

SSStttooonnnyyy BBBrrrooooookkk UUUnnniiivvveeerrrsssiiitttyyy

The official electronic file of this thesis or dissertation is maintained by the University
Libraries on behalf of The Graduate School at Stony Brook University.

©©© AAAllllll RRRiiiggghhhtttsss RRReeessseeerrrvvveeeddd bbbyyy AAAuuuttthhhooorrr...

Signature Search and Computing
Cost Optimization in Distributed

Load Networks

A Dissertation Presented

by Zhongwen Ying

to

The Graduate School

in Partial Fulfillment of the requirements

for the Degree of

Doctor of Philosophy

in

Electrical and Computer Engineering

Stony Brook University

August 2014

Stony Brook University

The Graduate School

Zhongwen Ying

We, the dissertation committe for the above candidate for the

Doctor of Philosophy degree, hereby recommend

acceptance of this dissertation

Thomas G. Robertazzi

Professor in department of Electrical and Computer Engineering

K. Wendy Tang

Associate Professor in department of Electrical and Computer Engineering

Peter Milder

Associate Professor in department of Electrical and Computer Engineering

Esther M. Arkin

Professor in department of Applied Mathematics and Statistics

This dissertation is accepted by the Graduate School

Charles Taber

Dean of the Graduate School

ii

Abstract of the Dissertation

Signature Search and Computing

Cost Optimization in Distributed

Load Networks

by Zhongwen Ying

Doctor of Philosophy

in

Electrical and Computer Engineering

Stony Brook University

2014

A signature is a data pattern of interest in a large data file or set of large

data files. Such signatures that need to be found arise in applications such

as DNA sequence analysis, network intrusion detection, biometrics, large

scientific experiments, speech recognition and sensor networks. Related to

this is string matching.

More specifically we envision a problem where long linear data files (i.e

flat files) contain multiple signatures that are to be found using a multiplicity

of processors (parallel processor).

This paper evaluates the performance of finding signatures in files residing

iii

in the nodes of parallel processors configured as trees, two dimensional meshes

and hypercubes. We assume various combinations of sequential and parallel

searching. A unique feature of this work is that it is assumed that data is

pre-loaded onto processors, as may occur in practice, thus load distribution

time need not be accounted for. Elegant expressions are found for average

signature searching time and speedup, and graphical results are provided.

Expressions for speedup for divisible load scheduling for a four node cyclic

network are found. Load distribution when there are multiple paths for

such distribution have received little attention. In this first study speedup

is calculated for a wide variety of scheduling assumptions. Comparisons

between the different scheduling policies are made.

An integrated optimization problem which involves minimizing the mon-

etary cost of operation and minimizing solution time (makespan) which has

computer utility-like applications is investigated. A divisible load model of a

bus interconnection network is considered. The trade-offs between monetary

cost and solution time is found via a heuristic algorithm. The algorithm is

improved compared to an earlier algorithm. Trade-off issues are examined.

In this paper we confirm the work of Shaklevich.

iv

Contents

List of Figures viii

1 Introduction 1

2 Signature Searching in a Networked Collection of Files for

multi-level tree network 5

2.1 Introduction . 5

2.2 Tree Networks . 9

2.3 Number of signatures is unknown 11

2.3.1 Each file has at most one signature 11

2.3.2 Multiple signatures can exist in one file 14

2.4 Number of signatures is known 16

2.4.1 Each file has at most one signature 16

2.4.2 Multiple signatures can exist in one file 21

3 Signature Searching in a Networked Collection of Files for

mesh and hypercube network 26

3.1 Mesh Networks: Store and Forward 26

v

3.2 Every file can have its own signature regardless of the upper

layer node . 28

3.2.1 The number of signatures is unknown 28

3.2.2 The number of signatures is known 30

3.3 Only the nodes whose parent node has a signature can have a

signature. 32

3.3.1 Only one node in the network commands all the nodes 34

3.3.2 Every root node of each local network commands the

nodes below it . 36

3.3.3 All the files in every layer are searched in parallel, lay-

ers are searched sequentially. 39

3.3.4 All the files in the mesh network are searched in parallel 39

3.4 Mesh Networks: Circuit Switched and Wormhole Routing . . . 41

3.5 Hypercubes . 43

3.6 Searching time comparison for different types of network . . . 44

3.7 Conclusion . 46

4 Speedup Evaluation for a Cyclic Network with Multiple Paths 47

4.1 Introduction . 47

4.2 Load distribution with Front-end 49

4.2.1 Homogeneous link speeds and the computation speed

of Processor 3 is different 51

4.2.2 Homogeneous computation speeds and the link speeds

for processor 3 are different 60

vi

4.2.3 Processor 0 does no processing 67

4.3 Load distribution without front-end 74

4.3.1 The link speeds are all the same and computation speed

of Processor 3 is different 74

4.4 Conclusion . 77

5 Optimal trade-off between monetary cost and solution time 79

5.1 introduction . 79

5.2 Model Description . 82

5.3 Minimizing the total computing cost 87

5.3.1 Different master processors 95

5.3.2 Boundary with different master processors 101

5.4 Scheduling Improvement . 106

5.5 Conclusion . 109

6 Conclusion 110

vii

List of Figures

2.1 Multi-level tree network . 9

2.2 Speedup when the number of signatures is unknown and each

file can have multiple signatures 15

2.3 Single level tree when the number of signatures is known . . . 18

2.4 The expected search time when the number of signatures is

known and multiple signatures can exist in one file for a single

level tree . 23

2.5 Speedup when there can be multi-signatures in one file and

the number of signatures in a level is known 25

3.1 Mesh network . 27

3.2 Speedup when the number of signatures is unknown in a mesh

network and each node can have at most one signature 30

3.3 Speedup when the number of signatures is known in a mesh

network and there is at most one signature in each node . . . 33

3.4 Searching time for the mesh network in case 3.3.1 as signature

probability is varied . 35

viii

3.5 Searching time for the mesh network in case 3.3.2 as signature

probability is varied . 37

3.6 Speedup 1 when the number of signatures is unknown and

only the nodes whose parent node has a signature can have a

signature in the mesh network 38

3.7 Speedup 2 when the number of signatures is unknown and

only the nodes whose parent node has a signature can have a

signature in the mesh network 40

3.8 Speedup 3 when the number of signature is unknown and only

the nodes whose parent node has a signature can have a sig-

nature in mesh network . 41

3.9 Circuit-switched and wormhole routing mesh network 42

3.10 Four types of networks comparison 45

4.1 Cyclic network . 49

4.2 Timing diagram 1 in case 2.1 51

4.3 Timing diagram 2 in case 2.1 53

4.4 Timing diagram 3 in case 2.1 55

4.5 Timing diagram 4 in case 2.1 57

4.6 Timing diagram 5 in case 2.1 57

4.7 Tree network for reference in case 2.1 58

4.8 Timing diagram for the reference tree network in case 2.1 . . . 59

4.9 Speedups comparison with load distribution with frond-end

and different computation speed for processor 3 61

ix

4.10 Timing diagram 1 in case 2.2 62

4.11 Timing diagram 2 in case 2.2 64

4.12 Speedups comparison with load distribution with front-end

and different link speed for processor 3 65

4.13 Timing diagram 1 with same link speed but different compu-

tation speed for processor 3 in case 4.2.3 67

4.14 Timing diagram 2 with same link speed but different compu-

tation speed for processor 3 in case 2.3 69

4.15 Speedups comparison when same link speed but different com-

putation speed for processor 3 in case 4.2.3 70

4.16 Timing diagram 1 with different link speed but same compu-

tation speed for all processors as processor 3 in case 4.2.3 . . . 71

4.17 Timing diagram 2 with different link speed but same compu-

tation speed for all processors as processor 3 in case 4.2.3 . . . 72

4.18 Speedups comparison with different link speed but same com-

putation speed for all processors as processor 3 in case 4.2.3 . 73

4.19 Timing diagram 1 in case 4.3.1 74

4.20 Timing diagram 2 in case 4.3.1 75

4.21 Timing diagram 3 in case 4.3.1 76

4.22 speedup when load distribution without frond-end 77

5.1 Distributed computing system consisting of N processors equipped

with front-end processors connected through a bus 83

x

5.2 Timing diagram of N bus interconnected processors with load

origination at P1 . 84

5.3 Timing diagram of i bus interconnected processors with load

origination at P1 when i-1 processors redistribute load to the

ith processor . 92

5.4 Optimal computing cost and finish time for five unique pro-

cessors and the first processor as the master processor 95

5.5 Optimal computing cost and finish time for five unique pro-

cessors with multiple master processors 100

5.6 Optimal computing cost and finish time for five unique pro-

cessors with multiple master processors 107

5.7 Comparison between the optimal distribution strategy and

previous strategy . 108

xi

Acknowledgement

It would not be possible to write this doctoral thesis without the help of

so many people. Here I can only mention a small part of them.

First and foremost, I would like give my earnest thanks to my advisor,

Prof Thomas Robertazzi for supporting me these years, both financially and

intellectually. He is the most easygoing and one of the smartest people I

know. As an advisor, he is a role model that teaches me how to do research

with patience, carefulness and hard work. He not only gave me freedom

to manage the time and do research without pressure but also instructive

suggestions when I faced difficulties. He expands my understanding and

ability to do this research which is a tremendous help for my future career.

I thank my girlfriend Yiyi Xue. Her cherished love, consistent patience,

and considerate heart sustained me in getting through this journey of study.

I thank my friends, Kai Wang, Zheming Zhang, Yang Liu, Yunlong Wang,

Li Geng, Zhe Shen, who are members in the Cosine Laboratory, (Communi-

cation, Signal Processing, and Networking), Stony Brook University. Their

invaluable suggestions and encouragement helped me work on this disserta-

tion. I am very grateful to each of them. In addition, I thank Professor Petar

M. Djuric for his encouragement and for providing facilities and the needs

for the Cosine Laboratory. This invaluable support makes this laboratory

much more convenient and pleasant for research work.

I am grateful to my parents: Xiaoxing Ying and Meifen Ge. They give me

unconditional support throughout my life and have cherished with me every

xii

achievement I have made. Without their encouragement and support, my

study would never have been done in Stony Brook. I thank Zhigen Lin for his

friendship and his perennially encouraging emails that have been enriching

the colour of my life.

xiii

Chapter 1

Introduction

Parallel computing for a multiprocessors system and grid computing or dis-

tributed computing for a network system are becoming prevalent because the

infrastructure of networked systems is increasingly widespread and parallel

data processing technology has become more popular. This dissertation deals

with the speedup analysis for a multiple level tree and mesh networks, scal-

able design for a cyclic network, and cost analysis for a bus interconnection

network.

The increasing ubiquity of parallel processors makes parallel computing

or grid computing more convenient to implement than before. Its cost effec-

tiveness and speedup performance is more beneficial than that of a single pro-

cessor machine. In data mining, sensor data analysis, bioinformatics, image

processing and signal processing applications, there is a huge volume of data

to be processed. Because loads of data can be arbitrarily partitioned into

different fractions and transmitted and distributed to other parallel nodes

1

as to process data, divisible load theory [1] can be employed to implement

parallel data processing as a tractable and efficient manner.

Divisible loads are parallel data loads partitioned among links and proces-

sors. Such loads arise in massive amounts of data in grid computing, signal

processing, image processing and aerospace data processing. Given many

processors interconnected by channel speed limited links in some type of net-

work, the optimal fraction of loads to be assigned to processors and links can

be defined through linear equations, mathematical programming or, in some

cases, by simple algebraic recursions. Divisible load models should consider

both network communication and processors computation as factors. Opti-

mal divisible load scheduling has been developed for different type of networks

such as linear daisy chains[2], buses[3], trees[4][5][6], hypercubes[7], two and

three dimensional meshes[8] and arbitrary graphs. A number of schedul-

ing polices have been developed including multi-installments[9], multi-round

scheduling[10][11], different release times, buffer constraints[12], communica-

tion start-up costs, time-varying network capacity, simultaneous distribution[13][14]

and simultaneous start[15]. Also solution time optimization[16], combina-

torial schedule optimization[17], are detailed studied. Moreover, limited

memory[18], multiple loads[19], combinatorics relating to divisible load theory[20],

a large number of relatively small independent tasks[21][22] are investigated.

Introductions to divisible load scheduling theory appear in [23][24][1].

Traditionally, a signature means a handwritten depiction of someones

name, nickname, or even a simple X or other mark that a person writes on

documents as a proof of identity and intent. Here a signature is a relatively

2

small data pattern of interest embedded in a very large (in this paper se-

quential) data file. There are many applications of this problem including

DNA sequence searching, network intrusion detection, large scientific exper-

iment, bioinformatics, speech and text recognition and sensor networks. In

[25] signature searching is investigated on bus networks experimentally. In

this thesis some signature searching is examined in some specific contexts.

Cyclic networks are a type of network derived from structure of tree

networks and mesh networks. Traditionally, the processors at a lower layer

in a multiple level tree network can receive work load from the same processor

at a higher layer. The situation that a processor at the lower layer receives

the load from multiple processors at higher level should be considered. One

simple type of network that embodies this concept, called a cyclic network,

has been investigated in this thesis. This is a new topic within the field of

divisible load theory.

The emergence of distributed computing as a divisible technology and

the decreasing pricing of computer power leads to the possible emergence

of computer ”utilities” in the near future. These utilities would charge cus-

tomers for distributed access to computer resources. To some extent, current

computer service leasing companies embody this approach. An important

question for the utility then becomes the management of computer resources

to provide low cost service. In this spirit, this thesis provides an approach to

determine the minimum cost manner in which load should be divided among

processors that a customer is being charged for access to.

The thesis is organized as below: chapter 2 gives the definition, applica-

3

tion and significance of signature, investigate the signature searching time

and speedup in multi-level tree network under different cases. Chapter 3 ex-

tend other type of network: mesh network and hypercube network to discuss

signature searching time, compare four types network when search signature.

Chapter 4 develop a new kind of network: cyclic network and discusses the

load distribution strategy and compare them. Chapter 5 propose the way to

balance solution time and computing in a bus network, plot out the trade-off

line with constant master processor and ultimate boundary with multiple

master processor. Chapter 6 makes the conclusion.

4

Chapter 2

Signature Searching in a

Networked Collection of Files

for multi-level tree network

2.1 Introduction

A signature is a relatively small data pattern of interest embedded in a very

large (in this paper sequential) data file. It is assumed signatures are tempo-

rally distinct and do not overlap each other. That is, there can be multiple

signatures in a file. Because the files we study are much longer than the sig-

natures, it is assumed that signatures have infinitesimally small length. Such

signature searching occurs in network security, signal processing, medicine,

image processing, and sensor technology and many other fields.

Most previous work on signature searching (known as template matching

5

and string matching) develop algorithm for the detailed matching process.

This paper, like [26][27] addresses an upper level view of signature searching

involving system performance evaluation. However we now briefly summarize

some string matching work.

String searching, which is similar to our concept of signature searching,

is a special case of pattern searching. String searching generically involves

finding a pattern of length m in a text of length n over some alphabet. The

worst case complexity of exact string matching is O(n) but the proportional-

ity constant of the linear term can be very different depending on the string

matching algorithm, ranging from m for the naive algorithm to 2 for the

Knuth-Morris-Pratt algorithm [28].

Approximate string matching involves string matching that allows errors.

That is, the pattern and/or text suffer some corruption. Applications in-

clude noisy channels, speech recognition, hand writing recognition, finding

DNA sequences in the presence of mutations and text searching. Approxi-

mate string matching algorithms utilize some distance metric to quantify the

amount of difference between two strings. For instance, the edit distance is

the number of differences between two strings. The computational complex-

ity of approximate string matching can range from linear to NP complete

depending on the error mechanism [29].

For on-line algorithms, it is assumed that the text is not known in ad-

vance. For off-line algorithms the text can be pre-processed, thus indexing

can be used [30]. On-line algorithms generally consist of a phase of entering

the string into a data structure and a phase of looking for a match using the

6

data structure [31].

In this paper we assume the data is stored in flat files (i.e. very long

linear sequences of data) stored at nodes of certain interconnection networks.

We assume linear (in the file size) computational complexity which applies

to exact string matching and some approximate string matching. Naturally

more sophisticated database methodologies are possible and flat file are often

converted into other structures [32][33] but for initial raw data processing flat

files are natural [34].

We envision a scenario where files containing signatures are placed on a

multiplicity of (parallel) processors tied together by an interconnection net-

work [26][27]. Unlike the work in much of the divisible load theory literature

[27][35][36][37], we do not take the time to distribute the load to the proces-

sors and links into account. Rather we assume the files are pre-loaded onto

the processors prior to time t = 0. This is relevant in certain applications.

Load is often spontaneously distributed to processors without being sched-

uled, monitored or timed. Our goal is to determine expected search time and

speedup under a variety of search protocols that largely differ in a number

of aspects. These include:

1) Whether the number of signatures in a file at a node is known or un-

known a priori. The latter is more likely in general but the former could also

occur. For instance when a search is done for ”management” in a company

database, the number of signatures matches may be generally known a pri-

ori.

2) Whether a data file stored at a node contains one or more than one

7

signature. For instance, a database of company employee information may

contain one match for a given individual, but multiple matches for individual

who are ”management”.

3) If no signatures are stored in a node, whether it implies that there are no

signatures stored in the children nodes of the node. For instance a node may

store aggregated/summarized national data and children nodes store more

detailed state/provincial data. It may be possible in searching the national

nodes to find children nodes that should be searched and those that need not

be searched.

4) Differing degrees of sequentiality and concurrency in the search strategy.

Both have been investigated in the divisible load scheduling literature over

the years[35][36][37].

These are important assumptions that may be made in specific applica-

tions and we try to study this problem in a complete manner. In this con-

text this work examines tree, mesh and hypercube interconnection networks

[8][38][39][40]. We look at trees, meshes and hypercubes mainly because these

are fundamental interconnection networks. Trees are often used as spanning

trees to distribute load in other types of interconnection networks. Meshes

are often used as interconnection networks in parallel processors. Meshes

are particularly well suited to networks on chips [41][42][43]. Hypercubes

are widely used in parallel processors. One could certainly examine other

interconnection networks but space limitations prevent this in this paper.

In earlier work the expected search time to find either one [26] or multiple

signatures [27] with a uniform distribution of signatures in a flat file was

8

found analytically. This earlier work involved trees and daisy chains and

incorporated, unlike this work, load distribution time to processors over a

network.

The rest of the paper is organized as follows. Section 2.2 give some

assumption and definition of tree network. Section 2.3 and 2.4 discusses

searching time and speedup in tree networks for different cases. The searching

time and speedup in mesh networks (store and forward) for different cases

are discussed in chapter 3. A comparison of the speedups for different type

of networks is presented in section 3.2. Finally, this paper concludes with

some possible extensions in section 3.3.

2.2 Tree Networks

Figure 2.1: Multi-level tree network

A general tree is shown in Figure 2.1. Assume that in a tree a node is a

9

structure which contains exactly one file. Each node has one, two or more

child nodes, which are below it in the tree space. A node that has a child is

called the child’s parent node.

A node has at most one parent. Nodes that do not have any children

are called leaf nodes. They are also referred to as terminal nodes. A node’s

height is the length of the longest downward path to a leaf from that node.

The root’s height is the height of the tree. The depth of a node is the length

of the path to its root. The nodes in the same depth of the tree are said to

be at the same level.

The height of the multiple-level tree in this paper is H. Throughout this

paper there is a single file, possibly containing signatures, in each node. In all

the cases for tree networks which we examine the number of children nodes

ni per node is a random variable from 1 to N , possibly different for each

level. But at the same level the number of children in each subtree is the

same. In this section if a parent node has a signature(s), its children nodes

may also have signatures. If the parent node does not have any signature

of interest, its children nodes also have no signatures and do not need to

be searched. Some dependency between signature occurrences is thus being

assumed. This may model locality of reference - if a node has a signature(s),

there may be related information (signatures) on its children.

The lengths of all the files in the tree are same, L (bits). The inverse

searching speed for one processor is w (s/bit). Suppose that the expected

time we need to search a file with signature is X, because the expected

position of signature is in the middle of such file (i.e. uniform distribution

10

in linear file assumption). The time to search the whole file is 2X. while

2X = L·w. The purpose of this paper is to calculate the time we need to find

all of the files with signatures. We will discuss several cases in sub-sections

2.1 and 2.2 using the assumptions listed in the introduction.

2.3 Number of signatures is unknown

2.3.1 Each file has at most one signature

Let Mi be the number of signatures in the ith layer and ni be the number

of children nodes in each subtree in the ith layer. If there is at most one

signature in one file, Mi ≤ Mi−1ni ≤ Mi−2ni−1ni ≤ . . . ≤ n1n2 . . . ni. The

expected time to search one file is X, the searching process for a file will stop

as soon as we find one signature (as also true in section 3.1.1 and 3.2.1).

Only one node in the tree commands all the nodes

First, assume that only the top most root node in the multi-level tree com-

mands all the nodes to search, for every layer, every file in the layer and each

node replies to the top node whether there is a signature in the node. That

is, one layer is searched sequentially at a time. The expected time to search

the entire tree is

Tu1 = n1X + M1n2X + . . . + MH−1nHX =
H∑
i=1

Mi−1ni ·X (2.1)

11

Here, M0 = 1.

Now we consider a homogeneous case that for all the subtrees in a cer-

tain layer the probability of a signature is the same: pi for the ith layer.

Equation (2.1) will be Tu1 = n1X + p1n1n2X + . . . + (
∏H−1

j=1 pjnj)nHX =∑H
i=1(
∏i−1

j=1 pjnj)niX. A homogeneous case occurs if p1 = p2 = . . . = pH−1 =

p, equation (2.1) will be Tu1 =
∑H

i=1(
∏i

j=1 nj)p
i−1X. The fully homogeneous

case occurs if the number of files in all of the subtrees is the same: n, and the

probability of signature is also the same: p, then the expected search time is

Tu1 =
∑H

i=1 n
ipi−1X = pHnH+1−n

pn−1
X.

Every root node of each local tree commands the nodes below

it

In this case each level is searched sequentially, within each subtree the

search is sequential but all subtrees at the same level are searched in parallel.

The time to search the ith layer is niX. The total expected time to search

the multi-level tree is

Tu2 = n1X + n2X + . . . + nHX =
H∑
i=1

niX (2.2)

The speedup compared with last case is

τu1 =

∑H
i=1Mi−1ni·∑H

i=1 ni

(2.3)

For the fully homogeneous case, τu1 = pHnH+1−n
pn−1

1
nH

= (pn)H−1
(pn−1)H

.

All the files in every level are searched in parallel, levels are

12

searched sequentially

In this case each level is searched sequentially and within a level the nodes

are searched in parallel. For every level the search time is only X. The total

search time is Tu3 = HX. The speedup compared with the first case in this

section is

τu2 =

∑H
i=1Mi−1ni

H
(2.4)

For the fully homogeneous case, τu2 is ((pn)H−1)n
(pn−1)H

.

All the files in the tree are searched in parallel

This case is the fastest search method. All the files in the entire tree are

searched in parallel. The total search time is Tu4 = X and the speedup is

τu3 =
H∑
i=1

Mi−1ni (2.5)

For the fully homogeneous case, τu3 is ((pn)H−1)n
(pn−1)

.

It is apparent that as the height increases, all the three speedups also

increase, and τu1 < τu2 < τu3, τu3 is much larger than τu1 and τu2 when the

height is high. From equations (2.3), (2.4), (2.5) we know τu3 = H · τu2,

τu2 =
∑H

i=1 ni

H
τu1, the expected mean number of

∑H
i=1 ni

H
is

N
2
H

H
= N

2
. This

confirms that the highest performing strategies, if it can be implemented, is

to search all files in parallel.

13

2.3.2 Multiple signatures can exist in one file

One should search the whole file to find all of the signatures in each file.

If there are multiple signatures in one file, the expected search time is 2X

(section 3.1.2 and 3.2.2), Mi can be larger than Mi−1 · ni, and we assume

that those Mi signatures exist in Ni files (each of Ni files with at least one

signature).

Only one node in the tree commands all the nodes The expected

search time in layer i is Ni−1ni · 2X, for Ni files with signatures, Ni ≤ Mi.

The total expected search time is:

T́u1 =
H∑
i=1

Ni−1ni · 2X (2.6)

Every root node of each local tree commands the nodes below

it Again the levels are searched sequentially, within each subtree the search

is sequential but all subtrees at the same level are searched in parallel. The

expected search time in layer i is ni · 2X. The total expected search time is:

T́u2 =
H∑
i=1

ni · 2X (2.7)

The speedup is:

τ́u1 =

∑H
i=1Ni−1ni · 2X∑H

i=1 ni · 2X
=

∑H
i=1Ni−1ni∑H

i=1 ni

(2.8)

All the files in every level are searched in parallel, levels are

searched sequentially The same case as before, T́u3 = H ·2X. The speedup

14

is τ́u2 =
∑H

i=1 Ni−1ni

H

All the files in the tree are searched in parallel The same case as

before, T́u4 = 2X. The speedup is τ́u3 =
∑H

i=1Ni−1ni

The speedup is plotted in figure 2.2. As a baseline result, it is assumed

that the distribution of signatures in every file is a Poisson distribution:

P (m = k) = λk

k!
e−λ(m is the number of signatures in every file). We can see

from figure 2.2 that when λ goes up from 1 to 20, the speedup τ́u1 increases

quickly first and then saturates. That is because initially the number of

subtrees needed to be searched increased and later one winds up searching

all, but not more than all, files in a level, then the speedup saturates.

Figure 2.2: Speedup when the number of signatures is unknown and each file
can have multiple signatures

15

2.4 Number of signatures is known

When the number of signatures is known, the searching process will stop as

soon as the last signature is found, thus the time should be shorter than

that of the case where the number of signatures is unknown. Two cases are

discussed.

2.4.1 Each file has at most one signature

In this case assume that there are m signatures in n files in a single level of the

tree. Each file can have at most one signature. Each node holds one file. We

focus on the last signature because the searching process will not stop until

the last signature is found, thus the search time depends on the position of

the last signature. Because there are m signatures and every file can have at

most one signature, the last signature should be in the mth, (m + 1)th, . . . , nth

file. If the last signature is in the (m − 1)th or even a file to the left of mth

file, there will be multiple signatures in some files, which is a contradiction.

The probability that the last signature is in the mth file is (there are m− 1

signatures in m− 1 files)

Pm =

(
m−1
m−1

)(
n
m

) (2.9)

And the expected search time is

tm = Pm(mX) (2.10)

16

The probability that the last signature is in the ith file is (there are m−1

signatures in i− 1 files) for i ≥ m− 1 is

Pi =

(
i−1
m−1

)(
n
m

) (2.11)

And the expected search time is

ti = Pi · (mX + (i−m)2X) =

(
i−1
m−1

)(
n
m

) (2i−m)X (2.12)

Thus, the expected search time Ts for this single level is

Tn,m =
n∑

i=m

ti =
n∑

i=m

(
i−1
m−1

)(
n
m

) (2i−m)X (2.13)

We plot the expected search time as the number of signatures increases.

In figure 2.3 the number of files n = 100, and we can conclude that when

m = 13, the expected search time is the largest.

We derive the expression for the maximum value of the function of figure

2.3 as below.

17

Figure 2.3: Single level tree when the number of signatures is known

Tn,m =
n∑

i=m

ti

=
n∑

i=m

(
i−1
m−1

)(
n
m

) (2i−m)X

= 2
n∑

i=m

i

(
i−1
m−1

)(
n
m

) X −m
n∑

i=m

(
i−1
m−1

)(
n
m

) X

= 2
n∑

i=m

m

(
i
m

)(
n
m

)X −mX (2.14)

= 2m
n + 1

m + 1
X −mX (2.15)

=
2nm−m2 + m

m + 1
X (2.16)

(2.17)
18

d

dm
Tm,n =

2n−m2 − 2m + 1

(m + 1)2
·X (2.18)

Then get m =
√

2n + 2 − 1. We demonstrate
√

2n + 2 − 1 is between 1

and n.

√
2n + 2 − 1 < n (2.19)

2n + 2 < (n + 1)2 (2.20)

1 < n2 (2.21)

(2.22)

Then we obtain m =
√

2n + 2− 1. If n = 100, then equation 2.14 will be

d
dm

Tm,n = 200−m2−2m+1
(m+1)2

, let d
dm

Tm,n = 0, then we get the maximum expected

search time occur when m = 13.21 which is close to m = 13. For this graph

if a file has a signature the expected search time is X, and if there is no

signature, it is 2X. Initially the mean time to find all signatures increases as

more signatures are located closer to the last file. Eventually though as the

number of signatures increases most files have a signature forcing the average

search time per file closer to X rather than 2X and the curve decreases.

Up to this point in this section the expected time for one single level has

been solved. Next the expected time to search an H level tree is considered.

There are four cases just as in the case where the number of signatures is

unknown.

19

Only one node in the tree commands all the nodes

Assume that there are mi,j signatures in the jth subtree in layer i, and

Mi =
∑Mi−1

j=1 mi,j, Mi stands for the total number of signatures in the ith

layer. Then for the jth subtree in layer i, the expected search time Tni,mi,j
=∑ni

i=mi,j

(i−1
mi,j−1)

(ni
mi,j

)
(2i−mi,j)X. The total expected search time is thus:

T1 =
H∑
i=1

Mi−1∑
j=1

Tni,mi,j
(2.23)

Assume m1,1 = m1 = M1 and M0 = 1.

Every root node at local tree to command the nodes below it

Again, the levels are searched sequentially, within each subtree the search

is sequential. However all subtrees at the same level are searched in parallel.

For a given layer, the search time in this layer is the longest expected search

time in the layer’s subtrees. Assume that in the ith layer the largest expected

search time is max[Tni,mi,j
] (j is from 1 to Mi−1 while Mi has been defined

before), The total time to search the entire tree is:

T2 =
H∑
i=1

max[Tni,mi,j
] (2.24)

The speedup is:

τ1 =

∑H
i=1

∑Mi−1

j=1 Tni,mi,j∑H
i=1 max[Tni,mi,j

]
(2.25)

For the fully homogeneous case where n1 = n2 = . . . = nH = n and

m1 = m2,1 = . . . = mH,1 = · · · = m, the number of signatures in every

20

subtree is the same in every layer in the first case. Then

τ1 =

∑H
i=1m

i−1Tn,m

H · Tn,m

=
mH − 1

H(m− 1)
(2.26)

All the files in every level are searched in parallel, levels are

searched sequentially

Discussed as before, T3 = HX and the speed up compared with case

2.2.2.1 is

τ2 =

∑H
i=1

∑Mi−1

j=1 Tni,mi,j

HX
(2.27)

For the fully homogeneous case that n1 = n2 = . . . = nH = n and

m1 = m2,1 = . . . = mH,1 = . . . = m, τ2 = mH−1
H(m−1)

Tn,m = m(mH−1)(2n−m+1)
H(m2−1)

.

All the files in the tree are searched in parallel

Discussed as before T4 = X, and the speedup τ3 =
∑H

i=1

∑Mi−1
j=1 Tni,mi,j

X
. For

the fully homogeneous case that n1 = n2 = . . . = nH = n and m1 = m2,1 =

. . . = mH,1 = . . . = m, then τ3 = mH−1
H(m−1)

Tn,m = m(mH−1)(2n−m+1)
m2−1

.

This is apparent that τ3 > τ2 > τ1, because for the fully homogeneous

case, τ3 = Hτ2, τ2 = m(2n−m+1)
m+1

τ1, absolutely m(2n−m+1)
m+1

> 1.

2.4.2 Multiple signatures can exist in one file

First we consider a single level tree which has n files and m signatures.

We combine all the files logically in one level into a single file. We also

assume that the capacity of one file is L bits, so that the length of the

combined file is n · L. The position of the signatures is X1, X2, . . . , Xm,

21

(nL ≥ X1, X2, . . . , Xm ≥ 0), X ∼ U(0, nL).

P (Xmax = x) =

(
m

1

)
· 1

nL
· (

x

nL
)m−1 (2.28)

The expected length of the last signature position:

Xmax =

∫ nL

0

m

nL
· (

x

nL
)m−1 · xdx =

m

m + 1
· nL (2.29)

The search inverse speed is w s/bit. Then the expected time we need to

search one single level is T́n,m = Xmax · w = m
m+1

· n · L · w, here L · w = 2X,

thus

T́n,m =
2m

m + 1
nX (2.30)

This is plotted in figure 2.4. Here the number of files is 10 and the

maximum number of signatures is 50. From the figure we can see that the

expected search time will increase and saturate as the number of signatures

increase. That can be seen from equation (2.22), as m increases, T́n,m will

be close to 2nX.

Until now in this section we have solved the expected time in one single

level, now we consider the expected time we need to search the H level tree.

Assume that the mi signatures are in ńi files. Apparently ńi ≤ mi. The four

cases are discussed as below.

Only one node in the tree commands all the nodes

For the ith layer, there are Ni−1 files that should be searched, there

22

Figure 2.4: The expected search time when the number of signatures is known
and multiple signatures can exist in one file for a single level tree

23

are mi,1, mi,2, . . . , mi,Ni−1
signatures in ńi,1, ńi,2, . . . , ńi,Ni−1

files, Ni =∑Ni−1

j=1 ńi,j. The total time is

T́1 =
H∑
i=1

Ni−1∑
j=1

T́ni,mi,j
(2.31)

Note that N0 = 1 and ńi,j ≤ mi,j.

Every root node at local tree to command the nodes below it

In this case the search time in the ith layer is the time to search one of the

subtrees which has the largest number of signatures (like the case discussed

before). The total search time is:

T́2 =
H∑
i=1

max[T́ni,mi,j
] (2.32)

Note that j is from 1 to Ni−1. The speed up is:

τ́1 =

∑H
i=1

∑Ni−1

j=1 T́ni,mi,j∑H
i=1 max[T́ni,mi,j

]
(2.33)

All the files in every level are searched in parallel, levels are

searched sequentially

Discussed as before, T́3 = 2HX. The speedup compared with case that

only one node command all the nodes is

τ́2 =

∑H
i=1

∑Ni−1

j=1 T́ni,mi,j

2HX
(2.34)

All the files in the tree are searched in parallel

The total search time in this case is 2X. The speedup here is:

24

Figure 2.5: Speedup when there can be multi-signatures in one file and the
number of signatures in a level is known

τ́3 =

∑H
i=1

∑Ni−1

j=1 T́ni,mi,j

2X
(2.35)

The speedup figure for these cases has been plotted in figure 2.5. From

the figure we can see that τ́3 > τ́2 > τ́1. The reason is similar to the case

when each file has at most one signature.

25

Chapter 3

Signature Searching in a

Networked Collection of Files

for mesh and hypercube

network

3.1 Mesh Networks: Store and Forward

A regular two dimensional mesh network of processors [36] is shown in Figure

3.1. It is a commonly used interconnection network. In this network struc-

ture each processor is located in the corners of four rectangles and has four

neighbors. The central processor is called the originator, it can communicate

information or transport data to its four neighboring nodes. As in trees, the

central node is assumed to be layer 0, and its four neighboring nodes in layer

26

1, the nodes which are neighbors to the nodes in layer 1 but not in layer 0

are in layer 2, . . . , the nodes which are neighbors to the nodes in layer i

but not in layer i-1 are in layer i+1, as shown in the mesh structure. A node

can only send messages or data to its neighboring nodes. If the node in the

north of layer 2 wants to send a message to the node in layer 0, first it should

send message to the node in the north top of layer 1, then the message will

be transferred to layer 2.

Figure 3.1: Mesh network

27

Assume that there are N layers (as shown in figure 3.1) and there is at

most one signature in every node in a mesh network. There are 4i nodes in

the ith layer. Different from the tree network, the case that every node can

have a signature will be discussed in section 3.2. That is, if a node has no

signature, its children nodes can still have signatures. Assume the average

time to search every node in the mesh network is the same: X, and again

there is at most one signature in one file.

3.2 Every file can have its own signature re-

gardless of the upper layer node

3.2.1 The number of signatures is unknown

In this case every node should be searched. There are three cases.

Only one node in the network commands all the nodes

The central node which is in layer 0 commands each node to search for

signatures. As soon as the central node sends a message to command one

node to start to search its file, the central node will wait until it receives

a message indicating whether there is any signature in the file. All of the

nodes in the mesh network are searched one by one. It is apparent that the

searching time is the longest, the searching time in the ith layer is 4i ·X. The

total expected search time is:

T1 = 4X + 8X + . . . + 4NX = 2N(N + 1)X (3.1)

28

Every root node of each local network commands the node below

it

The searching time in layer one is 4X. For layer two, there are 8 nodes

to be searched. We assign two nodes in layer two to be searched by each

node in layer one, the search time should be 2X. For layer three, there are

two cases, the first case is for the four nodes in the upmost, or downmost,

or leftmost, or rightmost direction. The expected search time for these four

nodes is 3X, because there are three neighboring nodes in their lower layer;

and for the second case (the remaining nodes), there are only two neighboring

nodes in their lower layer. Thus the expected search time is 2X. However,

we can eliminate X searching time for both cases, because every node in

layer three except the four top nodes in four directions have two upper nodes

(different from the tree network). If one node for the node in layer three is

commanded by one node in layer two, the other node in layer two need not

command it to search for a signature. For layer three, the searching time

is 2X, the same for layer four, five, The total expected search time is

T2 = 4X + 2X + 2X + . . . + 2X = 4X + 2(N − 1)X = (2N + 2)X.

All the files in every layer are searched in parallel, layers are

searched sequentially

Like the third case in the tree network, the search time in every layer is

X. The total time is T3 = NX.

All the files in the mesh network are searched in parallel

The expected search time in this case is only T4 = X.

Then we calculate the speedup in these four cases: τ1 = T1

T2
= N, τ2 =

29

Figure 3.2: Speedup when the number of signatures is unknown in a mesh
network and each node can have at most one signature

T1

T3
= 2(N+1), τ3 = T1

T4
= 2N(N+1), and the speedup figure has been plotted

in figure 3.2. From the figure we know that τ3 > τ2 > τ1, that is because

τ2
τ1

= 2(N+1)
N

> 2 and τ3
τ2

= N .

3.2.2 The number of signatures is known

Only one node in the network commands all the nodes

This case is mostly similar to the case in the tree network: assume there

are mi signatures in the ith layer, we focus on the last signature. There are

4i files in the ith layer, the probability that the last signature is in the jth file

in the ith layer is:

30

Pj =

(
j−1
mi−1

)(
4i
mi

) (3.2)

The expected searching time in the ith layer is:

T́i =
4i∑

j=mi

(
j−1
mi−1

)(
4i
mi

) (2j −mi)X (3.3)

The total time to search the mesh network is T́1 =
∑N

i=1 T́i. The time

should be less than T1.

Every root node of each local network commands the nodes

below it

For layer one, the expected search time is the same as T2.1 =
∑4

j=m1

(j−1
m1−1)
(4
m1

)
(2j−

m1)X. For layer two, three and the next layers, there are two types of nodes.

The first type of nodes is those nodes which have three children nodes in

their lower layer, from figure 3.1 the first type of nodes are in the top most

position of east, west, south, north four directions. The other type of nodes

are the other nodes, which only have two children nodes in their lower layers.

However, the searching time for the two types nodes are not 2X and 3X, be-

cause every node except the four top nodes have two parent nodes. Assume

that in the first X searching time all the nodes except the four top nodes are

searched, and for the parent node only one node commands one node. If all

the signatures are found, the searching time in this layer is X. If there are

some signatures in the top four nodes, we need to add X more time to find

the signature, then the searching time should be 2X. The probability that

31

there are no signatures in the top four nodes in the ith layer is:

P2.i =

(
4i−4
mi

)(
4i
mi

) (3.4)

The total time of the mesh network in this case is:

T́2 = T́1 +
N∑
i=2

(P2,iX + (1 − P2,i)2X) (3.5)

All the files in every layer are searched in parallel, layers are

searched sequentially

The same as the last case we have discussed, the total time is T́3 = NX.

All the files in the mesh network are searched in parallel

The total time is T́4 = X.

Now we calculate the speedup for these four cases. τ́1 = T́1

T́2
=

∑N
i=1 T́i

T́1+
∑N

i=2 P2,iX+(1−P2,i)2X
,

while T́i and P2,i have been defined before (see eq.3.4 and eq.3.5). τ́2 = T́1

T́3
=∑N

i=1 T́i

NX
, τ́3 = T́1

T́4
=

∑N
i=1 T́i

X
. The speedup figure has been plotted in figure 3.3.

From the figure we can know that τ́3 > τ́2 > τ́1. That is because τ́3 = N · τ́2

, τ́2
τ́1

=
T́1+

∑N
i=2 P2,iX+(1−P2,i)2X

NX
> 1.

3.3 Only the nodes whose parent node has a

signature can have a signature.

In this case those nodes whose parent node do not have a signature, will also

have no signatures. Only those nodes whose parent node has a signature

32

Figure 3.3: Speedup when the number of signatures is known in a mesh
network and there is at most one signature in each node

33

need to be searched. This case is so complex that one can not find a general

equation to solve it. We simulated 100,000 mesh networks with different

probabilities of finding signatures in the files, and calculated the search times.

In this section we only discuss the case that the number of signatures is

unknown.

3.3.1 Only one node in the network commands all the

nodes

The mesh network structure is divided into four parts: up-left, up-right,

down-left and down-right. The nodes in these four parts will search their

children nodes in four different directions, which is also up-left, up-right,

down-left and down-right. It is probable that those nodes, whose parent

node has a signature, will have signatures. The nodes that are not in the

top position of every layer have two parent nodes, the case that either of

them or both of them have a signature will lead the child node to possibly

have a signature. We can get the mesh structure by creating the signature

distribution layer by layer. The next step is to calculate the search time in

every layer, which depends on the signature distribution in the upper layer.

The four top nodes have three children nodes, and the other nodes have

two children nodes. Thus the total search time for a certain layer is the

number of top nodes, which have a signature to be searched, times 3X, plus

the number of the other nodes, which have a signature, times 2X. For this

algorithm figure 3.4 shows the search time for every layer as the probability

34

Figure 3.4: Searching time for the mesh network in case 3.3.1 as signature
probability is varied

of signatures increases. Smaller values of p result in the signature searching

processing stopping earlier as irregular signature free boundaries form around

the mesh network that prevent further signature searching.

Figure 3.4 shows that when the probability of finding a signature in every

node is higher, the expected time to search every layer will be longer. When

the probability of a signature is exactly 1, that means every node will have

a signature, the time to search the ith layer is 4i. When the probability of a

signature is equal or less than 0.5, the number of nodes which have signatures

will decrease as the layers increase until no node will have signatures in a

certain layer. When the probability of signature is equal to 0.6, there are

35

almost always nodes which have signatures and the number of nodes which

have signatures in every level remains almost constant. When the probability

of signature is equal or more than 0.7, the number of nodes which have

signatures increases.

3.3.2 Every root node of each local network commands

the nodes below it

For the four top nodes in the east, west, north, and south directions, if both

of the two neighboring nodes in their layer have no signatures (i.e they will

not command their lower layer node to search their files), the searching time

for the top nodes is 3X. If one of the neighboring nodes or both of them

have signatures, we can assign the node whose parent nodes are the top node

and its neighboring node to be commanded by the node neighboring the top

node. Thus the searching time will be cut to 2X. For the other node, the

maximum searching time is 2X, when these nodes have signatures. All the

local mesh networks (the node and its children nodes) search their own nodes

in parallel. The searching time for a certain layer depends on the signature

distribution of the top node of the upper layer, as mentioned before, it will

be 3X, 2X, or 0 (there are no signatures in the whole parent nodes). We

simulate this case in figure 3.5.

From figure 3.5, when the probability of a signature is equal or less than

0.6, the searching time is shorter and shorter until we need not search the

signature in the lower layer as the layer is larger. That’s because smaller

36

Figure 3.5: Searching time for the mesh network in case 3.3.2 as signature
probability is varied

37

values of p result in the signature searching processing stopping earlier as ir-

regular signature free boundaries form around the mesh network that prevent

further signature searching. When the probability of signature is equal or

higher than 0.7, for those higher layer the searching time is exactly 2X. That

is because the probability that the top node has a signature and meanwhile

the two neighboring nodes have no signatures is almost impossible. Thus the

searching time for those high layers is exactly 2X.

Figure 3.6: Speedup 1 when the number of signatures is unknown and only
the nodes whose parent node has a signature can have a signature in the
mesh network

The speedup for case 3.3.1 and case 3.3.2 (speedup 1) has been depicted in

figure 3.6 . From it we can conclude that when the probability of a signature

38

is below 0.6, the speedups are saturated at less than 4. We can not reduce

much searching time by using the method in case 3.3.2 when the probability

of a signature is below 0.6 as the number of layers increases. That is because

when the probability of a signature is below 0.6, the searching time for every

layer in case 3.3.1 will decrease as the number of layers increases (see figure

3.4). While the probability of a signature is more than 0.6, the speedup rises

much faster. That is because in figure 3.4 we know the the searching time

will go up quickly, while the searching time will be 2X in figure 3.5.

3.3.3 All the files in every layer are searched in paral-

lel, layers are searched sequentially.

The searching time for every layer is X. The total search time is thus NX.

The speedup for 3.3.1 and case 3.3.3 (speedup 2) has been depicted in figure

3.7. It can be seen from figure 3.7 the speedup is larger than the speedup in

figure 3.6 when the probability of signature is larger than 0.6, for the search-

ing time for every layer is the same X. When the probability of signature is

lower than 0.6, the same as figure 3.6, the speedup does not increase when

the number of layers increases.

3.3.4 All the files in the mesh network are searched in

parallel

The expected search time in this case is only X. The speedup (speedup 3)

for case 3.3.4 and case 3.3.1 has been plotted in figure 3.8. It can be seen

39

Figure 3.7: Speedup 2 when the number of signatures is unknown and only
the nodes whose parent node has a signature can have a signature in the
mesh network

that the speedup increases much faster as the number of layers increase, than

the speedup in figure 3.7 when the probability of a signature is larger than

0.6, and when the probability of a signature is lower than 0.6, the speedup

does not increase as the number of layers increase.

40

Figure 3.8: Speedup 3 when the number of signature is unknown and only
the nodes whose parent node has a signature can have a signature in mesh
network

3.4 Mesh Networks: Circuit Switched and

Wormhole Routing

We discuss a type of mesh network as shown in figure 3.8. It is proposed

for circuit-switched and wormhole routing. [36] In circuit switching and

wormhole routing the communication delay does not depend on the distance

between originator node and lower layer nodes that are searched by the orig-

inator node. As a result it is possible to search the signature of those nodes

very far from the originator. Each scattering consists of two phases: chess

41

Figure 3.9: Circuit-switched and wormhole routing mesh network

queen moves and then cross moves using the torus wrap-around connections.

The searching process pattern recursively repeats itself in sub-meshes of five

times smaller side size. Let p denote the number of processors used in each

phase of the searching process. Here the communication path patterns are

repeated in sub-meshes with p + 1 times shorter side size, and all p ports of

the active processors are busy in each searching phase. In the first searching

phase the originator searches p processors. In the next phase each searched

processor search their p new processors. Thus, p(p + 1)i−1 processors are

being searched in phase i. At the end of phase i the number of processors

that have been searched is (p + 1)i. The searching process can be viewed

as a tree which can be called a (p + 1) - nominal tree. Let us call a layer

the set of processors activated in the same phase, and hence on the same

42

level of the (p+ 1) - nominal tree. However, it is different from the searching

signature process in the tree network. For the tree network, the nodes which

have searched their children nodes will not search any other nodes, but in

this mesh structure, each node will be searched once, but later each node

will search other nodes during the search process. Assume that there are m

processors(nodes) should be searched and the expected time to search one

node is X, so the total search time is T = logp+1m ·X.

3.5 Hypercubes

In this section we assume that the system is homogeneous [7]. A hypercube

is an n-dimensional generalization of a square (n = 2) and a cube (n = 3).

[wikipedia] The search process in a hypercube is commanded by activating

processor along consecutive hypercube dimensions. For example, P0 search

its file and then commands P1 to search its own file along dimension 0, then

P0, P1 command P2, P3, respectively, along dimension 1, etc. This scattering

method uses binomial trees embedded in the log m - dimensional mesh of

side size 2. Note that this is a special case of (p + 1) - nominal tree. Let

d = logm, which m is the total number of processors here. Each processor

of the hypercube is labeled with d - bit binary number such that neighboring

nodes differ in exactly one bit. Thus, there are logm ports in each node.

Suppose the originator node P0 has label 0. Then, its direct neighbors have

exactly one bit equal to 1 in their labels. If a processors is in a distance of two

hops from the originator, it will have two bits equal to 1 in their labels. So,

43

processors with i number of 1s in their labels are i number of hops away from

the originator. Let us call a layer the set of processors in equal hop from the

originator. The number of processors in layer i is
(
d
i

)
. A processor in layer i

may command layer i+1 through d− i ports. So in the hypercubes network,

any node can be the original node to command other nodes to search their

own files, assume the time to search one node is X, so the total searching

time should be logm ·X.

3.6 Searching time comparison for different

types of network

The four types of networks considered are tree networks, mesh networks:

store and forward, mesh networks: circuit switched and wormhole routing

(discussed in the supplementary file) and hypercubes (discussed in supple-

mentary file). Each of these has advantages and disadvantages. Now we want

to compare their searching time if the total number of nodes is fixed: N . For

the tree network, assume that the number of nodes in every subtree, n, is

the same, which is a homogeneous case. The height of the tree should be:

1+n+n2+. . .+nH−1 = N , then H = logn((n−1)N+1). The total searching

time for case 3.1.1.2 is T1 = nHX = n logn((n− 1)N + 1)X. The searching

time is plotted in figure 3.9 (here N = 100) for these four types of network.

We can see that when the number of nodes in every subtree increases, the

searching time also increases. For the store-and-forward mesh network, the

44

1 2 3 4 5 6 7 8 9
0

5

10

15

20

25

30

the number of files in each subtree

S
ea

rc
h

tim
e

Tree network
Store and forward mesh network
Circuit switching and wormhole routing mesh network
Hypercube network

Figure 3.10: Four types of networks comparison

number of layers should be: 1 + 4 + . . .+ 4(H − 1) = N , then H = 1+
√
2N−1
2

.

The searching time should be T2 = (2H + 2)X = (3 +
√

2N − 1)X. For

the circuit switching and wormhole routing mesh network, the searching

time is T3 = logp+1NX. For the hypercube network, the searching time

is T4 = log2NX. In figure 3.10, we can see that the searching time for circuit

switching and the wormhole routing mesh network is short, but this type

network is hard to realize. The searching time for hypercubes is also very

short, and this type can be easily realized in low dimensionality. For the

tree network and store-and-forward network, which are easy to realize, if the

number of nodes in every subtree is more than 4, the searching time for the

store and forward mesh network is shorter, for the tree network when the

45

number of nodes in every subtree is less than or equal to 4, the searching

time for the tree network is shorter.

3.7 Conclusion

It has been demonstrated that the expected search time for signatures in

a wide variety of search scenarios for tree, mesh and hypercube networks,

where load distribution time is not considered, can be calculated either ana-

lytically or through simulation. This should also be possible for other types

of interconnection networks. Future research should consider other types of

file structures or statistical assumptions. This work is of interest in a wide

variety of applied areas involving signature searching.

46

Chapter 4

Speedup Evaluation for a

Cyclic Network with Multiple

Paths

4.1 Introduction

Divisible loads are computing and communication loads that are perfectly

partitionable among processors and links, respectively. Divisible load schedul-

ing seeks to assign loads to processors and links in a scheduled manner so as

to minimize solution time (i.e. makespan) given the scheduling policy, the

interconnection network, the processor and link speeds and the computing

and communication intensities. There have been over 130 journal papers

[http://www.ece.sunysb.edu/ tom/] on divisible load scheduling since the

first papers in 1988 by Agrwal and Jagadish [44] and Cheng and Robertazzi

47

[2].

Most work to date has involved load distribution over trees or over span-

ning trees embedded in other interconnection networks. For instance, previ-

ously linear networks have been discussed in [2][45][46][47][48]. Bus network

has been discussed in [3][49][50][23][51]. Hypercube network were examined

in [7][14]. Two dimensional network has been discussed in [52] and tree

network has been discussed in [53][54][55][9][5].

Put another way, most work to date does not allow cycles in the load

distribution (spanning) graph interconnects. In this paper we will discuss a

new type of network with two paths for load distribution as shown in Figure

4.1. It is a cyclic network of two four nodes, for a first study. At first the

total load is on the original processor 0, it will transfer load to the other

processors to do the computation work together. The task here is to find the

best distribution load strategy to process the load in minimum time. From

Figure 4.1 we know that processor 0 should distribute the load to processor

1 and processor 2, the load for processor 3 is transferred from processor 1

and processor 2.

In this chapter network speedup is found for a wide variety of scheduling

policy assumptions.

This chapter is organized as follow. Section two will discuss this special

network when load distribution involves processors with front-end proces-

sors for communication off-loading (i.e. computation and communication

can occur for a processor at the same time). In specific cases we will exam-

ine processors with homogeneous link speeds and with different link speeds.

48

Section three will examine networks with processors without front-ends.

P0

P1 P2

P3 3
w

0
w

1
w

2
w

1
Z

2
Z

3

l
Z

3

r
Z

Figure 4.1: Cyclic network

4.2 Load distribution with Front-end

Consider the simple tree network as shown in Figure 4.1. The first case we

discuss is the tree network with front-end. That means the processors can

compute and communicate at the same time. Let us first introduce the fol-

lowing notation.

αi: The fraction of measurement data that is assigned to processor i by

49

the originating processor.

w: A constant that is inversely proportional to the computation speed of

any processor in the network. Any processor can process the entire load in

time wTcp.

z: A constant that is inversely proportional to the speed of each link.

The entire load can be transmitted over a link in time zTcm.

Tcp: The time that it takes the ith processor to process the entire load

when w = 1. The time for arbitrary w is wTcp.

Tcm: The time that it takes processor to transmit all the measurement

data by the network link when z = 1. The time for arbitrary z is zTcm.

In Figure 4.1 we have four processors: P0, P1, P2, P3, and they have

their own inverse computation speed: w0, w1, w2, w3, and the inverse link

speed between P0 and P1 is z1, between P0 and P2 is z2, between P1 and

P3 is z3
l and between P2 and P3 is z3

r. For simplicity, we assume z1 = z2 = z

and w0 = w1 = w2 = w. We only discuss different link speed or different

computation speed for processor 3 here.

50

4.2.1 Homogeneous link speeds and the computation

speed of Processor 3 is different

In this subsection, we assume that z3
l = z3

r = z = z1 = z2, but w3 is not

equal to w = w1 = w2. We also assume sequential distribution from the

host. We define that for P3 the load transmitted from P1 is α3
l and the

load transmitted from P2 is α3
r. Suppose P3 can receive the load from P1

and P2 at the same time. Based on [53] we plot out the timing diagram as

shown in Figure 4.2.

cpwT

cpwT

cpwT

Processor 0

Processor 1

Processor 2

Processor 3

0
a

1
a

cm
zT + 3

l
a

cm
zT

1
a

2
a

cm
zT + 3

r
a

cm
zT

2
a

3

l
a

cm
zT

3

r
a

cm
zT

3

l
a + 3

r
a()

3 cp
wT

Figure 4.2: Timing diagram 1 in case 2.1

To obtain a minimum finish time, we should let all the processors finish

their computation work at the same time, and also P3 should finish receiving

the load from P1 and P2 at the same time. If this is not true, load can be

reallocated so P3 finishes receiving load from P1 and P2 at the same time.

51

So we obtain the timing equations:

α0wTcp = α1zTcm + α3
lzTcm + α1wTcp (4.1)

α1wTcp = α2zTcm + α3
rzTcm + α2wTcp (4.2)

α2wTcp = α3
rzTcm + (α3

l + α3
r)w3Tcp (4.3)

α3
lzTcm = α2zTcm + α3

rzTcm + α3
rzTcm (4.4)

α0 + α1 + α2 + α3
l + α3

r = 1 (4.5)

There are five equations and five unknowns. We assume that zTcm

wTcp
= λ,

usually the communication speed is much faster than computation speed, so

λ << 1. Also we assume w3

w
= T . So from equation (4.1)(4.2)(4.3)(4.4) we

calculate that:

α3
l

α3
r

=
λ + T + 2

1 − T
(4.6)

From equation (4.6) we know that T should less than 1, otherwise it

makes no sense. This means the computation speed for processor 3 should

be faster than the other processors. We define M1 = α3
l

α3
r and allied with

equation (4.5) we calculate out α3
r and α0 here so that:

α3
r =

1

M1(3T + λ2 + 3λ + Tλ + 1) + 3T + Tλ + λ + 1
(4.7)

α0 = α3
r(M1T + M1λ

2 + 2M1λ + M1Tλ + Tλ + T) (4.8)

52

So the speedup compared with the finish time using just one processor,

whose computation speed is w, to complete the total load is

speedup1 =
wTcp

α0wTcp

=
1

α0

(4.9)

Refering to [48], we can get a more efficient load distribution strategy in

our network. The timing diagram is plotted as in figure 4.3.

cpwT

cpwT

cpwT

Processor 0

Processor 1

Processor 2

Processor 3

0
a

1
a

cm
zT

3

l
a

cm
zT

1
a

2
a

cm
zT 3

r
a cmzT

2
a

3

l
a

cm
zT

3

r
a

cm
zT

3

l
a + 3

r
a()

3 cp
wT

Figure 4.3: Timing diagram 2 in case 2.1

The difference here is we begin processor one’s computation work as soon

as we finish transferring α1’s part of the load. Here we first transfer α1’s part

of the load, then transfer α3
l’s part of the load from processor 0 to processor

1. For processor 2 it is the same. So we obtain these timing equations.

α0wTcp = α1zTcm + α1wTcp (4.10)

53

α1wTcp = α2zTcm + α3
lzTcm + α2wTcp (4.11)

α2wTcp = 2α3
rzTcm + (α3

l + α3
r)w3Tcp (4.12)

α3
lzTcm = α2zTcm + α3

rzTcm + α3
rzTcm (4.13)

α0 + α1 + α2 + α3
l + α3

r = 1 (4.14)

Also like the case we discussed above we assume that zTcm

wTcp
= λ and

w3

w
= T , then we obtain:

α3
l

α3
r

=
2λ + T + 2

1 − T
(4.15)

We define M2 = α3
l

α3
r , then

α3
r =

1

M2(3T + 2λ2 + 4λ + Tλ + 1) + 3T + Tλ + 2λ + 1
(4.16)

α0 = α3
r(M2T + 2M2λ

2 + 2M2λ + M2Tλ + Tλ + T) (4.17)

The speedup2 here is equivalent to equation (4.9).

Now we consider a third load distribution strategy, the timing diagram shown

in figure 4.4.

Here processor 3 begins to work as soon as α3
l’s part load is transferred

from processor 1 completed and finishes this part job and then begin α3
r’s

part load. There should be no idle time for Processor 3 as soon as it begins

54

cpwT

cpwT

cpwT

Processor 0

Processor 1

Processor 2

Processor 3
3 cpwT

cm
zT

0
a

1
a

2
a

cm
zT

3

ra
cm

zT

2
a

cmzT

3

l
a cmzT 3

r
a

cm
zT

3

r
a

1
a

3

l
a

3

l
a

3 cpwT

Figure 4.4: Timing diagram 3 in case 2.1

to compute α3
l’s part of the load, if not, we can distribute more load from

α3
r’s part of the load to α3

l’s part of the load. So we obtain these timing

equations.

α0wTcp = α1zTcm + α1wTcp (4.18)

α1wTcp = α2zTcm + α3
lzTcm + α2wTcp (4.19)

α2wTcp = 2α3
rzTcm + α3

rw3Tcp (4.20)

α3
lzTcm + α3

lw3Tcp = α2zTcm + α3
rzTcm + α3

rzTcm (4.21)

α0 + α1 + α2 + α3
l + α3

r = 1 (4.22)

55

Also like case we discussed before we assume that zTcm

wTcp
= λ and w3

w
= T ,

then we obtain:

α3
l

α3
r

=
2λ2 + λT + 2λ

λ + T
(4.23)

We notate M3 = α3
l

α3
r , then

α3
r =

1

M3(2T + 2λ2 + 4λ + Tλ + 1) + 3T + Tλ + 2λ + 1
(4.24)

α0 = α3
r(M3T + 2M3λ

2 + 2M3λ + M3Tλ + Tλ + T) (4.25)

The speedup3 here is equivalent to equation (4.9).

There are two other distribution load strategy almost the same as the third

timing diagram, just changing some orders. We plot timing diagram 4 and

timing diagram 5 in figure 4.5 and figure 4.6.

We do not list the equation for these two cases. The speedup correspond-

ing with timing diagram 4 and 5 is speedup4 and speedup5. Lastly we set a

network for reference which is plotted in figure 4.7.

In figure 4.7 there is no link between Processor 2 and Processor 3. So

the timing diagram is showed in figure 4.8 and the equations are shown as

below:

α0wTcp = α1zTcm + α1wTcp (4.26)

α1wTcp = α2zTcm + α3
lzTcm + α2wTcp (4.27)

56

cpwT

cpwT

cpwT

Processor 0

Processor 1

Processor 2

Processor 3
3 cpwT 3 cpwT

cm
zT

0
a

1
a

2
a

3

la
1
a

cm
zT

3

l
a

cm
zT 3

r
a

cm
zT

3

l
a 3

r
a

cm
zT3
r

a
2
a

cm
zT

Figure 4.5: Timing diagram 4 in case 2.1

cpwT

cpwT

cpwT

Processor 0

Processor 1

Processor 2

Processor 3
3 cpwT

3 cpwT

cm
zT

0
a

1
a

2
a

cm
zT

3

ra
cm

zT

2
a

3

la
1
a

cm
zT

3

l
a

cm
zT 3

r
a

cm
zT

3

l
a

3

r
a

Figure 4.6: Timing diagram 5 in case 2.1

57

P0

P1 P2

P3

Z Z

Z

3
w

ww

w

Figure 4.7: Tree network for reference in case 2.1

58

cpwT

cpwT

cpwT

Processor 0

Processor 1

Processor 2

Processor 3
3 cpwT

0
a

1
a

1
a

3

la

3

l
a

3

l
a

2
a

2
a

cm
zT

cm
zT

cm
zT

cm
zT

Figure 4.8: Timing diagram for the reference tree network in case 2.1

α1wTcp = 2α3
lzTcm + α3

lw3Tcp (4.28)

α0 + α1 + α2 + α3
l = 1 (4.29)

From equation (4.26)(4.27)(4.28)(4.29) we get:

α3
l =

1

2λ2 + 4λ + 2T + λT + 1 + λ+T
λ+1

(4.30)

α0 = α3
l(2λ2 + 2λ + λT + T) (4.31)

The speedup here defined as speedup0 is equivalent to equation (4.9).

We compare speedup0, speedup1, speedup2, speedup3, speedup4, speedup5,

speedup6 in figure 4.9. In this figure Tcp = Tcm = 1, w = 1, z = 0.05, and

59

w3 is from 0.1 to 1. We see from the figure that speedup2 and speedup3 are

the best distribution strategy. When w3 is less than a certain number (about

0.3 in figure 4.9), speedup3 > speedup2. That is because when w3 is smaller,

it means that the computation speed of processor 3 is faster, and we should

let the processor begin to work as early as possible. When the computation

speed of processor 3 is slower, processor 3 can not complete α3
l’s part load

when processor 2 transfers α3
r’s to processor 3 completely. In that situa-

tion, we distribute more load to α3
r’s part load and let the left and right

link for processor 3 complete the load communication process at the same

time. Also we can find from figure 4.9 that speedup3 is always larger than

speedup4 and speedup5, that is to say, we should let processor 1 begin to

compute as soon as possible, like the linear network, we should transfer the

load to the neighboring processor first regardless of the computation speed

of other processor. This graph demonstrates that simply adding a link does

not yield the best performance. The scheduling policy used is also important.

4.2.2 Homogeneous computation speeds and the link

speeds for processor 3 are different

Here one can set the computation speeds of all the processors to be the same

w, the communication speeds from processor 0 to be the same z, but the

communication speeds for links to processor 3 to be different. The commu-

nication speed of the left link from processor 1 to processor 3 is zl and the

60

0 0.2 0.4 0.6 0.8 1
2

3

4

5

6

7

8

9

10

w3

sp
ee

du
p

speedup0
speedup1
speedup2
speedup3
speedup4
speedup5

Figure 4.9: Speedups comparison with load distribution with frond-end and
different computation speed for processor 3

61

communication speed of the right link from processor 2 to processor 3 is zr.

We directly analyze the second strategy in the section discussed before. The

timing diagram is plotted in figure 4.10.

cpwT

cpwT

Processor 0

Processor 1

Processor 2

Processor 3

cpwT()

0
a

1
a

1
a

3

la

3

la

3

l
a

3

r
a

3

ra

3

r
a

cm
zT

cm
zT

cm
zTcm

zT2a

2
a

cpwT

l
z

cm
T

r
z

cm
T

+

Figure 4.10: Timing diagram 1 in case 2.2

The related timing equations are:

α0wTcp = α1zTcm + α1wTcp (4.32)

α1wTcp = α2zTcm + α3
lzTcm + α2wTcp (4.33)

α2wTcp = α3
rzTcm + α3

rzrTcm + (α3
l + α3

r)wTcp (4.34)

α3
lzlTcm = α2zTcm + α3

rzTcm + α3
rzrTcm (4.35)

α0 + α1 + α2 + α3
l + α3

r = 1 (4.36)

62

From equation (4.32)(4.33)(4.34)(4.35)(4.36) we get:

α3
l

α3
r

=
λ + λT r + T r + 2

T l − 1
(4.37)

Here λ = zTcm

wTcp
, T l = zl

z
, T r = zr

z
. From equation (4.37) we find T l should

be larger than 1, otherwise α3
l

α3
r will be less than 0, which is impossible,

that means zl > z, which means the communication speed for the left link

of processor 3 is slower than the communication speed for the links from

processor 0 (We select the left link for processor 3 to be used to transfer the

load first. If we choose the right link to be used to transfer the load, here T l

will be replaced by T r). We define M1 = α3
l

α3
r , then from equation (4.33)(4.34)

we obtain α1 = α3
rN1, here N1 = M1λ + M1λT

l + M1 + 1. So

α3
r =

1

N1λ + 2N1 + λ + λT r + 2M1 + 2
(4.38)

The speedup here defined as speedup1 is identical to equation (4.9). Then

we analyze the second strategy whose timing diagram is shown in figure 4.11.

From figure 4.11 we obtain

α0wTcp = α1zTcm + α1wTcp (4.39)

α1wTcp = α2zTcm + α3
lzTcm + α2wTcp (4.40)

α2wTcp = α3
rzTcm + α3

rzrTcm + α3
rwTcp (4.41)

α3
lzlTcm + α3

lwTcp = α2zTcm + α3
rzTcm + α3

rzrTcm (4.42)

63

cpwT

cpwT

cpwT

Processor 0

Processor 1

Processor 2

Processor 3
cpwT cpwT

0
a

1
a

1
a

3

l
a

3

l
a

3

l
a

2
a

2
a

3

r
a

3

r
a

3

ra

cm
zT

cm
zT

cm
zT

cm
zT

l
z

cm
T

r
z

cm
T

Figure 4.11: Timing diagram 2 in case 2.2

α0 + α1 + α2 + α3
l + α3

r = 1 (4.43)

From equation (4.39)(4.40)(4.41)(4.42)(4.43) we get

α3
l

α3
r

=
λ2 + λ2T r + 2λ + λT r

1 + λT l
(4.44)

Here we define M2 = α3
l

α3
r , and N2 = M2λ+M2λT

l +M2 +1. So we obtain

α3
r =

1

N2λ + 2N2 + λ + λT r + M2 + 2
(4.45)

The speedup defined as speedup2 here is identical to equation (4.9).

We compare these two policies to a network with no right link to node 3

in figure 4.12.

64

0.2 0.4 0.6 0.8 1 2 4 6 8 10 15 20
2.5

3

3.5

4

zl

sp
ee

du
p

speedup0
speedup1
speedup2

Figure 4.12: Speedups comparison with load distribution with front-end and
different link speed for processor 3

65

In figure 4.12 speedup0 stand for the reference, Tcp = Tcm = 1, w = 1,

z = zl = 0.05, zr is from 0.1 to 1.0. we can see from figure 4.12 that speedup2

is always larger than speedup1. We now find an expression to demonstrate

it.

speedup2 > speedup1 (4.46)

N2λ + 2N2 + λ + λT r + M2 + 2

N2λ + N2

(4.47)

>
N1λ + 2N1 + λ + λT r + 2 ∗M1 + 2

N1λ + N1

(4.48)

N1(λ + λT r + 2) + N1M2 (4.49)

> N2(λ + λT r + 2) + 2N2M1 (4.50)

(M1 −M2)(λ + λT l + 1)(λ + λT r + 2) > (4.51)

M1M2(λ + λT l + 1) + 2M1 −M2 (4.52)

(
1

λ
+ 1)(λ + λT l + 1)(λ + λT r + 2) > (4.53)

(λ + λT r + T r + 2)(λ + λT l + 1) + (4.54)

1

λ
(λT l + λ + 2) (4.55)

1 +
1

λ
>

1

λT l + λ + 1
(4.56)

Thus it is assured if this condition is met. So we can conclude that

we should choose the second strategy when we have different link speed for

processor 3 and the computation speed of processor 3 is the same as the other

66

processors.

4.2.3 Processor 0 does no processing

In this section the original processor processor 0 does not do computation

work and only transfers load to the other processor. However, it can transfer

its load to processor 1 and processor 2 at the same time (i.e. simultaneous

distribution). First we consider the case the computation speed of processor

3 is different with respect to the other processors and all the link speeds are

the same. The first strategy is showed in figure 4.13.

Processor 0

Processor 1

Processor 2

Processor 3

cp
wT

cpwT

()
3 cp
wT

1
a

1
a

2
a

2
a

3

l
a

3

l
a

3

r
a

3

r
a

cm
zT

cm
zT

cm
zT

cm
zT

cm
zT

cm
zT

3

l
a

3

r
a+

Figure 4.13: Timing diagram 1 with same link speed but different computa-
tion speed for processor 3 in case 4.2.3

From figure 4.13 we know that the communication speeds for processor 1

and processor 2 from processor 0 are the same and the computation speeds

67

for processor 1 and processor 2 are the same, so processor 0 will complete

transferring the load to processor 1 and processor 2 at the same time, as well

as for the load part to processor 3 through the left and right link. We have

the equations shown below:

α1wTcp = α2wTcp (4.57)

α3
lzTcm = α3

rzTcm (4.58)

α2wTcp = 2α3
rzTcm + (α3

l + α3
r)w3Tcp (4.59)

α1 + α2 + α3
l + α3

r = 1 (4.60)

There are four equations and four unknowns. From equation(4.57)(4.58)(4.59)(4.60)

we obtain α3
l = α3

r = 1
4λ+4T+2

, and α1 = α2 = α3
r(2λ+2T), while λ = ZTcm

wTcp

and T = w3

w
. The speedup for this section is:

speedup =
wTcp

α2zTcm + α2wTcp

=
1

α2(1 + λ)
(4.61)

Here the speedup defined as speedup1 = 2λ+2T+1
(λ+1)(λ+T)

. Now we consider the

second strategy as shown in figure 4.14.

Here we see that processor 0 first transfer α3
l’s load part to make processor

3 start to work as soon as possible. So we obtain:

α3
lzTcm + α1zTcm + α1wTcp = α2wTcp + α2zTcm (4.62)

α2wTcp = 2α3
rzTcm + α3

rw3Tcp (4.63)

68

Processor 0

Processor 1

Processor 2

Processor 3

cp
wT

cpwT

3 cp
wT 3 cpwT

3

l
a

3

l
a

3

l
a

3

r
a

3

r
a

3

ra

2
a

2
a

1
a

1
a

cm
zT

cm
zT

cm
zT cm

zT

cm
zT

cm
zT

Figure 4.14: Timing diagram 2 with same link speed but different computa-
tion speed for processor 3 in case 2.3

2α3
lzTcm + α3

lw3Tcp = α2zTcm + α3
rzTcm + α3

rzTcm (4.64)

α1 + α2 + α3
l + α3

r = 1 (4.65)

From equation (4.62)(4.63)(4.64)(4.65) we obtain that:

α3
l

α3
r

=
2λ2 + λT + 2λ

2λ + T
(4.66)

Here we define M2 = α3
l

α3
r , and N2 = 2λ+T+2λ2+λT−M2λ

1+T
, then α1 = N2α3

r,

refer to equation (4.61), we obtain the speedup here defined as speedup2 is:

speedup2 =
N2 + 2λ + T + M2 + 1

(2λ + T)(λ + 1)
(4.67)

Compared with the reference network as speedup0 in which there is no

69

right link for processor 3 we plot out the figure shown as Figure 4.15.

0 0.2 0.4 0.6 0.8 1
2

3

4

5

6

7

8

9

10

w3

sp
ee

du
p

speedup0
speedup1
speedup2

Figure 4.15: Speedups comparison when same link speed but different com-
putation speed for processor 3 in case 4.2.3

In figure 4.15 Tcp = Tcm = 1, w = 1, z = 0.05, w3 is from 0.1 to 1.0, and

speedup0 is the reference network speedup. From this figure we know that

when w3 < 0.4, the second strategy is the best for these parameters, that is

because the computation speed of processor 3 is very fast so we choose the

second strategy to let processor 3 begin to work as soon as possible. When

w3 < 0.4, the first strategy is the best for these parameters.

Now we consider the case that the left and right inverse link speed zl and

zr for Processor 3 are different from the other link speed z. We assume the

left inverse link speed is faster than right link speed, that is zl < zr. We

70

have the first strategy whose timing diagram is showed in figure 4.16 and the

equations are shown below.

Processor 0

Processor 1

Processor 2

Processor 3

cp
wT

cpwT

() cpwT

1
a

1
a

2
a

2
a

3

l
a

3

l
a

3

l
a

3

r
a

3

r
a

3

r
a

cm
zT

cm
zT

cm
zT

cm
zT

l
z
r
z

cm
T

cm
T

+

Figure 4.16: Timing diagram 1 with different link speed but same computa-
tion speed for all processors as processor 3 in case 4.2.3

α1wTcp = α2wTcp (4.68)

α3
lzTcm + α3

lzlTcm = α3
rzTcm + αrzrTcm (4.69)

α2wTcp = α3
rzTcm + α3

rzrTcm + (α3
l + α3

r)wTcp (4.70)

α1 + α2 + α3
l + α3

r = 1 (4.71)

From equation (4.68)(4.69)(4.70)(4.71) we obtain that α3
l

α3
r = 1+T r

1+T l , while

T l = zl

z
and T r = zr

z
. We define M1 = α3

l

α3
r , then we obtain α2 = λ+λT r+M1+1

2λ+2λT r+3M1+3
,

and the speedup here defined as speedup1 is the same as in equation (4.61).

71

The second strategy whose timing diagram is shown in figure 4.17 and

the equations are shown below.

Processor 0

Processor 1

Processor 2

Processor 3

cp
wT

cpwT

cpwT cpwT

1
a

1
a

2
a

2
a

3

l
a

3

l
a

3

l
a

3

r
a

3

r
a

3

ra

cm
zT
cm

zT cm
zT

cm
zT

l
z

cm
T

r
z

cm
T

Figure 4.17: Timing diagram 2 with different link speed but same computa-
tion speed for all processors as processor 3 in case 4.2.3

α1zTcm + α1wTcp = α3
lzlTcm + (α3

l + α3
r)wTcp (4.72)

α2wTcp = α3
rzTcm + α3

rzrTcm + α3
rwTcp (4.73)

α3
l(zTcm + zlTcm + wTcp) = α2zTcm + α3

r(zTcm + zrTcm) (4.74)

α1 + α2 + α3
l + α3

r = 1 (4.75)

From equation (4.72)(4.73)(4.74)(4.75) we obtain:

α3
l

α3
r

=
λ2 + λ2T r + 2λ + λT r

λ + λT r + 1
(4.76)

72

We define M2 = α3
l

α3
r , and N2 = M2λT l+M2+1

1+λ
, then α1 = N2λ3

r. So we

obtain α3
r = 1

N2+λ+λT r+2+M2
and α2 = λ+λT r+1

N2+λ+λT r+M2+2
. The speedup here

notated as speedup2 is the same as in equation (4.61).

Compared with the reference network in which processor 3 has no right

link we plot out all the speedups for the three strategies in figure 4.18. In

this figure, Tcm = Tcp = 1, w = 1, z = 0.05, and w3 is from 0.1 to 1.

0 0.2 0.4 0.6 0.8 1
1.65

1.7

1.75

1.8

1.85

1.9

1.95

2

w3

sp
ee

du
p

speedup0
speedup1
speedup2

Figure 4.18: Speedups comparison with different link speed but same com-
putation speed for all processors as processor 3 in case 4.2.3

From figure 4.18 we can see that the second strategy is the best.

73

4.3 Load distribution without front-end

Here we discuss the load distribution using the same network as in Figure

4.1 without front-end, i.e the processors in the network can not communicate

and compute at the same time.

4.3.1 The link speeds are all the same and computation

speed of Processor 3 is different

We plot the timing diagram in figure 4.19 and the related equations are shown

below.

Processor 0

Processor 1

Processor 2

Processor 3

cpwT

cpwT

cpwT

3 cpwT
3 cpwT

1
a

1
a

2
a

2
a

3

l
a

3

l
a

3

l
a

3

r
a

3

r
a

3

r
a

cm
zT

cm
zT

cm
zT cm

zT

cm
zT

cm
zT

0
a

Figure 4.19: Timing diagram 1 in case 4.3.1

α1wTcp = α3
rzTcm + α2zTcm + α0wTcp (4.77)

74

α2zTcm + α0wTcp = α3
rzTcm + α3

rw3Tcp (4.78)

α0wTcp = α2wTcp (4.79)

α3
lzTcm + α3

lw3Tcp + α3
rw3Tcp = α1zTcm + α1wTcp (4.80)

α0 + α1 + α2 + α3
l + α3

r = 1 (4.81)

From figure 4.19 we realize that α3
r < α2 and from equation (4.78) we

obtain w3 > w. Next we discuss the case that w3 < w, in which case the

timing diagrams are showed in figure 4.20 and figure 4.21.

Processor 0

Processor 1

Processor 2

Processor 3

cpwT

cpwT

cpwT

3 cpwT
3 cpwT

1
a

1
a

2
a

2
a

3

l
a

3

l
a

3

l
a

3

ra

3

r
a

3

r
a

cm
zT

cm
zT

cm
zT

cm
zT

cm
zT

cm
zT

1
a

Figure 4.20: Timing diagram 2 in case 4.3.1

We find the difference between these two timing diagrams is whether the

finish time of the communication time from processor 1 to processor 3 is

earlier than the finish time of the communication time from processor 0 to

75

Processor 0

Processor 1

Processor 2

Processor 3

cpwT

cpwT

3 cpwT

1
a

2
a

2
a

3

l
a

3

la

3

r
a

3

r
a

3

r
a

3

l
a

3 cp
wT

0
a

1
a

cpwT

cm
zT

cm
zT

cm
zT cm

zT

cm
zT

cm
zT

Figure 4.21: Timing diagram 3 in case 4.3.1

processor 1. We want to find the exact value of w3 for these two different

cases. We know the transition value for w3 is when the two communication

processes complete at the same time, that is

α1zTcm = α3
lzTcm (4.82)

2α3
rzTcm = α3

lw3Tcp (4.83)

α1wTcp = (α3
l + α3

r)w3Tcp (4.84)

From equation (4.82)(4.83)(4.84) we obtain w3
2 + 2λww3 − 2λw2 = 0,

so w3 = (
√
λ2 + 2λ − λ)w. We define this transition value as w3X . When

w3X < w3 < w, we choose the strategy whose timing diagram shown in figure

4.20, and when w3 < w3X , we choose the strategy whose timing diagram

76

shown in figure 4.21.

Compared with the reference network in which there is no right link for

Processor 3 we plot out the speedup in figure 4.22.

0 0.5 1 1.5 2
3

4

5

6

7

8

9

w3

sp
ee

du
p

speedup0
speedup1

Figure 4.22: speedup when load distribution without frond-end

4.4 Conclusion

In this paper optimal schedules for distributing and processing divisible load

for a novel type of cyclic topology have been presented. A wide variety of

schedules have been examined.

Future work includes determining to the extent possible the best schedul-

ing strategies over a broad range of network parameters. Naturally it would

77

also be a logical step to examine larger networks. To make at least initial

progress in this regard assumptions of parameter homogeneity and regular

network structure could be made. Beyond this one should move onto hetero-

geneous parameters for irregular topologies.

In the divisible load scheduling literature almost all interconnection net-

works to date with cycles in their graphs have used spanning trees embedded

in the interconnection networks to distribute load. Have multiple distribu-

tion paths in such networks offers the possibility of improved throughput,

smaller make spans and more robust distribution of load. Thus this may

very well be an important research problem in the future.

78

Chapter 5

Optimal trade-off between

monetary cost and solution

time

5.1 introduction

Over the past several decades, the emergence of distributed computing as a

viable technology and the decreasing pricing of computer power leads to the

emergence of computer ”utilities”. These utilities charge customers for dis-

tributed access to computer resources. Such utilities have long been forseen

by researchers. To some extent, current cloud computing embodies this ap-

proach. An important question for the utility then becomes the management

of computer resources to provide low cost service. In this spirit, this paper

provides an approach to determine the minimum cost manner in which load

79

should be divided among processors that a customer is being charged for

access to.

A divisible load is a load (usually data) that is arbitrarily partitionable

among a network of processors. The divisible load model usually assumes

that the processing time of divisible load on a single processor and the trans-

mission time of divisible load from one processor to another are both pro-

portional to the divisible load size [45][6][23]. In general the processing time

of a unit divisible load on a standard processor and the transmission time of

a unit divisible load through a link with standard bandwidth are denoted as

Tcp and Tcm, respectively. The aim of divisible load scheduling is to minimize

the processing time by distributing divisible load among multiple processors

which are interconnected by a specific network topology. It is particularly

suited to the processing of very long linear data files, such as occur in signal

and image processing, data bases, bioinformatics, experimental data process-

ing, Kalman filtering and big data.

Analytically based optimal load sharing for divisible loads was first con-

sidered for linear daisy chain networks in [2]. Related results later ap-

peared for tree networks [53], bus networks [51], [3], hypercubes [7], and

two-dimensional meshes [40]. There was also work on asymptotic results

[56], [45], [47], closed form solutions [54], time-varying models [57], multiple

job submission [58], load distribution sequences [46], [55], [9], [48], [5], the

modeling of fixed communication delay [59], the real time systems [60], [61],

[62]. A book-length treatment of divisible load analysis appears in [63].

The work in [64] suggests a dynamic load balancing strategy to optimize

80

the trade-off between cost and solution time. Moreover, it compares the

trade-off boundary with different processors as the master cloud distributing

processor and plots out the optimum computing cost boundary under differ-

ent solution time ranges. This paper demonstrates its correctness mathemat-

ically and furthermore presents the final equation of the trade-off boundary.

There is a fairly large literature on economic models for computer and

telecommunication networks particularly from the 1990s. A representative

sample appears in [65], [66], [67], [68], [69], [70], [71], [72]. Now [73] [74][75][76][77]

examined the divisible load based minimal total computing cost scheme and

discuss the case for further reducing the total computing cost with some

degradation in processing finish time. However, it is generally assumed that

the load should be distributed so that all of the processors complete their

portions simultaneously, which involve some break-points for the trade-off in

the Cost-Time result figure in [64]. Moreover, the order for Pareto-optimal

solutions with relatively large deadlines is correct only for a specified mas-

ter processor. Optimal schedules for tight deadlines have a different order

of processors with a specified master processor. This paper will first exam-

ine the minimal total dynamic computing cost scheme for a specific master

processor, then discuss the case for different master processors.

The paper is organized as follows: The definition of the load sharing

problem for the determination of the optimal load allocation found in earlier

work, and existing load sharing theory for the minimal processing finish time

as a function of the speed of the load origination processor are presented

in Section 5.2. The minimal computing cost strategies under a certain so-

81

lution time threshold by heuristic algorithm is described in section 5.3 and

furthermore the trade-off is discussed for different master processors in Sec-

tion 5.3.1. Section 5.3.2 compares the trade-off transition with neighboring

master processors and gives the ultimate cost and finish time trade-off with

minimum time comparison. Finally the scheduling improvement is presented

in section 5.4 and the conclusion appears in section 5.5.

5.2 Model Description

The network model to be considered here consists of N processors intercon-

nected through a bus type communication medium, as Fig 5.1. Any one of

N processors can receive a new arriving load and distribute this workload

to the other processors in order to obtain the benefits of parallel processing.

Without loss of generality, it will be assumed that the load is delivered to

one of the processors and this processor becomes the load origination pro-

cessor (master processor). Each processor is interfaced with the network via

a front-end communication processor for communications off-loading. That

is, the processors can communicate and compute at the same time [23]. The

following notation will be used throughout this paper:

αn: The fraction of the entire processing load that is assigned to the nth

processor Pn.

wn: The inverse of the computing speed of Pn.

z: The inverse of the channel speed of the bus.

cn: Computing cost per seconds.

82

Figure 5.1: Distributed computing system consisting of N processors
equipped with front-end processors connected through a bus

cnwn: Computing cost per load.

Tcp: The size of the normalized computational load in time, i.e., the time

that it takes for Pn to process (compute) the entire load when wn = 1.

Tcm: The size of the normalized communication load in time, i.e., the time

that it takes to transmit the entire set of data over the bus when z = 1.

Tn: The time for Pn to complete receiving the corresponding fraction αn of

load from the load origination processor P1.

Tf : The finish time of the entire processing load, assuming that the load is

completely delivered to the origination processor at time zero.

The timing diagram for this distributed system is depicted in Fig 5.2. In

this timing diagram, communication time appears above the axis and com-

putation time appears below the axis. At time T1 = 0, the load origination

processor P1 keeps the first fraction of the workload α1 for its own compu-

tation, which will take a time of Tf to finish, and simultaneously transmits

83

Figure 5.2: Timing diagram of N bus interconnected processors with load
origination at P1

the second fraction of the workload to P2 in time T2 − T1. Note that, as

P1 has a front-end processor for communications off-loading, it may both

compute and communicate at the same time. When the transmission of the

second fraction of the workload is finished at time T2, P2 starts computing

the received workload and P1 begins transmission of the third fraction of the

workload of P3 in time T3 − T2. This procedure continues until the last pro-

cessor. For (finish time) optimality, all the processors must finish computing

at the same time. Intuitively, this is because, otherwise, the processing finish

time could be reduced by transferring load from busy processors to idle ones.

[63]

Based on the above description, one can construct the following N − 1

84

equations by equating the computation time of Pn with the transmission time

plus the computation time of Pn+1.

Tf − Tn = (Tn+1 − Tn) + (Tf − Tn+1) (5.1)

Here, n = 1, 2, . . . , N − 1, n ̸= m. The computation time of Pn and the

transmission time of pn+1 are:

Tf − Tn = αnwnTcp (5.2)

Tn+1 − Tn = αn+1zTcm (5.3)

Then, (5.1) can be rewritten using (5.2) and (5.3) as:

αnwnTcp = αn+1zTcm + αn+1wn+1Tcp (5.4)

These equations can be solved

αn+1 = knαn =

(
n∏

i=1

)
α1 (5.5)

where

kn =
αn+1

αn

=
wnTcp

zTcm + wn+1Tcp

(5.6)

There are N − 1 equations and N unknowns αn, n = 1, 2, . . . , N . An addi-

tional equation is called a normalization equation, which states that the sum

85

of all the allocation fractions should sum to one.

N∑
n=1

αn = 1 (5.7)

By combining (5.5) and (5.7), one can find the optimal fraction of the work-

load that minimizes the total processing finish time. The closed-form expres-

sions are:

kn =
wnTcp

zTcm + wn+1Tcp

(5.8)

α1 =

[
N∑

n=1

n−1∏
j=1

kj

]−1

(5.9)

αn = kn−1αn−1 (5.10)

Finally, the processing finish time Tf is:

Tf = α1w1Tcp (5.11)

=
w1Tcp

1 + k1 + k1k2 + . . . + (k1k2 . . . kN−1)

=
w1Tcp

∏N
n=2(zTcm + wnTcp)∑N

n=1

[∏n−1
i=1 (wiTcp)

∏N
i=n+1(zTcm + wiTcp)

]
The denominator of Tf is independent of switching any wi with any other

wj(i, j = 1, 2, . . . , N, i ̸= j). Only the numerator is dependent on switching

w1 with any other wk (k = 2, 3, . . . , N) and is minimized when w1 is chosen to

be the smallest wi. That is, no matter whether the load origination processor

transmits the workload to the next fastest processor first or to the slowest

86

processor first, the processing finish time remains the same. The processing

finish time depends only on the speed of the load origination processor and

is minimized when P1 is chosen to be the fastest processor among all the

processors in the distributed computing system. Note that, in this paper, we

do not consider delivering the load in installments to each processor as in [9].

5.3 Minimizing the total computing cost

We assume that the cost of processors cnwn can vary in any way in relation to

wn. If the computing ”cost” for the processors are not identically valued, the

total computing cost for the entire workload varies and depends on how much

of the workload is processed in each processor. Intuitively, if the cheaper

processors are more utilized than the more expensive processors, then the

total computing cost will be reduced. If the total workload is distributed

on the cheapest processor, the total computing cost will be cheapest, but on

the other hand the finish time may be the longest. In order to minimize the

finish time, therefore, the workload should be distributed to more processors,

which makes up the distributed computer system. However, this will involve

transferring some of the workload from the cheap processors to expensive

processors, the result is: the total computing cost will increase. Thus, this

leads to a special issue regarding the number of processors and the selection of

processors to trade off computing cost against finish time. The arrangement

for the sequence of the processors should be considered.

Let us denote the set Θ(1,2,...,N) as an ordered set of N processors. The

87

set Θ(1,2,...,N) determines the sequence of load distribution. For instance, for

the set Θ(2,1,3), P2 is the origination processor and P1 is the processor which

receives the workload from P2 first, and P3 receives the workload from P2

second.

The notation cn will be used for the computing cost of Pn whose unit

is ”cost per second”. The unit of the inverse computing speed of the nth

processor, wn, is ”second per load” since wn is defined as the inverse of the

computing speed. Recall that Tcp is the size of the normalized computational

load in time (see the previous section). Then, the unit of cnwn becomes the

”cost per load”. Now αncnwnTcp represents the computing ”cost” of Pn for

the fraction of workload received from the load origination processor. Let us

denote the notation Ctotal for the total computing cost for the entire workload,

suppose M (M ≤ N) processor participate in the distribution of workload

and the expression for this is:

Ctotal =
M∑
n=1

αncnwnTcp (5.12)

The optimal selection and sequence of processor Θ(1,2,...,N) which balances

the trade-off between computing cost and finish time should be a dynamic

distribution problem between diverse processors. Unlike the traditional dis-

tribution strategy only involved in [2] [53] [45], [54] [57], all the processors

need not finish their work-load at the same time, which will mandatorily take

some part of the load from the cheap processor to the expensive processors,

as a result the total computing cost will increase while the finish time can be

88

set below the finish time requirement flexibly.

To simplify this problem, we just consider the transition from one proces-

sor to two processor. To make the cost cheapest if only one processor would

be used, the cheapest processor should be chosen. Suppose the first processor

is the cheapest processor, P1, the corresponding inverse computing speed is

w1 and computing cost per second is c1w1, c1w1 ≤ cotherwother. Note that

the physical position between processors is not in consideration. The finish

time w1Tcp will definitely be longer than if the second processor participates

in the distribution load process. Assume ∆α1 from P1 is distributed to P2,

the additional part for P2 is defined as ∆α2. Assume that the plus-minus

notation stand for that work load been cut or added, thus ∆α1 < 0 and

∆α2 > 0. The work-load distributed from P1 is totally transmitted to P2,

thus ∆α1 = −∆α2. The finish time change would only depend on the finish

time for P1, otherwise more load is distributed on the expensive processor.

Thus, the finish time change defined as ∆Tf is ∆α1w1Tcp, and the computing

cost change defined as ∆C(2) is ∆α1c1w1Tcp + ∆α2c2w2Tcp. Combining ∆Tf

and ∆C(2):

∆C(2) =
∆Tf

w1Tcp

c1w1Tcp −
∆Tf

w1Tcp

c2w2Tcp (5.13)

= ∆Tf

(
c1w1 − c2w2

w1

)

To maintain the total cost in the least expensive state, the second processor

should be chosen as the second cheapest processor from the remaining pro-

cessors, that is c1w1 ≤ c2w2 ≤ cotherwother, then the gradient of cost
Tf

defined

89

as ∆C(2)

Tf
= 1

w1
(c1w1 − c2w2) will be less than 0, but larger than other gradi-

ents if we choose other more expensive processors for the second processor.

This maintains the least expensive optimal state in the load redistribution

process.

This transfer continues until the state that both processors finish their

work-load at the same time, for which the finish time is the shortest while

the total computing cost is highest. Obviously P1 should not continue to

distributed more load to P2 because the finish time would increase and the

total computing cost would also increase.

Recursively, as more and more processors participate in the distribution

computer system, the finish time will decrease and the computing cost will

increase. The optimal sequence of processors Θ(1,2,...,M) and distribution are

described in the following theorem.

LEMMA 1. The work-load of the new additional processor described

as αi is distributed from the previous processors P1, P2, . . . , Pi−1, and the

computing cost per second for the previous processors c1w1, c2w2 . . . , ci−1wi−1

are all lower than the new added processor ciwi. Moreover, in the transition

of distributing work-load from the previous processors to the new additional

processor, the previous processors always finish their own work-load at the

same time.

PROOF. Suppose that the previous processors do not finish their own

work-load at the same time, we can redistribute the work-load from expen-

sive processors to cheap processors until the cheap processors finish their

own work-load at the finish time threshold, which is the solution time for

90

the cheapest processor (Tf for P1). Thus the finish time remain the same

meanwhile the total computing cost will decrease. Repeating this process,

at last all the processors will finish computation at the same time except the

new processor.

Assume Pi is the specific new processor. The other processors distribute

some part of load to Pi, let us say, P1 distribute its load cut part ∆α1

work-load to Pi, P2 distribute its load cut part ∆α2 work-load to Pi, . . . ,

Pi−1 distribute its load cut part ∆αi−1 work-load to Pi. From the timing

diagram Fig 5.3, the computation time for the cut part of P1 is the sum

of the computation and communication time for the cut part of P2; the

computation time for the cut part of P2 is the sum of the computation and

communication time for the cut part of P3; recursively, the computation time

for the cut part of Pi−2 is the sum of the computation and communication

time for the cut part of Pi−1.

∆αjwjTcp = ∆αj+1(wj+1Tcp + zTcm) (5.14)

Here j ≤ i − 2. There are i − 2 equations and i − 1 unknowns. An addi-

tional equation which state the total work-load of cut parts should be remain

constant, that means:

∆α1 + ∆α2 + . . . + ∆αi−1 + ∆αi = 0 (5.15)

So far all the cut part of different processors can be described as a function of

91

Figure 5.3: Timing diagram of i bus interconnected processors with load
origination at P1 when i-1 processors redistribute load to the ith processor

92

∆α1. The finish time change only depends on P1, that is ∆Tf = ∆α1w1Tcp.

However, the total computing cost change depends on all the processors.

∆C(i) =
i∑

n=1

∆αncnwnTcp (5.16)

= ∆α1

i−1∑
n=1

(
n−1∏
j=1

kj · (cnwnTcp − ciwiTcp))

kj here has been defined in equation (5.8). To maintain the least computing

cost in the distribution process, the gap of the computing cost between two

different solution times should be as small as possible. That means the

gradient between computing cost and finish time should be smallest. The

gradient defined as S(i) is :

S(i) =
∆C(i)

∆Tf

=
1

w1

i−1∑
n=1

(
n−1∏
j=1

kj · (cnwn − ciwi)) (5.17)

Thus the gradient is related to the computation speed of master proces-

sor (here P1 is the master processor), the computation speed of proces-

sor Pi−1, Pi−2, . . . , P2 and the monetary computing cost per load for pro-

cessor Pi, Pi−1, . . . , P1. Notice that the selection of Pi is considered and

Pi−1, Pi−2, . . . , P1 have been chosen out. Thus S(i) is only depend on the

computing cost per load of Pi. Moreover, the more expensive computing

cost Pi is, the larger gap of computing cost between two different solution

times. Thus to maintain the least expensive state here, the cheapest proces-

sor should be selected from the idle processors. Also we explore the gradient

93

for S(i) here to analyse this issue:

∆S(i) = S(i+1) − S(i) (5.18)

=
1

w1

[
i∑

n=1

(
n−1∏
j=1

kj · (cnwn − ci+1wi+1))

−
i−1∑
n=1

(
n−1∏
j=1

kj · (cnwn − ciwi))]

=
1

w1

[
i−1∑
n=1

(
n−1∏
j=1

kj · (cnwn − ci+1wi+1 − cnwn + ciwi))

+ (
i−1∏
j=1

kj · (ciwi − ci+1wi+1))]

=
1

w1

i∑
n=1

(
n−1∏
j=1

kj · (ciwi − ci+1wi+1))

The gradient for S(i) stands for the gap of the state transition trade-off

between computing cost and solution time. From equation (5.18) we know

that it only depends on the two processor most recently selected. To minimize

this gradient, the least expensive processor should be selected out from the

left idle processors. This is the same with the analysis above. Thus to make

the total computing cost as low as possible, we should choose the processor

as this arrangement: c1w1 ≤ c2w2 ≤ . . . ≤ ciwi. The transition for total

N processors between computing cost and finish time is plot in Fig 5.4 as

below. Here N is 5, and the processor speed and monetary cost per load is

depicted in table 5.1.

94

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Finish Time

C
os

t

Figure 5.4: Optimal computing cost and finish time for five unique processors
and the first processor as the master processor

5.3.1 Different master processors

The optimal sequence discussed so far only guarantees that the total com-

puting cost Ctotal =
∑i

n=1 cnwnTcp is at the lowest level when the master

wn cn
No. inverse computation speed monetary cost per load
1 0.5 1
2 0.25 4
3 0.125 16
4 0.1 30
5 0.0625 64

Table 5.1: list of processors

95

processor is chosen to be the cheapest processor. However, from section two,

given a certain list of processors, the minimal finish time depends on the

computation speed of the master processor. Thus the cheapest processor

may be not the fastest processor, actually this would not happen practically.

Besides, for the processors choosing a strategy described above, the finish

time also can not be smaller compared with that where we always choose the

fastest processor from the remaining processors to guarantee the finish time

will be minimal in the whole transition process. Thus the trade-off between

computing cost and finish time also should be considered.

Just like the analysis above, assume Pm is the chosen master processor

(1 < m ≤ N), to maintain the minimal cost in the transition, the sequence

discussed above should be adopted. However, the finish time here is com-

posed of the computation and communication time of P1, that is:

Tf = α1(zTcm + w1Tcp) (5.19)

Also we use the gradient between the cost difference and the finish time

difference to analyze this problem. When the master processor does not

participate in the computation process, which is different with the finish

time change above, here P1 receives the work load from Pm, thus ∆Tf =

∆αmwmTcp = ∆α1(w1Tcp + zTcm). With the same computing cost change,

we obtain:

∆C(i)

∆Tf

=
1

zδ + w1

i−1∑
n=1

(
n−1∏
j=1

kj · (cnwn − ciwi)) (5.20)

96

Noted that δ = Tcm

Tcp
and i < m.

When Pm participates in the computation process, the gradient should

be the same as before where Pm finishes its own part work-load at the same

time with the other m− 1 processors. The only difference is that the master

processor is different from the others for it can compute from the beginning.

Thus it can receive more load compared with other processors whose sum of

the computation and communication time is equal to the computation time of

prior processor. When Pm+1 participate in the computation process, the sum

of the computation and communication time is not equal to the computation

time of Pm, but Pm−1. Thus ∆αm−1wm−1Tcp = ∆αm+1(wm+1Tcp + zTcm).

Combined with all the factors, the final equations between the computing cost

and finish time is shown as below, here assuming that M j
i =

∑j
n=i

∏n−1
u=1 ku

and ∆Cj
i = ciwi − cjwj.

Cost = (Tf − T
(i)
f) · ∆C(i)

∆Tf

+ cost(i),i = 2, 3, . . . , N (5.21)

T
(i)
f ≥ Tf ≥ T

(i+1)
f

This equation is true whether or nor Pm participate in the computation

process or not. The solution time T
(i)
f , the gradient between the computing

cost and solution time S(i), the total computing cost at the moment that all

the participated processor finish their work load at the same time cost(i), and

97

the gradient for S(i) which is ∆S(i) are described below.

T
(i)
f =



zTcm+w1Tcp

M i−1
1

i < m + 1

zTcm+w1Tcp

Mm−1
1 +

zδ+w1
wm

i = m + 1

zTcm+w1Tcp

Mm−1
1 +

zδ+w1
wm

+M i−1
m+1

zδ+wm
wm

i > m + 1

(5.22)

S(i) =
∆C(i)

∆Tf

(5.23)

=



1
w1+zδ

M i
1∆C i

n i < m + 1

1
w1+zδ

[
Mm−1

1 ∆Cm+1
n + zδ+w1

wm
∆Cm+1

m

]
i = m + 1

1
w1+zδ

[Mm−1
1 ∆Ci

n + zδ+w1

wm
∆Ci

m+

zδ+wm

wm
M i−1

m+1∆Ci
n] i > m + 1

cost(i) =



M i−1
1 cnwnTcp

M i−1
1

i < m + 1

Mm−1
1 cnwnTcp+

zδ+w1
wm

cmwmTcp

Mm−1
1 +

zδ+w1
wm

i = m + 1

Mm−1
1 cnwnTcp+

zδ+w1
wm

cmwmTcp

Mm−1
1 +

zδ+w1
wm

+M i−1
m+1

zδ+wm
wm

+

zδ+wm
wm

M i−1
m+1cnwnTcp

Mm−1
1 +

zδ+w1
wm

+M i−1
m+1

zδ+wm
wm

i > m + 1

(5.24)

98

∆S(i) = S(i+1) − S(i) (5.25)

=


1

w1+zδ
M i

1∆Ci+1
i i < m

1
w1+zδ

(Mm−1
1 + zδ+w1

wm
)∆Cm+1

m i = m

1
w1+zδ

(Mm−1
1 + zδ+w1

wm
+ zδ+wm

wm
M i

m+1∆
i+1
i) i > m

Here each quantity is defined in term of the ith processor and its relation

to the master’s location. As is done by Shakhlevich in [64] we plot out the

corresponding gradient figure in Fig 5.5. Here five processors are in our

selection. We assume that c1w1 < c2w2 < c3w3 < c4w4 < c5w5, w1 > w2 >

w4 > w3 > w5. The specification for these five processors are shown in table

5.2. From Fig 5.5 we know that to obtain the lowest computing cost the

optimal selection for master processor depend on the finish time threshold.

However, compared with the two lines with P3 and P4 as master processor,

the line for P4 is not optimal for the entire finish time range. That means we

would not consider P4 at all given a certain finish time threshold. We will

demonstrate this in Section 5.3.2. The ultimate distribution strategy is the

wn cn
No. inverse computation speed monetary cost per load
1 0.5 1
2 0.25 4
3 0.1 15
4 0.125 16
5 0.0625 64

Table 5.2: list of processors

mixed line composed of different lines with different line as the master line,

99

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.5

1

1.5

2

2.5

3

3.5

P2

P1

P3

P4

P5

Finish Time

C
os

t

Figure 5.5: Optimal computing cost and finish time for five unique processors
with multiple master processors

100

picking out the minimum computing cost for certain finish time. Compared

with the curve with P1 as the master processor, the new method described

here has larger range in the finish time and less computing cost.

5.3.2 Boundary with different master processors

In this section we try to find out the relationship of finish time, computing

cost and the gradient when the master processor is arbitrarily either m or

m + 1. We discuss the ith part of these two cases to find out the difference

using the same methodology in section 5.3.

When i < m, Pm and Pm+1 both do not participate in the computation

process. They just transfer their initial load to other processors to work.

With the same communication speed, the master difference has no effect on

the total computing cost and solution time. Equation (5.22), (5.23), (5.24),

(5.25) also show that the finish time, computing cost and gradient are all the

same.

When i = m, The solution time T
(m+1)
f when the master processor is mth

processor denoted as T
(m+1)
fm

is zTcm+w1Tcp∑m−1
n=1

∏n−1
j=1 kj+

zδ+w1
wm

and the finish time when

the master processor is (m + 1)th processor is T
(m+1)
fm+1

= zTcm+w1Tcp∑m+1−1
n=1

∏n−1
j=1 kj

=

zTcm+w1Tcp∑m−1
n=1

∏n−1
j=1 kj+

∏m−1
j=1 kj

. Comparing the denominator of the two equations, we

101

obtain:

m−1∏
j=1

kj =
w1

zδ + w2

w2

zδ + w3

. . .
wm−1

zδ + wm

(5.26)

=
w1

zδ + wm

w2

zδ + w2

w3

zδ + w3

. . .
wm−1

zδ + wm−1

<
w1

zδ + wm

<
zδ + w1

wm

Thus T
(m+1)
fm

< T
(m+1)
fm+1

. From equation (5.24) costmm = costmm+1 and also from

equation (5.23) the gradient for both are the same.

When i = m+ 1, the gradient between computing cost and solution time

when the master processor is mth is

(
∆Cm+1

∆Tf

)m =
1

w1 + zδ
[
m−1∑
n=1

n−1∏
j=1

kj(cnwn − cm+1wm+1) (5.27)

+
zδ + w1

wm

(cmwm − cm+1wm+1)]

The gradient between computing cost and solution time when the master

102

processor is (m + 1)th is

(
∆Cm+1

∆Tf

)m+1 = (5.28)

1

w1 + zδ

[
m+1−1∑
n=1

n−1∏
j=1

kj(cnwn − cm+1wm+1)

]

=
1

w1 + zδ
[
m−1∑
n=1

n−1∏
j=1

kj(cnwn − cm+1wm+1)

+
m−1∏
j=1

kj(cmwm − cm+1wm+1)]

> (
∆Cm+1

∆Tf

)m

Also cost
(m+1)
m > costm+1

m+1 can be easily demonstrated. For the finish time, it

can be demonstrated that when wm < wm+1, T
(m+2)
fm

< T
(m+2)
fm+1

, otherwise if∏m
j=1 kj <

zδ+w1

zδwm+1
(wm − wm+1) then T

(m+2)
fm

> T
(m+2)
fm+1

. This constraint is not

so simple and perhaps it is better not to check this instead of comparing the

computing costs with different master processors directly. More specifically,

the finish time, gradient between computing cost and finish time, computing

cost when all the participated processors finish their load at the same time,

and the transition of the gradient between computing cost and finish time

are shown below. These factors are significant when we obtain the trade-off

between total cost and solution time.

For example in the Table if i = m+ 1, both Tf and S(i) are greater when

the master processor is m + 1 compared to m. From this table it can be

concluded that when wm < wm+1, T
(i)
fm

will always be less than T
(i)
fm+1

. The

103

gradient between computing cost and finish time when master processor is

mth processor is less than that when master processor is (m + 1)th if wm <

wm+1 for ith part (i <= m + 2), when i > m + 2, also this is true which

can be proved from the fact that the transition of gradient when the master

processor is mth processor, is less than that when the master processor is

(m+1)th processor if wm < wm+1. Thus if wm < wm+1, the gradient between

computing cost and finish time when the master processor is mth processor

will be always less than that when the master processor is (m+1)th processor.

Thus the computing cost when the master processor is the mth processor will

be always less than that when the master processor is the (m+1)th processor

when the finish time is the same. Thus we can conclude that we will definitely

NOT choose the trade-off cost and solution time boudary for the master

processor as (m+1)th under any finish time threshold if wm < wm+1. On the

Tf S(i)

i < m same same
i = m same same

i = m + 1 pm+1 > pm pm+1 > pm
i = m + 2 pm+1 > pm pm+1 > pm
i = m + 3 pm+1 > pm pm+1 > pm
i > m + 3 pm+1 > pm pm+1 > pm

cost ∆S
i < m same same
i = m same pm+1 > pm

i = m + 1 pm+1 < pm pm+1 > pm
i = m + 2 pm+1 > pm pm+1 > pm
i = m + 3 do not know pm+1 > pm
i > m + 3 do not know pm+1 > pm

Table 5.3: Comparison when wm < wm+1 for pm and pm+1

104

other hand, if wm > wm+1, the comparison would be complex if we try to

obtain the constraint that differentiate the finish time, computing cost and

gradient under strict constraint condition. We would prefer to compare the

computing cost with different master processors under same solution time.

Thus we choose the min function to choose out the smaller computing cost

under the same finish time. The combination equation should be:

cost (5.29)

=


costm+1 TN

fm+1
≤ Tf < TN

fm

min(costm, costm+1) TN
fm

≤ Tf < Tm
fm+1

costm Tm+1
fm

≤ Tf ≤ T 2
fm

Thus in the above we evaluate the cost for different line segments in the

tradeoff curve (i.e. combine two segments). Here T 2
fm

= zTcm + w1Tcp and

min(costi, costj) means select the minimum value from the two lines whose

x coordinate is finish time and y coordinate is computing cost, of the master

processor is i or j. Thus we can conclude recursively that the total cost

105

function in equation (5.29), assumed that w1 > w2 > . . . > wN

Cost = (5.30)

costN TN
fN

≤ Tf < TN
fN−1

min(costN , costN−1) TN
fN−1

≤ Tf < TN
fN−2

. . .

min(costN , costN−1, . . . , costi) TN
fi

≤ Tf < TN
fi−1

. . .

min(costN , costN−1, . . . , cost3) TN
f3

≤ Tf < TN
f2

min(costN−1, costN−2, . . . , cost2) TN
f2

≤ Tf < TN−1
fN−2

. . .

min(costi, costi−1, cost2) T i+1
fi

≤ Tf < T i
fi−1

. . .

min(cost3, cost2) T 4
f3

≤ Tf < T 3
f2

cost2 T 3
f2

≤ Tf < T 2
f1

Equation (5.30) involves all segments where (5.29) involves only two seg-

ments.

5.4 Scheduling Improvement

In this section the improvement of the strategy described above and the

distribution strategy described in [73] is compared. Five processors, whose

specifications show in table 5.1, are chosen to plot out the trade-off between

106

computing cost and solution time in fig 5.6 and the comparison between the

optimal trade-off and the previous distribution strategy is shown in fig 5.7.

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.5

1

1.5

2

2.5

3

3.5

Finish Time

C
os

t

optimal distribution stragegy

Figure 5.6: Optimal computing cost and finish time for five unique processors
with multiple master processors

From figure 5.7 it is obvious that the distribution strategy is significantly

better than the previous strategy. Not only it using a dynamic programming

algorithm here, which can obtain a better specific state for processors under

a specific solution time threshold, but also it spans the width of the solution

time for different master processors.

Hence, given a set of processors, to get the minimal computing cost under

a certain finish time threshold we should do this step by step. First, we

should sort the computing cost per load for these processors. Second, using

107

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.5

1

1.5

2

2.5

3

3.5

Finish Time

C
os

t

optimal trade−off
previous trade−off

Figure 5.7: Comparison between the optimal distribution strategy and pre-
vious strategy

108

equation (5.30) to calculate the number of processors which participate in the

computation process and obtain the optimal computing cost with different

master processors. Third, determine the best master processor and calculate

the load distribution for every processor.

5.5 Conclusion

In this work we have found:

• Confirmation: We confirm the work of Shaklevich that the trade-off

between monetary cost and solution time (i.e. makespan) leads to a piecewise

linear dual optimization criteria boundary function.

• Mathematical Model: Divisible load scheduling modeling with mone-

tary cost aspects allows an examination of optimality for this problem in an

analytical framework.

• Gradient Technique: Gradient techniques provide a tractable means for

conducting this analysis.

• Computer Utility Applicability: This work shows that computer utility-

like services have a foundation in mathematical optimization that is flexible

and realistic.

This is an important problem area that involves a joint optimization of

monetary cost and processing time.

109

Chapter 6

Conclusion

In this thesis, the speedup for searching for signature in different types of

networks are studied. Chapter 2 introduces signature problem for multi-

level tree. Different cases including number of signature known or unknown,

each file having at most one signature or multiple signatures can exist in

one file, only one node commanding all the nodes, every root node of each

local tree commanding the nodes below it, all the files in every level are

searched in parallel and levels are searched sequentially, all the files in the

tree are searched in parallel, are discussed. These cases are compared and the

speedup figures are plotted out. In chapter 3, we extend signature searching

problem in two kinds of mesh network and hypercube network. Compared

with the searching time in multi-level tree network, we obtained the optimal

searching time under different cases. In chapter 4, a new kind of network:

cyclic network is discussed. Load distributed with or without front-end are

analyzed. Using different load distribution strategy, optimal solution time

110

is investigated. Homogeneous computation speeds and the link speed for

processor 3 have a significant effect on the load distribution. In chapter 4,

a trade-off between computing cost and solution time for an oriented bus

network. The optimal sequence of processors is derived, the trade-off line

for one master processor is plotted out and the ultimate mixed trade-off

boundary is investigated with multiple master processors.

111

Bibliography

[1] T. G. Robertazzi, “Ten reasons to use divisible load theory,” Computer,

vol. 36, no. 5, pp. 63–68, 2003.

[2] Y. Cheng and T. Robertazzi, “Distributed computation with commu-

nication delay,” Aerospace and Electronic Systems, IEEE Transactions

on, vol. 24, no. 6, pp. 700–712, 1988.

[3] S. Bataineh and T. G. Robertazzi, “Bus-oriented load sharing for a

network of sensor driven processors,” Systems, Man and Cybernetics,

IEEE Transactions on, vol. 21, no. 5, pp. 1202–1205, 1991.

[4] G. D. Barlas, “Collection-aware optimum sequencing of operations and

closed-form solutions for the distribution of a divisible load on arbitrary

processor trees,” Parallel and Distributed Systems, IEEE Transactions

on, vol. 9, no. 5, pp. 429–441, 1998.

[5] H. J. Kim, G.-I. Jee, and J. G. Lee, “Optimal load distribution for tree

network processors,” Aerospace and Electronic Systems, IEEE Transac-

tions on, vol. 32, no. 2, pp. 607–612, 1996.

112

[6] O. Beaumont, H. Casanova, A. Legrand, Y. Robert, and Y. Yang,

“Scheduling divisible loads on star and tree networks: results and open

problems,” Parallel and Distributed Systems, IEEE Transactions on,

vol. 16, no. 3, pp. 207–218, 2005.

[7] J. B lazewicz and M. Drozdowski, “Scheduling divisible jobs on hyper-

cubes,” Parallel computing, vol. 21, no. 12, pp. 1945–1956, 1995.

[8] W. G lazek, “A multistage load distribution strategy for three-

dimensional meshes,” Cluster Computing, vol. 6, no. 1, pp. 31–39, 2003.

[9] V. Bharadwaj, D. Ghose, and V. Mani, “Multi-installment load distri-

bution in tree networks with delays,” Aerospace and Electronic Systems,

IEEE Transactions on, vol. 31, no. 2, pp. 555–567, 1995.

[10] Y. Yang and H. Casanova, “Umr: A multi-round algorithm for schedul-

ing divisible workloads,” in Parallel and Distributed Processing Sympo-

sium, 2003. Proceedings. International. IEEE, 2003, pp. 9–pp.

[11] O. Beaumont, A. Legrand, and Y. Robert, “Scheduling divisible work-

loads on heterogeneous platforms,” Parallel Computing, vol. 29, no. 9,

pp. 1121–1152, 2003.

[12] V. Bharadwaj and G. Barlas, “Scheduling divisible loads with processor

release times and finite size buffer capacity constraints in bus networks,”

Cluster Computing, vol. 6, no. 1, pp. 63–74, 2003.

113

[13] J.-T. Hung, H.-J. Kim, and T. Robertazzi, “Scalable scheduling in par-

allel processors,” 2003.

[14] A. Piriyakumar and C. S. R. Murthy, “Distributed computation for

a hypercube network of sensor-driven processors with communication

delays including setup time,” Systems, Man and Cybernetics, Part A:

Systems and Humans, IEEE Transactions on, vol. 28, no. 2, pp. 245–

251, 1998.

[15] H.-J. Kim, “A novel optimal load distribution algorithm for divisible

loads,” Cluster Computing, vol. 6, no. 1, pp. 41–46, 2003.

[16] M. Adler, Y. Gong, and A. L. Rosenberg, “Optimal sharing of bags of

tasks in heterogeneous clusters,” in SPAA, vol. 3, 2003, pp. 1–10.

[17] P. Dutot, “Divisible load on heterogeneous linear array,” in Proceed-

ings of the International Parallel and Distributed Processing Symposium

(IPDPS03), Nice, France, 2003.

[18] M. Drozdowski and P. Wolniewicz, “Optimum divisible load schedul-

ing on heterogeneous stars with limited memory,” European Journal of

Operational Research, vol. 172, no. 2, pp. 545–559, 2006.

[19] M. Drozdowski, M. Lawenda, and F. Guinand, “Scheduling multiple

divisible loads,” International Journal of High Performance Computing

Applications, vol. 20, no. 1, pp. 19–30, 2006.

114

[20] M. Drozdowski and M. Lawenda, “The combinatorics in divisible load

scheduling,” Foundations of Computing and Decision Sciences, vol. 30,

pp. 297–308, 2005.

[21] O. Beaumont, L. Carter, J. Ferrante, A. Legrand, and Y. Robert,

“Bandwidth-centric allocation of independent tasks on heterogeneous

platforms,” in Parallel and Distributed Processing Symposium., Proceed-

ings International, IPDPS 2002, Abstracts and CD-ROM. IEEE, 2001,

pp. 6–pp.

[22] B. Veeravalli and N. Viswanadham, “Suboptimal solutions using integer

approximation techniques for scheduling divisible loads on distributed

bus networks,” Systems, Man and Cybernetics, Part A: Systems and

Humans, IEEE Transactions on, vol. 30, no. 6, pp. 680–691, 2000.

[23] V. Bharadwaj, H. Li, and T. Radhakrishnan, “Scheduling divisible loads

in bus networks with arbitrary processor release times,” Computers &

Mathematics with Applications, vol. 32, no. 7, pp. 57–77, 1996.

[24] V. Bharadwaj, D. Ghose, and T. G. Robertazzi, “Divisible load theory:

A new paradigm for load scheduling in distributed systems,” Cluster

Computing, vol. 6, no. 1, pp. 7–17, 2003.

[25] M. Drozdowski and P. Wolniewicz, “Experiments with scheduling divis-

ible tasks in clusters of workstations,” in Euro-Par 2000 Parallel Pro-

cessing. Springer, 2000, pp. 311–319.

115

[26] K. Ko and T. Robertazzi, “Signature search time evaluation in flat file

databases,” Aerospace and Electronic Systems, IEEE Transactions on,

vol. 44, no. 2, pp. 493–502, 2008.

[27] Y. Kyong and T. G. Robertazzi, “Greedy signature processing with

arbitrary location distributions: A divisible load,” IEEE Transactions

on Aerospace and Electronic Systems, vol. 48, no. 4, 2012.

[28] R. Baeza-Yates, “Algorithms for string searching,” in AcM sIGIR Fo-

rum, vol. 23, no. 3-4. ACM, 1989, pp. 34–58.

[29] G. Navarro, “A guided tour to approximate string matching,” ACM

computing surveys (CSUR), vol. 33, no. 1, pp. 31–88, 2001.

[30] P. Michailidis and K. Margaritis, “String matching algorithms: Survey

and experimental results,” in International Journal of Computer Math-

ematics, vol. 76, 2000, pp. 411–434.

[31] Z. Galil and R. Giancarlo, “Data structures and algorithms for approx-

imate string matching,” Journal of Complexity, vol. 4, no. 1, pp. 33–72,

1988.

[32] H. Kitakami, T. Shin-I, K. Ikeo, Y. Ugawa, N. Saitou, T. Gojobori, and

Y. Tateno, “Yamato and asuka: Dna database management system,” in

System Sciences, 1995. Vol. V. Proceedings of the Twenty-Eighth Hawaii

International Conference on, vol. 5. IEEE, 1995, pp. 72–80.

116

[33] M. Hoffman and D. Carver, “Reverse engineering data requirements,”

in Aerospace Applications Conference, 1996. Proceedings., 1996 IEEE,

vol. 2. IEEE, 1996, pp. 269–277.

[34] M. Lubeck, D. Geppert, and K. Nienartowicz, “An overview of a

large-scale data migration,” in Mass Storage Systems and Technologies,

2003.(MSST 2003). Proceedings. 20th IEEE/11th NASA Goddard Con-

ference on. IEEE, 2003, pp. 49–55.

[35] T. Robertazzi, Networks and grids: technology and theory. Springer

Publishing Company, Incorporated, 2010.

[36] M. Drozdowski, Scheduling for Parallel Processing. Springer-Verlag

New York Inc, 2009.

[37] H. Casanova, A. Legrand, and Y. Robert, Parallel algorithms. CRC

Press, 2009.

[38] M. Drozdowski and W. Glazek, “Scheduling divisible loads in a three-

dimensional mesh of processors,” Parallel Computing, vol. 25, no. 4, pp.

381–404, 1999.

[39] K. Li, “Speed-up of parallel processing of divisible loads on k-

dimensional meshes and tori,” The Computer Journal, vol. 46, no. 6,

pp. 625–631, 2003.

117

[40] J. B lażewicz and M. Drozdowski, “The performance limits of a two

dimensional network of load-sharing processors,” Foundations of Com-

puting and Decision Sciences, vol. 21, no. 1, pp. 3–15, 1996.

[41] T. Bjerregaard and S. Mahadevan, “A survey of research and practices

of network-on-chip,” ACM Computing Surveys (CSUR), vol. 38, no. 1,

p. 1, 2006.

[42] E. Salminen, T. Kangas, V. Lahtinen, J. Riihimäki, K. Kuusilinna, and

T. Hämäläinen, “Benchmarking mesh and hierarchical bus networks in

system-on-chip context,” Journal of Systems Architecture, vol. 53, no. 8,

pp. 477–488, 2007.

[43] S. Stuijk, T. Basten, M. Geilen, A. Ghamarian, and B. Theelen,

“Resource-efficient routing and scheduling of time-constrained streaming

communication on networks-on-chip,” Journal of Systems Architecture,

vol. 54, no. 3-4, pp. 411–426, 2008.

[44] R. Agrawal and H. Jagadish, “Partitioning techniques for large-grained

parallelism,” Computers, IEEE Transactions on, vol. 37, no. 12, pp.

1627–1634, 1988.

[45] T. G. Robertazzi, “Processor equivalence for daisy chain load sharing

processors,” Aerospace and Electronic Systems, IEEE Transactions on,

vol. 29, no. 4, pp. 1216–1221, 1993.

118

[46] V. Mani and D. Ghose, “Distributed computation in linear networks:

Closed-form solutions,” Aerospace and Electronic Systems, IEEE Trans-

actions on, vol. 30, no. 2, pp. 471–483, 1994.

[47] D. Ghose and V. Mani, “Distributed computation with communication

delays: Asymptotic performance analysis,” Journal of Parallel and Dis-

tributed Computing, vol. 23, no. 3, pp. 293–305, 1994.

[48] V. Bharadwaj, D. Ghose, and V. Mani, “An efficient load distribution

strategy for a distributed linear network of processors with communi-

cation delays,” Computers & Mathematics With Applications, vol. 29,

no. 9, pp. 95–112, 1995.

[49] J. Sohn and T. Robertazzi, “Optimal load sharing for a divisible job on

a bus network,” in Proceedings of the 1993 Conference on Information

Sciences and Systems. Citeseer, 1993, pp. 835–840.

[50] S. Bataineh and M. Al-Ibrahim, “Effect of fault tolerance and com-

munication delay on response time in a multiprocessor system with a

bus topology,” Computer Communications, vol. 17, no. 12, pp. 843–851,

1994.

[51] D. Ghose and H. J. Kim, “Load partitioning and trade-off study for large

matrix-vector computations in multicast bus networks with communi-

cation delays,” Journal of Parallel and Distributed Computing, vol. 55,

no. 1, pp. 32–59, 1998.

119

[52] J. EWICZ and M. DROZDOWSKI, “The performance limits of a two-

dimensional network of load-sharing processors.”

[53] Y.-C. Cheng and T. Robertazzi, “Distributed computation for a tree net-

work with communication delays,” Aerospace and Electronic Systems,

IEEE Transactions on, vol. 26, no. 3, pp. 511–516, 1990.

[54] S. Bataineh, T.-Y. Hsiung, and T. G. Robertazzi, “Closed form solutions

for bus and tree networks of processors load sharing a divisible job,”

Computers, IEEE Transactions on, vol. 43, no. 10, pp. 1184–1196, 1994.

[55] V. Bharadwaj, D. Ghose, and V. Mani, “Optimal sequencing and ar-

rangement in distributed single-level tree networks with communication

delays,” Parallel and Distributed Systems, IEEE Transactions on, vol. 5,

no. 9, pp. 968–976, 1994.

[56] S. Bataineh and T. G. Robertazzi, “Performance limits for processor

networks with divisible jobs,” Aerospace and Electronic Systems, IEEE

Transactions on, vol. 33, no. 4, pp. 1189–1198, 1997.

[57] J. Sohn and T. Robertazzi, “An optimum load sharing strategy for di-

visible jobs with time-varying processor speed and channel speed,” in

Proceedings of the ISCA International Conference on Parallel and Dis-

tributed Computing Systems, 1995, pp. 27–32.

[58] J. Sohn, T. G. Robertazzi, J. Sohn, T. G. Robertazzi et al., “A multi-job

load sharing strategy for divisible jobs on bus networks,” in State Univ.

of New York at Stony Brook, College of Eng. Citeseer, 1994.

120

[59] J. B lażewicz and M. Drozdowski, “Distributed processing of divisible

jobs with communication startup costs,” Discrete Applied Mathematics,

vol. 76, no. 1, pp. 21–41, 1997.

[60] E. Haddad, “Communication protocol for optimal redistribution of di-

visible load in distributed real-time systems,” in Proc. ISMM Intl Conf.

Intelligent Information Management Systems, 1994, pp. 39–42.

[61] X. Lin, Y. Lu, J. Deogun, and S. Goddard, “Real-time divisible load

scheduling for cluster computing,” in Real Time and Embedded Technol-

ogy and Applications Symposium, 2007. RTAS’07. 13th IEEE. IEEE,

2007, pp. 303–314.

[62] A. Mamat, Y. Lu, J. Deogun, and S. Goddard, “Real-time divisible

load scheduling with advance reservation,” in Real-Time Systems, 2008.

ECRTS’08. Euromicro Conference on. IEEE, 2008, pp. 37–46.

[63] V. Bharadwaj, Scheduling divisible loads in parallel and distributed sys-

tems. John Wiley & Sons, 1996, vol. 8.

[64] N. V. Shakhlevich, “Scheduling divisible loads to optimize the compu-

tation time and cost,” in Economics of Grids, Clouds, Systems, and

Services. Springer, 2013, pp. 138–148.

[65] H. A. Gil, F. D. Galiana, and E. L. da Silva, “Nodal price control: a

mechanism for transmission network cost allocation,” Power Systems,

IEEE Transactions on, vol. 21, no. 1, pp. 3–10, 2006.

121

[66] S. Kaneda, T. Uyematsu, N. Nagatsu, and K.-i. Sato, “Network de-

sign and cost optimization for label switched multilayer photonic ip net-

works,” Selected Areas in Communications, IEEE Journal on, vol. 23,

no. 8, pp. 1612–1619, 2005.

[67] R. Cocchi, S. Shenker, D. Estrin, and L. Zhang, “Pricing in computer

networks: Motivation, formulation, and example,” IEEE/ACM Trans-

actions on Networking (TON), vol. 1, no. 6, pp. 614–627, 1993.

[68] A. Farago, S. Blaabjerg, L. Ast, G. Gordos, and T. Henk, “A new

degree of freedom in atm network dimensioning: optimizing the logical

configuration,” Selected Areas in Communications, IEEE Journal on,

vol. 13, no. 7, pp. 1199–1206, 1995.

[69] J. F. Kurose and R. Simha, “A microeconomic approach to optimal

resource allocation in distributed computer systems,” Computers, IEEE

Transactions on, vol. 38, no. 5, pp. 705–717, 1989.

[70] S. H. Low and P. P. Varaiya, “A new approach to service provisioning in

atm networks,” IEEE/ACM Transactions on Networking (TON), vol. 1,

no. 5, pp. 547–553, 1993.

[71] Y. A. Korilis, A. A. Lazar, and A. Orda, “Architecting noncooperative

networks,” Selected Areas in Communications, IEEE Journal on, vol. 13,

no. 7, pp. 1241–1251, 1995.

[72] D. Menascé and V. Almeida, “Cost-performance analysis of hetero-

geneity in supercomputer architectures,” in Proceedings of the 1990

122

ACM/IEEE conference on Supercomputing. IEEE Computer Society

Press, 1990, pp. 169–177.

[73] J. Sohn, T. G. Robertazzi, and S. Luryi, “Optimizing computing costs

using divisible load analysis,” Parallel and Distributed Systems, IEEE

Transactions on, vol. 9, no. 3, pp. 225–234, 1998.

[74] S. Charcranoon, T. G. Robertazzi, and S. Luryi, “Parallel processor

configuration design with processing/transmission costs,” Computers,

IEEE Transactions on, vol. 49, no. 9, pp. 987–991, 2000.

[75] F. D. Galiana, A. J. Conejo, and H. A. Gil, “Transmission network

cost allocation based on equivalent bilateral exchanges,” Power Systems,

IEEE Transactions on, vol. 18, no. 4, pp. 1425–1431, 2003.

[76] F. J. Rubio-Odériz and I. J. Perez-Arriaga, “Marginal pricing of trans-

mission services: A comparative analysis of network cost allocation

methods,” Power Systems, IEEE Transactions on, vol. 15, no. 1, pp.

448–454, 2000.

[77] Y. Xi and E. M. Yeh, “Distributed algorithms for minimum cost multi-

cast with network coding in wireless networks,” in Modeling and Opti-

mization in Mobile, Ad Hoc and Wireless Networks, 2006 4th Interna-

tional Symposium on. IEEE, 2006, pp. 1–9.

123

