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Abstract of the Dissertation

Log Band Fraction Approximation For Covariance Estimation and Low

Volatility Strategy

by

Riyu Yu

Doctor of Philosophy

in

Applied Mathematics and Statistics

Quantitative Finance

Stony Brook University

2015

Structured matrix plays an important role in statistics, especially in covariance estima-

tion. Band fraction representation is one of the effi cient structures for matrices. In this

dissertation, we study the metric tensor for the band fraction representation for the covari-

ance matrix. We propose a new structure, the log band fraction representation, which gives

smaller information distance and Hellinger distance than factor model and band fraction

representation. We apply the log band fraction estimation in the portfolio optimization

problem. We propose our long only strategy and 130-30 strategy, which significantly out-

perform the benchmarks, i.e., SPY, SPLV, and CSM. Transaction cost is considered in

the portfolio construction process. The strategies proposed in this dissertation are fully

investable.

Key Words: Log Band Fraction; Fisher Information; Long Only Portfolio; 130-30 Fund;

Low Volatility Strategy
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1 Introduction

Structured matrix plays an important role in mathematics and computations. Exploiting

the matrix structure, such as sparsity, low rank property, Toeplitz, is the key to the design

of faster and more effi cient algorithms. By a structured matrix, typically we mean an n×n

matrix with entries having a formulaic relationship, allowing the matrix to be specified by

significantly fewer than n2 parameters [1].

In numerical analysis, a sparse matrix is a matrix in which most elements are zeros.

Conceptually, sparsity corresponds to the systems which are coupled loosely. It is beneficial

to take advantage of the sparse structure of the matrix when storing and manipulating

a sparse matrix. The general algorithms used for dense matrix may be ineffi cient when

applied to large sparse matrices. Strassen [2] was the first to show that the naive matrix

multiplication algorithm is not optimal and gave an O(n2.81) algorithm. Since then many

improvements followed. For example, several fast matrix multiplication algorithms can

be found in Pan [5], Burgisser [4], Coppersmith and Winograd [3], Cohn and Umans [7].

Sparse approximation is a problem of estimating a sparse multidimensional vector given

high dimensional observed data. It reduces the number of variables from high dimension

space to the low dimension space by using the sparse structure. Lots of sparse approximation

algorithm have been developed, such as matching pursuit [8] [9], orthogonal matching pursuit

[10] and LASSO method [11].

Band matrix is a special type of sparse matrix whose non-zero entries are confined to a

diagonal band. A band matrix can be linked in complexity to a rectangular matrix whose

row dimension is equal to the bandwidth of band matrix. The amount of operations such as

multiplications on band matrix falls so significantly that huge time and complexity would

be saved. As sparse matrices lead themselves to more effi cient algorithms than dense ma-

trices, there has been much research that are focused on utilizing the band structure to

improve effi ciency and also finding approximations to the original high dimension system.

For instance, Gilbert [12] shows the factorizations of banded matrices with banded inverses.

Pan [6] devises parallel algorithms for solving banded linear system of equations and comput-

ing the determinant of a banded matrix. Remon [15] presents the Cholesky factorization of

band matrices. Martin [16] proposes the symmetric decomposition of positive definite band

matrices. Another example is Hessenberg matrix which is a special case of band matrix and

finds itself wide applications in signal processing. [13] [14].
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Low grade matrix is first introduced by Andrew P. Mullhaupt and Kurt Riedel [27]. They

show that low grade matrix has fraction representation with two band matrices. Another

decomposition called consecutive sub-block product representation is also given. The low

grade structure is applied to the triangular input balance system [28], which is shown to

have lots of advantages such as better numerical stability, when compared to other digital

filters such as Burg and lattice filter. Semiseparable matrix has similar structure as low

grade matrix. Chandrasekaran and Shiv [31] [32] [33] [34] [35] propose fast solvers of the

linear equations by exploiting the hierarchically semiseparable representations (HSS). These

representations are useful for the matrices whose off-diagonal blocks have small rank. Ming

Gu [37] [38] [39] approximates the positive definite matrices with the semiseparable matrices

with effi cient and robust algorithms, by modifying the classical Cholesky decomposition

procedure with low rank approximation.

Covariance estimation plays a fundamental role in multivariate statistical analysis [26]

[40] [52] [57] [58] [59] [65] [67] [40] [41]. Estimation of covariance matrix is a problem

of how to approximate the actual covariance matrix with the sample data from the true

distributions. Factor model is widely used in the covariance estimation [54] [56] [76] [84]. It

is a statistical method describing variability between observed variables and lower number of

unobserved variables which are called factors. The observed variables are represented as the

linear combination of the unobserved factors, plus the noise term. One advantage of factor

model is that it is a reduction method which reduces the high dimension data to a lower

dimension space with potential smaller amount of factors, which means computationally it

is equivalent to low rank approximation of the actual covariance matrix.

Information geometry is a branch of mathematics that applies differential geometry to

the field of probability theory and provides analysis for a wide range of domains such as

information theory, statistical inference and neurocomputing. Rao [43] [44] [45] [46] [47] did

extensive study on the information geometry of statistical models. He proposed a method

for measuring distances between distributions in a parametric family. Rao’s measure is

based on the metric of Riemannian geometry, which is in terms of the elements of the

Fisher information matrix. The Fisher-Rao metric and Kullback-Leibler divergence may be

used to model experimental data. There is subsequential research after Rao’s pioneering

work [43] [17] [18]. Current applications of information geometry in statistics include the

dimensionality reduction problem on statistical manifolds, as well as the preparation of

2



samplers for sequential Monte Carlo technique [19].

In statistics, maximum likelihood estimation (MLE) is a method of estimating the para-

meters of a statistical model, which was recommended, analyzed and popularized by R. A.

Fisher between 1912 and 1922. Much of the theory of maximum likelihood estimation was

first developed for Bayesian statistics. The maximum likelihood estimation problem often

involves convex optimization which includes Newton’s method, conjugate gradient method

and other fast optimization algorithms. Fisher scoring algorithm is a form of Newton’s

method used to solve maximum likelihood equations numerically. In the Fisher scoring al-

gorithm, the Hessian of the objective function, which is required by Newton’s method, is

replaced by the Fisher information matrix.

Hankel matrix and Toeplitz matrix are another types of structured matrices of great

importance arising naturally in the context of linear systems and signal processing [99] [119]

[120] [121]. Hankel matrix and Toeplitz matrix are closely related to the impulse response

of the linear time invariant systems, which lead to various applications such as system

identification, model reduction and fast multiplication. AAK theorem, which is proposed

by Adamjan, Arov and Krein, gives the best Hankel norm approximation to a given Hankel

matrix [20]. Other reduction methods involves approximating Hankel matrix with respect

to optimal L2 norm and Frobenius norm [23], or solving Hankel matrix approximation using

semedefinite programming [21], etc.

Recently, there is a fast growing interest in low volatility strategies. Lots of investors

are looking for strategies which can provide protection in a volatile market and smaller

drawdowns. Though the return could be possibly lower, the Sharpe ratio of the low volatility

strategy could be potentially higher since the diversification and risk control are improved.

SPLV, one of the low volatility ETFs, is launched on May 5, 2011. It is the first low volatility

ETF in the market. The fund invest in the 100 symbols from S&P 500 with lowest realized

volatility. It is shown that SPLV achieves higher Sharpe ratio than SPY and provide a good

alternative to SPY since its low volatility attribute. Another popular class of strategies is

called 130-30 strategy which extend the long only portfolio to long-short portfolio. A 130-30

portfolio has 130% of its capital in long position and 30% of its capital in short position,

which typically uses a leverage ratio of 1.6. Thus, the 130-30 portfolio can be viewed as a

market-neutral portfolio plus a long only portfolio, which provides hedge when market is

falling. The Credit Suisse 130/30 index, which based on Andrew Lo and Pankaj Patel’s [22]

3



construction, is a widely used 130/30 index, with corresponding ETF called CSM.

The organization of this dissertation is as following. In section 2, we review the low grade

matrix and semiseparable approximation algorithms. The block band fraction representa-

tion is presented. In section 3, we show the calculation of the first and second derivatives

of the log likelihood function with band fraction representation. Fisher information matrix

of the band fraction representation is given, as well as the metric tensor. In section 4, we

calculate the metric tensor of the factor model with respect to the complete data. We give

the information distance and upper bound, based on different choices of diagonal matrix

and factor loadings of the factor model. In section 5, we review several optimization meth-

ods such as maximum log likelihood estimator, Newton’s method, Fisher scoring algorithm.

Conjugate gradient method is shown can be used to improve the band fraction represen-

tation. We propose the log band fraction representation for the covariance matrix. The

empirical simulations are given to show that we have better estimator with the log band

fraction representation. In section 6, we apply the log band fraction technic to the portfolio

optimization. We construct long only strategy and 130-30 strategy and compare to some

widely used benchmarks, i.e., SPY, SPLV, CSM. We show that our long only strategy and

130-30 strategy are significantly outperforming the benchmarks. The transaction cost are

included in the portfolio construction. The strategies we proposed are fully investable. In

section 7, we give a conclusion of this thesis.
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2 Band Fraction Representation

Factor models are widely used for structured covariance estimation. However, there are

other structured estimation methods as well. As suggested by Tengjie Jia [29], the band

fraction representation of covariance matrix would be a more accurate and faster method

than factor model. In this section, we will first review the definition of low grade matrix

and band matrix. We will show Ming Gu’s semiseparable approximation algorithm and then

propose the block decomposition from the semiseparable representation.

2.1 Low Grade Matrix

The lower grade (lgrade) of an n× n matrix A is the largest rank of any lower subdiagonal

block of a symmetric partition of A [27]. The low grade matrix A can be approximately

decomposed as the sum of an upper triangular matrix U and a rank d matrix d

A = U + V

A d-grade matrix A has two forms of matrix fraction representations:

M = G−1N1

and

M = Q−1N2

where N is unitary matrix and G, N1, N2 are banded matrices.

Definition 1. (Mullhaupt, Riedel 2002) An n× n matrix is called lower banded with lower

bandwidth (lwidth) d if Mij = 0 for i > j + d. M is said to have strict lower bandwidth d if

Mj+d,j 6= 0 for 1 ≤ j ≤ n− d.

Take n = 5 as example, a band 2 matrix has the following structure:

M =



∗ 0 0 0 0

∗ ∗ 0 0 0

∗ ∗ ∗ 0 0

0 ∗ ∗ ∗ 0

0 0 ∗ ∗ ∗



5



If lwidthT ≤ 0, the matrix is called upper triangular The lower Hessenberg matrix has

upper bandwidth 1, and upper Hessenberg matrix has lower bandwidth 1. Diagonal matrix

has 0 upper and lower bandwidth.

Theorem 1. (Mullhaupt, Riedel 2002). Suppose L is a lower triangular matrix with low-

grade ≤ d− 1. For any ε > 0, there exists M and N which are also lower triangular matrix

with bandwidth ≤ d. s.t. || L−M−1N || < ε.

For a given covariance matrix Σ which is a positive definite matrix, let L be the Cholesky

decomposition for Σ :

Σ = L ∗ L∗

where L is a lower triangular matrix.

We can also write this as

Σ = R∗ ∗R

where R = LT . Therefore, R is a upper triangular matrix.

We can decompose R such that R = M−1N. Therefore, the covariance matrix Σ can be

represented by the band matrices M and N.

Σ = R′R = (M−1N)∗(M−1N)

There are various reasons that why we prefer band fraction representation to factor

model. First, by using band fraction representation, the inverse of the covariance matrix

Σ−1 stays band fraction.

Σ−1 = ((M−1N)∗(M−1N))−1 = (N−1M)(N−1M)∗

while the inverse of a factor model does not maintain factor structure anymore. By using

Woodbury formula, we have the inverse of the factor model as following

(D + V V ∗)−1 = D−1 −D−1V (I + V ∗D−1V )−1V ∗D−1

= D1 − V1V
∗
1

Second, covariance matrices are a convex subset of matrices. For any 0 < α < 1, the

convex combination of two covariance matrices Σ1 and Σ2 is αΣ1 + (1− α)Σ2 which is still

a covariance matrix. That is, for any non-zero vector x

xT (αΣ1 + (1− α)Σ2)x = axTΣ1x+ (1− α)xTΣ2x > 0

6



Moreover, covariance matrices are a global isometry of information distance on positive

definite matrices:

I(Σ1,Σ2) = I(I,Σ
−1/2
1 Σ2Σ

−1/2
1 ) = I(I, UΛU∗) = I(I,Λ)

where U is an unitary matrix and Λ is a diagonal matrix.

The diagonal geodesic from I to Λ is etΛ where t ∈ [0, 1].

I(I,Λ(Σ
−1/2
1 Σ2Σ

−1/2
1 )) =

1

2

n∑
i=1

(lnλi)
2

where λi is the eigenvalues of Σ
−1/2
1 Σ2Σ

−1/2
1 .

Matrices of bandwidth ≤ d are a convex subset of matrices. For two pairs of band

fraction representations (M1, N1) and (M2, N2) with bandwidth d, the convex combination

α(M1, N1) + (1− α)(M2, N2) = (aM1 + (1− α)M1, αN1 + (1− α)N2) is still band fraction

with bandwidth d and stays the same convex set. Band fraction representation preserves

global isometry as well:

I((M−1
1 N1)∗(M−1

1 N1), (M−1
2 N2)∗(M−1

2 N2))

= I((M−1
2 N2)−∗(M−1

1 N1)∗(M−1
1 N1)(M−1

2 N2)−1, I)

= I((M−1
0 N0)∗(M−1

0 N0), I)

On the other hand, factor model does not have the global isometry property. Therefore,

factor model does not stay in a nice manifold.

2.2 Semiseparable Approximations

Another widely used definition is semiseparable matrix, which is quite similar to the defin-

ition of low grade matrix.

Definition 2. A matrix is a lower (upper) semiseparable matrix with semiseparability rank

d if all of the submatrices that could be taken out the lower (upper) triangular block of the

matrix have rank ≤ d.

It can be easily seen that a lower semiseparable matrix with semiseparablity rand d is a

lower grade d− 1 matrix.

To begin the semiseparable approximations for the symmetric positive definite matrices

(SPD), let us first consider the Cholesky factorization procedure for any SPD matrix A:
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For k = 1, 2, ..., n :

Cholesky factorize RTk,kRk,k := Ak,k;

Compute Rk,k+1:n := R−Tk,kAk,k+1:n;

Schur complement Ak+1:n,k+1:n := Ak+1:n,k+1:n −RTk,k+1:n ×Rk,k+1:n;

The output of the procedure above is the upper triangular matrix:

R =


R1,1 R1,2 · · · R1,n

R2,2 · · · R2,n

. . .
...

Rn,n

 such that A = RTR

Ming Gu [37] modified the Cholesky factorization procedure and embedded the semi-

separable matrix construction scheme into the procedure. His fast algorithm constructed

an SPD semiseparable matrix which approximates S and preserves the product AZ for any

given Z ∈ RN×d, d � N and any given tolerance τ > 0. It preserves the actions of A on

certain vectors (directions):

STS = A+O(
√
‖A‖2 τ) and STSZ = AZ

where

Z =


Z1

. . .

Zn


and S is an upper triangular semiseparable matrix of the following form

S =


D1 S1,2 · · · S1,n

D2 · · · S2,n

. . .
...

Dn


with D′ks upper triangular and Sk,t = UkWk+1...Wt−1V

T
t .

Tengjie Jia [29] proposes an iterative method to construct the band fraction representa-

tion. In this paper, we will show that we can construct the band fraction (M,N) directly

from Ming Gu’s semiseparable matrix given the embedded special structure.
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2.3 Block Banded Matrix M and N

The upper semiseparable matrix S constructed from Ming Gu’s algorithm is a highly struc-

tured matrix. Each block element Sk,t is a product of Uk,Wk+1, ...,Wt−1 and Vt. By

decomposing the upper triangular semiseparable matrix S, we can get the block banded

matrix M and M , which again can be represented by Uk,Wk+1, ...,Wt−1 and Vt.

2.3.1 4× 4 block case

First, let us start from a simple case. Suppose S is a 4× 4 block semiseparable matrix with

the following form

S =


D1 S1,2 S1,3 S1,4

D2 S2,1 S2,2

D3 S3,3

Dn


substitute Sk,t = UkWk+1...Wt−1V

T
t into element of S, we have

S =


D1 U1V

T
2 U1W2V

T
3 U1W2W3V

T
4

D2 U2V
T
3 U2W3V

T
4

D3 U3V
T
4

Dn


Thus, by constructing M and N as following

M =


I −U1W2U

−1
2

I −U2W3V
−1
3

I 0

I


and

N =


D1 U1V

T
2 − U1W2U

−1
2 D2

D2 U2V
T
3 − U2W3U

−1
3 D3

D3 U3V
T
4

D4


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we have
I −U1W2U

−1
2

I −U2W3U
−1
3

I 0

I




D1 U1V

T
2 U1W2V

T
3 U1W2W3V

T
4

D2 U2V
T
3 U2W3V

T
4

D3 U3V
T
4

Dn



=


D1 U1V

T
2 − U1W2U

−1
2 D2

D2 U2V
T
3 − U2W3U

−1
3 D3

D3 U3V
T
4

D4


That is

MS = N

where M and N are block banded matrices with block bandwidth 1. We can have the

band fraction representation of S by taking the inversion of M

S = M−1N

2.3.2 General n× n block case

Now let’s consider the general case that S is n×n block upper semiseparable matrix which

can be written as

S =



D1 U1V
T
2 · · · U1W2...Wj−1V

T
j · · · U1W2W3...Wn−1V

T
n

D2
. . .

...
...

. . . UiWi+1...Wi−1V
T
j

...

Di+1

...
. . . Un−1V

T
n

Dn


By the same decomposition procedure, we can construct M and N with the following

form
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M =



I −U1W2U
−1
2

. . .
. . .

I −Un−2Wn−1U
−1
n−1

I 0

I



N =



D1 U1V
T
2 − U1W2U

−1
2 D2

. . .
. . .

Dn−2 Un−2V
T
n−1 − Un−2Wn−1U

−1
n−1Dn−1

Dn−1 Un−1V
T
n

Dn


That is, the block diagonal elements of M are identity matrices

Mi,i = I, i = 1, ..., n

and the superdiagonal element of M has the form

Mi,i+1 =

{
−UiWi+1U

−1
i+1, i = 1, ..., n− 2

0, i = n− 1

while the block diagonal elements of are diagonal matrices Di

Ni,i = Di, i = 1, ..., n

and the superdiagonal elements of N has the form

Ni,i+1 =

{
UiV

T
i+1 − UiWi+1U

−1
i+1Di+1, i = 1, ..., n− 2

Un−1V Tn , i = n− 1
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Therefore, we have

I −U1W2U
−1
2

. . .
. . .

I −Un−2Wn−1U
−1
n−1

I 0

I



×



D1 U1V
T
2 · · · U1W2...Wj−1V

T
j · · · U1W2W3...Wn−1V

T
n

D2
. . .

...
...

. . . UiWi+1...Wi−1V
T
j

...

Di+1

...
. . . Un−1V

T
n

Dn



=



D1 U1V
T
2 − U1W2U

−1
2 D2

. . .
. . .

Dn−2 Un−2V
T
n−1 − Un−2Wn−1U

−1
n−1Dn−1

Dn−1 Un−1V
T
n

Dn


That is, the n× n block upper semiseparable matrix S can by represented as the band

fraction of M and N :

S = M−1N
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3 Fisher Information Matrix of Band Fraction

For an observable random variable X and an unknown parameter θ, Fisher information

measures the amount information X carries about θ. It is the variance of the score, which is

the expected value of the observed information. In this section, we will calculate the fisher

information matrix for the band fraction representation of the covariance matrix.

Let us consider the multivariate normal distribution Y ∼ N(µ,Σ), the log likelihood is

log(L) = logP (Y | µ,Σ) = −N
2

log 2π − 1

2
log det(Σ)− 1

2
tr(Σ−1C)

where C = (x−µ)(x−µ)T is the sample covariance matrix and x is the observed sample

data.

We have the band fraction representation for covariance matrix as following

Σ = (M−1N)∗(M−1N) = N∗M−∗M−1N

The inverse of the covariance can be represented by band fraction as well

Σ−1 = N−1MM∗N−∗

where M and N are upper triangular matrices with band width d.

Given the band fraction representation, the log likelihood function can be written as

logL = −N
2

log 2π − 1

2
log det(N∗M−∗M−1N)− 1

2
tr(N−1MM∗N−∗C)

By definition, the Fisher Information matrix is

I = −E[(
∂

∂θ
log(L))2]

In this section, we will derive the Fisher Information matrix by calculating the second

derivatives for − 1
2 log det(N∗M−∗M−1N) and − 1

2 tr(N
−1MM∗N−∗C) respectively. In the

derivation, following two properties of matrix derivative are used

∂X−1

∂Xrs
= −X−1 ∂X

∂Xrs
X−1

∂ log detA

∂x
= Tr(A−1 ∂A

∂x
)
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3.1 First Derivative of Log Likelihood for Band Fraction

We will calculate the first derivative of the log likelihood function with respect to Mrs and

Nrs. To simplify the calculation, let us derive the first derivatives for− 1
2 log det(N∗M−∗M−1N)

first.
∂ log det(N∗M−∗M−1N)

∂Mrs
= Tr(N−1MM∗N−∗ × ∂(N∗M−∗M−1N)

∂Mrs
)

In order to calculate ∂ log det(N∗M−∗M−1N)
∂Mrs

, we need to solve ∂(N∗M−∗M−1N)
∂Mrs

∂(N∗M−∗M−1N)

∂Mrs
= N∗

∂M−∗

∂Mrs
M−1N +N∗M−∗

∂M−1

∂Mrs
N

= −N∗M−∗ ∂M
∗

∂Mrs
M−∗M−1N −N∗M−∗M−1 ∂M

∂Mrs
M−1N

= −N∗M−∗EsrM−∗M−1N −N∗M−∗M−1ErsM
−1N

where we use the notation

Ers =

 ere
T
s , if (r, s) in the band

0, otherwise

therefore

∂ log det(N∗M−∗M−1N)

∂Mrs

= Tr(N−1MM∗N−∗ × (−N∗M−∗EsrM−∗M−1N −N∗M−∗M−1ErsM
−1N))

= Tr(−EsrM−∗ −M−1Ers)

= Tr(−eseTrM−∗ −M−1ere
T
s )

= −2(M−1)sr

Similarly, we can get the first order derivative of log det(N∗M−∗M−1N) with respect to

∂Nrs
∂ log det(N∗M−∗M−1N)

∂Nrs
= Tr(N−1MM∗N−∗ × ∂(N∗M−∗M−1N)

∂Nrs
)

since

∂(N∗M−∗M−1N)

∂Nrs
=

∂N∗

∂Nrs
M−∗M−1N +N∗M−∗M−1 ∂N

∂Nrs

= EsrM
−∗M−1N +N∗M−∗M−1Ers

14



plugging ∂(N∗M−∗M−1N)
∂Nrs

back to ∂ log det(N∗M−∗M−1N)
∂Nrs

, we have

∂ log det(N∗M−∗M−1N)

∂Nrs

= Tr(N−1MM∗N−∗ × (EsrM
−∗M−1N +N∗M−∗M−1Ers))

= Tr(N−∗Esr +N−1Ers)

= Tr(N−∗ese
T
r +N−1ere

T
s )

= 2(N−1)sr

Next, let us calculate the first derivative for 1
2 tr(Σ

−1C) = 1
2 tr(N

−1MM∗N−∗C) with

respect to Mrs

∂tr(N−1MM∗N−∗C)

∂Mrs
= tr(

∂(N−1MM∗N−∗C)

∂Mrs
)

= tr(N−1ErsM
∗N−∗C +N−1MEsrN

−∗C)

and the first derivative for 1
2 tr(Σ

−1C) = 1
2 tr(N

−1MM∗N−∗C) with respect to Nrs

∂tr(N−1MM∗N−∗C)

∂Nrs
= tr(

∂(N−1MM∗N−∗C)

∂Nrs
)

= tr(−N−1 ∂N

∂Nrs
N−1MM∗N−∗C −N−1MM∗N−∗

∂N∗

∂Nrs
N−∗C)

= tr(−N−1ErsN
−1MM∗N−∗C −N−1MM∗N−∗EsrN

−∗C)

Thus, we have the first derivative for the log likelihood summarized below:

∂ log(L)

∂Mrs
= (M−1)sr −

1

2
tr(N−1ErsM

∗N−∗C +N−1MEsrN
−∗C)

∂ log(L)

∂Nrs
= −(N−1)sr −

1

2
tr(−N−1ErsN

−1MM∗N−∗C −N−1MM∗N−∗EsrN
−∗C)

3.2 Element of Fisher information Matrix for Band Fraction

Next, we will derive the second derivatives of the log likelihood by calculating for each term in

the log likelihood function. First, let us calculate the second derivative of log det(N∗M−∗M−1N)
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with respect to ∂Mrs and ∂Mtk:

∂2 log det(N∗M−∗M−1N)

∂Mrs∂Mtk
=

∂(2Tr(−M−1Ers))

∂Mtk

= −2Tr(M−1 ∂M

∂Mtk
M−1Ers)

= −2Tr(M−1EtkM
−1Ers)

= −2Tr(M−1ete
T
kM

−1ere
T
s )

= −2(M−1)st(M
−1)kr

We can see that the ∂2 log det(N∗M−∗M−1N)
∂Mrs∂Mtk

only depends on M , and is not a function of

the other band matrix N .

Similarly, we can have

∂2 log det(N∗M−∗M−1N)

∂Mrs∂Ntk
=
∂(2Tr(−M−1Ers))

∂Ntk
= 0

and

∂2 log det(N∗M−∗M−1N)

∂Nrs∂Ntk
=

∂(2Tr(N−1Ers))

∂Ntk

= −2Tr(N−1 ∂N

∂Ntk
N−1Ers)

= −2Tr(N−1EtkN
−1Ers)

= −2Tr(N−1ete
T
kN
−1ere

T
s )

= −2(N−1)st(N
−1)kr

The second derivatives of tr(N−1MM∗N−∗C) is calculated as following:

∂2tr(N−1MM∗N−∗C)

∂Mrs∂Mtk
=

∂(tr(N−1ErsM
∗N−∗C +N−1MEsrN

−∗C))

∂Mtk

= tr(N−1ErsEktN
−∗C +N−1EtkEsrN

−∗C)

and
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∂2tr(N−1MM∗N−∗C)

∂Mrs∂Ntk
=

∂(tr(N−1ErsM
∗N−∗C +N−1MEsrN

−∗C))

∂Ntk

= tr(−N−1 ∂N

∂Ntk
N−1ErsM

∗N−∗C −N−1ErsM
∗N−∗

∂N∗

∂Ntk
N−∗C + ...

−N−1 ∂N

∂Ntk
N−1MEsrN

−∗C −N−1MEsrN
−∗ ∂N

∗

∂Ntk
N−∗C)

= tr(−N−1EtkN
−1ErsM

∗N−∗C −N−1ErsM
∗N−∗EktN

−∗C + ...

−N−1EtkN
−1MEsrN

−∗C −N−1MEsrN
−∗EktN

−∗C)

∂2tr(N−1MM∗N−∗C)

∂Nrs∂Ntk

=
∂(tr(−N−1ErsN

−1MM∗N−∗C −N−1MM∗N−∗EsrN
−∗C))

∂Ntk

= tr(N−1 ∂N

∂Ntk
N−1ErsN

−1MM∗N−∗C +N−1ErsN
−1 ∂N

∂Ntk
N−1MM∗N−∗C + ...

+N−1ErsN
−1MM∗N−∗

∂N∗

∂Ntk
N−∗C +N−1 ∂N

∂Ntk
N−1MM∗N−∗EsrN

−∗C + ...

+N−1MM∗N−∗
∂N∗

∂Ntk
N−∗EsrN

−∗C +N−1MM∗N−∗EsrN
−∗ ∂N

∗

∂Ntk
N−∗C)

= tr(N−1EtkN
−1ErsN

−1MM∗N−∗C +N−1ErsN
−1EtkN

−1MM∗N−∗C + ...

+N−1ErsN
−1MM∗N−∗EktN

−∗C +N−1EtkN
−1MM∗N−∗EsrN

−∗C + ...

+N−1MM∗N−∗EktN
−∗EsrN

−∗C +N−1MM∗N−∗EsrN
−∗EktN

−∗C)

In order to get the fisher information matrix, the next step is to take the expectation of

the second derivatives of the log likelihood function. By using the fact

E(C) = (M−1N)∗(M−1N) = N∗M−∗M−1N

we have

E(
∂2 log det(Σ)

∂Mrs∂Mtk
) = E(

∂2 log det(N∗M−∗M−1N)

∂Mrs∂Mtk
) = −2(M−1)st(M

−1)kr

E(
∂2 log det(Σ)

∂Mrs∂Ntk
) = E(

∂2 log det(N∗M−∗M−1N)

∂Mrs∂Ntk
) = 0

and

E(
∂2 log det(Σ)

∂Nrs∂Ntk
) = E(

∂2 log det(N∗M−∗M−1N)

∂Nrs∂Ntk
) = −2(N−1)st(N

−1)kr
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Next, let us apply the same procedure to the second derivatives of tr(Σ−1C)

E(
∂2tr(Σ−1C)

∂Mrs∂Mtk
)

= E(tr(N−1ErsEktN
−∗C +N−1EtkEsrN

−∗C))

= tr(N−1ErsEktN
−∗N∗M−∗M−1N +N−1EtkEsrN

−∗N∗M−∗M−1N)

= tr(ErsEktM
−∗M−1 + EtkEsrM

−∗M−1)

= 2tr(EktM
−∗M−1Ers)

= 2(M−∗M−1)tre
T
s ek

E(
∂2tr(Σ−1C)

∂Mrs∂Ntk
)

= E(tr(−N−1EtkN
−1ErsM

∗N−∗C −N−1ErsM
∗N−∗EktN

−∗C + ...

−N−1EtkN
−1MEsrN

−∗C −N−1MEsrN
−∗EktN

−∗C))

= tr(−N−1EtkN
−1ErsM

∗N−∗N∗M−∗M−1N −N−1ErsM
∗N−∗EktN

−∗N∗M−∗M−1N + ...

−N−1EtkN
−1MEsrN

−∗N∗M−∗M−1N −N−1MEsrN
−∗EktN

−∗N∗M−∗M−1N)

= tr(−EtkN−1ErsM
−1 − ErsM∗N−∗EktM−∗M−1 + ...

−EtkN−1MEsrM
−∗M−1 − EsrN−∗EktM−∗)

= −(N−1)kr(M
−1)st − (M∗N−∗)sk(M−∗M−1)tr − (N−1M)ks(M

−∗M−1)rt − (N−∗)rk(M−∗)ts

= −2(N−1)kr(M
−1)st − 2(M∗N−∗)sk(M−∗M−1)tr

and
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E(
∂2tr(Σ−1C)

∂Nrs∂Ntk
)

= E(tr(N−1EtkN
−1ErsN

−1MM∗N−∗C +N−1ErsN
−1EtkN

−1MM∗N−∗C + ...

+N−1ErsN
−1MM∗N−∗EktN

−∗C +N−1EtkN
−1MM∗N−∗EsrN

−∗C + ...

+N−1MM∗N−∗EktN
−∗EsrN

−∗C +N−1MM∗N−∗EsrN
−∗EktN

−∗C))

= tr(N−1EtkN
−1ErsN

−1MM∗N−∗N∗M−∗M−1N +N−1ErsN
−1EtkN

−1MM∗N−∗N∗M−∗M−1N + ...

+N−1ErsN
−1MM∗N−∗EktN

−∗N∗M−∗M−1N +N−1EtkN
−1MM∗N−∗EsrN

−∗N∗M−∗M−1N + ...

+N−1MM∗N−∗EktN
−∗EsrN

−∗N∗M−∗M−1N +N−1MM∗N−∗EsrN
−∗EktN

−∗N∗M−∗M−1N)

= tr(EtkN
−1ErsN

−1 + ErsN
−1EtkN

−1 + ...

+ErsN
−1MM∗N−∗EktM

−∗M−1 + EtkN
−1MM∗N−∗EsrM

−∗M−1 + ...

+N−∗EktN
−∗Esr +N−∗EsrN

−∗Ekt)

= (N−1)kr(N
−1)st + (N−1)st(N

−1)kr + (N−1MM∗N−∗)sk(M−∗M−1)tr + ...

+(N−1MM∗N−∗)ks(M
−∗M−1)rt + (N−∗)rk(N−∗)ts + (N−∗)ts(N

−∗)rk

= 4(N−1)kr(N
−1)st + 2(N−1MM∗N−∗)sk(M−∗M−1)tr

In conclusion, the element of Fisher Information matrix for band fraction is given as

following:

E(
∂2 logL

∂Mrs∂Mtk
) = (M−1)st(M

−1)kr − (M−∗M−1)tre
T
s ek

E(
∂2 logL

∂Mrs∂Ntk
) = (N−1)kr(M

−1)st + (M∗N−∗)sk(M−∗M−1)tr

E(
∂2 logL

∂Nrs∂Ntk
) = −(N−1)st(N

−1)kr − 2(N−1)kr(N
−1)st − (N−1MM∗N−∗)sk(M−∗M−1)tr

= −(N−1)kr(N
−1)st − (N−1MM∗N−∗)sk(M−∗M−1)tr

3.3 Bandwidth d = 1 case

In this section, we will give a simplified example of the band fraction matrices so that we

can have a better understanding of the structure embedded. Let us consider the a special

case when bandwidth d = 1. Since the diagonal elements of M are all ones, the parameter

space is θ = (M12, ...,Mn−1,n, N1,1, ..., Nn,n, N12, ..., Nn−1,n), where n is the dimension of
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the problem. Let us write down each element of Fisher Information matrix for band d = 1

first.

Since

E(
∂2 logL

∂Mrs∂Mtk
) = (M−1)st(M

−1)kr − (M−∗M−1)tre
T
s ek

in the case of d = 1, we have Mrs = Mr,r+1,Mtk = Mt,t+1

E(
∂2 logL

∂Mrs∂Mtk
) = E(

∂2 logL

∂Mrs∂Mtk
)

= (M−1)r+1,t(M
−1)t+1,r − (M−∗M−1)tre

T
r+1et+1

Since M is upper triangular matrix, M−1 is upper triangular as well. In order to have

(M−1)r+1,t(M
−1)t+1,r 6= 0, we need

r + 1 ≤ t

t+ 1 ≤ r

that is

r + 1 ≤ t ≤ r − 1

which is impossible. Thus

(M−1)r+1,t(M
−1)t+1,r = 0

E(
∂2 logL

∂Mrs∂Mtk
) = −(M−∗M−1)tre

T
r+1et+1 =

 −(M−∗M−1)tr, for r = t

0, otherwise

For

E(
∂2 logL

∂Nrs∂Ntk
) = −(N−1)kr(N

−1)st − (N−1MM∗N−∗)sk(M−∗M−1)tr

we discuss the following three cases: 1) r = s, t = k. 2) r = s, k = t + 1 and 3)

s = r + 1, k = t+ 1

Case 1, for r = s, t = k

E(
∂2 logL

∂Nrs∂Ntk
) = −(N−1)tr(N

−1)rt − (N−1MM∗N−∗)rt(M
−∗M−1)tr

since

(N−1)tr(N
−1)rt =

 (N−1)rr(N
−1)rr, r = t

0, r 6= t
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we have

E(
∂2 logL

∂Nrs∂Ntk
) =

 −(N−1)rr(N
−1)rr − (N−1MM∗N−∗)rt(M

−∗M−1)tr, r = t

−(N−1MM∗N−∗)rt(M
−∗M−1)tr , r 6= t

Case 2, for r = s, k = t+ 1

E(
∂2 logL

∂Nrs∂Ntk
) = −(N−1)t+1,r(N

−1)rt − (N−1MM∗N−∗)r,t+1(M−∗M−1)tr

and

(N−1)t+1,r(N
−1)rt = 0

since t+ 1 ≤ r ≤ t is not satisfied, we have

E(
∂2 logL

∂Nrs∂Ntk
) = −(N−1MM∗N−∗)r,t+1(M−∗M−1)tr

Case 3, for s = r + 1, k = t+ 1

E(
∂2 logL

∂Nrs∂Ntk
) = −(N−1)t+1,r(N

−1)r+1,t − (N−1MM∗N−∗)s,t+1(M−∗M−1)tr

= −(N−1MM∗N−∗)s,t+1(M−∗M−1)tr

To conclude the three cases above, we have

E(
∂2 logL

∂Nrs∂Ntk
) =

 −(N−1)rr(N
−1)rr − (N−1MM∗N−∗)sk(M−∗M−1)tr, r = t = s = k

−(N−1MM∗N−∗)sk(M−∗M−1)tr, otherwise

Next, let us consider the cross term

E(
∂2 logL

∂Mrs∂Ntk
) = (N−1)kr(M

−1)st + (M∗N−∗)sk(M−∗M−1)tr

we have two cases 1) s = r + 1, t = k and 2) s = r + 1, k = t+ 1

Case 1, for s = r + 1, t = k

E(
∂2 logL

∂Mrs∂Ntk
) = (N−1)tr(M

−1)r+1,t + (M∗N−∗)r+1,t(M
−∗M−1)tr

In order to have

(N−1)tr(M
−1)r+1,t 6= 0

we need

t ≤ r

r + 1 ≤ t
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which is impossible. Thus

(N−1)tr(M
−1)r+1,t = 0

and we have

E(
∂2 logL

∂Mrs∂Ntk
) = (M∗N−∗)r+1,t(M

−∗M−1)tr

Case 2, for s = r + 1, k = t+ 1

E(
∂2 logL

∂Mrs∂Ntk
) = (N−1)t+1,r(M

−1)r+1,t + (M∗N−∗)r+1,t+1(M−∗M−1)tr

similarly, we have

(N−1)t+1,r(M
−1)r+1,t = 0

therefore,

E(
∂2 logL

∂Mrs∂Ntk
) = (M∗N−∗)r+1,t+1(M−∗M−1)tr

To sum up, for the case when bandwidth d = 1, we have the elementwise Fisher infor-

mation matrix

E(
∂2 logL

∂Mrs∂Mtk
) = −(M−∗M−1)tre

T
r+1et+1 =

 −(M−∗M−1)tr, for r = t

0, otherwise

E(
∂2 logL

∂Nrs∂Ntk
) =

 −(N−1)rr(N
−1)rr − (N−1MM∗N−∗)sk(M−∗M−1)tr, r = t = s = k

−(N−1MM∗N−∗)sk(M−∗M−1)tr, otherwise

E(
∂2 logL

∂Mrs∂Ntk
) = (M∗N−∗)sk(M−∗M−1)tr

3.4 Metric Tensor of Band Fraction

Given two normal distributions N(µ,C2
1 ) and N(µ,C2

2 ), we have the information distance

[43]

I2(C2
1 , C

2
2 ) = I2(C−1

2 C2
1C
−1
2 , I) =

1

2

n∑
k=1

(log λk)2

where λk are the eigenvalues of C
−1
1 C2

2C
−1
1 . The first equivalence comes from the global

isometry of Information distance.
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For two band fraction representations C1 = (M−1
1 N1)∗(M−1

1 N1) and C2 = (M−1
2 N2)∗(M−1

2 N2),

we can use the global isometry property as well

I((M−1
1 N1)∗(M−1

1 N1), (M−1
2 N2)∗(M−1

2 N2)) = I((M−1
2 N2)−∗(M−1

1 N1)∗(M−1
1 N1)(M−1

2 N2)−1, I)

Let C2
0 = (M−1

2 N2)−∗(M−1
1 N1)∗(M−1

1 N1)(M−1
2 N2)−1 and represent C2

0 with band frac-

tion matrices (M0, N0)

C2
0 = (M−1

0 N0)∗(M−1
0 N0)

the above distance becomes

I((M−1
1 N1)∗(M−1

1 N1), (M−1
2 N2)∗(M−1

2 N2)) = I((M−1
0 N0)∗(M−1

0 N0), I)

= I(M−∗0 M−1
0 , N−∗0 N0)

We have already calculated the information matrix for general band fraction represen-

tation. For the special case C2 = M−∗M−1 with N = I, we have the entries of fisher

information matrix

gij = −E(
∂2 logL

∂Mrs∂Mtk
) = −(M−1)st(M

−1)kr + (M−∗M−1)tre
T
s ek

with the parameterization θ = (M11...,Mn,n,M12, ...,Mn−1,n, ...,M1,1+d, ...,Mn−d,n)′,

the metric tensor is

ds2 =

r∑
i,j=1

gi,j(θ)dθidθj

=

n∑
i=1

(−(M−1)2
ii + (M−∗M−1)ii)dM

2
ii +

n−1∑
i=1

(M−∗M−1)iidM
2
i,i+1 + ...+

n−d∑
i=1

(M−∗M−1)iidM
2
i,i+d

3.5 Another Form with the Factorization Σ = M−1NN∗M−∗

The covariance matrix can be also factored as

Σ = (M−1N)(M−1N)∗ = N∗M−∗M−1N

where M and N are lower triangular band matrix.

Similarly, we can have the first derivatives of the log likelihood function

∂ log(L)

∂Mrs
= (M−1)sr −

1

2
tr(EsrN

−∗N−1MC +M∗N−∗N−1ErsC)

∂ log(L)

∂Nrs
= −(N−1)sr +

1

2
tr(M∗N−∗EsrN

−∗N−1MC +M∗N−∗N−1ErsN
−1MC)
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and the second derivatives of the log likelihood function

E(
∂2 logL

∂Mrs∂Mtk
) = (M−1)st(M

−1)kr − (N−∗N−1)rt(M
−1NN∗M−∗)ks

E(
∂2 logL

∂Mrs∂Ntk
) = (N−1)kr(M

−1)st + (N−∗N−1)rt(N
−∗M−∗)ks

E(
∂2 logL

∂Nrs∂Ntk
) = −(N−∗N−1)tre

T
s ek − (N−1)st(N

−1)kr
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4 Metric Tensor and Upper Bound of Information Dis-

tance for Factor Model with respect to complete data

Factor model is widely used in covariance estimation. However, the information geometry

of factor model is still an ongoing research topic. In this section, we will calculate the metric

tensor of factor model with respect to the complete data. We will then give the information

distance and upper bound of it with difference choices of D and V.

4.1 Metric Tensor for Factor Model with respect to complete data

Let us consider the factor model

y = V x+ ε

where y is the observed data, V is the factor loading, x ∼ N(0d×1, I) is the factor,

ε ˜ N(0, In×n) is the error term.

Let us define the complete data

z
∆
=

 y

x

 ˜ N(0,

 D + V V ∗ V

V I

)

with the covariance matrix

Σ =

 D + V V ∗ V

V I


the parameters are

θ =

 diag(D)

vec(V )


the log likelihood with respect to z is

Lz(θ) = −N
2

log 2π − 1

2
log det(Σ)− 1

2
zTΣ−1z

By using the property of schur complement, we have

log det(Σ) = log det(

 D + V V ∗ V

V I

)

= log(det(I) det(D + V V ∗ − V I−1V ∗))

= log det(D)
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The inverse of Σ is given by

Σ−1 =

 D−1 −D−1V

−V ∗D−1 I + V ∗D−1V


and

zTΣ−1z =

 y

x

T  D−1 −D−1V

−V ∗D−1 I + V ∗D−1V

 y

x


= yTD−1y − 2xTV ∗D−1y + xT (I + V ∗D−1V )x

= (yT − xTV T )D−1(y − V x) + xTx

we can rewrite the log likelihood with respect to z as

Lz(θ) = −N
2

log 2π − 1

2
log det(D)− 1

2
((yT − xTV T )D−1(y − V x) + xTx)

Let D = diag(D11, D22, ..., Dnn). The first derivative with respect to Dii is

∂Lz(θ)

∂Dii
= −1

2

∂ log det(D)

∂Dii
− 1

2
((yT − xTV T )

∂D−1

∂Dii
(y − V x) + xTx)

since
∂ log det(D)

∂Dii
= D−1

ii

and

∂D−1

∂Dii
= −D−1 ∂D

∂Dii
D−1

= −D−1eie
T
i D
−1

thus the log likelihood function becomes

∂Lz(θ)

∂Dii
= −1

2
D−1
ii +

1

2
(yT − xTV T )D−1eie

T
i D
−1(y − V x)

= − 1

2Dii
+

(yT − xTV T )2
i

2D2
ii

The first derivative with respect to Vr1,r2 is

∂Lz(θ)

∂Vr1,r2
= −1

2

∂((yT − xTV T )D−1(y − V x))

∂Vr1,r2

= xT er2e
T
r1D

−1(y − V x)

=
(y − V x)r1xr2

Dr1
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The second derivative of log likelihood is

∂Lz(θ)

∂Dii∂Djj
=

{ 1
2D2

ii
− (yT−xTV T )2i

D3
ii

i = j

0 i 6= j

∂Lz(θ)

∂Dii∂Vr1,r2
=

(yT − xTV T )i
D2
ii

(−xT er2eTr1ei)

∂Lz(θ)

∂Vr1,r2∂Vr3,r4
= −xT er2eTr1D

−1er3er4x

=

{−xr2xr4Dr1
r1 = r3

0 otherwise

since

E(
(yT − xTV T )2

i

D3
ii

) = − 1

2D2
ii

E(
∂Lz(θ)

∂Dii∂Vr1,r2
) = 0

E(
∂Lz(θ)

∂Vr1,r2∂Vr3,r4
) =

{− 1
Dr1

r1 = r2 = r3 = r4

0 otherwise

the Fisher information matrix with respect to z is in the form of

Iz =

 diag( 1
2D2

ii
) 0

0 diag( 1
Dr1

)


the metric tensor is

gij(θ) =

 vec(D)

vec(V )

T Iz(θ)
 vec(D)

vec(V )


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where

 vec(D)

vec(V )

 =



D11

D22

...

Dnn

V11

V12

...

V1d

V21

V22

...

V2d

...

Vn1

Vn2

...

Vnd


Rao’s distance metric is

ds2 = ∂D2
11

1

2D2
11

+ ∂D2
22

1

2D2
22

+ ...+ ∂D2
11

1

2D2
1

+ ...

+∂V 2
11

1

D1
+ ∂V 2

12

1

D1
+ ...+ ∂V 2

1d

1

D1
+ ...

+∂V 2
21

1

D2
+ ∂V 2

22

1

D2
+ ...+ ∂V 2

2d

1

D2
+ ...

+...

+∂V 2
n1

1

Dn
+ ∂V 2

n2

1

Dn
+ ...+ ∂V 2

nd

1

Dn

=
1

2
tr(dDD−2dD) + tr(D−1dV dV ∗)

4.2 Upper Bound of the information distance with respect to z

In metric geometry, a geodesic is a curve that is everywhere locally a distance minimizer.

When considering the information distance between two factor models (D1, V1) and
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(D2, V2) , we distinguish three case: 1) D1 6= D2, V1 = V2. 2) D1 = D2, V1 6= V2. 3)

D1 6= D2, V1 6= V2.

4.2.1 Factor models differ only in diagonal part D1 and D2

In this case, the metric tensor reduces to

ds2 =
1

2
tr(dDD−2dD)

=
1

2

n∑
i=1

∂D2
ii

D2
ii

thus, the information distance between (D1, V ) and (D2, V ) is

Iz (D1, V ) , (D2, V ) =
1

2
tr(ln(D−1

1 D2)2)

4.2.2 Factor models differ only in the factor loading V1 and V2

the metric tensor reduces to

ds2 = tr(D−1dV dV ∗)

= D−1tr(dV dV ∗)

= ∂V 2
11

1

D11
+ ∂V 2

12

1

D11
+ ...+ ∂V 2

1d

1

D11
+ ...

+∂V 2
21

1

D22
+ ∂V 2

22

1

D22
+ ...+ ∂V 2

2d

1

D22
+ ...

+...

+∂V 2
n1

1

Dnn
+ ∂V 2

n2

1

Dnn
+ ...+ ∂V 2

nd

1

Dnn

the information distance between (D,V1) and (D,V2) is

Iz ((D,V1) , (D,V2)) = tr(D(V1 − V2)(V1 − V2)∗)

4.2.3 Factor models differ in both factor loadings V and diagonal part D

In this case, we will give a upper bound for the information distance. Let us construct two

curves: one is the geodesic from (D1, V1) to (D2, V1) and the other one is from (D2, V1) to

(D2, V2) . The geodesic from (D1, V1) to (D2, V2) is bounded by

Iz((D1, V1) , (D2, V2)) ≤ Iz((D1, V1) , (D2, V1)) + Iz((D2, V1) , (D2, V2))

=
1

2
tr(ln(D−1

1 D2)2) + tr(D2(V1 − V2)(V1 − V2)∗)
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by symmetry„we can have another bound

Iz((D1, V1) , (D2, V2)) ≤ Iz((D2, V2) , (D1, V2)) + Iz((D1, V1) , (D1, V2))

=
1

2
tr(ln(D−1

1 D2)2) + tr(D1(V1 − V2)(V1 − V2)∗)

Thus, the upper bound for the information distance with respect to z is given by

Iz((D1, V1) , (D2, V2)) ≤ 1

2
tr(ln(D−1

1 D2)2) + ...

min(tr(D2(V1 − V2)(V1 − V2)∗), tr(D1(V1 − V2)(V1 − V2)∗))
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5 Optimization Method

In this section, we will first review the maximum likelihood estimator and Newton step.

We then introduce the fisher scoring algorithm which is used in the improved band fraction

estimation algorithm. The numerical results are provided, comparing to the factor model

and band fraction without fisher scoring.

5.1 Maximum Likelihood Estimators

Maximum-likelihood estimation (MLE) is a way of estimating the parameters of a statistical

model [105]. Given a statistical model and applied to a data set, maximum-likelihood

estimation gives estimates for models’s parameters. In general, it selects the set of parameter

values that maximizes the likelihood function.

Suppose an i.i.d. sample X = (X1, X2, ..., Xn) from a distribution with pdf f(x; θ), the

likelihood function is

L(θ|X) =

n∏
i=1

f(xi; θ)

The log likelihood function is

logL(θ|X) =

n∑
i=1

log f(xi; θ)

The maximum likelihood estimator is given by

θ̂ = arg max
θ∈Θ

logL(θ|X)

As the sample size n goes to infinity, the maximum-likelihood estimator has the following

properties

1. Consistency: the sequence of maximum-likelihood estimators converges to the true

value in probability

θ̂MLE
p→ θ0

2. Asymptotic normality: as n increases, the distribution of the maximum-likelihood

estimator tends to the Gaussian distribution, with mean θ and covariance matrix as the

inverse of the Fisher information matrix

√
n(θ′MLE − θ0)

d→ N(0, I(θ)−1)
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3. Functional invariance: if θ̂ is the maximum-likelihood estimator of θ, then maximum-

likelihood estimator of g(θ) is g(θ̂), for any function g(θ).

4. Effi ciency: maximum-likelihood estimator achieves the Cramer-Rao lower bound as n

goes to infinity.

5.2 Gradient descent method

Gradient descent is a first-order optimization algorithm. To find a local minimum of a

function f(x) using gradient descent, one takes steps proportional to the negative of the

gradient ∇f(x) (or of the approximate gradient) of the function at the current point.

The procedure of Gradient descent method is as follows:

given a starting point x ∈ dom f

repeat

1) ∆x := −∇f(x)

2) Line search. Choose step size t via exact or backtracking line search.

3) Update. x := x+ t∆x.

Until stopping criterion is satisfied.

5.3 Newton’s Method

Given a function f(x), for x ∈ dom f, the vector

∆xnt = −∇2f(x)−1∇f(x)

is called the Newton step [49]. The positive definiteness of ∇2f(x) shows that

∇2f(x)T∆xnt = −∇f(x)T∇2f(x)−1∇f(x) < 0

unless ∇f(x) = 0 (then x is the optimal point). The Newton step is also the steepest

descent direction at x, with respect to the quadratic norm defined by the Hessian function

∇2f(x)

‖u‖∇2f(x) = (uT∇2f(x)u)1/2

Thus, Newton’s method can be considered as one of the steepest descent methods.

The procedure of Newton’s method is:

Given a starting point x ∈ dom f, tolerance ε > 0, repeat:
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1. Compute the Newton step and decrement

∆xnt := −∇2f(x)−1∇f(x); λ2 := ∇f(x)T∇2f(x)−1∇f(x)

2. Stopping criterion. quit if λ2/2 ≤ ε

3. Line search. Choose step size t by backtracking line search.

4. Update. x := x+ t∆xnt.

Newton step is independent of linear affi ne changes of coordinates and insensitive to

the condition number of the sublevel sets of the objective. In general, the convergence of

Newton’s method is rapid.

5.4 Fisher Scoring Algorithm

In statistics, Fisher’s scoring algorithm is a form of Newton’s method and is used to solve

the maximum likelihood problem numerically.

Let Y1, ..., Yn be i.i.d. random variables with twice differentiable p.d.f. f(y; θ). To the

calculate the maximum likelihood estimator θ∗, suppose we have a starting point θ0, and

the score function V (θ). The Talor expansion of V (θ) about θ0 is

V (θ) ≈ V (θ0)− J(θ0)(θ − θ0)

where

J(θ0) = −
n∑
i=1

∇∇T |θ=θ0 log f(Yi; θ)

is the observed information matrix about θ0. Using V (θ∗) = 0

θ∗ = θ0 + J−1(θ0)V (θ0)

therefore, we have the update formula of the algorithm

θm+1 = θm + J−1(θm)V (θm)

and it is shown that under certain regularity conditions, the algorithm converges θm →

θ∗.

In practice, we can use the Fisher information matrix instead.

I(θ) = E(J(θ))

which gives us the Fisher scoring algorithm

θm+1 = θm + I−1(θm)V (θm)
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5.5 Conjugate Gradient Method

Conjugate gradient methods are widely used for unconstrained optimization [49]

min{f(x) : x ∈ Rn}

where f : Rn → R is a continuously differentiable function, bounded from below. A

nonlinear conjugate gradient method generates a sequence xk, k ≥ 1, starting from an

initial guess x0 ∈ Rn, using the recurrence

xk+1 = xk + αkdk

where the positive step size αk is obtained by a line search, and the directions dk are

generated by the rule

dk+1 = −gk+1 + βkdk

d0 = −g0

here βk is the conjugate gradient update parameter and gk = ∇f(xk)T . Let yk =

gk+1 − gk. Following are several different choices of βk

βHSk =
gTk+1yk

dTk yk
(Hestenes and Stiefel)

βFRk =
‖gk+1‖2

‖gk‖2
(Fletcher and Reeves)

βDYk =
‖gk+1‖2

dTk yk
(Dai and Yuan)

5.6 Line Search Method

Exact line search is one of the line search methods. The step size t is chosen to minimize

f(x) along the line {x+ t∆x | t ≥ 0} :

t = arg min
s≥0

f(x+ s∆x)

It is used when the cost of the minimization is low compared to the cost of computing

the line search direction.

In practice, we usually use inexact line search. That is, the step size is chosen such that

f(x) is approximately minimized along the line {x+ t∆x | t ≥ 0} . Backtesting line search

is one inexact line search method appears to be simple and effective:
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Given a descent direction ∆x for f at x ∈ dom f, α ∈ (0, 0.5), β ∈ (0, 1).

t := 1.

while f(x+ t∆x) > f(x) + αt∇f(x)T∆x,

t := βt.

Backtracking line search stops when the step size t satisfies

t = 1, or t ∈ (βt0, t0]

The termination conditions for the CG line search are often based on some version of

the Wolfe conditions. The standard Wolfe conditions are

f(xk + αkdk)− f(xk) ≤ δαkg
T
k dk

gTk+1dk ≥ σgTk dk

where dk is a descent direction and 0 < δ ≤ σ < 1. The strong Wolfe conditions are

f(xk + αkdk)− f(xk) ≤ δαkg
T
k dk

|gTk+1dk| < −σgTk dk

Ideally, we would like to terminate the line search in a CG algorithm when the standard

Wolfe conditions are satisfied. For some CG algorithms, however, stronger versions of the

Wolfe conditions are needed to ensure convergence and to enhance stability.

5.7 First Derivatives of Information Distance of Band Fraction

The procedure of band fraction estimation with the MLE is:

Given the sample covariance from the observed data x and tolerance τ :

1. Calculate the semiseparable approximation S.

2. Decompose S into the band matrix (M0, N0), which could be used as the initial point

in Fisher scoring algorithm.

3. Compute the first derivative and Fisher information matrix for any given (M,N) and

update the parameters based on the updating formula.

4. Find the optimal band fraction representation (M,N) which gives the maximum log

likelihood estimator under the given tolerance τ .

However, MLE does not necessarily guarantee the minimum information distance esti-

mator. In most applications, we would prefer the minimum information distance estimator.
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Let us consider the information distance between two covariance matrices Σ1 and Σ2

I2 =
1

2

n∑
k=1

(log λk)
2

where λk are the eigenvalues of Σ
−1/2
1 Σ2Σ

−1/2
1 . In the covariance estimation Σ1 would be

the sample covariance matrix and Σ2 = (M−1N)(M−1N)∗ is the band fraction estimation

to Σ1. We can rewrite this formula as

I2 =
1

2
trace(log(Σ

−1/2
1 Σ2Σ

−1/2
1 ) log(Σ

−1/2
1 Σ2Σ

−1/2
1 )∗)

=
1

2
trace(log(Σ

−1/2
1 Σ2Σ

−1/2
1 ) log(Σ

−1/2
1 Σ2Σ

−1/2
1 ))

=
1

2
trace(log(Σ

−1/2
1 (M−1N)(M−1N)∗Σ

−1/2
1 ) log(Σ

−1/2
1 (M−1N)(M−1N)∗Σ

−1/2
1 ))

where we use the fact that log(Σ
−1/2
1 Σ2Σ

−1/2
1 ) = log(Σ

−1/2
1 Σ2Σ

−1/2
1 )∗ since log(Σ

−1/2
1 Σ2Σ

−1/2
1 )

is symmetric matrix.

Let us calculate the first derivative of I2

∂I2

∂Mij
=

1

2
tr(2(Σ

−1/2
1 (M−1N)(M−1N)∗Σ

−1/2
1 )−1 Σ

−1/2
1 (M−1N)(M−1N)∗Σ

−1/2
1

∂Mij
× ...

× log(Σ
−1/2
1 (M−1N)(M−1N)∗Σ

−1/2
1 ))
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1/2
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1 M−1EijM
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−Σ
−1/2
1 M−1NN∗M−∗EjiM
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M1 = M−1NN∗M−∗Σ
−1/2
1 log(Σ

−1/2
1 (M−1N)(M−1N)∗Σ

−1/2
1 ))Σ

1/2
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1 log(Σ
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1 (M−1N)(M−1N)∗Σ
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1

then
∂I2

∂Mij
= −(M1)ji − (M2)ij

36



Similarly, let us calculate ∂I2

∂Nij

∂I2

∂Nij
=

1

2
tr(2(Σ
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N1 = N∗M−∗Σ
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1 log(Σ
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Then
∂I2

∂Nij
= (N1)ji + (N2)ij

We can use the conjugate gradient method to get the local minimum information distance

estimator for the covariance matrix with good initial starting point.

5.7.1 Log Band Fraction Structure for Covariance Matrix

Instead of assuming the band fraction structure of the covariance matrix, we propose to use

the band fraction structure to the logarithm of the covariance matrix Σ. That is,

log Σ = (M−1N)(M−1N)∗

Since the sample covariance matrix is semidefinite positive, we can not take logarithm

to the sample covariance directly. One way to solve with this is to use shrinkage. We can

also do a higher order band fraction approximation to the sample covariance matrix to make

it positive definite. We also need to scale the covariance matrix to a make the minimum

eigenvalue of the sample covariance greater than 1.
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5.8 Empirical Results

In this section, we compare the factor model, band fraction approximation and log band

fraction approximation in terms of information distance and Hellinger distance. We compare

the results based on both randomly generated data and empirical price data from S&P 500.

5.8.1 Randomly Generated Covariance Matrix

First, let us assume that we have a randomly generated covariance matrix Σ where Σ is a

n× n matrix. We generate samples from the distribution N(0,Σ). We apply factor model,

band fraction, and log band fraction approximation to the sample covariance Σ̂, respectively.

There are many measures we can use to assess the quality of the approximation methods.

Here we calculate the log likelihood, Hellinger distance and information distance between

the approximated covariance matrix and the true covariance matrix. We use n = 100 as the

dimension size and choose d = 30 as the number of factors and d + 1 as the bandwidth of

M and N . We randomly test for N = 1000 cases. Following figure shows the information

distance for factor model, band fraction and log band fraction for the N randomly generated

cases.
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Figure 1: information distance for factor model, band fraction approximation, and log band

fraction approximation for randomly generated covariance matrix with N=1000

We can see that log band fraction approximation gives the minimum information distance

among the three methods, while factor model gives the worst approximation in terms of

information distance. In order to see how much it improves, we can compute the relative

difference between information distances

relative diff =
dist1− dist2

dist1

Following figure shows the relative difference between the information distances from

band fraction and log band fraction approximation. We can see that the distance is improved

by adopting the log band fraction structure for the covariance matrix.
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Figure 2: Relative difference of information distances of band fraction and log band frac-

tion approximation ((distband-distlog band)/(distband)) for randomly generated covariance

matrix

We can also compare the Hellinger distance for those methods. In the following figure, we

can see that while factor model and band fraction give approximation with Hellinger distance

close to 1, log band fraction is giving smaller Hellinger distance between the approximated

matrix and the true covariance matrix.
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Figure 3: Hellinger distance for factor model, band fraction approximation, and log band

fraction approximation for randomly generated covariance matrix with N=1000

5.8.2 Random Covariance Matrix with Factor Structure

What if the true covariance matrix actually has a factor structure ? Let us assume that the

covariance matrix Σ = D + V V ′ where D is n × n and V is n × p. Similar as the previous

section, we use factor model, band fraction and log band fraction to get the approximated

covariance matrix with d < p. Following figure shows that log band fraction still gives better

approximation than the factor model and band fraction even when the true covariance matrix

is assumed to be factor structure.
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Figure 4: Information distance for factor model, band fraction approximation, and log band

fraction approximation for covariance matrix with factor structure with N=1000

We can see that the log band fraction is still outperforming the band fraction approxi-

mation in the this case.
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Figure 5: Relative difference of information distances of band fraction and log band frac-

tion approximation ((distband-distlog band)/(distband)) for covariance matrix with factor

structure

Similarly, we can compute the Hellinger distance. We can see that in this case log band

fraction still outperform others in terms of Hellinger distance.
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Figure 6: Hellinger distance for factor model, band fraction approximation, and log band

fraction approximation for covariance matrix with factor structure with N=1000

5.8.3 Empirical sample covariance matrix

Here we compare the performance of the factor model, band fraction and log band fraction

with the sample covariance matrix from the empirical data. We download the daily close

prices of S&P 500 symbols from 01-01-2000 to 03-20-2015. We select the symbols with price

history since 01-01-2000. There are totally 385 symbols and 3827 trading days. We compute

the sample covariance of the 385 symbols with 3827 days of prices. Then we apply factor

model, band fraction approximation, and log band fraction approximation to the sample

covariance matrix with difference choices of d. Following table shows that as d increases,

the information distance of log band fraction is getting smaller, and log band fraction is

outperforming band fraction and factor model consistently.
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Table 5.1: Information distance of factor model, band fraction, and log band fraction with

different d

Information Distance d = 10 d = 20 d = 30 d = 40 d = 50 d = 60 d = 70

Factor Model 109.0676 176.4427 152.5030 93.2462 110.2154 111.1381 37.8097

Band Fraction 63.5563 46.8955 37.0726 30.1355 24.3670 19.6291 15.6979

Log Band Fraction 61.4488 45.7505 35.9972 28.9177 23.2126 18.5553 14.5000

5.8.4 Portfolio Selection with Log Band Fraction

Here we compare the performance of the factor model, band fraction and log band fraction

in portfolio optimization with empirical data. We use the same data set as in the previous

section. That is, the daily close prices of S&P 500 symbols from 01-01-2000 to 03-20-2015.

We will consider a simple Markowitz optimization problem as following

min
1

2
wTΣw − rTw

s.t wT e = 1

We use tomorrow’s realized log return as today’s expected return r. Then we use the

three approximation methods with d = 30. That is, we keep all parts the same except

the covariance estimation. Also, we assume there is no transaction cost here. We run the

simulation from 07-10-2013 to 03-20-2015 with a moving window of 2 years for covariance

estimation. Following figure shows that log band fraction is outperforming factor model and

band fraction.
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Figure 7: Equity curve with covariance estimation with factor model, band fraction, and

log band fraction approximation.

Improved Factor Model Estimation Method with Log Band Fraction

46



6 Low Volatility Strategy with Log Band Fraction

In this section, we will propose our long-only strategy and 130-30 fund strategy. We optimize

our portfolio based on our risk estimation with log band fraction approximation technic. We

will compare our long-only strategy to SPY and SPLV, which are the ETFs for S&P 500

index and SP5LVI index. We will also compare our 130-30 fund to CSM, which is the ETF

of CS13030 index. Moreover, we will apply the log band fraction to estimate the expected

return of the stocks to further improve the performance of our strategies. We will show that

structured covariance estimation helps reduces the noise in the expected return estimation.

In the strategies we proposed, we assume five base point as the transaction cost and an

evolving universe. Therefore, all the strategies we proposed are totally investable.

6.1 Long Only Strategy

Let us consider the following optimization problem

min
1

2
wTΣw

s.t l ≤ w ≤ u

wT e = 1

where Σ is the covariance matrix, l is the lower bound and u is the upper bound for of

the portfolio weights.

In the long only portfolio, the lower bound of portfolio weights are all zeros and we use

5% as the upper bound for the portfolio weights. We assume 5 base point as the transaction

cost. For the symbols in S&P 500, 5 base point is actually well above the average cost.

We rebalance the portfolio quarterly, same as SPLV did, which makes it a fair comparison.

We start the simulation since 05-05-2011, the launch day of the SPLV ETF. The Following

figure shows that our strategy with log band fraction is outperforming others.
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Figure 8: Equity curve of long only strategy by using factor model, band fraction, and log

band fraction as the risk estimation.

Following table shows the Sharpe ratio of the strategies during different period. The

strategy with log band fraction approximation has a Sharpe ratio of 1.6815 from 05-05-2011

to 03-20-2015.

Table 6.1: Sharpe ratio of long only portfolio

Sharpe Ratio SPY SPLV Factor Model Band Fraction Log Band Fraction

whole history 0.8857 1.1762 1.2792 1.4131 1.6815

Last 1 year 1.2246 1.6023 1.3035 1.6909 1.7630

Last 2 years 1.5006 1.3582 1.6088 1.5985 1.8829

Last 3 years 1.2998 1.4883 1.6269 1.7075 1.9197
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We also compute the correlation between various strategies. We can see that the strate-

gies using factor model, band fraction, and log band fraction are all having higher correlation

with SPLV than SPY, which is reasonable since they mainly focused on the minimization

of the portfolio variance.

Table 6.2: Correlation between long only strategies

Correlation Factor Model Band Log Band

SPY 0.7876 0.8490 0.8842

SPLV 0.8898 0.9340 0.9164

The maximum drawdown by using the log band fraction is much smaller than the bench-

marks. During the whole history of simulation, SPY and SPLV have maximum drawdown

of 20.29% and 13.34%, respectively, while band fraction and log band fraction only has a

maximum drawdown of 9.74% and 10.86%.

Table 6.3: Maximum drawdown of long only strategies

Maximum drawdown (100%)

SPY 0.2029

SPLV 0.1334

Factor Model 0.1021

Band Fraction 0.0974

Log Band Fraction 0.1086

Following figure shows the total long position and total short position over the simula-

tion period. Notice that the portfolio is rebalanced quarterly. Therefore, we can observe

quarterly rebalanced behavior through the total long position size.
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Figure 9: Total long and total short position of long only portfolio with log band fraction

6.2 130-30 fund strategy

Consider the following optimization problem

min
1

2
wTΣw

s.t l ≤ w ≤ u

sum(w(w > 0)) = total_long

sum(w(w < 0)) = −total_short

We will solve the optimization problem by splitting the portfolio weights w into buy and

sell positions

w = b− s
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where

b ◦ s =


b1s1

b2s2

...

bnsn

 = 0

b ≥ 0

s ≥ 0

therefore, constraints of total long and short can be written as

bT e = total_long

sT e = total_short

We would convert those two strict constraints to soft constraints by adding following

terms to the objective function

(bT e− total_long)(bT e− total_long)T

= bT eeT b− 2 ∗ total_long ∗ eT b+ (total_long)2

(sT e− total_short)(sT e− total_short)T

= sT eeT s− 2 ∗ total_short ∗ eT s+ (total_short)2

The complementary condition

b ◦ s = 0

can be achieved by adding the term

bT Is
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Thus, the objective function becomes

1

2
(b− s)TΣ(b− s) + (bT e− total_long)2 + (sT e− total_short)2 + bT Is

=
1

2

 b

s

T  I

−I

Σ
[
I −I

] b

s

+

 b

s

T  eeT

eeT

 b

s

+ ...

+

 −2 ∗ total_long ∗ e

−2 ∗ total_short ∗ e

T  b

s

+ bT Is+ constant

=
1

2

 b

s

T  Σ + 2eeT −Σ + I

−Σ + I Σ + 2eeT

 b

s

+

 −2 ∗ total_long ∗ e

−2 ∗ total_short ∗ e

T  b

s

+ constant

By setting x =

 b

s

 , we can rewrite the optimization problem as

min
1

2
xT

 Σ + 2eeT −Σ + I

−Σ + I Σ + 2eeT

x+

 −2 ∗ total_long ∗ e

−2 ∗ total_short ∗ e

T x
s.t. 0 ≤ x ≤ u

which is a quadratic optimization problem with box constraints.

We use total_long = 1.3 and total_short − 0.3 to get the 130-30 fund. The upper

bound u is set to be 0.05, same as in the long only strategy. Following figure shows the

quity curve of the 130-30 fund strategy with factor model, band fraction, and log band

fraction estimation.
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Figure 10: Equity curve of 130-30 strategy by using factor model, band fraction, and log

band fraction as the risk estimation.

We can also compare Sharpe Ratio of these equity curves. Portfolio with log band

fraction has the highest Sharpe ratio among these strategies. One observation is that the

130-30 fund ETF, CSM, is underperforming the long only ETF, SPLV, since 2011.

Table 6.4: Sharpe ratio of 130-30 portfolio

Sharpe Ratio SPY CSM Factor Model Band Fraction Log Band Fraction

whole history 0.8857 0.9026 1.1853 1.4095 1.5894

Last 1 year 1.2246 1.2990 1.1652 1.5067 1.6770

Last 2 years 1.5006 1.6189 1.0956 1.2507 1.3700

Last 3 years 1.2998 1.4050 1.3149 1.6117 1.6812
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Again, we can compare other portfolio statistics such as correlation as shown in the

following table.

Table 6.5: Correlation between 130-30 strategies

Correlation Factor Model Band Log Band

SPY 0.3981 0.6240 0.7261

CSM 0.3855 0.6035 0.7112

In terms of maximum drawdown, the log band fraction portfolio is having the smallest

number as well. Also notice that CSM is suffering larger drawdown during 2011 than SPY,

even thougth CSM is providing hedge using short position.

Table 6.6: Maximum drawdown of 130-30 strategies

Maximum drawdown (100%)

SPY 0.2029

CSM 0.2225

Factor Model 0.1059

Band Fraction 0.0865

Log Band Fraction 0.0835

The log band fraction portfolio is rebalanced monthly, same as CSM did. Following

figure shows the total long and short position.
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Figure 11: Total long and total short position of 130-30 portfolio with log band fraction

6.3 Expected Return From Structured Covariance Estimation

Here we will show that we can improve the sample mean estimation by using structured

covariance estimation. Given the sample x from the normal distribution N(µ,C2), we have

the following equations

E (x) = µ

E (xx∗) = C2 + µµ∗

E

 1

x

 [1 xT ]
 =

 1 µ∗

µ C2 + µµ∗


Thus, we can calculate the sample mean from the above equations by using structured

covariance matrix estimation. Next, we will apply this to the long only strategy and 130-30

strategy, with expected return added in the optimization.
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6.4 Long Only Strategy with Structured Expected Return

Let us add the expected return to the long only optimization problem

min
1

2
wTΣw − rTw

s.t l ≤ w ≤ u

wT e = 1

Again, we rebalance our portfolio quarterly, same as SPLV did. The lower and upper

bound are the same as the one in the long only strategy without expected return embedded.

Following figure shows that the structured expected return could helps reduce the noise in

the equity curve.
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Figure 12: Equity curve of long only with expected return strategy by using log band fraction
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We can see the effect of structured expected return more clearly by comparing the Sharpe

ratio. The log band fraction embedded with structured expected return is outperforming

other strategies.

Table 6.7: Sharpe ratio of long only portfolio with expected return embeded

Sharpe Ratio SPY SPLV Log Band & sample mean Log Band & structured r

whole history 0.8857 1.1762 1.6985 1.7298

Last 1 year 1.2246 1.6023 1.6354 1.8446

Last 2 years 1.5006 1.3582 1.9760 1.9946

Last 3 years 1.2998 1.4883 1.9588 1.9865

Following table shows the correlation of our strategies with the benchmarks. The corre-

lation between SPY and log band fraction with structured expected return is 0.8847, while

the correlation between SPLV and log band fraction with structured expected return is

0.9171.

Table 6.8: Correlation between long only strategies with expected return embeded

Correlation Log Band_Sample Mean Log Band_Structured r

SPY 0.8794 0.8847

SPLV 0.9069 0.9171

Also, let us compare the maximum drawdown of those strategies. In this case, log band

fraction with structured expected return has the smallest maximum drawdown among these

strategies.

Table 6.9: Maximum drawdown of long only strategies with expected return embeded

Maximum drawdown (100%)

SPY 0.2029

SPLV 0.1334

Log Band_Sample Mean 0.1131

Log Band_Structured r 0.1083

The portfolio is rebalanced quarterly. Following figure shows the total long and short
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position size of log band fraction portfolio through time.
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Figure 13: Total long and total short position of long only portfolio with log band fraction

and structured expected return embedded
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7 Conclusion

In this thesis, we compute the information matrix and metric tensor of band fraction rep-

resentation of covariance matrix. We compute the first derivative of information distance

of band fraction representation. We propose log band fraction structure to the covariance

matrix. We compare the log band fraction approximation to factor model and band fraction

approximation. We show that log band fraction is outperforming factor model and band

fraction in terms of information distance and Hellinger distance.

We apply log band fraction to construct low volatility strategies. We propose our long

only strategy and 130-30 strategy with log band fraction in the covariance estimation. Fur-

thermore, we show that structured covariance estimation can be used to get the structured

sample mean, which could used to improve the performance of strategies. Our strategies

are shown to significantly outperform the widely used benchmarks, i.e., SPY, SPLV, CSM.
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A Appendix: Computation of Kullback-Leibler diver-

gence

In probability theory and information theory [107] [108] [109], the Kullback—Leibler diver-

gence (KLD) measures the difference between two probability distributions P and Q. The

Kullback-Leibler divergence from P to Q measures the information lost when we approxi-

mate P with Q.

Definition 3. Kullback-Leibler divergence: For distributions P and Q of a continuous

random variable, Kullback-Leibler divergence is defined as

DKL (P ||Q) =

∫ ∞
−∞

p (x) log

(
p (x)

q (x)

)
dx

where p and q are the probability densities of P and Q.

Typically P is the real distribution of data or observations, while Q represents a model

or approximation of P.

From Gibbs’inequality, it can be shown that the Kullback-Leibler divergence is always

non-negative

DKL (P ||Q) ≥ 0

with equality if and only if P = Q almost everywhere.

Consider two multivariate Gaussian distributions P1

(
µ1, C

2
1

)
and P2

(
µ2, C

2
2

)
, the prob-

ability densities are given as

p1 (x1, · · · , xk) =
1

(2π)
k
2 det (C2

1 )
1
2

exp

(
−1

2
(x− µ1)

T
C−2

1 (x− µ1)

)
p2 (x1, · · · , xk) =

1

(2π)
k
2 det (C2

2 )
1
2

exp

(
−1

2
(x− µ2)

T
C−2

2 (x− µ2)

)
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the Kullback-Leibler divergence from P1 to P2 is given as

DKL

(
P1

(
µ1, C

2
1

)
||P2

(
µ2, C

2
2

))
=

∫
p1 log

p1

p2
dx

=

∫
p1

log
det
(
C2

2

) 1
2

det (C2
1 )

1
2

+
1

2
(x− µ2)

T
C−2

2 (x− µ2)− 1

2
(x− µ1)

T
C−2

1 (x− µ1)

 dx
= log

detC2

detC1

∫
p1dx+

1

2

∫
p1tr

(
(x− µ2)

T
C−2

2 (x− µ2)
)
dx− 1

2

∫
p1tr

(
(x− µ1)

T
C−2

1 (x− µ1)
)
dx

= log
detC2

detC1
+

1

2

∫
p1tr

(
C−2

2 (x− µ2) (x− µ2)
T
)
dx− 1

2

∫
p1tr

(
C−2

1 (x− µ1) (x− µ1)
T
)
dx

= log
detC2

detC1
+

1

2
E
[
tr
(
C−2

2 (x− µ2) (x− µ2)
T
)]
− 1

2
E
[
tr
(
C−2

1 (x− µ1) (x− µ1)
T
)]

= log
detC2

detC1
+

1

2
tr
[
C−2

2 E
(

(x− µ2) (x− µ2)
T
)]
− 1

2
tr
[
C−2

1 E
(

(x− µ1) (x− µ1)
T
)]

= log
detC2

detC1
+

1

2
tr
[
C−2

2 E
(

(x− µ1 + µ1 − µ2) (x− µ1 + µ1 − µ2)
T
)]
− 1

2
tr (I)

= log
detC2

detC1
+

1

2
tr
[
C−2

2 E
(

(x− µ1) (x− µ1)
T

+ (µ1 − µ2) (µ1 − µ2)
T
)]
− 1

2
tr (I)

= log det
(
C−1

1 C2

)
− 1

2
trI +

1

2
tr
((
C−1

2 C1

)2)
+

1

2
(µ1 − µ2)

T
C−2

2 (µ1 − µ2)

For the special case µ1 = µ2 = 0, C2
2 = I, that is, the Kullback-Leibler divergence

between a zero-mean multivariate Gaussian distribution and a white noise is given as

DKL (P1||P2) = log det
(
C−1

1

)
− 1

2
trI +

1

2
tr
(
C2

1

)
= log

k∏
i=1

√
1

λi
+

1

2

k∑
i=1

λi −
1

2
k

= −1

2

k∑
i=1

log λi +
1

2

k∑
i=1

λi −
1

2
k

where λi are the eigenvalues of C2
1 .

B Appendix: Computation of Hellinger distance

The definition of Hellinger distance in Lehmann [105] is as follows

Definition 4. Hellinger distance: Let P1 and P2 be probabilities. The Hellinger distance

H(P1, P2) between P1 and P2 is given by

H2 (P1, P2) =
1

2

∫ [√
p1 (x)−

√
p2 (x)

]2
dµ (x)
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where pi is the density of Pi with respect to any measure µ dominating P1 and P2.

The Hellinger distance defines a metric. Let ρ (P1, P2) be the affi nity between P1 and

P2, defined as

ρ (P1, P2) =

∫ √
p1 (x) p2 (x)dµ (x)

then

H2 (P1, P2) = 1− ρ (P1, P2)

By the Cauchy-Schwarz inequality,

0 ≤ ρ (P1, P2) ≤ 1

and

ρ (P1, P2) = 1

if and only if P1 = P2.

Furthermore,

ρ (P1, P2) = 0

if and only if P0 and P1 are mutually singular. It follows that H (P1, P2) = 0 if and only

if P1 = P2.

The following theorem shows that Hellinger distance and total variation distance generate

the same topology.

Theorem 2. The Hellinger distance and total variation distance satisfy

H2 (P1, P2) ≤ 1

2
‖P1 − P2‖1 ≤ H (P1, P2)

∣∣∣2−H (P1, P2)
2
∣∣∣1/2

Consider two zero-mean multivariate Gaussian distributions P1

(
x, 0, C2

1

)
and P2

(
x, 0, C2

2

)
,

the affi nity between P1 and P2 is

ρ (P1, P2) =

∫ √
p1 (x) p2 (x)dµ (x)

=

∫
1

(2π)
k
2 det (C1)

1
2 det (C2)

1
2

exp

(
−1

4
xT
(
C−2

1 + C−2
2

)
x

)
dµ (x)

=
det
(
C−2
1 +C−2

2

2

)− 1
2

det (C1)
1
2 det (C2)

1
2

∫
1

(2π)
k
2 det

(
C−2
1 +C−2

2

2

)− 1
2

exp

(
−1

2
xT
(
C−2

1 + C−2
2

2

)
x

)
dµ (x)

= det

(
C−2

1 + C−2
2

2

)− 1
2

det (C1)
− 1
2 det (C2)

− 1
2
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therefore, the Helllinger distance between P1 and P2 is

H2 (P1, P2) = 1− det

(
C−2

1 + C−2
2

2

)− 1
2

det (C1)
− 1
2 det (C2)

− 1
2

For the special case C2 = I, we can further simplify the formula

H2 (P1, P2) = 1− det

(
C−2

1 + I

2

)− 1
2

det (C1)
− 1
2 det (I)

− 1
2

= 1−
k∏
i=1

(
λ−1
i + 1

2

)− 1
2

λ
− 1
4

i

= 1−
k∏
i=1

(
λ
− 1
2

i + λ
1
2
i

2

)− 1
2

= 1−
k∏
i=1

(
2

λ
1
2
i + λ

− 1
2

i

) 1
2

C Appendix: Total Variation Distance and Information

Distance

C.1 Total Variation Distance

Definition 5. Total Variation Distance: The total variation distance between two probability

distributions P1 and P2 is defined as

‖P1 − P2‖1 =

∫
|p1 − p2| dµ

and is independent of the dominating measure µ.

It is easy to see that total variation distance is a metric. Total variation distance controls

hypothesis testing. Unfortunately, this quantity is often diffi cult to compute, but it relates

to other distances which are easy to compute such as Hellinger distance.

C.2 Information Distance

Information distance corresponds to the Fisher information matrix. Given a transfer func-

tion f (z) and g (z)

log
f (z)

g (z)
= a0 + a1z + a2z

2 + · · ·
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the Information distance between f (z) and g (z) is∥∥∥∥log
f (z)

g (z)

∥∥∥∥2

H2(D)

= |a0|2 + |a1|2 + |a2|2 + · · ·

For the case g (z) = 1, the Information distance from f (z) to white noise is

‖log f (z)‖2H2(D) = f2
0 + f2

1 + f2
2 + · · ·

Specifically, the Information distance between two Gaussian distributions P1

(
0, C2

1

)
and

P2

(
0, C2

2

)
is

I2 =
1

2

n∑
k=1

(log λk)
2

where λk are the eigenvalues of C
−2
1 C2

2 .

D Appendix: Diagonal Iteration and Convergence Proof

via KKT Equations

In this section, we will discuss the diagonal iteration, which is a fast algorithm for solving

quadratic programming with box constraints. We will show the convergence proof via KKT

Equations.

D.1 KKT conditions for Diagonal Iteration

The problem considered here is

min
1

2
xTΣx+ fTx =

1

2
xTDx+ (f +

1

2
V V ∗x)∗x

subject to l � x � u

The KKT conditions for this original problem are

l − x � 0

x− u � 0

λ � 0

v � 0

Dx+ f + V V ∗x− λ+ v = 0

λi(li − xi) = 0, i = 1, ...

vi(xi − ui) = 0, i = 1, ...

64



The approximate problem

min
1

2
xTDx+ (f + V V ∗xk)∗x

subject to l � x � u

where xk is fixed

xk+1 = arg min
l�x�u

1

2
xTDx+ (f + V V ∗xk)∗x

The KKT conditions for the approximate problem are

l − xk+1 � 0

xk+1 − u � 0

λk+1 � 0

vk+1 � 0

Dxk+1 + f + V V ∗xk − λk+1 + vk+1 = 0

λ(k+1)i(li − x(k+1)i) = 0, i = 1, ...

v(k+1)i(x(k+1)i − ui) = 0, i = 1, ...

Here λk+1 and vk+1 are the langrange multipliers correspond to xk+1. λ(k+1)i means the

ith component of λk+1.

The dual problem for solving λk+1 and vk+1 is complicated and hard to get explicit

expressions for λ and v for the approximate problem.
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D.2 Convergence proof via comparison with central path

Now let us consider the Interior Point method for solving the original problem. The equiv-

alent KKT conditions for the Interior Point method are

l − x � 0

x− u � 0

λ � 0

v � 0

Dx+ f + V V ∗x− λ+ v = 0

−λi(li − xi) =
1

t
, i = 1, ...

−vi(xi − ui) =
1

t
, i = 1, ...

Here t > 0. As t→∞, the point in the central point will approach the optimal point x∗.

For the approximate problem, if at each step we use Interior Point method to get xk+1

based on xk (actually, we know that we do not need to use Interior Point method for the

approximate problem since it is simple engough)

l − xk+1 � 0

xk+1 − u � 0

λk+1 � 0

vk+1 � 0

Dxk+1 + f + V V ∗xk − λk+1 + vk+1 = 0

−λ(k+1)i(li − x(k+1)i) =
1

M
, i = 1, ...

−v(k+1)i(x(k+1)i − ui) =
1

M
, i = 1, ...

As M →∞, the solution approaches xk+1.

Remark: notice the difference between the two solutions obtained from Interior Point

method here. For t→∞, the solution x∗ is the final optimal point for the original problem.

However, for M →∞, we get xk+1, which is only the result of one step.

Let us compare the two equations

Dxk+1 + f + V V ∗xk − λk+1 + vk+1 = 0

Dx+ f + V V ∗x− λ+ v = 0
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use

−λi(li − xi) =
1

t
, i = 1, ...

−vi(xi − ui) =
1

t
, i = 1, ...

−λ(k+1)i(li − x(k+1)i) =
1

M
, i = 1, ...

−v(k+1)i(x(k+1)i − ui) =
1

M
, i = 1, ...

we get

λ = −1

t



1
l1−x1

.

.

.

1
ln−xn



v = −1

t



1
x1−u1

.

.

.

1
xn−un



λk+1 = − 1

M



1
l1−x(k+1)1

.

.

.

1
ln−x(k+1)n



vk+1 = − 1

M



1
x(k+1)1−u1

.

.

.

1
x(k+1)n−un


then

Dxk+1 + f − V V ∗xk − λk+1 + vk+1 = 0

Dx+ f − V V ∗x− λ+ v = 0
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becomes

Dxk+1 + f + V V ∗xk +
1

M



1
l1−x(k+1)1

.

.

.

1
ln−x(k+1)n


− 1

M



1
x(k+1)1−u1

.

.

.

1
x(k+1)n−un


= 0

Dx+ f + V V ∗x+
1

t



1
l1−x1

.

.

.

1
ln−xn


− 1

t



1
x1−u1

.

.

.

1
xn−un


= 0

substract the first equation to the second equation

D(xk+1−x)+V V ∗(xk−x)+
1

M



1
l1−x(k+1)1

.

.

.

1
ln−x(k+1)n


− 1

M



1
x(k+1)1−u1

.

.

.

1
x(k+1)n−un


−(

1

t



1
l1−x1

.

.

.

1
ln−xn


−1

t



1
x1−u1

.

.

.

1
xn−un


) = 0

use t = M (t is very large), we have

∥∥D−1V V ∗(xk − x)
∥∥ =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
xk+1 − x+

1

t
D−1



x(k+1)1−x1
(l1−x(k+1)1)(l1−x1)

.

.

.
x(k+1)n−xn

(ln−x(k+1)n)(ln−xn)


+

1

t
D−1



x(k+1)1−x1
(x(k+1)1−u1)(x1−u1)

.

.

.
x(k+1)n−xn

(x(k+1)n−un)(xn−un)



∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
=

∥∥∥∥(xk+1 − x)
T

(I +
1

t
D−1A)

∥∥∥∥
=

√
(xk+1 − x)T (I +

1

t
D−1A)(I +

1

t
D−1A)(xk+1 − x)

=

√
(xk+1 − x)T (I +

2

t
D−1A+

1

t2
D−1AD−1A)(xk+1 − x)

≥ ‖xk+1 − x‖
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where

A =



1

(l1−x(k+1)1)(l1−x1)
+ 1

(x(k+1)1−u1)(x1−u1)
0 .. 0

0 . . 0

... . . ...

0 0 . 1

(ln−x(k+1)n)(ln−xn)
+ 1

(x(k+1)n−un)(xn−un)


> 0

therefore the convergence rate is

‖xk − x‖ ≤
∥∥D−1V V ∗

∥∥k ‖x0 − x‖

D.3 Choice of Perturbation Matrix to ensure convergence

We only need to perturb matrix D in the case when

∥∥D−1V V ∗
∥∥ ≥ 1

where

D + V V ∗ > 0

D = diag {d11, ..., dnn} > 0, V V ∗ > 0

d11 ≥ d22 ≥ ... ≥ dnn

we want to choose a matrix M such that∥∥∥(D +M)
−1

(V V ∗ −M)
∥∥∥ < 1

since we want the approximate problem to be convex and as simple as possible, we need

D +M > 0

and M to be a diagonal matrix.

M = diag {m11,m22, ...,mnn}

Let us now consider a simple choice of M

M = sI, s > 0
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then

∥∥(D + sI)−1 (V V ∗ − sI)
∥∥ ≤

∥∥(D + sI)−1
∥∥ ‖V V ∗ − sI‖

=
1

dnn + s
‖V V ∗ − sI‖

since

Σ = V V ∗ = UTU∗

where

T = diag {λ1, ..., λn} > 0

λ1 ≥ ... ≥ λn are eigenvalues

UU∗ = I

the above inequality becomes

∥∥(D + sI)−1 (V V ∗ − sI)
∥∥ ≤ 1

dnn + s
‖UTU∗ − sI‖

≤ 1

dnn + s
‖U‖ ‖T − sI‖ ‖U∗‖

=
1

dnn + s
‖T − sI‖

By choosing s satisfying
1

dnn + s
‖T − sI‖ < 1

we can ensure convergence.

D.4 Existence of s

First, from the condition ∥∥D−1V V ∗
∥∥ ≥ 1

we have

1 ≤
∥∥D−1V V ∗

∥∥ =
∥∥D−1UTU∗

∥∥
≤

∥∥D−1
∥∥ ‖U‖ ‖T‖ ‖U∗‖

=
1

dnn
λ1

⇒ λ1 ≥ dnn

70



There are several cases depending on the value of s :

1) If 0 < s ≤ λn, then

1

dnn + s
‖T − sI‖ =

1

dnn + s
(λ1 − s) < 1

⇒ λ1 − s < dnn + s

⇒ λ1 − dnn < 2s

that is

0 ≤ λ1 − dnn
2

< s ≤ λn

2) If λn < s < λ1 and λ1 − s ≥ −(λn − s), that is, λn < s ≤ λ1+λn
2

then

1

dnn + s
‖T − sI‖ =

1

dnn + s
(λ1 − s) < 1

⇒ λ1 − s < dnn + s

⇒ λ1 − dnn < 2s

that is

max

{
λn,

λ1 − dnn
2

}
< s ≤ λ1 + λn

2

3) If λn < s < λ1 and λ1 − s < −(λn − s), that is λ1+λn
2 < s < λ1, then

1

dnn + s
‖T − sI‖ = − 1

dnn + s
(λn − s) < 1

⇒ s− λn < s+ dnn

⇒ λn + dnn > 0 (always satisfied)

then
λ1 + λn

2
< s < λ1

4) If s ≥ λ1, then

1

dnn + s
‖T − sI‖ = − 1

dnn + s
(λn − s) < 1

⇒ s− λn < s+ dnn

⇒ λn + dnn > 0 (always satisfied)

then

s ≥ λ1
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Observe the above four cases, we can see that for case 3 and case 4, by choosing

s ≥ λ1 + λn
2

we can have ∥∥(D + sI)−1(V V ∗ − sI)
∥∥ < 1

For case 1 and case 2, however, we should first check that

0 ≤ λ1 − dnn
2

< λn (case 1)

max

{
λn,

λ1 − dnn
2

}
<

λ1 + λn
2

(case 2)

Since V is a thin and tall factor matrix, we have

λn(V V ∗) = 0

therefore, we can choose

s =
λ1

2

to ensure the convergence of the algorithm

D.5 Upper bound for iteration steps

Assume ε is the precision we want and k the interation steps required by Diagonal Iteartion.

From the convergence analysis, we have

ε = ‖xk − x∗‖ ≤
∥∥D−1V V ∗

∥∥k ‖x0 − x∗‖

Let L = ‖x0 − x∗‖. If we choose x0 be the central point of the bound l and u. Then L

is determined by the magnitude of the bound l and u.

Take logarithm of both sides of the inequality, we have

log ε ≤ k log(
∥∥D−1V V ∗

∥∥) + logL

then we can have a upper bound for the iteration steps k

k ≤ log ε− logL

log(‖D−1V V ∗‖)

The number of iteration steps needed is controled by the precision ε, the norm
∥∥D−1V V ∗

∥∥
and L, which is determined by the lower and upper bound.
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