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Financial time series data exhibits heavy tailed, volatility clustering and long range dependence 

style facts. Traditional Gaussian distribution assumption based model failed to explain these 

phenomena. A unified framework model proposed in this thesis, fractionally integrated 

autoregressive moving average (FARIMA) and fractionally integrated generalized autoregressive 

conditional heteroskedasticity (FIGARCH) with multivariate generalized hyperbolic distribution 

(MGHD), trying to capture all these phenomena together. We also examined this model by using 

intra-day market dataset to backtest of various risk measure. With rise of high frequency trading 

and algorithm trading in recent years, trading volume hugely increased and markets became 

more volatile. Order execution is the main concern for traders, especially in the case of 

liquidation of big orders. We illustrate how the optimal order execution strategy behaves under 

the assumption that market price dynamics follows high volatile (non-Gaussian) markets with 

volatility clustering and log-range dependence characteristics. 
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Chapter 1  Introduction 

 

  The study of statistical properties of financial or economic time series data shows many stylized 

facts which seem to be common among several of markets, instruments and periods: heavy tails, 

volatility clustering, long range dependence, etc.. Although Gaussian distribution assumption is 

very popular in industry application, people already know that empirical distribution of asset 

returns exhibits excess kurtosis, namely, non-Gaussian or heavy tailed distribution. Mandelbrot 

(1960) is the first to attack Gaussian assumption when he used stable distribution to model cotton 

commodity returns. One would ask why we concerned about heavy tailed distribution. The one 

major concern is the financial crash or rare event from risk management prospective. From 

financial market history, we learned the financial crash is not that “rare”, at least not as rare as 

Gaussian based model suggest. One can refer to Rachev and Kim (2010) for a good illustration. 

There are several popular alternatives for heavy tailed distributions, i.e. student-t distribution, 

Pareto distribution, classical tempered stable distribution, etc.. Meanwhile, there are some issues 

when we apply these distributions to real applications, for example, infinite high order moments 

or non-existence of probability distribution function. 

  Another important observation of financial return time series is the dependence properties. This 

means the return series is correlated, which forms the foundation of forecast of time series 

model. Classical time series model, autoregressive moving average (ARMA), was used to study 

the financial time series. Based on the specification of ARMA-type model, one expects that 

autocorrelation or dependence among large lags decays very fast which refers to short-memory. 

But this is not the case for some cases in empirical observed series which has slower decay rate, 

namely, hyperbolic decay. Long memory model, fractionally integrated ARMA (FARIMA), was 

proposed to study this kind of time series (see Granger and Joyeux, 1980, Bollerslev& Jubinski 

1999). Although there is debatable existence of long memory in return series data, we argued 

that FARIMA is a broader class model which contains ARMA-type model as a sub-class model.  

  Volatility clustering is another well-known observation in financial market. As noted by 

Mandelbrot [3], “large changes tend to be followed by large changes, of either sign, and small 

changes tend to be followed small changes”. Quantitatively, this phenomenon means the 

autocorrelation of absolute returns or squared returns display a slower decaying rate.  This was 

modeled by variance of error terms in time series context, Bollerslev (1986) proposed GARCH 

model to explain volatility clustering phenomenon and Baillie (1996) proposed long memory 

generalization of GARCH model, namely, fractionally integrated GARCH (FIGARCH).  With 

combination of FARIMA and FIGARCH model, we expect this model has the ability to capture 

long memory feature in returns series and also volatility series.  
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  In portfolio level analysis, we also concern the dependence structure between each marginal 

asset. We use multivariate generalized hyperbolic distribution (MGHD) to model dependence 

structure among innovations for each marginal. The innovations for each marginal asset are 

filtered out based on FARIMA-FIGARCH structure. Barndorff-Nielsen (1977) first proposed 

GH distribution which is generated by mean-variance mixture structure. It is a very popular 

model since the flexibility of its parameters represents a broad class of distribution, and also 

includes semi-heavy tailed behavior. The GHD is closed under linear transformation. This means 

that portfolio return, a linear combination of each marginal return with different weight, is still a 

GHD. This enables us to calculate various risk measure based on one dimensional GH 

probability density function. We perform backtest based on VaR and CVaR of an equally 

weighted portfolio by using intra-day dataset with different frequency data for intra-day market.  

With rise of high frequency trading and automated algorithm trading in recent years, optimal 

order execution is the main concern for a trader, especially in the case of liquidation of big orders 

of financial institutions, such as mutual funds and pension funds. Transaction cost of liquidation 

of portfolio position is the major concern for a portfolio manager, especially when a big order 

needs to be executed. The seminal work of Almgren R. and Chriss N. (2000) worked out a 

framework to define an optimal trading strategy in terms of trading cost, a variable defined to 

capture the characteristic of a trading strategy. A very interesting thing is to see that how an 

optimal trading strategy behaves during high volatile (non-Gaussian) markets with volatility 

clustering and log-range dependence. In this thesis, we provide a simple demonstration to 

illustrate this scenario in terms of efficient frontier of transaction cost.  

This thesis organizes as following. Chapter 2 introduces concept and some properties of long 

memory. We present FARIMA-FIGARCH model in chapter 3. Generalized hyperbolic 

distribution is detailed in chapter 4. Backtesting procedure and empirical results are presented in 

chapter 5. We review optimal execution framework and illustration of a simple numerical study 

is demonstrated in chapter 6.  
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Chapter 2   Long Memory 

    

2.1 Basics concepts in time series  

A stochastic process    is a collection of random variables with time ordering index.     is 

discrete when     and continuous when    . In practice, we usually observe a set of 

realization of   , say            .   

If the joint distribution associate with   observations               , is the same as 

observations                    , then the stochastic process    is strictly stationary.  

Under strictly stationary assumption, the covariance between    and      must be same for 

any  . It’s only determined by    , lags between them. The autocovariance at lag   of    is 

defined as  

                                  

                                                  

And autocorrelation at lag   is 

   
  

  
   

The spectral density is defined as  

     ∑     
      

 

    

                

One can see that       is the discrete version of Fourier transform of    . This is why spectral 

density is considered as frequency domain analysis. We also can show that  

   ∫        
 

  

          

This means spectral density is related to autocovariance by Fourier transform. 
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2.2 Definition of long memory 

Long memory is also called long range dependence. There are several related definitions of long 

memory in the literature. In this thesis, we take the definition below ( see McLeod & Hipel 

(1978) ) :  

Definition 2.1.  Assume    is a discrete time process with autocorrelation coefficient    at lag j  

, then we say that the process contains long memory if  

 
     
   

∑ |  |   

 

    

 
            

(2.1) 

By this definition, the absolute autocorrelations are non-summable. While short memory process 

could be defined as 

 
     
   

∑ |  |   

 

    

 
            

(2.2)  

And the autocorrelation of long memory process has representation (see Brockwell & Davis 

(1995) ), we also show the detail later.  

                                                               | |                       
 

 
                    (2.3) 

By definition, the spectral density of     could be calculated as  

 
       

 

   
 

 

 
∑   

 

   

         
           

(2.4)          

It is clear that spectral density of    is infinite at    . This also means that the spectral density 

has a pole at     .  

2.3 Long memory and self-similarity 

There is close relationship between long memory and self-similarity. In this section, we will 

explore this relationship. We also clarify that the concept of self-similarity defined in continuous 

time. Meanwhile, The FARIMA-FIGARCH model is about discrete time process.  

Definition 2.2. A stochastic process          is said to be self-similar if there exists     such 

that for any scaling factor    , the processes          and            have the same law: 

          
 

            
(2.5)          
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Where   is called the self-similarity exponent of the process  . 

To demonstrate the relationship between long memory and self-similarity, we define a 

continuous stochastic process     , with self-similarity parameter  .  Assume      with 

probability 1,          and the increments of     are stationary, i.e.            is stationary 

with           .  Then we have: 

                                

                               
 

 
            

              
              

    

Then by property of self-similarity, the correlation are given by 

                   
 

 
                        

                                                      
 

 
    (  

 

 
)
  

   (  
 

 
)
  

  

By Taylor expansion, we have 

                                                                          

Therefore,       ∑        
      exist if and only if    

 

 
 , and the case of   

 

 
  implies that 

the series does not converge, we have    is a long memory process.  And also from formula(2.3), 

we see that there is a relationship between parameters   and    :  

                                                                    
 

 
                                                                   (2.6) 

Usually, value of 0.5 of   indicates the absence of long rang dependence. The degree of long 

range dependence getting stronger when   approach 1; and   less than 0.5 indicates anti-

persistency, which means the process fluctuates violently.  Therefore, the corresponding value of 

  suggests the same feature of a random process. 

2.4 Fractional integration in discrete time 

Following Hosking (1981), the  
 

 
   th derivative of a Brownian motion is called a fractional 

Brownian motion in continuous time. The discrete time analog of a Brownian motion is the 

random walk with Gaussian innovations, and a fractional Brownian motion is fractionally 

differenced Gaussian noise.  If we define the discrete time version of Brownian motion as 
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Where   is the lag-operator, and    is Gaussian            
    random variable. Then we have the 

corresponding definition of fractional difference based on binomial expansion, see Granger and 

Joyeux (1980) :  

                                                           ∑ ( 
 
) 

                                                    (2.7) 

The convergence of this expansion follows theorem from Lindstrǿm (1995). We also want to 

point out that binominal expansion  (2.7) is nothing else but the Taylor series expansion of  

            at    , one could possible choose the same Taylor series expansion at 

different point of  , which could get a different stochastic variable follows different probability 

law with the one in binominal expansion. This is still an open question to see how the different 

expansion would affect the structure of fraction integration. 

Now, we can write the fractionally integrated process as following: 

                                   
 

 
                 

                                           
 

 
                ∑       

 
             (2.8)   

where                               

                                                  
                    

  
 

       

            
 

And  ( )  denotes gamma function. By using Stirling’s formula, one can show that  

                                                          
     

     
                           

Therefore the       coefficients of the integrated process    is     . If we consider the 

condition of invertibility with the existence of       representation, we can show that   

     is a sufficient condition, see Hosking (1981).  In order to check    representation of    , 

we can rewrite equation (2.8)  as :  

              [      
 

 
           ]   ∑       

 
                                    (2.9) 

where                   

                                              

                                           
                   

  
 

      

          
                  

Therefore     is the       coefficients of    .  Follow Stirling’s formula, one can show that  
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And the variance of    is 

 

                                ∑   
  

      ∑   
   

     ∑   
  

       

                                                                ∑   
   

     ∑
     

     
 
          for large   

From this expression, we can see that the variance    is finite if and only if  

                                                     ∑
     

    
  

           

This means        , that is       . 

In order to get a good understanding of the difference between long memory fractionally 

integrated process and short memory process, we present an example of a        process with 

coefficient 0.5 and a fractionally integrated process with      . In figure 1, we plot their 

      coefficient for illustration. As a process can be interpreted as the convolution of     

coefficients and independent random innovation (shocks). Actually, in signal process context, 

these MA coefficients is called impulse response weights which could be think of how much 

effects for different shocks. From the figure, we can see that the MA coefficients of fractionally 

integrated process decays much slower than the AR(1) process. This illustrates exactly how long 

memory process behaves when it hit by a shock. This is also why we call it “long memory”, 

since the shocks has longer time effect. 

We can also get the autocorrelation coefficient by definition above:  

                                                      
            

                
    

And   

                                                            
       

       
         

 

 
   

 

 
 

The autocorrelation coefficient:  

                                                            
  

  
 

            

                
                                            (2.10) 

And it can be show by Stirling’s formula:  

                                                          
      

    
                                                           (2.11) 
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We can see that this formula corresponds to the formula (2.3) in section 2.1.  Let’s compare this 

to       process, say,  

              

                
  

    
   

           
 

      

   
  

  
    

We can see that autocorrelation of       process decay geometrically. In figure 2, we plot the 

autocorrelation coefficient for the same process in figure 1. We can clear see that fractionally 

integrated  process has slowly decay rate than       process.  

From all the discussion above, we see that the autoregressive coefficients, the moving average 

coefficients and the autocorrelation coefficients of the fractionally integrated process all decay as 

            . This is hyperbolic decay rate which is slower than the exponentially decay 

rate of short memory process. 

 

 

                                                    Figure 1: MA coefficients for two different processes 
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Figure 2: Autocorrelation coefficients for different processes 
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Chapter 3  FARIMA-FIGARCH model 

 

3.1 FARIMA-FIGARCH structure 

From the discussion in chapter 2, we see that there is only one parameter     in the definition of 

fractionally integrated process     , see formula (2.8).  And the slow decay or long memory 

property all depend on this particular parameter. In order to generalize the fractionally integrated 

process, people add the feature of modeling the short run dynamics, say, ARMA-type model. 

With this motivation, Granger & Joyeux (1980) and Hosking (1981) propose the FARIMA 

structure.  

A stochastic process    is said to be fractionally autoregressive integrated moving average 

(FARIMA) or denoted as FARIMA         if it is defined as  

                                                                                                                     (3.1) 

                                                        ∑    
  

    

                                                         ∑    
  

     

                                                                                                                               

Where   is the unconditional mean of process    ,      is the autoregressive operator and      

is the moving average operator.  The usual stationary and invertibility conditions of    and     

for ARMA model are assumed and               to ensure stationary and invertibility of 

fractionally integrated part.  

To model the volatility clustering phenomena which is an important empirical observation in the 

financial market, Bollerslev (1986) proposed the ARMA-type model on the conditional volatility 

series of    , GARCH model. If we assume          |       , then GARCH      is defined as  

                                                  
                                                                  (3.2) 

                                                ∑    
  

      

                                                ∑    
  

     

Where                     and            .   
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Another characteristic of volatility series is the persistence, see Ding, Granger, and Engle (1993), 

and Harvey (1993).  With same idea of FARIMA structure, one can use fractionally integrated process 

with GARCH to model persistence, which refers to fractionally integrated GARCH model (FIGARCH) 

see Baillie, Bollerslev and Mikkelsen (1996).  There is different specification of FIGARCH model, see 

Chuang (1999). If we rewrite GARCH      in (3.2) as:  

 

                                              (           )  
    (      )                                              (3.3) 

  

Where      
     are innovations since they have zero mean and uncorrelated. To ensure process   

   is 

stationary, we assume the roots of polynomials of              and        lie outside the unit 

circle. Baillie, Bollerslev and Mikkelsen proposed FIGARCH        model based on (3.3):  

 

                                                                  
    (      )                                               (3.4)       

where                                                           

                                                                         ∑    
  

      

And assume         to ensure the stationary. To get explicit expression of conditional 

variance    ,we can rewrite (3.4) as :  

                                               (      )     (      )  
              

                   (3.5) 

But there is one problem of specification in (3.4), since it does not have similar structure to 

FARIMA model, in terms of         operator. Because operator         applies to   in (3.1)

, but        not applies to   in (3.4). Therefore, we can rewrite GARCH      in another way 

to avoid this problem:  

                                                   (           )   
       (      )                                    (3.6) 

And the corresponding FIGARCH        defined as:  

                                                                         
      (      )                                    (3.7) 

And the corresponding conditional variance    can be expressed as: 

                                             (      )   (      )  
              

 
                     (3.8) 

Compare specification of (3.4) and (3.7), we have  

                                                                                                                              (3.9) 

Chung (1999) argued that the specification (3.7) is better than (3.4) in terms of parameter 

estimation. Following their track, we use specification (3.7) in this thesis. 
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To sum up, we combine structure (3.1) and (3.7) as our FARIMA        -FIGARCH        

model:  

 

                                                                                                                   (3.10) 

                                                          
      (      )               

                                                                                          

where                                           

                                                        ∑    
  

    

                                                         ∑    
  

     

                                                         ∑    
  

      

                                                        ∑    
  

     

                                                         
                     |           .                                               

 

3.2 Parameter estimation of FARIMA-FIGARCH model 

  

3.2.1 Estimation of parameter    

There are some simple tools to detect long memory, such as, R/S plot, variance plot and 

variogram, etc.. But they all just for diagnostic purpose. In this thesis, we employ semi-

parametric method for estimation of  , GPH log-periodogram estimator, see Geweke and Porter-

Hudak (1983).  

We can rewrite FARIMA process in (3.1) as : 

                                                                                                                           (3.11) 

                                                                                                                            

   is an ARMA process, and from equation  (3.11), we can write  



 

13 

 

                                                                       |      |
   

                                    (3.12) 

where       is the spectrum of   . Take logarithm of (3.12) , we have 

                          (     )       (|    (
 

 
) | )    (

     

     
)                             

Adding the periodogram of   to both sides  

                           (     )    (     )      (|    (
 

 
)|)     (

     

     
)    (

     

     
)   (3.13) 

Then we can estimate   by linear regression base on equation (3.13).  

If we have data sequence             , then periodogram is calculated by: 

                                 
 

   
|∑    

         
   |

 
                       

   

 
    

And define       |    (
  

 
)|, then estimator of   could be written as 

                            ̂  
     ∑ (    ̅)      

 
    

∑ (    ̅)
  

   

       where   ̅  
 

 
∑   

 
                                        (3.14) 

As Clifford M. Hurvich (1998) suggested, we choose 1/2m n  which makes this estimator has 

minimized mean squared error.  

3.2.2 Estimation of FARIMA-FIGARCH 

We follow [Chung 1999] to use approximate maximum likelihood estimation (AMLE) for our       

parameters estimation procedure. Given the sample             follow FARIMA-FIGARCH 

model, if we further assume that the innovation    are normal distributed,              then the 

approximate log likelihood function is :   

                                                  
 

 
       

 

 
∑     

 
    

 

 
∑

  
 

  

 
                              (3.15) 

where   is parameter set needs to be estimeated.  

The computation of this log-likelihood function require the values of    and   . Follow   

FARMA-FIGARCH structure defined in (3.10), we first filter     through two steps: 

Step 1:      ∑       
   
              where    

       

            
 

Step 2:         ∑        ∑       
 
   

 
                                                                            (3.16) 
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Once obtain    ,we can compute conditional variance    . 

Step 3:      ∑         
        

    

Step 4:       ∑        ∑   
 
       

    
     ∑       

 
   

 
                                          (3.17) 

For FARIMA        -FIGARCH       , we have parameter set                 , six 

parameters.  In order to get optimal local maximum for AMLE optimization procedure, we need 

to get optimal initial estimates of parameter set. We can rewrite FARIMA-FIGARCH in (3.10) 

as : 

                                                                   

                                                                                                                                 (3.18) 

And  

                                                            
          

                                                            (      )                                                        (3.19) 

Where    and     are ARMA process.  

 As discussion of semi-parametric estimator of   in last section, we can take advantage of this 

and estimate an ARMA process on the filtered data. We propose procedure as following:  

Step 1: Estimate 0d   based on sequence of ty .  

Step 2: Filter tW  from ty  ; i.e.  0(1 ) ( )
d

t tW L y     . 

Step 3: Fit tW  to the ARMA model, and get initial estimates of  ( , )   . 

Step 4: Filter t  from the FARIMA model based on the parameters from steps 1, 2, 3. 

Step 5: Estimate d   based on  2 2

t   . 

Step 6:  Filter th   as a function of ( , )   based on the formula in (3.17). 

Step 7:  Fit andt th  to the AMLE log-likelihood function given by equation (3.15). 
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3.3 Forecasting 

After calibrate model, we need to have one step forward-looking prediction or generate 

scenarios. Let’s review ARMA     -GARCH      model first:  

                                   ∑   
 
        ∑       

 
                                                           (3.20) 

                                     ∑       
  ∑       

 
   

 
     

                                   √       

Suppose we are at time   now, i.e. information up to time  . The next step model would be: 

                     ∑   
 
          ∑         

 
               |                           (3.21) 

                       ∑         
  ∑         

 
   

 
     

                      √           

Where       |    and       are deterministic up to time  . Therefore the randomness all come 

from      which we will model separately with heavy-tailed distribution. Also, we can obtain 

scenarios based on the scenarios of      .  

Now let’s go to FARIMA        -FIGARCH        model. The difference between them is 

the fractional integrated part         which could expand as an infinite sum:   

                                       ∑
      

           
   

      ∑         
                                 (3.22) 

Therefore, 

                                   (  ∑    
  

   ) (  ∑         
   )    ∑    

  
        (3.23) 

Where    could be calculate by convolution of polynomials of    and    . In real application, we 

need to truncate the infinite sum in (3.23) to some large lag term, say,           . Then we 

can rewrite FARIMA as:  

                                                                  

                                        ∑       
 
    ∑       

 
                                                    (3.24) 

This is exactly the ARMA model with different order, compare to equation  (3.20). In the same 

manner, we can rewrite FIGARCH equation: 
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      (      )    

                                (      )          
    

               
       

                                     ∑             
   

      
              

   

                                     ∑             
   

      
     

  ∑   
  

       
    

                                     ∑             
   

    ∑   
  

       
                                    (3.25) 

Where   
  is calculated from           . Combine (3.24) and  (3.25), we obtain the explicit 

equation for FARIMA-FIGARCH and next step equation: 

                              ∑         
 
    ∑         

 
               |                   (3.26) 

                                ∑                 
   

    ∑   
  

         
   

                              √             

Similarly,       |    and      are deterministic up to time  , and all the randomness come from 

    . Scenario generation for      will be dependent on scenarios of     . 

 

3.4 Argument of Long Memory  

There are a lot of arguments about the existence of long memory or long range dependence of 

stock returns in the literature. Mandelbrot (1971) firstly suggested that stock returns exhibits long 

range dependence and subsequently many empirical studies in R/S analysis confirm that. But 

such test have been criticized by Lo (1991), he pointed out one may yield a different result after 

accounting for short range dependence.  Although the absence of solid evidence of long range 

dependence in returns, it seems that the presence of long range dependence of volatility is more 

accepted. Therefore, many authors suggested that models such as Fractionally Integrated 

GARCH model could capture the long range dependence of volatility.  This is also why we are 

using FARIMA-FIGARCH model to capture long range dependence of returns and volatility 

together in this thesis, as far as we know, this is the only statistical model could be used 

systematically.  

We show that long memory process would have slow decay of autocorrelation in chapter 2. But 

testing for long range dependence by examining sample autocorrelation may fail to work when 

the asset returns have features of heavy tails and long range dependence, see J.Bearan (1994).  
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And slow decay of sample autocorrelation functions may possibly arise from structural change, 

this could lead to spurious long memory. There is no reliable technique to differentiate structural 

change and long memory in the literature now. But we do know there is similar effect between 

fractional integration and structural change. Diebold and Inoue (1999) show that stochastic 

regime switching and related model may be confused with long memory, as long as only a small 

amount of regime switch occurs.  Transformations of random walks may also produce processes 

very similar to long memory processes. Granger and Ding (1996) provide an example of a 

process of nonlinear transformation of random walk,which has slowly decaying autocorrelations. 

There are some argument that long memory model has parsimonious representation of data, since 

there is only parameter   to describe long memory. If one look at the transfer function of 

FARIMA process, one could hope high order ARMA model would approximate the FARIMA 

arbitrarily close in terms of rationality of transfer function. But this require a lot of parameters to 

be estimated in ARMA model, this could be done by using state space model for high order 

parameters, and also need some technique to reduce dimension of parameters in order to ensure 

prediction power of the model, for example, lattice or optimal balance technique in signal 

processing field.  
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Chapter 4  Generalized Hyperbolic Model 

 

It is well known that the returns of most financial assets have heavy tails or semi-heavy tails. In 

risk management context, one is more concerned about the loss or negative tail part of the 

portfolio. And the most widely used risk measure is Value at Risk (VaR) or Conditional VaR 

(CVaR) which all builded up the distribution of underling financial instrument. The traditional 

Gaussian assumption would greatly underestimate these risk measure which would lead to great 

risk to large financial institution or investors. Generalized hyperbolic distributions (GHD) 

possess semi-heavy tails. Compared to other heavy tails distribution, such as stable distributions, 

GHD have finite moments which could be applied to pricing theory. And the probability 

distribution function of GHD is known explicitly which would be easily applied in practice 

compare to other tempered stable distributions.  

Old E. Barndorff-Nielsen (1977) introduced this distribution first and applied it to model grain 

size distribution of windblown sands. GHD turns out to be a very broad class distribution, and 

contains many special cases, such as, hyperbolic distribution, normal inverse Gaussian, Student-

t, Variance-gamma, etc.. The normal mean-variance mixture structure makes it have more 

flexibility to model multivariate distributions. 

In this thesis, we are trying to model the standardized innovation in (3.10) as generalized 

hyperbolic distribution. The standardized innovation is defined as 

                                                                       
  

√  
         

The FARIMA-FIGACH structure will capture the correlation and long range dependence effect 

between time lags. And modeling    will enables us to capture the external effects, such as heavy 

tails. In portfolio level, we also need to model the dependence structure between different assets 

of portfolio. Assume we have   instruments in our portfolio, and then we can get vector of 

standardized innovation               which can be filtered out for each asset based on 

FARIMA-FIGARCH structure. Under elliptical symmetry distribution assumption, such as 

multivariate Gaussian distribution, it implies that all one dimensional distributions are 

symmetric, which contradicts the empirical observation. Normal mean-variance mixture type 

distribution could enable us to add asymmetry to different dimension and model non-linear 

dependence, i.e. tail dependence in multivariate case. In this thesis, we suggest multivariate 

generalized hyperbolic distribution (MGHD) would be a good candidate for modeling 

dependence structure.  
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4.1 Definition and Properties 

 

Definition 4.1     X   is said to have a multivariate GH distribution if   

                                          
 

      √                                                                         (4.1) 

Where 

1.              

2.         

3.        

4.     is a scalar valued random variable and has GIG (Generalized Inverse Gaussian 

distribution) 

There are different parametrizations for GH distribution, we will review this in next section.  For 

the definition above, we say                   which has six parameters.         are the 

parameters for GIG distribution, and determine the shape of the GH distribution.  From 

definition above, we can see that it determines how much weight is assigned to the tails and to 

the center. In general, the larger those parameters the closer the GH distribution is to the normal 

distribution.   is the location parameter.       is the dispersion matrix.   is the skewness 

parameter.  

We can see that conditional distribution of  |    is normal distribution:  

                                         |                                                                             (4.2) 

Where      .  

Also, we have expected value and variance as below:  

                                                     [   |  ]                                                      (4.3) 

                                                    [     |  ]         |     

                                                                            

This normal mean-variance mixture structure can let GH have more flexibility to model 

dependence relationship between different dimension compare to Multivariate Gaussian 

distribution.  To illustrate this, we show different parameter combination of    and   in graphs 

below.  
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                                                         (a): Multivariate Gaussian distribution with correlation 0 and 0.9 

 

                         

                                     Correlation 0 and                                                           Correlation 0 and                           
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                                 Correlation 0.9 and                                                       Correlation -0.9 and                          

                                              (b): Multivaraite GH distribution with different parameter  

                                                   Figure 3: Comparison two dimensional Gaussian and GH 

 

Definition 4.2  The density of a Generalized Inverse Gaussian (GIG) distribution is given by: 

                                                       (
 

 
)

 

     

    (√  )
     

 

 
 
 

 
                          (4.4) 

 

Where      is modified Bessel function of the third kind and parameters satisfying  

             

             

            .  

The moment generating function of the GIG distribution is determined by  

                                                          (
 

    
)

 

 
 
  (√       )

  (√   )
                                             (4.5) 

The moment of a GIG random variable   can be found  

                                                           (
 

 
)

 

 
 
    (√   )

  (√   )
                                                     (4.6) 
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And also,  

                                                           
      

  
|                                                                (4.7) 

Noted that GIG contains some other class of distribution as special case, such as  

                                             Inverse Gaussian distribution for          

                                             Gamma distribution for              

                                             Inverse Gamma distribution for              

Properties     

Density 

Since the condition distribution of   given   is Gaussian distribution, see formula (4.2). Then 

we can find GH density by conditional density respect to  .  

                                     ∫    |    |           
 

 
                                                           (4.8) 

                                          ∫
           

    
 
 | |

 
  

 
 

   { 
    

  
       

 

 
}          

 

 
   

                                          
(√   )

 
(        )

 
 
  

    
 
 | |

 
   (√  )

  
 

  
 
 

(√(      )          )             

(√(      )          )

 
 
  

    

Where                        and domain of           is the same as in GIG 

distribution,                  .  

 

Moment generating function  

The moment generating function is calculated based on the moment generating function of GIG, 

see (4.5).  

                                [          |  ]       [   {  (    
 

 
     )}]                (4.9) 

                                            (
 

            
)

 

 
 
  (√               )

  (√   )
     

with constraint              for positivity. 
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Linear transformation 

If                     and          where         and       then 

                             .  

This means that GHD is closed under linear transformation and it can be proved by using 

characteristic function.  

Proof  

The characteristic function of   is  

                       [ [      | ]]   [                        ]         ̂                    

Where  ̂    ∫           
 

 
 denotes the Laplace-Stieltjes transformation of the distribution 

function   of  . And the characteristic function of        is 

                                      [ [           | ]]   [                                   ]   

                                                       ̂                          

Therefore,                                 . 

 

Tail Behavior  

The generalized hyperbolic distribution have semi-heavy tails, and in particular  

                                    | |      (       )                                             (4.10) 

up to a multiplicative constant (see Barndorff-Nielsen 1981).  In figure below, we show the 

qqplot between Gaussian sample data and GH sample data and log-density of them. We can see 

that there is difference in the tail part.  
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Figure 4: Tail behavior of Gaussian and GH with lambda=-0.2 

 

4.2 Parametrization  

There are alternative parametrization of GH distribution for different use.  We will review three 

of them briefly since they are related to our parameter estimation application.  

From definition in (4.1),  we have parametrization              . But this parametrization has a 

drawback of identification problem. Because the distribution                   and 

                        are identical for any    . Therefore, an identification problem 

occurs when we fit GH to a dataset. This problem could be solved by adding some constraint to 

the parameter set. In some application, one could require determinant of dispersion matrix to be 

1, i.e. | |     

In this thesis, we use another more elegant way to eliminate the degree of freedom. We require 

the expected value of the GIG variable   to be one, i.e.       .  This also makes the 

interpretation of the skewness parameter   easier and the fitting procedure becomes faster. By 

the moment formula of GIG in (4.6), we define  

                                                        √
 

 
 
    (√   )

  (√   )
                                                    (4.11) 

And set   

                                                          ̅  √                                                                           (4.12) 

Then we have parametrization     ̅       .  It follows identity  
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                                            ̅
      ̅ 

    ̅ 
            ̅

    ̅ 

      ̅ 
                                                (4.13) 

The original parametrization is               when GH was firstly introduced by Barndorff-

Nielsen (1977), the corresponding density as following: 

                              
(        )

   

    
 
 √   

  
 
     (  √        )

 
 

  
 
 

(  √               )        

(√                )
            (4.14) 

And there is also an identification problem which can be solved by requiring | |   . The 

corresponding mixture representation is :  

                                                 |                    

                                                                                      

In the univariate case density (4.14) reduce to  

                                
(     )

   

√     
  

 
     (  √     )

 
 

  
 
 

(  √           )       

(√          )
                              (4.15) 

If we define  ̅       ̅     , then the parametrization     ̅  ̅     is scale and location 

invariant for GH with respect to parameters    ̅  ̅ .  To prove this, suppose a linear 

transformation         and                   , then  by property of linear transformation 

of GH,   is also GH with parameters             | |       | |       | |   and 

       .   We can see  that         and        . 

We can use formulas to switch between different parametrization. We list them as below  

                  ̅        :   ̅  √   and set √
 

 
 
    (√   )

  (√   )
                                 (4.16) 

                           :  

                                                            | | 
 

     ,           

                                                            √ | |
 

   ,   √| | 
 

                                 (4.17) 

                             :  

                                                                                                        (4.18) 

            (   ̅  ̅  )  for univariate case : 
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                                                          ̅       ̅                                                                  (4.19) 

 

4.3 Parameter Estimation  

 

4.3.1  Univariate Standardized GH Estimation  

Univaraite GH can be fitted by maximum likelihood estimation. One can use parametrization 

(4.8) or (4.15). Suppose we have observations          . By using parametrization (4.15), then 

the log-likelihood function is  

  ∑                  (
 

 
 

 

 
)∑               

 

   

 

 

   

 

                                                                ∑     (      ( √          ))           
     

Therefore, the estimator could be obtained by using numerical optimizer directly. 

In order to modeling standardized innovation sequence    in FARIMA-FIGARCH model, we 

have to maintain the constraint that                  , i.e. we need to define standardized 

GH distribution. Of course, one can force any parametrization with constraint mean 0 and 

variance 1. For example, if we use parametrization              , and by formula (4.3), we 

have  

                                                                      

                                                                                                                    (4.20) 

Then we have 

                                                                     

                                                     (
 

 
) 

    (√   )

  (√   )
     

The domain of   is positive, apparently, there is some value    would fail to satisfy this 

condition. One certainly could put extra constraint to fulfill this during the optimization routine. 

But this is not the elegant way while there is a better way to avoid this problem by using scale 

and location invariant parametrization (   ̅  ̅   ) .  We have expected value and variance 

formula as following:  
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 ̅ 

 

       

     
  

                                                           (
       

      
 

 ̅ 

 ̅   ̅ [
       

     
 (

       

     
)
 

])  

Where   √ ̅   ̅ .  It is easy to see that if we set  

                                                          
 ̅ 

 

       

     
   

                                                         (
       

      
 

 ̅ 

 ̅   ̅ [
       

     
 (

       

     
)
 

])
 

 

 

  

Then   (   ̅  ̅)  have mean 0 and variance 1, and denoted as          ̅  ̅ . This 

parametrization can also be switched with other form parametrization by formula (4.19). 

 

4.3.2 Multivariate GH Estimation 

A modified EM algorithm is used in this thesis, it is called multi-cycle, expectation, conditional 

estimation (MCECM) algorithm, see McNeil, Frey and Embrects, 2005. We introduce EM 

scheme and present different steps of MCECM algorithm as following.  

Assume we have  i.i.d  data sample                  , with parameter set       ̅       . 

The MLE is trying to maximize  

                                                                  ∑            
                                     (4.21) 

Suppose we also have observation for            , then we have an augmented likelihood 

function:  

    ̂                          ∑     |    |          ∑            ̅  
   

 
     (4.22) 

If we have estimates for latent variable   , then we can maximize (4.22), and updating parameter 

set repeatedly.  This is exactly how EM scheme works.  

E-step: Calculate the conditional expectation of likelihood function (4.22) given the data sample 

           and the current estimates of parameters       :  

                     (      )   [   ̂                         |             ]                 (4.23) 

M-step: Maximize the objective function (4.23) with respect to   to get the next step estimates 

      .  



 

28 

 

We can see that there are two parts summation of (4.22). We can further decompose (4.23) into:  

                  (      )   [∑   |              
   ]     ∑   |              

                       (4.24)  

Where   

                                                       |    |            

                                                              ̅   

We know that  |  is normal distribution, see (4.2) , then we have explicit expression of    :  

                        
 

 
     

 

 
     | |  

 

 
             

                       (4.25) 

And   is GIG distribution:  

                       
 

 
  (

 

 
)    (   √  )            

 

 

 

  
 

 

 
                                (4.26) 

Use (4.12),    is a function of     ̅ .     

Take the partial derivative respect to each parameter of   , we will deduce the update equation 

for each parameter. Let  

                                               
   

  [  |    
   ]   and    ̅    

 

 
∑   

    
                              (4.27) 

                                               
   

  [  
  |    

   ]  and   ̅  
 

 
∑   

    
                                (4.28) 

                                               
   

  [    |    
   ]                                                               (4.29) 

The conditional variable   |    is still a GIG random variable, see Appendix 2. Therefore these 

expectations could be calculated by moments of GIG, see (4.6).  Then we have update estimate 

equation for         , see details in Appendix 3:  

                                   
 

 

∑   
   

  ̅    
 
   

 ̅    ̅     
                                                                                (4.30) 

                                   
 

 

∑    
   

           
   

 ̅                                                                            (4.31) 

                                   
 

 
 ∑   

   
(         )(         )

 
  ̅                     

       (4.32) 
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We present steps MCECM algorithm as following:  

(1) Select initial values for parameter set      and tolerance  .  

(2) Calculate       and       based on value of  ̅    by using formula(4.13).  

(3) Use (4.27), (4.28), (4.29) to calculate    
   

 and   
   

  and their average.  

(4) If an symmetric model, set    , otherwise set        by (4.30).  

(5) Update   and    by (4.31) and (4.32).  

(6) Set               ̅                          and calculate weights   
     

   
     

   
     

.  

(7) Maximize the second summand of (4.24) with density (4.26) with respect to    ̅. Update  

            by using        and  ̅     .  

(8) Check the updated distance   ‖            ‖
         

. Go back to step (2) if    ;     

     otherwise return        as final result.  

 

4.4  Simulation 

We can use mixing structure (4.1) to generate random variable                 . To draw   

independent d-dimensional random samples from the Multivariate GH distribution, we use the 

following algorithm:  

1.  Draw   independent  -dimensional normal random samples from        by using Cholesky 

decomposition      .  

2.  Draw    independent GIG random samples from               .  

3.  Mixing them by formula (4.1) to obtain  -dimensional GH random variable. 

 

We refer to Wolfgang H. and Josef  L. (2013) for details to generate GIG random variables. 

4.5 Practical Issue for High Dimension   

Although we have algorithm to perform multivariate GH estimation, there is some numerical 

issue in practical application for large system. One of the major issues is coming from the high 

order of Modified Bessel function      . Of course, one can reduce dimension of the data by 

using dimension reduction technique, such as principal component analysis (PCA).  But the issue 

still present in some cases. We noticed that there is   (√  ) term in GIG log likelihood or any 

moments of GIG, see (4.26) and (4.5). And the conditional density 

                                            |                                                           (4.33) 
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This means we need to evaluate Modified Bessel function with base order        .  When 

dimension goes high,        and √                    will dependent on the data, but 

usually it is small compare to        .  

The modified Bessel function has integral representation  

                                         
 

 
∫        { 

 

 
        }              

 

 
  

And has symmetric property respect to    

                                                                   

Figure 3 shows Modified Bessel function with different order value  . We can see that the 

function value grows very quick when   is small. And this is exactly the problem in high 

dimensional multivariate GH estimation. As far as we know, there is no good solution for 

compute high order Bessel function. Therefore, we are using asymptotic approximation formula 

for small   as below:  

                                         
    

 
 (

 

 
)

 

                    | |  √         
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Figure 5: Modified Bessel function with different order 
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Chapter 5   Backtesting Procedure and Empirical Results 

 

5.1 Model Description 

Suppose we have   assets in our portfolio and have log-return time series data for each asset. 

                                                                           

Then we use FARIMA        -FIGARCH        as our marginal model to capture long 

memory feature of    and assume    follows stdGH distribution which defined in section 4.3.1 to 

capture heavy tailed feature. From forecasting formula we can see that all the randomness come 

from      , see equation (3.26). In portfolio level, we can write as 

                                                                                                                                   (5.1) 

Where   

                                                                           

                                                                 ( [      |  ]    [      |        

                                                                  √           √        

Upon time  ,    and    is deterministic. Therefore, portfolio dependence structure is coming 

from   and we assume   follows multivariate GH distribution: 

                                                                                

By the property of GH under linear transformation, see section 4.1.    is a N dimensional GH 

distribution: 

                                                                                    

Where    
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Suppose holding position in our portfolio is                 . Then the portfolio return is: 

                                                    ∑       
          

Again, by property of GH, R is a one dimensional GH distribution: 

                                                               
        

        
                               (5.2) 

Then we have its density function explicitly,      , by formula (4.8). Therefore, we can calculate 

risk measure, Value at Risk (VaR) and Conditional VaR (CVaR).  

VaR at confident level   is defined as: 

                                                        ∫          
     

  
  

In real application, we need to approximate this integral numerically by choosing some lower 

bound value, say,   .  

                              ∫          
     

  
  ∫         

     

  
 ∑   (  )   

                               (5.3) 

Where            , and we choose             , i.e. 5 times of standard deviation of GH 

distribution with parameters in (5.2). Given value of  , we can solve      satisfy (5.3).  

CVaR is also called expected shortfall.       is defined as: 

                                                      
 

 
 ∫             

 

 
  

This also could be written as  

                                          
 

 
 ( [         ]     (         ))   

Where     is the lower   quantile.  

 

5.2 Backtesting Procedure 

We perform backtest to our portfolio tail forecast by using VaR which calculated by formula 

(5.3). Suppose we backtesting   periods, say,           . At each time point   , we use previous 

  periods historical data to fit model,                   and make forecast for period   . Then 

we can compare forecast            and the realized observation     for           . In risk 

management, we care about the quality of forecasted     sequence, i.e. violations number of 

testing sequence, and independence of violation sequence.  
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The first statistical test is Kupiec (1995) test, also called unconditional coverage test. Basically, it 

tests if the violation of sequence occurs with probability   or not. Given the indicator sequence 

     :  

                                                   { 
                      

                     
        

Given independence of sequence of   , the null hypothesis is         and the alternative is 

       . The likelihood under the null hypothesis is  

                                                                        

and under the alternative  

                                                                      

Then the likelihood ratio test could be formed as 

                                                     
             

   ̂          
                                                          (5.4) 

where  ̂ is the MLE estimate of  , i.e.  ̂             .  

The assumption of Kupiec test is the independence of sequence   , Christoffersen (1998) propose 

an extended method to test the independence by using first order Markov chain of binary 

sequence    with transition probability matrix  

   [
         

        
]      

where           |       . Therefore, approximate likelihood function is 

                                                      
      

          
      

      

Where     is the number of observations with value   followed by  . The MLE estimator of     is 

simply the ratio of corresponding counts 

                                                   ̂  [

   

       
    

       
   

       

   

       

]  

Under the independent hypothesis  

                                                        [
       

      
]    
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The likelihood would be  

                                                       
         

         

MLE of    is 

                                                        
       

               
  

Therefore, the LR test could be formulated as 

                                                           
    ̂         

    ̂         
                                                   (5.5) 

If combine unconditional coverage test and independence test, we have  

                                                            
            

    ̂         
                                                  (5.6) 

And we also have identity                .  

The likelihood test above all based on sequence of violation sequence   , which only take two 

possible values. Berkowitz (2001) propose a density evaluation method to extract more 

information from the data. First, we transform data series    to uniform random variable by  

                                                             ∫        
  

  
   

Which is the cumulative density function (CDF) of    . Under our model setting, this is the CDF 

of GH distribution. Then transform    to standard normal random variable 

                 .  To test independence, one can construct test against a first order 

autoregressive: 

                                                                            

Then the log-likelihood function of this equation could be rewritten as 

                               
 

 
      

 

 
   (

  

    
)  

(          )
 

            
   

                                           
   

 
      

   

 
        ∑ (

             

     ) 
     

Where    is the variance of   . Then a likelihood test could be constructed for testing 

independence of data series      

                                                  (   ̂  ̂        ̂  ̂   ̂ )                                    (5.7) 
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Where  ̂   ̂  could be approximated by mean and variance of    and  ̂ could be calculated as 

sample autocorrelation with lag 1.  Within this framework, Berkowitz also propose a likelihood 

test based on censored normal distribution to test tail part of    which corresponding to large 

losses. Defining a tail by cutting off point by         , for example,               

     . This means any observations not in the tail will be truncated and define a new variable as 

                                                            
  { 

                  
                    

      

Then joint log-likelihood function of   and   is 

                 |    ∑
  

     
   

 

 
 (

  
   

 
)  ∑

  
     

   (   (
     

 
))   

                               ∑   
  

     
 ( 

 

 
          

 

  
   

     )  ∑
  

     
   (   (

     

 
))  

Therefore, the likelihood ratio test for tail part could be formulated as 

                                                (           ̂  ̂  )                                                (5.8)  

To sum up, we have five likelihood ratio tests for our backtesting procedure:  

1. Kupiec test for unconditional coverage:       in (5.4). 

2. Christoffersen test for independence of violation:        in (5.5). 

3. Christoffersen test for independence and conditional coverage together:      in (5.6). 

4. Berkowitz test for independence :        in (5.7). 

5. Berkowitz test for tail:         in (5.8).  

They should be enough to test the quality of forecast     sequence under our model setting. 

5.3 Empirical Result 

In this section, we will present the in-sample and out-sample backtesting result, and analyze 

them based on statistical test.  

5.3.1 Dataset 

Our intra-day dataset is extracted from TAQ (Trade and Quote) database from NYSE. All the 

data has been adjusted by split and dividend which comes from yahoo finance website. We are 

using S&P 500 component stock data from Jan. 2010 to Apr. 2013 and all the data during the 

trading hours eastern time from 9:30 am to 4:00 pm for each trading day. We have aggregate the 

second price data to different frequency log-return data. We only choose the stocks which have 
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complete data series span entire periods.  Under this selection rule, we totally have 472 stocks in 

our testing dataset.  

  

5.3.2 In-sample distribution of parameter d 

In this section, we will fit in-sample data over some periods to the marginal model, i.e. 

FIARIMA-FIGARCH model with stdGH distribution. We choose order 1 in FARIMA- memory 

FIGARCH structure, i.e. FARIMA        -FIGARCH       .  Firstly, we exam the existence 

of long memory feature depends on the estimated parameter   for each frequency. We choose 

rolling window size to be 1000 and 2000.  In table 2, we show the quantiles of parameter   in 

FARIMA-FIGARCH structure. We can see that 50% of     in FARIMA is less than 0, which 

means the market is very volatile. In meanwhile,   of FIGARCH exhibits different behavior for 

different frequency data. For 1 min, 10 min, 60 min frequency,   is average bigger than data of 

frequency 5 min and 10 min. And we also plot the histogram of parameter   and give us a sense 

that how the distribution of parameter   looks like.   

  

Table 1: Quantiles of parameter d for different frequency data and window size 

Frequency/ 

RollWindow 

FARIMA               FIGARCH         

25% 50% 75% 100% 25% 50% 75% 100% 

1min/1000 
-0.1136 -0.0322 0.0343 0.4999 0.2233 0.3035 0.3797 0.7692 

1min/2000 -0.0739 -0.0187 0.0335 0.4999 0.2258 0.3121 0.3878 0.8167 

5min/1000 -0.0677 -0.0147 0.0370 0.4999 0.0740 0.1765 0.2976 0.6213 

5min/2000 -0.0556 -0.0132 0.0341 0.4999 0.0733 0.1473 0.2352 0.5330 

10min/1000 -0.0668 -0.0276 0.0084 0.2934 0.0154 0.0398 0.0808 0.4455 

10min/2000 -0.0430 -0.0174 0.0140 0.4999 0.0330 0.0650 0.1097 0.4597 
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30min/1000 -0.0288 0.0049 0.0781 0.4999 0.1118 0.1523 0.1945 1.0000 

30min/2000 -0.0355 -0.0056 0.0325 0.4999 0.0803 0.1051 0.1339 0.9907 

60min/1000 -0.2237 -0.0859 -0.0059 0.1087 0.0654 0.1363 0.2022 0.4967 

60min/2000 -0.0744 -0.0247 -0.0004 0.1204 0.1164 0.1560 0.1962 0.3599 

 

  

 

 

 Figure 6: Histogram of parameter d  for 1 min 
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Figure 7: Histogram of parameter d for 5 min 
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 Figure 8: Histogram of parameter d for 10 min 

 

  

  

 

 Figure 9: Histogram of parameter d for 30 min 
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Figure 10: Histogram of parameter d for 60 min 

 

 

 

5.3.3 Out-sample test 

We perform backtesting procedure in section 5.2 over some periods. For each period, we use 

rolling window size   as input data length to fit our model.  In order to exam how large   is 

good enough, we use the backtesting framework that Basel III required and combine with the 

statistical test as our checking tools. 

Firstly, we compare ARMA-GARCH model and FARIMA-FIGARCH model combined with 

multivariate Gaussian distribution and multivariate generalized hyperbolic distribution for 

innovations. We backtest 500 total periods for portfolio of 30 assets from 20120613 to 20121001 

for hourly data.  The portfolio is equally weighted. We plot the portfolio return series and also 
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VaR and CVaR series in the following graph. In table 2 and 3, we present the statistical test for 

each case. We can see that the violation number of VaR of GH is less than Gaussian case. And 

the Gaussian fails for Berkowitz tail test in both models which confirms markets has heavy tails 

feature and tail dependence.  And multivariate GH fails Berkowitz independent test for ARMA-

GARCH model which can be viewed as market is more volatile and FIARIMA-FIGARCH 

model has the ability to modeling volatile market condition.  

 

 

Figure 11: FARIMA-FIGARCH model backtesting 500 periods for hourly data 

 

 

 

 

Table 2: statistical test for FARIMA-FIGARCH at confident level alpha =0.01 

Statistics(p-value) VaR(GH) VaR(GAUSSIAN) 

# Violation 6 8 

Kupeic  test 0.18988(0.663016) 

 

1.53828(0.214874) 

 Independent test 0.145753(0.702628) 

 

0.260174(0.610001) 
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Christoffersen  test 0.335633(0.845509) 

 

1.79845(0.406885) 

 Berkowitz tail test 1.65934(0.436193) 

 

21.2985(2.37183e-05) 

 Berkowitz independent test 4.32045(0.037657) 

 

3.89963(0.0482967) 

 
 

 

 

 

 

Figure 12: ARMA-GARCH model backtesting 500 periods  for hourly data 

 

                                Table 3: statistical test for ARMA-GARCH at confident level alpha=0.01 

Statistics(p-value) VaR(GH) VaR(GAUSSIAN) 

# Violation 3 6 

Kupeic  test 0.943116(0.331478) 0.18988(0.663016) 

Independent test 0.0362175(0.849067) 0.145753(0.702628) 

 Christoffersen  test 0.979334(0.612831) 0.335633(0.845509) 

 Berkowitz tail test 0.250309(0.88236) 11.9359(0.00255946) 

Berkowitz independent test 7.43331(0.00640276) 5.79872(0.0160378) 
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The very practical question is that how many assets our model still working without reduce 

dimension, i.e. how high dimensions we can go for our model and how much data is sufficient as 

our input to our model. Our second experiment is trying to answer this question. We backtest our 

model for different asset numbers and different rolling window size over 30 minutes frequency 

data. We choose candidate asset number as 30, 60, 120, 240, 475, and rolling window size as 

1000 and 2000.  Violation numbers are presented in Table 4 and statistical test result in Table 5. 

GH and Gaussian are all in the green zone, and GH is always better than Gaussian in terms of 

violation number. We can see that the Gaussian case fails the Berkowitz tail test all the time. 

And when the dimension goes high, some GH case fails the Berkowitz tail test, but bigger rolling 

window size is better than small one, which means the more data we have, the better result we 

get. This makes sense since for high dimension problem, parameters that need to be estimated 

grows, and more data would help us to perform better estimation step.  For this particular test, we 

see that GH passes all the test except 475 assets with 1000 rolling window size. This indicates 

that we need more data to fit model when dimension goes high, otherwise PCA should be 

applied to reduce dimension. 
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Table 4: violation number of VaR for different asset number 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5: statistical test for FIARMA-FIGARCH at confident level alpha=0.01 for different asset number 

Asset/ 

rollWindow 

Kupeic 

  GH       GAU 

Independent 

GH             GAU 

Christoffersen 

GH             GAU 

Berkowitz indep. 

GH       GAU 

Berkowitz tail 

GH             GAU 

30/1000 
0.4337 

(0.5102) 

0.1045    

(0.7465) 

0.1290 

(0.7194) 

0.1635    

(0.6860) 

0.5628 

(0.7547) 

0.2680         

(0.8746) 

2.6746 

(0.1020) 

4.0002    

(0.0455) 

0.9698 

(0.6158) 

42.6703    

(0.0000) 

30/2000 
1.8862 

(0.1696) 

0    

(1.0000) 

0.0724 

(0.7878) 

0.2020    

(0.6531) 

1.9587 

(0.3756) 

0.2020    

(0.9039) 

0.2668 

(0.6055) 

0.6734    

(0.4119) 

1.2897 

(0.5247) 

27.3054    

(0.0000) 

60/1000 
1.0156    

(0.3136) 

0.1045    

(0.7465) 

0.0987 

(0.7534) 

0.1635    

(0.6860) 

1.1143 

(0.5728) 

0.2680    

(0.8746) 

0.7817 

(0.3766) 

1.7521    

(0.1856) 

0.7494 

(0.6875) 

33.1539    

(0.0000) 

Asset/rollingWindow VaR(GH) VaR(GAUSSIAN) 

30/1000 8 9 

30/2000 6 10 

60/1000 7 9 

60/2000 5 8 

120/1000 7 8 

120/2000 6 10 

240/1000 7 9 

240/2000 6 10 

475/1000 8 9 

475/2000 7 9 
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60/2000 
3.0937 

(0.0786) 

0.4337    

(0.5102) 

0.0503 

(0.8226) 

0.1290    

(0.7194) 

3.1440 

(0.2076) 

0.5628    

(0.7547) 

0.0145 

(0.9040) 

0.2292    

(0.6321) 

0.6229 

(0.7324) 

34.5427    

(0.00) 

120/1000 
1.0156 

(0.3136) 

0.4337    

(0.5102) 

0.0987 

(0.7534) 

0.1290    

(0.7194) 

1.1143 

(0.5728) 

0.5628    

(0.7547) 

0.7156 

(0.3976) 

1.1228    

(0.2893) 

2.2824 

(0.3194) 

32.9544    

(0.0000) 

120/2000 
1.8862   

(0.1696) 

0    

(1.0000) 

0.0724 

(0.7878) 

0.2020    

(0.6531) 

1.9587 

(0.3756) 

0.2020    

(0.9039) 

0.0565 

(0.8122) 

0.2016    

(0.6534) 

1.1378 

(0.5662) 

30.0265    

(0.0000) 

240/1000 
1.0156 

(0.3136) 

0.1045  

(0.7465) 

0.0987 

(0.7534) 

0.1635 

(0.6860) 

1.1143 

(0.5728) 

0.2680 

(0.8746) 

0.6258 

(0.4289) 

0.7962 

(0.3722) 

4.6990 

(0.0954) 

27.0501 

(0.0000) 

240/2000 
1.8862 

(0.1696) 

0 

(1.0000) 

0.0724 

(0.7878) 

0.2020 

(0.6531) 

1.9587 

(0.3756) 

0.2020 

(0.9039) 

0.0452 

(0.8317) 

0.1178 

(0.7315) 

2.1418 

(0.3427) 

28.4817 

(0.0000) 

475/1000 
0.4337 

(0.5102) 

0.1045 

(0.7465) 

0.1290 

(0.7194) 

0.1635 

(0.6860) 

0.5628 

(0.7547) 

0.2680 

(0.8746) 

0.6949 

(0.4045) 

0.7706 

(0.3800) 

13.1429 

(0.0014) 

26.3796 

(0.000) 

475/2000 
1.0156 

(0.3136) 

0.1045 

(0.7465) 

0.0987 

(0.7534) 

0.1635 

(0.6860) 

1.1143 

(0.5728) 

0.2680 

(0.8746) 

0.0712 

(0.7897) 

0.1360 

(0.7123) 

4.1307 

(0.1268) 

27.9068 

(0.0000) 
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                                        Figure 13: Portfolio of 30 equal weighted assets backtesting 
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                                    Figure 14: Portfolio of 60 equal weighted assets backtesting 
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                                    Figure 15: Portfolio of 120 equal weighted assets backtesting 
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                                          Figure 16: Portfolio of 240 equal weighted assets backtesting 
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                                    Figure 17: Portfolio of 475 equal weighted assets backtesting 

 

 

We perform another backtesting of  S&P 500 components (472 assets)  for 5 minutes frequency 

data.  The time span is from 20110208 to 20110228 for 1000 total backtesting periods.  We also 

use PCA to reduce the dimension for multivariate GH and Gaussian model, and choose 200 as 

subspace dimension.  All the model fitted with 1000 historical data.  In table 6, we can see the 

violation number of Gaussian model in the yellow zone now while GH model still in the green 

zone. Gaussian still fails Berkowitz tail test.  
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Figure 18: Bactseting of FARIMA-FIGARCH model for 5 min  

 

 

 

Table 6: statistical test of FARIMA-FIGARCH for 5min 

Statistics(p-value) VaR(GH) VaR(GAUSSIAN) 

# Violation 12 23 

Kupeic  test            0.3798 (0.5377) 

(0.5377) 

              12.4853(0.0004)  

Independent test            0.2915 (0.5893) 

(0.5893) 

               0.3517(0.5532) 

 Christoffersen  test            0.6713 (0.7149) 

 

              12.8369 (0.0016) 

 Berkowitz tail test             0.7293(0.6944) 

 

               92.7608(0.0000) 

 Berkowitz independent test             0.5192(0.4712) 

 

                0.3366(0.5618) 

  

 

For comparison purpose, we also perform the backtesting for ARMA-GARCH model. All other 

parameter settings is the same as backtesting above.  From statistical result in table 7, we can see 

that violation number of Gaussian in the yellow zone and worse than the FARIMA-FIGARCH 

case. This indicates that FARIMA-FIGARCH model is better than ARMA-GARCH for more 

volatile market, i.e. higher frequency intra-day markets.  
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Figure 19: Backtesting of ARMA-GARCH for 5min 

 

Table 7: statistical test of ARMA-GARCH for 5min 

Statistics(p-value) VaR(GH) VaR(GAUSSIAN) 

# Violation 13 25 

Kupeic  test            0.8306 (0.3621) 

(0.5377) 

             16.0430(0.0001) 

Independent test            0.3425 (0.5584) 

(0.5893) 

               2.0627 (0.1509) 

 Christoffersen  test            1.1730 (0.5563) 

 

              18.1057(0.0001) 

 Berkowitz tail test             0.8540 (0.6525) 

 

               90.9549(0.0000) 

 Berkowitz independent test             0.7766 (0.3782) 

 

                0.3145 (0.5749) 

  

Based on all these out-sample backtesting result, we can clearly draw conclusion that FARIMA-

FIGARCH with MGH model is consistently better than ARMA-GARCH with Gaussian model in 

the intra-day markets. Since our model has the capability to capture long range dependence and 

heavy tails feature together.  
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5.4 Computing Technology 

In order to perform intra-day updates for risk measure calculation, we need high speed 

computation technology. Taking advantage of development of parallel computing in recent 

years, we implemented our model in C++ with parallel computing feature.  

Based on trivial parallel scheme for the marginal model, it’s easy to make it parallel. Suppose we 

have   assets, and   cores,    . Then each core performs certain amount assets calculation, 

and   of them happens in the same time. To assign the workload evenly among cores, we assign 

workload to a core either        or        , where     is the largest integer smaller than  .  

The parallel algorithm is implemented by Message Passing Interface (MPI). We use a Dell 

Precision T7600 computer, which uses a dual node 8-core 3.1 Ghz (16 cores in total) with Intel 

Xeon E5-2687W chips. Only 8 cores are effectively available through use of MPI. The computer 

has 16GB memory. The computer also has two Nvidia GPU cards, one also can use GPU to get 

more speed up. Figure 6 shows similar computer architecture, and we can see that multiple cores 

communicated with each other through a shared memory block.  

For the dependence estimation step, there are only matrix operations in the algorithm, therefore 

we use  Openblas,  high speed linear algebra open source library, to perform calculation. It can 

be found at http://www.openblas.net/. Openblas use shared memory threads to speed up 

calculation, in our case, there are two threads in each cores, and we have 16 threads totally.  We 

report a timing study in table below, marginal model is FARIMA        -FIGARCH        

with stdGH distribution, dependence model is multivariate GH distribution, and window size is 

1000 data points, 8 cores are used for parallelization.  

 

 

 

 

Table 8: Timing table 

Settings 500 assets 4000 assets 

Marginal / cold start 110.08 sec 791.61 sec 

Marginal / warm start 80.78 sec 590.10 sec 

Dependence / cold start 2.75 sec 492.39 sec 

Dependence / warm start 0.37 sec 49.88 sec 

http://www.openblas.net/
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Figure 20: Computer parallel architecture 
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Chapter 6  Optimal Order Execution 

 

 

  Classical Portfolio theory worked out optimal asset allocation and optimal portfolio 

construction under market efficiency assumption. In reality, however, liquidation of a portfolio 

position does not come for free. Transaction cost became the key ingredient for implementing an 

investment decision. There are many kinds of transaction cost in the real world trading 

environment. Some are observable directly: brokerage commissions, fees (e.g. clearing and 

settlement costs) and taxes. When there is an order need to be executed, a trader also consider 

market impact, timing risk, and opportunity cost, all these components are stochastic variables 

and very much depend on the execution algorithm. Especially, when an institutional investor 

needs to liquidate a large position, his main concern is the market impact caused by his trades. 

Potential poor execution can erode portfolio performance substantially.    

  In high frequency trading context, market structure is more volatile and sensitive to “big” order. 

As a trader, one always wants to minimize market impact from his trades, therefore he can come 

back to exploit profit again and again. An obvious way to avoid market impact is simply to trade 

slowly, and then market can recover between trades. However, slower trading raise the fear of 

market volatility, and price may move towards hurting your trade. Therefore, there is always a 

tradeoff between the market impact costs of rapid execution and the volatility risk of slow 

execution. An optimal execution scheduling model tends to deal with this problem and finds the 

optimal way in terms of trading strategy.    

6.1 Optimal execution problem 

In this section, we will review classical optimal execution problem and introduce the some 

definitions and terminologies in this context. We also review Almgren R. and Chriss N. (2000) 

frame work.  

Suppose we hold a block of   units of a security that needs to be completely liquidated before 

time  . We divide   into   intervals of length      , and define the discrete times        
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for        . A trading trajectory is a list        , where    is the number of units that we 

plan to hold at time   . Apparently, our initial holding is     , and     .  

Equivalently, we can define a trading schedule as   dimensional vector               , 

where            is  the number of units that we will sell between      and   . From the 

definition above, we have the relationship between    and    as follow:  

                         ∑   
 
     

                            ∑   
 
    ∑   

 
      ,                                                             (6.1) 

Note that we are not imposing that the sign of each    is the same as the sign of  . For example, 

if we consider a sell program,    , then we could have some     , which means buy 

transaction. For simplicity, we consider a sell program    .  

Each trading schedule has an execution cost. Suppose that the initial security price is    and    is 

the price at the start of interval  . Note that the actual execution price for     not exactly is   . In 

fact, commission fees and, bid-ask spread raise the price for buy and lower it for sell. Therefore, 

we define  ̃  as the effective price at which shares are actually traded at every step. The 

relationship between    and  ̃  will be specified through market impact function, we will discuss 

this later.  

Now we define the execution cost      as the difference between the total money we pay or 

receive during the execution and the initial market value of the position. Express it as formula:  

                                      ∑   
 
    ̃      ∑     ̃     

 
                                         (6.2) 

It is important to notice that      is a stochastic variable since  ̃  is a stochastic process. Then it 

is reasonable to define its expected value         and variance          . 

6.2  The Almgren Chriss execution scheme  

Almgren and Chriss (2001) propose an optimal execution model which assume that the price of 

the stock at step   is equal to the previous price plus a linear market impact term and a random 

shock : 

                                                   where                                                     (6.3) 

They also consider the effective price  ̃   and model it as a temporary impact function: 

                                ̃                  
 

 
                                                                   (6.4) 
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where the term               is due to the bid ask spread   and     represents a linear 

temporary impact.  

We will get execution cost       by substitute  (6.3) and  (6.4) into  (6.2) :  

     ∑   
 
    ̃      ∑         ∑    ∑  

         

 
       

 
   

 
     

 
               (6.5) 

and the expected execution cost  is :  

                                    
 

 
   (  

 

 
)∑   

  
    

 

 
∑ |  | 

 
                                          (6.6)  

The variance of the execution cost is:  

                                                      [(∑   ∑   
 
   

 
   )

 
]                     (6.7)     

Since we assume    are independent, so we have  [    ]   , then :  

                            [        ∑  ∑   
 
   

 
   )

 
                                                                     (6.8)     

Similar to portfolio theory, Almgren and Chriss consider the following optimal scheduling 

solution:  

                                                                                                                 (6.9)    

where   is the coefficient of risk aversion.  The set of solutions to this problem for different 

values of   is called optimal frontier.  

One can get the closed form solution for problem  (6.9) :  

                                                                                                                            (6.10)   

where   is a normalization constant. The coefficient   is given by : 

                                    √
   

 
                                                                                         (6.11)    

 

6.3 Extension of Almgren Chriss model 

From Almgren Chriss model, we can see that opportunity cost      is determined by market 

price process (6.3) and temporal impact function (6.4). We generalize model  (6.3) to include 

heavy-tails, volatility clustering and long range dependence. We assume the log-returns:  
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where    follows FARIMA-FIGARCH process with Generalized Hyperbolic distribution.  

Suppose we consider a portfolio with   assets, then we have asset log-return: 

                                    (             )                                                                 (6.12)    

where   is the time we need to liquidate position for each asset.  

In our model, we assume      follows FARIMA-FIGARCH process with dependent innovations 

with multivariate generalized hyperbolic distribution with dimension  . For each time period  , 

we can fit model for     , and forecast the log-prices  

                             (             )
 
                                                                      (6.13)   

Now we have trading schedule matrix for portfolio with   assets:  

                                                                                                                               (6.14)    

                                               

                                             

From definition above, we can see that dimension of   is    . The vector of actual execution 

log-prices at time   is  

                                                                                                                            (6.15)     

where              is the vector of coefficients of market impact for each asset and   denotes 

the element by element product of two vector.  

And the vector of actual execution prices at time   is : 

                                                                                                                         (6.16)    

                                               

                                      (      )                   

Now we define the total execution cost of portfolio with   assets is : 

                                                                                                                     (6.17)    

where execution cost of each asset       is defined as formula  (6.5) :  

                             (                         )                                           (6.18)     
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We will use Monte Carlo to simulate M-trajectories (M=10000) for N-dimensional vectors of 

log-price     :  

                                                                                          (6.19)    

Correspondingly, we have scenarios for execution log-price for each asset: 

                                                                                                          (6.20)         

And   

                                                                                                                (6.21)    

where                          .  

Finally, we have scenarios for portfolio execution cost      for a given trading schedule 

              .  

Since the random variable      is not Gaussian and symmetric, we also extend Markowitz 

Mean-variance approach ( formula  (6.9) ) to a min-CVaR framework :  

                                                                                                          (6.22)     

where   is a constant penalize only big positive deviation of the execution cost,     . 

6.4 Calibration of market impact parameter 

As we show our model in the last section, the only parameter we need to calibrate is the temporal 

market impact parameter  .  This parameter tells us how much impact to the price by transaction 

volume.  

Suppose we look at the series of times    as separated by a constant time interval. And define the 

series of aggregated volumes    in terms of the volumes     of the single transactions: 

                                                     ∑   
  

                                                                           (6.23)     

where   
   is the singed  volumes are traded between time     and     . The quantity    is the 

volume imbalance over the  -th time interval. This quantity may be very big in absolute value 

during time intervals of high market activity.  Therefore, we use the normalized version,   
   , 

defined as :  

                                                 
    

∑   
  

         

∑ |  
  |         

                                                                   (6.24)   
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When there is no trade in the  -th interval, we define   
     . All this definition follows F. 

Lillo and J.D. Farmer (2004).  

We need to calibrate the impact function          of the normalized volume imbalance. It is 

defined as the expected return in a constant interval conditioned to a normalized volume 

imbalance   
    in the same interval :  

                                                      |  
                                                                        (6.25)   

 we use a linear function to fit this impact function, say,  

                                                                                                                                  (6.26) 

Where   is positive for a sell program.  

6.5 Numerical example 

In this section, we show a numerical example for the procedure we proposed in previous section.  

We extract all the trading and quoting data for AAPL and AMZN from TAQ database for one 

month, 20090729 to 20090831. And we aggregate price to 5 minutes interval log return data. 

Graph below shows the price and scatter plot of log return data.  

 

Figure 21: 5 min price chart for AAPL and AMZN from 20090729 to 20090831 
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Figure 22: scatter plot of log return between AAPL and AMZN 

 

We also need to calibrate the market impact parameter   in formula (6.26). In order get the 

normalized trading volume, we are required to classify the trading volume for every transaction 

in 5 min interval. We are using Lee and Ready (1991) algorithm to infer the trading direction. 

This algorithm requires comparing the trade price with the prevailing quote so that identify the 

trade as buyer or seller initiated. Prevailing quote is defined as the quote immediately before the 

trade. There is no rules to measure what is the “immediately”, some researchers using 2 seconds 

before trade or 5 seconds before trades.  We are using 5 seconds before trade as our prevailing 

quotes. Graph below shows the relationship between return and normalized volume for 5 minutes 

interval.  

 

Figure 23: 5 min normalized volume and return 
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By running simple linear regression, we calibrate their market impact parameter:  26.98 bp for 

AAPL and 30.87 bp for AMZN. Then we fit data ( 1843 observations )  to  FARIMA-FIGARCH 

and multivariate GH model, we present the estimated parameters and the heteroskedasticity 

volatility and filtered innovations below:  

 

Table 9: Estimated parameters of FARIMA-FIGARCH model for AAPL and AMZN 

Parameter     AR MA       GARCH ARCH     

AAPL 6.5121e-006 0.6575 -0.7130 0.0220 1.8956e-007 0.0636 5.5508e-006 0.3405 

AMZN -1.8646e-005 0.2628 -0.1734 -0.0933 6.8028e-007 0.1734 0.0867 0.2495 

 

 

Figure 24: Conditional volatility 
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Figure 25: Filtered innovations 

 

And GH parameters:                                                        

                                                   .   

Suppose we need to sell some shares of AAPL and AMZN in the next 50 minutes. Then we can 

generate 10-step scenarios of log returns based on fitted FARIMA-FIGARCH and multivariate 

GH model. And we can have scenarios of transaction cost      based on formula (6.15)-(6.18) 

for some particular scheduling  .  Then we can find optimal schedule by solving optimization 

problem in (6.22).  When we vary the value of    , we can construct the efficient frontier of 

transaction cost, as shown below.  Each point on this frontier corresponding to a particular 

trading schedule, i.e. trading strategy. Trader would move along with this frontier based on their 

risk profile. The execution risk getting bigger when move to the upper right corner which can be 

consider as a risky trading strategy, while the bottom left corner represents a risk conservative 

trading strategy. In figure below, we plot the efficient frontier for our model with 10000 

scenarios of log returns, and also random pick three point on the frontier with their 

corresponding trading scheduling. We can see that there is more than 50% volume happen in the 

first step for the blue point, which means risk conservative trading strategy, since traders with 

great uncertainty of the market dynamics in the future. When risk profile of trading getting 

higher, one move along to the upper right corner of the efficient frontier, more trading happen in 

afterward of the trading schedule, see green point. 
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Figure 26: Efficient frontier of execution cost 
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Figure 27: Trading schedule for AAPL with different    
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Appendix 

 

1. Spectrum of fractionally integrated process 

 

   is fractional integrated process, then by definition  
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If Assume    is normal , then         and spectrum of    is  
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2. Conditional density of   |  

 

Suppose                      and   is the mixing GIG variable.   

Then we have    |                    

 

  |     
   |          

     
  

               
(
        

      
)
          

(           { 
 

 
(

      

 
  (        )) })

        (√                  )
  

 

     Compare this to GIG density(4.4), we can see this is still a GIG variable: 
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3. Derivation of update equation for         

 

In order to get update equation, we need to maximize first part of (4.24). 
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     Take the partial derivative with respect to each parameter, and set them to zero: 
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