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Abstract of the Thesis 
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by 
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in 

Electrical Engineering 

Stony Brook University 

2014 

 

Modern reconfigurable logic devices are often multi-core and multi-processor architectures with 

complex intra-processor logic. To fully utilize the raw power of these devices is an arduous task; 

mapping design data-flows to such devices in a way that will maximize their performance 

involves careful consideration of a number of parameters, and is the subject of a good amount of 

research. This thesis presents a novel design, which uses the technique of buffer-based dataflow, 

a representation technique for realizing data-centric applications in reconfigurable platforms, to 

map complex logic systems with multiple processing elements to a reconfigurable target 

architecture having multi-core processors or multiple processors. The use of multi-core 

processors requires careful synchronization between the processing elements and we propose 

employing the buffer-based dataflow technique in conjunction with a controller to map the 

processing logic onto the reconfigurable platform and deal with the synchronization issues. The 

logic is implemented using a series of buffers and interconnections, and these are controlled by a 
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top-level global controller, responsible for their configuration and reconfiguration as well as path 

selection to enable dynamic switching between designs. The dynamic reconfigurability gained 

from our approach allows us to map multiple processing elements onto a single core and switch 

between them during run-time while maximizing performance. The proposed design is evaluated 

with SystemC and Xilinx ISE. 
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      Chapter 1 

Introduction 

 

In many application-specific systems, one of the most important attributes is the rapid 

reconfigurability that allows a system to be adaptive to its changing environment. Typically, 

such capability is best supported by programmable processors such as digital signal processors 

(DSPs), amongst others. Most common DSP applications such as coding, filtering, and image 

processing require floating-point operations. In order to realize floating-point operations, 

processors are used to expedite the design cycle. In addition, processors are useful for realizing 

multiple applications in a time-shared manner. Thus, reconfigurable platforms such as Xilinx 

field-programmable gate arrays (FPGAs) include processors [1]. In the case where a complex 

system is represented as a dataflow graph having a large number of nodes (processing blocks), 

the processing blocks should be efficiently mapped to multi-core processor architecture to 

minimize hardware resources. 

When a dataflow is synthesized in a target platform having multi-core processors and 

hardware logics, it becomes difficult to synchronize data transfers between processing blocks 

mapped to different processors (alternatively, one is mapped to a processor and the other is 

implemented as a hardware) because the execution time of processors varies due to the dynamic 

behavior of software such as interrupt handling and context switching. Thus, the execution times 

of processing blocks are estimated for mapping [2]–[5]. Methods for mapping on multi-core 

processors, which also use estimated execution times, include [6]–[8]. However, in the case 

where actual execution times are greater than the estimated times, the mapping based on the 
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estimated times may produce wrong results. To prevent this problem, Jung et al. [9] proposed a 

handshaking scheme between a centralized controller and sequential logics having variable 

execution time. However, the handshaking scheme has a limited capability to support the data 

transfers between processors (or between a processor and a hardware) because the data transfers 

on processors are also the programs having variable execution times [10].  

Thus, while extensive research has been targeted towards sophisticated modeling 

techniques that enable us to map complex designs onto hardware, it often seems inadequate 

when it comes to mapping truly complicated programs onto real hardware: non trivial design 

issues such as flexibility of mapping methodology, complexity of controlling architecture and 

ease of dynamic reconfiguration remain unsolved. Moreover, such techniques focus primarily on 

functional modeling and place less emphasis on controller design, which often scales 

exponentially in complexity with a linear increase in the complexity of the design. 

To deal with these issues, we propose a design methodology based on buffer-based 

dataflow (BBDF) [11], [12], and which is globally synchronized by a controller that handles the 

data transfers between multiple processing elements. BBDF is a transparent representation that 

bridges the gap between the algorithmic description of a design and its structural implementation 

with a buffer-centric perspective, as opposed to the conventional processing element-centric 

perspective. The proposed methodology is built around the principle of representing the 

algorithm as a BBDF and by using a powerful controller that can handle all the buffer parameters 

and interconnections, thereby making reconfiguration a straightforward process. The controller 

design of key importance here: because of the nature of logic architectures, the designer does not 

have a direct influence on the underlying platform, but rather, the architecture and the 

algorithmic characteristics of the controller define the achievable performance. Furthermore, 
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systems often contain a mix of both software and hardware-processing elements, not all of which 

may run on similar clock frequencies. Realizing certain elements as hardware while others as 

software and finally, some as processors, can lead to issues such as variable latencies, which will 

degrade performance. Our proposed controller design is robust and is deftly able to handle such 

issues, while still enabling dynamic design reconfiguration. Additionally, because the design 

complexity depends on the number of buffers and interconnections, as well as the temporal and 

structural characteristics of the design, we can make our design scalable by incorporating all of 

these parameters into our global controller. Thus, the main advantages of our proposed 

methodology are i) Feasible Dynamic Reconfiguration, ii) Design Scalability, and iii) Support 

for multi-frequency elements in the design. 

BBDF inserts buffers between processing blocks in a given dataflow. A global controller 

globally synchronizes the buffer-based dataflow and every data transfer is done through the 

buffers between processing blocks. Due to the buffers, a pair of sending and receiving processors 

does not have to access the same bus simultaneously. Furthermore, the timing mismatch of data 

transfers due to the different bus speeds between two processors (or between a processor and a 

hardware) is solved with the buffer controller parameters in the level of a dataflow. By utilizing 

the data transfer characteristics of the buffer-based dataflow, we propose a mapping 

methodology for a target system having multi-core processors and programmable logics (or 

hardware). Since our mapping methodology does not include a hardware-software partitioning 

technique [13], each processing block is predetermined in such a way that it is either mapped to a 

processor or realized as hardware logic. 

This thesis is organized as follows: Chapter 1 offers an overview on the basics of 

reconfigurable architecture, buffer-based dataflow, as well as the construction of such a 
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dataflow. Chapter 2 characterizes our design – it discusses the support for iteration period control 

and explains our mapping methodology. Chapter 3 illustrates the structure of the controller in our 

proposed design, its temporal and structural aspects as well.  In Chapter 4 we take a look at the 

resource utilization of our methodology under different mapping conditions. In Chapter 5 we 

detail our experiments with the design, and present our results after mapping two complex 

dataflows to a multi-processor system. Finally, Chapter 6 presents our conclusions and the future 

scope and direction for our research. 

 

1.1 Buffer-Based Dataflow Design Approach Overview 

 

Application-specific systems are usually complex designs with multiple processing 

elements and a number of data paths and sequential elements. In general, all algorithms and 

designs can be represented as dataflows governed by the relation: 

 𝑌 = 𝑃(𝑋) (1.1) 

where an input X and an output Y are finite blocks of data, and P is the representation of the 

processing element (PE). X and Y are sequentially consumed and produced as data blocks, and 

their sizes may be different. Figure 1.1 shows an example of a signal processing application 

represented as such a dataflow with many processing elements. The arrows indicate the direction 

of the data transfers. Each processing elements includes both the functionality as well as the 

storage elements required for proper functioning. Processing elements in the dataflow execute 

the required program or algorithm on a finite set of data in every iteration period. Typical 

dataflows have multiple inputs, outputs, and even feedback elements.  
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Figure 1.1: A signal processing application represented as a dataflow. 
 

Figure 1.2 illustrates the buffer-based dataflow derived from Figure 1.1 by inserting 

buffers. Here, the relationship between processing blocks is isolated by inserting buffers to the 

edges of the dataflow in Figure 1.1. By separating the relationship between processing blocks, 

processing blocks are only able to represent the functionality. The isolation also enhances the 

reconfigurability of the overall system. 

 

 

Figure 1.2: Dataflow of Figure 1.1 obtained by inserting buffers. 

 

In the buffer-based dataflow graph, inserting buffers represents the edges delivering data 

frames from the source to destination. Thus, the size of data frames appearing at the input port of 

a buffer is the same as the size of data frames at the output port of the buffer. Furthermore, while 

a source processing block is writing data to a buffer, the corresponding destination processing 
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block is able to read data from the buffer. The buffers are realized as the dual port memory that 

supports simultaneous writing and reading. As illustrated in Figure 1.2, the buffer between the 

producer processing block f(i) and the consumer processing block f(j) is denoted as BCi,j. The 

primary parameters, which determine the buffer controller structure and overall physical 

realization are represented as logic latency (Li), write offset (nwi,j), read offset (nri,j), block size 

(Mi,j), and delay factor (Di,j)[11]. The write offset represents the difference between reading data 

from the previous buffer and writing data to the current buffer without considering the logic 

latency. The read offset is the offset from the start of writing data to BCi,j to the start of reading 

data from BCi,j when the writing speed of processing block f(i) and the reading speed of 

processing block f(j) are matched. However, if the former is slower than the latter, processing 

block f(j) does not read valid data from BCi,j. For this, the delay factor is used to represent the 

rate mismatch between processing blocks f(i) and f(j). 

 

1.2 Constructing a Buffer-Based Dataflow 

 

A buffer-based dataflow is constructed by using the buffer controller parameter table, 

which is extracted from the operational dependency of a dataflow and the offsets of fan-ins and 

fan-outs of processing blocks. In Table I, ei,j represents the edge from the source f(i) to the 

destination f(j). start_writei,j represents the start time of writing data through ei,j and start_readi,j 

is the start time of reading data through ei,j. Since writing data to ei,j precedes reading data from 

ei,j, start_writei,j < start_readi,j. In Table I, f(1) – f(3) represents the operational dependency 

between the fan-in and fan-out edges of processing blocks. In the operational dependency of f(3), 

start_write3,1 is removed because e3,1 is a feedback loop. If f(1) reads the data generated by f(3) in 
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the current iteration period, the dataflow falls into the deadlock situation because f(1) and f(3) 

keep waiting for the data generated by each other. 

 

Parameter Operational Dependency 

e!"#$%,! 𝑠𝑡𝑎𝑟𝑡_𝑤𝑟𝑖𝑡𝑒!"#$%,! <   𝑠𝑡𝑎𝑟𝑡_𝑟𝑒𝑎𝑑!"#$%,! 

e!,! 𝑠𝑡𝑎𝑟𝑡_𝑤𝑟𝑖𝑡𝑒!,! <   𝑠𝑡𝑎𝑟𝑡_𝑟𝑒𝑎𝑑!,! 

e!,! 𝑠𝑡𝑎𝑟𝑡_𝑤𝑟𝑖𝑡𝑒!,! <   𝑠𝑡𝑎𝑟𝑡_𝑟𝑒𝑎𝑑!,! 

e!,! 𝑠𝑡𝑎𝑟𝑡_𝑤𝑟𝑖𝑡𝑒!,! <   𝑠𝑡𝑎𝑟𝑡_𝑟𝑒𝑎𝑑!,! 

e!,!"#$"# 𝑠𝑡𝑎𝑟𝑡_𝑤𝑟𝑖𝑡𝑒!,!"#$"# <   𝑠𝑡𝑎𝑟𝑡_𝑟𝑒𝑎𝑑!,!"#$"# 

f(1) max 𝑠𝑡𝑎𝑟𝑡_𝑟𝑒𝑎𝑑!"#$%,!, 𝑠𝑡𝑎𝑟𝑡_𝑟𝑒𝑎𝑑!,! +   𝐿! ≤ 𝑠𝑡𝑎𝑟𝑡_𝑤𝑟𝑖𝑡𝑒!,! 

f(2) 𝑠𝑡𝑎𝑟𝑡_𝑟𝑒𝑎𝑑!,! + 𝐿! ≤   𝑠𝑡𝑎𝑟𝑡_𝑤𝑟𝑖𝑡𝑒!,! 

f(3) 𝑠𝑡𝑎𝑟𝑡_𝑟𝑒𝑎𝑑!,! + 𝐿! ≤   𝑠𝑡𝑎𝑟𝑡_𝑤𝑟𝑖𝑡𝑒!,!"#$"# 

 

Table 1.1: Operational Dependency derived from Figure 1.1 

 

In the buffer controller BCi,j, the start signals are realized with the primary parameters 

introduced in Section 1.1 as follows: 

 𝑠𝑡𝑎𝑟𝑡_𝑤𝑟𝑖𝑡𝑒!,! = 𝐿! + 𝑛𝑤!,! + 𝑠𝑡𝑎𝑟𝑡! (1.2) 

 𝑠𝑡𝑎𝑟𝑡_𝑟𝑒𝑎𝑑!,! =   𝑠𝑡𝑎𝑟𝑡_𝑤𝑟𝑖𝑡𝑒!,! +   max  (𝑛𝑟!,! ,𝐷!,!) (1.3) 

 𝑠𝑡𝑜𝑝_𝑤𝑟𝑖𝑡𝑒!,! =   𝑠𝑡𝑎𝑟𝑡_𝑤𝑟𝑖𝑡𝑒!,! +𝑀!,! (1.4) 

 𝑠𝑡𝑜𝑝_𝑟𝑒𝑎𝑑!,! = 𝑠𝑡𝑎𝑟𝑡_𝑟𝑒𝑎𝑑!,! +   𝑀!,! (1.5) 

In (1.2), starti is the time value in which f(i) begins reading data from the previous buffer 

controller through its fan-in port. Equation (1.3) reflects the rate mismatch between the source 

processing block and the destination processing block. In one iteration period, the data transfer 
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through each buffer controller is done once. Thus, once data has been written to (or read from) 

the buffer controller BCi,j, the data is continuously being written to (or read from) BCi,j until the 

size of transferred data reaches Mi,j. Equations (1.4) and (1.5) represent the end time of writing 

and reading data to/from the buffer controller, respectively. The buffer memory size of BCi,j, 

MEM(BCi,j) is given by 

 𝑀𝐸𝑀 𝐵𝐶!,! =   min  {𝑀!,! , 𝑠𝑡𝑎𝑟𝑡_𝑟𝑒𝑎𝑑!,! −   𝑠𝑡𝑎𝑟𝑡_𝑤𝑟𝑖𝑡𝑒!,! } (1.6) 

In (1.6), when the reading of BCi,j starts before the end of writing data to BCi,j, MEM(BCi,j) is 

determined by the difference between start_readi,j and start_writei,j. In this  case, while f(i) is 

writing data to BCi,j, f(j) can read data from BCi,j. However, if the reading of BCi,j starts when the 

writing BCi,j is completed, MEM(BCi,j) is Mi,j. 

  



	  

 
	  

9	  

Chapter 2 

Mapping Characterization 

 

When a design dataflow is synthesized in a target platform having multi-core processors 

and programmable logics (such as the newer generation of FPGA devices), it is difficult to 

synchronize data transfers between processors, or between hardware and processors, because the 

programs running on a processor have variable execution times. 

In order to synchronize the data transfers at the level of a dataflow graph, we use the 

BBDF approach for mapping processor blocks to processors. Our design creates a mapped 

‘partition’ (defined completely in later sections) from the estimated times for functional 

executions and data transfers, and the resource constraints for the target platform. Due to the 

synchronization issues discussed above, our mapping algorithm tries to map consecutive 

processing blocks to the same processor. The data transfers of processing blocks mapped to 

processors are realized as target-dependent programs. Figure 2.1 shows the overall flow of our 

design methodology. 
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Figure 2.1: The data flow for our proposed methodology. 

As shown in the above figure, the mapped partition uses the matching algorithm based on 

the timing information of individual processing elements. When it is finally mapped onto the 

target platform, synchronization of data transfers is realized through a global controller (and 

buffer controllers) as shown in Figure 2.2. It shows 𝒇(𝒊) mapped as a processor, and 𝒇(𝒋) 

implemented as hardware. The data transfer between the two elements is handled by 𝐁𝐂𝐢,𝐣. In 

order to synchronize data transfers between them, the global controller generates 𝐖_𝐁𝐂𝐢,𝐣 and 

𝐑_𝐁𝐂𝐢,𝐣; the former being the signal that enables 𝒇(𝒊) to write data to 𝐁𝐂𝐢,𝐣, whereas the latter 

initiates 𝒇(𝒋) to read data from 𝐁𝐂𝐢,𝐣. 
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Figure 2.2: Synchronization of data transfers through global and buffer controllers. 

 

2.1 Timing Information for Processing Elements 

 

As can be seen in Figure 2.1, correct timing information is crucial to the proper 

functioning of the design. To obtain this timing information from any design, we map individual 

processing elements as hardware logic. The reason we choose to realize all elements as hardware 

logics is because we assume that no suitably efficient algorithm exists to map all elements to 

processors (which is indeed the focus of this design). Figure 2.3 shows an example BBDF and 

Figure 2.4 shows it mapped to a target platform connected by reconfigurable interconnects.  
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Figure 2.3: Example BBDF to obtain timing information 

 

 

Figure 2.4: Design of Figure 2.3 mapped to a platform with interconnects and buffers with 

processing elements realized as hardware logic. 
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 Using the previously derived relationships between the start signals (equations 1.2 to 

1.5), we now try to approximate the read and write times for each buffer, and these are illustrated 

in Table 2.1. These times are based on the assumption that the execution time of each processing 

element is 50 cycles. The buffer controller requires this information to make sure that read and 

write operations are performed correctly. In the dataflow of Figure 2.3, data coming out of 

buffers 5 and 6 should arrive at processing element 6 at the same time as per the correct program 

flow. To make sure that processing element 6 will process the correct data frame, the parameters 

𝒏𝒘𝟏,𝟒,𝟓,𝟔 and 𝒏𝒓𝟏,𝟒,𝟓,𝟔 are calculated to get the same read times for buffers 5 and 6. The same 

technique is used to calculate the other read and write times. The principle used is that when 

there are several fan-ins to a processing element, the effective data coming out of those fan-ins 

should arrive at the processing element at the same time. 

BC L nw nr D M start_time start_write start_read 

BC1 10 1 1 0 32 10 21 22 

BC2 10 10 1 0 32 72 92 93 

BC3 15 12 1 0 32 143 170 171 

BC4 15 5 1 0 32 10 30 31 

BC5 30 6 1 0 32 72 108 109 

BC6 20 7 1 0 32 81 108 109 

BC7 10 1 1 0 32 159 170 171 

 

Table 2.1: Buffer Controller Parameters for platform in Figure 2.4. 
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2.2   Multi-rate Support and Iteration Control 

 

While most designs usually have processing elements operating at the same frequencies 

(in which case, the start and stop signals are governed by the relations given in equations 1.2 to 

1.5), this is not always the case as required by the designer. Figure 2.5 shows a situation where 

the write operation to a buffer by PEi and the read operation from the same buffer by PEj occurs 

at different clock rates. In order to support such situations, the delay factor D!,! is used to 

synchronize the different elements within the buffer controller. We define 𝑓! and 𝑓! as the clock 

rates (in Hertz) of PEi and PEj respectively. When 𝑓! is greater than 𝑓!   the slower process does 

not have to wait as long as there is at least one block of valid data in the buffer. In this case, there 

is no overflow, since the next data block is not generated before the current data block is 

completely used (read, in this case), and therefore the delay factor is not needed. However, if 𝑓! 

is less than 𝑓! the faster process has to wait in order to prevent data underflow, until enough data 

is written to the buffer. In this case, the following equation gives the minimum delay: 

 
𝐷!,! =

𝑀 − 𝑛𝑟!,!
𝑓!

−   
𝑀 − 𝑛𝑟!,! − 1

𝑓!
×  𝑓!  

(2.1) 

The control signals to the buffer, start_write and start_read should be synchronized according to 

the clock rates of individual processing elements, since the control signals are activated by the 

execution controllers using the global clock rate: we define the global clock rate 𝒇𝑮 (in Hertz) as 

the rate of the fastest clock rate in the design that can be used to prevent missing any control 

signal. Then, start_write and start_read are obtained by multiplying 𝒇𝑮/𝒇𝒊 to the writing 

parameters (𝑳𝒊 and 𝒏𝒘𝒊,𝒋) and 𝒇𝑮/𝒇𝒋 to the reading parameters (𝑫𝒋 and 𝒏𝒓𝒊,𝒋) respectively. 
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Figure 2.5: An example of a BBDF and its buffer activity when different clock rates are specified 

for different processing elements. 

 

Thus, equations 1.2 and 1.3 are modified as: 

 
𝑠𝑡𝑎𝑟𝑡_𝑤𝑟𝑖𝑡𝑒!,! = 𝐿! + 𝑛𝑤!,! ×

𝑓!
𝑓!

 
(2.2) 

 
𝑠𝑡𝑎𝑟𝑡_𝑟𝑒𝑎𝑑!,! = 𝑠𝑡𝑎𝑟𝑡_𝑤𝑟𝑖𝑡𝑒!,! + 𝐷! + 𝑛𝑟!,! ×

𝑓!
𝑓!

 
(2.3) 

The key benefits of enabling straightforward multi-rate support is that we can assign an 

arbitrary clock to any processing element while still satisfying the iteration period requirements 

of the design. When high-speed processing is necessary for a particular processing element, we 
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set it to operate at a higher frequency in a critical section of the design. Similarly, all elements 

are by default assigned the lowest clock-speed that satisfies the iteration period requirements of 

the design. This makes our architecture power aware and minimizes the power footprint of our 

methodology. Figure 2.6 illustrates two possible cases of iteration periods given a BBDF.  

 

Figure 2.6: Illustration of iteration period adjustment by start signal manipulation. 

 

As shown in the figure, many iteration periods are made possible by simply varying the timing of 

the start control signal, and the buffer controller handles the other control signals. Individual 
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buffer speeds may vary as long as the fan-in constraints, which are enforced such that the 

original execution characteristics are not modified, are satisfied. 

 

Figure 2.7: Buffer activities at different speeds, illustrating that the storage requirements depend 

on the signal timings. 

 

 Figure 2.7 shows read and write operations being performed at different speeds. Even 

though the data block size 𝑀!,! may be too large for  BC!,!, the actual storage required by the 

implementation is not. For each buffer, the start_write and start_read signals are separated by 

𝑡!""#$%. The storage requirement for each buffer is thus given by: 

 𝑠𝑡𝑜𝑟𝑎𝑔𝑒_𝑠𝑖𝑧𝑒! =
𝑠𝑡𝑎𝑟𝑡_𝑟𝑒𝑎𝑑! − 𝑠𝑡𝑎𝑟𝑡_𝑤𝑟𝑖𝑡𝑒!

𝑇!"
 (2.4) 

where 𝑇!" is the time required to successfully complete a write operation. Hence, the total 

amount of data storage required by the program depends on the control signals generated by the 
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buffer controller. In the event that 𝑡!""#$% is larger than the entire buffer activity duration, the 

storage requirement will be limited by the block size 𝑀!,!. 

 

2.3   Mapping onto Target Platform 

 

 

Figure 2.8: Dataflow of Figure 2.3 mapped to a multi-processor system (no elements realized as 

hardware logic) 

 

After obtaining timing information from the BBDF, and satisfying the constraints of the 

given iteration period, our methodology will attempt to map the design to the target platform. 

Figure 2.8 shows such a mapping. The division of processing elements is based on the principles 
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previously derived. The processors communicate via a shared bidirectional bus, which in turn is 

connected to the interconnect structure which enables data transfer to and from the buffers. This 

mapping method can encounter several problems in real systems. In the case that processing 

elements in one processor are on several different sequential data paths and rely on the outputs of 

the previous processing elements, the overall execution time will increase since certain 

processing elements will have to wait longer. 

 

BC L nw nr D M start_time start_write start_read 

BC1 10 1 1 0 32 10 21 22 

BC3 15 1 1 0 32 127 143 144 

BC4 15 1 1 0 32 53 69 70 

BC5 30 1 1 0 32 72 103 104 

BC7 10 1 1 0 32 175 186 187 

 

Table 2.2: New Buffer Controller Parameters for BBDF in Figure 2.4 (now mapped as in Figure 

2.8). 

Based on the assumption that the execution time of each processing element is 50 cycles, 

the execution time of the mapped processor is the same or combination of two processing 

elements. The buffer controller parameters are then changed as shown in Table 2.2. The total 

iteration time increases as the read/write operations performed through the bus take longer. The 

following equations provide the new relationships between the different signals taking into 

account the longer time; as is evident, the data from buffers 3 and 7 arrives at different times and 

this would lead to wrong results: 

 𝑠𝑡𝑎𝑟𝑡_𝑤𝑟𝑖𝑡𝑒!,! ≥ 𝑠𝑡𝑎𝑟𝑡_𝑤𝑟𝑖𝑡𝑒!,! +𝑀!,! = 𝑠𝑡𝑜𝑝_𝑤𝑟𝑖𝑡𝑒!,! (2.5) 
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 𝑠𝑡𝑎𝑟𝑡_𝑤𝑟𝑖𝑡𝑒!,! ≥ 𝑠𝑡𝑎𝑟𝑡_𝑤𝑟𝑖𝑡𝑒!,! +𝑀!,! = 𝑠𝑡𝑜𝑝_𝑤𝑟𝑖𝑡𝑒!,! (2.6) 

 𝑠𝑡𝑎𝑟𝑡_𝑟𝑒𝑎𝑑!,! ≥ 𝑠𝑡𝑎𝑟𝑡_𝑟𝑒𝑎𝑑!,! +𝑀!,! = 𝑠𝑡𝑜𝑝_𝑟𝑒𝑎𝑑!,! (2.7) 

 𝑠𝑡𝑎𝑟𝑡_𝑟𝑒𝑎𝑑!,! ≥ 𝑠𝑡𝑎𝑟𝑡_𝑟𝑒𝑎𝑑!,! +𝑀!,! = 𝑠𝑡𝑜𝑝_𝑟𝑒𝑎𝑑!,! (2.8) 

 

Figure 2.9 demonstrates the signal timings of the dataflow mapped to the multi-processor 

platform. These signal timings depend upon the operations as well as the handshake signals 

required by the processors. Since all the processors are using a common bus, iteration time is 

longer as each processor must wait to get control over the bus. This iteration time can be made 

smaller by increasing the processor speed, as all the handshake signals will then arrive faster. 

The number of buffers, and thus the overall complexity, in the mapped platform with processors 

can be reduced by applying the concept of ‘buffer sharing’ (explained in later sections). This 

requires the use of additional signals, and is handled by the execution and structural controllers 

during run-time. Our platform uses this technique heavily and our final results are based on its 

use. 

 

Figure 2.9: Timing of read and write signals when processing elements are mapped to processors 

as per Figure 2.8. 
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Chapter 3 

Controller Design 

 

3.1     Overview  

As explained previously, the controller is one of the most crucial parts of our design. In 

order to ensure that the program produces correct outputs, it is necessary to use correctly timed 

control signals as well as synchronizing data transfers between elements. The controller handles 

all of these issues working in conjunction with the local buffer controllers for each buffer. 

 The global controller that we have defined in the previous sections is actually a 

combination of two separate controllers – the structural controller and the execution controller. 

The reasons for splitting functionality between two controllers will be made clear in the coming 

text.  In this section, we first analyze the temporal aspects of our controller as we analyze the 

execution controller. We then look at the structural controller, responsible for handling the 

structural aspects of the program. 

3.2    Temporal Aspects 

 Figure 3.1 shows the structure of the execution controller that handles the execution 

signals for the design, incorporating within itself the functionality to handle different iteration 

periods. The execution controller generates bit patterns for controlling the buffer controllers. 

Every two bits of information describe the activation signals for the write and read operations 

respectively. For example, the pattern "10" would start the write operation but not the read 
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operation for a particular buffer controller. Similarly, a sequence such as "01010000" would only 

start the read operations for the first two buffers, while the other two buffers are left inactivated. 

The bit patterns are thus stored as programs in the program memory as a large sequence of 1s 

and 0s. Thus, modifying the program memory contents easily controls the execution timing of 

the data flow. As an example, if we want to delay the iteration period of the algorithm by a 

hundred cycles, we simply insert one hundred 0s into the program content.  

 

 
Figure 3.1: The execution controller along with its connections and signals. 

  

The execution controller relies on accurate timing information from the mapping 

algorithm. This information is directly dependent on the execution times of individual processing 

elements. Thus, depending on whether the execution times are fixed or not (which in turn 

depends on whether the elements are realized as hardware logics or mapped onto processors), we 
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will obtain different timing information. Here, we consider each case separately and observe its 

impact on controller design. 

 

3.2.1    For Fixed Execution Times 

 

Since our design is to allow different iteration periods, we must consider the effect of this 

iteration period of the temporal aspects of the controller. Figure 3.2 shows the timing diagram of 

an example BBDF with different iteration period requirements and non-overlapping buffer 

activity. For these timing diagrams, their corresponding program content structure is shown 

below. Extracting any portion of the timing can generate the execution program, as long as the 

length of the interval is equal to the iteration period. Since this example has only two buffers, the 

width of the program content is four. In addition, the number of non-zero rows is at most four, 

since there are four instances where the start signals are generated. If two or more buffer start 

times are identical, the two rows may contain multiple 1s. 
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Figure 3.2: Timing diagram and program structure for a BBDF with different iteration periods 

and non-overlapping buffer execution. 

Assuming the controller frequency as shown in the figure, the total length of the program is: 

 𝑁!"# = 𝑇!"#×  𝑓!"#$%"&&'% (3.1) 
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where 𝑇!"#is the iteration period in the absolute time scale and 𝑓!"#$%"&&'% is the frequency of the 

controller that generates the control signals (the start and stop signals in the figure). If the 

frequency is high, the program size will proportionately increase. Note that the start signal 

generated by the controller is before the start of the actual buffer activity. 

 Figure 3.2 illustrates the buffer activity timing and its corresponding program structure 

where buffer activities overlap across iterations. In this case, the program is generated by 

selecting the interval where the buffer activities are non-overlapping (this period is indicated 

with a shaded box). 

 As discussed previously, if the controller clock frequency is high and the iteration period 

is long, the control program size can be significantly large. In order to reduce this program size 

(and our design does aim for minimizing it), we propose to select the controller frequency 

𝑓!"#$%"&&'%, which satisfies the following conditions for all start_read and start_write times with 

respect to the beginning of the iteration period, as 

 
𝑠𝑡𝑎𝑟𝑡_𝑟𝑒𝑎𝑑! − 𝑇!" <   

𝑘!"
𝑓!"#$%"&&'%

< 𝑠𝑡𝑎𝑟𝑡_𝑟𝑒𝑎𝑑! 
(3.2) 

where 𝑇!" is the time required for the buffer read operation, and 𝑘!" is some integer constant. 

Similarly, for the start_write times, we have 

 
𝑠𝑡𝑎𝑟𝑡_𝑤𝑟𝑖𝑡𝑒! − 𝑇!" <   

𝑘!"
𝑓!"#$%"&&'%

< 𝑠𝑡𝑎𝑟𝑡_𝑤𝑟𝑖𝑡𝑒! 
(3.2) 
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Figure 3.3: Timing diagram and corresponding program structure for iteration period with 

overlapping buffer execution. 
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where 𝑇!" is the time required for the buffer write operation, and 𝑘!" is again an integer 

constant. Extending these conditions to all the buffer controllers present in the design, we can see 

that for N buffer controllers, we will have 2N such conditions that must be satisfied.  

3.2.2    For Variable Execution Times 

 In all real designs mapped to any processor platform, variable execution times are bound 

to arise due to platform constraints and architecture, or due to some other limitations. Regardless 

of the reason, dealing with this latency is crucial for correct operation of the design. This, 

however, is heavily dependent on the iteration period requirements of the design. This is 

illustrated in Figure 3.4, which shows two scenarios with slow and fast iteration periods 

respectively. When a fixed latency ∆ is introduced in any design, the buffer activity starts later, 

but a large iteration period (a slow design) is easily able to compensate for this as shown in 

Figure 3.4(a). But if the iteration period is smaller (a fast design), then the buffer activities will 

start at the wrong times, and this results in incorrect operation, as shown by Figure 3.4(b).  

 One way to meet the timing requirements and avoid incorrect operation due to the delay 

is to increase the speed, i.e., the frequency of the processing elements. But as frequency and 

power share a direct relationship, increasing the frequency of the processing elements (or more 

appropriately, the processors onto which they are mapped) results in a proportionate increase in 

the power consumed. Thus, if the delay present in the design is quite large (and we consider a 

fixed delay in the design), our methodology tries to adapt to this delay by proportionately 

increasing the speed of the processors in the platform. The power consumed by the platform 

therefore grows as this delay increases. 
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Figure 3.4: The effects of a delay. (a) A delay introduced in the design causes no issues as long 

as the iteration period is sufficiently large. (b) A faster design results in the buffers operating 

prematurely and producing incorrect results. 

 

 Since it is difficult to estimate the execution time of processors precisely, the buffer 

controller is changed to adapt to the multi-processor mapping as illustrated in Figure 3.5. The 

processor passes a ready signal to the buffer, indicating the actual start of the write time without 

reading the earlier data. Figure 3.5(b) shows the timing when the ready signal comes later than 

the start write time calculated from parameters Di and 𝑛𝑟!.  The write operation will wait until the 
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arrival of the ready signal. In the case that the processor finishes executing the previous dataset 

before the calculated start_write time, the buffer sends the data immediately after the calculated 

start_write time. So the ready signal from the processor acts as a handshake signal to eliminate 

the difficulty of estimating the execution time of the processor. For the read process of the 

buffer, the buffer counts 𝑁 + 𝑛𝑟! cycles and then waits for the ready signal from the following 

processor. 

 

Figure 3.5: Buffer controller adapted for variable execution times, and its signal timings for 

correct read/write operations. 

 

 For the actual connections on the platform, the processor is connected to its N buffers 

through a bus. The bus is M-bits wide, where M-1 bits are for the data and the other 1 bit is used 

for the control signal between the processors and the buffer in both directions. The connections 
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between the processors and the buffers are shown in Figure 3.6. The data bus carries the data 

transmitted between the processors and the buffers. The control bus sends the ready signals to the 

processor and the buffer to determine the actual start read and write signals of the buffer. 

 

Figure 3.6: Connection of the processor and the buffers using a bus. 

 

3.3   Structural Aspects 

 

 The structural controller, shown in use in Figure 3.7, manages dynamic reconfiguration. 

The purpose of this controller is to configure the data flow by managing interconnections as well 

as the buffer controllers. All registers in the buffer controllers and interconnection multiplexers 

are mapped into memory, and therefore reconfiguring the data flow is simply a matter of writing 

the new configuration content to the registers. The size of an address depends on the number of 

buffer controllers and the interconnection complexity. The program memory of the structural 



	  

 
	  

31	  

controller stores multiple configurations, which allow for different data flows to be constructed 

by writing the corresponding control program content to the registers. 

 

 

Figure 3.7: Structural controller and its connection to the buffer controllers and interconnect 

switches. The registers within the buffer controllers and the switches are address mapped. 

 

 The structural controller in our design employs a number of techniques to make sure that 

only the minimum number of buffers is being used during program execution. One such concept 

is buffer sharing. If read/write activities amongst some buffers do not overlap with each other, 

these buffers can be replaced by one buffer in certain special cases. There are a number of 

scenarios where this concept can be used to reduce the total number of buffers. Consider the case 

of Figure 3.8(a), where processor 1 is connected to processors 2 and 3 through buffers 1 and 2. In 

this case, processor 1 decides the path of the dataflow. The data will be written to buffer 1 or 2 

depending on the computational decision made by processor 1. In any case, both the buffers can 

never be active at the same time. Once the processor has decided its dataflow path, the buffers 

lying on the other path are effectively never used in the same cycle.  
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Figure 3.8: The concept of buffer sharing. (a) Buffers 1 and 2 in different paths, and cannot be 

active at the same time. (b) They are replaced by a single buffer. 

 

Taking advantage of this mutual exclusiveness, we replace buffers 1 and 2 with a single 

buffer labeled buffer 1, as shown in Figure 3.8(b). As soon as the dataflow path is decided upon, 

the processor will send this information to the global controller, which will then configure this 

shared buffer using the technique of dynamic path selection and handle the structural 

reconfiguration. Figure 3.9 shows the timing before and after buffer 1 and buffer 2 are shared by 

using a single buffer labeled buffer 1. Buffer sharing can also be implemented for select periods 

of time. 
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Figure 3.9: Timing of buffer activities before and after buffer sharing. 

 

 The start_read and start_write signals from the execution controller to buffer 2 are sent 

to buffer 1 instead. Similarly, the processors connected with buffer 2 are connected to buffer 1 

instead during the buffer sharing period. These connections and control signals have to be 

handled by the structural controller.  Thus, in the buffer sharing scheme, a single one that can 

then be connected to any of the data paths replaces some buffers lying on different data paths. 

The other case is that the processor itself decides its data path. When the buffer sharing scheme 

is used, the host processor calculates which buffers are to be replaced and sends this information 

to the controllers on the execution platform. If the path is to be decided by the processors, each 

processor only decides which buffer should be connected with it. In this scheme, the path is 

formed by the collective decisions of all the processors regarding their own path. 
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Figure 3.10: Multiple paths between two processors. 

 

Consider the buffer-sharing scheme, where the processor decides to change the buffer 

connected to it. As shown in Figure 3.10, at time t, processor 1 is connected to processor 2 

through buffer 1. But at a later instance, processor 1 is connected to processor 2 through buffer 2. 

The buffer sharing command is sent from the host processor. The interface controller accepts the 

command from the host processor and sends the buffer information from the memory to the 

global controller. Within the global controller, the structural controller is in charge of the 

modifications of the interconnection information of the processor and the buffers. These two 

paths, consisting of different buffers, are not formed at the same time. They are configured 

separately and a selector decides which path to choose as shown in Figure 3.11. This selector 

resides in the execution controller. 

When the buffer sharing scheme is being used, the structural controller in the global 

controller configures all the possible paths (path 1 and path 2 in this example). When the 

platform is executing, the selector in the execution controller will decide which path should be 

active at different times. Once a path is selected, the structural controller sends the configuration 

information to the appropriate buffers in the partition. 
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Figure 3.11: Configuration of the paths, and their selection using the global controller. 

 

Now we formally define the ‘partition’ to be the set of the appropriate structural and 

execution controllers for a set of buffers. Figure 3.12 shows this configuration. The execution 

controller in the partition generates the start_read and start_write signals for the buffers. The 

execution monitor serves as the coordinator between the structural controller and the execution 

controller and is responsible for sending signals to both the controllers. Once the execution 

monitor detects that the read period of buffer 2 is over, it triggers a signal to the structural 

controller in order to configure the connection of buffer 1 in place of buffer 2 and update the 

necessary parameters. The execution monitor then asks the execution controller to activate buffer 

1 instead of buffer 2. Finally, the start_read and start_write signals are sent to buffer 1 by the 

execution controller. 
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Figure 3.12: Partition structure and signals 

 

In the case that a processor decides its data path, the processor controls its following buffer by 

communicating with the global controllers. Figure 3.13 shows this communication. The 

processor issues a request to use path 1 and sends information about the path to the global 

controller, which includes the buffer ID connected to the processor. Once the global controller 

accepts the request to reconfigure the path, it asks the structural controller to reconfigure the 

interconnections, and asks the execution controller to activate the buffer. Once both the 

controllers save the information of path 1 and correctly configure it, they relay this information 

to the global controller, which then gives the ready signal to the processor. The processor is then 

ready to use this path as well as to configure the next path. 
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Figure 3.13: Processor deciding its own path through the global controller. 

 

3.4   Overall Controller Design 
 
 

The overall controller for the architecture is shown in Figure 3.14. The controller consists 

of two components as discussed. To make dynamic reconfiguration feasible, the execution 

controller and the structural controller coordinate with each other during execution of the 

program. The interaction between these two controllers is initiated under a branch condition. The 

branch condition can be set by the program memory or an external signal. When the branch 

condition is met, the finite state machine (FSM) in the execution controller accesses the address 

table (indicated by the three bits next to JB). These three bits are the table size of the FSM, and a 

total of eight (23) possible jumps or branches can be supported. For a jump, the FSM accesses the 

table using the three-bit address. The address in the execution controller program memory table 

is thus accessed; it is retrieved and the content of the FSM table is unavailable. However, for a 

branch, the address in the FSM table indicates the table address in the structural controller. The 

structural controller then accesses the program memory from the start address to the end address 

indicated in its own address table (since the size of the program depends on the number of buffer 
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controllers and interconnection complexity, the program memory for the reconfiguration can 

have a different data size, and therefore the address table contains two addresses - one for the 

beginning and one for the end). The target configuration is then loaded into the BBDF 

architecture, and the structural controller communicates with the execution controller to load the 

corresponding control program. 

 

 

Figure 3.14: Overall controller structure (the ‘global’ controller) 
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Chapter 4 

Resource Utilization 

 

4.1   Processor Utilization of Mapping 

 One of the primary goals of our methodology from its start has been to make sure that 

multi-processor platforms (or equivalently, platforms with multi-core processors) are utilized 

efficiently. To achieve this, we tried to formulate methods that allow us to map processing 

elements to only the minimum number of processors. 

 In order to map processing elements to processors, the execution timing of such blocks 

are represented by primitive templates such as SND and RCV. Since buffer controllers are 

outside a processor, SND and RCV use the bus provided by a target processor to transfer data 

between the processing element mapped to a processor and a buffer controller. RCV reads data 

from a buffer controller, whereas SND writes data to it. Subscripts i and j represent the source 

and destination of data transfer respectively.  

 

Figure 4.1: An example dataflow 
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Figure 4.2: Execution timing representation to map PEs to processors. (a) Execution timing for 
mapping PEs as per Figure 4.1. (b) Execution timing when PEs of 4.2(a) are mapped to 

processors. 

 

p[f(i)] represents the functional execution of the processing element realized as a program. Thus, 

given a dataflow as in Figure 4.1, Figure 4.2 represents the execution timing representation.  

In Figure 4.2(a), a straightforward way of mapping would be to map each PE to a 

different processor (or core). In this case, the number of processors is the same as the number of 

PEs (7 for the example). However, if the execution times of the processing blocks are non-

overlapping, they are mapped to the same processor in order to reduce the number of processors. 

When f(i) and f(j) are mapped to the same processor, their executions times satisfy the following 

non-overlapped condition [EXE! is the execution time of f(i) and EXE! is the execution time of 

f(j)]: 
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 max 𝑒𝑛𝑑 𝐸𝑋𝐸! , 𝑒𝑛𝑑 𝐸𝑋𝐸! −min 𝑠𝑡𝑎𝑟𝑡 𝐸𝑋𝐸! , 𝑠𝑡𝑎𝑟𝑡 𝐸𝑋𝐸!

> end EXE! − start EXE! + end EXE! −   start EXE!  

(4.1) 

where start(EXE) and end(EXE) correspond to the start and end times of SND, RCV and 

functional execution, respectively. Equation 4.1 represents that two execution times are non-

overlapped if the difference between the maximum end(EXE) and minimum start(EXE) of two 

execution times is larger than the summation of two execution times. According to the execution 

type of PE f(i) (i.e., SND, RCV and p[f(i)]), start(EXE) and end(EXE) of equation 4.1 are 

translated to 

 
end EXE! =   

stop_write, if  EXE! = SND  of  f(i)
stop_read,                    if  EXE! = RCV  of  f(i)
end  of  p f i ,                        if  EXE! = p[f i ]

 
 

 
start EXE! =   

start_write, if  EXE! = SND  of  f(i)
start_read,                    if  EXE! = RCV  of  f(i)
start  of  p f i ,                        if  EXE! = p[f i ]

 
 

  

The number of processors is further reduced by using JOINT. When two consecutive processing 

blocks are mapped to the same processor, it is unnecessary to transfer data through the buffer 

controller because their arguments can be internally bound. In this case, data transfer is realized 

as JOINT, which mergers RCV and SND. In Figure 4.2(a), the execution times of f(1) and f(2) 

are overlapping in only SND!,! and RCV!,!. By replacing SND!,! and RCV!,! with JOINT!,!, both 

processing elements are mapped to the same processor. In the same way f(1) – f(4) are mapped to 

processor 2 as shown in Figure 4.2(b). If the number of processors in the target platform is 1, the 

execution timing of Figure 4.2(b) is not directly mapped to single processor architecture. In this 
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case, for mapping all processing blocks to a single processor, the execution times from f(5) to 

f(7) shift right to the end of the execution times from f(1) to f(4). 

  

4.2   Power Consumption and Bus Utilization of Mapping 

 

 

 Figure 4.3 illustrates the interconnection between processors when the processing 

elements of Figure 4.2(a) are mapped to two processors. 𝐶!"#$ represents the port loading 

capacitance of a bus. In Figure 4.3(a), buffer controllers are not used for mapping. In Figure 

4.3(b), two buffer controllers BC!,! and BC!,! are attached to the buses for synchronizing data 

transfers between f(1) and f(5) and between f(4) and f(7), respectively. However, these buffer 

controllers increase the port loading capacitance of the buses and can lead to additional dynamic 

power dissipation. 

 For example, when f(1) (mapped to processor 1) sends data to f(5) (mapped to processor 

2), the dynamic energy consumptions of the mapping shown in Figure 4.3(a) and (b) are 

2𝐶!"#$𝑉!𝑓𝑀!,! and 6𝐶!"#$𝑉!𝑓𝑀!,!, respectively, where 𝐶!"#$ is the load capacitance of the 

buses, f is the operating frequency of the buses and V is the supply voltage. In Figure 4.3(b), 

since the data transfer from f(1) and f(5) is realized as both SND!,! and RCV!,!, the port loading 

capacitance, 3𝐶!"#$, doubly contributes to the energy consumption. 
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Figure 4.3: Considering power consumption for interconnected processors when elements of 

Figure 4.2(a) are mapped to them. (a) Mapping processing elements without buffer controllers. 

(b) Mapping processing elements with buffer controllers. 

 

Our basic consumption is that a single processor has its own bus. However, if the 

execution times of bus operations (i.e., SND and RCV) are not overlapped among processors, the 

processors share the same bus in order to reduce the number of buses used. This directly affects 

the power consumption of the platform as we have seen above. Figure 4.4 shows the execution 

timing when processing elements of Figure 4.2(a) are mapped to four processors instead of two. 
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Figure 4.4: Estimated execution times when processing blocks of Figure 4.2(a) are mapped to 

four processors. 

 

 In Figure 4.4, the execution time of RCV!,! is overlapped with the execution time of 

p[f(5)]. Thus, f(2) and f(5) are not mapped to the same processor. However, p[f(5)] does not 

access the bus which RCV!,! uses for the data transfer with BC!,!. In addition, p[f(2)] of 

processor 2 does not use the bus for SND!,! of processor 3. Therefore, processors 2 and 3 share 

the same bus because the execution times of SND and RCV between them are non-overlapped. 

 However, the execution times of Figure 4.4 are estimated values for mapping only. If 

actual execution times are not within the range of estimated values, the bus sharing among 

processors leads to wrong results.  
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Chapter 5 

Evaluation 

 

In this section we evaluate our design methodology and verify its operation for two 

buffer-based dataflows. We use SystemC to model a target platform having multi-core 

processors and reconfigurable logics. Our testing methodology consists of mapping our test 

dataflows to the processors on the target platform as well as implementing them as hardware 

logics. 

5.1      Experimental Setup 

 

 Our evaluation uses the buffer-based dataflows of Figures 5.1 and 5.2, and targets a 

platform consisting of multiple processors at 400MHz and buses at 100MHz. We chose the 

aforementioned examples for evaluation of our methodology since they have adequate 

complexity (that is usually found in real-world applications) to test all of our proposed solutions 

– they comprise of feedback and feed-forward loops that can have an impact on the final 

program generated by our design. Tables 5.1 and 5.2 list the buffer controller parameters for the 

dataflows in Figures 5.1 and 5.2 respectively. The clock frequency for each element in each 

dataflow has been fixed, as is the block size M and the iteration period (at the start of the 

execution). It is possible to increase or decrease the iteration period as long as all the constraints 

are met.  
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Figure 5.1: The first buffer-based dataflow used for evaluation. 

 

 

 

Figure 5.2: The second buffer-based dataflow used for evaluation. 
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BUF M Write Read Size 
Time Frequency Time Frequency 

2 64 13 100MHz 77 300MHz 43 
3 64 89 300MHz 90 300MHz 2 
4 64 101 300MHz 102 100MHz 64 
5 64 132 300MHz 133 200MHz 32 
6 64 13 100MHz 157 300MHz 64 
7 64 13 100MHz 102 100MHz 64 
8 64 141 200MHz 157 300MHz 32 
12 64 183 300MHz 184 100MHz 64 

Table 5.1: Buffer controller configuration for dataflow in Figure 5.1 

 

BUF M Write Read Size 
Time Frequency Time Frequency 

1 64 4 400MHz 5 100MHz 64 
2 64 18 100MHz 82 300MHz 43 
3 64 94 300MHz 95 300MHz 2 
4 64 106 300MHz 107 100MHz 64 
5 64 137 300MHz 138 100MHz 64 
7 64 18 100MHz 107 100MHz 64 
9 10 246 100MHz 256 400MHz 10 
10 4 246 100MHz 250 400MHz 4 
11 4 246 100MHz 279 400MHz 4 
13 10 284 400MHz 285 400MHz 2 

Table 5.2: Buffer controller configuration for dataflow in Figure 5.2 
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5.2   Processing Elements Mapped as Hardware Logic 

 The mapping of individual processing elements as hardware logics demonstrates our 

design’s capability for structural reconfiguration. Since all the processing elements have fixed 

execution times, there are no unaccounted variations in the execution time of individual elements 

in the program. Figure 5.3 illustrates the timing flow for the dataflow in Figure 5.1. The gray 

bars represent buffer activity, as per the characteristics described in Table 5.1. The different 

reconfigurations represent different iteration periods for the dataflow. During the first run of the 

design, the execution flow was interrupted at the end with an external signal that changed the 

iteration period and began the second run. This iteration is allowed to complete, and an internal 

signal changes the iteration period for yet another time, thus beginning the third run.  

 

Figure 5.3: Buffer timing flow for the dataflow in Figure 5.1. 
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With the same test methodology, similar results are obtained for the dataflow in Figure 

5.2. The results show that as long as the iteration period (and other) constraints are met, the 

overall execution flow is correctly maintained even if the iteration periods are changed while 

execution. 

 

Figure 5.4: Buffer timing flow for the dataflow in Figure 5.2. 
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5.3   Processing Elements Mapped to Processors  

 

Figure 5.5: Simulation results when processing elements are mapped to processors. (a) 

stop_joint!,! determines start_read!,!. (b) stop_write!,! determines start_read!,!. 
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 When we map multiple processing elements on a single processor (or a processor core), 

the temporal aspects of the design change significantly. Now, in addition to dynamic 

reconfiguration, the design must handle the introduction of variable execution times as discussed 

in previous chapters. We map the test dataflows to our platform with 2 processors, and the results 

obtained are shown in Figure 5.5. We can see that the global controller sends a start signals, and 

processors send stop signals to the global controller. Due to the variation in execution times, 

start_read!,! is enabled when either stop_joint!,! in Figure 5.5(a) or stop_write!,! in Figure 

5.5(b) are made high by the processors. For the correct operation in both cases, the global 

controller generates start_read!,! when it receives stop_write!,! and stop_joint!,! from 

processor 1 and processor 2. As a result, Figure 5.5(b) shows that processor 2 starts running 

RCV!,! when it finishes JOINT!,!. Similarly, processor 2 begins running RCV!,! when processor 1 

ends SND!,!. 
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Chapter 6 

Summary 

 

6.1   Future Scope 

 There has been extensive research in designing mapping algorithms that can make 

efficient use of available resources. From the past few years, substantial efforts have been put 

into trying to reduce the complexity of controllers that enable operation in such designs, which is 

the direct result of trying to leverage the improvements in multi-processor platforms. Our work 

has tried to present a simple (yet full-fledged) methodology that can map complex real-world 

dataflows to multi-processor platforms. But as is the case with technology, there is further room 

for improvement in our proposed design. 

• Our design relies on accurate timing information for all processing blocks in the 

dataflow. The accuracy of this information can have significant effects on the results 

obtained from the dataflow. However, such information is not always reliable. We aspire 

to incorporate some functionality in our design that can handle variations in such timing 

information. 

• One of the latest trends in the field of reconfigurable architecture is having processors co-

exist with hardware logic. This presents additional problems of synchronization in the 

design – we must now deal with fixed execution times on one side and variable ones on 

the other. We aim to extend this functionality into our design. 

 



	  

 
	  

53	  

6.2   Conclusions 

  In this thesis, we have proposed a mapping methodology to synthesize processing 

elements of a dataflow in a target platform having multiple processors and programmable logics, 

and enable on-the-fly selection between dataflows. In order to achieve synchronized data 

transfers between processors (or a processor and hardware), we used the buffer-based dataflow 

representation. From the buffer-based dataflow and estimated execution times of the processing 

elements and data transfers, our proposed methodology creates a mapped partition that satisfies a 

set of given resource constraints. After the mapped partition is created, the code for mapping 

processing elements to processors is generated by the design. Our methodology also includes the 

design of a ‘global’ controller that provides support for dynamic reconfiguration. The global 

controller also handles variations in execution times that are introduced in the design due to the 

mapping of elements on processors. The proposed methodology was evaluated with SystemC 

modeling. Through the evaluation, we demonstrated that the mapping by our proposed 

methodology is successfully working, has the minimum possible program size, and has support 

for multiple iteration period requirements.  
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