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Abstract of the Dissertation

High Performance Partition Based Reconfigurable Platform
for Multiple Concurrent Applications

by

Qi Qi

Doctor of Philosophy

in

Electrical Engineering

Stony Brook University

2015

Reconfigurable architectures, combining the benefits of flexibility and high per-

formance, are suitable for embedded digital signal processing. However, it is critical

to bridge the gap between application algorithms and their implementation. Further,

low power design is critical, but it is difficult to migrate an existing algorithm into a

data-centric application that is represented as a dataflow and to map this to a recon-

figurable architecture. Thus, such a reconfigurable platform mapped from application

dataflow graphs and an architecture-aware optimization algorithm become necessary.

This thesis proposes an efficient algorithm to optimize the clock frequencies of

the processing elements in a reconfigurable architecture, finding the frequency config-

uration that minimizes the power consumed while meeting the application’s timing
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requirements. The algorithm takes as input a dataflow representing the intended

application characteristics and the required timing constraint information, and op-

timizes the frequency configuration by dynamically exploiting correlation between

frequencies and iteration time in consideration of parameter variation to avoid data

collision or loss. Then it proposes a novel hardware reconfigurable platform divided

into multiple partitions, where each partition is entirely buffer-centered consisting of

a large number of heterogeneous processing elements operating with buffers through

reconfigurable interconnect, to execute multiple concurrent applications. Depending

on performance requirements, an application migrated from a dataflow graph can

be mapped to more than one partition interacting through bridge buffers. To ac-

commodate asynchronous clock configuration, this platform uses flexible hierarchical

controller design. The controller considers execution flow and structural configuration

separately but collaboratively for dynamic reconfiguration of the dataflow. The use

of a tree structured controller makes the design scalable.

We model the proposed reconfigurable platform and hierarchical controller in Sys-

temC, and implement the frequency optimization algorithm to provide clock frequen-

cies that minimize power consumption to such platform. Experiments shows that

this algorithm achieves power consumption that is typically equal to a simulated

annealing-based method, while running 100 times faster on average. The SystemC

simulations demonstrate the controller is able to load and execute applications with

dynamic reconfiguration. Therefore, the system can map multiple processing elements

onto a single core and switch between them during run-time.
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Chapter 1

Introduction

1.1 Introduction

Traditional design methods, such as DSP, ASIC, FPGA and Multiprocessor System-

on-Chips, often have constraints on performance, reconfigurability and energy effi-

ciency. An architecture taking care of these constraints in real-time signal processing

applications is necessary. The DSP processors based sequential von Neumann or

Harvard computation style of the programmable processors, support only limited

parallelism required by the ever demanding applications, therefore are inherently

slow [1]. Custom designed ASIC implementations achieve high speed and low power

by exploiting parallelism and control flow. However, they lack reconfigurability in

the sense that they are not robust when facing functional and structural change.

FPGA has such flexibility with applications, but consumes big overhead due to the

high cost of its reconfigurable interconnect. Multiprocessor System-on-Chips uses

multiple programmable CPUs, which achieve high throughput by parallelism, but
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rely on compiler to efficiently utilize multi-cores. Reconfigurable architectures pro-

cess with very flexible computing fabrics, combining the merits of flexibility and high

performance, are promising alternatives for embedded digital signal processing by

demonstrating performance superiority [2] as well as energy efficiency [3].

Reconfigurable architectures are able to make changes to applications and control

flow by loading a new function to the processing fabric during runtime. There are

some limitations of the reconfigurable structure. Typically, the control structure is

complicated and hard to manipulate, therefore, it costs a lot of time to configure the

system. This thesis presents a new controller structure which allows more efficient

reconfiguration. To rapidly modify the execution of the dataflow, it is necessary to

design a controller structure providing an efficient spacial and temporal connectivity

for the reconfigurable architecture.

Currently available reconfigurable technologies are classified into three categories:

System level FPGAs, Embedded reconfigurable FPGAs and arrays of processing el-

ements [4] - [6]. We focus on the improvement of reconfigurable technology in the

arrays of processing elements area. MorphoSys, a well-known application of this type,

is a coarse grained integrated reconfigurable system architecture targeted at inherent

data-parallelism, high regularity and high throughput requirement applications [7].

It has faster speed compared to FPGAs, and also supports the execution and data

load at the same time. RaPiD is able to map the algorithms in DSP applications into

a datapath and a controlling program using static reconfiguration [8]. PipeRench is

an architecture which is efficient in complex computation without the need of custom

hardware design [9]. It has a compiler to configure the system quickly.
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The design gap in existing technologies, from the algorithm of advanced applica-

tions to their implementation needs to be bridged. An application can be represented

as dataflow, consisting of processing elements, buffers and interconnect. In our pro-

posed data-centric partition based architecture, dataflow representable applications

can be mapped into our structure. This architecture supports multiple applications

executing concurrently with dynamic reconfiguration and straight forward access to

the external I/O data. This architecture has the scalability to add more applications

around the existing applications during post fabrication, therefore, saving cost es-

pecially when the applications are suffering from changes for different requirements.

Also, it has the reconfigurability to configure the interconnections dynamically when

necessary. Besides, this platform supports multi-width data by way of converting the

data width of the processing element to a smaller size into the buffers and then back

to the original size. At the same time, the interconnection overhead is reduced. By

using different clock frequencies to improve the system speed and synchronize the

data, the throughput is increased.

1.2 Background and Overview

1.2.1 Buffer Based Dataflow Representation

Most real-time signal processing algorithms consider sets of data as frames. Such sys-

tems possess two unique characteristics of execution. First, they can be represented

as dataflow graphs which represent data dependency between processing blocks. Sec-
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ond, each node in the dataflow executes a set of data elements per frame. Fig. 1-1 (a)

shows a dataflow where a node is regarded as the source and destination of data. The

source-destination relationship can be isolated by inserting buffers between nodes. By

separating the relationships between nodes, nodes only represent their functionality.

The isolation also facilitates reconfiguration of the overall system.

Figure 1-1: A dataflow example and timing.

Fig. 1-1 (b) gives a buffer-based dataflow graph [44], inserting a buffer to an edge

represents delivering a data frame from its source to destination. Thus, the size of

data frames appearing at the input port of a buffer is identical to the size of data

frames at the output port of the buffer. Furthermore, while a source node is writing

data to a buffer, the corresponding destination node is able to read data from the
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buffer. Therefore, buffers in a buffer-based dataflow can be realized as the dual-port

memory which allows simultaneous writing and reading access.

When the buffer between the producer node i and the consumer node j is repre-

sented as BCi,j, the primary parameters which determine the buffer controller struc-

ture and overall physical realization are represented as logic latency (Li), write offset

(nwi,j), read offset (nri,j), block size (Mi,j) and delay factor (Di,j). The basic unit of

all parameters is the clock cycle of a target realization. The logic latency Li is the

latency of node i. The write offset nwi,j represents the difference between reading

data from the previous buffer and writing data to the current buffer without consid-

ering Li. For example, if node i reads data from BCk,i, nwi,j is [(the start time of

writing data to BCi,j)−(the start time of reading data from BCk,i)−Li]. The read

offset nri,j is the offset between write into and read from a buffer. From the view

point of BCi,j, nri,j is [(the time of sending the first data to node j)−(the time of

receiving the first data from node i)] when writing speed of node i and reading speed

of node j are matched. The block size Mi,j characterizes the data size generated by

node i. It also determines the maximum storage requirement of BCi,j. The delay

factor Di,j represents the rate mismatch between nodes i and j, in case that the writ-

ing speed of node i is slower than the reading speed of node j, node j does not read

the valid data from BCi,j. The nwi,j, nri,j and Di,j are derived from the functional

relation between nodes in a dataflow graph. These parameters characterize edges in a

dataflow graph. Thus, when two applications consisting of same nodes have different

connections (edges) between nodes, nwi,j and nri,j of the same node in two appli-

cations may be different. The other parameters (Li and Mi,j) represent the nodes’
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characteristics. Since they are derived from the implementation of the elements, they

have no dependency on the connections in a dataflow graph.

Fig. 1-1 (c) shows the timing of the buffer based dataflow. When the logic latency

of node i (i.e., Li) and the write offset (i.e., nwi,j) related to BCi,j elapse, node i starts

to write data to BCi,j. If the writing speed of node i is slower than the reading speed

of node j, the reading of BCi,j may finish before the writing of BCi,j ends. In this

case, node j does not read the whole data generated from node i. In order to prevent

wrong data transfers due to the mismatch of writing and reading speed, node j starts

to read data from BCi,j when max{nri,j, Di,j} passes from the start of writing.

To control the read and write timing of the buffers, buffer controllers generate

these control signals according to the given parameters. Generally, the write logic is

decided by Li and nwi,j, while the read logic is decided by Di,j and nri,j. Various

start signals are used to synchronize the system and they persist until the data in the

block is effectively read or written. They have the following relationships:

start writei,j = start time instanti + Li + nwi,j, (1.1)

start readi,j = start writei,j +max(nri,j, Di,j), (1.2)

stop writei,j = start writei, j +Mi,j, (1.3)

stop readi,j = start readi,j +Mi,j. (1.4)

start write enables the data transfer from a node to a buffer controller, and

start read initiates the data transfer from a buffer controller to a node. stop write
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(stop read) corresponds to the signal transition which changes start write (start read)

from 1 to 0, represents the end time of writing and reading data to/from BCi,j, respec-

tively. starti is the time value in which node i begins reading data from the previous

buffer controller through its fan-in port. In one iteration period, the data transfer

through each buffer controller is done once. Thus, once data have been written to (or

read from) the buffer controller BCi,j, the data are continuously being written to(or

read from) BCi,j until the size of transferred data reaches Mi,j.

To satisfy the requirement of real-time signal processing system working on sets

of data as frames, the system is represented as dataflow graphs where each node

executes concurrently [10]. Inserting buffers between nodes insulates the functionality

of nodes. The reading and writing of the buffers are controlled by the controller,

therefore, the timing relation can be easily determined. One platform consisting of

processing elements, buffers and reconfigurable interconnection is proposed [44]. A

reconfigurable interconnection topology is used to provide the connections between

the buffers and the processing elements. The buffers are used for storage, as block

level pipelined elements. Dual port buffers with simultaneous read-write capability is

used as block level pipelining elements to increase the throughput.

Our proposed partition based platform allows for mapping from any type of

dataflow graph with any number of external I/O of multiple applications execut-

ing concurrently. Each node in the dataflow has different operation speed. If all the

applications are mapped into one partition, the control modules which are able to

enable the multiple executions at the same time become complicated. Therefore, one

application at least occupies one partition with separate control module. If the size
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Figure 1-2: Established dataflow by inserting buffers.

of an application is too big to be accommodated by one partition, it has to be divided

into several partitions interacting through the bridges. In Fig. 1-2, application 1 and

2 are mapped to partition 1 and 2 separately, while application 3 are mapped to par-

tition 3 and 4. In the case when one partition can only accommodate six processing

elements, application 3 has to be divided in two partitions.

1.2.2 Architecture Mapping and Overview

Fig. 1-3 shows the global view of the partition based platform and its interface with

host processor. This thesis describes the platform and the controller design, and

their interaction with host processor, including how it supports multiple applications

executing simultaneously and the dynamic configuration for multiple applications.

The control structure in the global controller and the partition controller are the
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Figure 1-3: The global view of the partition based platform

same and can be divided into two parts: structural and execution. The partition or

global structural controller is in charge of configuring the interconnection of the buffers

or bridges. The partition or global execution controller are in charge of reading and

writing the buffers or the bridges. By the interaction between the global controller and

the partition controller, and between the structure controller and execution controller,

synchronization is realized. The host processor gets access to the data from the

control memory and data memory. The control memory saves the data configuring the

interconnection, timing and clock frequencies. The data memory saves the external

data necessary for the applications.

To improve the flexibility of a system, we propose the hierarchical control layers as

illustrated in Fig.1-4 for the reconfigurable partition based architecture. There are two

control layers separated with each other: Global control and partition control. The

global controller gives the start signals to each partition. According to the start signal

from global controller and the content in the partition memory, partition controllers
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send the start read and write signals to the buffers. For instance, if partition 2 has

an interconnection change, only the controller of partition 2 is changed, all the other

control logic including the start signal from global controller and partition controller

remains the same. Each control layer can be modified without any modifications of

other layers. This reconfiguration mechanism results in the fast manipulation of the

whole system once there is any change of the system.

Isolation

Global

controller

Partition

controller 1

Partition

controller 2

Partition

controller n

Buffers

Bridges

Interconnection

Parallel Serial

Control

Buffers Interconnection

Parallel Serial

Control

Buffers Interconnection

Parallel Serial

Control

Clock

Generator

Figure 1-4: Hierarchical controller illustration.

Our proposed architecture as shown in Fig. 1-5, which divides the overall system

into four partitions interacting through bridges, where each partition has an equal

number of processing elements, buffers and its own partition controller. Not only is

the partition able to communicate with another partition through the bridge, but

also it can get access to the data from the outside of the platform through the bridge.

This platform allows for the concurrent execution of several applications, and one ap-

plication can make use of one partition or several partitions. We map the applications

in Fig. 1-2 into this platform: application 1 uses partition 1 and bridge 1, application
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2 uses partition 2 and bridge 2. There are more number of nodes in application 3,

therefore, to fully utilize the resources it is divided into partition 3 and 4. The buffers

in bridge 4 substitute the original buffers in the dataflow.

1.2.3 Execution and Reconfiguration Overview

The controllers accept the command from the host processor and then convert the

command into control signals to the platform. This platform is controlled by the

hierarchical layers, which aim at the simplicity and reconfigurability for different

applications. Compared to the structure where a global controller controls all the
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processing elements directly, the hierarchical control layers are partially changed if

the execution characteristic of a logic unit is changed. The global controller sends

start signals to start the partition controllers, while the partition controllers send each

buffer the start read and write signals. Each level of control is isolated from other

levels, in the sense that they can be replaced without any modifications of others.

More partitions are added to the platform through these bridges without affecting

the existing partitions. Since it is expensive to tape out the ASIC, all the designs has

to be fixed once the chip is produced. But this structure makes the changes of the

platform easily, therefore, has the flexibility to the variations of the functions of the

platform.
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Fig.1-6 gives the overview of the control structure. Basically, the control structure

in the global controller and the partition controller are the same and can be divided

into two parts: structural and execution. The partition or global structure controller

is in charge of configuring the interconnection of the buffers or bridges. The partition

or global execution controller are in charge of reading and writing the buffers or the

bridges. By the interaction between the global controller and the partition controller,

and between the structure controller and the execution controller, synchronization is

realized.

1.2.4 Organization

The rest of this thesis is organized as follows. Chapter 2 explains a frequency selection

algorithm to minimize power consumption of the reconfigurable architecture. Chapter

3 outlines a high performance partition based reconfigurable architecture for multiple

concurrent applications. Chapter 4 describes the hierarchical controller design for

such platform. Chapter 5 presents the conclusion and future work.

1.3 Related Work

Dataflow is an effective method to model digital signal processing (DSP) applica-

tions [11] - [12]. Modeling techniques and software synthesis techniques, such as pa-

rameterized dataflow modeling [13] and heterogeneous modeling [14], improves design

reusability and dynamic reconfiguration. Many effective optimization techniques are

developed to improve characteristics of system, such as static scheduling [15]. Schedul-
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ing approach for dynamic dataflow application [16] decomposes dynamic dataflow so

that existing optimization method can be used. [17] improves throughput rate by

multiprocessor scheduling. [18] - [19] reduce memory requirement by buffer merging.

Method of generating dataflow graphs obtained from benchmark applications with

multiple input nodes is useful to bridge the gap from real applications to optimiza-

tion methods [20].

Applications represented by dataflow graph can be mapped into our proposed

reconfigurable architecture. Many approaches of mapping applications to coarse-

grained reconfigurable architecture are proposed to maintain parallelism and resource

sharing [21] - [23]. [24] proposes a methodology to derive processing elements and

shows that application specific reconfigurable computing has performance benefits

close to fully-custom ASIC based designs in addition to the intended reconfigurabil-

ity. To support dynamic reconfiguration, ReKonf [25] is designed to evaluate various

configuration of architectures and then make suitable reconfiguration decision. It is

able to alter the configuration dynamically by controlling the switches and support

dynamic configuration. MorphCache [26] dynamically tunes a multi-level cache hi-

erarchy to allow significantly different cache topologies. It improves both average

throughput and harmonic mean of speedups. ReMAP [27] demonstrates significant

advantages of incorporating reconfigurability into future heterogeneous large-scale

chip multiprocessors by accelerating and parallelizing applications.

A lot of research effort [28] - [30] have been made to reduce the power consumption

while maintaining the system requirement. Many factors can be controlled to achieve

the low power consumption of the system. One way of reducing the dynamic power
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is by switching the active component to the low power state or shutting down the

idle component [28]. Another way is to select the frequencies of the component to re-

duce the energy dissipation [29] - [30]. These algorithms are effective for applications

of energy harvesting system and difficult to migrate to the data-centric applications

which are represented as dataflow and mapped to the reconfigurable architectures.

The reconfigurable architecture consists of arrays of heterogeneous processing ele-

ments, where general-purpose processors, field-programmable gate arrays (FPGAs)

and application-specific integrated circuits (ASICs) are mapped. Several ways such as

interconnection resource reduction [31] developed for buffer-based dataflow minimizes

the energy consumption by the sharing methodology which reduces the buffer memory

and the number of active bus. Another way is to redistribute the slack time and refine

the task execution order [33] for multiple concurrent tasks. Simulated annealing [34]

is a popular optimization method to solve our problem. Even though its runtime is

greatly reduced compared to exhaustive search, it still consumes huge runtime espe-

cially when a system is consist of large amount of units. Clock distribution network

places an important effect on the performance of VLSI system. Globally asynchronous

locally synchronous (GALS) architecture trades off the easy setting of constraint for

synchronous circuit with the efficiency of asynchronous circuit. Some design frame-

work [35] help to choose design strategy to balance the trade-off in multiple clock

domain. Dynamic voltage and frequency scaling (DVFS) scheme [36]- [40] is widely

used to optimize power in multiple clock domain. Globally ratiochronous locally

synchronous (GRLS) [41] demonstrates strong competitor to GALS in complexity,

overhead and performance benefit while maintaining close energy consumption. Due

15



to the limitation of technology scaling to the voltage variation, dynamic frequency

scaling (DFS) [42] - [43] provides good power saving by selecting the frequency of

each processor.
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Chapter 2

Frequency Selection Algorithm for

Power-Efficient Multiple

Data-Centric Applications

2.1 Introduction

Low power design is the key area in VLSI system design. Dynamic power manage-

ment becomes critical with the technology scaling for high performance applications.

This chapter proposes a method and algorithm for assigning clock frequencies to pro-

cessing elements in reconfigurable architecture to minimize the power consumed while

meeting the application’s timing requirements. It uses the knowledge of the tradeoff

between power and speed of the individual elements. Then we improve the solution

to limited number of clock frequencies when applications are dynamically mapped. If

a data-centric application can be represented by a dataflow, the proposed algorithm
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gets the solution of the clock frequencies in faster speed than simulated annealing

based algorithm.

Our algorithm uses GRLS and DFS to select the frequencies of the processing ele-

ments dynamically based on the applications. The new contributions of our approach

are as follows. 1) Although a lot of research effort has been made to minimize the

power consumption, there is limited work addressing the optimization for multiple

data-centric applications mapping into the reconfigurable architecture. Our proposed

algorithm applies to multiple heterogeneous applications if the application can be

represented as dataflow graph. Once the timing constraint of the applications are

given, our algorithm schedules the frequencies of the processing elements based on

the analysis of dataflow graph representation. 2) Our algorithm considers the limited

availability of clock frequencies in a platform and distributes them among multiple

applications, which are mapped to the partition-based reconfigurable architecture. 3)

Our algorithm achieves typically same power with simulated-annealing based method,

while consumeing much less runtime than simulated annealing algorithm.

In the reconfigurable architecture platform, the clock frequencies of the processing

elements need to be chosen to minimize the total power. However, we can not provide

any clock frequency because the number of clocks is limitedly generated from the clock

generator and the irrational clock frequencies can enlarge the clock skew to cause data

loss or wrong data. So the problem becomes to how to select the operating frequencies

of the processing elements with finite number of clocks. This problem becomes more

complicated if multiple dataflow are designed in the platform with a single clock

generator as shown in Fig. 2-1.
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Figure 2-1: Providing clocks to the applications.

The power profile of a processing element describes the power consumption and

operating frequencies with different implementation methods. Given the power pro-

files of the processing elements and the dataflow, we want to find the set of frequencies

satisfying the required iteration constraint. We need to vary the speed of the process-

ing elements so that the iteration period constraint can be satisfied. The first step is

to choose the critical loop in the dataflow, and then choose the processing element

within the loop to change the frequency.

Fig. 2-2 shows the static mapping flow of multiple applications to a buffer-centric

reconfigurable architecture. Given the initial number of clock signals, the proper

selection of the clock frequencies becomes critical. Local clock frequencies are gener-

ated based on a global clock. However, due to the characteristic of the typical clock

generators, the generated clock frequencies are integer related. If the global clock fre-

quency changes, then the generated local clock frequencies change. Clocks are limited

and should be shared. In this thesis, we use power profile and its sensitivity to select

frequencies to minimize power consumption.
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Figure 2-2: Overall mapping flow of multiple applications to a buffer-centric recon-
figurable architecture.

2.2 Multi-rate Buffer Based Dataflow Characteri-

zation

2.2.1 Iteration Period and Clock Frequency

In this section, we introduce the correlation between the clock frequency and iteration

period for an application. In Fig. 2-3, data are sent from one processing elements

(PE) to the other by inserting buffer controllers (BC) to buffer the data transmission.

Feed-forward or feedback path can be the critical path in an application. Choosing
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possible lowest frequency for each processing element in a dataflow minimizes power

consumption. High clock frequency of the processing element in critical path will

reduce the total iteration time, however, increase the power consumption. Therefore,

the correlation between the clock frequency and the iteration period of an application

is useful to achieve an optimal clock distribution method.
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Figure 2-3: Types of Dataflow.

The critical path of an application determines its iteration time. When the feed-

forward path is the critical path as shown in Fig. 2-3 (a), its minimum iteration

time is illustrated in Fig. 2-4. The gray bar is the timing of first iteration and the

green bar shows the data activity of second iteration. The minimum possible time to

avoid data overlap of two iteration is iteration period (T). To eliminate the overlap

of buffer activity in current period with the next one, the iteration time must surpass

the maximum consumed time of the buffer activity in the path, i.e., M6/f3 in Fig.

2-4. Therefore, the iteration time of an application when the feed-forward path is

critical is follows:
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Titeration = max
i=feedforward

{
Mi

fm,n

}
(2.1)

Figure 2-4: Iteration Time of Feed-forward Path.

When the feedback path is critical path as shown in Fig. 2-3 (b), its minimum

iteration time is illustrated in Fig. 2-5. The read of buffer 5 in next iteration period

must arrive later than the read of buffer 8 in current period, so only the time consumed

by the buffers within the feedback loop counts toward the iteration time. Therefore,

the iteration time of an application when the feedback path is critical is follows:
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Titeration =
∑

i=feedback

{
Lm + nwi

fm
+

max{nri, Di}
fn

}
(2.2)

Figure 2-5: Iteration Time of Feedback Path.

Given an application represented by a dataflow graph with initial parameters

and frequencies, the parameters need to be changed when the operating frequencies

change. The parameters is defined above in Section 1.2.1 in Chapter 1.Now we discuss

the characteristics of the dataflow and how the parameters are changed as a result of

frequency change.

Constraint 1. Given multiple input terminals in a processing element, the delay

factors of the buffers in the input paths might be changed when operating frequencies

are changed to guarantee simultaneous data arrival time.
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∑
i=path1

{
Lm + nwi

fm
+

max{nri, Di}
fn

}
=

∑
j=path2

{
Lp + nwj

fp
+

max{nrj, Dj}
fq

}
(2.3)

fm and fp are the frequencies of the processing elements writing data into bufferi

or bufferj. fn and fq are the frequencies of the processing elements writing data

from bufferi or bufferj. For the feed-forward path in Fig. 2-3 (a), there are multiple

solutions of changing the delay factors of buffers in the input paths to PE3 to satisfy

Constraint 1. Given the frequencies of the processing elements, we calculate the left

and right sides of Constraint 1. The path with smaller iteration time consumes less

time for the data to arrive at PE3. Therefore, we need to increase the delay factors of

the buffers in this path to guarantee simultaneous data arrival time. All delay factors

of the buffers in the faster path are increased to satisfy Constraint 1.

Constraint 2. If the write speed of a buffer is slower than the read speed, the

delay factor needs to be big enough to allow the complete write of the block of data.

When considering Constraint 1, we tend to increase the delay factor of the buffer

with slowest read speed in the faster path, since it might also be increased to sat-

isfy Constraint 2. To verify if Constraint 2 is satisfied, we calculate the minimum

requirement of the delay factor of a buffer with rate mismatch.

As shown in Fig. 2-6 (a), we assume the write speed fi of bufferk is smaller than

the read speed fj. The minimum delay factor Dk of bufferk happens when the write

of the last data in the block finishes at the same time with the read of the last data

as shown in Fig. 2-6 (b). The minimum delay factor is calculated as follows:
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Mk

fi
=

max{nrk, Dk}
fj

+
Mk

fj
(2.4)

Dk = Mk ·

(
1

fi
− 1

fj

)
· fj (2.5)

Dk = Mk ·

(
fj
fi

− 1

)
(2.6)

Figure 2-6: Speed Mismatch.

Constraint 3. The total delay time of feedback path must be higher than the time

consumed by the read of Mi data into the path.

For the feedback path in Fig. 2-3 (c), Fig. 2-7 shows the possible data conflict

when the read of buffer 5 requires so long time that it has not finished before the read

data of buffer 8 in next iterative cycle arrives. In the critical case, the total delay

time of the feedback path satisfies the following equation:
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Figure 2-7: Block Size Causing the Data Collision.

∑
i=feedback

{
Lm + nwi

fm
+

max{nri, Di}
fn

}
=

Mj

fq
(2.7)

fm and fp are the frequencies of the processing elements writing data into bufferi

or bufferj. fn and fq are the frequencies of the processing elements writing data from

bufferi or bufferj. i represents all of the buffers in the feedback path, j represents

the buffer writing data into the feedback path. To satisfy Constraint 3, we need to

increase the delay factors of the buffers in feedback path. Considering Constraint 2,

we pick up the buffer with slowest read speed to increase its delay factor to the value

satisfying Equation 2.7.

Fig. 2-8 shows an example combining all the constraints together. Given the

initial parameters of the buffers and the frequencies of the processing elements in

the application, we need to adjust the parameters of the buffers once the frequencies

are changed. To satisfy Constraint 1, path 1 and path 2, path 3 and path 4 should

consume the same iteration time. Path 1: PE1 - BC2 - PE2 - BC3 - PE3; Path 2:
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PE1 - BC9 - PE6 - BC10 - PE3; Path 3: PE1 - BC2 - PE2 - BC3 - PE3 - BC4 -

PE4; Path 4: PE1 - BC11 - PE7 - BC12 - PE4. The delay factors of all the buffers

need to be checked if the write speed is slower than the read speed. Therefore, all of

the buffers apply to the Constraint 2. To satisfy Constraint 3, the two feedback loop,

Path 4 and Path 5, need to be checked. Path 4: PE1 - BC2 - PE2 - BC3 - PE3 -

BC4 - PE4 - BC8; Path 5: PE3 - BC4 - PE4 - BC5 - PE5 - BC7. The consumed

time in Path 4 should surpass the data activity time in BC1, M1/f1. The consumed

time in Path 5 should surpass the maximum value of data activity time in BC3 and

BC10, max{M3/f3, M10/f3}. The iteration time of this application is the minimum

one when we analyze the two feedback paths and the feed-forward path separately.
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Figure 2-8: An example combining all cases together.

2.2.2 Iteration Period and Power Consumption

The implementation of a processing element decides the power consumption. To

evaluate our proposed algorithm, we assume power is linear function of operating fre-

quencies for one implementation method. As shown in Fig. 2-9, each implementation

method has a highest operating frequency, say fT1, fT2 and fT3. They are the highest

operating frequency of the implementation of type 1, 2 and 3 respectively. To save
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the power, the optimal way of implementing a function is shown in bold.

Frequency

Power

fT1

Type 1

Type 2

Type 3

L1<L2<L3

fT2 fT3(fmax)fmin

Figure 2-9: Power profile of processing element.

The following equations calculate the power, energy and the constraint of the iter-

ation period. The total power of the application is the sum of the power consumption

of each processing element, which is the linear function of the operating frequency.

To get the minimum power, we need to choose the lowest frequencies and the simplest

method of implementation. The constraint of iteration period limits the parameters

of the buffers and frequencies of the processing elements in the critical path.

P =
∑
i

Pi =
∑
i

ki · fi, (2.8)

Titeration < Tconstraint, (2.9)

Considering the buffer based dataflow as shown in Fig. 2-3, each processing ele-

ment operates under their own frequency fi and corresponding buffer parameters Li,

nwi, nri and Di. The parameters represent the number of clock periods with respect

to the corresponding clock frequency. So the absolute time of these parameters is
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divided by the frequency fi.

For the dataflow in Fig. 2-3 (b), we will show how the iteration time changes with

frequencies. The power profiles of the processing elements and the total power are

given in Fig. 2-10. Fig. 2-10 (a) gives the simplified power profiles, each processing

element is implemented in an unified method whatever the operating frequency is.

Fig. 2-10 (b) gives the typical generic power profiles of the processing elements in the

critical path. Fig. 2-10 (c) gives how the total power of the application changes with

the change of frequency of one processing element.
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Figure 2-10: Characteristic of the Power Profile.

The slope of the power profile of each region describes how much power dissipation

is necessary if the frequency increases. We calculate ∆T
∆P

to get how much iteration
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time variation is necessary to save power if the frequency of the processing element

changes at fi. It is related to the operating frequencies of the processing elements,

the slopes of power profiles and parameters of buffers, such as logic latency Li of the

processing element, the write offset nwm of the buffer writing data into the processing

element, the read offset nrn and the delay factor Dn of the buffer reading data from

the processing element. If the parameters become larger, say delay factorDn increases

because of rate mismatch or multiple path, then the result becomes smaller. We want

the absolute value of ∆T
∆P

to be big, that is, low operating frequency, small slope of the

power profile and large parameters to make it efficient to sacrifice power for iteration

time.

Fig. 2-11 gives the illustration of how the iteration time variation changes with

the operating frequencies of the processing elements for simplified and generic power

profiles. ∆T
∆f

is derived by deviation of the expression of iteration time by frequency.

It describes how much iteration time change with a small frequency change. ∆T
∆P

is

only related to the operating frequency but not dependent on the slopes of the power

profiles. Therefore, ∆T
∆P

keeps the same for the simplified linear power profile and

non-linear power profile.

Fig. 2-12 give the figure of how ∆T
∆P

changes with the operating frequency of the

processing element. We can get that to sacrifice power consumption to satisfy the

iteration constraint, we want ∆T
∆P

as small as possible, that is slope of the power

profile and the operating and threshold frequencies as low as possible, while the

parameters are as large as possible. For example, if the delay factor of the buffer is

enlarged because of the rate mismatch, then the sensitivity of the ∆T
∆P

becomes smaller,
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Figure 2-11: Iteration Time Change Rate.

therefore, helps to save power while maintaining the required iteration constraint.
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Figure 2-12: Iteration Time Change Rate over Power.

In this section, we shows the calculation of iteration time and power consumption

of a dataflow graph. The iteration time of an application is related to frequencies

of each processing elements, parameters that control the timing. Parameters are

adjusted for frequency configuration to satisfy the constraints of an application. We
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model simplified and non-linear power profiles to calculate power consumption. Then

we show how much iteration time we need to sacrifice to gain power reduction. This

knowledge will be used in our proposed algorithm in next section.

2.3 Frequency Selection for Low Power

2.3.1 Frequency Selection Algorithm

There are many algorithms available to assign the clock frequencies under a timing

constraint. However, the runtime of these algorithms, such as simulated annealing

based method, can be huge with the increased number of units in an application. In

this section, we discuss the method of selecting frequencies for each processing element

to minimize total power consumption while satisfying the iteration time constraint

with less runtime. Our goal is to adjust the clock frequencies so that the iteration time

is equal to the iteration constraint, while maintaining minimum total power. To select

the frequencies of processing elements, the iteration time of each loop is calculated

in the application based on the given initial frequencies. Then the frequencies of

the processing elements in the critical path change to achieve minimum power. The

frequencies of the processing elements in non-critical paths vary to reduce power

before the non-critical path becomes critical path.

In the optimization process, first we choose the processing element to change fre-

quency and then we decide how much the frequency changes. First we calculate the

difference of current iteration time and target iteration time. If the difference of cur-
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rent iteration time and target iteration time is out of range from −δ to 0, the iteration

goes on to increase or decrease the frequencies of the processing elements. In order

to adjust the clock frequencies, we have to select the one with smallest contribution

factor ∆T
∆P

so that we sacrifice least power consumption to get the iteration constraint.

∆T
∆P

of one processing element is calculated when the frequencies of other processing

elements are fixed and there is a minor change of frequency of this processing element.

This result is calculated based on current frequencies of all processing elements and

dataflow representation. If current iteration time is bigger than the iteration con-

straint, then the frequencies of the processing elements is increased. The frequency

of the processing element with maximum ∆T
∆P

is reduced by ∆f . However, if current

iteration time is smaller than the iteration constraint, we slow down the clock fre-

quencies as much as possible to save the total power. The frequency of the processing

element with minimum ∆T
∆P

is increased by ∆f . The the new ∆T
∆P

are updated based

on the changed frequencies. If the dataflow needs to change the delay factor because

of rate mismatch or multiple paths, the new current iteration time is updated. Apply

the current optimal frequency and the difference of the iteration time and iteration

constraint and go back to the new iteration until the iteration time is close to the

iteration constraint.

Fig. 2-13 shows the steps of how the clock frequencies of the processing elements

is adjusted. In the initial case, iteration time calculated from initial frequencies is

bigger than target time. Based on ∆T
∆P

when the frequency of one processing element

changes, we choose to increase f1. After f1 is increased to f
′
1, we calculate ∆T

∆P
when

f
′
1 becomes current frequency of the first processing element. We will choose the
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processing element with maximum ∆T
∆P

, which is the second processing element. This

iteration continues until step 5, where current iteration time is less than target time.

Based on minimum ∆T
∆P

, the frequency of first processing element decreases to f
′′′
1 .

Then in step 7, the frequency of third processing element is increased to f
′′′
3 where

current iteration time is close to target time and the iteration stops.
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Figure 2-13: Steps of Frequency Adjustment.

In the proposed algorithm, the selection of step size is critical. If the step size is

big, the system works in fewer steps, but may not be able to exactly converge on the

constraint; If the step size is small, the system will be able to get to the constraint,

but it takes many more steps, slowing down the algorithm. δ is a small variable

that defines when the algorithm ends if the length from current iteration time to

target time is within δ. If the current iteration time is smaller and closer than δ to

the target iteration time, our algorithm terminates. If the step size is constant and

large, our algorithm may have big change of oscillation around the target iteration

time. Therefore, we choose the step size proportional to the distance from current
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frequency to estimated final frequency. When it comes to the end of the algorithm,

the step size becomes smaller. The chosen of the coefficient k is related to runtime.

If k is big, the runtime is smaller and there is high chance of oscillation. If k is

small, the oscillation is effectively eliminated, but it consumes more runtime. Also,

we can choose k under different power profiles. If the slope of current power profile is

high, we choose smaller k in case of the frequency is increased or decreased too much.

In our algorithm, k factor is high when current frequency is far from estimated final

frequency. k factor becomes low when current frequency stays close to estimated final

frequency. If several ∆T
∆P

are the same, k factor should be very small to guarantee

frequency do not go far away from optimal. Since we need to change all the frequencies

at this time. To eliminate oscillation, we decrease k factor each time the iteration

time crosses over the target time, where we are from trying to decrease frequencies

to trying to increase frequencies, or from trying to increase frequencies to trying to

decrease frequencies. In this way, iteration time can go close to target time without

oscillation.

Algorithm 1 gives the summary of the algorithm assigning clock frequencies. In

the search process, we decide to increase or decrease the frequencies of the processing

elements by the value of ∆T
∆P

, based on the difference of current iteration time and

the iteration constraint. Then we calculate the new difference and continue with the

iteration until current iteration time is smaller and close to the iteration constraint.

Initially k is set up based on slopes of power profile for initial frequencies. k is between

0 and 1. If the slope is high, k is small. If the slope is low, k is big. Each time iteration

time goes across target time, k is reduced by half. If ∆T
∆P

for all processing elements
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Algorithm 1 Find clock frequencies to achieve minimum power consumption
1: OPTIMAL FREQUENCY(x: difference; ini: initial; opt: optimal )
2:
3: Initial setting of k based on slope of power profile;
4: while (Titr − Ttarget < − δ or Titr − Ttarget > δ) do
5: if Titr − Ttarget < − δ then
6: Pick up the PE which has minimum ∆T/∆P ;
7: If all ∆T/∆P are 0, k = 0.01, change all frequencies at the same time;
8: If there are equal ∆T/∆P , choose the one with highest slope;
9: k = k * 0.5 when Titr goes across Ttarget

10: fi = fi - k∗(fiteration − ffinal);
11: if fi < fc and fi−1 > fc then
12: fi = fc
13: else
14: fi = fi
15: end if
16: Update L, nw, nr, D, M based on Equation 2.3 to 2.7;
17: else
18: Pick up the PE which has maximum ∆T/∆P ;
19: If all ∆T/∆P are 0, k = 0.01, change all frequencies at the same time;
20: If there are equal ∆T/∆P , choose the one with lowest slope;
21: k = k * 0.5 when Titr goes across Ttarget

22: fj = fj + k∗(fiteration − ffinal);
23: if fi−1 < fc and fi > fc then
24: fi = fc
25: else
26: fi = fi
27: end if
28: Update L, nw, nr, D, M based on Equation 2.3 to 2.7;
29: end if
30: end while

are all zeros, then k is chosen very small, such as 0.01, to make sure all the frequencies

only change a small amount. This algorithm discards unnecessary combinations of

frequencies by the value of ∆T
∆P

, therefore, it achieves the result in high speed.

Evaluation and Discussion

In this section, we use five cases as shown in Fig. 2-14 to show the result of our

proposed algorithms. For each case, the power profiles of processing elements have

different steep slopes and multiple discontinuities. The first case is an application with

single feed-forward path. The second case is an application with multiple feed-forward

paths. The third case is an application with single feedback path. The fourth case

is an application with mix of single feedback path and multiple feed-forward paths.

The fifth case is an application with mix of multiple feedback path and multiple
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feed-forward paths.

We implement our proposed algorithms and simulated annealing-based algorithms

as a baseline in Matlab, and show that the simulated annealing algorithm is very slow.

Given an application, we extract a function that represents the iteration time by the

dataflow representation. Also, we set up the constraints that the timing parame-

ters should change if given frequencies are changed. A function of calculating power

consumption is provided for each application. These functions setting up an appli-

cation are also provided to simulated annealing-based algorithm. Then we compare

the power and runtime of our proposed algorithm and simulated annealing-based

algorithm.

For the feed-forward path with 1 processing element, we try to see how the start

point affect the result. 1MHz to 5 MHz are the start points of the frequencies of PE1.

We get the result that start points do not affect the selection of frequency. We can set

up how far away of the iteration time is from target time (1%, 5% and 10%) and then

the iteration stops. When final iteration time is 1% away from target time, total power

consumption of our algorithm is 1% more than simulated annealing. If 1% is increased

to 10%, our power consumption is 10% more than simulated annealing. Setting up

final iteration time to be 1% away from target time is sufficient to achieve comparable

result to simulated annealing. For single feed-forward path with 7 processing elements

as shown in Fig. 2-15, allowing 1% difference of iteration time will cause power

consumption within 1% more than simulated annealing. From Table 2.1, we can

tell how the runtime changes with different k factor. Simulated annealing consumes

longest time. If we use small constant step size, the average runtime is around half of
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Figure 2-14: Four applications as test example.

simulated annealing. However, the runtime is greatly reduced if we use variable step

size. 0.6, 0.3, 0.2 are k factors when slopes are different. 0.6 is the k factor we choose

when slope is smaller than 3. 0.3 is k factor when slope is between 3 and 8. 0.2 is k

factor when slope is more than 8.

Table 2.1: Runtime of proposed algorithm and simulated annealing

Proposed Algorithm (s)
StepSize constant step

= 0.001
0.1,
0.1,0.1

0.2,
0.2,0.2

0.3,
0.3,0.3

0.4,
0.4,0.4

0.5,
0.5,0.5

0.6,
0.5,0.4

0.6,
0.3,0.2

simulated
annealing

T (average) 31.24s 1s 0.7131s 0.5468s 0.3898s 0.3259s 0.3221s 0.4875s 57.28s
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Figure 2-15: Single feed-forward path with 7 PEs.

When multiple feed-forward paths give data to one processing element in case 2,

data should arrive at the same time. Delay factor (D) is increased for the path that

consumes less time to guarantee multiple data arrival for a processing element. We

choose k factor to be 0.6, 0.3 and 0.2 initially. The average runtime is 0.61s. This

value is slightly higher than the case with single feed-forward path because of adjust

of parameters due to multiple fan-in consumes some time.

Application 3 is single feedback path. Application 4 and 5 have multiple feed-

forward paths and single feedback path. Table 2.1 gives the runtime comparison of

our proposed algorithm and simulated annealing for application 2 to 5. Our proposed

algorithm is 10 times faster than simulated annealing on average. Compared to appli-

cations with simple dataflow structure, applications with complicated dataflow path

consumes more time, but still saves more time than simulated annealing algorithm.

Fig. 2-16 and Fig. 2-17 shows the power consumption is close to simulated annealing

and the starting points have little impact on power consumption for application 4

and 5.
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Table 2.2: Runtime of proposed algorithm and simulated annealing for applications

Proposed Algorithm (s) Simulated Annealing (s)
Application 1 2 3 4 5 1 2 3 4 5
T (average) 0.4875 0.6100 0.5224 4.5400 1.0631 57.2800 57.7856 59.0666 30.9024 32.2000
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Figure 2-16: multiple feed-forward paths and single feedback path in case 4.

From above results, we get that our algorithm achieves comparable power con-

sumption when feed-forward path and feedback path both exist in dataflow and main-

tains much less runtime. For the case when there is only feed-forward path or feedback

path, our algorithm gets same power consumption while consumes much less runtime.

2.3.2 Limited Number of Clock Frequency

Algorithm 1 selects the clock frequencies for an application to minimize power con-

sumption. The algorithm produces N frequencies for N processing elements. How-

ever, the clock generator in hardware implementation can not provide any value of

clock frequency. Also, there might be read or write of wrong data if the clock frequen-

cies are non-integer related and the clock skews are enlarged. Therefore, we change
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Figure 2-17: multiple feed-forward paths and multiple feedback paths in case 5.

the result from Algorithm 1 to the case when limited number of clock frequencies M

is smaller than the number of processing element N and the clock frequencies should

be integer related.

Given a dataflow where N processing elements require up to N frequencies, f1, f2,

..., fN , to achieve the low power operator. However, if the available number of clock

frequencies N
′
is smaller than N , then some of the processing elements must share

the same frequencies. Then the problem becomes a grouping problem. The objective

is to group one or more frequencies so that the total number of clock frequencies is

N
′
while maintaining the minimum power.

Algorithm 2 gives the summary of the algorithm with limited clock numbers. For

illustration, consider a dataflow with N processing elements, where f1, f2, ..., fN

is calculated by Algorithm 1 to get the minimum total power. Given the dataflow
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Algorithm 2 Find clock frequencies to achieve minimum power with limited number
of clock frequencies
1: // ∀ BCi,j in a Given Buffer Based Dataflow
2: LIMITED NUMBER OF CLOCK
3:
4: while Ncurrent > Nlimit do
5: for i = 1 to N − 1 do
6: for j = i+ 1 to N do
7: diffi,j = | fi - fj |;
8: end for
9: end for
10: fmin = min{diffi,j};
11: for fp = fk to fk + fmin do
12: fm = fp;
13: fn = fp;
14: if iteration time from f1, ... , fN < target time;
15: save f1, ... , fN
16: calculate power from f1, ... , fN ;
17: end for
18: powermin = min{power};
19: save the frequencies with powermin;
20: end while

with p processing elements and k different clock frequencies, we group the frequencies

with minimum difference and replace them by new frequency between them. For

each grouping method, the substituting frequency ranges from the minimum to the

maximum values of the original frequencies. We select the one with minimum total

power while maintaining the iteration time constraint in these cases. The grouping

repeats until the clock number is reduced to k. The grouping method reduces the

possible cases of selecting the frequencies to much less possibilities based on the result

of Algorithm 1.

Evaluation and Discussion

Fig. 2-18 shows how the total power changes with the limitation of the number of

clock frequencies for application 5 as shown in Fig. 2-14 under different iteration time

constraints, and the comparison with simulated annealing. The total power increases

if the available number of clocks are reduced. If several applications are mapped to
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a platform and the total number of clocks of the applications is not enough in the

platform, we need to reduce the number of clocks for some of the applications. When

the number of clock is limited, our result is close to simulated annealing. The total

power increase with the decrease of the available number of clocks. If the number of

the optimal frequencies happens to be less than the number of processing element,

the limitation of number of clocks do not have effect on the total power.
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Figure 2-18: Relationship of total power and number of available clocks.
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2.3.3 Frequency Selection Algorithm for Multiple Applica-

tions

In this section, we give the solution to arrange the clock frequencies of the processing

elements in multiple applications. The total power increases if the available number

of clocks are reduced. If several applications are mapped to a platform and the total

number of clocks of the applications is not enough in the platform, we need to reduce

the number of clocks for some of the applications. As shown in Fig. 2-19, three

applications, each of them under their own iteration constraint Ti, share N clocks

provided by the clock generator. By applying Algorithm 1, we get the number of

clock frequency N1, N2, N3 and the frequencies for each application. If N is smaller

than the sum of N1, N2, N3, we need to reduce the total number of clock frequencies

to N .

Application 1

Application 3

Application 2Clock

Generator N

N1

N2

N3

T1

T2

T3

Figure 2-19: Arrangement of Clock Frequencies.

Fig. 2-20 (a) shows that the power consumption is less or the same if more clock

frequencies are allowed. Once the number of clocks achieves the one with minimum

power consumption, it is meaningless to increase the number. In Fig. 2-20 (b), it

shows the power consumption of many possible solutions when total clock number
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is limited. Fig. 2-20 (c) shows the total power of these applications with different

assignment of clock numbers. Our goal is to find the allowed clock number distribution

that consumes minimum total number. We do not need to exhaust all the combination

of number of clock frequencies, but only use these combination when the optimal

number is achieved to calculate the minimum total power of all the applications. For

combinations of number of clocks, there is an optimal solution that achieves minimum

power while all the iteration time constraints are satisfied. Our target is to find this

optimal solution.

Power (App1, App2, App3, Total)

(1,1,N-2) Number of Clock(2,1,N-3)(3,1,N-4) (N1,N2,N3)

Minimum Power

Total Power
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Minimum Power

(b)

(c)

Number of Clock

Minimum Power

1 2 3 4 N

Application 1

Application 2

Application 3

(a)

Minimum

Minimum

Minimum

Number of Clock

Figure 2-20: Arrangement of clock frequencies for each combination.

If we apply Algorithm 1 to three applications separately, the clock frequencies
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corresponding to the number of clock in each application are independent as shown in

Fig. 2-21. There is a chance that one application is using a clock frequency that is also

used by another application. However, we are able to share the same clock frequency

in hardware implementation. Therefore, our approach is to treat the three application

as a whole application and reduce the number of clock frequencies using the grouping

method in Algorithm 2. Before using the grouping method, we get the optimal

frequencies for each application by applying Algorithm 1. f1,1, f1,2 and f1,N1 are the

optimal frequencies for application 1; f2,1, f2,2 and f2,N2 are the optimal frequencies

for application 2; f3,1, f3,2 and f3,N3 are the optimal frequencies for application 3.

Then we group these frequencies treating them as a single application. In this way,

we allow the internal grouping between applications. Several applications can make

use of the same clock frequency and it is only counted as one clock. This approach

provides more available clock frequencies if the total number of clock is fixed.

Application 1

Application 3

Application 2Clock 
Generator N

N1

N2

N3

T1

T2

T3

10 MHz

10 MHz

10 MHz

Figure 2-21: Clocks are generated independently.

Then we consider the case when the clock is arranged and then more applications

arrive as shown in Fig. 2-22. Suppose N1 is the optimal number of clock frequencies

for application 1. If a second application comes, then N -N1 clocks are available. N2
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is the optimal number of clock frequencies for application 2. If the available clock

frequencies are enough to satisfy the optimal requirement of application 2, then N2

clocks are used. However, in the case when the remaining clocks are not enough to

satisfy the optimal requirement of application 2, we need to reduce the number of

clock frequencies than the optimal value to reserve for application 2. In this case,

Algorithm 2 is used to decide how many clock frequencies are used by application 1

and 2.

Application 1

Application 2

Clock

Generator

N N1

N2

T1

T2

N-N1

>

=

<

Figure 2-22: Incremental Mapping.

Evaluation and Discussion

Fig. 2-23 shows the clock assignment when three applications are mapped and only

10 clocks are available. Each application can use at most 7 clocks. Fig. 2-23 (b)

gives 117 possible solutions with exhaustive possible combination and the minimum

power is 24.5585. However, grouping method only searches 4 possible combinations

as shown in Fig. 2-23 (a) and achieve the minimum power as 25.0685. We sacrifice

2% power consumption to reduce the search time of exhaustive algorithm.

We test the function with dynamic mapping. We achieve the assignment of the

clocks when single and multiple applications are mapped. Fig. 2-24 (a) shows how

the total power changes with the addition of the applications. Application 1 is used
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(a)

(b)

Figure 2-23: Total power of applications.

in the first case. With the add of application 2, the available number of clocks for

application 1 is reduced. At this time, application 1 consumes higher power than

the case when single application 1 is mapped. If three applications are mapped, the

optimal assignment changes. If two applications are mapped, 5 clocks and 3 clocks

are assigned to application 1 and 2 separately can achieve the minimum total power.

If three applications are mapped, the best solution of the number of clocks assigned to

the applications is (4,3,1). Fig. 2-24 (b) shows the frequency change with the added
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number of applications. When 2 applications are mapped, changing frequency of f2

will achieve minimum power. If 3 applications are mapped, 6 iteration steps with each

changes one frequency of the processing element are enough to achieve the minimum

power. Therefore, in the case of dynamic change of the adding of applications, the

number of iteration steps is greatly reduced while maintaining acceptable minimum

total power.

(a)

(b)

Figure 2-24: Incremental mapping.

Table 2.3 shows the average runtime of our proposed algorithm and simulated

49



annealing with different iteration time constraint under clock number limitations.

The speed of our algorithm is 300 times faster than simulated annealing. With the

clock number limitations, our algorithm consumes little more time than that without

clock limitations. However, simulated annealing requires twice of the time when there

is no limitation of the clock number.

Table 2.3: Runtime of proposed algorithm and simulated annealing with clock number
limitations

Proposed Algorithm (s) Simulated Annealing (s)
Clock
Number

1 2 3 4 5 6 7 1 2 3 4 5 6 7

T (average) 0.103 0.102 0.102 0.102 0.102 0.102 0.102 48.5 39.3 33.7 28.2 24.8 21.9 17.9

2.4 Conclusions

In this chapter, we proposed a frequency selection algorithm targeting multiple data-

centric applications to minimize power consumption and maintain system iteration

time constraint. The proposed algorithm adjusts the frequencies of the processing

elements in the application by exploiting the characteristic of the dataflow represen-

tation. We makes use of variable step size to change the frequencies by exploring the

the relationship between power consumption and iteration time. Also, we introduce

the limitation of the available clock frequencies and how they are mapped to platform

with limited number of clock dynamically. The simulation result shows that given the

dataflow representation of the applications, the algorithms can achieve typically same

result with simulated annealing based method while consuming much less runtime.
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Chapter 3

High Performance Partition Based

Reconfigurable Platform for

Multiple Concurrent Applications

3.1 Introduction

The requirement of real-time signal processing calls for the application of reconfig-

urable architecture, which integrates the flexibility similar to FPGA and the high

performance characteristic of ASIC. FPGAs include fine-grained reconfigurable inter-

connect, which allows a great amount of flexibility, but also adds significant overhead

in terms of area, power, and time. Custom designed ASIC implementation has the

advantages of high speed and low power, but they lack of scalability in the case that

there are functional changes. Reconfigurable architecture, combining the merits of

flexibility and high performance, is more suitable for embedded digital signal pro-
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cessing by demonstrating performance superiority [2] as well as energy efficiency [3].

There are some limitations of the reconfigurable structure. The control structure is

complicated and hard to manipulate, therefore, it costs a lot of time to configure the

system. Without our proposed controller structure, it wastes lots of resources and

time to reconfigure the system. To manipulate rapid modification of the execution

of the dataflow, it is necessary to design a controller structure providing an efficient

spacial and temporal connectivity for the reconfigurable architecture.

This thesis proposes a novel hardware reconfigurable platform consisting of multi-

ple partitions to execute multiple concurrent applications. Depending on the perfor-

mance requirements, an application migrated from a dataflow graph can be mapped

to more than one partition interacting through bridge buffers. A partition, however,

hosts a single application, increasing the overall flexibility of the architecture. Each

partition within the proposed architecture is entirely buffer centered consisting of a

large number of heterogeneous processing elements operating with buffers through re-

configurable interconnect. The buffers are used for storage and as block level pipelin-

ing elements to increase the throughput. Furthermore, these buffers achieve isolation

among the processing elements, facilitating the key objectives such as dynamic re-

configuration and multiple clock domains for the heterogeneous processing elements.

The interconnect architecture supports sufficient concurrency within a configuration,

while simultaneously permitting the timing-sharing of the resources across the config-

urations. The multi-bit applications are supported by way of converting the diverse

data sizes into the normalized smaller size, therefore, reduces the overhead of the

interconnect architecture. Another important capability of the proposed architecture
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is the significantly high memory bandwidth to accommodate large amounts of I/O

data commonly encountered in multimedia applications. A handshaking mechanism

is introduced to concurrently read data from and provide data to the global data

memory. It demonstrates that the implementation of reconfigurable platform with

multi-bit applications is feasible in SystemC model.

3.2 Partition Architecture Organization

3.2.1 Partition Datapath

Partition

Partitions are the basic cell in our proposed platform. The partition module integrates

eight processing elements, buffers, interconnection and data conversion modules. Par-

tition size is decided by the size of mapped applications. If the partition size is bigger

than the applications, resources are wasted even when one application is mapped

into one partition. If the partition size is so small that the applications has to be

divided into many partitions, the global controller becomes complicated due to the

coordination between large number of partitions.

Fig.3-1 shows the partition module. It integrates eight processing elements, buffers,

interconnection and data conversion modules. The partition execution controller con-

trols the start time of read and write of the buffers and the sizes of the data conversion

modules according to the content from the partition memory. The structure con-

troller decides the interconnection and data conversion modules. Whereas the start
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of the partition structure and execution controller comes from the signal outside of

the partition, the global structure and execution controller. Compared to multiple

global controllers controlling the buffers, interconnection and data conversion mod-

ules without partitioning, this design approach facilitates dynamic reconfiguration

and executing multiple applications simultaneously.
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Figure 3-1: Partition module.

Processing Element Fabric

The processing element fabric is a collection of processing elements operated under

their own clock as shown in Fig. 3-2. There are M processing element cells and 4M

input and output ports distributed on both sides of the fabric for the convenience

of interconnection. However, there are more total numbers of ports for the process-

ing elements than the number of the ports of the fabric. It makes applications with

more than two input and output ports possible to be mapped into the platform. One

processing element can use any of the ports on one side in the fabric by the 2M mul-

tiplexers and 2M demultiplexers. The setting of the multiplexers and demultiplexers

54



is decided by the value saved in the 4M registers, where the address bus selects the

register and the control bus gives the setting value of the the multiplexers and demul-

tiplexers. The size of the output data from the processing element can be different

from the size of the input data. Another M registers are used to save the input and

output data size of each processing element. Each processing element is operated

under its own clock frequency. Therefore, at most M processing elements with no

more than 4M ports, 2M of them are input and the other 2M are output, can be

mapped into the processing element fabric.
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Figure 3-2: Processing element fabric.

Buffer Fabric

To isolate the data between two processing elements, the buffer fabric is introduced

as shown in Fig. 3-3. The data size of the buffer is smaller than that in the processing
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elements since it reduces the interconnection and makes full use of the resources. The

read and write speed of the buffer can be different, which is decided by the clock

frequencies of the processing elements. The buffers are controlled by the start read

and write signals. Once the start read signal comes, the buffer reads data. Once the

start write signal comes, the buffer sends out the data. However, the input data size

of the buffer is the same to the output data size of the buffer, whereas they might be

different in the processing element.
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Figure 3-3: Buffer function.

Data Conversion

In the processing element fabric, the data size of the input in one processing element

can be different from the that of the output. If we use different sizes of buffers between

the processing elements, the flexibility of the system is ruined. To maintain flexibility

of the system, we may choose the maximum size of the required sizes of buffers. But

it will waste a lot of resource, especially when there is a big variation of the data

size. Moreover, interconnection complexity is a significant problem. Without data
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conversion module, the data size of the interconnection module is W bit. With the

2N ports, the total number of wires on one side of the buffer is 2NW . Therefore,

large value of W causes complex interconnection and low speed. To provide the

flexibility while minimizing resource waste, we propose the data conversion module

which changes all data sizes to a common denominator size. They converts the bigger

size of data into a uniform smaller size of data going into the buffers, and then back to

the original size in the processing elements. After the conversion of the data from W

bit to WA bit, the total number of wires on one side of the buffer is reduced to 2NWA.

It improves the flexibility since any data size is supported by converting them to the

buffer size. To achieve the same throughput of the variable word width application

with the case where no data conversion is applied, multiple frequencies of clocks to

the processing elements and buffers are provided. We increase the clock frequencies

of the buffer, f2, to balance the total consumed time of the buffer, since the serial

data in the buffer consumes more clock cycles than that without the data conversion

modules.

f2 = f1 ·
WA

W2
(3.1)

The data conversion modules consist of parallel serial conversion and serial parallel

conversion modules, which convert the W1 bits data from the processing elements to

WA bits data sent to the buffers, and then to W2 bits data entering another processing

element as shown in Fig. 3-4. Each parallel to serial or serial to parallel module is
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operated under the faster clock frequency of processing element. Within each of them,

2M registers are used to save the input and output data size.
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Figure 3-4: Data conversion module.

Flexible Interconnection

The interconnection module, consisting of multiplexers, connects any processing ele-

ment in the processing element fabric with any buffer in the buffer fabric. Given the

application, the interconnection modules within the partition set the interconnection

between the processing elements and the buffers as shown in Fig. 3-5. They make it

possible for any of the 2M processing elements connected with any of the 2M buffers.

The content of the address and data bus is from outside of interconnection module.

The address bus selects the registers which sets the multiplexer, while the control bus

provides the value of the select signal of the multiplexer.

In the interconnection module, there are 4M multiplexers, choosing from any

output of the processing elements to the buffer, or choosing from any output of the

buffer to the processing element. Each buffer has two input and output ports. To

address the 4M multiplexers, the address bus size is log2(4M) in each partition. For
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Figure 3-5: Interconnection module.

each multiplexer, it chooses from any of the M input as the output. Therefore, the

control bus data size of the interconnection module is log2(M). To control the timing

of the processing elements and buffers, the address size of processing element array

is log2(2M) and that of buffer array is log2(2M). The interconnections between the

partitions and the bridges follow the same style with that within the partition.

If the partition size is small, then the number of multiplexers within the partition

is small, but results in larger number of multiplexers in the interconnection module

around the bridges. Therefore, the balance of the complexity of the interconnection

module is the main points of choosing the partition size.
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3.2.2 Partition Control

Partition Clock Network

Fig. 3-6 shows the partition clock network. To provide multiple clock frequencies

to the partitions and the bridges, the clock divider generates required clocks based

on global clock frequency. Once the clock generator is enabled, the global select

signal decides which global input clock is selected to generate the output signal. The

output clock frequency equals to the global clock frequency divided by the divisor.

The output select signal selects which output is currently being configured.
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Figure 3-6: Partition clock network.

Within the partition, a single clock generator provides the clocks to the process-

ing elements, the buffers, the data conversion modules and the partition execution
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controller, based on the global clocks from the global clock generator. The clock fre-

quencies of the processing elements are decided by the requirement of the applications.

Normally we constrain the clock frequencies of the buffers and the data conversion

modules the same to avoid inaccuracy. Each partition has its own partition clock

generator, since this hierarchy balance the clock path between different partitions.

Within the partition, the clocks are generated based on the unique global clocks, thus

improves the accuracy of the clock frequencies.

Execution Controller

Fig. 3-7 shows the function of the partition execution controller. If the counter

receives the enable signal from global execution controller, the counter counts the

current time operated on the execution clock, and then sends the value to the finite

state machine. The finite state machine gets access to the partition memory to fetch

the address and data indicating the time when the buffers should start read and write

based on the program saved in the partition memory. When the program memory is

read, it sends the control values to the start read and write logics of the buffers. The

benefit of using program is that it is able to generate several start signals at the same

time to initiate several buffers, without comparing the current time with the required

start time frequently. The size of the program memory is proportional to the clock

frequency of the execution controller. Therefore, high clock frequencies could result

in large size of program memory.

However, the clock frequency of the execution controller can not be too low.

Suppose one processing element and the following processing element are operated
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Figure 3-7: Execution controller.

on the clock of f1 and f2 separately. The buffer between them receives start signal

from the execution controller which is operated on the clock of f3. As shown in case

1 of Fig. 3-8, when the clock of the execution controller is smaller than the highest

clock of the processing elements, the first read and written data may be lost. In case

2, the first written data may be lost. But in case 3, both the read and the written

data are correct. Therefore, the minimum clock frequency of the execution controller

should be chosen as the highest speed of the processing elements to avoid losing the

first several read and written data of the buffers.

The read and write signals of the buffers are generated based on the content of the

execution program. The structure of the program containing the control information

is shown in Fig. 3-9. Each bit indicates the start read and write signal of the buffers

in the partition. Besides the control information during the normal execution and

communicating with the external, an additional bit is used to decide which case the

current control signal is generated in. If the current signal is generated under the

external case, then the execution controller has to check if the data is ready in the
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Figure 3-8: Clock frequency of the execution controller.

data memory. If the data is ready, it can be read or written successfully. If not, then

the execution controller does not generate the according signals, therefore, the data

will not be read or written from or into the data memory.

Thread1 (Bridge 1)

Program Organization

1_W 1_R N_W N_R J B ADDR

1 0 AAA

0 1 BBB

1_W_E 1_R_E N_W_E N_R_E I_E

Figure 3-9: Control memory to get access to external data.

The execution program changes with the operating clock frequencies. As shown

in Fig.3-10 (a), the processing elements are operated under different frequencies of

clocks. Based on the assumption that f1 > f3 > f2 and the execution controller is
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always operated under the highest speed, f1, we show how the program is modified.

This dataflow is cut into two cases as shown in Fig.3-10 (b). For a buffer, the write

speed is fast and the read speed is slow, or the write speed is slow and the read speed

is fast.

Partition 1

PE1
BC

1
PE2

BC

2
PE3

PE4
BC

4

BC

3

Application 1

f1

f2 f3

f2

PE1
BC

1
PE2

f1 f2

(a)

(b)

f1>f2

PE2
BC

2
PE3

f2 f3

f2>f3

Figure 3-10: Dataflow with multi-rate clocks.

The following equations give the minimum required read offset when the write

speed is f1 and the read speed is f2 (f1 is less than f2).

nr > M ·

(
1

f1
− 1

f2

)
(3.2)

nrmin =

[
M ·

(
1

f1
− 1

f2

)]
+

1

f2
(3.3)

In the case when the write speed if faster than the read speed and f1 is the integral

multiple of f2,

k =
f1
f2

(3.4)
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we add dummy zeros into the original program as shown in Fig.3-11 (a), where

k − 1 lines of zeros are added.

100000100000

010000010000

100000100000

000000000000

000000000000

010000010000

 

(a) f1 is the integral multiple of f2

k lines

(b) f1 is not the integral multiple of f2

100000100000

010000010000

100000100000

000000000000

000000000000

010000010000

 

k or k+1

lines?

Figure 3-11: Program modification in multi-Rate application.

In the case when f1 is not the integral multiple of f2,

k =

[
f1
f2

]
(3.5)

If one line changes to k lines, we take the risk of reading one useless data. If one

line changes to k + 1 lines, we take the risk of losing one useful data. One way to

eliminate both risks is as following. Since we can not make the data come earlier, we

choose the way of 1 line becoming k + 1 lines for the first F
f2

− 1 reading and 1 line

becoming k − F
f2

lines for the next F
f2

reading, where F is the least common multiple

of f1 and f2. At the same time, make sure each data holds longer than the following
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value.

T =

(
1

f2
− 1

f1

)
·

(
F

f1

)
(3.6)

For the case as shown in Fig.3-10 (b), where the write speed is faster than the

read speed, dummy lines of zeros are added to avoid the wrong data to be read as

shown in Fig.3-12.

001000001000

000100000100

000000000000

 

A lines
000000000000

001000001000

000000000000

 

B lines
000000000000

000000000000

 

C lines
000000000000

000100000100

A=
 f1/f2 f1 is integral multiple of f2

[f1/f2]+1 f1 is not integral multiple of f2

Constraint 1: Each data holds longer than (1/f2-1/f1)*M

B=

 f1/f2-f1/f3 f1 is integral multiple

of f2 and f3
[f1/f2-f1/f3]+1 f1 is not integral multiple

of f2 and f3

Constraint 2: Each data holds longer than (1/f2-2/f1)*M

C=
 f1/f3 f1 is integral multiple of f3

[f1/f3]+1 f1 is not integral multiple of f3

Figure 3-12: Program modification when read speed is faster.

Structure Controller

The resources in a partition are shown in Fig. 3-13 (a). The structure controller gets

access to the address and data in partition memory and then controls the configura-
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tion of the clock frequencies of all modules, the data conversion and interconnection

modules by the values saved in the partition registers. The execution controller gets

access to the address and data in the partition memory and then converts them into

start signals to the buffers to control the timing of the application. Fig. 3-13 (b)

shows the memory content in the partition memory, including the interconnection

modules, the execution program and the clock frequencies of all the modules.
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Figure 3-13: Resources in partition.

Structure and Execution Controller Interaction

The interaction between the partition execution and structure controller only happens

when there is a branch in the execution program. If there is a branch in the execution
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program, the execution controller suspends its operation and then sends the structure

controller a reconfigure signal and the reconfiguration address. After the structure

controller gets the reconfiguration signal and address, it starts the reconfiguration by

the address.

In the initial case, the execution controller is triggered by the start and resume

signals from the global execution controller. The structure controller is trigged by

the configure signal from global structure controller. Each time after the structure

controller finishes the configuration, it feeds back the global structure controller a

finish signal.

3.2.3 Partition Datapath and Control Interaction

The processing element fabric, data conversion module and the interconnection mod-

ule get the address and control data through the address and control bus. The struc-

ture and execution controller get the program from the partition memory through

the buses. The buffer fabric gets the start signals of the execution directly from the

execution controller.

3.3 Global Architecture Organization

3.3.1 Global Datapath

Global datapath consists of four partitions interacting through the bridges. The global

data memory saves the data sent to the applications to process or from the applica-
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tions after being processed. This platform allows for mapping of the applications into

one partition or multiple partitions. The data is able to go within the partitions, be-

tween the partitions, or between the partition and the outside data memory through

the bridges. The direction of the data from one partition to the other, or to the data

memory is set by the interconnection module in the bridge. There are eight external

buses in the platform, each of them can be used to read the data into or write the

data out of our platform to the global data memory.

Bridge

When one application makes use of several partitions as shown in Fig. 3-14 (a), the

bridges are necessary for the communication between the partitions. As shown in

Fig. 3-14 (b), buffer 3 and 6 are substituted by the buffers in bridge 4. While buffer

9 and 10 are substituted by the buffers in bridge 3 and 4 to get access to the data

outside. The bridges consist of multiple buffers, which are able to send data from one

partition to another under the control signals from the global controller.

As shown in Fig. 3-14 (c), the bridge includes the buffers and two interconnection

modules, the same with those within the partition. Another two interconnection

modules indicate if it is connecting the data between two partitions, or between the

partition and the external data. The buffers within the bridges have input and output

ports on their both sides, which makes it convenient for the data to go both directions.

The direction of the data is set by the multiplexers around the ports under the control

of the global controller. Also, the data is converted to smaller size of data in the buffer

through the data conversion modules.

69



PE1
BC

1
PE2

BC

2
PE3

BC

3
PE4

BC

4
PE5

PE6
BC

6
PE7

BC

7
PE8

BC

5

BC

8

Partition 3 Partition 4Application 3

BC

9

BC

10

f1 f2 f2

f3 f3 f2

f3 f3

BC3

Bridge4

BC6

BUF2BC9

B
rid
g
e
3

BUF2BUF1

B
rid
g
e
2

BUF4BUF3

BUF3

BC10

BUF4BUF3

1
1

2

2

5

3

6

4
4

7

7

8

5

8

Application 3

3

4

7 8

5

6

(a)

(b)

BUF1

Bridge4

BUF2

BUF3

BUF4

(c)

In
te
rc
o
n
n
e
c
tio
n

In
te
rc
o
n
n
e
c
tio
n
_
E
x
te
rn
a
l

In
te
rc
o
n
n
e
c
tio
n
_
E
x
te
rn
a
l

In
te
rc
o
n
n
e
c
tio
n

D
a
ta
C
o
n
v
e
rs
io
n

D
a
ta
C
o
n
v
e
rs
io
n

Figure 3-14: Bridge modules.

External Data Access

In order to obtain data from or deliver data to the data memory of the platform,

buses connected to external I/O is provided for the exchange of the data through the

bridges. Fig. 3-15 shows the dataflow when data comes from or is delivered out of

the platform, where all the data exchange happens through the bridges. The buffers

in the bridge substitute the buffers between the application and the outside data.

Before the data goes into the platform, initially the host processor writes the

input data to some block in the data memory. There are eight blocks and status

registers in the data memory, each of them communicates with the partition through

its own bus. Therefore, the read and write of the four bridges to the external can

happen concurrently. Each block is divided into two parts to make sure the writing
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Figure 3-15: Dataflow with exchange of external data.

of the data into the data memory and the reading of the data by the applications

can happen concurrently. The status register of each block indicates if the data in

the block is ready to be read or written by the partitions. Once the data is ready to

be fetched by the platform, host processor sets the status register to be ”Readable”.

Then once the global execution controller starts to read the data into some bridge, it

checks if the data is available first and then read the data into the processing element

in the partition. In the other side, once the data is ready to be written out of the

platform into the data memory, host processor sets the status to be ”Writable”. Then

the global execution controller check the status of the data memory if it is ready to

receive data. If it is ready, a start write signal is generated to the bridge from the

global execution controller to make sure the data is written into the data memory.

Later, host processor gets these data as the processing result.

Fig. 3-16 shows the structure of the bridges when connecting to the external

I/O. Eight buses, all of them can be used as input bus or output bus, are placed
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next to the four bridges to avoid the conflict when several applications exchange the

data with the outside at the same time. The size of the bus is the same with the

converted size of data to save the area occupied by the bus. While the size of the

data memory is the integer multiple of the size of the bus to make full use of the

resources. The bridge is connected with the external I/O through two buses, so that

the processing elements in one partition can get access to the platform through one

bus without conflict when the adjacent processing element in another partition is

communicating with the outside of the platform through another bus. For the input

path, a de-multiplexer is used to select the buffers through which the data comes into

the partition. The two fan-in multiplexers are used to select if the input comes from

the outside or from the processing elements in the partition. For the output path,

M de-multiplexers are used to send the output data to another partition or to the

outside through the external I/O. One M fan-in multiplexer is used to choose through

which buffer in the bridge, the data is sent to the outside.
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Figure 3-16: Bridges connected to external I/O.

The application is able to get the data from outside of the platform and then send
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the processing result out of the platform. Since there are only two buses can be used

by one partition, at most two processing elements in a partition can get access to the

outside data at the same time. If one processing element is reading or writing data,

then other processing elements in the bridge have to make use of the other bus to

get access to the data outside. Also, this external buses makes it possible for two

applications get access to the data outside concurrently. If one application gets access

to the data outside through one buffer in one bridge, it occupies one bus. Then the

other application, making use of the adjacent partition, can get access to the data

through another buffer in the same bridge. But it uses the other bus next to the

bridge.

3.3.2 Global Control

Global control path is divided into two layers under the control of host processor. The

higher layer of the controller is the global controller consisting of one global structure

controller and four global execution controllers. The lower level of the controllers

consists of four partition controllers, each of them is divided into partition structure

controller and partition execution controller. The global structure controller reads

the data from global memory and distributes the data to each partition memory

according to the address, which defines the partition or bridge the data belongs to.

The global structure controller configures its own interconnection of the bridges and

sends start signals to each partition structure controller to request it to configure

their interconnection, clock frequencies and the data width. The global execution
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controller executes its own program for the bridges and triggers the partition execution

controller to start to execute their program. They operate under the command from

the interface controller. While the interface controller accepts command from the host

processor and then issues them based on the status in the status register. Besides,

the execution controller requests the structure controller to reconfigure the structure

whenever there is a ”Branch” in the program for the global execution controller or

partition execution controller.

Within the partition, the control data is saved in the partition memory, from

where the partition structure and execution controller reads the data. The map-

ping of the processing elements is initially set in the processing element fabric. The

partition structure controller configures the interconnection modules to set up the

interconnection between the processing elements through the buffers by the control

data. It also decides the data width before and after it is converted to smaller size

to reduce the interconnection. The partition execution controller gives the start read

and write time to the buffers by the execution data in the partition memory.

The interface controller coordinates the operation between the host processor and

the controllers in the proposed platform. The host processor sends the command to

our proposed platform containing the information of the configuration and execution

of the applications. The overall system consists of host processor, interface controller

and the reconfigurable architecture. The host processor writes the data into global

memory and then sends the command to the interface controller, writes the applica-

tion information, starting and ending address to the registers in the interface module.

The interface controller accepts the command and then sends it to the global con-
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troller. According to the addresses in the registers in the interface controller and the

command from the interface controller, the global controller controls the timing and

interconnection of the reconfigurable architecture and the partition controllers. After

the configuration of the platform, the global controller tells the interface controller

that the command has been finished. Then the interface controller feeds the finish

signal back to the host processor. The host processor checks the status in the registers

in the interface module to make sure the last command has been finished.

The interaction between the global execution and structure controller happens

when there is a branch in the execution program or the application finishes the re-

configuration and requests to execute again. If there is a branch in the execution

program, the global execution controller suspends its operation and then sends the

global structure controller a reconfigure signal and the reconfiguration address. After

the global structure controller gets the reconfiguration signal and address, it starts

the reconfiguration by the address. Each time when a partition structure controller

finishes the reconfiguration, it changes the status register. Once the global structure

controller detects one application finishes the reconfiguration of all the partitions, it

requests the global execution controller to start the execution again. Then the exe-

cution resume with its previous execution. Both the global structure and execution

controller are operated under the command from the interface controller. The inter-

face controller saves the command from the host processor and decides if to issue the

command based on the current status of the global controllers.
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Global Execution Controller

The execution of the platform is operated under the control of the global and partition

execution controller. There are equal number of threads to that of the partitions to

make sure these partitions can be activated at the same time. Each thread controls

one partition and one bridge, in the way of sending the enable signal to the partition

and start read and write signals to the buffers within the bridge. In the case when

one application makes use of several partitions, say partition 3 and partition 4, the

thread 3 and 4 are activated. The thread 3 and 4 send the enable signals to the

partition 3 and 4 separately to start the partitions, and the thread 4 also sends the

start read and write signals to the bridge 3 at the time indicated from the global

program memory.

Fig. 3-17 shows the timing of the execution controller of the three applications in

Fig. 1-2 after they are mapped into our proposed platform. When one application

only makes use of single partition, the global execution controller only enables the

according partition. When one application makes use of more than one partition, the

global execution controller not only enables the according partition, but also sends

the start read and write signals of the bridges. Once one partition is enabled, the

execution controller within the partition begins to send the buffers the control signals

of the reading and writing. From this figure, we get that the timing of multiple

partitions can overlap if they are not used by the same application.
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Figure 3-17: Timing of execution controller.

Global Structure Controller

The resources in the platform are shown in Fig. 3-18 (a). The host processor writes

the external data into the global data memory, or fetches it from the global data

memory. The global control memory is written by the host processor to load the

applications into the platform. The interface controller accepts command from the

host processor and then issues it to the global structure and execution controllers.

The global data memory is used by eight data buses, while there is only one data

and address bus for the global control memory. The global structure controller gets

access to the address and data in the global control memory and then transfers them

to the partition memories, the interconnection and clock frequencies of the bridges,

the data conversion modules in the bridges. The global execution controller gets

access to the address and data in the global control memory and then converts them

into start signals to the bridges to control the timing of the bridges. Fig. 3-28 (b)
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shows the memory content in the global control memory, including the data saved in

the partition memory, the execution program of the bridge, the interconnection and

clock frequencies of the bridge.
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Figure 3-18: Resources in the platform.

Global Clock Network

To provide multiple clock frequencies to the partitions and the bridges, the clock

generators are introduced to provide the clocks to the buffers within the partitions

and the bridges. For the clock distribution in our proposed platform, we divide

them into hierarchical layers to achieve the accuracy of the clocks by balancing the

path of the clocks. From the global view, the global clock generator generates the
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clocks for the partitions, the bridges and the global execution controller. The global

clock network provides clocks to each bridge, two clocks used as the partition global

clocks to each partition and four clocks to the global execution controller for the

four threads. The clocks of the bridges are given directly from the global clock

generator. For each buffer, two clocks are provided to control the writing and reading

the buffer. To get better clock frequency accuracy, we tend to chose the strategy of

providing all the bridges the same clock, including the reading and writing clocks.

In this case, the clock frequency of all the bridges are set as the same by the global

clock generator. But if the writing and reading speed has to be different required

by the application, then we have to sacrifice the accuracy of the clocks. The clock

frequencies of the partitions are set according to the requirement of the applications.

The frequency of the global execution controller is set to the maximum value among

the clock frequencies of the processing elements in the partitions to avoid losing data.

The the clock frequencies is set one by one and finished in the initiation steps when

the applications are configured. Therefore, this platform needs the same number of

clock cycles with the clocks to finish the global setting.

Within the partition, a single clock generator provides the clocks to the process-

ing elements fabric, the buffer fabric, the data conversion modules and the partition

execution controller, based on the global clocks from the global clock generator. It

improves the accuracy of the clock frequencies in the partition domain. The clock

frequencies of the processing elements are decided by the requirement of the appli-

cations. Normally we constrain the clock frequencies of the buffers and the data

conversion modules the same to avoid inaccuracy. Each partition has its own par-
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tition clock generator to balance the clock path between different partitions. Once

the clock generator is enabled, the global select signal decides which global input

clock is based on to generate the output signal. The divisor defines the output clock

frequency, which equals to the global clock frequency divided by the divisor.

The clock frequencies of the global clock generator are configured during the first

configuration steps, together with the timing and interconnection information by the

content saved in the global memory. During the execution of the platform, the clock

frequencies are fixed. The reading and writing of the buffers are controlled under

these clock decided by the application. But during the execution of the platform, if

there is a request of using a different clock in a buffer, the execution has to be stopped

and then it goes into the configuration mode to reconfigure the new clock frequencies.

Since the reconfiguration command comes with the address range which needs the

reconfiguration, it is possible to only reconfigure the modified clock. Therefore, the

reconfiguration of the clocks includes the stop of the current application and the

update of the modified clocks by the structure controller. The reconfiguration steps

only reconfigures the modified part instead of configuring all the components, so

multi-rate applications are supported and are flexible to change.

For the clock distribution in our proposed platform, we divide them into hierar-

chical layers to achieve the accuracy of the clocks by balancing the path of the clocks.

From the global view, the global clock generator generates the clocks for the parti-

tions, the bridges and the global execution controller. Global clock network provides

8n clocks to the four bridges, two clocks used as the partition global clocks to each

partition and four clocks to the global execution controller for the four threads. The
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clocks of the bridges are given directly from the global clock generator. For each

buffer, two clocks are provided to control the writing and reading the buffer. To get

better clock frequency accuracy, we tend to chose the strategy of providing all the

bridges the same clock, including the reading and writing clocks. In this case, the

clock frequency of all the bridges are set as the same by the global clock generator.

But if the writing and reading speed has to be different required by the application,

then we have to sacrifice the accuracy of the clocks. The clock frequencies of the par-

titions are set according to the requirement of the applications. The frequency of the

global execution controller is set to the maximum value among the clock frequencies

of the processing elements in the partitions to avoid losing some data. The setting

of the clock frequencies is set one by one and finished in the initiation steps when

the applications are configured. Therefore, this platform needs 8n+9 clock cycles to

finish the global setting.

3.3.3 Global Datapath and Control Interaction

Fig. 3-19 shows the interaction between the global datapath and control modules.

All of the modules get access to the address and control data bus. Each partition

memory gets their data from the global memory. The bridges gets their control data

of interconnection and data conversion from the global memory. The global struc-

ture controller sends the partition the configuration signal and address. The global

execution controller sends each partition execution controller to start to execute. It

also sends the signals to the bridges.
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Figure 3-19: Global datapath and control interaction.

Fig. 3-20 shows the interaction between the global and partitions. The address

and control data bus are shared among the global memory, global structure and

execution controller, the global clock generator and the partition memories. The eight

external data buses, two of them for each bridge, are connected to the data memory.

Data is transmitted between the partitions and bridges. The global structure and

execution controller sends the control signals to the partition controllers. The global

clock generator sends the base clock to the partitions.
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Figure 3-20: Global to partition interaction.
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3.4 Configuration and Reconfiguration

3.4.1 Host Processor Interface Configuration

To operate our proposed platform, a host processor is in charge of writing application

specific data into the memory and delivering the command to the platform. The

communication between the host processor and the controllers in our platform is

controlled by the interface controller. As shown in Fig. 3-21, the host processor

writes the data into the global memory and then sends the command to the interface

controller, writes the application information, starting and ending address to the

registers in the interface module. The interface controller accepts the command and

then sends it to the global controller. According to the addresses of the registers

in the interface module and the command from the interface controller, the global

controller controls the timing and interconnection of the reconfigurable architecture

and the partition controllers. After the configuration of the platform, the global

controller tells the interface controller that the command has been finished. Then

the interface controller sends the finish signal back to the host processor. The host

processor checks the status in the registers in the interface module to make sure the

command has been finished.

Reconfigurable Architecture

Host

Processor

Interface

Controller

Registers

Global

Controller

Global

Memory

Partition

Controller

Partition

Controller

Interface

Figure 3-21: Overall structure including host processor.
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There are six states in the interface controller as shown in Fig. 3-27. Before any

application is loaded into the platform, the interface is in ”Idle” status. When the

system is in ”Idle” status, there is only one way to activate it by ”Load” command.

After the load of the parameters, the system begins to execute. During the execution

of the system, there are three possible command to stop it: ”Suspend”, ”Halt” and

”Stop”. For the command of ”Suspend”, the current counting value will be reset to

zero. If the command of ”Execution” comes during the status of ”Suspend”, then the

application starts to operate from the beginning. If there is a command of ”Halt”

during the execution, the current counting value will be saved in according registers.

At this time, if there is a command of ”Resume”, the value in the registers will go on

counting. If the command of ”Stop” comes, then all the registers saving the structural

and execution information are reset. The system can not execute again unless it is

reloaded.

Execution

Load

Suspend Halt

Resume

Idle

Stop

Load

Execution

Suspend Halt Stop

Execution

Resume

Stop

Load

Stop

Figure 3-22: Status transition in interface controller.
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3.4.2 Memory Mapping

From the view of host processor, it writes the program into a global memory space

as shown in Fig. 3-23 by the address. This global memory space includes the control

memory and the data memory, each of which consists of four parts of information

related to each partition, bridge and those memory mapped from the partition mem-

ory. The control memory saves the information related to the control structure, while

the data memory saves the data going into or out of the platform.
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Figure 3-23: View from host processor.

Within our architecture, the global structure controller distributes the program

in the control memory into the memories and registers within the partitions, global

structure and execution controller as shown in Fig. 3-24. The partition related in-

formation which is saved into each partition memory includes the interconnection

between the processing elements, the program indicating the execution and the clock

frequencies. The program indicating the execution of each thread in the global exe-
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cution controller and the interconnection of the bridges are saved into the registers in

global execution and structure controller separately. The data saving the clock fre-

quencies of the bridges is distributed to each registers in the bridge, providing them

with the operated clock frequencies.
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Figure 3-24: Control memory structure.

Within the partitions, the partition structure controller distributes the data saved

in the partition memory into the registers within the partition structure and execution

controller, and the registers saving the clock frequencies of the processing elements

and the buffers.

Fig. 3-25 shows the mapping from global memory space to physical global memory

and then to the scatted memories and registers within the partitions. The address in

the global memory space consists of a base address ”p” and the offset ”d”, while the

address of the physical global memory consists of a base address ”f” and the offset

”d”. The offset is the same for the global memory space and the physical global

memory. The mapping table shows the mapping of the base address.

The mapping from the global memory space to the physical global memory is

necessary, since the size of the global memory space can be larger than that of the
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physical global memory. But only four partitions can be mapped at the same time.

Therefore, this structure makes it possible for large amount of applications. Also,

the mapping from the physical global memory to the memories and registers within

the partitions is necessary, since the program of the application is contiguous in the

global memory, while scatted in the memories and registers within the partition.

00000

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15

ADDR

DATA

1000

p d

 

2000

3000

4000

5000

6000

7000

8000

9000

A000

B000

C000

D000

E000

F000

Scatted Memories and

Registers

 

 

 

 

Partition 1

Partition 2

Partition 3

Partition 4

00000

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

ADDR

DATA

1000

f d

 

2000

3000

4000

5000

6000

7000

8000

9000

A000

B000

C000

D000

E000

F000

 

 

 

Partition 1

Partition 2

Partition 3

Partition 4

Physical Global Memory

Global Execution

Global Structure

Clock Generation

00

4
8
C
1
5
9
D
2
6
A
E
3
7
B
F

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

Mapping Table

p f

(b)

Global Memory Space

Physical Global Memory

Partition 1
00000

Partition 2

Partition 3

Partition 4

…...

ADDR

DATA

04000

p d

 

08000

0C000

10000
Partition 1

0000

Partition 2

Partition 3

Partition 4

ADDR

DATA

4000

f d

 

8000

C000

000

4
8
C
0
4
8
C

04

08

0C

10

14

18

1C

p f

Mapping Table

…...

…...

…...

14000

18000

1C000

(a)

 

Figure 3-25: Mapping from physical global memory to scatted memories and registers
within partitions.

Fig. 3-26 shows the distribution of the global memory space. By using three levels

of data transfer, the data is saved into the registers physically located into different

partitions. This hierarchical memory structure make it easy for the host processor to

write the program into the architecture, since the host processor do not need to know

the structure of the architecture. By distributing the data from the global memory

to different partition memories and registers, it is easy for each application operate
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properly, without compromising who gets access the global memory first.
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Figure 3-26: Memory structure overview.

The control memory is divided into four parts, each of them consists of the control

information of the partition and the global control information of the adjacent bridge.

Within the partition, the structural and execution content, together with the clock

frequencies and the data sizes of each module is included. The structural content

defines the interconnection within the partition and the reconfiguration information;

The execution content gives the timing within the partition and the branch or jump

address. The clock frequencies of the processing elements, buffers, parallel serial mod-

ules and the partition execution controller is saved in the global memory to realize

the multi-rate application. Also, the input and output data sizes of the buffers within

the partition and adjacent buffer are saved to realize the multi-bit application. The

data format in the global execution controller is the same to that in partition execu-

tion controller, including the timing and the address. The data in global structure

controller saves the interconnection of the bridge and the application related infor-
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mation, including how many partitions are in each application and the configuration

address of each partition. The global clock part includes the clock frequencies of the

input and output data of the buffers in the bridge, and the clock frequencies of the

global execution controller.

The data memory is divided into eight parts, each of them use one external bus.

Within the eight parts, half of them is reserved for the read and the other half is

reserved for the write. This division makes it possible for the activity of the buses

and the read and write of one bus to be overlapped.

3.4.3 Application Configuration

The configuration of the applications starts from host processor. The host processor

issues the command, writes the control data and external data into the memory and

fills the tables in the interface controller with the information of the applications.

There are two tables in the interface controller needed to be filled as shown in Table

3.1 and Table 3.2. Not only the host processor sends the command to load the ap-

plications, but also the host processor gives the address information of each partition

and the application information to the interface controller as shown in Table 3.1. The

application information from the host processor is saved in the interface controller

as shown in Table 3.2. According to these address information, the global structural

controller begins to distribute the control data to the partitions and bridges. After

all the partitions finish the configuration, the global structural collects those finish

signals and then send them to interface controller together with the bridge configu-
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ration finish signal. Each time when the partition controllers and the bridges send

the global controller finish signal, the global controller sends it back to the interface

controller to update the status information in Table 3.1, the partitions are in ”Load”

status in this case. The interface controller collects the finish signals and checks the

status register in the partitions if all the status of the partitions have been filled. If

so, it will send the host processor a finish signal of the configuration.

Table 3.1: Status Table in Interface Controller

Load Execution Stop Suspend Start Address End Address
P0 X 00000000 00001111
P1 X 00010000 00011111
P2 X 00100000 00101111
P3 X 00110000 00111111

BB0 01000000 01001111
BB1 01010000 01011111
BB2 01100000 01101111
BB3 01110000 01111111

Table 3.2: Application Table in Interface Controller

Application P0 P1 P2 P3 BB0 BB1 BB2 BB3
App1 X
App2 X
App3 X
App4 X

Fig. 3-27 shows the action of the global and partition controller corresponding

to the command from the interface controller. When the system is in ”Idle” sta-

tus, there is only one way to activate it by the ”Load” command. Once after the

”Load” command, the program memory and the tables are filled in each partition

and global structure and execution controller. The memory and the table in the

partition structure controller save the interconnection configuration of the buffers

within the partition and the start and end address of the memory during the whole

configuration or partial configuration separately. The memory and table in the par-
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tition execution controller save the start read and write time of the buffers within

the partition, and the jumped or branched address during the iteration of execution

or a partial reconfiguration. These information is distributed to each partition by

the base addresses of the memory. The memory information in the global structure

and execution controller are similar to that in the partition structure and execution

controller except that it is configuring the interconnection and timing of the buffers

in the bridges. Also, the table in the global structure controller saves the content of

the applications, how many partitions are in one application, which bridge belongs

to the application and the start and end address of the configuration of the bridge.

The status register in the global structure controller is reset to ”0”.
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Figure 3-27: Commands from host processor.

After the load of these parameters, the system begins to execute. The global
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structure controller sends each partition structure controller a start signal. After the

partition structure controller gets this signal, it configures the whole partition, which

is addressed ”111” in the table. Each partition structure controller sends back a

finish signal to the global structure controller after it finishes the configuration of its

partition. After all the partitions feed back a finish signal, which is verified according

to the table in the global structure controller, it sends several finish signals and a

type signal ”0” to according threads in the global execution controller, indicating the

global execution controller to execute and the current status is initial configuration.

Then each thread sends a start signal to trigger the partition execution controller.

During the execution of the system, there are three possible command to stop it:

”Suspend”, ”Halt” and ”Stop”. For the command of ”Suspend”, the current counting

address in the global and partition execution controller is reset to ”0” and start to

count after a command of ”Execution” comes.

If during the execution, there is a ”Halt” command, the current counting value

will be saved in the registers. At this time, if there is a ”Resume” command, the

value in the registers will go on to count. If the command of ”Stop” comes, then all

the registers saving the structural and execution information are reset. The system

can not execute again unless it has been reloaded.

The command of ”Halt” comes when there is a request of partial reconfiguration

of an application. The affected partition execution controllers and the global execu-

tion controllers saves the current address and then sends a configure signal and the

address to according partition structure controllers and global structure controller.

The partition structure then configures part of the interconnections within the par-
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tition by the address. The global structure controller sets the status register to ”1”

and then configures the affected bridge by the address sent from global execution

controller. At the end of configuration, the global structure controller collects the

finish signals from partition structure controllers and then sends a resume signal to

according threads in the global execution controller. Then the threads who get the

resume signal trigger the partition execution controllers. These partition execution

controllers go back to the previous end address and start to execute again.

Once the ”Stop” command comes, all the counters in the controllers are reset to

”0”. The status register in the global structure controller is reset to ”0”. Then the

system goes into ”Idle” status.

3.4.4 Global Configuration

The resources in the platform are shown in Fig. 3-28 (a). The host processor writes

the external data into global data memory, or fetches it from the global data memory.

The global control memory is written by the host processor to load the applications

into the platform. The interface controller accepts command from the host processor

and then issues it to the global structure and execution controllers. The global data

memory is used by eight data buses, while there is only one data and address bus for

the global control memory. The global structure controller gets access to the address

and data in the global control memory and then transfers them to the partition mem-

ories, the interconnection and clock frequencies of the bridges, the data conversion

modules in the bridges. The global execution controller gets access to the address
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and data in the global control memory and then converts them into start signals to

the bridges to control the timing of the bridges. Fig. 3-28 (b) shows the memory con-

tent in the global control memory, including the data saved in the partition memory,

the execution program of the bridge, the interconnection and clock frequencies of the

bridge.
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Figure 3-28: Resources in the platform.

The global structure controller configures the interconnection of the bridges, de-

cides when to start the partition structure controller by the command from the global

execution controller or an initiation configuration request, or sends the global exe-

cution controller the command by the status from the partition structure controller.

As shown in Fig. 3-29, the FSM decides the output and the current address of the
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counter according to the input and the information in the table.
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Figure 3-29: Global structure controller.

The global structure controller supports both the initiation configuration and

reconfiguration. If the global structure controller initially configures the interconnec-

tion, the FSM reads the start and end address from the table, then sets the counter

to configure the interconnection of the bridges and sets the status register to ”0”.

When the value in the status register is ”0”, the FSM sends a start signal to start

each partition structure controller to configure the interconnection of the partition.

When the partition structure controllers send back finish signals to the global struc-

ture controller, the status register is changed to ”1” and the FSM will check if each

application has been finished by the application table. If one application has finished

its configuration, the global structure controller sends according threads in the global

execution controller a finish signal and the current type ”resume”. Normally, if the

global execution controller decides to reconfigure the interconnection, each thread

sends a configure signal and an address to the global structure controller. The infor-

mation table lists each application and its occupying partitions, bridges and the start
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and end address of the configuration of the bridges. The global structure controller

fetches the start and end address of the bridges which need reconfiguration from the

table, and then sets the counter to configure these interconnections.

The configuration of the interconnection of the bridges is shown in Fig.3-30. Fig.3-

30 (a) shows the memory contents configuring the interconnection between the parti-

tions. The base address and the offset address define which bridge the data is about,

and which pair of multiplexers the data is configuring. The data is used as the selec-

tion value of the multiplexer. In the switches module, the multiplexers are divided

into three levels: Mux5 and Mux6 are used to select the partitions; Mux1 to Mux4 are

used to select the processing element: Mux1 and Mux2 select the input, while Mux3

and Mux4 select the output. Therefore, for one bridge six sets of multiplexers are

needed to configure the interconnection, each set has the same number of multiplex-

ers with the buffers. The Buffer ID bits will distinguish these sets of multiplexers as

shown in Fig. 3-30(a). In one bridge, six N -bit registers are used to save the intercon-

nection information. In this way, how the processing elements are connected through

the bridges and communicate with the processing elements in the other partitions is

configured.

3.4.5 Partition Configuration

The partition structure controller configures the interconnection of the buffers within

the partition, after being triggered by the global structure controller or the partition

execution controller. As shown in Fig. 3-31, the FSM fetches the start and end
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Figure 3-30: Global interconnection.

address of the configuration and sets the counter to the configured address in the

memory.

The partition structure controller supports whole configuration and partial con-

figuration. If the partition structure controller is trigged by the global structure

controller, the FSM will read the start and end address located in ”111”, which de-

note the whole configuration. If the partition structure controller is trigged by the

partition execution controller and the configuration address is ”CCC”, then the FSM

will set the counter to count from ”DDD” to ”EEE”, which is partial configuration

of this partition. After the configuration of the partition, the FSM sends a finish

signal to the global structure controller. If the configuration address from the parti-
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Figure 3-31: Partition structure controller.

tion execution controller is ”000”, then the FSM does nothing and then sends back

a finish signal. This characteristic is used to synchronize the operation when several

partitions in an application need configuration, while some other partitions in the

application do not need the configuration.

The configuration of the interconnection within the partition is shown in Fig.3-

32. Fig.3-32 (a) shows the memory contents configuring the interconnection between

the processing elements and the buffers. The base address and the offset address

define which data is saved in the memory of the partition structure controller, and

which multiplexer the data is configuring. While the data is used as the selection

value of the multiplexer. For buffer 1, Mux1 to Mux4 are used to configuring its

interconnection. For example, if the data for Mux1 is ”1000”, then the processing

element 11 is selected to connect with buffer 1.
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3.4.6 Dynamic Reconfiguration

Our proposed platform allows for dynamic configuration during the execution of the

applications. The request of dynamic configuration comes from buffer sharing scheme.

If the buffer activity among some buffers do not overlap with each other, then these

buffers can be shared. Fig. 4-13 shows the timing before and after buffer 1 and buffer

2 are shared by only using buffer 1.

After the end of the data access of buffer 1, buffer 2 is replaced by buffer 1. The

start read and write previously sent to buffer 2 is provided to buffer 1 instead. Also the

processing elements connected to buffer 2 are connected to buffer 1 now. Therefore,

both the structure controller and the execution controller need to reconfigure current
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partition.

Given the application 1 shown in Fig. 3-34, Fig. 3-35 shows the buffer activity of

this application when it is operated under a single clock frequency with data size of

all the processing elements and the buffers 32-bit. Here we assume the logic latencies

of all the processing elements are 2, so buffer 1 and 3, buffer 2 and 4 are active at the

same time.
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Figure 3-34: Dataflow of application 1.

Given the application 1 shown in Fig. 3-36 (a), Fig. 3-37 shows the buffer activity

before and after buffer 1 and 2, buffer 3 and 4 are shared by buffer 1 and 3 separately.

Here the data sizes of all the processing elements and the buffers are all 32-bit, and
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Figure 3-35: Buffer activity of application 1.

all of the logic latencies of the processing elements are 2.
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Figure 3-36: Dataflow of application 1 with buffer sharing.

Given the application 3 shown in Fig. 3-38 (a), Fig. 3-39 shows the buffer activity

before and after buffer 1 and 2, buffer 3 and 6, buffer 7 and 8 are shared by buffer 1,

3 and 7 separately. Here the data sizes of all the processing elements and the buffers

are all 32-bit, and all of the logic latencies of the processing elements are 10, in which

case the buffer sharing scheme is applicable.

When the buffer sharing is applied for multiple partition based applications, it is

only applied within the buffers in one partition, or in one bridge. The buffer from

101



Buffer 1 write

Buffer 1 read

Start_Write1

Start_Read1

Written Data

Read Data

Buffer 2 write

Buffer 2 read

Start_Write2

Start_Read2

Written Data

Read Data

L

Buffer 3 write

Buffer 3 read

Start_Write3

Start_Read3

Written Data

Read Data

Buffer 4 write

Buffer 4 read

Start_Write4

Start_Read4

Written Data

Read Data

L

 

 

Buffer 1 write

Buffer 1 read

Start_Write1

Start_Read1

Written Data

Read Data

Start_Write1

Start_Read1

Written Data

Read Data

L

Buffer 3 write

Buffer 3 read

Start_Write3

Start_Read3

Written Data

Read Data

Start_Write3

Start_Read3

Written Data

Read Data

L

Figure 3-37: Buffer activity of application 1 with buffer sharing.
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Figure 3-38: Dataflow of application 3 with buffer sharing.

one partition can not be shared with that in another partition, or bridge, or between

different bridges.

Single Partition based Application

This section gives how the single partition application is mapped into the proposed

platform. Fig. 3-44 shows the program distributed to each partition memory or

registers in the global structure and execution controller. The memory in the partition

structure controller contains the interconnection information between the partitions
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Figure 3-39: Buffer activity of application 3 with buffer sharing.

and the buffers by setting the multiplexers, while the configuration address and data

saves the modified interconnection when there is a reconfiguration. For the partition

execution controller, the memory saves the timing information of the buffers within

the partition and the configuration address and the configuration address and data

saves the modified interconnection within the partition structure controller. The

program is executed one by one with each clock cycle and jumps to a fixed address

if there is a request of reconfiguration. The first N -bit data is used to indicate

when to enable the processing element. Since clock is continuously provided to the

processing element, we disable the processing elements except the effective data is

103



going to be processed. The next 2N -bit indicates the start read and write time of

the buffers. The memory structure of the global controller is the same to that of the

partition controller, except that global structure and execution controller configures

the interconnection and timing of the bridges. By using the same format of memory

in the execution controller, the programs in the partition execution controller and

global execution controller branch at the same point, so that the reconfiguration

is synchronized. Besides, the constitutions of the applications are saved in global

structure controller and another status register saves if the current status is in initial

configuration or reconfiguration.

The following content shows how the single partition application is reconfigured

if there is a request of reconfiguration. The memory which needs the reconfiguration

is shown in Fig. 3-41 when the buffer sharing scheme is applied. After a command

from the interface controller indicating the initial configuration or requested by the

global execution controller indicating the reconfiguration, the structure controller

of partition 1 starts to configure the interconnection within it. Then the partition 1

executes after the configuration of type 1. At this time, if there is another command of

reconfiguration together with the address from the interface controller, the program

jumps the the branched address of type 2 and starts the reconfiguration with the

shared buffer interconnection. With this reconfiguration where two buffers are active

at different time, the partition executes again, jumping to the program with the

second configuration. Therefore, if one buffer is used many times, then the same

number of memory space, including the structure memory and the execution memory,

is necessary to reconfigure the buffer.
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Figure 3-40: Content in control memory.

Multiple Partitions based Application

In the case when one application makes use of several partitions, such as application

3 shown in Fig. 3-42 where the data sizes are all 32-bit and the clock frequencies are

all f1, not only partition 3 and 4 are mapped in the way shown in single partition

application case, but also the information of the bridge is mapped into the memory

and program in the global structure and execution controller. Table 3.3 shows the
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Figure 3-41: One partition based application in buffer sharing.

memory content in the global structure controller, where the buffers in the bridge 3

are configured. For the program in the third thread in the global execution controller,

it decides the buffer activities in the bridge as shown in Table 3.4. For the fist ten

cycles, there is no buffer activated in the bridge. Once the effective data comes out of

partition 3, the buffers in bridge 3 starts to write and read the data. After the data

goes through the partition 4, the program jumps to the first address. The numbers of

zeros before and after the read and write of the buffers within the bridges are equal

to the number of programs saved in the execution controllers of partition 3 and 4,

through which the execution of different partitions is synchronized.
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Figure 3-42: Dataflow of application 3.

Table 3.3: Memory in global structure controller

Address Buffer ID Data
0001000000000000 000 10001000

001 01000100
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Table 3.4: Program in global execution controller

Address 1E 2E 3E 4E 1W 1R 2W 2R 3W 3R 4W 4R J B addr
0000100000000000 000000000000 0 0 XXXX

...
100010100000 0 0 XXXX
110001010000 0 0 XXXX

...
000000000000 1 0 0000

The following content shows how the multiple partitions based application is re-

configured if there is a request of reconfiguration.

For the multiple partitions based application, the sequence of the reconfiguration

is shown in Fig.3-43 when the buffer sharing scheme is applied. In the initial config-

uration, partition 3, 4 and the bridge configures their interconnection. Based on this

configuration, application 3 starts to execute. At this time, if there is a request of

reconfiguration due to buffer sharing or dynamic interconnection configuration, the

counter jumps to the start address of type 2 and starts to configure partition 3 and 4

again. At the same time, the global structure controller does the same thing with the

structure controllers of partition 3 and 4. It does the reconfiguration of the bridge 3.

After the reconfiguration of application 3, it starts to execute. The reconfiguration

of multiple partitions based application is similar to that of single partition based

application, except that the global structure controller has to monitor when is the

end time of the reconfiguration. Therefore, if part of the application do not need

the reconfiguration, say partition 3, there is still a finish signal sent the the global

structure controller indicating the end time of the reconfiguration.

The reconfiguration of the multiple partitions application is the same with that

of single partition application, except that the interconnection and execution of the
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Figure 3-43: Reconfiguration of multiple partitions application.

bridges are changed. Table 3.5 and Table 3.6 shows the memory content of the global

structure controller and execution controller when buffer sharing scheme is applies.

The global structure controller configures buffer 3 first and then the global execution

controller starts the buffer 3 to execute. Then there is a branch in the program so

that buffer 3 is reconfigured, replacing buffer 6. Later the program in the execution

controller memory jumps to the point where buffer 3 is activated again.

Table 3.5: Memory in global structure controller with buffer sharing

Address Buffer ID Data
0101000000000000 000 10001000

... ...
0101100000000000 000 01000100

Table 3.6: Program in global execution controller with buffer sharing

Address 1E 2E 3E 4E 1W 1R 2W 2R 3W 3R 4W 4R J B addr
0000100000000000 000000000000 0 0 XXXX

...
100010000000 0 0 XXXX
110001000000 0 1 1000

...
100010000000 0 0 XXXX
110001000000 0 0 XXXX

...
000000000000 0 1 0000
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Multiple Applications Mapping

When multiple applications are mapped into our proposed platform, the interface

controller is in charge of writing the information of the applications into the platform.

Table 3.7 shows the applications saved in the table in the global structure controller.

With the information of the applications in the table, the global structure controller

is able to check if the configuration of one application is finished and then sends a

finish signal to the global execution controller to synchronize the application. If one

application is being reconfigured, then the interface controller sends another request

to reconfigure another application, it saves the next reconfigured application into the

status register. By writing the information into the memories and the tables, one

single application is allowed to be configuring while four applications are allowed to

be executing at the same time.

Table 3.7: Table in global structure controller

Application P1 B1 Start1 End1 P2 B2 Start2 End2 P3 B3 Start3 End3 P4 B4 Start4 End4
1 1 1 AAA BBB 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 1 1 CCC DDD 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 1 1 EEE FFF 1 0 0 0

If one application is under reconfiguration, the global structure controller is in

busy status. At this time, if it comes a command of the configuration of another

application, then the interface controller detects the busy status of the application

and saves the command into its queue. The interface controller issues the command

of configuration of the second application until the global structure controller is free

of the first application. However, if one application is busy with the configuration of
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an application, then it comes the request of the branch from another application. The

global structure controller stops the configuration and deals with the reconfiguration

right way. Therefore, the command from the execution program has higher priority

than the command from the host processor.

3.4.7 Application Reconfiguration

Single Partition Application

The request of reconfiguration comes from the buffer sharing or segmented buffer

access. Initially, the interconnection and the block sizes of the reading and writing

access in the buffers of the bridges and partitions are configured by the global and

partition structural controller, according to the requirement of the applications.

The request of reconfiguration is issued by the execution program written from

the host processor and configured by the structural controller as shown in Fig. 3-

44. After the initial configuration of the platform, if there is a need of sharing some

buffer, the execution program branches in the program both for the partition and

for the global execution. Both the affected partition execution controller and the

global execution controller branch to a new address ”BBB”. The global and partition

execution controllers stop current execution and save next loading address after the

reconfiguration finishes in the registers. The partition execution controller fetches the

configuration address ”CCC” by the address ”BBB” from the address table and sends

the address ”CCC” to the partition structure controller to request the reconfiguration.

However, the global execution controller fetches the address in the same way, but sends
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the request and the address to the interface controller. The interface controller checks

if the global structure controller is in busy status. If it is free, then the interface

controller issues the request and address to the global structure controller. Then

the global and partition structure controllers reconfigure the interconnection and the

buffer size by the address sent from the execution controller. The global and partition

structure controller gets the start and end address of the configuration ”DDD” and

”EEE” in the tables. Once these structure controllers get the new configuration

address, they configure the structure aspect in the partition and the bridge. After the

partition structure controller finishes the reconfiguration, it sends the global structure

controller a finish signal. The global structure controller sets the current status table

and compares with the application table in the interface controller. Once the global

structure controller makes sure the reconfiguration of the single partition application

is finished, it asks the global execution controller to resume with the application and

sets its current status register to be ”free”. Then the according partition and global

execution controllers resume from the loading address saved in the registers.

Compared to the partition execution and structure controller, the global execution

controller takes one more cycle to send the reconfiguration request and address to

the global structure controller. It will not cause the mismatch of the timing, since

the interface controller waits for the finish of the reconfiguration of both the global

structure controller and the partition structure controller. The coordination of the

interface controller avoids the conflict in the global structure controller when multiple

applications want to reconfigure at the same time. The precondition of applying buffer

sharing is to make sure the non-overlap buffer activity. Since the platform needs time
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Figure 3-44: Memory mapping in the controllers.

to stop and reconfigure the application, we require more slack time to allow the

reconfiguration of the modified buffers by the structure controller.

Multiple Partitions Application

For an application making use of multiple partitions, the reconfiguration is more

complicated than the single partition application case. Assume application 3 makes

use of partition 3 and 4. After the configuration of application 3, if there is a request

of reconfiguration due to buffer sharing or dynamic interconnection configuration,

Fig.3-45 shows the memory content in this case. The configuration of type 1 is

configured firstly, and then each partition structure controller sends their execution

controller a finish signal. After the finish signal from partition 3 and 4 are collected,

the execution of type 1 starts. If there is a branch in the execution program requesting

the reconfiguration, the start and end address is saved in the table in the global and

structure controller to reconfigure the application.
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Figure 3-45: Reconfiguration of multiple partitions application.

As shown in Fig.3-46, when there is a reconfiguration request, the execution pro-

gram in the partition memories of both partition 3 and 4 and the global memory

branch. At this time, the global execution controller and the execution controllers of

partition 3 and 4 suspend and save its next loading address. The partition execution

controllers send their according structure controller a configuration signal and the con-

figured address. But the global execution controllers sends the configuration signal

and address to the interface controller and then the interface controller issues them to

the global structure controller in the case when the global structure controller is free.

Currently the global structure controller is free and the request comes from one appli-

cation, therefore, the configuration request and address are sent to it. Once partition

3 or partition 4 finishes the reconfiguration, they send the global structure controller

a finish signal. The global structure controller sets the status table and compare

with the application table in the interface controller. The request and address of the

reconfiguration from the global execution controller to the global structure controller

goes one clock cycle later than that in the partitions. However, the global structure
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controller will not asks the global execution controller to execute until all the parti-

tions and the global structure controller finish the reconfiguration. The partition 3

and 4 configures the interconnection within them, and the global structure controller

configures the interconnection of bridge 3. After all of them finish the configuration,

the global structure controller sends the global execution controller a resume signal

to resume the execution of partition 3, 4 and bridge 3 and clears the status register

to zero.
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Figure 3-46: Synchronization in multiple partitions application.

Therefore, the synchronization of the operation of the partitions within one ap-

plication is achieved through the global structure controller. The partition structure

controllers do not trigger their partition execution controller directly, the partition

execution controllers are controlled solely by the global execution controller. Even

though if in the configuration of type 2, only partition 3 needs the reconfiguration,

while partition 4 does not need any change, the execution controller of partition 4

still sends the structure controller of partition 4 a reconfiguration request and address

and suspends the execution of partition 4. The difference is the structure controller of

partition 4 configures nothing, but only sends the finish signal to the global structure
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controller right away. Whenever if a partition needs to be reconfigured, the multiple

partitions application is synchronized in this way.

3.4.8 Simultaneous Reconfiguration

The coordination of the simultaneous reconfiguration is controlled by the interface

controller. The interface controller has two sets of queues to avoid the conflict with

the commands from the host processor and the reconfiguration requests from the

execution program. These queues buffers the command when the global structure

controller is busy with one application, initial configuration or reconfiguration, then

comes another request of loading of another application, or there is a request of

”Branch” in the program.

As shown in Fig. 3-47, we assume the global structure is free and them the

three application requires reconfiguration at the same time. Each partition execution

controller sends the request to the partition structure controller. However, the four

global execution controllers send the request of branch to the interface controller.

The interface controller saves the reconfiguration requests in the first set of queue.

Then it issues the requests one by one according to the current status register in the

global structure controller. In the case when the global structure controller is busy

with configuring one application, it sets its status to ”Busy”. Each time before the

interface controller issues a command of reconfiguration, it checks the status of the

global structure controller. If it is busy, the interface controller waits until the ”Busy”

status is clear.
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Figure 3-47: Concurrent reconfiguration.

The second queue is used to save the command of load from the host processor

when the global structure controller is busy with the initial configuration or recon-

figuration. Each time the host processor sends the command of load, it is saved into

queue 2. However, queue 2 has lower priority than queue 1. The request from the

execution program always has higher level of interrupt level than the command from

the host processor. For example, if the global structure controller is busy with the

reconfiguration of application 1 and then application 2, at this time the host processor

sends a command to load application 3, this command of load is saved into queue 2

until application 1 and 2 finishes their reconfiguration and the global structure con-

troller is set free. If the host processor wants to process the command of loading

application 3 first, it has to stop the execution of application 1 and 2 first. The

command of ”Stop” is issued by the interface controller right away without checking

the status of any register.

Fig. 3-48 summarizes the status registers and queues in the global structure

controller and the interface controller. The global structure controller has a status

table to record how many partitions and bridges have finished the configuration of

each application. Once it detects some application finishes its configuration, the
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global structure controller asks the according global execution controller to execute.

The global structure controller also has a status register recording its current status.

It is written by the global structure controller to indicate if it is busy or not, read

by the interface controller to decide if it should issue the request of configuration.

The interface controller has an application table within it. It is written by the host

processor about the composition of each application, read by the global structure

controller to check if it finishes the configuration. The interface controller also has

two queues to deal with the case of multiple concurrent applications. The global

structure controller has to deal with the application one by one. Each time when the

interface controller gets a request of ”Branch” from the global execution controllers,

the interface controller puts these commands into queue 1 by the application table

and then issues them one application after another. It is used to deal with the case

when multiple applications request reconfiguration concurrently. Each time when the

host processor sends the interface controller a command of ”Load”, it is pushed into

queue 2. The command in queue 2 will not pop out until queue 1 is empty and the

global structure controller is free. Queue 2 is used to deal with the case when the

global structure controller is busy with reconfiguring some applications while the host

processor requests to configure another application.
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Figure 3-48: Status registers and queues in global structure controller and interface
controller.

3.5 Execution Control

3.5.1 Execution Initiation of Single Partition Application

Fig. 3-49 shows how the global controller cooperates with the partition controller dy-

namically when one application only uses one partition. If the host processor issues

the command of ”Load”, the interface controller checks if the global structure con-

troller is busy with configuring other applications. If not, then the global structure

writes the control data into the partition 1 memory and starts the structure controller

of partition 1 to configure. After the structure controller of partition 1 finishes the

configuration, it sends the global structure controller a finish signal. At this time, if

the global structure controller finishes the configuration of bridge 1 of the intercon-

nection to get access to the external data, then the global structure controller sets
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the status of application 1 as ”Loaded”.
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Figure 3-49: Single partition application operation.

If the host processor issues the command of ”Execution”, the interface controller

checks if the application is loaded in the status register. If the application is loaded,

then the interface issues the command to the global execution controller 1. The global

execution controller 1 triggers partition 1 execution controller and bridge 1 to execute.

If there is a ”Jump” in the program, then the partition 1 execution controller direct

the current execution address to the jumped address. If there is a ”Branch” in the

program, the partition 1 execution controller suspends current execution and requests

the partition 1 structure controller to reconfigures the interconnection. At the same

time, the global execution controller 1 also suspends current execution of bridge 1

and requests the global structure controller to reconfigure the bridge 1. Once the

partition 1 structure controller finishes the reconfiguration, it sends a finish signal

to the global structure controller. The global structure controller triggers the global

execution controller 1 and then the global execution controller 1 triggers the partition

1 execution controller to resume with the execution of the program.

The global execution controller generates the start read and write signals for the

bridges after being triggered by the global structure controller, and starts or resumes
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the according partition execution controller by the signal from the global structure

controller. As shown in Fig. 3-50, the global execution controller is made up of four

threads, each of them controls the according partition execution controller and the

adjacent bridge. Each thread reads the data from the program and then resets the

counter to according address, preparing to execute the buffers in the bridge, or sends

start configure signal and address to the global structure controller.
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Figure 3-50: Global execution controller.

The behavior of each thread is similar to the partition execution controller, except

that the program controls the buffers in the bridge instead of the partition, and it

generates a start or resume signal to trigger the partition execution controller.

The division of the control of the partitions into separate thread brings the easy

control when multiple applications work at the same time. When there is a transition
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from one application to the other, then the according threads control the partitions

and the bridges to start or stop without interrupting the other applications.

The partition execution controller generates the start read and write signals for

the buffers within the partition once after being enabled by the start or resume signal

from the global execution controller. As shown in Fig. 3-51, the Finite State Machine

(FSM) within the partition execution controller reads the data from the program and

then resets the counter to according address, or sends start configure signal and

address to the partition structure controller.
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Figure 3-51: Partition execution controller.

The first 2N bit of the program organization indicates the start read or write

time of the buffers. The ”Jump” bit is used to form a loop in the program. However,

the ”Branch” bit is used in the case when there is a reconfiguration request during

the execution. If there is a ”1” in the ”Jump” bit, the FSM reads the address in

the program, ”AAA” in this case, and then look for the reset address in the table,

”CCC” in this case. In the next clock cycle, the FSM reset the counter to ”CCC”.

If there is a ”1” in the ”Branch” bit, the FSM stops the counter first and then reads
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the address in the program, ”BBB” in this case. Then the FSM look for the address

”CCC” and the configuration data ”CCC” in the table. At this time, the FSM saves

the address ”CCC” and sends the partition structure controller a configure signal

and configuration address ”CCC”. After the global execution controller sends the

resume signal, the FSM resets the counter to the saved address ”CCC”. If the global

execution controller sends a start signal, then the FSM resets the counter address to

”0”. The program is executed from the first address.

3.5.2 Execution Initiation of Multiple Partitions Application

Fig. 3-52 shows how the global controller cooperates with the partition controller

dynamically when one application uses two partitions, partition 3 and 4. If the

host processor issues the command of ”Load” and the global structure controller is

free, the global structure controller configures bridge 3, partition 3 and 4 structure

controllers. After partition 3 and 4 finishes the configuration, they send the global

structure controller finish signals. Then the global structure controller sets the status

of this application as ”Loaded”.

If the host processor issues the command of ”Execution” and the interface detects

the application is loaded, then it issues the command to global execution controller 3

and 4. The global execution controller 3 triggers bridge 3 and partition 3 execution

controller, the global execution controller 4 triggers partition 4 to execute the program

saved in their memory. If there is a ”Jump” in the program, then the partition 3 and

4 execution controllers direct the current execution address to the jumped address.
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Figure 3-52: Multiple partitions application operation.

If there is a ”Branch” in the program, the partition 3 and 4 execution controllers

suspend current execution and request the partition 3 and 4 structure controllers to

reconfigure the interconnection. At the same time, the global execution controller 3

also suspends current execution of bridge 3 and requests the global structure controller

to reconfigure the bridge 1. Once the partition 3 and 4 structure controllers finish the

reconfiguration, they send finish signals to the global structure controller. After the

global structure checks the reconfiguration of the application is finished, the global

structure controller triggers the bridge 3, the global execution controller 3 and 4

to resume to execute. Therefore, the resume of the execution of all the partitions

within an application is control under the global structure controller, in which way

the synchronization of an multiple partitions application is realized.

How the interface controller coordinates with the global controller and the host

processor is shown in Fig. 3-53. For the other command, this architecture will use

the same process as shown in Fig. 3-53. If the interface controller accepts the ”Halt”

command, the partition will save its current parameters in its registers and go on
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with the execution when the ”Resume” command comes. But during the ”Suspend”

period, the partition will not save the current parameters. After the command of

”resume”, the register as shown in step 8 will be written back into execution mode.
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Figure 3-53: Command processing.

Fig. 3-54 shows the timing when multiple applications are configured and exe-

cuted. During the configuration of application 1, the structural controller writes the

data into the registers from the memory. Then the structural controller generates the

according control signals to the buffers, either within the partition or for the bridges.

At the same time, the status registers are indicated in ”Load” status. Once the host

processor sends the command to execute the application 1, the execution controller

checks if the current time matches to the start time. If it does, then a start signal is

generated to trigger the execution of related partitions and bridges. When it comes
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the command of ”Stop”, the execution controller stops the ongoing application and

then writes the new status into the register indicating the current ”Stop” status.
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Figure 3-54: Configuration and execution of multiple applications.

Fig. 3-55 shows the timing during the loading of the program. Firstly, the host

processor write the program into the global memory by applications, then the host

processor sends the command of ”Load” to the interface controller. The interface

controller checks if the global structure controller is in the status of ”busy”. If it is

busy, the interface controller saves the commands into a queue and then sends out

the command after the global structure controller is free. The global structure and

execution controllers are loaded, and then the global structure controller requests the

according partition controllers to load and sets its status to ”Free”. Once after the

global controllers and the partition controllers finishes the load, the global structure

controller marks the loading of the current application finishes. Then it is possible for

the command of ”Execution” to execute, or the command will be saved into the queue

in the interface controller until the finish of the loading of the application. When one

application, say application 3, uses multiple partitions, partition 3 and partition 4,

the global structure controller will only mark the finish of application 3 after both
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partition 3 and 4, and the global controller finish the loading.
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Figure 3-55: Timing of loading.

Fig. 3-56 shows the timing of the execution of the applications. After the interface

controller receives the command from the host processor, it checks if the current

application has been loaded. It only issues the command of ”Execution” after the

application is loaded, or it saves the command in a queue until the finish of the

loading. For the global execution controller, several applications can be executing

since it has multiple threads. The according partition execution controller starts and

stops to execute by the request from the global execution controller. Once there

is a command of ”Stop” from the host processor, the interface controller issues the

command without condition immediately.
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Figure 3-56: Timing of execution.

3.5.3 External Data Access

The processing elements get access to the external through the bridges. Fig. 3-57

shows the structure of the bridges when connecting to the external I/O. Eight buses,

either of them can be used as input bus or output bus, are placed next to the four

bridges to avoid the conflict when several applications exchange the data with the

outside at the same time. The size of the bus is the same with the converted size of

data to save the area occupied by the bus. While the size of the data memory is the

integer multiple of the size of the bus to make full use of the resources. The bridge is

connected with the external I/O through two buses, so that the processing elements

in one partition can get access to the platform through one bus without conflict

when the adjacent processing element in another partition is communicating with the

outside of the platform through another bus. For the input path, a de-multiplexer

is used to select the buffers through which the data comes into the partition. The
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two fan-in multiplexers are used to select if the input comes from the outside or from

the processing elements in the partition. For the output path, M de-multiplexers

are used to send the output data to another partition or to the outside through the

external I/O. One M fan-in multiplexer is used to choose through which buffer in the

bridge, the data is sent to the outside.
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Figure 3-57: Bridges connected to external I/O.

Fig. 3-58 shows the way the external data is accessed. The interconnection

modules between the bus and bridge sets if the data in the bridge is connected to the

bus. The data controllers decides which bank of the data memory to use and the read

or written address of the data memory. Once there is a command of execution from

the host processor, the global execution controllers execute the execution program.

It generates the start read and write signals which are not only sent to the bridges,
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but also sent to the data controller to set the start address of the data memory. If the

data controller detects the request of getting access of the external data, The data

controller will choose the first available bank. The data controller saves the address

of the bank of data memory for the use of reading or writing of the external data.

This makes it possible for the concurrent access to all the data buses. Within each

bank of the data memory, it consists of two parts, one of them for the read data and

the other for the written data. It makes it possible for the share of the data memory

cells of reading and writing. Each time when the data is read, it is read from the first

part of the block. While the written data is saved in the second part of the block.

After the read or write of the data memory bank, the interface controller changes

the status registers in the host processor and writes or fetches the data into or from

the data memory. If the first two bit is ”01”, this bank is ready to be read. If it is

”10”, this bank is ready to be written. If the value of the bank is ”1”, it is ready

for the operation. The registers in interface controller also keeps the record of the

interconnection between the bridge and the bus. The first 8-bit register gives the

status of the buffers in the bridge. If it is ”00”, the buffer is used to isolate data

within the platform. If it is ”01”, the buffer is fetching data from the external bus. If

it is ”10”, the buffer is writing data into the external data memory. The data memory

is divided into eight parts, each of them is connected to the external bus.
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Figure 3-58: Data memory.

3.6 Architecture Evaluation

3.6.1 Single Application in Single Partition

In this section, we evaluate our four partition based platform by mapping the three

applications shown in Fig. 1-2 and the function of the hierarchical controllers for the

given three applications. The data in the global memory space and data memory

is represented by the script files ”Glb Mem Space” and ”Data Memory”. Each time

when several applications are mapped into the platform, the host processor writes the

control data into the global memory space once. While the host processor can write

the data into the data memory dynamically whenever it is necessary for the mapped

applications. The platform is modeled by SystemC, and we verify the operation and
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the function of the controllers by the log files and the resulted waveforms as shown

in Fig. 3-59.
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Figure 3-59: Platform implementation.

Three applications as shown in Fig.3-60 are mapped into the four partition based

platform shown in Fig.3-61. Two of them make use of only one partition, and the

other one uses two partitions. Each application uses the buffers in the bridge and

the external buses to get access to the data outside. Each application processes

data of different sizes, 16-bit, 24-bit, 32-bit and 64-bit, operated under a single clock

frequency or multiple frequencies. The first application makes use of single partition

and two external buses. Since two buffers share the same external bus, say bus 1,

this application operates as non-overlapped iteration. The second application makes

use of a single partition and three external buses, each buffer uses one external bus.

Therefore, it is possible to operate as overlapped iteration. It is operated under two

clock frequencies. For the third application, it makes use of two partitions and two

external buses. It is illustrated as non-overlapped iteration and operated under single

clock.

For the first and second single partition based applications as shown in Fig.3-

60, we evaluate their functionality. For application 1, it is operated under 1 MHz
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Figure 3-60: Given applications.

frequency, with different input and output data size for the processing elements.

The first application is operated under single clock, while the second application is

operated under multiple clocks.

The execution program which sets the buffer activity is shown in Table 3.8. Each

line of program is executed every clock cycle. The total iteration time is the number

of cycles necessary for the processing elements to finish the process, plus the read and

write delays in the longest direct path. After one iteration, the program branches to

reconfiguration and then execute again.

If we want to normalize the buffer size to 8-bit. To maintain the same through-

put, the clock frequencies of the processing elements and the buffers are summarized

in Table 3.9. Since the processing elements are all operated under 1 MHz, the read
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Figure 3-61: Four partition based reconfigurable platform.

and write speed of each buffer are the same. Table 3.10 shows the content program-

ming the clock frequencies, including the clock frequencies of the processing elements,

buffers, data conversion modules, the structure and execution controllers.

The new timing of the buffers are changed as shown in Table 3.11 under the

assumption that each data conversion module consumes 1 us to finish the conversion.

In this case, the total iteration time is 161 us. Compared to the original case, the total

consumed time increases 7 us, which is the expense of the data conversion modules

in the longest direct path.

The data configuring the interconnection is shown in Table 3.12. Address 0 con-

figures the selection signals of the 4-input multiplexers from the left side processing
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Table 3.8: Execution program of application 1

Partition 1 Exe 0000000000000000 0 0 0000
0000000000000000 0 0 0000

... ... ... ...
1000100000000000 0 0 0000
0100010000000000 0 0 0000

... ... ... ...
0010001000000000 0 0 0000
0001000100000000 0 0 0000

... ... ... ...
0000000010000000 0 0 0000
0000000001000000 0 0 0000
0000000000000000 0 1 0000

Global Exe 10000000 00000000 00000000 00000000 0 0 0000
01000000 00000000 00000000 00000000 0 0 0000

... ... ... ...
00000000 00000000 00000010 00000000 0 0 0000
00000000 00000000 00000001 00000000 0 0 0000

... ... ... ...
00000000 00000000 00000000 00000000 0 0 0000
00000000 00000000 00000000 00000000 0 0 0000

... ... ... ...
00000000 00000000 00100000 00000000 0 0 0000
00000000 00000000 00010000 00000000 0 0 0000
00000000 00000000 00000000 00000000 0 1 0000

Table 3.9: Clock frequencies in data conversion case

Data conversion frequency(MHz)
PE1 1
PE2 1
PE3 1
PE4 1
BC1r 4
BC1w 4
BC2r 8
BC2w 8
BC3r 4
BC3w 4
BC4r 2
BC4w 2
BC7r 4
BC7w 4
BB1r 4
BB1w 4
BB2r 4
BB2w 4
BB3r 2
BB3w 2

element fabric to the buffers, while address 1 configures the selection signals of the

8-input multiplexers from the buffers to the left side processing element fabric. In

the same way, address 2 and 3 configures the interconnection between the buffers and

the right side processing element fabric. For bridge 1 and 3, address 0 configures the

connection from the left side processing element fabric to the buffers in the bridge.

Address 1 configures the connection from the buffers in the bridge to the left side pro-

cessing element fabric. The first two 4-bit data in address 2 represent the selection
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Table 3.10: Clock frequencies in data conversion case

Partition 1 000 0000 0 8MHz
001 0000 0 8MHz
010 0000 0 1MHz
... ... ... ...
010 0111 0 1MHz
011 0000 0 4MHz
011 0000 1 4MHz
011 0001 0 8MHz
011 0001 1 8MHz
011 0010 0 4MHz
011 0010 1 4MHz
011 0011 0 2MHz
011 0011 1 2MHz
011 0100 0 4MHz
011 0100 1 4MHz
... ... ... ...
011 0111 0 1MHz
100 0000 0 4MHz
100 0001 0 8MHz
100 0010 0 4MHz
100 0011 0 2MHz
100 0100 0 4MHz
... ... ... ...
100 0111 0 1MHz

Bridge 1 000 0000 0 8MHz
001 0000 0 8MHz
010 0000 0 4MHz
010 0000 1 4MHz
010 0001 0 2MHz
010 0001 1 2MHz
... ... ... ...
010 0011 0 1MHz
010 0011 1 1MHz
011 0000 0 4MHz
011 0000 0 2MHz
... ... ... ...
011 0011 0 1MHz

Bridge 3 000 0000 0 4MHz
001 0000 0 4MHz
010 0000 0 1MHz
010 0000 1 1MHz
... ... ... ...
010 0011 0 4MHz
010 0011 1 4MHz
011 0000 0 1MHz
... ... ... ...
011 0011 0 4MHz

signals from the buffers in the bridge to the external IO bus. The data in address

3 configures if the data goes into the processing element fabric in partition or the

external IO. Address 4 to 7 configures in the same way between the buffers in the

bridge and the right side processing element fabric in the partition.

3.6.2 Single Application in Multiple Partitions

In this section, we verify the functionality of the multiple partitions communication

through the bridges. We pick up the third application, the dataflow of which is shown

in Fig. 3-62. These processing elements and buffers are supposed to operate at 100
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Table 3.11: Timing of buffers and bridges in data conversion case

start time(ns) start write(ns) start read(ns)
BC1 54 54 55
BC2 107 107 108
BC3 54 54 55
BC4 107 107 108
BC7 160 161 161
BB1 0 1 2
BB2 54 54 55
BB3 160 161 161

Table 3.12: Interconnection configuration in the four partition based platform

Partition 1 Address0 1000 0000 1000 0000
Address1 00000000 01010000 00000000 00000000
Address2 10000000 00100000 00000000 00000000
Address3 0000 1000 0000 0100

Bridge 1 Address0 0000 0100 0000 0000
Address1 1000 0000 0000 0000
Address2 0100 1000 0000 0000
Address3 0110 1001 0000 0000
Address4 0000 0000 0000 0000
Address5 0000 0000 0000 0000
Address6 0000 0000 0000 0000
Address7 0000 0000 0000 0000

Bridge 3 Address0 0000 0000 0000 0000
Address1 0000 0001 0000 0000
Address2 0000 0001 0000 0000
Address3 0000 0000 0000 0101
Address4 0000 0000 0000 0000
Address5 0000 0000 0000 0000
Address6 0000 0000 0000 0000
Address7 0000 0000 0000 0000

MHz, with different input and output data size as shown in the figure. The data

configuring the interconnection is shown in Table 3.13. The parameters configuring

the timing of the buffers are shown in Table 3.14. Based on the parameters, the start

read and write time of the buffers are shown in Table 3.15 under the assumption that

all the processing elements cost 50 cycles to process the data. The total iteration

time is 2.29us for this application. After application 3 is divided into partition 3 and

partition 4, the timing parameters keep the same, except that buffer 3 and buffer 6

are substituted by the bridges.

After the data conversion modules are added to make full use of the resources and

reduce the interconnection cost, the clock frequencies are changed to different values

accordingly. But in the implementation of the data flow, it costs more to generate
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Figure 3-62: Multiple partitions in one application.

Table 3.13: Interconnection configuration of multiple partition

Partition 1 Address0 1000 0100 1000 0000
Address1 0000 1000 0000 0000
Address2 0100 0010 0000 0000
Address3 0000 0000 0000 0000
Address4 1000 0100 0000 0000
Address5 0000 0000 0000 0000
Address6 1001 0100 0000 0000
Address7 0000 0000 0000 0100

the accurate different clocks. Therefore, we want the clock frequency of the buffers

the same to relax the requirement of the accuracy. So all the clock frequencies of

the buffers are increased to their least common multiple and the parameters are also

changed accordingly. Table 3.16 shows the frequencies of the clocks.

To achieve the same buffer speed, we should change the speed of the processing

element together with the parameters to make sure the correct transition of data. For

one buffer, if the speed of writing is bigger than the speed of reading, then there is no

problem. But in the case when the speed of writing is less than the speed of reading,

the read offset (nr) should be recalculated. An example of the case is buffer 3. The

processing element 1 writes data into buffer 3 at 200 MHz, while processing element

4 reads the data at 400 MHz. To make sure the right data is read from the buffer 3,

the read offset(nr) is increased at least to 82.5ps.

After the clock frequency is increased, clock jitter becomes significant as shown

in Fig. 3-63. Without the clock jitter, the effective data can be sampled as the case
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Table 3.14: Parameters in given application for multiple partitions

BC or BB L nw nr D M
Given application BC1 10 1 1 0 32

BC2 15 1 1 0 32
BC3 15 1 1 0 32
BC4 10 1 1 0 32
BC5 15 1 1 0 32
BC6 10 1 1 0 32
BC7 15 1 1 0 32
BC8 10 1 1 0 32

Table 3.15: Timing of buffers and bridges for multiple partitions

start time(ns) start write(ns) start read(ns)
BC1 500 610 620
BC2 1120 1280 1290
BC3 1790 1950 1960
BC4 2460 2570 2580
BC5 500 660 670
BC6 1170 1280 1290
BC7 1790 1950 1960
BC8 2460 2570 2580

with lower clock frequency. But if the fast speed clock comes earlier, the useless data

will be saved into the registers in the buffer. To avoid the possibility to get the first

useless data, we increase the read offset by one to make sure the first data is effective.

Clock Skew

Original Clock

(100MHz)

Increased Clock

Frequency

(400MHz)

Data

Figure 3-63: Different read and write speed.

3.6.3 Multiple Applications

Load of Applications

The following steps in the log file show how the applications are loaded into the four

partition based platform:

� The host processor writes the program related with application 1 into the global
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Table 3.16: Clock frequencies in normalized buffer frequency case

Data conversion frequency(MHz)
PE1 200
PE2 100
PE3 100
PE4 400
BC1 800
BC2 800
BC3 800
BC4 800

memory, from 0x0000 to 0x3FFF. The control information of partition 1 and

bridge 1 is written into the global memory.

� The host processor writes the program related with application 2 into the global

memory, from 0x4000 to 0x7FFF. The control information of partition 2 and

bridge 2 is written into the global memory.

� The host processor writes the program related with application 3 into the global

memory, from 0x8000 to 0xFFFF. The control information of partition 3 and

4, bridge 1 is written into the global memory.

� The host processor sends command to load application 1.

� The interface controller receives the command of load and checks if the global

structure controller is busy. If it is busy, the interface controller saves the

command in a queue until the global structure controller is set free.

� Once the interface controller issues the command of load, the memory and

registers in the global structure and execution controller are written with the

program and tables of application 1.

� The program and tables of partition 1 are written into the memory and registers
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within partition 1.

� The status registers in application 1 is set, indicating the finish of loading ap-

plication 1.

� The same loading process repeats for application 2 and 3.

Fig.3-64 shows the verification by the waveform. The host processor gives the

command of writing the data into the global memory and loading them into the

platform. The global structure controller and each partition structure controller starts

to load the data into their memory and registers after the interface controller issues

the command. Once after each application finishes its loading, the status register is

set by the global structure controller.

Figure 3-64: Load of applications.

Execution of Applications

The following steps in the log file show the execution of the applications after they

are loaded into the memories and the registers:

� The host processor sends command to execute application 1.
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� The interface controller receives the command of execution and checks if the

application has been loaded. If it is not loaded, the interface controller waits.

If the application is loaded, then the interface controller issues the command.

� The status registers in application 1 is set, indicating application 1 is executing.

� Partition 1 is executing.

� Program branches in partition 1. The global structure reconfigures the inter-

connection. At the same time, the execution controller of partition 1 suspends

the execution and requests the structure controller of partition 1 to reconfigure.

� The global structure controller finishes the reconfiguration and then sets its

status register that it is free.

� The structure controller of partition 1 finishes the reconfiguration and then

sends the global structure controller the signal indicating it has finished the

reconfiguration.

� The global structure controller checks if the reconfiguration of application 1 is

finished. If yes, it request the global execution controller to resume the execution

of application 1 again.

� The global execution controller triggers the execution controller of partition 1

to resume the execution.

� Program jumps to the first address in partition 1. The execution controller of

partition 1 controls the current executed program to the jumped address.
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� The same execution process repeat for application 2 and 3. The execution of

application 2 and 3 overlap with that of application 1, except that the global

structure controller has to reconfigure the interconnection of one application at

a time. If it is busy reconfiguring one application, the other application has to

wait until it is free.

Fig.3-65 shows the execution of the applications. Once the host processor sends

the command of executing some application, the global execution controller triggers

the according execution controller of the partition. It also gives the start read and

write signals of the buffers in the bridge if an application makes use of several parti-

tions. If the current executed program has a branch, the structure controller gets the

reconfiguration address and data and then reconfigures the interconnection. Once the

host processor sends command to stop the execution of the application, the global

execution controller stops according partition execution controller.

Figure 3-65: Execution of applications.

The reason of dividing the control of the partitions into threads is to make it

possible for the multiple applications executing at the same time. Table 3.17 shows
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the timing of the most difficult case when all the three applications start running

at the same time, including the enable time of each thread and the start read and

write time of its following bridge buffers. In the case when there is a transition from

application 1 to application 2, the enable signal of the application 2 is delayed under

the control of the execution controller. Table 3.18 shows the timing in the case when

application 1 and application 3 start at the same time, then application 2 starts after

application 1 finishes. Therefore, the host processor controls the execution time of

the applications simply by giving the desired parameters to the program memory.

Table 3.17: Timing of the global execution controller in Case 1

Enable(ns) start write(ns) start read(ns)
Thread1 0 * *
Thread2 0 * *
Thread3 0 1280,1950 1290,1960
Thread4 1790 * *

Table 3.18: Timing of the global execution controller in Case 2

Enable(ns) start write(ns) start read(ns)
Thread1 0 * *
Thread2 2000 * *
Thread3 0 1280,1950 1290,1960
Thread4 1790 * *

Fig. show the data and control of this platform after the three applications are

mapped into our proposed platform. Once there is an command indicating the config-

uration of the platform, the three applications are loaded. Then they start to execute

at the same time, and the third application which consumes most time ends as the

last one.
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External Data Access

The following steps in the log file show the execution when the platform needs to get

access to the data outside:

� The host processor sends command to execute application 1.

� The interface controller receives the command of execution and checks if the

application has been loaded. If it is not loaded, the interface controller waits.

If the application is loaded, then the interface controller issues the command.

� The status registers in application 1 is set, indicating application 1 is executing.

� The host processor writes data into the first half of block 1 for the application

1 to read and then sets the status of the block ”Readable”.

� Partition 1 is executing. It reads the external data from the data memory and

then executes.

� The host processor sets the status of block 1 ”Writable”.

� Application 1 checks if block 1 has been set as ”Writable”. If it is ready, then

application 1 writes the data into the second half of block 1.

� The same execution process of application 2 and 3 overlap with application 1,

since they do not share the bus.

Fig. shows the execution when the applications get access to the external data.

Once the host processor sends the command of executing some application, the host
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processor writes the data into the data memory first. Then after the application

finishes processing these data, it writes the data back into the data memory if the

block is ready to be written.

Conflict Handling

Fig.3-66 shows the case when there is a conflict of the commands of configuration.

When application 1 is still configuring, it comes the command of configuring applica-

tion 2, the interface controller will not issue the command until application 1 finishes

its configuration.

Figure 3-66: Conflict of the configuration commands.

Fig.3-67 shows the case when there is a conflict between the reconfiguration request

and the command of configuration. When application 3 is doing the reconfiguration,

then it comes the command of configuring application 3 from the host processor, the

interface controller will push the command from host processor into the queue and

then issues them after the reconfiguration of application 3.

Figure 3-67: Conflict between the reconfiguration request and command of configu-
ration.
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Discussion

The simulation result shows the multiple applications work successfully in three sce-

narios.

Scenario 1: load application 1. Load and configure the interconnection and timing

parameters of application 1. Then load the execution parameters from the global

memory and execute application 1.

Scenario 2: Load application 2. After the configuration and execution of appli-

cation 1, there is no longer any parameter about it from the global memory. So

application 1 keeps running without being interrupted due to the running of applica-

tion 2. Then it is the turn of application 2. Load and configure the interconnection

and timing parameters of application 2. Then load the execution parameters from

the global memory and execute application 3.

Scenario 3: Before the configuration and execution of application 3, the parameters

given from the global memory indicates all the timing parameters in application 2

are ”0”. Then application 2 is stopped, following the configuration an execution

of application 3: Load and configure the interconnection and timing parameters of

application 3. Then load the execution parameters from the global memory and

execute application 3.

The first configuration time of above description consumes 60 clock cycles. With

the number of partitions and processing elements varies, the consumed time will

change. Here we consider the reconfiguration time of several cases.

Case 1: Interconnection within partition 1 is changed.
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Case 2: The timing parameters within partition 1 is changed.

Case 3: The interconnection of bridge 1 is changed, while all the other partitions

and the bridge timing parameters keep the same.

Case 4: The timing parameters of bridge 1 is changed.

Case 5: The interconnections within partition 1 and 2 and their timing parameters

are changed. The timing parameters in bridge 1 and 2 are changed.

Table 3.19 gives the reconfiguration time and steps as to the above cases. From

the result, we get that Case 1 to Case 4 get 83.3% to 56.7% reconfiguration time

reduction, while Case 5 only get 10% reduction. Therefore, in the case that there

are only a few modifications of the platform, the hierarchical controller saves much

reconfiguration time.

Table 3.19: Reconfiguration time and steps

Case 1 Case 2 Case 3 Case 4 Case5
First time configuration time 60 60 60 60 60

Reconfiguration time 10 26 17 11 54
Execution steps 11 1,10 5,10 6,10 1,2,6,7,10,11

There is tradeoff when dividing the partitions: Big partition size causes compli-

cated interconnections and wasted resources, while small partition division increases

the number of total partitions in a fixed application, therefore, makes the control

structure complicated.

In the case that the size of one application is too big to be realized by one partition,

this application is mapped to several partitions. The maximum allowed size of the

partition is decided by the width of the registers within the partition. There are two

constraint when dividing the partitions: First, the total number of buffers, the same
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to the number of the processing elements, is less than 2N , where N is the width of

defining the buffer ID. Secondly, the number of the buffers in the bridges is less than

2N , where N also defines the width of the address offset. The size of the data in the

memory decides the maximum allowed iteration time. In our proposed platform, each

parameter(L, nw, nr, D or M) is 8-bit. Therefore, the maximum allowed iteration

time is 28 + 1. If an application of larger iteration time is mapped to our proposed

platform, the data size should be increased.

The total iteration time of one application might be changed to satisfy the re-

quirement of multiple applications. For application 1, the input and output of the

external data happens through bus 1. When the output data is ready, but the bus is

still occupied for the reading of the input data, then the data is hold to wait until the

bus is set free. Therefore, the total iteration time is extended by the waiting time 1.

For the case of application 2 and 3, once the data is ready to be write out of

the platform, the host processor waits for the whole block of data to come out and

then write them into the data memory. If the host processor is busy with the reading

and writing of one application, another application is ready to read or write the data

to external, then this application has to wait until the single data bus of the host

processor is free. In this case, the iteration time of this application is also extended.

In conclusion, the iteration time of one application might be extended because

of two reasons. One is that only one bus is assigned to the application, so it has to

wait for the finish of the reading of the data from the external and then starts to

write data outside. This happens when the time of reading a block of data is bigger

than the iteration time. The other case is the reading or writing of the external data
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conflicts with those of another application after the mapping. Then the application

has to wait for the free time of the single bus to the host processor. In this case, the

iteration time of an application is extended.

After some applications are mapped to the platform, it is capable to add more

applications. But the existing applications have to be reconfigured to satisfy the

following constraint resulted from the platform:

� The application uses adjacent partitions: This platform supports mapping

of the applications into adjacent partitions. Since they can only communicate

through the buffers in the bridge.

� Enough buffers in the bridge: The buffers in the bridge can be used both

as the buffers within an application and as the buffers of the data outside.

� Enough bus to get access to the data outside: The bus can be used

both as either input or output bus at a time. There are two bus next to one

partition, so one partition can get access to the data outside through two buffers

concurrently. The execution time of an application has to be extended to satisfy

this constraint.

� Single bus for the host processor: There is only one single bus for the host

processor to write the data into the blocks in the data memory. Before these

data is used or sent by the applications, the host processor should have time to

finish the writing or reading of the data.

� Action of the host processor and the applications concurrently: Each
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block of data memory corresponds to one of the eight buses. However, they are

divided into two parts so that the single bus connected to the host processor

and the eight buses next to the bridges can be used at the same time.

3.7 Conclusion

A partition based reconfigurable platform for multiple applications executing con-

currently is presented. Both functional and architectural aspects of the system are

modeled. This architecture simultaneously considers system performance and archi-

tectural models for the evaluation. Two models are closely linked by a set of common

parameters which affect both the performance and the hardware complexity. Recon-

figurable controller for supporting multiple applications in partition based platform is

presented. Our proposed hierarchical control layers supporting multiple size data are

efficient for rapid reconfiguration. The reduced control bus architecture is useful to

reduce the interconnect resources. This control structure is only suitable for a single

application within one partition. In the case that multiple applications use the same

partition, the control signals should change smoothly between applications, without

affecting the function of previous applications.
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Chapter 4

Hierarchical Controller Design for

Rapid Manipulation of Partition

Based Reconfigurable Platform

4.1 Introduction

Modern application-specific systems often demand easy reconfigurability, which allows

the system to adapt to the nature of the computation being carried out [1], [2], [4], [10].

Current reconfigurable computing systems enable us to map complex tasks to different

cores, minimizing hardware resources and simultaneously increasing the processing

speed [3], [7] - [9].

Mapping program flows onto a multi-core architecture presents a challenge to

designers and this is the reason why there exists a large design gap in reconfigurable

architecture logic [31] - [32]. Most systems consists many processing elements and
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mapping these to multiple processors requires designing efficient controllers [44].

Mapping a design dataflow onto such a multi-core architecture can prove to be an

ardous task, since synchronizing data transfers between multiple processing blocks is

a problem owing to different latencies and execution times. While it is possible to

estimate the execution times and map the dataflow on the basis of such approxima-

tions, wrong results may be produced if the actual execution times are even slightly

different. Many sophisticated modeling techniques exist that enable us to map such

designs onto hardware [45] - [50]. However, these techniques often seem inadequate

when it comes to complex designs: non-trivial design issues such as flexibility of map-

ping methodology, complexity of controlling architecture and dynamic reconfiguration

remain unsolved. Moreover, such techniques focus primarily on functional modeling,

and place less emphasis on the controller design, which often scales exponentially in

complexity with a linear increase in the complexity of the design.

To deal with these issues, we propose a design methodology based on buffer-based

dataflow (BBDF) where the data access is globally synchronized by a controller that

handles the data transfers between multiple processing elements. BBDF is a trans-

parent representation that bridges the gap between the algorithmic description of a

design and its structural implementation with a buffer-centric perspective, as opposed

to the conventional processing element-centric perspective. The proposed methodol-

ogy is built around the principle of representing the algorithm as a BBDF and by using

a powerful controller that can handle all the buffer parameters and interconnections,

thereby making reconfiguration a straightforward process. The controller design of

key importance here: because of the nature of logic architectures, the designer does
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not have a direct influence on the underlying realizations, but rather, the architecture

and the algorithmic characteristics of the controller define the achievable performance.

Furthermore, systems often contain a mix of both software and hardware elements,

not all of which may run on similar clock frequencies. Realizing certain elements as

hardware while others as software and finally, some as processors, can lead to issues

such as variable latencies, which will degrade performance. Our proposed controller

design is robust and is deftly able to handle such issues, while still enabling dynamic

design reconfiguration. Additionally, because the design complexity depends on the

number of buffers and interconnections, as well as the temporal and structural charac-

teristics of the design, we can make our design scalable by incorporating all of these

parameters into our global controller. Thus, the main advantages of our proposed

methodology are i) Feasible Dynamic Reconfiguration, ii) Design Scalability, and iii)

Support for multi-frequency elements in the design.

Mapping program flows onto a multi-core architecture presents a challenge to de-

signers and this is the reason why there exists a large design gap in reconfigurable

architecture logic. Most systems consists many processing elements and mapping

these to multiple processors requires designing efficient controllers. In order to syn-

chronize the data transfers at the level of a dataflow graph, we use the buffer-based

dataflow for mapping processing elements to processors. Our methodology creates a

mapped partition from the buffer-based dataflow representing an application, the re-

source constraint of a target realization and estimated times for functional executions

and data transfers. Our mapping algorithm tries to map consecutive processing blocks

to the same processor to increase efficiency. In the proposed methodology, the data
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transfers of processing blocks mapped to processors are realized as target-dependent

primitive templates.
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Figure 4-1: Illustration of multi-level execution controller structure.

Execution of dataflowExecution 
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Structural 
Control

Controller

Structure of dataflow

Buffer controller timing

Dataflow topology connectivity

Figure 4-2: Orthogonal controller for execution flow control and interconnect topology
configuration.

Apart from simple dynamic reconfiguration, our design efficiently handles adjust-

ment of the iteration period of the algorithm, and solves multi-rate dependencies as

well. The iteration period has to be often adjusted according to the needs of the

designer. Our methodology takes care of this requirement by increasing or decreasing

processing speed of the elements depending on the required iteration period. Multi-

rate dependency, which is due to the processing elements operating at different clock

frequencies with respect to one another, is also solved in the same way. The use of

global and buffer controllers in our design facilitates the separation of the structural

and temporal aspects of the dataflow and simplifies program size as well as scalability.
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4.2 Mapping and Characterization

4.2.1 Buffer Based Operations

Application-specific systems are usually complex designs with multiple processing el-

ements and a number of datapaths and sequential elements. In general, all algorithms

and designs can be represented as dataflows governed by the relation

Y = P (X) (4.1)

where an input X and an output Y are finite blocks of data, and P is the rep-

resentation of the processing element (PE). X and Y are sequentially consumed and

produced as data blocks, and their sizes may be different.

Fig. 4-3(a) shows the buffer-based dataflow, obtained when the processing ele-

ments are separated by buffers to isolate their functionalities. Each processing el-

ements includes both the functionality as well as the storage elements required for

proper functioning. Processing elements in the dataflow execute the required program

or algorithm on a finite set of data in every iteration period. Typical dataflows have

multiple inputs, outputs, and even feedback elements. Inclusion of the buffer con-

troller enhances the reconfigurability of the entire system. The buffers can be realized

as dual-port memory, since they allow access to reading and writing to all processing

elements connected to them. However, reading and writing operations must be per-

formed keeping in mind the execution times and latencies of each processing element.

The various processing elements can be divided into processors to be mapped onto
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the target architecture.
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(a) Buffer Based Data Flow with Single Processing Element
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Figure 4-3: Two different realization of buffer based data flow. (a) A function is
mapped to an processing element. (b) Multiple functions are mapped to a processor.

Fig. 4-4 is the design realization where several processing elements are mapped

to one processor and multiple processors are used, based on the dataflow obtained in

Fig. 4-3(a). The division of processing elements into multiple processors or cores is

indicated in the figure. This division is based on simple optimization techniques. If

processing elements in the same sequential data path are mapped to the same proces-

sor, the processor can process the data sequentially from one processing element to

the other without unnecessarily wasting any time to wait for the previous processing

element to finish. The global controller synchronizes the data transfers between mul-

tiple processors. The mapped partition has the global timing information to make
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Table 4.1: Buffer Controller Parameters in Processing Element Realization

L nw nr D M start write start read
BC1 10 1 1 0 32 11 12
BC2 10 10 1 0 32 32 33
BC3 15 12 1 0 32 60 61
BC4 15 5 1 0 32 20 21
BC5 30 6 1 0 32 48 49
BC6 20 7 1 0 32 48 49
BC7 20 7 1 0 32 76 77
BC8 10 1 1 0 32 72 73

sure the correct frames are being read or written between different processor cores

(or between a processor and some hardware logic).
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Figure 4-4: Buffer-based dataflow mapped to a multi-core system.

The buffer-based dataflow obtained in Fig. 4-3(a) has to be mapped to the target

realization. Fig. 4-5 shows this mapping where the processing elements are placed on

the two sides of buffers, connected by the reconfigurable interconnects. In the figure,

we only show the result of connected elements.

Using the previously derived relationships between the start signals, we now try

to approximate the read and write times for each buffer and these are illustrated in

Table 4.1. These times are based on the assumption that the execution time of each

processing element is 50 cycles. The buffer controller requires this information to
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Figure 4-5: Mapped realization with interconnects and buffers, and processing ele-
ments realized as hardware logic.
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make sure that read and write operations are correct. In the dataflow of Fig. 4-3(a),

data coming out of buffers 5 and 6 should arrive at processing element 6 at the same

time, as per the program flow. To make sure that processing element 6 will process

the correct data frame, the parameters nw1,4,5,6 and nr1,4,5,6 are calculated to get the

same start read times for buffers 5 and 6. The same technique is used to calculate

the other read and write times. The principle used is that when there are several

fan-ins to a processing element, the effective data coming out of those fan-ins should

arrive at the processing element at the same time.

4.2.2 Multi-Rate Support and Iteration Period Control

Figure 4-6: An example of a BBDF and buffer activity when different clock rates are
specified for the processing elements.

While most designs usually have processing elements operating at the same fre-
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quencies, this is not always the case as required by the designer. Fig. 4-6 shows a

situation where the write operation to a buffer by PEi and the read operation from

the same buffer by PEj occurs at different clock rates. In order to support such

situations, the delay factor Di,j is used to synchronize the different elements within

the buffer controller. We define fi and fj as the clock rates (in Hertz) of PEi and

PEj respectively. When fi is greater than fj, the slower process does not have to

wait as long as there is at least one block of valid data in the buffer. In this case,

there is no overflow, since the next data block is not generated before the current

data block is completely used (read, in this case), and therefore the delay factor is

not needed. However, if fi is less than fj, the faster process has to wait in order to

prevent data underflow, until enough data is written to the buffer. In this case, the

following equation gives the minimum delay.

Di,j =

[(
M − nri,j

fi
− M − nri,j − 1

fj

)
× fj

]
(4.2)

The control signals to the buffer, start write and start read should be synchro-

nized according to the clock rates of each processing element, since the control signals

are activated by the execution controllers using the global clock rate: we define the

global clock rate fG (in Hertz) as the rate of the fastest clock rate in the design that

can be used to prevent missing any control signal. Then, start write and start read

are obtained by multiplying fG/fi to the writing parameters (Li and nwi,j) and fG/fj

to the reading parameters (nri,j and Di,j) respectively. Thus,
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start writei,j =

[
(Li + nwi,j)×

fG
fi

]
(4.3)

and

start readi,j = start writei,j +

[
(nri,j +Di,j)×

fG
fj

]
(4.4)

The key benefit of enabling straightforward multi-rate support is that we can

assign an arbitrary clock rate to any processing element while satisfying the require-

ments of the iteration period. When high-speed processing is necessary for a process-

ing element, we set it to operate at a higher clock frequency in a critical section of the

design. Similarly, all elements are by default assigned the lowest clock-speed that sat-

isfy the iteration period requirements. This makes our architecture power-aware and

minimizes the power footprint of our methodology. Fig. 4-7 illustrates two possible

cases of iteration period given a buffer based dataflow. As shown in the figure, many

iteration periods are made possible by simply varying the timing of the start control

signals, and the other control signals are handled by the buffer controller. Individual

buffer speeds may vary as long as the fan-in constraints, which are enforced such that

the original execution characteristics are not modified, are satisfied.

Fig. 4-8 illustrates read and write operations being performed at different speeds.

Even though the data block size Mi,j may be too large for the buffer BCi,j, the actual

storage required by the implementation is not. For each buffer, the start write and

start read signals are separated by toffset. The storage requirement for each buffer

is thus given by
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Figure 4-7: Illustration of iteration period adjustment by start signal manipulation.

Figure 4-8: Buffer activities at different speeds, illustrating that the storage require-
ments depend on the signal timings .
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storage sizei =

[
start readi − start writei

Twi

]
(4.5)

where Twi is the time required to successfully complete a write operation. Hence,

the total amount of data storage required by the application depends on the control

signals generated by the buffer controller. In the event that toffset is larger than the

entire buffer activity duration, the storage requirement will be limited by the block

size Mi,j.

4.2.3 Execution Controller Structure

Figure 4-9: Execution controller, its connection and signals.

Fig. 4-9 shows the structure of the execution controller. The execution controller

generates bit patterns for controlling the buffer controllers. Every two bits of infor-

mation describes the activation signals for the write and read operations respectively.

For example, the pattern ”10” would start the write operation but not the read opera-

tion for a particular buffer controller. Similarly, a sequence such as ”01010000” would

only start the read operations for the first two buffers, while the other two buffers
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are left unactivated. The bit patterns are thus stored as programs in the program

memory as a large sequence of 1s and 0s. Thus, the execution timing of the data flow

is easily controlled by modifying the program memory contents. As an example, if we

want to delay the iteration period of the algorithm by a hundred cycles, we simply

insert one hundred 0s into the program content.

Figure 4-10: Timing diagram and corresponding program structure for iteratio period
with non-overlapping buffer execution.

Fig. 4-10 shows the timing diagram of an example BBDF with different iteration

period requirements and non-overlapping buffer activity. For these timing diagrams,

their corresponding program content structure is shown below. The execution pro-

gram can be generated by extracting any portion of the timing as long as the length of

the interval is equal to the iteration period. Since this example has only two buffers,
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the width of the program content is four. In addition, the number of non-zero rows

is at most four, since there are four instance where the start signals are generated.

If two or more buffer start times are identical, two rows may contain multiple 1s.

Assuming the controller frequency as shown in the figure, the total length of the

program Nitr is

Nitr = Titr × fcontroller (4.6)

where Titr is the iteration period in the absolute time scale and fcontroller is the

frequency of the controller that generates the control signals. If the frequency is high,

the program size will proportionately increase. Note that the start signal generated

by the controller is before the actual start of buffer activity.

Fig. 4-11 illustrates the buffer activity timing and its corresponding program struc-

ture where buffer activities overlap across iterations. In this case, the program is

generated by selecting the interval where are buffer activities are shown (this period

is indicated with a shaded box).

As discussed previously, if the controller clock frequency is high and the iteration

period is long, the control program size can be significantly large. In order to reduce

the program content size, we propose to select the controller frequency fcontroller,

which satisfies the following conditions for all start read and start write times with

respect to the beginning of the iteration period, as

start readi − Tri <
kri

fcontroller
< start readi (4.7)
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Figure 4-11: Timing diagram and corresponding program structure for iteration pe-
riod with overlapping buffer execution.
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where Tri is the time required for the buffer read operation, and kri is some integer

constant. Similarly, for the start write times,

start writei − Twi <
kwi

fcontroller
< start writei (4.8)

where Twi is the time required for the buffer write operation, and kwi is again an

integer constant. Extending these conditions to all the buffer controllers present in

the design, we can see that for N buffer controllers we will have 2N conditions that

must be satisfied.

4.2.4 Joint Execution-Structural Control

If read/write activity amongst some buffers do not overlap with each other, these

buffers can be replaced by one buffer in certain special cases. There are a number

of scenarios where this concept can be used to reduce the total number of buffers.

Consider the case of Fig. 4-12, where processor 1 is connected to processors 2 and 3

through buffers 1 and 2. In this case, the path of the dataflow is decided by processor

1. The data will be written to buffer 1 or 2 depending on the computational decision

made by processor 1. In any case, both the buffers can never be active at the same

time. Once the processor has decided its dataflow path, the buffers lying on the other

path are effectively never used in the same cycle.

Taking advantage of this mutual exclusiveness, we replace buffers 1 and 2 with a

single buffer labelled buffer 1, as shown in Fig. 4-12(b). As soon as the dataflow path

is decided upon, the processor will send this information to the global controller,
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which will then configure this shared buffer using the technique of dynamic path

selection and handle the structural reconfiguration. Fig.4-13 shows the timing before

and after buffer 1 and buffer 2 are shared by using a single buffer labelled buffer 1.

Buffer sharing can also be implemented for select periods of time.

BC
1

PEi PEj

BC
2

PEk PEl

PEi PEj

PEk PEl

MUX
BC
1

MUX

Figure 4-12: The concept of buffer sharing. If the buffer activities of two paths do
not overlap, the same buffer controller can be used.

(a) Timing before bu!er sharing

(b) Timing after bu!er sharing
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Figure 4-13: Timing before and after buffer sharing.

The start read and start write signals from the execution controller to buffer 2

are sent to buffer 1 instead. Similarly, the processors connected with buffer 2 are

connected to buffer 1 instead during the buffer sharing period. These connections

and control signals have to be handled by the structural controller.

The structural controller is shown in use in Fig. 4-14. The purpose of this con-

troller is to configure the data flow by managing interconnections as well as the buffer
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Figure 4-14: Structural controller and its connection to the buffer controllers and
interconnect switches. The registers within the buffer controllers and the switches
are address mapped.

controllers. All registers in the buffer controllers and interconnection multiplexers are

mapped into memory, and therefore reconfiguring the data flow is simply a matter of

writing the new configuration content to the registers. The size of an address depends

on the number of buffer controllers and the interconnection complexity. The program

memory of the structural controller stores multiple configurations, which allow for

different data flows to be constructed by writing the corresponding control program

content to the registers.

Fig. 4-15 illustrates the duration of the time that the buffer selection must be

completed. Because of this additional requirement, the selection of the controller

frequency must consider additional conditions

start writei +Mi · Twi <
ksi

fcontroller
< start writej (4.9)

where Twi is the time required for the buffer write operation, and ksi is some

integer constant. The index i is the buffer that has completed the activity and the

index j is the buffer that needs to be set.
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To maximize the buffer sharing, minimizing the buffer activity overlaps by select-

ing higher operating frequencies for the processing elements.

Figure 4-15: The range of the time which the structure must be reconfigured.

Fig. 4-16 illustrates the integrated controller with the execution flow of the buffer

control and the structure modification.
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Figure 4-16: Connection of the processor and the buffers using a bus.

4.3 Asynchronous Hierarchical Execution Controller

4.3.1 Asynchronous Data Access

In all real designs, however, execution latency is always present. The latency may

occur during the operation due to the fact that processing elements may not have a
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fixed execution time. Regardless of the reason, dealing with this latency is critical for

correct operation of the design.

Fig. 4-17 illustrates the timing where the actual data generation and consumption

do not correspond with the start write and start read timing signal. Because of this

situation, the buffer may write the wrong data samples. Similarly, the data read by

the buffer controller may not properly read by the processing element.

Start write Start read

!i

!j

Actural data from Pi

Actural data to Pj

Figure 4-17: Illustration where the actual data generation and consumption may not
match with the start write and start read timing.

In order to handle the asynchronous buffer activities, the additional handshake

control signals are necessary as illustrated in Fig. 4-18. The start write signal will

be generated as before, but the actual writing process starts when the processing

element provide ready write signal prior to actually generating the data. Similarly,

the start read signal is generated by the controller but the actual reading process

will starts when the consuming processing element provide ready read signal. Hence,

additional circuitry is necessary. The correct timing signals are illustrated in Fig.

4-19. Unlike the synchronous case, 1 clock cycles delay after the ready signal is

introduced in the asynchronous case.

One potential problem with such random latency is that undesirable timing vi-

olation and invalid buffer controller operation may be possible especially in a tight
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Figure 4-18: Buffer controller for correct data read/write operations.
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Figure 4-19: Buffer controller for correct data read/write operations.
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buffer activity schedule. Two cases are illustrated in Fig. 4-20. The first case is the

accessing the same buffer controller between the iterations. If the iteration period

is aggressively selected, the operation of the buffer controller may not be completed

before the next iteration. It is desirable to maintain Tslack. The second case is the

sharing of the buffer controller within the same iteration. Similarly withe the other

case, Tslack must be maintained.

Tslack

Iteration

Write Write

Read Read

Iteration to iteration

Buffer 1

Tslack

Iteration

Write

Write

Read

Read

Within iteration

Buffer 1

Buffer 2

Figure 4-20: Invalid operation of the buffer controller due to the latency.

4.3.2 Dynamic Structural Reconfiguration
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Figure 4-21: Illustration of multi-processor mapping where the dynamic structural
reconfiguration as well as unknown delay need to be supported.
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Fig. 4-21 shows the multi-processor mapping of the buffer-based dataflow shown

in Fig. 4-3(a), using the buffer-based mapping shown in Fig. 4-5. The division of

processing elements is based on the principles previously derived. The processors

communicate via a shared bidirectional bus, which in turn is connected to the inter-

connect structure which enables data transfer to and from the buffers. This mapping

method can encounter several problems in real systems. In the case that processing

elements in one processor are on several different sequential data paths and rely on the

outputs of the previous processing elements, the overall execution time will increase

since certain processing elements will have to wait longer.

Fig. 4-22 illustrates the processor activity for all processing elements. The pro-

cessor activity consists of both buffer reading and writing duration. The processing

elements can be grouped to map to a processor if their activities do not overlap in

time.
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Figure 4-22: Illustration of processor activity timing.

There are two cases where we use the technique of dynamic path selection. One

is the buffer sharing scheme, where the single buffer controller replaces the multiple
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buffer controllers to operate through time multiplexing. The other case is that the

processor itself decides its data path. When the buffer sharing scheme is used, the

host processor calculates which buffers are to be replaced and sends this information

to the controllers on the target design. If the path is to be decided by the processors,

each processor only decides which buffer should be connected with it. In this scheme,

the path is formed by the collective decisions of all the processors regarding their own

path.

Due to buffer sharing, the topology must change during the execution of the

dataflow. Especially, the buffer controllers connected to the Processor 1 and Processor

2 need to be configured before their usages.

4.3.3 Hierarchical Controller Design

Fig. 4-23 illustrates a hierarchical controller connections. The original dataflow is

divided into a several groups where each group operates autonomously. Each group

incorporates its own execution and structural controllers. The edges connecting these

groups have buffer controllers. The buffer controllers specified as bridge buffer con-

trollers, which are controlled by a global execution and structural controller. The local

controllers and the global controller are synchronized for correct overall operations.

Fig. 4-24 shows the buffer activity control timing for the single controller case.

As discussed in the previous section, the controller frequency and the control memory

are selected considering the all of processing elements and buffer controllers.

Since the partitions only have a small subset of the dataflow, the frequency and

175



Controller Controller

Controller

Figure 4-23: Illustration of hierarchical controllers. Each partition has it sown con-
troller and the connection of the partitions is controller by the global controller.

Titr

Single Controller

Figure 4-24: Illustration of buffer activity timing diagrams.

the control memory of the local execution controller only consider the small set of

processing elements. Hence, the the program size of the local controller is smaller

than the signle controller case.

Fig. 4-25 shows the buffer activity timing for the partitions. And the global

controller handing the bridge buffer controllers is also illustrated. In order to properly

synchronize the overall execution, the following conditions must be satisfied.

Fig. 4-26 illustrates the timing of the reconfiguration. The local controller tim-

ing is illustrated separately. Each local controller operates with its own controller

frequency. The global controller timing indicates the activity signals for the bridge

buffer controller. The timing is compared with that of the single controller case.

Fig. 4-27 illustrates the control signal interfaces between the local controllers and

the global controller. Note that there is no direct connection between the global
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Figure 4-25: Illustration of buffer activity timing diagrams.

Group 1

Group 2

Group 3

Global Controller

reconfig

Command

reconfig reconfig

reconfig

reconfig

reconfig

reconfig

Figure 4-26: Illustration of multi-level structural reconfigration timing.
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controller and the local controllers. The overall flow of the dataflow is maintained

by controlling the bridge buffer controllers. Because of the elimination of the direct

interfaces between the controllers, the scalable design is possible.

Structural

Execution

Local Controller

Structural

Execution

Local Controller
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Global Controller

Interconnection

Bridge 
Buffer

Bridge 
Buffer

Bridge 
Buffer

Figure 4-27: Illustration of multi-level structural reconfigration timing.

Fig. 4-28 illustrates the program size comparison between the single controller case

and the multiple controller case. In both case, the length of the program is identical

since they have the same controller frequency and the iteration period. However, the

width of the single controller case is equal to the sum of the widths of the distributed

controllers. Note that after the integration of the group including the controller, the

group can be viewed as another processing element. Because the group maintains the

processing element property, the design process is scalable.

Titr

Single Controller

2B

Titr

Multiple Distributed Controllers

2B1 2B2 2B3 2B4

Figure 4-28: Illustration of the program size between the single controller and multiple
distributed controllers.
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4.4 Evaluation

4.4.1 Evaluation Setup

In the evaluation, a dataflow illustrated in Fig. 4-29 is used. The dataflow consists 14

processing elements and 16 buffer controllers. A feedback is included in the dataflow.

The data flow is evaluated using the single controller. Then, the dataflow is divided

into three partitions to demonstrate the hierarchical controller design. In the parti-

tions, the feedback path is intentionally divided. The buffer sharing is also considered

in the evaluation where the structural configuration is performed.
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Figure 4-29: The topology of the buffer-based dataflow used for evaluation.14 pro-
cessing elements and 16 buffer controllers are used. The original dataflow graph is
divided into three sub dataflow graph for hierarchical controller illustration.

Fig. 4-30 illustrates the evaluation parameters for the processing elements and

buffer controllers. Two sets of frequencies are used for the processing elements. The

frequencies of the processing elements are chosen such that while these clock frequen-

cies are obtainable by clock division from single clock, the resulting controller clock

frequency is large causing the large controller memory requirement.

Similarly with the buffer controllers, two sets of the data block size are chosen

as illustrated in the figures. The values are tabulated in Tables 4.2 and a timing
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Figure 4-30: (a) Illustration of the operating frequencies of the processing elements.
(b) Illustration of the data block size used for the buffer controllers.
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diagram is shown in Fig. 4-31.

Table 4.2: Buffer controller configuration for the dataflow in Fig. 4-29.

Buffer M
Write Read

Time(ns) f(MHz) Time(ns) f(MHz)
1 8,16 21,11 100,200 101,16 300,200
2 8,16 111,31 300,200 116,36 100,200
3 8,16 146,51 100,200 156,111 100,700
4 8,16 186,119 100,700 196,124 100,700
5 8,16 226,128 100,700 236,129 100,700
6 8,16 266,153 100,200 276,158 100,200
7 8,16 21,11 100,200 31,16 100,200
8 8,16 61,31 100,200 166,36 300,200
9 8,16 181,51 300,200 186,56 300,200
10 8,16 201,71 300,200 206,76 100,200
11 8,16 226,91 100,200 236,129 100,200
12 8,16 306,173 100,200 416,178 100,200
13 8,16 266,153 100,200 276,158 100,200
14 8,16 226,128 100,200 236,138 100,200
15 8,16 226,128 100,700 236,133 100,700
16 8,16 266,137 100,700 276,148 100,200

Figure 4-31: The buffer activity timing of the buffer-based dataflow used for evalua-
tion.

4.4.2 Execution Controller Evaluation

In this section, we consider the execution of the dataflow with the single controllers.

The different iteration period requirements are considered. The start read and write
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times of each iteration period requirement are illustrated in Fig. 4-32. For each

iteration constraint, the controller speed and the control program memory size is il-

lustrated in Tables 4.3. The controller frequencies are increased when the application

is faster. The controller memory size maintains similar sizes. The timing for different

iteration constraint are shown in Fig. 4-33.

Figure 4-32: Illustration of the buffer controller timing parameters for three sets of
iteration period requirements.

Table 4.3: controller frequency and the size of the program for different iteration
period.

Iteration Time 200ns 500ns 1us
Controller Frequency 700MHz 300MHz 150MHz

Controller Memory Size 15.4K 15.1K 16.2K

Instead of using the single controller as shown above, the hierarchical controller

structure is used in the evaluation. As illustrated in Fig. 4-29, the original dataflow is

divided into three groups. The feedback path is intentionally divided to demonstrate

that the tightly coupled edges are also supported. Tables 4.4 illustrates the controller

frequency and the size of the program for different iteration period. While the exe-

cution is identical to the single controller case, the controller memory size increased.
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(c) Iteration time = 1 us

(a) Iteration time = 200 ns

(b) Iteration time = 500 ns

Figure 4-33: Buffer timing flow for the dataflow in Fig. 4-29.
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So the memory size is increased for the flexibility of the controller design.

Table 4.4: controller frequency and the size of the program for different iteration
period for hierarchical controller.

Iteration Time 200ns 500ns 1us
Controller Frequency - Group 1 700MHz 300MHz 150MHz

Controller Memory Size - Group 1 15.4K 15.1K 16.2K
Controller Frequency - Group 2 700MHz 300MHz 150MHz

Controller Memory Size - Group 2 12.9K 9.2K 11K
Controller Frequency - Group 3 700MHz 300MHz 150MHz

Controller Memory Size - Group 3 4.3K 3K 3.3K
Controller Frequency - Global 700MHz 300MHz 150MHz

Controller Memory Size - Global 15.4K 15.1K 16.2K

4.4.3 Buffer Sharing and Configuration

In this section, buffer sharing and dynamic reconfiguration of the dataflow considered

in the evaluation. Fig. 4-34 illustrates the timing of the buffer controllers. The timing

parameters are set so that the buffer sharing is maximized.

Fig. 4-35 illustrates the configuration timing signals that triggers the reconfigura-

tion of the dataflow buffer controller usages. The configuration signals are generated

right after the buffer usages. In the controller memory, in addition to the buffer con-

troller timing, the configuration timing is also incorporated. When the hierarchical

controller structure is used, all controllers are synchronized. Since it takes some time

to configure, the all controllers stops the execution during a part of reconfiguration.
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(a) Without buffer sharing

(b) With buffer sharing

Figure 4-34: Illustration of the buffer activity timing for maximizing the buffer shar-
ing.

Figure 4-35: Configuration and reconfiguration of buffer sharing.
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4.5 Conclusion

This chapter presents a flexible hierarchical controller design for asynchronous buffer

based dataflows. The controller considers the execution flow and the structural config-

uration separately but collaboratively for dynamic reconfiguration of the dataflows.

By allowing tree structured controller makes the design scalable. The buffer con-

trollers that go between the processing elements isolates the execution hence making

the flexible controller design process. The proposed controller supports traditional

synchronous design as well as multi-core processors. The design methodology also

includes the design of a top-level global controller, responsible for the configuration

of the buffers and interconnections as well as path selection. The dynamic reconfig-

urability allows us to map multiple processing elements onto a single core and switch

between them during run-time. The proposed design is evaluated with SystemC.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

This thesis proposes a high performance partition based reconfigurable platform to

execute multiple concurrent applications. Hierarchical controllers to support dynamic

configuration of this platform is presented. A power-efficient frequency selection al-

gorithm that minimizes power consumption and maintains the system performance

requirement is used to provide the clock frequencies for the platform.

Chapter 2 proposes a fast power-efficient frequency selection algorithm that min-

imizes power consumption and maintains the system performance requirement for

multiple data-centric applications efficiently. It utilizes variable step size scheduling

techniques combined with dynamic frequency selection by exploiting the correlation

between the frequencies and the iteration time to achieve minimum power under

timing constraint. Then we improve the solution to limited number of clock frequen-

cies when applications are dynamically mapped. If a data-centric application can

187



be represented by a dataflow, the proposed algorithm gets the solution of the clock

frequencies in fast speed than simulated annealing algorithm. Experimental results

show that it gets typically same results with simulated-annealing based method while

running 100 times faster. Compared to the existing algorithms, the proposed algo-

rithm has flexibility of applying to any kind of dataflow representation under various

setting of timing constraint.

Chapter 3 proposes a partition based reconfigurable platform for multiple appli-

cations executing concurrently. This platform consists of processing elements and

buffers interacting through a reconfigurable interconnect, dividing the applications

into partitions so that they can execute concurrently. It uses control memory and

data memory to save the control information and the processed data. Hierarchi-

cal controllers are used to manipulate large numbers of partitions and achieve rapid

and dynamic reconfigurability. It also supports applications of different sizes of data

within the partition by converting the parallel data into the serial smaller size of data

in the data conversion modules within the partition and then back to the desired size.

Also, the smaller size of data simplifies the interconnection between the processing

elements. However, to provide the same throughput of the dataflow, multiple frequen-

cies of clocks are necessary for the multi-rate applications. Therefore, we provide the

clock distribution to the platform to minimize the inaccuracy of the clocks. We build

this platform in SystemC model and simulation gives the functional verification of

configuration and execution of multiple applications.

Chapter 4 presents a flexible hierarchical controller design for asynchronous buffer

based dataflows. The controller considers the execution flow and the structural config-
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uration separately but collaboratively for dynamic reconfiguration of the dataflows.

By allowing tree structured controller makes the design scalable. The buffer con-

trollers that go between the processing elements isolates the execution hence making

the flexible controller design process. The proposed controller supports traditional

synchronous design as well as multi-core processors. The design methodology also

includes the design of a top-level global controller, responsible for the configuration

of the buffers and interconnections as well as path selection. The dynamic reconfig-

urability allows us to map multiple processing elements onto a single core and switch

between them during run-time.

5.2 Future Work

The applications considered in this thesis are dataflow examples containing feedback

and feed-forward paths. The future topic can be to map real signal processing ap-

plications to the proposed reconfigurable architecture as if they can be represented

as buffer based dataflow. Methods of dividing the partitions to maintain the highest

speed of the system is an interesting topic. A smaller number of partitions have large

interconnection within them but keep higher global speed. A larger number of par-

titions have fast operating speed but cause complicated global interconnections. We

can balance this tradeoff according to applications in the future. Another topic related

to this platform is how to do the mapping of the applications to achieve efficiency

and lowest total iteration time. In future research, control architecture applicable in

multiple applications within one partition is interesting. When the current applica-
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tion changes from one to the other, the controller within the shared partition will

decide the right start time and timing parameters. Furthermore, the reconfigurable

architecture will be able to reduce power consumption by switching the applications

and operating frequencies between these partitions.
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