

SSStttooonnnyyy BBBrrrooooookkk UUUnnniiivvveeerrrsssiiitttyyy

The official electronic file of this thesis or dissertation is maintained by the University
Libraries on behalf of The Graduate School at Stony Brook University.

©©© AAAllllll RRRiiiggghhhtttsss RRReeessseeerrrvvveeeddd bbbyyy AAAuuuttthhhooorrr...

From Sensor Networks to the Cloud:
Smart System for Data Sensing, Matching and Storage

A Dissertation presented

by

Ying Li

to

The Graduate School

in Partial Fulfillment of the

Requirements

for the Degree of

Doctor of Philosophy

in

Electrical Engineering

Stony Brook University

December 2015

Stony Brook University

The Graduate School

Ying Li

We, the dissertation committee for the above candidate for the

Doctor of Philosophy degree, hereby recommend

acceptance of this dissertation

Xin Wang - Dissertation Advisor
Associate Professor in department of Electrical & Computer Engineering

Alex Doboli - Chairperson of Defense Committee
Professor in department of Electrical & Computer Engineering

Thomas Robertazzi - Member of Defense Committee
Professor in department of Electrical & Computer Engineering

Samir Das - Member of Defense Committee
Professor in department of Computer Sciences

This dissertation is accepted by the Graduate School

Charles Taber
Dean of the Graduate School

ii

Abstract of the Dissertation

From Sensor Networks to the Cloud:
Smart System for Data Sensing, Matching and Storage

by

Ying Li

Doctor of Philosophy

in

Electrical Engineering

Stony Brook University

2015

With the drastic growth of attention in crowed sensing and wireless based
social network applications, it is in desperate need to establish a comprehen-
sive infrastructure that can efficiently sense the data, then accurately matches
and delivers the gathered information to the various parties of interests in a
timely manner. On the other end of the picture, the huge amount of user
data needs to be reliably stored with easy and fast access at anytime and
from anywhere. These inter-connected challenging problems form a complete
information service framework of my thesis. In this thesis, we first introduce
a set of adaptive sampling schemes based on improved compressive sensing
technique for efficient information sensing and data gathering. Then in the
second, we provide a storage efficient and traffic light-weighted fast content
based information matching overlay for proper data dissemination and future
processing. At last, we propose a space cost-effective and fast cloud based
storage system using data deduplication and coding techniques for fast and
reliable data storage. The proposed components work seamlessly towards a
highly efficient and reliable framework that outperforms most peer systems for
the various emerging applications.

iii

Dedication Page

I am dedicating this work to my parents who always love and support me,
and to my wife’s patient moral support through countless days and nights.
Wish them happy and healthy.

iv

Table of Contents

Contents

1 Framework Overview 1

2 Front-End: information collecting 2
2.1 Work 1: Adaptive Chasing Method in Compressive Sensing . . 3

2.1.1 Introduction . 3
2.1.2 Fundamentals of Compressive Sensing 4
2.1.3 Main Scheme . 5
2.1.4 Main Results . 11
2.1.5 Conclusion . 15

2.2 Work 2: Weighted Zoom-in on Sensing Resolution 16
2.2.1 Introduction . 16
2.2.2 System Overview . 18
2.2.3 Main Scheme . 20
2.2.4 Main Results . 25
2.2.5 Conclusion . 29

3 Middleware: matching the data with potential consumers 31
3.1 Work 3: Efficient and Content Expressive Information Matching 32

3.1.1 Introduction . 32
3.1.2 Model Background and System Overview 33
3.1.3 Main Structures and Scheme 36
3.1.4 Main Results . 44
3.1.5 Conclusion . 48

4 Back-End: reliable storage on the cloud 50
4.1 Work 4: Fast, Reliable & Space-Efficient Cloud Storage System 51

4.1.1 Introduction . 51
4.1.2 SEARS Architecture 51
4.1.3 Server Binding Schemes 54
4.1.4 Performance Evaluation 55
4.1.5 Conclusion and Future Work 58

v

Acknowledgements

I would like to give my deepest thanks to my advisor-Professor Xin Wang,
an admirable lady in the field of science. She has been patient with my research
progress and always encourages me. She is to me an academic tutor, an elder
in career and a friend in life.

I would also like to give my special thanks to Dr. Katherine Guo from Bell
Labs, who has helped me a lot during my internships at Bell Labs, and work
with me for several papers and projects. She is as kind as she is wise and
professional. Wish her all the best.

vi

1 Framework Overview

The whole framework is depicted in Figure 1.

Cloud

Information Matching
Overlay

Front-End: sensing Middleware: matching Back-End: storage

Smart Sensing Schemes

Figure 1: The framework overview.

At the front-end, the smart sensing component collects sensing data with
high accuracy at extremely low resource cost. We have two independent sens-
ing schemes to efficiently collect the information based on different application
scenarios.

In the middle, we propose our information matching overlay that matches
the data producer with potential consumers. The uniquely designed binary
range vector supports rich and accurate content expression, and at the same
time reduces management traffic and storage overhead, making it extremely
suitable for wireless networks.

A robust system needs strong support from its storage strategy. At the
back-end, we designed a cloud based storage system that utilizes both dedu-
plication and coding technology to help reliably and efficiently maintain the
huge amount of data. Our flexible and configurable design enables customized
performance balance between access speed and space efficiency for different ap-
plication needs. The cloud platform also features easy and everywhere access.
Most importantly, all three components of our framework can be seamlessly
connected via this cloud based storage system without dedicated interfaces.

In the following sections, each of the three components will be individually
introduced.

1

2 Front-End: information collecting

For this part of research, we propose two independent works. The first one
focuses on reducing the number of sensors while maintaining the sensing qual-
ity by adaptively learning the previous sensing results. On top of the same
sensing efficiency as achieved by the first work, the second work is able to
support a flexibly mixed level of sensing resolution without extra sensing cost.
Both works outperform peer works in the literature.

2

2.1 Work 1: Adaptive Chasing Method in Compressive
Sensing

2.1.1 Introduction

Efficient information collection is critical for many engineering problems, such
as medical imaging, remote sensing and radar detection. Practical signals are
generally continuous and can be sampled into digital form for more efficient
storage, processing and communications. To achieve high efficiency, the fun-
damental challenge is to determine the minimum number of samples needed
so that the signal can be acquired to meet the desired degree of fidelity in an
often noisy environment.

For several decades, the Nyquist sampling theorem has been considered to
be fundamental in the information theory area where it states that a band-
limited signal can be completely recovered if it is sampled at a rate larger than
two times its bandwidth. Recently, a new sampling theory, called Compressive
Sensing (CS) [7,8,10,20] has attracted a lot of attentions. This theory enables
the reconstruction of signal with the number of measurements much lower than
that of the Nyquist sampling rate if the signal has a sparse nature in some
domain.

The reconstruction of an under-sampled signal requires solving an under-
determined set of linear equations which has more unknowns than the number
of equations and may generally have an infinite number of solutions. In order
to find the solution in this case, one must impose extra constraints. In CS
theory, such constraint is the requirement of the signal to be sparse, meaning
only a small part of the components are nonzero. If there is a unique sparse
solution to the under-determined system, the CS theory guarantees to find it.

The fundamental works of CS include the introduction of the l1-minimization
method to reconstruct the signal. Later works on the reconstruction techniques
provide some greedy approaches [40] [21] [39] [46] to recover the components of
the signal gradually. Another thrust of the research attempts to directly apply
CS in different application areas. CS is applied to reduce traffic volume in the
process of signal acquisition [34] [6] [28]. In the area of sensor networks and
RFID, CS is also applied to find target locations and numbers [17] [46] [23].

Complementary to above efforts, in this work, we would like to system-
atically study how the sensing matrix that defines the sensing behavior can
be adaptively modified thus the subsequent measurements can focus on the
proper signal subspaces based on the information from previous observations
to improve the signal recovery accuracy.

Particularly, to interpret the principle of our adaptive schemes, we instanti-

3

ate an RF signal strength detection scenario, where the signals attenuate over
distance before reaching a sensor. This setting allows us to map the tuning
of sensing matrix in theory to the choice of sensor locations for sampling in
practice in achieving better sensing quality while reducing the sensor usage.

The contributions of our work include:

• Our proposed algorithms significantly reduce the number of samples
needed to accurately reconstruct a signal.

• Under the same level of noise interference, for the same number of mea-
surements allowed, our schemes achieve much lower reconstruction error.

• Featuring on the adaptive learning process, our schemes do not have a
requirement on the choice of underlying reconstruction methods.

Compared to conventional sampling methods, the simulation results demon-
strate that our algorithms allow 45% − 46% less number of samples needed
for accurate signal reconstruction and achieve up to 57% smaller signal recon-
struction error under the same noise condition.

2.1.2 Fundamentals of Compressive Sensing

Recent research shows that a sparse signal can be reconstructed through Com-
pressive Sensing with a high probability at much lower sampling rate. More-
over, most signals that are not sparse enough can also be projected to other
domains to achieve the desired sparsity.

Let vector x ∈ R
N be a signal not sparse enough. Given an N × N

orthogonal basis Ψ = [Ψ1,Ψ2, ...,ΨN] with each Ψi being a column vector, we
have:

x = Ψs =
N∑
i=1

siΨi (1)

where s is the coefficients of x in the transformed domain Ψ. s is said to be
k-sparse if it has at most k nonzero entries and k � N . The samples are then

y = Φx = ΦΨs = As (2)

where Φ is an M × N measurement matrix which will be defined later with
k � M � N , A is the M × N sensing matrix, and y is the sample vector of
M × 1.

According to CS theory, instead of acquiring N samples of x, only M =
2k of measurements are needed to reconstruct x by l0 minimization method

4

when the measurements are noise-free [16]. Unfortunately, the l0 optimization
problem is NP-hard.

Matrix A is said to satisfy the Restricted Isometry Property (RIP) with
parameters (k, δ) for δ ∈ (0, 1) if

(1− δ)‖v‖22 ≤ ‖Av‖22 ≤ (1 + δ)‖v‖22 (3)

holds for all k-sparse vector v.
As long as matrix A satisfies RIP, the following l1-minimization problem,

which is much easier to solve than the l0 minimization, gives the accurate
recovery of the original signal:

min | s |l1 subject to y = As (4)

The literature work [9] has pointed out that a randomly formed M × N
matrix obeys the RIP with overwhelming probability provided that

M ≥ c · k · log(N/k) (5)

where c is a constant, and k is the sparsity of the original signal vector.

2.1.3 Main Scheme

To investigate the possibility and methods of improving the sampling efficiency
and accuracy through the tuning of sensing matrix and accordingly the adap-
tation of sensor positions or sampling points, in this paper, we example our
theory into a real problem in a general sensor network scenario where a set of
sensors are randomly distributed in a sensing field to detect the strength and
locations of some signal sources, mapping the modification of sensing matrix
in math on to the adjustment of sensor positions/sampling points in practice.

The strength at location j for a signal sourcing at location i is roughly
approximated as:

Pij =
P0Gij

dβij
, (6)

where P0 is the signal strength at its source location i, dij is the Euclidian
distance between the signal source at i and the location j. Gij captures the
Raleigh Fading of the signal. β is the decay factor with the range [2.0, 5.0]
depending on the environment. The real and imaginary component of the
Raleigh distribution are both independent and identically distributed Gaussian
variables with zero mean and variance of σ2

0 [46].
For the convenience of location reference of a sensing area and to facilitate

scalable monitoring, the sensing domain is partitioned into N grids, each could

5

have no or several signal sources inside it. We do not differentiate individual
signals within a grid, but rather regard them as one aggregate signal located at
the geographical center of the grid and refer a signal source as a grid which
has aggregated signals inside it.

Let s = [s(1), s(2), ..., s(N)]T be an N × 1 column vector, where the ith

entry s(i) is the aggregate signal strength of grid i. s is k-sparse with k � N ,
which means at most k grids out of N actually have signal sources. Figure 2
shows an example system of 16 grids. Some of the grids have sensors deployed,
and some have signal sources with different level of energy indicated by the dot
of different sizes. The sensors can be activated to take sampling measurements
or in the sleeping state to save energy. The adaptation of the sensing process
can be performed through the selection of the sensors for samplings.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

0
35
0
0
0
0
0

10
36
85
0

65
54
47
0
0

s =

Legend
Sensors with measurement

Sensors not been activated

Signal Sources with
different power

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

Φ =

Figure 2: A demo of the system with the corresponding signal vector s and
measurement matrix Φ.

6

To monitor the energy of signals, traditionally, a large number of sensors
need to be placed uniformly across the whole monitoring domain and kept ac-
tive to maintain the coverage need [27] [22]. In reality, there will be only very
small number of signal sources appearing in the domain at a time and some
may be clustered in certain area. We could reduce the number of sensors and
samplings needed by applying compressive sensing in the spatial domain. In-
stead of taking a number of samplings [46] randomly at one time in the field to
apply the CS theory, in this paper, we would like to start with a small amount
of samplings at random locations, then adaptively adding new measurements
at locations that are not previous sampled based on the learning of previous
observations to gradually concentrate the sensing resource to positions that are
more likely to have signal sources, in order to increase the recover accuracy
while reducing the total number of samples taken.

Let Ψ be an N × N transformation matrix embodying the signal energy
decaying process defined in Eq.(7)

Ψ =

⎛
⎜⎜⎜⎜⎝

G11

dβ11

G21

dβ21
· · · GN1

dβN1
G12

dβ12

G22

dβ22
· · · GN2

dβN2
...

...
. . .

...
G1N

dβ1N

G2N

dβ2N
· · · GNN

dβN1

⎞
⎟⎟⎟⎟⎠ (7)

Then x = Ψs is the received signal strength vector with x(j) denoting the
aggregate signal strength received by the sensor at grid j from all the signal
sources.

Given the setting above, it is left for us to choose the best observation
points at which samples are taken. To benefit from the grid management
and maximize the sensing efficiency for each sensor, we assume one grid has
one sensor, or none. The sensors chosen to take samples can be specified, or
”selected”, by the measurement matrix Φ, which is an M × N matrix of the
format shown in Figure 2. The ith row of the matrix Φ(i) is a 1 × N vector
with all elements equaling to zero except Φ(i, j) = 1, where j is the index
of the grid at which the ith sensor is located. Given that each entry x(j)
denotes the total received strength at grid j of all the signals, the effect of
left-multiplying Φ to vector x in Eq.(2) is to select M out of N rows of x, or
equivalently choosing the samples taken by sensors at M specific grid positions
as illustrated in Figure 2.

Under this formulation, adjusting the number of samples to be used in
one reconstruction process is extremely convenient. It can be done by simply
adding or removing a few rows in Φ corresponding to the sensors at required

7

sampling positions. More excitingly, only the samples from sensors at new
locations need to be collected in the upcoming round. In addition, the samples
already acquired previously by sensors at certain grid locations can be directly
combined with the new samples to form a more informative sample vector y as
shown in Eq.(8), which can be applied to recover the data using the combined
Φ.

y =

(
y′

y′′

)
= ΦΨs =

(
Φ′

Φ′′

)
Ψs (8)

y′ is the vector of samples already collected by sensors selected previously in
Φ′, and y′′ contains the new samples taken by sensors newly specified in Φ′′.
Thus for each sensor ever chosen to take a sample, it only needs to sample once
during the whole process, and its sample is kept for future use if sampling at
this sensor location is needed again. This reuse ability enabled by our unique
formulation helps greatly preserve the sensing resource consumption, and is
the base of our algorithms to be proposed.

In Eq.(2), the sensing matrix A = ΦΨ has been proven in [46] to obey
RIP condition as long as matrix Φ and Ψ are constructed as defined above.
Therefore a signal can be uniquely recovered with enough samples under our
formulation by applying the l1-minimization method.

Restricted by the deployment and maintenance cost, in the practical sens-
ing application, it is preferable to use as few sensors as possible to meet the
acceptable sensing requirements. In a practical monitoring domain, the sen-
sors either are static once planted, or generally cannot move as fast as signal
sources do to track them. Given abundant but not excessive number of sensors
have been planted in a detection area, a possible way of improving the sensing
quality while cutting down the sensing cost is to selectively activate only a
portion of sensors at which positions samplings are needed while keeping the
rest of sensors in energy saving mode. In this work, a better set of sensors
will be activated in each round of sensing based on the reconstruction results
from the previous round. We use ŝ(i) to denote the reconstructed signal after
the ith round of sensing. As we start at a number of samples that is smaller
than necessary for compressive sensing, there exists inaccuracy for each in-
termediate ŝ(i). Although neither the positions nor the values of the nonzero
entries of ŝ(i) may be accurate, however to some extent, the actual nonzero
entries of the original vector may be close to or around these nonzero positions
indicated by ŝ(i). In other words for the signal detection example, the signal
sources are probably in the region close to the grid locations corresponding
to the nonzero positions of ŝ(i). So by ”moving” sensors (which in our case
equivalent to activating sensors at the desired locations) towards the estimated
locations of the signal sources step by step, the algorithms will improve the

8

sensing results until the positions as well as the values of the nonzero entries
no longer change. This way we can find the accurate positions along with the
energy level of the signal resources. This is the fundamental principle of our
adaptive algorithms.

Algorithm 1 outlines the details of Individual Chasing in each iteration.
In the ith iteration, according to the previous reconstruction vector ŝ(i−1),
for each of its nonzero entry ŝ(i−1)(n), a sample is taken at a sensor whose
location is closest to grid n. After each non-zero position n is ensured to have
one sampling in the corresponding grid, the l1-minimization process is invoked
to get the reconstruction ŝ(i) based on the combined samples y and combined
Φ as in Eq.(8). The reconstruction result ŝ(i) is fed into the Algorithm 2 for
termination condition check to determine whether the algorithm should end
or continue with more iterations.

Algorithm 1 Individual Chasing

1: In the ith iteration:
2: for each nonzero position n of ŝ(i−1) do
3: find a grid position p in P with the smallest euclidian distance to grid

n.
4: end for
5: combine new samples with existing ones for y.
6: do l1-minimization on y and Φ to get ŝ(i).
7: call Algorithm 2 to check the termination condition.
8: if algorithm does not terminate in this iteration then
9: i = i+ 1, go back to Line 1 and start the next iteration.
10: end if

Algorithm 2 Termination Condition Check

1: if the nonzero positions of ŝ(i) are all the same as ŝ(i−1) then
2: if the numeric difference of each nonzero value between ŝ(i) and ŝ(i−1) is

smaller than a percentage threshold Δ of ŝ(i−1) then
3: reconstruction process terminates in this iteration.
4: else
5: continue with the next iteration of reconstruction.
6: end if
7: else
8: continue with the next iteration of reconstruction.
9: end if

9

The Individual Chasing (IC) scheme adapts well when signal sources are
uniformly distributed in the monitoring field. Figure 3-(a) shows the sensor
locations when the Individual Chasing algorithm terminates. It can be ob-
served that sampling measurements have been taken at each grid with signal
source that also has a sensor inside. For the grids with signal sources but
without sensors deployed, samples are taken at the closest grids, i.e. samples
have been taken at sensors in grid 5 and 15 for nearby signals in grid 9 and
14.

In addition, We proposed another algorithm - Centroid Chasing (CC),
for the application scenarios where signal sources are located in concentrated
clusters. Due to the quick growth of social network applications, the signal
sources tend to locate closely and form clusters. For example, cell phone
users are often observed in hot public areas such as shopping malls, movie
theaters, restaurants, airports, etc. Portable devices such as laptops or tablet
PCs are highly concentrated in residential quarters, office buildings or coffee
shops. The clustering patterns of signal sources may be exploited to guide the
sampling locations to facilitate the finding of signal sources with even fewer
sensor measurements.

The Centroid Chasing scheme initializes similarly as Individual Chasing,
then at each iteration, possible grid positions of signal sources are clustered
and sensors closest to the center of each cluster are activated for sampling.
Figure 3-(b) shows the sensing condition at the end of the Centroid Chasing
algorithm. Grids with signals are grouped into 3 clusters. Within each cluster,
a portion of the closest sensors are activated for sampling. Compared with
Individual Chasing scheme on the left of the figure, fewer number of sensors
are used given the signal sources have a nice clustering feature. Both algorithm
perform significantly better than state-of-the-art literature works, as shown
later in the main result section.

Local Optimum Avoidance - Random Exploration
Very unlikely but possible, adaptive algorithms could converge at local op-

timums. To our problem, local optimum does not give accurate reconstruction
at algorithm termination. Because in an iterative scenario, one can only look
at the intermediate results to decide whether the iteration should stop. The
Individual Chasing and Centroid Chasing algorithms will stop when consecu-
tive iterations present no more change in the results. In order to break possible
local optimums, we introduce an extra step called Random Exploration. To be
specific, for both algorithms, when the Termination Condition Alg.2 is satisfied
at certain iteration, we do not terminate the program. Instead, we randomly
pick up some sensors that have not been activated before to take samples, then
re-enter the adaptive process and let it converge again.

10

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

(a) Individual Chasing (b) Centroid Chasing

Figure 3: Illustration of Individual Chasing and Centroid Chasing.

2.1.4 Main Results

Performance Metrics:
We first give the definitions of several performance metrics.

• Reconstruction Error: defined as the Sum of Absolute Difference
(SAD) between the recovered and the original signal vector:

SAD = ‖ŝ− s‖l1 =
N∑
i=1

|ŝi − si| (9)

This measurement metric evaluates the accuracy of vector reconstruc-
tion. It reflects not only the degree of error due to the position mis-
match of nonzero entries, but also the difference in magnitude for each
unmatched entry.

• Number of Samplings Needed (M): in our adaptive algorithms,
more samples may be added in each new iteration. The number of
samples needed for our algorithms are defined as the total number of
sampling measurements during the whole sensing process, in order for
fair comparison with other non-iterative algorithms whose numbers of
samples needed are defined as the one-time choice made before the algo-
rithms start.

Simulation Set-Up:

11

Based on [5], the approximate transmitting power at the signal source
location is, 80 dBm for a FM radio station with 50-kilometer range, 27 dBm for
typical 3G cellular phone, 20 dBm for IEEE 802.11b/g Wireless LAN 20MHz-
wide channels in the 2.4 GHz ISM band, and 4 dBm for Bluetooth Class 2
radio, etc. We adopt dBm as the measurement unit of signal strength in our
simulation. Since in our case each grid could have multiple signal sources,
the overall signal strength for a grid is the aggregate of these basic measures
in different combinations. Being aware that the numeric scale of the nonzero
entries of signal vector is not critical to the problem of compressive sensing
recovery, we assume a range of 30-500 dBm for the possible aggregated signal
strength inside any single grid.

The simulation is carried out with MATLAB. The signal energy decay
model follows Eq.(6) with β = 2. Both real and imaginary parts of Rayleigh
fading follow an independent and identical Gaussian distribution with the
mean of 0 and the variance of 0.5 as in [46] for fair comparison that follows.
150 sensors are randomly deployed in an area of N = 30 × 30 = 900 grids,
with at most one sensor inside one grid. 30 meters for the size of each square
grid is a good choice to reflect distance effect in signal propagation. The
termination condition threshold Δ in Alg.2 of 5% will generally guarantee
the recovery result to be accurate at the algorithm termination time with
the recovery error in the order of 10−4 even for real valued signal vectors,
thus our default choice on Δ is 5%. All the sensors are static and can be
individually activated from the sleep mode for sampling, and then be turn
off again. There are k << N grids with signal sources. k is the sparsity
value, which is varied in different studies. The positions of k grids with signal
sources can be either randomly distributed in a clustered fashion, or uniformly
distributed. To examine the reliability performance of our schemes, Gaussian
White noise N(0, σ2) is added to the observed sample vector y in some of the
simulation runs, and SNR measure is exploited to quantify the noise strength.
Each presented result is the average of many runs.

Our proposed two algorithms Individual Chasing and Centroid Chasing,
also referred to as IC and CC from now on, do not depend on any specific CS
reconstruction technique. Thus we chose two fundamental and most preva-
lent types of work for performance evaluations-l1 minimization based CS and
greedy based CS. GMP (INFOCOM’11) [46] provides a greedy based recon-
struction algorithm for CS, and also exploits the received signal strength at
different grid positions to help solve the target localization and counting prob-
lem. l1-magic is a concise and dominant realization of l1 minimization based
CS scheme, which can be directly applied to and is thus worth comparing with
our simulation scenario of signal strength vector reconstruction.

12

Number of Samples Needed:
Pursuing a minimum number of samples needed for an accurate signal re-

construction is the major challenge and research focus in the closely related
research fields. We evaluate the minimum number of samples needed for ac-
curate signal vector reconstruction (zero reconstruction error) under different
levels of signal sparsity for each scheme in Figure4. As expected, the number
of samples needed increases as k grows for all the algorithms. Particular-
ly, Figure4-(a) is under the scenario where the signal sources are randomly
uniformly distributed across the network grids. IC performs slightly better
than CC as expected. The clustering function of CC performs poorly when
the signal sources are uniformly distributed, which leads to more iterations to
converge and more samples needed. Compared to GMP, IC requires 45% fewer
samples when k is small, and about 23% fewer samples when k gets bigger.
IC requires 46%− 25% fewer samples than l1-magic for different k.

In Figure4-(b), the signal sources are distributed in clustered fashion across
grids, which benefits the clustering process of CC algorithm. Thus CC is
observed to require fewer samples than IC as the number of signal sources
exceeds certain value. While the performance difference between IC and CC is
small, CC requires 40%−33% fewer samples than GMP, and 40%−30% fewer
than l1-magic, which are big improvements. In general, both IC and CC work
extremely well no matter the signal sources are concentrated or scattered, and
far outperform the other two schemes under the same k.

10 20 30 40 50
100

150

200

250

300

350

400

Number of grids that have signal sources (sparsity k)

N
um

be
r o

f s
am

pl
in

gs
 n

ee
de

d
(M

)
fo

r a
cc

ur
at

e
re

co
ns

tru
ct

io
n

(a)

Individual Chasing (IC)
Centroid Chasing (CC)
L1−Magic
GMP

10 20 30 40 50
100

150

200

250

300

350

400

Number of grids that have signal sources(sparsity k)

N
um

be
r o

f s
am

pl
in

gs
 n

ee
de

d
(M

)
fo

r a
cc

ur
at

e
re

co
ns

tru
ct

io
n

(b)

Individual Chasing (IC)
Centroid Chasing (CC)
L1−Magic
GMP

Figure 4: (a) scattered signal sources. (b) clustered signal sources.

Given the performance difference between IC and CC is small and both
algorithms follow the same principle, we only study and compare IC with the
other two schemes and assume the signal sources are randomly and uniformly
distributed in the simulations that follow.

13

Reconstruction Error:
A. Convergency Study
We study the convergency of IC in Figure 5-(a). It is clear that under all k,

IC is able to converge within 3-6 iterations to get accurate reconstruction with
0 error, and it exhibits a rather steady (i.e., approximate-linear) improvement
in reducing the reconstruction error in each iteration. It converges faster for
larger k. This is due to the fact that we initialize 2k number of samples for the
optimal performance. With a larger k, there are more samples taken at the
beginning, therefore it needs fewer iterations to get enough overall samples for
accurate recovery.

1 2 3 4 5 6
0

2000

4000

6000

8000

10000

12000

Iteration number

R
ec

on
st

ru
ct

io
n

Er
ro

r (
SA

D
)

(a)

sparsity k=50
sparsity k=40
sparsity k=30
sparsity k=20

15 20 25 30
0

2000

4000

6000

8000

10000

12000

14000

Signal to Noise Ratio (SNR/dB)

R
ec

on
st

ru
ct

io
n

Er
ro

r (
SA

D
)

(b)

Individual Chasing (IC)
L1−Magic
GMP

Figure 5: (a) Convergency study of Individual Chasing algorithm. (b) The recon-
struction error comparison due to noise under the same k = 50 and M = 250.

B. Performance Under Noise
The adaptive algorithms can always find the accurate reconstruction given

enough iterations and proper handling with local optimum avoidance. How-
ever under noisy environments where the sample y is contaminated, the final
reconstructed result is different from the actual signal vector.

The reconstruction errors due to sampling noise for different algorithms are
compared in Figure 5-(b). The reconstruction error reduces as signal-to-noise
ratio increases for all three schemes. Under the same sensing condition of
k = 50 and M = 250, at each SNR level, IC gives much more accurate result
than the other two. In the worst scenario with the strongest noise at 15dB SNR
in our test setting, the reconstruction error for IC is approximately (14000 −
6000)/14000 = 57% smaller than that of l1-magic. GMP is slightly more
accurate than l1-magic under the same sensing setting, because it enumerates
all possible values for each possible nonzero position of the vector at the cost
of higher computational overhead.

14

2.1.5 Conclusion

In this work, we observe and theoretically prove that by adjusting the structure
of the sensing matrix, the number of samples needed for high-quality signal
recovery in compressive sensing can be further reduced. We propose two adap-
tive algorithms, Individual Chasing and Centroid Chasing, for different signal
source distribution scenarios. Both schemes adaptively concentrate sensing
resources to proper signal subspace towards better acquisition of signals, and
do not depend on any specific CS reconstruction methods. The instantiation
of our algorithms on the general signal strength sensing problem with distance
fading can be conveniently generalized to various similar applications. Exten-
sive simulations demonstrate that our algorithms can achieve as much as 57%
more accurate signal recovery under noisy conditions, and require up to 46%
fewer samples than state-of-the-art related works.

15

2.2 Work 2: Weighted Zoom-in on Sensing Resolution

2.2.1 Introduction

There have been increasing interests and efforts in applying a network of sen-
sors to monitor a large and complex space for surveillance and other appli-
cations. Among various types of events to monitor, many are related to the
detection of energy sources. For example, there is a need to monitor the ra-
dio spectrum usage conditions of a network area and enable cognitive network
transmissions over unused spectrum for significantly higher wireless network
capacity. Some other applications include the monitoring of the radiation
strength of a suspecting region, and finding regions of noise sources to prevent
against riots in urban sensing.

In these applications, besides detecting events, there is often a need to find
the location ranges of signal sources to guide further actions. Depending on
the application types and importance, the location resolution requirements for
monitoring are different. As a major application, there are growing interests
in finding the locations of RF devices based on their received signal strength
(RSS). This includes finding the region of a wireless jamming source to protect
against the communication attack, and identifying an RFID location for ob-
ject tracking. Rather than finding the location range of specific signal sources,
the sensing data can also be applied to form a signal distribution map. For
example, secondary radio devices in the network may collaboratively form a
spectrum sensing map of primary signals to facilitate cognitive network trans-
missions. In fact, any form of signals that attenuate along distance are able
to reveal the location information given that enough samples are taken by
surrounding sensors.

Conventionally, the localization of wireless targets is transformed into geo-
metrical problems based on the mutual distances between targets or between
targets and known reference points determined through the measurement of
signal strength [15, 26, 30, 31, 41]. Obviously, there is a tradeoff between the
resolution of location ranges of targets/events and the number of sensors need-
ed for monitoring. It would require a large number of sensors to achieve fine
location resolution, which is difficult if the monitoring domain is large.

In many practical wireless applications, targets are often distributed sparse-
ly in a large area. The emerging Compressive Sensing (CS) theory [8, 14, 19]
sheds some light on the monitoring of signals using a much smaller number
of sensors. Specifically, by mapping the magnitudes and locations of a set of
targets into a monitoring vector whose items are corresponding to the signal
strength of a specific location, the sparsity of targets in the spatial domain

16

will be translated into the value sparsity of the vector (i.e., many items are
zero) so the vector can be reconstructed from sensing data of a smaller number
of sensors. The locations of targets can be determined from the positions of
non-zero values in the vector [23, 46].

Despite the potential, it is challenging to directly apply the CS-based
method in practical sensing scenarios. First, the number of sensors needed
depends on the number of targets, which is often unknown and varies over
time. The sensing is made even harder with the presence of noise. An in-
sufficient number of sensing samples and large sensing noise would render the
CS recovery accuracy very low and even result in the failure of recovering the
monitoring vector. In addition, in the above formulation, the dimension of the
vector is determined based on the desired resolution of the location. The vec-
tor dimension will increase as the monitoring domain becomes larger, which
would make the computational complexity of the CS problem prohibitively
high.

In light of above problems, the aims of this work are to perform efficient and
accurate signal monitoring with much lower number of sensors, and design a
fast and efficient method to reconstruct the strength of wireless network signals
with their location resolution at the desired level.

Specifically, to more accurately find the signal locations in a practical mon-
itoring domain with varying number of signal sources and measurement noise,
we propose a novel weighted zoom-in algorithm that adaptively finds the distri-
butions of signal sources at the desired location accuracy through two iterative
procedures: 1) a focusing procedure to fully use the available sensor resources
to coarsely detect the regions where signals are located, and 2) a zoom-in pro-
cedure to virtually divide each of the valid regions into sub-grids to achieve a
finer level of sensing resolution. The overall sensing process iterates with the
interactive operation of the two procedures until the desired sensing resolution
is reached for all the areas in the field.

By reducing the original full-range signal localization problem into sev-
eral rounds of CS reconstruction problems with lower vector dimension, in
each round it requires much smaller number of samples and lower computa-
tion complexity as compared to those needed in the conventional CS-based
schemes that try to tackle the whole problem in full scale at once. On the
other hand, the same number of samples will appear to be larger when ap-
plied to reconstruct a smaller dimension vector, which would allow for higher
reconstruction accuracy. The benefits of our algorithms can be summarized as
follows:

• Our proposed algorithm significantly reduces the total number of samples

17

needed for accurate target localization.

• Under the same level of noise and for the same number of samples allowed
to take, our scheme achieves much higher reconstruction accuracy.

• For solving the same scale of localization problems, our algorithm has a
much shorter running time.

• Despite the use of iterative reconstruction, our design only requires tak-
ing samples once at the beginning of the whole process, without having
to take additional samples as the algorithm iterates.

Different from existing adaptive CS algorithms which generally vary the
sampling rate to improve the sensing quality, our algorithm will adapt the
detection resolution based on the results from the previous rounds of processing
to reduce the uncertainty and ambiguity for more accurate detection in a
dynamic and varying physical environment. The adaptation of the sensing
granularity and vector size are carried out through a virtual process during
the signal reconstruction process based on the same sample data set. This
allows the sensing matrix to be quickly and flexibly reformulated in response
to each round of zoom-in process without the need of taking additional samples
at sensors.

Besides its applications for signal localization and forming signal distri-
bution map, we expect the proposed algorithm will help advance the sparse
signal processing field by improving upon the conventional compressive sens-
ing theory with more intelligent use of measurement data. Our algorithm can
also facilitate non uniform monitoring with the sensing resolution at different
regions set differently based on the priority and need. Our performance results
prove that the proposed scheme allows for the number of samples taken to be
much smaller than that needed based on conventional CS sampling and signal
reconstruction schemes.

2.2.2 System Overview

The strength or energy of real-world signals decays over distance, which is the
core basis for most localization methods. Different than utilizing geometri-
cal principles, such as trigonometry, to deduce the location of a single target
source based on the samples of this signal at multiple positions, we virtually
divide the area with grids, then abstract the geographical distribution of tar-
gets across the field into numerical vectors by making a one-to-one mapping
between the grid sequence number and the entry sequences number of the vec-
tor. The location information of all the targets over the monitoring area can

18

be retrieved all at once by back-translating the vector representation that we
can accurately reconstruct using compressive sensing technique out of a small
number of aggregated samples. The advantages are obvious-fast and cost less
sensing resources.

To be realistic, we consider a scenario where a set of sensors are deployed
in a monitoring region to estimate the location and number of targets that
transmit radio signals. Generally accurate monitoring of a large area requires
more sensing resources, thus traditionally, a large number of sensors need to
be placed uniformly across the whole monitoring domain and kept active to
maintain the coverage need [27] [22]. In reality however, the number of targets
and the room they will take in the large area at a given time is small and lim-
ited. In other words, they are geographically sparse. To save installation and
maintenance cost while preserving the same level of sensing quality, we could
reduce the number of sensors and samplings needed by applying compressive
sensing (CS) technique in the spatial domain. Instead of triggering a number
of sensors in the field that are required theoretically by conventional compres-
sive sensing methods as will be introduced in the next section, in this paper,
we propose to activate only an small number of sensors to take sample only
once, then adaptively zoom-in at locations that we are certain about signal
source existence. The whole process only requires one time sensor sampling,
and areas with no targets are filtered out of focus so that the reconstruction
efforts are dedicated to sub-regions with targets to achieve extremely high
reconstruction accuracy at low sensing resource cost.

For a specific sensing application, we assume that the transmitting signal
power of every individual target is approximately the same in magnitude, so
that it is feasible to distinguish the targets and count the number of targets in
an area by dividing the total signal strength of this area with the unit amount.
The signal at the receiver (i.e. the sensor) end has been attenuated along the
path. The basic signal fading model and the construction rule of the sensing
matrix follow the similar pattern as specified in Eq.(6)(7)(8) of Work 1 in
section 2.1.

Under our formulation, when construct sensing matrixA for a sensing task,
the number of sensors allowed to be used decides the row dimension, while the
column dimension depends on the size of the problem, or the number of grids
N to be estimated. The distances between the center of each grid and each
of the sensors need to be calculated accordingly in order to get each entry of
A. The shape or size of the grids does not matter at all, since we always
take the center of each grid to approximate every other point in the grid when
calculating the distances.

Specifically, in our target localization application, when we fix the sensors

19

to be used while deliberately change the number and size of the grids to fo-
cus on particular sub-regions. By re-calculating the distance between each
new grid and the chosen sensors to re-built the matrix A, we can reuse the
same set of samples y initially taken to reconstruct s, without having to
re-sampling each time the grid changes. When the changes of grids are local
and minor, the modification of matrix A is even more convenient by simply
adding, removing or replacing a few of its columns corresponding to the af-
fected grid positions. This is the most important and innovative feature of our
design which helps greatly preserve the sensing resource consumption, and is
the base of our algorithms to be proposed.

In order to be able to accurately refer the location and for conveniently
formulating the problem into our mathematical model, we place virtual grids
on top of the monitoring area, which does not actually exist, but rather as a
reference to coordinates. The grid is not of a fixed size, actually, the feature
that the grid size can be freely adjusted as needed is just the unique and most
important characteristic and advantage of our design. Moreover, as we will
show later in this section, the real flexibility of the virtual grid infrastructure
allows the grid size of different regions of the monitoring area to be different in
order to best suit the resolution need for each part of the area. Once the area
is marked by grids, the localization problem can then be formulated into a
vector format with each entry of the vector represents one grid position in the
field and the value of this entry denotes the total aggregated signal strength
emitted from all the targets within the corresponding grid. We define this
vector as s. Its dimension will be N if it represents a mapping to N grids.
As long as the mapping rule from the grid locations to the entry positions of
vector s is enforced consistently, we can always translate the content of s back
to the solution of localization problem correctly.

Figure 6 illustrates the grid concept with an example. The monitoring area
is covered by virtual grids of different sizes, or resolutions, at different parts
depending on the density of targets. There are several versions of vector s
reflecting the location distribution of targets for each round of grid change,
which will be introduced later as the zoom-in process.

2.2.3 Main Scheme

Restricted by the deployment and maintenance cost, in practical sensing appli-
cations, it is preferable to use as few sensors as possible to meet the acceptable
sensing resolution requirements. Generally, the sensors are static once planted
at a practical monitoring area. The optimal placement of a given number of
sensors for a specific monitoring area is not the focus of this work. Rather, we

20

1 2

54

3
0
6
0
2
0
0
0
0

s =

0
2
0
0
0
0
1
0
0

0
0
0
0
0
0
2
0
0
1
0
0
1
0
1
0
1
0
0
0
0
0
0
0
0

2
0
0
0

1
0
0
1

0
0
1
0

2

1

1

1

1

0
0
0
1
0
0
0
0
1

3

6

7 8 9

1st Zoom-in: N1 = 9
2nd Zoom-in: N2 = 9+25+4 = 38
3rd Zoom-in: N3 = 4+4+1×5+9 = 22

Dimension of vector s in each round:

Figure 6: Example problem and illustration of Zoom-in process.

aim to propose a smart sensing method, which does not depend on the under-
lying sensor placements, to improve the speed and quality of sensing processes.
Given abundant but not excessive number of sensors have been planted in a
detection area, we are going to show that by randomly picking a small portion
of the installed sensors, a number smaller than conventional compressive sens-
ing technique would require, and taking sample only once at these sensors, the
signals can be accurately reconstructed through our chasing zoom-in procedure
which at the same time is computationally lighter compared to conventional
schemes.

Instead of taking samples at a large number of sensors and try to recon-
struct the original signal vector with equal weight on each of its entries, then
bet on the number of samples to be enough, a possible way of improving the
sensing quality while cutting down the sensing cost is to adaptively reconstruct

21

the vector from the samples by iteratively filter out the entries which do not
hold information and concentrate the reconstruction ”attention” to those car-
ry valid components. In this work, the nonzero entries of the reconstructed
vector will be re-evaluated in a finer resolution level on the next round until
the desired resolution is reached. The adaptive sensing process iteratively di-
vide the current virtual grids into smaller grids of different sizes at different
regions of the whole area, and terminates when the grid of each sub-region is
smaller than or equal to a fixed threshold value, which is defined as the desired
final resolution level for the localization of targets that we must achieve.

As previously analyzed, the process requires sampling only once on a small
number of sensors at the beginning, then the subsequent adaptive reconstruc-
tion procedure involves no more sampling but pure math in rapidly reducing
scales, and converges quickly.

A. Focusing Operation
In our system model, we use a vector to represent the grid location of sig-

nal sources across the monitoring areas. Since the signal sources are usually
sparsely distributed across the monitoring domain, after each round of recon-
struction, the recovered vector s should have many zero entries corresponding
to grids detected without signal sources. We propose a focusing procedure
to filter out the zero entries after each round of reconstruction, and put signal
detection and recovery effort on non-zero entries in the next round.

Instead of being ideally zero, the recovered vector s in each iteration may
contain some entries with extremely small or negative values, which are in-
significant but may be considered as non-zero and mislead the further recovery
process. We thus introduce a two-step pruning procedure before the zoom-in
operation that follows: 1) Setting all the negative entries of s to zero, and
2) For positive entries, setting all the entries with values below a percentage
- α that of the largest s entry to zeros. α can be customized by the system
administrator.

B. Zoom-in Operation
After the focusing operation has filtered out the zero entries of ŝ, for all the

non-zero entries left, their corresponding grids, referred as the valid grids, are
going to be further divided into smaller grids for finer resolution. This action
is called the zoom-in operation. The zoom-in operation allows the sensed
samples to be contributed to the location of targets during the reconstruction
calculation, therefore for a smaller number of samples taken, our scheme can
still achieve the accurate reconstruction. Generally, the change of focusing
scope and resolution scale would ask for appropriate sampling adjustment ac-
cordingly, because the dimension (N) of the vector to be recovered (s) has
changed. Innovatively for our design, benefit from the proper construction

22

of the sensing matrix, the change of problem scale does not require the simi-
lar adjustment for the samples. The adaptive reconstruction process involves
only one time sampling at the beginning no matter how many zoom-in opera-
tions are needed before termination at convergence. This unique feature helps
greatly reduce the sensing cost for taking samples and transmitting sampling
results among energy constraint sensors.

Another innovative advantage endorsed by the virtual grid infrastructure
and the supporting sensing matrix mathematical model is the flexible density
based sub-division of zoom-in operation. For each valid grid (i.e. correspond-
ing non-zero entry of vector ŝ), it does not necessarily have to be divided into
equal number of sub-grids. In our design actually, the number of sub-grids
to form within each valid grid is properly quantified based on the density of
targets inside to ensure most accurate allocation of reconstruction effort for
each individual region. The number of sub-grids to form within valid grid j is
denoted as nj and defined by Eq.(10):

nj =
ŝj/P0

η
(10)

ŝj is the non-zero value for entry j of vector ŝ, which is the aggregated signal
strength within the corresponding grid. This value, when divided by the unit
target transmitting power P0, approximates the number of targets inside the
grid corresponding to the jth entry of ŝ. η is a percentage which indicates the
ratio of sub-grids that have targets inside over the total number of sub-grids
within a valid grid. When mapping to vector representation, η is an equivalent
measure to the vector sparsity level. The underlying compressive sensing tech-
nique we exploited for reconstruction requires the vector to be reconstructed
is sparse. Eq.(10) ensures that after each zoom-in operation, every region of
the monitoring area is of proper sparsity for reconstruction. Usually a η that
is smaller than 50% is sparse enough for accurate reconstruction using com-
pressive sensing method. Note that although η and the vector sparsity k are
related, they are different. k is defined as the number of non-zero entries of
the vector which we use to describe the target localization in the grids. Since
multiple targets could fall in a single grid, η is usually larger than the ratio of
k over the total number of entries of the vector. We study the impact on the
choice of η in the simulation. Based on target density, intuitively, by dividing
more sub-grids in the grids with more targets and less sub-grids in those with
less targets, the average proportion of sub-grids with signal sources inside (i.e.
the sparsity of the corresponding vector) can be maintained at a steady level.

It is not hard to observe that the position as well as the resolution (i.e.
grid size) of each valid grid is not critical and actually does not matter at all

23

to the reconstruction process. Because although the resolutions or sizes of the
valid grids at different regions are different after several zoom-in operations,
the distance from the center of each valid grid to each sensor is easy to get by
simple calculation since all the grids are referred to and managed by virtual
coordinates. Once the distances are decided, the sensing matrix A can be
immediately constructed according to the number of samples we have taken
initially and the number of valid grids at the current stage by following Eq.(7)
Although the resolutions, or the number of sub-grids inside, for different re-
gions of the monitoring area at a certain time point could all be different, as
long as the mapping from geographical grid locations to entry positions of the
vector is kept consistent, we can always safely apply compressive sensing to
reconstruct the vector and continue the iterations until the final resolution is
reached at each part of the monitoring area.

C. Main Algorithm
The principle of focusing and zoom-in processes is different from the clas-

sical ”divide and conquer” method. We cannot simply ignore the zero entries
and take each non-zero entry as a standing alone sub-problem to solve. The
sample taken at each sensor (yj) represents the strength of the aggregate sig-
nal received from all the signal sources, i.e. the summation of the received
signal strength from all target sources. Separating the whole monitoring do-
main and trying to tackle each sub-region individually would not be able to
differentiate signals received from different regions and avoid their interference.
Instead, with flexible reformulation of the sensing matrix in each iteration, our
proposed scheme applies focusing and zoom-in operations to reconstruct the
signals based on all valid grids.

Algorithm 3 Valid Component Chasing Zoom-in

1: Initial zoom-in, construct the sensing matrix A
2: Reconstruct s using l1-minimization subject to y = As
3: Focusing
4: if Not all the valid grids have reached the required final resolution then
5: Zoom-in at the valid grids that have not reached the final resolution
6: else
7: Terminate and return s
8: end if
9: Re-calculate distances, adjust sensing matrix A
10: Go to Line 2

Algorithm 3 outlines the complete reconstruction process. At each itera-
tion, the vector s is reconstructed using the l1-minimization method of com-

24

pressive sensing. The focusing step that follows filters out the zero entries of
the vector s (i.e. the grids that contain no targets). On Line 5 of the algo-
rithm, the zoom-in operation is applied to help reconstruct the vectors based
on only the valid grids that have not yet reached the required final resolution.
After zoom-in, since each region has been zoomed into different resolution lev-
els, the distance from each grid to each sensor has to be re-calculated to form
the updated sensing matrix A accordingly. The process terminates when each
sub-region reaches the desired final resolution of sensing.

Samples are taken by M sensors in the monitoring domain. M could be the
total number of sensors deployed or a subset of sensors activated to conserve
energy. In the later case, the M sensors could be randomly selected from the
field. The choice ofM could be based on the coarse knowledge of the number of
grids that have signals inside for a given resolution level, which we denote as T .
Our adaptation of the virtual grid number makes our algorithm more robust
to the inaccuracy of the M setup. The impact of M on the reconstruction
performance and the optimal choice of M with respect to T is studied in our
performance evaluations. The initial zoom-in determines the number of grids
to divide the whole original monitoring area into. It can be based on the
estimated density of targets following the same principle in Eq. (10). In each
new iteration, the dimension of vector s needs to be determined first. The
zoom-in procedure helps to fulfill this task. Based on Eq. (10), the dimension
of the vector to recover can be obtained by summing up the number of sub-
grids from each valid grid, as illustrated in Figure 6.

In the example shown in Figure 6, the whole area is first divided into
9 grids. After the first round of reconstruction, the focusing operation only
keeps grids 1, 3 and 5 which are valid grids, and filters out the rest of grids that
contain no targets. Based on the values of the vector entries corresponding
to these grids, each of the grids is further divided into different number of
sub-grids. Grid 3 has a larger value in the corresponding vector entry and is
thus divided into more sub-grids than the other two. At this point, grid 3 has
already reached the desired final resolution, therefore the sub-grids inside grid
3 will not be further divided in the subsequent iterations. However for grid
1 and 5, the process will continue one more round of focusing, zoom-in and
reconstruction before the whole reconstruction process terminates, where each
part reaches the desired sensing resolution level.

2.2.4 Main Results

We carry out the simulation under similar setting as in Work 1 in section 2.1.
We first give the definitions of several performance metrics.

25

• Localization Accuracy: defined as the ratio below:

LA =
of targets localized correctly

total # of targets actually exist
(11)

where the numerator is the number of targets being accurately estimated
about their locations. The location accuracy is calculated based on the
desired final resolution.

• Number of Samples Needed (M): defined as the minimum number
of samples needed for a scheme to accurately estimate the locations of
targets at the desired final resolution. It is the same as the number of
sensors needed for our proposed scheme. Each device senses the spectrum
for a short duration, and the average measurement signal strength is used
as one sample.

• Algorithm Running Time: defined as the execution time of each
algorithm for a complete sensing task. This metric reflects the time
complexity of each algorithm compared, and does not include the time
for the sample capturing and transmission.

We compare our proposed weighted zoom-in (WZI) algorithm with two
fundamental and most prevalent types of CS recovery schemes-l1 minimization
and greedy schemes. l1-magic is a concise and dominant CS scheme based on
l1 minimization, which can be directly applied to the localization problem.
GMP (INFOCOM’11) [46] provides a greedy reconstruction approach, and
also exploits the received signal strength at different grid positions to help
solve the target localization and counting problem.

A. Number of Samples Needed
Achieving the desired sensing quality with the minimum number of samples

is always desirable, and is the major challenge and research focus. We evaluate
the minimum number of samples needed for accurate vector reconstruction (i.e.
accurate localization for targets) for each scheme in Figure 7. As expected, the
number of samples needed increases as the total number of targets T grows
for all three algorithms. The two reference schemes have similar performance,
while WZI greatly outperforms the other two. For a given T , WZI requires
approximately 60% fewer samples compared with the other two schemes. From
the figure, it is not difficult to observe that the minimum number of samples
needed for WZI to accurately reconstruct the problem falls approximately
within the range 1.5T − 1.75T , i.e., 1.5 to 1.75 times that of the number of
targets. This range is much smaller than the theoretical number of samples

26

needed for M , which is generally much larger than 2T and the empirical values
are between 3T and 4T [35, 48]. This range could serve as a guidance for the
optimal selection of M in our algorithm.

10 15 20 25 30
0

20

40

60

80

100

120

140

Total number of targets (T)

N
um

be
r o

f s
am

pl
es

 n
ee

de
d

fo
r

 a
cc

ur
at

e
re

co
ns

tru
ct

io
n

(M
) WZI

L1−Magic
GMP

Figure 7: The number of samples needed for accurate reconstruction.

B. Localization Accuracy under Small M
When the number of samples M is limited, there will be inaccuracy as-

sociated with the reconstruction process, so does the solution to the target
localization problem. We study the Localization Accuracy in Figure 8. The
number of targets T is fixed at 20. It is clear that when M is large enough,
there are enough number of samples, all three schemes are able to give accu-
rate reconstruction results. As the number of samples used M continues to
decrease, the Localization Accuracy of l1-magic and GMP deteriorate rapidly.
In contrast, WZI is still able to accurately reconstruct the locations of targets
for a relatively small number of samples. When M gets even smaller, WZI
maintains a slowly dropping curve of the accuracy, which is still much higher
than those of the other two methods. In the lowest number of samples stud-
ied, the recovery accuracy of our WZI almost doubles that of the two reference
schemes.

C. Performance Under Noise
Under noisy environments where the sample y is contaminated, precise

reconstruction and completely accurate localization are difficult to realize. It
is thus important to compare the level of accuracy each algorithm can achieve
under the noise.

The reconstruction errors due to sampling noise for different algorithms are
compared in Figure 9. The Localization Accuracy increases as the signal-to-
noise ratio increases for all three schemes. Under the same sensing condition
of T = 20 and M = 50, at each SNR level, WZI achieves much more accu-
rate result than the other two. In the worst scenario at 15dB SNR with the

27

20 30 40 50 60
40

50

60

70

80

90

100

Number of samples allowed to be used (M)

Lo
ca

liz
at

io
n

A
cc

ur
ac

y
(p

er
ce

nt
)

WZI
L1−Magic
GMP

Figure 8: Localization Accuracy v.s. M (T = 20).

15 20 25 30
20

40

60

80

100

Signal to Noise Ratio (SNR/dB)

Lo
ca

liz
at

io
n

A
cc

ur
ac

y
(p

er
ce

nt
)

WZI
L1−Magic
GMP

Figure 9: Localization Accuracy under noise (T = 20, M = 50).

strongest noise in our test setting, the Localization Accuracy for WZI almost
doubles that of l1-magic. GMP is slightly more accurate than l1-magic under
the same sensing setting, because it enumerates all possible values for each
possible nonzero position of the vector at the cost of higher computational
overhead.

D. Algorithm Running Time
Fast response and short processing time is another critical metric for a

sensing task, especially for real time applications or when the targets are mov-
ing. In this part of evaluation, we examine and compare the running time
for each algorithm. This metric only considers the actual execution time of
each algorithm, and does not include the time for taking sensing samples and
transmitting the samples to the fusion center. The number of samples used is
fixed at M = 80 in this test.

28

10 15 20 25 30
200

400

600

800

1000

1200

1400

1600

Total number of targets (T)

A
lg

or
ith

m
 ru

nn
in

g
tim

e
(ti

m
e/

m
s)

WZI
L1−Magic
GMP

Figure 10: Comparison of algorithm running time (M = 80).

WZI transforms a large problem into several sub-problems with much s-
maller scales, which helps to greatly reduce the processing complexity thus
time. In Figure 10, it executes more than three times faster on average than
both l1-magic and GMP under any given number of targets in the scenarios
studied. When the number of targets T is relatively large, there are more valid
grids after each round of reconstruction, and more sub-grids are formed after
each zoom-in operation. However, our proposed algorithm can terminate with
fewer rounds of iteration because the fast sub-grids generation rate helps the
target detection process to quickly reach the desired final resolution. With the
counteraction of the two factors, the running time of WZI remains relatively
stable with the increase of T . Both l1-magic and GMP attempt to recover all
signals at once, thus it takes much longer time to run compared with WZI.
Specially, the running time of l1-magic depends only on the scale of problem
input – the number of grids at the finest resolution, which does not change
with the number of targets T . On the contrary, GMP greedily recovers each
entry of the vector, thus it takes longer time to finish when there are more
targets. Its running time rises up to five times that of WZI at the highest T
tested.

2.2.5 Conclusion

In this paper, we demonstrate that by adaptively focusing the reconstruction
effort into regions with signals and gradually increasing the resolution at these
regions, a higher signal localization accuracy can be achieved with a smaller
number of measurement samples. We exploit variable size of virtual grids to
help flexibly adjust the resolution based on the target density and utilize Com-
pressive Sensing technique to reconstruct the vector that bears the location

29

information. The combined focusing and zoom-in process works extremely
efficient in reducing the large original problem into smaller scales, which en-
ables our algorithm to achieve extremely high reconstruction accuracy at high
execution speed with a low requirement on the number of samples needed. Ex-
tensive evaluation tests demonstrate that our algorithm can achieve 2 times
more accurate localization recovery under noisy conditions in less than one
third of the running time, while requiring up to 60% fewer samples than state-
of-the-art related works.

30

3 Middleware: matching the data with poten-

tial consumers

31

3.1 Work 3: Efficient and Content Expressive Informa-
tion Matching

3.1.1 Introduction

Efficient and flexible information matching over wireless networks has become
increasingly important and challenging with the popularity of smart devices
and the growth of social-network-based applications. As an example of new
era information service, a smart-phone user in a downtown block wants to
obtain a recommendation for some restaurants while people close-by may be
also searching for the same type of information. Another user just stepping
out of a Thai cuisine is satisfied with the dining experience and would like
to share this place with others. Other applications include traffic informa-
tion posting and retrieval where users cooperatively contribute to and benefit
from the real-time traffic reports. These applications can be better met by a
”contribute-and-benefit” pattern system. Publish/Subscribe (Pub/Sub) sys-
tem is one of this type, in which subscribers specify their interests and publish-
ers post advertisements. The system matches subscriptions with publications.
Unlike client/server models, the Pub/Sub model decouples time, space, and
flow between publishers and subscribers to provide flexibility in information
distribution.

Gryphon [42] and SIENA [12] were once popular Pub/Sub models in wire-
line networks, however, their tree-based structure are not scalable in dynamic
wireless network whose topology may constant change due to mobility and
connection broken. Many later attempts have been made to apply Pub/Sub
infrastructure for wireless networks [45] [11] [36], where the information in the
systems is roughly divided into several basic types. These platforms cannot
efficiently support heterogeneous user application needs.

Different from conventional Pub/Sub systems which mainly categorize in-
formation into a few types for ease of implementation, the modern information
system is expected to better meet the customized information needs of individ-
ual users. Besides the difference in categories, the heterogeneity of information
is more generally resulted from different values or contents for the same type
of information. Simply ascribing information into coarse types (food, movie,
car, etc.) cannot meet most application needs. On the other hand, completely
expressing every detail of the information in words and matching over them is
not feasible in reality.

In this work, we proposed a reliable and scalable binary range vector sum-
mary tree (BRVST) infrastructure for flexible information expression support,
effective content matching and timely information dissemination over the dy-

32

namic wireless network. A novel attribute range vector structure has been
introduced for efficient and accurate content representation and a summary
tree structure to facilitate information aggregation. For robust and scalable
operations over dynamic wireless network, the proposed overlay system ex-
ploits a virtual hierarchical geographic management framework. Extensive
simulations demonstrate that BRVST has a significantly faster event match-
ing speed, while incurs very low storage and traffic overhead, as compared with
peer schemes tested.

The main contributions of our work are:

• We propose a mechanism to flexibly and efficiently represent informa-
tion with the combination of a set of elementary tuples for numerical
expression of the content.

• We propose a novel Attribute Range Vector that allows flexible vector
length adjustment based on the information accuracy requirement, and
supports a unique simple bit-wise operation for quick content match-
ing check, to facilitate accurate content representation as well as low-
overhead in storage and transmission.

• We propose a Summary Tree structure to facilitate efficient aggregation
of information, which significantly reduces the overhead for storing and
transmitting information updates.

3.1.2 Model Background and System Overview

In this work, we adopt the notion of Publication and Subscription to distin-
guish information from the generators and to the consumers. The whole in-
formation space is built up with the basic element - attribute (Ai, i = 1, 2, ...),
which contains attribute name (an) specifying the identification of an attribute
(numeric ID in realization), and attribute value (av) that specifies the content
and is usually a numeric point or range. i.e. Ai = {an, av}. A subscription s
is a conjunction of n attributes: s = {A1 ∧ · · · ∧An}. A publication p is a dis-
junction of attributes: p = {A1∨· · ·∨An}, and is also referred to as an event.
Conventionally the attribute value of a subscription could either be a numeric
point or a range, while that for publication is assumed only to be a numeric
point [47] [29]. However, very often some attributes of the information, when
generated, are not absolute point values. For example, the video surveillance
data could have its time attribute as a range which confines the start and
end points of a video segment. So our design also supports range value for
a publication attribute. In Figure 11 example, a user submits a subscription

33

specifying the criteria of interested restaurants, while another user publishes
a review on his dining experience.

Attribute Name Attribute Value

Food style 3 (i.e. Italian)

Price per person 0 ~ 100

Open hours 15:00 ~ 23:00

Attribute Name Attribute Value

Price per person 30 ~ 50

Review rates 4

Longitude -73.98

Latitude 40.72Review rates 3 ~ 5

Subscription Publication

Figure 11: Examples of Subscription and Publication.

We consider a publication and a subscription to match each other iff: for
each attribute existing in the subscription, the same attribute must also exist
in the publication; and for the common attributes, those from the publications
must have their value ranges contained by the value ranges of the corresponding
attributes in the subscription. i.e.∀As ∈ s, ∃Ap ∈ p : (apn = asn, a

p
v ⊆ asv), where

the superscript s denotes the subscription, while p denotes the corresponding
terms for a publication.

In order to make the infrastructure scalable and more robust to the net-
work dynamics, we introduce a virtual management infrastructure where the
network space is mapped into virtual zones each consisting of a set of virtual
grids (Figure 12). With many wireless devices equipped with GPS receivers
or having other methods of localization [11], the grid and zone which a n-
ode belongs to can be easily determined. The grid size can be determined by
the system based on the application scenarios and performance tradeoffs. Its
effects is studied in the simulation.

Each grid can elect [44] a Grid Manager (GM) for Pub/Sub message col-
lection, aggregation and matching within the grid. Each zone also has a Zone
Manager (ZM) responsible for Pub/Sub aggregation, matching, data catching
over grids within the zone. The schemes for leader election and maintenance
have been proposed by many literature work [44] which can be leveraged in
our system, and the election can take into account factors such as the power
and resources of the nodes as well as the node distance to the center of the
grid or zone. The managers can be static or mobile, depending on the system
application scenarios.

Event matching and Pub/Sub message update are both performed on de-
mand. Subscriptions and publications in a grid are collected and aggregated.

34

ZM1

3 111...11 9 110...10 17 111...01ZRSV_2 12 011...01

3 111...11 7 011...00GRSV_3

 zoom in
zone

1
zone

2

zone
3

zone
4

3 111...11 9 110...10GRSV_1

3

Zone 2

ZM1 Zone Manager

Grid Manager

Normal node

Figure 12: An example system where each zone has 9 grids. The zone manager
collects Pub/Sub messages from grids within the zone and aggregates them into
control messages to exchange with other zones.

Although nodes may frequently move in and out of a grid, the aggregated mes-
sages may stay unchanged. Messages are sent to the upper level ZM only upon
the change of aggregate filter. This will significantly reduce the overhead for
Pub/Sub message transmission and matching in a dynamic wireless network.
A ZM maintains the Pub and Sub information of the grids within its zone with
efficient data structures to be introduced in Section 3.1.3, and the Pub/Sub
information of the whole zone can be similarly further aggregated. As many
mobile users have interests in close-by information, the aggregate filters on-
ly need to be shared among nearby zones or zones identified with Pub/Sub
relationship.

Any new subscription or publication will trigger the event matching process
within its own zone first, then matching at other zones whose aggregate filters
imply potential chance of match will initiate. This will significantly reduce
the data matching and distribution overhead. Once a publication is matched
with one or more subscribers, the overlay structure will then deliver the data
to these destinations using the stateless geographic multicasting, RSGM [44],
for reliable and low overhead transmissions. The detailed routing process is
beyond the scope of this work.

35

3.1.3 Main Structures and Scheme

A. Binary Vector and its Operations
We propose a binary bit vector named Attribute Range Vector (ARV) to

flexibly represent the numeric range values of an attribute, referred as the
target range. The target range could be a single point value as well. An ARV
has a small size and is easy to process. The numeric value of an attribute is
generally limited within predefined boundaries, which can be determined in
advance by the system based on some common knowledge. For example, the
temperature of the weather has an lower and upper limit in physical world. A
subscriber could indicate her interest by setting a target range within the limit
defined by the system. To facilitate flexible range matching, the predefined
limit range is divided into N smaller equal segments, while the value of N can
vary based on the matching accuracy requirement. An N -bit ARV is formed
by representing whether a segment matches a content range, following the
steps below:

Step0: Set the initial segment to be the whole predefined limit range.

Step1: Check if the target attribute value range falls into some existing seg-
ments with each occupied more than α (percentage) of the segment
range, an accuracy threshold desired. If so, goes to the next step; other-
wise divide each of the current segments into equal halves, and continue
this step.

Step2: Make anN -bit vector withN equal to the current number of segments,
with each bit indicating if the attribute range overlaps the corresponding
segment range, 1 yes, and 0 no.

From the above ARV construction process, we can see that the number
of bits of the vector can only be the power of 2, i.e., N = 2i, i = 0, 1, 2, 3...,
and the length of ARV can be continuously doubled until a desired represen-
tation accuracy is achieved. The threshold α trades off between accuracy and
simplicity of the message representation.

For example, the attribute Age, often involved in social network applica-
tions, is limited within 0 to 100. Three subscriptions that contain the attribute
Age are: AgeSub1 1-48, AgeSub2 26-47, and AgeSub3 38-60. Their corresponding
ARVs are obtained by constructing a split tree following the above steps as
shown in Figure 13, with the level i having 2i segments. Suppose the threshold
α is set to 90% in this example. AgeSub1 falls into the segment 0-50 and the
fitting ratio of the target range 1-48 is 48/50, which is larger than the thresh-
old α = 90%. So this segment is accurate enough to represent the target range

36

0-100

0-50

50-100

0-25

25-50

50-75

75-100

0-12.5

12.5-25

25-37.5

62.5-75

37.5-50

50-62.5

87.5-100

75-87.5

Level 0 Level 1 Level 2 Level 3

AgeSub1

(1-48)
AgeSub2

(26-47)
AgeSub3

(38-60)

1

1
1

1

0

0

0

0

0

0

0

0

0

0 0

 10 0100 00011000

Attribute value
range:

ARV:

Figure 13: The segment division procedure in constructing an ARV.

and the ARV for AgeSub1 is 10. AgeSub2 apparently falls into the 0-50 segment
of level 1, however, this range is not very accurate. We further divide the
overall range into 4 new segments at the level 2, so the range 26-47 falls into
the segment 25-50. We can use 4-bit vector 0100 to represent this 4-segment
coverage, with the left most bit standing for the segment of the lowest val-
ue. The target range 38-60 of AgeSub3 spans across the 0-50 segment and the
50-100 segment at the first-level of the split tree, but these two segments are
inaccurate in representing the target range. If we go deeper into the level 3,
the segment 37.5-50 & 50-62.5 will be accurate enough with the resulting ARV
00011000.

A shorter ARV is always preferable to reduce the transmission and stor-
age overhead. The ARV bit vector is checked after each modification for the
potential of simplification. Except level 0, the number of bits in an ARV is

37

always even and in the power of 2. When the length of ARV is larger than 1,
starting from one side of the vector, if every consecutive 2-bit has the same
value (both ’1’ or both ’0’), the length of the vector can be reduced into half
by taking every other bit to form a new ARV. For example, 1100 can be re-
duced to 10, but not 0110 nor 0111 which does not have the same value for
consecutive 2-bit. The simplification operation will continue without losing
the accuracy of the information until the vector cannot be further simplified.

Likewise, a given vector could also be extended by 2i (i=1,2,3...) times
when needed by simply doubling the bit patterns. This feature is extremely
useful in the matching process we will discuss later, where two or more ARVs
need to be adjusted to have the equal length before they can be compared or
merged.

The proposed ARV is the elementary component of Subs and Pubs, and
some other aggregated management structures at different hierarchical levels
are composed of ARVs.

ARV Merge: A merge operation is needed for information aggregation.
As the length of the vectors could only be the power of 2, two vectors of
different lengths can always be made equal by doubling the length of the
shorter one several times as previously mentioned. Then the merge can be
completed by only a simple bitwise ”OR” between two ARVs. The accuracy
of the ARV will not be impacted when it is scaled up or down. The merge
operation is always carried at the length of longest ARV thus over the finest
level of segments, and the merge of ARV will maintain the accuracy level.

Match of ARVs: For differentiation and ease of referral, an subscription
and publication attribute range vector are called respectively an S-ARV and
P-ARV. If one or more attributes of the subscription are not included by the
publication, we can immediately claim they do not match each other, given
the conditions above. Otherwise they are further checked. First all the S-
ARVs and P-ARVs are respectively concatenated following the corresponding
order as shown in Figure 14, with all the redundant P-ARVs ignored and each
corresponding pair of P-ARV and S-ARV scaled to the same length. Then the
Sub and Pub are considered to match each other if and only if all bits after the
following operations are 0: The cascaded P-ARVs vector and S-ARVs vector
first have the bitwise AND operation, and the result XOR with the original
cascaded P-ARVs vector.

Figure 14 gives an example. The subscription has 2 attributes, and the
publication has 3 attributes. To perform the matching, the attribute 1 (Attr.1)
of the publication is scaled to 4 bits, while the Attr.5 is omitted because it
is not involved in the subscription. Then bitwise operations are carried out:
(P-ARVs AND S-ARVs) XOR P-ARVs, and the result is not all ’0’ thus is not a

38

10 11001010
Attr.1 Attr.2 Attr.5

Scale

Ignore Attr.5
1110 1001

Attr.1 Attr.2

1100 1010
Attr.1 Attr.2

1110 1001
Attr.1 Attr.2

AN
D

1100 1000
Attr.1 Attr.2

1100 1010
Attr.1 Attr.2

0000 0010
Attr.1 Attr.2

XOR

P-ARVs:

S-ARVs: S-ARVs:

P-ARVs:

P-ARVs:

P-ARVs AND S-ARVs:

The result is not all
0 thus not match

Figure 14: The bit-wise operations for matching evaluation of a Pub and Sub.

match. Because Attr.2 of the publication has a ’1’ in the bit position where
the subscription Attr.2 does not, which means the attribute 2 value range of
the publication is out of that of the subscription.

B. Subscription Maintenance at the Grid Manager
A subscriber sends its subscription to its grid manager on demand, follow-

ing the format shown in Figure 15. There are possibly many subscriptions in
an information-dense area. Simply storing and transmitting all subscriptions
would not only incur a large overhead in traffic and storage but also difficult
to track the frequent subscription changes due to the user mobility and fre-
quent user interest changes. On the other hand, selectively ignoring some of
the subscriptions would compromise the system performance. In our system,
the GM will aggregate the subscriptions by finding the minimum representa-
tive subscription set to represent all the subscriptions within the grid before
recording them and sending them to the upper level.

Two subscriptions could share some common attributes, and the attribute
set of a subscription could contain all the attributes of another subscription.
In the second case, if the value ranges of the common attributes overlap each
other to some extent, we could take the subscription which has all its attributes
contained by the other subscription as the representative subscription of both
subscriptions. However, if the value ranges of the common attributes do not
have any intersection, then using one subscription to represent the other is
not appropriate. We use an example to illustrate this aggregation principle.

39

3 1100...11 22 1010...119 0100...01 17 0011...00

8 1001...014 0001...10

...sub1:

sub2:

Attr. ID ARV

Figure 15: Example of a subscription request.

Suppose there are 2 subscriptions in a grid, SUB1: A and SUB2: A∧B∧C,
where A, B and C are different attributes. According to our scheme, since all
publications that contain the attribute A including the ones that also contain
B and/or C will all be routed to this grid for further matching, thus taking
SUB1 as the representative subscription, compared to otherwise having both
SUB1 and SUB2, will help reduce the subscription information storage and
control traffic without sacrificing the completeness of subscription information
in this grid. Once receiving the information based on the aggregate filter,
the GM will further match the information with individual subscription to
determine if the information matches all the criteria of a subscriber. Thus
aggregation reduces the message and data transmission between the ZM and
GM, but does not sacrifice the accuracy requirement of each subscriber.

A(0-25)B(15-45)

A(25-100)B(30-40)C(13-27)
A(0-50)

B(25-50)F(5-10)

B(5-45)E(5-10)G(0-100)
B(10-50)

E(0-30)F(25-35) E(0-10)F(30-45)H(5-15)

A(0-100)

B(5-50)

E(0-30)F(25-45)

Representative Sub. Set
with summary value range

Figure 16: The summary forest with attribute summary value range in shade.

40

The subscription aggregating process can be realized through a summary
tree, which is actually a forest containing several separate trees as shown
horizontally in Figure 16. All the subscriptions of a tree will be represented by
its root, and a tree node will contain all attributes of the root. There is also a
summary range attached to each root shown as the shaded block in Figure 16,
obtained by merging (’OR’ operation) the value range of common attributes
(underscored in Figure 16) of all the subscriptions on a tree. When determining
if a node should be inserted into a tree, we will check if some of its attributes are
the same as the root and if the attribute ranges overlap the current summary
ranges. The summary ranges of all trees form the representative subscription
set of the grid as shown on the left side of the dash line in Figure 16.

Algorithm 4 shows how to add a subscription into the current summary
forest. On lines 3-10, a new subscription will become either the child or the
parent of an existing root, depending on whether it contains all the attributes
of a root or all of its attributes are contained by a root of the forest, with
the value ranges of corresponding common attributes overlapping each others.
Otherwise, the subscription will be made a new stand alone root, as shown on
lines 12 and 16. On line 18, after inserting the new subscription, the summary
value range attached to the root of the affected tree will be updated. Line 19
checks whether trees can be merged to one another to reduce the number of
trees in the forest, i.e., the size of the forest, every time the summary value
range of a tree is changed, by examining whether one tree root can be inserted
as the child of another tree root following the similar criteria.

For illustration, suppose a grid has the following subscriptions with letters
representing different attribute names: A(0-50), B(10-50), A(0-25)B(15-45),
A(25-100)B(30-40)C(13-27), B(25-50)F(5-10), E(0-30)F(25-35), B(5-45)E(5-
10)G(0-100), E(0-10)F(30-45)H(5-15). Applying them one after another with
Algorithm 4 will generate a summary forest as shown in Figure 16.

Algorithm 5 works to remove a node in response to unsubscription. On
lines 1-5, if the subscription to be deleted is the root of a tree, then this
whole tree is removed with all the non-root nodes reinserted into the forest
by applying algorithm 4 one by one. If the subscription is not a root, it is
simply deleted from the tree as shown on lines 6-7. Then the affected trees
will have their summary value ranges updated accordingly on line 9. Line 10
works similarly as the last line of Algorithm 4 to reduce the forest size.

Each GM will maintain a subscription summary forest, and updates the
trees in response to the changes of subscription from individual subscribers
within the grid. When a node wants to send a new subscription, modify or
unsubscribe its existing subscription, it will send a message as in Figure 15
through on-demand light-weight geographic routing [43] to the GM. The GM

41

Algorithm 4 Adding a subscription s into the summary forest

1: if there are already nodes in the forest then
2: for each root node Ri of the forest do
3: if the subscription s contains all the attributes in Ri then
4: if the summary value range of each attribute in Ri overlaps that of s

then
5: insert s as the child of Ri into the summary tree;
6: end if
7: else if Ri contains all the attributes of s then
8: if each attribute value range of s overlaps the summary value range of

the same attribute in Ri then
9: make s the parent of Ri as the new root;
10: end if
11: else
12: make s a new root of the forest;
13: end if
14: end for
15: else
16: make s a new root of the forest;
17: end if
18: Adjust the summary value range of the affected tree.

19: Check whether the forest can be reduced by merging trees.

Algorithm 5 Removing a subscription s from the forest

1: if s is a root of the forest then
2: delete the tree originated from root s;
3: for each children node of s do
4: apply Algorithm 4;
5: end for
6: else
7: delete s from the summary tree;
8: end if
9: Adjust the summary value range for each affected tree.

10: Check whether the forest can be reduced by merging trees.

42

will either insert or delete the subscription following the Algorithm 4 or 5. A
new action may change the representative set. In many cases, however, indi-
vidual subscription changes will not lead to the change of the aggregated infor-
mation summary at the root level of the tree. This feature is very important.
It helps to increase the stableness and significantly reduce the information
maintenance overhead in a wireless environment with possible constant node
movement and thus frequent subscription changes. The representative set is
forged into a vector, named Grid Representative Set Vector (GRSV) as shown
in Figure 17 by cascading each subscription from the representative set. The
GRSV will be sent to the ZM upon its change to reduce the update overhead.

C. Subscription Maintenance at the Zone Manager

Sub A

Representative Subscriptions Source grid ID (corresponding ARV)

A 1 (101...10) 3 (111...10) 5 (001...11)

B 1 (010...10) 7 (000...10)

EΛF 1 (001...00)(100...10)
SOF

... ...

Sub B Sub EΛF

3 111...11 9 110...10ZRSV :
(to be sent to other ZMs)

GRSV :
(from belonging grids)

Sub A

11Λ14 111...01, 101...11

Sub B Sub EΛF

AID of A

3 101...10 9 010...10

AID of B AID of EΛF

11Λ14 001...00, 100...10

Figure 17: The ZM converts the GRSVs received from belonging grids into SOF,
then converts it into ZRSV by summary tree scheme.

Each zone manager maintains a subscription origin form (SOF) generated
based on the GRSVs sent by grids with subscriptions within its zone, as shown
in Figure 17. The representative subscriptions from the grids will again be
aggregated through the summary tree scheme similar to that at the grid level.
We cascade each subscription of the resulting representative set to form a long
vector - Zone Representative Set Vector (ZRSV). The ZRSVs are exchanged
among ZMs to guide the publication distributions. The SOF will be updated if
there is a GRSV update, but similar to the grid level aggregation, an individual
update in SOF may not lead to ZRSV change. The aggregation helps to reduce

43

the message distribution and simplify the information matching process, which
is more critical for dynamic wireless networks.

D. Match a Publication over Subscriptions
When a node generates a publication, it will send the data along with the

publication ARVs describing the data to its GM. GM will perform a match
within its grid by comparing the publication ARVs with its representative
Sub set, i.e., the roots with summary ranges of the summary forest. If a
root is matched, each of its tree node is further examined to precisely find
the subscribers. The data will be forwarded to the identified subscribers. No
matter local matches are found or not, GM will forward the data along with
the P-ARVs and the grid ID to the zone manager. The ZM will match the
P-ARVs against its SOF, to decide which grids within the zone to forward the
data to for further matching at GM level. It also matches against all ZRSVs
for other zones it maintains. The data along with the publication P-ARVs and
the zone ID will be multicasted towards the centers of the zones that match
this publication, where matching at finer level happens thereafter.

3.1.4 Main Results

We implement BRVST using NS2.34. The underlying routing scheme follows
SOGR [43] and RSGM [44] for on-demand robust unicast and multicast re-
spectively. 400 nodes are randomly distributed initially in a network region
of size 1000m x 1000m to reflect the real-world mobile user density. In our
default setting, the network is divided into 4 equal zones with 4 equal grids
inside each. These numbers will vary when studying the impact of grid size
on system performances. The node movement follows the improved Random
Waypoint model [38]. The wireless channel propagation model is set to be T-
woRayGround, and 802.11a is adopted as the MAC protocol with an average
transmission range of 80m. Publications and subscriptions are generated by
randomly selected nodes. Each publication or subscription has one to three
attributes, which are randomly selected from a predefined set of 15. The
range of an attribute is also randomly generated within a predefined range
limit based on the attribute type. If not otherwise specified, the average node
moving speed is set to 5 m/s, the Pub and Sub generation rates are both set
to 200/minute, and the accuracy threshold α is set to 90%.

There is very limited number of studies closely related to ours. For perfor-
mance references, we select two existing Pub/Sub schemes, DRIP and TAMA,
that are partly comparable to our work. DRIP [45] (INFOCOM’08) is pro-
posed for wireless networks which group nodes into Voronoi regions to manage
the network, while BRVST introduces geographic zones to facilitate manage-

44

ment and information distribution. TAMA [47] (ICDCS’11) is a middleware
for content matching, but is not specified for wireless networks. To be fair,
we compare the impact of node mobility on the matching time for DRIP and
BRVST in wireless environment, without including TAMA. The number of
Voronoi regions for DRIP is also set to 16 under the same region area and n-
ode density. The management overhead involved for storing and transmitting
publication and subscribe messages are compared among all three schemes.

Matching Time:
It is equally important for both the information provider and consumer

to be served as fast as possible, so we evaluate the time for an emergent
publication and an emergent subscription to get matched separately.

0 100 200 300 400
0

500

1000

1500

2000

Subscription generation rate (messages/minute)
 {publication generation rate fixed at 200}

Av
er

ag
e

m
at

ch
in

g
tim

e
pe

r
 p

ub
lic

at
io

n
re

qu
es

t (
m

s)

i(a)

DRIP
BRVST

0 100 200 300 400
0

500

1000

1500

Publication generation rate (messages/minute)
 {subscription generation rate fixed at 200}

Av
er

ag
e

m
at

ch
in

g
tim

e
pe

r
 p

ub
lic

at
io

n
re

qu
es

t (
m

s)

i(b)

DRIP
BRVST

0 100 200 300 400
0

1000

2000

3000

Publication generation rate (messages/minute)
 {subscription generation rate fixed at 200}

Av
er

ag
e

m
at

ch
in

g
tim

e
pe

r
 s

ub
sc

rip
tio

n
re

qu
es

t (
m

s)

ii(a)

DRIP
BRVST

0 100 200 300 400
0

1000

2000

3000

Subscription generation rate (messages/minute)
 {publication generation rate fixed at 200}

Av
er

ag
e

m
at

ch
in

g
tim

e
pe

r
 s

ub
sc

rip
tio

n
re

qu
es

t (
m

s)

ii(b)

DRIP
BRVST

Figure 18: i(a) Matching time per Pub request as Sub rate increases; i(b) Match-
ing time per Pub request as Pub rate increases; ii(a) Matching time per Sub request
as Pub rate increases; ii(b) Matching time per Sub request as Sub rate increases.

For each newly published event, we evaluate the average time taken to
match it with the subscribers. We allow publication to be matched with a
later generated subscription and vice versa, so the delay is also affected by the
subscription and publication generating frequency, as shown in Figure 18-i. In
Figure 18-i(a) the publications rate is fixed at 200/min, while the subscription

45

rate is varied. In Figure 18-i(b), the subscription rate is fixed at 200/min, while
the publication rate is varied. Similarly, we evaluate the average time duration
for a newly generated subscription to match the publication in Figure 18-
ii(a) and (b), with the subscription and publication rate fixed at 200/min
respectively.

We can observe that BRVST has a much shorter average matching time as
compared to DRIP under all test scenarios. A publication (or subscription)
request has a shorter time to be matched when there is a higher subscription
(or publication) rate as shown in Figures 18-i(a) and ii(a). The reduction of
matching time reaches a limit, beyond which the matching time may slightly
increase as a result of higher processing overhead.

On the contrary, as the publication (or subscription) rate becomes larg-
er, the time to match a publication (or subscription) increases as a result
of competitions, which deteriorate the average matching time, as shown in
Figures 18-i(b) and ii(b). As DRIP involves network-wide broadcast to estab-
lish and maintain Voronoi regions, the matching time increases exponentially,
while BRVST has only a sub-linear increasing time, which indicates its better
scalability to system load.

0 5 10 15 20
0

1000

2000

3000

4000

5000

Average node movement speed (m/s)

Av
er

ag
e

m
at

ch
in

g
tim

e
pe

r
 p

ub
 o

r s
ub

 re
qu

es
t (

m
s)

(a)

DRIP
BRVST

0 200 400 600 800 1000
0

500

1000

1500

2000

Grid size (meter)

Av
er

ag
e

m
at

ch
in

g
tim

e
pe

r
 p

ub
 o

r s
ub

 re
qu

es
t (

m
s)

(b)

0 200 400 600 800 1000
0

100

200

St
or

ag
e

or
 tr

af
fic

 c
on

su
m

pt
io

n
(K

B)

matching time
node storage
traffic per match

Figure 19: (a)Mobility impact on average matching time; (b)Grid size impact
on BRVST’s average matching time per message, system average node storage con-
sumption and traffic volume incurred per match. The setting of grid size variation
corresponds to the number of grids varying from 64 downto 1.

Figure 19-(a) tests and compares the reliability of BRVST and DRIP in
terms of matching time performance under high node mobility, with the av-
erage node speed varying from 0 to 20m/s. The average matching time per
message (including either the publication match or subscription match) of
DRIP increases significantly as a result of its broadcast-based management

46

overhead. The delay becomes more severe when the average moving speed is
higher than 10m/s, where nodes could move across regions within the average
matching duration. Based on light-weight virtual management infrastructure,
BRVST has much more stable performance in the mobility case.

In Figure 19-(b), the matching time is seen to first reduce with grid size
and then increase. As the grid size increases, the number of grids decreases
so does the number of zones, while the number of nodes in a grid increases.
In a larger grid, messages are more likely to get matched within the grid or
zone, and there are fewer other zones to check with. However when the grid
size gets too large, messages need to interact over longer distance with GMs
and ZMs. In addition, a large number of nodes also result in more filters in a
grid which incurs a longer matching time.

System Maintenance Overhead:
We compare the overhead for storing and transmitting management mes-

sages at broker nodes and regular network nodes respectively. In Figure 20,
the publication and subscription rates increase at the same speed.

In Figure 20-i(a), TAMA and BRVST both have lower storage overhead
at regular nodes, as these nodes do not store publication and subscription
information. Specifically, BRVST only requires each node to keep a few ID
numbers which are very small in volume. With the need of storing a delay
list of brokers and neighboring information, DRIP has much higher storage
overhead, and the overhead increases quickly with the load.

In Figure 20-i(b), the storage overhead at brokers for all three schemes in-
crease linearly with the load. DRIP has a much higher increasing rate with its
need of maintaining information of both non-broker nodes and other brokers,
as well as the subscriptions and publications of all the nodes in the network.
Both TAMA and BRVST exploit range-based content representation to re-
duce the storage space. BRVST exploits space efficient aggregate scheme, so
its storage space is 60% lower than that of TAMA.

We compare DRIP and BRVST on the overhead for transmission of man-
agement messages. In Figure 20-ii(a), the overhead of DRIP increases expo-
nentially due to its inefficient broadcast mechanism. BRVST does not require-
ment significant overhead to maintain its zone and grid infrastructure, and
only sends highly aggregated publish or subscribe information, thus it has a
much lower transmission overhead.

In Figure 20-ii(b), when the message rate is low, BRVST and DRIP have
similar matching overhead. At a higher load, however, the overhead of DRIP
increases exponentially, while the overhead of BRVST is compensated as each
publication can match multiple subscriptions with its aggregate subscription
mechanism.

47

0 100 200 300 400
0

200

400

600

800

Message generation rate (messages/minute)
 {Message composition of pub/sub = 1:1}

Av
er

ag
e

st
or

ag
e

co
ns

um
pt

io
n

fo
r

 e
ac

h
no

n−
br

ok
er

 n
od

e
(B

yt
e)

i(a)

DRIP
TAMA
BRVST

0 100 200 300 400
0

100

200

300

400

500

Message generation rate (messages/minute)
 {Message composition of pub/sub = 1:1}

Av
er

ag
e

st
or

ag
e

co
ns

um
pt

io
n

 fo
r e

ac
h

br
ok

er
 n

od
e

(K
B)

i(b)

DRIP
TAMA
BRVST

0 100 200 300 400
0

500

1000

Message generation rate (messages/minute)
 {Message composition of pub/sub = 1:1}

O
ve

ra
ll

ba
si

c
sy

st
em

 m
an

ag
em

en
t

 tr
af

fic
 o

ve
rh

ea
d

(M
B)

ii(a)

DRIP
BRVST

0 100 200 300 400
0

50

100

Message generation rate (messages/minute)
 {Message composition of pub/sub = 1:1}

Av
er

ag
e

tra
ffi

c
ov

er
he

ad
 in

cu
rre

d
pe

r m
at

ch
 (K

B)

ii(b)

DRIP
BRVST

Figure 20: Storage consumption for i(a)non-broker node; i(b)broker node; i-
i(a)Basic system traffic overhead; ii(b)Traffic overhead incurred per match.

In Figure 19-(b), as grid size increases, both the average node storage space
and the traffic volume incurred for each match reduce. With a larger grid size,
nodes are less likely to move out of the grid, thus the overhead associated
with grid change will be lower. A larger grid also allows better information
aggregation, thus reducing the matching traffic.

3.1.5 Conclusion

In this work, we present BRVST, an information content matching and for-
warding engine in wireless network, which supports maximum flexibility in
the expression of information content. The most valuable contributions of
BRVST are its introduction of a novel attribute range vector that can accu-
rately represent information content with extreme efficiency both in space and
computationally, and the summary tree concept that enables effective extrac-
tion and aggregation of information. All these proposed structures help signifi-

48

cantly reduce storage and communication consumption as well as computation
overhead, and ensure stable performance. Extensive simulations demonstrate
that BRVST is reliable and scalable in large and dynamic wireless network
conditions even under very high information load.

49

4 Back-End: reliable storage on the cloud

50

4.1 Work 4: Fast, Reliable & Space-Efficient Cloud S-
torage System

4.1.1 Introduction

Data from connected devices today are flowing into data centers with an un-
precedented rate. More than half of the companies in the survey of global
enterprise market currently store at least 100 TB of data and one-third expect
their data to double in the next two to three years [3].

The cloud infrastructure enables low-cost and scalable file storage that
provides global file access. Any file system must offer reliable storage whether
through file duplication that requires more space but less computation com-
plexity such as GFS [25] or through erasure coding that requires less space but
more computation complexity such as RAID systems [13]. At the same time,
raw data exhibit redundancy across files. This redundancy can be explored to
reduce storage cost mainly for backup systems [32, 37, 49]. Using these tech-
niques, data are divided into chunks and unique data chunks are stored once
and referenced multiple times. Different from archival systems, cloud-based
storage systems are required to support interactive user access with reasonable
response time.

We propose a cloud-based file system named SEARS-Space Efficient And
Reliable Storage system that exploits the deduplication technique to reduce
storage and traffic cost as well as the erasure coding technique to increase both
the data reliability and the file retrieval speed. Given a file, there are differ-
ent ways to associate data chunks with available storage servers and retrieve
data. Archive-based backup systems mainly care about storage efficiency and
reliability. However, interactive cloud storage systems also care about file re-
trieval speed. To meet different application needs, we propose two data-server
binding schemes with different performance goals: (1) faster file access speed
or (2) higher storage efficiency.

We aim for SEARS to serve as a reference design for a flexible cloud storage
framework that can support customized level of deduplication, modes of coding
and server binding, and the mix of different modes. Its flexibility handles
different application scenarios, from batch-centric archival to real-time.

4.1.2 SEARS Architecture

Figure 21 shows the SEARS system architecture consisting of storage server
nodes operating in a data center. Users use SEARS as any file system by stor-
ing (or uploading) files to server nodes; and retrieving (or downloading) files
from server nodes. Each user accesses SEARS through a designated storage

51

Chunking
Uploading

file
New Chunks

Downloading
file

Decoding

File Upload Flow

Switching
Node

End Device

End Device

Coding/Storage
Node

Storage Node

File Retrieval Flow

Legend
Switching Query/Sync Flow

Code Piece
Chunk

Storage Node

Figure 21: SEARS system overview. One end device (laptop) uploads a file where
the file is chunked at end device and the meta-data for the file is uploaded to the
switching node for the user. Unique chunks for the file missing from SEARS are
sent to and coded at the coding node which is one of the server nodes in the
cluster storing code pieces of the chunks for the file. Another end device (smart
phone) downloads a file where code pieces of each unique chunk are retrieved from
multiple storage nodes in SEARS concurrently.

server node we call switching node for the user and all the user’s files. Each
user end device is configured with host name or the IP address of the the user’s
switching node since it is the first node to reach SEARS. We consider a total
of N nodes in SEARS divided into non-overlapping clusters of size n. The
reason of forming cluster of nodes is due to the need of storing coded chunks
at multiple nodes for reliability. We assign each cluster with a unique cluster
id. We focus on the single data center configuration in this work. However,
the concept of SEARS can be naturally extended to multiple data centers.

Content-based Chunking Operation: Before storing data, SEARS first
removes redundant content. Files are divided into chunks and unique chunks
are stored only once. We use content-based chunking to better capture re-
dundancy [24]. Using smaller chunk size can result in more duplicate chunks
thus achieving higher levels of deduplication. However, it also results in larger
number of chunks and therefore larger overhead in meta-data management and
reduced system performance. Furthermore, disk operations benefit from con-
tinuous data access, while smaller chunks lead to less efficient random access
pattern. To balance the tradeoff, we choose average chunk size of 4 KB [18] [37]
and enforce the minimum and maximum chunk sizes to be 1 KB and 8 KB
respectively. For each chunk, we apply the 160-bit SHA-1 hash function [18]
to generate a fixed-size hash value to serve as the chunk id.

52

File Storage Operation: Ahead of data storage, SEARS explores both
intra-file and inter-file content redundancy and eliminates all redundant con-
tent. In the first step, SEARS eliminates intra-file redundancy as follows. Be-
fore a user file is uploaded into SEARS, the end device applies content-based
chunking to the file, and generates chunk id for each chunk, and produces file
chunk-meta-data for the file, which is composed of a sequence of entries
for all chunks in the file and each entry consists of a chunk id and a cluster
id specifying the cluster that stores the chunk. The file chunk-meta-data is
stored at (1) the user’s end device and uploaded to (2) the SEARS switching
node serving the user. After this process, only non-repeating chunks will be
kept so that intra-file redundancy can be eliminated.

A file in SEARS is represented by its file chunk-meta-data. Each unique
chunk is stored as n code pieces in an n-node cluster. The user’s switching
node keeps a chunk-meta-data-table that stores one file chunk-meta-data
for each file belonging to the user. As a chunk can appear in multiple files,
we define the reference count for a chunk as the number of files in SEARS
that the chunk appears in. The chunk reference count is updated as SEARS
evolves with file addition, removal and update.

In the second step, SEARS eliminates inter-file redundancy across the set
of nodes responsible for storing the file as follows. The user’s switching node in
SEARS removes chunk ids already in the set of nodes and forms a list of ids of
missing chunks for the end device to upload directly to the set of storage nodes.
This means only unique chunks that are not present in the set of SEARS nodes
are uploaded from the user’s end device. As a result, bandwidth between the
user’s end device and SEARS is only required to transfer non-redundant data.

File Retrieval Operation: Whenever an end device retrieves a file from
SEARS for the first time, the requesting end device does not have the file
chunk-meta-data and the retrieval request is sent to the user’s switching node.
The switching node first sends back the file chunk-meta-data. The end device
then checks the list of chunk ids in the file chunk-meta-data against the list
of chunk ids already in its local storage, and determines the missing chunks
needed to construct the file. The end device then only requests the missing
chunks from SEARS.

File Chunk-Meta-Data Synchronization Operation: In the case
when the end device and its responsible switching node in SEARScloud each
has a version of the file chunk-meta-data, synchronization is required to resolve
any conflicts. We follow the policy for the copy with the latest time-stamp to
overwrite the one with an earlier time-stamp. We assume clock synchroniza-
tion between the user’s end device and SEARS is provided with mechanisms
such as NTP [4].

53

Erasure Coding and Decoding Process: In SEARS, each unique chunk
first reaches a node in the cluster that stores the code pieces of the chunk, we
call coding node. The coding node then divides the chunk into k equal-
sized pieces and codes it into n code pieces through (n, k) erasure coding with
n ≥ k. These n code pieces are associated with a cluster of n storage nodes
and exactly one piece is stored in one node in the cluster. Note that any node
in the cluster can serve as the coding node for a chunk to be stored at the
cluster.

Whenever the user’s end device requests a missing chunk in a file based
on the file chunk-meta-data, it issues n concurrent requests to the n nodes
in the cluster identified by the cluster id and as soon as k code pieces are
received, it reconstructs the chunk and terminates any ongoing connection to
the remaining n − k nodes. This design benefits from parallel download of
data to reduce SEARS response time as we show in Section 4.1.4.

4.1.3 Server Binding Schemes

File x: (AB)
User 1

File y: (ACBD)
User 2

File z: (EBF)
User 3

AD
Server cluster 1

BE

CF

Server cluster 2

Server cluster 3

A
B

C

E
F

D

(a) Chunk Level Binding (CLB)

File x_1: (AB)
File x_2: (AC)

User 1

File y_1: (ACB)
File y_2: (ACD)

User 2

File z: (EBF)

User 3

ABC

Server cluster 1

ACBD

EBF

Server cluster 2

Server cluster 3

A, B, C

A, C, B, D

E, B, F

(b) User Level Binding (ULB)

Figure 22: Illustration of the binding schemes.

Consider SEARS nodes grouped into M clusters of size n. A file to be
stored in SEARS is divided into chunks and each chunk is coded into n code
pieces to be stored in a cluster. A key design question for SEARS is to de-
termine how to associate data to clusters. We call this the binding process.
Different applications have different requirements for cloud-based storage ser-
vices, including fast file retrieval, small space usage in order to reduce storage
cost. We design binding schemes across the spectrum of application require-
ments namely Chunk Level Binding and User Level Binding with examples in
Figure 22(a) and 22(b) respectively.

54

Chunk Level Binding (CLB): For archival applications that runs in
the background and demands storage efficiency, the binding process must offer
system wide data deduplication. The Chunk Level Binding (CLB) scheme
selects the best cluster to store each chunk. CLB is ideal for large media
content repository like YouTube and NetFlix where users share the same or
similar content. Each unique chunk entering SEARS is assigned to a cluster
such that storage space of all clusters are evenly consumed as time passes. Note
that all storage and retrieval requests must pass through the user’s switching
node. To distribute load evenly to clusters, we use a greedy algorithm to assign
a chunk to the cluster with the largest amount of free storage space.

User Level Binding (ULB): For interactive applications with emphasis
on promptness of file retrieval, the binding scheme must offer simplicity in
chunk retrieval. The User Level Binding (ULB) scheme binds each user
with a fixed cluster and simplifies file retrieval process as all chunks of this user
are stored in the same cluster. Initially each user is assigned a fixed cluster.
When storage capacity is exhausted at the cluster assigned for the user, a new
cluster is assigned to future files from the user. This is equivalent to assigning
a subset of user files to a separate user and only intra-set redundancy within
the subset of files can be captured. ULB incurs at most one extra cluster id
for a subset of user files, offers simple retrieval process but sacrifices space
efficiency, as the chunks stored in different clusters belonging to different users
(or even the same user) can not be exploited globally during the deduplication
process.

The two binding schemes described so far offer different tradeoffs in space
saving and file retrieval response time. However, they are just examples to
showcase the flexibility in the design of SEARS . We design SEARS to be a
powerful platform that use both deduplication and erasure coding in the best
combination to fit various application needs.

4.1.4 Performance Evaluation

We evaluate the performance of our prototype implementation of SEARS over
Amazon EC2 [1]. We generate a data set reflecting real-time data access of
10 users during a span of 3 weeks in 2014 containing three parts. (1) User
Personal Data of 1.6 TB consisting of various common types of files from 10
users; (2) System Log of 132 GB consisting of major system log files (e.g. files
under /var/log directory) of Amazon EC2 Ubuntu server machines recorded
every hour; and (3) System Backup Image of 3.5 TB consisting of the complete
backup image files for Linux systems created once a day.

We evaluate SEARS in terms of storage usage with deduplication ratio and

55

time performance with the average file retrieval time. Deduplication Ratio
is defined as the ratio of the total size of original files over the total space
consumption for SEARS including the indexing overhead for storing them.
This metric captures the combined effect of deduplication (reduce space usage)
and erasure coding (increase space usage). Average File Retrieval Time
is defined as the average time duration from the moment the user issues a
request for a file to the moment the file is ready at end device. This involves
downloading and decoding of all necessary chunks and reconstruction of the
file from all chunks.

We employ 10 Amazon EC2 instances as driver machines to generate the
log files, system backup images in addition to making users upload their own
personal data. We fix cluster size at n = 10 thus use 10 EC2 instances for
each cluster. We use E = 20 clusters.

We compare SEARS with the existing storage system R-ADMAD [33]
which packs variable-length data chunks into fixed size objects of 8 MB which
are encoded with erasure code and distributed among storage nodes called re-
dundancy groups. To fairly evaluate R-ADMAD with SEARS, we implement
it on EC2 cloud, and follow the same chunking process as SEARSas specified
in Section 4.1.2 for all files in our data set to generate chunks of 4 KB average
size. Furthermore, the same set of nodes are used for the SEARS cluster and
the R-ADMAD redundancy group.

0 5 10
0

10

20

30

40

k (n fixed at 10)

D
ed

up
lic

at
io

n
ra

tio

(a)

CLB
ULB

0 5 10
0

5

10

15

k (n fixed at 10)

A
ve

ra
ge

 fi
le

 re
tri

ev
al

 ti
m

e(
se

c)

(b)

CLB
ULB

5 10 15 20
0

10

20

30

Observation date (x−th day)

D
ed

up
lic

at
io

n
ra

tio

(c)

R−AD
CLB
ULB

0 6 12 18 23
0

5

10

15

20

25

A
ve

ra
ge

 fi
le

 re
tri

ev
al

 ti
m

e(
se

c)

0 6 12 18 23
0

5

10

15

20

25

0 6 12 18 23
0

5

10

15

20

25

0 6 12 18 23
0

5

10

15

Hour in a day(hour)

U
se

r r
eq

ue
st

 lo
ad

(G
B

/s
)

(d)
R−AD
CLB
ULB
Load

Figure 23: (a) k/n effect on Dedup ratio; (b) k/n effect on retrieval time; (c)
Dedup ratio; (d) file retrieval time

Effect of k/n Ratio: The ratio k/n has profound performance impact
on any scheme using erasure coding. To illustrate this, we fix n at 10 and
vary k for the data set. As each chunk requires n/k times as much space as
before the coding process, deduplication ratio increases with k as shown in
Figure 23(a). Increases of k also lead to larger numbers of code pieces with
smaller sizes for each chunk. This implies more parallel retrieval processes,

56

each with smaller bandwidth requirement. With smaller k (k < 5), both
factors contribute to reduced chunk and file retrieval time. However, after k
increase beyond a threshold, k = 5 for the data sets, the larger number of
concurrent retrieval processes and the decoding process with more code pieces
become the bottleneck and increase retrieval time as shown in Figure 23(b).
CLB exploits redundancy across all chunks in all files and achieves a higher
deduplication ratio. However, the process of searching for chunks across all
clusters leads to the higher file retrieval time. On the other hand, ULB can
only exploit intra-user redundancy which leads to a lower redundancy ratio.
However all chunks in a file are easily retrieved from one cluster, which leads
to the faster file retrieval time. We use k = 5 and n = 10 from now on.

Deduplication Ratio: To see how the ratio changes as data volume
evolves over time, we plot the cumulative deduplication ratio on the 5th, 10th,
15th, and 21st day in Figure 23(c). The ratio improves for all schemes over
time as data volume increases, for more redundancy can be exploited. It also
shows deduplication ratio decreases in the order of CLB, R-ADMAD, and
ULB. R-ADMAD is essentially same as CLB in data deduplication as it can
exploit system wide redundancy just as CLB. But R-ADMAD uses slightly
more space than CLB because of its indexing structure is more complex than
CLB.

Time Performance: To examine interactive user experience, we replay
the request pattern captured in the user personal data trace of our data set.
We use 10 desktop machines residing in the eastern region of the US. Each
desktop replays the file access trace for each of the 10 users. We report the
file retrieval time for files accessed during each hour of the day averaged over
21 days over 10 users. To retrieve a file, the user’s end device directly requests
data chunks from 10 nodes storing the code pieces of each chunk in the three
schemes. Figure 23(d) presents file retrieval time in relation to user request
load averaged over each hour of the day over 21 days. Users’ data request
volume per hour in these figures reflect work activity during a day, that is,
light activity at night (0:00 midnight to 8:00 am) and heavy and fluctuating
activity for the rest of the day. ULB offers the fastest and relatively flat
retrieval time because requests from the same user are handled by one cluster
and there are no multiple requests for the same data chunk at the same time.
CLB offers slower file retrieval than ULB, and large fluctuation during the
working hours closely matching data request volume. This is because a unique
chunk is stored only once in the entire system, and multiple users can request
the same unique chunk at the same time, which leads to congestion at the
cluster hosting the chunk in demand. R-ADMAD follows the data volume
fluctuation during the day but with larger retrieval time than SEARS.

57

To compare with a commercial system, we note that downloading 3 MB
files from the same set of 10 desktops residing in the eastern part of the US
takes an average of 7 s from Amazon EC2 service in us-east-1 region [2]. With
ULB in SEARS, the download time is 2.5 s throughout the day.

4.1.5 Conclusion and Future Work

We describe the design and implementation of a space efficient, data reliable
and fast retrieving cloud-based storage system SEARS which integrates data
deduplication and erasure coding. SEARS provides a flexible combination
of various binding schemes to associate server nodes with data to be stored
at different level based on application needs. Evaluation over Amazon EC2
shows that SEARS outperforms related systems with lower storage usage while
ensuring fast and reliable data access.

As future work, we plan on examining the location of cluster nodes inside
data centers to future improve data reliability and reduce retrieval time. We
are evaluating the system with more data sets with additional metrics such as
storage balance, file upload time and file retrieval success rate. Various system
design parameters in SEARS and performance under flexible configuration of
SEARS with multiple binding schemes, chunk size and erasure codes also need
further investigation.

58

References

[1] Aws ec2. In http://aws.amazon.com/ec2.

[2] Cloud match. In https://cloudharmony.com/speedtest.

[3] Global enterprise big data trends:2013. In http://www.microsoft.com/en-
us/news/download/presskits/bigdata/docs/bigdata 021113.pdf.

[4] Network time protocol. In RFC 1305.

[5] wikipedia.

[6] Stephen Boyd, Arpita Ghosh, Balaji Prabhakar, and Devavrat Shah. Ran-
domized gossip algorithms. IEEE/ACM Trans. Netw., 14(SI):2508–2530,
June 2006.

[7] E.J. Candes, J. Romberg, and T. Tao. Stable signal recovery from
incomplete and inaccurate measurements. Comm. Pure Appl. Math.,
59(8):1207–1223, 2006.

[8] E.J. Candes and T. Tao. Decoding by linear programming. Information
Theory, IEEE Transactions on, 51(12):4203–4215, 2005.

[9] E.J. Candes and M.B. Wakin. An introduction to compressive sampling.
Signal Processing Magazine, IEEE, 25(2):21–30, 2008.

[10] Emmanuel J. Candes and Justin Romberg. Practical signal recovery from
random projections. In SPIE Computational Imaging, volume 5674, pages
76–86, 2005.

[11] Nuno Carvalho, Filipe Araujo, and Luis Rodrigues. Reducing latency in
rendezvous-based publish-subscribe systems for wireless ad hoc networks.
ICDCSW ’06. IEEE Computer Society, 2006.

[12] Antonio Carzaniga, David S. Rosenblum, and Alexander L. Wolf. Design
and evaluation of a wide-area event notification service. ACM Trans.
Comput. Syst., 19:332–383, August 2001.

[13] Peter M. Chen, Edward K. Lee, Garth A. Gibson, Randy H. Katz, and
David A. Patterson. Raid: High-performance, reliable secondary storage.
ACM Comput. Surv., 26(2), 1994.

[14] Scott Shaobing Chen, David L. Donoho, and Michael A. Saunders. Atomic
decomposition by basis pursuit. SIAM Rev., 43(1):129–159, 2001.

59

[15] Jose A. Costa, Neal Patwari, and Alfred O. Hero, III. Distributed
weighted-multidimensional scaling for node localization in sensor network-
s. ACM Trans. Sen. Netw., 2(1):39–64, February 2006.

[16] Wei Dai and Olgica Milenkovic. Subspace pursuit for compressive sensing
signal reconstruction. IEEE Trans. Inf. Theor., 55(5):2230–2249, May
2009.

[17] Min Ding, Fang Liu, Andrew Thaeler, Dechang Chen, and Xiuzhen
Cheng. Fault-tolerant target localization in sensor networks. EURASIP
J. Wirel. Commun. Netw., 2007(1):19–19, January 2007.

[18] Wei Dong, Fred Douglis, Kai Li, Hugo Patterson, Sazzala Reddy, and
Philip Shilane. Tradeoffs in scalable data routing for deduplication clus-
ters. In Proceedings of the 9th USENIX conference on File and stroage
technologies, FAST’11, pages 2–2, 2011.

[19] D. L. Donoho and Y. Tsaig. Fast solution of l1-norm minimization prob-
lems when the solution may be sparse. Information Theory, IEEE Trans-
actions on, 54(11):4789–4812, 2008.

[20] D.L. Donoho. Compressed sensing. Information Theory, IEEE Transac-
tions on, 52(4):1289–1306, 2006.

[21] D.L. Donoho, Y. Tsaig, I. Drori, and J-L Starck. Sparse solution of under-
determined systems of linear equations by stagewise orthogonal matching
pursuit. Information Theory, IEEE Transactions on, 58(2):1094–1121,
2012.

[22] Qing Fang, Feng Zhao, and Leonidas Guibas. Lightweight sensing and
communication protocols for target enumeration and aggregation. In
Proceedings of the 4th ACM international symposium on Mobile ad hoc
networking & computing, MobiHoc ’03, pages 165–176.

[23] Chen Feng, W.S.A. Au, S. Valaee, and Zhenhui Tan. Compressive sensing
based positioning using rss of wlan access points. In INFOCOM, 2010
Proceedings IEEE, pages 1–9, 2010.

[24] Davide Frey, Anne-Marie Kermarrec, and Konstantinos Kloudas. Prob-
abilistic deduplication for cluster-based storage systems. In Proceedings
of the Third ACM Symposium on Cloud Computing, SoCC ’12, pages
17:1–17:14, 2012.

60

[25] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The google file
system. In Proceedings of the nineteenth ACM symposium on Operating
systems principles, SOSP ’03, pages 29–43, 2003.

[26] U. Grossmann, M. Schauch, and S. Hakobyan. Rssi based wlan indoor
positioning with personal digital assistants. In Intelligent Data Acquisition
and Advanced Computing Systems: Technology and Applications, 2007.
IDAACS 2007. 4th IEEE Workshop on, pages 653–656, 2007.

[27] Yan Guo, Bei Hua, and Lihua Yue. Energy-based target numeration
in wireless sensor networks. In Future Generation Communication and
Networking (FGCN 2007), volume 2, pages 380–385, 2007.

[28] J. Haupt, W.U. Bajwa, M. Rabbat, and R. Nowak. Compressed sensing
for networked data. Signal Processing Magazine, IEEE, 25(2):92–101,
2008.

[29] Zbigniew Jerzak and Christof Fetzer. Bloom filter based routing for
content-based publish/subscribe. In Proceedings of the second interna-
tional conference on Distributed event-based systems, DEBS ’08, pages
71–81.

[30] Xiang Ji and Hongyuan Zha. Sensor positioning in wireless ad-hoc sensor
networks using multidimensional scaling. In INFOCOM 2004. Twenty-
third AnnualJoint Conference of the IEEE Computer and Communica-
tions Societies, volume 4, pages 2652–2661, 2004.

[31] A. Kushki, K.N. Plataniotis, and A.N. Venetsanopoulos. Kernel-based
positioning in wireless local area networks. Mobile Computing, IEEE
Transactions on, 6(6):689–705, 2007.

[32] Mark Lillibridge, Kave Eshghi, Deepavali Bhagwat, Vinay Deolalikar,
Greg Trezise, and Peter Camble. Sparse indexing: Large scale, inline
deduplication using sampling and locality. In Proccedings of the 7th
Conference on File and Storage Technologies, FAST ’09, pages 111–123,
Berkeley, CA, USA, 2009. USENIX Association.

[33] Chuanyi Liu, Yu Gu, Linchun Sun, Bin Yan, and Dongsheng Wang. R-
admad: high reliability provision for large-scale de-duplication archival
storage systems. In ICS, 2009.

[34] Chong Luo, Feng Wu, Jun Sun, and Chang Wen Chen. Compressive data
gathering for large-scale wireless sensor networks. In Proceedings of the

61

15th annual international conference on Mobile computing and network-
ing, MobiCom ’09, pages 145–156.

[35] Chong Luo, Feng Wu, Jun Sun, and Chang Wen Chen. Compressive
data gathering for large-scale wireless sensor networks. In Proceedings
of the 15th Annual International Conference on Mobile Computing and
Networking, MobiCom ’09, pages 145–156, New York, NY, USA, 2009.
ACM.

[36] José Mocito, J. Alfonso Briones-Garćıa, Boris Koldehofe, Hugo Mi-
randa, and Lúıs Rodrigues. Geographical distribution of subscription-
s for content-based publish/subscribe in manets. In Proceedings of the
ACM/IFIP/USENIX Middleware’08, pages 102–103. ACM, 2008.

[37] Athicha Muthitacharoen, Benjie Chen, and David Mazières. A low-
bandwidth network file system. In Proceedings of the eighteenth ACM
symposium on Operating systems principles, SOSP ’01, pages 174–187,
2001.

[38] W. Navidi and T. Camp. Stationary distributions for the random way-
point mobility model. IEEE Transactions on Mobile Computing, 3(1):99–
108, 2004.

[39] D. Needell and R. Vershynin. Signal recovery from incomplete and inaccu-
rate measurements via regularized orthogonal matching pursuit. Selected
Topics in Signal Processing, IEEE Journal of, 4(2):310–316, 2010.

[40] Y.C. Pati, R. Rezaiifar, and P. S. Krishnaprasad. Orthogonal matching
pursuit: recursive function approximation with applications to wavelet
decomposition. In Signals, Systems and Computers, 1993. 1993 Confer-
ence Record of The Twenty-Seventh Asilomar Conference on, volume 1,
pages 40–44, 1993.

[41] N. Patwari and A.O. Hero. Manifold learning algorithms for localization
in wireless sensor networks. In Acoustics, Speech, and Signal Process-
ing, 2004. Proceedings. (ICASSP ’04). IEEE International Conference
on, volume 3, pages 857–860, 2004.

[42] Robert E. Strom, Guruduth Banavar, Tushar Deepak Chandra, Marc Ka-
plan, Kevan Miller, Bodhi Mukherjee, Daniel C. Sturman, and Michael
Ward. Gryphon: An information flow based approach to message broker-
ing. CoRR, 1998.

62

[43] X. Xiang, X. Wang, and Z. Zhou. Self-adaptive on-demand geographic
routing for mobile ad hoc networks. IEEE Transactions on Mobile Com-
puting, 1:99, 2011.

[44] Xiaojing Xiang, Xin Wang, and Yuanyuan Yang. Stateless multicasting
in mobile ad hoc networks. IEEE Transactions on Computers, 59(8):1076
–1090, aug. 2010.

[45] Quan Yuan and Jie Wu. Drip: A dynamic voronoi regions-based pub-
lish/subscribe protocol in mobile networks. In INFOCOM 2008, pages
2110 –2118, april 2008.

[46] Bowu Zhang, Xiuzhen Cheng, Nan Zhang, Yong Cui, Yingshu Li, and
Qilian Liang. Sparse target counting and localization in sensor networks
based on compressive sensing. In INFOCOM, 2011 Proceedings IEEE,
pages 2255–2263, 2011.

[47] Yaxiong Zhao and Jie Wu. Towards approximate event processing in a
large-scale content-based network. ICDCS ’11, pages 790–799.

[48] Yuanqing Zheng and Mo Li. P-mti: Physical-layer missing tag identifi-
cation via compressive sensing. In INFOCOM, 2013 Proceedings IEEE,
pages 917–925, April 2013.

[49] Benjamin Zhu, Kai Li, and Hugo Patterson. Avoiding the disk bottleneck
in the data domain deduplication file system. In Proceedings of the 6th
USENIX Conference on File and Storage Technologies, FAST’08, pages
18:1–18:14, Berkeley, CA, USA, 2008. USENIX Association.

63

