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Abstract of the Dissertation

Distributed Estimation in the Presence of Correlation

by

Zhe Shen

Doctor of Philosophy

in

Electrical Engineering

Stony Brook University

2015

The Internet of Things (IoT) has been developing for decades and
has been considered as the future of the Internet. The basic idea of the
IoT is to enable a wide range of objects (things) around us to interact and
cooperate with each other so that certain goals are reached. An important
technology that will be part of the IoT is Radio Frequency IDentification
(RFID). RFID is based on the concept of backscatter-based communication
and the use of inexpensive RFID tags. A very exciting direction of work
in the last few years has been the research on backscatter-based tag-to-tag
(BBTT) communication systems, that is, systems that do not require the
use of expensive RFID readers. In BBTT communication systems, two or
more radio-less tags communicate with each other purely by backscattering
an external signal. We study several problems of BBTT communication
systems.

First, we investigate a unique phase cancellation problem that occurs
in BBTT systems. The relative phase difference between the backscatter
signal and the external excitation signal at the receiving tag often causes
a complete cancellation of the baseband information contained in the
envelope, which results in a loss of communication between the two tags.
We theoretically analyze and experimentally demonstrate this problem.
We then present a solution to the problem based on the design of a new
backscatter modulator for tags that enables multi-phase backscattering.

Second, we address protocols for communication in BBTT systems.
We note that the tags of BBTT systems have limitations including memory
space and communication ranges. Considering these limitations and simple
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applications, we choose and modify two existing anti-collision protocols
that can be used in BBTT systems. We examine the performance of
the proposed protocols through theoretical analysis of linear and complete
networks and by computer simulations of general networks.

Third, we consider the problem of distributed Bayesian learning in
BBTT systems. The BBTT system is composed of tags that can only
communicate with their neighbors. These tags are tasked to learn by
cooperation with the neighboring tags. More specifically, the objective
of the tags is to obtain the global posterior distribution of an unknown
parameter of a fictitious fusion center in a distributed way through the
use of the Bayesian paradigm. The tags iteratively exchange information
with their neighbors, and they update the summary of their information
using the signals received from the neighbors. All the tags are assumed to
know the topology of the network and keep all the new information in their
memories. We propose a method based on a recent work and prove that the
distribution of each tag can converge correctly using the proposed method.
Furthermore, with the proposed method, convergence is achieved much
faster than with the non-Bayesian and consensus-based algorithms. The
proposed approach is general and applicable to other types of distributed
systems.
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Prof. Petar M. Djurić for the long time support and guidance of my Ph.D
research. He inspire me by his hardworking, knowledge and passionate
attitude. Also he is a very nice person. I could not have imagined having
a better advisor and mentor for my Ph.D study.

Secondly, I would like to show my gratitude to Prof. Mónica F.
Bugallo for her assistance during my research and the opportunities she
offered me to collaborate with other researchers, and to teach high school
students.

Thirdly, I would like to thank Akshay Athalye. He first found the
phase cancellation problem and gave a lot of help to solve this problem. I
also would like to thank Professor Samir R.Das. He gave me many good
suggestions for the anti-collision protocols selection. I am very thankful
to Prof. Sangjin Hong and Prof. Samir R. Das for serving as committee
members.

Fourthly, I thank my friends in the COSINE Laboratory, Inigo
Urteaga, Cagla Tasdemir, Shishir Dash, Li Geng, Zhiyuan Weng, Yunlong
Wang, Zheming Zhang, Zhongwen Ying, Kai Wang, Kezi Yu, Hechuan
Wang and Lingqing Gan who have been supportive in every way.

Finally, special gratitude goes to my parents, Guowei Shen, Heli
Zhang, and my wife, Sha Tong, for their warm love, continued patience,
and endless support during the past years.

ix



Chapter 1

Introduction

1.1 Overview

The Internet of Things (IoT) has been developing for decades with

increasing pace. The basic idea of IoT is to endow physical objects (things)

around us with the ability to interact and cooperate with each other in

order to allow for reaching specific goals [1]. For example, obvious goals

are to identify, track, and manage physical things in the real world through

the network or the Internet. The application domains of the IoT include

transportation and logistics, health care, and smart environments [2].

Radio Frequency Identification (RFID) devices will be indispensable

components of the IoT. Modern RFID systems are composed of expensive

readers and inexpensive tags. The readers communicate with the tags

by using the principle of backscattering. In the IoT, ideally, one would

want to avoid the use of RFID readers and to solely rely on the use of

inexpensive tags. This requires that the tags directly communicate with

each other. Very recently, progress has been made in the development
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of backscatter-based tag-to-tag communication (BBTT) systems. In these

systems, the tags can interconnect smart objects which is exactly one of

the idea of the IoT [3]. In BBTT systems, an exciter sends continuous

wave (CW) signals to provide power and let the tags communicate using

backscattering. The exciters are far less expensive than the readers, which

would permit scalability of the system. In brief, one exciter and several

tags can implement a network with a low cost.

In a BBTT system, all the tags can backscatter the CW signal

and receive backscattered signals from other tags. The signal that a tag

receives is a superposition of the CW signal and the backscatter from the

transmitting tag on the same frequency. The phase difference between them

has a big impact on the amplitude of the received signal. They may cancel

each other or decrease the amplitude in certain topological configurations.

The tag is simple and low-cost, and therefore it cannot implement active

IQ demodulation to extract the backscatter signal like an RFID reader. As

a result, it suffers from the phase cancellation problem. In this dissertation,

we address this problem in detail and provide solutions to it.

When a tag receives more than one backscatter signal from its

neighbors, collision occurs and it cannot decode them successfully. In the

commercial RFID system protocol ISO 18000-6C(Gen. 2), a reader detects

tags and assigns talking time period to each tag [4]. The reader sends

commands to change the states of tags or sends continuous wave (CW)

signals to let the tags talk. A tag listens to the commands or modulates

the CW signal using backscattering. However, in BBTT systems, there is

no centralized reader to command the tags. Because of energy and memory

limitations of the system, one approach is to avoid use of protocols that
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require acknowledgment of signals and establishment of topologies. The

existing anti-collision protocol cannot directly be used in a BBTT system.

In this work, we consider protocols that are adapted to BBTT systems,

and we study them from theoretical and practical points of view

The third topic of this dissertation is distributed learning. The topic is

not only of direct interest for BBTT systems, but also for any other system

composed of agents and without a central unit. In distributed learning,

agents estimate the underlying state of nature using not only their local

measurements, but also the information of other agents. If there is a fusion

center with access to information from all the agents, it can obtain global

optimal estimates of the desired quantities. However, in most cases of the

IoT, each agent can only communicate with its neighbors. In other words,

each agent only gets information from a few agents around it. We study

a network of Bayesian cooperative agents whose objective is to obtain the

posterior distribution of an unknown parameter in a distributed way. We

cast the distributed learning as a consensus problem, where the agent can

perform as well as a fictitious fusion center. There exist consensus-based

methods, such as average consensus and gossip-based averaging algorithms.

They are robust and do not require topology information, but they converge

relatively slowly. They are suitable for use in dynamic networks with simple

devices, such as temperature sensors. However, in some cases, as in BBTT

systems, we want to allow for a much faster learning of the unknowns. We

propose an approach that improves the convergence rate of learning over

networks in comparison to standard approaches.
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1.2 Contributions

In this thesis, we analyze and provide solutions to two problems in

BBTT systems and develop a learning method over networks with improved

learning rate.

Our first contribution is a solution to the phase cancellation problem

in BBTT systems. This problem is particular for BBTT systems. We

model the amplitudes and phases mathematically for both amplitude shift

keying (ASK) and phase shift keying (PSK) modulations, and show how

the problem arises in both the time domain and with phasor diagrams. We

analyze the problem and point out the parameters that affect the values

of cancellation phases. We also give several solutions and analyze their

pros and cons. Theoretically, our proposed solution can avoid the problem

perfectly except in one situation. The simulation and experiment results

show that our analysis is correct and that the proposed solution can reduce

phase cancellation significantly.

The second contribution is two anti-collision protocols that are

modified for use in BBTT systems. We theoretically analyze the modified

CSMA/CA protocol using Markov chains in complete networks and

the framed slotted Aloha protocol in complete and linear networks.

We investigate their performances in general networks using computer

simulations.

The third contribution is a novel approach to distributed learning.

We exploit the work reported in [5], where the authors present an efficient

Bayesian learning method in a Gaussian setting. Namely, the authors

assume that the agents in the network observe Gaussian signals with the

same mean and with variance 1. The agents know the network topology and
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use it to execute an efficient learning method of the unknown parameter.

In the proposed solution, instead, we work with Bernoulli models in two

scenarios. In the first one, the agents observe outcomes of a Bernoulli

experiment, where the probability of success θ is unknown and where the

observations are without errors. In the second scenario, these observations

are with errors whose probabilities are known. In both cases, we show how

the agents can reach a consensus in finite number of iterations and much

faster than consensus-based methods.

1.3 Dissertation Organization

The dissertation is organized as follows. In Chapter 2, we formulate

the phase cancellation problem in a BBTT system. We then propose

solutions for this problem. The anti-collision protocols selection problem is

addressed in Chapter 3 In Chapter 4, we consider the distributed Bayesian

learning problem with Bernoulli models. Particularly, we consider the

case that the observations are without and with errors. We conclude the

dissertation with Chapter 5.
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Chapter 2

Phase Cancellation Problem in

BBTT System

2.1 Introduction

The science behind communication by means of reflected signals or

backscatter has been studied for several decades. In recent years this

technique has seen widespread practical application in the form of Radio

Frequency Identification (RFID). Furthermore, it is expected that the

RFID technology will play a prominent role in enabling the Internet of

Things, where physical objects will be connected to other objects and to the

cyberspace. Typical backscatter RFID systems consist of an active reader

that transmits a query signal and passive tags that communicate with the

reader by reflecting part of this signal. This communication technique

allows for tags that are very inexpensive and consume very low power.

Traditional passive RFID has long been thought of as the ‘last link’

in the IoT, enabling visibility and connectivity for all items regardless of

6



size, cost and volume [4]. This is primarily due to the very low cost and

low power consumption of passive RFID tags. However, use of traditional

RFID technology requires a centralized model wherein one high-cost reader

initiates and controls communication with a population of tags in its

vicinity. The tags cannot autonomously communicate with each other

nor can they initiate communication with their neighbors. This places

a restriction on the capabilities and scalability of an IoT using standard

RFID technology.

Backscatter based tag-to-tag communication (BBTT) is a paradigm

that can overcome the above limitations and help realize the vision

of the IoT. It can allow ubiquitously tagged objects to independently

communicate with each other without being controlled by a single reader.

In these systems, passive radio-less tags communicate by reflecting an

external excitation signal. This passive tag-to-tag communication has

recently started to gain research interest. Communication between two

passive RFID tags at close range using backscatter communication has

been demonstrated in [6] and the electromagnetic models that govern the

communication in this system have been explored in [7]. In our previous

work, we have developed a radio-less EPC Gen 2 compliant device (the

sensatag) that can listen to backscatter signals from neighboring Gen 2

RFID tags and in turn communicate with a Gen 2 RFID reader using

standard backscatter modulation. We employed this device to enable

precise localization and tracking in passive RFID systems [8].

All these systems employ a standard UHF RFID reader as the source

of the excitation signal to enable the backscatter communication. In [9], the

authors have designed a system where tags communicate by backscattering
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ambient TV signals. Similarly, in [10] a backscatter-based communication

system that uses ambient WiFi signals as excitation source has been

demonstrated. Although the frequency of the excitation signal and the

sources of power for the tag differ in the above systems, the general design

of the tags is similar. The tags consist of an antenna, a backscatter

modulator, an envelope detection circuit, a comparator for digitizing the

detected envelope, and a digital controller that implements the chosen

communication protocol. The backscatter modulator consists of a switch

that alters the reflection cross section (RCS) of the antenna between two

states by varying the termination impedance. This allows for modulation

of baseband data onto the reflected backscatter signal. Tags can employ

ASK or PSK backscatters. In the former case, the real part, and in the

latter, the imaginary part of the RCS are varied, respectively.

In this chapter, we explore phase cancellation issues that occur

in such BBTT communication systems. Consider two tags in a BBTT

scenario, both receiving an excitation signal, either from an active source

or ambient radiation. The transmitting tag sends out baseband data

using backscatter modulation. The receiving tag sees a signal that is a

superposition of the excitation signal and the modulated backscatter from

the transmitting tag. Since the tags are passive radio-less devices, the

receiving tag cannot implement active IQ demodulation to extract the

backscatter signal. Instead, it has to rely on passive envelope demodulation.

In such a setup, the relative phase difference between the excitation signal

and the modulated backscatter at the receiving tag has a big impact on

the amplitude of the baseband envelope in the combined signal.

Based on the value of the phase difference between the excitation

8



and backscatter signals, the baseband envelope can be severely attenuated

and completely cancelled out leading to a loss of communication between

the two tags. Due to this phase problem, the amplitude of the received

baseband signal does not decrease monotonically with increasing distance

between the two tags. Instead, it varies between peaks and nulls, with the

peaks getting successively smaller. This phenomenon significantly impairs

the robustness of the tag-to-tag link.

In order to truly unlock the potential of BBTT communication, it is

important that the tags can communicate over long distances with low bit

error rates (BERs). Handling the challenge of phase cancellation is a critical

step towards achieving that goal. We present a mathematical formulation

of the phase problem and further illustrate it using phasor diagrams. We

verify the models using simulations and lab experiments. In order to solve

this problem, we propose a new backscatter modulation technique that uses

phase diversity. We couple it with a combination scheme in the tag front

end that can further exploit this diversity and increase the link range and

robustness.

In summary, backscattering devices are traditionally intended to

communicate with an active reader. Hence over the past decade a lot

of design and optimization efforts have gone towards building devices to

achieve this goal. The BBTT paradigm, on the other hand, opens up a new

set of challenges which call for novel designs of backscatter modulators and

tag front end circuits. Our solutions from this chapter to some of the

challenges is one effort in that direction.
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2.2 The phase cancellation problem

Passive tags achieve backscatter modulation by varying the complex

impedance of the tag chip between two or more states. This alters

the complex power reflection coefficient, s2, and accordingly alters the

amplitude and/or the phase of the reflected signal. The coefficient s2

determines what fraction of the power incident on the tag is reflected. It

can be expressed as [11][12]

|s|2 =

∣∣∣∣ZC − Z∗
A

ZC + Z∗
A

∣∣∣∣2 , 0 ≤ |s|2 ≤ 1, (2.1)

where ZC and ZA are the impedances of the tag chip and tag antenna,

respectively.

Exciter

tag1 tag2

d2

d1

d3

C
  W

Figure 2.1: A two-tag BBTT system. The respective distances between
the devices are d1, d2, and d3.

In Fig. 2.1, we depict a BBTT system with one exciter and two tags.

The exciter broadcasts the CW signal, and Tag 1 backscatters this signal

and modulates this backscatter by varying its impedance between two

states, ′0′ and ′1′. Tags can employ either ASK or PSK backscattering. In

ASK backscattering, the real part of the chip impedance is varied between

10



the two states altering the amplitude of the reflected signal. By contrast,

in PSK backscattering the imaginary part of the chip impedance is varied

altering the phase of the reflected signal.

The signal power received by Tags 1 and 2 from the exciter is given

by Friis’ equations

PE→T1 =
PEGEGT1λ

2

(4πd1)2
, (2.2)

PE→T2 =
PEGEGT2λ

2

(4πd2)2
, (2.3)

where PE is the output power of the exciter; GE, GT1 and GT2 are the

antenna gains of the exciter, Tag 1 and Tag 2, respectively; λ = c
f
is the

wavelength of the signal; f is the frequency of the signal; c is the speed of

light in free space; and d1 and d2 are distances as shown in Fig. 2.1.

When tag T1 is backscattering, the power reflected by it in the two

backscatter modulation states can be written as

P 0
T1

= k20PE→T1 , (2.4)

P 1
T1

= k21PE→T1 , (2.5)

where k20 and k21 are constants proportional to the reflection coefficient of

the tag, |s|2, in each of the two states. Again, using Friis’ equation, the

11



power received at tag T2 from tag T1 in the two states can be written as

P 0
T1→T2

=
P 0
T1
GT1GT2λ

2

(4πd3)2

=
k20PEGEG

2
T1GT2λ

4

(4πd1)2(4πd3)2
, (2.6)

P 1
T1→T2 =

P 1
T1
GT1GT2λ

2

(4πd3)2

=
k21PEGEG

2
T1GT2λ

4

(4πd1)2(4πd3)2
. (2.7)

We note that in the case of PSK these two powers are the same.

Tag 2 “sees” the superposition of two signals viz. the CW from the

exciter and the modulated backscatter from Tag 1. Since tag T2 is a passive

device, it employs an envelope detector to decode the backscatter signal

received from tag T1. Depending upon the relative phase difference between

the received exciter and backscatter signals at tag T2, the amplitude of the

resultant signal may be the same in both states ′0′ and ′1′. When this

occurs, the envelope detector is unable to detect the modulated backscatter

despite tag T1 being in the range of tag T2 w.r.t. signal strength. This

creates a “null spot” where the two tags cannot communicate. This

phenomenon, which we refer to as phase cancellation, occurs in both ASK

and PSK backscattering. We analyze the ASK and PSK modulations next.

2.2.1 ASK modulation

When the system uses ASK backscatter modulation, the tag alters

the amplitude of the reflected signal in the states ′0′ and ′1′. The phase

of the reflected signal in the two states remains the same. Let S0(t) and

S1(t) represent the resultant superimposed signals received at tag T2 when

12



backscattering tag T1 is in state ′0′ and ′1′ respectively. Further, let A0
T1

and A1
T1

be the amplitudes of the received backscatter signal from tag T1

in the two states, and let θE and θT1 be the phases of the signals from the

exciter and T1 respectively at T2 (the exciter is at phase 0). Note that since

this is ASK backscattering, θT1 will be the same in states ′0′ and ′1′.

From the geometry shown in Fig. 2.1, we can write the following

expressions for the above mentioned phases:

θE =
2πfd2
c

, (2.8)

θT1 = θE→T1 + θb +
2πfd3
c

, (2.9)

where θE→T1 is the phase difference of the CW signal from the exciter at T1,

and θb is the phase difference introduced by the backscattering hardware.

Using (2.8) and (2.9), the relative phase difference, θd, between the two

superimposing signals at T2 is given by:

θd = θT1 − θE

=
2πf(d1 + d3 − d2)

c
+ θb. (2.10)

Then we can write

S1(t) = AE cos(ωt+ θE) + A1
T1
cos(ωt+ θT1)

= AE cosωt cos θE − AE sinωt sin θE

+A1
T1
cosωt cos θT1 − A1

T1
sinωt sin θT1

= (AE cos θE + A1
T1
cos θT1) cosωt

−(AE sin θE + A1
T1
sin θT1) sin(ωt). (2.11)
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The expression for S0(t) is analogous. Let A0 and A1 represent the

amplitudes of the signal detected by the evelope detector of T2 in the two

states. Then we can write:

A1 =√
(AE cos θE + A1

T1
cos θT1)

2 + (AE sin θE + A1
T1
sin θT1)

2

=
√
A2

E + 2AEA1
T1
cos θd + (A1

T1
)2,

(2.12)

and

A0 =√
(AE cos θE + A0

T1
cos θT1)

2 + (AE sin θE + A0
T1
sin θT1)

2

=
√
A2

E + 2AEA0
T1
cos θd + (A0

T1
)2.

(2.13)

Phase cancellation arises when the above two amplitudes are equal,

i.e., when A0 = A1. This entails that in that case tag T2 cannot detect and

demodulate the signal sent from tag T1. From the above equations we can

determine that phase cancellation occurs when

√
A2

E + 2AEA0
T1
cos θd + (A0

T1
)2

=
√
A2

E + 2AEA1
T1
cos θd + (A1

T1
)2,

or when

θd = θc = cos−1

(
−
A0

T1
+ A1

T1

2AE

)
, (2.14)

where θc represents the angle at which phase cancellation occurs.

Using the power - amplitude relationship P = A2/2R where R is the

input resistance of the detector circuit, we get the following relations for
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amplitudes of signals received at T2

AE = AE→T2 =
√

2PE→T2RT2

=
λ
√

2PEGEGT2RT2

4πd2
, (2.15)

A0
T1

= A0
T1→T2

=
√

2P 0
T1→T2

RT2

=
k0GT1λ

2
√
2PERT2GEGT2

16π2d1d3
, (2.16)

A1
T1

= A1
T1→T2

=
√

2P 1
T1→T2

RT2

=
k1GT1λ

2
√
2PERT2GEGT2

16π2d1d3
. (2.17)

Substituting from (2.15) into (2.14), we conclude that cancellation

occurs when θd = θc where

θc = cos−1

(
−(k0 + k1)d2λGT1

8πd1d3

)
. (2.18)
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Figure 2.2: Top: Signal waveforms when there is no phase cancellation

(θd ̸= θc). Bottom: Signal waveforms when phase cancellation takes place

(θd = θc).

The phase cancellation phenomenon is shown in Fig. 2.2. The

blue line (marker x) represents the signal received from the exciter at T2

(E → T2), and the green line (marker △) shows the signal received at T2
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from T1 in states ′0′ and ′1′ (T1 → T2). The superimposed signals S0 and

S1 are plotted in purple (marker o), and the envelope, with amplitudes A0

and A1 is shown in red. When θd ̸= θc, we can see that A0 ̸= A1. Hence

the envelop detector will be able to differentiate between the two levels and

demodulate the backscatter signal allowing for communication between T1

and T2. However as seen in Figure 2.2, when θd = θc, then the amplitude

of the received envelop in the two states is the same i.e. A0 = A1. In this

case the envelope detector will be unable to demodulate the tag backscatter

leading to a loss of communication between the two tags.

The phase cancellation phenomenon is further illustrated in Figures

2.3 and 2.4 with phasor diagrams showing the signals received at T2

with and without phase cancellation, respectively. The resultant envelope

amplitudes A0 and A1 received at T2 in the two states are obtained by

adding the vectors representing the signals received from the exciter and

from the backscattering tag T1 in the two states.
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Figure 2.3: A phasor diagram of ASK modulation when phase cancellation

does not occur. All the symbols are defined in the text.
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Figure 2.4: A phasor diagram of ASK modulation that represents settings

with phase cancellation. All the symbols are defined in the text. Note that

there are two angles θc of phase cancellation.
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2.2.2 PSK modulation

When the system uses PSK backscatter modulation, the tag T1

changes only the phase of the reflected signal in the states ′0′ and ′1′.

The amplitude of the reflected signal in the two states is the same. At the

receiving tag, this PSK backscatter signal superimposes with the CW signal

from the exciter to produce two resultant signals, one for each state ′0′ and

′1′. As before, if the amplitudes of the resultant signals in the two states

are equal, then the envelope detector will not be able to demodulate the

backscatter signal. In this subsection, we analyze the phase cancellation

phenomenon in a BBTT system utilizing PSK backscattering.

In PSK modulation, the amplitudes of the two states ′0′ and ′1′ are

the same i.e. A0
T1

= A1
T1

= AT1 . Using (2.15), we can write

AE = AE→T2 =
λ
√

2PEGEGT2RT2

4πd2
, (2.19)

AT1 = AT1→T2 =
kGT1λ

2
√
2PERT2GEGT2

16π2d1d3
, (2.20)

where k is a constant determined by the cross-section of the antenna of Tag

1.

The tag backscatters PSK signals by varying the imaginary

(reactance) part of its power reflection coefficient between the two states.

Let ψ ∈ (0, 2π) be the phase difference of between the signals backscattered

in states ′0′ and ′1′. For the phases of the states, we can write

θ0T1
= θ0T1→T2

=
2πf(d1 + d3)

c
+ θb, (2.21)

θ1T1
= θ1T1→T2

= θ0T1
+ ψ

=
2πf(d1 + d3)

c
+ θb + ψ, (2.22)
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where θb is the phase difference introduced by the backscattering

mechanism in state ′0′ and θb + ψ in state ′1′.

Similar to the ASK modulation case, the resultant signals received at

T2 when T1 utilizes PSK backscattering can be written as:

S0
PSK(t) = AE cos(ωt+ θE) + AT1 cos(ωt+ θ0T1

), (2.23)

S1
PSK(t) = AE cos(ωt+ θE) + AT1 cos(ωt+ θ0T1

+ ψ). (2.24)

We can write the phase differences between the two superimposing

signals, viz. the exciter signal and backscatter from T1 at T2 in the two

states as:

θ0d = θ0T1
− θE =

2πf(d1 + d3 − d2)

c
+ θb, (2.25)

θ1d = θ1T1
− θE = θ0d + ψ

=
2πf(d1 + d3 − d2)

c
+ θb + ψ. (2.26)

Substituting from (2.25), (2.26) into (2.23), (2.24) and solving, we get

the resultant envelope amplitudes in the two states as

A0 =
√
A2

E + 2AEAT1 cos θ
0
d + (AT1)

2, (2.27)

A1 =
√
A2

E + 2AEAT1 cos θ
1
d + (AT1)

2

=
√
A2

E + 2AEAT1 cos(θ
0
d + ψ) + (AT1)

2. (2.28)

As explained earlier, phase cancellation occurs when A0 = A1.

Then, from (2.27) and (2.28) we deduce that this happens when cos θ0d =
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cos(θ0d + ψ). Thus, the condition for phase cancellation is

θ0d = θc = nπ − ψ

2
, n = 0, 1, 2, . . . (2.29)

Figures 2.5 and 2.6 show the phasor diagrams of signals received at T2

when T1 is backscattering using PSK modulation. The phasor diagrams

depict the conditions where phase cancellation does not occur and where it

occurs. We can see that the signals of the two states have equal amplitudes.

However, the different phases of the states cause that the received signals

have different amplitudes A0 and A1, unless phase cancellation occurs.
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Figure 2.5: A phasor diagram of PSK modulation when phase cancellation

does not occur. All the symbols are defined in the text.
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2.3 Possible Solutions

One solution for the phase cancellation problem is a tag design with

multiple antennas. In [13], a design for ASK modulation with a dual-

antenna is addressed. If the two received signals by the antennas have

different phases θd, the phase cancellation can be avoided in some cases.

For the PSK modulation, we can also use multiple antennas. The solution

based on multiple antennas may be of limited value if the distance between

the two antennas is small. In that case, the difference between A0 and A1

may be below the detecting threshold of the envelope detector.

Another solution can be based on sending the same message two

or more times (time multiplex) or use frequency hopping by the exciters.

According to the time multiplex, during one transmission, the tag sends

a message in the usual way, and in other time slots, the tag resends the

message but with different parameters that affect θb and ψ in (2.25) and

(2.26). In that case, at least one transmission will satisfy θd ̸= θc. We

note that in our system, the positions of the exciter and the tags are

fixed, and therefore we can only change θb, f , k0 and k1. The frequency

can only be changed by the exciters and therefore, this solution is only

possible when the exciters can be controlled. For example, one may have

two or more synchronized exciters that emit CWs at different frequencies.

Another alternative is to have the exciters employ frequency hopping.

The effectiveness of this solution would depend on the bandwidth of the

frequency hopping. For UHF RFID signals, this solutions would provide

poor results.

In the next section we present our proposed solution based on

changing θb.
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2.4 Solutions based on phase-diverse

backscatter modulation

Our proposed solution is based on the introduction of phase diversity

in the backscattering via the use of an enhanced backscatter modulator.

As compared to a multiple antenna solution, this solution keeps the size of

the tag small. Moreover, the phase diversity introduced by a multi-antenna

solution is non-deterministic and depends upon the separation between the

antennas and the random geometries created by the environment. In order

to achieve sufficient phase diversity, the separation between the antennas

may need to be large which further increases tag size. By using an enhanced

backscatter modulator, we can introduce a deterministic phase diversity

into the backscatter link irrespective of the environment. This will allow

systems to overcome the phase cancellation problem without requiring

multiple antennas. Our proposed solution uses multi-phase backscattering

employed by the transmitting tag. The tag will backscatter its information

in two successive intervals with a deterministic phase difference between

the backscattered signal in the two intervals. The use of phase diversity

in backscattering implies that if there is a cancellation during one of the

intervals, it is avoided in the other. In a straightforward implementation,

this scheme will increase the robustness of the tag-to-tag link while reducing

the throughput. However, in our future work, we will explore higher layer

protocol mechanisms which introduce a handshaking mechanism to first

determine the optimal phase to use in backscattering and then transmitting

the information only once.

We now describe the proposed solution for the case of ASK
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modulation and PSK modulation.

2.4.1 ASK modulation with multi-phase

backscattering

Under this scheme, a backscattering tag will send out its data in two

successive intervals. In each of these two intervals the tag uses different

phases θb, which according to (2.10) creates two different phase differences

between the excitation signal and backscatter signal at the receiving tag.

A standard implementation of ASK modulation requires the use of two

different impedances of the tag. By contrast, in the proposed solution,

we use four impedances. Our design, shown in Fig. 2.7 (see also [14]),

is similar to the QAM (Quadrature Amplitude Modulated) backscatter

scheme from [15], [16] and [17]. The symbols Z1 and Z2 are two impedances

with different real parts and the same imaginary part for the states ′0′ or

′1′, respectively. On the other hand, the impedances Z3 and Z4 are chosen

such that the backscatter signals have the same amplitudes as when Z1 or

Z2 are used, but their imaginary part is different from that of Z1 and Z2,

respectively. As a result, the phase of the backscatter signals when they

are used is changed.

Without loss of generality, we consider the phase of the backscatter

signals to be 0 when Z1 or Z2 are selected and θn when Z3 or Z4 are selected

25



Backscatter Modulator

Z1

Z2

Z3

Z4

Tag digital section
control signal

Antenna

Figure 2.7: Block diagram of the new tag that uses four impedances for

the ASK modulation.

As described earlier, in the first interval, the backscatter modulator

switches the tag impedance between Z1 and Z2. In the next interval, this

tag sends the same message again by switching between Z3 and Z4. In

(2.18), the argument of arccos is −(k1+k0)d2λGT1

8πd1d3
< 0, so the first θc is in the

range of (π
2
, π], and for the second one we have (2π − θc) ∈ [π, 3π

2
). The

range of θd can be [0, 2π), so phase cancellation can occur at two values of

θd in one period.

The envelope detector has a threshold for discriminating the state

′0′ from state ′1′, and therefore our objective is to maximize |A1 − A0|.

From Fig. 2.3, when θd = 0 or π, we obtain the optimum result, which

is |A1 − A0| = |A1
T1 − A0

T1|. Therefore the optimum solution is to make

θn = π − θd or 2π − θd (θn ≥ 0). But this solution requires a tag with

increased hardware complexity, which goes against the reason why we use

the backscatter-based system. So we use a fixed value of θn.

Because we only focus on θd, without loss of generality, we assume
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θE = 0. In Fig. 2.8, when θd = θc, the phase cancellation occurs during

the first period. During the second period, θd is increased by θn, and then

A0 ̸= A1, which entails that phase cancellation does not occur. The phase

θn is determined by Z3 and Z4. When considering the implementation of the

proposed backscatter modulator, the values of the impedances to generate

a specified phase difference in the backscattered signal can be calculated

using methods described in [15] and [16].
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Figure 2.8: Phasor diagrams of multi-phase backscattering in ASK

modulation.

2.4.2 PSK modulation with multi-phase

backscattering

Our proposed method can also be used for PSK modulation. The

implementation is similar in that it uses a backscatter modulator with four

impedances and the tag sends the same message in two successive intervals.

In the case of PSK modulation, the real parts of all impedances Z1 · · ·Z4

are the same and the difference between the imaginary parts of Z1 and Z2

is the same as that between those of Z3 and Z4. This means that the PSK
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modulation index is the same in the two intervals, but there is deterministic

phase difference between the signals received in the two intervals. We note

that the performance for PSK modulation is better than that for ASK

modulation. The reason is that the phase cancellation can theoretically be

fully avoided when the phase difference between the two pair of impedances

θn is in (0, π
2
]. When phase cancellation occurs, the phase differences of the

two states θ0d and θ1d = θ0d +ψ are symmetrical about the nπ-axis. So when

they both add θn ∈ (0, π
2
], they will not be symmetrical anymore. A phasor

diagram representing this is shown in Fig. 2.9. There is phase cancellation

in the first period and so θ0d = θc and A
0 = A1. Then in the second period,

the phases of the two states are changed by θn and for the amplitudes we

have A′
0 ̸= A′

1.
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Figure 2.9: Phasor diagrams of multi-phase backscattering in PSK

modulation.

2.4.3 Combination of signals

In a straightforward implementation of the above method, a

transmitting tag backscatters the same signal in successive intervals and
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the phase diversity ensures that one of these will be reliably detected by

the receiving tag. This method also presents the opportunity to further

improve performance by combining the backscattered signals received in

the two intervals. Since the tag employs a purely analog circuit for envelop

detection, one can develop a delay circuit to store the signal received in

the first interval and then, combine it with the signal received in the

second interval. With the envelope detector, one can form four amplitude

differences: Ad1 , Ad2 , Ad1 + Ad2 and Ad1 − Ad2 , where Ad1 and Ad2 are

the amplitude differences in the first and second interval, respectively.

The combination method can increase the differences of the amplitudes

(almost double them), and therefore it can vastly improve the performance

and communication ranges of the BBTT system. Implementation of this

scheme would require a protocol wherein individual bits of symbols of a

tag are repeated rather than the whole message. This is is because of the

restriction on the amount of delay that can be built into the analog circuit.

Because the demodulation is the same for ASK and PSK modulations, this

method can be applied to both. In our future work, we will explore designs

for tags that utilize phase-diverse backscatter modulation along with the

above described signal combination.

2.4.4 Discussion

Theoretically, the proposed methods can avoid the phase cancellation

problem almost entirely. Our solution requires four impedances, small

changes in the digital section of the tag, and minor changes in the protocol.

The approach can be extended to include multiple impedances allowing for

more phase diversity. As mentioned earlier, in one of our future works, we
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will be designing a protocol wherein two tags will first determine the best

phase to use for communication during a handshaking period and then use

that phase for a conversation. Having multiple possible impedances will be

very beneficial in this approach.

Under a straightforward implementation (i.e. no signal combination,

no special protocols) this proposed approach will increase the latency of

the system. For most part, however, the applications of the BBTT system

include backscattering of short messages. Therefore, the benefits of the

multi-phase backscattering are much greater than the drawbacks.

We reiterate that the proposed solution cannot fully avoid the phase

cancellation phenomenon using ASK modulation. Theoretically, when

θd = θc and θn = 2|π − θd|, θd changes from one cancellation phase

θc ∈ (π
2
, π] to another one, 2π − θc. Full cancellation can be avoided by

using more impedances. Thus, we have a tradeoff between performance

and latency.

2.5 Simulations and Experimental Results

2.5.1 Simulations

Here we present simulation results that demonstrate the performance

of the proposed approach. We use a setting as shown in Fig. 2.1, where

T1 and the exciter are at fixed locations, and T2 changes its location but

stays in the plane defined by the locations of T1, the exciter, and its initial

location. More specifically, the position of T1 is fixed at (0, 0) and that of

the exciter at (0, 5) (thus, d1 is equal to 5 m).

In the simulations, the power of the exciter was set at 13 dBm, and
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GT1 , GT2 and GR in (2.15) were 2 dB and 6 dB, respectively. Also we set

k0 = 0.15, k1 = 0.8, R=50 Ω in (2.15) and θb due to Tag 1 for both states

was set to π. Because we do not consider the amplifier circuit and other

hardware resistance, the presented values of the amplitudes are relative.

Also we simulate the proposed method ideally, which means that we do not

consider other random effects, such as noise and multipath. We only focus

on the curves before and after using our solutions. The simulation results

of the PSK modulation are very similar to those of the ASK modulation,

and therefore we do not show them.

2.5.1.1 Selection of θn

In (2.18), k0 + k1 is usually about 1 and d2 ≈ d1 >> d3. Since we use

the UHF frequency, λ ∈ [0.1, 1] m, and cos(θc) = − (k0+k1)d2λGT1

8πd1d3
is typically

negative and very small. This means that θc is a little bit larger than π
2
or

less than 3π
2
. From Figs. 2.4 and 2.8, when θd = θc, θd +

π
2
is close to π or

0, where we can obtain the largest amplitude differences between A0 and

A1. So we fix θn to π
2
.

2.5.1.2 Simulations in a two-dimensional space

First we show simulations in a two-dimensional space. In the

experiment, Tag 2 only moves along the x axis starting at (0, 0). We

present the maximum amplitude difference between the two phases which

reflect on the detection performance of the system. The results are shown

in Fig. 2.10 for ASK modulation. The green line with downward-pointing

triangle and the blue line with asterisk are the amplitude differences using

one pair of impedances. When Tag 2 is in a position where θd = θc, the
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value of the green line is 0. While in this position, the value of the blue

line is not 0. This means that Tag 2 does not receive the message during

the first time period, but receives it during the second period.
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Figure 2.10: The amplitude differences using the proposed method for ASK
modulation in a two-dimensional space.

2.5.1.3 Simulations in a three-dimensional space

In these simulations, we use the same settings as in the simulations

in the two-dimensional space, except that Tag 2 can be in any position

whose x and y coordinates are within [−2, 2] m. In the presentation of our

results, we use a threshold value for detecting the signal. When the signal

is detected in both phases we use one symbol (and color), and similarly,

different symbols (and colors) when the signal is detected only in the first

or the second period, respectively.

The results are shown in In Fig. 2.11, the red (′·′) and blue points

(′∗′) are the positions where the tag can receive the signal in the first
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period, while the red and green (′+′) points are the positions where the

tag successfully receives the signal in the second period. If we remove

the green points, there are many positions where that tag cannot receive

messages because of the phase cancellation problem. With the proposed

method, the green points fill many new positions where the signal can

be detected. However, there are still some locations where the signal is

not detected, although the distances between these positions suggest that

detection should take place. This can be explained by noting the shape of

the red line in Fig. 2.10. This line still has local dips, and the positions

that are not filled correspond to some of them.

Figure 2.11: The amplitude differences using proposed method in 3d
simulation for ASK modulation.
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2.5.2 Experimental Results

Here we describe the lab experimental setup where we demonstrate

the phase cancellation problem and the multi-phase backscattering

approach that we propose to overcome it. Fig. 2.12 shows the tag prototype

hat we used in the experiments. It consists of a printed dipole antenna

connected to a backscatter modulator which consists of an Agilent ADG

902 single pole double throw (SPDT) RF switch. The envelop detector

used for demodulating the backscatter is built in a separate board using

a Shottky diode doubler [18]. The diode detector board is connected to

one of the ports of the switch. This corresponds to state ′0′ when the

tag backscatters. A variable capacitance is connected to the other port

of the switch and this corresponds to state ′1′ of the backscattering tag.

The switch control input of the backscattering tag is driven by a pulse

signal from a function generator. At the receiving tag, the output of the

envelope detector is connected to the oscilloscope. In Fig. 2.13, we show

the experimental setup components of the system: one exciter, Tag 1 and

Tag 2 (all circled). The prototype backscatter modulator is shown in Fig.

2.14. When the exciter is turned on, T1 generates modulated backscatter
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Figure 2.12: The tag prototype

and which is demodulated by T2. The demodulated baseband signal is
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Figure 2.13: The experimental setup composed of one exciter and two tags.

Figure 2.14: A prototype backscatter modulator with a variable capacitor.

observed on the oscilloscope. In the experiment, the two tags were placed

close to each other so that the received signal power was large enough, and

we could ignore all the noises and multi-path effects. We observed that

when we moved T2 in small increments away from T1, the amplitude of the

observed pulse signal on the oscilloscope varys continuously between peaks

and nulls with gradually decreasing peaks as the tag moves further away.

This observation is in line with the simulations shown in Fig. 2.10. We

then placed T2 close to T1 but in a position where the oscilloscope showed

almost a straight line i.e. where there was perfect phase cancellation. Then
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keeping the positions of all devices the same, and manually varying the

capacitance connected to the backscatter modulator of T1, we observed the

detected backscatter at T2. The experimental results are shown in Figs.

2.15, 2.16, and 2.17. We can clearly see that when the variable capacitor

changes the phase of the backscatter, the amplitude difference becomes

much larger than in Fig. 2.15. This experiment demonstrates that the

multi-phase backscattering approach can be successfully used to overcome

the phase cancellation problem.

We would like to point out that the phase cancellation problem itself

can also be demonstrated by using a standard RFID reader as an exciter,

a standard RFID tag as T1 and a similar (envelope detector/oscilloscope)

setup for T2. We have observed this during some of our prior work [19].

The above approach demonstrates both, the phase cancellation problem

and our proposed approach to solve it for a generalized BBTT system.

2.6 Summary

In this chapter, we described the phase cancellation problem of

backscatter-based tag-to-tag communication systems. In these systems,

a tag receives the superposition of a CW and backscatter signals which

have the same frequency but different phases. The combination of these

two signals may cause that a tag cannot discriminate between the signals

corresponding to states ′1′ and ′0′. We addressed and analyzed the

problem for both ASK and PSK modulations. We presented several

solutions and proposed a multi-phase backscattering method. According

to the method, a tag sends a message twice using different pair of
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impedances. Our simulations show that for ASK and PSK modulations

phase cancellation can greatly be reduced. We have verified our simulations

in lab experiments.
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Figure 2.15: Phase cancellation. The amplitude difference between the
states is about 0.

Figure 2.16: The amplitude difference between the two states increases
when the value of the variable capacitor changes.

Figure 2.17: The amplitude difference between the two states when the
phase due to the capacitor changes about π/2.
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Chapter 3

Anti-Collision Protocol

Selection

3.1 Introduction

In the previous chapter, we discussed the phase cancellation problem

and presented a solution. In this chapter, we will discuss the collision

problem in the same BBTT system. When more than one message is

sent to a tag at the same time and this tag cannot receive any one of

them successfully, a collision occurs. There are four different anti-collision

methods illustrated in Fig 3.1: space division multiple access (SDMA),

frequency domain multiple access (FDMA), time domain multiple access

(TDMA), and code division multiple access (CDMA). Because of the

limitation of RFID tags, we will focus only on TDMA.

In a regular RFID system, the reader performs as a centralized unit.

Each tag applies for a time slot to transmit and the reader arranges and

reserves a certain time slot for each tag. Therefore, a the collision can be
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Figure 3.1: Existing protocols.

avoided. However, our BBTT system is a type of distributed backscatter

system. There is no centralized unit to avoid or detect collisions. Each tag

has the same hardware and runs the same program, so each tag performs

the same except the tag connected to the sink. The sink is a computer

that is connected to the continuous-wave(CW) generator and a regular

tag. This computer can determine the transmitted message in the tag that

is connected to the sink. The protocols discussed in this chapter need

to be synchronized. The sink can turn the CW generator on and off to

synchronize the tags.

Because, as of now, the memory in each tag can store only 4 to 5 IDs,

we cannot use the acknowledge signals to detect collisions. For example, a

tag receives 5 acknowledge signals, but it does not know the number of its

neighbors. If it has 5 neighbors, no collision occurs. However, if it has 10

neighbors, 5 of them cannot receive the message. Further, the acknowledge
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signals make the channel relatively busy.

Here, we consider a scenario to implement some simple applications.

In our scenario, each tag keeps broadcasting a message in its memory and

listening the rest of the time. When it receives a message that is different

from the one in its own memory, it updates its memory by using a rule.

This rule depends on the application. For example, in a library, the sink

wants to check whether a book is in the network or not. The tag connected

to the sink keeps sending the ID of the book. When other tags receive this

ID, they check the received ID with their IDs. If the two are not the same,

they store the new ID in their memory and keep sending it. If the two are

the same, the tag keeps sending ”true” which means that this book is in the

network. Therefore, other tags sends ”true” instead of the ID of the book,

untill the sink receives the message ”true”. If the sink does not receive

”true” for a certain time period, the sink will consider that the book is not

in the network.

Therefore, after receiving a message, each tag keeps broadcasting a

message. This is similar to the process carried out under the saturation

condition. As mentioned earlier, we cannot detect or fully avoid the

collision, so we want to find a good method to make the time between the

query from the sink and the result from the other tags as short as possible in

our scenario. CSMA/CA and framed slotted Aloha are two broadly used

anti-collision protocols. In the following sections, we will modify these

two protocols on the basis of our system and analyze them in complete

networks. Most of the paper uses throughput as the performance metric.

However, because of the requirements in our scenario, our performance

metric is E(T ), which denotes the average transmission time from one
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node to another. We also assume that the channel has ideal conditions.

If two nodes can communicate with each other directly, there is an edge

between these two nodes in the topology of the network.

3.2 Modified Slotted CSMA/CA Protocol

Carrier sense multiple access with collision avoidance(CSMA/CA) is a

network multiple access method that uses carrier sensing to avoid collisions.

In CSMA/CA, each node sends a message only when the channel is sensed

to be idle. If the channel is busy, the node will wait a random backoff time

and sense again.

The CSMA/CA methods in IEEE 802.15.4 and in IEEE 802.11 are

slightly different. In IEEE 802.11, the nodes sense the channel for every

time slot, and the backoff counter decreases only when the channel is

sensed to be idle, as described in [20, 21]. However in the CSMA/CA

of IEEE 802.15.4, a node decreases the backoff counter irrespective of the

channel status, because carrier sensing consumes a certain amount of energy

and IEEE 802.15.4 is designed for small wireless personal area networks

(WPANs) with a low data rate [22].

In the slotted CSMA/CA algorithm [22], each node maintains three

variables: NB, W, and CW. NB denotes the current backoff stage. W

represents the backoff window that determines the number of backoff

waiting slots before sensing a channel. CW indicates the contention window

length, defining the number of backoff periods that need to be clear for

carrier channel assessment (CCA) before transmission [23]. CW and NB are

initialized to two and zero, respectively, before each transmission attempt.

42



W is initialized to W0. CW will be reset to two each time the channel

is assessed to be busy. A backoff counter is set to a random value in the

range of [0,W0−1]. In each time slot, the counter decreases by one. When

it reaches zero, the node performs the first CCA. If the channel is idle, it

performs the second CCA. If these two CCAs sense the channel to be idle,

the node will transmit the message in the next time slot. After the message

transmission, the backoff stage is reset to zero. Otherwise, if one of these

two CCAs senses that the channel is busy, the backoff stage NB increases

by one and W is doubled. If NB and W reach the maximal backoff stage

m and window Wm, CSMA/CA must terminate with a channel-access-

failure status. When the other nodes receive this message, they will send

an acknowledge signal.

In our modified protocol, we use two variables: the backoff stage NB

and the backoff window W. NB is in the range of [0,m], and W = W02
NB.

Each node only performs the carrier sensing once before sending the

message, because doing so reduces the energy consumption. Further, if

the backoff stage NB reaches the maximal limit m, it maintains this stage

instead of terminating.

The hidden node problem is that a node cannot sense nodes that are

not its instant neighbors. CSMA/CA uses some mechanisms to solve this

problem, such as Request to Send/Clear to Send. However, as of now, in our

BBTT system, the memory of each tag can only store about 5 integers. The

tag also needs the memory to maintain a status and perform calculations.

Therefore, it is impossible to learn and establish a topology and let each tag

remember its neighbors. We cannot use similar mechanisms to solve the

hidden node problem. Further, the tags cannot use the acknowledge signals,
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because they do not know who their neighbors are. Furthermore, they do

not need them, because a tag will send the same information (assuming

that it is not updated) again irrespective of whether its neighbors have

receives it or not. We show an example of a 2-node transmission under a

saturation traffic condition in Fig. 3.2. In this figure, (i, j) represents that

this device is in the backoff stage i and the backoff counter is j now. The

lengths of the CCA and a message are 1 and 6 time slots, respectively.

i
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Figure 3.2: An example of a 2-node transmission.

3.2.1 Analysis in the Complete Network

We discus the similar methods of [20, 24, 25] in this section, but our

protocol is different from their protocols. Let s(t) be the stochastic process

representing the stage,including the backoff stages and the transmission

stages, and b(t) be the stochastic process representing the backoff time

counter for a given node at time t. We define two parameters: the

stationary probability τ is that a node attempts its CCA within a time

slot, and α is the probability that the node assesses the channel to be busy

during the CCA. We assume that τ is a constant and is independent of all
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stages and the other nodes. On the basis of this assumption, we can use the

two-dimensional Markov chain s(t), b(t) to derive these two parameters.
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Figure 3.3: Markov model for our modified CSMA/CA protocol.

In each state of Fig. 3.3, the first number represents the stage

s(t) ∈ [−1,m]. Each node is initially in stage 0 or after it sends a message.

The largest stage is s(t) = m. Therefore, when a node is in stage m and

senses that the channel is busy again, it will stay in stage m. The stage

determines the contention window length Wi = W02
i. At the beginning

of each stage i, a node chooses a random number from (0,Wi − 1), on

the basis of the uniform distribution. In each stage, the backoff counter

b(t) decreases by 1 with the probability of 1 until it is equal to −1.

The state s(t), b(t) = −1 means that this node attempts CCA. The state

s(t) = −1, b(t) means that the node is transmitting a message. L denotes

the length of the messages.
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We define the steady-state probability of the Markov chain as bi,k =

P{s(t) = i, b(t) = k}, i ∈ (−1,m), k ∈ (−1,Wi−1). Then from the Markov

chain in Fig. 3.3, we have

P{i, k|i, k + 1} = 1, i ∈ (0,m), k ∈ (0,Wi − 1)

P{−1, k + 1| − 1, k} = 1, k ∈ (0, L− 2)

P{0, k|i, 0} =
1− α

W0

, i ∈ (0,m), k ∈ (0,W0 − 1)

P{i+ 1, k|i, 0} =
α

Wi+1

, i ∈ (0,m− 1), k ∈ (0,Wi+1 − 1)

P{m, k|m, 0} =
α

Wm

. k ∈ (0,Wm − 1)

(3.1)

The third equation means that the probability that a node in stage i

transmits a message and goes back to stage 0 is 1−α
W0

. The fourth and

fifth equations represent that the node cannot send messages because the

channel is busy. From Fig. 3.3, we can easily obtain

bi,0 = αbi−1,0 = αib0,0, 0 ≤ i < m. (3.2)

The stage m is different from the other stages:

bm,0 = α(bm−1,0 + bm,0)

⇒ bm,0 =
α

1− α
bm−1,0 =

αm

1− α
b0,0.

(3.3)
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Using (3.2) and(3.3), we have

m∑
i=0

bi,0 =
m−1∑
i=0

bi,0 + bm,0

=
m−1∑
i=0

αib0,0 +
αm

1− α
b0,0

=
1− αm

1− α
b0,0 +

αm

1− α
b0,0

=
b0,0
1− α

.

(3.4)

From the fourth equation, we obtain the following:

bi,k =
Wi − k

Wi

αbi−1,0 0 < i ≤ m

=
Wi − k

Wi

bi,0.

(3.5)

For stage 0, using (3.2) and (3.3), we obtain the following:

b0,k =
W0 − k

W0

(1− α)
m∑
j=0

bj,0

=
W0 − k

W0

(1− α)(
m−1∑
j=0

bj,0 + bm,0)

=
W0 − k

W0

(1− α)(
1− αm

1− α
b0,0 +

αm

1− α
b0,0)

=
W0 − k

W0

b0,0.

(3.6)

Therefore,

bi,k =
Wi − k

Wi

bi,0 0 ≤ i ≤ m (3.7)

From (3.2) to (3.7), all states in the Markov chain can be expressed

as functions by using b0,0 and α. As mentioned earlier, each node is under
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the saturation condition, which means that each node must be in one of the

states shown in Fig. 3.3. Therefore, the summation of all states is equal to

1. Therefore, we can obtain the value of b0,0 by

1 =
m∑
i=0

Wi−1∑
k=−1

bi,k +
L−1∑
i=0

b−1,i

=
m∑
i=0

Wi−1∑
k=0

bi,k +
m∑
i=0

bi,−1 +
L−1∑
i=0

b−1,i

=
m∑
i=0

bi,0

Wi−1∑
k=−1

Wi − k

Wi

+
m∑
i=0

bi,0 + L(1− α)
m∑
i=0

bi,0

=
m∑
i=0

bi,0
Wi

(W 2
i − (0 +Wi − 1)Wi

2
) +

b0,0
1− α

+ Lb0,0

=
m∑
i=0

bi,0
Wi + 1

2
+

b0,0
1− α

+ Lb0,0

=
m−1∑
i=0

bi,0
W02

i + 1

2
+ bm,0

W02
m + 1

2
+

b0,0
1− α

+ Lb0,0

=
m−1∑
i=0

b0,0α
iW02

i + 1

2
+
αmb0,0(W02

m + 1)

2(1− α)
+

b0,0
1− α

+ Lb0,0

=
b0,0
2

m−1∑
i=0

(W0(2α)
i + αi) +

αmb0,0(W02
m + 1)

2(1− α)
+

b0,0
1− α

+ Lb0,0

=
W0b0,0(1− (2α)m)

2(1− 2α)
+
b0,0(1− αm)

2(1− α)
+
αmb0,0(W02

m + 1)

2(1− α)
+

b0,0
1− α

+ Lb0,0

=
W0b0,0(1− (2α)m)

2(1− 2α)
+
b0,0(1 +W0(2α)

m)

2(1− α)
+

b0,0
1− α

+ Lb0,0

(3.8)

Then we get b0,0 as a function of α

b0,0 = 1/(
W0(1− (2α)m)

2(1− 2α)
+

1 +W0(2α)
m

2(1− α)
+

1

1− α
+ L)

=
2(1− α)(1− 2α)

W0 − 6α + 3− αW0(1 + (2α)m) + 2L(1− α)(1− 2α)

(3.9)
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We also have that τ =
∑m

i=0 bi,0 = b0,0
1−α

. We finally obtain the following

first equation between τ and α

τ =
b0,0
1− α

=
2(1− 2α)

W0 − 6α + 3− αW0(1 + (2α)m) + 2L(1− α)(1− 2α)

(3.10)

Now we derive the second equation. From the definition, we know

that α denotes the probability of more than one transmission in the medium

except in the given node in a given slot. Without any loss of generality, we

assume that the given sensing node is i0 and node i1 transmits a message,

and omit time t. Thus, we obtain the following:

α =
n−1∑
j=1

(
n− 1

j

)
P (

j∪
k=1

sik = −1|bi0 = 0) (3.11)

=
n−1∑
j=1

(
n− 1

j

)
P (si1 = −1)P (

j∪
k=2

sik = −1|si1 = −1, bi0 = 0) (3.12)

= P (si1 = −1)
n−1∑
j=1

(
n− 1

j

)
P (

j∪
k=2

sik = −1|si1 = −1, bi0 = 0), (3.13)

(3.14)

where sik = −1 denotes the event that node ik is transmitting a message

and bi0 = 0 means that the given node i0 is sensing the channel.

The probability that node i1 is transmitting a message is as follows:

P (si1 = −1) =
L−1∑
j=0

P (s = −1, b = j)

= LP (s = −1, b = 0)

= Lτ(1− α).

(3.15)
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Because each node attempts a CCA before transmitting a message,

the only way that there is more than one transmission in a particular slot is

that these nodes perform the CCA in the same slot. Thus the conditional

probability is as follows:

P (

j∪
k=2

sik = −1|si1 = −1, bi0 = 0) = τ j(1− τ)N−2−j. (3.16)

The second part of (3.18) can be written as a summation of binomial

distributions. Then

n−1∑
j=1

(
n− 1

j

)
P (

j∪
k=2

sik = −1|si1 = −1, bi0 = 0)

=
n−1∑
j=1

(
n− 1

j

)
τ j−1(1− τ)n−1−j

=

∑n−1
j=1

(
n−1
j

)
τ j(1− τ)n−1−j

τ

=
1− (1− τ)n−1

τ
.

(3.17)

This represents all possible situations in which more than one transmission

occurs in nodes other than the transmitting node i1.

Substituting (3.15) and (3.17) into (3.11), we have

α = Lτ(1− α)
1− (1− τ)n−1

τ
,

= L(1− α)(1− (1− τ)n−1)

⇒ α =
L(1− (1− τ)n−1)

1 + L(1− (1− τ)n−1)

(3.18)

Using (3.10) and (3.18), we obtain the values of τ and α numerically

with the given parameters L, W0 and m.
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From the definitions of τ and α, we find that the probability of

successfully transmitting a message for a given node in a time slot is

p = τ(1 − τ)n−1(1 − α). Therefore, the time at which a node sends a

message to another node successfully follows a geometric distribution with

parameter p. We can calculate the expectation time as follows:

E(T ) =
1

p
=

1

τ(1− τ)n−1(1− α)
. (3.19)

3.2.2 Model Validation and Simulation

In our BBTT system, we use 4-symbol Miller encoding [26]. The ID

of a tag is a 32-bit integer. The head and the tail of a message are both 5

bits long. Therefore, each message is 42 bits long. After 4-symbol Miller

encoding, a message requires (5 + 32 + 5) ∗ 4 = 168 symbols. In the CCA,

we use 3 symbols to sense whether a channel is busy or not. We use the 3

symbols as 1 unit time slot. Therefore sending a message requires 56 time

slots.

In the simulation, we use different α values and calculate the new

α′, using (3.10) and (3.18). Intersections with the line α = α′ give the

analytical values. We change the number of nodes from 2 to 50, and run

the simulations 1000 times to calculate the average values of τ and α.
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Figure 3.4: An example of a comparison between an analysis and a

simulation of τ . W0 = 22, m = 3 and L = 56.
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Figure 3.5: An example of a comparison between an analysis and a

simulation of α. W0 = 22, m = 3 and L = 56.

We compare the analytical results with the simulation results shown
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in Figs. 3.4 and 3.5. Thus, we see that in most cases, our analytical

results closely match the simulation results when the network has more

than 2 nodes. The errors between them do not increase when the number

of nodes increases. We consider that the independent assumption causes

these errors. Because of the error accumulation and our assumptions, the

expectation of a successfully transmission is not very accurate. The purpose

of our analytical model is to obtain the optimum values of parameters

W0 and m and compare the performance with that of other protocols in

complete networks.

3.3 Framed Slotted Aloha Protocol

The framed slotted aloha(FSA) anti-collision Protocol is broadly used

in commercial RFID systems. It is usually considered simpler and has

poorer performance than the CSMA/CA protocol. In [26], the researchers

introduce several dynamic framed slotted Aloha algorithms to adjust the

size of a frame. However, these algorithms increase the system cost because

of the use of tag estimation functions and need a reader to command tags.

Here we want to know the average transmission time under the setting of

our BBTT system.

In the FSA protocol, each node sends one message within a time

period. We define a parameter k as the number of time slots in one time

period. The node generates a random number from 1 to k and chooses the

time slot to send a message on the basis of this random number. Here,

a time slot is defined as the time during which a node can send an entire

message. Therefore, in our BBTT system, currently, one time slot consists
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of 168 symbols.

Therefore, if two nodes choose the same time slot, a collision occurs,

which means that nodes cannot receive or send messages successfully.

Clearly, k and the degrees of tags determine the performance. We show an

example of a 2-node transmission using this protocol in Fig. 3.6, where we

set the number of time slots in one time period k as 10. We can see that

in the second time period, two devices choose the fifth slot to transmit a

message in, which causes a collision.

DDDDDDDDDDDDDDDDDD Data transmission

Device 1

Device 2

CollisionRN=6

RN=3

one period

K=10

DDDDDDDDDDDDDDDDDD

DDDDDDDDDDDDDDDDDDD

RN=5

RN=5

DDDDDDDDDDDDDDDDDDDD

DDDDDDDDDDDDDDDDDD

RN=9

RN=2

DDDDDDDDDDDDDDDDDDD

Figure 3.6: An example of a 2-node transmission. Here k = 10.

3.3.1 Collision Analysis of Complete Network

Let us assume that the given node i wants to send a message to the

given node j. The degree of node j is dj. Therefore, the probability that

node i can transmit to node j successfully is as follows:

pi→j =

(
k
1

)
(k − 1)dj−1

kdj
=

(k − 1)dj−1

kdj−1
. (3.20)
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Because we choose one slot for node j, the probability that the other nodes

choose of the rest k − 1 slots is (k−1)dj−1

kdj−1 . Let us use Ti→j to represent

the number of periods in which node j can receive the message from node

i. Clearly, Ti→j follows a geometric distribution. Therefore, the expected

time can be calculated as follows:

E(Ti→j) =
∞∑

Ti→j=1

Ti→j(1− pi→j)
Ti→j−1pi→j

=
1

pi→j

= (
k

k − 1
)dj−1.

(3.21)

For a complete network with n nodes, we can easily obtain the

probability that one node transmits to another node successfully in one

period, as follows:

pcomp =
k(k − 1)n−1

kn
= (

k − 1

k
)n−1. (3.22)

The expected value of Ti→j in a complete network is as follows:

E(Tcomp) =
1

pi→j

= (
k

k − 1
)n−1. (3.23)

Therefore, the average transmission time E(T ) = LkE(Tcomp), where L

denotes the number of units (3 symbols) in one time slot. In our system,

L = 56. We set the derivative to zero, then, we obtain the following:

∂LkE(Tcomp)

∂k
=
∂Lk( k

k−1
)n−1

∂k

= (
k

k − 1
)n−1 − (n− 1)

kn−1

(k − 1)n

= (
k

k − 1
)n−1(1− n− 1

k − 1
).

(3.24)
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Therefore, the optimum value of k is just the number of nodes n.

3.3.2 Collision Analysis of Linear Network

In the FSA protocol, the random numbers of the sending node i’s

neighbor have no effect on the collision. However, the random numbers of

the receiving node j’s neighbors determine whether the collision occurs or

not.

1 2 3 4

Figure 3.7: A 4-node linear network.

Considering the 4-node linear network shown in Fig. 3.7, we can

obtain the expected number of transmission periods from node 1 to node 4

E(T1→4) = E(T1→2) + E(T2→3) + E(T3→4)

=
1

p1→2

+
1

p2→3

+
1

p3→4

=
1

k(k−1)2

k3

+
1

k(k−1)2

k3

+
1

k(k−1)
k2

= 2
k2

(k − 1)2
+

k

k − 1
.

(3.25)

For the linear network with m nodes, the expected transmission

period from the start node to the end node is E(T1→m) =
(m−2)k2

(k−1)2
+ k

k−1
.

The expected number of transmission time slots is kE(T1→m). Therefore,

we find that there are only two cases in a linear network which are the nodes

in the middle and the last node. Their degrees are 2 and 1, respectively.

We define that the probability of a successful transmission from node i
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to node j (j ̸= m) in one period is pb = (k−1)2

k2
and the probability of a

successful transmission from node m− 1 to m is pe =
k−1
k
.

p(T1→m = m− 1) = pm−2
b pe

p(T1→m = m)

=

(
m− 2

1

)
(1− pb)p

m−2
b pe + pm−2

b (1− pe)pe

=[(m− 2)(1− pb) + (1− pe)]p
m−2
b pe

p(T1→m = m+ 1)

=(

(
m− 2

1

)
+

(
m− 2

2

)
)(1− pb)

2pm−2
b pe

+

(
m− 2

1

)
(1− pb)p

m−2
b (1− pe)pe + pm−2

b (1− pe)
2pe

=[(

(
m− 2

1

)
+

(
m− 2

2

)
)(1− pb)

2 +

(
m− 2

1

)
(1− pb)(1− pe) + (1− pe)

2]pm−2
b pe.

(3.26)

Then we find that

p(T1→m = m− 1 + n)

=[

(
m− 3 + n

m− 3

)
(1− pb)

n +

(
m− 3 + n− 1

m− 3

)
(1− pb)

n−1pe

+

(
m− 3 + n− 2

m− 3

)
(1− pb)

n−2p2e + · · ·+ pne ]p
m−2
b pe.

(3.27)

3.3.3 Collision Analysis of 4-Node Square Network

Because there is no loop in the linear network, each transmission is

independent of each other at a given time and in a given node. Here, we

try to derive a simple 4-node square network with a loop.
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1 2

34

Figure 3.8: A 4-node square network.

For the network shown in Fig. 3.8, we assume that the start node is

1 and the destination node is 3. We define that

p = p1→2 = p1→3 = p2→4 = p3→4 =
k(k − 1)2

k3
,

E(T1→2) = E(T1→3) = E(T2→4) = E(T3→4) =
k2

(k − 1)2
.

(3.28)

Then we derive the probabilities that T1→3 = 2 and T1→3 = 3 as

follows:

p(T1→3 = 2)

=p(T1→2→3 = 2) + p(T1→4→3 = 2)− p(T1→2→3 = 2, T1→4→3 = 2)

=p2 + p2 − k(k − 1)3

k4
k(k − 1)(k − 2)

k3

=2
(k − 1)4

k4
− (k − 1)4(k − 2)

k5

(3.29)
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p(T1→3 = 3)

=p(T1→2→3 = 3, T1→4→3 ̸= 2) + p(T1→4→3 = 3, T1→2→3 ̸= 2)− p(T1→2→3 = 3, T1→4→3 = 3)

=p(T1→2→3 = 3)− p(T1→2→3 = 3, T1→4→3 = 2) + p(T1→4→3 = 3)− p(T1→4→3 = 3, T1→2→3 = 2)

− p(T1→2→3 = 3, T1→4→3 = 3)

=2[C1
2p

2(1− p)− (
k(k − 1)2

k4
p3 +

k(k − 1)3

k4
k(k − 1)

k3
p)]− p(T1→2→3 = 3, T1→4→3 = 3)

=4p2(1− p)− 2(
(k − 1)8

k9
+

(k − 1)6

k7
)− p(T1→2→3 = 3, T1→4→3 = 3)

=4p2(1− p)− 2(
(k − 1)8

k9
+

(k − 1)6

k7
)

− [
kk2 + k(k − 1)

k4
k(k − 1)3

k4
+ 2

k(k − 1)2

k4
(1− p)p+

k(k − 1)3

k4
k2

k3
]
k(k − 1)(k − 2)

k3

=4p2(1− p)− 2(
(k − 1)8

k9
+

(k − 1)6

k7
)

− [
(k2 + k − 1)(k − 1)3

k6
+ 2

(2k − 1)(k − 1)4

k7
+

(k − 1)3

k4
]
k(k − 1)(k − 2)

k3

(3.30)

The exact equations of the probability of T1→3 > 3 are very difficult to

formulate, because we need to consider every possible situation. Therefore,

for a general network, we need to use a computer simulation to obtain the

expected number of transmission periods.

3.4 Comparison

In this section, we compare the performance of these two protocols.
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3.4.1 Complete Networks

As mentioned earlier, we assume that the channel is under ideal

conditions. If two nodes can communicate with each other directly, there

is an edge between these two nodes in the topology of the network. We try

different combinations of the parameters and choose the one with the best

performance. The result is shown in Fig. 3.9. We can see that the modified

CSMA/CA protocol performs better than FSA, because in the case of the

FSA protocol, the use of a complete network increases the chances of a

collision. The blue line is almost a straight line. This is because, using

(3.25), when kopt = n, we obtain the following:

lim
n→∞

E(T ) = lim
n→∞

Ln(
n

n− 1
)n−1

= lim
n→∞

Ln(1 +
1

n− 1
)n−1 = Lne,

(3.31)

where e denotes Euler’s number.

60



number of nodes

5 10 15 20

E
(T

)

0

500

1000

1500

2000

2500

3000

CSMA/CA

FSA

Figure 3.9: The simulation result in the complete networks with different

number of nodes.

3.4.2 General Networks

To evaluate the performances in general cases, we randomly generate

20-node connected networks. The proposed protocols are sensitive to

the degrees, so we select four networks with different ranges of degrees

as examples to simulate. The ranges of degrees in these four networks

are degree ∈ [3, 6](low degree, the degree distribution is shown in Fig.

3.12), degree ∈ [8, 14](medium degree, as shown in Fig. 3.13), degree ∈

[12, 15](medium degree, as shown in Fig. ??) and degree ∈ [3, 6](high

degree, as shown in Fig. ??).

For these four given networks, we run our programs using the two

proposed protocols. The start node and the destination node are always 1

and 20, respectively. The setting of modified CSMA/CA is similar to that

used earlier. We fix L = 56, and use different combinations of parameters
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Figure 3.10: The degree distribution
of a low degree example (degree ∈
[3, 6]).
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Figure 3.11:
The degree distribution of a medium
degree example (degree ∈ [8, 14]).
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Figure 3.12:
The degree distribution of a medium
degree example (degree ∈ [12, 15]).
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Figure 3.13: The degree distribution
of a high degree example (degree ∈
[16, 20]).
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W0 andm. For each of these combinations, we run the simulation 500 times

and calculate the average. We choose the smallest average transmission

time as one of the results of all the combinations. For the second proposed

protocol, there is only one parameter k. We use different values of k and

run the simulation 10000 times for each k to get the average. The smallest

average transmission time is used as one of the result.

deg 3~6 deg 8~14 deg 12~15 deg 16~20

Figure 3.14: The simulation result of the four generated networks.

The results are shown in Fig. 3.14. We can see that the performance

of the FSA protocol is better than that of the modified CSMA/CA protocol

when the degrees are not high. Because of the randomness, the differences

in the average transmission time between these two protocols are different.

From simulation results shown in Fig. 3.9 and Fig. 3.14, we consider

that if the network is more crowed, the modified CSMA/CA should perform

better. However, if it is not, the FSA protocol is a better choice.
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3.4.3 Discussion

CSMA/CA is usually considered to be better than FSA, but our

simulations show the opposite results. We consider that this is because

the modified CSMA/CA suffers a lot by hidden and exposed terminal

problems. In the modified CSMA/CA, the sending node needs to listen

to the unrelated neighbors and does nothing with the neighbors of the

receiving nodes. Therefore, each node does a lot of useless backoff waiting.

1 2

3

5

4

Figure 3.15: A 5-node network.

Consider the 5-node network example shown in Fig. 3.15, where the

sink is connected to node 1, and node 2 is the destination. Here, node 1

wants to send a message to node 2. An example of the channel states is

shown in Fig. 3.16, where W0 = 4 and m = 4. The y-axis denotes the time

slots and the x-axis represents the channel states. When the channel state is

−6, this node receives more than one signal. It also means that a collision

occurs in this node. If the channel state is a positive integer, the node

whose ID is this integer is transmitting a message. We can find that node

1 and node 3 only have one neighbor node, node 2. If node 2 does not send

a message at the beginning, these two nodes will keep sending messages.
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Thus, node 2 rarely has a chance to send or receive messages. The channel

in node 2 is blocked by nodes 3, 4, and 5, which are the hidden nodes of

node 1. If node 2 is the sink and node 1 is the destination, the result is

similar. Nodes 1, 3, 4, and 5 may keep sending messages and node 2 senses

them, so the probability that node 2 can transmit a message successfully is

very small. These problems are called hidden and exposed node problems.

If we do not change the tag mechanism and scenario, we can increase the

initial waiting time W0 to reduce the effect of these problems, as shown in

Fig. 3.17. However, this will increase the average transmission time.
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Figure 3.16: The channel states of nodes 2, 1, and 3 in the example where

W0 = 22 and m = 3.
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Figure 3.17: The channel states of nodes 2, 1, and 3 in the example where

W0 = 26 and m = 3.

3.5 Summary

In this chapter, we proposed two protocols to reduce the effects of

collision in our BBTT system. We theoretically analyzed them in complete

networks, and compared their performances in general networks by using

computer simulations. We measured the performances by using the average

transmission time from one node to another node. The results showed that

if each node could communicate with most of the other nodes, such as in

complete networks or in networks where each nodes had a high degree,

CSMA/CA could transmit messages quickly. However, in other networks,

the framed slotted Aloha protocol performed better. Furtherm in practice,
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it was difficult to adjust the two parameters in the modified CSMA/CA

protocol, compared with the one parameter in FSA, which had a significant

influence on the performance.
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Chapter 4

Distributed Bayesian Learning

with Bernoulli Models

4.1 Introduction

The previous chapters talked about two problems in the BBTT

system. In this chapter, we will present the distributed Bayesian learning

problem which is a very popular topic. It is a problem that affects not only

the BBTT system, but also the more general IoT systems. We study a

network of Bayesian cooperative agents that observe Bernoulli signals with

unknown parameters. Their objective is to obtain the global posterior

distribution of these parameters without the presence of a fusion center in

as short a time as possible. The network of the agents is connected and

can be represented by an undirected graph. Every agent has its own initial

private signals which are independent from the signals of the remaining

agents. From these signals the agents obtain information, which they share

with their neighbors. Thus, the agents learn not only from their private
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signals, but also from the signals of their neighbors. In each iteration, each

agent broadcasts its signal once, and receives its neighbors’ signals. When

the agents receive the signals from their neighbors, they store the signals if

these signals contain new information, and then these agents generate new

signals for their neighbors. After a finite number of iterations, each agent

is guaranteed to have the complete information needed to obtain the global

posterior of an unknown parameter. In other words, all the agents achieve

a consensus on the posterior of a fictitious fusion center.

In the past decade or so, within the signal processing community, the

problem of distributed learning has attracted considerable interest because

of its applications. A more complete survey on applications is provided

in [27]. Previous work on Bayesian learning in networks can be found in

[28, 29, 30, 31, 32, 33]. In [33], a similar Bayesian learning method is

studied, but in this model, each agent uses only the signals received in

the current iteration. Other types of learning approaches are based on the

consensus [27, 34, 35, 36] and the gossip methods [37, 38, 39, 40].

In [5], an efficient Bayesian learning method with Gaussian

distributions was addressed. In this paper, we exploit the underlying idea

from [5] to solve problems in more general settings. We use the results

of our derivation on a Bernoulli model in two scenarios. In both cases,

we show by simulations how the agents can reach a consensus in a finite

number of iterations and much faster than consensus-based methods. In

practice, this translates to less communication and energy consumption.

Consensus-based and gossip methods usually do not need to know

the structure of a network. However, if the agents know the topology, for

example, as in static man-made networks that are designed for long-term or
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permanent use, one can apply methods for much quicker learning. In this

paper, as in [5], we assume that each agent has the knowledge of the network

topology. If in case the agents do not know it, they can still implement our

learning method and achieve the same result as if they knew the topology.

The learning, however, will require additional communication. But once

the learning is completed, the coefficients can be readily used in subsequent

estimation tasks.

4.2 Problem Statement

We address two problems. In the first one, the agents observe

Bernoulli outcomes without errors and in the second, with errors. In the

latter case, each agent knows only its own probability of error. The agents

form a connected network described by an undirected graph G = (NA, E),

where NA = {1, 2, · · · , n} is the set of agents and E is the set of edges in

the network. In other words, if agents Ai and Aj are connected, then the

edge (i, j) represents the connection that satisfies (i, j) ∈ E. The topology

of the network is time invariant and it is known to every agent. Agents only

communicate with their neighbors. The communications occur in stages. In

each stage, the agents broadcast their information and receive information

from their neighbors.

4.2.1 Bernoulli Model without Errors

We assume that there is a state of the world θ ∈ [0, 1] which means

p(x = 1) = θ and p(x = 0) = 1 − θ, where x is the real observation. So

x follows the Bernoulli distribution with the parameter θ. Suppose there
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is a connected network of agents which observe xj ∈ Rkj×1 without errors,

where xj is a vector of kj zeros and ones. The subscript j refers to the

jth agent and kj to the length of the observed vector. We refer to these

observations as private signals, and we denote them as yj ∈ Rkj×1. Since

the signal vector xj is observed without errors, we have yj = xj.

The agents assume a prior for the probability θ, and it is a

Beta density with parameters αj,0 and βj,0, which is represented as

Beta(αj,0, βj,0). They use their private signals, to update this prior to

the posterior p(θ|yj, αj,0, βj,0), j = 1, 2, · · · , n. Thus, at this stage, every

agent has its own posterior. Now the agents start repeatedly exchanging

information with their neighbors. After every exchange, they modify

their posteriors of θ. Their objective is achieving the same posterior as

that of a fictitious fusion center, i.e., the posterior p(θ|y1:n, α1:n,0, β1:n,0).

Furthermore, the objective is to reach the desired posterior in a finite

number of exchanges.

4.2.2 Bernoulli Model with Errors

In the second model everything is the same as in the first one except

that now the agents observe x with errors. More specifically, we model the

observation y by

p(y = 1|x = 0) = p(y = 0|x = 1) = ϵ (4.1)

where the probability of error ϵ ∈ [0, 0.5). The model is depicted in Fig.

4.1. As pointed out earlier, each agent has in general a different probability

of error, and each agent knows its own error. The agent, however, does not
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know the probabilities of errors of the other agents.

The objectives are the same as stated in the previous subsection.

Again, the agents have their own priors about θ, Beta(αj,0, βj,0) and they

aim at estimating p(θ|y1:n, α1:n,0, β1:n,0, ϵ1:n).

1−ε

1−ε

ε

ε

y=1

y=0

x=1

x=0

Figure 4.1: The model with observation errors.

4.3 Methods for Distributed Learning

In this chapter, we introduce three methods for distributed learning.

In these methods, each agent observes its private signal and begins to

exchange information with its neighbors. The first method is the average

consensus method, and the second is the gosssip-based averaging method

which can be viewed as a special case of the original average consensus

method. The third method, referred to as sequential learning, is a Bayesian

learning method where agents exchange information sequentially. With

this method, sometimes a phenomenon called herding emerges, which

means that each agent ignores its observation and always sends the same

information.
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4.3.1 Average Consensus Algorithm

In the field of distributed computing and estimation, consensus

problems are important and have a long history. Consensus means all

agents in the network reach an agreement regarding a certain quantity of

interest that depends on the state of all agents [27]. If the sum of the state of

all nodes is an invariant quantity, we call this method as average-consensus

algorithm [41].

Consider an undirected graph G = (V,E) with n agents, where the

goal of each agent is to reach a consensus via exchanging information with

its neighbors. By reaching a consensus, we mean asymptotically converging

to a one-dimensional agreement space. Let A = [aij] be the adjacency

matrix of this graph and Nj be the set of neighbors of the agent j. From

[27], an iterative form of this consensus algorithm can be written as follows:

xj(k + 1) = xj(k) + π
∑
i∈Nj

aij(xi(k)− xj(k)), (4.2)

where xj(k) is the state of agent j at iteration k and 0 < π < 0.5 is the

step-size of the method. It also can be written in a vector form:

x(k + 1) = Wx(k), (4.3)

with W = I − ϵL, where I is the identity matrix and L is the Laplacian

matrix of graph G. The following theorem provides important results about

the method.

Theorem 4.1. Consider a network of agents with topology G applying the

distributed consensus algorithm (4.2) with parameter 0 < ϵ < 1/∆ where
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∆ is the maximum degree of the network. Let G be a strongly connected

digraph. Then

i) The consensus is asymptotically reached for all initial states;

ii) The group decision value is α =
∑

iwixi(0) with
∑

iwi = 1;

iii) If the digraph is balanced (or W is doubly-stochastic), an average-

consensus is asymptotically reached and α = (
∑

i xi(0))/n.

For the proof, see [27].

The speed of convergence of the consensus algorithm is quantified

by the second smallest eigenvalue of the graph Laplacians called algebraic

connectivity [42].

From (4.3), we see that each agent receives the neighbors’ states and

calculates the weighted average in each iteration. The weights are given

by W , which is a constant matrix. There are other choices of weights, and

they can be time-varying. In [43], the authors study two types of time

varying weights. The first one is called Maximum-degree weights. It sets

the constant weight 1/n to all the neighbors, and chooses the self-weights

so that the sum of weights at each node is 1:

Wij(t) =



1
n

if agent i and j are neighbors,

1− di(t)
n

if i = j,

0 otherwise.

(4.4)

where di(t) is the degree of agent i at time t. Note that, here it is assumed

that the topology of the network may change.

The second type of time-varying weights is named Metropolis weights,
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and it is defined as

Wij(t) =



1
1+max{di(t),dj(t)} if agent i and j are neighbors,

1−
∑

k∈Ni
Wik(t) if i = j,

0 otherwise.

(4.5)

From [43], we also have the following theorem:

Theorem 4.2. If the collection of communication graphs that occur

infinitely often are jointly connected, then the iteration process (4.3)

converges with either the maximum-degree weights or the Metropolis

weights, and

lim
t→∞

x(t) = (
1

n
1⊤x(0))1,

for all x(0) ∈ Rn.

Because the average consensus method is easy to apply, it has

been broadly used in peer-to-peer and ad hoc networks where the sensor

topologies may be time-varying. More result on consensus-based methods

can be found in [35, 41, 44, 45, 46].

4.3.2 Gossip-based Averaging Algorithm

Gossip-based algorithms such as the push-sum protocol [37, 47]

are important alternatives to the Laplacian-based average consensus

algorithms in previous section. It is similar to the average consensus

algorithm, but can be used in many challenging situations. In this scheme,

each agent only communicates with a randomly chosen neighbor. To model

this scheme, we introduce a matrix P which is described as follows: In the
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kth time slot, agent i is selected, and contacts some neighboring agent j

with probability Pij [48]. At this time, both agents set their values equal

to the average of their current values.

Here we still use the model of the previous section. Our goal is still

to compute the average of all initial values in a distributed manner. The

iteration form is

x(k) = W (k)x(k − 1), (4.6)

where from the n agents, one selects agent i and j for gossiping with

probability 1
n
Pij (the probability that agent i is selected is 1/n, and the

probability that it contacts agent j is Pij), and the random matrix W (k)is

Wij = I − (ei − ej)(ei − ej)
⊤

2
, (4.7)

where ei = [0 · · · 0 1 0 · · · 0]⊤ is an n × 1 vector with the ith component

equal to 1.

One result about this algorithm is given in [49]:

Theorem 4.3. For a complete graph, there exists a gossip algorithm such

that the 1/n-averaging time of the algorithm is O(logn).

In [48], it is proved that the convergence of the method is guaranteed.

Also, upper and lower bounds of the convergence rate are obtained. More

specifically, for the upper bound for the ϵ-averaging time, the following

lemma is proved:

Lemma 4.1. For any initial vector x(0), for k ≥ K∗(ϵ)

Pr

(
∥ x(k)− x̄1 ∥

∥ x(0) ∥
≥ ϵ

)
≤ ϵ,
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where

K∗(ϵ) , 3 log ϵ−1

log λ2(W )−1
.

The lower bound for the ϵ-averaging time is provided by another

lemma:

Lemma 4.2. For the above gossip algorithm, there exists and initial vector

x(0), such that for k < K∗(ϵ)

Pr

(
∥ x(k)− x̄1 ∥

∥ x(0) ∥
≥ ϵ

)
≥ ϵ,

where

K∗(ϵ) , 0.5 log ϵ−1

log λ2(W )−1
.

4.3.3 Sequential Learning and Herding

In this section, we consider a group of agents that are rational and

fully Bayesian. Each agent, based on its private observation of a noisy

underlying state process, selfishly optimizes its local utility and broadcasts

its action sequentially. This protocol leads to an interesting phenomenon

which is called herding. Herding means that the agents eventually choose

the same action irrespective of their observations.

One of the models in [31, 50, 51] is as follows:

There is a network with a finite number of agents. They take actions

in a pre-determined order. They use k = 1, 2, · · · to represent the order in

which agents act and also view k as the discrete time instant when agent

k acts.

At time 0, we randomly chose the state of Nature x ∈ X = {1, · · · , X}

with probability π0 = (π0(i), i ∈ X),π0(i) = P (x = i). Let yk ∈ Y =
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{1, 2, · · · , Y } denote the private observation of agent k with the probability

P (y|x) and let ak ∈ A = {1, 2, · · · , A} denote the local decision that agent

k takes. Define the sigma algebras:

Hk σ − algebras generated by (a1, · · · , ak−1, yk),

Gk σ − algebras generated by (a1, · · · , ak−1, ak).

(4.8)

Here we define two posterior distributions. The first one is the public

belief πk which is the posterior of the state x given all the actions taken up

to time k,

πk = (πk(i), i ∈ X) πk(i) = P (x = i|a1, · · · , ak). (4.9)

The second distribution is ηj which is the private belief of agent j.

This is the posterior of the state x given all the actions taken up to time

k, along with the current private observation yk at time k,

ηk = (ηk(i), i ∈ X) ηk(i) = P (x = i|a1, · · · , ak−1, yk). (4.10)

We also define two diagonal matrices of conditional probabilities by

By = diag(P (yk = y|x = 1), · · · , P (yk = y|x = X)), y ∈ Y,

Bπ
y = diag(P (ak = a|x = 1, πk−1 = π), · · · , P (ak = a|x = X, πk−1 = π)), a ∈ A.

(4.11)

where By is a model parameter assumed known, and π is a X-dimensional

probability vector.

Our goal is for each agent to choose the optimal action to optimize

78



a social welfare function (network utility). One of the sequential learning

protocols in [31] is:

For k = 1, 2, · · ·

1) Private Belief Update: Agent k obtains a multivariate

measurement yk ∼ p(·|x) and updates its Bayesian private belief as

ηk = T (πk−1, yk), where T (π, y) =
Byπ

σ(π, y)
, σ(π, y) = 1⊤Byπ. (4.12)

2) Selfish Optimization: Agent k then chooses action ak =

argmina∈A{c⊤a ηk} to minimize its expected cost given its available

information. Therefore,

ak(πk−1, yk) = argmin
a∈A

E{c⊤a ηk} = argmin
a∈A

{c⊤a T (πk−1, yk)}. (4.13)

3) Recommendation Forwarding: Agent k broadcasts its action

(recommendation) ak to the other agents.

4) Social learning: Based on the action ak in step 2, every agent

(except k) updates its Bayesian social belief by

πk = T (πk−1, ak), where T (π, a) =
Bπ

aπ

σ(π, a)
, σ(π, a) = 1⊤Bπ

aπ. (4.14)

From the above protocol, herding and cascades behaviors can be

defined as [31, 32],

Definition 1. 1) An individual agent k herds on the public belief πk−1 when

its action is independent of its private observation yk. That is

ak(πk−1, yk) = argmin
a∈A

{c⊤a T (πk−1, yk)} is independent of y ∈ Y. (4.15)
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2) A herd of agents takes place at time k̄, if the actions of all agents

after time k̄ are identical, i.e., ak = ak̄ for all k > k̄

3) An information cascade takes place at time k̄, if the social beliefs

of all agents after time k̄ are identical, i.e., πk = πk̄ for all k > k̄. So social

learning ceases.

Based on the above protocol and definition, [31] presents a theorem

that shows that information cascade occurs with probability 1. More

specifically,

Theorem. The above social learning protocol leads to an information

cascade in finite time with probability 1. That is: there exists a finite time

k̄ at which social learning ceases and all individual agents herd.

As a consequence of this theorem, agents eventually will ignore their

observations and always send the same action. This is a very interesting

behavior. For example, in a social network, it is as if a person always

chooses to believe a gossip that may not be truthful instead of truths.

More materials about herding can be found in [32, 52, 53].

4.4 Distributed Bayesian Learning with

Bernoulli Models

From the previous chapter, we can see the consensus-based method

is powerful and easy to apply in wireless sensor networks. In many

situations, the topology of the networks changes continuously as new

nodes join and old nodes leave the network. Algorithms for such networks

need to be robust against changes in topology. Additionally, these agents
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operate under limited computational, communication, and energy resources

[48]. Because the consensus-based methods can work without the need of

knowing the topology of the network and each agent applies very simply

update rules, these methods work very well in such networks. In cases

when the agents know the topology, for example, when some networks are

designed for a long term or permanent use, these methods cannot use the

topology to make the convergence quicker. Here we address this scenario

by studying Bayesian learning with Bernoulli models.

4.4.1 Solution to the Problem without Errors

In chapter 2, we stated two problems. The first one was learning the

probability of an event in a distributed manner where the agents observe

Bernoulli outcomes. In the first problem, we assume that there is no

observation error, and each agent j has kj observations. Therefore, the

posterior distribution of θ of each agent j can be written as

p(θ|yj, αj,0, βj,0) ∝ p(yj|θ)p(θ|αj,0, βj,0)

∝ θsj (1− θ)kj−sj θαj,0−1 (1− θ)βj,0−1

= θsj+αj,0−1 (1− θ)kj−sj+βj,0−1 ,

(4.16)

where sj and the prior are defined by sj =
∑kj

i=1 yj,i and p(θ|αj,0, βj,0) ∝

θαj,0−1 (1− θ)βj,0−1, respectively. Before communicating with others, the

agents process their own data and obtain their own posteriors, which are
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Beta densities with parameters

αj(0) = sj + αj,0 (4.17)

βj(0) = kj − sj + βj,0, (4.18)

where j = 1, 2, · · · , n. In our method, αj(0) and βj(0) are the private

signals which are sent to others at the first iteration.

From (4.16), we can readily show that the posterior distribution of θ

of a fictitious fusion center is given by

p(θ|y1:n, α1:n,0, β1:n,0) ∝
n∏

j=1

p(yj|θ)p(θ|αj,0, βj,0)

∝ θ
∑n

j=1(sj+αj,0−1) (1− θ)
∑n

j=1(kj−sj+βj,0−1)

= θαfc−1 (1− θ)βfc−1 ,

(4.19)

where

αfc =
n∑

j=1

(sj + αj,0)− n+ 1 (4.20)

βfc =
n∑

j=1

(kj − sj + βj,0)− n+ 1. (4.21)

Therefore, the posterior of the fusion center is a Beta density with

parameters given by (4.20) and (4.21). Since from (4.17) and (4.18)

αfc =
n∑

j=1

αj(0)− n+ 1 (4.22)

βfc =
n∑

j=1

βj(0)− n+ 1, (4.23)

it is clear that if the agents know the sums
∑n

j=1 αj(0) and
∑n

j=1 βj(0), the
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agents will be able to construct the same posterior as the fictitious fusion

center.

4.4.2 The Diffusion Method

Once the agents form their initial posteriors, they begin

communicating with their neighbors. Now, the goal of the agents (obtaining

the two sums) is equivalent to finding the average values of all the

αj(0)s and βj(0)s, respectively. With the method described in the sequel,

the agents exchange information in stages where at each stage t, the

agent Aj broadcasts to its neighbors ᾱj(t) and β̄j(t), i.e, its estimates of∑n
j=1 αj(0)/n and

∑n
j=1 βj(0)/n, respectively. This information is possibly

used by the neighbors to update their estimates which they broadcast at

the next stage.

In the sequel, we describe the updating process of ᾱj(t). The process

of β̄j(t) is analogous. Let the estimate ᾱj(t) be a linear combination of all

the αi(0)s, that is

ᾱj(t) =
n∑

i=1

hj,i(t)αi(0), (4.24)

where hj,i(t) ≥ 0, j ∈ NA and
∑n

i=1 hj,i(t) = 1. How the agents choose the

coefficients hj,i(t) is explained below.

We enforce that the newly generated ᾱj(t+1) is in the space spanned

by all the received signals by Aj up to t and its own αj(0). So ᾱj(t+1) is a

linear combination of all the received signals and αj(0). At every iteration,

each agent keeps a received signal from a neighbor only if it is not in the

space spanned by the set of signals present in its memory. The agent has

83



this information because the agents knows the topology of the network. If

the signal is linearly independent from the signals in its memory, the agent

adds the new signal to the memory. Thus, the memory of the agent keeps

growing with time. The memory is described by a l(t)×n matrix H, whose

rows are vectors of the form hj(t) = [hj,1(t), hj,2(t), · · · , hj,n(t)].

In the rest of this section, we focus on Aj, and therefore we will omit

in the notation the subscript j. Also, for simplicity, in the rest of this

section, we assume kj = k, i.e., that the number of all the agents are all

equal. Let r(t) ∈ Rl(t)×1 be a vector of the received signals, which are

linearly independent. Note that r(1) is the private signal of the agent and

l(t) is the number of linearly independent signals available to the agent by

time t.

The agent’s memory can be represented by

r(t) = H(t)α (4.25)

where

α = [α1(0), · · · , αn(0)]
⊤ . (4.26)

For example, at time instant t = 1, Aj has a signal r(1) = αj(0) and a

matrix H(1) = [0, 0, · · · , 0, 1, 0, · · · , 0], where the entry one appears at the

jth location.

At time t, the agent has signals in its memory. The new estimate of

each agent is a linear combination of the signals from its memory, that is,

ᾱ(t+ 1) = ϕ⊤(t)r(t), (4.27)
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where ϕ(t) = (ϕ1(t), · · · , ϕl(t)(t))
⊤.

The variance of ᾱ(t+ 1) is then

var[ᾱ(t+ 1)] = E[(ϕ⊤(t)r(t)− ϕ⊤(t)E[r(t)])2]

= ϕ⊤(t)E
[
(r(t)− E[r(t)])(r(t)− E[r(t)])⊤

]
ϕ(t)

= ϕ⊤(t)Cr(t)ϕ(t),

(4.28)

where E[·] represents the expectation operator and var[·] represents the

variance of the random variable inside the brackets.

We obtain the covariance matrix of the memory r(t) from

Cr(t) = E[(r(t)− E[r(t)])(r(t)− E[r(t)])⊤]

= H(t)E
[
(α− E(α))(α− E(α))⊤

]
H⊤(t)

= H(t)CαH
⊤(t)

= θ(1− θ)kH(t)H⊤(t).

(4.29)

Now, using (4.28) and (4.29), we can write

var[ᾱ(t+ 1)] = θ(1− θ)kϕ⊤(t)H(t)H⊤(t)ϕ(t). (4.30)

We want to choose ϕ(t) so that we minimize the variance var[ᾱ(t + 1)].

Before the minimization, we set the constraint ϕ⊤(t)1l(t) = 1 so that the

estimate ᾱ(t+ 1) is unbiased. The notation 1l(t) ∈ Rl(t)×1 signifies a vector

whose entries all equal to one.

We can readily show that ϕ(t) is obtained from

ϕ⊤(t) =
1⊤l(t)

(
H(t)H⊤(t)

)−1

1⊤l(t)
(
H(t)H⊤(t)

)−1
1l(t)

. (4.31)
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Once ϕ⊤(t) is found from (4.31), the agent computes ᾱ(t + 1) as in (4.27)

and broadcasts the obtained value to its neighbors.

The reason for the need that each agent knows the structure of the

network is that the structure determines the vector h(t+1) for constructing

the signal ᾱ(t + 1). With the knowledge of the structure, the agents

calculate the h(t+ 1)s of all the other agents. Namely, from

ᾱ(t+ 1) = ϕ⊤(t)r(t)

= ϕ⊤(t)H(t)α,

they find that

h(t+ 1) = ϕ⊤(t)H(t). (4.32)

Therefore, when an agent receives a signal from a neighbor, it knows

if there is new information in it. If there is new information, it stores it in

its memory; otherwise it throws it away. At each stage, the agent computes

the matrices H(t) of all the agents.

When the agent does not receive new information, it does not

broadcast. When all the information diffuses throughout the network,

the agents have the posterior that is identical to that of the fusion center.

Namely, at that stage all the agents have the same estimates ᾱ and β̄, which

are then used in (4.22) and (4.23) to obtain the same statistics as those of

the fictitious fusion center. These statistics are subsequently employed to

obtain the posterior estimate of θ.

In the case when the agents do not know the topology of the network,

they can still obtain the optimal posterior distribution of θ. Then, they
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do not compute the matrices H(t), but instead when they broadcast the

estimates α̂(t), they also broadcast the associated vectors h(t).

4.4.3 The Posterior

At each iteration t, each agent j can generate a new signal αj(t) which

is an estimate of the average of all private signals. The agent j can obtain

a new updated posterior which is a Beta density with parameters nαj(t)

and n(k − αj(t)). In other words, in each iteration, each agent estimates

the parameters of the posterior of a fusion center. So if the communication

is interrupted, each agent j still can obtain an updated belief.

In the above, our role is to minimize the variance of each signal. Here

we use another derivation and show how the agents update their beliefs. We

define the private signals as α = [α1(0), · · · , αn(0)], β = [β1(0), · · · , βn(0)].

Because we assume the number of observations of each agent k is the same

for all agents, we have that each βj(0) = k − αj(0) + 2.

From our first model, each private signal αj(0) has a Binomial

distribution. However, all the signals are independent, so we have

α, β ∼
n∏

i=1

(
k

αi(0)− 1

)
θαi(0)−1(1− θ)βi(0)−1

fα(α) ∝ θ
∑n

i=1 αi(0)−n(1− θ)
∑n

i=1 βi(0)−n

= θ
∑n

i=1 αi(0)−n(1− θ)
∑n

i=1(k−αi(0)+2)−n

= θ1
⊤
n α−n(1− θ)kn−1⊤

n α+n

= θ
n(

kθ1⊤n α

1⊤n E[α]
−1)

(1− θ)
n(k− kθ1⊤n α

1⊤n E[α]
+1)
,

(4.33)

where 1n ∈ Rn×1 is an all ones vector, and fα(α) is the probability density
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function (pdf) of the vector α which is a Beta distribution with parameters

(1⊤
nα−n+1) and (kn−1⊤

nα+n+1). We write the pdf as in (4.33), because

we want each signal is unbiased and has the same expectation kθ. From

our method, we know r = Hα, where H ∈ Rl×n, l ≤ n and rank(H) = l.

Because H is a full row rank matrix, the general solution of α from r = Hα

is

α = H†r + (I −H†H)Y, ∀Y ∈ Rn, (4.34)

where Y can be any n dimensional vectors with real numbers, and I is the

identity matrix and H† is the Moore Penrose pseudoinverse matrix of H

which is defined as H† = H⊤(HH⊤)−1 ∈ Rn×l. The least-norm solutions

of this undetermined equations is α = H†r. It also is the only inverse

function. So from the formula of the transformation of random vectors, we

have

fr(r) ∝ fα(H
†r)

= θ
n(

kθ1⊤n H†r
1⊤n E[H†r]

−1)
(1− θ)

n(k− kθ1⊤n H†r
1⊤n E[H†r]

+1)

∝ θ
n(

1⊤n H†r
1⊤n H†1l

−1)
(1− θ)

n(k− 1⊤n H†r
1⊤n H†1l

+1)

= θ
n(

1⊤n H⊤(HH⊤)−1r

1⊤n H⊤(HH⊤)−11l
−1)

(1− θ)
n(k− 1⊤n H⊤(HH⊤)−1r

1⊤n H⊤(HH⊤)−11l
+1)

= θ
n(

1⊤l (HH⊤)−1r

1⊤
l

(HH⊤)−11l
−1)

(1− θ)
n(k− 1⊤l (HH⊤)−1r

1⊤
l

(HH⊤)−11l
+1)
,

(4.35)

where 1⊤
nH

⊤ = 1⊤
l . We can see that the pdf of r is a Beta distribution.

Now let us assume that r0 is the signal already in the memory, and
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r1 is the new received linearly independent signal. Then we can derive the

new posterior as follows:

p(θ|r1, r0)

∝ p(r1|θ, r0)p(θ|r0)

=
p(r1, r0|θ)
p(r0|θ)

p(θ|r0)

∝ p(r0, r1|θ) = p(r2|θ) = fr2(r2|θ)

∝ θ
n(

1⊤
l′ (H2H

⊤
2 )−1r2

1⊤
l′

(H2H
⊤
2 )−11l′

−1)

(1− θ)
n(k−

1⊤
l′ (H2H

⊤
2 )−1r2

1⊤
l′

(H2H
⊤
2 )−11l′

+1)

,

(4.36)

where H2 =

 H0

H1

 ∈ Rl′×n, r2 =

 r0

r1

 ∈ Rl′×1 and the prior is

uniform distribution. From our proposed method, the new signal is the

estimate of the average of all private signals, which is ᾱj(t) =
1⊤
l′ (H2H⊤

2 )−1r2

1⊤
l′ (H2H⊤

2 )−11l′
.

From (4.22) and (4.23), we see that the posterior is a Beta density with

two parameters (nᾱj(t) − n + 1) and (nk − nᾱj(t) + n + 1). Clearly, this

posterior is the same as (4.36) which is updated by the Bayesian theorem.

In summary, the proposed algorithm can be written as follows:

4.4.4 An Example

We use a simple example to explain how this diffusion method works.

The topology of this network is shown in Figure 4.2. We assume that there

is no observation error and that each agent j has a different kj.
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Algorithm 1 the process of our method in each agent j

1: for j = [1 : n] do
2: observe and generate a private signal αj(0);
3: end for
4: while t = [2 :time limit] or all α(t)s does change do
5: for j = [1 : n] do
6: receive neighbors’ signals;
7: add linearly independent signals to memory and obtain new

memory rj,α(t), rj,β(t);
8: add corresponding coefficients vectors of added signals and obtain

new coefficients matrix Hj(t);
9: bring Hj(t) to (4.31) to get dj(t);
10: obtain a new signal α̂j(t+ 1) using (4.27);
11: do step 7 to 10 except the parts of rj,α(t) and rj,β(t) for all other

agents, and obtain all Hj(t)s and dj(t)s in the network;
12: end for
13: end while

Figure 4.2: Network topology

Time Instant 0

Before the exchanges start, each agent j, j ∈ [1, 5], has kj private

observations. So the posterior of agent j is

p(θ|yj,1, · · · , yj,kj) =
θ
∑kj

i=1 yj,i(1− θ)kj−
∑kj

i=1 yj,ip(θ)´ 1

0
θ
∑kj

i=1 yj,i(1− θ)kj−
∑kj

i=1 yj,ip(θ)dθ

=
θαj(0)−1(1− θ)βj(0)−1p(θ)´ 1

0
θαj(0)−1(1− θ)βj(0)−1p(θ)dθ

= Beta(αj(0), βj(0)),

(4.37)
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agent 1 2 3 4 5
number of 0 5 3 12 24 6
number of 1 8 6 20 36 5

αj(0) 6 4 13 25 7
βj(0) 9 7 21 37 6

Table 4.1: The initial states at time instant 0

where Beta(·) is the beta pdf, and βj(0) = kj − αj(0) + 2.

Here we choose αj(0) and βj(0) as private signals (also we can choose

αj(0) and kj(0)). The private signals αj(0) and βj(0) are the estimates of

the average values ᾱ and β̄. Also, they are the sufficient statistics. In this

example, the initial conditions and private signals are shown in Table 4.1.

Time Instant 1

At t = 1, all the agents begin to exchange signals. Each agent j sends

αj(0) and βj(0) to its neighbors. Because the diffusion process of β is the

same as α, we only use the process of α to explain the diffusion. Because

all the αj(0)s are independent, each memory keeps all the received signals.

The received signals and the memories are shown in Table 4.2, where H(1)

is from (4.25). From their own memories, the agents can use (4.29) and

(4.31) to calculate the coefficients for each signal in the memories. Because

all the received signals are independent, the covariances of the memories

are all diagonal matrices. So we can have the new estimates of all the
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agent received signals H(1)

1 α1(0),α2(0),α4(0)
1 0 0 0 0
0 1 0 0 0
0 0 0 1 0

2 α1(0),α2(0),α3(0)
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

3 α2(0),α3(0),α4(0)
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

4 α1(0),α3(0),α4(0),α5(0)

1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

5 α4(0),α5(0)
0 0 0 1 0
0 0 0 0 1

Table 4.2: the memory of each agent at time instant1

agents, as follows:



α1(1)

α2(1)

α3(1)

α4(1)

α5(1)


=



1/3 1/3 0 1/3 0

1/3 1/3 1/3 0 0

0 1/3 1/3 1/3 0

1/4 0 1/4 1/4 1/4

0 0 0 1/2 1/2





α1(0)

α2(0)

α3(0)

α4(0)

α5(0)


. (4.38)

Time Instant 2

At t = 2, each agent still keeps the signal in its memory and sends

the new estimate (4.38) to its neighbors. The new memory is presented

in Table 4.3. We can see the agent 2 does not add α3(1) to its memory,

because it is a linear combination of the signals in agent’s 2 memory. In

other words, it is not a new information.

Now we focus on agent 2. From (4.29), the covariance is
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agent memories H(2)

1 α1,2,4(0),α2,4(1)

1 0 0 0 0
0 1 0 0 0
0 0 0 1 0
1/3 1/3 1/3 0 0
1/4 0 1/4 1/4 1/4

2 α1,2,3(0),α1(1)

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
1/3 1/3 0 1/3 0

3 α2,3,4(0),α2,4(1)

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
1/3 1/3 1/3 0 0
1/4 0 1/4 1/4 1/4

4 α1,3,4,5(0),α1(1)

1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1/3 1/3 0 1/3 0

5 α4,5(0),α4(1)
0 0 0 1 0
0 0 0 0 1
1/4 0 1/4 1/4 1/4

Table 4.3: the memory of each agent at time 2
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Cr2(2) = H2(2)CαH
⊤
2 (2) = θ(1− θ)kH2(2)H

⊤
2 (2)

= θ(1− θ)k



1 0 0 1/3

0 1 0 1/3

0 0 1 0

1/3 1/3 0 1/3


.

(4.39)

Then we use (4.31) to calculate the coefficients for each signal in the

memory.

ϕ⊤
2 (2) =

1⊤C−1
r (2)

1⊤C−1
r (2)1

=

(
0 0 1/4 3/4

)
. (4.40)

So the new signal of agent 2 at t = 2 is

α2(2) =

(
0 0 1/4 3/4

)


α1(0)

α2(0)

α3(0)

α1(1)



=

(
1/4 1/4 1/4 1/4 0

)


α1(0)

α2(0)

α3(0)

α4(0)

α5(0)


.

(4.41)

The processes of all the other agents are the same, and the results are

shown in (4.42). We can see that the signals of agents 1, 3 and 4 have
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reached the MMSE (minimum mean square error) estimates which is the

average value of all the private signals, but agent 2 and 5 have not. This

makes sense, because the distance between them is the longest.



α1(2)

α2(2)

α3(2)

α4(2)

α5(2)


=



1/5 1/5 1/5 1/5 1/5

1/4 1/4 1/4 1/4 0

1/5 1/5 1/5 1/5 1/5

1/5 1/5 1/5 1/5 1/5

1/4 0 1/4 1/4 1/4





α1(0)

α2(0)

α3(0)

α4(0)

α5(0)


. (4.42)

Time Instant 3

At t = 3, agents 1, 3 and 4 send their new signals which are the

MMSE estimates. So agent 2 can directly use the received signal from

agent 1 or 3 and agent 5 can use the signal form agent 4. We use the same

method for β. Then all the agents reach the MMSE estimates of ᾱ and β̄.

The posteriors of all the agents are the same as that of a fusion center.

Also we show how the posterior of θ of agent 2 changes in each time

step in Figure 4.3.

4.4.5 Convergence Proofs

In this section, we prove that the signal of each agent converges to

the average of all private signals. Here we assume that the network is

a connected and undirected graph, and still use the same notations and

conditions as above.
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Figure 4.3: The posterior of θ of agent 2 at time 0

4.4.5.1 Second Moment Convergence

Lemma 4.3. Using our proposed diffusion method and definitions, for each

agent j, the variances of the signals of this agent will not increase with t,

i.e., var(αj(t+ 1)) ≤ var(αj(t)).

Proof. From the previous section, we can obtain αj(t) = ϕ⊤
j (t−1)rj(t−1) =∑lj(t−1)

i=1 ϕj,i(t−1)rj,i(t−1) and αj(t+1) = ϕ⊤
j (t)rj(t) =

∑lj(t)
i=1 ϕj,i(t)rj,i(t),

where lj(t) is the number of signals at time t and lj(t) ≥ lj(t− 1). Clearly,

the first lj(t−1) elements of rj(t) are exactly the same as rj(t−1). So if we

set the first lj(t− 1) elements of ϕj(t) to be equal to ϕj(t− 1) and the rest

to be 0s, we have αj(t + 1) = αj(t). Because αj(t + 1) has the minimum

variance than all other linear combinations of rj,i, i ∈ [1, lj(t)] which include

the combination to generate αj(t). So V ar(αj(t+ 1)) ≤ V ar(αj(t)).

Lemma 4.4. Using the proposed method, the variances of the signals of all

the agents converge to γ.

Proof. From Lemma 4.3, we know that the variance of each agent j’s

estimator is monotonously decreasing. And because the variances should be
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greater or equal to 0, each variance must converge to a positive real number

γj. For agent i which is the neighbor of agent j, we assume the variance

will converge to γi. Without loss of generality, we assume γj < γi. So there

must exits an iteration time t so that γj < var(αj(t)) < γi < var(αi(t)).

At time t, agent i can receive a signal αj(t) from agent j. If it is

not in the space spanned by agent i’s memory ri(t), agent i adds it to its

memory; otherwise agent i just ignores it. No matter in which situation,

αj(t) becomes a signal in the space spanned by agent i’s memory. Namely,

αj(t) does not contain new information for agent i, and agent i can obtain

αj(t) by setting appropriate coefficients at time t. From our proposed

method, we know that var(αi(t + 1)) is the lowest variance all over this

space which include all possible combinations of ri(t), so we can obtain

var(αi(t + 1)) ≤ var(αj(t)) < γi. It’s in contradiction with previous

assumption. Therefore, γj must be equal to γi. And because the topology

of this network is a connected graph, all agents will converge to a same

variance γ.

4.4.5.2 First Moment Convergence

Lemma 4.5. Given the conditions from 4.4, the covariance of the signals

of the connected agents converges to γ [33].

Proof. From Lemma 2, we assume that all the variances of actions αi(t)s

will converge to γ. So for any two connected agents i and j, there exists

an iteration t where var(αi(t)) < γ + ϵ and var(αj(t)) < γ + ϵ, and where

ϵ can be any real number.

97



Because 1
2
(αi(t)+αj(t)) is in the space spanned by agent i’s memory

at iteration t, V ar(αi(t+ 1)) ≤ V ar(1
2
(αi(t) + αj(t))). Also,

V ar(
1

2
(αi(t) + αj(t))) =

1

4
V ar(αi(t)) +

1

4
V ar(αj(t)) +

1

4
2Cov(αi(t), αj(t))

<
1

2
(γ + ϵ+ Cov(αi(t), αj(t)))

(4.43)

So we have γ < 1
2
(γ + ϵ + Cov(αi(t), αj(t))) which can be represented to

Cov(αi(t), αj(t)) > γ− ϵ. Otherwise, from Cauchy−Schwarz inequality, we

have

Cov(αi(t), αj(t)) ≤
√
V ar(αi(t))V ar(αj(t)) < γ + ϵ. (4.44)

Since γ − ϵ < Cov(αi(t), αj(t)) < γ + ϵ and ϵ can be any real number, we

have Cov(αi(t), αj(t)) = γ. Therefore, if agents i and j are neighbors, the

covariance of the two actions converges to γ.

Theorem 4.4. All signals will converge to the same value.

Proof. From Lemma 4.5, we can see correlation coefficient will be 1.

It means signals will be linear dependent. Because all signals α(t) =∑n
i=1 hi(t)αi(0),

∑n
i=1 hi(t) = 1 for any agents and at any iteration, all

signals will converge to the same signal.

4.4.5.3 Convergence to the Average Value

Given the conditions from above, we know that all αi(0)s are

independent and have the same variance. Each signal is a linear

combination: α(t) =
∑n

i=1 hi(t)αi(0) with a constrain
∑n

i=1 hi(t) = 1.
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Using the method of Lagrange multipliers, we can know that the average of

all αi(0)s has the lowest variance, which is var[αi(0)]
n

, where n is the number

of agents.

Lemma 4.6. For each agent j, if hj(t) <
1
n
which is the coefficient of agent

j’s private signal αj(0) in a signal αj(t), then agent j can adjust hj(t) =
1
n

to obtain a new signal which has a lower variance(where n is the number

of agents, and we assume n ≥ 2).

Proof. For simplifying the notation, we omit the time argument t and

subscript j, and assume the variances of all the private signals to

be equal to 1. For each agent j, α = hjαj(0) +
∑n

i=1&i̸=j hiαi(0).

Because the agent j has its private signal αj(0), it can modify α to

α′ = 1
n
αj(0) + n−1

n

∑n
i=1&i̸=j hiαi(0)∑n

i=1&i̸=j hi
. We have var(α) =

∑n
i=1 h

2
i and

var(α′) = 1
n2 + (n−1)2

n2(
∑n

i=1&i ̸=j hi)2

∑n
i=1&i ̸=j h

2
i . Because

∑n
i=1 hi = 1, we have∑n

i=1&i̸=j hi = 1− hj. Then we have

var[α′] =
1

n2
+

(n− 1)2

n2(1− hj)2

n∑
i=1&i̸=j

h2i

=
1

n2(1− hj)2
[(1− hj)

2 + (n− 1)2
n∑

i=1&i̸=j

h2i ]

=
1

n2(1− hj)2
[(n− 1)2

n∑
i=1

h2i + (1− hj)
2 − (n− 1)2h2j ]

=
1

n2(1− hj)2
[(n− 1)2

n∑
i=1

h2i + (nhj − 2hj + 1)(1− nhj)]

(4.45)
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We want to prove var[α′] < var[α] which can be represented as

var[α′] < var[α]

1

n2(1− hj)2
[(n− 1)2

n∑
i=1

h2i + (nhj − 2hj + 1)(1− nhj)] < var[α]

(n− 1)2var[α] + (nhj − 2hj + 1)(1− nhj) < n2(1− hj)
2var[α]

(nhj − 2hj + 1)(1− nhj) < [n2(1− hj)
2 − (n− 1)2]var[α]

(nhj − 2hj + 1)(1− nhj) < (1− nhj)(2n− nhj − 1)var[α]

(4.46)

Because we know hj < 1
n

and n ≥ 2, we can obtain 1 − nhj > 0,

(n− 2)hj + 1 > 0 and (n(2− hj)− 1) > 0. Continuing (4.46), we want to

prove

(nhj − 2hj + 1) < (2n− nhj − 1)var[α]

var[α] >
(n− 2)hj + 1

n(2− hj)− 1

(4.47)

We assume that the variances of all the private signals are equal to 1

and that var[α] > var[ᾱ] = 1
n
, and thus we just need to prove

1

n
>

(n− 2)hj + 1

n(2− hj)− 1

2n− nhj − 1 > n2hj − 2nhj + n

n− 1 > n2hj − nhj

hj <
n− 1

n(n− 1)
=

1

n

(4.48)

Because hj <
1
n
is our assumption, we can adjust hj =

1
n
to obtain a new

signal which has a lower variance.
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Theorem 4.5. With the proposed method, the signals of all the agents will

converge to the average ᾱ =
∑n

i=1
1
n
αi(0), if each αj(0) is independent and

has the same variance, where the number of agents n > 2.

Proof. According to Lemma 4.6 and Theorem 4.4, we assume that all

signals will converge to α(t) =
∑n

i=1 hjαj(0) (α(t) ̸= ᾱ) with the smallest

variance γ. So var[ᾱ] < var[α(t)]. Because
∑n

i=1 hi = 1, there exists a

coefficient hi <
1
n
. From Lemma 4, agent i can modify hi to

1
n
to obtain

a new signal with a smaller variance. This is in contradiction with the

former assumption. So when the signals of all the agents converge, all

the coefficients of this converged signal should not be less than 1
n
. Also∑n

i=1 hi = 1, so the signals of all the agents will converge to the average

ᾱ =
∑n

i=1
1
n
αj(0).

4.4.5.4 The Upper and Lower Bounds

Two theorems about the upper bound on the convergence are given

on [5].

Theorem 4.6. If some agents estimator has not changed after 2d

iterations, then the process has converged.

Theorem 4.7. The process stops after 2n · d iterations.

where n is the number of agents and d is the diameter of the network.

For an agent which is in the center of the network, the process can

converge to the average within 2n⌈d
2
⌉ steps, where ⌈d

2
⌉ = d

2
when d is a even

number or ⌈d
2
⌉ = d+1

2
when d is an odd number. It is because the memory

determines the signal. If the memory does not change, then the signal will

not change. Therefore every time an agents signal changes (in most 2⌈d
2
⌉
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iterations), the dimension of the space the agents memory spans increases

by at least one. Clearly this cannot happen more than n times.

After the center agent reaches the optimum signal, this signal takes

⌈d
2
⌉ steps to be transmitted to all others. So all the agents can converge to

the average in at most (2n+ 1)⌈d
2
⌉ iterations.

For the lower bound, because it takes d steps to propagate information

through the network, the convergence cannot happen faster than d.

4.4.6 Solution to the Problem with Errors

The Bernoulli model with errors(4.1) is more difficult for processing

than the model from the previous section. Here, we first use the moment

matching method to approximate the local posterior, and then use a similar

diffusion method as in Section 4.4.1. The difference is that the variances of

all the private signals are not the same, and so each agent needs two signals

in each iteration. For the posterior of the fusion center we can write

p(θ|y1:n, α1:n,0, β1:n,0, ϵ1:n) =
n∏

j=1

p(yj|θ, ϵj)p(θ|αj,0, βj,0) (4.49)

where p(yj|θ, ϵj) is the likelihood of the jth agent and pj(θ) is its prior. For

the local likelihood of each agent j we write

p(yj|θ, ϵj) =
kj∏
i=1

p(yj,i|xj,i = 1, ϵj)p(xj,i = 1|θ) + p(yj,i|xj,i = 0, ϵj)p(xj,i = 0|θ)

=

kj∏
i=1

ϵ
1−yj,i
j (1− ϵj)

yj,iθ + ϵ
yj,i
j (1− ϵj)

1−yj,i(1− θ).

(4.50)

102



Then we can write the local posterior of each agent j as

p(θ|yj, αj,0, βj,0, ϵj)

∝
kj∏
i=1

[ϵ
1−yj,i
j (1− ϵj)

yj,iθ + ϵ
yj,i
j (1− ϵj)

1−yj,i(1− θ)]θαj,0−1(1− θ)βj,0−1

= C1θ
kj+αj,0−1(1− θ)βj,0−1 + ...+ Ckj+1θ

αj,0−1(1− θ)kj+βj,0−1,

(4.51)

where Ci, i ∈ [1, kj + 1] are coefficients which are determined by the

observations yj and the error ϵj. Clearly, the local posterior is a mixture

of Beta densities with kj +1 components. We can assume that the prior of

each agent is the same uniform distribution: p(θ) = 1, θ ∈ [0, 1]. Then the

local likelihood is the same as the local posterior. Therefore, (4.49) and

(4.51) imply that the posterior can be written as a complicated mixture

of Beta densities with many components. Because the posterior of the

fusion center is very complicated, we use a method to approximate the

local posterior by one Beta density.

4.4.6.1 Moment Matching

We use the same mechanism for learning as in the previous section.

This can only be accomplished with approximations. We propose that the

agents approximate the mixtures with a single Beta density by the moment

matching method.

We assume that the Beta density approximates local belief, i.e.

q(θ) = 1
B(α,β)

θα−1(1−θ)β−1. The expectation and variance of a Beta random

variable are Eq[θ] =
α

α+β
and varq[θ] =

αβ
(α+β)2(α+β+1)

, respectively.
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From (4.50), the expectation of the local belief is

Ep[θ] =

ˆ 1

0

θp(θ|y1, ..., yk, ϵ)dθ

=
k+1∑
i=1

Ci

ˆ 1

0

θ · θα0+kj−i(1− θ)β0+i−2dθ

=
k+1∑
i=1

CiBe(α0 + k − i+ 2, β0 + i− 1).

(4.52)

For the variance of the local belief, we have

varp[θ] = Ep[θ
2]− E2

p [θ]

=

ˆ 1

0

θ2p(θ|yj,1, ..., yj,kj , ϵj)dθ − E2
p [θ]

=
k+1∑
i=1

CiBe(α0 + k − i+ 3, β0 + i− 1)− E2
p [θ].

(4.53)

According to the moment matching method, we want the expectations of

the local belief and q(θ) be the same, i.e., Eq[θ] = Ep[θ] and varq[θ] =

varp[θ]. So we obtain


αj(0) =

E2
p [θ](1−Ep[θ])

varp[θ]
− Ep[θ]

βj(0) =
α

Ep[θ]
− α,

(4.54)

where Ep[θ] and varp[θ] are expectation and variance of the real local belief

(4.50). Thus, we can use one Beta density with parameter αj(0) and βj(0)

to represent the local posterior.
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4.4.6.2 The Diffusion Method

The difference with the previous by proposed method is that the

kj(0)s of all the agents are different. Also, kj(0) is not the number

of observation of agent j anymore, and instead, it is just equal to

αj(0) + βj(0)− 2. So we assume kj is a random valuable, where all the kjs

have the same expectation and variance. Therefore the expectations and

the variances of all αj(0)s are also the same.

We use two entities, αj(0) and kj(0), to play the roles of αj(0) from the

previous section simultaneously, and in each iteration, the agents exchange

the two estimates of the averages ᾱ =
∑n

j=1 αj(0) and k̄j =
∑n

j=1 kj(0).

Each agent receives and sends two signals and maintains two memories

rα(t) and rk(t). However, the matrix H(t) is the same for these two signals,

because it is only determined by the topology of the network. Each two

signals are unbiased estimates of the averages of the private signals. From

the proposed method, each agent can finally obtain ᾱ and k̄, which are

defined by

ᾱ =
1

n

n∑
j=1

αj(0), k̄ =
1

n

n∑
j=1

kj(0). (4.55)

With them, each agent can have the same posterior as that of a fusion center

which is a Beta density with parameters (nᾱ−n+1) and (nk̄−nᾱ+n+1).

We point that this diffusion method can be used in any problem

whose goal is to obtain the average value of private signals. We just need

to assume that all the private signals have the same variance.
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4.4.7 Discussion

First we comment on the use of one Beta density to approximate

the mixture Beta density. From (4.51), we can see that the sum of two

parameters of each component of the mixture Beta density is the same and

equal to kj+αj,0+βj,0−2. The modes of the components ( α−1
α+β−2

) have the

same interval 1. So for given kj, αj,0 and βj,0, if we ignore the coefficients,

all the components are close to each other. Only the coefficients determine

the shape of the local belief. From Figure 4.4, we can see that the shape is

like a “bell curve”. We note that the mode is determined by several largest

coefficients. Therefore we want to use one Beta density to approximate the

real local belief which is a mixture Beta density.
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Figure 4.4: The coefficients of the real local belief with 60 observations.

In Figure 4.6, we present two examples that show the approximation.

We assume θ = 0.8, ϵ = 0.2 and the two parameters of prior are set to

αj,0 = βj,0 = 2.

We can also use the variance inference method to approximate the

local posteriors. One method is to minimize the Kullback-Leibler(KL)

divergence [54] to obtain two private signals αj,0 and βj,0. The Kullback-
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Figure 4.5: The coefficients of the real local belief with 300 observations.

Leibler divergence [54] of the real posterior and approximated posterior is

given by

DKL(q||p)

=

ˆ 1

0

q(θ)ln
q(θ)

p(θ)
dθ

=

ˆ 1

0

1

B(α, β)
θα−1(1− θ)β−1ln

1
B(α,β)

θα−1(1− θ)β−1

C1θkj+α0−1(1− θ)β0−1 + ...+ Ckj+1θα0−1(1− θ)kj+β0−1
dθ

=
1

B(α, β)

(ˆ 1

0

θα−1(1− θ)β−1ln
1

B(α, β)
θα−1(1− θ)β−1dθ

−
ˆ 1

0

θα−1(1− θ)β−1ln[C1θ
kj+α0−1(1− θ)β0−1 + ...+ Ckj+1θ

α0−1(1− θ)kj+β0−1]dθ

)
=

1

B(α, β)

(ˆ 1

0

θα−1(1− θ)β−1[(α− 1)lnθ + (β − 1)ln(1− θ)− lnB(α, β)]dθ

−
ˆ 1

0

θα−1(1− θ)β−1ln[C1θ
kj+α0−1(1− θ)β0−1 + ...+ Ckj+1θ

α0−1(1− θ)kj+β0−1]dθ

)
.

(4.56)

Since

ˆ 1

0

1

B(α, β)
θα−1(1− θ)β−1lnθdθ = E[lnθ] = ψ(α)− ψ(α+ β), (4.57)
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Figure 4.6: Comparison of the real local belief with the approximated belief
based on 1 observation. It shows the performance is well.

where ψ(x) = d
dx
Γ(x) = Γ′(x)

Γ(x)
is the digamma function, and assuming

t = 1− θ. We obtain

ˆ 1

0

1

B(α, β)
θα−1(1− θ)β−1ln(1− θ)dθ

= −
ˆ 0

1

1

B(α, β)
(1− t)α−1tβ−1lntdt =

ˆ 1

0

1

B(α, β)
tβ−1(1− t)α−1lntdt

= ψ(β)− ψ(α+ β).

(4.58)
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Figure 4.7: Comparison of the real local belief with the approximated belief
based on 500 observations. It shows the errors do not accumulate.

According to (4.56), (4.57) and (4.58) , we find that:

DKL(q||p)

= (α− 1)[ψ(α)− ψ(α + β)] + (β − 1)[ψ(β)− ψ(α + β)]− lnB(α, β)︸ ︷︷ ︸
f(α,β)

− 1

B(α, β)

ˆ 1

0

θα−1(1− θ)β−1ln[C1θ
kj+α0−1(1− θ)β0−1 + ...+ Ckj+1θ

α0−1(1− θ)kj+β0−1]dθ︸ ︷︷ ︸
g(α,β)

.

(4.59)

We can minimize the KL divergence to obtain α and β using

a numerical method to solve (4.59). The calculation, however, is

computationally very intensive. For example, we randomly generate one

observation with ϵ = 0.2. The parameters α and β that minimize KL

divergence and moment matching are 1.9049, 2.4147 and 1.8966, 2.4138,

respectively. The KL divergences of these two methods are 5.817 × 10−4
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and 5.9511× 10−4, respectively. If we randomly generate 500 observations,

the parameters α and β using moment matching are 114.207, 47.437.

The KL divergences of these two methods are very close, which are all

about 7.9205 × 10−4. We can that see the moment matching method can

obtain similar results as the minimization of the KL divergence. When

the number of observations increases, the KL divergence of the moment

matching method does not increase significantly.

We note that, because our estimation is the mode of the mixture

Beta distribution, we can use the mode and the variance as matching

parameters. The simulations show that this method is better than the

moment matching. It, however, requires calculation of the mode of the

mixture Beta distribution.

4.4.8 Simulations

Because the results for the model without errors is very similar, here

we only present simulation results that demonstrate the performance of the

proposed method for the model with errors. We note that the convergence

for the two models, given the same priors of θ and the same observations

of the agents (but with ϵ = 0 and ϵ ̸= 0) is exactly the same.

We conducted an experiment with a network of 11 agents. The

topology of the network was taken from [55] and is shown in Fig. 4.8.

We set the unknown probability to θ = 0.76. The errors and number

of observations of all the agents were randomly chosen from the uniform

distributions on [0.01, 0.49] and [1, 100], respectively. For comparison

purposes, we also implemented the average consensus method from [27].

The value of the step-size of the consensus algorithm was set to 0.23.
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In Figure 4.10, we show one realization of the evolution of the agents’

MAP estimates with iterations for the proposed and the consensus-based

methods. We can see that the estimates of each agent of the proposed

method converge to estimate obtained from the exact average of the

approximated sufficient statistics of all the agents. They do it at the fourth

iteration. For the same network and the same signals and parameters, the

agents need about 30 iterations to reach a consensus. Thus, with the

proposed method, convergence is achieved much faster. Furthermore, for

this network, the method always converges at the fourth iteration, whereas

the consensus-based method has a variable convergence time. We observe,

again, that this gain is achieved by knowledge of the network topology and

more intensive computations of the agents that implement our method as

opposed the ones that rely on the consensus-based method.

In Figure 4.11, we present a histogram of the error in the MAP

estimates of the agents. We ran 500 trials with different sets of observations

and parameters and simulated as above, and in each of them we recorded

the error of the agent’s estimate defined by ei = θ̂i− θ̃i, where θ̂i and θ̃i are

the agents’ and fusion center estimates in the ith trial, respectively. The

results show that these errors are very small.

Also we are curious about whether the errors are going to accumulate

for a large number of agents. From the proposed method, we can find

the signal of each agent will converge to the average value, so we omit

the diffusion process and only compare the MAP estimates based on the

average of all approximated private signals and in the fusion center without

any approximations. Figure 4.13 and 4.14 show that the errors are also

very small. The reason why the errors are unbiased may be that this
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approximation method has a tendency to be close to the center which is

0.5.

Figure 4.8: The network of agents in the experiments.

0 5 10 15 20 25 30 35 40
0.3

0.4

0.5

0.6

0.7

0.8

0.9

iterations

θ̂

 

 

estimates in fusion center without approximation
estimates using the proposed method

Figure 4.9: The MAP estimates of all the agents as a function of iteration
number obtained by the proposed method (solid lines). The MAP of the
fusion center (the dashed line).

4.5 Summary

In this chapter, we presented a Bayesian learning method in a network

of agents, where the agents aim at estimating the posterior distribution of

a probability in a Bernoulli model. Each agent knows the structure of the

network and stores the received signals from their neighbors only if they
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Figure 4.10: The MAP estimates of all the agents as a function of iteration
number obtained by the consensus-based method (solid lines). The MAP
of the fusion center (the dashed line).

are linearly independent from the previously received signals. The agents

use the newly received linearly independent signals to modify their signals

and subsequently they broadcast them to their neighbors. We demonstrate

the performance of the method with computer simulations and compare it

with the performance of a consensus-based method.
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Figure 4.11: A histogram of errors of the proposed method from 500 trials.
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Figure 4.12: A histogram of errors of 100 agents from 500 trials (θ = 0.76).
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Figure 4.13: A histogram of errors of 1000 agents from 1000 trials (θ =
0.76).
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Figure 4.14: A histogram of errors of 1000 agents from 1000 trials (θ =
0.32).
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Chapter 5

Conclusions and Future Works

In this dissertation, we addressed three problems of backscatter-

based tag-to-tag (BBTT) communication systems. First, we investigated

a unique phase cancellation problem that occurs in BBTT systems. These

are systems where two or more radio-less devices (tags) communicate

with each other purely by reflecting (backscattering) an external signal

(whether ambient or intentionally generated). A transmitting tag

modulates baseband information onto the reflected signal using backscatter

modulation. At the receiving tag, the backscattered signal is superimposed

to the external excitation and the resulting signal is demodulated using

envelope detection techniques. The relative phase difference between the

backscatter signal and the external excitation signal at the receiving tag

has a large impact on the envelope of the resulting signal. This often

causes a complete cancellation of the baseband information contained in

the envelope, and it results in a loss of communication between the two

tags. This problem is ubiquitous in all BBTT systems and greatly impacts

the reliability, robustness and communication range of such systems. We
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theoretically analyzed and experimentally demonstrated this problem for

devices that use both ASK and PSK backscattering. We then presented

a solution to the problem based on the design of a new backscatter

modulator for tags that enables multi-phase backscattering. We also

proposed a new combination method that can further enhance the detection

performance for BBTT systems. We examined the performance of the

proposed techniques through theoretical analysis, computer simulations,

and lab experiments.

For BBTT systems, the transmission collision between tags cannot be

fully avoided under its current limitations. We proposed two anti-collision

protocols based on existing protocols. We modified the CSMA/CA protocol

and modeled it by using Markov chains in a complete network and framed

the slotted Aloha protocol in both complete and linear networks. These

models were used to obtain the best parameters for the protocols. We

then compared the performances between these two protocols in complete

networks. We measured the performances by the average transmission

time from a sink node to a destination node. For the general networks,

we tried different combinations of parameters to get the best set for each

protocol and compared them using simulations. The results showed that

the modified CSMA/CA performs better than the FSA protocol when the

network is very crowded, but the FSA is better in more general cases.

We also addressed problems of distributed learning in networks of

cooperative agents. First, we discussed two consensus-based methods: the

average consensus, the gossip-based averaging methods, and a sequential

learning method. Then, we presented a Bayesian learning method in

a network of agents, where the agents aim at estimating the posterior
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distribution of a probability in a Bernoulli model. Each agent knows

the structure of the network and stores the received signals from their

neighbors only if they are linearly independent from previously received

signals. The agents use the newly received linearly independent signals

to modify their signals and subsequently they broadcast them to their

neighbors. We also prove that each agent can eventually reach the same

information, and can obtain the global posterior of a fusion center using this

information. We applied this method to Bernoulli models in two scenarios.

In the first one, we omitted the observation errors and assumed that each

agent has the same number of observations and the same prior. In the

second one, we considered a model with observation errors. In this setting,

because the local and global posteriors are complicated, we approximated

the local posteriors by the moment matching method. For the addressed

problem, this method is much easier and quicker than methods based on

variational inference that use the Kullback-Leibler divergence. Finally, we

demonstrated the performance of the method with computer simulations

and compared it with the performance of the consensus-based method.

There are many directions for future work. For the phase cancellation

problem in Chapter 2, one area of work is to design a protocol that will

allow the tags to choose the best phase during a handshaking period. One

can also use delay circuits to store the first signal and combine in various

ways with signals received subsequently. With this approach we expect

to increase the communication ranges between the tags. To that end, we

did some simulations and experiments using the ambient signals instead of

CW signals. It is important to point out that systems that exploit ambient

signals also suffer from phase cancellation problem.
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For protocols in BBTT systems, one may use more complicated

schemes to reduce the unnecessary transmissions, such as limiting the

transmission times of each tag. These schemes are much more difficult

to analyze, but they may bring better performance. They are certainly

worthy of further investigation.

In distributed Bayesian learning, it would be interesting to study

different models using the proposed method. They include a model where

the agents receive observations in each iteration and the unknown variable

of interest, θ, is time varying. We believe that the upper bound of

convergence can be made stricter. In [5], the authors conjecture that this

bound is O(n) iterations. We believe that the topology is more important

than the number of agents in the network, i.e., that it is a function of a

function of d, the diameter of a network.

119



Bibliography

[1] D. Giusto, A. Lera, G. Morabito, and L. Atzori, The Internet of

Things. Springer, 2010.

[2] L. Atzori, A. Iera, and G. Morabito, “The internet of things: A

survey,” Computer networks, vol. 54, no. 15, pp. 2787–2805, 2010.

[3] D. Miorandi, S. Sicari, F. De Pellegrini, and I. Chlamtac, “Internet

of things: Vision, applications and research challenges,” Ad Hoc

Networks, vol. 10, no. 7, pp. 1497–1516, 2012.

[4] D. M. Dobkin, The RF in RFID: UHF RFID in Practice. Newnes,

2012.

[5] E. Mossel and O. Tamuz, “Efficient Bayesian learning in social

networks with Gaussian estimators,” arXiv preprint arXiv:1002.0747,

2010.

[6] P. V. Nikitin, S. Ramamurthy, R. Martinez, and K. Rao, “Passive tag-

to-tag communication,” in RFID (RFID), 2012 IEEE International

Conference on, pp. 177–184, IEEE, 2012.

120



[7] G. Marrocco and S. Caizzone, “Electromagnetic models for passive

tag-to-tag communications,” Antennas and Propagation, IEEE

Transactions on, vol. 60, no. 11, pp. 5381–5389, 2012.

[8] A. Athalye, V. Savic, M. Bolic, and P. M. Djuric, “Novel semi-passive

rfid system for indoor localization,” Sensors Journal, IEEE, vol. 13,

no. 2, pp. 528–537, 2013.

[9] V. Liu, A. Parks, V. Talla, S. Gollakota, D. Wetherall, and J. R. Smith,

“Ambient backscatter: wireless communication out of thin air,” in

ACM SIGCOMM Computer Communication Review, vol. 43, pp. 39–

50, ACM, 2013.

[10] B. Kellogg, A. Parks, S. Gollakota, J. R. Smith, and D. Wetherall,

“Wi-fi backscatter: Internet connectivity for rf-powered devices,” in

Proceedings of the 2014 ACM conference on SIGCOMM, pp. 607–618,

ACM, 2014.

[11] K. Kurokawa, “Power waves and the scattering matrix,” Microwave

Theory and Techniques, IEEE Transactions on, vol. 13, no. 2, pp. 194–

202, 1965.

[12] P. V. Nikitin, K. S. Rao, S. F. Lam, V. Pillai, R. Martinez,

and H. Heinrich, “Power reflection coefficient analysis for complex

impedances in rfid tag design,” IEEE Transactions on Microwave

Theory and Techniques, vol. 53, no. 9, pp. 2721–2725, 2005.

[13] J. Wang and M. Bolic, “Exploiting dual-antenna diversity for phase

cancellation in augmented rfid system,” in Smart Communications in

121



Network Technologies (SaCoNeT), 2014 International Conference on,

pp. 1–6, IEEE, 2014.

[14] A. Athalve and P. M. Djuric, “Rfid system and method for localizing

and tracking a moving object with an rfid tag,” Oct. 12 2010. US

Patent 7,812,719.

[15] S. J. Thomas, E. Wheeler, J. Teizer, and M. S. Reynolds, “Quadrature

amplitude modulated backscatter in passive and semipassive uhf rfid

systems,” Microwave Theory and Techniques, IEEE Transactions on,

vol. 60, no. 4, pp. 1175–1182, 2012.

[16] C. Boyer and S. Roy, “Coded qam backscatter modulation for rfid,”

Communications, IEEE Transactions on, vol. 60, no. 7, pp. 1925–1934,

2012.

[17] S. Thomas and M. S. Reynolds, “Qam backscatter for passive uhf rfid

tags,” in RFID, 2010 IEEE International Conference on, pp. 210–214,

IEEE, 2010.

[18] “Designing detectors for rf/id tags, application note 1089.”

http://www.spelektroniikka.fi/kuvat/schot14.pdf.

[19] A. Athalye, V. Savic, M. Bolic, and P. Djuric, “Novel semi-passive

rfid system for indoor localization,” Sensors Journal, IEEE, vol. 13,

pp. 528–537, Feb 2013.

[20] G. Bianchi, “Performance analysis of the ieee 802.11 distributed

coordination function,” Selected Areas in Communications, IEEE

Journal on, vol. 18, no. 3, pp. 535–547, 2000.

122



[21] E. Ziouva and T. Antonakopoulos, “Csma/ca performance under

high traffic conditions: throughput and delay analysis,” Computer

communications, vol. 25, no. 3, pp. 313–321, 2002.

[22] L. S. Committee et al., “Part 15.4: wireless medium access control

(mac) and physical layer (phy) specifications for low-rate wireless

personal area networks (lr-wpans),” IEEE Computer Society, 2003.

[23] J. He, Z. Tang, H.-H. Chen, and S. Wang, “An accurate markov

model for slotted csma/ca algorithm in ieee 802.15. 4 networks,”

Communications Letters, IEEE, vol. 12, no. 6, pp. 420–422, 2008.

[24] S. Pollin, M. Ergen, S. C. Ergen, B. Bougard, I. Moerman, A. Bahai,

P. Varaiya, and F. Catthoor, “Performance analysis of slotted carrier

sense ieee 802.15. 4 medium access layer,” Wireless Communications,

IEEE Transactions on, vol. 7, no. 9, pp. 3359–3371, 2008.

[25] F. Shu and T. Sakurai, “A new analytical model for the ieee 802.15. 4

csma-ca protocol,” Computer networks, vol. 55, no. 11, pp. 2576–2591,

2011.

[26] M. Bolic, D. Simplot-Ryl, and I. Stojmenovic, RFID systems: research

trends and challenges. John Wiley & Sons, 2010.

[27] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and

cooperation in networked multi-agent systems,” Proceedings of the

IEEE, vol. 95, no. 1, pp. 215–233, 2007.

[28] D. Gale and S. Kariv, “Bayesian learning in social networks,” Games

and Economic Behavior, vol. 45, no. 2, pp. 329–346, 2003.

123



[29] D. Acemoglu, M. A. Dahleh, I. Lobel, and A. Ozdaglar, “Bayesian

learning in social networks,” The Review of Economic Studies, vol. 78,

no. 4, pp. 1201–1236, 2011.
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[38] Y. Wang and P. M. Djurić, “A gossip method for optimal consensus

on a binary state from binary actions,” 2013.

[39] H. Wang, X. Liao, and T. Huang, “Average consensus in sensor

networks via broadcast multi-gossip algorithms,” Neurocomputing,

vol. 117, pp. 150–160, 2013.

[40] S. Wu and M. G. Rabbat, “Broadcast gossip algorithms for

consensus on strongly connected digraphs,” Signal Processing, IEEE

Transactions on, vol. 61, no. 16, pp. 3959–3971, 2013.

[41] R. Saber and R. Murray, “Consensus protocols for networks of

dynamic agents,” in American Control Conference, 2003. Proceedings

of the 2003, vol. 2, pp. 951–956, IEEE, 2003.

[42] M. Fiedler, “Algebraic connectivity of graphs,” Czechoslovak

Mathematical Journal, vol. 23, no. 2, pp. 298–305, 1973.

[43] L. Xiao, S. Boyd, and S. Lall, “A scheme for robust distributed sensor

fusion based on average consensus,” in Information Processing in

Sensor Networks, 2005. IPSN 2005. Fourth International Symposium

on, pp. 63–70, IEEE, 2005.

[44] R. Olfati-Saber, “Flocking for multi-agent dynamic systems:

Algorithms and theory,” Automatic Control, IEEE Transactions on,

vol. 51, no. 3, pp. 401–420, 2006.

[45] I. D. Schizas and G. B. Giannakis, “Consensus-based distributed

estimation of random signals with wireless sensor networks,” in

Signals, Systems and Computers, 2006. ACSSC’06. Fortieth Asilomar

Conference on, pp. 530–534, IEEE, 2006.

125



[46] U. A. Khan, S. Kar, and J. M. Moura, “Distributed average consensus:

Beyond the realm of linearity,” in Signals, Systems and Computers,

2009 Conference Record of the Forty-Third Asilomar Conference on,

pp. 1337–1342, IEEE, 2009.

[47] D. Kempe, A. Dobra, and J. Gehrke, “Gossip-based computation of

aggregate information,” in Foundations of Computer Science, 2003.

Proceedings. 44th Annual IEEE Symposium on, pp. 482–491, IEEE,

2003.

[48] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomized gossip

algorithms,” Information Theory, IEEE Transactions on, vol. 52,

no. 6, pp. 2508–2530, 2006.

[49] R. Karp, C. Schindelhauer, S. Shenker, and B. Vocking, “Randomized

rumor spreading,” in Foundations of Computer Science, 2000.

Proceedings. 41st Annual Symposium on, pp. 565–574, IEEE, 2000.

[50] V. Krishnamurthy and A. Aryan, “Quickest detection of market shocks

in agent based models of the order book,” in Decision and Control

(CDC), 2012 IEEE 51st Annual Conference on, pp. 1480–1485, IEEE,

2012.

[51] V. Krishnamurthy, “Quickest detection pomdps with social learning:

Interaction of local and global decision makers,” Information Theory,

IEEE Transactions on, vol. 58, no. 8, pp. 5563–5587, 2012.

[52] A. V. Banerjee, “A simple model of herd behavior,” The Quarterly

Journal of Economics, vol. 107, no. 3, pp. 797–817, 1992.

126



[53] S. Bikhchandani, D. Hirshleifer, and I. Welch, “A theory of fads,

fashion, custom, and cultural change as informational cascades,”

Journal of political Economy, pp. 992–1026, 1992.

[54] S. Kullback and R. A. Leibler, “On information and sufficiency,” The

Annals of Mathematical Statistics, vol. 22, no. 1, pp. 79–86, 1951.

[55] A. J. Bean and A. C. Singer, “Cooperative estimation in heterogeneous

populations,” in Proceedings of the Conference on Signals, Systems

and Computers (ASILOMAR), pp. 696–699, 2011.

127


