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Abstract of the Dissertation

A Novel Analysis Method for Parallel

Processing

by

Zhemin Zhang

Doctor of Philosophy

in

Electrical and Computer Engineering

Stony Brook University

2014

Though the divisible load scheduling problem has been studied for over

two decades, the optimal solution for this problem can be obtained only

in a few network topologies by the approach proposed in [6], which recur-

sively equates multiple processing nodes in the network to a super processing

node. The limitation of this equivalent approach lies in the fact that a node

is required to finishing receiving load from its neighboring nodes simulta-

neously under this approach, such that linear equations can be established

for all nodes in the network. However, the requirement is satisfied in very

few network topologies. In this thesis, we address the problem of divisible
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load scheduling in network topologies where the requirement is not satis-

fied, and propose a novel analysis method, which formulates divisible load

scheduling in these network topologies as aMaximum Finish Time Minimiza-

tion (MFTM) problem. The MFTM problem minimizes the maximum finish

time of all nodes in the network, and further analysis reveals that the MFTM

problem can be transformed into the Finish Time Minimization (FTM) prob-

lem, which resembles the linear optimization problem, indicating an optimal

solution by linear programming. With the novel analysis method, we study

divisible load scheduling in a variety of network topologies, including mesh,

torus, Gaussian network, the ring and multi-root tree, and propose the cor-

responding optimal algorithms. Besides, considering the high time complex-

ity of the optimal algorithm in the mesh, torus and Gaussian network, we

also propose a heuristic algorithm to reduce the time complexity. Extensive

comparison results show that the heuristic algorithm achieves performance

extremely close to the optimal algorithm algorithm, and both the optimal al-

gorithm and heuristic algorithm significantly outperform previously proposed

divisible scheduling algorithms in the studied network topologies.
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Chapter 1

Introduction

A divisible load is a computational load that can be divided into any number

of arbitrary small fractions, which are independent and can be processed in

parallel. The divisible load model is a good approximation of tasks that

require large number of identical, low-granularity computations, thus has

been proposed for a wide range of scientific and engineering data processing,

such as image processing, matrix multiplication, fast-fourier-transformation

(FFT), video encoding/decoding, stereo matching, etc. [1]-[5].

The basic linear divisible load model assumes that the processing time

of divisible load on a single processing node and the transmission time of

divisible load from one processing node to the other are both proportional to

the divisible load size [6][7][8]. In general, the processing time of a unit divis-

ible load on a standard processing node and the transmission time of a unit

divisible load through a link with standard data rate are denoted as Tcp and

Tcm, respectively. The aim of divisible load scheduling is to minimize the pro-
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cessing time by distributing divisible load among multiple processing nodes

which are interconnected by a specific network topology. The processing

speed of these processing nodes can be either homogeneous or heterogenous,

as are the data rates of links in the network [9][10].

Over the past two decades, there has been extensive research in the liter-

ature on scheduling divisible load in a variety of network topologies, such as

daisy chain, bus, tree, hypercube, mesh and torus [6]-[8],[11]-[16]. In [6], [7],

[8] and [11], the optimal solution was obtained for divisible load scheduling

in daisy chain, tree, bus and hypercube, respectively. The performance limit

of mesh and torus in scheduling divisible load was provided in [12]. The di-

mensional algorithm was proposed for N -dimensional mesh and torus in [13],

which decomposes an N -dimensional mesh (or torus) into linearly connected

N − 1-dimensional meshes (or tori). Based on the dimensional algorithm,

two pipeline algorithms are proposed in [14] to accelerate load distribution.

In [15] and [16], the phase algorithm was proposed for torus and 3D-mesh,

which divides the load distribution into several phases. In each phase, the

active processing nodes, i.e., processing nodes that finish receiving load, and

can start distributing load to the other processing nodes, are carefully se-

lected such that the load distribution in the next phase will not encounter

link contention. The phase algorithm considers the startup time, i.e., the

time for connection establishment between two processing nodes in the net-

work, which is also studied in [17]-[19]. In [20]-[22], the multi-installment

scheme was proposed in divisible load scheduling, which allows processing

node to start processing and distributing load earlier. The scenario of mul-
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tiple divisible load sources was studied in [23]-[25], where load distribution

originates from multiple processing nodes in the network.

Till now, the optimal solution for divisible load scheduling can be ob-

tained only by the method proposed in [6], which calculates the equivalent

processing node of all the processing nodes in the network. However, the

method is limited to certain specific network topologies, and the reason is

that the method calculates the equivalent processing node from a group of

linear equations, which requires either that a node in the network receives

load from at most one of its neighbors, such as linear daisy chain, tree and

multi-level tree with the root as source node, or that if a node in the network

receives load from multiple neighboring nodes, these neighboring nodes have

to finish transmitting load at the same time, for example, the hypercube with

homogenous processing nodes and links, and the symmetry of the hypercube

implies that the node must finish receiving load from multiple neighbors si-

multaneously. Otherwise, the method in [6] cannot be adopted, and that is

why only heuristic algorithms are proposed for divisible load scheduling in

mesh, torus and many other network topologies.

In this thesis, we propose a novel analysis method for divisible load

scheduling, by which we are able to study the divisible load scheduling in the

network where a node could receive load from multiple neighbors. With the

novel analysis method, we formulate the divisible load scheduling problem as

a Maximum Finish Time Minimization (MFTM) problem, which minimizes

the maximum finish time of all nodes in the network, and discover that the

nonlinear equalities in the MFTM problem can be relaxed and substituted
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with linear inequalities, yielding the relaxed MFTM problem. By introducing

the equal finish time for all nodes in the network, the relaxed MFTM prob-

lem can be further transformed into the Finish Time Minimization (FTM)

problem, which resembles the linear optimization problem, implying an opti-

mal solution based on linear programming. We then study the divisible load

scheduling in the Gaussian network, mesh, torus, ring and multi-root tree to

demonstrate the application of our proposed analysis method.

The following of the thesis proceeds as follows. Chapter 2 generally de-

scribes the novel analysis method. In Chapter 3, we study the divisible load

scheduling in the Gaussian network, mesh and torus networks. Chapter 4

and 5 discuss the divisible load scheduling in the ring and multi-root tree,

respectively. We conclude our work in Chapter 6.
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Chapter 2

General Description of the

Novel Analysis Method

In this chapter, we explain in detail why the equivalent processing node

method proposed in [6] is inapplicable to the analysis of divisible load schedul-

ing in networks where nodes might receive load from multiple neighbors, and

how we address this issue with our novel analysis method.

First of all, we introduce the notations to be used in the description of the

equivalent processing node method and our novel analysis method. Given an

arbitrary network G(V,E), where V and E are the sets of nodes and links in

the network, nodes are denoted by integers ranging from 0 to |V |−1, and we

name nodes with nonzero initial load as source nodes. The set of all source

nodes is denoted as S, and the initial load of node i ∈ S is denoted as L(i).

The distance between two nodes, say, i and j, in G(V,E) is denoted as d(i, j).

The time to process a unit load by node i is denoted as w(i)Tcp, where Tcp is
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the time that a standard processing node consumes to process one unit load.

Similarly, the time to transmit a unit load from node i to its neighbor j is

denoted as z(i, j)Tcm, and Tcm is the time to transmit a unit load through

a standard link. We denote the load that node i processes by itself as α(i),

and the load transmitted from node i to node j as β(i, j). Note that negative

β(i, j) means that node i is actually receiving load from j, by which we have

that β(i, j) = −β(j, i). The time that node i starts and finishes processing

load are denoted as Ts(i) and Tf (i), respectively.

As in [6], we assume that node i can transmit load to j only if j is i’s

neighbor, i.e., d(i, j) = 1, and that a node in the network can start processing

load only after it finishes receiving loads from its neighbors, and an optimal

divisible load scheduling should minimize the maximum finish time of all

nodes in the network, i.e., minimize max{Tf (i)|i ∈ G(V,E)}.

In the equivalent processing node method, if node i receives load from

only one of its neighbors, say, j, we can obtain the following equation for

node i, meaning that node i starts processing and transmitting load when it

finishes receiving load from its neighbor.

Ts(i) = Ts(j) + β(j, i)z(j, i)Tcm (2.1)

However, if node i also receives load from another neighboring node, say,

j′, the equivalent processing node method fails to obtain Eq. (2.1) since j
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and j′ might not finish transmitting load to i simultaneously, i.e.,

Ts(j) + β(j, i)z(j, i)Tcm 6= Ts(j
′) + β(j′, i)z(j′, i)Tcm

and we can not determine the start time of i.

To address this issue, we modify Eq. (2.1) as follows, which sets Ts(i) as

the time when node i finishes receiving load from all its neighbors, i.e.,

Ts(i) = max{Ts(j) + β(j, i)z(j, i)Tcm|β(j, i) > 0} (2.2)

and formulate the divisible load scheduling in G(V,E) as anMaximum Finish

Time Minimization (MFTM) problem in Table 2.1.

The object function of the MFTM problem is to minimize the maximum

finish time of all node in G(V,E). Constraint (2.3) and (2.4) state that source

nodes start at time 0, and if a node is not the source node, and receives no

load from the other nodes, its start time is set as 0 as well. Constraint

(2.5) reflects Eq. (2.2), and constraint (2.6) means that it takes α(i)w(i)Tcp

time for node i to process α(i) load. If i is the source node, α(i) equals

L(i) subtracting the load i sends out, otherwise, α(i) is the summation of

received load from i’s neighbors, as stated by the following two constraints.

As discussed above, node i can only transmit load to its neighbors, and β(i, j)

and β(j, i) are opposite numbers of each other, from which we have constraint

(2.9) and (2.10). The last two constraints are true due to that source nodes

only send out load, and a node cannot process negative load.
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Table 2.1: Maximum Finish Time Minimization (MFTM) Problem Formu-
lation for Divisible Load Scheduling in An Arbitrary Network G(V,E)

Minimize: max{Tf(i)|i ∈ G(V,E)}

Subject to:

Ts(i) = 0, if i ∈ S (2.3)

Ts(i) = 0, if i /∈ S, β(j, i) = 0 ∀ j ∈ G(V,E) (2.4)

Ts(i) = max{Ts(j) + β(j, i)z(j, i)Tcm|β(j, i) > 0}, if i /∈ S (2.5)

Tf(i) = Ts(i) + α(i)w(i)Tcp (2.6)

α(i) = L(i)−
∑

j∈G(V,E)

β(i, j), if i ∈ S (2.7)

α(i) =
∑

j∈G(V,E)

β(j, i), if i /∈ S (2.8)

β(i, j) = 0, if d(i, j) 6= 1 (2.9)

β(i, j) = −β(j, i) (2.10)

β(i, j) ≥ 0, if i ∈ S (2.11)

α(i) ≥ 0 (2.12)
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Clearly, constraint (2.5) and the object function of the MFTM problem

are nonlinear, to obtain the optimal solution of the MFTM problem, we first

linearly relax constraint (2.5) and the object function as follows.

Constraint (2.5) is relaxed into the following linear inequality.

Ts(i) ≥ Ts(j) + β(j, i)z(j, i)Tcm, if β(j, i) > 0 (2.13)

In (2.13), Ts(i) is no earlier than the latest time when the neighboring nodes

of node i finish load transmission. In other words, node i does not have

to start processing and transmitting load immediately when it finishes re-

ceiving load from all its neighbors, and we name the problem after linearly

relaxing constraint (2.5) as the relaxed MFTM problem. For presentational

convenience, we define

U = {α(i), β(i, j), Ts(i), Tf(i)|i, j ∈ G(V,E)}

and we say that U is a feasible solution of the MFTM (or relaxed MFTM)

problem if the elements in U satisfy all the constraints of the problem. The

optimal solutions of the MFTM and relaxed MFTM problems are denoted

as U∗ and U∗
r , respectively. Since constraint (2.13) is relaxed from constraint

(2.5), U∗ must be a feasible solution of the relaxed MFTM problem, whereas,

U∗
r might not be feasible for the MFTM problem as constraint (2.13) allows

Ts(i) > max{Ts(j) + β(j, i)z(j, i)Tcm|β(j, i) > 0}
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Nevertheless, we are able to prove that these two problems have equal optimal

solutions, as stated by Theorem 2.1.

Theorem 2.1. U∗ is the optimal solution of the relaxed MFTM problem.

Proof. We prove the theorem by contradiction. Since U∗ is feasible for the

relaxed MFTM problem, we assume that U∗
r is a better solution than U∗.

To show that the assumption does not hold, we construct another optimal

solution of the MFTM problem, denoted as U∗′, from U∗
r as follows.

U∗′ = {α(i), β(i, j), Ts(i), Tf(i)|β(i, j) ∈ U∗
r }

In other words, β(i, j) in U∗′ and U∗
r are equal. According to constraint (2.5)

and (2.13), the start time of i in U∗′ will not be later than that in U∗
r , and

node i process equal load in U∗′ and U∗
r , therefore, node i will not have later

finish time in U∗′, and we have that

max{Tf(i)|Tf (i) ∈ U∗′} ≤ max{Tf (i)|Tf(i) ∈ U∗
r }

On the other hand,

max{Tf(i)|Tf(i) ∈ U∗} > max{Tf(i)|Tf (i) ∈ U∗
r }

by the assumption, resulting that

max{Tf(i)|Tf (i) ∈ U∗′} < max{Tf(i)|Tf(i) ∈ U∗}
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which contradicts that U∗ is the optimal solution of the MFTM problem.

Hence, the assumption is not true, and the theorem holds.

By Theorem 2.1, U∗ can be constructed using elements in U∗
r as follows.

U∗ = {α(i), β(i, j), Ts(i), Tf(i)|β(i, j) ∈ U∗
r }

Next, we introduce an equal finish time, denoted as Tf , for all nodes in the

network to further linearize the object function of the relaxed MFTM prob-

lem, and transform it into the Finish Time Minimization (FTM) problem in

Table 2.2.

In the FTM problem, we add constraint (2.24), which means that Tf must

be no earlier than the finish time of any node in the network, and the object

function becomes minimizing Tf . The following theorem tells that the object

function of the MFTM problem and FTM problem have equal optimal value.

Theorem 2.2. When the FTM problem is optimized, Tf = max{Tf(i)|Tf (i) ∈

U∗}.

Proof. Let U∗
f denote the optimal solution of the FTM problem. Firstly,

{Tf = max{Tf(i)|Tf (i) ∈ U∗}} ∪ U∗ is a feasible solution of the FTM prob-

lem, therefore, we have that Tf ∈ U∗
f ≤ max{Tf(i)|Tf (i) ∈ U∗}. On the

other hand, by constraint 2.24, we have that Tf can not be smaller than

max{Tf (i)|Tf(i) ∈ U∗} since otherwise we can construct a feasible solution

for the relaxed MFTM problem, U∗′ = U∗
f − {Tf}, which is better than U∗,

and contradicts Theorem 2.1.
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Table 2.2: Finish Time Minimization (FTM) Problem Formulation for Di-
visible Load Scheduling in An Arbitrary Network G(V,E)

Minimize: Tf

Subject to:

Ts(i) = 0, if i ∈ S (2.14)

Ts(i) = 0, if i /∈ S, β(j, i) = 0 ∀ j ∈ G(V,E) (2.15)

Ts(i) ≥ Ts(j) + β(j, i)z(j, i)Tcm, if β(j, i) > 0 (2.16)

Tf (i) = Ts(i) + α(i)w(i)Tcp (2.17)

α(i) = L(i)−
∑

j∈G(V,E)

β(i, j), if i ∈ S (2.18)

α(i) =
∑

j∈G(V,E)

β(j, i), if i /∈ S (2.19)

β(i, j) = 0, if d(i, j) 6= 1 (2.20)

β(i, j) = −β(j, i) (2.21)

β(i, j) ≥ 0, if i ∈ S (2.22)

α(i) ≥ 0 (2.23)

Tf ≥ Tf(i), ∀i ∈ G(V,E) (2.24)
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With these conclusions for an arbitrary network, we now use our proposed

novel analysis method to study the divisible load scheduling in the Gaussian

network, mesh, torus, ring and multi-root tree in the next three chapters.
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Chapter 3

Divisible Load Scheduling in

Gaussian, Mesh and Torus

Network of Processors

3.1 Introduction

In this chapter, we study the divisible load scheduling in the Gaussian net-

work, mesh and torus networks of processors. The Gaussian network is a

new type of network topology proposed in [26], which has an equal node

degree as the mesh and torus, but shorter average hop distance and net-

work diameter than the latter two network topologies under equal network

size [27]-[30]. In [28], the Gaussian network has been demonstrated to be a

promising candidate for on-chip network, which outperforms on-chip mesh

and torus networks in terms of communication bandwidth and latency. More-
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over, by utilizing the underlying Hamiltonian cycles in the Gaussian network,

a bufferless routing algorithm has been proposed for the optical Gaussian

macrochip, which is a chip-scale optical network architecture adopting the

Gaussian network. The optical Gaussian macrochip significantly improves

the power efficiency, supports much higher communication bandwidth, and

achieves much lower average packet delay compared with optical macrochips

adopting other network topologies, such as mesh, torus, Clos and fully con-

nected networks [29][30]. Divisible load scheduling in the Gaussian network

is studied along with mesh and tori in this chapter due to the fact that the

Gaussian network has the same node degree as the mesh and the torus so

that the divisible load scheduling in these three networks can be uniformly

formulated as the same optimization problem under our proposed analysis

method, as will be discussed in Section 3.4.

For presentational convenience, the terminologies of processor and node

will be used interchangeably in the rest of this chapter. We assume homoge-

neous processing speed and data rate for all the nodes and links, respectively,

in the network, and startup time is ignored in this chapter. Besides, we study

the scenario that the load distribution originates from only one node in the

network, and nodes can start processing and distributing load only after it

finishes receiving load from its neighbors. Since the Gaussian network is re-

cently proposed, and its interconnection is not as widely known as the mesh

and torus, we begin our discussion with the Gaussian network, and formu-

late the divisible load scheduling in a Gaussian network as an optimization

problem, denoted as maximum finish time minimization (MFTM) problem,

15



in which we record the time that each node finishes processing the load, i.e.,

the finish time of each node. The object of the MFTM problem is to mini-

mize the maximum finish time of all nodes in the network. By relaxing the

constraints of the MFTM problem, we obtain the relaxed MFTM problem,

which is further transformed into the finish time minimization (FTM) prob-

lem. We prove that these three problems have an equal optimal solution, and

design an optimization algorithm based on linear programming, denote as the

LP-based algorithm, for the FTM problem. Considering the high time com-

plexity of the LP-based algorithm, we further propose a heuristic algorithm

for the FTM problem. After the discussion on the Gaussian network, we will

extend our analysis to mesh and torus. As mentioned above, the divisible

load scheduling in these two networks can be formulated as an MFTM prob-

lem as well, which can still be transformed into the FTM problem, and our

proposed LP-based algorithm and heuristic algorithm also apply to divisible

load scheduling in mesh and torus networks.

The rest of the chapter proceeds as follows. Section 3.2.2 introduces the

Gaussian network, and some of its related properties to be used in the follow-

ing parts of the chapter. In Section 3.3, we formulate divisible load schedul-

ing in Gaussian network as the maximum finish time minimization (MFTM)

problem, transform it into the finish time minimization (FTM) problem,

which has equal optimal solution to the MFTM problem, and propose an

optimal algorithm based on linear programming, denoted as LP-based al-

gorithm, and a heuristic algorithm for the FTM problem. We extend our

proposed MFTM problem formulation to mesh and torus in Section 3.4. In
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Section 3.5, we compare the performance of the heuristic algorithm with the

LP-based algorithm, dimensional algorithm, pipeline algorithms and phase

algorithm in terms of speedup in Gaussian networks, meshes and tori with

respect to different network sizes. Finally, we conclude the chapter in Section

3.6.

3.2 Gaussian Networks

In this section, we briefly introduce the Gaussian network, and some of its

related properties, which will be useful in the discussion of divisible load

scheduling in the Gaussian network.

3.2.1 Mathematical Background

In this subsection, we provide related mathematical backgrounds, which are

necessary for introducing the Gaussian network.

A Gaussian network is a network topology defined by Gaussian integers.

Gaussian integers are a subset of complex numbers with integral real and

integral imaginary parts, which is defined as

Z[i] = {ω = x+ yi | x, y ∈ Z}

where Z is the set of integers, and i2 = −1.

Given a non-zero Gaussian integer a + bi, and two Gaussian integers ω
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and ω′, if there exist a Gaussian integer a′ + b′i such that

ω − ω′ = (a′ + b′i)(a+ bi)

we say that ω and ω′ are congruent modulo a+ bi, which is denoted as

ω ≡ ω′ mod a+ bi

and that ω and ω′ belong to the same congruence class modulo a + bi. For

instance, (6 + i) − (−1 + 2i) = (1 − i)(4 + 3i), therefore, 6 + i and −1 + 2i

belong to the same congruence class modulo 4 + 3i. Congruence modulo is

an equivalence relation, which has symmetry, reflectivity and transitivity. It

has been shown that for Gaussian integer a + bi, there are a2 + b2 different

congruence classes modulo a + bi in total, and any given Gaussian integer

belongs to one of these a2 + b2 congruence classes [27][31]. Next, we define

Gaussian network by the introduced terminologies above.

3.2.2 Network Interconnection

In this subsection, we discuss Gaussian network interconnections and some

of its properties.

A Gaussian network defined by a non-zero Gaussian integer a+bi, denoted

as Ga+bi, has a2 + b2 nodes, each represented by a Gaussian integer that

belongs to a distinguished congruent class modulo a + bi, and the items of

Gaussian integer and node will be used interchangeably in the rest of our
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chapter.

Given two nodes ω1 and ω2 in Ga+bi, there exists an edge between ω1 and

ω2 if and only if

ω1 − ω2 ≡ ij mod a+ bi (3.1)

where j = 0, 1, 2 and 3, and we say that ω1 is neighbor j of ω2.

According to Eq. (3.1), all nodes in a Gaussian network are symmetric

[26], and a node in Gaussian networks has as many as 4 neighbors. In ad-

dition, if a Gaussian network has more than 4 nodes, any node in it has 4

neighbors, i.e., the node degree is 4 [26]. Beside, Eq. (3.1) indicates

ω2 − ω1 ≡ −ij mod a+ bi

therefore, ω2 is neighbor mod4(j + 2) of ω1, where mod4(j + 2) is j + 2

modulo 4. Fig. 3.1 is an example of Gaussian network G4+3i with 25 nodes,

which are placed in two adjacent meshes in the complex plane, and node

6 + i is neighbor 2 of node 2i in G4+3i since (6 + i) − 2i ≡ i2 mod 4 + 3i,

indicating node 2i is neighbor 0 of node 6+ i. It has been proved in [26] that

Gaussian networks G±a±bi and G±b±ai are isomorphic, therefore, without loss

of generality, we assume that a ≥ b ≥ 0 in the rest of our chapter.

The distance between two nodes, say, ω1 and ω2, in Ga+bi, denoted as

D(ω1, ω2), is given as follows.

D(ω1, ω2) = min{|x|+ |y|, x+ yi ≡ (ω1 − ω2) mod a + bi} (3.2)
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Figure 3.1: Gaussian network G4+3i with nodes placed in two adjacent
meshes.

That is, D(ω1, ω2) equals the minimum |x|+ |y|, such that x+yi and ω1−ω2

belong to the same congruence class modulo a + bi.

For example, in Fig. 3.1, D(0, 1 + i) = |1|+ |1| = 2, and D(1 + i, 5 + 2i)

is 2 as well since that 2i ≡ (1 + i)− (5 + 2i) mod 4 + 3i, and when ω = 2i,

|x|+ |y| is minimized in Eq. (3.2).

The network diameter of Gaussian network Ga+bi is a when a+ b is even,

and is a − 1 when a + b is odd, and its average hop distance is given in

Lemma 3.1 [26]. The Gaussian network has the same node degree as the

mesh and torus, and is advantageous over the latter two network topologies in

terms of average hop distance and network diameter. For example, Gaussian

network G4+3i has 25 nodes, and its network diameter is 3, while the network

diameters of a mesh and a torus of the same network size are 8 and 4,

respectively. In Table 3.1 and 3.2, we list the average hop distances and

network diameters of Gaussian network, mesh and torus with respect to

different network sizes, which show that Gaussian network always has shorter
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Table 3.1: Average Hop Distance Comparison among Gaussian Network,
Mesh And 2D-Torus

Network size

25 nodes 100 nodes 400 nodes

Gaussian network 2.3333 4.7475 9.4536

Mesh 3.2000 6.6667 13.3333

torus 2.4000 5 10

Table 3.2: Network Diameter Comparison among Gaussian Network, Mesh
And 2D-Torus

Network size

25 nodes 100 nodes 400 nodes

Gaussian network 3 8 16

Mesh 8 18 38

torus 4 10 20

average hop distance and network diameter than mesh and torus under equal

network size.

Lemma 3.1. The average hop distance of Gaussian network Ga+bi is















3a(a2+b2)+2b(b2−1)
6(a2+b2−1)

if a + b is even

3a(a2+b2−1)+2b(b2−1)
6(a2+b2−1)

if a + b is odd

A Gaussian network is optimal if it accommodates the most number of

nodes among all Gaussian networks with the same network diameter. It has

been proved in [26] that Gaussian network Ga+bi is optimal if and only if

a = b+ 1, and its network diameter is b.

21



3.2.3 Symmetric Node Placement for Gaussian Net-

work

In [28], it has been pointed out that any group of a2+b2 Gaussian integers in

the complex plane that consists of a complete collection of a2+ b2 congruent

classes modulo a + bi can be used to represent nodes in Gaussian network

Ga+bi, and the constructed networks are isomorphic as long as they are in-

terconnected by Eq. (3.1) [28]. Besides, given a nonzero Gaussian integer

a+ bi, there are a2+ b2 Gaussian integers in a half-open square Sa+bi defined

by

Sa+bi = {(u+ vi)(a+ bi)|0 ≤ u, v < 1}

as shown in Fig. 3.2, which excludes dash-lined boundary. These Gaussian

integers each belong to a distinguished congruent class modulo a+ bi, there-

fore, can be used to represent all the nodes in Gaussian network Ga+bi [26],

and Fig. 3.3 is an example of node placement in half-open square S4+3i for

Gaussian network G4+3i, which is isomorphic to the node placement in two

adjacent meshes in Fig. 3.1.

To explore the symmetry of Gaussian network Ga+bi, a node placement

in a half-open polygon Pa+bi is proposed in [28]. The half-open polygon Pa+bi

is constructed by firstly decomposing the half-open square Sa+bi into four

non-overlapping areas, as shown in Fig. 3.2, where the vertex coordinates of

the four areas are labelled. The edges V0Vj+1 and Vj+1Vj+5 belong to Area

j, where j = 0, 1, 2 and 3, and V0 belongs to Area 1. These four areas are

then shifted according to Eq. (3.3), where ωs and ωp are the coordinates
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2
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2
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0

real
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Figure 3.2: Half-open square Sa+bi, which excludes dash-lined boundary, is
decomposed into four areas. The vertex coordinates of each area are labeled.
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Figure 3.3: Nodes in Gaussian network G4+3i placed on half-open square
S4+3i.

24



of the point before and after the shifting. That is, every point ωs in Sa+bi

is mapped to ωp in Pa+bi by Eq. (3.3). As each Gaussian integer in Sa+bi

and its mapped Gaussian integer in Pa+bi belong to the same congruence

class modulo a+ bi, all Gaussian integers in Pa+bi also consists of a complete

collection of a2 + b2 congruence classes modulo a + bi, and can be used to

represent nodes in Ga+bi.

ωp =











































ωs if ωs is in Area 0

ωs − (a+ bi) if ωs is in Area 1

ωs − (1 + i)(a+ bi) if ωs is in Area 2

ωs − i(a+ bi) if ωs is in Area 3

(3.3)

As shown in Fig. 3.4, the obtained half-open polygon Pa+bi after shifting

is a polygon including partial points on its boundary, and we use solid line

and dash line to depict the boundary that Pa+bi includes and excludes, re-

spectively. In addition, the common point of the solid-lined and dash-lined

boundary is depicted by a solid dot if it belongs to Pa+bi, otherwise, it is

depicted by a hollow dot, and we can see that B1, D0 and D3 belong to Pa+bi

in Fig. 3.4, which are named as solid points. An important property of the

half-open polygon is that if the solid points B1, D0 and D3 are removed,

the half-open polygon is 4-fold rotational symmetric, i.e., it can overlap it-

self after being rotated by 90 degrees centering at the origin of the complex

plane. Therefore, we label the coordinates of only A0, B0, C0 and D0 in

Fig. 3.4, which are a+b
2
i, a−b

2
+ a+b

2
i, a−b

2
+ bi and a

2
+ b

2
i, respectively. The
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remaining vertex coordinates can be obtained by the rotational symmetry of

the half-open polygon.

It is worth mentioning that when a + b is even, Gaussian integers on D0

and D2 (or D1 and D3) belong to the same congruence class modulo a + bi,

which is true for Gaussian integers on B0, B1, B2 and B3 as well when a

and b are both even. Hence, either one of Gaussian integers on D0 and D2

(or D1 and D3), and any one of Gaussian integers on B0, B1, B2 and B3

can be used to represent the corresponding nodes in Ga+bi. Fig. 3.5 is an

example of another half-open polygon, denoted as P ′
a+bi, for node placement

of Ga+bi, where B2, D0 and D3 on the boundary are solid points. In Pa+bi

and P ′
a+bi, Gaussian integers belonging to the same congruence class modulo

a + bi represent the same node in Ga+bi, which maintains the neighboring

relationship among nodes, i.e., neighbor j of a given node in Ga+bi will still

be represented by Gaussian integers belonging to the same congruence class

modulo a + bi in Pa+bi and P ′
a+bi [28]. For example, when a + b is even,

neighbor 2 of node a−b
2

+ (a+b
2

− 1)i is a−b
2

+ a+b
2
i and −a+b

2
+ a−b

2
i in Pa+bi

and P ′
a+bi, respectively, and

a−b
2

+ a+b
2
i ≡ −a+b

2
+ a−b

2
i modulo a+ bi. As will

be seen shortly, placing nodes in different half-open polygons reveals several

properties of divisible load scheduling in Gaussian networks.

In our chapter, we also place nodes of Ga+bi in Pa+bi. Fig. 3.6 is an

example of node placement for G4+3i in P4+3i, of which the boundary is

plotted in dash line. As for the node placement for an optimal Gaussian

network Gb+1+bi, we have the following corollary.
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Figure 3.4: Half-open polygon for node placement of Ga+bi, which excludes
dash-lined boundary and points depicted by hollow dots on the boundary,
and is denoted as Pa+bi. Without the solid points on the boundary, i.e., B1,
D0 and D3, Pa+bi is 4-fold rotational symmetric, i.e., it can overlap with itself
after being rotated by 90 degrees. The coordinates of A0, B0, C0 and D0 are
a+b
2
i, a−b

2
+ a+b

2
i, a−b

2
+ bi and a

2
+ b

2
i, respectively. The remaining vertex

coordinates can be obtained by the rotational symmetry of Pa+bi.
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Figure 3.5: Another half-open polygon, denoted as P ′
a+bi, for node placement

of Ga+bi, where B2, D0 and D3 on the boundary are solid points.
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Corollary 3.1. The nodes of an optimal Gaussian network Gb+1+bi can be

placed in the interior of a square, i.e., excluding its boundary, with ±2b+1
2

and ±2b+1
2

i as the vertices in the complex plane.

Proof. In Pa+bi, if a Gaussian integer, say, ω, is in the triangle A0B0C0,

A1B1C1, A2B2C2 or A3B3C3, it must satisfy either |x| ≤ a−b
2

or |y| ≤ a−b
2
.

Therefore, when a = b + 1, no Gaussian integers resides in these triangles,

and all Gaussian integers in Pa+bi must reside in the square with A1, A2, A3

and A4 as the vertices.

In addition, if ω is on the boundary of the square, we have |x|+|y| = 2b+1
2

,

which is impossible since |x| + |y| must be integer. Hence, there are no

Gaussian integers on the boundary of the square, and all Gaussian integers

must be in the interior of the square, which can be used to represent all nodes

in an optimal Gaussian network Gb+1+bi.

Since G4+3i is an optimal Gaussian network, we can see from Fig. 3.6

that all of its nodes reside in the interior of the square with ±7
2
and ±7

2
i as

the vertices.

Next, we will formulate the divisible load scheduling problem in a Gaus-

sian network as an optimization problem based on the introduced node place-

ment.

In the next section, we will discuss divisible load scheduling in Gaussian

networks.
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Figure 3.6: Node placement of G4+3i in P4+3i, the boundary of which is
plotted in dash line.
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3.3 Scheduling A Divisible Load in Gaussian

Networks

In this section, we formulate the divisible load scheduling problem in Gaus-

sian network as an optimization problem, which is denoted asmaximum finish

time minimization (MFTM) problem, and propose an optimal algorithm for

it.

3.3.1 Problem Formulation

As mentioned in Section 3.1, we assume homogeneous processing speed and

link data rate in our chapter. In the Gaussian network, the processing time

of a unit divisible load on a single processor is denoted as Tcp, and we denote

the transmission time of a unit divisible load through a link in the network

as Tcm. Since every node is symmetric in Gaussian networks, without loss of

generality, we assume that the load originates from the node at the origin of

the complex plane, and spreads to the surrounding nodes hop by hop.

In our model, a node, say, ω, in Ga+bi can only receive load from (or send

load to) its neighbors that are closer to (or further away from) the origin than

itself, and its neighbor j is denoted as nj(ω). Node ω is allowed to receive load

from (or send load to) one of its neighbors for at most once, and the amount

of load ω receives from neighbor nj(ω) is denoted as βj(ω). After ω finishes

receiving load from all its neighbors, it starts processing and sending out

load simultaneously. We denote the amount of load ω processes by itself as
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ω
β0(ω) = −0.03

β1(ω) = −0.03

β2(ω) = −0.03

β3(ω) = 0.15

Figure 3.7: Node ω receives 0.15 load from its neighbor 3, and sends 0.03
load to each of its rest 3 neighbors.

α(ω), and the time it starts and finishes processing load as Ts(ω) and Tf(ω),

respectively. For presentational convenience, if ω sends load to neighbor

nj(ω), we let βj(ω) < 0, which means that neighbor nj(ω) receives −βj(ω)

load from ω. As mentioned in Section 3.2.2, ω is also neighbor mod4(j + 2)

of nj(ω), and we have that βj(ω) = −βk(nj(ω)), where k = mod4(j + 2).

Take Fig. 3.7 for example, node ω receives 0.15 load from its neighbor 3, and

sends 0.03 load to each of the rest neighbors.

By the definition of βj(ω), we have that βj(ω) ≥ 0, βj(ω) ≤ 0 and

βj(ω) = 0 whenD(0, ω) > D(0, nj(ω)),D(0, ω) < D(0, nj(ω)) andD(0, ω) =

D(0, nj(ω)), respectively, based on which we divide all βj(ω)s into 3 sets, U+
β ,

U−
β and U0

β , as follows to facilitate the problem formulation of divisible load

scheduling in Gaussian network.

U+
β = {βj(ω)|D(0, ω) > D(0, nj(ω))}

U−
β = {βj(ω)|D(0, ω) < D(0, nj(ω))}

U0
β = {βj(ω)|D(0, ω) = D(0, nj(ω))}
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Clearly, βj(ω) ≥ 0 if βj(ω) ∈ U+
β , βj(ω) ≤ 0 if βj(ω) ∈ U−

β and βj(ω) = 0 if

βj(ω) ∈ U0
β . In addition, since βj(ω) = −βk(nj(ω)), where k = mod4(j + 2),

βj(ω) ∈ U+
β if and only if βk(nj(ω)) ∈ U−

β , vice versa.

The divisible load scheduling problem in Gaussian networks is then formu-

lated as the optimization problem in Table 3.3, which is denoted as maximum

finish time minimization (MFTM) problem.

The objective of the MFTM problem is to minimize the maximum finish

time of all nodes in the network. Constraint (3.4) means that it takes α(ω)Tcp

time for node ω to process its load. Constraint (3.5) and (3.6) indicates that

the load originates from node 0, and a node starts processing the load when it

finishes receiving all load from its neighbors. Note that if a node receives no

load from its neighbors, its starting time is set as 0, as stated by constraint

(3.7). The next 4 constraints originate from our rules of βj(ω), as discussed

above. Constraint (3.12) and (3.13) state that the load node ω keeps for itself

equals the difference between the load it receives and sends out, and that the

total load is 1, implying that
∑

α(ω) = 1. The last constraint means that a

node can not send out more load than it receives.

We say that

U = U+
β ∪ U−

β ∪ U0
β ∪ {α(ω), Ts(ω), Tf(ω)|ω ∈ Ga+bi}

is a feasible solution of MFTM problem if elements in U satisfy all the con-

straints of the MFTM problem, and the optimal solution is denoted as U∗. It

is worthwhile to mention that given the location of source node, we can iden-
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Table 3.3: Maximum Finish Time Minimization (MFTM) Problem Formu-
lation for Divisible Load Scheduling in A Gaussian Network

Minimize: max{Tf(ω), ω ∈ Ga+bi}

Subject to:

Tf (ω) = Ts(ω) + α(ω)Tcp (3.4)

Ts(0) = 0 (3.5)

Ts(ω) = max{Ts(nj(ω)) + βj(ω)Tcm|βj(ω) > 0} (3.6)

Ts(ω) = 0, if ∀j ∈ {0, 1, 2, 3}, βj(ω) = 0 (3.7)

βj(ω) ≥ 0, if βj(ω) ∈ U+
β (3.8)

βj(ω) ≤ 0, if βj(ω) ∈ U−
β (3.9)

βj(ω) = 0, if βj(ω) ∈ U0
β (3.10)

βj(ω) = −βk(nj(ω)), if k = mod4(j + 2) (3.11)

α(ω) =

3
∑

j=0

βj(ω), if ω 6= 0 (3.12)

α(0) = 1 +

3
∑

j=0

βj(0) (3.13)

α(ω) ≥ 0 (3.14)
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tify U+
β , U

−
β and U0

β for mesh and torus, with which divisible load scheduling

in these two networks can also be formulated as the MFTM problem in Table

3.3, as will be seen in Section 3.4.

Before solving the MFTM problem, we firstly analyze the characteristics

of U∗ by exploring the symmetry of Gaussian network. We have the following

lemma and corollaries.

Lemma 3.2. In U∗, if ω1 and ω2 = ω1 · i are both in Pa+bi, βj(ω1) = βk(ω2),

where k = mod4(j + 1).

Proof. As mentioned above, nodes in Ga+bi can also be placed in P ′
a+bi, where

D0, D1 and B2 are solid points, as well as in Pa+bi. For convenience, if we

place nodes in P ′
a+bi, the load ω sends to nj(ω) is denoted as β ′

j(ω), and the

optimal solution for the corresponding MFTM problem is denoted as U ′∗.

We notice that after being counterclockwisely rotated by 90 degrees, Pa+bi

will overlap with P ′
a+bi, which means that if ω1 is in Pa+bi, ω2 = ω1 · i is in

P ′
a+bi and βj(ω1) = β ′

k(ω2), where k = mod4(j + 1). Besides, as Gaussian

integers belonging to the same congruence class modulo a + bi in Pa+bi and

P ′
a+bi represent the same node in Ga+bi, which maintains the neighboring

relationship among nodes, the load that a node in Ga+bi sends to its neighbor

k is independent of the node placement. Therefore, if ω2 is also in Pa+bi, we

have that βk(ω2) = β ′
k(ω2) as ω2 ≡ ω2 modulo a + bi.

Corollary 3.2. In U∗, βj(−
a+b
2

+ a−b
2
i) = βk(−

a+b
2

+ a−b
2
i), where k =

mod4(j + 1), when a + b is even.
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Proof. By the proof of Lemma 3.2, since −a−b
2

− a+b
2
i = (−a+b

2
+ a−b

2
i) · i,

βj(−
a+b
2

+ a−b
2
i) = β ′

k(−
a−b
2

− a+b
2
i), where k = mod4(j + 1). In addition,

−a+b
2

+ a−b
2
i and −a−b

2
− a+b

2
i belong to the same congruence class modulo

a+ bi, therefore, βk(−
a+b
2

+ a−b
2
i) = β ′

k(−
a−b
2

− a+b
2
i).

Corollary 3.3. In U∗, βj(
a
2
+ b

2
i) = βk(

a
2
+ b

2
i) and βj(

b
2
− a

2
i) = βk(

b
2
− a

2
i),

where k = mod4(j + 2), when a and b are both even.

Proof. Since a
2
+ b

2
i = ( b

2
− a

2
i) · i and − b

2
+ a

2
i = (a

2
+ b

2
i) · i, we have

that βj(
b
2
− a

2
i) = β ′

k′(
a
2
+ b

2
i) and βk′(

a
2
+ b

2
i) = β ′

k(−
b
2
+ a

2
i), where k′ =

mod4(j+1) and k = mod4(k
′+1). In addition, b

2
− a

2
i ≡ − b

2
+ a

2
i modulo a+bi,

and a
2
+ b

2
i in Pa+bi and P ′

a+bi represent the same node of Ga+bi, therefore,

βk(
b
2
− a

2
i) = β ′

k(−
b
2
+ a

2
i) and βk′(

a
2
+ b

2
i) = β ′

k′(
a
2
+ b

2
i). Hence, we have

βj(
b
2
− a

2
i) = βk(

b
2
− a

2
i), where k = mod4(j+2), and βj(

b
2
− a

2
i) = βk′(

a
2
+ b

2
i),

indicating that βj(
a
2
+ b

2
i) = βk(

a
2
+ b

2
i) also holds.

Corollary 3.4. In U∗, β0(x+yi) = β0(x−yi) = β1(−y+xi) = β1(y+xi) =

β2(−x − yi) = β2(−x + yi) = β3(y − xi) = β3(−y − xi) if the Gaussian

network is optimal.

Proof. Corollary 3.1 says that nodes in an optimal Gaussian network, say,

Gb+1+bi, can be placed in the interior of a square with ±2b+1
2

and ±2b+1
2

i as

the vertices. A square has 4 axes of symmetry, the symmetric points of x+yi

with respect to these 4 axes of symmetry are −x + yi, x − yi, y + xi and

−y−xi, as shown in Fig. 3.8. Therefore, we have β0(x+yi) = β2(−x+yi) =

β0(x− yi) = β1(y + xi) = β3(−y − xi).
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imaginary

β0(x+ yi)

β
1
(y

+
x
i)

β
1
(−

y
+
x
i)

β2(−x+ yi)

β2(−x− yi)

β
3
(−

y
−
x
i)

β
3
(y

−
x
i)

β0(x− yi)

Figure 3.8: The symmetry of the square renders that β0(x+yi) = β0(x−yi) =
β1(−y + xi) = β1(y + xi) = β2(−x − yi) = β2(−x + yi) = β3(y − xi) =
β3(−y − xi) in U∗ when the Gaussian network is optimal.

Moreover, since the square is also 4-fold rotational symmetric, by Lemma

3.2, we have that β0(x+ yi) = β1(−y + xi) = β2(−x− yi) = β3(y− xi).

With the above lemma and corollaries, we can reduce the number of

independent variables in the MFTM problem. As will be seen in Section 3.3.4,

taking these dependencies among variables into consideration can improve

the efficiency of our proposed optimal algorithm and heuristic algorithm.
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Next, we solve the MFTM problems by transforming it into other problems

with an identical optimal solution.

3.3.2 Linear Relaxation of the MFTM Problem

In order to solve the MFTM problem, we first relax constraint (3.6) of the

MFTM problem into a linear constraint as follows, and denote the new op-

timization problem as the relaxed MFTM problem.

Ts(ω) ≥ Ts(nj(ω)) + βj(ω)Tcm, if βj(ω) > 0 (3.15)

Since constraint (3.15) is relaxed from constraint (3.6), U∗, i.e., the opti-

mal solution of the MFTM problem must be a feasible solution of the relaxed

MFTM problem, and we have the following theorems on the optimal solution

of the relaxed MFTM problem.

Theorem 3.5. When the relaxed MFTM problem is optimized, if Ts(ω) > 0,

Tf(ω) = Tf(0).

Proof. We prove the theorem by contradiction, and assume that there exist

one node with different finish time from node 0, and its start time is pos-

itive. By constraint (3.6) and (3.7), we know that if Ts(ω) > 0, ω must

receive nonzero load from at least one of its neighbors, and that Tf (ω) = 0

if ω 6= 0 and Ts(ω) = 0, therefore, max{Tf (ω)|ω ∈ Ga+bi} is either Tf (0) or

max{Tf (ω)|Ts(ω) > 0}.

Next, we will reduce max{Tf (ω)|ω ∈ Ga+bi} by redistributing load among
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nodes in the network such that nodes with maximum finish time can have

less load to process, and the nodes with earlier finish time process more load.

For presentational convenience, we denote the start and finish time of node

ω after the load redistribution as T ′
s(ω) and T ′

f(ω), respectively, and the load

ω kept for itself after the load redistribution is denoted as α′(ω).

Two cases are considered in the proof.

Case 1: Tf(0) < max{Tf(ω)|ω ∈ Ga+bi}.

In this case,

max{Tf(ω)|ω ∈ Ga+bi} = max{Tf(ω), Ts(ω) > 0}

and we suppose that a node with maximum finish time is h hops away from

node 0, which is denoted as ωh, i.e.,

Tf (ωh) = max{Tf(ω)|ω ∈ Ga+bi}

Since the load originates from the node 0, there must exist at least one h-hop

long path from node 0 to ωh, and each node along the path receives nonzero

load from the previous node, as shown in Fig. 3.9, where node ωk (1 ≤ k ≤ h)

along the path is k hops away from node 0. For presentational convenience,

we denote the load received by node ωk as βk, and βk > 0 for all 1 ≤ k ≤ h.

We then reduce the finish time of ωh by redistributing load as follows.

We decrease βk by δβ, and keep 0 < δβ < βk for all 1 ≤ k ≤ h, as shown in

Fig. 3.9. After the load redistribution, we have that T ′
f(0) = Tf (0)+δβTcp by
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PSfrag

0

0

ω1

ω1

ω2

ω2 ωh

ωh

β1 β2 β3 βh

β1 − δβ β2 − δβ β3 − δβ βh − δβ

Figure 3.9: Load redistribution when Tf (0) < Tf(ωh) = max{Tf(ω)|ω ∈
Ga+bi}, where βk > 0, and βk is reduced by δβ (0 < δβ < βk) for all
1 ≤ k ≤ h.

constraint (3.13) in Table 3.3. As Tf(0) < max{Tf(ω)|ω ∈ Ga+bi}, we choose

sufficiently small δβ, such that T ′
f (0) is still earlier than max{Tf(ω)|ω ∈

Ga+bi}.

By constraint (3.12) in Table 3.3, we have that α′(ωk) = α(ωk) for 1 ≤ k <

h, and α′(ωh) = α(ωh)−δβ after the load redistribution. Since ωk receives δβ

less load from its neighbor, we can keep the start time of ωk unchanged after

the load redistribution for 1 ≤ k ≤ h, i.e., T ′
s(ωk) = Ts(ωk), and constraint

(3.15) of the relaxed MFTM problem is still satisfied. Therefore, we have

that T ′
f(ωk) = Tf(ωk) when 1 ≤ k < h, and T ′

f(ωh) = Tf(ωh) − δβTcp <

max{Tf (ω)|ω ∈ Ga+bi}.

Since the finish time of node 0 is still smaller than max{Tf (ω)|ω ∈ Ga+bi}

after the load redistribution, we can further reduce the finish time of the rest

nodes with maximum finish time one by one in the network by redistributing

load as above, and obtain a smaller max{Tf(ω)|ω ∈ Ga+bi}, which contradicts

the fact that max{Tf(ω)|ω ∈ Ga+bi} is already minimized.
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Figure 3.10: Load redistribution when Tf(ωh′) < Tf(0) = max{Tf (ω)|ω ∈
Ga+bi}, where β

k > 0, and βk is increased by δβk (δβk > 0) for all 1 ≤ k ≤ h′.

Case 2: Tf(0) = max{Tf(ω)|ω ∈ Ga+bi}.

In this case, there must exist a node with earlier finish time than Tf (0),

and it receives nonzero load from at least one of its neighbors. We assume

that the node is h′ hops away from node 0, and denote it as ωh′, i.e.,

Tf (ωh′) < max{Tf(ω)|ω ∈ Ga+bi}

Similarly, we find one h′-hop long path from 0 to ωh′, where every node

receives nonzero load from its previous node along the path, as shown in Fig.

3.10, we denote the load received by node ωk as βk, where 1 ≤ k ≤ h′. Next,

we firstly reduce the finish time of node 0 without prolonging the maximum

finish time by redistributing load as follows.

We increase βk by δβk, and have that T ′
f (0) = Tf(0)− δβ1Tcp. After the

load redistribution, we denote T ′
s(ωk) − Ts(ωk) as ∆Ts(ωk), the time when

ωk finishes receiving load from ωk−1 is then delayed by ∆Ts(ωk−1) + δβkTcm,

where 1 ≤ k ≤ h′. Note that when k = 1, ωk−1 = 0, and T ′
s(0) = Ts(0) = 0.
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We let T ′
s(ωk) = Ts(ωk)+∆Ts(ωk) such that constraint (3.15) is still satisfied

after the load redistribution. Since ∆Ts(ω1) = T ′
s(0) − Ts(0) + δβ1Tcm =

δβ1Tcm and ∆Ts(ωk) = ∆Ts(ωk−1)+ δβkTcm, where 1 < k ≤ h′, we have that

∆Ts(ωk) =
k

∑

l=1

δβlTcm (3.16)

for 1 ≤ k ≤ h′. To avoid increasing the finish time of ωk when 1 ≤ k < h′,

we let

α′(ωk) = α(ωk)−
∆Ts(ωk)

Tcp

and have that T ′
f(ωk) = Tf(ωk) by constraint (3.4).

In addition, since each node in Gaussian network has 4 neighbors, ωk may

also send load to another 2 neighbors besides xk+1 + yk+1i when 1 ≤ k < h′,

as shown in Fig. 3.11, where we assume that ωk sends nonzero load to its

neighbor 1 and 3, and that xk+1 + yk+1i is its neighbor 0 without loss of

generality. To prevent increasing the start time of n1(ωk) and n3(ωk) due to

the delayed start time of ωk, in the worst case, β1(ωk) and β3(ωk) each have

to be decreased by ∆Ts(ωk)
Tcm

in Fig. 3.11. Therefore, we have that

δβk+1 = δβk +
2∆Ts(ωk)

Tcm

+
∆Ts(ωk)

Tcp

in the worst case for 1 ≤ k < h′.

On the other hand, if ωk sends no load to n1(ωk) or n3(ωk),

δβk+1 = δβk +
∆Ts(ωk)

Tcp
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ωk

−βk+1 − δβk − 2∆Ts(ωk)
Tcm

− ∆Ts(ωk)
Tcp

β1(ωk) +
∆Ts(ωk)

Tcm

βk + δβk

β3(ωk) +
∆Ts(ωk)

Tcm

Figure 3.11: After the load redistribution, T ′
s(ωk) = ∆Ts(ωk) + Ts(ωk), to

avoid delaying the start time of its neighbor 1 and 3, the load sent to these
two neighbors, i.e., β1(ωk) and β3(ωk), are each reduced by ∆Ts(ωk)

Tcm
. Since ωk

receives δβk more load from its neighbor 2, it has to send δβk + 2∆Ts(ωk)
Tcm

+
∆Ts(ωk)

Tcp
more load to its neighbor 0, such that α′(ωk) = α(ωk)−

∆Ts(ωk)
Tcp

, and

its finish time remains the same before and after the load redistribution.

Hence, we have that

δβk +
∆Ts(ωk)

Tcp

≤ δβk+1 ≤ δβk +
2∆Ts(ωk)

Tcm

+
∆Ts(ωk)

Tcp

(3.17)

in general.

The above inequality indicates that δβl−1 ≤ δβl for 1 ≤ l ≤ k, applying

Eq. (3.16), we have that

∆Ts(ωk) ≤ kδβkTcm (3.18)

for 1 ≤ k ≤ h′, which implies

δβk+1 ≤ δβk(1 + 2k +
Tcm

Tcp

k) (3.19)
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therefore,

δβk ≤ δβ1
k−1
∏

l=0

(1 + 2l +
Tcm

Tcp

l) (3.20)

and

∆Ts(ωk) ≤ kδβ1Tcm

k−1
∏

l=0

(1 + 2l +
Tcm

Tcp

l) (3.21)

where 1 ≤ k ≤ h′.

As for node ωh′, since T ′
s(ωh′) = Ts(ωh′) + ∆Ts(ωh′), and ωh′ may send

load to its 3 neighbors other than xh′−1 + yh′−1i, as shown in Fig. 3.12,

where we assume that ωh′ sends nonzero load to its neighbor 0, 1 and 3, and

xh′−1+yh′−1i is its neighbor 2 without loss of generality. To avoid delaying the

start time of n0(ωh′) n1(ωh′) and n3(ωh′), in the worst case, β0(ωh′), β1(ωh′),

β3(ωh′) each have to be decreased by ∆Ts(ωh′). Therefore, we have that

α′(ωh′) = α(ωh′) + δβh′

+
3∆Ts(ωh′)

Tcm

in the worst case, and

T ′
f (ωh′) = Tf (ωh′) + ∆Ts(ωh′) + (δβh′

+
3∆Ts(ωh′)

Tcm

)Tcp (3.22)

By Eq. (3.20), (3.21) and (3.22), we have that

T ′
f(ωh′) ≤ Tf (ωh′) + δβ1Tcp

h′−1
∏

l=0

(1 + 2l +
Tcm

Tcp

l)+

(1 + 3
Tcp

Tcm

)h′δβ1Tcm

h′−1
∏

l=0

(1 + 2l +
Tcm

Tcp

l) (3.23)
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ωh′

β0(ωh′) +
∆Ts(ωh′ )

Tcm

β1(ωh′) +
∆Ts(ωh′ )

Tcm

βh′
+ δβh′

β3(ωh′) +
∆Ts(ωh′ )

Tcm

Figure 3.12: After the load redistribution, T ′
s(ωh′) = ∆Ts(ωh′) + Ts(ωh′),

to avoid delaying the start time of its neighbor 0, 1 and 3, the load sent
to these 3 neighbors, i.e., β0(ωh′), β1(ωh′) and β3(ωh′), are each reduced by
∆Ts(ωh′ )

Tcm
. Since ωh′ receives δβh′

more load from its neighbor 2, we have that

α′(ωh′) = α(ωh′) +
3∆Ts(ωh′ )

Tcm
+ δβh′

after the load redistribution.

Since Tf (ωh′) < max{Tf (ω)|ω ∈ Ga+bi} before the load redistribution, we

can choose sufficiently small δβ1 > 0, such that T ′
f(ωh′) is still earlier than

max{Tf (ω)|ω ∈ Ga+bi} after the load redistribution.

In summary, after the load redistribution, we have that

T ′
f (0) = Tf(0)− δβ1Tcp < max{Tf(ω)|ω ∈ Ga+bi}

T ′
f(ωh′) < max{Tf(ω)|ω ∈ Ga+bi} and T ′

f(ωk) = Tf(ωk) when 1 ≤ k < h′.

Since T ′
f(0) is now smaller than max{Tf (ω)|ω ∈ Ga+bi}, we can reduce all

nodes with maximum finish time in the network by the load redistribution

in case 1 to obtain a smaller max{Tf(ω)|ω ∈ Ga+bi}, which also contradicts

that the relaxed MFTM problem is optimized before the load redistribution.

Hence, if Ts(ω) > 0, Tf (ω) must equal to Tf(0) when the relaxed MFTM

problem is optimized.

Theorem 3.5 indicates the following corollary.
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Corollary 3.6. When the relaxed MFTM problem is optimized, ∀ω 6= 0, Ts(ω) >

0.

Proof. We prove the corollary by contradiction, and assume that there exist

ω 6= 0, such that Ts(ω) = 0. By Theorem 3.5, ∀ω 6= 0, Tf (ω) equals to either

Tf(0) or 0, therefore, we can always find a pair of neighboring nodes, say,

ω1 and ω2, such that Tf (ω1) = Tf (0), Ts(ω2) = Tf (ω2) = 0, and ω1 is either

node 0 or closer to node 0 than ω2. Next, we redistribute load by letting

ω1 send a sufficiently small fraction of load to ω2, such that the finish time

of ω2 is nonzero, but smaller than max{Tf (ω)|ω ∈ Ga+bi}. In addition, ω1

processes less load after the load redistribution, and should finish processing

load earlier. Therefore, the load redistribution will not result in a greater

maximum finish time of all nodes in Ga+bi, but now ω2 receives nonzero load

from ω1, and its finish time is smaller than max{Tf (ω)|ω ∈ Ga+bi}, which

contradicts Theorem 3.5.

Theorem 3.5 and Corollary 3.6 in conjunction prove Theorem 3.7.

Theorem 3.7. When the relaxed MFTM problem is optimized, Tf (ω) must

be equal for all ω ∈ Ga+bi.

With Theorem 3.7, we show that the MFTM problem and relaxed MFTM

problem share identical optimal solution in the next theorem.

Theorem 3.8. U∗ is the optimal solution of the relaxed MFTM problem.

Proof. Since constraint (3.15) is relaxed from constraint (3.6), U∗ is feasible

for the relaxed MFTM problem. Therefore, the MFTM problem can not
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have a better optimal solution than the relaxed MFTM problem.

We then prove the theorem by showing that the optimal solution of the

relaxed MFTM problem is also a feasible solution of the MFTM problem,

which means that the relaxed MFTM problem has no better optimal solution

than the MFTM problem either, and these two problems must have equal

optimal solution.

Assume that the optimal solution of the relaxed MFTM problem is not

feasible for the MFTM problem, there must exist at least one node, say, ω,

such that

Ts(ω) > max{Ts(nj(ω)) + βj(ω)Tcm|βj(ω) > 0}

Therefore, we can assign ω an earlier start time, denoted as T ′
s(ω), and

T ′
s(ω) = max{Ts(nj(ω)) + βj(ω)Tcm|βj(ω) > 0}

The new solution is still optimal for the relaxed MFTM problem, but the

finish time of ω is now earlier than max{Tf(ω)|ω ∈ Ga+bi}, which contradicts

Theorem 3.7, i.e., all nodes should have equal finish time when the relaxed

MFTM problem is optimized. Hence, the assumption is false, and the optimal

solution of the relaxed MFTM problem is feasible for the MFTM problem.

With the Theorem 3.7 and 3.8, we further transfer the relaxed MFTM

problem to the finish time minimization (FTM) problem, of which the op-

timal solution is also U∗, in the next subsection, and propose an optimal
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algorithm for the FTM problem.

3.3.3 Finish Time Minimization (FTM) Problem

Since all nodes have to finish processing load simultaneously by Theorem

3.7 when the relaxed MFTM problem is optimized, constraint (3.4) can be

replaced by

Tf = Ts(ω) + α(ω)Tcp

and the object of the relaxed MFTM problem is to minimize Tf . In addition,

all βj(ω)s satisfying constraint (3.15) must be positive, thus belong to U+
β .

These βj(ω)s consist of a subset of U+
β , which we denote as S+

β . Therefore,

if we can determine S+
β in the optimal solution of the MFTM problem, all

constraints and the object function become linear, indicating an optimal

solution by linear programming. By the above analysis, we propose the

finish time minimization (FTM) problem in Table 3.4.

In the FTM problem, S+
β can be any subset of U+

β , and if βj(ω) ∈ U+
β −S+

β ,

we let βj(ω) = 0, as stated by constraint (3.29). All nodes share the same

finish time, which is a function of S+
β , and is denoted as Tf(S

+
β ). The object of

the FTM problem is to minimize Tf (S
+
β ), and we have the following theorem

on the optimal solution of the FTM problem.

Theorem 3.9. U∗ is the optimal solution of the FTM problem.

Proof. Since all nodes have equal finish time in the optimal solution of the

relaxed MFTM problem, and that S+
β can be any subset of U+

β , U∗, the
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Table 3.4: Finish Time Minimization (FTM) Problem Formulation for Di-
visible Load Scheduling in A Gaussian Network

Minimize: Tf (S
+
β )

Subject to:

Tf(S
+
β ) = Ts(ω) + α(ω)Tcp (3.24)

Ts(0) = 0 (3.25)

Ts(ω) ≥ Ts(nj(ω)) + βj(ω)Tcm, if βj(ω) ∈ S+
β (3.26)

βj(ω) ≥ 0, if βj(ω) ∈ U+
β (3.27)

βj(ω) ≤ 0, if βj(ω) ∈ U−
β (3.28)

βj(ω) = 0, if βj(ω) ∈ U0
β ∪ (U+

β − S+
β ) (3.29)

βj(ω) = −βk(nj(ω)), if k = mod4(j + 2) (3.30)

α(ω) =

3
∑

j=0

βj(ω), if ω 6= 0 (3.31)

α(0) = 1 +

3
∑

j=0

βj(0) (3.32)

α(ω) ≥ 0 (3.33)

S+
β ⊆ U+

β (3.34)
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optimal solution of the relaxed MFTM problem, must be feasible for the FTM

problem, meaning that the relaxed MFTM problem has no better optimal

solution than the FTM problem. On the other hand, given a feasible solution

of the FTM problem, if βj(ω) > 0, we have that βj(ω) ∈ S+
β , and constraint

(3.26) is satisfied, therefore, any feasible solution of the FTM problem should

also be feasible for the relaxed MFTM problem, therefore, the FTM problem

has no better optimal solution than the relaxed MFTM problem either, and

these two problems must have equal optimal solution.

Lemma 3.3. Define

S∗
β = {βj(ω)|βj(ω) > 0, βj(ω) ∈ U∗}

when the FTM problem is optimized, S+
β = S∗

β.

Proof. Since if βj(ω) ≥ 0, βj(ω) ∈ U+
β , we have that S∗

β ⊆ U+
β . In addition,

by Theorem 3.9, U∗ is the optimal solution of the FTM problem, thus, if

S+
β = S∗

β, constraint (3.26) and (3.29) will both be satisfied.

Next, we propose an optimal algorithm based on linear programming,

denoted as LP-based algorithm, for the FTM problem by Lemma 3.3.

We notice that constraint (3.24)-(3.33) are all linear, therefore, for a given

S+
β , to minimize Tf (S

+
β ) becomes a linear optimization problem, which we

denote as LP (S+
β ). That is, for a given subset of U+

β , S
+
β , LP (S+

β ) is a lin-

ear optimization problem, which minimizes Tf(S
+
β ) under constraint (3.24)-

(3.33) in Table 3.4. By Lemma 3.3, the FTM problem will be optimized
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when S+
β = S∗

β . Since U+
β has 2|U

+

β
| subsets, we can try each of them, and

solve 2|U
+

β
| linear optimization problems to find out the optimal solution.

It is worth mentioning that S∗
β has some features, which are useful in

determining whether Tf (S
+
β ) is the minimum finish time. In other words, if a

given S+
β does not have the same features as S∗

β, we will not find the optimal

solution of the FTM problem by solving LP (S+
β ). These features are listed

as follows.

• ∀ω ∈ Ga+bi and ω 6= 0, ∃j ∈ {0, 1, 2, 3} such that βj(ω) ∈ S∗
β.

• βj(ω1) ∈ S∗
β if and only if βk(ω2) ∈ S∗

β, where ω2 = ω1 · i, k = mod4(j+

1).

• When a and b are both even, if βj(
a
2
+ b

2
i) (or βj(

b
2
− a

2
i)) is in S∗

β , then

βk(
a
2
+ b

2
i) (or βk(

b
2
− a

2
i)) is also in S∗

β, where k = mod4(j + 2).

• If Ga+bi is an optimal Gaussian network, β0(x+yi), β0(x−yi), β1(−y+

xi), β1(y + xi), β2(−x − yi), β2(−x + yi), β3(y − xi) and β3(−y − xi)

are all in S∗
β if one of them is in S∗

β.

• When a+ b is even, β0(−
a+b
2

+ a−b
2
i), β1(−

a+b
2

+ a−b
2
i), β2(−

a+b
2

+ a−b
2
i)

and β3(−
a+b
2

+ a−b
2
i) are all in S∗

β.

The first feature originates from the fact that all nodes should have equal

finish time in U∗ by Tf(ω), therefore, every node except for the source node

in the network should receive load from at least one of its neighbors.
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Table 3.5: High-Level Description of The LP-Based Algorithm for The FTM
Problem

for each S+
β ⊆ U+

β

if S+
β has the same features as S∗

β

solve LP (S+
β ), which minimizes Tf(S

+
β )

under constraint (3.24)-(3.33) in Table 3.4;
end if ;

end for;
The FTM problem and LP (S+

β ) with minimum

object function value have equal optimal solution.
End

By Lemma 3.2, βj(ω1) = βk(ω2) when ω2 = ω1 · i and k = mod4(j + 1)

in U∗, thus, they are in or not in S∗
β concurrently. Similarly, S∗

β has the next

two features by Corollary 3.2 and 3.3.

Since that when a+b is even, β0(−
a+b
2
+ a−b

2
i), β1(−

a+b
2
+ a−b

2
i), β2(−

a+b
2
+

a−b
2
i) and β3(−

a+b
2

+ a−b
2
i) are equal in U∗ by Corollary 3.4, and at least one

of them is in S∗
β according to the first feature of S∗

β, therefore, they are all in

S∗
β.

With these features of S∗
β, a high-level description of the LP-based algo-

rithm is given in Table 3.5.

Since there are total 2(a2 + b2) links in Gaussian network Ga+bi, we have

|U+
β | ≤ 2(a2 + b2), which means that the number of subsets of U+

β , i.e.,

2|U
+

β
|, might grow exponentially with network size. Though the features of

S∗
β can help exclude some subsets of U+

β , the number of linear optimization

problems that the LP-based algorithm in Table 3.5 needs to solve is expected

to increase quickly as the network size grows, and we will analyze its time

complexity in the next subsection.
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Considering the high time complexity of the LP-based algorithm, we pro-

pose a heuristic algorithm for the FTM problem, which solves only one linear

optimization problem. The idea of the heuristic algorithm is that every node

in the network receives load from all its neighbors that are closer to node

0. Hence, in the heuristic algorithm, we let S+
β = U+

β , and solve the linear

optimization problem LP (U+
β ). The optimal solution of LP (U+

β ) is then used

as the solution of the heuristic algorithm. As will be seen in Section 3.5, the

performance of our proposed heuristic algorithm is extremely close, and even

equal in many cases, to the LP-based algorithm in terms of finish time.

3.3.4 Time Complexity Analysis

In this subsection, we analyze the time complexity of the LP-based algo-

rithm and the heuristic algorithm relative to the network size. Since the

LP-based algorithm solves numerous linear optimization problems LP (S+
β ),

where S+
β ⊆ U+

β , and the heuristic algorithm solves only LP (U+
β ), we begin

with the analysis of the time complexity of solving LP (S+
β ).

The standard form of the linear optimization problem is to maximize

cTx (c,x ∈ Rn) over all vectors x such that Ax = b and x ≥ 0. In

1979, Khachiyan showed that a linear optimization problem can be solved in

polynomial time relative to the length of the binary encoding of the input,

denoted as L [32]. In other words, L is the number of bits encoding A, b

and c.

To convert LP (S+
β ) to the above standard form, we eliminate all βj(ω)s
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that are zero by constraint (3.29), substitute βj(ω) ∈ U−
β with −βk(nj(ω)),

where βk(nj(ω)) ∈ U+
β , k = mod4(j+2), and add nonnegative slack variables,

denoted as Tj(ω), in constraint (3.26) to transform the inequality to equality,

i.e.,

Ts(ω) = Ts(nj(ω)) + βj(ω)Tcm + Tj(ω)

After these operations, there are 2(a2 + b2 + |S+
β |) + 1 nonnegative variables

and 2(a2 + b2) + |S+
β |+ 1 equalities in LP (S+

β ).

By the features of S∗
β listed in the previous subsection, we have the fol-

lowing equation regarding the cardinality of S+
β .

|S+
β | ≥











































a2 + b2 + 2, a, b are both odd

a2 + b2 + 4, a, b are both even

a2 + b2 − 1, a + b is odd, and a > b+ 1

a2 + b2 − 1 + 4⌊ b
2
⌋, a = b+ 1

(3.35)

In addition,

|U+
β | =















2(a2 + b2), a+ b is even

2(a2 + b2 − 2a+ 1), a + b is odd

(3.36)

and |S+
β | ≤ |U+

β |, indicating that L in LP (S+
β ) is polynomial to the network

size, the time complexity of solving LP (S+
β ) is thus also polynomial to the

network size by Khachiyan’s result. Note that the dependencies among vari-
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ables by Lemma 3.2 and Corollary 3.2-3.4 can reduce the number of variables

and equalities by a factor of 4 (or 8 when the Gaussian network is optimal),

which can help improve the efficiency of solving LP (S+
β ) in practice despite

the same time complexity in theory.

Next, we discuss the number of linear optimization problems that the

LP-based algorithm solves. As βj(ω · ij), where j = 0, 1, 2 and 3, are in S+
β

concurrently by the second feature of S∗
β, and when a = b + 1, β0(x + yi),

β0(x − yi), β1(−y + xi), β1(y + xi), β2(−x − yi), β2(−x + yi), β3(y − xi)

and β3(−y− xi) are in S+
β concurrently according to the forth feature of S∗

β ,

we can construct at least 2
|U+

β
|−min{|S+

β
|}

4 subsets of U+
β when a 6= b + 1, and

no less than 2
|U+

β
|−min{|S+

β
|}

8 subsets of U+
β when a = b + 1, which share all

features of S∗
β. Besides, U

+
β has 2|U

+

β
| subsets in total, therefore, the number

of linear optimization problems that the LP-based algorithm in Table 3.5

needs to solve increases exponentially with the network size, and the LP-

based algorithm has exponential time complexity relative to network size.

It is worth pointing out that the ellipsoid algorithm, which was used by

Khachiyan to prove his result, is not useful for solving linear optimization

problems in practice. On the other hand, the widely used simplex algorithm

for solving linear optimization problems is very efficient in practice despite

that there exist constructed examples which require exponential time by the

simplex algorithm. Hence, we also use the simplex algorithm to solve LP (S+
β )

in our chapter.

As mentioned in Section 3.1, our proposed MFTM problem formulation

of divisible load scheduling in Gaussian network can be readily extended to
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Figure 3.13: Node placement of 5× 5 mesh and 5× 5 torus in a square with
0, 4, 4i and 4 + 4i as the vertices in the complex plane.

mesh and torus, which will be discussed in the next section.

3.4 Extension of MFTM Problem Formula-

tion to Mesh and 2D-Torus

In this section, we extend the MFTM problem formulation to mesh and torus.

Since the coordinates of nodes are Gaussian integers in the MFTM prob-

lem, we place nodes of a × b mesh and a × b torus in the complex plane as

well, and use Gaussian integers in an a × b rectangle with 0, a − 1, (b − 1)i

and (a − 1) + (b − 1)i as vertices to represent nodes in the network. Fig.

3.13 is an example of node placement of 5 × 5 mesh and 5 × 5 torus in the

complex plane, where Gaussian integers in a 5× 5 square represent nodes in

the network.
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In the mesh, ω is adjacent to ω + ij, where j = 0, 1, 2 and 3, if ω + ij is

in the mesh, and we say that ω + ij is neighbor j of ω, i.e.,

nj(ω) = ω + ij , if nj(ω) is in the mesh (3.37)

In the torus, node x+ yi is adjacent to moda(x± 1) + yi, x+modb(y ± 1)i,

and we let

nj(x+ yi) =











































moda(x+ 1) + yi if j = 0

x+modb(y + 1)i if j = 1

moda(x− 1) + yi if j = 2

x+modb(y − 1)i if j = 3

(3.38)

By Eq. (3.37) and (3.38), given two nodes, say, ω1 = x1 + y1i and ω2 =

x2 + y2i, we have that D(ω1, ω2), i.e., the distance between ω1 and ω2, is

|x2−x1|+ |y2−y1| and min{moda(x2−x1),moda(x1−x2)}+min{modb(y2−

y1),modb(y1 − y2)} in mesh and torus, respectively. Suppose that the load

originates from node ω0, ω can only receive load from its neighbors that are

closer to ω0 than itself, meaning that βj(ω) ≥ 0 if D(ω0, ω) > D(ω0, nj(ω)).

In addition, according to Eq. (3.37) and (3.38), ω is still neighbor mod4(j+2)

of nj(ω) in mesh and torus, hence, βj(ω) = −βk(nj(ω)), where k = mod4(j+

2). Note that since nodes on the boundary of the a× b rectangle in the mesh

have less than 4 neighbors, and we let βj(ω) = 0 if ω does not have neighbor

j in the mesh. Also, ω can start sending out and processing load after it

finishes receiving load from all its neighbors.
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To formulate the divisible load scheduling problem in mesh and torus as

the MFTM problem, U+
β , U

−
β and U0

β are defined as follows. In the mesh,

U+
β = {βj(ω)|D(ω0, ω) > D(ω0, nj(ω))}

U−
β = {βj(ω)|D(ω0, ω) < D(ω0, nj(ω))}

U0
β = {βj(ω)|ω does not have neighbor j}

As for the torus,

U+
β = {βj(ω)|D(ω0, ω) > D(ω0, nj(ω))}

U−
β = {βj(ω)|D(ω0, ω) < D(ω0, nj(ω))}

U0
β = {βj(ω)|D(ω0, ω) = D(ω0, nj(ω))}

By defining U+
β , U

−
β and U0

β as above, we still have that βj(ω) ≥ 0, βj(ω) ≤ 0

and βj(ω) = 0 for βj(ω) in U+
β , U

−
β and U0

β , respectively. The divisible load

scheduling in mesh and torus is then formulated as the MFTM problem in

Table 3.3 as well, which can be transformed into the FTM problem in Table

3.4 by Theorem 3.7, 3.8 and 3.9, and we can obtain the optimal solution of the

corresponding FTM problem by solving 2|U
+

β
| linear optimization problems.

Also, we can let S+
β = U+

β , and use the solution of LP (U+
β ) as the suboptimal

solution for the FTM problem. Hence, the heuristic algorithm proposed in

the previous section applies to mesh and torus networks as well.

Next, we will compare the performance of our proposed heuristic algo-

rithm with the LP-based algorithm, and the previously proposed dimensional
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algorithm and phase algorithm.

3.5 Performance Evaluation

In this section, we compare the performance of our proposed heuristic al-

gorithm with the LP-based algorithm, and the previously proposed dimen-

sional algorithm [13], pipeline algorithms [14] and phase algorithm [16] in the

Gaussian network, mesh and torus with respect to different network sizes.

As mentioned in Section 3.3, we rely on simplex algorithm to solve LP (S+
β ).

To evaluate the efficiency of the simplex algorithm, we count the number of

iterations by the simplex method to solve LP (U+
β ) in the heuristic algorithm.

In [13], the dimensional algorithm is proposed for N -dimensional mesh

and torus, in which an a1 × a2 × ...× aN mesh (or torus) is considered as aN

linearly connected a1 × a2 × ...× aN−1 meshes (or tori), and a single node is

regarded as the 0-dimensional mesh (or torus). Since a daisy chain network,

i.e., linearly connected nodes, of processors is equal to a single processor with

faster processing speed [6], an N -dimensional mesh (or torus) can recursively

be equivalent to a single processor under the dimensional algorithm. Based

on the dimensional algorithm, two pipeline algorithms, named as pipeline 1

algorithm and pipeline 2 algorithm, respectively, are proposed in [14] to re-

duce the overhead of distributing load in one dimension. Pipeline 1 algorithm

allows the node to start transmitting load before finishing receiving load, but

all nodes except for the source node in the same dimension must start pro-

cessing load after load distribution completes in the dimension. In pipeline 2
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algorithm, nodes are allowed to start both processing and transmitting load

before finishing receiving load.

The phase algorithm is proposed for divisible load scheduling in torus

networks in [16]. In the phase algorithm, the circuit switching mechanism

is adopted such that a node can send load to remote nodes directly as long

as no link along the routing path is occupied, which is quite different from

the other algorithms in our comparison, which allow nodes to send load only

to their neighbors. For example, the phase algorithm allows load being sent

from node 0 to node 2 directly in the 5 × 5 torus in Fig. 3.13 (b) along

the link from node 0 to node 1 and the link from node 1 to node 2, which

bypasses node 1. The load is distributed to nodes in the network in several

phases. In phase 0, the node where load originates starts load distribution,

and sends load to 4 nodes since each node has 4 ports in the torus. Next,

in phase 1, 5 nodes hold load, and each of them distributes load to another

4 nodes in the network. Therefore, in phase N , load will be distributed to

5N nodes in total. To prevent link contention in each phase, a node may

have to send load to remote nodes, which will incur a long startup time, for

simplicity, we set the startup time to be zero in our comparison. The closed

form solutions of load distribution by the above 4 algorithms are given in the

corresponding references.

In the performance comparison, we set Tcp as 1, and increase Tcm from

0.01 to 10, corresponding to computation-intensive load and communication-

intensive load, and the incremental steps are 0.01, 0.1 and 1 in intervals

[0.01,0.1], [0.1,1] and [1,10], respectively. The performance of the compared
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algorithms is evaluated in terms of speedup, which is the ratio between the

finish time of total load by a single node and that by the whole network.

3.5.1 Comparison in Gaussian Networks

In this subsection, we compare the performance of the heuristic algorithm

with the LP-based algorithm in Gaussian networks, and adopt three optimal

Gaussian networks, G4+3i, G5+4i and G6+5i, such that we can reduce the

computation complexity, especially when adopting the LP-based algorithm,

by taking advantage of the network symmetry to the maximum extent.

The comparison results are plotted in Fig. 3.14, from which we can

see that our proposed heuristic algorithm has extremely close, and almost

equal, performance to the LP-based algorithm under all network sizes. The

underlying reason is that all the links in the network are assumed to be active,

i.e., used to transmit load, in the heuristic algorithm, though the assumption

might not be true in the optimal load distribution, taking advantage of all

links in the network to transmit load is an efficient load distribution scheme.

Considering that the heuristic algorithm solves only one linear optimization

problem, and has much lower time complexity than the LP-based algorithm,

the performance of our proposed heuristic algorithm is quite satisfactory.

We also observe that larger network size and smaller Tcm results in higher

speedup under both algorithms. This is because that larger network provides

greater computing power and smaller Tcm introduces less overhead in load

distribution. On the other hand, load distribution becomes less economical
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Figure 3.14: Speedup comparison between LP-based algorithm and heuristic
algorithm with respect to different network sizes and inverse data rates in
Gaussian networks.

under larger Tcm, and we can see that larger network size brings about little

speedup improvement when Tcm ≥ 0.2, which will also be observed in mesh

and torus under a variety of divisible load scheduling algorithms.

3.5.2 Comparison in Meshes and Tori

In this subsection, we evaluate the performance of our proposed heuristic al-

gorithm in meshes and tori with respect to the LP-based algorithm, heuristic

algorithm, dimensional algorithm, pipeline 1 algorithm, pipeline 2 algorithm

and phase algorithm.

As in the previous subsection, for the purpose of reducing computation

complexity from the network symmetry, we use three square meshes and

tori in our comparison, they are 5 × 5, 7 × 7 and 9 × 9 meshes and tori.

Since the nodes are asymmetric in the mesh, and the performance of mesh in

scheduling divisible load is related to the position of ω0, i.e., the node where
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the load originates. Generally speaking, the mesh has better performance

in scheduling divisible load when ω0 is closer to the geometric center, and

we let ω0 be the geometric centers of the selected meshes in our comparison,

such that we can observe the best performance of these meshes under given

algorithms. The geometric centers of the 5 × 5, 7 × 7 and 9 × 9 meshes are

2+2i, 3+ 3i and 4+4i, respectively. As nodes in a torus are symmetric, the

divisible load scheduling is independent of the position of ω0, nevertheless,

we still choose 2 + 2i, 3 + 3i and 4 + 4i as ω0 in the 5 × 5, 7 × 7 and 9 × 9

tori, respectively.

The comparison results among these algorithms in the meshes are in Fig.

3.15. We can see that the heuristic algorithm still have almost equal per-

formance to the LP-based algorithm in the mesh, and that our proposed

heuristic algorithm achieves much higher speedup than the dimensional al-

gorithm, and the gap between these two algorithms broadens as the Tcm in-

creases. When 0.01 < Tcm < 0.2, our proposed heuristic algorithm increases

the speedup by about 12% in the 5× 5 mesh, and the speedup improvement

reaches around 25% and over 30% in the 7 × 7 and 9 × 9 meshes, respec-

tively. The reason is that the dimensional algorithm fails to efficiently use

all the links in the network to distribute load. For example, since node 0,

1, 2, 3 and 4 equal to a single process in the 5 × 5 mesh by the dimen-

sional algorithm, node 1 can receive load only from node 2, while node 1

can receive load from node 2 and 1 + i in the heuristic algorithm, which

shortens the load transmission time. As the network size grows, the network

size grows, and Tcm increases, which brings about higher overhead when dis-
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tributing load, the inefficiency of the dimensional algorithm in utilizing links

deteriorates, and the advantage of the heuristic algorithm becomes greater.

Though the pipeline 1 algorithm and the pipeline 2 algorithm can shorten

load distribution time in one dimension, they still suffer inefficient utilization

of links inherited from the dimensional algorithm, and even though nodes can

transmit and receive load concurrently in the pipeline 1 algorithm, it never

outperforms the heuristic algorithm. Allowing nodes to process and transmit

load while receiving load provides pipeline 2 algorithm great advantages over

the heuristic algorithm, nevertheless, it is only slightly better than the heuris-

tic algorithm. Furthermore, as the pipeline schemes adopted by pipeline 1

algorithm and pipeline 2 algorithm are independent of divisible load schedul-

ing algorithms, we can integrate them in the heuristic algorithm as well to

increase its performance. Under large Tcm, distributing load to remote nodes

becomes uneconomical, the majority of load is thus processed by the source

node and a few nearby nodes, and the speedup is almost independent of the

scheduling algorithms.

Fig. 3.16 plots the comparison results in the tori. Note that since the

5× 5 torus can adopt the phase algorithm, we also take it into consideration

in our comparison, as shown in Fig. 3.16 (a). The phase algorithm can

use all ports of a node to distribute load in each phase, therefore, it achieves

better performance than the other algorithms. However, as mentioned above,

only torus with 5N nodes can adopt the phase algorithm, which restricts its

application. Moreover, the phase algorithm may result in long startup time

when sending load to remote nodes, which is ignored in our comparison,
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while the other algorithms will not since nodes only send load to neighbors

in these two algorithms. Therefore, the advantages of the phase algorithm

over the other algorithms will shrink in real world application when taking

the potential long startup time into consideration, which might even render

it disadvantageous compared with the other algorithms.

Finally, we notice that mesh and torus of equal network size achieve iden-

tical performance when adopting the same algorithm. This is because that

when the load originates from the geometric center of the mesh, a given

scheduling algorithm results in identical load distribution in the mesh and

torus. For example, when adopting the LP-based algorithm and the heuristic

algorithm, these two networks have equal U+
β , U

−
β and U0

β , meaning that the

MFTM problems for them have identical optimal solution, and the subopti-

mal solutions from the heuristic algorithm will be the same as well.

3.5.3 Efficiency of the Simplex Algorithm

As mentioned previously, we rely on the simplex algorithm to solve the

LP (S+
β ) in the LP-based algorithm and heuristic algorithm. In this sub-

section, we evaluate the efficiency of the simplex algorithm in terms of the

number of iterations taken by the simplex algorithm to solve LP (U+
β ) in the

heuristic algorithm, as shown in Fig. 3.17. Note that a× a mesh and a× a

torus share an identical suboptimal solution by the heuristic algorithm in

our simulation, therefore, the number of iterations by the simplex algorithm

are equal in these two networks, and we use the line with legend a × a in
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Figure 3.15: Speedup comparison among LP-based algorithm, heuristic algo-
rithm and dimensional algorithm with respect to different network sizes and
inverse data rates in meshes. (a) 5×5 mesh. (b) 7×7 mesh. (c) 9×9 mesh.

66



10
−2

10
−1

10
0

10
1

0

5

10

15

20

25

S
pe

ed
up

 

 

LP−based
Heuristic
Dimensional
Pipeline 1
Pipeline 2
Phase

Tcm

5× 5 torus

(a)

10
−2

10
−1

10
0

10
1

0

10

20

30

40

50

S
pe

ed
up

 

 

LP−based
Heuristic
Dimensional
Pipeline 1
Pipeline 2

Tcm

7× 7 torus

(b)

10
−2

10
−1

10
0

10
1

0

20

40

60

80

S
pe

ed
up

 

 

LP−based
Heuristic
Dimensional
Pipeline 1
Pipeline 2

Tcm

9× 9 torus

(c)

Figure 3.16: Speedup comparison among LP-based algorithm, heuristic algo-
rithm, dimensional algorithm and phase algorithm with respect to different
network sizes and inverse data rates in tori. (a) 5× 5 torus. (b) 7× 7 torus.
(c) 9× 9 torus.
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Figure 3.17: Number of iterations by the simplex method in solving LP (U+
β )

with respect to different network sizes and topologies.

Fig. 3.17 to represent both networks. From Fig. 3.17, we can see that the

number of iterations is small with respect to the corresponding network size,

and relatively stable as Tcm increases from 0.01 to 10, which is a positive ev-

idence indicating a satisfactory efficiency of the simplex algorithm in solving

LP (U+
β ).

In summation, our proposed heuristic algorithm has a significantly lower

time complexity than the LP-based algorithm, but maintains almost equally

good performance compared to the latter one. In addition, the heuristic

algorithm significantly outperforms the dimensional algorithm, and is much

more widely applicable than the phase algorithm.

3.6 Conclusions

In this chapter, we have formulated the divisible load scheduling in mesh,

torus and Gaussian network as the maximum finish time minimization (MFTM)
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problem, which minimizes the maximum finish time of all nodes in the net-

work. By linearly relaxing the constraints of MFTM problem, we obtain the

relaxed MFTM problem, which is proved to have equal optimal solution as

the MFTM problem. We showed that the all nodes should have equal finish

time when the relaxed MFTM problem is optimized, and further transform

it into the finish time minimization (FTM) problem. The FTM problem and

MFTM problem have equal optimal solutions as well, and we propose an

optimal algorithm based on linear programming, denoted as the LP-based

algorithm, for the FTM problem. Considering the high time complexity of

the LP-based algorithm, a heuristic algorithm is also proposed.
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Chapter 4

Divisible Load Scheduling in A

Ring

4.1 Introduction

As a basic network topology, ring has been widely adopted in many real-

world network interconnections, ranging from the small on-chip networks to

the large optical networks [33]-[37]. In this chapter, we study the divisible

load scheduling in the ring, and propose the optimal algorithm.

The rest of the chapter proceeds as follows. In Section 4.2, we formulate

the divisible load in the ring as the Maximum Finish Time Minimization

(MFTM) problem, propose the optimal solution for it by linearly relaxing the

MFTM problem, and discusses the time complexity of the proposed optimal

algorithm. In Section 4.3, we compare our proposed optimal algorithms with

previously proposed heuristic algorithm. We conclude the chapter in Section
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4.4.

4.2 Scheduling A Divisible Loads in A Ring

In this section, we discuss the divisible load scheduling in the ring with one

source node.

As shown in Fig. 4.1, starting from the source node, nodes in the ring

are labeled from 0 to N − 1 in the clockwise direction. For presentational

convenience, we denote a segment in the ring consisting of all nodes and links

from node i to node j in the clockwise direction by a tuple (i, j), which is

also called chain (i, j). The MFTM problem formulation of divisible load

scheduling in the ring with one source node is in Table 4.1, where the source

node is 0, and the initial load of node 0 is normalized as 1 in constraint

(4.6). To solve the MFTM problem, we firstly linearly relax constraint 4.3

as follows to obtain the relaxed MFTM problem.

Ts(i) ≥ Ts(j) + β(j, i)z(j, i)Tcm}, if β(j, i) > 0 (4.1)

We define

U = {α(i), β(i, j), Ts(i), Tf(i)|0 ≤ i, j ≤ N − 1}

is a feasible solution of the MFTM (or relaxed MFTM) problem if it satisfy

all the constraints of its constraints, and the optimal solution for the MFTM

(or relaxed MFTM) problem is denoted as U∗ (or U∗
r ). As will be seen,

the MFTM problem and the relaxed MFTM problem have identical optimal
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Figure 4.1: Starting from the source node, nodes in the ring are labeled from
0 to N − 1 in the clockwise direction, and a segment in the ring consisting
of all nodes and links from node i to node j in the clockwise direction is
denoted by a tuple (i, j), which is named as chain (i, j).

solution, and to solve the MFTM problem in Table 4.1, we firstly analyze the

properties of the optimal solution of the relaxed MFTM problem, i.e., U∗
r .

4.2.1 Properties of U ∗
r

In this subsection, we prove several properties of U∗
r , based on which we

propose the optimal algorithm for the relaxed MFTM problem of divisible

load scheduling in a ring.

Theorem 4.1. In U∗
r , Tf(i) = Tf(0) if Ts(i) > 0.

Proof. We prove the theorem by contradiction, and assume that there exist

one node with different finish time from node 0, and its start time is positive.

By constraint (4.3) and (4.4), we know that if Ts(i) > 0, node i must receive

nonzero load from at least one of its neighbors, and that Tf (i) = 0 if i 6= 0

and Ts(i) = 0, therefore, max{Tf (i)|0 ≤ i ≤ N − 1} is either Tf (0) or

max{Tf (i)|Ts(i) > 0}.
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Table 4.1: Maximum Finish Time Minimization (MFTM) Problem Formu-
lation for Divisible Load Scheduling in A Ring with One Source Node

Minimize: max{Tf(i)|0 ≤ i ≤ N − 1}

Subject to:

Ts(0) = 0 (4.2)

Ts(i) = max{Ts(j) + β(j, i)z(j, i)Tcm|β(j, i) > 0} (4.3)

Ts(i) = 0, if i 6= 0, β(j, i) = 0 ∀ 0 ≤ j ≤ N − 1 (4.4)

Tf (i) = Ts(i) + α(i)w(i)Tcp (4.5)

α(0) = 1−

N−1
∑

j=0

β(0, j) (4.6)

α(i) =

N−1
∑

j=0

β(j, i), if i 6= 0 (4.7)

β(i, j) = 0, if d(i, j) 6= 1 (4.8)

β(i, j) = −β(j, i) (4.9)

β(i, j) ≥ 0, if i = 0 (4.10)

α(i) ≥ 0 (4.11)
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Next, we will reduce max{Tf(i)|0 ≤ i ≤ N − 1} by redistributing load

among nodes in the ring such that nodes with maximum finish time can have

less load to process, and the nodes with earlier finish time process more load.

For presentational convenience, we denote the start and finish time of node

i after the load redistribution as T ′
s(i) and T ′

f(i), respectively, and the load i

kept for itself after the load redistribution is denoted as α′(i).

Two cases are considered in the proof.

Case 1: Tf(0) < max{Tf(i)|0 ≤ i ≤ N − 1}.

In this case,

max{Tf (i)|0 ≤ i ≤ N − 1} = max{Tf(i), Ts(i) > 0}

and we suppose that a node with maximum finish time receives load from

node 0 along an h-hop long path, as shown in Fig. 4.2, where the path is

h-hop long, and node ih has the maximum finish time. For convenience, the

load received by node ik from its previous hop node in the path is denoted

as βk, and βk > 0 for all 1 ≤ k ≤ h. Next, we decrease the finish time of ih

by redistributing load as follows.

We reduce βk by δβ, and keep 0 < δβ < βk for all 1 ≤ k ≤ h, as

shown in Fig. 4.2. After the load redistribution, we have that T ′
f (0) =

Tf(0)+δβw(0)Tcp by constraint (4.6) in Table 4.1. As Tf(0) < max{Tf(i)|0 ≤

i ≤ N − 1}, we choose sufficiently small δβ, such that T ′
f(0) is still earlier

than max{Tf(i)|0 ≤ i ≤ N − 1}.

By constraint (4.7) in Table 4.1, we have that α′(ik) = α(ik) for 1 ≤ k < h,
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β1 β2 β3 βh

β1 − δβ β2 − δβ β3 − δβ βh − δβ

Figure 4.2: Load redistribution when Tf(0) < Tf(ih) = max{Tf(i)|0 ≤ i ≤
N − 1}, where βk > 0, and βk is reduced by δβ (0 < δβ < βk for all
1 ≤ k ≤ h).

and α′(ih) = α(ih) − δβ after the load redistribution. Since ik receives δβ

less load from its previous hop node in the path, we can keep the start time

of ik unchanged after the load redistribution for 1 ≤ k ≤ h, i.e., T ′
s(ik) =

Ts(ik), and constraint (4.3) of the relaxed MFTM problem is still satisfied.

Therefore, we have that T ′
f (ik) = Tf (ik) when 1 ≤ k < h, and

T ′
f(ih) = Tf (ih)− δβwTcp < max{Tf(i)|0 ≤ i ≤ N − 1}

Since the finish time of node 0 is still smaller than max{Tf(i)|0 ≤ i ≤

N − 1} after the load redistribution, we can further reduce the finish time

of the rest nodes with maximum finish time one by one in the network by

redistributing load as above, and obtain a smaller max{Tf(i)|0 ≤ i ≤ N −

1}, which contradicts the fact that max{Tf (i)|0 ≤ i ≤ N − 1} is already
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Figure 4.3: Load redistribution when Tf (ih′) < Tf (0) = max{Tf (i)|0 ≤ i ≤
N−1}, where βk > 0, and βk is increased by δβk (δβk > 0) for all 1 ≤ k ≤ h′.

minimized.

Case 2: Tf(0) = max{Tf(i)|0 ≤ i ≤ N − 1}.

In this case, there must exist a node with earlier finish time than Tf (0),

and it receives nonzero load from at least one of its neighbors. We assume

that the node receives load from node 0 along an h′-hop long path, and denote

it as ih′, as shown in Fig. 4.3. We denote the load received by node ik in

the path as βk, where 1 ≤ k ≤ h′. Next, we firstly reduce the finish time of

node 0 without prolonging the maximum finish time by redistributing load

as follows.

We increase βk by δβk, and have that T ′
f (0) = Tf(0)− δβ1w(0)Tcp.

After the load redistribution, we denote T ′
s(ik) − Ts(ik) as ∆Ts(ik), the

time when ik finishes receiving load from ik−1 is then delayed by ∆Ts(ik−1)+

δβkz(ik−1, ik)Tcm, where 1 ≤ k ≤ h′. Note that when k = 1, ik−1 = 0, and
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T ′
s(0) = Ts(0) = 0. We let T ′

s(ik) = Ts(ik)+∆Ts(ik) such that constraint (4.3)

is still satisfied after the load redistribution. Since ∆Ts(i1) = T ′
s(0)−Ts(0)+

δβ1z(0, i1)Tcm = δβ1z(0, i1)Tcm and ∆Ts(ik) = ∆Ts(ik−1)+ δβkz(ik−1, ik)Tcm,

where 1 < k ≤ h′, we have that

∆Ts(ik) =
k

∑

l=1

δβlz(il−1, il)Tcm (4.12)

for 1 ≤ k ≤ h′. To avoid increasing the finish time of ik when 1 ≤ k < h′, we

let

α′(ik) = α(ik)−
∆Ts(ik)

w(ik)Tcp

and have that T ′
f(ik) = Tf (ik) by constraint (4.5).

Therefore, we have that

δβk+1 = δβk +
∆Ts(ik)

w(ik)Tcp

for 1 ≤ k < h′. Let wmin = min{w(ik), 0 ≤ k ≤ h′}, the following equation

can be obtained

δβk ≤ δβk+1 ≤ δβk +
∆Ts(ik)

wminTcp

(4.13)

By Eq. (4.12) and (4.13), we have that

∆Ts(ik) ≤ δβk

k
∑

l=1

z(il−1, il)Tcm (4.14)
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By Eq. (4.13) and (4.14), we further deduct that

δβk+1 ≤ δβk(1 +

∑k

l=1 z(il−1, il)Tcm

wminTcp

) (4.15)

which indicates that

δβh′ ≤ δβ1

h′
∏

k=1

(1 +

∑k

l=1 z(il−1, il)Tcm

wminTcp

) (4.16)

Therefore, by Eq. (4.14) and (4.16), we obtain that

∆Ts(ih′) ≤ δβ1

h′
∏

k=1

(1 +

∑k

l=1 z(il−1, il)Tcm

wminTcp

· (
h′
∑

l=1

z(il−1, il)Tcm) (4.17)

Since T ′
s(ih′) = Ts(ih′) + ∆Ts(ih′), and node ih′ may send load to its

neighbor other than ih′−1, as shown in Fig. 4.4, where we assume that ih′

sends βh′+1 (βh′+1 > 0) load to its neighbor ih′+1. To avoid delaying the start

time of ih′+1, in the worst case, βh′+1 have to be decreased by
∆Ts(ih′ )

z(ih′ ,ih′+1)Tcm
.

Therefore, we have that

α′(ih′) = α(ih′) + δβh′ +
∆Ts(ih′)

z(ih′ , ih′+1)Tcm

in the worst case, and

T ′
f (ih′) = Tf (ih′) + ∆Ts(ih′) + (δβh′ +

∆Ts(ih′)

z(ih′ , ih′+1)Tcm

)w(h′)Tcp (4.18)

Since Tf (ih′) < max{Tf(i)|0 ≤ i ≤ N − 1} before the load redistribution,
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ih′−1 ih′ ih′+1

βh′ + δβh′ βh′+1 −
∆Ts(ih′ )

z(ih′ ,ih′+1)Tcm

Figure 4.4: After the load redistribution, T ′
s(ih′) = Ts(ih′) + ∆Ts(ih′), to

avoid delaying the start time of its neighbor ih′+1, the load sent to it, i.e.,

βh′ is reduced by
∆Ts(ih′ )

z(ih′ ,ih′+1)Tcm
. Since ih′ receives δβh′ more load from its

neighbor ih′−1, we have that α′(ih′) = α(ih′) + δβh′ +
∆Ts(ih′ )

z(ih′ ,ih′+1)Tcm
after the

load redistribution.

by Eq. (4.16), (4.17) and (4.18), we can choose sufficiently small δβ1 > 0,

such that T ′
f (ih′) is still earlier than max{Tf (i)|0 ≤ i ≤ N −1} after the load

redistribution.

In summary, after the load redistribution, we have that

T ′
f(0) = Tf (0)− δβ1w(0)Tcp < max{Tf(i)|0 ≤ i ≤ N − 1}

T ′
f(ih′) < max{Tf(i)|0 ≤ i ≤ N − 1} and T ′

f (ik) = Tf (ik) when 1 ≤ k < h′.

Since T ′
f(0) is now smaller than max{Tf(i)|0 ≤ i ≤ N−1}, we can reduce all

nodes with maximum finish time in the network by the load redistribution in

case 1 to obtain a smaller max{Tf(i)|0 ≤ i ≤ N − 1}, which also contradicts

that the relaxed MFTM problem is optimized before the load redistribution.

Hence, if Ts(i) > 0, Tf (i) must equal to Tf(0) in U∗
r .

Theorem 4.1 indicates the following corollary.

Corollary 4.2. In U∗
r , ∀ω 6= 0, Ts(ω) > 0.

79



Proof. We prove the corollary by contradiction, and assume that there exist

i 6= 0, such that Ts(i) = 0. By Theorem 4.1, ∀i 6= 0, Tf (i) equals to either

Tf(0) or 0, therefore, we can always find a pair of neighboring nodes, say, i1

and i2, such that Tf(i1) = Tf (0), Ts(i2) = Tf(i2) = 0. Next, we redistribute

load by letting i1 send a sufficiently small fraction of load to i2, such that the

finish time of i2 is nonzero, but smaller than max{Tf(i)|0 ≤ i ≤ N − 1}. In

addition, i1 processes less load after the load redistribution, and should finish

processing load earlier. Therefore, the load redistribution will not result in

a greater maximum finish time of all nodes in the ring, but now i2 receives

nonzero load from i1, and its finish time is smaller than max{Tf (i)|0 ≤ i ≤

N − 1}, which contradicts Theorem 4.1.

Theorem 4.1 and Corollary 4.2 in conjunction prove Theorem 4.3.

Theorem 4.3. In U∗
r , Tf(i) must be equal for all 0 ≤ i ≤ N − 1.

By Theorem 4.3, constraint (4.5) in Table 4.1 can be simplified as follows:

Tf = Ts(i) + α(i)w(i)Tcp

where all nodes share equal finish time Tf , and the object function of the

problem becomes minimizing Tf . Theorem 4.3 also indicates that the MFTM

problem and relaxed MFTM problem share identical optimal solution, as

stated by the next theorem.

Theorem 4.4. U∗ = U∗
r .
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Proof. Since constraint (4.1) is relaxed from constraint (4.3), U∗ is feasible

for the relaxed MFTM problem. Therefore, the MFTM problem can not

have a better optimal solution than the relaxed MFTM problem.

We then prove the theorem by showing that the optimal solution of the

relaxed MFTM problem is also a feasible solution of the MFTM problem,

which means that the relaxed MFTM problem has no better optimal solution

than the MFTM problem either, and these two problems must have equal

optimal solution.

Assume that the optimal solution of the relaxed MFTM problem is not

feasible for the MFTM problem, there must exist at least one node, say, i,

such that

Ts(i) > max{Ts(j) + β(j, i)z(j, i)Tcm|β(j, i) > 0}

Therefore, we can assign i an earlier start time, denoted as T ′
s(i), and

T ′
s(i) = max{Ts(j) + β(j, i)z(j, i)Tcm|β(j, i) > 0}

The new solution is still optimal for the relaxed MFTM problem, but the

finish time of i is now earlier than max{Tf (i)|0 ≤ i ≤ N − 1}, which con-

tradicts Theorem 4.3, i.e., all nodes should have equal finish time when the

relaxed MFTM problem is optimized. Hence, the assumption is false, and

the optimal solution of the relaxed MFTM problem is feasible for the MFTM

problem.
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ic

i′c

0

Figure 4.5: Existence of two convergence nodes, ic and i′c, in a ring.

Theorem 4.4 indicates that any node will start immediately after it fin-

ishes receiving load from its neighbors. For convenience, we say a node in

the ring is the converge node if it receives nonzero load from both of its

neighbors, and have the following lemma.

Lemma 4.1. When the relaxed MFTM problem in Table 4.1 is optimized,

there exists at most one converge node.

Proof. We prove the lemma by contradiction and assume that there exist

two converge nodes, denoted as ic and i′c, respectively, as shown in Fig. 4.5.

Since there is only one source node in the ring, nodes residing at the chain

(ic, i
′
c) would have negative load to process, which is unrealistic. Hence, the

assumption is not true and the lemma holds.

By Lemma 4.1, we discuss the relaxed MFTM problem in two situations,

depending on whether converge node exists in its optimal solution in the next

subsection.
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4.2.2 Optimal Solution for the Relaxed MFTM Prob-

lem

In this subsection, we propose the optimal algorithm for the relaxed MFTM

problem.

Existence of One Converge Node in U∗
r

We firstly discuss the situation with the existence of converge node. The

converge node can be any node in the ring except for the source node 0,

which only sends out load. Since there exists only one source node, given

the converge node, say, ic, load can only be sent to ic along chain (0, ic)

and chain (ic, 0), and we have that β(i, i + 1) > 0 when 0 ≤ i < ic, and

β(modN (i+ 1), i) > 0 when ic ≤ i ≤ N − 1, where modN(i) is i modulo N ,

as shown in Fig. 4.6. In addition, since β(i, j) = 0 if d(i, j) 6= 1 and β(i, j) =

−β(j, i) according to constraint (4.8) and (4.9) in Table 4.1, respectively, we

can eliminate all β(i, j)s that are always zero, and substitute all negative

β(i, j)s with positive ones. Moreover, only node ic receives load from both of

its neighbors, and a node starts processing and transmitting load immediately

when it finishes receiving load from its neighbors by Theorem 4.4. Therefore,

constraint (4.3) in Table 4.1 can be replaced by the following two constraints.

Ts(ic) ≥ Ts(j) + β(j, ic)z(j, ic)Tcmj = ic − 1, modN(ic + 1) (4.19)
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Ts(i) = Ts(j) + β(j, i)z(j, i)Tcm, j =















i− 1 if 1 ≤ i < ic,

j = modN(i+ 1) if ic < i ≤ N − 1

(4.20)

Finally, all nodes must share equal finish time by Theorem 4.1, and we denote

the equal finish time as Tf(ic) under a given converge node ic. By the above

discussion, we present an equivalent form of the relaxed MFTM problem of

divisible load scheduling in a ring in Table 4.2, where the object function is

to find out the ic minimizing Tf (ic), and all β(i, j)s are nonnegative, reflected

by constraint (4.25)-(4.28).

We notice that for a given converge node ic, the problem in Table 4.2

becomes a linear optimization problem, which we denote as LP (ic). Since

ic can be N − 1 different nodes in the ring according to constraint (4.29)

in Table 4.2, we can find the optimal solution by solving these N − 1 linear

optimization problems, among which the one with minimum object function

has equal optimal solution to the problem in Table 4.2.

No Existence of Converge Node

Now we discuss the situation that no converge node exists when the relaxed

MFTM problem is optimized, and have the following corollary.

Corollary 4.5. If there is no converge node when the relaxed MFTM problem

is optimized, there exists one and only one pair of neighboring nodes, which

do not send load to each other.

Proof. We first show that there cannot be two pair of such nodes. As depicted
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Table 4.2: Equivalent Form of the Relaxed MFTM Problem for Divisible
Load Scheduling in A Ring with Converge Node

Minimize: Tf (ic)

Subject to:

Ts(0) = 0 (4.21)

Ts(ic) ≥ Ts(j) + β(j, ic)z(j, ic)Tcm, j = ic − 1, modN(ic + 1) (4.22)

Ts(i) = Ts(j) + β(j, i)z(j, i)Tcm, j =

{

i− 1 if 1 ≤ i < ic

j = modN(i+ 1) if ic < i ≤ N − 1

(4.23)

Tf (ic) = Ts(i) + α(i)w(i)Tcp (4.24)

α(0) = 1− β(0, 1)− β(0, N − 1) (4.25)

α(ic) = β(ic − 1, ic) + β(modN (ic + 1), ic) (4.26)

α(i) =

{

β(i− 1, i)− β(i, i+ 1), if 1 ≤ i < ic

β(modN(i+ 1), i)− β(i, i− 1), if ic < i ≤ N − 1
(4.27)

α(i), β(i, j) ≥ 0 (4.28)

1 ≤ ic ≤ N − 1 (4.29)
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i1 i1 + 1

0 ic

i2i2 + 1

β(i1, i1 + 1) > 0

β(i2 + 1, i2) > 0

Figure 4.6: Load delivered to convergence node ic along chain (0, ic) and chain
(ic, 0), therefore, β(i, i+ 1) > 0 when 0 ≤ i < ic and β(modN(i + 1), i) > 0
when ic ≤ i ≤ N − 1.

in Fig. 4.7, if there are two pair of such nodes, the ring is divided into two

disjoint chains, and the one without the source node will not receive any load,

the start and finish time of which, therefore, should be zero by constraint

(4.4) and (4.5), which contradicts Theorem 4.1.

On the other hand, since there is only one source node, which only sends

out load, and all nodes receive load from at most one of its neighbors, there

must be one pair of neighboring nodes stopping sending load to each other.

By Corollary 4.5, we suppose that nodes is and modN(is+1) stop sending

loading to each other, and have that β(i, i + 1) > 0 when 0 ≤ i < is and

β(modN (i + 1), i) > 0 when is < i ≤ N − 1 as load is sent to is and

modN(is+1) along chain (0, is) and (modN(is+1), 0), respectively. As every

node except for the source node receives load from one of its neighbors,
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i1 i1 + 1

0

i2i2 + 1

β(i1, i1 + 1) = 0

β(i2 + 1, i2) = 0

Figure 4.7: Node i1 and i2 stop sending load to their neighbors i1 + 1 and
i2 + 1, respectively.

constraint (4.3) in Table 4.1 can be rewritten as

Ts(i) = Ts(j) + β(j, i)z(j, i)Tcm, j =















i− 1 if 1 ≤ i ≤ is

j = modN(i+ 1) if is < i ≤ N − 1

(4.30)

by Theorem 4.4. Similarly, we denote the equal finish time of all nodes

as Tf(is) by Theorem 4.1, and the equivalent form of the relaxed MFTM

problem is given in Table 4.3, where all β(i, j)s being zero are eliminated, and

all negative β(i, j)s are substituted with positive ones in constraint (4.34)-

(4.36). The object function is to find out is that minimizes Tf (is), and is can

be any node in the ring, reflected by constraint (4.38).

Given is in Table 4.3, we notice that there are 3N + 1 variables and the

same number of linearly independent equations, and Tf (is) can be obtained

by solving a linear equation array with 3N +1 variables. As 0 ≤ is ≤ N − 1,
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Table 4.3: Equivalent Form of the Relaxed MFTM Problem for Divisible
Load Scheduling in A Ring without Converge Node

Minimize: Tf (is)

Subject to:

Ts(0) = 0 (4.31)

Ts(i) = Ts(j) + β(j, i)z(j, i)Tcm, j =

{

i− 1 if 1 ≤ i ≤ is

j = modN(i+ 1) if is < i ≤ N − 1

(4.32)

Tf (is) = Ts(i) + α(i)w(i)Tcp (4.33)

α(0) = 1− β(0, 1)− β(0, N − 1) (4.34)

α(i) =

{

β(i− 1, i)− β(i,modN(i+ 1)), if 1 ≤ i ≤ is

β(modN(i+ 1), i)− β(i, i− 1), if is < i ≤ N − 1
(4.35)

α(i), β(i, j) ≥ 0 (4.36)

β(is,modN(is + 1)) = β(modN (is + 1), is) = 0 (4.37)

0 ≤ is ≤ N − 1 (4.38)
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Table 4.4: High-Level Description of The Optimal Algorithm for the relaxed
MFMT Problem of Divisible Load Scheduling in A Ring

for each 1 ≤ ic ≤ N − 1
calculate finish time Tf (ic) in Table 4.2 by solving LP (ic);

end for;
for each 0 ≤ is ≤ N − 1
calculate finish time Tf (is) in Table 4.3 by solving the
corresponding linear equation array;

end for;
The solution is optimal when the finish time is minimum.
End

we can find the minimum Tf(is) by solving N such linear equation arrays.

By the above discussion, we give the high-level description of the optimal

algorithm for the relaxed MFTM problem of divisible load scheduling in a

ring in Table 4.4.

4.2.3 Time Complexity of the Optimal Algorithm

In this subsection, we analyze the time complexity of the optimal algorithm

relative to the number of nodes in the ring. Since the optimal algorithm needs

to solve N−1 linear optimization problems, i.e., LP (ic) for 1 ≤ ic ≤ N−1 and

N linear equation arrays, we begin with the analysis of the time complexity

of solving LP (ic).

As discussed in the previous chapter, given the standard form of a linear

optimization problem

maximize cTx
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subject to















Ax = b

x ≥ 0

(4.39)

where c is the n-dimensional coefficient vector and A is an m × n matrix,

the linear optimization problem can be solved in polynomial time relative to

the length of the binary encoding A, b and c by Khachiyan’s result.

To convert LP (ic) to the above standard form, we add nonnegative slack

variables, denoted as Tj(ic), in constraint (4.22) to transform the inequality

to equality, i.e.,

Ts(ic) = Ts(j) + β(j, ic)Tcm + Tj(ic)

After these operations, there are 3N + 3 nonnegative variables and 3N + 2

equalities in LP (S+
β ), therefore, L in LP (ic) is polynomial to N , and the

time complexity of solving LP (ic) is also polynomial to N by Khachiyan’s

result.

On the other hand, as solving a linear equation array with n variables

equals to calculating the inverse of an n× n matrix, of which the time com-

plexity is O(n2.373) by Williams algorithm [38]. As mentioned above, we can

calculate Tf(is) by solving a linear equation array with 3N + 1 variables,

therefore, the time complexity of calculating Tf(is) by Williams algorithm is

O(N2.373). Since 1 ≤ ic ≤ N − 1 and 0 ≤ is ≤ N − 1, the time complexity of

the optimal algorithm in Table 4.4 is polynomial to N .
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4.3 Performance Evaluation

In this section, we evaluate the performance of our proposed algorithm in

terms of speedup, which is the ratio between the processing time of total

load by a single standard processing node and the maximum finish time of

all nodes in the ring.

As there is no specific algorithm for divisible load scheduling in the ring,

we only compare our proposed optimal algorithm with the heuristic algorithm

in [24], which schedules divisible load in arbitrary network with any number

of source nodes. The heuristic algorithm regards the transmission time of a

unit load, i.e., z(i, j)Tcm, as the weight of the link connecting node i to node

j, and a node in the network only receives load from its closest source node

in the sense that the source node has the minimum-weight path to it among

all source nodes.

For the purpose of comprehensive comparison, we use 4 rings, each with

8 nodes. The unit load processing time, i.e., w(i)Tcp, of each node in the ring

is a uniformly distributed random number in the interval [0.5, 1.5], while the

unit load transmission time, i.e., z(i, j)Tcm, of each link in the network is a

uniformly distributed random number in the interval [0.05, 0.15] considering

that the transmission speed is usually much faster than the processing speed.

The network parameters of the 4 rings in our comparison are given in Table

4.5. The total load is normalized to 1.

The speedup comparison results in the ring are given in Table 4.6, where

we can see that the optimal algorithm and heuristic algorithm have very close
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Table 4.5: Network Parameters of Four Rings with 8 Nodes
Ring 1 Ring 2 Ring 3 Ring 4

w(0)Tcp 0.735 0.955 1.235 0.945
w(1)Tcp 0.565 0.615 0.935 0.635
w(2)Tcp 0.705 0.985 1.095 1.055
w(3)Tcp 0.915 1.495 1.125 1.395
w(4)Tcp 0.685 1.225 1.305 0.525
w(5)Tcp 0.515 0.835 1.205 0.505
w(6)Tcp 1.015 1.105 1.285 0.665
w(7)Tcp 1.195 0.595 0.765 1.155
z(0, 1)Tcm 0.1075 0.1255 0.0625 0.1025
z(1, 2)Tcm 0.1075 0.1125 0.0745 0.1155
z(2, 3)Tcm 0.1035 0.0695 0.1105 0.0625
z(3, 4)Tcm 0.1285 0.1205 0.0805 0.0995
z(4, 5)Tcm 0.1245 0.1435 0.1165 0.1415
z(5, 6)Tcm 0.0815 0.0515 0.0715 0.0735
z(6, 7)Tcm 0.1035 0.1015 0.0595 0.0855
z(7, 0)Tcm 0.0945 0.1275 0.1155 0.1365
z(0, 7)Tcm 0.0835 0.1385 0.0885 0.1415
z(7, 6)Tcm 0.0875 0.0745 0.0705 0.1275
z(6, 5)Tcm 0.1095 0.1305 0.1285 0.1345
z(5, 4)Tcm 0.1395 0.0925 0.1275 0.0925
z(4, 3)Tcm 0.1275 0.0825 0.1255 0.0675
z(3, 2)Tcm 0.0545 0.0695 0.0865 0.1435
z(2, 1)Tcm 0.0615 0.0955 0.0685 0.1055
z(1, 0)Tcm 0.0845 0.0835 0.0825 0.0725
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Table 4.6: Comparison of Speedup between Optimal Algorithm and Heuristic
Algorithm

Ring 1 Ring 2 Ring 3 Ring 4

Optimal Algorithm 6.693 5.763 5.534 5.927

Heuristic Algorithm 6.657 5.760 5.521 5.927

performance in the 4 rings. This is because that the minimum-weight path

chosen by the heuristic algorithm introduces the least communication delay,

and is generally the best path for load distribution in the ring. Nevertheless,

the optimal algorithm allows the convergence node to receive load from two

neighbors while the each node receives load from at most one of its neighbors

in the heuristic algorithm, therefore, the optimal algorithm still outperforms

the heuristic algorithm in 3 of the 4 rings.

4.4 Conclusions

In this chapter, we studied divisible load scheduling in the ring by our pro-

posed novel analysis method, and propose the optimal algorithm. We prove

that the time complexity of the optimal algorithm is poly-nominal relative to

the ring size, and comparison with previously proposed heuristic algorithm in

terms of maximum finish time and speedup demonstrates the superiority of

the optimal algorithms, which convinces us the merit of the proposed novel

analysis method.
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Chapter 5

Divisible Load Scheduling in A

Multi-Root Tree

5.1 Introduction

Amulti-root tree is a complete bipartite graph, where one set of disjoint nodes

are the roots, and the other set of disjoint nodes are the leaves. Divisible load

scheduling in the multi-root tree with two roots was studied in [23], where

the roots are source nodes with nonzero initial load, and distribute load to

the leaves. A leaf can start processing load when it finishes receiving load

from the first root, but the second root is required to finish sending the load

to the leaf before the leaf finishes processing the load from the first root. The

requirement is unreasonable, and in this chapter, we study the divisible load

scheduling in the multi-root tree with our proposed novel analysis method,

and propose the optimal algorithm.
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The rest of the chapter proceeds as follows. In Section 5.2, we formulate

the divisible load in the ring as the Maximum Finish Time Minimization

(MFTM) problem, propose the optimal solution for it by firstly relaxing the

MFTM problem, and then transforming the relaxed MFTM problem into

the Finish Time Minimization (FTM) problem, and discusses the time com-

plexity of the proposed optimal algorithm. In Section 5.3, we compare our

proposed optimal algorithms with previously proposed heuristic algorithm.

We conclude the chapter in Section 5.4.

5.2 Scheduling A Divisible Load in A Multi-

Root Tree

In this section, we study the divisible load scheduling in a multi-root tree,

which is also formulated as the MFTM problem, which undergoes a linear

relaxation to yield the relaxed MFTM problem. The relaxed MFTM problem

is then is transformed into linear optimization problem, which we denote as

Finish Time Minimization (FTM) problem.

5.2.1 Problem Formulation

As shown in Fig. 5.1, the multi-root tree consists of M roots and N leaves,

and any root is connected to all the leaves. The roots are labelled from 0

to M − 1, and leaves are labelled from M to M + N − 1. All the roots are

source nodes, and have positive load initially, the leaf can start processing
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0 1 M − 1

M M + 1 M + 2 M +N − 1

Figure 5.1: A multi-root tree with M roots and N leaves, where M roots
are labeled by integers from 0 to M − 1, and N roots are labeled by integers
from M to M +N − 1.

load when it finishes receiving load from all the roots. The MFTM problem

formulation of divisible load scheduling in a multi-root tree is in Table 5.1,

where the object is still to minimize the maximum finish time of all nodes

in the multi-root tree, and constraint (5.1) reflects that i and j are used to

denote roots and leaves, respectively.

Similar to the previous chapters, constraint (5.4) is relaxed to the linear

inequality, by which we obtain the relaxed MFTM problem.

Ts(j) ≥ Ts(i) + β(i, j)z(i, j)Tcm, if β(i, j) > 0 (5.10)

We define

U = {α(i), α(j), β(i, j),

Ts(i), Ts(j), Tf(i), Tf (j)|0 ≤ i ≤ M − 1, M ≤ j ≤ M +N − 1}
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Table 5.1: MFTM Problem Formulation of Divisible Load Scheduling in A
Multi-Root Tree

Minimize: max{Tf(i), Tf(j)}

Subject to:

0 ≤ i ≤ M − 1, M ≤ j ≤ M +N − 1 (5.1)

Ts(i) = 0 (5.2)

Ts(j) = 0, if β(i, j) = 0 ∀ 0 ≤ i ≤ M − 1 (5.3)

Ts(j) = max{Ts(i) + β(i, j)z(i, j)Tcm|β(i, j) > 0} (5.4)

Tf (i) = Ts(i) + α(i)w(i)Tcp (5.5)

Tf (j) = Ts(j) + α(j)w(j)Tcp (5.6)

α(i) = L(i)−

M+N−1
∑

j=M

β(i, j) (5.7)

α(j) =

M−1
∑

i=0

β(i, j) (5.8)

α(i), α(j), β(i, j) ≥ 0 (5.9)
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is a feasible solution of the MFTM (or relaxed MFTM) problem if it satisfy

all the constraints of its constraints, and the optimal solution for the MFTM

(or relaxed MFTM) problem is denoted as U∗ (or U∗
r ). As will be seen,

the MFTM problem and the relaxed MFTM problem have identical optimal

solution, and to solve the MFTM problem in Table 5.1, we firstly analyze the

properties of the optimal solution of the relaxed MFTM problem, i.e., U∗
r .

5.2.2 Properties of U ∗
r

To solve the relaxed MFTM problem in Table 5.1, we firstly analyze the

properties of its optimal solution, U∗
r , and have the following lemma and

theorem.

Lemma 5.1. When the relaxed MFTM problem in Table 5.1 is optimized,

max{Tf(i)} ≤ max{Tf (j)}

where 0 ≤ i ≤ M − 1, M ≤ j ≤ M +N − 1.

Proof. We prove the lemma by contradiction, and assume that

max{Tf (i)} > max{Tf(j)}

Therefore, the maximum finish time of the multi-root tree should be max{Tf(i)}.

Next, we redistribute load among roots and leaves to obtain a smaller maxi-

mum finish time of the multi-root tree.
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i′ j′
β(i′, j′) + δβ

Figure 5.2: Root i′ sends δβ more load to leaf j′.

Let Tf (i
′) = max{Tf(i)|0 ≤ i ≤ M−1}, in the load redistribution, root i′

sends another small fraction of load, δβ, to leave j′, as shown in Fig. 5.2, after

which, we set the start time of j′ as Ts(j
′)+δβz(i′, j′)Tcm such that constraint

(5.10) is still satisfied. Therefore, the finish time of i′ and j′ become Tf(i
′)−

δβw(i′)Tcp and Tf (j
′)+ δβz(i′, j′)Tcm+ δβw(j′)Tcp, respectively. Since Tf (j

′)

is smaller than max{Tf(i)}, we can choose sufficiently small δβ such that the

finish time of j′ is still smaller than max{Tf (i)} after the load redistribution.

In addition, the finish time of i′ is also smaller than max{Tf (i)} after the

load redistribution.

Hence, we can repeat the load redistribution for the rest roots with the

maximum finish time to reduce their finish time, by which a smaller maxi-

mum finish time of the multi-root tree can be obtained, and this contradicts

that the original maximum finish time is minimized already. Therefore, the

assumption is not true, and the lemma holds.

Theorem 5.1. When the relaxed MFTM problem in Table 5.1 is optimized,

Tf = Tf(j) ∀ M ≤ j ≤ M +N − 1.

Proof. We prove the theorem by contradiction, and assume that the leaves

do not share equal finish time.
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Let Tf (j1) = max{Tf (j)} and Tf(j2) = min{Tf(j)}, since the leaves do

not finishing processing load simultaneously, we have that Tf (j1) > Tf (j2).

By Lemma 5.1, j1 should have the maximum finish time of the multi-root

tree, therefore, there must exist at least one root, say, i, sending nonzero load

to it, as shown in Fig. 5.3. Next, we redistribute load to reduce the finish

time of j1, and obtain a smaller maximum finish time of the multi-root tree.

In the load redistribution, i sends δβ less load to j1, and δβ more load

to j2. After the load redistribution, the start time of j2 is set as Ts(j2) +

δβz(i, j2)Tcm such that constraint (5.10) is not violated, and the start time

of j1 is kept unchanged. Therefore, we have that the finish time of j1 and

j2 become Tf (j1) − δβw(j1)Tcp and Tf (j2) + δβz(i, j2)Tcm + δβw(j2)Tcp, re-

spectively, and the finish time of i is still Tf(i) by constraint (5.5). Since

Tf(j1) > Tf (j2), we can choose sufficiently small δβ to keep the finish time

of j2 smaller than the maximum finish time of the multi-root tree after the

load redistribution.

By repeating the above steps, all leaves with maximum finish time can

have earlier finish time, resulting a smaller maximum finish time, which con-

tradicts that the solution is optimal. Therefore, the assumption is not true,

and the theorem holds.

Theorem 5.1 also indicates that the MFTM problem and relaxed MFTM

problem share identical optimal solution, as stated by the next theorem.

Theorem 5.2. U∗ = U∗
r .

Proof. Since constraint (5.10) is relaxed from constraint (5.4), U∗ is feasible
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i

j1 j2

β(i,
j1)−

δβ β(i, j2) + δβ

Figure 5.3: Root i sends δβ less load and δβ more load to leaf j1 and j2,
respectively.

for the relaxed MFTM problem. Therefore, the MFTM problem can not

have a better optimal solution than the relaxed MFTM problem.

We then prove the theorem by showing that the optimal solution of the

relaxed MFTM problem is also a feasible solution of the MFTM problem,

which means that the relaxed MFTM problem has no better optimal solution

than the MFTM problem either, and these two problems must have equal

optimal solution.

Assume that the optimal solution of the relaxed MFTM problem is not

feasible for the MFTM problem, there must exist at least one leaf, say, j,

such that

Ts(j) > max{Ts(i) + β(i, j)z(j, i)Tcm|β(i, j) > 0}

Therefore, we can assign j an earlier start time, denoted as T ′
s(j), and

T ′
s(j) = max{Ts(i) + β(i, j)z(j, i)Tcm|β(i, j) > 0}
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The new solution is still optimal for the relaxed MFTM problem, but the

finish time of j is now earlier than max{Tf(j)|M ≤ j ≤ M +N − 1}, which

contradicts Theorem 5.1, i.e., all leaves should have equal finish time when

the relaxed MFTM problem is optimized. Hence, the assumption is false,

and the optimal solution of the relaxed MFTM problem is feasible for the

MFTM problem.

Theorem 5.2 indicates that any node will start immediately after it fin-

ishes receiving load from the roots.

5.2.3 Optimal Solution for the Relaxed MFTM Prob-

lem

By the above lemma and theorems, we have that when the relaxed MFTM

problem in Table 5.1 is optimized, all the leaves should have equal finish

time, denoted as Tf , which is also the maximum finish time of all nodes

in the multi-root tree. Based on the conclusion, we transform the relaxed

MFTM problem in Table 5.1 to a Finish Time Minimization (FTM) problem

in Table 5.2, where the object function is to minimize the equal finish time

of all leaves, i.e., Tf , and the finish time of any root is no greater than Tf ,

reflected by constraint (5.16).

Clearly, the relaxed MFTM problem and FTM problem have equal opti-

mal solution. In addition, as Ts(i) = 0, constraint (5.13) in Table 5.2 can be

simplified as

Ts(j) ≥ Ts(i) + β(i, j)z(i, j)Tcm (5.20)
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Table 5.2: Finish Time Minimization (FTM) Problem Formulation of Divis-
ible Load Scheduling in A Multi-Root Tree

Minimize: Tf

Subject to:

0 ≤ i ≤ M − 1, M ≤ j ≤ M +N − 1 (5.11)

Ts(i) = 0 (5.12)

Ts(j) ≥ Ts(i) + β(i, j)z(i, j)Tcm, if β(i, j) > 0 (5.13)

Tf (i) = Ts(i) + α(i)w(i)Tcp (5.14)

Tf = Ts(j) + α(j)w(j)Tcp (5.15)

Tf ≥ Tf (i) (5.16)

α(i) = L(i)−

M+N−1
∑

j=M

β(i, j) (5.17)

α(j) =
M−1
∑

i=0

β(i, j) (5.18)

α(i), α(j), β(i, j) ≥ 0 (5.19)
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which holds for β(i, j) ≥ 0. Therefore, the FTM problem in Table 5.2 is

actually a linear optimization problem. Next, we analyze the time complexity

of solving the FTM problem.

5.2.4 Time Complexity of the Optimal Algorithm

In this subsection, we analyze the time complexity of the optimal algorithm

for solving the FTM problem in Table 5.2 relative to the number of roots

and leaves in the ring.

To convert the FTM problem into the following standard form of a linear

optimization program,

maximize cTx

subject to















Ax = b

x ≥ 0

(5.21)

where c is the n-dimensional coefficient vector and A is an m × n matrix,

we add nonnegative slack variables T1(i, j) and T2(i) in constraint (5.20) and

(5.16), respectively. Then we have the slack form of these two constraints as

follows.

Ts(j) = Ts(i) + β(i, j)z(i, j)Tcm + T1(i, j) (5.22)

Tf = Tf(i) + T2(i) (5.23)

After these operations, we have 2MN + 4M + 2N nonnegative variables

and MN+4M+2N linear equations in the FTM problem, therefore, accord-

ing to Khachiyan’s result, the time complexity of solving the FTM problem
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should be polynomial relative to MN .

5.3 Performance Comparison

In this section, we evaluate the performance of our proposed algorithm in

terms of speedup, which is the ratio between the processing time of total

load by a single standard processing node and the maximum finish time of

all nodes in the network.

As the algorithm for divisible load scheduling in the multi-root tree in

[23] allows the node to process load before it finishes receiving load from all

its neighbors, which is quite different from the assumptions of our proposed

algorithm, we only compare our proposed optimal algorithm with the heuris-

tic algorithm in [24], which schedules divisible load in arbitrary network with

any number of source nodes. The heuristic algorithm regards the transmis-

sion time of a unit load, i.e., z(i, j)Tcm, as the weight of the link connecting

node i to node j, and a node in the network only receives load from its closest

source node in the sense that the source node has the minimum-weight path

to it among all source nodes.

For the purpose of comprehensive comparison, we use 4 multi-root trees,

each with 4 roots and 4 leaves. The unit load processing time, i.e., w(i)Tcp,

of each node in the network is a uniformly distributed random number in

the interval [0.5, 1.5], while the unit load transmission time, i.e., z(i, j)Tcm,

of each link in the network is a uniformly distributed random number in the

interval [0.05, 0.15] considering that the transmission speed is usually much
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faster than the processing speed. The network parameters of the 4 multi-root

trees in our comparison are given in Table 5.3. The total load is normalized

to 1, and 4 roots of the multi-root tree each have 0.25 load initially.

Fig. 5.4 plots the speedup comparison results in the 4 multi-root trees,

where the optimal algorithm greatly surpasses the heuristic algorithm. The

speedup under the optimal algorithm is triple and even quadruple of that

under the heuristic algorithm, and the reason is two-fold. First, the heuristic

algorithm allows each leaf to receive load from only one of the 4 roots in the

multi-root tree, while the leaves can receive from 4 roots simultaneously in the

optimal algorithm, which is more efficient in utilizing links to distribute load,

and results in much shorter load transmission time. Second, as the heuristic

algorithm only focuses on the transmission time in load distribution, while

ignores the processing time of each node in the network, it can easily cause

unevenness in load distribution, resulting in large maximum finish time. In

fact, under the heuristic algorithm, there is always one source node which has

to process all its load in these 4 multi-root trees, and such source node has

the maximum finish time. On the other hand, the optimal algorithm takes

processing time, transmission time, and initial load of each source node into

consideration, which distributes load evenly in the network, thus has much

smaller maximum finish time.
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Table 5.3: Network Parameters of Four Multi-Root Trees with 4 Roots and
4 Leaves

Tree 1 Tree 2 Tree 3 Tree 4
w(0)Tcp 1.225 1.455 0.995 0.865
w(1)Tcp 0.505 1.055 1.295 1.115
w(2)Tcp 0.545 0.715 0.515 0.795
w(3)Tcp 1.235 0.735 0.545 1.145
w(4)Tcp 1.305 0.915 0.755 0.895
w(5)Tcp 0.705 0.955 0.845 0.705
w(6)Tcp 1.485 1.155 1.275 1.405
w(7)Tcp 1.495 0.725 1.375 1.385
z(0, 4)Tcm 0.0655 0.1315 0.0865 0.0805
z(0, 5)Tcm 0.1065 0.1235 0.1405 0.0765
z(0, 6)Tcm 0.1105 0.0775 0.1035 0.0595
z(0, 7)Tcm 0.0515 0.1125 0.0855 0.0595
z(1, 4)Tcm 0.0995 0.1085 0.1435 0.1185
z(1, 5)Tcm 0.0535 0.0905 0.1305 0.1125
z(1, 6)Tcm 0.0825 0.0695 0.1035 0.0875
z(1, 7)Tcm 0.1285 0.1045 0.0895 0.0585
z(2, 4)Tcm 0.1125 0.0715 0.1245 0.1175
z(2, 5)Tcm 0.0755 0.0805 0.1145 0.0545
z(2, 6)Tcm 0.1285 0.0575 0.0515 0.1485
z(2, 7)Tcm 0.1435 0.1105 0.1235 0.0895
z(3, 4)Tcm 0.1185 0.0795 0.1475 0.1125
z(3, 5)Tcm 0.1355 0.1455 0.0515 0.0915
z(3, 6)Tcm 0.1095 0.0885 0.1375 0.1325
z(3, 7)Tcm 0.0585 0.0645 0.1275 0.1195
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Figure 5.4: Speedup comparison between the optimal algorithm and heuristic
algorithm in the multi-root tree.

5.4 Conclusions

In this chapter, we studied divisible load scheduling in the multi-root tree

by our proposed novel analysis method, and propose the optimal algorithm.

We prove that the time complexity of the optimal algorithm is poly-nominal

relative to MN , where M and N are the number of roots and leaves, re-

spectively, and comparison with previously proposed heuristic algorithm in

terms of maximum finish time and speedup demonstrates the superiority of

the optimal algorithms, which convinces us the merit of the proposed novel

analysis method.
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Chapter 6

Conclusions

In this thesis, we propose a novel analysis method for divisible load schedul-

ing in networks where nodes are allowed to receive load from more than

one of their neighbors, which can not be solved by the equivalent processing

node method in [6]. We discover that the nonlinear equations introduced

by the novel analysis method can be replaced by linear inequalities, and the

object function can be linearized by introducing an equal finish time, af-

ter which the problem resembles a linear optimization problem, and can be

solved by linear programming. Following the conclusion, we studied divisible

load scheduling in the Gaussian network, mesh, torus, ring and multi-root

tree by the novel analysis method, and propose the optimal algorithms for

these network topologies. We prove that the time complexity of the optimal

algorithms for the former three network topologies are exponential relative

to the network size, and a heuristic algorithm is proposed to reduce the time

complexity. Due to its high link utilization, the heuristic algorithm achieves
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almost equally good performance to the optimal algorithm, and outperforms

previously proposed heuristic algorithms in these three networks, which is

demonstrated by our extensive simulation results. The time complexity of

the optimal algorithms for a ring is polynomial relative to the ring size. The

time complexity of the optimal algorithm for the multi-root tree is polyno-

mial relative to MN , where M and N are the number of roots and leaves

in the multi-root tree, respectively. The comparison with previously pro-

posed heuristic algorithm for the ring and multi-root tree demonstrates the

superiority of the optimal algorithms.
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