56] Jiang Lin, Qingda Lu, Xiaoning Ding, Zhao Zhang, Xiaodong Zhang,
and P. Sadayappan. Enabling software management for multicore
caches with a lightweight hardware support. In Proceedings of the
Conference on High Performance Computing Networking, Storage
and Analysis, SC ’09, Portland, Oregon, 2009.

[57] Xiao Zhang, Sandhya Dwarkadas, and Kai Shen. Towards practical
page coloring-based multicore cache management. In Proceedings of
the 4th ACM European Conference on Computer Systems, EuroSys
’09, pages 89–102, Nuremberg, Germany, 2009.

130

[58] Onur Mutlu and Thomas Moscibroda. Parallelism-aware batch-
scheduling: Enhancing both performance and fairness of shared dram
systems. In 35th International Symposium on Computer Architecture,
2008.

[59] E. Ipek, O. Mutlu, J.F. Martinez, and R. Caruana. Self-optimizing
memory controllers: A reinforcement learning approach. In Com-
puter Architecture, 2008. ISCA ’08. 35th International Symposium
on, pages 39–50, June 2008.

[60] Thomas Moscibroda and Onur Mutlu. Memory performance attacks:
Denial of memory service in multi-core systems. In Proceedings of
16th USENIX Security Symposium on USENIX Security Symposium,
SS’07, pages 18:1–18:18, Boston, MA, 2007.

[61] Onur Mutlu and Thomas Moscibroda. Stall-time fair memory access
scheduling for chip multiprocessors. In Proceedings of the 40th Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO
40, pages 146–160, 2007.

[62] Tong Li, Dan Baumberger, David A. Koufaty, and Scott Hahn. Effi-
cient operating system scheduling for performance-asymmetric multi-
core architectures. In Proceedings of the 2007 ACM/IEEE conference
on Supercomputing, 2007.

[63] B. Goglin and N. Furmento. Enabling high-performance memory
migration for multithreaded applications on Linux. In Parallel Dis-
tributed Processing, 2009. IPDPS 2009. IEEE International Sympo-
sium on, pages 1–9, 2009.

[64] R. Knauerhase, P. Brett, B. Hohlt, Tong Li, and S. Hahn. Using os
observations to improve performance in multicore systems. Micro,
IEEE, 28(3):54–66, May 2008.

[65] Andreas Merkel, Jan Stoess, and Frank Bellosa. Resource-conscious
scheduling for energy efficiency on multicore processors. In Proceed-
ings of the 5th European Conference on Computer Systems, EuroSys
’10, pages 153–166, Paris, France, 2010.

[66] Sergey Zhuravlev, Sergey Blagodurov, and Alexandra Fedorova.
Addressing shared resource contention in multicore processors via
scheduling. In Proceedings of the Fifteenth Edition of ASPLOS on
Architectural Support for Programming Languages and Operating Sys-
tems, ASPLOS XV, pages 129–142, Pittsburgh, Pennsylvania, USA,
2010.

131

[67] Mohammad Banikazemi, Dan Poff, and Bulent Abali. Pam: A novel
performance/power aware meta-scheduler for multi-core systems. In
Proceedings of the 2008 ACM/IEEE Conference on Supercomputing,
SC ’08, pages 39:1–39:12, Austin, Texas, 2008.

[68] R.L. McGregor, C.D. Antonopoulos, and D.S. Nikolopoulos. Schedul-
ing algorithms for effective thread pairing on hybrid multiprocessors.
In Parallel and Distributed Processing Symposium, 2005. Proceedings.
19th IEEE International, pages 28a–28a, April 2005.

[69] Sergey Zhuravlev, Juan Carlos Saez, Sergey Blagodurov, Alexandra
Fedorova, and Manuel Prieto. Survey of scheduling techniques for
addressing shared resources in multicore processors. ACM Computing
Surveys, 45, 2013.

[70] Boost application performance using asynchronous I/O. Available at
http://www.ibm.com/developerworks/library/l-async/.

[71] Kernel asynchronous I/O (AIO) support for Linux. Available at
http://lse.sourceforge.net/io/aio.html.

[72] T. Ito, H. Ohsaki, and M. Imase. On parameter tuning of data
transfer protocol gridftp for wide-area grid computing. In Broadband
Networks, 2005. BroadNets 2005. 2nd International Conference on,
pages 1338–1344 Vol. 2, Oct 2005.

[73] T. Ito, H. Ohsaki, and M. Imase. Gridftp-apt: automatic parallelism
tuning mechanism for data transfer protocol gridftp. In Cluster Com-
puting and the Grid, 2006. CCGRID 06. Sixth IEEE International
Symposium on, volume 1, pages 8 pp.–461, May 2006.

[74] T. Ito, H. Ohsaki, and M. Imase. Automatic parameter configuration
mechanism for data transfer protocol gridftp. In Applications and the
Internet, 2006. SAINT 2006. International Symposium on, pages 7
pp.–38, Jan 2006.

[75] G. Khanna, U. Catalyurek, T. Kurc, R. Kettimuthu, P. Sadayap-
pan, and J. Saltz. A dynamic scheduling approach for coordinated
wide-area data transfers using gridftp. In Parallel and Distributed
Processing, 2008. IPDPS 2008. IEEE International Symposium on,
pages 1–12, April 2008.

[76] Rajkumar Kettimuthu, Gayane Vardoyan, Gagan Agrawal, P. Sa-
dayappan, and Ian Foster. An elegant sufficiency: Load-aware dif-
ferentiated scheduling of data transfers. In Proceedings of the Inter-
national Conference for High Performance Computing, Networking,
Storage and Analysis, SC ’15, pages 46:1–46:12, 2015.

132

http://www.ibm.com/developerworks/library/l-async/
http://lse.sourceforge.net/io/aio.html

[77] Che Huang, Chawanat Nakasan, Kohei Ichikawa, and Hajimu Iida.
A multipath controller for accelerating gridftp transfer over sdn. In
e-Science (e-Science), 2015 IEEE 11th International Conference on,
pages 439–447, Aug 2015.

[78] K. Chard, S. Tuecke, and I. Foster. Efficient and secure transfer,
synchronization, and sharing of big data. Cloud Computing, IEEE,
1(3):46–55, Sept 2014.

[79] Andrew Hanushevsky, Artem Trunov, and Les Cottrell. Peer-to-peer
computing for secure high performance data copying. In In Proc.
of the 2001 Int. Conf. on Computing in High Energy and Nuclear
Physics (CHEP 2001), Beijng, 2001.

[80] I. Gorton, A. Wynne, J. Almquist, and J. Chatterton. The medici
integration framework: A platform for high performance data stream-
ing applications. In Software Architecture, 2008. WICSA 2008. Sev-
enth Working IEEE/IFIP Conference on, pages 95–104, Feb 2008.

[81] I. Gorton, Zhenyu Huang, Yousu Chen, B. Kalahar, Shuangshuang
Jin, D. Chavarria-Miranda, D. Baxter, and J. Feo. A high-
performance hybrid computing approach to massive contingency
analysis in the power grid. In e-Science, 2009. e-Science ’09. Fifth
IEEE International Conference on, pages 277–283, Dec 2009.

[82] S. Bradley, F. Burstein, B. Gibbard, and D. Katramatos. Terapaths:
a qos-enabled collaborative data sharing infra-structure for peta-scale
computing research, computing. In High Energy and Nuclear Physics
(CHEP), 2006.

[83] Zdenek Maxa, Badar Ahmed, Dorian Kcira, Iosif Legrand, Azher
Mughal, Michael Thomas, and Ramiro Voicu. Powering physics data
transfers with fdt. Journal of Physics: Conference Series, 2011.

[84] Yunhong Gu and Robert L. Grossman. Udt: Udp-based data transfer
for high-speed wide area networks. Computer Networks, 51(7):1777
– 1799, 2007.

[85] John Bresnahan, Michael Link, Rajkumar Kettimuthu, and Ian Fos-
ter. Udt as an alternative transport protocol for gridftp. In Inter-
national Workshop on Protocols for Future, Large-Scale and Diverse
Network Transports (PFLDNeT), May 2009.

[86] Aspera, an IBM company. Aspera fasp high speed transport. Tech-
nical Whitepaper, 2015.

133

[87] B. Eckart, Xubin He, and Qishi Wu. Performance adaptive udp for
high-speed bulk data transfer over dedicated links. In Parallel and
Distributed Processing, 2008. IPDPS 2008. IEEE International Sym-
posium on, pages 1–10, April 2008.

[88] R. Recio, B. Metzler, P. Culley, J. Hilland, and D. Garcia. A remote
direct memory access protocol specification. RFC 5040, October 2007.

[89] Ping Lai, H. Subramoni, S. Narravula, A. Mamidala, and D.K.
Panda. Designing efficient ftp mechanisms for high performance data-
transfer over infiniband. In Parallel Processing, 2009. ICPP ’09. In-
ternational Conference on, pages 156–163, September 2009.

[90] H. Subramoni, Ping Lai, R. Kettimuthu, and D.K. Panda. High
performance data transfer in grid environment using gridftp over in-
finiband. In Cluster, Cloud and Grid Computing (CCGrid), 2010
10th IEEE/ACM International Conference on, pages 557–564, May
2010.

[91] Mellanox Technologies Inc. Performance Tuning Guidelines for Mel-
lanox Network Adapters, July 2012.

[92] InfiniBand Trade Association. InfiniBand architecture specification.
Release 1.2.1, 2006.

[93] Dennis Dalessandro, Ananth Devulapalli, and Pete Wyckoff. iSER
storage target for object-based storage devices. In The Fourth In-
ternational Workshop on Storage Network Architecture and Parallel
I/Os, September 2007.

[94] Andi Kleen. libnuma/numactl and numa api for 2.6 released, 2004.
Available at "http://lwn.net/Articles/67005/".

[95] Stephanie Moreaud and Brice Goglin. Impact of NUMA effects on
high-speed networking with multi-Opteron machines. In The 19th
IASTED International Conference on Parallel and Distributed Com-
puting and Systems, pages 24–29, 2007.

[96] John McCalpin. Optimizing AMD Opteron memory bandwidth, part
1: Single-thread, read-only, 2010.

[97] John Levon and Philippe Elie. Oprofile, Auguest 2012. Available at
http://oprofile.sourceforge.net/.

[98] Annie Foong, Jason Fung, Don Newell, Seth Abraham, Peggy Irelan,
and Alex Lopez-Estrada. Architectural characterization of processor
affinity in network processing. In IEEE International Symposium

134

"http://lwn.net/Articles/67005/"
http://oprofile.sourceforge.net/

on Performance Analysis of Systems and Software (ISPASS 2005),
pages 207–218, 2005.

[99] David Kanter. Sandy bridge for servers. Technical report, Intel Cor-
poration, July 2012.

[100] David Levinthal. Tutorial: Intel Core i7 and Intel Xeon 5500 microar-
chitecture, optimization and performance analysis. In 2010 IEEE
International Symposium on Performance Analysis of Systems and
Software, March 2010.

[101] Nigel Griffiths. nmon for linux, June 2012. Available at http://

nmon.sourceforge.net/pmwiki.php.

[102] Intel Corporation. An Introduction to the Intel QuickPath Intercon-
nect, January 2009.

[103] David Kanter. Intel’s sandy bridge microarchitecture. Technical re-
port, Intel Corporation, September 2012.

[104] Intel Corporation. Intel 64 and IA-32 Architectures Developer’s Man-
ual: Vol. 3B, March 2013.

[105] John Beckett. Memory performance guidelines for Dell PowerEdge
12th generation servers. Technical report, Dell Inc, July 2012.

[106] InfiniBand Trade Association. InfiniBand Architecture Specification
Release 1.2.1 Annex A16: RoCE, April 2010.

[107] AMD Opteron 6200 series processors Linux tuning guide, 2012.

[108] Jens Axboe. Flexible I/O Tester: http://freecode.com/projects/fio.

[109] AMD Inc. HyperTransport 3.0 Specification, 2012. Avail-
able at http://www.hypertransport.org/default.cfm?

page=HyperTransportSpecific-ations3.

[110] Advanced Micro Devices Inc. BIOS and Kernel Developer’s Guide
(BKDG) For AMD Family 11h Processors, 2008. Available at
http://support.amd.com/us/Processor_TechDocs/41256.pdf.

[111] E. Jeannot, G. Mercier, and F. Tessier. Process placement in mul-
ticore clusters: Algorithmic issues and practical techniques. Parallel
and Distributed Systems, IEEE Transactions on, PP(99):1–1, 2013.

[112] M.E. Acacio, J. Gonzalez, J.M. Garcia, and J. Duato. A two-level
directory architecture for highly scalable cc-NUMA multiprocessors.
Parallel and Distributed Systems, IEEE Transactions on, 16(1):67–
79, 2005.

135

http://nmon.sourceforge.net/pmwiki.php
http://nmon.sourceforge.net/pmwiki.php
http://www.hypertransport.org/default.cfm?page=HyperTransportSpecific-ations3
http://www.hypertransport.org/default.cfm?page=HyperTransportSpecific-ations3
http://support.amd.com/us/Processor_TechDocs/41256.pdf

[113] D. Wang and X. SUN. APC: A novel memory metric and measure-
ment methodology for modern memory system. Computers, IEEE
Transactions on, PP(99):1–1, 2013.

[114] Selcuk Karabati and Panagiotis Kouvelis. A minsummax resource
allocation problem. IIE Transaction, 32(3):263–271, 2000.

[115] Roland W. Freund and Florian Jarre. Solving the sum-of-ratios prob-
lem by an interior-point method. J. of Global Optimization, 19(1):83–
102, 2001.

[116] H.M. Monti, A.R. Butt, and S.S. Vazhkudai. Catch: A cloud-based
adaptive data transfer service for hpc. In Parallel Distributed Process-
ing Symposium (IPDPS), 2011 IEEE International, pages 1242–1253,
2011.

[117] B.W. Settlemyer, J.D. Dobson, S.W. Hodson, J.A. Kuehn, S.W.
Poole, and T.M. Ruwart. A technique for moving large data sets over
high-performance long distance networks. In Mass Storage Systems
and Technologies (MSST), 2011 IEEE 27th Symposium on, pages
1–6, 2011.

[118] B. Eckart, Xubin He, Qishi Wu, and Changsheng Xie. A dynamic
performance-based flow control method for high-speed data transfer.
Parallel and Distributed Systems, IEEE Transactions on, 21(1):114–
125, 2010.

[119] Lustre online page. Available at "http://lustre.org".

[120] Ganglia online page. Available at http://ganglia.sourceforge.

net/.

[121] Graphite online page. Available at http://graphite.wikidot.

com/.

[122] W. Allcock and J. Bresnahan. Maximizing your globus toolkit gridftp
server. CLUSTERWORLD, 2:1–7, 2004.

136

"http://lustre.org"
http://ganglia.sourceforge.net/
http://ganglia.sourceforge.net/
http://graphite.wikidot.com/
http://graphite.wikidot.com/

	List of Figures
	List of Tables
	Publications
	Introduction
	Motivation
	Poor NUMA-aware support
	Outdated design of existing data replication software

	Challenges
	Research Contribution
	Significance and Broader Impacts
	Dissertation Overview

	Background
	NUMA Terminology
	NUMA Characterization
	Mathematical Formulation of Multicore Scheduling
	Multicore-aware and contention-aware scheduler
	Parallelism and Concurrency at Various Levels
	Existing Multicore-aware Data Replication Software
	TCP-based tools
	UDP-based tools
	RDMA-based tools

	NUMA effects Analysis and Quantification
	Experimental setup
	Observation of NUMA Effects on Network Performance
	Analysis for NUMA Remote Access Penalty
	Observation of NUMA effects on memory benchmark
	Penalty indicated by LLC misses and memory access stalls
	Underlying reasons of NUMA Penalty

	NUMA scheduling factor
	Summary

	NUMA I/O Performance Modeling
	System Configurations for Characterization
	Server hardware specifications
	Benchmarks and affinity settings

	Experimental characterization
	Memory performance characterization
	I/O performance characterization and analysis
	Analysis of performance mismatching

	NUMA characterization methodology for I/O operations
	Proposed methodology for the NUMA I/O performance model
	Implementation and application of the proposed method

	Summary

	Multicore Resoure Scheduling for Data Replication
	Mathematical Model
	Problem formulation
	Computational complexity analysis
	Divide and conquer solution

	NUMA-aware BBCP Implementation and Evaluation
	Implementation of resource scheduling module
	Evaluation on high performance testbed
	Exploring the behavior under contention

	Summary

	Resource-Aware Asynchronous Data Replication with Multicore Systems
	Framework and Protocol Design
	Features for Ensuring High Performance Transfer
	Initialization (INI) Layer
	Request Management (RM) Layer
	Protocol and Event Processing (PEP) layer
	Data Access and Transmission (DAT) Layer

	Implementation
	Daemon Implementation
	Optimizations

	Experimental evaluation
	Testbed and Workload Specifications
	Evaluation of Proposed Optimizations
	Comparative Evaluation with Other Tools

	Summary

	Conclusion and Future Work
	Conclusion
	Future Works
	NUMA-aware thread and memory migration
	Interrupt affinity control
	Load balancing and work stealing among test queues

	Summary

