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Abstract of the Dissertation
MicroRNA Target Identification by Reverse Phase Protein Array
by
Jiawen Zhu

Doctor of Philosophy

in
Applied Mathematics and Statistics
Stony Brook University

2015

Understanding functions of microRNAs (or miRNAs), particularly their effects on protein
degradation, is biologically important. Emerging technologies, including the reverse-phase protein
array (RPPA) for quantifying protein concentration and RNA-seq for quantifying miRNA
expression, provide a unique opportunity to study miRNA-protein regulatory mechanisms. A naive
and commonly used way to analyze such data is to directly examine the correlation between the
raw miRNA measurements and protein concentrations estimated from RPPA through simple linear
regression models. However, the uncertainty associated with protein concentration estimates is
ignored, which may lead to less accurate results and significant power loss.

Here we propose an integrated nonlinear hierarchical model for detecting miRNA targets
through original RPPA intensity data. The model is fitted within a maximum likelihood framework
and the significance of the correlation between miRNA and protein is assessed using the Wald test.
Our extensive simulation studies demonstrated that the integrated method performed consistently
better than the simple method, especially when the RPPA intensity levels are close to the
boundaries of image intensity limits. The proposed model was also illustrated through real datasets
from The Cancer Genome Atlas (TCGA) program.

In addition, we extend the model to a semi-parameter model by incorporating a
nonparametric curve fitting technique, which relaxes the assumption of a specific parametric form
for the RPPA response curve. The performance of this model is also demonstrated by simulation
studies and real data analyses.
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Chapter 1. Introduction

1.1. Biological Background

1.1.1.  Gene Expression and Protein Biosynthesis

Gene expression is a conversion of the information encoded in a gene into messenger RNA
(mRNA) and then to a protein. The process of gene expression is fundamental in all known
organisms, such as eukaryotes, bacteria and archaea, and it generates the macromolecular

machinery for life.

In general, the mechanism of gene expression for producing proteins involves two steps:
transcription and translation (Figure 1.1). Firstly, coding information is transferred from DNA to
an mRNA molecule with complementary base-paring. At this stage, a pre-mRNA molecule, which
is later processed to form a mature mRNA, is generated by an enzyme called RNA polymerase.
The mature mRNA molecule is a single-stranded copy of the gene (Figure 1.2). Secondly, mRNA
is surrounded by ribosomes and decoded to produce specific polypeptides, according to rules
specified by trinucleotide genetic codes. In translation, the mRNA is served as a template to guide
the protein synthesis, which consists of four phases: activation, initiation, elongation, and

termination.
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Figure 1.1 Two main procedures of the gene expression: transcription and translation
(Wikipedia, 2014). Transcription is a procedure of creating a complementary RNA copy based on
a DNA sequence. Translation is a procedure in mRNAs are decoded to produce specific sequences
of amino acids in polypeptide chains.

In the activation phase of the translation, amino acids (AAs) are coupled with their
corresponding transfer RNAs (tRNAs). tRNAs is called to be “charged” when an AA links to it.
The second phase, initiation, involves small subunits of the ribosome binding to 5' end of mRNA
with the help of initiation factors and other proteins. Elongation occurs when the “charged” tRNA
in line binds to the ribosome along with GTP and an elongation factor. At the end, termination

phase happens when the A site of the ribosome faces a stop codon (UAA, UAG, or UGA). When
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this happens, a releasing factor that recognizes the stop codon releases the synthesized polypeptide

chain.

After translation, protein exists as an unfolded polypeptide which latter fold into their
characteristic and functional three-dimensional structures by a physical process called protein
folding. The total protein components present at the same time in a cell or cell type are referred as
proteome. A study of such large-scale data sets defines the field of proteomics, analogy to the

related field of genomics.

The structure of a typical human protein coding mRNA including the untranslated regions (UTRs)

Start stop tail

CaiS' UTR Coding sequence (CDS) 3' UTR Poly-A

5" : 3
Figure 1.2|The structure of a typical human protein coding mRNA (Wikipedia, 2014). A
mRNA contains an exact transcribed copy of the original DNA sequence in coding sequence area

with 5’cap, 5’-untranslated region (UTR), 3’-UTR and Poly (A) tail. The poly (A) tail is a long
sequence of adenine nucleotides (often several hundred) added to the 3' end of the pre-mRNA.

1.1.2.  MicroRNA and Protein Expression

MicroRNA (miRNA) is a set of functional molecules that serves as regulators of gene
expression. Recent evidence indicates that some miRNAs can function as tumor suppressors or
oncogenes, and they are therefore referred to as ‘oncomires’(Esquela-Kerscher & Slack, 2006).
MiRNAs have shown promise as biomarkers for many other diseases (Jeffrey, 2008; Jones,
Nourse, Keane, Bhatnagar, & Gandhi, 2014; W. Zhang et al., 2012), which is one of the reasons

that research in miRNA becomes very important nowadays.



miRNAs were originally discovered in 1993 by Victor Ambros, Rosalind Lee and Rhonda
Feinbaum during a study for gene /in-14 in the development of C. elegans (Lee, Feinbaum, &
Ambros, 1993), which led to the discovery of the first miRNA, /in-4. However, the second miRNA,
let-7, was not characterized until the year of 2000(Reinhart et al., 2000). Since then, thousands of
miRNAs have been identified in different organisms such as plants, animals and some viruses (Hsu

etal., 2014).

Although different miRNAs have different characteristics, they generally consist of 21-25
nucleotides. In animals, miRNA biogenesis usually consists of two steps: first, a newly generated
microRNA transcript called pre-miRNA is processed into a precursor of ~70-nucleotide; then, the
pre-miRNA is cleaved to generate a mature miRNA which is around 20 to 25 nucleotide (Figure

1.3).

In general, a miRNA regulates the expression of its target genes through two mechanisms
— mRNA degradation or translation inhibition. That is, if a miRNA and its target gene can
complement extensively, the miIRNA-mRNA target may form a double-strand RNA (dsRNA)
structure, which can be cleaved and degraded to reduce the mRNA expression and subsequently
protein expression (Tang, Reinhart, Bartel, & Zamore, 2003; Xie, Kasschau, & Carrington, 2003).
While if a miRNA and its target mRNA can only complement partially, the target mRNA will not
be directly degraded but its translation may be repressed (Doench & Sharp, 2004; Zeng, Wagner,
& Cullen, 2002). So, in either mechanism, the total protein level of miRNA targets would be

reduced, resulting in their functional losses.



~ ORF RISC  RISC RISC

Translational repression mRBNA cleavage

Figure 1.3| Mechanism of miRNA functions (L. He & Hannon, 2004). The upper part shows
the procedure inside animal nucleus and the lower part shows how a pre-miRNA becomes a mature
miRNA and how it regulates gene expression. If a miRNA and its target extensively complement,
the RNA target is cleaved. If they partially complement, the target mRNA will not be depredated
but its translation is repressed.

Many research have been done to investigate biological functions of miRNAs. In 2005, J.
Brennecke et al. provides evidence that on average a miRNA has approximately 100 target sites,

which indicates that miRNAs regulate a large fraction of protein-coding genes. It has also been



shown that the 3’-ends of mRNAs are key determinants of target specificity for miRNA families
(Brennecke, Stark, Russell, & Cohen, 2005). In 2008, two groups (Dachyun Baek et al., 2008;
Selbach et al., 2008) have used variants of a technique known as SILAC (stable isotope labeling
with amino acids in cell culture) to measure proteome-wide changes. They found that while
miRNAs can directly repress the translation of hundreds of genes, additional indirect effects result
in changes in the expression of thousands of other genes. And many of the changes they observed
were less than two-fold in magnitude. Their findings indicate that either directly or indirectly,
miRNAs can fine-tune protein synthesis to match the needs of a cell at any given time.
Nonetheless, the studies cannot provide information in how relevant miRNA regulation and

protein production are, and there is no systematic statistical method to model the relationship.

Although the biological importance of miRNAs is clear, their biological functions still
remain largely unknown. So far, only few miRNAs have been functionally characterized. Knowing
miRNA target genes will help understand miRNA functions in many different situations, and

hence research for the miRNA target identification is in great need.

1.1.3. MiRNA Targeting

Based on the fact that the sequences of miRNAs and their target genes complement to each
other, or at least partially, one way for the miRNA target identification is through in silico
prediction. Several software tools, such as miRanda (D. Baek et al., 2008) and TargetScan (Lewis,
Shih, Jones-Rhoades, Bartel, & Burge, 2003), have been developed for such purpose. miRanda
scores the likelihood of mMRNA downregulation (in which process the targeted cellular component
decreases) according to a regression based machine learning method--the mirSVR, which is trained

on sequence and contextual features of the predicted miRNA::mRNA duplex (Betel, Koppal,



Agius, Sander, & Leslie, 2010). In contrast, TargetScan studies the RNA::RNA duplex interactions
according to a thermodynamics-based modeling and comparative sequence analysis to predict
miRNA targets conserved across multiple genomes. Several databases under microRNA.org and
targetscan.org have been generated from these computation-based analyses. However, one major
limitation form these in silico predictions is that they all suffer from big false positive rates, which
hinder their practical use. Usually these resources are best used as candidates in the preliminary

screening step or as supporting evidences for findings from other methods.

Another popular way to determine miRNA targets is through experimental data by
measuring downstream effects of miRNAs. Currently, scanning of the miRNA targets is mainly
through testing negative correlations between miRNAs’ and mRNAs’ expression levels. For
example, high-throughput techniques, such as miRNA and mRNA gene microarray, can be applied
to measure their expression levels, and then the correlation analyses can be conducted
subsequently to filter out miRNA-mRNA pairs that show significant negative correlations as
potential candidate pairs for further analyses(Brennecke et al., 2005). More recently, with the
advent and rapid advance of sequencing techniques, the miRNA sequencing (miRNA-seq) and
RNA sequencing (RNA-seq) platforms have become more and more popular for the quantification
of the miRNA and RNA expressions. However, the main drawback for the miRNA/mRNA
correlation analysis is that they can only identify miRNA targets that may change at mRNA levels,

but is determined to fail for those modulated through translation inhibition.

Recent evidence has shown that the regulation of a miRNA on its targeted mRNA level is
moderate, and its effect on protein levels is more profound (Bartel, 2009). Since miRNAs can
induce protein reduction via both functional mechanisms, logically it should be more sensible to

examine correlations between miRNA levels and targeted protein levels directly. However, little



or no study has explored the miRNA targets based on protein expression data, largely due to
extreme difficulties in quantifying protein expression through high-throughput screening. Taking
advantage of a recently emerged high-throughput technique for protein quantification, the
Reverse-phase Protein Array (RPPA) assays (see section 1.22), we aim to develop statistical

methodologies that can identify miRNA targets directly using this new protein expression data

type.

1.2. Molecular Detection

1.2.1. MiRNA Detection

Currently, there are mainly three methods for miRNA profiling: quantitative reverse
transcription PCR-based methods (QRT-PCR), miRNA microarray and RNA-sequencing (RNA-
seq) (Pritchard, Cheng, & Tewari, 2012). Each method has its unique pros and cons. QRT-PCR is
very sensitive and specific, but is expensive and can examine only one gene at a time. The second
method, miRNA microarray, has fairly low-cost and is high-throughput with respect to the number
of samples that can be processed per day; however, it typically has lower specificity than qRT-
PCR. miRNA-seq is the most recent method that is based on the next-generation sequence (NGS)
technique. It has reasonable cost while maintains high specificity in distinguishing miRNAs that

are very similar in sequence. In our study here, miRNA data are generated from miRNA-seq.

Usually, miRNA-seq has the following four steps (Lu, Meyers, & Green, 2007): Firstly,
isolate low molecular weight (LMW) RNA from the tissue of interest; secondly, based on
polyacrylamide gel-based size fractionation, purify small RNAs (20-30 nucleotides) from the
LMW RNA fraction and ligate them to a 5’-end RNA adapter. An excess of adapter over small

RNAs is used to prevent self-ligation of small RNAs; thirdly, ligate a 3-end RNA adapter which

8



is modified to prevent circularization to the gel-purified product from the 5'-end adapter ligation.
In this step, chemical synthesis of an oligonucleotide containing a 3'-end non-nucleotidic group
will block the 3’-end hydroxyl; fourthly, use a low number of PCR cycles to obtain sufficient

amount of templates for sequencing after reverse transcription.

hsa-mir-10a distribution before logtransformation
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Figure 1.4| Distribution of has-mir-10a miRNA-seq data (Upper) before and (Lower) after
log-transformation. Usually miRNA-seq data is right skewed, and log-transformation is a
common strategy to normalize the data.



The miRNA-seq data we used are available in a database from The Cancer Genome Atlas
(TCGA) program, provided by BC Cancer Agency (bcgsc.ca). Under platform Illumina Hiseq,
“* mirna.quantification.txt” files which contain the expression levels of miRNAs in particular
samples were used in our study. Figure 1.4 is an example of miRNA-seq data from TCGA ovarian
cancer dataset. For most cases, miRNA-seq data are right skewed (upper part of Figure 1.4) and a
log-transformation strategy-- log(miRNA + 1) is used to normalize the data in our analysis (lower

part of Figure 1.4).

1.2.2.  Reverse Phase Protein Array

The principles of reverse phase protein array (RPPA) technology were largely described
by Roger Ekins (Ekins, 1998) in his work on “ligand assays” more than 20 years ago. However,
this technology has not been used in clinical trials until 5 years ago (Mueller, Liotta, & Espina,
2010). There are three techniques to detect specific proteins in a given sample: RPPA, sandwich
array, forward phase array (Figure 1.5). Among them, RPPA technology, which is also called
protein lysate array, is an emerging technology and a new means for estimating protein expression
levels. It results from an attempt to extend the microarray approach to measure proteins. The term
“reverse phase”, comparing to the foreword phase array, refers to the fact that the antigen is

immobilized, rather than an antibody being immobilized as capturing molecules.

Recently, RPPA has become more and more popular. One of its advantages is that it is very
sensitive and only requires a minimal amount of protein extracts for the array. Another advantage
is that multiple replicates and dilutions can be incorporated into experiment design, thus making

the protein level quantification more accurate.
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In RPPA, the biological samples of interest are first lysed, yielding a homogeneous mixture
(lysates), and then these lysates are printed onto an array according to a set of dilution series. The
arrays are typically glasses coated with a nitrocellulose membrane on one side, and the lysates are

printed on the nitrocellulose.

Figure 1.5| A directive view of three protein arrays (Mueller et al., 2010). (Left): RPPA;
(Middle): Sandwich array; (Right): Forward Phase Array. The term “reverse phase” of RPPA,
comparing to the forward phase array, refers to the fact that the antigen is immobilized, rather than
an antibody being immobilized as a capturing molecule. Sandwich arrays require a pair of
antibodies to capture the protein of interest and to detect unique epitopes of the same protein on
the sample. In a forward phase, antibodies are immobilized rather than proteins on a surface to
capture proteins from a sample.

A serial dilution is a stepwise dilution of a substance in solution. Usually the dilution factor
at each step is constant, resulting in a geometric progression of the concentration in a logarithmic
fashion. A 2-fold serial dilution is 1-unit, 0.5-unit, 0.25-unit, and 0.125-unit and so on. Serial
dilutions can result in concentration curves with a logarithmic scale, which gives more accurate

estimation of protein concentrations.

To measure a specific protein, the array is first incubated with its antibody. Then the array
is interrogated with a labeled secondary antibody, which recognizes the primary antibody. The

secondary antibody is linked to an enzyme to generate detectable signals. Thirdly, the enzyme
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substrate is introduced to react with the enzyme, causing precipitate. More protein of interest at a
spot attracts more enzyme molecules, which subsequently yields more precipitate. After a short
reacting period, loose substrate is then washed away. At the end, the array is imaged, typically
with a flatbed scanner, producing a TIF image file (Figure 1.6). By using appropriate software

such as MicroVigene, the printed spots in the image file are quantified.

5 dilutions

sa|dwes g

[

uojisde g-g-p |

iy

3

Figure 1.6| A sample image file of RPPA from TCGA program. The magnified part contains 12
samples and each sample is in 5 dilutions. The pixel values of each spot are combind to give the
intensity level of a spot.

Figure 1.6 shows a typical RPPA array, in which there are many dark “lines” as columns.
After magnifying one small area, it shows that many small dark spots form those lines. The image
intensity level of each spot measured by pixels directly reflects the protein expression level.
Usually each sample has several spots with decreasing darkness. For example, in the magnified

part of Figure 1.6, the first 5 spots in the first row are from one sample, even though with different
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intensities, which is because those are from the serial dilution of one sample. The more a sample

dilutes, the lighter the spot will be.

Serial dilution is a special feature of RPPA compared with general microarray techniques.
It is designed to have accurate measurements of protein concentrations over a wide dynamic range.
Because protein concentrations can vary over large orders of magnitude in patients or cell line
samples, proteins with very high concentration may saturate the image and make them inestimable.
This is mainly an issue related to digital image quantification, in which the intensity of a pixel is
stored as an 8-bit integer, giving a range of possible values from 0 to 255. Once all pixels at a spot
are saturated, it will cause problem in quantifying protein concentration. Therefore, diluting each
sample multiple times on an RPPA slide is a good way to solve this problem. In this case, if a
protein concentration on the original sample is close to saturation, the sample can still be well

measured at other diluted concentrations.

The relationship of gray level intensities in the image and protein concentrations can be
reflected through a response curve (Figure 1.7). Usually it is modeled as a sigmoid shape, which
reflects the key characteristics of these data. The flatness at the lower end reflects background
noises and the plateau at the higher end reflects the saturated signals. Note that the protein
concentrations estimated from the response curve are relative quantities, and usually one protein
is arbitrarily chosen as the reference and the other protein levels are expressed as ratios to the
reference. However, the relative quantification suffices for our purposes in this miRNA target

study.

The Cancer Genome Atlas (TCGA) program contains both RPPA data and miRNA-seq

data from same patients, which will be used later in this work to illustrate our proposed method.

13



RPPA slide image measurements, i.e. Level 1 data, were provided by MD Anderson Cancer Center

(mdanderson.org).

Example: response curve
280 T T T T T T T
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Gray - level intensity
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il 1 1 1 1 1 I 1
-100 -80 &0 -40 -20 0 20 40 B0 g0 100
Protein concentration

Figure 1.7| The image intensity-protein concentration response curve. The curve has an S-
shape because the range of intensity levels has a natural upper bound and lower bound. Value “0”
in x-axis stands for the reference protein concentration.

1.3. Mixed Models

Linear regression models with random errors are classical statistical models for continuous
variables. A linear mixed model incorporates random effects in additional to fixed effects in the
classical linear regression models. It can be represented as ¥ = X + Zy + &, where Y is the
dependent variable; f is the coefficient vector of fixed effects; ¥ represents the random effects
variables; X and Z are known design matrix relating to the dependent variable Y. In linear mixed
model, we assume y and € are normally distributed and independent to each other, i.e. y~MVN(O,
G), e~MVN(O,R) and y L €. Zy and € can describe a complex dependence structure among Y,
and the variance of Y is then V = ZGZ' + R. Therefore, a linear mixed model provides a general
solution for repeated measurements on each subject over time or space, or multiple related

measurements at one time. In addition, a linear mixed model allows using data from subjects with
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missing measurements as long as the missing mechanism is missing at random, in which the
missing is not related to the value of the variable that has missing data. A likelihood-based method
is commonly used to estimate unknown covariance parameters in linear mixed models, e.g., the

PROC MIXED in SAS.

A nonlinear mixed model (NLMM) is a straightforward extension of a linear mixed model
with random effects appearing in a nonlinear function. For example, it is widely used in
pharmacokinetics or used to describe over-dispersed binomial data. A general NLMM can be

written as
vij = (o tij) + €;
T; = A;f; + B;b;
b;~MVN(0,D),€;,~MVN(O,R), b; L €, €; = {e;;|j = 1,2, ..J}

Where y;; is the observation from the ith subject and the jth measurement, 7 is a known function

which depends on parameter vector 7; and t;;, a variable related to the time or space of

E
measurement. Unknown parameters in a NLMM are generally estimated using a maximum

likelihood principle. Many statistical software tools provide efficient functions to do so, such as

PROC NLMIXED in SAS 9.3 (SAS Institute Inc., Cary, NC).

1.4. Splines

A spline is a piecewise-polynomial real function that possesses a sufficiently high degree
of smoothness at certain pre-specified connection points (or called knots). The smoothness of a

spline is controlled by the order of each piecewise-polynomial function. A good property of splines
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is that it can fit to any smooth function with sufficient order and knots. Some details about the

spline representation are given below.

Define a spline function S:[a,b] - R on an interval [a,b] composed of k order

(degree=k — 1) disjoint subintervals [t;_;, t;] witha =t, < t; < - < t,_; <t, =Db.

The restriction of S to an interval i is a polynomial
Pi:[ti—y, 6] > R
so that

S(t) = Pl(t), tO <t< tl'

St) =Py(t),t; <t <ty

S@) =R, th1 Sty
The highest order of the polynomials P;(t) is said to be the order of the spline S. If all
subintervals are of the same length, the spline is said to be uniform; otherwise non-uniform. For
a spline of order k, S is continuously differentiable to order k — 1 at the interior points t;: for all

i=12,..,n—1landallj0<j<k-—1,

Pt = PL ().

i+1
A B-spline (basis spline), which is relatively complex to be constructed, is a spline function
that has minimal support to maintain a given degree. Besides the n + 1 internal knots with the n —
1 inner knots and the two boundary knots, there are 2k additional knots, where k is the degree of

B-spline functions. For B-splines, the first and last k knots are “clamped”: t, = t; =...= t;, and

tnek = tnak+1 = ° = tagen. The B-spline basis functions with degree k, {B;;}, can be
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constructed recursively using splines with lower degrees {B; ,,p = 0, ..., k — 1} as following (the

Cox-de Boor recursion formula):

1, ift;<t<t,
Bj () ={ 14 =0, ,2k+n—1;
0, otherwise
t—t; t: —t
_ j j+p+1 . _
Bj.p(t) Tt — ¢ Bj,p—l(t) + ﬁB]?l,p—l(t) ,J=0..2k+n—-p—1;
J+Dp ] j+p+1 j+1

Thus the B-spline function S(t) can be written as Z?;’S‘_l BjBjk, which is a linear
combination of B-spline basis functions. The number of pieces will be determined once the number
of knots, 2k+n+1, and the degree of a B-spline function, £, is usually chosen. At the n — 1 inner
knots, basis functions satisfy CP~1 continuity when they are not zero. In general, the lower the
degree of B-spline function is, the closer it follows the polyline formed by control points {f;}
(control polyline). And a B-spline curve has a strong convex hull property. That is, it is contained

in the convex hull of the control polyline.

1.5. Outline of the Dissertation

Several methods have been published to quantify protein levels using RPPA and they were
broadly categorized into two groups: single sample estimation and joint sample estimation
methods. Those methods will be introduced in Chapter 2, and based on those methods, a naive

method to identify miRNA targets will be described.

In Chapter 3, we propose a parametric integrated model (PIM) based on a nonlinear mixed
model to identify miRNA targets. Simulation studies and real data analyses are conducted to

compare the naive method and the integrated method (Sections 3.5-3.7). Chapter 3 of this
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dissertation in part (including Figures and Tables) is from the materials as it appears in Journal of
Computer Science & Systems Biology. The co-authors, Dr. Song Wu and Dr. Jie Yang listed in

the publications directed and supervised the research that forms the basis for this Chapter.

To further improve the robustness of our integrated method, we also propose a semi-
parametric model by incorporating a nonparametric curve fitting technique for RPPA data, which
relaxes the assumption of a specific parametric form for the RPPA response curve. This model is
called the semi-parametric integrated model (SPIM). Comparison between SPIM and PIM is

illustrated using simulation studies and real data analyses (Sections 4.4-4.5).

In the last chapter, Chapter 5, the advantages and disadvantages of these models are

summarized and the future research directions is discussed also.
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Chapter 2. A Naive Method for Detecting miRNA Targets

2.1. Motivation

As discussed in Chapter 1, miRNA may regulate the expression of its target genes through
two mechanisms: mRNA degradation or translation inhibition. In either case, the final effect of
miRNA to its targets is to reduce their protein levels, resulting in functional losses. The
conventional approach for screening miRNA target identification is to study the correlations
between mRNA and miRNA levels, which is determined to miss targets regulated through
translation inhibition. Therefore, a better way to identify miRNA targets should be based on
protein expression data. However, due to difficulties in quantifying protein expression through

high-throughput screening, little or no study has been done in this way.

Emerging technologies, RPPA for quantifying protein concentration and RNA-seq for
quantifying miRNA expression, provide a unique opportunity to study miRNA-protein regulatory
mechanisms. Since protein concentrations can be estimated from the RPPA and miRNA
expression levels can be measured from miRNA-seq, a straightforward way to examine the
miRNA-protein relationship is through the Pearson’s correlation coefficients or simple linear

regression models, which is referred as the naive model in this work.

In the following, we will first review several statistical methods of protein quantification

from RPPA data, and then introduce the naive model in details.
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2.2. Methods for Protein Quantification from RPPA Data

RPPA generates data with serial dilutions in terms of imaging intensities, which requires
further process to quantify protein concentrations. The main goal of protein quantification is to
estimate the relative protein concentrations for different samples based on their imaging intensity
data. Several methods have been proposed so far, and they roughly fall into two general categories:

single sample estimation methods and joint sample estimation methods.

2.2.1.  Single Sample Methods

Inverse Linear Spline Interpolation Method

Single sample methods estimated protein concentrations using information from a single
sample only. Such a method was first proposed in 2003 (Nishizuka et al., 2003). The idea is to use
linear spline interpolation to generate a piecewise linear curve f; passing through all (j, y;;) for the
ith sample and the jth dilution, and calculate a global “reading point” A to “read” the protein
expression level, @;, from f;"*(1). Here y; ; 1s the image intensity level of the jth dilution from the
ith sample. One main drawback of the method is that the observational error is not able to be
considered in the model. Also, protein concentration of a sample cannot be estimated if its intensity

interval does not contain the reading point A.
Robust Estimation Methods

Later in 2005, two robust estimation methods were proposed by C. Mircean et al. (Mircean
et al., 2005). They used statistical methods to handle measurement errors and aimed to improve

estimation accuracies based on a standard simple linear regression approach. In this study, RPPAs
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with three technical replicates and 6 dilutions of one biological sample were used. The idea of their
first robust estimation method is to fit a simple linear regression line through median values of
log-transformed intensity y;; among three technical replicates and the dilution index j for each
biological sample. Their second method is to use a robust least square approach to fit a simple
linear regression line through all log-transformed intensities of technical replicates and their
dilution indexes in each biological sample. Briefly, each linear regression line contains the protein

concentration information for one biological sample.

To estimate the difference between two biological samples, the distance of their fitted line
was used as the log-ratio of their protein expression. When the lines are not parallel, a summarized
statistics of the distance is needed. To estimate this, the method was based on the intuition that “the
higher the dispersion for a particular dilution, the less the weight this dilution should get when
calculating the distance between two fitted lines and consequently, the less the influence this
dilution should have on the final estimate of the ratio of protein expressions between the two
samples” (Mircean et al., 2005). Thus the weight can be estimated by the inverse of the
interquartile range or the coefficient of variation (standard deviation divided by the mean) of the

intensity values for each dilution (Figure 2.1).

However, when protein intensities are close to saturation, the linear relationship of log-
intensity and dilution index is unlikely to be true, and it leads to inaccurate estimations of protein

concentrations, which is the main disadvantage of these methods.
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Iwo estimated protein expressions

F=3,w, +8,w, +8,w; +8,w, +3,w, +3,w,

where iwﬁl
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Figure 2.1| Regression lines of two biological samples (Mircean et al., 2005). The protein
expression ratio r can be measured by the distance of two regression line. When the lines are not
parallel, a weighted sum of distance of two fitted lines at different dilutions is used as a summarized
statistics.

2.2.2.  Joint Sample Methods

Since each RPPA slide is probed with a single antibody for each kind of protein, protein
expression of different samples should have similar chemistry and hybridization behaviors. For
instance, all samples should share the same baseline level, saturation level and the rate of signal
increase at each dilution. Joint sample methods take into consideration of this by using information
from all the samples on an array to compute sample parameters (protein concentration estimates),
as well as global slide parameters. That is, the joint estimation potentially improves estimation by
summarizing information across all samples and hence all samples on an array contribute to an

overall protein concentration-intensity response curve. In this way, sample parameter estimates
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are expected to have smaller errors. Below, we review four different methods with this philosophy:
nonlinear parametric regression method, nonparametric regression method, serial dilution curve

method, and multistep protein lysate array quantification method.

Nonlinear parametric regression method

A nonlinear parametric regression method was proposed by Tabus et. al. in 2006 (Tabus et

al., 2006), which used sigmoidal or polynomial models to mimic the RPPA response curve.

Denote the image intensity from the tth technical replicates of biological sample i at the
jth dilution step asy;j, (i =1,..,1, j=12,..],t =1,2,...,K).The binary logarithm of the
median effective protein concentration level (ECsy), a single quantity per dilution series to
represent the concentration of the protein in the ith sample, is denoted as x;. x;; = x; + [; is the

binary logarithm of the protein concentration in the jth dilution step where [; = (1;] ) _ j for 2-

fold dilution cases. Assuming the functional relationship between intensity level y;j. in the

Jjth spot and x;; is described as

EWijr) = 9(xij, B)
Specifically, a polynomial model to describe such relationship is:
9p(x, B) = Bo + rx + -+ + Brx”
where 5, represents a reference intensity when x = 0 which can be set to zero.

And a sigmoidal model is:

B2
(1 + 2-Bs(x=ho))

9s(x, B) = By +
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In the sigmoidal curve, all parameters can be interpretable: f; is the baseline saturation
level ; B, is the increment from f; to the saturated intensity level (since when x — [, is very large,
gs(x, B) = By + By, and when x — B, is very small, g;(x, 8) = B41); B, is a reference intensity

which can be set to zero as well. In addition, when x = 0, we have

d%g
Tz lx=0=0
and
d_gl _ (33.32)
dx '*=° 4 )

So the steepness of a sigmoidal curve can be directly controlled by the parameter 53, when B4, 2

are fixed. A model for the variance is assumed to be:
Var(yijklxij» ﬁ) = Uozg(xij:ﬁ)za'

where 0§ is a variance parameter. Furthermore, y;; |60 = [x” BT 0y a]” are assumed to be

normally distributed:

Yijl0~N(g(xi, B), Ugg(xij’ﬁ)za)
Four models were examined by Tabus et al. (2006):
1) Model M, in which g = g, and a = 0;
2) Model M, in which g = g,, and «a is in the interval [-3,3];

3) Model M3 in which g = g5 and a = 0;
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4) Model M, in which g = g, and «a is in the interval [-3,3].
The parameter estimation algorithm for a polynomial model

The estimation of parameters in polynomial models with degree P is based on an

optimization of weighted nonlinear least square:

P 2
2 _ m
Z Wiik (yijk Zﬁmx )
i=1,2,..I m=1

j=1,2,..]
k=12,.K

where w; j; is a weight which can be set to zero to eliminate data points with poor image quality.

The parameter estimation algorithm for a polynomial model with degree P can be described as

following:

Firstly, iteration starts by generating initial values of {x;} from a polynomial function with

order 1.

Secondly, set the parameters B to be

/ \_1
o~ 1 —~ ~ 1 ~
B = § Wi ‘Pijk‘PiTjk) § Wik @ijYiji

i=12,..1 i=1,2,..I

j=1,2,..] j=1,2,..]
k=1,2,..K k=1,2,.K

A - ~ )2 ~ \P ~ ~(h— . . .
where @y, = [(%;;), (%;;)", ..., (2;;) 17 and %;; = 2D, +1; in the hth iteration step. A
standard linear least square routine with constraints is employed if the function g, (x;jy, B),i=

1,2...,5;j=1,2..,]; k =1,2,...K, is not monotonically increasing.
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Thirdly, find the domains of increasing monotonicity of g, (x, ) which is a function of x,
and take A =[x}, Xyp] as the interval of increasing monotonicity containing the largest number

ofx;,i=1,2,3,.,1,j =12, ...].

lj’

Fourthly, calculate the set S* (P’(xl- ; ,5’)) of roots in the following polynomial function of
degree (2P — 1), which are located inside interval A for biological sample i:
P P
P'(xi;B) = -2 Z Wi Vijie — Z B (x; + 1)™) Z mB, (x; + 1)™*
m=1 m=1

j=12,.J
k=1,2,..K

And add the bounds {x;4,, Xy} to the set §* (P’(q i ,[?)) Then update the ith element of £ to
be
2

P
X, =arg min z uk<yuk z x +l) >
xES* P (xl/.?)

m=1

If there is no significant improvement of the weighted nonlinear least square, the algorithm stops.

Otherwise, the algorithm goes to the h + 1 iteration step.
Parameter estimation algorithm for sigmoidal models

The parameter estimation problem for sigmoidal models can be simplified to the case of

polynomial models.
Firstly, define a variable r(x) where

Bi+ B2 — gs(x)
gs(x) - B

r(x) = exp(=p3x) =
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In order to minimize the nonlinear least square function

(X)) = X j=12,.1 Wizjk()’ijk - gs(xi + lj))z,
k=1,2,..K

the derivative of it is computed and set to zero.

Since
r(x; +1;) = exp(=Bsl)r(x) =y hr(x), v = exp(B3)

dgs(x; + 1) _ .8 r(x; + 1) B Yy Ur(x;)

3P2 3P2
dxi (1 + r(xi + lj))z (1 + y_ljr(xl'))z

the derivative of T(x;) can be computed as

dr(x;) il
dx.l =2 Z Wiji (yijk = g5(xi+ lf)) %
i j=12,..] l

k=12,..K

Yyl (yijk — By — B+ v Y (yiji — ,31)7‘(951))

(1 + )/‘lfr(xl-))3

= —2f,B37(x;) Z Wizjk

After summation, the numerator is a polynomial function of degree 3/ — 2 in the
unknown r(x;) where J is the total dilutions in each sample. A similar algorithm with the

polynomial case can solve the roots of this function in order to minimize 7(x;).

The methods assume parametric forms of RPPA response curve, which incorporate
information from all biological samples. Nonlinear least square methods are employed to estimate
protein concentrations, which are the unknown parameters. The dimensionality of the unknown

parameter space would be high when the sample size is large, which polemically give rise to the
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risk of missing the global optimization. In addition, when the response curve does not follow the
pattern of polynomial functions or sigmoidal functions, bias may be introduced in the estimates of

protein concentrations.
Nonparametric Quantification Method

Hu et al. (Hu et al., 2007) proposed a more flexible nonparametric joint sample model for
the quantification of RPPA data that could improve estimation when the data does not follow a

known response curve. This approach used a nonparametric model of the form:
v = g(; + x)) + €, €,~N(0,0%)

where 02 is the variance of ¢; j ij 1s the observed expression level at the jth dilution step of the
ith sample where i = 1,2,...1,j = 1,2,...]; l]- indicates the corresponding dilution level index at

the jth step. {x;, i = 1,2, ... 1} are quantities estimated to represent protein concentrations in each

dilution series.

In nonparametric regressions, predictors do not take a predetermined form; rather it is
constructed according to information derived from the data. It usually requires larger sample sizes
than regression based on parametric models, because the data need to supply the model structure

as well as the model estimates. Specifically, Hu ef al. proposed to use B-splines to estimate g (x).
Algorithm used for estimation has the following steps:

Step 1: Generate initial values of x; for each biological sample. Assuming the imaging

intensities are linearly related to the true protein concentration level,

yij = a+ﬁ(l] +Xl) + Eij
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where the estimate @ is the minimum of the intensities of all samples. 8 is the median slope over

all the dilution series. Then set the initial value of x; as the median of {%_Bxl 1i=1,2,..1}

Step 2: A qualitatively constrained (regression) smoothing method (X. He & Ng, 1999) is

used to obtain a monotonically increasing function g by regressing y;; onl; + x;, i = 1,2, ... 1,

j=12,..].

Step 3: Update X; by minimizing target function ) j|yi i—g(x + lj)| conditional on

estimated curve g.

Step 4: The iteration stops when there is no significant improvement of target function.

Otherwise go to step (2).

Through data simulation and real data analysis, Hu et a/. have demonstrated the advantage
of the nonparametric quantification method that it reduces the estimation bias due to model
misspecification in Tabus’ models. However, since the dimension of unknown parameter space in
nonparametric methods is usually larger than that in the nonlinear parametric regression method,

for accurate parameter estimation they may need a relative larger sample size.
Serial Dilution Curve Method

Zhang et al. (2009) (L. Zhang et al., 2009) proposed an alternative approach to RPPA data
analysis that models a serial dilution curve instead of a RPPA response curve. Briefly, their method

characterized the relationship between signals in successive dilution steps.
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Zhang et al. points out that the response curve, which is monotonically increasing and s-
shaped, is uniquely determined by the relationship between signals in successive dilution steps.

The response curve in their method is described as

which is similar to the sigmoidal curve in Tabus’ model with parameter {£;, 5, f3}:S is the RPPA
intensity level; a = [; stands for the background noise; M = f; + B, is the maximum or

saturation level; y = 83 controls the steepness of the response curve; x is the protein concentration

corresponding to S while the variable in Tabus’ model is [S’f *log(protein concentration).

After a transformation of the response curve, a function, which is called the serial dilution

curve (Figure 2.2), without any parameters of protein concentrations can be obtained as following:

ar(s —a
5 —ax (Sicrr —2)
@ DG =

M—-a

where d is the dilution fold. The model displays raw data in an impressive way since the parameters
of protein concentrations are cancelled out. Comparing with a general nonlinear model that has
much more unknown parameters (three plus the number of protein samples), a serial dilution curve

model only has three unknown parameters: a, M and y, which can be estimated through a weighted

non-linear regression model. The weight is set as where m = 5, the minimal error from the

m+|S|

RPPA scanner to generate image intensities.
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Dilution series

Figure 2.2| A dilution series curve (L. Zhang et al., 2009). In the dilution series curve, the
maximal intensity is M and the minimal intensity is a. y controls the shape of dilution series curve.
x-axis is the observational intensity level at the jth dilution step and y-axis is the intensity level
from the same biological sample at the j + 1 dilution step.

Conditioning on the three parameters a, M, y, protein concentration can be obtained by an

algorithm as below:

Firstly, a protein’s signals are marked as saturated if its measurements in all serial dilution
are greater than a threshold value M /r. The index r that is used to adjust the threshold of saturation
is generally greater than 1, and can be reduced if the precision of signals is improved. Besides, if
all the signals from one biological sample except one are greater than M /r, and it is not the lowest
dilution signal, then the protein concentration in that sample is also marked as saturated. In

additional, if all the signals are below ar, its protein concentration is marked to be undetected.
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Similar to the saturation cases, if all of them except one are less than ar, and the exception is not

the original one, which is not diluted, the protein concentration is also marked to be undetected.

Secondly, if the protein concentration from the ith sample, denoted as x;, is not marked
as saturated or undetected, estimate x;; the protein concentration of sample i at the jth dilution

step using the following formula:

_d] 1 1 -1/y
Xij = Si—a M-—a

An outliers among Xij, j = 12,...], is defined as
|xl-j — median({xil,xiz, ...xl-]})| >
3 median(|xl-j - median({xil,xiz, ...xl-]})|,j =12,..))

Thirdly, the protein concentration of biological sample i is obtained from weighted

average of {x;;;j = 1,2, .../ }:

X (xwy)

L ]
X Wij
where
1
wj = 2 2 2
aXU axl] axl]
(WAG) + (WAM) + ( a)/ A]/)

and the partial derivatives are derived and computed according to equation

xij_ Sl'j—a M—a
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In this method, samples that are not marked as saturated and undetected are related to each
other in an explicit formula, which does not contain parameters for unknown protein
concentrations. By solving a low-dimensional nonlinear optimization problem, protein
concentrations in different biological samples can be estimated based on parameters in the dilution
series curve and signal intensities. Moreover, data quality is easier to check by displaying raw data
in this way, and model can be interpreted intuitively. However, the measurement error structure in

RPPA is difficult to be incorporated into the model.

Multistep Protein Lysate Array Quantification Method

The multistep protein lysate array (PLA) quantification method was proposed by Yang et
al. (Yang & He, 2011). Similar to Tobus et al. (2005), this method also used a sigmoidal model

for the relationship between the intensity level and the protein concentration level:

B2
+ e‘ﬁs(’ﬁ"”j)

Yijk = B1 + . + €iji €1~N(0,02)

where i =1,2...1,j=1,2...,J,k=1,..,K And Vijk is the gray-level intensity from the kth
replicates from ith biological sample in jth dilution, and x; is the binary logarithm of the median
effective protein concentration level (ECso). x;; = x; + [; is the binary logarithm of the protein

concentration in the jth dilution step where lj = (1:]) —

j for 2-fold dilution cases. f =

{B1, B2, B3} is a vector of parameters in the sigmoidal curve, whose properties have been discussed

in the nonlinear parametric regression method.

33



The multistep quantification method is based on a nonlinear regression framework and uses
a modified multistep model fitting procedure with two components: a divide-and-conquer

component and a pooling component. There are 4 steps in this procedure:

Firstly, I biological samples are divided into [I /7] (the integer part of [ /r) groups, ordered
increasingly by the median intensity values from the same biological sample. r is a small value,
and based on author’s experience, r = 3 or 4 works reasonably well. For simplification, we

assume [ is divisible by 7.

Secondly, {B;, B, Bz} in sigmoidal function are estimated separately in each group. f™ and

X™ can be obtained by minimize:

I ] K (m) 2
(m) _ p(m) _ 2
2,2, 2\ =P )

1+e ém)(

1(m) (m) B 3(m))r

The curve parameters and the concentration levels are denoted as: g™ = (5,"", >

and x(™) = (xim),...,xﬁm))', respectively, in the mth group. m=1,..,1/r. y.(m)

ik S are the

observed image intensity level of the ith sample in the mth group.

Thirdly, a pooled estimate B(©) is obtained through () = ¥ _ V(™ gm) ymg are
weight matrixes, and two kinds of weight matrices, M-T and M-C, were discussed by Yang in their

paper.

Fourthly, conditioning on (), the concentration estimate ; of biological sample i can be

obtained by minimizing:
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Depending on different weight matrices in the third step, their method can be divided into
two subtypes. The first subtype is M-T (T stands for trace), employing a trace minimization
criterion in which the trace of var(B?) is minimized. The second subtype is M-C (C stands for
component), employing component-wise minimization criterion which treats the variance of each
parameter 8(¢) independently. The results by using those two weight matrixes are found to be quite
similar. The authors carried out simulation studies to evaluate the performance of the proposed
multistep procedures, M-C and M-T, depending on the weight matrix used, in comparison with
the least squares procedure in Tabus et al. (2006)’s paper (called M-S). They showed that the
estimated relative concentration levels from M-C and M-T models had smaller differences to the
relative real concentration level. And the estimated parameters 8 had less mean square error (MSE)

in M-C and M-T model than M-S model.

Protein concentration estimates resulting from this model have been proved to be consistent
and have the asymptotic normality property in Yang’s study. This modified parameter estimation
procedure is more stable in terms of numerical calculation, and also more robust in practice in
terms of less restrictions on RPPA intensities before model fitting, compared to the nonlinear least

square methods proposed by Tabus et al. in 2006.
2.2.3.  An Example

Here we use the RPPA file 14-3-3 epsilon-M-C_GBL9017330 (Figure 1.5) from TCGA
database as an example to demonstrate how to estimate protein concentrations. An R package

called SuperCurve can be used for quantifying protein expression level through the RPPA raw
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data, which are image intensity file preprocessed by the software MicroVigene. The nonlinear
parametric method and nonparametric regression method are demonstrated. Output files from R

package SuperCurve include raw concentration of fitted slides and residual sum of square (Table

2.1).

Table 2.1| Outputs from SuperCurve Package (SuperCurveGUI, 2011).

Filename Format |Description

R datafile used to store simulation settings (specifically,
sc-settings.RData |binary |a SuperCurveSettings object) in machine-readable format.
Created each time an analysis is attempted. Can be

Text file used to record simulation settings in human-
readable format. Created each time an analysis is

Logfile containing output from an analysis. Generally of no
interest unless something doesn't work

sc-settings. txt TEXT

session.log TEXT

R datafile used to store results of an analysis (specifically,

sc-rppaset.RData - binary an RPPASet object)

Image file containing plot of fit for selected measure and
PNG image of residual sums of squares (with those below 0.4
displayed in red) of a particular slide analysis.

supercurve-
<slide> 1.png

supercurve- PNG Image file containing plot of residuals and steps for
<slide> 2.png selected measure of a particular slide analysis.

supercurve _conc_ Text file containing the raw concentrations for all fitted

CSv

raw.csv slides.

supercurve ss_rati CSV Text file containing the residual sum of squares (RSS) for

0.CSV all fitted slides. A small RSS indicates a tight fit of the

supercurve_conc_ cSV Text file containing the Tukey's medium polished

med_polish.csv concentrations for all fitted slides.

supercurve prefit Text file containing the probability of whether the slide is
CSv .

qc.csv good for all fitted slides.

supercurve_summ | .., Text file detailing success/failure of each stage of

ary.tsv processing for all slides.

Figure 2.3 is a plot for intensity vs. dilution step. We can easily tell that the effect of dilution
steps to intensities is not linear. Through Figure 2.3 and Figure 2.4, we compare the results of
using nonlinear regression for sigmoidal (Tabus et al., 2006) model and nonparametric
quantification methods (Hu et al., 2007). The results from these two methods are very similar and

the data appears to follow the estimated curves quite well (intensity as y-axis and log concentration
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as x-axis; upper part of Figure 2.4). On the other side, larger residuals were obtained in nonlinear

parametric method than those in nonparametric regression method (lower part of Figure 2.4).

Intensity
15000 20000 25000
! !

10000
1

5000
1

A
&
)
AN
o

Dilution Step
File: 14-3-3_epsilon-M-C_GBL9017330.txt

Figure 2.3| The intensity vs. dilution step plot. There are 5 dilutions for each sample here. We
can easily see that the relationship between dilution steps and intensity is not linear.
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File: 14-3-3_epsilon-M-C_GBLI017330 t¢ File: 14-3-3_epsilon-M-C_GBLI017330.td

a. non-linear method b. nonparametric method

Figure 2.4| Plot of residuals and model fitting for selected measure of a particular slide;
analyses used (a) nonlinear model assuming a sigmoidal curve and (b) nonparametric model
with constrained B-splines. In the lower part images, light color means something odd may have
happened and we need to pay special attention to the results from this patch. Trimmed mean R?
represents goodness of fit on SuperCurve at the point beyond the indicated concentration (—5).
Upper and lower lines represent cutoff levels for upper and lower limits of signal reflecting
minimum/maximum valid concentration.

2.3. A Naive Model for Detecting MiRNA Target Proteins

Once the protein concentrations and miRNA levels have been estimated, an intuitive way
to screen miRNA target genes is to search for proteins whose expressions have significant negative
correlations with the miRNA. We call this approach as the naive method, as it is simple and

straightforward. The linear relationship between a protein and miRNA in the naive model can be
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expressed as: x; = f(z;) = a; + a,z; +n;, where 7;~N(0,02) and {z;, i = 1,2...1} are log-

transformed expression levels of a specific miRNA from sample i = 1,2 ... ].

To quantify the protein expression on a RPPA array, we utilized a sigmoidal model, which
is commonly assumed to describe the relationship between the intensity level and the protein

concentration as Gelman et al. (2004), Tubas et al. (2006) and Yang et al. (2011):

B>
yij = g(xi;lj,ﬁ) + gij = ﬁl + 1+ 2_ﬁ3(xi+lj) + Sij!

where y;; is the gray-level intensity from sample i at jth dilution, i = 1,...,Iandj =1, ...,], x;
is the binary logarithm of the median effective protein concentration level, ECso; x; + [; is the

binary logarithm of the protein concentration after jth dilution where [; = atp _ J, € 1s the error
2

term assumed to have a normal distribution with mean 0 and variance o2, and B = {B;, 2, B3}.

Since f; = lim E (yl-j) and f; + S, = lir;rrl E (yl-j), B, is interpreted as the lowest intensity

level without noise, and f3, is the increment from the lowest to the highest intensity or the

saturation level.

By using E Css estimated from the sigmoidal function and the miRNA data, the parameter
estimates a4, &5, , can be calculated based on simple linear regression. @, is our parameter of
interest, describing the relationship between a miRNA and protein pair. Hypothesis test Hy: @, =
0 vs H;: @, < 0 can be conducted to determine if a particular pair of miRNA and protein is related

or not.
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2.4. Discussion

Owing to the newly developed RPPA technique, protein concentrations can be measured
in a fast and accurate way. In the case that the correlation between a pair of miRNA and protein is
strong, the naive model serves as a good solution to study the protein-miRNA relationship. The
biggest advantage of the naive model is simple and easy to be understood. The computational
burden of the naive model is also very small (usually less than 1min/case for sample size 300 in
Intel® Core™ i7-2600 CPU @ 34.0GHz). However, the naive model ignores the variations
associated with the estimates of protein concentration, which could result in significant power loss.
This disadvantage of naive method will be further illustrated from simulation studies and real data

analyses in later chapters.
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Chapter 3. A Parametric Integrated Method for Detecting
MicroRNA Target Proteins

3.1. Motivation

The naive model identifies potential miRNA targets by searching evidences for significant
negative correlations between estimated protein expression levels and miRNA levels. The
uncertainty associated with protein expression level estimates is ignored in this method, thus it
may lead to less accurate findings and significant power loss. That is, such model may miss certain

number of miRNA targets. Hence, developing a model with higher detection power is imperative.

Since we are more interested in the miRNA/protein relationship instead of the absolute
magnitude of protein concentration, in this sense, results from protein expression estimation are
not that important to us. A hierarchical model that treats protein concentrations as latent variables
may improve the detection power by avoiding a direct estimation of protein levels. Such a model
is named as an integrated model thereafter. In this Chapter, we will propose a parametric integrated

model (PIM) assuming a sigmoidal RPPA response curve.
3.2. Statistical Model

Similar to the naive model, for simplicity, a sigmoidal model is used to describe the
relationship between the imaging intensity levels and the protein concentrations in RPPA data with

additive error:
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1 4 27 Ps(xitl))

vij=9(xu [, B) = B + Eijs

where y;; is the gray-level intensity from sample i at jth dilution, i =1,..,/andj =1, ...,], x;
is the binary logarithm of the median effective protein concentration level (E Cso) which represents
the concentration of the protein, x; + [; is the binary logarithm of the protein concentration after

Jjth dilution, ; = GZLJ) — j is used and ¢;; is the error term assumed to have a normal distribution

with mean 0 and variance a2. B = {B1, B2, f3}. To easily illustrate our model, the dilution number

J was chosen as a fixed number, 5, and no technical replicates are in RPPA in the rest of the article.

Our proposed hierarchical model directly models the relationship between miRNA and
protein signals from RPPA without estimating protein concentration. A general model is given as

follows:

( B
1 + 2-Bs(xi—2)

B2
1 4 2-B3(xi-1)

B
14 2-B3(xi)
B-
1 + 2-Bs(xi+1)

B2
1 + 2-Bs(xi+2)

\ xi = f(z)+m
i = 1,2, I,Th""N(O, 0'02), 81~N(0,Z%)

<yi:g(xi;ﬁ)+£i:ﬁ1+ + &;

Here f(.) is a general function to describe how x;, the protein concentration level, and z;, the
miRNA expression level, are related. f = {f4, B2, B3} is the parameter vector for the response
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curve function g(.). n; is a random error term in miRNA regulation and &; is a measurement error
vector of image intensity. In this hierarchical framework, the relationship between miRNA and
protein expression levels will be estimated without explicitly quantifying the protein concentration

levels based on intensity data first.

To directly compare with the naive model, we assume f(z;) to be linear, that is, f(z;) =
a; + a,z;. We further assume that the two error terms, 7; and &; are independent of each other,
and intensity levels from one subject are independent to each other, that is, £? = ¢] as in(Hu et
al., 2007; Tabus et al., 2006; Yang & He, 2011). A simplified version of the integrated model is

showed below:

e,
14 27Bslxim1)

g(xv j ﬁ) :81
x; = f(z) = a; + az; + 13,
ni~N(0,05),&;~N(0,0¢),n; L &;

i,i'=12,..,1andj =1,2,..,5

This hierarchical model is not a traditional mixed model since random effects appear on
the nonlinear part of the function. Thus a different strategy is needed to fit such a model. In the
simplified setting, the likelihood function for ¥ and Z can be written as a joint probability function

of and Z :

L(¢p,00,01Y,Z) = 1_[ j feij(yl'j|Zi;¢'77i:01)qm(77i|00)d77i
|

2,.J
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where ¢ = {a,, ay, By, B2, B3} is a vector including parameters in function f(.) and g(.), Y =
{Yijl i=12..1,j=12..5} represents the RPPA imaging intensity levels, and Z =

{z;|i 1,2 ... I} represents the normalized variable--log-transformed miRNA expression levels.
3.3. Computational Algorithm

Since the likelihood function of the model can be explicitly written, the unknown
parameters ¢ = {aq, ay, B1, B2, B3} can be estimated within the maximum likelihood framework.
To get the MLE, a typical way is to do an integral approximation first and then to maximize the
function after integration. Two methods are commonly used in integral approximation: the first
order method and the adaptive Gaussian quadrature method. Several numerical algorithms can be
further applied in maximizing the likelihood function. Those methods will be introduced in this

section.

3.3.1. Integral approximation

The First order method

The first order method is based on Taylor expansion with the first order (S. Beal &
Sheiner, 1988; S. L. Beal & Sheiner, 1981; Sheiner & Beal, 1985). The equation of Taylor

expansion at number zero is as following:

£'(0) £''(0) £®(0) o f™(0)
f(x)=f(0) + TR x% + 5 x3+o0(x®) =Yr, ~ x"

In our case, the probability density function of €; = {€;;|j = 1,2,..5} of the ith sample is
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fei (yl |ZL" ¢' Ni, 01)

5

1 1 1
= () 1RCwb,002exp(=(3) by = miz, 6,101 Rz, 0,007 Iy

—m(z;, B,n)]}

where the 5x1 location vector is

B2 .
HP,n;) = + = 1,2, . 5
m(zl ﬁ Yh) {ﬂl (1 + 2—ﬁ3(lj+a1+a2xi+m )) |] }
and the 5x5 covariance matrix R (x;, ¢, ;) = o1
Thus,
filzi, .1, 01)
1 P 1 T( 27\-1
~ () o211 Zexpl= (5) b = mzy 6,0) = ZCz0 @ 0" (02 Ty

—m(z;, ,0) — Z(z;, ¢, )]}
where Z(z;, ¢) is the first derivative:

am(zi' ¢' 771)

on; Inio

Therefore
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(1 + 2(-FaC-2rarvaz )Y
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(1 + 2(=Bs(-1tas+azz; )))2
n2 * yB; 20 Fo(rtazzi))
(1+ 2 (=B3(ar+azz; )))2
In2 % 32332(—ﬁ3(1+a1+a2zi )

Z(z, @) =

(1 + 2(=Bs(1+as+ayz; )))2
In2 * 32[332(_.83(2"'“1"'“221' ))

(1 + 2(=B32+as+ayz; )))2

Assuming that q(n;|0,) is a normal density function with mean 0 and variance o§, the

first order integral approximation is computable in a closed form after completing the square:

+00
[ S S

5

- [ (%) IRCz0 6,001 2 exp{~ (3) Iy~ m(z,9,0)

= Z(a0, $ )0 R b, 0) Iy = m(zi $,0) = 2, b il

1 7
* (2m0y) 2 exp ~557 dn;
0

- (i)s IR(zi, b, 0)] 2(2100) "2 f exp {— (5) b~ mz 6,09

V2r
2
—Z(z;, @)1 R (zi, p, 01) " Hy — m(z;, ¢, 0) — Z(z;, p)In;] — %} dn;
0

1 1
< @02V 2 b, 00)] Zexp(— (5) v = mCzi, 6, OV (21, 6, 00) v~ (21,6, 001
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where (z;, 9, 09) = 62 Z(z;, P)Z(z;, )T + R(z;, P, 01) .
Thus the likelihood function of the PIM can be approximated as

L(¢, 0o, O-llyr Z) =

1
[T @o2ve .00l Zexp (5) e = mxi 6, 077V Cxi 6, 00)
i=1,2..1
j=1,2,.]

= m(x;, ¢, 01}

Since the Tayler expansion is expanded at the point of zero, the integration approximation
may not be precise when 7;s are far away from zero. In our simulation studies, the type-I error
from using the first order method is much higher than the pre-specified significant level. The
imprecise integration approximation by using the first order method led to inflated type-I error in

our case (Figure 3.2).
The adaptive Gaussian quadrature (AGQ) method

The Gaussian quadrature method is based on the idea of Hermite integration for

functionf (x):

| " feodx = i Wik f ()
- k=1

According to it, our likelihood function can be rewritten as

L(p,00,0,|Y,Z) =
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f ﬁ;ij(yijlzi»¢'77i101)Qni(77i|00)drli

i=1,2,..1 °~%
j=12,..5
1 i 1 1
~ 1_[ \/E|Fi|_iz fei; (yij z;, @, N2 " 2x, + 1, 01) qn; (ﬁr—ixk + 1; Uo) wy ek
i=1,2,.1 =1
j=12,..5

m is the number of quadrature points which is set to 5 in our analysis. x; and w;, denote the

standard Gauss-Hermite abscissas and weights; 7; minimizes

—log (féij (vijlzi, .10 01 )y, (s |<To))

and [ is the Hessian matrix (a matrix of second derivatives of the log-likelihood function respect
to the parameters) from the minimization.

fleta)

Figure 3.1| An illustration of general Gaussian quadrature method and adaptive Gaussian
quadrature method with 10 knots. (Left) Gaussian quadrature method (Right) adaptive
Gaussian quadrature method. The adaptive Gaussian quadrature method finds the main part of

the function and sets most of the knots in that area which makes it more efficient than the general
Gaussian quadrature method under same number of knots.

By calculating 7; and [}, the adaptive Gaussian quadrature method adjusts knots to locate

on the x-axis corresponding to the main part of the function which needs integration. It is more
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efficient than the general Gaussian quadrature method under same number of knots (Figure 3.1).
Comparing with the First order method, adaptive Gaussian quadrature method can better estimate

the integral function and further better control the type-I error (Figure 3.2).

(a) First order method (b) AGQ method
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Figure 3.2| A comparison of estimated and pre-specified type I error. (a) Type I error in model
using the first order method (b) Type-I error in model using adaptive Gaussian Quadrature
(AGQ) method. The AGQ method can better estimate the integral and further better control the
type-I error.

3.3.2. Likelihood Function Maximization

Nelder-Mead method

Without using any derivatives and assuming that the objective function has continuous
derivatives, the Nelder-Mead method, proposed by John Nelder and Roger Mead (Nelder & Mead,
1965), uses a special polytope of N + 1 vertices in N-dimension called simplex. For instance, to
minimize a function with two unknown parameters, a simplex is a triangle and the method

compares the function values at the three vectors of the triangle and replaces the vector which
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corresponding to the highest function value to a new vector by using reflection, expansion,
contraction and shrinkage. When the triangle is close to the optimal point, it will shrink to the
optimal point. The iterative process stops for convergence when the difference between the best
function value in the new simplex and old simplex is less than a tolerance threshold.

This method usually gives rather big improvements in the first few iteration steps. Also,
this method requires much lower number of function evaluations and does not use any derivatives
of the objective function which makes it appealing in cases of very complex objective functions.
However, this method is lack of convergence theory and with less advantage when optimizing a

function in a lower dimension space.
Newton-Raphson method

The Newton-Raphson method is one of the most famous optimization methods. It is a
second-derivative method which derives from the Taylor expansion and uses the gradient and
Hessian matrix. The new improved estimate of unknown parameter vector in function f(.) on the
i + 1th iteration is given by:

20D = 2@ — f1(x®) /£ (D)

Usually computing the Hessian matrix takes much more time than compute the gradient
and the objective function value, especially for functions in high dimensions. However, methods
using Hessians matrix usually converge more quickly than methods without using Hessian matrix.
Although it can convert to multiple dimensions, Newton-Raphson method is pretty time
consuming on calculating Hessian matrix, H(x). Also, the Newton-Raphson method is sensitive
to its initial value: if the initial value is not close to the maximal point, the method may converge

to a local maximal.
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Quasi-Newton methods

Unlike the Newton-Raphson method, the quasi-Newton method does not compute Hessian
matrixes H (x) in every iteration steps, instead, it updates them, which makes it a better candidate
in our likelithood function maximization problems, even though this method may require more
iterations to converge than the Newton-Raphson method. This algorithm suits our problem best in
which there are 7 unknown parameters.

The algorithm of quasi-Newton methods to minimize function f(.) is as following:
Step 1: Get initial values of unknown parameters x(®.
Step 2: In the pth iteration, compute the quasi-Newton direction Ax through

Ax = _H(p—l)_lvf(x(p—l))

And determine the step size t by line searching methods to satisfy the Goldstein conditions, which

tests whether the movement from x to x + tAx achieves a sufficient decrease in function f(.).
Step 3: Update parameters x value using x® = x®~1 4 tAx.

Step 4: Update Hessian matrix using Broyden—Fletcher—Goldfarb—Shanno (BFGS)

approach:

y@=Dy@E-0"  gE-DE-Dgr-1 -1

y(P—l)’S(p—l)_ s@-DH-Dgp-1)

H® = g-1 4

where s®~D = tAx and y = Vf (x®) — Vf (x®).

Step 5: Check if there is significant improvement of (.) . If not, go to Step 2.
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3.3.3. Initial Value Selection

To select initial values for our integrated model, one way is assuming there is no error term
in protein-miRNA link function x; = f(z;) + n; = @; + @,z; +1; and estimating unknown
parameters using nonlinear least square method. But this way cannot estimate the variance of the
error term 7; in protein-miRNA link function f(z;). Therefore, another approach is to directly use
the parameter estimates from the naive method as initial values. SuperCurve package we
introduced in Chapter 2 doesn’t provide estimations of known parameters, so we used an algorithm
similar to Hu (2007)’s model fitting algorithm (Hu et al., 2007) to estimate the relative protein

concentration in RPPA:
The initial intensity data are first transformed as

yij - mll’l(Y)

ylinearij = logitz W

where = {yij| i=1,..,landj =1, ...,]} and range(Y) = max(Y) — min(Y),. Initial values of

B aresetas Y 31(0) = min(Y),’BZ(O) =max(Y) — min(Y),Béo) = ,[?2(0)/(] —1).Jissetto 5.

The initial median effective protein concentration level x; are estimated by using:

xi(o) = medianj_,,, s <y“f($ + lj>
3

where Vjineari. 15 the mean value among {ylinean- j | j=12,..5}
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To update the parameters (,5’1(0), AZ(O),/%(O)) in the nonlinear model, the nonlinear least-

® @
1 2

squares estimates of (f , ,@él)) were calculated based on the following model (Golub &

Pereyra, 2003):

BZ — + Eij-
14+ 2_ﬁ3(xl_l]) J

vij=9(x,1,B) =B +

After obtaining ﬁl(l), Az(l), ﬁgl), the nonlinear least-square method is used again to update the
: : — - 2 (1) s D) TS
relative protein level X = {x;,i = 1...1} and of". And then update 5;, 5, *, B3 ’, conditioning on

the relative protein level X. This iteration continues until convergence.

The initial value of @; and a, are calculated from linear regression, and the MSE of the

linear regression is used as the initial value of ;. The initial value of o is from residual sum of

square (RSS).
3.3.4. Computational Algorithm

No numerical optimization algorithm can guarantee to find the global maximum. A
preliminary grid search step is further used in our model fitting algorithm with hope to find a global
maximum. As its name suggests, a grid searching method searches points over a grid. Our
algorithm calculates the likelihood function values among points on the grid with initial values
provided by the naive method as its center, and the point with highest likelihood was chosen as the

modified initial values for our PIM.

Our computational algorithm is illustrated in Figure 3.3. Our SAS macro using PROC

NLMIXED implement the same algorithm and can directly applied to miRNA and RPPA intensity
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data. The same analysis can be performed in R, a free and widely used software, through our R

code. The algorithm stops when the change in the normalized likelihood value is less than 10e-8.

Step 0: Initial values x(®estimated from the
naive model; Modify initial values using grid
searching

Step 1: Integral Approximation: Adaptive
Gaussian Quadrature

Step 5: check if the iteration
stops. Iteration stops when .
T -1 Step 2: compute quasi-
ZICARIARIIEIR)  Newion direction Ax =
|f ™)) — H_1)Vf (X(n-1)) and
<1078 determine step size t

converge

Step 4: Update H™ by
using Broyden-Fletcher- Step 3: Compute x™ =

Goldfarb-Shanno (BFGS) x™=D 4 tAx
update

Figure 3.3| A flow chart of computational algorithm to fit our parametric integrated model
based on adaptive Gaussian quadrature method and quasi-Newton algorithm. Step 0:
estimate the initial value of ¢, &g, 64, denoted as x©, by using the naive model; a grid searching
method was applied; Step 1: generate the approximate likelihood function by using adaptive
Gaussian Quadrature method; Step 2: compute the quasi-Newton direction Ax, determine the step
size t to satisfy the Goldstein conditions; Step 3: update parameters x value; Step 4: update
Hessian matrix; Step 5: check if the iteration stops. If not, go to Step 2.
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3.4. Hypothesis Testing

Since it is expected that miRNA negatively regulates the protein expression levels of its
target genes, to test if there is a significant relationship between a specific pair of miRNA and

protein, the hypothesis test can be set up as a one-sided test:
Hy:a, =0vsHy:a, <0

Once the maximum likelihood estimates are obtained, a likelihood ratio test (LRT), a Wald test or

a Score test can be constructed:

Likelihood Ratio Test (LRT):
T.S.= —2In(sup(L(¢, 09,01 |yij,z;): @, = 0))
+2In (sup (L((I), 0o, 01|yij,zl-))) ~x% under H,

Wald Test:

~

a
T.S.= 2 7~N(0,1) under H,

@),

Score Test:

~

a
T.S.= —21 ~N(0,1) under H,
1($o),.
where [ ((’f)) represent the Fisher information matrix of the likelihood function.

However, LRT can be very time consuming and the confidence interval of a, is difficult

to calculate for Score test. Thus Wald tests were used in our simulation and real data example.

Information Matrix and Standard Errors
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Fisher Information matrix 1(6) where 8 is the unknown parameters is commonly used to
calculate the variance-covariance matrix of the maximum likelihood estimates 8. The variances of
MLEs are the diagonal values in the inverse of the information matrix, and the information matrix
is calculated from the negative of the expected value of Hessian matrix H(6). Theoretically the
variance equals to the Cramer-Rao lower bound which implies that MLEs are efficient estimators
of the parameters. But in practice, it is hard to calculate the mean value of Hessian matrix when
the likelihood function is rather complex, so we directly use the calculated Hessian matrix in the

last iteration step to calculate the standard errors of MLEs.

3.5. A Simulation Study

Extensive simulation studies were carried out to examine the performance of our proposed
integrated model and to compare with the naive model approach. Protein intensities were generated
by using a sigmoidal response curve (Figure 3.4-a). And a typical miRNA expression distribution
in TCGA dataset was borrowed in this simulation to mimic the real data and generate protein ECsos
(Figure 3.4-b). Also, the true values of { B4, B,, B3, 0y, 01 } were set as {50, 30000, 1, 1, and 500}
to mimic parameter values estimated from a real TCGA ovarian cancer data set. Different strengths
of correlation between miRNA and protein expression levels, as characterized by a,, were
examined in a range from 0, which represents the null hypothesis, to -1.5, which yields the power
of 1 for the integrated method. In order to investigate the performance of two models with protein
intensity values located in different areas of the response curve, a; was set as 0 and 5
corresponding to the middle part and upper part (boundary) of sigmoidal curve, respectively. The
upper part of a sigmoidal curve corresponds to a scenario where most of intensity levels are close

to the saturation point. The RPPA intensity levels range between 10 and 30100. An illustration of
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the sigmoidal curve used to generate simulated data was showed in Figure 3.4-a. The locations of
protein intensity center were marked by circles. If simulated intensity values are beyond the
imaging boundary, they would be replaced with the boundary value with small error (Gaussian
distributed with mean 0 and standard deviation 5). 1000 simulations were carried out for each
parameter setting under different sample sizes (N=20, 50, 100 and 300). Generally, there are 5
diluted samples in one dilution series, so /] = 5 was used in our simulation setting. Pre-specified

type-I error was set to be 0.05.

(b) Histogram of log

(a) Sigmoidal curve miRNA expression level

30 40

Protein intensity level
Frequency

10 5 0 5 10 2 3 4 5 6 [ §

log2 Protein expression level log miRNA level

Figure 3.4| An illustration of (a) a sigmoidal shape response curve (b) histogram of a typical
miRNA expression levels in TCGA ovarian cancer data. When a; was set to be 0, the center of
the ECsos would located at 0; when a4 was set to be 5, the center of ECsos would located at 5.

The false positive rates and detection powers for miRNA targets for both the integrated
model and the naive model under different sample sizes were shown in Figures 3.5 and 3.7 for two
sets of simulated data. It is clear that when there was no relationship between miRNA and protein

(a, = 0), both models can well control the pre-specified type-I error when sample size were
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bigger than 50. The integrated model was consistently more powerful than the naive model,
especially when the RPPA intensity levels are close to the boundaries of imaging limits (Figure
3.7). Figures 3.6 and 3.8 illustrated the variations of &, under different simulation settings. The
integrated model consistently yielded parameter estimates of a, with similar or much less standard
errors than those from the naive model. Table 3.1-3.2 listed the detailed point estimates of all
parameters and their corresponding standard errors which also supported the conclusion. When the
RPPA intensities reached the upper flatter part of the sigmoidal curve, which caused information
loss because of intensity level truncation at the saturation points, both the naive and the integrated
method over-estimated f3;, which represents the lower imaging limits. However, in this situation

the integrated method still had a much larger detection power than the naive method (Figure 3.7).
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Figure 3.5| Power curve of the naive model (solid line) and the integrated model (dashed line)
according to different simulation scenarios: sample size ranged from 20 to 300 and the
protein intensities were located on the middle part of a sigmoidal curve. Detection powers
(type-I error if &, = 0) denoted by p; and p, under different correlation strengths were report on
the bottom of each plot for the naive and integrated models, respectively. Both models can well
control the pre-specified type-I error when sample size were bigger than 50. Two models had
similar detection performance, especially when sample size increased.
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Figure 3.6| Error bars for point estimators of a,, @, , by the integrated model (dashed line)
and naive model (solid line) comparing to the real a,(dotted line in blue) value when protein
intensities were located on the middle part of a sigmoidal curve. The middle points of the bars
were the median values of @;s, the upper bars and the lower bars represented the Q3 and Q1 of
a,s, respectively. Sample size was from 20 to 300 and the protein intensity located on the middle
part of sigmoidal curve; the integrated model had a similar performance as the naive model.
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Table 3.1| Table for the detailed point estimates of all unknown parameters and their
standard error when protein intensities were located on the middle part of a sigmoidal curve.
Sample size was from 20 to 300. The integrated model had a similar performance as the naive
model.

aq a B1 B: B3 0y !
Sample size 20
true value 0 0 50 30000 1 1 500
. del 0.0213 -0.0063 78.13 29958.77 1.0022 0.9809 463.61
hatve mode (0.0517) (0.0117) (22.56) (31.48) (0.0014) (0.0053) (1.34)
integrated 0.015 -0.0062 142.07 29881.73 1.0077 0.9298 490.89
model (0.052) (0.0117) (15.3) (28.8) (0.0014) (0.0051) (1.24)
true value 0 0.1 50 30000 1 1 500
. del -0.0062 -0.1066 78.43 29954.12 1.0023 0.981 463.75
naive mode (0.0057) (0.0117) (22.69) (31.17) (0.0014) (0.0053) (1.34)
integrated -0.0106 -0.1067 136.82 29875.35 1.0078 0.9299 490.51
model (0.0068) (0.0117) (15.25) (28.62) (0.0014) (0.005) (1.23)
true value 0 0.3 50 30000 1 1 500
. del -0.0015 -0.3067 83.04 29904.9 1.0044 0.9811 464.85
hatve mode (0.0057) (0.0117) (23.4) (31.25) (0.0014) (0.0053) (1.38)
integrated -0.0126 -0.3071 168.89 29827.69 1.0102 0.93 491.49
model (0.0068) (0.0117) (15.35) (29.14) (0.0014) (0.0051) (1.23)
true value 0 0.5 50 30000 1 1 500
. del -0.0015 -0.5063 81.23 29909.99 1.0045 0.9807 464.58
hatve mode (0.0057) (0.0117) (22.74) (30.21) (0.0014) (0.0053) (1.36)
integrated -0.0119 -0.5069 161.52 29838.19 1.0096 0.9297 491.18
model (0.0068) (0.0117) (14.84) (28.02) (0.0014) (0.0051) (1.23)
true value 0 -1 50 30000 1 1 500
. del -0.0043 -1.0021 23.03 30048.43 0.9997 0.9795 465.42
nhaive mode (0.0061) (0.0117) (20.93) (26.41) (0.0012) (0.0053) (1.4)
integrated -0.0105 -1.005 91.21 29964.21 1.003 0.9298 491.06
model (0.0068) (0.0117) (13.22) (24.28) (0.0012) (0.0051) (1.27)
true value 0 -1.3 50 30000 1 1 500
. del -0.0055 -1.3033 39.67 30027.79 1.0018 0.9792 465.7
hatve mode (0.006) (0.0117) (18.69) (24.25) (0.0012) (0.0053) (1.37)
integrated -0.0099 -1.3077 96.34 29952.63 1.0035 0.9301 491.25
model (0.0067) (0.0118) (11.97) (22.46) (0.0011) (0.005) (1.25)
true value 0 -15 50 30000 1 1 500
. del -0.0096 -1.5032 83.81 29973.69 1.0042 0.9789 464.47
hatve mode (0.0063) (0.0117) (17.38) (22.32) (0.0011) (0.0053) (1.35)
integrated -0.0111 -1.5086 124.24 29909.02 1.0054 0.93 491.11
model (0.0069) (0.0117) (11.18) (20.75) (0.0011) (0.0051) (1.28)
Sample size 50
true value 0 0 50 30000 1 1 500
. del -0.023 0.0054 -11.3 30137.24  0.9952 (9e- 0.9923 457.55
nhaive mode (0.0283) (0.0064) (16.58) (20.17) 04) (0.0032) (0.85)
integrated -0.0259 0.0053 4336 30057.24  0.9982 (9e- 0.9719 495.97
model (0.0284) (0.0064) (9.77) (18.46) 04) (0.0032) (0.79)
true value 0 0.1 50 30000 1 1 500
natve model -0.0012 -0.0946 -6.46 3014123 0.9951 (9e- 0.9925 457.14
1ve mode (0.0041) (0.0064) (16.12) (19.69) 04) (0.0032) (0.84)
integrated -0.0026 -0.0947 39.43 3006121 0.9982 (Se- 0.972 495.79
model (0.0043) (0.0064) (9.46) (18.05) 04) (0.0032) (0.79)
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true value 0 -0.3 50 30000 1 1 500

. del 0.0021 -0.2942 -14.38 30131.06  0.9954 (Se- 0.9923 458.04
hatve mode (0.0041) (0.0064) (15.88) (18.59) 04) (0.0032) (0.86)
integrated 9e-04 -0.2945 369 (8.99) 005319 09983 (e- 0.9719 496.54

model (0.0044) (0.0064) = (8 (17.01) 04) (0.0032) (0.78)
true value 0 0.5 50 30000 1 1 500

. 0.0031 -0.4939 -10.89 3011324 0.9965 (Se- 0.9919
naive model (0.004) (0.0064) (15.49) (17.77) 04) 00032y 7 (084
integrated -0.002 -0.4946 46.42 30042.02  0.9988 (Se- 0.9716 496.05

model (0.0044) (0.0064) (8.56) (16.43) 04) (0.0032) (0.79)
true value 0 -1 50 30000 1 1 500

. del -0.0031 -0.9927 16.45 30112.04 0.998 (8e- 0.9915 457.22
nhatve mode (0.0042) (0.0064) (13.86) (16.06) 04) (0.0032) (0.82)
integrated -0.0022 -0.9948 46.61 30043.54  0.9986 (7e- 0.9719 496.19

model (0.0044) (0.0064) (7.86) (14.75) 04) (0.0032) (0.79)
true value 0 -1.3 50 30000 1 1 500

. del -0.0068 12911 48.01 30080.17 1.0002 (7e- 0.9911 45721
hatve mode (0.0043) (0.0064) (13.45) (14.29) 04) (0.0032) (0.82)
integrated -0.0018 -1.2949 60.83 30013.75  0.9997 (7e- 0.9721 496.15

model (0.0044) (0.0064) (7.18) (13.47) 04) (0.0032) (0.79)
true value 0 -15 50 30000 1 1 500
natve model -0.0078 -1.4898 77.09 30027.67 1.0032 (7e- 0.9909 456.69

ve mode (0.0041) (0.0064) (11.46) (13.43) 04) (0.0032) (0.78)
integrated -0.0026 -1.4944 $221 (65 2997526 1.0017 (7e- 0.972 496.5

model (0.0043) (0.0064) <110 (12.74) 04) (0.0032) (0.77)
Sample size 100
true value 0 0 50 30000 1 1 500

. del 0.0124 -0.0032 21.78 30189.17  0.9927 (6e- 0.997 455.17
hatve mode (0.0207) (0.0047) (12.82) (14.32) 04) (0.0022) (0.62)
integrated 0.0143 -0.0033 717674y JOUETZ 09951 (Ge- 0.9863 498.45

model (0.0208) (0.0047) Ao (12.96) 04) (0.0022) (0.57)
true value 0 -0.1 50 30000 1 1 500

. del 0.0029 -0.1028 -46.45 30192.3 0.9929 (6e- 0.9965 454.27
nhaive mode (0.0032) (0.0047) (12.49) (13.75) 04) (0.0022) (0.6)
integrated -5e-04 -0.1029 Lsse4ny 012541 0.9948 (6e- 0.9859 498.08

model (0.0032) (0.0047) > (0. (12.4) 04) (0.0022) (0.56)
true value 0 0.3 50 30000 1 1 500

. del 3e-04 -0.3033 26.94 30177.98  0.9932 (6e- 0.9968 455.26
nhatve mode (0.0033) (0.0047) (12.46) (13.77) 04) (0.0022) (0.6)
integrated 9e-04 -0.3036 113 (647) 3011092 0.9951 (6e- 0.9861 498.77

model (0.0032) (0.0047) =2 (O (12.44) 04) (0.0022) (0.56)
true value 0 0.5 50 30000 1 1 500

. del 0.0034 -0.5024 -29.46 30152.94  0.9948 (6e- 0.9968 454.68
nhaive mode (0.0033) (0.0047) (12.41) (12.87) 04) (0.0022) (0.59)
integrated -0.002 -0.5029 23.79 30091.34 0.996 (6e- 0.9863 498.68

model (0.0032) (0.0047) (6.41) (11.81) 04) (0.0022) (0.56)
true value 0 -1 50 30000 1 1 500

. del -0.0063 -1.0002 18.58 30140.4 0.9961 (Se- 0.9965 454.05
nhaive mode (0.0033) (0.0047) (10.56) (11.11) 04) (0.0022) (0.58)
integrated -0.0024 -1.0018 31.28 30081.86  0.9964 (Se- 0.9864 49821

model (0.0032) (0.0047) (5.38) (10.35) 04) (0.0022) (0.57)
true value 0 -1.3 50 30000 1 1 500

. del -0.0072 -1.3008 47.51 3008826 0.9992 (Se- 0.9967 45378
hatve mode (0.0033) (0.0047) (9.63) (9.9) 04) (0.0022) (0.59)
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integrated -0.0024 -1.3036 52.33 30038.92  0.9982 (Se- 0.9871 498.32
model (0.0032) (0.0047) (4.87) (9.46) 04) (0.0022) (0.59)
true value 0 -15 50 30000 1 1 500
. del -0.0066 -1.5001 65.64 30046.58 1.0018 (de- 0.996 452.58
nhaive mode (0.0032) (0.0047) (8.32) (8.83) 04) (0.0022) (0.56)
integrated -8e-04 -1.5037 62.17 30006.08  0.9998 (de- 0.9864 498.25
model (0.0032) (0.0047) (4.51) (8.55) 04) (0.0022) (0.58)
Sample size 300
true value 0 0 50 30000 1 1 500
. -0.0029 Te-04 30141.18  0.9945 (de- 0.9998 451.18
naive model (0.0118) 0.0027) 169 (836) (8.44) 04) (0.0014) (0.34)
integrated -0.0039 Te-04 17.74 30099.42  0.9956 (de- 0.9953 499.45
model (0.0118) (0.0027) (3.87) (7.63) 04) (0.0014) (0.32)
true value 0 -0.1 50 30000 1 1 500
. del 3e-04 -0.1009 -45.21 30156.77  0.9938 (4e- 0.9999 451.88
nalve mode (0.0023) (0.0026) (8.74) (7.84) 04) (0.0014) (0.34)
integrated -0.0084 -0.1009 11.41 30117.72 0.9947 (3e- 0.9955 500 (0.32)
model (0.002) (0.0026) (3.65) (7.15) 04) (0.0014) :
true value 0 0.3 50 30000 1 1 500
. -0.0038 -0.3005 0.9945 (4e- 0.9996 451.86
naive model 0.0024) o027y 198BS 301446 (8.1) 0 0.0014) ©035)
integrated -0.0069 -0.3006 14.95 3010139 0.9955 (4e- 0.9953 499.85
model (0.0019) (0.0027) (3.71) (7.38) 04) (0.0014) (0.31)
true value 0 -0.5 50 30000 1 1 500
. del -0.0041 -0.5006 -16.25 30142.07  0.9948 (3e- 0.9996 451.4
nhaive mode (0.0023) (0.0026) (8.32) (7.35) 04) (0.0014) (0.33)
integrated -0.0085 -0.5009 22.01 30102.75  0.9954 (3e- 0.9953 499.8
model (0.0019) (0.0026) (3.48) (6.82) 04) (0.0014) (0.32)
true value 0 -1 50 30000 1 1 500
. -0.0121 -0.999 30.28 30107.97  0.9968 (3e- 0.9996
naive model (0.0023) (0.0027) (7.06) (6.46) 04) ©0.0014)  P1O33)
integrated -0.0082 -0.9999 32.49 30070.72  0.9967 (3e- 0.9955 499.92
model (0.002) (0.0027) (3.08) (6.22) 04) (0.0014) (0.33)
true value 0 -1.3 50 30000 1 1 500
. del -0.0101 -1.2999 4745 30058.55  0.9997 (3e- 1.0019 448.96
nhatve mode (0.0021) (0.0028) (5.33) (5.39) 04) (0.0027) (0.31)
integrated -0.0077 -1.3008 49.28 30036.58  0.9983 (3e- 0.9955 499.31
model (0.002) (0.0028) (2.79) (5.22) 04) (0.0014) (0.34)
true value 0 -15 50 30000 1 1 500
. del -0.0106 -1.4962 47.23 30059.42 1.0004 (3e- 0.9997 450.03
nhaive mode (0.0021) (0.0027) (4.56) (5.23) 04) (0.0015) (1.52)
integrated -0.0091 -1.4986 49.02 30043.6 0.9979 (3e- 0.9955 499.52
model (0.0021) (0.0028) 2.61) (5.15) 04) (0.0014) (0.35)
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Figure 3.7| Power curves of the naive model (solid line) and the integrated model (dashed
line) according different simulation scenarios: sample size ranged from 20 to 300 and the
protein intensities were located on the upper part of a sigmoidal curve. Detection powers
(type-I error if a, = 0) denoted by p; and p, under different correlation strength were report on
the bottom of each figure for the naive and integrated models, respectively. Both models can well
control the pre-specified type-I error when sample size were bigger than 50. The integrated model

was consistently more powerful than the naive model.
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Figure 3.8| Error bars for point estimates of a,, @, , by the integrated model (dashed line)
and naive model (solid line) comparing to the real a,(dotted line in blue) value when protein
intensities were located on the middle part of a sigmoidal curve. The middle points of the bars
were the med ian value of @;s, the upper bars and the lower bars represented the Q3 and Q1 of
a,s, respectively. Sample size was from 20 to 300 and the protein intensity located on the upper
part of sigmoidal curve; the a,s estimated by the integrated model had much narrower bars than
the naive model.
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Table 3.2

Table for the detailed point estimates of all unknown parameters and their

standard error when protein intensities were located on the upper part of a sigmoidal curve.
Sample size was from 20 to 300. Truncation was applied to the boundary of intensity level; the
integrated model consistently yielded parameter estimates of a, with similar or much less standard
errors than the naive model.

a a B1 B. B Oy gy
Sample size 20
true value 5 0 50 30000 1 1 500
naive 2.3538 0.0108 21673.99 8063.19 1.8432 1.5515 505.9
model (0.0337) (0.0348) (73.67) (72.22) (0.0062) (0.1377) (4.52)
integrated 4.4653 -0.0161 -274276.76 304133.74 1.2805 0.9099 457.39
model (0.08) (0.0139) (52197.04) (52200.42) (0.011) (0.0111) (1.95)
true value 5 -0.1 50 30000 1 1 500
naive 2.3656 -0.0895 21700.84 8041.22 1.8401 1.6134 504.84
model (0.0399) (0.0592) (71.7) (70.25) (0.0059) (0.1588) (3.24)
integrated 4.5686 -0.0693 -330800.61 360639.78 1.2918 0.9732 458.96
model (0.0859) (0.0418) (56594.51) (56591.54) (0.0288) (0.0742) 2)
true value 5 -0.3 50 30000 1 1 500
naive 2.3695 -0.3577 21516.03 8221.13 1.8385 1.5135 505.61
model (0.0275) (0.0482) (74.6) (73.15) (0.0057) (0.1068) (3.97)
integrated 4.403 -0.308 -249677.33 279512.95 1.2762 0.8937 456.25
model (0.0769) (0.0123) (50408.57) (50405.41) (0.0105) (0.0099) (1.72)
true value 5 -0.5 50 30000 1 1 500
naive 2.4446 -0.7107 21269.05 8464.35 1.8481 1.6564 507.56
model (0.0374) (0.0782) (74.86) (73.51) (0.0059) (0.1521) (2.77)
integrated 4.5227 -0.5035 -250395.86 280258.79 1.2486 0.8891 457.35
model (0.0783) (0.0123) (48590.31) (48592.42) (0.0097) (0.0102) (1.82)
true value 5 -1 50 30000 1 1 500
naive 2.7712 -1.4615 19902.57 9814.9 1.8388 2.1685 527.34
model (0.0505) (0.1208) (90.02) (88.76) (0.0058) (0.1959) (4.87)
integrated 4.1187 -1.0024 -52274.05 82100.65 1.2984 0.8417 469.74
model (0.0636) (0.0148) (21283.7) (21281.33) (0.0263) (0.0365) (2.81)
true value 5 -1.3 50 30000 1 1 500
naive 29411 -1.7328 18770.02 10936.33 1.828 2.2838 539.5
model (0.0548) (0.0838) (98.58) (97.49) (0.0054) (0.2277) (4.31)
integrated 4.1799 -1.3159 -81574.65 111394.19 1.2845 0.8634 478.65
model (0.0528) (0.0145) (30566.75) (30567.8) (0.0095) (0.0125) (2.39)
true value 5 -1.5 50 30000 1 1 500
naive 3.2206 -2.3778 18002.82 11696.6 1.8231 2.9557 560.41
model (0.0717) (0.1593) (105.51) (104.59) (0.0057) (0.2621) (7.25)
integrated 3.6493 -0.964 -51974.4 81776.04 1.2932 0.8548 488.64
model (0.6203) (0.6069) (22391.12) (22386.56) (0.0201) (0.0355) (3.71)
Sample size 50
true value 5 0 50 30000 1 1 500
naive 2.7437 -0.0469 20499.39 9225.41 1.7402 2.7635 485.25
model (0.0369) (0.0526) (63.98) (62.87) (0.0037) (0.2377) (2.14)
integrated 3.5198 0.0089 8598.57 21172.62 1.4285 0.8595 489.77
model (0.0405) (0.0067) (1581.12) (1582.55) (0.0103) (0.0138) (1.59)
true value 5 -0.1 50 30000 1 1 500
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naive 2.7316 -0.1643 20463.66 9261.85 1.738 2.6338 484.29
model (0.0347) (0.0384) (65.62) (64.57) (0.0038) (0.2266) (1.72)
integrated 3.4811 -0.0898 9927.86 19842.78 1.434 0.8728 491.19
model (0.0385) (0.0067) (1621.29) (1622.67) (0.0104) (0.0129) (1.61)
true value 5 -0.3 50 30000 1 1 500
naive 2.8069 -0.4472 20293.49 9426.7 1.7416 2.9565 486.58
model (0.0401) (0.047) (66.02) (65.05) (0.0037) (0.2576) (1.97)
integrated 3.4894 -0.2882 12135.89 17635.35 1.4246 0.8701 491.18
model (0.0357) (0.0067) (534.51) (537.21) (0.0101) (0.0131) (1.66)
true value 5 -0.5 50 30000 1 1 500
naive 2.828 -0.6441 19946.91 9770.55 1.7402 2.8163 491.23
model (0.0387) (0.0451) (69.44) (68.46) (0.0038) (0.2509) 2.77)
integrated 3.5327 -0.4769 11365.82 18404.38 1.4188 0.8762 493 .4
model (0.0365) (0.0067) (735.99) (738.2) (0.01) (0.0124) (1.7)
true value 5 -1 50 30000 1 1 500
naive 3.2183 -1.7113 18367.63 11331.51 1.7405 3.9333 506.65
model (0.047) (0.0905) (79.4) (78.56) (0.0037) (0.301) (2.69)
integrated 3.4259 -0.9716 13477.54 16260.6 1.4497 0.7908 512.56
model (0.029) (0.0072) (288.17) (291.47) (0.0086) (0.0171) (1.84)
true value 5 -1.3 50 30000 1 1 500
naive 3.5889 -2.5651 17174.96 12514.49 1.7375 5.4373 521.52
model (0.0593) (0.1361) (86.16) (85.49) (0.0037) (0.3774) (3.13)
integrated 3.2866 -1.4043 13337.94 16383.67 1.4403 0.8708 52837
model (0.1729) (0.1428) (260.58) (263.67) (0.0146) (0.1229) (2.55)
true value 5 -1.5 50 30000 1 1 500
naive 3.8296 -2.9831 16141.61 13546.24 1.7198 6.1208 523.94
model (0.0621) (0.1416) (89.86) (89.49) (0.0039) (0.3784) (2.07)
integrated 3.305 -1.3648 13436.45 16273.32 1.4225 0.9029 536.53
model (0.1669) (0.105) (198.21) (201.3) (0.0332) (0.1719) (2.56)
Sample size 100
true value 5 0 50 30000 1 1 500
naive 2.9087 -0.039 19661.6 10058.46 1.6748 3.337 468.53
model (0.0269) (0.0434) (56.83) (56.2) (0.003) (0.2366) (1.22)
integrated 3.0493 -0.0055 16387.53 13333.07 1.5292 0.8232 501.83
model (0.0261) (0.006) (641.05) (642.19) (0.0075) (0.0178) (1.1)
true value 5 -0.1 50 30000 1 1 500
naive 2.9097 -0.1508 19584.67 10137.22 1.6675 3.2625 469.76
model (0.0291) (0.043) (57.9) (57.29) (0.0028) (0.2545) (1.53)
integrated 3.0247 -0.0985 17062.36 12657.31 1.5329 0.8748 502.86
model (0.0234) (0.0065) (191.54) (194.2) (0.0073) (0.0133) (1.06)
true value 5 -0.3 50 30000 1 1 500
naive 2.9106 -0.3621 19313.04 10404.89 1.6712 3.0649 469.78
model (0.0275) (0.0361) (62.78) (62.09) (0.003) (0.2302) (0.91)
integrated 3.0442 -0.3021 16981.12 12738.09 1.5236 0.8185 504.55
model (0.0224) (0.0073) (176.62) (179.23) (0.007) (0.0172) (1.09)
true value 5 -0.5 50 30000 1 1 500
naive 3.0186 -0.7679 18919.14 10793.17 1.674 3.701 474.8
model (0.0323) (0.044) (64.29) (63.66) (0.003) (0.2824) (1.61)
integrated 3.0784 -0.4853 16620.4 13095.57 1.5193 0.8203 508.61
model (0.0226) (0.0049) (198.41) (200.87) (0.0068) (0.0165) (1.12)
true value 5 -1 50 30000 1 1 500
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naive 3.5281 -2.0565 17213.8 12482.15 1.6745 5.9013 486.43
model (0.0442) (0.0999) (74.03) (73.63) (0.003) (0.3507) (0.92)
integrated 3.1546 -0.9644 16182.07 13518.68 1.5056 0.7447 521.9
model (0.0163) (0.0055) (131.53) (133.43) (0.0053) (0.0202) (1.12)
true value 5 -1.3 50 30000 1 1 500
naive 3.8155 -2.6141 15813.29 13875.57 1.6668 7.1509 504.16
model (0.0476) (0.0999) (80.09) (79.85) (0.0034) (0.3873) (2.87)
integrated 3.28 -1.2628 15230.07 14467.41 1.4792 0.7278 531.28
model (0.0142) (0.0074) (110.54) (111.99) (0.0047) (0.0212) (1.16)
true value 5 -1.5 50 30000 1 1 500
naive 423 -3.6045 14844.17 14844.17 1.6571 9.335 513.6
model (0.0626) (0.1408) (83.8) (83.59) (0.0034) (0.4778) (2.09)
integrated 3.4028 -1.4779 14282.26 15415.65 1.4536 0.6573 539.12
model (0.016) (0.0122) (116.92) (118.47) (0.00406) (0.0252) (1.27)
Sample size 300
true value 5 0 50 30000 1 1 500
naive 3.0135 0.0285 18437.53 11288.37 1.5908 3.2476 451.57
model (0.0208) (0.0232) (67.92) (67.65) (0.003) (0.263) (1.21)
integrated 2.9 5e-04 18348.42 11365.95 1.5243 0.8799 498.43
model (0.0112) (0.0039) (75.58) (76.43) (0.0043) (0.0187) (0.68)
true value 5 -0.1 50 30000 1 1 500
naive 3.0361 -0.1808 18456.78 11268.42 1.592 3.577 454.1
model (0.0228) (0.0329) (69.96) (69.74) (0.0032) (0.2943) (2.08)
integrated 2.9366 -0.0989 18113.81 11603.85 1.516 0.879 496.92
model (0.0163) (0.0074) (121.05) (122.77) (0.0054) (0.0201) (0.77)
true value 5 -0.3 50 30000 1 1 500
naive 3.0804 -0.3768 18175.54 11545.95 1.5939 4.1281 453.35
model (0.027) (0.0336) (74.23) (73.97) (0.0032) (0.3787) (1.29)
integrated 2.9395 -0.2858 18058.62 11655.43 1.5166 0.8667 498.87
model (0.0132) (0.004) (94.19) (95.21) (0.0046) (0.0213) (0.69)
true value 5 -0.5 50 30000 1 1 500
naive 3.1502 -0.7234 17717.61 11998.41 1.5974 3.9477 454.13
model (0.0254) (0.0412) (82.68) (82.46) (0.0034) (0.3312) (0.75)
integrated 2.9937 -0.4811 17680.24 12031.57 1.5063 0.8291 500.36
model (0.0129) (0.0042) (87.96) (88.86) (0.0047) (0.0251) (0.78)
true value 5 -1 50 30000 1 1 500
naive 3.5669 -1.7535 15740.25 13964.36 1.5926 6.4576 471.3
model (0.043) (0.09) (113.86) (113.86) (0.0043) (0.5025) (3.33)
integrated 3.2607 -0.9702 15650.42 14066.12 1.4461 0.8718 505.15
model (0.0177) (0.0074) (130.59) (132.08) (0.0057) (0.0259) (0.98)
true value 5 -1.3 50 30000 1 1 500
naive 4.0045 -2.2565 13772.02 15929.25 1.5632 12.2208 480.58
model (0.1514) (0.5547) (120.38) (120.41) (0.0045) (2.356) 3.11)
integrated 3.1969 -0.7316 13720.47 16004.76 1.3919 2.9218 514.38
model (0.3036) (0.5495) (126.43) (128) (0.0097) (2.2545) (4.56)
true value 5 -1.5 50 30000 1 1 500
naive 4.4603 -3.707 12633.68 17067.83 1.5489 12.0708 485.18
model (0.0723) (0.1756) (117.4) (117.75) (0.0043) (0.7155) (1.18)
integrated 3.6474 -1.4779 12443.71 17289.63 1.3512 0.6374 510.48
model (0.0193) (0.0129) (145.16) (147.48) (0.0055) (0.0466) (1.31)
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3.6. Real Data Examples

Many studies of breast cancer and ovarian cancer have been done on gene expression level.
The naive model and integrated model were applied to ovarian cancer (OV) and breast cancer
(BRCA) dataset from The Cancer Genome Atlas (TCGA) program which started from the year
2006 and is supported by the NCI and the NHGRI. In OV dataset, there were 333 ovarian cancer
samples with both miRNA and RPPA data available. 352 miRNAs having more than 50% of non-
zero counts and 165 proteins were included in our analyses in order to have sufficient information.
In BRCA dataset, there were 239 breast cancer samples with both miRNA and RPPA data
available. 417 miRNAs having more than 50% of non-zero counts and 165 proteins were included

in our analyses.

3.6.1.  Analysis of TCGA Ovarian Cancer (OV) Data

The results from both the naive and integrated models on predicting miRNA targets were
displayed in Table 3.3. False Discover Rate (FDR) at 10% was used to adjust for multiple testing
(Benjamini & Hochberg, 1995). The integrated model approach we proposed found 1106 potential
miRNA-protein pairs, 797 of which were on non-phosphorylated protein array. Totally 822 pairs
were found on non-phosphorylated protein array: 250 out of them were found by the integrated
model only and 25 pairs were found by the naive model only. The integrated model found
significantly more number of potential miRNA-protein pairs (P<0.0001 according to the
McNemar’s test). Furthermore, we compared our results with miRNA targets identified by the
miRanda algorithm (Enright et al., 2004; Hofacker et al., 1994; McCaskill, 1990; Zuker & Stiegler,
1981). 98 targets, which were found by both the integrated and the naive model, and 31 targets,

which were found only by the integrated model, were confirmed by the miRanda database.
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However, only 6 targets found by the naive model only were confirmed by the miRanda database.
MirTarBase, a dataset based on manually surveying pertinent literature (Hsu et al., 2014) was
further used to verify our results. 15 suggested targets found by both the integrated and the naive
model were supported by the MirTarBase dataset. 11 of the 15 suggested targets found by both the
integrated and the naive model were supported by strong experimental evidences according to the
MirTarBase dataset. One suggested target found by the integrated model only were supported by
strong experimental evidences according to the MirTarBase dataset. None of the suggested targets
found by the naive model only were supported by strong experimental evidences according to the
MirTarBase dataset. This suggests that there could be a number of experimentally undiscovered
miRNA targets included in the findings of integrated and naive models. Those found miRNA-
protein pairs with literature support, which were sorted by ascending order of adjusted p-values

from the integrated model and the naive model, were listed in Table 3.4.

Table 3.3 | Analysis results by the naive and the integrated model compared with the
miRanda and the MirTarBase based on TCGA ovarian cancer dataset. The integrated model
found significantly more potential miRNA & non-phosphorylated protein pairs (P<0.0001
according to the McNemar’s test). Results were compared with miRNA targets identified by
miRanda algorithm and supported by the MirTarBase. Numbers in parentheses are percentage of
pairs among total pairs which were found by either the naive model method or the integrated model
method.

All protein None Found in
Method! arrays found phosphoryla the Found in the Found in the
as miRNA  ted protein . MirTarBase MirTarBase?
miRanda
targets arrays
. 719 547 98 15 11
NaiverIntegratedt o) 4oy (66.6%)  (72.6%)  (882%)  (91.7%)
. 46 25 6 1 0
Naivet Integrated- 4 0/ (.0%)  (44%)  (5.9%) (0%)
. 387 250 31 1 1
Naive-Integratedt 33 6000 (304%)  (23%) (5.9%) (8.3%)
Naive- Integrated- 41250 25225 4010 557 285
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1. Naive+ Integrated+: Pairs found by both the integrated method and the naive method;
Naive+ Integrated-: Pairs found by the naive method only; Naive- Integrated+: Pairs found
by the integrated method only; Naive- Integrated-: Pairs found by neither the integrated
method nor the naive method;

2. Supported by strong experimental evidences

Table 3.4] miRNA-protein corresponded genes pairs with literature support in TCGA
ovarian cancer dataset. A number “1” was marked under the column for pairs found by the naive
model, integrated model, the MirTarBase, MirTarBase with strong experimental evidences (listed
on the top) or the miRanda. Pairs were sorted by ascending order of adjusted p-values from the
integrated model and the naive model.

Corresp - P- mir M iR
M M . . values values Tar Reference
1t 2! miRNA onding from from Tar Base and o
genes M1 M2 Base N a

1 1 hsa-mir-150 NOTCH3 2.53E-08 1.66E-08 1 1 1 21551231
1 1 hsa-mir-150 TP53 4.67E-07 8.30E-07 1 1 23747308
1 1 hsa-mir-214 CTNNB1 6.28E-06 6.06E-06 1 1 23068095
1 1 hsa-mir-181a-1 BCL2L11 2.71E-05 1.84E-05 1 1 20841506
1 1 hsa-mir-223 IGFIR 1.92E-05 4.14E-05 1 1 22073238
1 1 hsa-mir-139 IGF1R 2.40E-05 4.43E-05 1 1 22580051
1 1 hsa-mir-181a-1 CDKNI1B  8.68E-04 5.41E-04 1 1 19273599
1 1 hsa-mir-18a ESR1 9.97E-04 6.37E-04 1 1 1 19684618
1 1 hsa-mir-145 IGFIR 9.20E-04 7.96E-04 1 1 19391107
1 1 hsa-mir-155 SMAD?3 1.20E-03  1.08E-03 1 1 21036908
1 1 hsa-mir-21 MSH6 1.47E-03  1.46E-03 1 1 21078976

1 hsa-mir-605 TP53 6.06E-03 1.67E-03 1 1 21217645
1 1 hsa-mir-7-1 CAV1 1.24E-03  1.29E-03 1 1 19073608
1 1 hsa-let-7a-2 BCL2L11 7.11E-04 1.64E-03 1 1 23622248
1 1 hsa-let-7a-1 BCL2L11 7.38E-04 1.68E-03 1 1 23622248
1 1 hsa-let-7a-3 BCL2L11 7.07E-04 1.69E-03 1 1 23622248
1 hsa-mir-146b AKTI1-3 9.22E-04 3.11E-03 1 23622248

1. MI stands for the naive model and M2 stands for the integrated model;
2. Supported by strong experimental evidences;

3.6.2.

Analysis of TCGA Breast Cancer (BRCA) Data

The results from both the naive and the integrated models on predicting miRNA targets

were reported in Table 3.5. False Discover Rate (FDR) at 10% was used to adjust for multiple
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testing as well. The integrated model approach we proposed found 5159 potential miRNA-protein
pairs, 3434 of which were on non-phosphorylated protein array. 3471 pairs were found on non-
phosphorylated protein array: 3306 out of them were found by integrated model only and 128 pairs
were found by naive model only. Integrated model found significantly more number of potential
miRNA-protein pairs (P<0.0001 according to the McNemar’s test). 449 targets, which were found
by both the integrated and the naive model, and 21 targets, which were found only by the integrated
model, were confirmed by the miRanda database. However, only 7 targets found by the naive
model only were supported by the miRanda database. 49 suggested targets found by both the
integrated and the naive model were supported by the MirTarBase dataset. 37 of the 49 suggested
targets found by both the integrated and the naive model were supported by strong experimental
evidences according to the MirTarBase dataset. None of the suggested target found by the
integrated model only were supported by strong experimental evidences according to the
MirTarBase dataset. 2 of the suggested targets found by the naive model only were supported by
strong experimental evidences according to the MirTarBase dataset. Found miRNA-protein pairs
with literature support, sorted by ascending order of adjusted p-values from the integrated model

and the naive model, were listed in Table 3.6.

Table 3.5| Analysis results by the naive and the integrated model compared with the miRanda
and the MirTarBase based on TCGA breast cancer dataset. Integrated model found
significantly more potential miRNA & non-phosphorylated protein pairs (P<0.0001 according to
the McNemar’s test). Results were compared with miRNA targets identified by the miRanda
algorithm and supported by the MirTarBase. Numbers in parentheses are percentage of pairs
among total pairs which were found by either the naive model method or the integrated model
method.

All protein None

Found in . Found in the
Method! arrays found phosphorylate the Fqund in the MirTarBase
as miRNA d protein . MirTarBase )
miRanda
targets arrays
Naive+ 4930 3306 449 49 37
Integrated+ (94.63%) (95.25%) (94.13%) (96.08%) (94.87%)
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Naive+ 51 37 7 2 2

Integrated- (0.98%) (1.07%) (1.47%) (3.92%) (5.13%)
Naive- 229 128 21 0 0
Integrated+ (4.39%) (3.69%) (4.40%) (0%) (0%)
Naive- 51319 32212 4933 634 304
Integrated-

1. Naive+ Integrated+: Pairs found by both the integrated method and the naive method,
Naive+ Integrated-: Pairs found by the naive method only; Naive- Integrated+: Pairs found
by the integrated method only; Naive- Integrated-: Pairs found by neither the integrated
method nor the naive method;

2. Supported by strong experimental evidences

Table 3.6 miRNA-protein corresponded genes pairs with literature support in TCGA breast
cancer dataset. A number “1” was marked under the column for pairs found by the naive model,
integrated model, the MirTarBase, MirTarBase with strong experimental evidences (listed on the
top) or the miRanda. Pairs were sorted by ascending order of adjusted p-values from the integrated
model and the naive model, respectively.

Corresp P- P- Mir Mir .
M M . . values values Tar miRa References
1t 2! miRNA onding from from Tar Base nda PMID
genes M1 M2 Base N

1 1 hsa-mir-99a IGF1R 8.07E-11 6.07E-11 1 1 21687694
I 1 hsa-mir-18b ESR1 2.58E-11  1.64E-10 1 1 19684618
I 1 hsa-mir-10b NOTCH1  5.63E-07 3.89E-07 1 1 23034333
1 1 hsamir-101-1  PTGS2 7.95E-07 7.80E-07 1 1 1 19133256
I 1 hsa-mir-101-1  STMNI1 1.62E-05  2.96E-06 1 1 23071542
I 1 hsa-mir-125b-2 BCL2 5.74E-06 4.31E-06 1 1 22293115
1 1 hsalet-7¢ BCL2L1  6.93E-06 4.65E-06 1 1 20347499
1 1 hsa-let-7¢ BCL2L1 1.42E-05 8.85E-06 1 1 20347499
I 1 hsa-mir-125b-2 ERBB3 2.38E-05 1.84E-05 1 1 17110380
I 1 hsa-mir-100 IGFIR 2.00E-05 1.86E-05 1 1 21643012
I 1 hsa-mir-143 KRAS 3.10E-05 3.06E-05 1 1 19137007
1 1 hsalet-7c MYC 6.28E-05 4.68E-05 1 1 1 17877811
I 1 hsa-mir-143 AKT1-3 1.20E-04  7.33E-05 1 1 23104321
1 1 hsa-mir-125b-2 RAF1 8.43E-05 8.39E-05 1 1 19825990
I 1 hsa-mir-19a ESR1 1.83E-05 1.03E-04 1 1 20080637
I 1 hsa-mir-10b CDKN1A 1.18E-04 1.23E-04 1 1 21471404
I 1 hsa-mir-19b-1  ESRI 3.53E-05 1.70E-04 1 1 19706389
1 1  hsamir-130a  ESRI 1.46E-04 2.15E-04 1 1 21712254
I 1 hsa-mir-125b-2 ERBB2 2.27E-04 2.25E-04 1 1 19825990
I 1 hsa-mir-125b-1 BCL2 3.03E-04 2.70E-04 1 1 22293115
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I 1 hsamir-125b-2 AKTI1-3  6.41E-04 5.96E-04 1 1 18649363
I 1 hsa-mir-125b-2 BAKI 7.85E-04 7.48E-04 1 1 23497288
1 1 hsa-mir-222 ESRI 6.40E-04 1.32E-03 1 1 18790736
1 1  hsa-mir-199a-1 SMAD4  2.68E-03 2.10E-03 1 1 22819820
1 1 hsa-mir-483 SMAD4  3.17E-03  2.34E-03 1 1 1 21112326
1 1 hsa-mir-376c  IGFIR 2.60E-03 2.36E-03 1 1 22747855
1 1 hsa-mir-494 BCL2L11 4.05E-03  2.90E-03 1 1 23012423
I 1 hsa-let-7a-2 EGFR 3.24E-03  3.06E-03 1 1 23032975
11 hsa-mir-221 ESR1 2.96E-03 3.32E-03 1 1 18790736
I 1 hsalet-7a-1 EGFR 3.54E-03  3.35E-03 1 1 23032975
I 1 hsa-mir-143 BCL2 3.88E-03  3.63E-03 1 1 19843160
11 hsa-mir-19b-2  ESR1 1.13E-03  4.37E-03 1 1 19706389
1 1 hsalet-7a-3 EGFR 4.92E-03  4.65E-03 1 1 23032975
I 1 hsa-mir-144 PTEN 5.06E-03  4.85E-03 1 1 23125220
' 1 hsa-mir-139 IGFIR 6.13E-03  6.16E-03 1 1 22580051
11 hsa-mir-21 BCL2 7.05E-03  6.78E-03 1 1 17072344
1 1 hsa-mir-21 MSH2 6.86E-03  8.16E-03 1 1 1 18591254
1 hsa-mir-217 PTEN 6.36E-03 9.39E-03 1 1 20216554
1 hsa-mir-204 BIRC2 8.41E-03  9.92E-03 1 1 21282569
I 1  hsa-mir-101-1 MAP2K1  5.34E-07 4.14E-07 1 20371350
I 1 hsa-mir-30a EGFR 1.12E-05  5.37E-06 1 1 18668040
I 1 hsa-mir-7-3 CAV1 3.59E-05 3.50E-05 1 1 19073608
1 1 hsa-mir-99a RBI1 6.44E-05 4.17E-05 1 23622248
I 1 hsa-mir-101-1  MSH2 5.47E-05 4.82E-05 1 20371350
1 1 hsa-mir-99a RPS6 8.48E-05 6.49E-05 1 23622248
I 1 hsa-mir-100 RBI1 1.32E-04 1.11E-04 1 23622248
1 1 hsa-mir-7-2 CAV1 3.75E-04 3.69E-04 1 1 19073608
I 1 hsalet-7c FOXO3 8.91E-04 7.84E-04 1 1 23622248
1 1 hsalet-7b EEF2 3.67E-03  2.72E-03 1 23622248
1 1 hsa-mir-21 PTK2 3.52E-03  3.34E-03 1 1 18591254
I 1  hsa-mir-132 GATA3 4.06E-03 4.01E-03 1 17612493

1. MI stands for the naive model and M2 stands for the integrated model;
2. Supported by strong experimental evidences;

3.7. Discussion

The traditional way to detect direct targets of miRNA using miRNA-mRNA experiment
method is limited, due to the fact that miRNAs may regulate their targets post-transcriptionally. In

addition, other computational methods, which were based on optimal sequence complementarity
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of miRNA and mRNA, suffer from large percentage of false positives and of limited practical use.
Taking the advantage of recent technique advance in measuring of miRNA expression and protein
concentration levels in a high-throughput scale, we proposed to search for potential miRNA targets
through a nonlinear hierarchical model. Computationally, this integrated model measures the
correlation between miRNA and its targeting protein without making estimation of protein
expression levels first as in the naive method. We used both simulation studies and an application
to the real data to compare our proposed method and the naive method. Our simulation results
suggested that both integrated and naive methods can well control their type-I errors with sufficient
sample size, while the integrated method consistently showed higher detection powers than the
naive method under different scenarios, particularly when the protein intensity values were located
close to the saturation point or the background noise level. In the real data example, our proposed
integrated method detected much more potential miRNA targets than the naive method.
Furthermore, the number of potential miRNA targets, which can be confirmed by computational

methods or literatures, is larger in the integrated method than that in the naive method.

A significant association between a miRNA and protein can be either direct or indirect.
For example, a miRNA may directly target and degrade a transcription factor (TF), which in turn
induces indirect cascading effects of down-regulating the TF’s target genes. The association
analyses from the simple or our integrated model would reveal both direct and indirect
associations. In contrast, the other computer-based algorithms, e.g. miRanda, can only predict
direct miRNA targets based on sequence comparison. In the real data analyses (Tables 3.3 and
Table 3.5), the relatively smaller percentage of overlap between our findings and the miRanda
database suggests that our algorithm may detect more indirect targets. This is showed our

algorithm is more powerful, as demonstrated by our simulation studies, and hence is capable of
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detecting smaller indirect associations. With the cross-reference to the miRanda database, those
direct miRNA targets of more biological relevance could be filtered out to serve as top candidates
for further biological validations. It is worth noting that our algorithm can indeed detect more
direct miRNA targets in absolute number. Also, in Tables 3.3 and 3.5, the results were based on a
FDR of 10% for the multiple test adjustment; however, we also checked a FDR at 5% level and
found the conclusion remained the same. That is, the proposed integrated method found more
miRNA targets that appear in other existing databases, demonstrating its advantage over the naive

method.

Unknown parameters in our proposed model were estimated within the maximum
likelihood framework. Using the asymptotic properties of maximum likelithood estimates, test
statistics were straightforward to construct. However, some improvement can be made to further
improve the proposed model. For example, we assumed a linear relationship between miRNA and
protein to directly compare with the naive method and to illustrate our model using simple
examples, but in reality, the relationship between miRNAs and proteins could follow a nonlinear
relationship, such as a dose-response curve. In this case, f(z;) can be replaced by other parametric
or nonparametric functions. With some simple modifications, our model can be easily extended to
relax these assumptions. Additionally, in this Chapter the random error terms for different dilution
steps were set to be independent and identically distributed as proposed in other RPPA analysis
papers (Hu et al., 2007; Tabus et al., 2006; Yang & He, 2011). However, it is possible that the
errors may be highly correlated. In this case, more complicated dependence matrix among serial

dilution steps can also be readily incorporated into our model framework.
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Chapter 4. A Semi-parametric Integrated Method for Detecting
MicroRNA Target Proteins

4.1. Motivation

Even though the parametric integrated model (PIM) can better estimate the correlation
between miRNA and protein than the naive model, we need to be aware that the PIM was built
under a critical assumption that the protein intensity curve follows a parametric sigmoidal shape.
Thus, if the real response curve does not have such a function format, bias could exist when the
PIM is applied. Furthermore, the parametric model is relative sensitive to initial values in
parameter estimation, i.e., a poor set of initial values could lead to model failure or convergence

to unreasonable locations. Therefore, more robust approaches are still in need.

In this chapter, we will propose a semi-parameter integrated model (SPIM), which fits the
response curve through a B-spline function. Owing to the good properties of B-splines, the model
is easy to be constructed and the fitting accuracy can be adjusted by the degree of spine functions
or the number of knots. To illustrate the performance of the SPIM, simulation studies have been

performed. Again, the model has been applied to TCGA datasets to demonstrate its practical usage.
4.2. Statistical Model and Hypothesis Testing

The overall model is considered to be semi-parametric because the link function between

protein and miRNA concentrations is still assumed to be linear and parametric, even though we
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relax the parametric assumption for the RPPA response curve. Such a model should fit the RPPA

data more flexibly and further improve the detection power of miRNA targets in specific cases.

Previously, a few methods have been established to solve such a nonlinear semi-parametric
problem. Particularly, Kacrcher et.al. proposed a general semi-parametric nonlinear mixed effects
model (Karcher & Wang, 2001) in which they used smoothing spline ANOVA decomposition
defined on general domains. However, the computation of the log-likelihood function by using
Markov chain Monte Carlo is really time consuming. Later, Elmi (Elmi, Ratcliffe, Parry, & Guo,
2011) proposed a general semi-parametric model by using the idea of B-splines with a three-step
algorithm which estimates B-spline coefficients, fix effects and variance components in each step,
respectively. Fixing the knots of a B-spline function, it becomes a linear combination of peace-
wise polynomial functions with unknown coefficients, and the semi-parametric model can be
solved through a likelihood framework. Elmi’s semi-parametric model is relatively easy to

construct and estimates are with good property through maximal likelihood estimation.

With a similar idea, our semi-parametric integrated model (SPIM) is a nature extension of
our parametric integrated model (PIM) by replacing the sigmoidal function with a B-spline
function. We applied a modified algorithm based on Elmi’s in this chapter to improve the

computational efficiency.
Similar to the PIM, our basic model is established as following:
Yij = g(xi; lj;ﬁ) + &
xi = f(z) = ar + apz; + 1,
1;~N(0,05), £;~N(0,0¢),m;r L &
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i,i'=12,..,1andj =1,2,..,5

where y;; is the observed protein intensity level from the ith sample and under the jth dilution, z;
is the log-transformed miRNA level from the ith sample, and x; is the corresponding log-
transformed protein level, i = 1,2, ...,I and j = 1,2, ...,5. lj = 3 —j is a dilution index in the jth
dilution step. €;; is the error term assumed to have a normal distribution with mean 0 and variance
o and 7; is the error term in the protein-miRNA link function with a normal distribution N (0, 6&).
We assume 7,/ and &;; are independent. Now the g(.) is a function that can be modeled with B-

spline functions:
g(xi, lj,ﬁ) = B(xl- + l]),ﬂ

where B(t) = {B,(t), B,(t), B3(t), ... B+, (t)} is a vector of B-spline basis functions and B €
R™¥ is the B-spline coefficient vector where n+1 is the number of internal knots and k denotes
the degree of the B-spline function. More specifically, a quadratic B-spline function with 4 internal

knots will be utilized in the following analysis.

With a similar model structure as the PIM, the unknown parameters of the SPIM can be
solved under a likelihood scale. We center the miRNA data before fitting the model so that @; can
be set to zero to cancel one degree of freedom in fitting the SPIM. The likelihood function for

Y and Z can be written as their joint probability function:

+00
L(¢,O-0,0—1|Y,Z) = n j feij(yijlzi:¢'77i’01)qni(77i|00)d77i
i=1,2.0°~%
j=1,2,.J]

where ¢ = {a,, B} is a vector of unknown parameters included in function f(.) and g(.), ¥ =

{yij| i=12..1,j =1,2..5} represents the RPPA intensity levels and Z = {z;|i = 1,2...1}
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represents the log-transformed miRNA expression levels. The number of total unknown

parameters would be 8 (i.e. 3 + n + k).

Since the response curve, intuitively, is a monotonically increasing function, we set a
monotonically increasing constraint in our B-spline representation. That is, §; = f; when i =
j,i,j=0,1,..,k+n—1(DeBoor, 1978). The constraints can be set up naturally by transformed

parameters {b;} with the following formula:

b = {108(ﬁi+1 -B) i=12,.n+k-2
t Bo i=0

By using {b;} to replace B-spline coefficients {f;} in the likelihood function, the monotonicity

feature of the response curve is guaranteed.

We construct a one-sided test since a negative correlation is expected when a miRNA

regulates a protein:
Hy:a, =0vsHy:a, <0

And the Wald test is used in our simulation and real data example with the test statistic:

a

T.S.= :~N(0,1) under H,, where I (qT)) represent the fisher information matrix of the
1@);2

likelihood function. The null hypothesis is rejected when the p-value is above the present

significance level 0.05.
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4.3. Computational Algorithm and Issues

With a three-step iteration in Elmi’s algorithm, the B-spline coefficients, fixed effects and
variance components can be estimated in each step, respectively. However, the initial value setting
and B-spline knots re-selection in every iteration steps make the computational algorithm less
efficiency and even unable to converge for our case. In this section, we will introduce our

computational algorithm and also discuss issues related to it.

The strategy to solve the maximum likelihood estimators, unknown parameters
{a,, B, 0y, 01}, of SPIM is similar to the one of the PIM. The adaptive Gaussian quadrature (AGQ)
method is used to approximate the integral of n;, and the quasi-Newton method is applied in
maximizing the likelihood function. However, different from the PIM, a two-step optimization
strategy is utilized here to optimize the objective likelihood function. The two-step optimization
strategy reduces the computational time enormously by breaking a high dimensional problem to
several lower dimensional ones. Also, the situation of singular Hessian matrixes happens more
frequently to a high dimensional problem, thus a two-step algorithm in our cases will have much
less cases of negative variance estimates of a,. Details of the algorithm is introduced in Section

4.3.2.

4.3.1. Initial Value Selection

Good initial values will greatly reduce computational time for our algorithm, thus they
need to be carefully set up. The initial values of B-spline coefficients are set from the RPPA
nonparametric method introduced in section 2.2.2 (Hu et al., 2007), and we generate initial a,, g,

from the slope and the estimated mean square error (MSE), respectively, of a linear regression
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fitting centered protein concentrations from the nonparametric RPPA quantification method and
centered miRNA levels. Initial o, is estimated from the square root residual sum of square of
protein intensity level. Actually, the way to estimate initial values for SPIM is a semi-parametric
naive analogue to the naive method we described in Chapter 3, so it will be called as the semi-
paramedic naive method in the following article. The naive method introduced in chapter 2 and 3

will be called as the parametric naive method hereafter.
4.3.2. Computational Algorithm

Our algorithm of SPIM can be summarized as four steps showed below:

Step 0: Generate initial values: ago)’ B(O), 0'50), 0'1(0) and knots of B-Splines based on the
RPPA nonparametric quantification method. Calculate b® for the monotonically increasing
constrains and the initial log-likelihood function; knots of the B-spline function are equally spaced
in percentile levels from the RPPA nonparametric quantification method. MiRNA levels are

centered before fitting the model.

Step 1: In the nth iteration step, fixing a,, 0y, 0y, update b™by using the maximum-
likelihood estimation (MLE). The AGQ method is used to approximate the likelihood function
value and the quasi-Newton method is employed to optimize the approximated log-likelihood
function. Specifically, R function optim with BFGS method, a quasi-Newton method, is used to

optimize the approximated likelihood function value.

Step 2: Fixing b, update a\™, 6™, o™ by using the MLE and calculate the log-likelihood

value corresponding to them. The AGQ method and the quasi-Newton method are also employed.
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loglikelihood ™ —loglikelohood =1
loglikelihood(™—1)

Step 3: Stop the iteration and claim convergence when

1075, otherwise, go back to step (1).

The algorithm has been written in an R code.
4.4. A Simulation Study

To compare with PIM, SPIM was applied on the data generated in middle part of sigmoidal
curve in chapter 3 (called Scenario 1 in this chapter) and one newly generated data based on an
artificial, monotonic response curve constructed by a truncated line with a positive slope (called

Scenario 2 in this chapter). The function to generate Scenario 2 is showed below:
yi]' = 3000 + 1000(9(1 + l]) * xi+1>0 + Ei]'

x; = f(z) = azz; + 1,
T]l""N(O,l), Eij"’N(O, 5002),7']i’ L &ij
i,i'=12,..,1andj=1,2,..,5

where 3000 was the base level of imaging intensity and 1000 was the slope once the relative logz-
transformed protein level above 0. The miRNA expression level was generated using the same
distribution in chapter 3 to mimic the real data. The correlations between miRNAs and protein
expression levels, as characterized by a,, were examined under both the null hypothesis (True
a, = 0) and the alternative hypothesis (True a, = —0.3). 1000 simulations (I=1000) were carried
out for each parameter setting under different sample sizes (N=20, 50, 100 and 300). The type-I

error was set to be 0.05.
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Results from SPIM and PIM were reported. In additional, the parametric and the semi-
parametric naive methods were used as references. The SPIM can successfully test @, among all
cases based on our initial values setting. The PIM can successfully test over 98% cases with
samples in simulation scenario 1. However, PIM only successfully tested average 80% cases in
scenario 2 with sample size 20, and the rate decreased to a much lower number when sample size

was 300. Those failures were due to negative variance estimates of a,.

The upper part of Figure 4.1 illustrated the detection powers of four methods over different
sample sizes, and the lower part of Figure 4.1 illustrated the false positive rates (FPR) of four
methods. The SPIM can correctly control type-I error when sample size was sufficient (e.g. sample
size=300, False positive rate =0.0530) in scenario 1, of which most protein intensity values fell on
the middle part and the response curve was in S-shape. Also, the SPIM had a slightly lower power
than the PIM (detection power=0.9830 vs. 0.9832, Table 4.1) with sample size 300 when
correlations between miRNAs and proteins existed. However, when sample size was small,
especially as small as 20, the SPIM could not well control type-I error (FPR=0.1349, Table 4.1).
This could result from an over fitting of response curve in small sample size, which is a typical
drawback of non-parametric (semi-parametric) methods. Point estimates in terms of @,,6, and &

from cases solved by both the SPIM and the PIM are very close to each other (Table 4.2).
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Figure 4.1| Curves of false positive rate (FPR) and detection power of four methods by
simulation sample size. (Upper) the detection power of the four methods over different
sample size in two scenarios; (Lower) the type-I errors (FPR) of methods in two scenarios.
The SPIM and the PIM had similar detection power in scenario 1 when sample size was large; the
SPIM had significant higher detection power than the PIM in scenario 2 when sample size was
large. Type-I errors of the SPIM got controlled when sample size was greater than 50.
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Table 4.1| Detection power or false positive rate if true a, = 0 in simulation scenario 1; the
SPIM and the PIM had similar performances when sample size was as large as 300; SPIM got
type-I error controlled when sample size was over 50.

Sample The semi-paramedic The Naive

True a Size Naive method SPIM method PIM

300 0.9830 0.9830 0.9832 0.9832

03 100 0.6930 0.7020 0.6915 0.6985
50 0.4160 0.4489 0.4158 0.4259

20 0.2520 0.3696 0.2540 0.2790

300 0.0570 0.0530 0.0553 0.0564

0 100 0.0580 0.0650 0.0567 0.0598

50 0.0490 0.0611 0.0472 0.0503

20 0.0680 0.1349 0.0651 0.0701

Table 4.2| Table for the detailed point estimates of shared unknown parameters in the SPIM
and the PIM (Scenario 1). Mean values and standard errors (in the parenthesis) were reported;
all methods had similar estimation ability in terms of small estimation bias and variations.

True o o

N Method' a, *2 (True Vz(l)lueZI) (True VaﬁJCZSOO)
3 0 -0.0061(0.0118) 0.9848(0.0054)  482.0903(1.2956)

o 2 0 -0.0064(0.0117) 0.9366(0.0052) 487.4254(1.2434)
1 0 -0.0062(0.0117)  0.9298(0.0051)  490.8855(1.2402)

0 0 -0.0063(0.0117) 0.9809(0.0053) 463.6075(1.3352)

3 0 0.0052(0.0065) 0.9957(0.0033) 484 .4161(0.8455)

o 2 0 0.0053(0.0064) 0.9783(0.0034) 498.9683(0.8156)
1 0 0.0053(0.0064) 0.9719(0.0032) 495.9713(0.7876)

0 0 0.0054(0.0064) 0.9923(0.0032) 457.5466(0.8527)

3 0 -0.0034(0.0047) 0.9988(0.0022)  486.6351(0.6572)

0o 2 0 -0.0032(0.0047) 0.9928(0.0024)  506.0391(0.6516)
1 0 -0.0033(0.0047) 0.9863(0.0022)  498.4465(0.5748)

0 0 -0.0032(0.0047) 0.997(0.0022)  455.1726(0.6192)

3 0 -6e-04(0.0027) 0.9992(0.0014)  493.6454(0.5503)
w2 0 -6e-04(0.0027)  1.0097(0.002)  517.345(0.5095)
| 0 -7e-04(0.0027)  0.9953(0.0014)  499.4539(0.3246)

0 0 -7¢-04(0.0027)  0.9998(0.0014)  451.1762(0.3433)

3 03 -0.3075(0.0118) 0.9852(0.0054)  484.3206(1.2927)

o 2 0.3 -0.3067(0.0117)  0.9375(0.0053)  488.7848(1.239)
| 03 -03071(0.0117)  0.93(0.0051)  491.4855(1.2291)

0 0.3 -0.3067(0.0117)  0.9811(0.0053)  464.8493(1.3814)

50 3 203 -0.295(0.0065) 0.9954(0.0033)  486.0782(0.8563)
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0.3 -0.2941(0.0064) 0.9789(0.0034)  500.5824(0.8356)
0.3 -0.2945(0.0064) 0.9719(0.0032)  496.5411(0.7847)
0.3 -0.2942(0.0064) 0.9923(0.0032)  458.0395(0.8593)
0.3 -0.3039(0.0047)  0.999(0.0022)  489.1494(0.6984)
0.3 -0.3033(0.0047) 0.9947(0.0025)  508.1468(0.6753)

100 0.3 -0.3036(0.0047) 0.9861(0.0022)  498.7687(0.5616)
0.3 -0.3033(0.0047) 0.9968(0.0022)  455.2566(0.5977)
0.3 -0.3002(0.0027) 0.9991(0.0014)  496.7987(0.5852)
300 0.3 -0.3002(0.0027) 1.0149(0.0022)  519.7791(0.5156)

— N WO = N WO —~ N

-0.3  -0.3006(0.0027) 0.9953(0.0014)  499.8458(0.3148)

0 -0.3  -0.3005(0.0027) 0.9996(0.0014) 451.8615(0.3463)
1, method 0 to 3 were the parametric naive method, the PIM method, the SPIM method and the
semi-parametric naive method, respectively;

In scenario 2, simulation results showed that the SPIM had better performance than the
PIM when the response curve is not S-shaped (the right part of Figure 4.1). The SPIM can better
control the type-I error than the PIM (sample size=300, FPR=0.0500 vs. 0.1058, respectively,
Table 4.3), and had higher detection power than the PIM (sample size=300, detection
power=0.9710 vs. 0.7143, respectively, Table 4.3). In additional, the SPIM had higher power than
the semi-parametric naive method (sample size=300, detection power=0.9710 vs. 0.9550,
respectively, Table 4.3). In Table 4.4, we compare the point estimates of shared unknown
parameters in the PIM and the SPIM from cases solved by both types of methods. The parametric
based methods did not correctly estimate a, values while the semi-parametric types of methods
did, especially when sample size is big, e.g. 300. Also, the PIM was not able to successful test a,
in many cases in scenario 2. The simulation study suggested that the SPIM method is more robust

and powerful than the PIM method when response curve are not sigmoidal.
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Table 4.3| Detection power or false positive rate if true a, = 0 in simulation scenario 2. The
SPIM has much better performance than the PIM under this condition in terms of higher detection
power and better controlled type-I error.

Sample  The semi-paramedic TI}e
True a, . . SPIM Naive PIM
Size Naive method
method

300 0.9550 09710  0.2857 0.7143

-0.3 100 0.6100 0.6496  0.3213 0.6041

50 0.3800 0.4259  0.2995 0.3947

20 0.2040 0.2880  0.2051 0.2415

300 0.0510 0.0500  0.0288 0.1058

0 100 0.0570 0.0590  0.0504 0.0680

50 0.0490 0.0630  0.0522 0.0567

20 0.0560 0.1020  0.0618 0.0772

Table 4.4| Table for the detailed point estimates of shared unknown parameters in four
methods and their standard error (Scenario 2). The parametric based methods did not correctly
estimate a, values while the semi-parametric types of methods did, especially when sample size
is big.

True 0, o
N Method' a, %2 (True VglueZI) (True Vallue=500)
3 0 0.0023(0.0141) 1.0995(0.0078) 507.2353(1.6754)
2 2 0 20.0012(0.0132) 0.9138(0.0067) 494.8362(1.3455)
I 0 -1.6318(1.918) 10.355(4.7727) 507.3892(2.4273)
0 0 -0.3242(0.3732) 7.0797(1.4518) 492.5723(1.7325)
3 0 20.0018(0.0088) 1.1062(0.0056) 486.6809(1.1655)
“ 2 0 -0.003(0.0083) 0.9541(0.0047) 497.7188(0.9644)
1 0 -2.2536(1.6159) 16.6359(4.2935)  525.0788(4.1128)
0 0 -0.8754(0.6847) 21.2222(4.1322) 480.3866(1.3207)
3 0 56-04(0.0075) 1.1087(0.005) 478.9898(0.7994)
0o 2 0 0.0025(0.0071) 0.9692(0.0038) 499.1161(0.798)
1 0 0.6864(1.3524) 31.2586(9.0262)  528.3946(4.6303)
0 0 -0.4422(0.7166) 42.0133(8.7666)  473.7157(1.0266)
3 0 20.0041(0.0104) 1.1307(0.0072) 479.0157(0.9882)
w2 0 -0.0087(0.0098) 0.9791(0.0057) 502.4604(0.9904)
1 0 -5.7375(5.5085) 344.8306(65.6849) 611.8913(20.2568)
0 0 15.4565(5.5833)  366.5218(65.0571)  468.3396(1.0279)
3 203 -02787(0.0144) 1.1037(0.0083) 507.334(1.707)
20 2 -0.3 -0.2878(0.0135) 0.9175(0.007) 494.382(1.3599)
1 03 -1.0032(0.7571) 3.5806(1.2039) 504.2361(2.1717)
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0 0.3 -1.0644(0.4188) 6.5531(1.3729) 491.699(1.8231)
3 0.3 -0.2956(0.0089) 1.0993(0.0057) 485.9764(1.1347)
50 2 0.3 -0.2904(0.0085) 0.9561(0.0049) 497.8892(0.9731)
1 0.3 2.0399(2.2698) 16.4983(5.2172) 517.2476(2.7556)
0 0.3 -1.2422(0.5922) 19.2075(4.3996) 479.8681(1.2262)
3 0.3 -0.306(0.0079) 1.1094(0.005) 479.4046(0.811)
100 2 0.3 -0.2947(0.0074) 0.9688(0.0039) 499.3543(0.8044)
1 0.3 -3.078(1.2961) 33.652(9.9803) 531.3021(5.2062)
0 0.3 -4.4507(1.0441) 49.311(10.1107) 473.7148(1.0005)
3 0.3 -0.3061(0.0107) 1.1415(0.0085) 479.6509(1.1017)
300 2 0.3 -0.2943(0.01) 0.9837(0.0057) 502.3416(1.1047)
1 03 -26.9698(15.6214)  513.4009(100.7311)  622.6092(22.1766)
0 0.3 -30.3285(5.993)  538.1615(100.2324)  468.3017(1.1993)

1, method 0 to 3 were the parametric naive method, the PIM method, the SPIM method and the
semi-parametric naive method, respectively;

4.5. Real Data Examples

4.5.1.  Analysis of TCGA Ovarian Cancer (OV) Data

The SPIM was applied to the ovarian cancer dataset from TCGA program introduced in
Chapter 3.6. In this dataset, there were 333 ovarian cancer samples with both miRNA and RPPA
data available. The SPIM was applied onto the 574 miRNA-protein pairs with literature supported
in MirTarBase (Hsu et al., 2014). FDR at 10% was used to adjust for multiple testing and the

results were listed in Table 4.5.

Totally 27 targets were suggested by either the PIM method or the SPIM method (Table
4.6). 7 targets were found by the SPIM only and 4 targets were found by the PIM only. Two
suggested targets found by the SPIM only were supported by strong experimental evidences
according to the MirTarBase database, and one of the suggested targets found by the PIM only
were supported by strong experimental evidences according to the MirTarBase database. Among

the 297 targets with strong experimental evidences, 75 were identified by the miRanda algorithm.

&9



12 targets were supported by the PIM or SPIM but not suggested by the miRanda. This implies
our methods discover additional miRNA targets to the computational based method miRanda by
studying protein-miRNA relationship. The 27 targets found by either the PIM or the SIM were

listed in Table 4.6.

Table 4.5| Analysis results by the PIM and the SPIM compared with the miRanda on TCGA
ovarian cancer dataset with literature supports in the MirTarBase.

Foundinthe Found in the Found in the miRanda with

1 .
Method MirTarBase =~ MirTarBase® strong exp erimental
evidences
PIM+ SPIM+ 16 12 2
PIM+ SPIM- 4 1 0
PIM- SPIM+ 7 2 0
PIM- SPIM- 547 282 73

1. + stands for positive findings, i.e. targeted proteins with a specified miRNA, in the method,
and — stands for negative results;
2. Supported by strong experimental evidences

Table 4.6 | Details of targets suggested by either the PIM or the SPIM in TCGA ovarian
cancer dataset. A number “1” was marked under the column for pairs found by the PIM, the
SPIM, in the MirTarBase, MirTarBase with strong experimental evidences (listed on the top) or

miRanda database; pairs were sorted by ascending order of adjusted p-values from the SPIM and
the PIM.

P-values P-values Mir MirT miR

ll:/: Sl\l/)ll miRNA g;:lgegseel:l()elsl fr(;)r;l lvt[he fré)ll)r; 1:/ile l;l“:sre argas a:d Re;tla\l/'lelrll)ces
1 1 hsa-mir-150 TP53 8.30E-07  2.68E-07 1 1 23747308

1 hsa-mir-155 KRAS 1.63E-02  3.83E-07 1 1 18668040
1 1 hsa-mir-150 NOTCH3 1.66E-08 3.98E-06 1 1 1 21551231
1 1 hsa-mir-181a-1 BCL2L11 1.84E-05 4.65E-05 1 1 20841506
1 1 hsa-mir-223 IGFIR 4.14E-05 4.00E-05 1 1 22073238
1 1 hsa-mir-139 IGFIR 443E-05 7.71E-05 1 1 22580051
1 1 hsa-mir-214 CTNNB1 6.06E-06 2.27E-04 1 1 23068095
1 1 hsa-mir-181a-1 CDKNI1B 541E-04 5.75E-04 1 1 19273599
1 1 hsa-mir-18a ESRI1 6.37E-04  7.12E-04 1 1 1 19684618
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hsa-mir-145
hsa-mir-217
hsa-mir-605
hsa-mir-181a-2
hsa-mir-155
hsa-mir-21
hsa-mir-125a
hsa-mir-181a-2
hsa-mir-181a-1
hsa-mir-155
hsa-mir-877
hsa-let-7a-1
hsa-let-7a-2
hsa-let-7a-3
hsa-mir-766

hsa-mir-146b

hsa-mir-221
hsa-mir-7-1

IGFIR
KRAS
TP53
CDKNI1B
SMAD3
MSH6
EIF4EBP1
KRAS
KRAS
CTNNALI
EEF2K
BCL2L11
BCL2L11
BCL2L11
MAPK1

AKT1-
AKT3

BCL2L11
CAV1

7.96E-04
4.41E-02
1.67E-03
2.62E-03
1.08E-03
1.46E-03
1.25E-02
8.89E-02
5.84E-02
1.79E-02
1.02E-02
1.69E-03
1.64E-03
1.69E-03
3.13E-03

3.11E-03

3.45E-03
1.29E-03

8.84E-04
1.54E-03
1.73E-03
2.20E-03
3.76E-03
1.06E-02
3.40E-13
1.16E-06
9.19E-05
2.70E-04
1.08E-03
3.11E-03
3.06E-03
3.07E-03
3.21E-03

4.21E-03

5.19E-03
2.07E-02

bt e ek e ek b e b e e ek e e e

19391107
20675343
21217645
23622248
21036908
21078976
20371350
20371350
20371350
18668040
23622248
23622248
23622248
23622248
23622248

23622248

23622248
19073608

1, Supported by strong experimental evidences

4.5.2.

Analysis of TCGA Breast Cancer (BRCA) Data

In BRCA dataset of TCGA program introduced in Chapter 3.6, there were 239 samples

with both miRNA and RPPA data available. The SPIM was applied onto the 685 miRNA-protein

pairs with literature supported in the MirTarBases. FDR at 10% was used to adjust for multiple

testing and the results were listed in Table 4.7.

Totally 51 targets were suggested by either the PIM method or the SPIM method (Table

4.8). Three targets were found by the SPIM method only and 5 targets were found by the PIM

method only. Two suggested targets found by the SPIM only were supported by strong

experimental evidences according to the MirTarBase database, and 3 of the suggested targets

found by the PIM only were supported by strong experimental evidences according to the

MirTarBase database. Among the 343 targets with strong experimental evidences, 73 were
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suggested by the miRanda algorithm. Three targets were supported by all three methods. The 51

targets found by either the PIM or the SIM were listed in Table 4.8.

Table 4.7| Analysis results by the PIM and the SPIM compared with the miRanda on TCGA
breast cancer dataset with literature support in the MirTarBase.

Found in the  Found in the Found in the miRanda with

1 .
Method MirTarBase  MirTarBase® strong gxperlmental
evidences
PIM+ SPIM+ 43 33 3
PIM+ SPIM- 5 3 0
PIM- SPIM+ 3 2 0
PIM- SPIM- 633 305 70

1. + stands for positive findings in the method, i.e. targeted proteins with a specified miRNA,
and — stands for negative results;
2. Supported by strong experimental evidences

Table 4.8| Details of targets suggested by either the PIM or the SPIM on TCGA breast cancer
dataset. A number “1” was marked under the column for pairs found by the PIM, SPIM, in the
MirTarBase, MirTarBase with strong experimental evidences (sorted on the top) or the miRanda;
pairs were sorted by ascending order of adjusted p-values from the SPIM and the PIM.

P-values P-values  Mir Mir mi
Il:/} Sl\l/’[I miRNA g&g;‘:}‘g from the from the  Tar g;sl; Ra Re}f)tle\l;[?]l)ces
PIM SPIM Base 1 nda
1 1 hsa-mir-99a IGFIR 6.07E-11  5.97E-12 1 1 21687694
1 1 hsa-mir-18b ESR1 1.64E-10  2.37E-09 1 1 19684618
1 1 hsa-mir-10b NOTCHI1 3.89E-07 2.30E-07 1 1 23034333
1 1 hsa-mir-101-1 STMNI1 2.96E-06 2.31E-06 1 1 23071542
1 1 hsa-mir-100 IGFIR 1.86E-05  9.79E-06 1 1 21643012
1 1 hsa-mir-143 KRAS 3.06E-05 1.08E-05 1 1 19137007
1 1 hsa-mir-125b-2 ERBB3 1.84E-05 1.34E-05 1 1 17110380
1 1 hsa-let-7¢ MYC 4.68E-05 1.94E-05 1 1 1 17877811
1 1 hsa-mir-101-1 PTGS2 7.80E-07 2.26E-05 1 1 1 19133256
1 1 hsa-let-7¢ BCL2L1 4.65E-06  2.53E-05 1 1 20347499
1 hsa-mir-30a SMADI 3.27E-02  3.86E-05 1 1 22253433
1 1 hsa-let-7¢ BCL2L1 8.85E-06 4.87E-05 1 1 20347499
1 1 hsa-mir-125b-2 BCL2 431E-06 9.83E-05 1 1 22293115
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23104321

19825990
20080637
21471404
19825990
19706389
21712254

18649363

22293115
23497288
18790736
21526342
22747855
22819820
23032975
23032975
23125220
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23032975
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23012423
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23622248
20371350
20371350
18668040
23622248
23622248
23622248
19073608
17612493
19073608
23622248
18591254

1.

Supported by strong experimental evidences
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4.6. Discussion

In this chapter, we extend the parametric integrated model (PIM) developed in Chapter 3
to a more flexible semi-parametric integrated model (SPIM) by incorporating a nonparametric
function for RPPA response curve, which relaxes the assumption of a specific sigmoid function.
The performance of the SPIM is demonstrated by both simulation studies and real data analyses.
According to our simulation results, the SPIM was flexible enough to fit a non-sigmoidal intensity
response curve with much less power loss comparing to PIM, and yielded the type-I error when
the intensity response curve is non-sigmoidal and sample size is over 50 (Scenario 2). Moreover,
it had more accurate estimates of model parameters. Importantly, when the response curve is
sigmoidal (Scenario 1), the SPIM achieved similar performance as PIM in terms of detection
power and parameter estimates even though the PIM is slightly more efficient. In the real data
example, our proposed SPIM suggested additional miRNA targets with literature support to the
PIM in both OV and BRCA datasets, however, no evidence showed that the SPIM had higher
discover rate than the PIM, which implied the SPIM is still not a replacement of the PIM but a

complement when the RPPA response curve is not sigmoidal.

Unknown parameters in our proposed model were estimated within the maximum
likelihood framework. Using the asymptotic properties of maximum likelihood estimates, test
statistics were straightforward to construct. By adjusting the number of B-spline knots and order,
our semi-parametric model can fit different pattern of protein concentration-intensity response
curve. While more knots and higher order of B-spline functions can result in a more sensitive
model, it also has more parameters to be estimate and can potentially cause over-fitting when

sample size is limited.
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Chapter S. Discussion and Future Work

The RPPA technique provides a new prospect to study the miRNA targets, which could
serve as potential biomarkers of different diseases. Comparing to the naive models, our proposed
integrated models (PIM and SPIM) are flexible and have higher detection powers while controlling
type-I error with a sufficient sample size. In reality, more complicated relationships between
miRNA and proteins could exist. For instance, if the influence from miRNA to proteins could start
only when miRNA reach a certain level, such relationship can be formulated by replacing the

miRNA/protein link function as
C=a;+ay*x %I,

where c is protein levels, x is miRNA level and a5 is the critical value that miRNA start to regulate
proteins. Currently, we assume a constant variance in the miRNA-protein link function and
independence among intensity levels from different dilution steps. A non-constant error variance
and different correlation structure can be implement into our models. In addition, there could be
confounding variables relating to function of miRNA, our models are able to estimate the

correlation between miRNA and proteins relationship after adjusting for these information.

According to our simulation studies and real data analyses, the SPIM is not a replacement

of the PIM but a complement. When the real RPPA response curve follows a sigmoidal shape, the
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PIM is more efficient than the SPIM. While the real response curve is not under a sigmoidal shape,
the SPIM has a higher detection power and better point estimates than those of the PIM. Thus a
method to classified RPPA data into two groups which favor different models before fitting the
PIM and the SPIM will highly improve the efficiency and accuracy of miRNA targets screening

using both methods.

Another important issue in our study is how to better estimate the FDR level. In the current
analyses, we applied the traditional Benjamini-Hochberg procedure (Benjamini & Hochberg,
1995), which works well when all tests are independent. However, given the special testing
structure of cross-examining multiple miRNA-protein pairs, the tests are not independent. For
example, one miRNA may be used to test its correlations with several proteins, and these tests are
dependent as they share the same miRNA data. Several studies have been conducted in this area.
Pawitan et al. (Pawitan, Calza, & Ploner, 2006) have addressed the deleterious effect due to ignore
biological and technical correlations. Ghosal et al. (Ghosal & Roy, 2011) proposed an error
measure prediction method by modeling the distribution of probit transformed p-values. Bean et
al. (Bean et al., 2013) estimated true negative rates in multiple testing through finite skew-mixture
models. But those methods are not perfect fits for our study. Thus, finding a better way to adjust

the bias of FDR estimates is an important topic to be conducted in the future.

In addition, relative miRNAs could work together to regulate the protein synthesis. Our
current method detects miRNA targets through examining correlations between one specific
miRNA and one specific protein. A more general model considering combination effects from
multiple miRNAs could tell whether a protein is regulated by a set of miRNAs and further
improves the detection power. Moreover, our methods detect the miRNA and protein pairs no

matter if the effects are direct or indirect. Causal models could be used in our framework to further
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separate the direct or indirect targets of a miRNA. Inferences about miRNA regulation mechanism
are surely enhanced by incorporating additional information such as mRNA. Alternatively, it is
worthwhile to develop models that simultaneously consider miRNA, mRNA and protein

information.
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