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Abstract of the Dissertation

A New Method for Design of Geometrically
Shaped Structures for Prescribed

Electromagnetic Field Distribution

by

Carlos M. Pereira

Doctor of Philosophy

in

Electrical Engineering

Stony Brook University

2015

The contribution of this research work to the body of existing

knowledge is a novel design (inverse) method to compute the distri-

bution of fields when electromagnetic waves interact with surfaces.

If given a desired distribution of electromagnetic fields (radiation

pattern), the design (inverse) method developed will rapidly al-

low a designer to determine a unique geometric solution which will

provide the desired radiation pattern, which is an inverse prob-

lem. The method developed can also be used as an analysis tool to

analyze radiating or receiving structures with simple and complex
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non-linear geometric features. In the extensive literature search

provided in this work, others have used analytical methods for

computing the distribution of electromagnetic fields when waves

propagate and interact with structures. This requires a mathemat-

ical framework to be developed using time-harmonic and magnetic

fields to solve boundary value problems using closed-form math-

ematical relationships that only have closed-form solutions for a

few simple geometrical shapes. When the geometrical features of a

structure contain arbitrary shapes with irregular geometries, finite

element methods can also be used as analysis tools to handle any

type of geometrical features, however, both of these methods are

used to perform analysis of these types of problems and are very

time consuming and not suited as design tools to rapidly provide

design information on the geometry features that provide a desired

electric field distribution.

This revolutionary methodology provides a design tool which cur-

rently does not exist in the reviewed published literature. It over-

comes deficiencies presented by current analysis tools, such as the-

oretical, analytical and numerical methods which are capable of

analyzing wave propagation and interaction problems, but are not

suited to rapidly design geometrical features of radiating or receiv-

ing structures.
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Chapter 1

Introduction

1.1 Background

Analytical and numerical methods reviewed in this chapter are extensively used

as analysis tools to determine field distribution inside geometrical spaces of ar-

bitrary shapes when subjected to electromagnetic emissions. These methods

however cannot be used to design geometrical spaces with the aim of achiev-

ing a prescribed field distribution within the designed space. The latter task

requires solving an inverse problem which involves unknown geometries and

highly nonlinear effects. The new method presented in this thesis is intended

for addressing this inverse problem. The method is shown to provide the

means of designing geometrical structures that are subjected to certain elec-

tromagnetic wave propagation for the purpose of achieving a prescribed field

distribution within the space of the designed geometrical structure.

A comprehensive literature review of the fields is presented in this chapter.

An overview of the remaining chapters of this thesis is also provided in the
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last section of the chapter.

1.2 Medium of Propagation and electromag-

netic waves

Electromagnetic waves can travel through vacuum and air or other gasses and

are characterized as non-observable waves. Electromagnetic waves can also

propagate in material mediums where forms of polarizable dielectrics, mag-

netizable materials and other conductive mediums with low electron mobility

would provide propagation mediums with imperfect conductions. Propagation

of electromagnetic plane waves can be described using two time-dependent and

interrelated vectors. One vector represents the electric field component and

the other represents the magnetic field component of the electromagnetic wave.

The two vectors are perpendicular to each other.

1.3 Energy transport by electromagnetic waves

Energy transmitted by an electromagnetic wave can also be transferred to a

surface or geometry. When an electromagnetic wave interacts with a surface

and these interactions cause charge distribution on the surface with similar

time varying characteristics which could achieve resonance when the surface

structure is designed as an appropriate antenna. Since these interactions would

occur at high frequencies at the wave, the transfer of the energy to the an-

tenna is fast. For example, at a wave frequency of ten Gigahertz, the transfer

of energy would occur in less than ten cycles, which would occur in a few
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nanoseconds. Thereby the transfer of the information contained in the prop-

agating wave is transferred to the antenna almost instantaneously.

Electromagnetic waves travelling in vacuum or air propagate at a speed

which is a function of the space capacitivity or permittivity (ε0) and the free

space inductivity or permeability (µ0). The wave travels at the measured

quantity of one over the square root of the capacitivity of free space multiplied

by the inductivity of free space, and the result of this calculation is the speed of

light c . Vacuum is characterized as the absence of a medium. Electromagnetic

waves can propagate and transfer energy in vacuum by producing electric

charge vibrations which generate the electric field vector component and by

producing charges in motion which generate the magnetic field component.

Together the electric field and the magnetic field vectors are interrelated in

time and space and can be expressed as a set of four differential equations

known as Maxwells equations.

The transfer of energy to interacting surfaces of an object depends on the

surface material and the amount of energy carried by the propagated wave.

At the point of interaction with the surface of an object, the propagating wave

produces a small current, which can serve as a source charge. Then depending

on the surface material properties, the energy may be absorbed by the material,

and/or scattered and/or propagated back. In the surface interaction process,

electric fields are generated by electric charges (current) and magnetic fields

are generated by charge motion. As a propagating wave interacts with the

surface of an object, the electromagnetic wave produce currents and fields on

the object surface depending on the capacitivity (ε0), inductivity (µ0), and

the conductivity (σ) of the surface material. The propagated wave behaves as
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an energy source and as it impinges upon the medium particles of the object

surface, thereby producing electric charges that oscillate at the wave frequency.

The surface medium response to the generated oscillatory current is based on

its capacitivity (ε0), inductivity (µ0) and the conductivity (σ).

Propagation of electromagnetic (EM) waves in free space or any unbounded

homogeneous medium has been analyzed using various analytical methods

[4]. In many such methods a combination of closed form solutions for some

components of the distribution of the scattered electromagnetic fields over a

surface is combined with an approximated solution for the remaining terms

that are difficult to treat to obtain an approximate overall solution.

Perturbation methods are an example of the methods used in published

literature [7]-[16]. Such methods have been applied to both scattering con-

figurations from and through layered structures and the scattering response

is obtained as the superposition of single-scattering due to local interactions

filtered by the layered structure. Here the filtering action is considered to arise

from the interferential effects due to the coherent interactions with the bound-

aries. The physical meaning of the first-order perturbative approximation in

the layered structure context is described [17] and [18]. In these studies, the

expansions permit a time domain characterization of the scattering response,

since each wave of the series corresponds to a reflection that will be received

with a different time delay.

Other methods used to study electromagnetic propagation involves the ap-

plication of differential form and integral form of Maxwells equations [19],

which are used to derive Stratton-Chu and Galerkin formulations. These for-

mulations are suitable for the development of numerical schemes which provide
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to obtain distribution of fields. Other theoretical and numerical methods have

been based on spatially averaging electric field in the beams with circular

aperture [36]. Some closed-form expressions have been derived using these

methods.

In another study, electromagnetic wave propagations and interactions with

surfaces are formulated using differential forms as a method to represent

Maxwells equations and derive appropriate boundary conditions [19]. The

formulations presented in this work this work are limited to certain geomet-

ric shapes of the interacting surfaces. Approximations to analytical expres-

sions are also made when constructing integral equations for shapes other than

square, rectangles or circles. The methods presented in [19] the Stratton Chu

integral equations are derived in terms of differential forms. The correspond-

ing Galerkin formulations are also constructed to develop numerical schemes

to obtain approximations of field distributions in curvilinear geometries [29].

It is also noted that the lowest order approximations on flat geometries reduce

to forms essentially equivalent to the standard Rao-Wilton-Glisson functions.

The effect on accuracy has also been investigated.

A theoretical and numerical investigation of the spatially averaged electric

field in the beam of a circular aperture is presented in [36]. The investigation

leads to closed-form analytical expressions, based on scalar diffraction the-

ory, which describes the spatially averaged electric field in the Fresnel region

of a circular aperture excited by a spatially uniform, harmonic plane wave

[37]. The expressions ultimately permit a practical way of predicting certain

routine electromagnetic measurements. Because the expressions are valid in

the Fresnel region, they are also valid in the near field, the far field, and the
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Fraunhofer region of a circular aperture [38]. It is also shown that the closed-

form expressions contain, as special cases, classic on-axis and far-field results

associated with a circular aperture. The analytical expressions are based on

a generalization of Fresnel diffraction originally developed by Lommel in the

late 1800s [39]. It is also shown that the results obtained from the closed-

form expressions compare quite favorably to results obtained from the exact

solution computed via the dyadic Greens function approach [36].

Other published work based on vector analysis of the electromagnetic (EM)

fields radiated from thin circular geometries such as a circular structure [41]

and the study of near field solutions [54] require various assumptions such as a

known and constant current distribution on the thin circular antenna structure,

places restrictions on the solution and would only apply to circular structures

where the radius of the loop is relatively small. It also provide solutions for the

near field problem if the induction fields converge rapidly. For circular loops

of arbitrary radius a, the authors use a dyadic Greens function to derive the

fields [41]. The analysis is claimed to be more general than those published in

[42] and [43].

In another study [50], the exact solution of the EM fields in the near and

far zones outside the region (where r > a) is derived by the use of the spherical

Hankel function of the first kind, but also the closed-series form of the EM

fields radiated in the near zone is obtained in series of spherical Bessel func-

tions of the first kind. A Fourier cosine series is used to expand an arbitrary

current distribution along the loop and the exact representations of the EM

radiated fields are obtained in closed form [51]-[52]. Validity of the approxi-

mate formulas is discussed. Error analysis based on numerical computations
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of the radiated fields is also given to show the accuracy of the limiting cases.

For fields interacting in the near-field, the work reported in [54] assumes

a constant current distribution on the circular wire in free space. An exact

integration of the vector potential is performed without recourse to approx-

imations. In [55]-[65], with electric and magnetic field components in an in-

finitesimal model, electromagnetic field components of the constant current

circular loop antenna are determined by direct series differentiation. These

solutions are valid in the near and also far field, although many terms of the

series are needed for convergence.

Fast and robust solutions of the Helmholtz equation (and the Schrodinger

equation for two-dimensional systems) is an important class of wave chaos

problems [76]. The interaction of a propagated wave with rectangular, ellipti-

cal and circular geometries filled with homogeneous medium materials and the

resulting distribution of the fields has been calculated in [77] with the bound-

ary conditions due to the cavity surface irregularities. Geometries that are

not chaotic or cannot be integrated have been studied in [78]. In particular,

wave functions inside the billiard are expressed in terms of a simple expansion

of Hankel functions. The study discusses the implementation of the approach

and the classical bowtie cavity is considered as a case study to demonstrate

the versatility and efficiency of the method. To validate the accuracy, the field

distribution and the eigenvalues calculated using this approach are compared

to the solution obtained by boundary integral method. Chaotic cavity and

related methods have been studied extensively for applications to electromag-

netic interference studies and electromagnetic hazards, particularly for devices

that are subjected to extreme electromagnetic fields. The main assumption
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made when using chaotic methods is that the platform where the cavities are

located is much larger in size than the cavities. Because of the high noise

floor nature of the extreme electromagnetic dynamic environments, the data

collected has been studied using statistical methods [79]-[81].

Electromagnetic fields interacting with apertures of 3-D conducting struc-

tures and filled with dielectric materials have been analyzed using equivalence

principle methods to formulate the solution in two parts [82]. The first part

consisting of the internal region of the 3-D conducting surfaces outlined by

the aperture boundaries and the external region of the 3-D conducting sur-

faces. Integral equations are derived and solved numerically using Method of

Moments technique. The Method of Moments numerical technique is applied

to both the aperture and the conducting surfaces by dividing the surfaces into

triangular patches to best arrive at a solution of the integral equations and

the results were validated using various numerical methods.

Using modal expansion techniques for situations where the slot length was

much larger than the slot width, field distributions on closed surfaces have

been calculated [88], [100], [101]. The method is valid when the slot width is

very small compared to the slot length and the approximate field distribution

on the slot surface is assumed to be a cosine function. In [102]-[104], the

authors used Method of Moments to analyze the fields interacting with long

and very narrow slots. A more accurate technique was used in [104] to analyze

a uniform microstrip line [104]. In [106] the development of numerical method

based on the MoM technique is reported for the analysis of bound and leaky

modes on printed structures.

The studies of the interaction of a propagated wave with a perfect elec-
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trically conducting circular cylinder is reported in [107]. Using the Uniform

theory of diffraction (UTD)-based approach the interaction of incident electro-

magnetic fields in circular cylinders outside the paraxial has been determined

[108]. In regions close to the axis, however, the results become less accurate.

A solution to determine the magnetic surface currents both within and out-

side the paraxial region of a perfectly conducting cylinder has been obtained

using an approximation of the Henkel Function by a uniform asymptotic ex-

pansion within the spectral range of the relevant Greens function. For cases

where the radius of the cylinder is not small, asymptotic solutions that pro-

vide a canonical solution of a PEC circular cylinder is a useful technique as

supported by [109] which uses the work reported in [115]-[116]. The most ac-

curate method is described in [115] which is based on Debyes approximation.

The related work reported in [125] and [126] are complimentary and provides

an accurate solution in both the paraxial region and the region outside of it.

In [117], it is assumed that the impedance boundary conditions are linear and

that the impedance boundary conditions [142]-[148] can be represented by the

ratio of the electric field and the magnetic field. Superposition is then used

to determine the resulting charge distributions due to electromagnetic wave

interactions.

For communicating information and sensor data using radar techniques

extensive analysis has been performed using edge slot structures arrays [150]-

[157]. Radiation patterns were derived and analyzed using 1D arrays and mod-

eling assuming that the waveguide has infinite length [158]-[159]. These work

use modeling methods employing equivalent electric and magnetic currents in

the analysis of slot apertures. For 2D modeling of infinitely long waveguide
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structures, direct methods were considered in efforts reported in [161]-[162].

However, the solutions presented by these direct methods generate very large

equations with numerous unknowns. To perform this analysis more efficiently,

a higher-order method of moments (MoM) technique was developed. It was

shown that the approach can significantly reduce the number of unknowns.

Higher order basis functions have also been used in [163]. The radiation pat-

tern, reflection and transmission coefficients are found to agree with other

methods and are found to be accurate. To analyze various types of complex

waveguide structures, Galerkin finite element time domain methods have been

investigated [164]. It has been shown that using these methods it is possible to

analyze complex waveguide structures using tetrahedral patches instead of tri-

angular patches [119]-[181]. In these studies, higher order functions were used

to reduce the number of unknowns and thus reduce the number of equations

to solve and save computation time. Complicated structures were analyzed by

using six-port power dividers, horn monopoles and circular monopoles. As a

method to further speed up computation time, local time stepping [164] was

used.

Methods for determining how much propagated energy can be absorbed

by conductive ferromagnetic wires were investigated in [202]. Both finite and

infinite lengths were considered and a detailed analysis of the absorption spec-

trum of these wire structures were performed. The design and architecture

of electromagnetic absorbers were investigated in [203]-[205] and different ma-

terials for these absorbers were investigated in [206]-[207] as well as artificial

electromagnetic materials [208]-[214]. Methods to formulate the problem in

resonant cavities, microstrip lines and coaxial lines are reported in [219]-[221].
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The results of the studies were validated using ferromagnetic wires in a rect-

angular waveguide. The computations used previous work reported in [217],

[222], [223], in which scattering problem of infinitesimal ferromagnetic wires

and antenna and the electromagnetic response of finite-length wires are studied

[211].

In [237], a comprehensive review of various extensions of finite-difference

time-domain (FDTD) and finite-element time-domain (FETD) is presented.

These studies include electromagnetic wave propagation in complex media in-

cluding dispersive, anisotropic, inhomogeneous, and also those including the

nonlinear properties of the propagation medium. The literature search in-

dicates the difficulties of obtaining analytical solutions [237] and as a result

numerical methods are generally needed to discretize Maxwell equations di-

rectly onto a 3-D surface in order to resolve boundary conditions at medium

interfaces and to define the existence of electric and magnetic fields and how

the transfer of energy from an incident traveling wave is either reflected or

scattered or transmitted at the medium interface. In [237], examples of com-

plex mediums with inhomogeneous and frequency dispersive properties, such

as biological tissues were studied. In addition, electromagnetic wave interac-

tion characterization with earth which involve a random number of medium

types such as rocks, dry and wet soil types, snow, water and vegetation present

highly complex dielectric materials with complex constitutive parameters are

addressed. A comprehensive review of Finite-Element Methods as applied to

electromagnetic field problems in complex mediums with special considera-

tion to applications of finite difference time domain methods (FDTD), and

finite element time domain (FETD) methods for transient phenomena in com-
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plex media is presented in [242]. A comprehensive review of finite methods

and spectral methods addressing integral-equations-based boundary element

methods in complex media is presented in [238]-[248].

In summary, numerical methods are used to investigate electromagnetic

fields and spatial distributions involving structures with arbitrarily shaped ge-

ometries and where the conductivity , or the permittivity , or the permeability

may vary with sharp transitions [4]-[81]. In such problems, analytical meth-

ods are very difficult to impossible to use to obtain closed-form solutions. In

short, for simple geometrical shapes such as a circle, cylindrical rectangle or

square shapes and simple electromagnetic input waves it may be possible to

develop closed-form solutions. However for most cases where the geometry

of the structure may be more complex, analytical methods cannot be used to

determine charge and fields distributions. In such cases, the only viable option

is the use of numerical methods (see for example, [117], [142], [148]).

The contribution of work being reported in this thesis is the development

of a new method for the design of structural geometries that when interacting

with emitted electromagnetic waves would provide a prescribed field distribu-

tion within the structure. The numerical methods that have been developed

to date can be used to determine field distribution in a given geometrical

structure for a given interacting electromagnetic wave. The contribution of

the work being developed is the development of a methods that can solve the

inverse of this problem, i.e., determine the structural geometry that can yield

a desired field distribution.

Chapter 2 presents the aforementioned developed method in detail together

with its theoretical basis and simple example of its implementation. The
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design tools described in the Chapter 2 will provide the means to quickly

determine an approximate geometry to achieve the desire field distribution.

The initially established grid sizes and wave profile approximation and time

increments may then be refined to converge the field distribution as closely

as possible to the prescribed distribution. In the Chapter 3, several design

problem examples are presented and the process of arriving at the desired

field distribution is described in detail. The results of the Finite Element

modeling and analysis of the designed geometrical structures using ANSYS

software validating the designs are also provided. A discussion of the developed

method and its potentials, conclusions that can be reached and suggestions for

future work are provided in the Chapter 4.
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Chapter 2

A New Method for Determining

Electromagnetic Field

Distribution In Arbitrarily

Shaped Structures

2.1 Introduction

This chapter describes a novel method for determining the field distribution in

a region of space comprising enclosed partly by surfaces with arbitrary geome-

tries and material characteristics due to propagating electromagnetic waves.

The instantaneous, spatially dependent, electric field is a vector sum of all

the fields at the spatial location of interest. In principle, the time evolution

of the field distribution at an arbitrary spatial location can be evaluated at

discrete time intervals. The geometric method described here represents a rev-
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olutionary departure from the currently accepted methods of computational

electromagnetics, which provide a numeric solution to an assumed model. This

departure is a significant step towards the development of design tools for the

design of geometrical cavities or the like to achieve a prescribed field distri-

bution pattern. These design tools rapidly provide a general direction to the

determination of optimal geometries for achieving prescribed field distribu-

tions.

The thrust of the research being reported is the development of a method-

ology for the construction of realistic models for determining field distribution

within geometrical cavities and the like with surfaces of various material char-

acteristics. The method allows the determination of field distribution to any

desired accuracy. As a result during the design phase one may start with

very approximate distributions that can be used to determine general geome-

tries and surface characteristics that would yield the desired field distributions.

The geometries and surface characteristics can then be refined by moving into

more accurate field distributions and incorporating their effects. For example,

using the developed method one can design a cavity structure which has a

highly asymmetric angular response to incoming radiation or another model

might seek to produce a spatial null and isolation from the incoming radiation.

The developed innovative method provides a time domain analysis, based on

periodic functions, which is suitable for realistic causal systems and permits

transient analysis of geometrical structures. The frequency response of the

system can be obtained by a Fourier transform of the temporal response.
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2.2 Method for the Design of Geometrically

Shaped Structures for Achieving Prescribed

Electromagnetic Field Distributions

Propagation of electromagnetic waves in any arbitrary media is characterized

by Maxwells equations, and the constitutive relations. Particular solutions,

subject to boundary conditions, are obtained using either analytic solutions or

numerical techniques. These are well understood and numerous textbooks are

available on the subject matter. It is not the intent to reproduce these methods

here. It surmises to say that any electromagnetic field can be decomposed into

a finite superposition of plane wave fields. The simplest electromagnetic wave

is a transverse electromagnetic (TEM) plane wave, which propagates in free

space at the speed of light c, with a characteristic wavelength λ and velocity v.

In simple resonant structures, such as Fabry Perot, higher order modes exist

in the structure and any one of those modes can generally be decomposed

into a pair of counter-propagating plane waves. In a more general geometry,

the solution space may comprise of both stable, localized resonant structures,

as well as, unstable structures. The field distribution at a spatial location

(x, y, z) at some time tj, is a superposition of waves, originating from either

multiple independent sources or multiple reflections or due to scattering. It is

imperative to note the subtle difference in the use of “superposition”, which

is typically applied to determine the output response of linear systems when

excited by an arbitrary input comprising of a harmonic expansion. Here, the

superposition is applied to the outputs and no system linearity is assumed.
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This formalism is extremely powerful as it allows for inclusion of non-linear

effects, which are necessary to describe the response of geometrical singularities

occurring at the sharp corners (90o bends).

The research work reported in this thesis has applied this novel design

approach to characterize the interaction of electromagnetic waves, particularly

in the GHz regime, with geometric structures formed by shaping conducting

and non-conducting surfaces. However, the methodology is applicable to broad

classes of travelling waves interacting with physical structures. The effect of

the shape and location of the surfaces for a required electric field distribution

can also be assessed rapidly.

For example, this methodology can be used to design an effective system

of gates/walls to protect harbor assets from storm damage. Another example

could be in determining structures with geometric features which can be de-

signed to have a unique geometric solution to provide a required electric field

distribution so as to isolate sensitive electronics from a high field distribution

broad band electromagnetic pulse (EMP).

In summary, my contribution to this work and the objective of the devel-

oped design tools is to determine a solution for the geometric features of a

structure given a required distribution of the fields or radiation pattern. This

is described as an inverse problem and is highly challenging because complex

geometries have highly non-linear features which makes direct solution impos-

sible and generally present more than one solution for the geometric features

of a structure.

17



2.3 The Developed Method for Field Distri-

bution Analysis and as a Design Tool

The fundamental concepts of the developed design method are discussed here

through the use of a simple example of metallic (perfectly conducting) surfaces

interacting with monochromatic waves, describing the scalar component of the

electric field of the EM wave. A full time-varying response is obtained by

determining the spatial response at discrete points of time, conforming to the

fastest component in the system.

Consider the two-dimensional solution space, defined by a planar surface

of finite extend as illustrated in Figure. 2.1. In the absence of any structure, a

plane wave enters the solution space at t = 0. The electromagnetic plane wave

varies sinusoidally in time and space and propagates in the Y direction. The

electric field component of the incoming electromagnetic wave is considered to

vary sinusoidally in the Z direction with a value of +1 volts per meter and −1

volts per meter. The incoming wave is assumed to be propagating in free space

(ε0), however, the method being described will accommodate any permittivity

characteristics. The incoming wave can be considered a plane wave in the

absence of any structure that enters the incidence path of the wave.

Now consider a finite planar surface that is positioned perpendicular to the

XY plane as shown in Figure. 2.1. Then when the incoming wave interacts

with this surface, it is reflected depending on the angle of incidence and the

surface materials. Here the surface is considered to be metallic and perfectly

conductive. The next step is to consider how the fields are distributed over the
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surface at one instant of time. To this end, we lay a grid over the surface of the

XY plane, thereby sub-dividing the space into small grid elements. The size

of the grid elements must be smaller than the wavelength, preferably at most a

quarter of the wavelength, so that we can examine each of the grid elements and

determine the amount of charges distributed over the surface of the grid. The

amount of charges distributed over a grid surface will be the combination of

the amount of charges that are contributed by all electromagnetic waves that

pass over the grid surface. The geometry of the incident wave is obviously

sinusoidal, but may also be approximated by a step-wise pattern with the

desired number of steps per period. The coarsest such approximation is a

square wave and is used in the present example to describe the developed

method. When the incident plane wave interacts with a surface, the surface

geometry and material and the angle of incidence will determine how much of

the incident field will be reflected off the wall and the direction of the reflected

wave.

The process of determining the distributions of charges resulting from the

incoming plane wave and its interactions with the surface of a surface such as

the one shown in Figure. 2.1 at a given instant of time, the following steps

are followed. Firstly, the interacting surface is removed and only the incident

wave is considered. It is noted that if there are more than one incident wave is

present, then each wave is similarly considered one at a time. From the magni-

tude of the electric field in each of the grid surfaces is determined (which could

be determined as an average value or even more coarsely the closest value of

the aforementioned square wave approximated incident wave). Next, the afore-

mentioned surface, Figure. 2.1, is considered to be present and the amplitude
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and direction of the reflected wave is determined based on the characteristics of

the inserted surface. Once again, the distribution of the electric field over each

grid element is similarly determined. It is again noted that if there are also

more than one surface element, the reflections of each incident wave and their

reflected waves over the surface of each grid element is similarly determined.

Due to the linear characteristics of the present system, superposition is then

used to add the contribution of each incident and reflected waves to the total

electric field strength over the surface of each grid element. The distribution

of the electric filed over the entire surface as bounded by the reflecting sur-

faces at the selected instant of time is thereby determined. A snapshot of the

charge distribution over this surface at the selected instant of time is thereby

obtained.

The next step is to determine how the charge distribution varies over time.

To this end, the charge distributions over the aforementioned surface and in-

side the laid grid surfaces are determined over the desired length of time at

small increments of time ∆T . The time increments ∆T must obviously be sig-

nificantly smaller than half of period of the highest frequency electromagnetic

incident wave considered. At each time interval, the above process is repeated

and the distribution of electric field over the surface of each grid element id

determined. For a steady state condition, the total length of time that needs

to be covered is equal to the period of the wave with the longest wavelength.

As a result, the time history of the field distribution over the aforementioned

surface is determined and can be depicted in a manner similar to a video.

It is also noted that even though in the above description as well as in

Figure. 2.1 a two-dimensional grid is shown to be used to discretize the XY
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plane, the discretization is readily extended in the Z direction to obtain a

three-dimensional grid within which the field distribution is similarly deter-

mined at each increment in time.

It is noted that by reducing the time intervals ∆T and by reducing the

aforementioned grid size over the surface (space) to be studied, the accuracy

of the obtained field distribution is increased. In fact as the time interval

and the grid size tend to zero, the obtained field distribution tends to its

actual analytically defined distribution. This shows the validity of the present

approach for determining field distribution in arbitrarily shaped geometrical

structures.

2.4 Example: Design of Geometrical Struc-

tures for a Prescribed Field Distribution

The following example is intended to clearly illustrate how the developed

method can be applied to determine electric field distribution in arbitrary

geometrical structures with any specified material characteristics. Initially we

need to consider an arbitrary starting time, indicated here as time t = 0. The

aforementioned snapshot of the status of the electromagnetic wave is then de-

termined using the method described above. The starting phase of one of the

incident waves at a specified spatial location is also used as reference at the

above initial time of t = 0. In this example we also consider a two-dimensional

solution space as was described for the example of Figure. 2.1, where a plane

wave enters the solution space at t = 0. The electromagnetic plane wave prop-
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agates in the Y direction. The incident electromagnetic wave is polarized with

the electric field considered to in the Z direction with a value of +/− 1 volts

per meter. We will consider an incident wave that at the starting time t = 0 is

at zero phase along the X axis, Figure. 2.2. The spatial grid used to discretize

the space of wave propagation of interest is a quarter of wavelength in size and

square in the XY plane as shown in Figure. 2.2. A fully conductive metallic

surface is positioned perpendicular to the XY plane at 45 degrees angle as

shown in Figure. 2.2. For the sake of simplicity, the wave is approximates as

a square wave. The grid subdivides the space into squares in XY plane (cube

in XY Z space) a quarter wavelength in size.

Following the present method, the first step is to remove the reflective

surface, and lay the aforementioned grid over span of the XY plane to be

considered as shown in Figure. 2.2. With the reflective surface removed, the

distribution of the electric field (as approximated by a square wave) and at

the time t = 0 at which the wave has a zero phase along the X axis is deter-

mined over the grid area. Noting that the square grids have a quarter of the

wavelength size, the first two grids (in the Y axis direction) have an electric

field amplitude of +1 volt, followed by two grids with an electric field ampli-

tude of −1 volt as shown in Figure. 2.2. The pattern is repeated as shown in

Figure. 2.2.

The next step is to place the finite sized reflective surface (with fully con-

ductive surfaces) back as shown in Figure. 2.2, as shown to be oriented at 45

degrees with the incident wave. Considering no surface loss, the incident wave

would have been reflected with the same angle with the normal to the surface

as shown in Figure. 2.3, in this case parallel to the X axis. It is noted that
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in Figure. 2.3 only the electric field generated by the reflected wave is shown.

Here since the reflective surface is considered to be fully conductive, the wave

would have been reflected with a reflection coefficient of negative one (−1).

The reflected electromagnetic wave is re-transmitted from the point of inter-

action at the fully conductive metallic surface. The distribution of the electric

field due to the latter re-transmitted electromagnetic field over the affected

grid elements (parallel to the X axis) is similarly determined and is shown as

indicated in the Figure. 2.3.

Now by superimposing the field distributions over the grid elements due

to the incident wave as shown in Figure. 2.2 and due to the reflected wave as

shown in Figure. 2.3, the electric field distribution over the selected surface

area is determined as shown in Figure. 2.4. The resulting distribution clearly

shows the effect of the fully conductive surface on the distributed field at the

selected time t = 0. The process can then be repeated at small enough time in-

tervals for a full period of the wave. As a result the time history of the electric

field distribution over the selected surface area is determined. By reducing the

size of the grids and by making a finer step-wise approximation of the electric

field along the line of wave propagation, a finer resolution field distribution is

obtained. If more than one incident wave is present (with the same wavelength

or with different wave lengths) and/or if more than one reflective surface is

present (with any material properties), their resulting electric field distribu-

tions are similarly determined (one by one) and their superposition provides a

map of the electric field distribution over the selected surface area. It is also

appreciated that the incident waves do not have to be polarized and if not

polarized, the electric field variation along the travelled path at the selected
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instant of time has to be included.

Figure. 2.5 shows an isometric view of the incident wave and the reflected

wave shown in Figure. 2.4 at time t = 0 to more clearly show the process of

determining the contribution of each to the resulting electric field distribu-

tion over the selected surface area. The approximated square wave incident

and reflected waves ant the result of incident wave interaction with the fully

conductive reflective surface is also clearly show. In this case, at the reflective

surface if the incident wave has an amplitude of 1 volt/meter, than the reflected

wave amplitude is seen to be −1 volt/meter. The change in the direction of

the incident wave obviously follows the geometric law of reflection.

The time history of electric field distribution within the selected space is

similarly determined by repeating the above process at small enough time

intervals.

2.5 Summary

The present powerful method can be used to determine steady state as well

as transient electric field distribution in any geometrical cavity constructed

with arbitrarily shaped surfaces with different material characteristics when

interacting with one or more polarized or non-polarized incident waves with

fixed or varying amplitude and/or frequency. The method was shown to work

for electromagnetic waves, but is is readily seen to work with almost any other

wave types with any fixed or varying frequencies. The user must obviously

note that spatial discretization must consider the wavelength of the shortest

incident wave. The time increments between each field distribution snapshots
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must also be considered to ensure that they are significantly smaller than half

or even a quarter of the wave periods. The obtained field distributions and

their time history may be determined with any accuracy by appropriately

sizing the grid sizes and the time intervals. The method also can be seen to

ready handle the presence of dielectric materials, even with spatially varying

physical characteristics.

The method has the needed flexibility to easily define complex 3D surfaces

by appropriate grid size selection. The 3D grid (voxel) elements may have

fixed or varying geometries to accommodate the overall geometrical shapes and

boundary conditions being considered. In the following chapter it is shown how

the present method can be used to design geometrical structures to achieve a

prescribed filed distribution with a selected space.
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Figure 2.1: Two-dimensional solution space, defined by a planar surface of
finite extend.
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Figure 2.2: Incident wave starting at t = 0 with zero phase along the X-axis
and a discretization grid of one quarter of the wavelength.
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Figure 2.3: The electric field distribution at the time t = 0 due to the reflection
of the incident wave.
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Figure 2.4: The distribution of the electric field due to the incident electro-
magnetic and its interaction with a conductive surface.
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Figure 2.5: An isometric view of the distribution of the electric field due to
the incident electromagnetic and its interaction with a conductive surface.
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Chapter 3

Development of a Method to

Design Geometrical Structures

to Provide a Prescribed

Electromagnetic Field

Distribution

3.1 Introduction

This chapter illustrates the power of the design methodology described in the

previous chapters by detailing the steps of the inverse problem through four

diverse scenarios. In all examples, the sensor structure comprises of reflect-

ing structures, orientated and positioned in free space. Further, the assumed

structures are two dimensional and are illuminated by a plane wave source,
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however, it is appreciated that the methodology is applicable to be multidi-

mensional structures, which are illuminated by any arbitrary electromagnetic

wave.

The objective of the inverse problem is to determine the location and ori-

entation of the reflective surfaces, given the desired spatial distribution of the

field. The four cases considered below are: 1) a localized region of high field

strength; 2) a localized region of null field strength; 3) distributed regions of

maximum filed strength; and 4) a localized region of minimal field strength.

In all the examples considered, a spatial discretization of λ/4 is sufficient to

demonstrate the methodology, while the source wavelength discretization of

λ/2 will suffice.

To verify the efficacy of the methodology and the validity of the inverse

solution obtained, a commercial finite element analysis high frequency elec-

tromagnetic solver, ANSYS, was used to compare the desired and analytical

fields.

3.2 Case 1: A Localized spatial region of high

field strength

The first case study uses the described method to determine the orientation

and location of the reflectors so that the field distribution has a region of

high field strength as sketched in Figure. 3.1 and indicated by the point D1.

This condition requires that, at the location D1, the field contributions from

incident, reflected or scattered waves must be in-phase, leading to constructive
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addition.

A Cartesian co-ordinate system, as sketched in Figure. 3.1, is used to define

the various components needed to describe the inverse problem. An incident

electromagnetic wave propagates in the Y -direction with its amplitude varia-

tions in the negative Z-direction. As a result of the λ/2 discretization, two field

values of positive one and negative one are allowed in any of the spatial pix-

els, as shown in Figure. 3.1. Furthermore the electromagnetic wave enters the

sensor structure at Y = 0 and is considered to propagate in the Y -direction.

As a result of this condition, all pixels along the X-axis have a value of one

indicating that they are in phase. It should be noted that Figure. 3.1 is a snap-

shot of the electric field amplitude in the absence of any geometric structure.

Here the binary discretization of the sinusoidal amplitude distribution leads

to an approximate solution but adequately illustrates the functionality of the

proposed method. While the use of a finer grid size will increase accuracy, the

increased the computation time limits the ease with which design trends can

be readily explored by rapidly manipulating the model geometry.

However, it should be noted that the above discretization of space and time

leads to solutions which approach the true solution in the limit of infinitesi-

mally small step size.

With reference to Figure. 3.2, a proposed solution to this case study, com-

prises of a pair reflecting surfaces S1 and S2 which receive the incident electro-

magnetic wave and reflected radiated fields that contribute to the average field

intensity at location D1. The sequence of Figures. 3.2 through Figures. 3.4

highlight the individual components of the net field amplitude in the spatial

region D1. Figure. 3.2 shows the reflected field contributions from surface S1
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at location D1 and Figure. 3.3 shows the contribution from a selected surface

S2. The net field amplitude arising from the superposition of the contributions

from surfaces S1, S2, and the incident field for is sketched in Figure. 3.4. The

spatial distribution is a snapshot of the field amplitude, corresponding to a

particular a phase of the propagating incident EM plane wave. Subsequently

a temporal variation of the spatial field distribution is constructed by taking

multiple snap shots at different phase points of the incident plane wave.

In summary, the interaction of the incident electromagnetic wave with

surfaces S1 and S2 produces the desired high field distribution in the spatial

region D1. One possible solution is characterized by the two reflecting surfaces

orientated at 45o and positioned as indicated in Figure. 3.2.

The efficacy of the design is established by obtaining a numerical solution

of the electric field amplitude for the particular sensor design obtained using

the new methodology. As discussed in Chapter 1 several numerical techniques

for determining the electric field amplitude for arbitrary structures are avail-

able. Of these the ANSYS MultiPhysics finite element analysis software is

used in this thesis. The model is created using ANSYS APDL environment

and the high frequency EM solver is used to extract the vector solution of

the spatial distribution of the electric field. Figure. 3.5 is a cross-sectional

view of the geometric model. The sensor volume includes the two reflecting

surfaces, labeled S1 and S2, corresponding to surfaces D1 and D2 referenced

in the above discussion. The sensor volume is surrounded by a volume defined

as a computational domain, which defines the complete solution space. The

computational domain is surrounded by a perfectly matched layer (PML) to

absorb all the incident EM wave, preventing unwanted reflections from enter-
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ing the computational space. The surface S1 is defined by a planar surface

passing through points (0, λ, 0) and (0.5λ, 1.5λ, 0). The surface S2 is defined

by a planar surface passing through points (3λ, λ, 0) and (3.5λ, 1.5λ, 0). Fig-

ure. 3.6 is a vector of the electric field in the computational volume. The phase

of the incident plane was adjusted to be the same as that used in the inverse

method described above. The region enclosed by the squared corresponds to

the spatial region D1 where the electric field amplitude is high. There is high

correlation between the numerical results and the desired response, indicating

that the sensor, designed using the methodology described here, is a viable

inverse solution.

3.3 Case 2: A Localized null region of field

strength

A second examples seeks to find a sensor structures that produces a localized a

null spatial region. In other words, the inverse problem can be stated as, find

a geometric structure that provides isolation from the incident electric field

without the use of a conductive enclosure. With reference to Figure. 3.7 the

particular null region is labeled as D2. All other pixels are filled with numeric

values corresponding to the discretized incident plane wave in the absence of

any structures within the computational volume.

The conceptual approach to the inverse problem dictates that an additional

planar surface needs to be added to the sensor model developed for Case 1. As

described above, the inverse problem is solved by breaking down the problem
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into it independent fields arising from each of the surfaces and adjusting the

surface location and orientation that leads to the desired net field distribution

in the localized area D2.

Solution to the inverse problem begins by considering two perfectly con-

ducting surfaces S1 and S2 orientated at 45o and −45o. The surface S1 is de-

fined by a plane passing through points (0.5λ, λ, 0) and (λ, 1.5λ, 0). The surface

S2 is defined by a plane passing through points (3λ, λ, 0) and (3.5λ, 1.5λ, 0).

Figure. 3.8 and Figure. 3.9, show the corresponding field amplitudes from S1

alone and S2 alone, respectively. The resultant field from the superposition of

reflected waves from the two surfaces S1 and S2 produces a null in the spatial

region D2 as illustrated in Figure. 3.10. However, when the incident filed is

included in the summation, the net field amplitude in region D2 in longer zero

as shown in Figure. 3.11.

It is clear that an additional conducting surface is required to null out the

field in the spatial region D2. One possible location of the reflective surface

S3 is determined by requiring that the field due to S3 alone should have

an amplitude of −1 in the spatial region of interest D2. As illustrated in

Figure. 3.12 the surface S3 has an orientation angle of 0o and is defined by a

plane passing through points (1.5λ, 2λ, 0) and (2λ, 2λ, 0). Figure. 3.13 shows a

solution to the inverse problem of case 2, comprising of three reflecting surfaces

with the given orientation and location. The net electric field arising from the

superposition of the incident and reflected waves leads to a null in the spatial

region D2.

As in Case 1, the efficacy of the designed sensor geometry is assessed by

comparing the expected field distribution in region D2 with that computed us-
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ing ANSYS. Figure. 3.14 is the generated geometric model for ANSYS simula-

tion. Figure. 3.15 shows the vector plot of the electric field in the computation

volume. A spatial region D2, indicated by the square outline, clearly shows

that the net electric field is zero. It should be noted that ANSYS simulation

has been performed with an element size of λ/20.

3.4 Case 3: Distributed spatial regions of high

field strength

This particular inverse problem seeks to find a sensor geometry that results in

distributed regions of space with the required field strength. In this particular

example, a maximum electric field amplitude is required in two distinct spatial

regions labeled D3 in Figure. 3.16. Following the above described method

for solving the inverse problem, the contribution of each reflecting surface is

considered separately and as pairs, until the desired field amplitude is obtained

in the designated spatial regions.

Figure. 3.17 shows the field amplitude corresponding to a single reflector

S1, orientated at 45o defined by a plane passing through points (0, λ, 0) and

(0.5λ, 1.5λ, 0). Figure. 3.18 shows the field amplitude corresponding to a single

reflector S2, orientated at −45o defined by a plane passing through points

(3λ, 1.5λ, 0) and (3.5λ, λ, 0). Figure. 3.19 is the field amplitude distribution

due to S1 in the presence of S2. Figure. 3.20 is the resultant field amplitude

distribution from reflections arising from both S1 and S2. Since the design

requires a resultant field amplitude greater four times the initial amplitude

37



additional reflecting surfaces are needed to obtain the perquisite amplitude in

the regions D3.

Figure. 3.21 shows the field amplitude corresponding to a single reflector

S3, orientated at 45o defined by a plane passing through points (0.5λ, 2λ, 0)

and (λ, 2.5λ, 0). Figure. 3.22 shows the field amplitude corresponding to a sin-

gle reflector S4, orientated at −45o defined by a plane passing through points

(1.5λ, 1.5λ, 0) and (2λ, 2λ, 0). Figure. 3.23 is the field amplitude distribution

due to S3 in the presence of S4. Figure. 3.24 is the resultant field amplitude

distribution from reflections arising from all four reflecting surfaces.

The net electric field arising from the superposition of the incident and

reflected waves leads to a net electric field amplitude 4 in the two spatially

distinct regions D3 as illustrated in Figure. 3.25.

The efficacy of the designed sensor geometry of Case 3 is assessed by com-

paring the expected field distribution in regions D3 with that computed using

ANSYS. Figure. 3.26 is the generated geometric model for ANSYS simulation.

Figure. 3.27 shows the resultant vector plot of the electric field in the compu-

tation volume. The two distinct regions D3 of high field amplitude are clearly

visible and in very good agreement with the initial definition of the inverse

problem.
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3.5 Case 4: A Localized null region of field

strength with multiple surfaces

This example is similar to Case 1, but seeks a design solution based on multiple

reflecting surfaces, resulting in sharper transition between nearest neighbor-

ing pixels. In this particular example, a null in the electric field amplitude is

required in a localized spatial region labeled D4 in Figure. 3.28. Figure. 3.29

shows the field amplitude corresponding to a single reflector S1, orientated

at 0o defined by a plane parallel to X = 0.75λ, in the presence of a second

reflector S2, orientated at −45o defined by a plane passing through points

(2.5λ, 1.5λ, 0) and (3.25λ, 0.75λ, 0). It should be noted that for consistency

of the boundary conditions at the reflective surface amplitude of the reflected

amplitude is −1. Figure. 3.30 is the field amplitude distribution due to S2 in

the presence of S1. Figure. 3.31 is the resultant field amplitude distribution

from reflections arising from both S1 and S2. Figure. 3.32 shows the field

amplitude corresponding to a single reflector S3, orientated at 45o defined by

a plane passing through points (λ, 1.75λ, 0) and (1.25λ, 2.0λ, 0). Figure. 3.22

shows the field amplitude corresponding to a single reflector S4, orientated at

−45o defined by a plane passing through points (1.5λ, 1.75λ, 0) and (2λ, 2λ, 0).

Figure. 3.33 is the resultant field amplitude distribution from reflections aris-

ing from all four reflecting surfaces. However, as the net field amplitude in

region D4 is 1, a surface S5 needs to be added to the geometry as illustrated

in Figure. 3.34. Figure. 3.35 shows the net electric field arising from the super-

position of the incident and reflected waves from all five surfaces. The spatial
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region D4 shows a null in the electric field. It should be noted that null region

extends along the X-axis, including region D4.

The efficacy of the designed sensor geometry of Case 4 is assessed by com-

paring the expected field distribution in regions D4 with that computed using

ANSYS. Figure. 3.36 is the generated geometric model for ANSYS simulation.

Figure. 3.37 shows the resultant vector plot of the electric field in the compu-

tation volume. The required null in the electric field in region D4, enclosed

by a square, is obtained, confirming the validity of the designed sensor. How-

ever, in this case there is a better null field match at other locations along the

X-axis.

This discrepancy indicates that manual placement of the mirror surfaces is

a challenging problem, which becomes more acute with increasing number of

reflecting surfaces. Each surfaces, in the 2-D geometry, has three degrees of

freedom, reducing the probability of finding the best design solution through

this manual process. Thus, in these situations an iterative process of design

and analysis is needed to reduce the number of possible design solutions. For

example, in this case a second iteration may be performed using smaller S1

and S2 reflecting surfaces, which will certainly remove the unwanted high field

regions labeled R1 and R2.

3.6 Summary

In the above analysis four distinct case studies have been presented to demon-

strate the utility of the design methodology described in this thesis. For each

of the four cases the designer is presented with the target spatial distribution
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of the electric field to be achieved within a solution space. In all cases dis-

cussed, the inverse problem is simplified by constraining the sensor structure

to be made from distributed, perfectly reflective planar surfaces, whose orien-

tation and location are to be determined. In addition, the sensor is illuminated

with a plane wave, which is linearly polarized in the z-direction. Solution to

the inverse problem, i.e., design of a particular sensor, is based on the a pri-

ori knowledge of the interaction of the EM wave with the reflective surfaces.

For example, in the above discussed cases, the tangential (Z-component) of

the electric field has been assumed, leading to the surface boundary condition

which requires that the net tangential electric field be zero at the surface. Un-

der these simplifying assumptions, which have been imposed solely for the pur-

pose of mathematical convenience, it has been possible to extract the inverse

solutions for all four cases presented above. Additionally,spatial discretiza-

tion of (λ/4), used in solving the inverse problem, is sufficient as there is very

good agreement between target field distribution and that computed from the

design model using commercial software.

It can be appreciated from the special cases presented above that the

method of obtaining a sensor design to achieve a given filed distribution has

very broad applicability, as it is based on the fundamental concept of super-

position. The net field at any spatial location is a vector sum of the electric

fields arising from multiple sources, such as specular or diffuse reflective sur-

faces or localized scattering centers. A full 3-D mapping of the electric field can

be constructed with the aid of specially developed software tools. A tool kit

comprising of different types of scattering surfaces and/or scattering volume

elements can be developed to describe the relationship between the incident
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and reflected (or scattered) electric field. The designer would access the var-

ious tools, position and orient them according to developed guidelines and

compute the electric field distribution map. Furthermore, due to relative low

computational demand, the design tool can be interactive, so that the designer

can rapidly visualize the effects of particular scattering elements, by just drag-

ging and orienting them in real time. In this way the inverse problem can be

iteratively solved in real time, resulting in considerable cost saving.
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Figure 3.1: Spatial distribution of electric field due to incident plane wave.
Incident wave propagates in the X-direction and its positive peak electric
field amplitude is in the positive X-direction. Its negative peak electric field
amplitude is in the −X-direction.
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Figure 3.2: Surfaces S1 and S2 contributions to the electric field intensity at
D1.
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Figure 3.3: Surfaces S2 and S1 contributions to the electric field intensity at
D1.
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Figure 3.4: Snapshot of contributions of S1 − S2, S2 − S1 and the incident
electromagnetic wave.
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Figure 3.5: ANSYS analysis.
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Figure 3.6: Vector plot of the electric field obtained using ANSYS for the
geometry of Figure. 3.5).

47



Figure 3.7: Example 2, desired field distribution D2.
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Figure 3.8: Contribution of surface S1.
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Figure 3.9: Contribution of surface S2.

50



Figure 3.10: Incident wave combined with S1 and S2.
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Figure 3.11: Combined average spatial field distributions for S1, S2 and the
incident electromagnetic wave.
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Figure 3.12: Average spatial field distribution for surface S3.
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Figure 3.13: Average spatial field distribution for all surfaces combined and
incident wave.
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Figure 3.14: ANSYS mesh with a spatial discretization of lambda divide by
20. Surfaces S1, S2, S3.
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Figure 3.15: Results from the simulation analysis clearly show that the design
method being reported strongly match the results from the ANSYS simulation
analysis.
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Figure 3.16: In example 3 it is desired to have two high energy regions at D3
locations.
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Figure 3.17: Contribution of surface S1.
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Figure 3.18: Fields reflected from surface S2 are in phase at desired locations.
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Figure 3.19: Fields reflected from surface S2 are in phase at desired locations.
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Figure 3.20: Combined fields - incident and all reflections from surfaces S1
and S2.
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Figure 3.21: Surface S3 and surface S4 contribute in-phase fields at desired
location.
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Figure 3.22: Surface S4 and reflection from surface S3, field in phase at D3.
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Figure 3.23: Surface S3 and reflection from surface S4, field in phase at D3.
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Figure 3.24: All surface reflection, field in phase at D3.
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Figure 3.25: Geometric features for providing desired field distribution.
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Figure 3.26: Surfaces and geometries analyzed in ANSYS.
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Figure 3.27: Geometry analyzed in ANSYS shows field distributions strongly
match with results obtained with developed inverse design method in Fig-
ure. 3.26.
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Figure 3.28: Desired low field distribution at location.
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Figure 3.29: Surface S1 appropriately placed for reflected fields to be out-of-
phase at D4.
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Figure 3.30: Reflection of fields from Surface S2 contribute out-of-phase fields
at D4.
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Figure 3.31: Combined fields from incident energy surface S1 and surface S2.
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Figure 3.32: Surface S1 and S4 contribute additional out-of-phase fields.
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Figure 3.33: Combined field contributions.
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Figure 3.34: Surface S5 field contributions at location D5.
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Figure 3.35: All field contributions including all surfaces and Incident fields.
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Figure 3.36: ANSYS analysis.
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D4 

Figure 3.37: ANSYS analysis shows strong correlation with geometry obtained
with inverse design method presented.
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Chapter 4

Conclusions and future work

The developed method provides a design tool that can easily and rapidly pro-

vide geometrical structures that provide a prescribed electrical field distribu-

tion for one or more incident electromagnetic waves. The method can also be

used for the design of geometrical structures to achieve a prescribed radiation

pattern for one or more given electromagnetic radiation sources. As such, the

developed method provides not only the analysis tools for determining the

distribution of the electric field in a given geometrical structure, but it also

provides the tools to perform the inverse of the analysis process, i.e., to design

a geometrical structure that would yield a prescribed field distribution for one

or more incident waves. The main contribution of the present research work

is the development such a simple but powerful method.

The present powerful method can be used to determine steady state as well

as transient electric field distribution in any geometrical cavity constructed

with arbitrarily shaped surfaces with different material characteristics when

interacting with one or more polarized or non-polarized incident waves with
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fixed or varying amplitude and/or frequency. The method was shown to work

for electromagnetic waves, but is readily seen to work with almost any other

wave types with any fixed or varying frequencies. The user must obviously

note that spatial discretization must consider the wavelength of the shortest

incident wave. The time increments between each field distribution snapshots

must also be considered to ensure that they are significantly smaller than half

or even a quarter of the wave periods. The obtained field distributions and

their time history may be determined with any accuracy by appropriately

sizing the grid sizes and the time intervals. The method also can be seen to

ready handle the presence of dielectric materials, even with spatially varying

physical characteristics.

Designers of radiating or receiving structures now have a new design tool

to solve inverse problems involving the design of radiating or receiving geo-

metrical structures to achieve a desired radiation pattern for devices that are

designed to efficiently convert timevarying electrical signals into electromag-

netic waves, i.e., antennas. In a similar manner, these electrical devices and

their geometrical features play a key role when incident electromagnetic waves

are to be converted into time-varying electrical signals. The latter devices may

be energy harvesting devices, or sensors of some sort, or be devices that are

to be designed to minimize the effects of electromagnetic radiation reaching

certain of its components.

The four examples presented in chapter 3 clearly show that the design

methodology presented in this thesis enables rapid development of sensor struc-

tures to achieve the desired spatial distribution of the electric field. The design

methodology is easily implemented using low power computational resources to
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accommodate more complex structures requiring a large number of interacting

surfaces, which have arbitrary shape, orientation and location. Additionally,

these arbitrary geometric features can be modeled to include frequency and

polarization dependent scattering and reflective properties and can either be

distributed or contiguous. A library of such geometric features with known

relationship between the incident and reflected (or scattered) electric field can

be created to enhance the design process. It is envisioned that any arbitrary

spatial distribution of the electric field can be obtained by a combination of

these geometric elements located and oriented within the solution space. An

algorithm can be developed for coming up with a number of possible inverse

solutions from which the user may interactively select and fine tune the sensor

design.

Finally, the focus of this work has been on the development of a design

tool that can be used to rapidly design complex geometrical structures for a

prescribed field distribution. The future work includes its extension to three-

dimensional geometries and the development of user friendly software with the

capability of allowing the user to undertake the described process in a more

predictive manner with the goal of achieving optimal solutions based on the

provided design criteria. Indeed, a software tool, comprising of a library of

typical geometric shapes and surfaces can be created to visualize the process

of design. In other words, imagine a 3-D mapping of the electric field, which

changes in real time as one or more of the geometrical features is dragged and

oriented in the solution space. This graphical manipulation of the geometric

shapes is possible because the computational resources needed for updating

the field map are very modest. Such a software tool will enable rapid devel-
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opment of new sensor designs across a broad range of frequencies and fields of

deployment.
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