
 

   
SSStttooonnnyyy   BBBrrrooooookkk   UUUnnniiivvveeerrrsssiiitttyyy   

 
 
 

 
 
 
 

   
   
   
   
   

The official electronic file of this thesis or dissertation is maintained by the University 
Libraries on behalf of The Graduate School at Stony Brook University. 

   
   

©©©   AAAllllll    RRRiiiggghhhtttsss   RRReeessseeerrrvvveeeddd   bbbyyy   AAAuuuttthhhooorrr...    



 

Generation of Customized  

Time Domain FIR Filter Hardware 
 

 

 

A Thesis Presented 

by 

Yujie Wu 

to 

The Graduate School 

in Partial Fulfillment of the 

Requirements 

for the Degree of 

Master of Science 

in 

Electrical Engineering 

 

 

Stony Brook University 

 

December 2013 



 

ii 

 

Stony Brook University 

The Graduate School 

 

Yujie Wu 

 

We, the thesis committee for the above candidate for the 

Master of Science degree, hereby recommend 

acceptance of this thesis. 

 

 

Peter Milder, Advisor of Thesis 

Assistant Professor, Department of Electrical and Computer Engineering 

 

 

Sangjin Hong 

Professor, Department of Electrical and Computer Engineering 

 

 

 

 

This thesis is accepted by the Graduate School 

 

 

 

Charles Taber 

Dean of the Graduate School 

  



 

iii 

 

Abstract 

Although finite impulse response (FIR) filtering is a well-known technique, it is still 

difficult to implement efficiently as hardware because the designer must choose from many 

application-specific design options, and it is difficult to choose those that best fit the 

requirements of the system. This thesis describes two design and simulation tools which 

enable easy implementation and optimization of time-domain FIR filters. The first generates 

hardware (as synthesizable Verilog) for a designer-specified FIR filter and the second 

provides a fixed-point simulation environment for the design space (using MATLAB). Both 

tools are customized based on the user’s choices across a parameterized design space. In this 

thesis, we first design a flexible family of direct form time-domain FIR filters and optimize 

their adder structures. Then we introduce the accompanying flexible hardware generation tool 

which can produce synthesizable Verilog based on the user’s specifications, and the 

MATLAB-based fixed-point simulator, which can verify the generator and evaluate the error 

of the fixed-point implementation. After creating these tools, we use them to carry out 

synthesis-based experiments to evaluate the tradeoffs among accuracy, area and speed of the 

time-domain FIR filter. We compare the results with a frequency-domain FIR filter.  

  



 

iv 

 

Table of Contents 

Thesis Signature Page .............................................................................................................. ii 

Abstract ................................................................................................................................... iii 

Table of Contents .................................................................................................................... iv 

List of Figures ......................................................................................................................... vii 

List of Tables ............................................................................................................................ ix 

Acknowledgements .................................................................................................................. x 

Chapter 1 Introduction .......................................................................................................... 1 

1.1 Objective ........................................................................................................................ 2 

1.2 Related Work .................................................................................................................. 2 

1.3 Organization ................................................................................................................... 3 

Chapter 2 Background .......................................................................................................... 5 

2.1 Time-Domain (TD) FIR Filter ....................................................................................... 5 

2.2 Frequency-Domain (FD) FIR Filter ............................................................................... 6 

2.3 Performance Evaluation Parameters .............................................................................. 7 

2.3.1 Area ........................................................................................................................ 7 

2.3.2 Power ..................................................................................................................... 9 

2.3.3 Speed .................................................................................................................... 10 

2.3.4 Error ..................................................................................................................... 10 



 

v 

 

Chapter 3 Design of FIR Filter ........................................................................................... 11 

3.1 Comparison of Two Adder Structures .......................................................................... 11 

3.1.1 Adder Tree Structure ............................................................................................ 12 

3.1.2 Adder Cascade Structure...................................................................................... 13 

3.1.3 Performance Comparison..................................................................................... 14 

3.1.4 Summary .............................................................................................................. 22 

3.2 Design Expansion ........................................................................................................ 23 

3.2.1 Expand the Number of Coefficients .................................................................... 23 

3.2.2 From Real to Complex ......................................................................................... 24 

3.2.3 Scaling Format of Multipliers and Adders ........................................................... 25 

3.2.4 Increasing the Parallelism .................................................................................... 26 

Chapter 4 Hardware Generation and Simulation Platform ............................................ 28 

4.1 Converter...................................................................................................................... 28 

4.2 Generator for FIR Filter ............................................................................................... 29 

4.3 MATLAB Simulator .................................................................................................... 30 

4.4 Summary of Platform and Simulation Procedure ........................................................ 31 

Chapter 5 Evaluation ........................................................................................................... 32 

5.1 Error Measurement ...................................................................................................... 32 

5.2 Area Measurement ....................................................................................................... 37 

5.3 Speed Measurement ..................................................................................................... 41 

5.4 Summary ...................................................................................................................... 43 



 

vi 

 

Chapter 6 Conclusions ......................................................................................................... 44 

Appendix ................................................................................................................................. 50 

 

 

  



 

vii 

 

List of Figures 

Figure 2.1 Direct Form FIR Filter...................................................................................... 6 

Figure 2.2 Transposed Form FIR Filter ............................................................................. 6 

Figure 2.3 Frequency-Domain FIR Filter .......................................................................... 7 

Figure 2.4 CLB Structure and Carry Chain (from [20]) .................................................... 8 

Figure 2.5 FPGA DSP48E1 Slice ( from [21]) .................................................................. 9 

Figure 3.1 Unpipelined Adder Tree Structure .................................................................. 12 

Figure 3.2 Adder Tree with pipelining ............................................................................. 13 

Figure 3.3 Adder Cascade ................................................................................................ 14 

Figure 3.4 Area vs. Number of Coefficients .................................................................... 17 

Figure 3.5 Area vs. Throughput ....................................................................................... 20 

Figure 3.6 Area vs. Number of Bits ................................................................................. 22 

Figure 3.7 Cascade Structure of FIR filter with 11 coefficients ...................................... 24 

Figure 3.8 Complex Multiply [22] ................................................................................... 25 

Figure 3.9 The structure of the system with 5 coefficients and 3 levels of parallelism ... 27 

Figure 4.1 The converter schematic ................................................................................. 29 

Figure 4.2 The hardware generator schematic ................................................................. 30 

Figure 5.1 Summary of Procedure ................................................................................... 32 

Figure 5.2 Mean squared error versus bits for TD (white) and FD (grey) with 31 random 

(squares) and RRC coefficients (triangles). ............................................................. 34 

Figure 5.3 Mean squared error versus bits for TD (white) and FD (grey) with 127 random 



 

viii 

 

(squares) and RRC coefficients (triangles). ............................................................. 35 

Figure 5.4 Mean squared error versus bits for TD (white) and FD (grey) with 511 random 

(squares) and RRC coefficients (triangles). ............................................................. 35 

Figure 5.5 Mean squared error versus number of coefficients for TD (white) and FD (grey) 

with 20 bits ............................................................................................................... 36 

Figure 5.6 Slices for TD and FD filters when parallelism is 2, “TD12” indicates 12-bit TD 

designs, while “FD12” and “FD16” indicate 12-bit and 16-bit FD designs ............ 38 

Figure 5.7 DSP slices usage for TD and FD filters when parallelism is 2 ....................... 38 

Figure 5.8 BRAMS for FD filters when parallelism is 2 ................................................. 39 

Figure 5.9 Area and Cost for TD and FD filters when parallelism is 8 and 32 ............... 40 

Figure 5.10 Throughput for TD and FD filters ................................................................ 42 

 

 

  



 

ix 

 

List of Tables 

Table 3.1 Speed and area versus the number of coefficients ........................................... 17 

Table 3.2 Power versus number of coefficients ............................................................... 18 

Table 3.3 Speed and area versus parallelism ................................................................... 19 

Table 3.4 Power versus number of coefficients ............................................................... 20 

Table 3.5 Speed and area versus word length .................................................................. 21 

Table 3.6 Power versus word length ................................................................................ 22 

 

  



 

x 

 

Acknowledgements 

I owe my deepest gratitude to my parents, without whose support, I could not realize my 

dream to study abroad.  

Special thanks go to my helpful supervisor, Professor Peter Milder. The guidance and 

support that he gave truly helped the progression and smoothness of the project. The project 

would be nothing without his patience in helping me solve the questions encountered in the 

project.  

I also thank my committee member Professor Sangjin Hong for his valuable feedback, 

which helped improve my thesis.  

I would also like to thank Han Chen for allowing me to include his data for frequency 

domain filter in my evaluation.  

Last but not least, I would like to thank my friends at Stony Brook University who made 

my life enjoyable here in the US. Their encouragement made me adapt to the new college life 

here quickly.  

 

 

Yujie Wu 

December 2013 

 

 



 

1 

 

Chapter 1   

Introduction 

Filters, which are used to boost or attenuate frequency components of a signal [1], are a 

fundamental tool in signal processing [2], communications [3], image processing [4] and 

many other related areas. A digital filter performs mathematical operations on a sampled, 

discrete-time signal to reduce or enhance certain aspects of that signal. Among digital filters, 

finite impulse response (FIR) filters are widely used due to their stability and their linear 

phase property. Some applications need FIR filters to operate at high frequencies such as 

video conferencing, whereas some other applications require FIR filters with high throughput 

and low power such as mobile devices used for communication and audio processing. For 

many applications, customized hardware implementation as a field-programmable gate array 

(FPGA) or application-specific integrated circuit (ASIC) is utilized for speed and efficiency 

(e.g. [5] and [6]).  

Hardware realization of FIR filters is not typically studied in a systematic way. A 

designer must make several choices when implementing a FIR filter to make sure that 

application requirements are met, including whether to filter in the time or frequency domain, 

what data type and filter structures to use. Each choice leads to complicated tradeoffs 

between cost, performance and accuracy, and it is difficult for a designer to determine the 

best choices.  



 

2 

 

1.1 Objective 

This thesis describes a hardware generator that emits customized time-domain (TD) FIR 

filter implementations based on the user’s specification. These implementations are written as 

synthesizable Verilog, and are appropriate for FPGA/ASIC. We carry out detailed 

synthesis-based experiments to study the effects of changing parameters on the area and 

speed of the filter. We also built a MATLAB model to help us understand how the error 

changes when we change the parameters. The hardware generator and the MATLAB model 

allow for evaluation of cost, performance and accuracy. Then we compare the time domain 

(TD) FIR filters with frequency domain (FD) FIR filters, with the goal of allowing designers 

to understand the tradeoffs among filter types and parameters.   

1.2 Related Work 

Optimized software implementations of FIR filters in both frequency domain and time 

domain have been studied in depth in the past. This includes automated approaches such as 

[7], low-level algorithmic optimizations such as [8], and adaptive algorithms such as [9]. 

However, for hardware realization there are significant additional challenges, because the 

cost and performance requirements are highly application-specific, and different design 

options are best for different situations. The result is that most existing hardware approaches 

in the literature are either theoretical or focused narrowly on a single problem. For example 

previous work [10] and [11] compared time-domain and frequency-domain filter choice only 

theoretically, and did not allow scaling to high throughput, which is required by modern 



 

3 

 

applications such as DSP for optical networking (e.g. [12]). [13] is application-specific, 

comparing the accuracy of frequency domain and time domain implementations of a specific 

filter (root raised cosine). The comparison is only based on the length and spectral shape of 

the filter, and does not consider any cost or speed metrics. 

Other design techniques, such as work on constant multiplication [14] [15] [16] [17] and 

retiming [18] can be applied to FIR filtering as well, but are not considered here.  Others 

such as [19] consider dynamic designs where parts of computation can be activated or 

deactivated at runtime, a technique that could be easily incorporated into the tools discussed 

in this thesis. 

1.3 Organization 

The rest of the thesis is organized as follows. In Chapter 2, background on the FIR filter 

is reviewed and some evaluation metrics we will use are defined. In Chapter 3, the 

implementation of the time domain FIR filter is described and different structures of the filter 

are evaluated. Through comparing the speed, area and power, we choose the best structure to 

base our implementation on. Data type and scaling format are also discussed in this chapter.   

Chapter 4 describes the hardware generator which produces synthesizable Verilog code 

for the TD FIR filter and the MATLAB-based simulation to evaluate filter accuracy. These 

two tools make implementation and evaluation easier. In Chapter 5, we use these tools to 

evaluate the time domain filters in terms of accuracy, area and speed, and we compare the 

results with frequency domain (FD) filters.  



 

4 

 

Lastly, Chapter 6 concludes this thesis. 

  



 

5 

 

Chapter 2   

Background 

2.1 Time-Domain (TD) FIR Filter 

A length M discrete-time FIR filter computes output sequence yn from input sequence xn 

and a set of filter coefficients bk, where 0 ≤ k < M, according to  

𝑦𝑛 = ∑ 𝑏𝑘𝑥𝑛−𝑘.

𝑀−1

𝑘=0

                                                          (2.1)  

This is implemented by taking the M most recent input elements, scaling them by the 

corresponding bk, and computing the sum. A FIR filter has some useful properties. When the 

coefficient sequence is symmetric, it is easy to design the FIR filter with linear phase. This 

property is desired for phase-sensitive applications. Further, a FIR filter is inherently stable 

because it has no feedback so error will not accumulate.  

The FIR filter can be implemented using direct form or transposed form. The direct form 

FIR filter is shown in Figure 2.1. For a filter with M coefficients, the filter must add M values 

to produce a final output. As M increases, the structure of the adder may affect the speed and 

area of the whole time-domain FIR filter. To achieve high speed performance, we need to add 

extra pipeline registers in the adder and carefully design the structure of the adder. Figure 2.2 

shows the figure of transposed form FIR filter. It can be constructed from the direct form FIR 

filter by exchanging the input and output and inverting the direction of signal flow. It has 



 

6 

 

registers between the adders and can achieve high throughput without adding any extra 

pipeline registers. But with the increasing of the number of filter coefficients, the latency will 

increase. To achieve high throughput and reduce latency, we choose to use direct form to 

implement the FIR filter and add pipeline registers in the adder. The structure of the adder 

will be discussed in Chapter 3.  

 

Figure 2.1 Direct Form FIR Filter 

 

Figure 2.2 Transposed Form FIR Filter 

2.2 Frequency-Domain (FD) FIR Filter 

In the time domain, the FIR operation is calculated by convolution. Converting to the 

frequency domain, a convolution is equal to a simple multiplication. The frequency-domain 

(FD) design we compare with uses the “overlap save” technique [2] to compute the filter 



 

7 

 

values in the frequency domain. This is illustrated in Figure 2.3.  

 

Figure 2.3 Frequency-Domain FIR Filter 

2.3 Performance Evaluation Parameters 

In Chapter 5, we will evaluate the performance of filters in terms of area, power, speed 

and error. In Section 2.3.1–2.3.4 respectively, we will discuss each of these cost and 

performance metrics. 

2.3.1 Area 

In this paper, we implement our designs using Xilinx FPGAs. An FPGA architecture is 

made up of separate columns of different dedicated hardware resources. This includes 

clocking resources, DSP slices, block RAMs, CLBs (configurable logic blocks) and I/O 

resources.  

The primary unit of combinational logic of the FPGA is the CLB. Each CLB contains 

logic units called slices. (In Xilinx 7-Series FPGAs, each CLB contains two slices.) Each 

slice has four 6-input look-up tables (LUTs) which can also be split into two 5-input LUTs, 

allowing the slice to be used for two simple logic functions or one more complex function. 

There are also two flip-flops associated with each LUT, which makes pipelining convenient 

and fast. There are also dedicated multiplexers which can save LUTs and improve the system 

speed. Lastly, the slices include a carry chain for implementing fast arithmetic addition and 



 

8 

 

subtraction [20]. Figure 2.4 shows the carry out is propagated vertically through the four 

LUTs in a slice. The carry chain propagates from one slice to the slice in the same column in 

the CLB above. The number of occupied slices is a very important metric for evaluating the 

area consumed by a design. 

 

Figure 2.4 CLB Structure and Carry Chain (from [20]) 

DSP slices are hard arithmetic structures built in to the FPGA, which are ideal for 

performing certain types of DSP operations. DSP slices can process a large number of 

mathematical operations repeatedly and quickly on a set of data with low cost, low latency 

and high performance. Xilinx 7-Series FPGAs contain DSP slices called DSP48E1, which are 

shown in Figure 2.5. The DSP48E1 slice supports many independent functions, including 

multiply, multiply accumulate (MACC), multiply add, three-input add, barrel shift, wide-bus 

multiplexing, magnitude comparator, bit-wise logic functions, pattern detect, and wide 

counter. The architecture also supports cascading multiple DSP48E1 slices to form wide math 



 

9 

 

functions, DSP filters, and complex arithmetic without the use of general FPGA logic. The 

number of DSP48E1 slices used by a design is another important area metric that we will use 

when evaluating our designs. 

 

Figure 2.5 FPGA DSP48E1 Slice ( from [21]) 

2.3.2 Power  

Power dissipation has two components: dynamic and static. We will consider both parts 

in our evaluation of the power consumption of our designs.  

Dynamic power is dissipated due to the short-circuit current and the switching 

capacitance. It can be calculated by aCV
2
f, where a is the switching activity factor, C is the 

capacitance being charged or discharged per clock cycle, V is voltage and f is the switching 

frequency. The short-circuit current is caused by both pMOS and nMOS stacks being 

partially on.  

The static power dissipated comes from leakage and contention current. The source of 



 

10 

 

the leakage includes subthreshold leakage, gate leakage and junction leakage. 

2.3.3 Speed 

We use two metrics to evaluate the speed of a design. The first is minimum clock period 

which is determined by the critical path of the design. We can often optimize it by adding 

pipeline registers. The second metric is throughput. We define the throughput of the system 

by 

throughput = 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙𝑖𝑠𝑚 × max 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦                           (2.2) 

Our metric for parallelism (defined later) is equivalent to the number of concurrent input 

samples per clock cycle. When we report throughput, we determine clock frequency after 

synthesizing, placing, and routing the design. In Chapter 5, we report throughput in 

gigasamples per second. 

2.3.4 Error 

Our hardware designs will use a fixed-point number representation, where the accuracy 

of the number is related to the number of bits used. It is important to know the relationship 

between the length of each word and its result on the error of the filter. We use mean squared 

error (MSE) to quantify error, defined as:  

MSE =  
1

𝑁
∑(𝑋𝑙 − 𝑋̂𝑙)

2
                                                       (2.3)

𝑁

𝑙=1

 

where 𝑋 is the fixed-point filter output and 𝑋̂ is the ideal filter output.  

  



 

11 

 

Chapter 3   

Design of FIR Filter  

In this chapter, we first compare two adder structures: adder-tree and adder-cascade. 

Then we extend the more-efficient design and use it as our baseline in the following chapters.  

3.1 Comparison of Two Adder Structures   

Because the adder structures considered here are used in a variety of different types of 

FIR filters, we must consider variations on the design in terms of the size of the filter, its 

parallelism, and the data representation used. So, we evaluate the cost and performance of the 

FIR filters using two adder structures across the following parameters:  

a) The number of coefficients of the FIR filter, namely M in the formula (2.1). M is 

constrained to be a power of 2 in this initial investigation, but later we will allow this to be 

an arbitrary integer.  

b) The number of stages of parallelism w, which is the number of inputs that can go into the 

system at the same time. This also should be the power of 2 here and no greater than M. 

Larger values of w lead to designs with higher area cost but higher throughput. Later we 

expand this parameter to be an arbitrary integer. 

c) The number of bits that are used to represent the two’s complement fixed-point data. To 

avoid overflow, we increase this value as needed after each operation. For example, if two 

B-bit numbers are multiplied, the output requires 2B bits. If two B-bit numbers are added, 



 

12 

 

B+1 bits are required. Later we will also consider scaling the representation to avoid 

increasing the number of bits needed.  

3.1.1 Adder Tree Structure 

In typical direct form FIR filters, the input stream is presented to one multiplier input 

while the coefficients supply the other input. Then an adder tree is used to combine the outputs 

from all multipliers [21]. As shown in Figure 3.1, the unpipelined adder tree structure has 

registers only at the input and output of the final adder. The rectangles in the figure represent 

registers. The pipelined adder tree structure has pipeline registers between different stages of 

the adder, which is shown in Figure 3.2. 

 

Figure 3.1 Unpipelined Adder Tree Structure  



 

13 

 

 

Figure 3.2 Adder Tree with pipelining 

3.1.2 Adder Cascade Structure 

The DSP48E1 slice has a multiplier and an adder, and it also supports cascading multiple 

DSP48E1 slices to form DSP filter. The adder cascade structure, shown in Figure 3.3, is 

designed to take advantage of this. By utilizing the cascade path of the DSP48E1 slices, the 

adder cascade structure efficiently combines a multiplication and an addition into a single 

DSP slice. The first five stages use a cascade structure, and after the first five stages, the 

pipelined adder tree structure is used. An example with eight coefficients is shown in Figure 

3.3. The basic unit is sized to take four inputs and use five stages of pipeline. If we increase 

the size of this basic unit, latency will increase greatly with little changes in the resources 

required. In this work, this combination cascade and tree structure is called adder cascade 



 

14 

 

structure for short. 

 

Figure 3.3 Adder Cascade 

3.1.3 Performance Comparison 

Several instances are simulated and synthesized. They are first simulated behaviorally to 

check whether the function of the Verilog code is correct. After this, the instances are 

synthesized, placed and routed. From the place and route report, we can obtain the area of each 

design instance. From the post-place-and-route static timing report, the clock frequency is 

obtained. To get the power information and increase the confidence level of the power data, 

post-route simulation is performed and an SAIF (switching activity interchange format) file is 

generated. This contains the number of changes on all signals in the design. Then the Xilinx 

XPower Analyzer is used to estimate dynamic and static power. Because dynamic power 

depends on clock frequency, each design is set to its maximum frequency when the power is 

analyzed. Static power is largely determined by the size of FPGA, so two FPGAs with different 



 

15 

 

sizes are considered to quantify this. The Virtex-6 XC6VLX75T is much bigger than the 

Spartan-6 XC6SLX9 FPGA, so we expect much higher static power for the Virtex-6 

implementation. 

There are three parameters we can change to observe the trend of the speed, area and 

power. They are parallelism, word length and the number of coefficients. Three experiments 

are designed to find the relationship between the parameters and the performance, and also to 

compare the performance of the two structures as described above.  

The first experiment is to change the number of coefficients i and observe the changes in 

clock frequency, area and power of each structure while keeping the parallelism and the length 

of each word constant.  

The second experiment is to keep the length of each word and number of coefficients 

constant, and change the parallelism. Then, we observe the clock frequency, area and power of 

each FIR structure.  

The third experiment is to change the length of the word while keeping the other 

parameters constant. 

3.1.3.1 Verification 

For verification, we generate a given number of random numbers within a user-specified 

range, and use them in a testbench for behavioral simulation. At the same time, we compute 

the expected simulation results given the random inputs. After behavioral simulation and 

post-route simulation, the results are saved in another two files. A comparison program written 

in C can compare whether the behavioral and post-route simulation results are the same as the 



 

16 

 

expected results. In this way the correctness of the Verilog code can be tested.  

3.1.3.2 Cost and Performance as the Number of Coefficients Changes 

In the first experiment, we choose parallelism w=1, 16 bits data length, and the number of 

coefficients M from 4 to 64. Then we observe the clock frequency, area and power using the 

procedure described above. For the unpipelined adder tree structure, when the number of 

coefficient reaches 64, the Xilinx tool is unable to complete synthesis. Table 3.1 shows the 

results.  

In Table 3.1, we observe that the clock frequency of the adder cascade and pipelined adder 

tree are stable, because they both have pipeline registers that prevent the critical path from 

growing when the number of coefficients increases. The clock frequency of the unpipelined 

adder tree structure decreases with the increasing number of coefficients because without 

pipeline registers, the critical path grows roughly proportionally to the logarithm of the 

number of coefficients. 

 

 

 

 

 

 

 

 



 

17 

 

Table 3.1 Speed and area versus the number of coefficients 

No. of Coefficients 4 8 16 32 64 

Adder 

cascade 

Clock frequency 

(MHz) 

355.998 

(2.809ns) 

355.998 

(2.809ns) 

355.998 

(2.809ns) 

355.998 

(2.809ns) 

355.998 

(2.809ns) 

Area(Slices) 2 22 50 116 274 

DSP48E1 4 8 16 32 64 

Unpipelined 

adder tree 

Clock frequency 

(MHz) 

150.399 

(6.649ns) 

85.572 

(11.686ns) 

45.254 

(21.952ns) 

23.881 

(41.873ns) 

-- Area 

(Slices) 
7 19 38 76 

DSP48E1 4 8 16 30 

Pipelined 

adder tree 

Clock frequency 

(MHZ) 

355.998 

(2.809ns) 

355.998 

(2.809ns) 

355.998 

(2.809ns) 

355.998 

(2.809ns) 

355.998 

(2.809ns) 

Area(Slices) 17 48 94 203 518 

DSP48E1 4 8 16 32 64 

 

It can also be obtained from Table 3.1 that the area increases with the increasing number 

of coefficients. Further, the pipelined adder tree structure needs a larger area than the adder 

cascade structure for the same number of coefficients, which is shown in Figure 3.4. 

 

Figure 3.4 Area vs. Number of Coefficients 



 

18 

 

Because the area and speed performance of the unpipelined adder tree is far worse than 

the other options, only the other two structures are compared in terms of power. The results 

are shown in Table 3.2. As expected, the static power of the design on Virtex-6 FPGA is much 

higher than that on Spartan-6 FPGA, because of the Virtex-6’s large area.  

Table 3.2 Power versus number of coefficients 

No. of Coefficients 4 16 

Adder Cascade 

Power (W) 

Virtex 

Dynamic 0.215 0.383 

Static 1.298 1.301 

Power (W) 

Spartan 

Dynamic 0.190 0.396 

Static 0.032 0.036 

Pipelined Adder 

Tree 

Power (W) 

Virtex 

Dynamic 0.185 0.213 

Static 1.297 1.297 

Power (W) 

Spartan 

Dynamic 0.178 0.220 

Static 0.032 0.032 

 

3.1.3.3 Cost and Performance as the Parallelism Changes 

In the second experiment, each word is 16 bits and there are 16 coefficients for the 

system. As the parallelism changes from 1 to 4, the results obtained are shown in Table 3.3.  

 From the table, we can see that when the parallelism is increasing, the clock frequency 

does not change for all three structures. This occurs because the parallel designs area built by 

duplicating modules without changing their internal structure or timing. 

 

 

 

 



 

19 

 

 Table 3.3 Speed and area versus parallelism 

No. of Parallelism 1 2 4 

Adder cascade 

Clock 

frequency 

355.998MHz 

2.809ns 

355.998MHz 

2.809ns 

355.998MHz 

2.809ns 

Area(Slices) 50 99 171 

DSP48E1 16 32 64 

Adder tree without 

pipeline 

Clock 

frequency 

45.254MHz 

21.952ns 

45.254MHz 

21.952ns 

45.254MHz 

21.952ns 

Area(Slices) 38 35 32 

DSP48E1 16 32 64 

Pipelined adder tree 

Clock 

frequency 

355.998MHz 

2.809ns 

355.998MHz 

2.809ns 

355.998MHz 

2.809ns 

Area(Slices) 94 165 280 

DSP48E1 16 32 64 

The result of increasing of parallelism is increasing throughput. Figure 3.5 shows the 

relationship between area and throughput. The area of both the adder cascade structure and 

pipelined structure are increasing with the increasing of the throughput, and the adder cascade 

structure uses less area than pipelined adder tree structure. The area of the unpipelined adder 

tree structure becomes smaller with the increasing of the throughput. One explanation for this 

is that the synthesis tool reuses some modules in the system or does some optimization when 

the parallelism increases, so the area becomes smaller.  



 

20 

 

 

 Figure 3.5 Area vs. Throughput 

Table 3.4 shows the data for power simulation as the number of coefficients changes. The 

power for the design with parallelism 4 on Spartan-6 FPGA is not shown because the design is 

too large to fit in the small FPGA. From the power data, we see that designs with smaller area 

result in reduced static power. 

Table 3.4 Power versus number of coefficients  

No. of Parallelism 1 4 

Adder Cascade 

Power 

Virtex 

Dynamic 0.383 0.257 

Static 1.301 1.298 

Power 

Spartan 

Dynamic 0.396 -- 

Static 0.036 -- 

Pipelined Adder 

Tree 

Power 

Virtex 

Dynamic 0.213 1.315 

Static 1.297 1.323 

Power 

Spartan 

Dynamic 0.220 -- 

Static 0.032 -- 

3.1.3.4 Cost and Performance as Word Length Changes 

For the third experiment, the length of each word is changed from 8 bits to 24 bits while 

the other parameters stay the same. The number of coefficients is 16 and the parallelism is 1. 



 

21 

 

The results are shown in Table 3.5 and Table 3.6.  

Because the speed of the unpipelined adder tree structure is so slow, we focus on the 

other two structures. When the length of each word is 20 bits, the speed of both of the two 

structures decreases and the number of slices increases greatly, but the number of DSP slices 

remains the same. This is because more resources on the FPGA other than DSP slices are 

used when the 20-bit calculation is performed, which results in longer critical path. When the 

length of each word reaches 24 bits, although fewer slices are occupied, more DSP slices are 

used (since each DSP slices includes a 18×25 bit multiplier). The result is that the critical 

path becomes shorter and the speed gets higher. Although the area fluctuates at 20 bits and 24 

bits of the word length, the general trend is that the area will increase with the increasing of 

the word length.   

Table 3.5 Speed and area versus word length 

Length of each Word 8 12 16 20 24 28 32 

Adder 

cascade 

Clock 

frequency 

(MHz) 

355.998 355.998 355.998 237.248 240.558 179.243 146.499 

Area(Slices) 32 46 50 356 339 326 477 

DSP48E1 16 16 16 16 26 32 62 

Adder 

tree 

without 

pipeline 

Clock 

frequency 

(MHz) 

45.254 45.254 45.254 60.617 61.323 58.799 109.230 

Area(Slices) 24 31 38 224 164 213 263 

DSP48E1 16 16 16 16 32 32 34 

Pipelined 

adder 

tree 

Clock 

frequency 

(MHz) 

355.998 355.998 355.998 241.429 247.158 181.951 179.019 

Area(Slices) 57 71 94 370 345 452 403 

DSP48E1 16 16 16 16 32 32 40 



 

22 

 

 

 

Figure 3.6 Area vs. Number of Bits 

From the static power data shown in the Table 3.6, it also can be concluded that when the 

area increases, the static power will increase. 

Table 3.6 Power versus word length 

Length of each Word 8 16 24 32 

Adder 

Cascade 

Power 

Virtex 

Dynamic 0.206 0.383 0.408 0.395 

Static 1.297 1.301 1.302 1.302 

Power 

Spartan 

Dynamic 0.210 0.396 0.229 -- 

Static 0.032 0.036 0.033 -- 

Pipelined 

Adder Tree 

Power 

Virtex 

Dynamic 0.075 0.213 0.481 0.451 

Static 1.294 1.297 1.304 1.303 

Power 

Spartan 

Dynamic 0.075 0.220 0.426 -- 

Static 0.030 0.032 0.037 -- 

3.1.4 Summary 

 In this section, we have compared the performance of time-domain FIR filters using 

three different adder structures. In terms of power, the static power will increase with the 

increasing of the FPGA size. In terms of area and speed, the unpipelined adder tree structure 



 

23 

 

uses the least area but is very slow. Both the adder cascade and pipelined adder tree structure 

have good speed performance. To achieve the same speed, the adder cascade structure uses 

less area than pipelined adder tree structure. Therefore, the adder cascade structure is the best 

among the three. Next, we will build upon this structure in our further work and evaluation. 

3.2 Design Expansion 

In order to make the time-domain FIR filter more general and apply to a wider space of 

applications, we now expand the design space to increase its flexibility. 

3.2.1 Expansion of the Number of Coefficients  

The basic unit in the adder cascade structure is a four-input adder cascade unit, as shown 

in the Figure 3.3. It has five pipeline stages. But when the number of coefficients is not 

multiple of 4, there will be fewer inputs and stages in the last unit. For example, Figure 3.7 

shows the structure of the filter with 11 coefficients. There are 3 basic units in this structure. 

The last unit has only three inputs. But the number of pipeline stages keeps the same. When 

the outputs from the three basic units are added together using adder tree, the first two 

outputs are added first, then added to the third. To guarantee the timing sequence is correct, 

one more pipeline register is added after the third unit.  



 

24 

 

 

Figure 3.7 Cascade Structure of FIR filter with 11 coefficients 

3.2.2 From Real to Complex 

Many applications (such as communications systems) require complex inputs and 

complex coefficients. To enable this, we must allow the multipliers and adders to perform 

complex arithmetic.  

For the adder, one real adder is changed to two adders, one for the real part and the other 

for the imaginary part. For the multiplier, one real multiplier is changed to four multipliers 

and two adders to perform the complex multiplication. The Figure 3.8 shows the structure of 

the complex multiplier. It performs the complex multiplication  

(a + bi) × (c + di) = (ac − bd) + (bc + ad)i 

Two pipeline stages are added (shown as rectangles in the figure) to maintain consistent clock 



 

25 

 

frequency.  

 

Figure 3.8 Complex Multiply [22] 

3.2.3 Scaling Format of Multipliers and Adders 

When arithmetic is performed on fixed point data, the maximum possible value of each 

word grows.  In order to prevent data from overflowing (requiring more bits than are 

available to represent the result), we can either increase the word length of the result or scale 

data down to fit within the original number of bits. The previous experiments (Section 3.1) 

utilized the former technique to avoid overflow. However when the number of coefficients 

becomes large, the length of the output can grow very long. Here we scale the data to avoid 

overflow and also avoid increasing the length of the output. We make each input and output 

port of the adder and multiplier the same length, and scale the data to fit. Although precision 

will decrease because of this scaling, the resources used will decrease, and we can minimize 

the error by choosing the appropriate scaling format of the multipliers and adders. 

In the following chapters, we use scaled arithmetic, that is, after adding or multiplying 

two B-bit values, we keep the most significant B bits. Improvements could potentially be 



 

26 

 

made by using dynamic or other more complicated scaling methods [23], but the advantage 

of using these methods depends highly on the application.  

To make the hardware fixed-point results as accurate as possible under this specific 

scaling format, the coefficients should be scaled to be as large as possible. Ideally, the 

designer can choose to scale the coefficients Ci to Ci/max(Ci), and then filter the inputs using 

these scaled values. After filtering, the results can then be multiplied by max(Ci) to restore the 

original results. (Often this multiplication can be incorporated into the next computational 

stage after the filter.) The benefit of this technique is to let the coefficients be as large as 

possible to make full use of the bits available. 

3.2.4 Increasing the Parallelism 

Previously, we restricted parallelism to be a power of 2. Here we increase flexibility in 

cost and throughput by allowing it to be any positive integer. To support the parallel structure 

with streaming width w, we replicate the cascade structure w times, and for each instance we 

shift the inputs by appropriate amount. Figure 3.9 gives an example of the structure with 5 

coefficients and the parallelism 3. Three outputs are generated at each clock cycle.  

 



 

27 

 

 

Figure 3.9 The structure of the system with 5 coefficients and 3 levels of parallelism 

In the next chapter, we will describe how this flexible design space is implemented in a 

hardware generation and simulation framework.  

  



 

28 

 

Chapter 4   

Hardware Generation and 

Simulation Platform  

In this chapter, we build a flexible hardware generation tool using C and a fixed-point 

simulation environment using MATLAB. The hardware generation tool can generate 

synthesizable Verilog based on the user’s specification. The MATLAB simulation 

environment is to verify the generated Verilog code and calculate the mean squared error 

(MSE). Further, a decimal-to-integer converter is built to convert the data to proper format 

and the hardware generation tool uses these data as inputs.  

4.1 Converter 

We assume the coefficients and input of the filter are all decimals in the interval (-1, 1). 

We use B bits to represent each number. We fix the radix point to be one bit to the right of the 

most significant bit, and the other B-1 bits represent the fractional part of the decimals. If we 

remove the decimal point, the B-bit number can be viewed as an integer. The converter 

represents decimals in (-1, 1) as B-bit integers, allowing the hardware to operate on integer 

representations of the data. For example, if we want to use 6 bits to represent a decimal 

number 0.632359246225410, it is 0.10100. Removing the decimal point gives 010100, which 

is 20. If we use 10 bits to represent the same decimal number, it is 0.101000011. Converting 



 

29 

 

it to integer, it is 323.  

The input of the converter is a list of coefficients, the input of the FIR filter and the 

length of each word B. The output is the set of coefficients and inputs as integers.  

 

Figure 4.1 The converter schematic 

4.2 Generator for FIR Filter 

To automatically produce Verilog code for each design instance, a generator for the FIR 

filter is developed using C code. The input of the generation tool includes:  

a) The number of coefficients of the filter (any positive integer greater than 2).  

b) The filter coefficients, which have been scaled to integer representation by the converter 

(see Section 4.1). 

c) The length of each word B, which should be positive integer.  

d) The number of stages of parallelism w, which is the number of inputs that can go into the 

system at the same time. The w should be any positive integer no greater than the number 

of coefficients.  

e) A scaling parameter that controls whether the adders and multipliers should be scaled or 

unscaled (defined in Section 3.2.3).  

f) The input values for the test bench to use.  



 

30 

 

The output of the generator is synthesizable Verilog code for the TD FIR filter and 

testbench based on the user’s specifications.  

 

Figure 4.2 Hardware generator inputs and outputs 

4.3 MATLAB Simulator  

By allowing control of the number of bits in the fixed-point data format used, the 

generator allows the user to specify a tradeoff between cost and accuracy. However, it can be 

difficult for users to understand how their choice of the number of bits will affect the overall 

accuracy of the computation. To measure this, we construct a fixed-point simulation 

environment using MATLAB. This simulation takes the input data, the coefficients and 

number of bits as its input. The model then simulates the filter using the same fixed-point 

options as the hardware filter, and outputs the same results as the hardware simulation. This 

has two purposes. First, we use this to verify that our hardware realization was produced 

correctly. Second, it enables easy comparison between the fixed-point results and MATLAB’s 

double-precision convolution. We quantify error in terms of mean squared error (MSE) 

(defined in Section 2.2).  



 

31 

 

4.4 Summary of Platform and Simulation Procedure 

In this chapter, we described a generation tool and a simulation environment which allow 

a designer to easily understand the cost and performance implications of the various options 

available, and to enable automatic generation of the implementation. First, the automatic 

hardware generator produces synthesizable Verilog code for a FIR filter and a simulation 

testbench based on the user’s specification. Second, the MATLAB-based simulation platform 

allows easy bit-exact simulation of the generated hardware system and compares the results 

with the double precision convolution results to obtain the error.  

When we perform an experiment, we can give the two platforms the same set of input 

data and coefficients, simulate the hardware design and compare the simulation results with 

the MATLAB results to check the correctness of the design. Then we synthesize, place, and 

route the design to get the timing and resource utilization information. At the same time, 

simulations run in MATLAB allow us to measure accuracy and error. 

  



 

32 

 

Chapter 5   

Evaluation 

In this chapter, we evaluate the performance of the TD filter in terms of accuracy, speed 

and area, and compare it with another implementation method using frequency domain (FD) 

methods (as defined in Section 2.2). For each set of experiments, we first use the generator to 

generate Verilog code of the TD filter based on the specification, and simulate it using Xilinx 

ISE Design Suite. Then we put the same coefficient and input data into the MATLAB 

simulator to check the correctness and calculate the MSE. After making sure the Verilog code 

is correct based on our specification, we synthesize and place and route the design on a 

Xilinx Virtex-7 FPGA (xc7vx980t) to get the timing and resource utilization information. 

Then, we compare with data for the FD filter from [24]. 

 

Figure 5.1 Summary of Procedure 

5.1 Error Measurement 

To quantify the error of fixed-point hardware implementations of TD FIR filters, we use 



 

33 

 

the MATLAB simulation environment described in Chapter 4.3. We simulate two different 

types of coefficients: (1) random; and (2) root raised cosine (RRC) filter used in 

communication systems (e.g. [3]) with fixed point data format from 8 to 32 bits. For each, we 

simulate designs with 31, 127, and 511 coefficients. For the designs with 31, 127, and 511 

coefficients, 100, 500, and 1000 random complex input data respectively are used during 

simulation. We choose the number of coefficients to be odd in order to keep the RRC filter 

symmetric. For RRC coefficients, we average the error over 10 sets of the random complex 

input data for each design. For the others, we average the error over 10 different random sets 

of coefficients and random input data for the random coefficients.  

Figure 5.2 to Figure 5.4 shows the mean squared error for TD (white marker) and FD 

(grey marker) filter with 31, 127 and 511 random coefficients (squares) and RRC coefficients 

(triangles). The x-axis shows the number of bits used in the fixed-point format and the y-axis 

(log scale) shows the MSE.  

The error of the TD design with RRC coefficients is always about 2 times smaller than 

the error of the same design with random coefficients because the RRC coefficients are 

purely real-valued while the random coefficients are complex. The FD designs have lower 

error with RRC coefficients than with random coefficients, because the FFT of the RRC 

coefficients has many values which round to 0 or 1, which increases the accuracy. 

We can observe that for the design with 31 RRC coefficients, the FD design needs 1 or 2 

more bits than the TD to get to the same error. When the number of coefficients increases to 

127 and 511, the FD designs have roughly the same precision as TD designs. For the designs 



 

34 

 

with 31 random coefficients, the FD needs 2-3 more bits to get the same error as TD. With 

increasing of number of coefficients, the difference between TD and FD increases to 3 to 4 

bits. 

 

Figure 5.2 Mean squared error versus bits for TD (white) and FD (grey) with 31 random 

(squares) and RRC coefficients (triangles). 



 

35 

 

 

Figure 5.3 Mean squared error versus bits for TD (white) and FD (grey) with 127 

random (squares) and RRC coefficients (triangles). 

 

Figure 5.4 Mean squared error versus bits for TD (white) and FD (grey) with 511 

random (squares) and RRC coefficients (triangles). 

Next, we perform another experiment where we fix the number of bits to 20, increase the 



 

36 

 

number of coefficients from 11 to 91 with step size 10, and observe the trend of error for TD 

filter and compare it with FD filter. Random coefficients are used. The error is averaged over 

10 different random sets of coefficients and random input.  

 

Figure 5.5 Mean squared error versus number of coefficients for TD (white) and FD 

(grey) with 20 bits 

As shown in Figure 5.5, as the number of coefficients increases, error also increases. 

Also of interest is that the TD curve has apparent “steps,” that is, its error increases more 

when the number of coefficients goes from 11 to 21, 31 to 41 and from 61 to 71 than the 

others. This is because of the tree-based adder structure shown in Figure 3.7. This structure 

with M coefficients will have ⌈log2 𝑀⌉ + 1 adder stages, so each time the number of 

coefficients increases larger than a power of 2, a new stage is required. Adding this stage 

means that we need to scale the results one more time, which adds additional error. For 



 

37 

 

example, the designs with 7 or 8 coefficients have only four adder stages while the design 

with 9 coefficients needs a fifth stage. This is why the error increases more when the number 

of coefficients goes from 11 to 21, 31 to 41 and from 61 to 71 than the others. 

From the discussion of the results, we can conclude that the error is affected by the 

number of coefficients, the number of bits used, and the values of the coefficients themselves. 

By using the provided MATLAB fixed-point simulation environment, a designer can easily 

find the relationship among error, number of bits and the coefficients for a specific 

application.  

5.2 Area Measurement 

Based on the results of the error analysis, the number of bits needed to produce an equal 

error level for TD and FD varies depending on the specific filter. To evaluate the area of TD 

and FD fairly, we choose the TD with 12-bit random coefficients, and compare it with FD 

filter with 12-bit and 16-bit random coefficients. We start the analysis by picking the 

parallelism w=2, and see how the area changes as the number of coefficients changes. Then, 

we repeat the experiment with parallelism w=8 and w=16. 



 

38 

 

 

Figure 5.6 Slices for TD and FD filters when parallelism is 2, “TD12” indicates 12-bit 

TD designs, while “FD12” and “FD16” indicate 12-bit and 16-bit FD designs 

 

Figure 5.7 DSP slices usage for TD and FD filters when parallelism is 2 

Figure 5.6 and Figure 5.7 show the area (in slices and DSP slices) of the TD and FD 

filters when the parallelism is 2. The number of DSP slices increases linearly in TD because 



 

39 

 

each DSP slice corresponds to a multiplier. The number of slices increases with the increasing 

of the number of coefficients, because the TD design will become larger and do more 

computation, while the slices and DSP slices for the FD design changes relatively little. 

However, FD designs require block RAMs (BRAMs), memory modules, in the FFT/IFFT 

which the TD designs do not need at all. With an increasing of the number of coefficients, the 

number of BRAMs required for FD increases greatly, which is shown in Figure 5.8.  

 

Figure 5.8 BRAMS for FD filters when parallelism is 2 

Next, we increase parallelism to 8 and 16, with results shown in Figure 5.9. The TD 

designs of w=8 and number of coefficients greater than 64, and w=32 and number of 

coefficients greater than 16 cannot map to the FPGA (xc7vx980t) because of insufficient DSP 

slices.  



 

40 

 

 

Figure 5.9 Area and Cost for TD and FD filters when parallelism is 8 and 32 

The results with increasing the parallelism show the same trend as when parallelism 

equals. The slices and DSP slices will increase greatly when TD filters have more coefficients, 

while the BRAMs will be used more when the FD filters have more coefficients. In terms of 

the cost, when the number of coefficients is small, TD designs are ideal because fewer slices 

and DSP slices are occupied than FD designs and no BRAMs are used. FD designs are best 

for designs with a large number of coefficients. Although they require many BRAMs, the 

slices and DSP slices do not increase much. When the number of coefficients is somewhere in 

between, there is not necessarily a single better choice between FD and TD. Instead the 

designer must balance between slices, DSP slices and BRAMs. 



 

41 

 

5.3 Speed Measurement  

In this section, we evaluate speed in terms of throughput. We define the throughput in 

Chapter 2.2.3 as parallelism (samples per clock cycle) times frequency (GHz), producing 

gigasamples per second. 

With increasing parallelism, throughput will also increase, as long as the clock frequency 

stays roughly constant (due to pipelining). To evaluate the speed of the FD and TD filters, we 

use the same designs as in Chapter 5.2. We first increase the number of coefficients with 

parallelism 2 to see the trend of the speed. Then, we repeat the experiment with parallelism 8 

and parallelism 16. 

Figure 5.10 shows the throughput of each design. When the number of coefficients 

increases, the throughput decreases only slightly for the TD design. (The pipelining prevents 

larger decreases, but routing delays increase as the number of coefficients grows.) For the FD 

design, the throughput fluctuates highly when parallelism is 8 and 32. This is due to 

inconsistencies in clock frequency, which are caused by the synthesis tool’s struggles with 

large designs. In designs with high parallelism, some smaller designs have larger routing 

delays than much larger designs.  

By increasing the parallelism, the filters can reach very high throughput. The throughput 

of the TD filter with 16 coefficients and parallelism 32 can reach 10 billion words per second. 

In most cases, the TD filters have slightly higher throughput than the equivalent FD filters. 



 

42 

 

 

Figure 5.10 Throughput for TD and FD filters 



 

43 

 

5.4 Summary 

In this chapter, we evaluated the cost and speed of the generated time-domain FIR filters, 

and compared them to frequency-domain FIR filters. We demonstrated that accuracy relates 

to many factors, not only the number of bits and the number of coefficients, but also the 

coefficients themselves. For a specific application, a designer can easily compare various 

options using the MATLAB simulation platform described in Chapter 4. As to the cost, when 

the number of coefficients increases, the amount of slices and DSP slices will increase 

quickly for TD filters. FD filters require a lot of memory when the filter size increases, but 

they have much lower requirements of DSP slices and slices than TD. So, TD filters are best 

for small designs while FD excels for large ones. For the speed, the TD filter has better 

throughput than the FD filter overall. When we increase the parallelism, throughput of both 

designs increases greatly.  

We cannot make a general conclusion as to which filter is “better” because the 

parameters are application-dependent. We approach this problem by providing tools to 

conveniently evaluate and implement all options so designers can select the best choices for 

their requirements.   

  



 

44 

 

Chapter 6   

Conclusions 

Although FIR filtering is widely used in signal processing and related fields, efficient 

implementation of FIR filters in hardware can be difficult because the designer must make 

variety of choices based on application requirements. In this paper we first compared two 

adder structures for the direct form time domain (TD) FIR filter, namely the adder tree and 

adder cascade structure. The adder cascade structure mapped better to our FPGA because it is 

uses the FPGA’s resources more efficiently. So this structure was then used as the baseline for 

the TD FIR filter design.  

Then we developed a hardware generator. This tool automatically produces TD FIR filter 

implementations in Verilog, based on the user’s specification, and includes a customized 

testbench module. We also built a MATLAB model to verify the design generated by the 

generator and measure the error. These two tools can take input parameters such as the filter 

size, filter coefficients, data type and parallelism. Using these two tools, we carried out 

synthesis-based experiments to evaluate error, area and speed of the filter as parameters 

change. We also compared the time domain FIR filters with other implementations of 

frequency domain (FD) FIR filters.  

Our results allowed us to reach several interesting conclusions. First, we saw that the 

error of an implementation is affected not only by the data representation and the number of 



 

45 

 

coefficients, but also by the values of the coefficients themselves. Generally, the error 

increased with the increasing of the number of coefficients and with the decreasing of the 

number of bits (length) of the coefficients. We used the random coefficients and the root 

raised cosine filter coefficients to compare the TD filter and FD filter accuracy. For the TD 

filter, the random coefficients and the RRC coefficients had the same error level. The FD 

RRC filter can reach almost the same accuracy as the TD RRC filter, but the FD random filter 

needed three to four more bits to reach the same accuracy as TD random filter.  

In terms of area, our results show that the TD FIR filter is suitable for filters with a low 

number of coefficients, because it needed less logic than FD FIR filters and it did not require 

BRAMs. For designs with a larger number of coefficients, FD filters were more suitable 

because the number of slices and the DSP slices required increased much more slowly than 

for the TD implementation. In terms of throughput, the TD filter was slightly better than FD.  

With these tools and through the evaluation of their results, we give system designers the 

ability to easily optimize and reason about tradeoffs among cost, performance and accuracy 

related to FIR filter design.   

  



 

46 

 

Reference 

[1]  A. V. Oppemheim, A. S. Willsky and H. S. Nawab, Singals and Systems, Prentice Hall, 

1997.  

[2]  A. V. Oppenheim, R. W. Schafer and J. R. Buck, Discrete-time signal processing, Upper 

Saddle River, New Jersey, USA: Prentice Hall, 1999.  

[3]  G. J. Proakis and M. Salehi, Digital Communications, Fifth Edition, New York, NY, 

USA: McGraw-Hill Higher Education, 2008.  

[4]  T. J. Terrell and R. J. Simpson, "Two-dimensional FIR filter for digital image 

processing," Journal of the Institution of Electronic and Radio Engineers, vol. 56(3), pp. 

103-106, 1986.  

[5]  E. S. Chung, P. A. Milder, J. C. Hoe and K. Mai, "Single-Chip Heterogeneous 

Computing:Does the Future Include Custom Logic, FPGAs, and GPGPUs?," 43rd 

Annual IEEE/ACM International Symposium on Microarchitecture, pp. 225-236, 2010.  

[6]  R. Hameed, W. Qadeer, M. Wachs, O. Azizi, A. Solomatnikov, B. C. Lee, S. Richardson, 

C. Kozyrakis and M. Horowitz, "Understanding sources of inefficiency in 

general-purpose chips," Proceedings of the 37th Annual International Symposium on 

Computer Architecture, pp. 37-47, 2010.  

[7]  A. Gacic, M. Puschel and J. M. Moura, "Fast automatic implementations of FIR filters," 

International Conference on Acoustics, Speech, and Signal Processing (ICASSP), vol. 2, 



 

47 

 

pp. 541-544, 2003.  

[8]  L. R. Rabiner, " A simplified computational algorithm for implementing FIR digital 

filters," IEEE Transactions on Acoustics, Speech and Signal Processing, pp. 259-261, 

1977.  

[9]  E. Turajlic and O. Bozanovic, "A novel adaptive FIR filter algorithm," in 2012 IX 

International Symposium on Telecommunications (BIHTEL), 2012.  

[10]  B. Spinnler, "Equalizer design and complexity for digital coherent receivers," IEEE 

Journal of Selected Topics in Quantum Electronics, vol. 16 no. 5, pp. 1180-1192, Sept. 

2010.  

[11]  G. Grandmaison, J. Belzile, C. Thibeault and F. Gagnon, "Frequency domain filter using 

an accurate reconfigurable FFT/IFFT core," in IEEE Northeast Workshop on Circuits 

and Systems, 2004.  

[12]  P. Watts, R. Waegemans, M. Glick, P. Bayvel and R. Killey, "An FPGA-based optical 

transmitter design using real-time DSP for advanced signal formats and electronic 

predistortion," Journal of Lightwave Technology, Vol. 25, no.10, pp. 3089-3099, 2007.  

[13]  S. Israa, M. Amine, B. G. Leonardo, Q. Juan and N. A. Josef, "Frequency Domain vs. 

Time Domain Filter Design of RRC Pulse Shaper for Spectral Confinement in High 

Speed Optical Communications," in 14.2013 ITG Symposium Proceedings on Photonic 

Networks, Leipzig, Germany, 2013.  

[14]  Y. Voronenko and M. Puschel, "Multiplierless multiple constant multiplication," ACM 



 

48 

 

Transactions on Algorithms, Vol. 3, no.2, 2007.  

[15]  H. Kang and I. Park, "FIR filter synthesis algorithms for minimizing the delay and the 

number of adders," IEEE Journal on Circuits and Systems—II:Analog and Digital 

Signal Processing, Vol. 48, no.4, August 2001.  

[16]  A. G. Dempster, S. S. Dimirsoy and I. Kale, "Designing multiplier blocks with low logic 

depth," in IEEE International Symposium on Circuits and Systems (ISCAS), 2002.  

[17]  J. Park, K. Muhammad and K. Roy, " High-performance FIR filter design based on 

sharing multiplication," IEEE Transactions on Very Large Scale Integration (VLSI) 

Systems, Vol. 11,No.2 , pp. 244-253, 2003.  

[18]  D. Yagain and V. A. Krishna, " FIR filter design based on retiming automation using 

VLSI design metrics," in 2013 International Conference on Technology, Informatics, 

Management, Engineering, and Environment (TIME-E), 2013.  

[19]  S.-J. Lee, J.-W. Choi, S. W. Kim and J. Park, " A Reconfigurable FIR Filter Architecture 

to Trade Off Filter Performance for Dynamic Power Consumption," IEEE Transactions 

on Very Large Scale Integration (VLSI) Systems, Vol. 19,No.12, pp. 2221-2228, 2011.  

[20]  Xilinx, "7 Series FPGA Overview," Xilinx, June 2011. [Online]. Available: 

http://www.xilinx.com/csi/training/7_series_FPGA_overview.htm. 

[21]  Xilinx, "7 Series DSP48E1 Slice User Guide," 30 January 2012. [Online]. Available: 

http://www.xilinx.com/support/documentation/user_guides/ug479_7Series_DSP48E1.

pdf.. 



 

49 

 

[22]  T. Wada, "64 point Fast Fourier Transform Circuit (Version 1.0)," 9 September 2006. 

[Online]. Available: http://www.ie.u-ryukyu.ac.jp/~wada/design07/spec_e.html. 

[Accessed 9 Octorber 2013]. 

[23]  R. Koutsoyannis, P. A. Milder, C. R. Berger, M. Glick, J. C. Hoe and M. Puschel, 

"Improving fixed-point accuracy of FFT cores in O-OFDM systems," in ICASSP, 2012.  

[24]  Y. Wu, H. Chen, G. Bischof and P. Milder, "Generation of customized FIR filter 

hardware", under review.  

 

 

  



 

50 

 

Appendix 

The code in this appendix is a Verilog description of a time-domain FIR filter instance 

created by the generator described in this thesis. A random testbench for the instance is also 

generated. The time-domain FIR filter design instance has 4 coefficients, 2 stages of 

parallelism, and word length is 12 bits. The 4 coefficients are random complex numbers. 

They are 

0.5521103740 – 0.4267403185j 

-0.2835474610 – 0.1517075151j 

-0.5101168752 + 0.1216162592j 

-0.0605792403 – 0.8772545457j 

After being converted to 12 bits, the coefficients become 

1130 – 873j 

-580 – 310j 

-1044 + 249j 

-124 – 1796j 

The coefficients in integer are assigned in Verilog code below. 

 

module FIR_timedomain(clk, x_inRe1, x_inIm1, x_inRe2, x_inIm2, 

y1Re, y1Im, y2Re, y2Im); 

parameter sample_width=12; 

parameter K=2; 

 

input clk;  

input signed [sample_width-1:0] x_inRe1, x_inIm1, x_inRe2, 

x_inIm2; 

output signed [sample_width-1:0] y1Re, y1Im, y2Re, y2Im; 

 

reg signed [sample_width-1:0] y1Re, y1Im,  y2Re, y2Im; 

reg signed [sample_width-1:0] x_nmRe [2**K-1:0];  

reg signed [sample_width-1:0] x_nmIm [2**K-1:0];  

 

wire signed [2*sample_width:0] a11Re[3:0],a11Im[3:0], 

a21Re[3:0],a21Im[3:0]; 

wire signed [sample_width:0] b11Re, b11Im, b21Re, b21Im; 

wire signed [sample_width:0] c11Re, c11Im, c21Re, c21Im; 

wire signed [sample_width:0] d11Re, d11Im, d21Re, d21Im; 

 

reg signed [sample_width-1:0] a11Re_R[3:0],a11Im_R[3:0], 

a21Re_R[3:0],a21Im_R[3:0]; 



 

51 

 

reg signed [sample_width-1:0] b11Re_R, b11Im_R, b21Re_R, b21Im_R; 

reg signed [sample_width-1:0] c11Re_R, c11Im_R, c21Re_R, c21Im_R; 

reg signed [sample_width-1:0] d11Re_R, d11Im_R, d21Re_R, d21Im_R; 

reg signed [sample_width-1:0] x_nm_11R1Re[3:2], x_nm_11R2Re, 

x_nm_11R1Im[3:2], x_nm_11R2Im; 

reg signed [sample_width-1:0] x_nm_21R1Re[3:2], x_nm_21R2Re, 

x_nm_21R1Im[3:2], x_nm_21R2Im; 

 

wire signed [sample_width-1:0] C0Re, C0Im, C1Re, C1Im, C2Re, C2Im, 

C3Re, C3Im;  

integer z; 

  

assign C0Re = 12'd1130; 

assign C1Re = -12'd580; 

assign C2Re = -12'd1044; 

assign C3Re = -12'd124; 

assign C0Im = -12'd873; 

assign C1Im = -12'd310; 

assign C2Im = 12'd249; 

assign C3Im = -12'd1796; 

  

 

always @(posedge clk) begin 

    x_nmRe[1] <= x_inRe1; 

    x_nmIm[1] <= x_inIm1; 

    x_nmRe[0] <= x_inRe2; 

    x_nmIm[0] <= x_inIm2; 

    for (z=0;z<2**K-2;z=z+1)begin 

    x_nmRe[z+2] <= x_nmRe[z]; 

    x_nmIm[z+2] <= x_nmIm[z]; 

    end 

end 

 

always @(posedge clk) begin 

     

    x_nm_11R1Re[2] <= x_nmRe[2]; 

    x_nm_11R1Re[3] <= x_nmRe[3]; 

    x_nm_11R2Re <= x_nm_11R1Re[3]; 

    a11Re_R[0] <= 

{a11Re[0][2*sample_width],a11Re[0][sample_width+12-2:12]}; 

    a11Re_R[1] <= 



 

52 

 

{a11Re[1][2*sample_width],a11Re[1][sample_width+12-2:12]}; 

    a11Re_R[2] <= 

{a11Re[2][2*sample_width],a11Re[2][sample_width+13-2:13]}; 

    a11Re_R[3] <= 

{a11Re[3][2*sample_width],a11Re[3][sample_width+14-2:14]}; 

    b11Re_R <= {b11Re[sample_width],b11Re[sample_width+1-2:1]}; 

    c11Re_R <= {c11Re[sample_width],c11Re[sample_width+1-2:1]}; 

    d11Re_R <= {d11Re[sample_width],d11Re[sample_width+1-2:1]}; 

     

    x_nm_11R1Im[2] <= x_nmIm[2]; 

    x_nm_11R1Im[3] <= x_nmIm[3]; 

    x_nm_11R2Im <= x_nm_11R1Im[3]; 

    a11Im_R[0] <= 

{a11Im[0][2*sample_width],a11Im[0][sample_width+12-2:12]}; 

    a11Im_R[1] <= 

{a11Im[1][2*sample_width],a11Im[1][sample_width+12-2:12]}; 

    a11Im_R[2] <= 

{a11Im[2][2*sample_width],a11Im[2][sample_width+13-2:13]}; 

    a11Im_R[3] <= 

{a11Im[3][2*sample_width],a11Im[3][sample_width+14-2:14]}; 

    b11Im_R <= {b11Im[sample_width],b11Im[sample_width+1-2:1]}; 

    c11Im_R <= {c11Im[sample_width],c11Im[sample_width+1-2:1]}; 

    d11Im_R <= {d11Im[sample_width],d11Im[sample_width+1-2:1]}; 

     

    x_nm_21R1Re[2] <= x_nmRe[1]; 

    x_nm_21R1Im[2] <= x_nmIm[1]; 

    x_nm_21R1Re[3] <= x_nmRe[2]; 

    x_nm_21R1Im[3] <= x_nmIm[2]; 

    x_nm_21R2Re <= x_nm_21R1Re[3]; 

    a21Re_R[0] <= 

{a21Re[0][2*sample_width],a21Re[0][sample_width+12-2:12]}; 

    a21Re_R[1] <= 

{a21Re[1][2*sample_width],a21Re[1][sample_width+12-2:12]}; 

    a21Re_R[2] <= 

{a21Re[2][2*sample_width],a21Re[2][sample_width+13-2:13]}; 

    a21Re_R[3] <= 

{a21Re[3][2*sample_width],a21Re[3][sample_width+14-2:14]}; 

    b21Re_R <= {b21Re[sample_width],b21Re[sample_width+1-2:1]}; 

    c21Re_R <= {c21Re[sample_width],c21Re[sample_width+1-2:1]}; 

    d21Re_R <= {d21Re[sample_width],d21Re[sample_width+1-2:1]}; 

    x_nm_21R2Im <= x_nm_21R1Im[3]; 



 

53 

 

    a21Im_R[0] <= 

{a21Im[0][2*sample_width],a21Im[0][sample_width+12-2:12]}; 

    a21Im_R[1] <= 

{a21Im[1][2*sample_width],a21Im[1][sample_width+12-2:12]}; 

    a21Im_R[2] <= 

{a21Im[2][2*sample_width],a21Im[2][sample_width+13-2:13]}; 

    a21Im_R[3] <= 

{a21Im[3][2*sample_width],a21Im[3][sample_width+14-2:14]}; 

    b21Im_R <= {b21Im[sample_width],b21Im[sample_width+1-2:1]}; 

    c21Im_R <= {c21Im[sample_width],c21Im[sample_width+1-2:1]}; 

    d21Im_R <= {d21Im[sample_width],d21Im[sample_width+1-2:1]}; 

     

    end 

 

Mul mul110 

(.clk(clk), .xRe(x_nmRe[0]), .xIm(x_nmIm[0]), .CRe(C0Re), .CIm

(C0Im), .yRe(a11Re[0]), .yIm(a11Im[0])); 

Mul mul111 

(.clk(clk), .xRe(x_nmRe[1]), .xIm(x_nmIm[1]), .CRe(C1Re), .CIm

(C1Im), .yRe(a11Re[1]), .yIm(a11Im[1])); 

Mul mul112 

(.clk(clk), .xRe(x_nm_11R1Re[2]), .xIm(x_nm_11R1Im[2]), .CRe(C

2Re), .CIm(C2Im), .yRe(a11Re[2]), .yIm(a11Im[2])); 

Mul mul113 

(.clk(clk), .xRe(x_nm_11R2Re), .xIm(x_nm_11R2Im), .CRe(C3Re), 

.CIm(C3Im), .yRe(a11Re[3]), .yIm(a11Im[3])); 

Mul mul212 

(.clk(clk), .xRe(x_nm_21R1Re[2]), .xIm(x_nm_21R1Im[2]), .CRe(C

2Re), .CIm(C2Im), .yRe(a21Re[2]), .yIm(a21Im[2])); 

Mul mul213 

(.clk(clk), .xRe(x_nm_21R2Re), .xIm(x_nm_21R2Im), .CRe(C3Re), 

.CIm(C3Im), .yRe(a21Re[3]), .yIm(a21Im[3])); 

Mul mul210 

(.clk(clk), .xRe(x_inRe1), .xIm(x_inIm1), .CRe(C0Re), .CIm(C0I

m), .yRe(a21Re[0]), .yIm(a21Im[0])); 

Mul mul211 

(.clk(clk), .xRe(x_nmRe[0]), .xIm(x_nmIm[0]), .CRe(C1Re), .CIm

(C1Im), .yRe(a21Re[1]), .yIm(a21Im[1])); 

add add111 

(.clk(clk), .x1Re(a11Re_R[0]), .x1Im(a11Im_R[0]), .x2Re(a11Re_

R[1]), .x2Im(a11Im_R[1]), .yRe(b11Re), .yIm(b11Im)); 



 

54 

 

add add112 

(.clk(clk), .x1Re(b11Re_R), .x1Im(b11Im_R), .x2Re(a11Re_R[2]),

 .x2Im(a11Im_R[2]), .yRe(c11Re), .yIm(c11Im)); 

add add113 

(.clk(clk), .x1Re(c11Re_R), .x1Im(c11Im_R), .x2Re(a11Re_R[3]),

 .x2Im(a11Im_R[3]), .yRe(d11Re), .yIm(d11Im)); 

add add211 

(.clk(clk), .x1Re(a21Re_R[0]), .x1Im(a21Im_R[0]), .x2Re(a21Re_

R[1]), .x2Im(a21Im_R[1]), .yRe(b21Re), .yIm(b21Im)); 

add add212 

(.clk(clk), .x1Re(b21Re_R), .x1Im(b21Im_R), .x2Re(a21Re_R[2]),

 .x2Im(a21Im_R[2]), .yRe(c21Re), .yIm(c21Im)); 

add add213 

(.clk(clk), .x1Re(c21Re_R), .x1Im(c21Im_R), .x2Re(a21Re_R[3]),

 .x2Im(a21Im_R[3]), .yRe(d21Re), .yIm(d21Im)); 

always @(posedge clk) begin 

    y1Re <= {d11Re[sample_width],d11Re[sample_width+1-2:1]}; 

    y1Im <= {d11Im[sample_width],d11Im[sample_width+1-2:1]}; 

    y2Re <= {d21Re[sample_width],d21Re[sample_width+1-2:1]}; 

    y2Im <= {d21Im[sample_width],d21Im[sample_width+1-2:1]}; 

    end 

endmodule 

 

 

module Mul(clk, xRe, xIm, CRe, CIm, yRe, yIm); 

parameter sample_width = 12; 

input clk; 

input signed [sample_width-1:0] xRe, xIm, CRe, CIm; 

output signed [2*sample_width:0] yRe, yIm; 

reg signed [2*sample_width:0] yRe, yIm; 

reg signed [2*sample_width-1:0] f1, f2, f3, f4; 

always @(posedge clk) begin 

f1 <= xRe * CRe; 

f2 <= xRe * CIm; 

f3 <= xIm * CRe; 

f4 <= xIm * CIm; 

end 

always @* begin 

yRe = f1 - f4; 

yIm = f2 + f3; 

end 



 

55 

 

endmodule 

 

 

module add(clk, x1Re, x1Im, x2Re, x2Im, yRe, yIm); 

parameter sample_width = 12; 

input clk; 

input signed [sample_width-1:0] x1Re, x1Im, x2Re, x2Im; 

output signed [sample_width:0] yRe, yIm; 

reg signed [sample_width:0] yRe, yIm; 

always @* begin 

yRe = x1Re + x2Re; 

yIm = x1Im + x2Im; 

end 

endmodule 

 

 

/*`timescale 1ns / 1ps 

module tb;  

//Inputs  

reg clk;  

reg signed [11:0] x_inRe1, x_inIm1, x_inRe2, x_inIm2 ; 

 

//Outputs  

wire signed [11:0] y1Re, y1Im, y2Re, y2Im ; 

 

integer file; 

 

//Instantiate 

FIR_timedomain uut ( 

 .clk(clk), 

 .x_inRe1(x_inRe1),  

 .x_inIm1(x_inIm1),  

 .x_inRe2(x_inRe2),  

 .x_inIm2(x_inIm2),  

 .y1Re(y1Re), 

 .y1Im(y1Im), 

 .y2Re(y2Re), 

 .y2Im(y2Im) 

 );  

 

initial clk = 0; 



 

56 

 

always #10 clk = ~clk; 

initial begin 

 file=$fopen("outputv.txt","w"); 

 // Initialize Inputs 

 $monitor("outputRe=%d, outputIm=%d\n outputRe=%d, 

outputIm=%d",y1Re, y1Im, y2Re, y2Im); 

@(posedge clk) #1 

x_inRe1<=-468; 

x_inIm1<=-567; 

x_inRe2<=222; 

x_inIm2<=1241; 

@(posedge clk) #1 

x_inRe1<=-915; 

x_inIm1<=1376; 

x_inRe2<=-244; 

x_inIm2<=-694; 

@(posedge clk) #1 

x_inRe1<=-359; 

x_inIm1<=267; 

x_inRe2<=-1056; 

x_inIm2<=876; 

@(posedge clk) #1 

x_inRe1<=437; 

x_inIm1<=-1282; 

x_inRe2<=-1332; 

x_inIm2<=-1733; 

@(posedge clk) #1 

x_inRe1<=-795; 

x_inIm1<=1163; 

x_inRe2<=-231; 

x_inIm2<=-1538; 

@(posedge clk) #1 

x_inRe1<=1369; 

x_inIm1<=-257; 

x_inRe2<=252; 

x_inIm2<=1380; 

@(posedge clk) #1 

x_inRe1<=-1049; 

x_inIm1<=-1622; 

x_inRe2<=-352; 

x_inIm2<=1878; 



 

57 

 

@(posedge clk) #1 

x_inRe1<=-699; 

x_inIm1<=1093; 

x_inRe2<=319; 

x_inIm2<=863; 

@(posedge clk) #1 

x_inRe1<=121; 

x_inIm1<=1267; 

x_inRe2<=-1892; 

x_inIm2<=-1579; 

@(posedge clk) #1 

x_inRe1<=214; 

x_inIm1<=929; 

x_inRe2<=-2047; 

x_inIm2<=1301; 

@(posedge clk) #1 

x_inRe1<=1466; 

x_inIm1<=919; 

x_inRe2<=658; 

x_inIm2<=-1769; 

@(posedge clk) #1 

x_inRe1<=749; 

x_inIm1<=178; 

x_inRe2<=-1459; 

x_inIm2<=-2013; 

@(posedge clk) #1 

x_inRe1<=-1145; 

x_inIm1<=-1190; 

x_inRe2<=2019; 

x_inIm2<=32; 

@(posedge clk) #1 

x_inRe1<=-1918; 

x_inIm1<=-620; 

x_inRe2<=-1013; 

x_inIm2<=1231; 

@(posedge clk) #1 

x_inRe1<=1482; 

x_inIm1<=-114; 

x_inRe2<=1508; 

x_inIm2<=-1958; 

@(posedge clk) #1 



 

58 

 

x_inRe1<=1596; 

x_inIm1<=-1075; 

x_inRe2<=290; 

x_inIm2<=1341; 

@(posedge clk) #1 

x_inRe1<=-1262; 

x_inIm1<=-603; 

x_inRe2<=-1487; 

x_inIm2<=-513; 

@(posedge clk) #1 

x_inRe1<=1958; 

x_inIm1<=269; 

x_inRe2<=520; 

x_inIm2<=308; 

@(posedge clk) #1 

x_inRe1<=-1825; 

x_inIm1<=-1099; 

x_inRe2<=-111; 

x_inIm2<=-399; 

@(posedge clk) #1 

x_inRe1<=-1456; 

x_inIm1<=-461; 

x_inRe2<=1073; 

x_inIm2<=798; 

@(posedge clk) #1 

x_inRe1<=-938; 

x_inIm1<=-1129; 

x_inRe2<=-484; 

x_inIm2<=-1802; 

@(posedge clk) #1 

x_inRe1<=-115; 

x_inIm1<=-245; 

x_inRe2<=-270; 

x_inIm2<=677; 

@(posedge clk) #1 

x_inRe1<=1438; 

x_inIm1<=-770; 

x_inRe2<=-1296; 

x_inIm2<=604; 

@(posedge clk) #1 

x_inRe1<=-211; 



 

59 

 

x_inIm1<=366; 

x_inRe2<=-706; 

x_inIm2<=-1668; 

@(posedge clk) #1 

x_inRe1<=1178; 

x_inIm1<=288; 

x_inRe2<=-989; 

x_inIm2<=1031; 

$fclose(file); 

$finish; 

end 

always @(*) begin 

$fmonitor(file,"%d+j%d\n%d+j%d",y1Re,y1Im, y2Re, y2Im); 

end 

endmodule 

 


