

SSStttooonnnyyy BBBrrrooooookkk UUUnnniiivvveeerrrsssiiitttyyy

The official electronic file of this thesis or dissertation is maintained by the University
Libraries on behalf of The Graduate School at Stony Brook University.

©©© AAAllllll RRRiiiggghhhtttsss RRReeessseeerrrvvveeeddd bbbyyy AAAuuuttthhhooorrr...

ROC Random Forest and Its Application

A Dissertation Presented

by

Bowen Song

to

The Graduate School

in Partial Fulfillment of the

Requirements

for the Degree of

Doctor of Philosophy

in

Applied Mathematics and Statistics

Stony Brook University

January 2015

Copyright by

Bowen Song

2015

ii

Stony Brook University

The Graduate School

Bowen Song

We, the dissertation committee for the above candidate for the

Doctor of Philosophy degree, hereby recommend

acceptance of this dissertation.

Wei Zhu – Dissertation Advisor

Professor, Deputy Chair, Department of Applied Mathematics and Statistics,

Stony Brook University

Song Wu – Chairperson of Defense

Assistant Professor, Department of Applied Mathematics and Statistics,

Stony Brook University

Yi Gao – Inside Member

Adjunct Professor, Department of Applied Mathematics and Statistics;

Assistant Professor, Department of Biomedical Informatics,

Stony Brook University

Ellen Li – Outside Member

Professor, Department of Internal Medicine;

Devision Chief, Gastroenterology and Hepatology,

Stony Brook University

This dissertation is accepted by the Graduate School

Charles Taber

Dean of the Graduate School

iii

Abstract of the Dissertation

ROC Random Forest and Its Applications

by

Bowen Song

Doctor of Philosophy

in

Applied Mathematics and Statistics

Stony Brook University

2015

Classification algorithms that optimize the overall accuracy or class distribution

purity often suffer from difficulties in classifying class imbalanced data, in which most

cases in the testing set will be classified to the majority class. However for imbalanced

data classification, one usually cares more about the accuracy for identifying the minority

class (e.g. diseased samples), that is, the sensitivity, other than the overall accuracy and

therefore low sensitivity is highly undesirable.

Receiver operating characteristic (ROC) is a 2 dimensional graph by plotting

sensitivity versus specificity, i.e., accuracy in identifying the majority class (e.g. normal

samples). A curve is formed by varying the decision threshold and the area under ROC

(AUC) is employed as an accuracy measurement to evaluate the performance of

classification. Random Forest, a modern ensemble classifier, is gaining increasing

attention in the community because of its good classification capability. Each single

learner is a decision tree, built on a bagging data with each node split based on a

randomly selected feature subset. As a result, each base learner is relatively

“independent” to the others and thus the ensemble’s classification accuracy improves

overall.

In this dissertation, we combine the ROC analysis and the Random Forest to

establish the proposed ROC Random Forest algorithm. There are two goals to this

algorithm: (1) improving the AUC value, and (2) producing balanced classification result.

Verification was carried out using 18 public data sets from the UCI and the results show

that the ROC Random Forest not only improves the classification accuracy in terms of

higher AUC value but also delivers a more balanced classification result comparing to

other Random Forest settings. One draw-back of the ROC Random Forest lies in its

difficulty in processing categorical predictors. Given the importance of categorical

predictors in many classification problems, we have further combined the ROC Random

Forest with optimal node splitting algorithms other than ROC for categorical predictors.

The resulting Hybrid ROC Random Forest is further evaluated on 8 UCI data sets.

iv

Acknowledgments

First and foremost, I would like to sincerely thank my advisor Prof. Wei Zhu for

her tremendous help, guidance, for the freedom and great support I was granted

throughout these years.

I am also very grateful to all members of the committee, Prof. Ellen Li, Prof.

Song Wu and Prof. Yi Gao, in this work and for taking the time to evaluate this

dissertation and provide insightful advices.

I also want to extend my thanks to Prof. Jerome Liang for his support during my

research. Part of the work was supported by the NIH/NCI under Grants #CA082402 and

#CA143111.

I also want to take this opportunity to thank my friends and colleagues who

provide me with fun, courage, discussion and pleasant and stimulating working

environment during my PhD pursuing life: Muqi, Guoli, Tengjie, Shuai, Yan, Sam,

Hongyan, Xuebing, Tian, Shaonan, Huan, Hao Z., Hao H., Yan L., Ming, Lin, Sarah.

Last but not least, Helen and my parents, I am forever grateful for your

unconditional support and love.

v

Table of Contents

Chapter I: Introduction .. 1

1.1 Classification... 1

1.2 Single classifier ... 3

1.2.1 K-nearest neighbor classifier ... 3

1.2.2 Decision tree classifier ... 5

1.2.3 Support vector machine ... 10

1.3 Ensemble Classifier .. 13

1.3.1 Random forest .. 15

1.3.2 Random subspace.. 17

Chapter II: Class-imbalanced Data .. 19

2.1 The problem of class-imbalanced data ... 19

2.2 Measures of classifier performance .. 20

2.2.1 Overall accuracy .. 20

2.2.2 Alternative accuracy metrics .. 21

2.3 Solutions for imbalanced learning .. 24

2.3.1 Sampling methods for imbalanced data ... 25

2.3.1.1 Random oversampling and undersampling ... 26

2.3.1.2 Informed undersampling ... 27

2.3.1.3 Synthetic minority oversampling technique (SMOTE) 30

2.3.1.4 Combination of oversampling with undersampling 31

2.3.2 Cost sensitive learning for imbalanced data .. 35

Chapter III: Receiver Operating Characteristic Analysis .. 37

3.1 Receiver operating characteristics (ROC) space ... 37

3.2 ROC curve .. 41

3.3 The area under ROC curve (AUC) ... 44

3.4 Averaging ROC curve .. 47

4.5 ROC for imbalance data... 49

Chapter IV: ROC Random Forest .. 52

4.1 Node splitting criteria ... 52

4.1.1 The property of proposed method for continuous ROC setting 54

4.2 Node attribute selection criteria .. 56

vi

4.3 Stopping Criterion ... 59

4.4 ROC Random Forest Algorithm ... 60

4.5 Complexity of algorithm: ROC Random Forest .. 63

4.6 Hybrid ROC Random Forest for categorical data.. 64

4.7 Complexity of algorithm: Hybrid ROC Random Forest.. 67

Chapter V: Validation: Results and Discussion ... 69

5.1 ROC analysis for imbalanced data classification threshold correction 69

5.1.1 Dataset.. 69

5.1.2 Basic classifiers .. 70

5.1.3 Traditional data correcting technologies .. 70

5.1.4 Three-way cross-validation .. 71

5.1.5 Results and discussion ... 71

5.2. Evaluation of ROC Random Forest .. 79

5.2.1 Dataset.. 79

5.2.2 Learning methods... 80

5.2.3 Two-way random splitting ... 81

5.2.4 Results and discussion ... 82

5.3 Evaluation of the Hybrid ROC Random Forest ... 91

5.3.1 Dataset... 92

5.3.2 Learning methods.. 92

5.3.3 Two-way random splitting .. 93

5.3.4 Results and discussion .. 93

Chapter VI: Conclusion and Future Work .. 97

References .. 100

Appendix .. 111

Averaged ROC curves and classification point for §5.2... 111

1. Red wine quality ... 111

2. White wine quality ... 112

3. Breast cancer .. 112

5. Ozone level .. 113

6. Ionosphere .. 114

7. Pima diabetes ... 114

8. Spect ... 115

9. Vertebral .. 115

vii

10. Breast tissue ... 116

11. Haberman ... 116

12. Banknote .. 117

13. Magic ... 117

14. Page book ... 118

15. Parkinsons .. 118

16. Seismic bump ... 119

17. Secom ... 119

18. Seeds .. 120

Averaged ROC curves and classification point for §5.3... 121

1. abalone .. 121

2. acute .. 122

3. credit AUS .. 122

4. credit GER .. 123

5. credit APP ... 123

6. band of cylinder .. 124

7. contraceptive ... 124

8. animals in zoo ... 125

viii

List of Tables

Table 1 Confusion matrix .. 21

Table 2 Cost matrix ... 36

Table 3 Confusion matrices with changing of classification direction. 40

Table 4 Dataset with information of label and probabilistic score. 43

Table 5 Dataset with information of class label, probability score from classifier 1 and

probability score from classifier 2. ... 51

Table 6 Dataset with information of class label and feature score. Instances from

number 47 to number 94 are omitted, and they all belongs to negative class and their

corresponding feature score decrease from 0.53 to 0.07 with difference 0.01. 58

Table 7 Previous classification .. 61

Table 8 Classification after changing splitting direction .. 61

Table 9 Averaged Random Forest and SVM AUC information of the 100 runs 72

Table 10 Averaged Random Forest classification results with the original threshold and

cut-off chosen by the proposed harmonic mean method .. 77

Table 11 Averaged SVM classification results with the original threshold and cut-off

chosen by the proposed harmonic mean method. ... 78

Table 12 Data information of the 18 dataset from UCI repository 80

Table 13 Averaged classification results with different classifier settings, i.e., ROC

Random Forest(ROC RF), weighted Random Forest(wRF), Random Forest with SMOTE

data(smoteRF), Random Forest with down sampling data(downRF), Random Forest with

Tomek links(tomekRF), Random Forest with ENN(ennRF), Random Forest with

CNN(cnnRF), Random Forest with NCL(nclRF), Random Forest with OSS(ossRF),

ix

Random Forest with SMOTE+Tomek(smote+tRF) and Random Forest with

SMOTE+ENN(smote+eRF). The mean and standard deviation value of AUC, accuracy,

sensitivity and specificity are reported. Cell with values marked red indicates the highest

averaged AUC value. Paired Z test is applied to compare the averaged mean of method

with highest value and the rest methods. Cell marked orange indicates a significant

difference with 𝛼 = 0.01 and cells marked blue indicate a non-significant difference. .. 84

Table 14 Summary table of the result. Rows are the 18 dataset and columns are the

Random Forest with different setting. The first and second (or tied first) method which

produce highest averaged AUC are marked red. A paired Z-test is performed to compare

method with highest AUC with the rest. Result with significant level 0.01 are shown.

Cell marked orange indicates a significant difference and cell marked light blue indicate a

non-significant result. ... 89

Table 15 Averaged running time to build a single base Random Forest and ROC

Random Forest model using the 18 dataset. The unit of time is second. 91

Table 16 Data information of the 8 dataset from UCI repository with categorical variable

... 92

Table 17 Averaged classification results with different classifier settings, i.e., Hybrid

ROC Random Forest (HROC RF), weighted Random Forest(wRF), Random Forest with

SMOTE data(smoteRF), Random Forest with down sampling data(downRF). The mean

and standard deviation value of AUC, accuracy, sensitivity and specificity are reported.

Cell with values marked red indicates the highest averaged AUC value. Paired Z test is

applied to compare the averaged mean of method with highest value and the rest methods.

x

Cell marked orange indicates a significant difference with 𝛼 = 0.01 and cells marked

blue indicate a non-significant difference. .. 95

Table 18 Summary table of the result. Rows are the 8 dataset and columns are the

Random Forest with different setting. The first and second (or tied first) method which

produce highest averaged AUC are marked red. A paired Z-test is performed to compare

method with highest AUC with the rest. Result with significant level 0.01 are shown.

Cell marked orange indicates a significant difference and cell marked light blue indicate a

non-significant result. ... 96

Table 19 Average running time to build a single base Random Forest and a Hybrid ROC

Random Forest model using the 8 datasets. The unit of time is second. 96

viii

List of Figures

Figure 1 Illustration of classification of nearest neighbor method. The red, blue and

green points in the 2 dimensional space belongs to class 1, 2 and 3 respectively. The

newly input point’s label, black solid triangle, will be classified based on 5 nearest

neighbor. The gray circle indicates the 5 nearest neighbor of new input point, which

includes 3 points of class 1 and two points of class 3. As a result, this new point will be

classified as class 1. .. 5

Figure 2 Curves of Gini Impurity, left figure and Entropy, right figure. Note that the

domain of Gini Impurity and Entropy are different. ... 7

Figure 3 Illustration of SVM classification boundary. Red and blue solid circle points

represent training point belonging to different classes. The two dashed line indicate the

boundary of maximum margin, while the solid line indicates the classification boundary.

... 11

Figure 7 Ensemble classifier error rate. The left figure indicates how the error rate

changes with the number of base classifiers, which make correct prediction, when the

error rate of base classifier is 0.3. The right figure indicates how the ensemble error rate

changes with the base classifier’s error rate when majority of the base classifier make

correct prediction. ... 13

Figure 5 Comparison of different sampling methods. The red dots indicates majority

class examples and blue triangle indicate minority class examples. The dark blue circle

region marks the area where majority example are removed. .. 34

Figure 6 Points in ROC space. Points A and B locate above the dashed diagonal line,

which indicates random guess performance. Points C locates on the dashed line while

ix

point D is below the dashed line. Point E, point F and point G indicate all negative

classification, perfect classification and all positive classification respectively. 40

Figure 7 ROC curve corresponding to dataset in Table 4. .. 43

Figure 8 ROC curves of two different classification algorithms on the same dataset. The

ROC curves of classifier 1 and classifier 2 are marked with blue and red, respectively.

The shaded area indicates the corresponding area under curve for each ROC. And the

AUC value of classifier 1 and classifier 2 are 0.9515 and 0.8465. 46

Figure 9 ROC curves and their averaged curve. The red, green and blue curve indicates

3 different ROC curves and the purple curve is the averaged ROC of the three generated

by algorithm 9. .. 49

Figure 10 Classification results corresponding to Table 5. The solid curve is the ROC

curve of both classifier. Red dot indicates classification point of classifier 1 and green

dot indicates classification point of classifier 2. The blue dot is the ideal operating point

which perfectly separate the dataset. .. 51

Figure 11 Figure (a) shows the 3D surface plot (left) of harmonic mean over sensitivity-

specificity space. The corresponding contour plot is on the right as well as the heat bar.

Figure (b) shows the 3D surface plots of arithmetic mean over sensitivity-specificity

space, as well as the corresponding contour plot and the heat bar. 54

Figure 12 Splitting threshold selection curve. The red curve indicates the information

gain with different threshold. The green and blue curves represent the Gini impurity

curve and harmonic mean curve. The black dashed line indicate the operating point

which maximize the value on these curves and the corresponding feature value is 0.70. 59

x

Figure 13 Averaged ROC curve of Random Forest results. (a)-(e) show averaged ROC

curves of un-weighted Random Forest with imbalanced data, weighted RFs with

imbalanced data, weighted Random Forest with 75% down-sampling data, weighted

Random Forest with 50% down-sampling data and weighted RFs with 25% down-

sampling data. The red, blue circle marker represent results of regular 0.5 threshold, and

harmonic mean respectively. The averaged ROC curves was conducted according to the

horizontal axis, where the linear interpolation was employed when needed. 73

Figure 14 Averaged ROC curve of SVM results. (a)-(e) show averaged ROC curves of

un-weighted SVM with imbalanced data, weighted SVM with imbalanced data, weighted

SVM with 75% down-sampling data, weighted SVM with 50% down-sampling data and

weighted SVM with 25% down-sampling data. The red, blue circle marker represent

results of regular 0.5 threshold, and harmonic mean respectively. The averaged ROC

curves was conducted according to the horizontal axis, where the linear interpolation was

employed when needed. .. 74

1

Chapter I: Introduction

1.1 Classification

Statistical learning is a framework for machine learning drawing from the fields

of statistics and functional analysis (Mohri et al., 2012). It has been gaining increasing

attention and playing a key role in many areas of science as well as finance and

economics (Hastie et al., 2009). Machine learning algorithms mainly fall into the

following three categories: supervised learning, unsupervised learning and reinforcement

learning. In this dissertation, we mainly focus on the area of supervised learning.

The goal of learning is prediction. Supervised learning, as its name suggests,

represents those learning algorithms whose learning processes are exposed and therefore

guided with the presence of the target variable, which we wish to predict. By the nature

of the target variable, supervised learning is further divided into (1) classification for

discrete target variable, and (2) regression for continuous target variable. In this

dissertation, we will focus on the classification algorithms.

Classification is the task of learning a target function which could be used to

identify to which of a set of categories (sub-populations) a new observation belongs. To

be specific, the learning process involves learning a mapping function or model between

the input observations, denote as 𝑿 and its corresponding output categories, denote as 𝝎.

The output model optimizes a predefined goal function of the predicted and true value of

target variable, e.g., error rate, on the basis of a training set of data containing

observations with known category membership (the reason why we call it supervised

2

learning). Such systematic approaches employed to build classification models are called

classifiers or classification techniques. Classifier is most suited for predicting or

describing data sets with binary or nominal categories. It is less effective for ordinal

categories, e.g., to predict tomorrow’s temperature to be hot, mild or cool, because they

do not consider the implicit order among the categories (Frank and Hall, 2001). Other

forms of relationships, such as the subclass-superclass relationships among categories, for

example, humans and apes are primates, which in turn, is a subclass of mammals, are not

considered.

Various tools and algorithms are employed to perform the classification task.

Based on whether or not assumptions are made on the data, these algorithms could be

further divided to two major sub-groups, i.e., parametric classification algorithms and

nonparametric classification algorithms. Due to the complexity of a problem, there is no

superior approach that always performs the best. In parametric methods, linear

discriminant analysis and logistic regression are classical and standard methods, they

assume Gaussian distribution and binomial distribution of the data point respectively.

Moreover, some modern techniques have been introduced, e.g., Naive Bayesian method,

in which conditional independence assumption is made on the attributes variables.

Nonparametric methods have no such assumptions which imply the decision boundaries

could be of any arbitrary geometry (Hubert et al., 2001). Nearest neighbor based

algorithms belongs to this categories. Decision tree algorithms are also included in this

group as well as the neural network based algorithms and the well-known support vector

machine.

3

If we want to summarize classification algorithms in terms of their algorithm

structure, classification algorithms fall into the following groups, namely, single

classifiers and ensemble classifiers. As the name suggests, a single classifier represents a

standalone classification algorithm while an ensemble classifier is a combination of

single classifiers. Ensemble classifier could be better considered as a higher level

classifier combination strategy rather than a classification algorithm and its goal is to

improve the ensemble classification performance by properly combining the single

learners, i.e., single classifiers. Follow this categorization we review several fundamental

single classifiers and ensemble classifiers in the following sections.

1.2 Single classifier

1.2.1 K-nearest neighbor classifier

The k-nearest neighbor algorithm (kNN) is a very intuitive method that classifies

unlabeled instances based on their similarity to examples in the training set. In simple

word, for a given unlabeled example 𝑋∗ ∈ ℜ𝑝, we first find the k “closest” labeled

examples in the training data set and assign 𝑋∗ to the class that appears most frequently

within the k closest neighbors.

kNN classifier is closely related to kNN density estimation. And we briefly

introduce its model setting here. Assume we have a dataset of 𝑁 samples, of which 𝑁𝑖

are from class 𝜔𝑖, and we are interested in predict the label of an unknown sample 𝑋∗.

First we draw a hyper-sphere of volume 𝑉 around 𝑋∗. Let’s further assume the volume

contains a total of 𝑘 examples, of which 𝑘𝑖 are from class 𝜔𝑖.

The likelihood functions using kNN (Bishop, 2006) could be approximated by

4

𝑝(𝑋|𝜔𝑖) ≅
𝑘𝑖

𝑁𝑖𝑉

Similarly, the unconditional density is estimated by

𝑝(𝑋) ≅
𝑘

𝑁𝑉

And the priors are approximated by

𝑝(𝜔𝑖) ≅
𝑁𝑖

𝑁

If we put everything together, the Bayes classifier becomes

𝑝(𝜔𝑖|𝑋) =
𝑝(𝑋|𝜔𝑖)

𝑝(𝑋)
=

𝑘𝑖

𝑁𝑖𝑉
∙

𝑁𝑖

𝑁
𝑘

𝑁𝑉

=
𝑘𝑖

𝑘

And the outputting 𝜔𝑖 should maximize 𝑝(𝜔𝑖|𝑋). Just as our introduction in the

very beginning, the right-most term in the above equation indicates that any unknown

instance will be classified to the most frequently appeared class in its k nearest neighbors.

An example could be shown in Figure 1.

“Nearest” is defined by any similarity measures, like Euclidean distance and the

Mahalanobis distance. The difference between the two types of distances is that the

Mahalanobis distance considers the correlations of the dataset and is scale-invariant.

Nearest neighbor problem has been extensively studied in the field of computational

geometry under the name closest pair of points problem, which is one of the oldest

problems in computational geometry (Shamos et al., 1975).

5

Figure 1 Illustration of classification of nearest neighbor method. The red, blue and

green points in the 2 dimensional space belongs to class 1, 2 and 3 respectively. The

newly input point’s label, black solid triangle, will be classified based on 5 nearest

neighbor. The gray circle indicates the 5 nearest neighbor of new input point, which

includes 3 points of class 1 and two points of class 3. As a result, this new point will be

classified as class 1.

kNN is considered as a lazy learning algorithm, where the function is only

approximated locally and all computation is deferred until classification. Comparing to

the eager learning algorithms, like Logistic Regression and Random Forest, which

compiles data into a compressed description/model and classifies incoming patterns using

the induced model, lazy learning algorithms have fewer computational costs in the

training phase, however, they require greater storage space of data points and have higher

computational costs on recall in the testing phase.

1.2.2 Decision tree classifier

Decision tree algorithm is a method commonly used in data mining. The goal is

to create a model that predicts the value of a target variable based on several input

6

variables. There are two main types: classification tree which predict discrete outcomes

and regression tree which predict continuous outcomes. The term Classification and

Regression Tree (CART) analysis is an umbrella term used to refer to both procedures

(Breiman et al., 1984). In this dissertation, we only focus on the classification part.

Decision tree is a tree-like structure which contains three components: internal

(non-leaf) node, branch and leaf (terminal) node. Decision tree learning is the process of

constructing a decision tree from class-labeled training tuples. Each internal node

denotes a test on an attribute, or feature. Each branch represents the outcome of the test

and each leaf node holds a class label.

Before we talk about the algorithm for building decision tree, let us introduce the

node splitting criteria first. The basic idea here is very simple, for each node, by

optimizing a cost function, we identify a feature and a threshold corresponding to the

feature. In the testing phase, any observation with a value of that feature larger than the

threshold falls into the right child node, and if its value is smaller than the threshold the

observation will fall into the left child node. Traditionally, Gini impurity and Entropy are

employed here to choose the “best splitting” feature and corresponding threshold. Their

definitions are given below:

𝐼𝐺(𝑓) = − ∑ 𝑓𝑖(1 − 𝑓𝑖) = 1 − ∑ 𝑓𝑖
2

𝑚

𝑖=1

𝑚

𝑖=1

𝐼𝐸(𝑓) = − ∑ 𝑓𝑖log2𝑓𝑖

𝑚

𝑖=1

7

For binary class, there corresponding plot is shown in Figure 2, both methods

provide a measure of the homogeneity of the target variable. In Figure 5, 𝑓 stands for the

faction of class “1” observations. As f approaches 0 or 1, both Gini impurity and Entropy

will approaches 0, which indicates that observations are homogeneous and tends to from

same class. And therefore, the feature and threshold which will generate the largest drop

of these values between parent node and child nodes will be selected to splitting this node.

The difference is called information gain, and we are trying to maximize this information

gain.

Figure 2 Curves of Gini Impurity, left figure and Entropy, right figure. Note that the

domain of Gini Impurity and Entropy are different.

Here comes the Decision tree pseudo-code, which includes two parts:

splitting_attribute_threshold and decision_tree.

8

Algorithm 1 splitting_attribute_threshold

Inputs(s): The matrix of training examples 𝑿 and the corresponding label vector 𝝎

Output(s): Selected attribute 𝒜 and its corresponding splitting threshold 𝜃

Require: Homogeneity measure Η

1: set 𝜃 ← −∞

2: set 𝒜 = 𝒜1

3: set 𝑚𝑎𝑥_𝑔𝑎𝑖𝑛 ← 0

4: for each attribute 𝒜𝑖 ∈ 𝑋 do

5: for each possible threshold 𝜃𝑗
𝒜𝑖 ∈ 𝒜𝑖 do

6: set 𝑡𝑒𝑚𝑝_𝑔𝑎𝑖𝑛 ← 𝐼𝐺(𝑟𝑜𝑜𝑡𝑛𝑜𝑑𝑒 , 𝑙𝑒𝑓𝑡𝑛𝑜𝑑𝑒 , 𝑟𝑖𝑔ℎ𝑡𝑛𝑜𝑑𝑒 , 𝝎)

7: if 𝑡𝑒𝑚𝑝_𝑔𝑎𝑖𝑛 > max_gain then

8: set 𝜃 ← 𝜃𝑗
𝒜𝑖

9: set 𝒜 ← 𝒜𝑖

10: set 𝑚𝑎𝑥_𝑔𝑎𝑖𝑛 ← 𝑡𝑒𝑚𝑝_𝑔𝑎𝑖𝑛

11: end if

12: end for

13: end for

14: return 𝜃 and 𝒜

15: end

Algorithm 2 decision_tree

Input(s): The matrix of training examples 𝑿 and the corresponding label vector 𝝎

Output(s): Decision tree 𝑇

1: if 𝑿 == 𝝓 then

2: return a single node with 𝝓

3: end if

4: if 𝝎 consists records all with the same value for the class label then

5: return a single leaf node with that value

6: end if

7: set (𝜃, 𝒜) ← splitting_attribute_threshold(𝑿, 𝝎)

8: set (𝑿𝑙𝑒𝑓𝑡, 𝝎𝑙𝑒𝑓𝑡) and (𝑿𝑟𝑖𝑔ℎ𝑡, 𝝎𝑟𝑖𝑔ℎ𝑡) as the subsets of (𝑿, 𝝎) consisting of

observations respectively with value greater than or equal to and less than 𝜃 for

attribute 𝒜

9: recursively apply decision_tree to subset (𝑿𝑙𝑒𝑓𝑡, 𝝎𝑙𝑒𝑓𝑡) and (𝑿𝑟𝑖𝑔ℎ𝑡, 𝝎𝑟𝑖𝑔ℎ𝑡) until they

are empty or the stopping criteria are met

10: return a tree with root or node labelled (𝜃, 𝒜) and child node

decision_tree(𝑿𝑙𝑒𝑓𝑡 , 𝝎𝑙𝑒𝑓𝑡) and decision_tree(𝑿𝑟𝑖𝑔ℎ𝑡, 𝝎𝑟𝑖𝑔ℎ𝑡)

11: end

9

Algorithm 1 and Algorithm 2 are two very basic component to build a tree, and

based on them, variation decision tree structures have been introduced. Hunt’s algorithm

(Hunt et al., 1966) is one of the earliest decision tree algorithms. Quinlan (1986)

invented ID3 (Iterative Dichotomiser 3) which is the precursor to the C4.5 algorithm,

which was also developed by Quinlan (1996). It made a number of improvements to ID3.

C4.5 handles both continuous and discrete attributes. It could also handle training data

with missing attribute values. Both ID3 and C4.5 employ entropy method to calculate the

gain. CART (Breiman et al., 1984) is also widely used tree algorithm. Unlike ID3 and

C4.5, it uses Gini Impurity to measure the homogeneity.

To prevent over fitting, a pruning process, called minimal cost-complexity

pruning, is performed in many methods, like CART. The purpose of this step is to build

a right sized tree by estimating the true misclassification cost. Take CART for example,

first, CART builds a full grown tree and then cuts the pair of leaves sequentially. In each

sub-tree, misclassification cost and cost-complexity value are calculated using 10-fold

cross-validation. Finally, the CART algorithm chooses the final optimal tree using these

values.

Decision tree has several advantages over other classification methods and that is

why it is so common and popular. First it is simple to understand and interpret.

Secondly, it requires little data preparation. Other techniques often require data

normalization, dummy variables need to be created and blank values to be removed.

Thirdly, it uses a white box model. It has clear and explicit classification model. We can

see how the variables are associated with the response in the tree structure. Lastly, as

non-parametric classifier, it is robust. Not only serve as a single classifier, decision tree

10

is also a common choose of base classifier of popular ensemble classifiers, e.g., Random

Forest, which we will introduce in §1.3.

1.2.3 Support vector machine

Support vector machine (SVM) was first introduced by Vladimir Vapnik in 1995.

A detailed introduction could be found in Burges’s paper (Burges, 1998). And here we

briefly introduce its math model of linearly separable setting:

Give training data 𝒟, a set of n points of the form

𝒟 = {(𝒙𝒊, 𝜔𝑖)|𝒙𝒊 ∈ ℝ𝑝, 𝜔𝑖 ∈ {−1,1}}, 𝑖 = 1, … , 𝑛

where the 𝜔𝑖 is either 1 or -1, indicating the label of observation 𝒙𝒊 belongs. Each 𝒙𝒊 is a

p-dimensional feature vector.

We want to find a hyperplane which maximize the margin between the points

having 𝜔𝑖 = 1 and those having 𝜔𝑖 = −1. Any hyperplane can be written as the set of

points 𝒙 satisfying

𝒘 ∙ 𝒙 − 𝑏 = 0

where ∙ denotes the dot product and 𝒘 the normal vector to the hyperplane. Then
𝑏

‖𝒘‖

determines the distance from the hyperplane to origin.

Since the data are linearly separable (our assumption), we could select two

hyperplanes in a way that they separate the data and there are no points between them,

and then try to maximize their distance. Margin is defined as the region bounded by

them. These hyperplanes could be described by the equations:

11

𝒘 ∙ 𝒙 − 𝑏 = 1 and 𝒘 ∙ 𝒙 − 𝑏 = −1

It could be easily shown that the distance between these two hyperplanes is
2

‖𝒘‖
,

so we want to minimize ‖𝒘‖ (Figure 3).

Figure 3 Illustration of SVM classification boundary. Red and blue solid circle points

represent training point belonging to different classes. The two dashed line indicate the

boundary of maximum margin, while the solid line indicates the classification boundary.

To prevent data point from falling into the margin, we add the following

constraint:

𝒘 ∙ 𝒙𝒊 − 𝑏 ≥ 1 for 𝒙𝒊 having label “1”

𝒘 ∙ 𝒙𝒊 − 𝑏 ≤ −1 for 𝒙𝒊 having label “-1”

2

‖𝒘‖

,

𝑏

‖𝒘‖

,

-1

1

12

The above inequations could be further reduced to

𝜔𝑖(𝒘 ∙ 𝒙𝒊 − 𝑏) ≥ 1 for all 1 ≤ 𝑖 ≤ 𝑛

To summarize, our optimization problems become (note that minimizing ‖𝒘‖

mathematically equals minimizing
1

2
‖𝒘‖2)

arg min
𝐰,b

max
α≥0

{
1

2
‖𝒘‖2 − ∑ 𝛼𝑖[𝜔𝑖(𝒘 ∙ 𝒙𝒊 − 𝑏) − 1]

𝑛

𝑖=0

}

The above problem can be solved by standard quadratic programming techniques

and programs, e.g., Karush-Kuhn-Tucker condition (Fletcher, 1987).

For linearly un-separable problems, a slack variable is introduced to the

optimization function, and it becomes

arg min
𝐰,ξ,b

max
α≥0,β≥0

{
1

2
‖𝒘‖2 + 𝐶 ∑ ξ𝑖

𝑛

𝑖=0

− ∑ 𝛼𝑖[𝜔𝑖(𝒘 ∙ 𝒙𝒊 − 𝑏) − 1 + ξ𝑖] − ∑ 𝛽𝑖ξ𝑖

𝑛

𝑖=0

𝑛

𝑖=0

}

The slack variable ξ here measures our tolerance of the misclassification of the

model.

For non-linearly classification problem, kernel trick (Aizerman, 1964) is applied,

the basic idea of which is to map the input data to higher dimension or infinite dimension

feature space, in which the problem could be considered as linearly separable and solved.

Popular kernel functions include linear kernel, Gaussian radial basis function kernel

(RBF) and polynomial kernel.

13

SVM has been widely applied in sciences nowadays and its robust and well

performance make it the status quo classifier and therefore it usually serves as a

benchmark in many classification comparison papers.

1.3 Ensemble Classifier

In statistics and machine learning, ensemble methods use multiple learning

algorithms to obtain better predictive performance than could be obtained from any of the

constituent learning algorithms (Opitz,1999 and Polikar, 2006). A motivation for

ensembles is that a combination of the outputs of many weak classifiers produces a

powerful committee (Hastie et al., 2009).

Figure 4 Ensemble classifier error rate. The left figure indicates how the error rate

changes with the number of base classifiers, which make correct prediction, when the

error rate of base classifier is 0.3. The right figure indicates how the ensemble error rate

changes with the base classifier’s error rate when majority of the base classifier make

correct prediction.

14

We borrow the example from Dietterich’s paper (Dietterich, 2000) to describe

how this ensemble structure works. Consider an ensemble of 21 binary classifiers, each

of which has an error rate of 𝜖 = 0.3. The ensemble classifier predicts the class label of a

test example by taking a majority vote on the predictions made by the base classifier. If

the base classifiers are identical, the resulting ensemble classifier will also have an error

rate of 0.3. On the other hand, if the base classifier are independent, say they are

uncorrelated, then then ensemble makes a wrong decision only if more than half of the

base classifiers predict incorrectly, in which case the error rate could be calculated using

the following equation and its correspond plot is shown in Figure 7

𝐸𝑛𝑠𝑒𝑚𝑏𝑙𝑒_𝐸𝑟𝑟𝑜𝑟_𝑅𝑎𝑡𝑒 = ∑ (
21
𝑖

) 𝜖𝑖(1 − 𝜖)21−𝑖

21

𝑖=11

= 0.0264

The probability of the ensemble making and decision error is 0.0264. With the 21

base classifiers fixed, we could also show how the ensemble prediction errors change

with the base classifier error rate changing. The diagonal line (blue curve) indicates

when all the base classifiers are identical while the black curve shows all the base

classifier are uncorrelated. The ensemble classifier performs worse than the base

classifiers when 𝜖 is larger than 0.5.

The preceding example illustrates two conditions for an ensemble classifier in

order to perform better than the base classifier: (1) The base classifiers need to have low

correlations from each other, detailed discussions could be found in these papers

(Williams, 1975; Beriman, 2001; Ahn et al., 2007), and (2) the base classifiers should do

15

better than a classifier that performs random guess, in other word, the error rate of the

base classifier should be less than 0.5 (Hansen et al., 1990).

As introduced in Duin’s paper (Duin et al., 2000), common combining classifiers

could be distinguished into the following 3 groups: 1. Parallel combining of classifiers

computed for different feature sets; 2. Stacked combining of different classifiers

computed for the same feature space; 3. Combining weak classifiers, in which case large

sets of simple classifiers are trained on modified version of the original dataset. We

focus on the third part and introduce two popular ensemble classifiers, i.e., adaptive

boosting and random forest in the following sections.

1.3.1 Random forest

Bootstrap aggregating (Breiman, 1996), often abbreviated as bagging, involves

having each model in the ensemble vote with equal weight. Random forest (Breiman,

2001) is a popular bagging algorithm which combines random decision trees with

bagging to achieve very high classification accuracy. We briefly introduce the math

setting of random forest in this session.

Firstly, let’s introduce its precursor, tree bagging. Considering a training set

(𝑥𝑖, 𝜔𝑖) for 𝑖 = 1,2, … , 𝑁, where 𝑥𝑖 is a 𝑝 dimensional vector and 𝜔𝑖 indicates the target

label of 𝑥𝑖. Tree bagging repeatedly selects a bootstrap sample of the training set and

then fits trees to these samples. Detailed algorithms is shown below

16

Algorithm 3 tree_bagging

Input(s): Training set (𝑥𝑖, 𝜔𝑖) for 𝑖 = 1,2, … , 𝑁; number of trees 𝐵

Output: Tree classifier 𝑇1, 𝑇2, … , 𝑇𝐵

1. for 𝑏 = 1 to 𝐵 do

2. Build a dataset 𝑆𝑏, by sampling 𝑁 items randomly with replacement from the

original data pool (𝑥𝑖, 𝜔𝑖) for 𝑖 = 1,2, … , 𝑁.

3. Train decision tree 𝑇𝑏 using 𝑆𝑏 and save it.

4. end for

For any new testing points, the final classification result will be the majority vote

of these 𝐵 decision trees. Random forest algorithm differs in only one way from tree

bagging algorithm that a random subset of the features are selected to split the node in the

tree building process instead of searching the best splitting feature in the whole feature

set. The reason for doing so is to reduce the correlation of the trees in an ordinary

bootstrap sample. For example, if one or a few features are very strong predictors for the

target variable, they will be selected in many of the decision trees causing them highly

correlated and reducing the power of the ensemble. Following is the algorithm for

random forest

Algorithm 4 random_forest

Input(s): Training set (𝑥𝑖, 𝜔𝑖) for 𝑖 = 1,2, … , 𝑁; number of trees 𝐵; number of features 𝐹

Output: Tree classifier 𝑇1, 𝑇2, … , 𝑇𝐵

1. for 𝑏 = 1 to 𝐵 do

2. Build a dataset 𝑆𝑏, by sampling 𝑁 items randomly with replacement from the

original data pool (𝑥𝑖, 𝜔𝑖) for 𝑖 = 1,2, … , 𝑁

3. Train decision tree 𝑇𝑏 without pruning using 𝑆𝑏. In each node splitting process,

randomly select 𝐹 features without replacement from the whole feature set and

search the best splitting threshold inside the selected feature subset

4. end for

The same as tree_bagging, new testing point classification is done base on the

majority vote of the 𝐵 built decision trees.

17

For both tree_bagging and random_forest algorithms, we also need to specify the

number of trees 𝐵 we want to build beforehand. Out of bag (OOB) error could be used to

do the parameter specification. The definition of OOB is the mean prediction error on

each training sample 𝑥𝑖, using only the trees that did not have 𝑥𝑖 in the bootstrap sample.

Random forest is one of the most popular ensembles because of several

advantages. Firstly, the performance of random forest is usually better than bagging and

comparable with boosting. Yet, it is not too vulnerable to the outliers or noises unlike

Boosting. Secondly, it can handle a very large number of input attributes and the running

time is short (Skurichina, 2002). Moreover, random forest could also be used to calculate

proximities between pairs of instances and the importance of each variable (Breiman,

2001 and Archer, 2008).

1.3.2 Random subspace

Random subspace is considered as the generalization of the random forest

algorithm (Ho, 1998). Random forest are composed of decision trees, while a random

subspace classifier can be composed from any underlying classifiers, e.g., linear

classifiers (Skurichina, 2002), support vector machine (Tao, 2006), nearest neighbors

(Tremblay, 2004) and other types of classifiers. The algorithm is shown below:

Algorithm 5 random_subspace

Input(s): Training set (𝑥𝑖, 𝜔𝑖) for 𝑖 = 1,2, … , 𝑁; number of classifiers 𝐵; number of

features 𝐹

Output: Classifiers 𝐶1, 𝐶2, … , 𝐶𝐵

1. for 𝑏 = 1 to 𝐵 do

2. Randomly select 𝐹 features without replacement from the whole feature set to

feature subset 𝐹𝑏

3. Train classifier 𝐶𝑏 using the original data with feature subset 𝐹𝑏

4. end for

18

Similar to random forest, new testing point classification is done base on the

majority vote of the 𝐵 trained classifiers.

The algorithm is an attractive choice for classification problems where the

number of features is much larger than the number of training objects, such as fMRI

(Kuncheva, 2010) data or gene expression data (Bertoni, 2005).

19

Chapter II: Class Imbalanced Data

2.1 The problem of class imbalanced data

Recent developments in science and technology enabled the explosion of data in

both quantity and diversity, which created immense opportunity for knowledge discovery

and data engineering research to play an increasingly important role in a wide range of

applications (He, 2009). In recent years, imbalanced data learning problem has drawn a

significant amount of attention from the machine learning society. As the name suggests,

class-imbalanced data stand for dataset where the number of observations belonging to

each class is different. Usually, one of the classes contributes only a very small minority

of the data and makes the data significantly imbalanced, as introduced in many real

problems, e.g., fraud detection (Fawcett et al., 1997), medicine (Mac Namee et al., 2002),

language (Cardie et al., 1997), etc.

The fundamental issue with imbalanced data learning problem is the ability of

imbalanced data to significantly compromise the performance of most standard learning

algorithms. Breiman et al. (1984) discussed the connection between the prior probability

of a class and its error cost. Classes with fewer observations in the training set have a

lower prior probability and a lower error cost. This is problematic when the true error

cost of the minority class is higher than is implied by the distribution of observations in

the training set. And this is usually the case, considering credit card fraud problem,

among all the transactions less than 0.1% are fraud, which will translate into billions of

dollars in losses (Hassibi, 2000). How to accurately predict or differentiate these

minority events, is of fundamental importance to classification task, however, most

20

available classification algorithms assume or expect balanced class distributions and

equal misclassification costs, so when applied to imbalanced dataset, they prefer to

classify most cases to the majority class and often fail to correctly classify the minority

class, so called compromised performance by Breiman. Before we go into the reason

causing these problems, let us introduce the accuracy measure first.

2.2 Measures of classifier performance

2.2.1 Overall accuracy

It is one of the most widely used measurement to evaluate the performance of a

classifier. The ideal of overall accuracy is very simple, and it is the fraction with number

of correctly classified examples (𝑁𝑐𝑜𝑟𝑟𝑒𝑐𝑡) as numerator and the number of total examples

(𝑁𝑡𝑜𝑡𝑎𝑙) as the denominator.

overall_accuracy =
𝑁𝑐𝑜𝑟𝑟𝑒𝑐𝑡

𝑁𝑡𝑜𝑡𝑎𝑙

From the above equation, the overall classification error is defined as 1 −

overall_accuracy. And usually this error measurement serves directly as the cost

function or as a core elements of the cost function to be minimized/maximized in the

classification algorithm training process. Overall classification error assigns equal

misclassification cost, which is
1

𝑁𝑡𝑜𝑡𝑎𝑙
, to every data point. For balanced data, the measure

works well since the population of each class is very close. However, as the class

imbalance degree increases, a systematic bias is introduced to this measurement which

will assign examples from class with larger population more weights those examples in

21

minority class. And as a result, for those algorithm including this error measure in the

loss function, will incline to classify most points to the majority class. Take the credit

card fraud problem as an example, if all the transactions are classified as non-fraud

transaction, the classification overall accuracy will be 99.9% which is still very high.

However, the resulting model would be of no use since it failed to predict any of the

fraud event we have more interest in.

Though accuracy provides a single simple number for diagnostic performance, it

is often too simple and must be interpreted with considerable caution, just as we

described above. Meanwhile, more accuracy measures are needed to supplement its

limitation.

2.2.2 Alternative accuracy metrics

Overall accuracy calculate the correction prediction rate across all classes, a

simple improvement would be to further partition the hits (correct predictions) and misses

(wrong predictions), which leads to the following confusion matrix Table 1 (in this

dissertation, we only focus on binary classification problems)

Table 1 Confusion matrix

 Predicted label

 Positive Negative

Actual label
Positive TP FN

Negative FP TN

The above table is named as confusion matrix, and all the possible binary

classification outputs are included. True positive (TP) corresponds to the number of

positive examples correctly classified by the classifier and true negative (TN)

22

corresponds to the number of correctly classified negative cases. False positive (FP)

indicates the number of those negative cases that were classified as positive cases and

false negative (FN) represents the number of positive cases that were wrongly predicted

as positives cases. Based on these four numbers, the overall accuracy could be redefined

as

overall_accuracy =
𝑁𝑐𝑜𝑟𝑟𝑒𝑐𝑡

𝑁𝑡𝑜𝑡𝑎𝑙
=

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝑇𝑁 + 𝐹𝑃

Besides this, we could also define the within class accuracy as well, i.e.,

sensitivity, positive class classification accuracy and specificity, negative class

classification accuracy.

sensitvity =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

specificity =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃

Using these three definitions, we could rethink the problems in § 2.2.1 more

quantitatively (Song, 2014). Suppose the positive cases number in the training set is

𝑁+ = 𝑇𝑃 + 𝐹𝑁 while the number of negative cases is 𝑁− = 𝑇𝑁 + 𝐹𝑃. 𝑘 =
𝑁+

𝑁−
 is defined

as the ratio of the number of the two classes.

overall_accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝑇𝑁 + 𝐹𝑃

=
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 + 𝑇𝑁 + 𝐹𝑃
+

𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝑇𝑁 + 𝐹𝑃

=
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁) +
1
𝑘

(𝑇𝑃 + 𝐹𝑁)
+

𝑇𝑁

𝑘(𝑇𝑁 + 𝐹𝑃) + (𝑇𝑁 + 𝐹𝑃)

23

=
𝑘

1 + 𝑘
∗ sensitivity +

1

1 + 𝑘
∗ specificity

Now if we define 𝛽 =
𝑁+

𝑁++𝑁−
=

𝑘

1+𝑘
 as the imbalanced rate of the dataset, the

above equation could be reformulated as

overall_accuracy = 𝛽 ∗ sensitivity + (1 − 𝛽) ∗ specificity

For balanced data, 𝛽 is near or equal to 0.5, in which case maximizing the overall

accuracy is equivalent to maximizing the sensitivity and specificity with the same weight.

However, for imbalanced data with 𝛽 approaching 0 (positive class minority),

maximizing the overall accuracy will bias toward maximizing the specificity more than

the sensitivity. We give an example here, suppose for one dataset 𝛽 = 0.01, an unit

increase of specificity will actually contribute 100 times more than the contribution made

by 1 unit increasing in sensitivity. This is probably the reason why most examples in

positive class minority data are classified as negative, because the increase in specificity

contribute more to the increase of overall accuracy comparing to specificity. The

opposite situation could be observed as 𝛽 approaches 1 (negative class minority).

Sometimes, sensitivity is also refer to as recall. With similar definition, precision

determines the rate of number of correct classified positive cases over all the cases that

were classified as positive. The higher the precision, the lower the number of FP errors

committed by the classifier. Recall and precision are two widely used metrics employed

in applications where successful detection of one of the classes is considered more

significant than detection of the other classes. For the convenience of description, the

formal definition of these metrics is given below.

24

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

It is often possible to construct baseline models that maximize one metric but not

the other. For example, a model that predict every record as positive class will have a

perfect recall but very poor precision because of the high FP cases. Conversely, the

model assigns a positive class to every test example that matches one of the positive

records in the training set have very high precision, but low recall because of the low TP

rate. As a result, a preferred model would be capable to maximize precision and recall

simultaneously. And the 𝐹 measure serves for this purpose.

𝐹 =
2 ∗ precision ∗ recall

precision + recall
=

2 ∗ 𝑇𝑃

2 ∗ 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

In math, 𝐹 measure is the harmonic mean of precision and recall. 𝐹 measure

tends to be closer to the smaller one of the two elements. Hence a high value of 𝐹

ensures that both precision and recall are reasonably high.

In Chapter 4, we borrow the idea of harmonic mean and propose to use the

harmonic mean of sensitivity and specificity for imbalanced data classification. So we

save the discussion to Chapter 4 and introduce some traditional strategies to deal with

imbalanced data in the following sections.

2.3 Solutions for imbalanced learning

Provost (2000) gave a good summary about the related issue for imbalance dataset

classification. He pointed out first that why the normal classifier would cause problems

25

for the imbalanced data set: (1) Maximizing accuracy is the goal. (2) In use, the classifier

will operate on data drawn from the same distribution as the training data. It also pointed

out that when studying problems with imbalanced data, using the classifiers produced by

standard machine learning algorithms without adjusting the output threshold may well be

a critical mistake. In this dissertation, we actually also follow the problem list to provide

solutions. For the accuracy maximization problem, we have already discussed earlier this

chapter and for the problem of threshold adjusting problem in Chapter 3 we proposed

ROC based operating point selection method which could preserve the minority class

example detection rate.

In this section, we review the common strategies solutions proposed to overcome

the effects of imbalanced data. We establish some notations first. Considering an

imbalanced dataset 𝒟 with binary labels {+1, −1}. 𝒟𝑚𝑎𝑗 stands for set of examples with

majority class while 𝒟𝑚𝑖𝑛 represents the set of minority class cases, and |𝒟𝑚𝑎𝑗| and

|𝒟𝑚𝑖𝑛| are the number of observations in the two set respectively.

2.3.1 Sampling methods for imbalanced data

Provost (2001) also asked a question if the natural class distribution would be the

best training data class distribution. Weiss’s answer is no based on studies carried out in

2001. In this section, we review the most common sampling method to deal with

imbalanced data. Typically, the use of sampling methods in dealing with imbalanced

data learning problems consists of modification of the degree of imbalance in order to

provide a balanced distribution (He, 2009). Studies has shown that for several base

classifiers, a balanced data set provides improved (Weiss et al., 2001, Estabrooks et al.,

26

2004 and Song et al., 2014). These results justify the use of sampling methods for

imbalanced learning.

2.3.1.1 Random oversampling and undersampling

The methods of random oversampling follow naturally from its description by

adding a set 𝐸 randomly sampled from the minority class set 𝒟𝑚𝑖𝑛 with replacement. In

this way the number of total examples in 𝒟𝑚𝑖𝑛 is increased by |𝐸| and the class

distribution is therefore adjusted. While oversampling appends data to the original data

set, random undersampling (also refer to as downsampling) removes data from the

dataset. Opposite to oversampling, in undersampling we randomly select a set 𝐸 of

majority class examples |𝒟𝑚𝑎𝑗| and remove them so that |𝒟𝑚𝑎𝑗| − |𝐸| = |𝒟𝑚𝑖𝑛|. The

undersampling also provides us a simple method for adjusting the balance of the original

data set 𝒟.

At first glance the oversampling and undersampling methods appear to be

functionally equivalent since they both alter the size of the original data set and can

actually provide the same proportion of balance. However, this commonality is

superficial and each method has their own limitation which can potentially hinder the

learning process (Holte et al., 1989, Drummond et al., 2003 and Mease et al., 2007). In

the case of undersampling, the problem is relative obvious: by removing examples from

the majority class the information contained in 𝒟 is reduced, which will cause the

classifier to miss important concept pertaining to the majority class. With respect to

oversampling, the problem is a little more opaque: since oversampling simply appends

replicated data to the original data set, multiple instances of certain examples become

“tied” leading to overfitting (Mease et al., 2007). In particular, overfitting in

27

oversampling occurs when classifiers produce multiple clauses in a rule for multiple

copies of the same observation which causes the rule to become too specificity and lace

generalization capability. The training accuracy will be high in this scenario while the

classification performance in the testing set is worse.

2.3.1.2 Informed undersampling

In this section we introduce several algorithms for informed undersampling that

have shown good results.

2.3.1.2.1 Tomek links

The definition of Tomek links (Tomek, 1976) is very similar to the single linkage

definition used in clustering algorithms. Considering two examples 𝐸𝑖 ∈ 𝒟𝑚𝑎𝑗 and 𝐸𝑗 ∈

𝒟𝑚𝑖𝑛, if there is not an example 𝐸𝑙 ∈ 𝒟𝑚𝑖𝑛 such that the Euclidean distance 𝑑(𝐸𝑖, 𝐸𝑙) <

𝑑(𝐸𝑖, 𝐸𝑗) or 𝐸𝑙 ∈ 𝒟𝑚𝑎𝑗 such that 𝑑(𝐸𝑗 , 𝐸𝑙) < 𝑑(𝐸𝑖, 𝐸𝑗), then we cay that 𝐸𝑖 and 𝐸𝑗 form a

Tomek link. If two examples form a Tomek link, then either one of these examples is

noise or both examples are borderline. Tomek links can be used as an under-sampling

method, in which only examples belonging to the majority class are eliminated, or as a

data cleaning method, in which examples of both classes are removed.

2.3.1.2.2 Edited nearest neighbor rule (ENN)

Edited nearest neighbor rule apply the modified KNN rule introduced by D.

Wilson (1972). Usually the k is set to 3. For each point 𝐸𝑖 ∈ 𝒟𝑚𝑎𝑗 , if minority class data

dominate its k nearest neighbor, then this point will be removed from 𝒟𝑚𝑎𝑗.

28

2.3.1.2.3 Condensed nearest neighbor rule (CNN)

Hart’s condensed nearest neighbor rule (Hart, 1968) is used to find a consistent

subset of examples. A subset �̂� ∈ 𝒟 is consistent with 𝒟 if and only if �̂� could correctly

classify the example in 𝒟 when using a 1-nearest neighbor. �̂� could be created in

following steps: first, randomly draw one majority class example and all examples from

the minority class and put these examples in �̂�. Afterwards, use a 1NN over the

examples in �̂� to classify the examples in 𝒟. Every misclassified example from 𝒟 is

moved to �̂�. It is important to note that this procedure does not find the smallest

consistent subset from 𝒟. The idea behind this implementation of a consistent subset is

to eliminate the examples from the majority class that are distant from the decision border,

since these sorts of examples might be considered less relevant for learning.

2.3.1.2.4 Neighborhood cleaning rule (NCL)

Neighborhood cleaning rule (NCL, Laurikkala, 2001) uses Wilson’s ENN to

remove majority class examples. ENN removes any example whose class label differs

from the class of at least two of its three nearest neighbors. NCL modifies the ENN in

order to increase the data cleaning process. For a binary class problem, the algorithm can

be described in the following way: for each example 𝐸𝑖 in the training set, its three

nearest neighbors are found. If 𝐸𝑖 belongs the majority (𝐸𝑖 ∈ 𝒟𝑚𝑎𝑗) class and the

classification given by its three nearest neighbors contradicts the original class of 𝐸𝑖, then

𝐸𝑖 is removed. If 𝐸𝑖 belongs to the minority (𝐸𝑖 ∈ 𝒟𝑚𝑖𝑛) class and its three nearest

neighbors misclassify 𝐸𝑖, then the nearest neighbors that belong to the majority class are

removed.

29

2.3.1.2.5 One side selection (OSS)

One side selection (Kubat et al., 1997) is an undersampling method resulting from

the application of Tomek links followed by the application of CNN. Tomek links are

used as an undersampling method and removes noisy and borderline majority class

examples. Borderline examples can be considered “unsafe” since a small amount of

noise can make them fall on the wrong side of the decision border. CNN aims to remove

examples from the majority class that are distant from the decision border. The

remainder examples, i.e., “safe” majority class examples and all minority class examples

are used for learning.

2.3.1.2.6 Balance Cascade

BalanceCascade (Liu et al., 2006) algorithm takes a supervised learning approach

that develops an ensemble of classifier to systematically selection which majority cases to

be included in the undersampled set 𝐸. Consider a sampled set 𝐸1 of majority class 𝒟𝑚𝑎𝑗,

and the fact that |𝐸1| = |𝒟𝑚𝑖𝑛|. Subject to set 𝒟1 ={𝐸1 ∪ 𝒟𝑚𝑖𝑛} we induce ensemble 𝐶1.

Then based on the classification of 𝐶1on 𝒟1, we identify all cases that are correctly

classified as belongings to 𝒟𝑚𝑎𝑗, we call them as 𝑁𝑚𝑎𝑗
1 . Since we know 𝐶1 and it is

reasonable to assume that 𝑁𝑚𝑎𝑗
1 is somewhat redundant in 𝒟𝑚𝑎𝑗 since 𝐶1 is already

trained, so we remove them from the 𝒟𝑚𝑎𝑗 and generate a new sampled set from the

resulting majority class samples, 𝐸1, with |𝐸1| = |𝒟𝑚𝑖𝑛|. Again, subject to 𝒟2 ={|𝐸2| ∪

|𝒟𝑚𝑖𝑛|} we derive ensemble 𝐶2. This procedure is iterated to a stopping criteria at which

point a cascading combination scheme is used to form a final classifier.

30

2.3.1.2.7 kNN undersampling

kNN undersampling (Zhang et al., 2003) employs the structure of kNN classifier

to guide the undersampling process. Based on the characteristics of the given data

distribution, four kNN undersampling methods were proposed, namely NearMiss-1,

NearMiss-2, NearMiss-3, and the “most distant” method. The NearMiss-1 method

selects those majority examples whose average distance to the three closest minority class

examples is the smallest, while the NearMiss-2 method selects the majority class

examples whose average distance to the three farthest minority class examples is the

smallest. NearMiss-3 selects a given number of the closest majority examples for each

minority example to guarantee that every minority example is surrounded by some

majority examples. Finally, the “most distance” method selects the majority class

examples whose average distance to the three closest minority class cases is the largest.

Experimental results (Zhang et al., 2003) shows NearMiss-2 method can provide

competitive results for imbalanced learning.

2.3.1.3 Synthetic minority oversampling technique (SMOTE)

Chawla et al. (2002) combined over-sampling and down-sampling to achieve

better classification performance than simply down-sampling the majority class. Rather

than over-sampling with replacement, they create synthetic minority class examples to

boost the minority class, which is called the synthetic minority oversampling technique

(SMOTE). To be specific, for subset 𝒟𝑚𝑖𝑛 ∈ 𝒟, consider the 𝐾-nearest neighbors (with

Euclidean distance setting) for each point 𝑥𝑖 ∈ 𝒟𝑚𝑖𝑛, for some specified integer 𝐾. To

create a synthetic sample, randomly select one of the 𝐾-nearest neighbors, then multiply

31

the corresponding feature vector difference with a random number in [0,1], and finally,

add this vector to 𝑥𝑖 which leads to

𝑥𝑛𝑒𝑤 = 𝑥𝑖 + (�̂�𝑖 − 𝑥𝑖) ∗ 𝛿

where �̂�𝑖 is one of its 𝐾-nearest neighbors and 𝛿 ∈ [0,1] is a random number. Therefore,

the resulting synthetic instance according to the above definition is a point along the line

segment joining 𝑥𝑖 and one of its 𝐾-nearest neighbors �̂�𝑖. These synthetic samples help

break the ties introduced by random oversampling. Favorable improvement is shown in

Chawla’s paper by comparing SMOTE to random undersampling and random

oversampling.

2.3.1.4 Combination of oversampling with undersampling

Although oversampling minority class examples can balance class distributions, some

other problems usually present in data sets with skewed class distributions are not solved.

Frequently, class clusters are not well defined since some majority class examples might

be invading the minority class space. The opposite can also be true, since interpolating

minority class examples can expand the minority class clusters, introducing artificial

minority class examples too deeply in the majority class space. Including a classifier

under such a situation can lead to overfitting.

2.3.1.4.1 SMOTE + Tomek links

 In order to create better defined class clusters, a method applying Tomek links to

the oversampled SMOTE set was proposed (Batista et al., 2004). Instead of removing

only the majority class examples that form Tomek links, examples from both classes are

removed, as the data cleaning method we introduced in §2.3.1.2.1. The application could

32

be implemented in the following steps: firstly using SMOTE to oversample the dataset,

secondly identify Tomek links and remove the examples forming the link from both

classes, which produces a balanced data set with well-defined class clusters.

2.3.1.4.2 SMOTE + ENN

The motivation behind this method is similar to SMOTE + Tomek links. ENN

tends to remove more examples than the Tomek links does, so it is expected that it will

provide a more in depth data cleaning. Differently from NCL, which is an undersampling

method, ENN is used to remove examples from both classes. Thus, any example that is

misclassified by its three nearest neighbors is removed from the training set.

SMOTE+ENN method was proposed by Batista et al. in 2004.

2.3.1.5 Simulation on sampling method

In this section, we simulate a 2 dimensional binary class dataset to show how

these sampling strategies perform on the dataset. Class “0” is the minority class and its

20 data points satisfy {(𝑥, 𝑦)|𝑥~𝑁(0,0.8), 𝑦~𝑁(𝑥 − 2,0.8)}. Class “1” is the majority

class and its 100 points satisfy {(𝑥, 𝑦)|𝑥~𝑁(0,2), 𝑦~𝑁(𝑥 + 1,2)}. The original data plot

is compared with 10 other sampling method, please refer to the following Figure 5.

Randomly down sampling and over sampling are very easy to understand. For

Tomek links sampling, we can observe that the majority example which is very close to

minority class are removed. Similar to Tomek links, ENN also removes majority

examples which are close to minority cases, however, it is more conservative. CNN

remove most of the majority example which are distant from class-border with minority

class. OSS is similar to Tomek links. However, comparing to CNN, less distant

33

examples are removed. NCL extends ENN strategies and more majority examples close

to class-border are removed. SMOTE generate more new minority examples to balance

the two class. SMOTE + Tomek links and SMOTE + ENN are application of Tomek and

ENN methods on SMOTE dataset.

34

Figure 5 Comparison of different sampling methods. The red dots indicates majority class examples and blue triangle indicate

minority class examples. The dark blue circle region marks the area where majority example are removed.

35

Basically, it could be observed from the dataset that informed sampling method

mainly focus on removing two aspects of the dataset, i.e., examples distant from class-

border and examples close to the class-border. Additionally, informed sampling usually

do not generate a balanced dataset, instead, they remove the hard examples and leave the

classification problems to the classification algorithms.

2.3.2 Cost sensitive learning for imbalanced data

While sampling methods attempt to balance distributions by considering the

representative proportions of class examples in the distribution, cost-sensitive learning

methods consider the costs associated with misclassifying examples (Elkan, 2001 and

Ting, 2002). Cost sensitive learning targets the imbalanced learning problem by using

different cost matrices that describe the costs for misclassifying any particular data

example. It provides a viable alternative to sampling methods for imbalanced learning

domain.

Fundamental to the cost-sensitive learning methodology is the concept of cost

matrix, which can be considered as a numerical representation of the penalty of

classifying examples to the wrong class. As shown in Table 2, C(+,-) denotes the cost of

misclassifying a positive case to negative class. Typically, there is no cost for correct

classification of either class and the misclassification cost of minority examples is higher

than the positive cases, i.e., C(-,+)>C(+,-). Recalling the Adaboost algorithm, it assumes

that C(-,+)=C(+,-), and this probably is the reason why Adaboost is not a good choice for

dealing with imbalanced data.

36

Table 2 Cost matrix

 Predicted label

 Positive Negative

Actual label
Positive C(+,+) C(+,-)

Negative C(-,+) C(-,-)

The objective of cost sensitive learning then is to develop a hypothesis that

minimizes the overall cost on the training data set. In general, there are three ways of

implementing cost-sensitive learning (He et al., 2009). The first class of techniques apply

misclassification costs to the data set as a form of dataspace weighting; these techniques

are essentially cost-sensitive bootstrap sampling approaches where the misclassification

costs are used to select the best training distribution for induction. The second class

applies cost-minimizing techniques to the combination schemes of ensemble methods,

this class consists of various metatechniques where standard learning algorithms are

integrated with ensemble methods to develop cost-sensitive classifiers. The last class of

techniques incorporates cost-sensitive functions or features directly into classification

paradigms to essentially “fit” the cost sensitive framework into these classifiers. Since

different classification algorithms have different structures, there is no unifying

framework for this cost sensitive learning method.

37

Chapter III: Receiver Operating Characteristic Analysis

In Chapter II, we introduce the class imbalanced learning problem and the

common solutions to deal with it, that is, sampling strategies and cost sensitive learning

techniques. However, they do not imply that classifiers cannot learn from imbalanced

data sets and studies have also shown that classifiers induced from certain imbalanced

data sets are comparable to classifiers induced from the same data either by employing

sampling techniques or by using cost sensitive learning (Batista et al., 2004; Japkowicz et

al., 2002; Chen et al., 2004; Maloof, 2003 and Song et al., 2014). It has also been noticed

that for certain studies by simply tuning the decision threshold of the classifier induced

from imbalanced data, the classification results, in terms of sensitivity and specificity, are

comparable with those employing sampling and cost sensitive learning techniques (Chen

et al., 2004 and Maloof, 2003). Receiver operating characteristics (ROC) analysis (Metz,

1978) consider relative ranking of the cases by varying the classification threshold from

the smallest to the largest and therefore is an alternative measure of classification

accuracy which is not affected by selection of the threshold (Fawcett, 2006). In our

previous study (Song, 2014), we conducted experiments on medical imaging data by

comparing our proposed method of moving decision threshold along ROC curve with the

other two methods, and the results showed the advantages of our proposed methods. In

this section, we review the basic setting of ROC analysis.

3.1 Receiver operating characteristics (ROC) space

ROC was first introduced in signal detection theory to depict the tradeoff between

hit rates and false alarm rates of classifiers (Metz, 1978). ROC analysis was then

38

extended for use in visualizing and analyzing the behavior diagnostic systems (Swets,

1988). Spackman’s study (1989) in evaluating and comparing algorithms using ROC

curves is one of the earliest adopters of ROC graphs in machine learning area. An

increase in the use of ROC graphs has been seen in the machine learning community, due

in part to the realization that simple classification accuracy is often a poor metric for

measuring performance (Provost et al., 1997, 1998). Besides its capability of being a

generally useful performance graphing method, it also have properties that make them

especially useful for domains with skew class distribution and unequal classification error

costs. And because of this, ROC analysis is gaining increasing attentions from

researchers of areas of imbalanced data learning.

ROC graph are two-dimensional graph by plotting sensitivity on the Y axis and

(1-specificity) on the X axis. Recalling the definition of sensitivity and specificity from

Chapter 2, and here we redefine them as true positive rates (TPR) and false positive rates

(FPR)

TPR = sensitivity =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

FPR = 1 − specificity =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁

Every classification decision, the label outputs of a classifier applied on a dataset,

corresponds to a single point in the ROC graph. Several points in ROC space are

important to note. As shown in Figure 8. The lower left point E (0, 0) represents that all

examples are classified to the negative class since its sensitivity is 0 and specificity is 1.

The upper right point G (1, 1) indicates the opposite strategy which predicts all the cases

39

as positive class. If all the examples are correctly identified by the classifier, the

corresponding point will locate in the upper left F (0, 1), i.e., both sensitivity and

specificity are 1. And informally, one point is better, in terms of classification

performance, than another in ROC graph if it is closer to the upper left corner (higher

TPR, lower FPR, or both) of the other one. Fawcett in his paper (2006) give a

conservative vs liberal description on the locations of the points generated by classifiers

“Classifiers appearing on the left-hand side of an ROC graph, near the X axis, may be

thought of as ‘conservative’: they make positive classifications only with strong evidence

so they make few false positive errors, but this also leads to a lower TPR; on the other

hand, classifiers on the upper right-hand side of the ROC graph may be thought of as

‘liberal’: they make positive classifications will weak evidence so they classify nearly all

positives correctly, but often with high FPR”. As shown in Figure 6, A is more

conservative than B.

The diagonal line (dashed line in Figure 6) represents the strategy of randomly

guessing the class. For example, if a classifier randomly guesses positive class with

probability of 0.5 then it can be expected to get half the positives and half the negatives

correct, which yields the point (0.5, 0.5) on the ROC graph. If the corresponding positive

class guessing probability is 0.7, then it will yield the point (0.7, 0.7) in the ROC space,

point C on Figure 6. As we vary this probability from 0 to 1 and the points yielding will

form a line in the ROC graph, i.e., the dashed diagonal line. Any points locates in the

lower right triangle, e.g., point D in Figure 8 indicate the classifier makes a worse than

random guessing. Actually, this is a “worse” but useful classification. If we simply

reverse its classification decision on every instance, the resulting point will locates in the

40

Figure 6 Points in ROC space. Points A and B locate above the dashed diagonal line,

which indicates random guess performance. Points C locates on the dashed line while

point D is below the dashed line. Point E, point F and point G indicate all negative

classification, perfect classification and all positive classification respectively.

upper left triangle with its TPR and FPR being the previous (1-TPR) and (1-FPR)

respectively. For example, if we reverse the decision made on D (0.6, 0.2), the new

decision will yield point at (0.8, 0.4). The process is shown below:

Table 3 Confusion matrices with changing of classification direction.

 Prediction1 Prediction2

 P N N P

Truth
P TP1 FN1 FN2=TP1 TP2=FN1

N FP1 TN1 TN2=FP1 FP2=TN1

TPR2 =
𝑇𝑃2

𝑇𝑃2 + 𝐹𝑁2
=

𝐹𝑁1

𝐹𝑁1 + 𝑇𝑃1
= 1 − TPR1

FPR2 =
𝐹𝑃2

𝐹𝑃2 + 𝑇𝑁2
=

𝑇𝑁1

𝑇𝑁1 + 𝐹𝑃1
= 1 − FPR1

The above reversion was employed in the ROC Random Forest construction

which will be introduced in Chapter 4. And we start to review the mathematical setting

of ROC curve in the following section.

41

3.2 ROC curve

Many classifiers, like decision tree and KNN will only output the class label, e.g.,

P or N of the input examples, and therefore it yields a single confusion matrix, which in

turn corresponds to one single point in ROC graph. Some strategies could be used to

convert such discrete classifier to continuous scoring classifier, e.g., looking inside

method (Provost, 2001), aggregating method (Domingos, 1999) and weighted voting

method (Fawcett, 2001).

Some other classifiers, such as SVM and Random Forest, will generate an

instance probability or score instead, which is a continuous numeric value measuring the

degree to which an instance is a member of a class. Techniques, like sigmoid conversion

for SVM score, exist for converting an uncalibrated score into a proper probability, and

without loss of generality, we call both a probabilistic classifier.

Combining with a pre-specified threshold, e.g., 0.5 for a probabilistic score, such

scoring classifier could produce a binary classification label: if the score is greater than

the threshold, the prediction of corresponding example will be P, otherwise it will be N.

Every threshold will generate a different point in the ROC graph. Here we consider

efficient operating threshold only: if two thresholds produce the same (TPR, FPR), we

consider them as non-efficient operating thresholds. Theoretically, if we vary the

threshold from the possibly smallest value to the largest value and then trace the

corresponding points in the ROC space, we could get a curve. Since the efficient

operating points only depends on the scoring list generated by the classifier, a common

way of generating ROC curve is to use theses scores as threshold and a naive

implementation is given below:

42

Algorithm 6. ROC_generating

Inputs: 𝑌 the set of test examples; 𝑝(𝑖) the probabilistic score that example 𝑖 is positive;

𝑃 and 𝑁, the number of positive and negative examples.

Output: R, a list of ROC points (TPR, FPR) with decreasing order of TPR, and T,

splitting corresponding threshold of R

1. 𝑌𝑠𝑜𝑟𝑡 ← 𝑌 sorted increasing by 𝑝 score

2. insert −Inf to 𝑌𝑠𝑜𝑟𝑡

3. 𝑖 ← 1

4. for 𝑖 = 1 to |𝑌𝑠𝑜𝑟𝑡| do

5. 𝑡ℎ𝑟𝑒𝑠 ← 𝑌𝑠𝑜𝑟𝑡(𝑖)

6. 𝑇𝑃 ← 𝐹𝑃 ← 0

7. 𝑗 ← 1

8. for 𝑗 = 1 to |𝑌|
9. if 𝑝(𝑗) > 𝑡ℎ𝑟𝑒𝑠 then

10. if 𝑌(𝑖) is positive then

11. 𝑇𝑃 ← 𝑇𝑃 + 1

12. end if

13. if 𝑌(𝑖) is negative then

14. 𝐹𝑃 ← 𝐹𝑃 + 1

15. end if

16. end if

17. end for

18. push (
𝑇𝑃

𝑃
,

𝐹𝑃

𝑁
, 𝑡ℎ𝑟𝑒𝑠) onto R

19. end for

20. return R

Table 4 gives an example of classification results with the instances sorted by the

probabilistic score. The corresponding ROC curve is plotted in Figure 7.

One very important idea ROC curve bring to us is that it only cares about the

relative ranking of the score of the examples instead of the accurate calibrated probability

estimates. For the above example, if we change the probability score to 20, 19, …, 1 for

instance 1, 2, …, 20 respectively, we will get the exact same ROC curve as we use

probabilistic score. As long as we rank the positives higher than negatives, the model

would be robust for the differentiation task, no matter how large the “probability” of the

43

negatives. This property was another reason why we employ ROC in our designing of

ROC Random Forest.

Table 4 Dataset with information of label and probabilistic score.

Instance Label Score Instance Label Score

1 p 0.95 11 p 0.43

2 p 0.85 12 n 0.41

3 p 0.80 13 n 0.37

4 n 0.65 14 p 0.35

5 p 0.64 15 n 0.29

6 p 0.60 16 n 0.25

7 n 0.52 17 n 0.19

8 p 0.51 18 p 0.13

9 n 0.49 19 n 0.10

10 n 0.47 20 n 0.05

Figure 7 ROC curve corresponding to dataset in Table 4.

44

A very important fact we need to point out here is that the classifier scores should

not be compared across model classes. One model class may be designed to produce

scores in the range [0, 1], e.g., logistic regression model, while another produces scores in

[−∞, +∞], e.g., SVM. In such case, comparing model performance at a common

threshold will be meaningless, especially for class imbalanced data.

Another property of ROC curve is that the curve is monotonically increasing. As

we can see from Figure 7, starting from (0, 0) the discrete curve could only move upward

or right till it reaches point (1, 1).

3.3 The area under ROC curve (AUC)

ROC curve is a two-dimensional depiction of the classifier performance and in

order to compare the performance of different classifiers we may want to reduce it to a

single scalar value representing the expected performance level. A common method is to

calculate he area under the ROC curve (AUC) (Bradley 1997 and Hanley et al., 1982).

There are several methods could be used to calculate AUC and the most common way is

to calculate using trapezoidal integration shown in the following equation:

𝐴𝑈𝐶 = ∫ 𝑓(𝛼)𝑑𝛼
𝑏

𝑎

≈ ∑
ℎ

2
(𝑓 (𝛼 +

𝑖 − 1

ℎ
) + 𝑓(𝑎 + 𝑖ℎ))

𝑛

𝑖=1

where 𝑓(∙) is the sensitivity and it is a function of 𝛼, 𝛼 = (1 − 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦), 𝑎 = 0, 𝑏 =

1, 𝑛 = size to increase, and ℎ =
𝑏−𝑎

𝑛

Because AUC is only a portion of the area of a unit square, its value rangers from

0 to 1. So it could happen that the AUC will be less than 0.5. Since AUC of the random

45

guess line is 0.5, an AUC less than 0.5 means worse performance of a classifier than

random guessing. As we introduced before, this only means we do not use the

information appropriately and with simple operation the AUC would be larger than 0.5.

Previously we assume the probabilistic scores measure the degree of belonging to

positive class and now we assume the opposite, therefore we classify an example to a

positive if and only if its score is lower than the threshold. The resulting ROC curve will

be above the random guess line and its corresponding AUC becomes (1 − AUCprevious).

The AUC has an important statistical property: the AUC of a classifier depicts

the probability that a randomly chosen positive example is ranked/scored higher than a

randomly chosen negative example. In other words, the AUC measure is equivalent to

the Mann-Whitney U statistics normalized by the number of possible pairings of positive

and negative values, also known as the two sample Wilcoxon rank-sum statistic (Hanley,

1982). Meanwhile, the AUC is also closely related to the Gini coefficient (Breiman et al.,

1984), which is twice the area between the diagonal and the ROC curve, and actually

Gini + 1 = 2 ∗ AUC (Hanley et al., 2001).

Algorithm 7. AUC_calculation

Input(s): (𝑇𝑃𝑅, 𝐹𝑃𝑅) pair: output generated from Algorithm 7

Output: 𝑎𝑟𝑒𝑎, the area under the ROC curve

1. 𝑎𝑟𝑒𝑎 ← 0

2. for 𝑖 = 2 to |𝑇𝑃𝑅|

3. 𝑎𝑟𝑒𝑎 ← 𝑎𝑟𝑒𝑎 +
1

2
∗ (𝑇𝑃𝑅(𝑖) + 𝑇𝑃𝑅(𝑖 − 1)) ∗ |𝐹𝑃𝑅(𝑖) − 𝐹𝑃𝑅(𝑖 − 1)|

4. end for

5. return 𝑎𝑟𝑒𝑎

Generally speaking, high AUC value reflects good differentiation capability of a

classifier. Even though certain discussions, e.g., how to explain ROC curves with

intersection, exist (Metz, 1978), in practice, AUC performs very well and is often used as

46

general measure of the prediction power of a classifier. And therefore maximizing the

AUC is often employed to direct sequential parameter or model searching to achieve

better classification performance (Rakotomamonjy, 2004; Zhao et al., 2011). Meanwhile,

AUC could also be used to select relevant features for classification have also been

reported (Calle et al., 2011 and Wu et al., 2014).

An efficient AUC calculation algorithm is given in Algorithm 7. Figure 8 shows

ROC curves generated by two classifiers 1 and 2. From the figure we can observe that the

curve generated by classifier 1 is closer to the upper left corner than the one of classifier

2. And for a given 𝐹𝑃𝑅 value, the corresponding 𝑇𝑃𝑅 of classifier 1 is higher than the

𝑇𝑃𝑅 of classifier 2. All these facts indicate that than classifier 1 outperforms classifier 1

and as we expected, the higher AUC of classifier 1 well reflects this.

Figure 8 ROC curves of two different classification algorithms on the same dataset. The

ROC curves of classifier 1 and classifier 2 are marked with blue and red, respectively.

The shaded area indicates the corresponding area under curve for each ROC. And the

AUC value of classifier 1 and classifier 2 are 0.9515 and 0.8465.

47

3.4 Averaging ROC curve

When doing comparison of classifiers, in order to reduce the bias of one time

running, several strategies, e.g., random partition, bootstrapping (Efron, 1979), k-fold

cross-validation (Geisser, 1993), were introduced to the process in order to take

consideration of the variance of the AUC values. The basic idea of above methods are

very similar: first train a classifier on selected examples, called training data, and then

evaluate the model on the data, called testing set, that was not included in the training

process, set of examples that are not included in the training process. Random partition,

as its name suggests, simply randomly partition the dataset to two part, one serves as

training set and the other serves as testing set. The size of these two set is pre-specified.

For bootstrapping method, it repeatedly selects 𝑁, the size of the whole dataset, examples

with replacement into the training set and uses the rest as the testing set. Theoretically,

(1 −
1

𝑒
) of the examples are expected to be included in the training set. The process of

random partition and bootstrapping is usually repeated many times and a series of

(training, testing) pairs are generated and then used to evaluate candidate classifiers. For

k-fold cross validation, it first partition the dataset into k sub-groups with the same size,

and then, in turn, each of the k sub-group serves as testing set and the rest (k-1) groups

serve as the training set. Then k (training, testing) dataset pairs are generated and will be

used for comparison purpose.

For each training-testing pair, one ROC curve could be plotted based on

performance of the built model. Even though, based on these curves, we could easily get

their AUC as well as the variance, one would also want to know whether we could get an

averaged ROC curve, since AUC is the abstracted representation of the ROC and it

48

disregards the shape information of the curve. We could do this in two ways, vertical

averaging and threshold averaging. The latter one is relatively easy to understand, it

choose a universal threshold to threshold all the classifier scores. However, it suffers

from problems that when the ground truth score distribution is different among different

dataset and classifiers, this method may introduce bias. Meanwhile, the advantage of this

method is that it keeps control of the thresholds, which could be extracted for explicitly.

The vertical method is image based method which average the 𝑇𝑃𝑅 with a universal

fixed 𝐹𝑃𝑅 for all the ROC curves. Comparing to threshold method, vertical method has

no problem with the score distribution problem, however, it loss control of the threshold,

which means for the resulting averaged ROC we could not tract the thresholds used to

generate it. And in this dissertation, we stick on the vertical method to the comparison

purpose. The corresponding algorithm is given in Algorithm 8.

Algorithm 8. vertical_ROC_averaging

Input(s): 𝑙𝑖𝑠𝑡_𝑅𝑂𝐶: a list of ROC curves generated from Algorithm 7; 𝑁: number of

points to be kept on the x axis.

Output: 𝑎𝑣𝑒𝑟𝑎𝑔𝑒_𝑅𝑂𝐶

1. 𝑛𝑢𝑚 ← number of elements in 𝑙𝑖𝑠𝑡_𝑅𝑂𝐶

2. 𝑡𝑝𝑟𝑔𝑙𝑜𝑏𝑎𝑙 ← length (N + 1) zero vector

3. 𝑓𝑝𝑟𝑔𝑙𝑜𝑏𝑎𝑙 ← length (N + 1) vector of elements from 0 to 1 increase by
1

N

4. for 𝑖 = 1 to 𝑛𝑢𝑚

5. 𝑡 ← tpr in ob[i]
6. 𝑓 ← fpr in ob[i]
7. 𝑡𝑝𝑟𝑙𝑜𝑐𝑎𝑙 ← length (𝑁 + 1) zero vector

8. 𝑖𝑑𝑥 ← 2

9. for 𝑗 = 1 to |𝑡|
10. while 𝑓𝑝𝑟𝑔𝑙𝑜𝑏𝑎𝑙(𝑖𝑑𝑥) < 𝑓(𝑗) 𝑎𝑛𝑑 𝑖𝑑𝑥 < (𝑁 + 1)

11. 𝑡𝑝𝑟𝑙𝑜𝑐𝑎𝑙(𝑖𝑑𝑥) ← 𝑡(𝑗 − 1)

12. 𝑖𝑑𝑥 ← 𝑖𝑑𝑥 + 1

13. end while

14. 𝑡𝑝𝑟𝑙𝑜𝑐𝑎𝑙(𝑖𝑑𝑥) ← 𝑡(𝑗)

15. end for

16. for 𝑗 = 1 to 𝑁 + 1

49

17. 𝑡𝑝𝑟𝑔𝑙𝑜𝑏𝑎𝑙(𝑖) ← 𝑡𝑝𝑟𝑔𝑙𝑜𝑏𝑎𝑙(𝑖) + 𝑡𝑝𝑟𝑙𝑜𝑐𝑎𝑙(𝑖)

18. end for

19. end for

20. for 𝑖 = 1 to 𝑁 + 1

21. 𝑡𝑝𝑟𝑔𝑙𝑜𝑏𝑎𝑙(𝑖) ← 𝑡𝑝𝑟𝑔𝑙𝑜𝑏𝑎𝑙(𝑖)/𝑛𝑢𝑚

22. end for

23. return (𝑡𝑝𝑟𝑔𝑙𝑜𝑏𝑎𝑙 , 𝑓𝑝𝑟𝑔𝑙𝑜𝑏𝑎𝑙)

Figure 9 ROC curves and their averaged curve. The red, green and blue curve indicates

3 different ROC curves and the purple curve is the averaged ROC of the three generated

by algorithm 9.

Figure 9 shows the averaged curve of three ROC curves, from which we can see

that the averaged curve well reflects the main trends shown in the three curves.

4.5 ROC for imbalance data

One important assumption, in this dissertation, is we believe the class

differentiation capability of the classifier we use here is better than random guess. This is

a reasonable assumption, otherwise the algorithm could not be named as “classifier”. To

be specific, in terms of decision values of classifiers, it means positive cases will have

50

similar values, negative cases will have similar values and these two groups will be

totally separated (ideal separation) or partly overlapped. Without loss of generality, let’s

say higher classification value indicates higher probability a case belongs to positive class.

High differentiation capability indicates a classifier will assign higher value to positive

cases than negative cases. Coincidently, this is the statistical meaning of the AUC value

(see §4.2).

Considering probability classification output, in which case the decision value

ranges from 0 to 1, an ideal classifier will assign positive cases with value near to 1 and

negative cases with value near to 0. However, as long as the relative ranking of cases do

not change, the AUC value will stay unchanged. Therefore, under certain circumstance,

both positive and negative cases classification value are near to 1, it is possible that it has

same AUC value as the ideal classifier. Let us take a look at the following example,

considering dataset 𝒟 of size 10, 3 of which belongs to the positive class and the rest

belong to negative class. Based on certain features, classifier 1 and classifier 2 give their

decision value of each case (Table 5). Classifier 1 gives a perfect separation and using

0.5 as threshold will deliver accuracy 1 classification. For classifier 2, all decision values

shift to 0 and the classification accuracy would be 0.7 if 0.5 is employed as the threshold.

However the AUC of both methods are same and classifier 2 also delivers a perfect

separation of the two classes. The corresponding ROC curve is shown in the following

Figure 10.

51

Table 5 Dataset with information of class label, probability score from classifier 1 and

probability score from classifier 2.

Instance 1 2 3 4 5 6 7 8 9 10

Class p p p p p n n n n n

Classifier1 1.000 0.995 0.990 0.035 0.030 0.025 0.020 0.015 0.010 0.005

Classifier2 0.010 0.009 0.008 0.007 0.006 0.005 0.004 0.003 0.002 0.001

This is a typical problem, i.e., the decision value shifting problem, when we try to

address imbalanced data problem. However, the relative ranking of these instances stay

unchanged. In ROC analysis, the decision value is represented in terms of relative

ranking and therefore AUC is invariant to such value shifting problems. And this is also

the main reason why we choose ROC to deal with imbalance data problem in this

dissertation. In next chapter, we will propose the ROC based Random Forest structure.

Figure 10 Classification results corresponding to Table 5. The solid curve is the ROC

curve of both classifier. Red dot indicates classification point of classifier 1 and green

dot indicates classification point of classifier 2. The blue dot is the ideal operating point

which perfectly separate the dataset.

52

Chapter IV: ROC Random Forest

Random forest (Breiman, 1996, 2001) is a special case under the random

subspace framework. A standard random forest algorithm consists of two main

components: construction of base classifiers and the aggregating strategy, as we

introduced in Chapter 1. By using the bagging sample and the random feature subset to

build each base tree learner, the correlation between each single learner is well reduced,

and therefore random forest performs well for many problems and serves as gold

standard tool in many studies. However, since tree base learners used to build the forest

are vulnerable to imbalanced data, it random forest performs poorly for imbalanced data.

In this chapter, we first review the disadvantages of conventional tree learner and then

propose ROC Random Forest algorithm which employs the merits of ROC analysis and

ensemble classifier structure.

4.1 Node splitting criteria

Since, the traditional decision tree methods, e.g., CART, ID3 and C4.5, chooses

the splitting feature and threshold simultaneously, we introduce splitting criteria of our

proposed methods first in this section and the feature selection in next section.

More details about decision tree node feature selecting and splitting could be

found in Algorithm 1 and Algorithm 2, and in brief, for each feature in the subset, the

algorithm split dataset using each possible splitting value and choose the one which

maximize the impurity difference between parent node and the resulting children nodes.

Entropy and Gini impurity (definition could be found in §1.2.2) are calculated for each

node.

53

We introduce ROC and its advantages in Chapter 3. Here we proposed a new

splitting strategy based on ROC analysis. In ROC space, points in lower left corner of

the ROC space represent a too conservative decision. Too little positive decision is made

and as a result the sensitivity is only 0.1. If the positive case are important ones, such

result is unacceptable. Point on the upper right corner of the ROC space represent a too

aggressive decision. Too many positive decision is made and therefore the false positive

cases are inflated. We introduce ROC based measure, which combines sensitivity and

specificity, to locate a more reasonable operating point.

In mathematics, the harmonic mean is one kind of averages. As it tends strongly

toward the smaller element of the pair, it may mitigate the influence of the larger value

and increase the influence of the small value. In other words, the larger the difference of

the elements in the pair, the smaller the harmonic mean is. It pays more attention to the

balance of the pair compared to simple arithmetic mean. Its definition is given below:

Harmonic_Mean(TPR, FPR) =
2 ∗ TPR ∗ (1 − FPR)

TPR + (1 − FPR)
=

2 ∗ Sensitivity ∗ Specificity

Sensitivity + Specificity

The 3D plot of Harmonic_Mean surface on ROC space together with its contour

figure are shown in Figure 11. Comparing to arithmetic mean, the harmonic mean tends

to give lower value to unbalanced pair and therefore, in dealing with imbalanced data,

lower sensitivity – high specificity pair will be ranked lower and the problem of

classifying most cases to majority class is well avoided.

54

Figure 11 Figure (a) shows the 3D surface plot (left) of harmonic mean over sensitivity-

specificity space. The corresponding contour plot is on the right as well as the heat bar.

Figure (b) shows the 3D surface plots of arithmetic mean over sensitivity-specificity

space, as well as the corresponding contour plot and the heat bar.

4.1.1 The property of proposed method for continuous ROC setting

Following the definition of §3.3, we define

𝛼 = 𝐹𝑃𝑅 = 1 − 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦

𝑓(𝛼) = 𝑇𝑃𝑅 = 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

where 𝛼 ∈ (0,1), 𝑓(𝛼) ∈ (0,1) and 𝑓(𝛼) is an monotonic increasing function in its

domain. And therefore:

𝐻(𝛼, 𝑓(𝛼)) =
2𝑓(𝛼)(1 − 𝛼)

𝑓(𝛼) + (1 − 𝛼)
= 𝐻𝑎𝑟𝑚𝑜𝑛𝑖𝑐_𝑀𝑒𝑎𝑛(𝑇𝑃𝑅, 𝐹𝑃𝑅)

To find the maximum of 𝐻(𝛼, 𝑓(𝛼)) we need to solve the following equation:

(a)

(b)

55

𝜕𝐻(𝛼, 𝑓(𝛼))

𝜕𝛼
= 0

⇒
(2𝑓′(𝛼)(1 − 𝛼) − 2𝑓(𝛼))(𝑓(𝛼) + (1 − 𝛼)) − (𝑓′(𝛼) − 1)(2𝑓′(𝛼)(1 − 𝛼))

(𝑓(𝛼) + (1 − 𝛼))2
= 0

Since the denominator is always positive, the above equation holds if and only if the

numerator equals 0 and with simple algebra it could be reduce to

𝑓′(𝛼) =
𝑓2(𝛼)

(1 − 𝛼)2

Empirical ROC curve is mostly modeled and fitted by parametric method and the most

common assumption is binormal setting (Hanley 1988, Mets et al., 1998, and Pepe, 2003,

Robin, 2011). A normal quantile function 𝜙 values of sensitivities and specificities is

used and the coefficients of the following equation are estimated:

𝜙−1(𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦) = 𝑎 + 𝑏𝜙−1(𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦)

Mets and Robin apply maximum likelihood estimation and least square estimation for the

coefficient respectively.

Under binormal assumption, let us move back to the solution equation, for ideal convex

continuous ROC curve, which means 𝑓′(𝛼) > 0 and 𝑓′′(𝛼) < 0, 𝑓′(𝛼) is monotonically

decreasing function. For the right hand terms, 𝑓(𝛼) is increasing and (1 − 𝛼) is

decreasing and therefore as a whole function the right term is increasing, which guarantee

there would be a unique global maximization would be reached. For certain

circumstance (discussed in study conducted by Pesce et al., 2010) when the curve is not

convex, local maximums could be found and in which case, a unique global maximum

56

could also be found by comparing the harmonic mean of points which satisfy 𝑓′(𝛼) =

𝑓2(𝛼)

(1−𝛼)2.

For non-parametric density method fitting method (Zou et al., 1997), a unique

solution may not be existed and therefore, we will choose the left most point which

maximize the harmonic mean. And in our realistic data, this usually happens and

therefore we employ the same strategy to select the left most local optimal point.

4.2 Node attribute selection criteria

Previous studies have established the use of ROC curve for feature selection, to

identify the discriminative attributes in the dataset. Ferri et al. (2002) used AUC as a

quality metric to choose nodes in a decision tree. This method selects a feature and split

point based on the AUC corresponding to a classifier for every potential class labelling

for the induced child nodes. This is not really a ROC curve generated by varying the

threshold but by exhausting every possible labelling result to form a convex hull on ROC

space and choosing the edge as the ROC curve. For binary classification problem and

two child leaves tree structure, this method would be inaccurate. Hossain et al. (2008)

conducted a study which also used AUC measure to select a node based on classification

performance and then uses the misclassification rate to choose a split point. The

classification rate here is the overall accuracy and therefore is not suitable for our

imbalanced data. However, we adapt their idea of the first part, using AUC to select

splitting attribute.

ROC curve is plotted for each of the pairs formed by each of the genes and the

class label. It means treating a single attribute as a classifier and calculating the

57

classification in term of the sensitivity and specificity by varying the operating point.

The idea of treating single attribute as classifier has been already introduced in decision

tree algorithm in Chapter 1. This is a common procedure in tree based learning

algorithms. For each attribute or feature, the AUC is calculated and the one with highest

AUC is selected to split the node.

Note that it is possible the AUC could be less than 0.5, and as we introduced in

Chapter 3, by simply changing the splitting direction, the corresponding AUC will be

larger than 0.5. For calculation convenience, we bring in a new variable to store the

splitting direction. And this variable has another function in our algorithm, it will be

used to labelling the leaf nodes. Conventional decision tree algorithms simply use the

majority classes’ label in the node. Hossain’s method labels the node positive class if the

child node’s attribute value is larger than the threshold, otherwise the node would be

labeled as negative. By introducing the splitting direction variable, our leaf node

labelling strategy is very similar to Hossain’s method. If the splitting direction is positive,

the labelling process is the same as Hossain’s method. If it is negative, we will label the

child node negative if the attribute value of the node is larger than the threshold and

positive if the attribute value is less than splitting threshold.

Recording splitting direction is of fundamental importance in our study since the

positive classification direction contains most information of the positive class. However,

in traditional decision tree algorithm, there is no classification information carried to

child node. And the node is not labeled until it is determined as a leaf node, whom will

be labeled as the majority cases label it contains. We use the following example to show

the difference of ROC based method and the traditional information gain or Gini impurity

58

based method. The dataset information is shown in Table 6. The information gain, Gini

impurity and harmonic mean curves by varying splitting threshold are shown in Figure

12, in which the dashed line indicate the optimal splitting threshold. For all the method,

the dataset will be separated into two subset with threshold to be feature value 0.705. If

we decide the induced nodes are leaf node, then for information gain Gini impurity, the

two child nodes will be labeled as negative. For ROC method, the corresponding AUC is

0.7778 and therefore cases with feature value larger than 0.705 will be classified as

positive class, and we put them in the right child node. The result would be left node will

be negative node and right child node will be positive node.

Table 6 Dataset with information of class label and feature score. Instances from

number 47 to number 94 are omitted, and they all belongs to negative class and their

corresponding feature score decrease from 0.53 to 0.07 with difference 0.01.

Instance Class Feature Instance Class Feature Instance Class Feature

1 n 1.00 21 p .80 41 n .60

2 n .99 22 p .79 42 n .59

3 n .98 23 p .78 43 n .58

4 n .97 24 p .77 44 n .57

5 n .96 25 p .76 45 n .56

6 n .95 26 p .75 46 n .55

7 n .94 27 p .74 47 n .54

8 n .93 28 p .73 • • •

9 n .92 29 p .72 • • •

10 n .91 30 p .71 • • •

11 n .90 31 n .70 • • •

12 n .89 32 n .69 • • •

13 n .88 33 n .68 • • •

14 n .87 34 n .67 94 n .07

15 n .86 35 n .66 95 n .06

16 n .85 36 n .65 96 n .05

17 n .84 37 n .64 97 n .04

18 n .83 38 n .63 98 n .03

19 n .82 39 n .62 99 n .02

20 n .81 40 n .61 100 n .01

59

Figure 12 Splitting threshold selection curve. The red curve indicates the information

gain with different threshold. The green and blue curves represent the Gini impurity

curve and harmonic mean curve. The black dashed line indicate the operating point

which maximize the value on these curves and the corresponding feature value is 0.70.

4.3 Stopping Criterion

To decide when to stop growing the tree, AUC of the selected attribute is tested.

The value of AUC equals 1 represents that the selected attribute can classify the node

perfectly. However, to avoid overfitting problem, we choose 0.98 for the stopping

threshold, because we do not want to grow the tree for a smaller subset of the training set.

As we are trying to construct a ROC based Random Forest, only a limit number of

attributes will be used to build each tree. Following traditional setting of Random Forest

algorithm, attributes those used in parent node will not be used for the child node any

more. And therefore, when we ran out of attribute for current node, this node will stop

grow.

60

4.4 ROC Random Forest Algorithm

Now we have all the four main components which are necessary for building a

forest, i.e., node attribute selection criteria, node splitting criteria and stopping criteria.

We have introduced ROC generating algorithm (Algorithm 6) and AUC calculation

algorithm (Algorithm 7) in Chapter 3. These two algorithms will be frequently referred

in the following algorithms.

Algorithm 9 search through all the possible splitting attributes for current node

and output the one which has the largest AUC value as well as the splitting direction,

ROC curve points and threshold vector.

Algorithm 9 Node_Attribute_Selection

Input(s): 𝑿, the matrix of training examples; 𝝎, the corresponding label vector; 𝑃 and 𝑁,

the number of positive and negative examples; 𝓐, the attribute set

Output(s): 𝒜, attribute with the highest AUC; 𝛼, (𝑇𝑃𝑅, 𝐹𝑃𝑅) and 𝑡ℎ𝑟𝑒𝑠, corresponding

splitting direction, ROC points and threshold vector

1: 𝑚𝑎𝑥𝒜 ← 0

2: 𝑚𝑎𝑥α ← 1

3: 𝑚𝑎𝑥ROC ← 𝑁𝑈𝐿𝐿

4: 𝑚𝑎𝑥thres ← −Inf
5: for each attribute 𝒜𝑖 ∈ 𝓐 do

6: 𝑡𝑒𝑚𝑝𝑅𝑂𝐶 , 𝑡𝑒𝑚𝑝𝑡ℎ𝑟𝑒𝑠 ← ROC_generating(𝒜𝑖, 𝝎, 𝑃, 𝑁)

7: 𝑡𝑒𝑚𝑝𝐴𝑈𝐶 ← AUC_calculation(𝑡𝑒𝑚𝑝𝑅𝑂𝐶)

8: 𝑡𝑒𝑚𝑝𝛼 ← 1

9: if 𝑡𝑒𝑚𝑝𝐴𝑈𝐶 < 0.5 then

10: 𝑡𝑒𝑚𝑝𝐴𝑈𝐶 = 1 − 𝑡𝑒𝑚𝑝𝐴𝑈𝐶

11: 𝑡𝑒𝑚𝑝𝛼 = −1

12: end if

13: if 𝑡𝑒𝑚𝑝𝐴𝑈𝐶 > max_𝒜 then

14: 𝑚𝑎𝑥𝒜 = 𝑡𝑒𝑚𝑝𝐴𝑈𝐶

15: 𝑚𝑎𝑥α = 𝑡𝑒𝑚𝑝𝛼

16: 𝑚𝑎𝑥ROC = 𝑡𝑒𝑚𝑝𝑅𝑂𝐶

17: 𝑚𝑎𝑥thres = 𝑡𝑒𝑚𝑝𝑡ℎ𝑟𝑒𝑠

18: end if

19: end for

20: return 𝑚𝑎𝑥𝒜, 𝑚𝑎𝑥α, 𝑚𝑎𝑥ROC, 𝑚𝑎𝑥thres

21: end

61

Considering the ROC curve with AUC value less than 0.5, when we change the

splitting direction, all the previous “positive” decision will become “negative” and

previous “negative” decision will become “positive”. Considering a single point on the

ROC space, the following changes will occur:

Table 7 Previous classification

 Predicted label

Positive Negative

Actual label
Positive a b

Negative c d

Table 8 Classification after changing splitting direction

 Predicted label

Positive Negative

Actual label
Positive b a

Negative d c

Therefore, we can simply get the ROC curve after changing splitting direction by using

information from the previous curve.

𝑛𝑒𝑤_𝑇𝑃𝑅 =
𝑏

𝑎 + 𝑏
= 1 − 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠_𝑇𝑃𝑅

𝑛𝑒𝑤_𝐹𝑃𝑅 =
𝑑

𝑐 + 𝑑
= 1 − 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠_𝐹𝑃𝑅

Actually, the new point is symmetric to the previous one with respect to the center

point (0.5, 0.5) in the ROC space. With this fact, it could be easy to verify our previous

corollary, the AUC of the new ROC equals (1 − 𝐴𝑈𝐶_𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠). Based on this result,

Algorithm 10 implements the calculation of the splitting threshold.

62

Algorithm 10 Node_Splitting_threshold

Input(s): 𝒜𝛼, 𝒜(𝑇𝑃𝑅,𝐹𝑃𝑅) and 𝒜𝑡ℎ𝑟𝑒𝑠, the splitting direction, ROC points and

corresponding threshold associating with attribute 𝒜, which has the largest

AUC

Output(s): 𝑡ℎ𝑟𝑒𝑠, final splitting threshold for attribute 𝒜

1. 𝑐𝑢𝑟ℎ𝑚𝑒𝑎𝑛 ← −Inf
2. 𝑡ℎ𝑟𝑒𝑠 ← −Inf
3. for each ROC points (𝑇𝑃𝑅𝑖 , 𝐹𝑃𝑅𝑖) ∈ 𝒜(𝑇𝑃𝑅,𝐹𝑃𝑅) do

4. if 𝒜𝛼 == 1 then

5. 𝑡𝑒𝑚𝑝ℎ𝑚𝑒𝑎𝑛 = Harmonic_Mean(𝑇𝑃𝑅𝑖, 𝐹𝑃𝑅𝑖)

6. else then

7. 𝑡𝑒𝑚𝑝ℎ𝑚𝑒𝑎𝑛 = Harmonic_Mean(1 − 𝑇𝑃𝑅𝑖, 1 − 𝐹𝑃𝑅𝑖)

8. end if

9. if 𝑡𝑒𝑚𝑝ℎ𝑚𝑒𝑎𝑛 > 𝑐𝑢𝑟ℎ𝑚𝑒𝑎𝑛 then

10. 𝑐𝑢𝑟ℎ𝑚𝑒𝑎𝑛 = 𝑡𝑒𝑚𝑝ℎ𝑚𝑒𝑎𝑛

11. 𝑡ℎ𝑟𝑒𝑠 = 𝒜𝑡ℎ𝑟𝑒𝑠𝑖

12. end if

13. end for

14. return 𝑡ℎ𝑟𝑒𝑠

15. end

The following Algorithm 11 will be employed to generate the ROC trees. For

each node in ROC tree, we have the splitting threshold and the splitting direction and

therefore in the tree building process it could be easy to fix the left node to be negative

labelling node and the right node to be positive labelling node. By doing so, it could be

easy to retrieve the labelling information of current node if the stopping criteria was met

in current node.

Algorithm 11 ROC_tree

Input(s): 𝑿, the matrix of training examples; 𝝎, the corresponding label vector; 𝑃 and 𝑁,

the number of positive and negative examples; 𝓐, the attribute set

Output(s): 𝒯, the final ROC tree

1. if (𝑿, 𝝎, 𝑃, 𝑁) contains no record then

2. return a single NULL node

3. end if

4. if (𝑿, 𝝎, 𝑃, 𝑁) consists of records all with the same label value then

5. return a single leaf node labelling this value

6. end if

7. (𝒜𝛼, 𝒜(𝑇𝑃𝑅,𝐹𝑃𝑅), 𝒜𝑡ℎ𝑟𝑒𝑠) ← Node_Attribute_Selection(𝑿, 𝝎, 𝑃, 𝑁, 𝓐)

63

8. 𝑡ℎ𝑟𝑒𝑠 ← Node_Splitting_threshold(𝒜𝛼, 𝒜(𝑇𝑃𝑅,𝐹𝑃𝑅), 𝒜𝑡ℎ𝑟𝑒𝑠)

9. set (𝑿, 𝝎, 𝑃, 𝑁)𝑙𝑒𝑓𝑡 as the negative child node and (𝑿, 𝝎, 𝑃, 𝑁)𝑟𝑖𝑔ℎ𝑡 as the positive

child node based on 𝒜𝛼 and 𝑡ℎ𝑟𝑒𝑠

10. Recursively apply ROC_tree to subsets (𝑿, 𝝎, 𝑃, 𝑁, 𝓐𝒍𝒆𝒇𝒕)
𝑙𝑒𝑓𝑡

 and

(𝑿, 𝝎, 𝑃, 𝑁, 𝓐𝒓𝒊𝒈𝒉𝒕)
𝑟𝑖𝑔ℎ𝑡

 until they are empty or the stopping criteria are met. Here

𝓐𝒍𝒆𝒇𝒕 and 𝓐𝒓𝒊𝒈𝒉𝒕 are the randomly selected attributes subset for the left tree and right

tree.

11. return ROC tree 𝒯

12. end

After we get all these basic ROC tree learners, the class prediction of a test point

could be induced by aggregating all the decision from these learners, i.e., majority vote.

A probabilistic value, the percentage of positive class decision among these learners, will

be reported (Algorithm 12).

Algorithm 12 ROC_Random_Forest

Input(s): 𝑿, the matrix of training examples; 𝝎, the corresponding label vector; 𝑵𝒕, the

number of trees to be generated; 𝑵𝒂, the number of attributed needed for each

node

Output(s): 𝓕, the final forest

1. set 𝓕 to NULL

2. for 𝑖 = 1 to 𝑵𝒕

3. generate bagging sample (𝑋𝑖, 𝜔𝑖, 𝑃𝑖 , 𝑁𝑖)

4. 𝑡𝑟𝑒𝑒𝑖 ←ROC_tree(𝑋𝑖, 𝜔𝑖, 𝑃𝑖 , 𝑁𝑖), 𝑵𝒂 is used in this step

5. append 𝑡𝑟𝑒𝑒𝑖 to 𝓕

6. end

7. return 𝓕

4.5 Complexity of algorithm: ROC Random Forest

Let us consider a dataset 𝒟 of 𝑁 examples, where each example comprises 𝑀

attributes. In implementation, for each tree, after a bootstrapping sample is generated, the

dataset was first sorted by each attribute with the sorted index stored. Then for the node

splitting phase, we do not need to sort each attribute again. This will take 𝑂(𝑁𝑙𝑜𝑔𝑁) for

each attribute and 𝑂(𝑚𝑡𝑟𝑦𝑁𝑙𝑜𝑔𝑁) for the attribute. For attribute selection and splitting

64

threshold selection phase, we only need linear time 𝑂(𝑁) scan to decide the attribute and

threshold. Comparing to 𝑂(𝑚𝑡𝑟𝑦𝑁𝑙𝑜𝑔𝑁), 𝑂(𝑁) is negligible. And therefore, for

building each tree node, ROC Random Forest has the same complexity with regular

Random Forest algorithm. If we build 𝑛𝑡𝑟𝑒𝑒 trees, it has the same time complexity with

regular Random Forest algorithm which is 𝑂(𝑛𝑡𝑟𝑒𝑒𝑚𝑡𝑟𝑦𝑁𝑙𝑜𝑔2𝑁) (Louppe, 2014).

4.6 Hybrid ROC Random Forest for categorical data

The innovation part of the ROC Random Forest lies in the node splitting

algorithms. It first looks for the attribute that maximizes the AUC in the current feature

subset and then uses the harmonic mean method to search for the splitting threshold for

the current node. However, the ROC Random Forest cannot deal with nominal

categorical features. The essence of the ROC analysis is to consider the ranking of the

instances, and there is no ranking information in nominal data. This drawback greatly

limits the application of our proposed ROC Random Forest method.

Ferri et al. (2003) argued that by exhausting all the possible partitions of the

categorical data, the corresponding decision point in ROC space will form a convex hull.

And they treat the induced curve by connecting the outermost decision point as the “ROC”

curve. However, this would lead to exponential computational complexity (2𝑁−1 − 1 for

𝑁-level attribute), which would quickly become highly prohibitive to explore if 𝑁 is too

large. Similar problem is encountered in decision tree growing with categorical variable.

Fortunately, for decision tree problem, this exponential complexity can be reduced from

2𝑁−1 − 1 partitions to 𝑁 − 1 partitions with theoretical support (Fisher, 1958 and

Breiman et al. 1984). This method is introduced below.

65

Let us reorder categories of variable 𝒜 (𝒜 ∈ {𝑙1, … , 𝑙𝑁}) such that:

𝑝(𝜔1|𝒜 = 𝑙𝑖1
) ≤ 𝑝(𝜔1|𝒜 = 𝑙𝑖2

) ≤ ⋯ ≤ 𝑝(𝜔1|𝒜 = 𝑙𝑖𝑁
)

where 𝜔1 indicates the negative class (for binary classification problem). Then one of the

𝑁 − 1 subsets 𝐵 = {𝑙𝑖1
, 𝑙𝑖2

, … , 𝑙𝑖ℎ
}, ℎ = 1, … , 𝑁 − 1 defines a binary partition of the node

samples into:

𝑁𝑜𝑑𝑒𝑙𝑒𝑓𝑡
𝐵 = {(𝑋, 𝜔)|(𝑋, 𝜔) ∈ 𝑁𝑜𝑑𝑒𝑝𝑎𝑟𝑒𝑛𝑡, 𝑋𝒜 ∈ 𝐵}

𝑁𝑜𝑑𝑒𝑟𝑖𝑔ℎ𝑡
𝐵 = {(𝑋, 𝜔)|(𝑋, 𝜔) ∈ 𝑁𝑜𝑑𝑒𝑝𝑎𝑟𝑒𝑛𝑡, 𝑋𝒜 ∈ �̅�}

where 𝐵 ∪ �̅� = {𝑙1, … , 𝑙𝑁}, and such partition guarantee a maximum of impurity drop.

The basic idea of this theory is using the category frequency in a certain class to rank

different categorical levels, and the induced nodes following such partition also guarantee

a maximum impurity drop, which satisfies the impurity measure requirement given by

Breiman et al. (1984).

Even though this theory greatly reduce the computational complexity, we cannot

directly apply it to either harmonic mean. Because harmonic mean is not an impurity

measure and does not satisfy the impurity measure requirement, therefore trying to

maximize the harmonic mean in these partitions does not guarantee an optimal splitting.

Simply combining such categorical splitting with the proposed continuous ROC splitting

could be a solution, however, such combination will introduce imbalanced bias into the

framework, as we shown before, the decision tree method does not have splitting

direction. Here we propose a method which employ a simple strategy to help decide the

splitting direction:

66

𝑖𝑓
𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦

2
> 0.5 𝑡ℎ𝑒𝑛 {

𝑁𝑜𝑑𝑒𝑙𝑒𝑓𝑡: 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑁𝑜𝑑𝑒𝑟𝑖𝑔ℎ𝑡: 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑖𝑓
𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦

2
< 0.5 𝑡ℎ𝑒𝑛 {

𝑁𝑜𝑑𝑒𝑙𝑒𝑓𝑡: 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑁𝑜𝑑𝑒𝑟𝑖𝑔ℎ𝑡: 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

Simply put,
𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦+𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦

2
> 0.5 indicates that the decision point is above the

random guess line, and thus we will change the splitting direction. For each categorical

attribute in the node, we use this method to obtain the (sensitivity, specificity) pair of the

threshold that generates the maximum impurity drop. For each categorical variable, we

compare the harmonic mean of its corresponding decision point and choose the attribute

with the highest harmonic mean as the potential splitting candidate. For the continuous

attributes, following the ROC splitting method introduced before, we can also choose a

splitting attribute. We compare their harmonic mean and choose the one with the higher

value as the final splitting threshold for the current node. If either continuous or

categorical attribute is absent, then the candidate is used. This hybrid ROC RF

combining the continuous ROC splitting and original categorical splitting with splitting

direction we propose the following node splitting algorithm:

Algorithm 13 Combination_splitting

Input(s): 𝑿, the matrix of training examples; 𝝎, the corresponding label vector; 𝓐𝒄𝒐𝒏,

the categorical attribute set; 𝓐𝒄𝒂𝒕, the continuous attribute set; 𝑃 and 𝑁, the

number of positive and negative examples;

Output(s): 𝒜𝑡ℎ𝑟𝑒𝑠
𝑐𝑜𝑛 , final splitting threshold for attribute 𝒜ℎ𝑖𝑔ℎ

𝑐𝑜𝑛 or (𝐵, �̅�), final splitting

set for attribute 𝒜ℎ𝑖𝑔ℎ
𝑐𝑎𝑡

1. 𝒜ℎ𝑖𝑔ℎ
𝑐𝑜𝑛 = 𝑁𝑈𝐿𝐿

2. 𝒜ℎ𝑖𝑔ℎ
𝑐𝑎𝑡 = 𝑁𝑈𝐿𝐿

3. if 𝓐𝒄𝒐𝒏 is not empty then

4. (𝒜ℎ𝑖𝑔ℎ
𝑐𝑜𝑛 , 𝒜(𝑇𝑃𝑅,𝐹𝑃𝑅), 𝒜𝑡ℎ𝑟𝑒𝑠) ← Node_Attribute_Selection(𝑿, 𝝎, 𝑃, 𝑁, 𝓐𝒄𝒐𝒏)

5. 𝒜𝑡ℎ𝑟𝑒𝑠
𝑐𝑜𝑛 ← Node_Splitting_threshold(𝒜ℎ𝑖𝑔ℎ

𝑐𝑜𝑛 , 𝒜(𝑇𝑃𝑅,𝐹𝑃𝑅), 𝒜𝑡ℎ𝑟𝑒𝑠)

6. calculate Harmonic_Meancon based on 𝒜𝑡ℎ𝑟𝑒𝑠
𝑐𝑜𝑛

67

7. end if

8. if 𝓐𝒄𝒂𝒕 is not empty then

9. 𝑖𝑚𝑝𝑢𝑟𝑖𝑡𝑦_𝑑𝑟𝑜𝑝 = −∞

10. 𝐵 = 𝑁𝑈𝐿𝐿

11. �̅� = 𝑁𝑈𝐿𝐿

12. for each 𝒜𝑖 in 𝓐𝒄𝒂𝒕 do

13. calculate the partition (𝐵𝑡𝑒𝑚𝑝, �̅�𝑡𝑒𝑚𝑝) which yields the largest impurity

14. drop 𝑡𝑒𝑚𝑝_𝑑𝑟𝑜𝑝, record current (𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦, 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦)

15. if
𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦+𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦

2
< 0.5 then

16. swap(𝐵𝑡𝑒𝑚𝑝, �̅�𝑡𝑒𝑚𝑝)

17. end if

18. if 𝑡𝑒𝑚𝑝_𝑑𝑟𝑜𝑝 > 𝑖𝑚𝑝𝑢𝑟𝑖𝑡𝑦_𝑑𝑟𝑜𝑝 then

19. (𝐵, �̅�) = (𝐵𝑡𝑒𝑚𝑝, �̅�𝑡𝑒𝑚𝑝)

20. 𝑖𝑚𝑝𝑢𝑟𝑖𝑡𝑦_𝑑𝑟𝑜𝑝 = 𝑡𝑒𝑚𝑝_𝑑𝑟𝑜𝑝

21. 𝒜ℎ𝑖𝑔ℎ
𝑐𝑎𝑡 = 𝒜𝑖

22. end if

23. end for

24. calculate Harmonic_Meancat based on 𝒜ℎ𝑖𝑔ℎ
𝑐𝑎𝑡 and (𝐵, �̅�)

25. end if

26. if 𝒜ℎ𝑖𝑔ℎ
𝑐𝑜𝑛 == 𝑁𝑈𝐿𝐿 or Harmonic_Meancat > Harmonic_Meanconthen

27. return (𝐵, �̅�) and 𝒜ℎ𝑖𝑔ℎ
𝑐𝑎𝑡

28. else then

29. return 𝒜𝑡ℎ𝑟𝑒𝑠
𝑐𝑜𝑛 and 𝒜ℎ𝑖𝑔ℎ

𝑐𝑜𝑛

30. end if

31. end

Then Algorithm 11 and Algorithm 12 will call this Algorithm 13 to build the

ROC Random Forest. To differentiate it from ROC Random Forest, we name it simply

as the Hybrid ROC Random Forest. In Chapter 5, we compare it with regular Random

Forest algorithm using datasets with categorical predicting variables.

4.7 Complexity of algorithm: Hybrid ROC Random Forest

For each node, the difference between ROC Random Forest and Hybrid ROC Random

Forest is that it considers both continuous variable splitting and categorical variable

splitting, and then compare the maximum available harmonic mean of the two. For the

continuous variable, it takes 𝑂(𝑚𝑐𝑜𝑛𝑁𝑙𝑜𝑔𝑁). For categorical part, it takes linear time

68

𝑂(𝑁) to get the categorical conditional probability and 𝑂(𝑙𝑜𝑔𝑁𝑙𝑒𝑣𝑒𝑙) for ranking, in total

with 𝑚_𝑐𝑎𝑡 variables, it takes 𝑂(𝑚𝑐𝑎𝑡𝑁𝑙𝑜𝑔𝑁𝑙𝑒𝑣𝑒𝑙) which is negligible comparing to the

continuous case. After this, it only take constant time to calculate the harmonic mean and

do the comparison. Therefore, the total time complexity of Hybrid ROC Random Forest

is also similar to regular Random Forest.

69

Chapter V: Validation: Results and Discussion

In this chapter, we introduce how we conduct the validation experiment and how

the algorithms are applied to deal with practical imbalanced data problem.

5.1 ROC analysis for imbalanced data classification threshold

correction

In Chapter 3, we give detailed introduction of ROC analysis and also explain

why it could be used to tackle class imbalanced data. In §4.1, we introduce how to use

self-defined harmonic mean of sensitive and specificity to pick the “optimized” operating

point from the ROC space. For this purpose, in this section, we conduct experiments to

show the feasibility of combining the two methods to choose a better cut-off threshold.

5.1.1 Dataset

The experiment was conducted on a Computed Tomography (CT) Colonography

database of 49 scans from 25 patients with polyps size from 6-22mm. The data

acquisition process is also introduced in details in paper (Song et al., 2014). 786 initial

polyp candidates (IPCs) were obtained, among which 64 are true polyps (TPs). Twenty-

one geometric features and density features were calculated on each of the extracted IPCs’

volume. To be specific, density features include statistical information, i.e., mean,

variance, entropy, etc., of the CT values, and geometric features include statistical

information of the shape index and curvedness. Volume-based features, e.g., number of

region growing seeds, axis ratio, disk-likeness and highlighting ratio, are also included.

In summary, we have 786 observations, each of which have 21 explanatory features.

Among the 786 observations, 64 are true polyps, which makes the dataset very

70

unbalanced. The corresponding class imbalanced ratio of the dataset is 0.0815. All the

following experiments were based on this imbalanced database.

5.1.2 Basic classifiers

We choose the original Random Forest algorithm, which employs Gini index for

node splitting, and SVM as the basic classifiers to verify the role of ROC analysis in

helping find optimal classification threshold. In implementation, the widely used

randomForest function in the well-known package random forest (Liaw and Wiener,

2002), was employed with the number of tree set to be 5000, and the number of attributes

used for splitting each node was determined by out of bag error rate. For SVM, the

widely used SVM package LIBSVM (Chang and Lin, 2011) with radial basis function

(RBF) kernel was employed in this study. Following the guideline of LIBSVM, the two

parameters (cost and gamma) in the RBF kernel were determined by a grid search process

(fivefold cross-validation) in the training step.

5.1.3 Traditional data correcting technologies

For comparison purpose, two common approaches introduced in Chapter 2 to

tackle the imbalanced data classification problem, i.e., the cost-sensitive learning

(weighted random forest and weighted SVM) and down-sampling technique, were

implemented as references or baseline and compared with our proposed strategies. In the

cost-sensitive learning, for both weighted Random Forest and weighted SVM, the best

fitting weight was automatically searched from 0 to 1 by stepwise 0.02 in the training

phase. For the down-sampling technique, we down sampled the majority (non-TPs) class

to make the dataset more balanced with different levels, i.e., 75%, 50% and 25% of the

non-TPs cases were sampled in the training step.

71

In details, for each classifier, taking Random Forest for example, we evaluate it

with 5 different settings, i.e., un-weighted Random Forest with imbalanced data,

weighted Random Forest with imbalanced data, weighted Random Forest with 75% down

sampling, weighted Random Forest with 50% down sampling and weighted Random

Forest with 25% down sampling.

5.1.4 Three-way cross-validation

For each the experiments we described above, the original dataset was randomly

partitioned into three subsets with the same class imbalance ratio as the original dataset,

i.e., 0.081425 as the original dataset. One subset (subset 1) was reserved for testing

purpose, and the other two subsets (subset 2 and subset 3) were treated as the training set.

For the original threshold method, we treated both subset 2 and subset 3 as training set to

train the classifier. Regular threshold (0.5 for the probability output) was applied on

subset 1 to draw results. For out proposed operating point chosen strategies, we used

subset 2 as classifier training set and subset 3 as cut-off optimization training set and

applied the selected threshold on the testing set. Then we rotated the role of the three

subsets (6 permutations in total) and outputted the average results, which we call three-

way cross validation. To minimize the bias of one time running, the random partition

process was repeated 100 times and the average results were outputted.

5.1.5 Results and discussion

Table 9 shows the averaged AUC information, i.e., mean and standard deviation

of Random Forest and SVM with different settings which were introduced in §5.1.3.

Figure 14 and Figure 15 show the averaged ROC curves of Random Forest and SVM

with different settings. We can see from the figures and tables that Random Forest with

72

different settings all achieved high AUC values (0.96 for Random Forest and 0.995 for

SVM) and the standard deviation for both classifiers are relatively small, around 0.02,

which indicates that these two classifiers are capable to classify the imbalanced data.

However, the classification accuracy with the original threshold is not favorable ‒ very

low prediction accuracy in the minority TP class, as shown as the green marker in Figure

13 and Figure 14. Taking the weighted original imbalanced data for example, when

using the original threshold, Random Forest only detected half polyps (0.52 sensitivity),

in testing set while SVM detected around 60% of polyps (0.62 sensitivity).

Table 9 Averaged Random Forest and SVM AUC information of the 100 runs

 Averaged AUC of

Random Forest

Averaged AUC of

SVM

Mean Std. Mean Std.

Imbalanced data, un-weighted 0.9614 0.0201 0.9493 0.0247

Imbalanced data, weighted 0.9608 0.0197 0.9523 0.0240

75% down-sampling, weighted 0.9613 0.0194 0.9547 0.0215

50% down-sampling, weighted 0.9600 0.0201 0.9561 0.0208

25% down-sampling, weighted 0.9600 0.0204 0.9543 0.0208

73

Figure 13 Averaged ROC curve of Random Forest results. (a)-(e) show averaged ROC

curves of un-weighted Random Forest with imbalanced data, weighted RFs with

imbalanced data, weighted Random Forest with 75% down-sampling data, weighted

Random Forest with 50% down-sampling data and weighted RFs with 25% down-

sampling data. The red, blue circle marker represent results of regular 0.5 threshold, and

harmonic mean respectively. The averaged ROC curves was conducted according to the

horizontal axis, where the linear interpolation was employed when needed.

(a) (b)

(c) (d)

(e)

74

Figure 14 Averaged ROC curve of SVM results. (a)-(e) show averaged ROC curves of

un-weighted SVM with imbalanced data, weighted SVM with imbalanced data, weighted

SVM with 75% down-sampling data, weighted SVM with 50% down-sampling data and

weighted SVM with 25% down-sampling data. The red, blue circle marker represent

results of regular 0.5 threshold, and harmonic mean respectively. The averaged ROC

curves was conducted according to the horizontal axis, where the linear interpolation was

employed when needed.

(a) (b)

(c) (d)

(e)

75

Table 10 and Table 11 show the classification results of Random Forest and SVM with

different threshold selection strategies, where the classification results, i.e., sensitivity, specificity

and overall accuracy, with the original threshold, i.e., 0.5 for the probability score of both

Random Forest and SVM, and the proposed harmonic mean method. The thresholds (averaged

over 100 runs) chosen by the harmonic mean method is also listed in the tables. As we

expected, it is observed from the last column of Table 10 and Table 11 that the operating

point did shift due to the imbalance of the data, and the original threshold was no longer

suitable to draw the decision. From both tables, it was also observed that both the

weighted classifier (i.e., the cost sensitivity learning) and the down-sampling technique

did help to some degree in improving the sensitivity (compared to the original threshold).

For example, for the weighted classifier, only moderate improvement can be observed,

about 0.04 increasing for Random Forest and 0.10 for SVM, for the outcomes of 0.52 for

Random Forest and 0.62 for SVM (see the first two rows arranged along the left column).

The down-sampling technique showed improvements as the down-sampling level went

up, and the classification result with 25% down sampling (see the last row arranged along

the left column) is very close to our proposed strategies (similar results can be observed

in study of Maloof et al. (2003)). However, there are concerns with the down-sampling

technique: the first one is the concern about the information loss because it only uses part

of the training data; the second one is the concern that there is not any rule to determine

how much we should down sample the majority class.

The gain by our proposed strategies is noticeable as demonstrated by Table 10

and Table 11. Taking the weighted original imbalanced data for example, when using

our proposed harmonic mean thresholding method, the sensitivity improved from 0.52 to

76

nearly 0.885 for Random Forest and for SVM it was from 0.625 to nearly 0.88;

meanwhile, a relatively high specificity level was retained, i.e., above 0.90 sensitivity for

both classifiers. The corresponding ROC points (the blue dot markers) shown in Figure

13 and Figure 14 indicate that our proposed method choose the operating point very

close to the upper-left corner.

In all the experiments, we always used the original class ratio in all the testing sets,

which is 0.0814, and with different levels of class ration in the training sets, i.e., the

original imbalanced data (ratio = 0.0814), 75% down sampling (ratio=0.1057), 50%

down sampling (ratio=0.1506) and 25% down sampling (ratio=0.2618). The outcomes

showed that our proposed strategies deliver consistent good performances, i.e., around

0.88 sensitivity with 0.90 specificity for both classifiers. This indicates that the

performance of harmonic mean method is invariant to different class ratios. Meanwhile,

the result also indicates that the method has the ability to be combined with other

imbalanced data correcting techniques, such as the cost-sensitive learning, based on the

fact that the outcome from the un-weighted data also showed improvement.

77

Table 10 Averaged Random Forest classification results with the original threshold and

cut-off chosen by the proposed harmonic mean method

 Averaged results

Sensitivity Specificity Accuracy Threshold

Imbalanced

data, un-

weighted

Original

threshold
0.4884±0.1177 0.9855±0.0081 0.9450±0.0104 0.5

Harmonic

mean
0.8957±0.0802 0.9186±0.0425 0.9167±0.0370 0.1198±0.0601

Imbalanced

data,

weighted

Original

threshold
0.5243±0.1226 0.9862±0.0079 0.9486±0.0106 0.5

Harmonic

mean
0.8876±0.0796 0.9174±0.0384 0.9150±0.0328 0.1115±0.0627

75% down-

sampling,

weighted

Original

threshold
0.5835±0.1151 0.9825±0.0090 0.9500±0.0110 0.5

Harmonic

mean
0.8927±0.0756 0.9187±0.0374 0.9165±0.0321 0.1484±0.0749

50% down-

sampling,

weighted

Original

threshold
0.6591±0.1198 0.9720±0.0126 0.9465±0.0126 0.5

Harmonic

mean
0.8933±0.0818 0.9136±0.0392 0.9120±0.0334 0.2184±0.0894

25% down-

sampling,

weighted

Original

threshold
0.7649±0.1026 0.9592±0.0164 0.9434±0.0147 0.5

Harmonic

mean
0.8907±0.0805 0.9139±0.0387 0.9120±0.0334 0.3245±0.1066

78

Table 11 Averaged SVM classification results with the original threshold and cut-off

chosen by the proposed harmonic mean method.

 Averaged results

Sensitivity Specificity Accuracy Threshold

Imbalanced

data, un-

weighted

Original

threshold
0.5257±0.1645 0.9772±0.0111 0.9404±0.0117 0.5

Harmonic

mean
0.8756±0.0860 0.9083±0.0388 0.9056±0.0337 0.3028±0.0450

Imbalanced

data,

weighted

Original

threshold
0.6252±0.1559 0.9700±0.0136 0.9419±0.0121 0.5

Harmonic

mean
0.8848±0.0872 0.9088±0.0398 0.9068±0.0347 0.3414±0.0617

75% down-

sampling,

weighted

Original

threshold
0.6908±0.1390 0.9647±0.0136 0.9424±0.0124 0.5

Harmonic

mean
0.8854±0.0918 0.9109±0.0392 0.9088±0.0339 0.3690±0.0632

50% down-

sampling,

weighted

Original

threshold
0.7642±0.1252 0.9547±0.0168 0.9392±0.0139 0.5

Harmonic

mean
0.8928±0.0880 0.9087±0.0406 0.9066±0.0352 0.4069±0.0286

25% down-

sampling,

weighted

Original

threshold
0.8307±0.1086 0.9367±0.0249 0.9281±0.0211 0.5

Harmonic

mean
0.8918±0.0860 0.9077±0.0420 0.9064±0.0369 0.4513±0.0698

79

5.2. Evaluation of ROC Random Forest

In this section, we use 18 imbalanced dataset, downloaded from UCI Machine

Learning Repository (http://archive.ics.uci.edu/ml/index.html), to evaluate the

performance of our proposed ROC Random Forest. We also evaluated the performance

of original Random Forest based on different settings, i.e., cost-sensitive setting, Tomek

links sampling, CNN sampling, ENN sampling, NCL sampling, OSS sampling, SMOTE

sampling, SMOTE+Temok sampling and SMOTE+ENN sampling. Extensive

experiments are designed and averaged results are reported.

5.2.1 Dataset

The datasets used in this evaluation are downloaded from UCI repository. All of

them are binary classification data. With proper adjustment, e.g., proper binary labelling,

all the dataset are imbalanced and binary labeled data. Detailed information is shown in

Table 12.

The UCI Machine Learning Repository is a collection of databases, domain

theories, and data generators that are used by the machine learning community for the

empirical analysis of machine analysis of machine learning algorithms (Bache et al.,

2013). It has been widely used by students, educators, and researchers all over the world

as a version of the web site was designed in 2007. Since our ROC Random Forest in

current stage is only suitable for continuous feature variable and binary class variable

problem, only limited dataset could be used. We select 18 popularly used dataset, which

contains real value features and binary label class. Certain data preparation was done to

the dataset before we send them to the classifiers. The first one is the minority class

suppression, we randomly down sampled the minority class to keep an around 0.1 class-

http://archive.ics.uci.edu/ml/index.html

80

imbalance ratio. The second one is label binarilization. Take the wine dataset for

example, the quality is measured by ordinal categorical variable, taking value from 1 to

10. We label level 8-10 as “good” quality, i.e., positive class, and the rest as “bad”

quality, i.e., negative class. It does not necessarily indicates the quality is really bad, but

relatively bad. The third one is missing value substitution. There are many missing

values in ozone level data, and we substitute the missing value with column mean.

Table 12 Data information of the 18 dataset from UCI repository

Dataset Positive

number

Negative

number

Imbalance

ratio

Feature

number

Source

red_wine_quality 217 1382 0.1357 11 Cortez et al., 2009

white_wine_quality 180 4718 0.0367 11 Cortez et al., 2009

breast_cancer 80 357 0.1831 30 Wolberg et al., 1990

connectionist_bench 16 97 0.1416 60 Bache et al., 2013 (UCI)

ozone_level 73 2463 0.0288 72 Bache et al., 2013 (UCI)

ionosphere 30 225 0.1176 34 Sigillito et al., 1989

pima_diabetes 60 500 0.1071 8 Bache et al., 2013 (UCI)

spect 30 212 0.1240 44 Bache et al., 2013 (UCI)

vertebral 30 210 0.1250 6 Bache et al., 2013 (UCI)

breast tissue 21 95 0.1810 9 Bache et al., 2013 (UCI)

haberman 40 225 0.1509 3 Bache et al., 2013 (UCI)

banknote 100 762 0.1161 4 Bache et al., 2013 (UCI)

magic 1000 12332 0.0750 10 Bache et al., 2013 (UCI)

page block 560 4913 0.1023 10 Bache et al., 2013 (UCI)

parkinsons 20 147 0.1198 19 Bache et al., 2013 (UCI)

seismic bump 170 2414 0.0658 14 Bache et al., 2013 (UCI)

secom 104 1463 0.0709 590 Bache et al., 2013 (UCI)

seeds 20 140 0.1250 7 Bache et al., 2013 (UCI)

5.2.2 Learning methods

Purpose of the experiment in this section is to compare performance of the

proposed ROC Random Forest with the original Random Forest in terms of dealing with

81

class imbalanced data. At the same time, we also compare the classification performance

of ROC Random Forest with original Random Forest with cost sensitive setting and

sampling strategy. The cost sensitive setting is similar to the one we use in §5.1. For the

down sampling setting, we randomly down sampled the majority class to artificially

balance the data, i.e., dataset with imbalanced ratio of 0.5. Meanwhile, as we introduced

in Chapter 2, we employ various kind of informed sampling algorithms, i.e,. CNN, ENN,

Tomek links, NCL, OSS, SMOTE+Tomek and SMOTE+ENN, in order to generate clean

or balanced data. In summary, for each dataset, we record the classification performance

of the 11 classifier settings, ROC Random Forest with original data, weighted Random

Forest with original data, Random Forest with randomly down sampling, Random Forest

with CNN under sampling, Random Forest with ENN under sampling, Random Forest

with Tomek links under sampling, Random Forest with NCL under sampling, Random

Forest with OSS under sampling, Random Forest . 2000 tree is built for each forest, and

for each node square root of attribute numbers is randomly selected for splitting.

5.2.3 Two-way random splitting

Comparing to the three-way cross validation §5.1, we do not need an additional

run to selection the splitting threshold, which is also an advantage of ROC Random

Forest, thus we use a two-way random splitting strategy. For each experiment, the

dataset is randomly partitioned into two subsets, i.e., training set and testing set. And

both sets have the same class imbalanced ratio. We used training set to build the

classification model and use the testing set, considered as holdout data, to validate the

model. We record the ROC curve for each classification as well as the accuracy (all with

82

0.5 decision threshold). To minimize the bias of one time running, the random partition

process was repeated 100 times and the average results were outputted.

5.2.4 Results and discussion

Table 13 shows the classification results. For each dataset, the averaged AUC,

accuracy, sensitivity and specificity are listed for each of the four classification setting.

Accuracy, sensitivity and specificity are obtained using 0.5 as splitting threshold. Table

14 gives summary result of Table 13. From the table we can see that for 12 of the 18

imbalanced dataset, ROC Random Forest produce the highest averaged AUC value.

Such results indicate that ROC RF is very accurate classifier and performs robustly for

various kind of imbalanced data. In 3 of the 12 dataset, i.e., ozone level, magic and

secom, ROC RF significantly outperform other classifiers. In 6 of the 12 dataset, ROC

RF outperform most the classifiers (>=5). Within the rest 3 dataset, i.e., harberman, page

block and seeds, we could observe that the performance of all classifiers are really close.

For the rest 6 dataset which the averaged AUC of ROC RF are not the best, in 4 of the 6,

its averaged AUC is not significant different with the best performer and only for 2 of

them it losses the competition, in vertebral data it losses to OSS and in the seismic bump

data it losses to smoteRF. For the rest Random Forest classification settings, smoteRF

method and ossRF show up in the first 2 places more than 4 times. It first implies that

smote is very useful to construct balanced distribution and this did not reduce the

classifier power in terms of AUC. For ossRF, which removes majority class examples

either close to the minority class or distant from the decision border, and such process do

help RF improve its performance. Since Tomek links, ENN, CNN, NCL and OSS not

really generate balanced data, they either remove data distant from the decision boundary,

83

close to the border or intrude in the minority class, for most dataset, after such examples

are removed the class distribution may still imbalanced. There is no strong trend in these

sampling settings (except OSS). For weighted RF, it actually very similar to random over

sampling data, this is also discussed in study conducted by He and colleagues (He et al.,

2009). In Random over sampling, the example are uniformly sampled with replacement.

This results in the final number of each example is expected to be the same. For

weighted Random Forest, assuming the weight to be (0.1, 0.9) for class (0, 1), the

classifier will treat 1 minority example as nine identical minority examples. This equals

to resampling each minority example 9 times. Actually no additional information is

introduced for weighted RF and therefore it only delivers intermediate performance.

84

Table 13 Averaged classification results with different classifier settings, i.e., ROC

Random Forest(ROC RF), weighted Random Forest(wRF), Random Forest with SMOTE

data(smoteRF), Random Forest with down sampling data(downRF), Random Forest with

Tomek links(tomekRF), Random Forest with ENN(ennRF), Random Forest with

CNN(cnnRF), Random Forest with NCL(nclRF), Random Forest with OSS(ossRF),

Random Forest with SMOTE+Tomek(smote+tRF) and Random Forest with

SMOTE+ENN(smote+eRF). The mean and standard deviation value of AUC, accuracy,

sensitivity and specificity are reported. Cell with values marked red indicates the highest

averaged AUC value. Paired Z test is applied to compare the averaged mean of method

with highest value and the rest methods. Cell marked orange indicates a significant

difference with 𝛼 = 0.01 and cells marked blue indicate a non-significant difference.

 Averaged Results

Dataset
Classifier

setting
AUC accuracy sensitivity specificity

red wine

quality

ROC RF 0.8956±0.0149 0.8320±0.0262 0.8210±0.0391 0.8338±0.0075

wRF 0.8945±0.0151 0.8981±0.0066 0.4292±0.0445 0.9721±0.0331

smoteRF 0.8920±0.0141 0.8528±0.0110 0.7043±0.0529 0.8762±0.0160

downRF 0.8836±0.0147 0.7855±0.0186 0.8318±0.0430 0.7782±0.0242

tomekRF 0.8947±0.0144 0.8963±0.0076 0.4817±0.0475 0.9617±0.0084

ennRF 0.8950±0.0150 0.8976±0.0064 0.4436±0.0447 0.9692±0.0079

cnnRF 0.8949±0.0147 0.8975±0.0065 0.4284±0.0419 0.9715±0.0078

nclRF 0.8940±0.0144 0.8935±0.0077 0.5058±0.0535 0.9547±0.0108

ossRF 0.8945±0.0150 0.8966±0.0074 0.4836±0.0491 0.9618±0.0084

smote+tRF 0.8911±0.0138 0.8393±0.0132 0.7396±0.0518 0.8551±0.0195

smote+eRF 0.8907±0.0146 0.8393±0.0139 0.7392±0.0540 0.8550±0.0192

white wine

quality

ROC RF 0.8753±0.0183 0.7970±0.0396 0.7749±0.0434 0.7978±0.0419

wRF 0.8713±0.0197 0.9727±0.0015 0.2687±0.0398 0.9995±0.0005

smoteRF 0.8690±0.0164 0.8698±0.0143 0.6017±0.0568 0.8800±0.0158

downRF 0.8563±0.0189 0.7286±0.0306 0.8224±0.0544 0.7250±0.0332

tomekRF 0.8753±0.0184 0.9726±0.0016 0.2693±0.0407 0.9994±0.0006

ennRF 0.8744±0.0186 0.9727±0.0015 0.2691±0.0401 0.9995±0.0005

cnnRF 0.8734±0.0186 0.9726±0.0015 0.2688±0.0399 0.9995±0.0005

nclRF 0.8744±0.0194 0.9726±0.0016 0.2714±0.0397 0.9993±0.0006

ossRF 0.8750±0.0183 0.9726±0.0016 0.2701±0.0406 0.9994±0.0006

smote+tRF 0.8641±0.0174 0.8368±0.0179 0.6623±0.0584 0.8435±0.0199

smote+eRF 0.8655±0.0170 0.8486±0.0160 0.6458±0.0555 0.8563±0.0176

breast cancer

ROC RF 0.9791±0.0122 0.9651±0.0165 0.9247±0.0283 0.9582±0.0213

wRF 0.9786±0.0123 0.9521±0.0093 0.8682±0.0516 0.9868±0.0095

smoteRF 0.9803±0.0112 0.9532±0.0180 0.9110±0.0450 0.9626±0.0235

downRF 0.9778±0.0112 0.9326±0.0256 0.9300±0.0400 0.9331±0.0340

tomekRF 0.9791±0.0123 0.9643±0.0095 0.8710±0.0511 0.9852±0.0099

ennRF 0.9794±0.0116 0.9634±0.0093 0.8718±0.0506 0.9839±0.0112

cnnRF 0.9781±0.0128 0.9633±0.0102 0.8778±0.0465 0.9824±0.0120

nclRF 0.9796±0.0116 0.9621±0.0096 0.8752±0.0511 0.9815±0.0121

85

ossRF 0.9791±0.0128 0.9640±0.0092 0.8698±0.0508 0.9851±0.0098

smote+tRF 0.9791±0.0120 0.9507±0.0188 0.9135±0.0482 0.9590±0.0254

smote+eRF 0.9791±0.0127 0.9496±0.0193 0.9120±0.0449 0.9580±0.0253

connection

bench

ROC RF 0.8825±0.0637 0.7798±0.1043 0.8025±0.1205 0.7750±0.1273

wRF 0.8222±0.0778 0.8847±0.0168 0.1889±0.1185 0.9984±0.0075

smoteRF 0.8249±0.0759 0.8756±0.0542 0.5375±0.1901 0.9308±0.0661

downRF 0.8377±0.0790 0.6988±0.0908 0.8100±0.1781 0.6806±0.1108

tomekRF 0.8178±0.0754 0.8846±0.0193 0.1925±0.1311 0.9976±0.0088

ennRF 0.8250±0.0757 0.8854±0.0182 0.1963±0.1208 0.9980±0.0074

cnnRF 0.8256±0.0829 0.8861±0.0182 0.2062±0.1184 0.9971±0.0092

nclRF 0.8160±0.0785 0.8863±0.0200 0.2087±0.1282 0.9969±0.0106

ossRF 0.8172±0.0754 0.8851±0.0197 0.1963±0.1309 0.9976±0.0083

smote+tRF 0.8825±0.0680 0.8812±0.0565 0.5513±0.1947 0.9351±0.0594

smote+eRF 0.8716±0.0742 0.8563±0.0613 0.5787±0.1927 0.9016±0.0775

ozone level

ROC RF 0.8920±0.0214 0.8359±0.0364 0.8016±0.0450 0.8369±0.0382

wRF 0.8822±0.0231 0.9702±0.0010 0.0081±0.0146 0.9991±0.0010

smoteRF 0.8859±0.0221 0.9016±0.0178 0.6624±0.0842 0.9088±0.0198

downRF 0.8829±0.0203 0.7820±0.0344 0.8151±0.0509 0.7810±0.0361

tomekRF 0.8868±0.0214 0.9701±0.0010 0.0111±0.0172 0.9989±0.0010

ennRF 0.8856±0.0218 0.9702±0.0009 0.0076±0.0144 0.9991±0.0009

cnnRF 0.8865±0.0217 0.9702±0.0010 0.0084±0.0137 0.9991±0.0010

nclRF 0.8866±0.0209 0.9701±0.0011 0.0195±0.0252 0.9986±0.0010

ossRF 0.8873±0.0206 0.9702±0.0010 0.0114±0.0181 0.9990±0.0010

smote+tRF 0.8882±0.0196 0.8929±0.0190 0.6670±0.0745 0.8997±0.0207

smote+eRF 0.8850±0.0194 0.8736±0.0231 0.7062±0.0666 0.8786±0.0249

ionosphere

ROC RF 0.9760±0.0120 0.9253±0.0319 0.8840±0.0451 0.9308±0.0378

wRF 0.9757±0.0127 0.9513±0.0160 0.6620±0.1150 0.9896±0.0113

smoteRF 0.9577±0.0226 0.9373±0.0237 0.7567±0.0991 0.9613±0.0256

downRF 0.9165±0.0405 0.8620±0.0606 0.8113±0.1089 0.8688±0.0725

tomekRF 0.9749±0.0120 0.9512±0.0150 0.6747±0.1073 0.9879±0.0118

ennRF 0.9764±0.0121 0.9502±0.0160 0.6613±0.1186 0.9886±0.0113

cnnRF 0.9213±0.0842 0.8838±0.1238 0.6940±0.1357 0.9089±0.1462

nclRF 0.9733±0.0134 0.9514±0.0137 0.6840±0.1103 0.9869±0.0113

ossRF 0.9751±0.0123 0.9511±0.0140 0.6733±0.1057 0.9880±0.0112

smote+tRF 0.9543±0.0244 0.9341±0.0324 0.7500±0.1031 0.9585±0.0354

smote+eRF 0.9556±0.0232 0.9368±0.0259 0.7540±0.1050 0.9611±0.0315

pima

diabetes

ROC RF 0.8040±0.0359 0.7654±0.0523 0.7097±0.0706 0.7721±0.0624

wRF 0.7970±0.0356 0.8896±0.0082 0.1040±0.0528 0.9839±0.0093

smoteRF 0.7944±0.0281 0.8136±0.0231 0.5120±0.0976 0.8498±0.0309

downRF 0.7956±0.0295 0.7200±0.0429 0.7440±0.0917 0.7172±0.0539

tomekRF 0.7983±0.0355 0.8876±0.0110 0.1990±0.0778 0.9702±0.0138

ennRF 0.7990±0.0351 0.8900±0.0079 0.1170±0.0602 0.9828±0.0095

cnnRF 0.7972±0.0355 0.8894±0.0082 0.1057±0.0547 0.9834±0.0094

nclRF 0.8044±0.0347 0.8853±0.0126 0.2243±0.0983 0.9646±0.0171

ossRF 0.8030±0.0354 0.8881±0.0104 0.1983±0.0800 0.9709±0.0131

86

smote+tRF 0.7949±0.0289 0.8003±0.0249 0.5693±0.1124 0.8280±0.0343

smote+eRF 0.7967±0.0314 0.7967±0.0283 0.5810±0.1088 0.8226±0.0388

spect

ROC RF 0.8401±0.0370 0.7620±0.0721 0.8187±0.1019 0.7150±0.0882

wRF 0.7884±0.0520 0.8765±0.0055 0.0200±0.0373 0.9977±0.0052

smoteRF 0.8385±0.0357 0.8273±0.0341 0.5007±0.1426 0.8735±0.0437

downRF 0.8365±0.0427 0.7112±0.0440 0.8340±0.1230 0.6938±0.0570

tomekRF 0.8054±0.0453 0.8773±0.0086 0.0627±0.0620 0.9926±0.0081

ennRF 0.7908±0.0508 0.8774±0.0051 0.0247±0.0375 0.9980±0.0039

cnnRF 0.7719±0.0653 0.8766±0.0053 0.0233±0.0372 0.9974±0.0047

nclRF 0.8161±0.0451 0.8769±0.0114 0.0847±0.0937 0.9890±0.0107

ossRF 0.8060±0.0470 0.8770±0.0089 0.0620±0.0609 0.9924±0.0084

smote+tRF 0.8329±0.0395 0.8279±0.0313 0.4853±0.1409 0.8764±0.0425

 smote+eRF 0.8397±0.0364 0.7863±0.0422 0.6740±0.1599 0.8022±0.0574

vertebral

ROC RF 0.8949±0.0282 0.8125±0.0162 0.8247±0.0779 0.8108±0.0633

wRF 0.8941±0.0294 0.8908±0.0502 0.2507±0.1034 0.9822±0.0193

smoteRF 0.8935±0.0281 0.8390±0.0371 0.6800±0.1268 0.8617±0.0461

downRF 0.8689±0.0325 0.7745±0.0459 0.8387±0.1161 0.7653±0.0577

tomekRF 0.9004±0.0258 0.8853±0.0232 0.3707±0.1094 0.9589±0.0296

ennRF 0.8946±0.0285 0.8902±0.0166 0.2620±0.1122 0.9799±0.0210

cnnRF 0.8522±0.0739 0.8872±0.0220 0.2693±0.1156 0.9755±0.0255

nclRF 0.8997±0.0249 0.8761±0.0271 0.4387±0.1377 0.9386±0.0379

ossRF 0.9006±0.0254 0.8848±0.0228 0.3667±0.1083 0.9588±0.0285

smote+tRF 0.8928±0.0287 0.8407±0.0341 0.6987±0.1358 0.8610±0.0417

smote+eRF 0.8847±0.0303 0.8189±0.0458 0.7380±0.1317 0.8305±0.0559

breast tissue

ROC RF 0.9617±0.0337 0.9257±0.0208 0.8527±0.0630 0.9444±0.0288

wRF 0.9579±0.0339 0.9367±0.0252 0.8236±0.1147 0.9656±0.0240

smoteRF 0.9622±0.0295 0.9374±0.0258 0.8873±0.1105 0.9502±0.0359

downRF 0.9630±0.0343 0.9015±0.0801 0.9245±0.0976 0.8956±0.1045

tomekRF 0.9609±0.0311 0.9396±0.0198 0.8773±0.1045 0.9556±0.0283

ennRF 0.9591±0.0331 0.9409±0.0207 0.8545±0.1034 0.9630±0.0227

cnnRF 0.9625±0.0278 0.9283±0.0356 0.8418±0.1124 0.9505±0.0489

nclRF 0.9612±0.0316 0.9404±0.0215 0.8864±0.1092 0.9542±0.0278

ossRF 0.9605±0.0314 0.9393±0.0201 0.8736±0.1033 0.9560±0.0282

smote+tRF 0.9604±0.0324 0.9396±0.0260 0.9100±0.0927 0.9472±0.0353

smote+eRF 0.9610±0.0317 0.9400±0.0222 0.9045±0.0935 0.9491±0.0290

haberman

ROC RF 0.6580±0.0476 0.6416±0.0564 0.6195±0.0762 0.6455±0.0706

wRF 0.6506±0.0494 0.8289±0.0174 0.0555±0.0502 0.9658±0.0218

smoteRF 0.6540±0.0530 0.7416±0.0386 0.3635±0.1117 0.8085±0.0520

downRF 0.6209±0.0626 0.6067±0.0623 0.5660±0.1143 0.6139±0.0776

tomekRF 0.6514±0.0484 0.8104±0.0228 0.1180±0.0754 0.9329±0.0303

ennRF 0.6514±0.0469 0.8255±0.0178 0.0585±0.0560 0.9612±0.0237

cnnRF 0.6482±0.0501 0.8281±0.0165 0.0590±0.0548 0.9642±0.0216

nclRF 0.6513±0.0485 0.7994±0.0277 0.1605±0.0922 0.9125±0.0340

ossRF 0.6513±0.0486 0.8089±0.0222 0.1135±0.0735 0.9320±0.0293

smote+tRF 0.6526±0.0545 0.7214±0.0430 0.4135±0.1121 0.7758±0.0531

87

smote+eRF 0.6573±0.0561 0.7229±0.0454 0.4150±0.1024 0.7774±0.0576

banknote

ROC RF 0.9976±0.0019 0.9802±0.0090 0.9726±0.0105 0.9812±0.0119

wRF 0.9976±0.0019 0.9816±0.0107 0.8842±0.0679 0.9944±0.0035

smoteRF 0.9968±0.0028 0.9793±0.0096 0.9502±0.0444 0.9831±0.0091

downRF 0.9924±0.0058 0.9500±0.0255 0.9542±0.0462 0.9495±0.0291

tomekRF 0.9976±0.0019 0.9821±0.0089 0.8866±0.0660 0.9946±0.0036

ennRF 0.9976±0.0019 0.9816±0.0090 0.8836±0.0682 0.9945±0.0036

cnnRF 0.9951±0.0050 0.9782±0.0184 0.9106±0.0596 0.9871±0.0193

nclRF 0.9976±0.0019 0.9819±0.0088 0.8870±0.0670 0.9944±0.0035

ossRF 0.9976±0.0019 0.9818±0.0088 0.8844±0.0663 0.9946±0.0034

smote+tRF 0.9969±0.0027 0.9774±0.0105 0.9460±0.0460 0.9815±0.0110

smote+eRF 0.9968±0.0026 0.9774±0.0107 0.9458±0.0429 0.9815±0.0109

magic

ROC RF 0.9217±0.0069 0.8830±0.0146 0.8216±0.0181 0.8880±0.0168

wRF 0.9165±0.0062 0.9538±0.0015 0.4762±0.0185 0.9925±0.0011

smoteRF 0.9196±0.0055 0.9167±0.0044 0.7320±0.0185 0.9317±0.0053

downRF 0.9140±0.0060 0.8544±0.0101 0.8130±0.0211 0.8577±0.0118

tomekRF 0.9165±0.0057 0.9531±0.0017 0.5109±0.0202 0.9889±0.0015

ennRF 0.9162±0.0071 0.9534±0.0016 0.4810±0.0187 0.9917±0.0012

cnnRF 0.9158±0.0065 0.9536±0.0016 0.4761±0.0187 0.9924±0.0012

nclRF 0.9176±0.0063 0.9528±0.0017 0.5189±0.0206 0.9880±0.0015

ossRF 0.9161±0.0068 0.9532±0.0018 0.5109±0.0207 0.9891±0.0014

smote+tRF 0.9177±0.0056 0.9092±0.0050 0.7415±0.0186 0.9228±0.0060

smote+eRF 0.9175±0.0054 0.9056±0.0048 0.7496±0.0186 0.9183±0.0057

page block

ROC RF 0.9904±0.0029 0.9590±0.0079 0.9713±0.0101 0.9576±0.0093

wRF 0.9897±0.0033 0.9746±0.0023 0.8565±0.0233 0.9881±0.0024

smoteRF 0.9904±0.0021 0.9614±0.0045 0.9502±0.0152 0.9626±0.0054

downRF 0.9888±0.0022 0.9387±0.0099 0.9723±0.0116 0.9349±0.0115

tomekRF 0.9901±0.0029 0.9745±0.0025 0.8846±0.0216 0.9847±0.0029

ennRF 0.9900±0.0030 0.9748±0.0024 0.8693±0.0224 0.9869±0.0027

cnnRF 0.9904±0.0027 0.9745±0.0024 0.8574±0.0242 0.9879±0.0024

nclRF 0.9902±0.0026 0.9737±0.0028 0.8898±0.0224 0.9833±0.0035

ossRF 0.9902±0.0028 0.9744±0.0025 0.8844±0.0249 0.9846±0.0029

smote+tRF 0.9898±0.0022 0.9561±0.0055 0.9567±0.0160 0.9560±0.0068

smote+eRF 0.9898±0.0021 0.9562±0.0058 0.9605±0.0129 0.9557±0.0070

parkinsons

ROC RF 0.9140±0.0457 0.8644±0.0723 0.7590±0.0842 0.8786±0.0832

wRF 0.9019±0.0495 0.9188±0.0307 0.4240±0.1584 0.9857±0.0239

smoteRF 0.8867±0.0527 0.8512±0.0449 0.6730±0.1814 0.8753±0.0503

downRF 0.8829±0.0498 0.7738±0.0658 0.8080±0.1555 0.7692±0.0820

tomekRF 0.9139±0.0445 0.9226±0.0302 0.4760±0.1621 0.9830±0.0255

ennRF 0.9110±0.0455 0.9194±0.0282 0.4290±0.1572 0.9857±0.0217

cnnRF 0.9106±0.0483 0.9169±0.0322 0.4470±0.1666 0.9804±0.0274

nclRF 0.9109±0.0477 0.9204±0.0307 0.4750±0.1654 0.9805±0.0264

ossRF 0.9126±0.0465 0.9210±0.0320 0.4650±0.1654 0.9826±0.0261

smote+tRF 0.8791±0.0538 0.8308±0.0581 0.7220±0.1889 0.8455±0.0684

smote+eRF 0.8851±0.0524 0.8468±0.0479 0.6930±0.2006 0.8676±0.0594

88

seismic

bump

ROC RF 0.7510±0.0185 0.7001±0.0377 0.6894±0.0395 0.7050±0.0421

wRF 0.7345±0.0218 0.9324±0.0016 0.0134±0.0132 0.9971±0.0019

smoteRF 0.7550±0.0204 0.8541±0.0154 0.4171±0.0628 0.8849±0.0184

downRF 0.7506±0.0210 0.7286±0.0325 0.6459±0.0534 0.7345±0.0367

tomekRF 0.7438±0.0186 0.9311±0.0027 0.0373±0.0238 0.9940±0.0035

ennRF 0.7409±0.0201 0.9324±0.0018 0.0145±0.0138 0.9971±0.0021

cnnRF 0.7400±0.0209 0.9324±0.0016 0.0128±0.0130 0.9972±0.0020

nclRF 0.7460±0.0194 0.9285±0.0044 0.0724±0.0351 0.9888±0.0057

ossRF 0.7429±0.0201 0.9312±0.0027 0.0380±0.0243 0.9941±0.0034

smote+tRF 0.7534±0.0195 0.8109±0.0198 0.5331±0.0680 0.8305±0.0237

smote+eRF 0.7536±0.0199 0.8320±0.0167 0.4836±0.0631 0.8565±0.0205

secom

ROC RF 0.7082±0.0259 0.6996±0.0487 0.6375±0.0556 0.7040±0.0543

wRF 0.6523±0.0319 0.9336±0.0002 0.0000±0.0000 1.0000±0.0002

smoteRF 0.6857±0.0309 0.9276±0.0054 0.0429±0.0322 0.9905±0.0065

downRF 0.6625±0.0334 0.6215±0.0411 0.6227±0.0884 0.6214±0.0480

tomekRF 0.6544±0.0314 0.9335±0.0006 0.0000±0.0000 0.9998±0.0006

ennRF 0.6542±0.0298 0.9336±0.0002 0.0000±0.0000 1.0000±0.0002

cnnRF 0.6540±0.0327 0.9336±0.0002 0.0000±0.0000 1.0000±0.0002

nclRF 0.6593±0.0292 0.9334±0.0007 0.0002±0.0019 0.9997±0.0007

ossRF 0.6575±0.0317 0.9335±0.0005 0.0000±0.0000 0.9998±0.0005

smote+tRF 0.6578±0.0329 0.9184±0.0083 0.0804±0.0439 0.9779±0.0103

smote+eRF 0.6619±0.0364 0.9167±0.0092 0.0779±0.0447 0.9763±0.0111

seeds

ROC RF 0.9870±0.0103 0.9333±0.0286 0.9000±0.0001 0.9380±0.0327

wRF 0.9863±0.0102 0.9437±0.0253 0.8320±0.1463 0.9597±0.0258

smoteRF 0.9833±0.0123 0.9253±0.0211 0.9100±0.1147 0.9274±0.0294

downRF 0.9818±0.0124 0.9055±0.0361 0.9740±0.0694 0.8957±0.0444

tomekRF 0.9865±0.0110 0.9375±0.0253 0.8820±0.1304 0.9454±0.0301

ennRF 0.9857±0.0106 0.9425±0.0267 0.8340±0.1507 0.9580±0.0257

cnnRF 0.9850±0.0150 0.9480±0.0251 0.8400±0.1485 0.9634±0.0247

nclRF 0.9837±0.0109 0.9335±0.0236 0.8660±0.1350 0.9431±0.0262

ossRF 0.9867±0.0102 0.9373±0.0253 0.8800±0.1309 0.9454±0.0300

smote+tRF 0.9855±0.0103 0.9207±0.0268 0.9180±0.1101 0.9211±0.0351

smote+eRF 0.9843±0.0101 0.9213±0.0240 0.9180±0.1207 0.9217±0.0333
Format: mean ± standard deviation

89

Table 14 Summary table of the result. Rows are the 18 dataset and columns are the Random Forest with different setting. The first

and second (or tied first) method which produce highest averaged AUC are marked red. A paired Z-test is performed to compare

method with highest AUC with the rest. Result with significant level 0.01 are shown. Cell marked orange indicates a significant

difference and cell marked light blue indicate a non-significant result.

 ROC

RF

weightd

RF

smote

RF

down

RF

tomek

RF

enn

RF

cnn

RF

ncl

RF

oss

RF

smote+t

RF

smote+e

RF

red wine quality 1st 2nd

white wine quality 1st 1st

breast cancer 4th 1st

connection bench 1st 1st

ozone level 1st 2nd

ionosphere 2nd 1st

pima diabetes 2nd 1st

spect 1st 2nd

vertebral 4th 1st

breast tissue 3rd 1st 2nd

Haberman 1st 2nd

banknote 1st 1st 1st 1st 1st 1st

magic 1st 2nd

page block 1st 1st 1st

parkinsons 1st 2nd

seismic bump 4th 1st

secom 1st 2nd

seeds 1st 2nd

90

Figures corresponding to each data set and each Random Forest setting could be

found in the Appendix. For all the datasets, we plot the averaged sensitivity and

specificity (sen-spe) pair on the averaged ROC curve (Algorithm 8). Since averaged

ROC curve is a graph average and so the average sen-spe pair may not locates on the

averaged curve, but they should be very close. From these figures we could observe that

ROC RF always deliver the balanced sen-spe pair. Surprisingly, the randomly down

sampled RF also deliver balanced sen-spe pair. However, comparing to ROC RF, since it

loss data information, its averaged AUC is nearly always significantly less than ROC RF.

For SMOTE sampling method, i.e., smoteRF, smote+tRF and smote+eRF they show

more balanced sen-spe pairs than other methods and their AUC are also correlated to

each other. However, observed from some of the dataset, comparing to ROC RF, they

prefer a higher specificity choice on the pair, which leads to operating point close to the

lower left corner. As we introduced before, Tomek links, ENN, CNN, OSS, NCL

methods may not generate balanced data in general and therefore, for most process

dataset the class distribution is still imbalanced. For most dataset, the induced

classification point locates on the lower left part of the ROC space, which indicates they

still suffer from the imbalanced learning problem. Since they removed some majority

data, comparing to weighted RF result, the operating point shift towards the upper right

corner a little bit.

The running time of ROC Random Forest and base Random Forest are also

compared. Table 15 gives the averaged single forest build time. ROC Random Forest

always take more time to build a model. However, it never exceed too much. Possibly

this is because in tree node splitting phase, we use an additional scan to select the

91

splitting threshold while in original Random Forest algorithm, they finish attribute

selection and node splitting in the same scan. The running time of ROC Random Forest

is comparable with the original Random Forest algorithm.

Table 15 Averaged running time to build a single base Random Forest and ROC

Random Forest model using the 18 dataset. The unit of time is second.

 red wine

quality

white wine

quality

breast

cancer

connection

bench

ozone

level

base RF 0.8080 2.4675 0.2350 0.1070 4.0950

ROC RF 0.9485 2.8880 0.2785 0.1125 5.2600

 ionosphere pima

diabetes

spect vertebral breast

tissue

base RF 0.2105 0.2880 0.2845 0.0790 0.0340

ROC RF 0.2425 0.3345 0.3335 0.0945 0.0370

 haberman banknote magic page

block

parkinsons

base RF 0.0780 0.2300 11.891 3.0815 0.0710

ROC RF 0.0900 0.2680 13.5360 3.9060 0.0895

 seismic

bump

secom seeds

base RF 1.3930 25.5915 0.0420

ROF RF 1.6650 34.5245 0.0525

To summarize this section, based on the classification result on the 18 dataset,

ROC Random Forest performs among the best classifiers and the decision point well

balanced the minority class and majority class.

5.3 Evaluation of the Hybrid ROC Random Forest

In this section, we use 8 imbalanced dataset, which contains categorical variables,

downloaded from UCI Machine Learning Repository (Bache et al., 2013), to evaluate the

performance of the extension of ROC Random Forest – Hybrid ROC Random Forest.

We also evaluate the performance of original Random Forest with cost-sensitive setting,

92

randomly downsampling setting and SMOTE sampling setting. Average results are

reported.

5.3.1 Dataset

The detailed information is shown in Table 16. The dataset we choose are among

the most popular dataset in UCI repository, and preprocessing, e.g., dealing with missing

data, class binarilization. All of the dataset set are imbalanced with imbalanced ratio

close to 15%.

Table 16 Data information of the 8 dataset from UCI repository with categorical variable

Dataset Positive

Instance#

Negative

Instance#

Imbalance

Ratio

Continuous

Feature#

Categorical

Feature#

Source

abalone 62 4115 0.0148 8 1 UCI

acute 16 61 0.2078 1 5 UCI

credit AUS 60 383 0.1354 6 8 UCI

credit GER 100 700 0.1250 7 13 UCI

credit APP 60 367 0.1405 6 9 UCI

band of cylinder 40 224 0.1515 19 16 UCI

contraceptive 100 844 0.1059 4 5 UCI

animals in zoo 20 81 0.1980 1 15 UCI

5.3.2 Learning methods

Experiments in this section is to evaluate the performance of the proposed Hybrid

ROC Random Forest and at the same time compare it with original Random Forest with

cost sensitive setting and sampling strategies. Since for categorical data, the distance is

difficult to define, and therefore, Tomek links is not available. In Chawla’s study in 2002,

an approximation of continuous-categorical and categorical only distance measure is

defined and therefore we adapt their method to generate SMOTE sample. So in this

93

section, we only choose cost-sensitive Random Forest, down sampling Random Forest

and SMOTE Random Forest for comparison. The cost sensitive setting, downsampling

setting and SMOTE setting are similar to the previous sections. Two thousand trees are

built for each forest, and for each node square root of attribute numbers is randomly

selected for splitting.

5.3.3 Two-way random splitting

We use the same partition strategy as we used in §5.2. We record the ROC curve

for each classification as well as the accuracy (all with 0.5 decision threshold). To

minimize the bias of one time running, the random partition process was repeated 100

times and the averaged results were outputted.

5.3.4 Results and discussion

Table 17 shows the averaged AUC value, classification accuracy, sensitivity and

specificity value and their corresponding standard deviation of the four different Random

Forest algorithms setting applying on the 8 datasets. The corresponding significance test

result is shown in Table 18. The averaged ROC curve and classification points are listed

in Appendix. In terms of AUC value, Hybrid ROC RF performs best in 5 of 8 datasets,

and in 1 of them it significantly outperform the second place classifier. Weighted

Random Forest deliver the best AUC for 4 of the dataset and in one it significantly

outperforms others. Only for the abalone dataset, Random Forest with SMOTE setting

outperform other classifiers. For Random Forest with down sampling, its AUC is inferior

comparing with others. With respect to the classification points, the Hybrid ROC

Random Forest and the Random Forest with downsampling setting deliver balanced

classification results, i.e., balanced sensitivity specificity pair. For Random Forest with

94

SMOTE sampling, it still have the problems that it prefer specificity more than sensitivity,

possible reason is that the new generated point will always locates in the minority area

and this add no information to the classification. Weighted Random Forest fails to

generate balanced classification results and it indicates that randomly oversampling is not

less useful for imbalanced data learning and the prior weight strategy have weak

capability to detect the minority data. In all these dataset, Hybrid Random Forest

performs very similar to Random Forest with weighted Random Forest, their AUC value

are nearly the same (no significant difference for most dataset). For dataset where

categorical variable dominates the feature space, its performance in choosing splitting

point is biased, see the averaged ROC curve on acute data. And therefore, we do not

recommend to use this method in dealing with categorical data which dominant the

feature space. It is also interesting to observe that 1. Also from acute data, the AUC of

down sampling method and SMOTE method are not one, which indicates that even

though sometime such strategies improve the classification or ROC curve, for some time

to do loss information or introduce system noise.

Table 19 shows the averaged running time of base Random Forest and the Hybrid ROC

Random Forest on the 8 datasets. Comparing to base Random Forest, we could see that

the running time is still comparable. The more comparison steps in node splitting phase

also reflects on the running time. The Hybrid ROC Random Forest uses more time than

that based on the Random Forest, however, there is only a constant factor difference.

95

Table 17 Averaged classification results with different classifier settings, i.e., Hybrid

ROC Random Forest (HROC RF), weighted Random Forest(wRF), Random Forest with

SMOTE data(smoteRF), Random Forest with down sampling data(downRF). The mean

and standard deviation value of AUC, accuracy, sensitivity and specificity are reported.

Cell with values marked red indicates the highest averaged AUC value. Paired Z test is

applied to compare the averaged mean of method with highest value and the rest methods.

Cell marked orange indicates a significant difference with 𝛼 = 0.01 and cells marked

blue indicate a non-significant difference.

 Averaged Results

Dataset
Classifier

setting
AUC accuracy sensitivity specificity

abalone

HROC RF 0.8560±0.0190 0.7918±0.0368 0.7763±0.0465 0.7924±0.0388

wRF 0.8508±0.0199 0.9664±0.0012 0.0103±0.0126 0.9985±0.0014

smoteRF 0.8612±0.0179 0.8614±0.0184 0.6369±0.0715 0.8690±0.0204

downRF 0.8442±0.0197 0.7447±0.0317 0.8690±0.0572 0.7429±0.0337

acute

HROC RF 1.0000±0.0000 0.9726±0.0075 0.8663±0.0366 1.0000±0.0000

wRF 1.0000±0.0000 0.9687±0.0356 0.8475±0.1737 1.0000±0.0000

smoteRF 0.9992±0.0053 0.9828±0.0370 0.9325±0.1512 0.9958±0.0281

downRF 0.9920±0.0232 0.9400±0.0767 0.9513±0.1328 0.9371±0.0939

credit AUS

HROC RF 0.9231±0.0280 0.8563±0.0308 0.8537±0.0572 0.8567±0.0387

wRF 0.9212±0.0284 0.9208±0.0109 0.5260±0.0844 0.9825±0.0081

smoteRF 0.9073±0.0311 0.8901±0.0215 0.7557±0.0763 0.9111±0.0285

downRF 0.9139±0.0283 0.8373±0.0369 0.8520±0.0754 0.8349±0.0478

credit GER

HROC RF 0.7456±0.0278 0.6917±0.0428 0.6924±0.0680 0.6916±0.0542

wRF 0.7475±0.0283 0.8737±0.0033 0.0184±0.0192 0.9959±0.0034

smoteRF 0.7226±0.0312 0.8105±0.0210 0.3470±0.0762 0.8767±0.0278

downRF 0.7290±0.0289 0.6814±0.0338 0.6478±0.0685 0.6862±0.0430

credit APP

HROC RF 0.9315±0.0204 0.8719±0.0323 0.8680±0.0474 0.8725±0.0397

wRF 0.9303±0.0193 0.9070±0.0130 0.4823±0.0974 0.9762±0.0122

smoteRF 0.9232±0.0198 0.8832±0.0203 0.7750±0.0925 0.9001±0.0294

downRF 0.9203±0.0229 0.8421±0.0272 0.8880±0.0679 0.8347±0.0362

band of

cylinder

HROC RF 0.7690±0.0480 0.7494±0.0688 0.6426±0.0908 0.7676±0.0877

wRF 0.7648±0.0513 0.8681±0.0097 0.1016±0.0600 0.9981±0.0050

smoteRF 0.7548±0.0504 0.8295±0.0361 0.4037±0.1176 0.9017±0.0424

downRF 0.7314±0.0625 0.6495±0.0579 0.6779±0.1303 0.6447±0.0768

contraceptive

HROC RF 0.7140±0.0311 0.7140±0.0472 0.6130±0.0564 0.7259±0.0549

wRF 0.7158±0.0301 0.9033±0.0052 0.1824±0.0386 0.9888±0.0055

smoteRF 0.7154±0.0313 0.8303±0.0209 0.4128±0.0682 0.8798±0.0259

downRF 0.6994±0.0341 0.6779±0.0378 0.6136±0.0748 0.6855±0.0461

animals in

zoo

HROC RF 1.0000±0.0000 1.0000±0.0000 1.0000±0.0000 1.0000±0.0000

wRF 1.0000±0.0000 1.0000±0.0000 1.0000±0.0000 1.0000±0.0000

smoteRF 1.0000±0.0000 1.0000±0.0000 1.0000±0.0000 1.0000±0.0000

downRF 0.9999±0.0012 0.9896±0.0389 1.0000±0.0000 0.9871±0.0483

96

Table 18 Summary table of the result. Rows are the 8 dataset and columns are the

Random Forest with different setting. The first and second (or tied first) method which

produce highest averaged AUC are marked red. A paired Z-test is performed to compare

method with highest AUC with the rest. Result with significant level 0.01 are shown.

Cell marked orange indicates a significant difference and cell marked light blue indicate a

non-significant result.

 HROC RF weighted RF smote RF down RF

abalong 2nd 1st

acute 1st 1st

credit AUS 1st 2nd

credit GER 2nd 1st

credit APP 1st 2nd

band of cylinder 1st 2nd

contraceptive 2nd 1st

animals in zoo 1st 1st 1st

Table 19 Average running time to build a single base Random Forest and a Hybrid ROC

Random Forest model using the 8 datasets. The unit of time is second.

 abalone acute credit AUS credit

GER

base RF 1.15 0.024 0.214 0.934

HROC_C RF 1.466 0.0285 0.2965 1.1405

 credit

APP

band of

cylinder

contraceptive animals in

zoo

base RF 0.4025 0.1985 0.2385 0.028

HROC_C RF 0.53 0.2745 0.306 0.037

97

Chapter VI: Conclusion and Future Work

In this dissertation, we proposed a novel binary classification algorithm, the ROC

Random Forest, by combining the ROC analysis with the Random Forest based ensemble

classifier. The main idea of this algorithm is to substitute the information gain based tree

node splitting method with the ROC based splitting method. For each node, we first

select the feature that produces the highest AUC and then a splitting threshold, which

maximizes the harmonic mean of sensitivity and specificity, to split the node. And then,

as what regular Random Forest does, a majority vote strategy is employed. Furthermore,

to extend the model to deal with nominal categorical variable, we proposed the Hybrid

ROC Random Forest, that combines the harmonic mean method with the original

impurity drop method to accommodate categorical predictors.

Three validation experiments were conducted to evaluate the proposed algorithm.

Experiment one is a proof of concept experiment to validate the benefit of ROC based

splitting threshold selection strategy (Song et al., 2014). For both Random Forest and

SVM, it well corrected the problem caused by imbalanced data. In experiment two, we

evaluated the proposed ROC Random Forest in 18 imbalanced dataset downloaded from

UCI (Bache et al., 2013). In terms of AUC value, ROC Random Forest outperform other

classification setting in 12 of the 18 dataset. In terms of classification sensitivity and

specificity, points with well-balanced sensitivity-specificity value were produced. As

shown in the averaged ROC curve, the point always locates on the upper left corner. We

also evaluate the Hybrid ROC Random Forest on 8 UCI dataset with categorical

predictors. The Hybrid ROC Random Forest produced more balanced classification

result for imbalanced data in comparison to the classic Random Forest.

98

In summary, our contributions are as follows:

1. We proposed harmonic mean based ROC operating selection method.

Experiment results well validate its using in find a balanced classification

point for class-imbalanced data.

2. We proposed a Random Forest algorithm based on ROC analysis. The

innovation of the algorithm is listed below:

a. ROC based splitting node selection.

b. Harmonic mean based node splitting.

c. Directed child node labeling.

Based on the experiments of ROC Random Forest on the 18 UCI realistic

dataset, ROC Random Forest performs among the best classifiers and the

decision point well balanced the minority class and majority class.

3. We extend the ROC Random Forest to deal with nominal categorical

variables, which we name as the Hybrid ROC Random Forest. The

innovation of the algorithm is that we combine the maximum AUC

continues feature selection with maximum impurity drop categorical

feature selection. Based on validation experiments of the Hybrid ROC

Random Forest on 8 UCI dataset with categorical variable, the Hybrid

ROC Random Forest could also produce a more balanced classification

decision with relatively high AUC value.

Meanwhile, we also need to mention that there is also some disadvantages with

the proposed methods. For example, the ROC curve is only plausible for binary

classification problems while Information Gain/ Gini Impurity could be used for multiple

99

class classification problems. What’s more, in its current state, the ROC Random Forest

could only handle continuous data or ordinal categorical data. Even though we have

subsequently extended the ROC Random Forest to the Hybrid ROC Forest method, to

incorporate all types of categorical variables, the new method is dependent upon the

original impurity drop method and therefore for categorical variable dominated dataset,

the classification result is not ideal yet. However, in study conducted by Ferri and

colleagues (Ferri et al., 2002), they proposed an exhaust labeling strategy to plot the ROC

convex hull and part the boundary could be considered as the ROC curve. The

computation time of this method is excessive and impractical when the feature contains

many categorical levels. Methods have been proposed to deal with such problem and we

will focus on this and extend the usage of our proposed model in the near future.

In summary, the ROC Random Forest proves to be a better alternative in general

for binary class classification with imbalanced classes. The prediction result is more

optimal on the average and its hybrid version can also absorb categorical predictors.

100

References

Ahn, H., Moon, H., Fazzari, M. J., Lin, N., Chen, J. J., and Kodell, R. L., Classification

by ensembles from random partitions of high-dimentional data. Computational

statistics and data analysis, 51, 6166-6179, 2007.

Aizerman, A., Braverman, E. M., Rozoner. L. I., Theoretical foundations of the potential

function method in pattern recognition learning. Automation and Remote Control,

25, 821-837, 1964.

Archer, K., Kimes, R., Empirical characterization of random forest variable importance

measures. Computational Statistics and Data Analysis, 52(4), 2249-2260.

Bache, K., Lichman, M., UCI Machine Learning Repository.

[http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of

Information and Computer Science. 2013

Batista, A., Prati, C., Monard, C., A Study of the Behavior of Several Methods for

Balancing Machine Learning Training Data. ACM SIGKDD Explorations

Newsletter, 6(1), 20-29, 2004.

Bertoni, A., Raffaella, F., Giorgio, V., Bio-molecular cancer prediction with random

subspace ensembles of support vector machines. Neurocomputing, 63, 535-539,

2005.

Bishop, C. M., Pattern Recognition and Machine Learning. Springer 2006

101

Bradley, A. P., The use of the area under the ROC curve in the evaluation of machine

learning algorithms. Pattern Recognition, 30(7), 1145-1159, 1997.

Breiman, L., Friedman, J. H., Olshen, R. A., Stone, C. J., Classification and regression

trees. Wadsworth & Brooks/Cole Advanced Books & Software, Monterey CA,

1984.

Breiman, L., Bagging predictors. Machine Learning, 24, 123-140, 1996.

Breiman, L., Random forest. Machine Learning, 45, 5-32, 2001.

Burges, C. J., A Tutorial on Support Vector Machines for Pattern Recognition. Data

Mining and Knowledge Discovery, 2, 121-167, 1998.

Calle, M.L., Urrea, V., Boulesteix, A., Malats, N., AUC-RF: a new strategy for genomic

profiling with Random Forest. Hum Hered, 72,121-132, 2011.

Cardie, C., Howe, N., Improving minority class prediction using case-specific feature

weights. Proceedings of the Fourteenth International Conference on Machine

Learning, San Francisco, CA: Morgan Kaufmann, 57-65, 1997.

Caruana, R., Niculescu-Mizil, A., An empirical comparison of supervised learning

algorithms. Proceedings of the 23rd international conference on Machine Learning,

2006

Chawla, N. V., Bowyer, K. W., Hall, L. O., Kegelmeyer, W. P., SMOTE: Synthetic

Minority Over-Sampling Technique. Journal of Artificial Intelligence Research, 16,

321-357, 2002.

102

Chen, C., Liaw, A., Breiman, L., Using Random Forest to Learn Imbalanced Data.

Technical Report of Department of Statistics, UC, Berkeley, 2004.

Chang, C., Lin, C., LIBSVM: a library for support vector machines. ACM Transactions

on Intelligent Systems and Technology, 2(27), 1-27, 2011.

Cortez, P., Cerdeira, A., Almeida, F., Matos, T., Reis, J., Modeling wine preferences by

data mining from physicochemical properties. In Decision Support Systems.

Elsevier, 47(4): 547-553, 2009.

Dietterich, T., Ensemble Methods in Machine Learning, Mutiple Classifier Systems,

Lecture Notes in Computer Science, 1857, 1-15, 2000.

Domingos, P., MetaCost: A general method for making classifiers cost-sensitive.

Proceedings of Fifth ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, 155-164, 1999.

Drummond, C., Holte, R. C., C4.5, Class Imbalance, and Cost Sensitivity: Why Under

Sampling Beats Over-Sampling. Proceedings of International Conference of

Machine learning, Workshop Learning from Imbalanced Data Sets II, 2003.

Duin, R. P. W., Tax, D. M. J., Experiments with classifier combining rules. Mutiple

Classifier Systems, Lecture Notes in Computer Science, 1857, 16-29, 2000.

Efron, B., Bootstrap methods: Another look at the jackknife. The Annals of Statistics,

7(1), 1-26, 1979.

Elkan, C., The foundations of Cost-Sensitive Learning. Proceedings of International

Joint Conference of Artificial Intelligence, 973-978, 2001.

103

Estabrooks, A., Jo, T., Japkowicz, N., A Multiple Resampling Method for Learning from

Imbalanced Data Sets. Computational Intelligence, 20, 18-36, 2004.

Fawcett, T., Provost, F., Adaptive fraud detection. Data Mining and Knowledge

Discovery, 1, 291-316, 1997.

Fawcett, T., Using the rule sets to maximize ROC performance. Proceedings of IEEE

International Conference on Data Mining, 131-138, 2001.

Fawcett, T., An introduction to ROC analysis. Pattern Recognition Letters, 27, 861-874,

2006.

Ferri, C., Flach, P., Hernandez-Orallo, J., Learning decision trees using the area under the

ROC curve. Proceedings of ICML 2002, 139-146, 2002.

Fletcher, R., Practical Methods of Optimization. John Wiley and Sons, Inc. 2nd edition,

1987.

Frank, E. and Hall, M., A simple approach to ordinal classification. Machine

Learning:ECML 2001, 145-156.

Geisser, S., Predictive Inference. Chapman and Hall, New York, NY. ISBN 0-412-

03471-9, 1993.

Hand, D. J., Till, R. J., A simple generalization of the area under the ROC curve to

multiple class classification problems. Machine Learning, 45(2), 171-186, 2001.

Hanley, J. A., McNeil, B. J., The meaning and use of the area under a receiver operating

characteristic (ROC) curve. Radiology, 143, 29-36, 1982.

104

Hanley, J. A., The robustness of the “binormal” assumptions used in fitting ROC curves.

Md Decis Making, 8,197-203, 1988.

Hansen, L. K., and Salamon, P., Neural network ensembles. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 12, 993-1001, 1990.

Hart, P.E., The condensed nearest neighbor rule. IEEE Transactions on Information

Theory IT-14, 515-516, 1968.

Hastie, T., Tibshirani, R., Friedman, J., The Elements of Statistical Learning: Data

Mining, Inference, and Prediction. (Second Edition) Springer 2009.

Hassibi, K., Business Applications of Neural Networks, Chapter 9. Singapore-New

jersey-London-Hon Kong: World Scientific, 141-158, 2000.

He, H., Garcia, E. A., Learning from Imbalanced Data, IEEE Transcations on Knowledge

and Data Engineering, 21(9), 1263-1284, 2009.

Ho, T. K., The Random Subspace Method for Constructing Decision Forests, IEEE

Transactions on Pattern Analysis and Machine Intelligence, 20(8), 832-844, 1998.

Holte, R. C., Acker, L., Porter, B. W., Concept Learning and the Problem of Small

Disjuncts. Proceeding of International Joint Conference on Artificial Intelligence,

813-818, 1989.

Hossain, M. M., Hassan, M. R., Bailey, J., ROC-tree: A Novel Decision Tree Induction

Algorithm Based on Receiver Operating Characteristics to Classify Gene

Expression Data. Proceedings of the 2008 SIAM international conference on data

mining (SDM), 455-465, 2008.

105

Hubert-Moy, L., Cotonnec, A., Le Du, L., Chardin, A., Perez, P., A Comparison of

Parametric Classification Procedures of Remotely Sensed Data Applied on

Different Landscape Units. Remote Sensing of Environment 2001, 75(2), 174-187

Hunt, E., Martin, J., and Stone, P., Experiments in induction. Adacemic Press, NY, 1966.

James, G., Witten, D., Hastie, T., Tibshirani, R., An Introduction to Statistical Learning.

Springer, 2013.

Japkowicz, N., Stephen, S., The Class Imbalance Problem: A Systematic Study.

Intelligent Data Analysis, 6(5), 429-449, 2002.

Kubat, M., Matwin, S., Adding the course of imbalanced training sets: one-sided

selection. ICML, 179-186, 1997.

Kuncheva, L., Rodriguez, J., Plumpton C., Linden, D., Johnston, J., Random Subspace

Ensembles for fMRI Classification, IEEE Transactions on Medical Imaging, 29(2),

531-542, 2010.

Laurikkala, J., Improving identification of difficult small classes by balancing class

distribution. Technique Report. University of Tampere, A-2001-2, 2001.

Pesce, L., Metz, C., Berbaum, K., On the convexity of ROC curves estimated from

radiological test results. Acad Radiol, 17(8), 960-968, 2010.

Liu, X. Y., Wu, J., Zhou, Z. H., Exploratory Under Sampling for Class Imbalance

Learning. Proceedings o International Conference of Data Mining, 965-969, 2006.

106

Liaw, A., Wiener, M., Classification and Regression by randomForest. R News 2(3), 18-

22, 2002.

Louppe, G., Understanding random forests: from theory to practice. PhD thesis,

University of Liège, 2014.

Mac Namee, B., Cunningham, P., Byrne, S., Corrigan, O., The problem of bias in training

data in regression problems in medical decision support. Artificial Intelligence in

Medicine, 24, 51-70, 2002.

Maloof, A., Learning When Data Sets are Imbalanced and When Costs are Unequal and

Unknown. Proceedings of International Conference Machine Learning, Workshop

Learning from Imbalanced Data Sets, 2003.

Mease, D., Wyner, A. J., Buja, A., Boosted Classification Trees and Class

Probability/Quantile Estimation. Journal of Machine Learning Research, 8, 409-

439, 2007.

Metz, C. E., Basic principles of ROC analysis. Seminars in Nuclear Medicine. 8(4),

283-298, 1978.

Metz, C.E., Herman, B., Shen, J., Maximum likelihood estimation of receiver operating

characteristic (ROC) curves from continuously-distributed data. Stat Med,

17,1033-1053, 1998.

Mohri, M., Rostamizadeh, A., Talwalkar, A., Foundations of Machine Learning. The

MIT Press, Cambridge USA, 2012.

Quinlan, J. R., Induction of Decision Trees. Machine Learning, 1986, 1(1), 81-106.

107

Quinlan, J. R., improved use of continuous attributes in C4.5. Journal of Artificial

Intelligence Research, 1996, 4, 77-90.

Opitz, D., Maclin, R., Popular ensemble methods: An empirical study. Journal of

Artificial Intelligence Research, 11:169-198, 1999.

Pepe, M., The statistical evaluation of medical tets for classification and prediction.

Oxford: Oxford University Press, 2003.

Polikar, R., Ensemble based systems in decision making. IEEE Circuits and Systems

Magazine, 6(3), 21-45, 2006.

Provost, F., Fawcett, T., Analysis and visualization of classifier performance:

Comparison under imprecise class and cost distributions. Proceedings of the Third

International Conference on Knowledge Discovery and Data Mining (KDD-97).

AAAI Press, Menlo Park, CA, 43-48, 1997.

Provost, F., Fawcett, T., Robust Classification for Imprecise Environments. Proceedings

of the Fifteenth National Conference on Artificial Intelligence (AAAI-98), Madison,

WI. 1998.

Provost, F., Machine learning from imbalanced data sets 101. Invited paper for the

AAAI’ 2000 Workshop on Imbalanced Data Sets (AAAI-2000).

Provost, F., Domingos, P., Well-trained PETs: Improving progability estimation trees.

CeDER Working Paper #IS-00-04, Stern School of Business, New York University,

NY, 10012, 2001.

108

Rakotomamonjy, A., Optimizing area under ROC curve with SVMs. ROC Analysis in

Artificial Intelligence, 71-80, 2004.

Robin, X., Turck, N., Hainard, A., Tiberti, N., Lisacek, F., Sanchez, J., Muller, M., pROC:

an open-source package for R and S+ to analyze and compare ROC curves. BMC

Bioinformatics, 17,12-77, 2011.

Raskutti, B., Kowalczyk, A., Extreme Re-Balancing for SVMs: A Case Study. ACM

SIGKDD Explorations Newsletter, 6(1), 60-69, 2004.

Shamos, M. I., and Hoey, D., Closest-point problems. Proceedings in Annual

Symposium on Foundations of Computer Science, 151-162, 1975

Sigillito, V., Wing, S., Hutton, L., Baker, K., Classification of radar returns from the

ionosphere using neural networks. Johns Hopkins APL Technical Digest, 10, 262-

266, 1989.

Skurichina, M., Duin, R. P. W., Bagging, boosting and the random subspace method for

linear classifiers. Pattern Analysis and Applications, 5, 121-135, 2002.

Song, B., Zhang, G., Zhu, W., Liang, Z., ROC operating point selection for classification

of imbalanced data with application to computer-aided polyp detection in CT

colonography. International Journal of Computer Assisted Radiology and Surgery,

9(1), 79-89, 2014.

Sparckman, K. A., Signal detection theory: Valuable tools for evaluating inductive

learning. Proceedings of Sixth International Workshop on Machine Learning.

Morgan Kaufman, San Mateo, CA. 160-163, 1989.

109

Swets, J., Measuring the accuracy of diagnostic systems. Science, 240, 1285-1293, 1988.

Swets, J., Dawes, R., Monahan, J., Better decisions through science. Scientific American,

283, 82-87, 2000.

Tao, D., Tang, X., Li, X., Wu, X., Asymmetric bagging and random subspace for support

vector machines-based relevance feedback in image retrieval. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 28(7), 1088-1099, 2006.

Tang, Y. C., Jin, B., Granular SVM with Repetitive Undersampling for Highly

Imbalanced Protein Homology Prediction. Proceedings of International Conference

of Granular Computing, 457-460, 2006.

Tang, Y. C., Jin, B., Zhang, Y. Q., Granular Support Vector Machines with Association

Rules Mining for Protein Homology Prediction. Artificial Intelligence in Medicine,

special issue on computational intelligence techniques in bioinformatics, 35, 121-

134, 2005.

Tomek, I., Two modifications of CNN. IEEE Transactions on Systems Man and

Communications SMC-6, 769-772, 1976.

Ting, K. M., An Instance-Weighting Method to Induce Cost-Sensitive Trees. IEEE

Transactions on Knowledge and Data Engineering, 14(3), 659-665, 2002.

Tremblay, G., Optimizing Nearest Neighbour in Random Subspaces using a Multi-

Objective Genetic Algorithm. 17th International Conference on Pattern Recognition,

208-211, 2004.

Vapnik, V., The Nature of Statistical Learning Theory. Springer-Verlag, NY, 1995.

110

Weiss, G. M., Provost, F., The Effect of Class Distribution on Classifier Learning: An

Empirical Study. Technical Report MLRT-43, Department of Computer Science,

Rutgers University, 2001.

Williams, D. A., The analysis of binary responses from toxicological experiments

involving reproduction and teratogenicity. Biometrics, 31, 949-952, 1975

Wilson, D., Asymptotic properties of nearest neighbor rules using edited data. IEEE

Transactions on Systems Man and Cybernetics, SMC-2, (3)408-421, 1972.

Wolberg, W., Mangasarian, O., Multisurface method of pattern separation for medical

diagnosis applied to breast cytology. Preceedings of the National Academy of

Science, U.S.A. 87, 9193-9196, 1990.

Xu, J., Suzuki, K., Max-AUC feature selection in computer-aided detection of polyps in

CT Colonography. IEEE Journal of Biomedical and Health Informatics, 18(2),

585-593, 2014.

Zhang, H., The Optimality of naive Bayes. FLAIRS2004 conference, 2004.

Zhang, J., Mani, I., KNN Approach to Unbalanced Data Distributions: A Case Study

Involving Information Extraction. Proceedings of International Conference

Machine Learning, Workshop Learning from Imbalanced Data Sets, 2003.

Zhao, P., Hoi, S., Jin, R., Yang, T., Online AUC maximization. Proceedings of

International Conference of Machine Learning, 2011.

Zou, K., Hall, W., Shapiro, D., Smooth non-parametric receiver operating characteristic

curves for continuous diagnostic tests. Stat Med, 16,2143-2156, 1997.

111

Appendix

Averaged ROC curves and classification point for §5.2

For each data set, the averaged ROC curve of 11 classifiers are shown, from top to

bottom, from left to right for each column, they are ROC Random Forest, weighted

Random Forest, SMOTE Random Forest, down sampled Random Forest, Tomek links

sampled Random Forest, ENN Random Forest, CNN Random Forest, NCL Random

Forest, OSS Random Forest, SMOTE+Tomek Random Forest and SMOTE+ENN

Random Forest respectively. For each curve, the red point indicates the operating point

generated using 0.5 as splitting threshold.

1. Red wine quality

112

2. White wine quality

3. Breast cancer

113

4. Connection bench

5. Ozone level

114

6. Ionosphere

7. Pima diabetes

115

8. Spect

9. Vertebral

116

10. Breast tissue

11. Haberman

117

12. Banknote

13. Magic

118

14. Page book

15. Parkinsons

119

16. Seismic bump

17. Secom

120

18. Seeds

121

Averaged ROC curves and classification point for §5.3

For each data set, the averaged ROC curve of 4 classifiers are shown, from top to bottom,

from left to right for each column, they are Hybrid ROC Random Forest, weighted

Random Forest, SMOTE Random Forest, down sampled Random Forest respectively.

For each curve, the red point indicates the operating point generated using 0.5 as splitting

threshold.

1. abalone

122

2. acute

3. credit AUS

123

4. credit GER

5. credit APP

124

6. band of cylinder

7. contraceptive

125

8. animals in zoo

