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ABSTRACT OF THE DISSERTATION 

Development of a novel double neural network and its applications 

by 

Hao Chen 

Doctor of Philosophy 

in 

Applied Mathematics and Statistics 

Stony Brook University 

2015 

Artificial neural network model is a powerful method that has been widely applied in 

many different areas. It is essentially a nonlinear statistical model, empirically proved 

with good prediction accuracy, and has been applied in both regression and classification 

problems. One challenge in applying artificial neural network models is constructing 

proper structure adaptive to specific problems. This thesis work is to introduce a novel, 

double-layered feed-forward neural network (DNN) model with special link patterns. Its 

applications to genome-wide association studies and stock price prediction in high 

frequency time scale have been explored. 

Detecting gene-gene interactions in traditional Genome-wide associate studies 

(GWAS) is mostly at the SNP level, called SNP-SNP interactions, which ignores the 

existence of large amount of correlations embedded among nearby SNPs. Popular 

existing methods with this mechanism, such as multifactor-dimensionality reduction 

(MDR) and random forests, would usually suffer from redundant interaction tests, due to 

the correlations between SNPs, and subsequently from less powers. With our new DNN 

model, we can take advantage of the correlations between SNPs and perform interaction 

test at the level of SNP blocks. Extensive simulation studies have been conducted to 

compare our new method with Random Forests. And our simulation results suggest that 
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the DNN model can have higher power than Random Forests in detecting the existence of 

causal SNPs – no matter the effect is interactive or marginal. 

We also have applied the DNN model to financial markets, forecasting changes of 

stock prices in high frequency. One advantage of our DNN model is that it utilizes 

correlation information between different stocks, a pattern more commonly observed in 

high-frequency data but ignored in most existing methods. Our method has been tested on 

the 100 stocks with largest capital in S&P 500 using 5-minute data, and its performance 

has been benchmarked with a single layer neural network model and the classical 

ARMA-GARCH model. The DNN model clearly outperforms to the other models in 

terms of prediction accuracy and Sharpe ratio. Given the parallelizable scheme of our 

method with DNN models, it may be capable for designing profitable trading strategies in 

high frequency time scale.  
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CHAPTER 1 FUNDEMENTAL OF ARTIFICIAL NEURAL NETWORKS 

1.1 Introduction 

Artificial neural networks (abbreviated as “neural networks” in this thesis) were first 

proposed by McCullouch and Pitts in 1943, as a simplified mathematical model to mimic 

brain functions. In their original seminal papers [42], it was shown that with different 

threshold switches for neurons in the neural networks, even simple networks of this kind 

were able to model nearly any logic or arithmetic functions [32]. Later in 1947, the two 

authors indicated a practical field of application in the recognition of special patterns by 

neural networks [52] [34]. However, after that, research on neural networks has been 

quiet for a long time due to the difficulties in estimating the unknown parameters. It was 

not until 1986 when Rumelhart and others [58] proposed an efficient backpropagation 

algorithm for parameter estimations of the neural networks, and the development of this 

field has almost been explosive.  

In early 1990’s, Kurt Hornik [26] [25] and Lee K. Jones [29] further laid down the 

theoretical foundations for neural networks, in which it proved that standard multilayer 

feed-forward networks are capable of approximating any measurable function to any 

desired degree of accuracy in a very specific and satisfying sense. Also, around the same 

time period, Yann LeCun’s researches on handwritten zip code recognition [38] [37] 

witnessed the great success of neural network models on pattern recognition. The 

database related to this project, MNIST (Mixed National Institute of Standards and 

Technology), has now become a benchmark dataset to compare different image 

processing systems. 

Neural network models are essentially a set of nonlinear regression or classification 

statistical models. Around and after the year of 2000, many studies have demonstrated 

that simple neural network models may not achieve better performance comparing with 

other machine learning models like Random Forests and Support Vector Machine. This 

seems to put the practical usage of neural networks in question. However, more recently 

the development of new structures of neural networks, like deep learning [23] and 

convolutional neural networks [36] [8], has shown much better performance among 
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machine learning models in pattern recognitions and thus has sparked new interests in 

neural networks. These new developments pointed out new directions for neural network 

models, that is, specific structures should be constructed according to the problems and 

datasets to be analyzed. 

1.2 Model Structures 

The model structure of neural networks can vary quite differently to deal with a broad 

range of nonlinear problems. In this section, we introduce some of the most widely used 

structures, often called as the single or two hidden layer feed-forward neural network 

(since we will be working with feed-forward neural networks throughout the whole thesis, 

sometimes we will omit the word “feed-forward” for simplicity). There have been a great 

amount of more advanced neural network structures, which will be introduced and 

investigated in later sections. 

1.2.1 Single Hidden Layer Neural Networks 

A single hidden layer neural network is a two-stage regression or classification model, 

typically represented by a network diagram as shown in Figure 1. It consists of three 

layers: input layer – the 𝑋s, hidden layer – the 𝑊s, and output layer – the 𝑌s. Each 

circled node in the graph is 

a variable (or neuron) in 

the model with different 

colors distinguishing their 

relative positions; each line 

connects a pair of nodes 

from two adjacent layers 

and represents an unknown 

parameter (weight). The 

bottom layer consists of 𝑃 

nodes, which are 

explanatory variables 

serving as inputs of the 

X neurons are the input variables, Y neurons are the output 

variables and W neurons are hidden neurons. 

Figure 1. Single hidden layer neural network models. 
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model. Similar to linear regression, categorical factors may be transformed into dummy 

variables, if necessary. The 𝐾 nodes at the top correspond to the response variables. For a 

univariate regression,  𝐾 simply equals to one and there is only one unit 𝑌1 at the top. For 

the purpose of generalizability, in the following we will deal with more general scenario 

with arbitrary dimension of 𝐾 in the response. The middle layer is the most important 

part in the structure, consisting of 𝑁  nodes, which are not directly observable. These 

variables are therefore “hidden” and only exist in concept. Variation in these latent 

variables enriches the class of neural networks. 

The relationships between adjacent layers can be described by the following 

representations: 

𝑊𝑛 = 𝜎(∑𝛼𝑛𝑝

𝑃

𝑝=1

∗ 𝑋𝑝) , for  𝑛 = 1,… ,𝑁 (1.2.1) 

𝑌𝑘 = 𝑔𝑘 (∑𝜃𝑘𝑛

𝑁

𝑛=1

∗ 𝑊𝑛) , for 𝑘 = 1,… , 𝐾 (1.2.2) 

 

𝛼𝑠, 𝜃𝑠 are the model parameters, which are also called “weights”. 𝜎(∙) is the “activation 

function” (or “link function”) that controls the non-linearity of the model, and 𝑔𝑘(∙)s are 

the link functions in generalized linear models (identity functions for 𝑌  coming from 

normal distribution and softmax functions for 𝑌 coming from multinomial distribution). 

Basically, each 𝑊  is a non-

linear transformation of a linear 

combination of 𝑋s, and each 𝑌 

is another non-linear 

transformation of a linear 

combination of the 𝑊 s. If 𝜎(∙) 

is the identity function, the 

model degenerates to a standard 

linear model. 

The choice of activation 𝑓(𝑥) =
1

1+𝑒−𝑥
  Figure 2. Sigmoid-like function 
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function 𝜎 is usually flexible, but generally it adopts the sigmoid-like shape as shown in 

Figure 2. The reason of restricting the choice in sigmoid-like function comes from the 

origins of neural networks. Simply speaking, the use of sigmoid-like function is to 

smoothen the step function: 𝑠(𝑥) = {
0, 𝑥 < 0
1, 𝑥 ≥ 0

, which mimic the pattern of neural 

activation. Since the step function is not smooth, or even not continuous, it will cause 

inconvenience in the optimization.  Therefore the smoother, sigmoid-like function is 

introduced into the model and widely adopted. 

Common choices of activation functions include logistic function 𝑓(𝑥) =
1

1+𝑒−𝑥
 

(Figure 2), and hyperbolic tangent function 𝑓(𝑥) =
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥
=

1−𝑒−2𝑥

1+𝑒−2𝑥
. Hyperbolic tangent 

function differs from logistic function in that it ranges within (-1, 1) interval. The logistic 

function can be extended or stretched to make it range in (-1, 1), that is 𝑓(𝑥) =
2

1+𝑒−𝑥
−

1 =
1−𝑒−𝑥

1+𝑒−𝑥
. The “extended” logistic function and the hyperbolic tangent function are then 

very similar. Since there are no restrictions on weights, i.e. they can be either positive or 

negative, the more symmetric hyperbolic tangent function or “extended” logistic function 

are more favored in real applications. 

1.2.2 Two Hidden Layers Neural Networks 

If one more hidden layer, the 𝑍  neurons, is added into the single layer network 

(Figure 3), then the model becomes a double-layer structure, which will be discussed 

thoroughly in this thesis and be applied into two different areas. As shown in Figure 3, it 

is more complicated and can better capture more complex patterns among inputs. 

Similarly, the relationships between variables in adjacent layers can be described by the 

following formulas: 

𝑊𝑛 = 𝜎(∑𝛼𝑛𝑝

𝑃

𝑝=1

∗ 𝑋𝑝) , for  𝑛 = 1,… ,𝑁 (1.2.3) 

𝑍𝑚 = 𝜎 (∑𝛽𝑚𝑛

𝑁

𝑛=1

∗ 𝑊𝑛) , for  𝑚 = 1, … ,𝑀 (1.2.4) 
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𝑌𝑘 = 𝑔𝑘 (∑ 𝜃𝑘𝑚

𝑀

𝑚=1

∗ 𝑍𝑚) , for 𝑘 = 1,… , 𝐾 (1.2.5) 

If more hidden layers were added to the network, more complicated multi-layer structure 

can be constructed. In general, 

activation functions used below the 

top layer usually take the same form 

(see Formula 1.2.3 and 1.2.4). In the 

following, we will give more 

discussions on how to choose 

between simple and complicated 

structures. Also, neural networks are 

really a large class of models, in 

which some parameters need to be 

pre-specified and some need to be 

tuned. In the next section, we will 

also discuss how to set up those 

important ones that are closely 

related to the model performance.  

 

1.2.3 Single-layer vs. Multi-layer Structures 

Kurt Hornik and his colleagues proved that if the number of nodes (neurons) is taken 

arbitrarily large, both single-layer and multi-layer structures can be universal 

approximations for continuous functions in ℝ𝑃 [25] [26], that is, they can approximate 

the target functions arbitrarily well. 

In practice, single-layer networks are indeed widely adopted, due to their simple 

structures and maybe faster training processes. However, as shown in Figure 1, the 

single-layer network structure may fail to take into account of more subtle and local 

patterns among input variables, leading to the inefficiency in transmitting information 

The Y neurons at the top layer are output 

variables, the X neurons at the bottom layer are 

the input variables. The W and Z neurons in 

between are the first and second hidden layers 

respectively. 

Figure 3. A two-layer neural network structure 



6 

 

from the bottom to the top layers. For cases that there might be local structures embedded 

among input features, the more flexible hierarchical multi-layer structure is more 

advantageous and allows different levels of resolution. 

One successful application of multi-layer models is on image processing. LeCun’s 

work on zip code data demonstrates how multi-layer network models can be applied in 

recognizing handwritten digits from images [38] [37]. The input factors are usually 

hundreds or even thousands numbers ranging from -1 to 1, describing pixel information. 

In this case, single hidden layer structure is inadequate since most vital features to 

differentiate the digits are local signatures and need more than one resolution. Multi-layer 

models are also very suitable for financial data, which are well known to be dependent. 

More examples will be given in later sections. 

In general, for situations with few input factors (<30) and without much background 

knowledge, single-layer structures is a powerful tool. Otherwise, flexible multi-layer 

structures should be considered. 

1.2.4 Number of Neurons in Hidden Layers 

The number of neurons, e.g. 𝑁 and 𝑀 in the double hidden layer model in Figure 3, is 

another set of important parameters that can be tuned to improve the model performance. 

There is no systematic rule about how to specify these numbers. However, several 

aspects need to be considered while determining their values: 

(1) Number of input factors. The first hidden layer right above the bottom resembles 

a feature selection process on the input factors, which suggests that 𝑁 > 𝑝 may 

not fulfill the target. The same rational can be applied to the relationship between 

𝑀 and 𝑁. 

(2) Number of observations in the data. If the number of observations in the data is 

small, too many parameters in the model would lead to a severe over-fitting issue 

(e.g. the total number of parameters in the double hidden layer model is 𝑁 × 𝑃 +

𝑀 ×𝑁 + 𝐾 ×𝑀). So, 𝑁 and 𝑀 cannot be too large. 
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(3) Datasets can suggest how to connect the input layer to the first hidden layer, so 

that 𝑁 is controlled by such connections. We will cover this topic in more details 

in the next section. 

Cross-validation may serve as a way to choose these tuning parameters, by 

performing grid-search among many, if not all, possible combinations of 𝑁 and 𝑀 and 

choosing the best pair. However, as will be discussed later, cross-validation is usually 

used to estimate regularization parameters, so using it to optimize 𝑁 and 𝑀 again seems 

redundant. The common practice is to specify them to be some numbers that are 

reasonable, in a range of 5 to 100 [20]. 

1.2.5 Connections between Layers 

There are mainly three types of patterns that connect between layers: full connection, 

local connection, and direct connection. Full connection means that all nodes in the upper 

layer connect with all nodes in the lower layer. The structure shown in Figure 1 and 

Figure 3 belongs to this type, and is the most common connection. When all information 

from lower layer is needed to get the upper layer or any set of neurons in lower layer may 

interact with each other, this pattern would be a proper choice, while the main drawback 

is that too many parameters are needed. Several researchers [54] [16] [12] have used 

single-layer model with this pattern to analyze the stock market data, with input signals 

describing specific aspects of the whole stock market and certain stock. 

If nodes in the upper layer only gather information from partial nodes in the lower 

𝑋 neurons from 𝑠𝑖 to 𝑛𝑖 only contribute to hidden neuron 𝑊𝑖. 

Figure 4. Local connection between input layer and 1st hidden layer. 
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layer, this suggests the structure of local connections. Figure 4 shows an example of how 

the input layer is locally connected with the hidden layer right above it. Each neuron in 

the hidden layer “retrieves information” only from a subset of all input factors: 𝑊𝑖 only 

connects to 𝑋s whose indices ranging from 𝑠𝑖 to 𝑛𝑖, constrained that 𝑠1 = 1 and 𝑛𝑁 = 𝑃. 

Here, how to group the inputs is a vital step, which is usually determined by the 

background knowledge or experimentation. Additionally, overlapping between nearby 

groups is acceptable, which is to say 𝑠2 may be smaller than 𝑛1. The local connectivity 

has been successfully used in LeCun’s work on handwritten zip code recognition in 

image [38] [37]. If justified, local connections can eliminate irrelevant connections and 

reduce the total number of parameters, yielding much more efficient neural networks. 

Direct connection is a pattern which reflects the phenomenon that some input factors 

may affect the output more directly than others. Therefore, these factors should be 

“linked” to higher hidden layers or even to the output layer directly. Figure 5 shows an 

example for two input factors directly connected to nodes in the second hidden layer.  

This pattern is very useful in a variety of data sets. In genetics, some demographic 

variables, such as 

gender, age or life style, 

obviously do not 

function at the same 

level as more detailed 

genetic information, 

such as single 

nucleotide 

polymorphism, so it is 

recommended to 

connect those input 

factors directly to 

higher hidden layer. For 

stock market data, some 

market indicators, such 
Input neurons 𝑋𝑝+1  and 𝑋𝑝+2  are directly connected to the 

second hidden layer (𝑍 neurons).  

Figure 5. Direct connection. 
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as risk-free interest rate and unemployment rate, which reflect the overall economic 

environment, may affect the prediction on the stock performance more than historical 

data from other stocks, so they may be directly connected to the output layer. 

The combinations of the basic connections can generate a rich class of network 

structures. 

1.3 Training Neural Networks 

1.3.1 Input Processing 

In fitting neural networks, the scaling of the input variables plays an important role in 

the parameter/weight estimation. For example, a variable that ranges between -10 and 10 

will outweigh a variable that ranges between -1 and 1, that is, variables measured at 

different scales do not contribute equally to the model fitting. Typically, the inputs of a 

neural network model need to be prepossessed and scaled to the same range like (-1, 1). 

The rescaling can also benefit the regularization and choosing the initial values. For 

financial data or time series data, relative increase rate or logarithm of the rate are often 

used instead of raw stock prices or indexes [43], which serves to have rescaled the 

outcome variables. 

Feature construction (like PCA) is usually an important preprocessing step for other 

machine learning methods, however, it is relatively less important in neural networks. 

The reason is that when the “information” flows from the lower layer to higher layer in 

the network, it already resembles a process of feature construction. The only issue is that 

the process is so complicated that the constructed features become almost uninterpretable. 

Nevertheless, if the prediction accuracy is our final goal, sacrificing the interpretability 

may be worthwhile. 

1.3.2 Error Functions 

To estimate the unknown parameters or the weights in the neural network models, we 

need to minimize the error functions. Depending on the nature of the response variable, 

we may have either regression or classification problems. Also, in order to avoid the 



10 

 

over-fitting issue, regularization terms may be added to the error functions.  Below we 

will discuss how to construct a proper error function. 

Let’s consider the double layer neural network in Figure 3, and denote its complete 

set of parameters (weights) as Ω, which consists of {𝛼𝑛𝑝, 𝛽𝑚𝑛 and 𝜃𝑘𝑚: 𝑛 = 1,… ,𝑁; 𝑝 =

1, … , 𝑃; 𝑘 = 1,… , 𝐾;𝑚 = 1,… ,𝑀} . 

For regression models, the error function can be simply set to be the sum-of-squared 

errors: 

𝑅(Ω) = ∑∑(𝑦𝑖𝑘 − 𝑦̂𝑖𝑘)
2

𝑁

𝑖=1

𝐾

𝑘=1

 (1.3.1) 

 

For classification models (categorical responses), the error function can be the cross-

entropy (deviance): 

𝑅(Ω) = −∑∑𝑦𝑖𝑘log (𝑦̂𝑖𝑘)

𝑁

𝑖=1

𝐾

𝑘=1

 (1.3.2) 

And the corresponding classifier is 𝐺(𝑥) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑘{𝑦̂𝑘(𝑥)} [20]. 

Since the number of parameters in Ω is typically large, it is very easy to over-fit the 

network model, so a global minimizer of 𝑅(Ω) is usually not desired. Instead, early 

stopping rules may be placed to obtain local minimizer, or regularization may be added 

through some penalty terms to avoid overfitting. In this study, we will focus on the 

penalty methods, which will be discussed below. 

A 𝐿2 −penalty can be used in the network models. Then the final form of error 

functions becomes: 

𝑅𝑝(Ω) = 𝑅(Ω) + 𝜆𝐽(Ω) = 𝑅(Ω) + 𝜆‖Ω‖2 (1.3.3) 

 

In the above formula, 𝑅(Ω) is the original error function in (1.3.1) or (1.3.2), 𝐽(Ω) is 

the penalty term, with 𝜆 ≥ 0 being a tuning parameter. Larger values of 𝜆 will tend to 
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shrink the weights toward zero. To choose an appropriate value for the hyper-parameter 𝜆, 

cross-validation can be applied. 

1.3.3 Learning Algorithms 

Next, we discuss how to minimize the error function defined in (1.3.3). Since this is a 

non-linear problem, numerical algorithms will be applied for the optimization. In the 

following, we will discuss three popular methods:  

1. Back-propagation: This is essentially a search method that is based on gradient 

descent. The first-order derivatives of 𝑅𝑝(Ω)  with respect to elements of the 

parameter vector Ω are computed first, and then Ω are updated with some part of 

the derivatives until certain stopping criteria are reached. 

2. Simulated annealing: This is a stochastic search method, which does not rely on 

derivatives. Briefly, we start with an initial guess Ω0, and proceed with random 

updating of the initial guess until a “cooling temperature” or stopping criterion is 

reached. 

3. Genetic algorithm: This is an evolutionary stochastic search, which starts with a 

population of 𝑠  initial guessesΩ0 , and updates the population of guesses by 

genetic selection, breeding, and mutation for many generations, until the best 

coefficient vector is found among the last generation population. 

1.3.3.1 Back-propagation 

This algorithm was firstly introduced by Rumelhart et al in 1986 [58] [59], for 

optimizing nonlinear functions in (1.3.3). Again, the two hidden layer structure (Figure 3) 

is used to demonstrate the process.  

Firstly we make a random guess Ω0 for Ω. Then suppose we are at the 𝑟th iteration 

and the estimations for Ω are denoted as Ω𝑟. Then the derivatives of 𝑅𝑝(Ω) with respect 

to Ω at Ω𝑟 are expressed as: 

∇𝑟=
𝜕𝑅𝑝(Ω)

𝜕Ω
|
Ω=Ω𝑟

 (1.3.4) 

∇𝑟 consists of three sets of elements: 
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{
𝜕𝑅𝑝(Ω)

𝜕𝛼𝑛𝑝
|
Ω=Ω𝑟

: 𝑛 = 1,… ,𝑁; 𝑝 = 1,… , 𝑃} (1.3.5) 

{
𝜕𝑅𝑝(Ω)

𝜕𝛽𝑚𝑛
|
Ω=Ω𝑟

: 𝑚 = 1,… ,𝑀; 𝑛 = 1,… ,𝑁} (1.3.6) 

{
𝜕𝑅𝑝(Ω)

𝜕𝜃𝑘𝑚
|
Ω=Ω𝑟

: 𝑘 = 1,… , 𝐾;𝑚 = 1, … ,𝑀} (1.3.7) 

 We use the following formula to update the estimations of Ω: 

Ω𝑟+1 = Ω𝑟 − 𝛾𝑟 ∙ ∇𝑟 (1.3.8) 

𝛾𝑟 is called the learning rate, which is a positive series decreasing to zero. It is common to 

set: 𝛾𝑟 = 1/𝑟. 

To illustrate how the formula works, let’s take a look at the second-order Taylor 

expansion of 𝑅𝑝(Ω): 

𝑅𝑝(Ω) = 𝑅𝑝(Ω𝑟) + (Ω − Ω𝑟)
′ ∙ ∇𝑟 +

1

2
(Ω − Ω𝑟)

′𝐻𝑟(Ω − Ω𝑟) 

Suppose Ω𝑟  is close to the minimum point. Then, taking the derivative of the above 

equation with respect to Ω  yields: 

0 = 0 + ∇𝑟 + 𝐻𝑟(Ω − Ω𝑟)
′ 

So, Ω at the step 𝑟 + 1 is: Ω𝑟+1 = Ω𝑟 − 𝐻𝑟
−1 ∙ ∇𝑟. 

𝐻𝑟 is the Hessian matrix of 𝑅𝑝(Ω𝑟). It is usually very time-consuming to calculate the 

Hessian matrix, and the inverse of 𝐻𝑟 may bring some other problems like the singularity 

issue. The learning rate 𝛾𝑟 in (1.3.8) can be viewed as a simplification of the inverse of 

Hessian matrix. There are some other ways to handle this problem as well, such as the 

BFGS (Boyden-Fletcher-Goldfarb-Shanno) algorithm, please refer to other reference for 

details [48]. 

The explicit form of ∇𝑟  could be derived by the chain rule for differentiation. To 

derive the explicit form of ∇𝑟, we first need to rewrite Formula (1.2.3) – (1.2.5) with an 

additional subscript 𝑖 representing different observations: 
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𝑊𝑖𝑛 = 𝜎(∑𝛼𝑛𝑝

𝑃

𝑝=1

∗ 𝑋𝑖𝑝) , for  𝑛 = 1,… ,𝑁 (1.2.3)* 

𝑍𝑖𝑚 = 𝜎 (∑𝛽𝑚𝑛

𝑁

𝑛=1

∗ 𝑊𝑖𝑛) , for  𝑚 = 1, … ,𝑀 (1.2.4)* 

𝑦̂𝑖𝑘 = 𝑔𝑘 (∑ 𝜃𝑘𝑚

𝑀

𝑚=1

∗ 𝑍𝑖𝑚) , for 𝑘 = 1,… , 𝐾 (1.2.5)* 

Then by the chain rule of differentiation, we have: 

𝜕𝑅𝑝(Ω)

𝜕𝜃𝑘𝑚
=∑

𝜕𝑅𝑝(Ω)

𝜕𝑦̂𝑖𝑘

𝜕𝑦̂𝑖𝑘
𝜕𝜃𝑘𝑚

𝑖

=∑
𝜕𝑅𝑝(Ω)

𝜕𝑦̂𝑖𝑘
𝑔𝑘
′ (∑ 𝜃𝑘𝑚

𝑀

𝑚=1

∗ 𝑍𝑖𝑚)𝑍𝑖𝑚
𝑖

=∑𝜖𝑖𝑘𝑍𝑖𝑚
𝑖

 

(1.3.9) 

In the last equation of (1.3.9), we assign: 

𝜖𝑖𝑘 =
𝜕𝑅𝑝(Ω)

𝜕𝑦̂𝑖𝑘
𝑔𝑘
′ (∑ 𝜃𝑘𝑚

𝑀

𝑚=1

∗ 𝑍𝑖𝑚) 

 

(1.3.10) 

Using the defined 𝜖𝑖𝑘, we can have: 

𝜕𝑅𝑝(Ω)

𝜕𝛽𝑚𝑛
=∑

𝜕𝑅𝑝(Ω)

𝜕𝑍𝑖𝑚

𝜕𝑍𝑖𝑚
𝜕𝛽𝑚𝑛

𝑖

=∑∑𝜖𝑖𝑘′𝜃𝑘′𝑚𝜎
′ (∑𝛽𝑚𝑛

𝑁

𝑛=1

∗ 𝑊𝑖𝑛)𝑊𝑖𝑛

𝑘′𝑖

=∑𝜂𝑖𝑚𝑊𝑖𝑛

𝑖

 

(1.3.11) 

In the last equation of (1.3.11), we assign: 

𝜂𝑖𝑚 =∑𝜖𝑖𝑘′𝜃𝑘′𝑚𝜎
′ (∑𝛽𝑚𝑛

𝑁

𝑛=1

∗ 𝑊𝑖𝑛)

𝑘′

 

 

(1.3.12) 

Using the defined 𝜂𝑖𝑚, we can have: 

𝜕𝑅𝑝(Ω)

𝜕𝛼𝑛𝑝
=∑

𝜕𝑅𝑝(Ω)

𝜕𝑊𝑖𝑛

𝜕𝑊𝑖𝑛

𝜕𝛼𝑛𝑝
𝑖

=∑∑𝜂𝑖𝑚′𝛽𝑚′𝑛𝜎
′ (∑𝛼𝑛𝑝

𝑃

𝑝=1

∗ 𝑋𝑖𝑝)𝑋𝑖𝑝
𝑚′𝑖

 (1.3.13) 
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We firstly calculate the derivatives for 𝜃𝑘𝑚, then through 𝜖𝑖𝑘, the derivatives of 𝜃𝑘𝑚 

are “propagated” to the next level, 𝛽𝑚𝑛. After calculating the derivatives for 𝛽𝑚𝑛, the 

derivatives are again “propagated” to 𝛼𝑛𝑝, through 𝜂𝑖𝑚. At last, we come up with the 

derivatives for 𝛼𝑛𝑝. Since the derivatives are calculated from the output layer parameters 

𝜃𝑘𝑚 to the input layer parameters 𝛼𝑛𝑝, this algorithm is named as “back-propagation”. 

The inconvenience is that every time ∇𝑟 needs to be re-derived for different network 

structures. Back-propagation is probably the most widely used algorithm in dealing with 

neural networks, due to its fast implementation.  However, since its estimation heavily 

depends on initial values that are chosen randomly, there is no guarantee that any single 

estimation is optimal. To solve this problem, we might use several different initial values 

to start the back-propagation processes and choose the best one or average on top ones to 

alleviate the issue of initial values. 

1.3.3.2 Simulated Annealing  

Simulated annealing originated from stochastic methods, consisting of a mutation 

process and an accept/reject algorithm. The algorithm works as follows [20]: 

1. At the step 𝑟 = 0, generate a randomly vector Ω0 for the unknown parameters, 

based on which the error function is calculated: Ψ0 = 𝑅𝑝(Ω0) 

2. At the step 𝑟 + 1, randomly perturbate previous vector Ω𝑟 to be Ω̂. For example, 

let Ω̂ = Ωr(1 + 𝜖)  with 𝜖~𝑁(0, 0.032).  And then calculate the corresponding 

error function: Ψ̂ = 𝑅𝑝(Ω̂) 

3. The cooling temperature at step 𝑟 + 1 is then defined as:  

𝑇(𝑟 + 1) =
𝑇̅

1 + ln (𝑟 + 1)
 

where 𝑇̅ is a pre-specified scalar, i.e. the “temperature”, which will be discussed 

in more details after introducing the whole process. 

4. Define metropolis ratio: 

𝑀(𝑟 + 1) = exp (
−(Ψ̂ − Ψ𝑟)

𝑇(𝑟 + 1)
) 
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5. Let 𝐶(𝑟 + 1) = min (1,𝑀(𝑟 + 1)), and generate a random number 𝑈 uniformly 

from the interval (0, 1). If 𝑈 < 𝐶(𝑟 + 1), Ω𝑟+1 = Ω̂ ; otherwise Ω𝑟+1 = Ω𝑟. 

6. Continue until 𝑟 = 𝑇̅ 

Parameter 𝑇̅ is a key parameter in this algorithm, since it controls the total number of 

iterations. So, on one hand, 𝑇̅ should be large enough to ensure many perturbations have 

been tried before reaching the computational minima; on the other hand, 𝑇̅ cannot be too 

large as it may lead to longer estimation, but with only marginal gain on the parameter 

estimation. It is suggested that some trials should be performed to find a balanced value 

for 𝑇̅ in this trade-off. 

The difference of new error function to the error function in the previous step: Ψ̂ −

Ψ𝑟 determines how unlikely the process will accept the new “guess”. Note that since the 

scaling factor of the difference 𝑇(𝑟 + 1) is a deceasing function of step 𝑟, this suggests 

that for similar values of Ψ̂ − Ψ𝑟 , Ω  in later steps (larger 𝑟 )  is more likely to stay 

unchanged. 

1.3.3.3 Genetic Algorithm 

Genetic algorithm (GA) is another popular stochastic search method in nonlinear 

optimization, which originated from the evolutionary theory. Same as simulated 

annealing, no derivatives need to be calculated throughout the algorithm, and it also starts 

with one random initialization vector Ω0. The GA algorithm works as follows: 

1. Set up a set of random guesses for Ω , which is called a population (e.g. 𝑁∗ 

random vectors): 𝛀𝟎 = {Ω0𝑖: 𝑖 = 1,2, … ,𝑁∗}. 

2.  In the 𝐺th generation, 𝑁∗ pairs of “parents” were chosen from the population 𝛀𝑮 

to “generate” new children –members in 𝛀𝑮 can be parents of more than one child.  

2.1 Suppose Ω𝐺1 and Ω𝐺2 are chosen as one pair. Crossover and mutation are 

then performed on these two members to yield a new vector.   

2.2 Crossover is to swap part of parents’ “DNA” – the parameter vectors in 

the algorithm. There are several kinds of crossovers: shuffle crossover, 

arithmetic crossover, single-point crossover [43]. Arithmetic crossover 

can only be used when the parameters are in real-valued encoding. 
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2.3 Mutation is to make changes directly on a member. For example, define 

mutation probability 𝑝𝑟̃ as: 𝑝𝑟̃ = 0.15 +
0.33

𝐺
, which determines whether 

mutation happens on certain child. If mutation exists for example on the 

𝑗th parameter of child 𝐶1, then change 𝐶1𝑗 to 𝐶1𝑗̃ as following:  

𝐶1̃𝑗 =

{
 
 

 
 𝐶1𝑗 + 𝑠 [1 − 𝑟2

(1−
𝐺

𝐺∗
)
𝑏

]   𝑖𝑓 𝑟1 > 0.5

𝐶1𝑗 − 𝑠 [1 − 𝑟2
(1−

𝐺

𝐺∗
)
𝑏

]   𝑖𝑓 𝑟1 ≤ 0.5

  

𝑟1 and 𝑟2 are two real numbers randomly chosen from [0,1]. 𝑠 and 𝑏 are 

two parameters which should be pre-determined. More detailed 

discussions on the crossover and mutation can be found in [43]. 

3. Evaluate the error functions 𝑅𝑝 in (1.3.3) for {Ω𝐺1, Ω𝐺2, 𝐶1, 𝐶2}, and chooses the 

two with smallest 𝑅𝑝 to be the members in generation (𝐺 + 1). 

4. 𝑅𝑝  is calculated on both the 𝐺 th and (𝐺 + 1) th generations. If the smallest 𝑅𝑝 

among 𝐺 th generation is also the smallest among (𝐺 + 1) th generation, that 

particular member will replace the one with highest 𝑅𝑝 in (𝐺 + 1)th generation. 

5. Repeat the above steps to 𝐺∗ times, with the best member in the last generation 

being the desired parameter estimation. 𝐺∗ is the parameter determining when to 

stop, just like 𝑇̅ in simulated annealing algorithm. 

Both genetic algorithm and simulated annealing are stochastic methods for 

optimization, and share the common advantage of trying new solutions randomly in the 

neighborhood of existing solutions. If the new solutions are better or not too worse than 

existing ones, the new solutions are used for searches in the next step. However, one 

more advantage for genetic algorithm is that it keeps several possible solutions (𝑁∗ 

members in current population) and generate more ways to move from the existing 

solution to new better solutions through the crossover (mutation is like the “updating” 

method in simulated annealing). 

Back-propagation is a greedy algorithm that can perform exhaustive search in a 

particular local area. However, since it can only move the target function in one direction, 

the optimization can be easily trapped in a local minimum. In contrast, stochastic 
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methods may move the target function both up and down so it can escape from local 

minima; however, the optimization then has the risk of leaving an area too soon. Based 

on these characteristics, hybrid methods that combine the strengths of both back-

propagation and stochastic methods have also been proposed [43]. 

1.3.4 Parameter Selection 

After several trials of model fitting, researchers may notice that some input factors 

may be more important than others, and some may be more dispensable and should be 

excluded. So how to retain those important factors and filter out unimportant ones is an 

interesting problem. Here we will describe a method called parameter decreasing method 

(PDM) for parameter selection [65]. Although for the prediction purpose, it may not be 

necessary or productive to conduct parameter selection in neural networks due to its 

unique structure, for some cases where the model interpretation is important, selecting 

proper factors can be very meaningful. 

Let’s use the local connections in Figure 4 to illustrate how the PDM works. Each 

group of input factors {𝑋𝑠𝑖, … , 𝑋𝑛𝑖} together with their corresponding higher neuron 𝑊𝑖 is 

viewed as one unit. PDM conducts selection at this “unit” level, that is, the process 

eliminates one unit each time and evaluates how model performance may change, such as 

the accuracy rate based on a validation data set. After going through all units, the one 

having least impact on performance would be discarded. This process will iterate until 

some stopping criteria meets – the maximum number of remaining units or the maximum 

decrease of performance when eliminating one unit. This resembles a backward selection 

procedure. 

1.4 Neural Networks in Research and Applications 

After backpropagation algorithm was proposed, the research field of neural networks 

had undergone dramatic changes, and gradually evolved to cover a wide range of models 

and learning methods in many fields, from explosives detection system in airport [62] to 

handwriting recognition in artificial intelligence [37], and to photographing and cancer 

cell detection [74]. 
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As a powerful prediction tool, neural network can be a great option for certain 

applications. For example, it can be applied in marketing analyses to help identify 

potential customers and their preference for specific needs, based on their browsing 

history on internet, goods bought in the past and other demographic information. With 

these information, merchants would know who may be their potential customers and 

what they need, and then could design targeted advertisements. Not only could this type 

of analysis help merchants reduce their advertisement costs significantly [69], it can also 

help customers receive relevant information more efficiently. Classification, predictive 

modeling, pattern recognition and novelty detection (like E-mail spam filtering [9]) might 

be the most wide application field for neural networks. 

Neural networks can also contribute in unsupervised learning like clustering and 

nonlinear principal component analysis [21] [33]. The idea of performing nonlinear 

principal component analysis utilizing neural networks is trying to replicate input neurons 

in output neurons, so that the hidden neurons would serve as a good set of representatives 

for input neurons. Neural networks have had a promising application in artificial 

intelligence, since the origin of neural network models is to mimic functionalities of 

human brains. Many aspects of artificial intelligence really need powerful machine 

learning models like: learning, natural language processing and manipulation. 

More recently, applications of neural networks in financial industry have been 

proposed. Many published papers have proved its success in financial market. Some of 

the automated trading systems are also built upon neural network models. In Chapter 3 of 

this thesis, we will give a more detailed summary on how the neural networks have been 

applied in finance, especially on stock price predictions.  

1.5 Motivations and Contributions 

Although neural network models have been widely applied in different areas, most of 

the applications still utilize the single layer neural networks, which is the simplest model 

structure in the family of neural networks. Single layer neural networks might be enough 

for analyzing some simple data sets, when the number of covariates is small compared 

with the sample size and covariates are almost independent with each other. However, for 
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more complicated datasets, single layer neural networks may not perform well. Many 

researchers comparing neural networks with other machine learning methods like SVM 

or Random Forests often concluded that neural networks cannot outperform to the other 

competitors in some specific applications. As we mentioned in Section 1.1, the reason 

may lie on the fact that most of them actually only tried the single layer neural networks. 

After reviewing many papers on neural network applications, we believe that to 

achieve the best performance of neural networks, special structures should be designed 

for different datasets, tailored to their own data characteristics. In this thesis work, we 

will design a novel double layer neural network model with local connections from input 

layer to the first hidden layer. Our model with this unique design is expected to utilize the 

correlation information and help improve the model performance. We demonstrated that 

neural network models with this structure can better deal with covariates which high 

correlations. Our model have been applied and tested in two different areas: 

 Genome-wide Association Studies (GWAS). In GWAS, hundreds and thousands 

of SNPs are genotyped, and SNPs that are physically close are usually highly 

correlated with each other. Our model tries to utilize these correlation information 

to help detect causal SNPs (and their interactions). Simulation studies have been 

conducted to test our model and compare with Random Forests. The model has 

also been applied to a real COGEND data.  (Chapter 2) 

 Prediction of stock price movement at 5-minute level. Stock prices show greater 

correlations in high frequency scale than in daily or monthly level. Our model will 

incorporate the price correlation information and other technical indicators to help 

in price prediction in high-frequency data. We also design a framework for our 

unique model to help make decisions on transactions. The model was tested on 

S&P 500 stock prices from 1/1/2013 to 5/31/2013. (Chapter 3) 

In addition, we have developed in-house software for the model implementation, 

which are mainly written in C language to achieve better computational speed. Different 

from existing packages for neural networks, we calculate the first derivatives of error 

functions in their explicit form instead of using numerical methods. So our in-house 
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software can train our neural network models much faster than those existing ones, e.g.  

the “nnet” packages in R.   
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CHAPTER 2 GENOME-WIDE ASSOCIATION STUDY USING NEURAL NETWORK 

MODELS 

2.1 Introduction 

2.1.1 Some Notations in Genetics 

In modern genetics, genome refers to the entirety of an organism's hereditary 

information, which is usually mediated through a combination of four possible DNA 

nucleobases, namely A, T, C and G. Particularly, a human genome consists of 

approximately 3 billion of nucleobases, packed into 23 pairs of chromosomes. For a 

diploid species like human, one of the paired chromosomes originates from the paternal 

and another one from the maternal. Both the paternal and maternal chromosomes contain 

almost identical nucleobases sequences with over 99.9% similarity, except at certain 

Two double strands are selected here as an explanation of SNPs. For the first double-

strand, there is a loci with genotype C/G. At the same loci of the second double-strand, 

the genotype is T/A. Then we know this loci is a C/T polymorphism if we choose the 

red strands as the representative (http://en.wikipedia.org/wiki/Single-nucleotide 

polymorphism). 

Figure 6. An illustration of Single Nucleotide Polymorphism (SNP) 
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nucleobases, which are called as single-nucleotide polymorphism, or SNPs. Figure 6 

shows an example of SNP with C/T polymorphism. Base on the newest summary data of 

dbSNP database (http://www.ncbi.nlm.nih.gov/projects/SNP), there are approximately 38 

million (about 1 percent of the total genome) of validated SNPs in human genome. 

Although in theory, any of the four nucleobases may appear at any genomic position, 

in practice, it has been observed that most SNPs are actually bi-allelic, which means they 

only contain two possible nucleobases, generating three genotypes. For example, if a 

SNP has two alleles, A and C, the possible outcomes (genotypes) of this SNP could only 

be AA, AC and CC. AA and CC are called homozygotes, and AC is called heterozygote. 

In the rest of this paper, we assume SNPs are bi-allelic. 

In a nature population, if subjects mate at random, a phenomenon called Hardy-

Weinberg Equilibrium (HWE) may occur, which states that the allele frequencies of a 

SNP in a population remain constant from generation to generation unless specific 

disturbing influences are introduced. To illustrate HWE, let's take a single SNP locus 

with A/C alleles as an example: Suppose the frequency of allele A to be 𝑃(𝐴) = 𝑝, then 

allele frequency of allele C is𝑃(𝐶) = 𝑞 = 1 − 𝑝; from the HWE, we have 𝑃(𝐴𝐴) =

𝑝2; 𝑃(𝐴𝐶) = 2𝑝𝑞; 𝑃(𝐶𝐶) = 𝑞2. Generally speaking, the allele frequency of each SNP is 

different. 

Minor allele frequency (MAF) is an important characteristic of SNP, defined as: 

𝑀𝐴𝐹 = min {𝑝, 1 − 𝑝} for each SNP. Usually, SNPs with very small MAF (for example 

less than 0.01) is difficult to be studied thoroughly due to their low frequencies, which  

also cause some difficulties for the genome- wide association studies. This topic will be 

discussed in the third section of this chapter. With the development of new genotyping 

technology, more SNPs with small MAF that could not be discovered before are reported 

more and more recently.  

Another important characteristic of SNP is the Linkage Disequilibrium (LD) among 

SNP loci. The LD refers to non-random associations between the genotypes of different 

loci. If a group of SNP loci follow an LD pattern, then some combinations of their 

genotypes would appear more often than random formations. It is known that the LD 

strength between SNPs is closely related to their physical distance. Because of the LD, 



23 

 

we can infer unknown SNPs based on known SNPs and it serves as the major principal 

for the artificial neural network methods we plan to study in this thesis. 

Table 1 shows the joint probabilities of genotypes of two SNP loci, expressed as their 

haplotype frequencies. If the two loci are independent, then:  

𝑝𝐴𝐵 = 𝑝𝐴𝑝𝐵;     𝑝𝐴𝑏 = 𝑝𝐴𝑝𝑏 
(2.1.1) 

𝑝𝑎𝐵 = 𝑝𝑎𝑝𝐵;     𝑝𝑎𝑏 = 𝑝𝑎𝑝𝑏 

Otherwise, an extra parameter D needs to be introduced and the haplotype 

frequencies are redefined as:  

𝑝𝐴𝐵 = 𝑝𝐴𝑝𝐵 + 𝐷;    𝑝𝐴𝑏 = 𝑝𝐴𝑝𝑏 − 𝐷 
(2.1.2) 

𝑝𝑎𝐵 = 𝑝𝑎𝑝𝐵 − 𝐷;    𝑝𝑎𝑏 = 𝑝𝑎𝑝𝑏 + 𝐷 

The quantity D is the so-called LD measure. It reflects the difference compared with 

the expected genotype combination frequencies under the assumption of independence. 

𝐷 ≠ 0 means the two loci are in linkage disequilibrium.  

From the definition of D, we know that D's for different loci pairs may have different 

ranges. Then the direct comparison between D's is not sensible. We need to do some 

normalization on the parameter. One type of normalization is 𝐷′ =
𝐷

𝐷𝑚𝑎𝑥
, with: 

𝐷𝑚𝑎𝑥 = {
min(𝑝𝐴𝑝𝐵, 𝑝𝑎𝑝𝑏) , 𝑤ℎ𝑒𝑛 𝐷 < 0

min(𝑝𝑎𝑝𝐵, 𝑝𝐴𝑝𝑏) , 𝑤ℎ𝑒𝑛 𝐷 > 0
 

Table 1. Joint probabilities of genotypes of two SNP loci. 

The probabilities of each genotype combination are shown in Formulas (2.1.1) and (2.1.2) for the 

two SNP loci being independent or not. 

Probabilities 𝐴𝐴 𝐴𝑎 𝑎𝑎 

𝐵𝐵 𝑝𝐴𝐵
2  2𝑝𝐴𝐵𝑝𝑎𝐵 𝑝𝑎𝐵

2  

𝐵𝑏 2𝑝𝐴𝐵𝑝𝐴𝑏 2(𝑝𝐴𝐵𝑝𝑎𝑏 + 𝑝𝐴𝑏𝑝𝑎𝐵) 2𝑝𝑎𝐵𝑝𝑎𝑏 

𝑏𝑏 𝑝𝐴𝑏
2  2𝑝𝐴𝑏𝑝𝑎𝑏 𝑝𝑎𝑏

2  
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Another kind of normalization is to use the correlation coefficient, which is expressed as: 

𝑟 =
𝐷

√𝑝𝐴𝑝𝑎𝑝𝐵𝑝𝑏
. 

2.1.2 Genome-Wide Association Study 

It is well known that most common human traits, such as diseases, are likely to be 

complex, that is, many genetic factors may contribute to development of these complex 

traits. Typically, it is very hard to identify these genetic factors, as each causal gene may 

only make a small contribution to the disease phenotype. Many approaches have been 

developed to uncover causal genes (or SNPs) for complex traits/diseases. Roughly 

speaking, the existing methods can be categorized into three groups: candidate-gene 

studies, linkage mapping and genome-wide association studies [24].  

Here we give a brief introduction to the candidate-gene association studies, which can 

be easily extended to the genome-wide association studies. In a simple case-control study, 

candidate-gene studies compare the frequencies of alleles or genotypes of a particular 

variant between disease (case) and control groups. The genes are usually preselected, 

based on certain biological hypotheses or the location of the candidate within a 

previously determined region of linkage. One limitation of this approach is that they can 

identify only a fraction of genetic risk factors, even for diseases with well-understood 

pathophysiology and if the test hypotheses are broad (for example, involving the testing 

of all genes in the insulin-signaling pathway). When the fundamental physiological 

defects of a disease are unknown, the candidate-gene approach is clearly inadequate. 

As an extension of candidate-gene studies, genome-wide association approaches 

surveys most of the genome for causal genetic variants. Here the genetic variants could 

be genes or base loci - SNPs. This is a data-driven discovery approach with no 

assumption on causal variants, and it could exploit the strengths of association studies 

without having to guess the identity of the causal genes. The genome-wide association 

approach therefore represents an unbiased yet fairly comprehensive option that can be 

attempted even in the absence of convincing evidence regarding the function or location 

of the causal genes or SNPs. 
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2.1.3 Difficulties in GWAS 

From genetics, we know that a major part of the genetic variations are due to SNPs. 

This means if we had known all SNPs in human genome, we could in theory understand 

how most of the genetic factors may affect different phenotypes. However, even the most 

recent SNP array platform can only survey 1 million SNPs, which is still a small fraction 

of all the SNP loci. So a GWAS study is typically performed with incomplete SNP list. In 

this case, the LD pattern we introduced previously may help identify the missing causal 

SNPs, based on the hope that sampled SNPs correlated with the missing causal SNPs 

provide information for that disease. Figure 7 shows how LD pattern is used in genome-

wide association studies. Figure 7a shows the desired situation: the causal SNP is 

genotyped, so we can directly analyze its association with some phenotype (for example 

diseased or not). In Figure 7b, the casual SNP (blue one) is not genotyped; however, 

SNPs are in an LD pattern with it are genotyped (red ones). In either case, we can still 

perform association studies based on the genotyped SNPs, because they provide some 

genetic information of casual SNPs, however, the power may be less when causal SNPs 

is missing from the genotyped set. 

Epistasis (SNP-SNP interaction) is another layer of difficulties in GWAS [13]. For a 

set of 1 million SNPs, an exhausted search for all possible interactions is almost 

Two kinds of associations are shown here. Picture a shows the direst association which means 

the SNP marked red is the causal SNP and genotyped in the study. Picture b shows the 

indirect association - the blue SNP is the causal one but not genotyped, those red ones are 

genotyped and associated with the causal blue one [24]. 

Figure 7. Two association patterns – causal SNPs are genotyped or not 
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computationally infeasible. However, some pseudo-exhaustive searching has been 

developed to specifically deal with epistasis, such as Multifactor-Dimensionality 

Reduction method (MDR, introduced in Section 2.2.1). They can usually handle about 

ten SNP loci at one time. Another group of methods try to discover epistasis effects based 

on SNPs with significant marginal effects. However, some constructed examples [70] 

show that SNPs having high interaction effects may not have high marginal effect at all. 

How to find out the SNP interactions has become one of the hardest problems in GWAS, 

which will be a focus of this thesis. 

In addition to SNP-SNP interactions, SNP-environment interaction also plays an 

important role in GWAS. For most biological traits, genetic factors alone cannot fully 

predict the phenotypes. Environmental factors like ethnicity and lifestyle may affect the 

phenotypes as well. Determining which environmental factors should be included in the 

study is a hard but important problem 

 

2.2 Existing Popular Epistasis Methods in GWAS 

In a simplified form, a GWAS can be viewed as a statistic model: the SNP data are 

the input variables, and the phenotype of interest, e.g. disease status, is the response 

variable. Then in the case of binary phenotype, the most straightforward idea is to fit a 

logistic regression model to the data. However, typically the number of SNPs are much 

larger than the number of observations. This yields a "small p, large n" problem and the 

common regression methods cannot be directly applied. In this chapter, we will review 

three popular epistasis methods: multifactor-dimensionality reduction, random forests 

and Bayesian epistasis association mapping. These three methods are suggested to be the 

most widely used ones among tons of existing methods [3] [10]. 

2.2.1 Multifactor-Dimensionality Reduction 

MDR method is a well-known method in GWAS, not only because it is 

straightforward and its computation process is very easy to implement, but also because it 
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performs exhaustive search: searching for all possible interaction combinations among 

the potential causal factors (genes or SNPs). 

MDR was first introduced by Ritchie and others in 2001 [57]. In the original paper, 

the authors used this method to investigate sporadic breast cancer and discovered a four-

locus interaction term having high association with the disease. It was arguably the first 

time to identify such a high-order interaction for a complex multifactorial disease. In a 

following paper [56], they discussed the power of MDR with more details. 

Figure 8 demonstrates the four general steps to implement the MDR method in a 

case-control study: 

Figure 8. Steps for Multifactor-Dimensionality Reduction method 

1. Determine the potential causal SNP loci and their genotypes; 2. For each 

possible interaction term, generate case-control ratios for each genotype; 3. 

Identify high risk multilocus genotypes; 4. Cross-validate step 2 and 3. [57] 
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(1) A set of n genetic and/or discrete environmental factors is selected from the pool 

of all factors. 

(2) The n factors and their possible multifactor classes or cells are represented in a n-

dimensional space. As an example in this figure, a two-locus case is considered, 

which means a two-dimensional space. Totally there are nine two-locus genotype 

combinations. Then, the ratio of the number of cases to the number of controls is 

estimated within each multifactor class. 

(3) Each multifactor cell in n-dimensional space is labeled either as high-risk if the 

cases/controls ratio meets or exceeds some threshold or as low-risk otherwise. In 

this way, a model is formed by pooling high-risk cells into one group and low risk 

cells into another group. Usually we choose 1 as the threshold in case-control 

studies because it is the totally randomized ratio for each cell. 

(4) A 10-fold cross-validation is done for the above three steps. That is, the MDR 

model is developed for each possible 9/10 of the subjects and then used to make 

predictions about the disease status for each subject in the rest 1/10 of the subjects. 

The proportion of subjects on which incorrect predictions are made is an 

estimation of the prediction error of that model. 

Suppose the total number of factors is m, and is bigger than two. We should try each 

𝑛 = 2, 3, … ,𝑚  and each possible combination of n factors in the above four steps. 

Among all the n-factor models, the one maximizing the cases/controls ratio of the high-

risk group is selected. [57] computes the training error for the 9/10 data and chooses the 

one with the lowest training error. For the selected n-factor model, there are two 

quantities which can represent its goodness of fit. One is the prediction error, and the 

other is the times the model is chosen among the 10-fold cross-validation – the cross-

validation consistency of size of n. Then the optimal n among 2, 3, … ,𝑚  is selected 

according to the two quantities (usually the two quantities give the same conclusion [57]. 

And the prediction error is the more important quantity, if the two quantities does not 

imply the same conclusion, we need to either use prediction error as the criteria or 

redesign the cross-validation process). This n is the final size of the model, and the 

optimal set for the chosen order forms the best multifactor model. 
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A strong selling point of MDR is that it can simultaneously detect and characterize 

multiple genetic loci associated with diseases. It searches through any levels of 

interaction regardless of the significance of the main effects. It is therefore able to detect 

high-order interactions even when the underlying main effects are statistically 

insignificant. However, as mentioned in [50], this "strength" is also a weakness: MDR 

can "only" identify interactions. If the real model has three loci and the effect is additive, 

MDR can only consider them all as a 3-factor interaction effect, although one can post-

process the final model to further examine the 3-factor interaction in fact is additive. 

In the situation with small number of factors, MDR can usually perform very well. 

However, when the number of factors become larger, MDR will quickly become 

computational infeasible. Another difficulty is empty cells in high-dimensional situation. 

For example, for a 5-dimension table, there are 243 genotypes cells, so it is very likely 

that many genotype cells may have zero or few observations. This will make the MDR 

model very unstable. 

2.2.2 Classification Tree and Random Forests 

Classification and regression tree (CART) is a popular method in statistical learning 

and data mining, and has been well adopted in GWAS. Since Random Forests with 

CART is already well-known in other fields, we will not explain this model in details but 

focus on vital aspects when the Random Forest model is applied in GWAS. Detailed 

introductions could be found in [20], and the application of Random Forest in GWAS 

could be found in [71]. 

Two central steps are involved in single tree (CART model) construction: partitioning 

and pruning. Training population in parent node is divided into two offspring nodes in 

order to achieve the best partition “score”. The term “score” could have different choices 

which serve as a measurement of how well certain covariate partitions the population in 

parent node. Popular choices include Gini index and cross-entropy. After recursively 

going through the partition steps and being stopped by certain criteria, a large tree is 

generated, with each node representing a partition rule. Usually this tree would over-fit 

the training data and a second step called pruning is needed. A quantity called maximum 

chi-square statistics can be applied in the pruning process, which shows how well the 
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partition is not only for this single node but also for the whole sub-tree rooted at this node. 

So all nodes with maximum chi-square statistics below some threshold will be pruned 

because the whole sub-tree would not contribute much to distinguish population. The 

variables in the remaining nodes have the most impacts on distinguishing the training 

population. The tree method is very intuitive and has easy interpretation, however it has 

some instability issues, that is, a small change on an important variable could lead to a 

very different tree.  

A much more popular tree-based method in GWAS is Random Forests (abbreviated 

as RF in this section), which is an ensemble of many CARTs. All SNPs – our potential 

biomarkers for certain disease – consists of the pool of variables from which subsets of 

variables are chosen to build up single CARTs. And also the training population for each 

CART is a random sample from the original population. Taking into account of the above 

two randomness, every CART in RF will probably choose out different set of variables, 

which can lead to the definition of important index for every variable, showing the 

impact of each variable to distinguish population. With the final predictive model, the 

important indexes also provide the significance order for all potential causal SNPs, which 

would be of great convenience in GWAS. 

2.2.3 Bayesian Epistasis Association Mapping (BEAM) 

BEAM method was first proposed in 2007 [72]. In the original paper, the authors 

reported that this algorithm could handle about 106
 SNPs at the same time, which is quite 

impressive and very different from previous methods in GWAS. In a real data application 

with age-related macular degeneration (AMD), it was shown that BEAM method dealt 

with 96,932 SNPs from 146 individuals and ran for about 5 hours [72]. Below is a brief 

introduction of BEAM [72]. 

Suppose there are 𝑁𝑑  cases and 𝑁𝑢  controls genotyped at 𝐿  SNP loci. Let case 

genotypes be 𝐷 = (𝑑1, 𝑑2, … , 𝑑𝑁𝑑) with 𝑑𝑖 = (𝑑𝑖1, 𝑑𝑖2, … , 𝑑𝑖𝐿) representing genotypes of 

patient 𝑖  at 𝐿  SNP loci, and let control genotypes be 𝑈 = (𝑢1, 𝑢2, … , 𝑢𝑁𝑢)  with 𝑢𝑖 =

(𝑢𝑖1, … , 𝑢𝑖𝐿)  The 𝐿  SNPs are partitioned into three groups: group 0 contains SNPs 

unlinked to the disease, group 1 contains SNPs contributing independently to the disease 
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risk and group 2 contains SNPs that jointly influence the disease risk (interactions). Let 

𝐼 = (𝐼1, … , 𝐼𝐿) indicate the membership of the SNPs with 𝐼𝑗 = 0, 1, 2, respectively. Then 

all we have to do is to infer the set 𝑗: 𝐼𝑗 > 0. Let 𝑙0, 𝑙1, 𝑙2 denote the number of SNPs in 

each group (𝑙0 + 𝑙1 + 𝑙2 = 𝐿), and let 𝐷0, 𝐷1 and 𝐷2  denote case genotypes of SNPs in 

group 0, 1 and 2, respectively. 

Let Θ1 = {(𝜃𝑗1, 𝜃𝑗2, 𝜃𝑗3): 𝐼𝑗 = 1} be the genotype frequencies of each SNP in group 1 

in the disease population, (𝑛𝑗1, 𝑛𝑗2, 𝑛𝑗3) be the genotype counts for cases of SNP 𝑗. Then 

the likelihood of 𝐷1 is 

𝑃(𝐷1|Θ1) = ∏ ∏𝜃
𝑗𝑘

𝑛𝑗𝑘

3

𝑘=1𝑗:𝐼𝑗=1

 

Assuming a Dirichlet(𝛼) prior for (𝜃𝑗1, 𝜃𝑗2, 𝜃𝑗3), where 𝛼 = (𝛼1, 𝛼2, 𝛼3). Integrate out 

Θ1 and obtain the marginal probability: 

𝑃(𝐷1|𝐼) = ∏ (
Γ(|𝛼|)

Γ(𝑁𝑑 + |𝛼|)
∏

Γ(𝑛𝑗𝑘 + 𝛼𝑘)

Γ(𝛼𝑘)

3

𝑘=1

)

𝑗:𝐼𝑗=1

 

Here |𝛼| = 𝛼1 + 𝛼2 + 𝛼3. 

For the SNPs in group 2, they contribute to the disease through interactions. Thus we 

should take every combination of genotypes into consideration - there are totally 3𝑙2 

possible genotype combinations with frequency Θ2 = (𝜌1, … , 𝜌3𝑙2)  in the disease 

population. Let 𝑛𝑘 be the counts for cases of genotype combination 𝑘. The likelihood of 

𝐷2 is 

𝑃(𝐷2|Θ2) =∏𝜌𝑘
𝑛𝑘

3𝑙2

𝑘=1

 

Again, a Dirichlet(𝛽) distribution is assumed for prior of Θ2 = (𝜌1, … , 𝜌3𝑙2) . After 

integration, we get: 
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𝑃(𝐷2|𝐼) =
Γ(|𝛽|)

Γ(𝑁𝑑 + |𝛽|)
∏

Γ(𝑛𝑘 + 𝛽𝑘)

Γ(𝛽𝑘)

3𝑙2

𝑘=1

 

With |𝛽| = ∑ 𝛽𝑘
3𝑙2
𝑘=1 . 

The remaining data 𝐷0 consists of SNPs with the same distribution as in the control 

population. Let 𝑛𝑗𝑘 and 𝑚𝑗𝑘, 𝑘 = 1, 2, 3 denote the counts of genotype 𝑘 at SNP 𝑗 in 𝐷0 

and 𝑈. Also assuming Dirichlet priors with parameters 𝛾 = (𝛾1, 𝛾2, 𝛾3) for 𝜃𝑗 , 𝑗 = 1,… , 𝐿. 

Here 𝜃𝑗 , 𝑗 = 1,… , 𝐿 are the genotype frequencies in the control population. We integrate 

out Θ and obtain: 

𝑃(𝐷0, 𝑈|𝐼) =∏(
Γ(|𝛾|)

Γ(|𝛾| + ∑ (𝑛𝑗𝑘 +𝑚𝑗𝑘)
3
𝑘=1 )

∏
Γ(𝑛𝑗𝑘 +𝑚𝑗𝑘 + 𝛾𝑘)

Γ(𝛾𝑘)

3

𝑘=1

)

𝐿

𝑗=1

 

With |𝛾| = 𝛾1 + 𝛾2 + 𝛾3. 

The posterior distribution of 𝐼 is 

𝑃(𝐼|𝐷, 𝑈) ∝ 𝑃(𝐷1|𝐼)𝑃(𝐷2|𝐼)𝑃(𝐷0, 𝑈|𝐼)𝑃(𝐼) 

With the prior of 𝐼 being 𝑃(𝐼) = 𝑝1
𝑙1𝑝2

𝑙2(1 − 𝑝1 − 𝑝2)
𝐿−𝑙1−𝑙2. It is mentioned that this 

prior could be modified based on some knowledge about the disease. 

The algorithm will use the last formula to give an estimation to the indicator 𝐼. In 

such a situation, the posterior distribution is known except for a normalizing constant, 

MCMC sampling method (more specifically the Metropolis-Hastings algorithm) is used. 

Each proposed move is accepted according to the MH ratio, which is just a ratio of 

gamma functions. What we get is the penetrance of each marginal effect and interaction 

effect (the distribution of 𝐼). There are some strategies making the whole algorithm more 

efficient mentioned in [72]. 

To test whether a set of SNPs is associated with the disease, the authors introduced a 

new statistics called 𝐵 statistics. For a set 𝑀 of 𝑘 SNPs to be tested, the null hypothesis is 

that SNPs in 𝑀 are not associated with the disease. The effect could be marginal and 

every interaction effects. Then: 
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𝐵𝑀 = 𝑙𝑛
𝑃𝐴(𝐷𝑀, 𝑈𝑀)

𝑃0(𝐷𝑀, 𝑈𝑀)
 

Here, 𝐷𝑀  and 𝑈𝑀  denote the genotype data for the SNPs in 𝑀 . 𝑃0  and 𝑃𝐴  are the 

likelihood function under null hypothesis and alternative hypothesis. 

For the alternative model, 𝑃𝐴(𝐷𝑀, 𝑈𝑀) should be factored into 𝑃𝐴(𝐷𝑀) and 𝑃𝐴(𝑈𝑀). 

The authors also assumed that 𝑃𝐴(𝑈𝑀) and 𝑃0(𝐷𝑀, 𝑈𝑀) follow a common distribution – 

an equal mixture of two distributions: one assumes independence among SNPs in 𝑀, 

𝑃𝑖𝑛𝑑(𝑋) which is given in Formula *; the other assumes saturated interaction among 

SNPs in 𝑀 , 𝑃𝑗𝑜𝑖𝑛(𝑋) which is given in Formula *. 𝑋  here could be 𝑈𝑀  or (𝐷𝑀, 𝑈𝑀). 

𝑃𝐴(𝐷𝑀) = 𝑃𝑗𝑜𝑖𝑛(𝐷𝑀) because we want to test a saturated interaction effect of the SNPs in 

𝑀. So above all, the 𝐵𝑀 could be written as: 

𝐵𝑀 = 𝑙𝑛
𝑃𝑗𝑜𝑖𝑛(𝐷𝑀)(𝑃𝑖𝑛𝑑(𝑈𝑀) + 𝑃𝑗𝑜𝑖𝑛(𝑈𝑀))

𝑃𝑖𝑛𝑑(𝐷𝑀, 𝑈𝑀) + 𝑃𝑗𝑜𝑖𝑛(𝐷𝑀, 𝑈𝑀)
 

In [72], the authors also introduced a conditional 𝐵 statistics which is used to test 

additional association effects conditioned on some known causal SNPs in 𝑀. 

2.3 Neural Network Models Applied in GWAS 

2.3.1 Existing Applications of Neural Networks in GWAS 

Neural networks have been applied to genome-wide association studies in some 

papers. Tomita and others [65] have used neural networks to analyze the SNP data in a 

Childhood Allergic Asthma study. For each SNP, its three genotypes are coded as (0.1, 

0.1), (0.1, 0.9) and (0.9, 0.9), respectively. In this form, the number of inputs in the ANN 

is twice as many as the number of SNPs. The SNP can also be coded as 0, 1 and 2. 

However, based on our simulation studies, the two different SNP coding show very little 

difference on the prediction errors. So in this thesis, we just use the original form of SNP 

data. Another feature of this paper is the usage of parameter decreasing method (PDM) 

for feather selection, which has been introduced in section 1.3.4. As more input variables 

(SNPs) being removed from the model, the remaining SNPs would be the “significant” 

factors for the outcome. 
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Later, Mutoh and others [46] also used the similar SNP coding techniques as Tomita 

in a study of Helicobacter pylori infection, but they employed a different method to select 

significant SNPs. Interestingly, they used a parameter increasing method to add SNPs 

into the neural network models, which can be viewed as an inverse process of PDM. Also, 

they have tried an exhausted search among all the combinations of three SNPs. 

Both the above papers use the single layer neural network models and 

backpropagation method for the parameter estimation. Both give prediction accuracy 

rates around 70% to 80%, which seems to be very good compared with others. Some 

other researches like Okut and others’ [48] apply neural network models in Bayesian 

frame in order to achieve better computational properties, but again based on the single 

layer neural network. 

2.3.2 Our Novel Structure of Neural Network Models 

One limitation for the single layer neural networks is that they did not take into 

consideration the fact that SNPs with a LD block are highly correlated with each other, 

but are rarely correlated with SNPs outside of the block. Ignoring this information may 

lead to less efficient detection of causal SNPs. This motivates us to construct a double-

layer neural network, referred as DNN hereafter, to analyze SNP epistasis effects, which 

utilizes the information within LD blocks.  

One big advantage of DNN is to avoid redundant SNP-SNP interactions within the 

LD blocks while still retaining informative SNPs in the model. For example, suppose we 

have three SNPs A, B and C; SNPs A and B belong to one gene and SNP C belongs to 

another gene that interacts with the first gene; then, due the LD between A and B, we can 

predict that the A-C interaction would be very similar to the B-C interaction, and only 

one interaction may be significant because of the masking effect between them; however, 

ignoring either interaction may introduce bias to the model and subsequently be less 

powerful. To circumvent this, we proposed the DNN model, in which the first layer is 

used to "summarize" the SNP information in one gene or in one LD block, and the 

second layer is used to analyze interactions at gene level. 
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Additionally, in genome-wide association studies, some environmental variables may 

also be considered into the models, such as age, ethnicity and lifestyle. These factors may 

be added as "neurons" in the second layer.  

Figure 9 illustrate the DNN model structure we construct. Suppose there are 𝑃 SNPs, 

which serve as inputs of DNN and are divided into 𝑁  groups based on the LD 

information among them. Then 𝑁 is the number of "normal" neurons in the first hidden 

layer. The first layer also contains 𝑁1 "abnormal" neurons which represent environmental 

factors or other covariates. We call them "abnormal" because they are not generated from 

the input layer. The second hidden layer contains 𝑀 neurons which are summarized from 

the first hidden layer information. In this application, we consider a case-control study, 

The input 𝑋 neurons are locally connected to 𝑊 neurons (as in formula (2.3.1)). Input neurons 

𝑊* are directly connected to 𝑍 neurons. This structure is designed specifically for GWAS to 

consider interaction effects in gene level. The partition of 𝑋 neurons is determined by linkage-

disequilibrium. 

Figure 9. Double layer neural network model with local connections from input layer to the 

first hidden layer 
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which has a binary outcome, i.e. 0 and 1, corresponding to two outcomes, 𝑌1 and 𝑌2. 

The formulas to describe relations between adjacent layers are similar to those in 

(1.2.3)* - (1.2.5)* in section 1.3.3.1, and they are expressed as: 

𝑊𝑖𝑢 = 𝜎(∑ 𝛼𝑢𝑝

𝑛𝑢

𝑝=𝑠𝑢

∗ 𝑋𝑖𝑝) , for  𝑢 = 1,… ,𝑁 (2.3.1) 

𝑍𝑖𝑚 = 𝜎( ∑ 𝛽𝑚𝑛

𝑁+𝑁1

𝑛=1

∗ 𝑊𝑛) , for  𝑚 = 1,… ,𝑀 (2.3.2) 

𝑦̂𝑖𝑘 = 𝑔𝑘 (∑𝜃𝑘𝑛

𝑁

𝑛=1

∗ 𝑍𝑖𝑛) , for 𝑘 = 1,… , 𝐾 (2.3.3) 

Notice that Formula (2.3.1) is different from (1.2.3)*, because neuron 𝑊𝑖𝑢 only gather 

information from 𝑋𝑖𝑠𝑢  to 𝑋𝑖𝑛𝑢  as introduced in Section 1.2.5 of local connections. Then 

the first derivatives for all parameters could be calculated as: 

𝜕𝑅𝑝(Ω)

𝜕𝜃𝑘𝑚
=∑

𝜕𝑅𝑝(Ω)

𝜕𝑦̂𝑖𝑘

𝜕𝑦̂𝑖𝑘
𝜕𝜃𝑘𝑚

𝑖

=∑
𝜕𝑅𝑝(Ω)

𝜕𝑦̂𝑖𝑘
𝑔𝑘
′ (∑ 𝜃𝑘𝑚

𝑀

𝑚=1

∗ 𝑍𝑖𝑚)𝑍𝑖𝑚
𝑖

=∑𝜖𝑖𝑘𝑍𝑖𝑚
𝑖

 

(2.3.4) 

With: 𝜖𝑖𝑘 =
𝜕𝑅𝑝(Ω)

𝜕𝑦̂𝑖𝑘
𝑔𝑘
′ (∑ 𝜃𝑘𝑚

𝑀
𝑚=1 ∗ 𝑍𝑖𝑚) (2.3.5) 

𝜕𝑅𝑝(Ω)

𝜕𝛽𝑚𝑛
=∑

𝜕𝑅𝑝(Ω)

𝜕𝑍𝑖𝑚

𝜕𝑍𝑖𝑚
𝜕𝛽𝑚𝑛

𝑖

=∑∑𝜖𝑖𝑘′𝜃𝑘′𝑚𝜎
′ (∑ 𝛽𝑚𝑛

𝑁+𝑁1

𝑛=1

∗ 𝑊𝑖𝑛)𝑊𝑖𝑛

𝑘′𝑖

=∑𝜂𝑖𝑚𝑊𝑖𝑛

𝑖

 

(2.3.6) 

With: 𝜂𝑖𝑚 = ∑ 𝜖𝑖𝑘′𝜃𝑘′𝑚𝜎
′(∑ 𝛽𝑚𝑛

𝑁
𝑛=1 ∗ 𝑊𝑖𝑛)𝑘′  (2.3.7) 

𝜕𝑅𝑝(Ω)

𝜕𝛼𝑢𝑝
=∑

𝜕𝑅𝑝(Ω)

𝜕𝑊𝑖𝑢

𝜕𝑊𝑖𝑢

𝜕𝛼𝑛𝑝
𝑖

=∑∑𝜂𝑖𝑚′𝛽𝑚′𝑛𝜎
′ (∑ 𝛼𝑢𝑝

𝑛𝑢

𝑝=𝑠𝑢

∗ 𝑋𝑖𝑝)𝑋𝑖𝑝
𝑚′𝑖

 (2.3.8) 
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Formula (2.3.4) – (2.3.8) are quite similar with (1.3.9) – (1.3.13), only with (2.3.8) 

slightly different with (1.3.13) because of local connections. Then the vector of all the 

parameters Ω is updated through: 

Ω𝑟+1 = Ω𝑟 − 𝛾𝑟 ∙ ∇𝑟 (2.3.9) 

𝛾𝑟  is the learning rate, and is usually set to: 𝛾𝑟 = 1/𝑟 . ∇𝑟  is the derivatives of all 

parameters (shown in Formula (2.3.4), (2.3.6) and (2.3.8)) at 𝑟th step. More detailed 

discussions could be found in Section 1.3.3.1. 

2.4 Simulation Studies and Real Data Application 

In this section, we performed extensive simulations to examine the statistical 

properties of our method, and then applied it to a real dataset. To mimic the real data 

setting, our simulation studies are designed based on a real data, called COGEND 

(Collaborative Genetic Study of Nicotine Dependence). In this dataset, there are 2022 

observations (908 in control group and 1114 in case group). The covariates include 216 

candidate SNPs that were identified from previous linkage studies [39],  and three 

patient-level characteristics: age, gender and color (representing ethnicity). Age is a 

continuous variable, with gender and color being binary variables. Each SNP loci is 

coded as 3 possible values: 0, 1 and 2. The phenotype of interest is binary, i.e. whether a 

patient is addicted to Nicotine. The use of our DNN model will focus on identifying 

genetic factors of Nicotine dependence based on this group of candidate SNPs, and 

improved understanding of these factors may suggest novel, powerful strategies to reduce 

or eliminate nicotine dependence.  

We first divided the 216 SNPs into different linkage disequilibrium groups. The 

pairwise SNP LD measures – the 𝐷 parameters (as introduced in section 2.1.1) – were 

calculated through maximizing the likelihood function of the whole population based on 

the probabilities in Table 1. The byproducts of this process will give 𝑝𝑎  and 𝑝𝑏  in Table 1, 

which are the MAFs for each SNP locus. The pairwise 𝐿𝐷 values are shown in Figure 10, 

in which there are totally 17 LD blocks based on their within-block correlations. Our 

DNN model will summarize block level information in the first hidden layer and then test 
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any interactions between block level information could contribute to determine the 

outcome. 

In the following, we will design corresponding simulation studies to apply our DNN 

model on different settings and compare it with the random forest model to benchmark its 

performance. After the simulation study, our DNN model with PDM (Section 1.3.4) will 

be applied on the whole COGEND data to identify the most possible LD blocks that 

contain causal SNPs. 

2.4.1 Overall Simulation Procedures 

(1) We adopted two LD blocks in Figure 10 in our simulations: block 1 contains SNP 

44 to SNP 54 and SNP 63 to SNP 69; block 2 contains SNP 74 to SNP 113. Here we 

combine SNP 44~54 and 63~69 into one block because the two sets of SNPs have strong 

LD. In this simulation study, no patient characteristics are included. So there would be 

totally 58 SNPs in this data. 

For each point in the figure, we draw two lines with slopes equal to 1 and -1 from that point. 

Suppose the lines intersect with x-axis on coordinates A and B, then the point represents the 

𝐷 parameter between SNPs A and B. Black point means a strong correlation and white point 

means a weak correlation or even independence. Based on this figure, there are 17 groups of 

SNPs. 

Figure 10. LD pattern among 216 SNPs in COGEND study 
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(2) In each block, a few SNPs are set to be the causal SNPs. Causal SNPs from the 

same block interact with each other to determine a block level information and the two 

block level information will again interact to determine the outcome – Nicotine 

dependence or not. The two interaction patterns can be altered to generate several 

different patterns, and will be illustrated with more details later. 

(3) After the outcome variable generated, causal SNPs are removed from the 

simulated dataset to mimic the case that causal SNPs may not be sampled in real data. 

We expect the two models have the ability to detect causal SNPs’ existence even the real 

causal SNPs are not genotyped and presented in the data set (as Figure 7b). 

(4) Data sets with different sizes (100, 200, 500 and 1000) are sampled from 

COGEND data using the schema in previous step. During the sampling, we try to make 

the outcome to be balanced, i.e. half of patients are Nicotine dependent and half are not. 

(5) For each dataset generated, a permutation test is performed to compare whether 

the fitted DNN model has significantly lower value for error function. If so, we think 

there are causal SNPs existing in the two blocks. 

(6) Repeat the above 5 steps for 200 times and count the number of times we 

correctly detect the existence of causal SNPs 𝑁, then calculate the power as: 𝑁/200. 

(7) Random Forest model is also applied on the same data set and calculate the power 

of detecting the causal SNPs. 

2.4.2 Simulation Settings 

Two sets of studies with different interactive patterns are conducted. We name them 

as “2+1” and “2+2”. In the “2+1” pattern, there are two causal SNPs which have 

interactive effect on the outcome from the first LD block and one causal SNPs which has 

marginal effect on the outcome from the second LD block. In the “2+2” pattern, there are 

two causal SNPs in the first LD block and also has two causal SNPs in the second LD 

block, with the same interaction pattern as that in “2+1”. Detailed settings are given in 

the following two sections. 
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2.4.2.1 Pattern “2+1” 

Causal SNPs from block 1 are set to be SNP 50 and SNP 65. Causal SNP from block 

2 is SNP X, and we have tried different positions for SNP X: 99, 97, 95, 113, 94, 90, 

74~79, 81~84, 86 or 91. The block level information are defined as follows: 

𝑏𝑙𝑜𝑐𝑘 1 = {
1,          𝑖𝑓 𝑆𝑁𝑃 50 = 1 𝑜𝑟 2 𝑎𝑛𝑑 𝑆𝑁𝑃 65 = 0 𝑜𝑟 1 
0,          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (2.4.1) 

𝑏𝑙𝑜𝑐𝑘 2 = {
1, 𝑖𝑓 𝑆𝑁𝑃 𝑋 = 2 
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (2.4.2) 

Then the phenotype is determined as: 

𝑃(𝑝ℎ𝑒𝑛𝑜𝑡𝑦𝑝𝑒 = 1) = {
𝛽,    𝑖𝑓 𝑏𝑙𝑜𝑐𝑘 1 = 1 𝑎𝑛𝑑 𝑏𝑙𝑜𝑐𝑘 2 = 1
𝜖,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Phenotype = 1 means the patient is Nicotine dependent. So in this simulation study, when 

block 1 = 1 and block 2 = 1 are true, they have synergistic effect on causing Nicotine 

dependence. Parameter 𝛽  is called the penetrance and represents the proportion of 

genotype causes for Nicotine dependence. Different values for 𝛽: 0.3, 0.4, 0.5, 0.6, 0.7 

will be tested in the simulation study. Parameter 𝜖 is set to be 0.01 as a random cause for 

Nicotine dependence, indicating that even a patient does not have the genetic cause, he or 

she still has a small probability to be Nicotine dependent. 

2.4.2.2 Pattern “2+2” 

The only difference of “2+2” pattern from previous pattern is that: block 2 has two 

causal SNPs – SNP 80 and SNP X. We also have tried different positions for SNP X: 99, 

97, 95, 113, 94, 90, 74~79, 81~84, 86 and 91. The block level information are defined as: 

𝑏𝑙𝑜𝑐𝑘 1 = {
1,          𝑖𝑓 𝑆𝑁𝑃 50 = 1 𝑜𝑟 2 𝑎𝑛𝑑 𝑆𝑁𝑃 65 = 0 𝑜𝑟 1 
0,          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (2.4.3) 

𝑏𝑙𝑜𝑐𝑘 2 = {
1, 𝑖𝑓 𝑆𝑁𝑃 80 = 0 𝑜𝑟 1 𝑎𝑛𝑑 𝑆𝑁𝑃 𝑋 = 0 𝑜𝑟 1 
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (2.4.4) 

The other parts are exactly the same with “2+1” pattern: 

𝑃(𝑝ℎ𝑒𝑛𝑜𝑡𝑦𝑝𝑒 = 1) = {
𝛽,    𝑖𝑓 𝑏𝑙𝑜𝑐𝑘 1 = 1 𝑎𝑛𝑑 𝑏𝑙𝑜𝑐𝑘 2 = 1
𝜖,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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With 𝛽 = 0.3, 0.4, 0.5, 0.6 𝑜𝑟  0.7 and 𝜖 = 0.01. 

2.4.3 Model Structure for Simulation Studies 

The model structure used in our simulation studies is a little different from Figure 9, 

because here in the simulation studies, there are no environmental factors. We would like 

to formulate our double layer neural network models in more details here, with model 

structure shown in Figure 11. 

From Section 2.4.1, block 1 contains 18 SNPs and block 2 contains 40. And after 

determining the causal SNPs and phenotypes, we eliminate the causal SNPs from our 

generated data set, which means finally block 1 contains 16 SNPs, block 2 contains 39 

SNPs for “2+1” pattern and 38 SNPs for “2+2” pattern. The two patterns make little 

There are two blocks – SNP groups in the input layer so that the structure has two 

neurons in the first hidden layer. Then three neurons in the second layer. It has two 

outcome neurons because the outcome variable is binary. 

Figure 11. Neural network structure for simulation studies. 
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difference in model structure, so without loss of generality, we use “2+1” pattern as our 

example. For simplicity, 𝑋1 to 𝑋16 represent SNPs from block 1 and 𝑋17 to 𝑋55 represent 

SNPs from block 2. Each of the 𝑋 has discrete value: 0, 1 or 2 for genotype aa, Aa and 

AA respectively. 

𝑋 variables are the input neurons and are linked to the first hidden layer and then to 

the second hidden layer through the following formulas: 

𝑊1 = 𝜎(∑𝛼𝑝 ∗ 𝑋𝑝

16

𝑝=1

)  𝑎𝑛𝑑 𝑊2 = 𝜎(∑ 𝛼𝑝 ∗ 𝑋𝑝

55

𝑝=17

) 

𝑍𝑚 = 𝜎(∑𝛽𝑚𝑛 ∗ 𝑊𝑛

2

𝑛=1

)  𝑤𝑖𝑡ℎ 𝑚 = 1, 2, 3 

Then the Z neuros are connected with the two outcome neurons through: 

𝑇𝑘 = ∑ 𝜃𝑘𝑚 ∗ 𝑍𝑚

3

𝑚=1

 𝑤𝑖𝑡ℎ 𝑘 = 1, 2 

𝑌1 =
𝑒𝑇1

𝑒𝑇1 + 𝑒𝑇2
 𝑎𝑛𝑑 𝑌2 =

𝑒𝑇2

𝑒𝑇1 + 𝑒𝑇2
 

Here 𝑌1 and 𝑌2 represent the probability of phenotype = 0 (not being Nicotine dependent) 

and phenotype = 1 (being Nicotine dependent). If 𝑌2 > 0.5 , we predict that the 

corresponding patient is more likely to be Nicotine dependent. 

2.4.4 Simulation Studies Results 

For each choice of SNP X, we have one figure showing the powers calculated for 

DNN and Random Forest models using different sample sizes (1000, 500, 200 and 100) 

and at different penetrance. Figure 12 and Figure 13 shows the simulation results for 

pattern “2+1” and pattern “2+2” correspondingly. 

Each sub-figure has y label named with a SNP number which represent the SNP X in 

our simulation settings. Different colors in one sub-figure are for different sample sizes: 

red for 1000, green for 500, blue for 200 and black for 100. Solid lines are for DNN 
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models and dashed lines are for random forest models. Each point on the line represents 

the power for specific model detecting the existence of causal SNPs at each penetrance 

value.  

All settings show that larger penetrance and larger sample sizes lead to better powers, 

as expected. For larger sample sizes (1000 or 500), DNN models always have better 

performance than Random Forests (implemented using Random Jungle software [60] 

[41]) in terms of power. For small sample sizes (200 or 100), the two models may have 

better performance in different choices for SNP X. 

We also find that for pattern “2+1”, both models almost have little powers in 

detecting the significance for X = 90 and 113. For the pattern “2+2”, both models have 

no powers for X = 74, 77, 78, 94, 97, 82 and 86. We suspect this phenomenon is related 

to the characteristics of the specific SNPs – whether the causal SNPs have high 

correlations with other SNPs within the second LD block and even the correlations with 

SNPs from the first LD block. Also we notice that the “problematic” SNPs for pattern 

“2+1” and “2+2” are very different and pattern “2+1” has only two of such kind of SNPs 

which might because the marginal effect is easier to be detected than the interactive effect. 

The above suspicions need more simulation studies to validate. 
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Figure 12. Simulation study results for pattern “2+1”. 

Each line represents power curve along with penetrance (x-axis) for one specific method (solid 

line for DNN and dashed line for Random Forests) at a specific sample size (four colors).   
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Figure 13. Simulation study results for pattern “2+2”. 

Each line represents power curve along with penetrance (x-axis) for one specific method (solid 

line for DNN and dashed line for Random Forests) at a specific sample size (four colors). 
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2.4.5 Real Data Analysis 

The goal of this analysis is to identify which LD blocks may contribute significantly 

to the phenotype – the blocks have the largest impact on whether the patient will be 

Nicotine dependent or not.  

2.4.5.1 Model Structure and Parameter Decreasing Method 

Out DNN structure for this real data analysis is shown in Figure 14, similar to that in 

Figure 9, and the parameters are set as: 𝑃 = 216 because COGEND data has totally 216 

SNP loci to analyze; 𝑁 = 17  because our preliminary analysis results (in Figure 10) 

show that the 216 SNPs could be divided into 17 LD blocks; 𝑁1 = 3 because COGEND 

data has 3 environmental factors: age, gender and ethnicity. So we have 20 (= 𝑁 + 𝑁1) 

neurons in the first hidden layer; 𝑀 = 6 (6 neurons in the second hidden layer) based on 

our trials and the number of neurons in the first hidden layer; 𝐾 = 2  because the 

216 input variables (SNPs) are locally connected to 17 𝑊 neurons based on results shown in 

Figure 10. 𝑊 neurons with 3 𝑊∗ neurons (3 environmental factors included in COGEND 

data) are fully connected to 𝑍 neurons. 

Figure 14. DNN structure for COGEND data analysis 
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phenotype is a binary variable (Nicotine dependent or not); the penalization parameter 𝜆 

is pre-specified to be 0.5 based on our trials.  

The relationships between each two layers are shown in Formula (2.3.1) – (2.3.3) and 

parameter estimation process (using back-propagation algorithm) is shown in Formula 

(2.3.4) – (2.3.9). To reduce the local minimal problem of back-propagation algorithm, we 

try 50 randomly selected initial values for parameter set Ω . Each initial value will 

converge to a local minimal (might be the global minimal) of the error function 𝑅𝑝(Ω) 

and the estimation corresponding to the smallest 𝑅𝑝(Ω) value will be chosen as our final 

parameter estimation. 

PDM (as introduced in Section 1.3.4) is applied on the above DNN model to select 

the most important LD blocks (the 𝑊 neuron in Figure 14): (1) Initially, we have the full 

model as shown in Figure 14 and the corresponding parameter estimations for 𝑅(Ω) 

(Note that 𝑅(Ω) value is different from 𝑅𝑝(Ω) and shows how well our model is fitted to 

the data, refer to Formula (1.3.2) and (1.3.3)). Then we try 17 reduced DNN models – 

each with one 𝑊 neuron and its related 𝑋 neurons being excluded. The reduced DNN 

models would usually have a higher 𝑅(Ω) value and the one with least 𝑅(Ω) value shows 

that the excluded 𝑊 neuron and related 𝑋 neurons have the least impact on the outcome 

variable. So the 𝑊 neuron (also the corresponding 𝑋 neurons) with least 𝑅(Ω) value is 

removed to obtain a model, which will serve as full model in the next step. (2) In the next 

step, we try another 16 reduced DNN models to filter out the 𝑊 neuron that has the least 

impact on the outcome. Eliminating that 𝑊 neuron (also the corresponding 𝑋 neurons) 

leads to our model after the second elimination. (3) Repeat the process in (2) until there 

are two 𝑊 neurons left in the model, which represent the two LD blocks having the most 

impact on the outcome. 

2.4.5.2 Real Data Analysis Results 

Figure 15 shows the analysis results. Each point on the curve represents one fitted 

model with x-axis value showing the number of eliminated LD blocks. And the value 

above each point means which LD block is excluded in this step. For example, the point 

at x-axis value 0 means the full model which has all 17 LD blocks information. The point 

at x-axis value 1 means the reduced model which has 16 LD blocks as the 5th LD block is 
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removed due to having the least 𝑅(Ω) value. The point at x-axis value 2 means the 

reduced model which has 15 LD blocks as the 5th and 11th LD blocks are removed. As 

fewer LD blocks are included in the model, the 𝑅(Ω)  value almost goes up as we 

expected. Several unexpected drop down may because we do not reach the global 

minimal point for the previous model or both models. Increasing the number of trials for 

initial values may help reduce this phenomenon. 

The remaining LD blocks are the 4th and 13th LD blocks which are believed to have 

the most impact on Nicotine dependence. The 4th LD block consists of SNPs from gene 

CHRNG on chromosome 2 and the 13th LD block consists of SNPs from gene IREB2, 

AGPHD1, PSMA4, CHRNA5, CHRNA3 and CHRNB4 on chromosome 15. It’s also 

worth to notice that the 6th LD block has the third most impact on Nicotine dependence 

based on our results in Figure 15 (the point at x-axis value equal to 15). This LD block 

Y axis is 𝑅(Ω) values for fitted DNN model. Each point on the curve represents one DNN 

models with a number above the point shown the eliminated LD block comparing to the 

previous point’s model. After 15 eliminations, LD block 4 and 13 remain in the final model. 

Figure 15. Eliminated LD blocks with corresponding error function values. 
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consists of only one SNP loci (rs2276560) on chromosome 2, and this SNP belongs to no 

genes. Comparing that the 4th LD block has 6 SNPs and the 13th LD block has 72 SNPs, 

we think at single SNP level, SNP rs2276560 might have the most impact on Nicotine 

dependence. 

 

2.5 Discussions and Future Work 

Our studies have demonstrated that our DNN model can have better power in 

detecting causal SNPs than the Random Forest. For future works, more thorough 

simulation studies should be carried out to further examine the properties of the DNN: 

 More methods need to be included for comparison, such as MDR, BEAM and 

penalized logistic regression [50]. PLINK is another popularly accepted software 

in GWAS, providing the analysis on GWAS data through linear or logistic 

regression and also other traditional statistics and tests applicable in GWAS [53]. 

 In the simulation studies, we observe that both DNN and Random Forests have 

very little powers when causal SNPs are in some specific positions (summarized 

in Section 2.4.3.3). We suspect that it is because different causal SNPs may have 

different correlations with other SNPs nearby. More simulation studies need to be 

designed to address this question.  

 Our simulation studies only focus on two LD blocks data set, which is much 

smaller than common data sets in GWAS. Like the COGEND data set has already 

contain 17 blocks. So designing a more general framework to detect the existence 

or even the positions of causal SNPs by utilizing our designed DNN model 

structures would be vital in the future. Among the two tasks, determining the 

positions of causal SNPs is more difficult and also more meaningful to GWAS. 

Since our DNN model summarizes LD block information in the first hidden layer 

(as in Figure 9), we may apply the parameter decreasing method (Section 1.3.4) to 

select among all neurons in the first hidden layer (LD blocks). The last neurons 

remaining in the model would have highest possibilities to contain the causal 

SNPs.  
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 For the real data analysis, PDM is currently considered as the best practice for 

factor selection in our DNN model frame. However, the procedure requires the 

fitted DNN model to be stable, that is, repeating the parameter estimation process 

will give similar model estimations and stable error function values. This may be 

an issue for the DNN model, as the global minimal of the error function is usually 

not achievable, which may be the reason that in Figure 15, there are some drop-

downs of 𝑅(Ω)  values when one LD block is eliminated. So a more stable 

procedure, such as averaging several DNN fittings, needs to be developed in the 

future. 

 Another aspect about real data analysis is the computational time for testing 

among the whole genome. For our DNN model to test on COGEND data (216 

SNPs from 2022 individuals with only 1 trial for initial values in parameter 

estimation) using parameter decreasing method, it takes less than one hour. MDR 

suffers a lot for testing higher interactive effects and BEAM is reported to analyze 

among 96,932 SNPs from 146 individuals for about 5 hours [72]. So to further 

evaluate the applicability of our proposed method, we also need to compare the 

computational burdens among widely applied methods.  
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CHAPTER 3 HIGH FREQUENCY TRADING USING NEURAL NETWORK MODELS 

3.1 Review of Neural Network Models in Finance 

The predicting power of neural networks has been noticed by financial industry for 

quite a long time, and has been used successfully for price forecasting problems. [17] 

provided a good review for applications of NN models in stock markets for researches 

published during 2005 to 2010. Apart from the researches summarized in [17], some new 

frameworks of NN have been proposed recently, such as fuzzy NN [14], partially 

connected NN [4], hybrid of non-linear ICA and NN [11], Legendre NN with random 

time strength function [40], hybrid system built upon recurrent NN structure [55] and 

constructive NN models with specific training algorithm [28]. In these studies, the neural 

network based approaches have been compared with many other traditional baseline 

methods including multiple regression, ARIMA model, and the results supported the 

better performance of neural network.  

Some researches have also compared neural network models with other machine 

learning models in stock price prediction: [30] compared single-layer NN with SVM in 

stock prediction, and concluded that NN was better than SVM. [51] compared four 

machine learning models applied in stock prediction: Random forests, SVM, NN (single 

layer) and naive-Bayes. Random forests was claimed to have the best performance and 

naive-Bayes was the worst. 

By reviewing the listed studies, we notice that recent applications of neural networks 

in finance mainly focused on further studies of newly designed architectures and hybrid 

systems, some of which were quite successful. Along this line of research, in this thesis, 

we will also propose a new neural network structure for stock market prediction. For this 

purpose, proper input variables are very important.  Based on the literatures, there are 

mainly four types of variables used in the prediction models, which are discussed as 

follows:  

1. Historical price and volume. Historical prices and volumes are the raw market data. 

The historical prices recorded a stock’s price movement in the past, and volume 
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shows how active a stock was, reflecting the force of demand/supply behind the price 

movement. The rationales to include the historical data as inputs are based on the 

assumptions that (1) in financial markets, history may repeat itself, and (2) 

observations in a time series are not independent so past data can provide information 

to the future. It is usually difficult to determine how many past time points should be 

included, that is, short history may lower the prediction accuracy due to the 

information loss, while long series would include too much noises. Usually 10-20 

historical time points should be enough.   

2. Technical indicators: Technical indicators are mathematical transformations of the 

raw price and volume data, often including up and down volume, advance/decline 

data and other inputs. These indicators help preprocess the raw data into clearer 

formats. For example, it would be easier to assess whether a stock is trending using 

certain technical indicators such as moving averages, relative strength index, and 

MACD (moving average convergence/divergence). Technical indicators should also 

be included, as a complementary to the raw data.  

3. Economic indicators: Economic indicators measure the economic activity, and are the 

summary of current economic performance. Macroeconomic environment likely 

impacts most of the stocks in the same way, that is, the majority of stocks advance in 

bull markets and decline in bear market. Therefore, it is usually useful to include 

some of the economic indicators to gauge the overall market status. 

4. Periodical signals: It has been long observed that markets experience cycles and there 

are periodical signals that repeatedly occur as patterns in price movement. For 

example, The January effect hypothesizes that there is a seasonal anomaly in the 

financial market where stocks’ prices increase in the month of January more than in 

other months. This type of calendar effect may create an opportunity for investors and 

may be included as model inputs. 

Some of these inputs will be included in our model later. 
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3.2 Forecasting in Financial Data 

3.2.1 Challenges in Low Frequency Data 

Forecasting is such a major problem in financial markets, it has been intensively 

studies in the past decades with low-frequency data (daily, monthly, and yearly) [35] [31] 

[5], and the major group of methods is based on technical analysis that formulates 

predictions using the time series of prices [6] [49] [27] [66] [19]. 

There are also some challenges exist in traditional forecasting models on financial 

data. For instance, for distributions of returns and volatilities, while they significantly 

affect the performance of econometric models, they are typically very difficult to be 

determined and inconsistent forecasting may arise from different assumptions. Gaussian 

models was popular for its simplification, but it is rarely satisfied and has poor fitting of 

real-world data [1]. Other distributions discussed in recent work include stable Levy 

distribution [67] [7], t-distribution [68], and power law distributions [63] [64]. No matter 

what distributions were used, these assumptions are usually compromises to the real-

world data and thus biased. Another important issue is how to measure correlations in 

financial markets, as different methods affect the performances of forecasting models 

quite significantly. Pearson correlation has been widely used for its low computational 

cost; however, it correctly measures the association between variables only when the 

samples are normally distributed. Although other correlation measures, such as Kendall’s 

𝝉 [47] [73] and Spearman correlation [44], have been used in non-Gaussian cases, their 

computational costs are usually higher and it is unclear that they are not optimal either.  

3.2.2 Challenges in High Frequency Data 

Recently, high-frequency data and the related high frequency trading [15] strategies 

have opened new ways for research and practice in finance, especially for problems in 

stock market forecasting. While some of the methods in low frequency data are still 

applicable to the high-frequency setting, most are usually limited in handling the more 

complex data structure associated with them. And among the limited published 

researches, most of them have used minute level data to test model performances [2]. 
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(a)  Daily Data                                       (b)      5-min Data 

 

Figure 16. Correlations in different time scale. 

Picture a and b show the correlations between Apple and 

IBM in two different time scales – daily level and 5 minute 

level. The 5 minute level data shows a much stronger 

correlation. 

Apart from the challenges mentioned in Section 3.2.1, high frequency data has other 

important properties which may impact model performances dramatically. 

Comparing to low-frequency data, correlations between stocks in high-frequency data 

are usually non-ignorable, and therefore the dependence structure among stocks is more 

important in explaining the market movement in high-frequency data. Figure 16 shows a 

comparison of correlation between the returns of IBM Inc. and Apple Inc. in daily data 

and 5-min data. Figure 16(a) plots the overall relationship in daily returns from January 1, 

2013 to June 1, 2013, and Figure 16(b) shows the relationship of them in 5-min data 

(June 3, 2013). Obviously, the dependence between the two stocks is much more 

significant in the 5-minute data than that in the daily data. Although identifying dynamic 

dependence in high-frequency data between two stocks is not difficult, modeling the 

dependence structure 

among the whole stock 

market and using them for 

market forecasting is 

complicated. However, it 

is an important problem to 

solve, as from the 

perspectives of market 

policymakers, regulators 

and private investors, there 

is a great interest in being 

able to forecast and 

simulate the market 

movements. 

3.3 Forecasting High Frequency Data Using Neural Networks 

In this study, we propose a new framework for market forecasting with high-

dimensional high-frequency stock data , and focus on designing a novel double layer NN 

(DNN) structure that does not require specific distributions assumptions and also avoids 
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the explicit calculation of correlations. The main ideas can be briefly summarized as 

follows: 

 For a target stock, we first examine its dependence with the rest of stocks in the 

market as well as their volatility information. We try to capture these important 

information among the high-dimension data as the initial steps.  

 We further incorporate these information with different types of technical 

indicators (TIs). The TIs at the levels of individual stocks and market are included 

into different layers of the neural network.  

 For the TIs, we focus on the moving average (MA), which indicates the trend and 

momentum of a stock, and the advance/decline (AD) lines that show the strength 

of a current trend and its likelihood of reversing.  

In the following, our proposed model will be described in details. 

3.3.1 Overview of the Framework 

Our overall goal is to forecast the price movement of individual stocks within one 

exchange, i.e. S&P 500, based solely on their historical data. Let 𝑆𝑡,𝑗 denote the close 

price of stock 𝑗 (𝑖 = 1,… , 𝐽) for the 5-minute interval at time  𝑡 (𝑡 = 1,… , 𝑇), and let 

𝑋𝑡,𝑗 =
𝑆𝑡+1,𝑗−𝑆𝑡,𝑗

𝑆𝑡,𝑗
 be the relative change from time 𝑡 to 𝑡 + 1. The goal here is to predict 

𝑋𝑡+1,𝑗 – the close price for next 5-minute interval based on 𝑆𝑖,𝑗  (𝑖 = 1, . . , 𝑡; 𝑗 = 1,… , 𝐽).  

To make the one-step prediction on the return 𝑋𝑡+1,𝑗  for a specific stock 𝑗 , we 

construct a double layer neural network (DNN) model structure as shown in Figure 17. 

Our design is quite different from the most commonly used NN structures in financial 

forecasting, as it allows us the flexibility of incorporating input variables with different 

features into the model in a hierarchical way. As shown in later sections, this design can 

not only improve the model performance, but also dramatically reduce the number of 

parameters, leading to faster implementation. 

The bottom layer consists of two types of inputs: The 𝑋𝑠 = {𝑋𝑡,𝑗′ : 𝑗
′ = 1,… , 𝑗 − 1, 𝑗 +

1, … ,500} and the 𝑄𝑠 = {𝑄𝑘,𝑗: 𝑘 = 𝑡 − 9,… , 𝑡}, where index 𝑗 is for the stock of interest. 
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The 𝑋s include the price information for the rest 499 stocks in S&P 500, excluding stock 

𝑗, within the current 5-minute interval at time 𝑡, and the 𝑄𝑠 include information of the 

intra-interval proportions for stock 𝑗  in 10 most recent 5-minute intervals. Local 

connections from the input layer to the first hidden layer (𝑊 layer, Figure 17) are applied, 

i.e., one hidden neuron gather information only from a group of consequent input neurons. 

The 𝑋s are categorized into ten groups according to the predefined sectors in S&P 500, 

and 𝑄 part is also categorized into ten groups, one for each time interval. In total, there 

are 𝑁 = 20 hidden neurons (the 𝑊𝑠) in the first-hidden layer. The relationship between 

the 𝑊𝑠 and the 𝑋𝑠 and 𝑄𝑠 are expressed as follows: 

𝑊𝑛 = 𝜎(∑ 𝛼𝑛𝑝

𝑒𝑛

𝑝=𝑠𝑛

∗ 𝑋𝑝) , 𝑛 = 1,… , 10 (3.3.1) 

𝑊𝑛 = 𝜎(∑ 𝛼𝑛𝑝

𝑒𝑛

𝑝=𝑠𝑛

∗ 𝑄𝑝) , 𝑛 = 11,… ,𝑁 (3.3.2) 

where 𝜎(𝑥) =
1−𝑒−𝑥

1+𝑒−𝑥
 is the activation function, 𝑠𝑛  and 𝑒𝑛  are the starting and ending 

indexes for 𝑛𝑡ℎgroup of input variables. 

In addition to the 20 𝑊𝑠,  another 15 inputs neurons, corresponding to different 

exponential moving averages for stock 𝑗, are added into the first hidden layer to connect 

with five hidden neurons (the 𝑍𝑠) in the second hidden layer. The relationship between 

the 𝑍𝑠 and the 𝑊𝑠 and 𝐸𝑀𝐴𝑠 can be expressed as follows: 

𝑍𝑚 = 𝜎 (∑𝛽𝑚𝑛

20

𝑛=1

∗ 𝑊𝑛 + ∑ 𝛽𝑚𝑛′

15

𝑛′=1

∗ 𝐸𝑀𝐴𝑛′) (3.3.3) 

Finally, three more input neurons, corresponding to the advanced-decline information 

in S&P 500 (see the next section for details), are added into the second hidden layer with 

the 𝑍𝑠, which are jointly connected to the output 𝑌. The relationship between the the 𝑌 

and the 𝑍𝑠 and 𝐴𝐷𝑠 can be expressed as follows: 
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𝑔(𝑌) = ∑ 𝜃𝑘𝑚

5

𝑚=1

∗ 𝑍𝑚 + ∑ 𝜃𝑘𝑚′

3

𝑚′=1

∗ 𝐴𝐷𝑚′ (3.3.4) 

where 𝑔(∙)is the link function. Here, since 𝑌 = 𝑋𝑡+1,𝑗 is continuous, 𝑔 can simply take an 

identity function, i.e. 𝑔(𝑥) = 𝑥. However, this model structure can be readily extended to 

binary or multi-categorical outputs, where 𝑔 can take a soft-max function, i.e. 𝑔(𝑥) =

𝑒𝑥

1+𝑒𝑥
. 

  

 

 

Inputs in the bottome layers are summarized into hidden variables 𝑊s, which then 

subsequently interacts with the input EMAs  and form the second-layer hidden 

variables 𝑍 s. The 𝑍 variables and market indicators serve as the final input for 

forecasting. 

Figure 17. The Double Layer Neural Network Framework. 
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3.3.2 Generating Input Variables 

The input variables consist of several technical indicators for a specific stock of 

interest and also a few market indicators that gauge the overall upward/downward market 

trend. 

3.3.2.1 Intra-interval Proportions 

For a particular 5-minute interval at time 𝑡, the relationship between its open, high, 

low and close prices may provide meaningful information regarding to the price 

movement, particularly for short-term momentum movements. For example, a close 

located nearby the low or nearby the high may suggest different market sentiment that is 

useful in the prediction. Three intra-interval proportions, 𝑄𝑡,𝑗 = (
𝑎𝑡,𝑗

𝑑𝑡,𝑗
,
𝑏𝑡,𝑗

𝑑𝑡,𝑗
,
𝑐𝑡,𝑗

𝑑𝑡,𝑗
), are used 

to summarize the information for a time interval 𝑡,where  𝑎𝑡,𝑗 = 𝐻𝑖𝑔ℎ − 𝑂𝑝𝑒𝑛; 𝑏𝑡,𝑗 =

𝑂𝑝𝑒𝑛 − 𝐶𝑙𝑜𝑠𝑒; 𝑐𝑡,𝑗 = 𝐶𝑙𝑜𝑠𝑒 − 𝐿𝑜𝑤 and 𝑑𝑡,𝑗 = 𝐻𝑖𝑔ℎ − 𝐿𝑜𝑤. 

3.3.2.2 Exponential Moving Average (EMA) 

Although the original price series (𝑆𝑡,𝑗) and its corresponding EMAs carry essentially 

the same information, we favor EMAs as input variables as they are smoother and could 

generate more stable performance in the perdition. The EMAs are calculated with the 

following formula and 𝑚 controls the decaying rate:  

𝐸𝑀𝐴𝑡(𝑚, 𝑆𝑡,𝑗) = 𝛼𝑆𝑡,𝑗 + (1 − 𝛼)𝐸𝑀𝐴𝑡−1(𝑚, 𝑆𝑡,𝑗) (3.3.5) 

where  𝑡 ≥ 𝑚  and 𝛼 =
2

𝑚+1
. We use 𝑚 = 1 − 10, 20, 30, 40, 50, 100  as inputs. Notice 

that 𝑚 = 1 leads to 𝛼 = 1 which means 𝐸𝑀𝐴𝑡(1, 𝑆𝑡,𝑗) = 𝑆𝑡,𝑗. 

3.3.2.3 Advance/Decline (AD), Advance/Decline volume (ADv) and Advance/Decline 

Ratio (ADR) indicators 

These indicators are used to measure the market breadth. The AD indicator counts the 

net number of advancing stocks within the 5-minute interval at time 𝑡 , which is the 

number of advancing stocks less the number of declining stocks. ADv is the net volume 

of advancing stocks within a time interval 𝑡, which is the volume of advancing stocks less 

the volume of declining stocks. The ADR is calculated by dividing the volume of 

advancing stocks by the volume of declining stocks.  
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3.3.3 Sector Analysis 

Since the price movements of different stocks are correlated, we try to incorporate 

these correlations into our DNN model structure to borrow information from other stocks 

in predicting the stock of interest. The pair-wise correlation among all S&P 500 stocks 

has been estimated and plotted in the Figure 18, based on returns in the first 2000 training 

intervals in the tested periods, which can be approximately viewed as independent 

samples. Our analyses on the ten S&P 500 sectors, including Consumer Discretionary, 

Consumer Staples, Energy, Financials, Health Care, Industrials, Materials, Information 

Technology, Telecommunication Services and Utilities, indicates that stocks within one 

sector tend to move in the same direction, and the correlations are largely within sectors. 

For example, stocks in Energy or Utilities have very litter correlations with stocks 

outsides these sectors. To reduce the number of parameters in the model, which 

Figure 18. Correlation analysis for stocks in S&P 500 sectors 

The pairwise correlations among 500 stocks, which are grouped according to 

their sectors, are calculated. The redness indicates the correlation strength. 
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subsequently alleviate computing burdens, we decide to summarize the section 

information first (the bottom input layer in Figure 17) and then use them to interact with 

EMAs of a specific stock for forecasting. 

 

3.3.4 Target Function and Regularization 

The complete parameter set, Ω, consists of all the links in the DNN model structure. 

For example, Ω =  {𝛼𝑛𝑝, 𝛽𝑚𝑛 , 𝛽𝑚𝑛′ , 𝜃𝑘𝑚  and 𝜃𝑘𝑚′: 𝑛 = 1,… ,𝑁; 𝑛′ = 1,… ,10;  𝑝 =

1, … , 𝑃; 𝑘 = 1,… , 𝐾;𝑚 = 1,… ,𝑀; 𝑚′ = 1,… ,3} . 

For the regression problem, the target function can be simply set to be the sum-of-

squared errors: 

𝑅(Ω) =∑(𝑦𝑖 − 𝑦̂𝑖)
2

𝐼

𝑖=1

 (3.3.6) 

𝑦𝑖 is the actual return for 𝑖th training data point and 𝑦̂𝑖is the predicted return based on 

neural network model. 

Since the number of parameters in Ω is typically large, it is very easy to over-fit the 

network model and in those situations, a global minimizer of 𝑅(Ω) is not desired. Usually, 

early stopping rules may be placed to obtain local minimizer, which means the model is 

only trained for some cycles and stopped well before it approaches the global minimum. 

Alternatively, regularization may be added through some penalty terms, which is how we 

implement the algorithm here. 

A 𝐿2-penalty can be used in the network models, and correspondingly the target 

function becomes 

𝑅𝑝(Ω) = 𝑅(Ω) + 𝜆𝐽(Ω) = 𝑅(Ω) + 𝜆‖Ω‖2 (3.3.7) 

where 𝑅(Ω) is the original error function, 𝐽(Ω) is the penalty term, with 𝜆 ≥ 0 being a 

tuning parameter (as  introduced in Section 1.3.2). Larger values of 𝜆 will tend to shrink 

the weights toward zero. To choose an appropriate value for the hyper-parameter  𝜆 , 



61 

 

cross-validation (CV) should be applied. However, in practice we found a pre-specified 

penalization coefficient 𝜆 of 0.5 works well. Therefore, to save the computing time on 

CV, we prefix 𝜆 to be 0.5 in our implementation. 

3.3.5 Learning Algorithm 

Minimizing the penalized target function in the above is a non-linear, non-convex 

problem, and numerical algorithms need to be applied. The gradient descent algorithm is 

applied here (as introduced in Section 1.3.3.1). Let 𝜂 ∈ Ω represent a parameter in neural 

network models. The target function is minimized in an iterative process:  

𝜂𝑟+1 = 𝜂𝑟 − 𝛾𝑟 ∗
𝜕𝑅𝑝

𝜕𝜂
|
η=𝜂𝑟

 (3.3.8) 

where 𝛾𝑟 is the learning rate at step 𝑟 which is chosen to be: 𝛾𝑟 = 1/𝑟. The process stops 

when |
𝜂𝑟+1−𝜂𝑟

𝜂𝑟
| < 10−6. 

The implementation of the algorithm is realized using the C language, which was 

compiled into a dynamic link file and loaded into R version 3.1.2 to carry out the 

subsequent analyses. 

3.3.6 The Ensemble NN and Back-testing  

In practice, we found that predications based on one single NN had some stability 

issues, that is, for the same period of data, if we ran NN multiple times, the prediction 

results may vary dramatically. The reason may lie in two-fold: 1) given the high 

dimensionality of the parameter space, the random start point of the algorithm may yield 

a big difference; 2) since the prediction pattern in financial market is well-known to be 

low, different local minima from the target functions may perform quite differently. 

Therefore, to increase the stability of our NN model, for each training data set, 1000 NN 

models will be trained and the top 50% performers will be selected for prediction. This 

resembles the idea of ensembles of methods, which led to the following dynamic back 

testing process. 
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At time 𝑡, the 5-minute intervals at time point from 𝑡 − 2100 to 𝑡 − 101 form the 

training data set. 1000 neural network models are built upon randomly selected 1000 time 

points from the training data set and validated on the validation data set consisting of 5-

minute intervals at time points from 𝑡 − 100 to 𝑡 − 1. Each NN model has a profit curve 

over the 100 time points and has a ranking at each point showing how many models 

(curves) are better than this particular model at each point. The summation of these 

rankings for all 100 time points shows how well this particular model can profit on the 

validation data set. Fifty percent of the top models are chosen as a “committee” and this 

“committee” is applied to predict one step ahead returns along the next 100 5-minute 

intervals at time points (𝑡 + 1 to 𝑡 + 100), which means the “committee” is updated 

every 100 time points. Figure 19 illustrates this dynamic training process.  

Because of this “moving” design, our model needs to be updated for each new time 

point, which leads to very high computation burden. To make the model computationally 

feasible, we update the “committee” every 100 time points. This is not unreasonable as 

the fitted model is generated based on the committee and would only be affected when 

reasonable training data have been replaced. 

Figure 19. Dynamic back-testing process 

The most recent intervals are divided into training (Blue) and validation 

(Yellow) periods. The NN models are trained with the training data and then 

their performances are evaluated with the validation data. The top NN models 

are then combined to predict the movement in the test period (Red). 
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3.4 Benchmark Methods and Evaluation Metrics  

3.4.1 Benchmark Methods 

3.4.1.1 ARMA-GARCH 

The first baseline method we use to compare with our framework is ARMA(1,1)-

GARCH(1,1), a well-known approach for financial time series. For the time series of 

return for stock 𝑗, 

𝑋𝑡,𝑗 = 𝜙0,𝑗 + 𝜙1,𝑗𝑋𝑡−1,𝑗 + 𝜖𝑡,𝑗 + 𝜑1,𝑗𝜖𝑡−1,𝑗 (3.4.1) 

where the residuals 

𝜖𝑡,𝑗 = 𝜎𝑡,𝑗𝑢𝑡,𝑗 

 

(3.4.2) 

and the time-dependent variance 

𝜎𝑡,𝑗
2 = 𝛼0,𝑗 + 𝛼1,𝑗𝜎𝑡−1,𝑗

2 + 𝛽1,𝑗𝜖𝑡−1,𝑗
2  

 

(3.4.3) 

The unknown parameters {𝜙0, 𝜙1, 𝜑1, 𝛼0, 𝛼1, 𝛽1} are estimated via maximum likelihood 

method. Notice that unit innovation 𝑢𝑡,𝑗  is a strong white noise process which can be 

estimated by 𝑢̂𝑡,𝑗 =
𝜖̂𝑡,𝑗

𝜎̂𝑡,𝑗
.  

3.4.1.2 ARMAX-GARCH 

The second baseline approach is an extension of ARMA(1,1)-GARCH(1,1). For the 

given time series 𝑋𝑡,𝑗, ARMAX-GARCH model considers endogenous variable 𝑋𝑡,𝑗 and a 

set of exogenous variables 𝑌1𝑡,𝑗, 𝑌2𝑡,𝑗, . . ., 𝑌1𝑡,𝑗. Then, the original model is modified as: 

𝑋𝑡,𝑗 = 𝜙0,𝑗 + 𝜙1,𝑗𝑋𝑡−1,𝑗 +∑𝜇𝑖,𝑡−1,𝑗𝑌𝑖,𝑡−1

𝑛

𝑖=1

+ 𝜖𝑡,𝑗 + 𝜑1,𝑗𝜖𝑡−1,𝑗 (3.4.4) 

where 𝑛 is the number of exogenous variables. In our experiments, we include input 

variables of intra-interval proportions, EMA and A/D in our double neural network. 

3.4.1.3 The Regular Neural Network Model 

The third baseline approach is the single hidden layer neural network, which is the 

simplest but probably also the most widely used NN structure. It consists of three layers: 

the bottom input layer, the middle hidden layer and the top output layer. Every neuron in 
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the hidden layer is fully connected with all other neurons in the input and output layers. 

This model includes the same input variables as ARMAX-GARCH. The function “nnet” 

in the standard R package “nnet” was used to implement this regular NN model. 

3.4.2 Evaluation Metrics 

For certain stock 𝑗 at each time intervals 𝑡, a prediction would be made for the next 

interval 𝑡 + 1 based on a specific model 𝑚. If the model prediction is consistent with the 

true price movement, a profit is yielded; otherwise a loss incurs. Let us denote the return 

for model 𝑚  at interval 𝑡  as 𝑟𝑚,𝑡,𝑗 = 𝑠𝑔𝑛(𝑦̂𝑚,𝑡,𝑗𝑦𝑡,𝑗) ∗ |𝑦𝑡,𝑗| . 𝑦𝑡,𝑗 = 𝑋𝑡+1,𝑗  is the real 

increase rate during next 5 minute and 𝑦̂𝑚,𝑡,𝑗 is the predicted increase rate from model 𝑚 

during next 5 minute. Assume the total number of intervals being tested is 𝑇0.  We used 

the following criteria to evaluate/compare the performance of different models. 

(1) Absolute return:  

𝑟𝑚,𝑗 =∏(1 + 𝑟𝑚,𝑡,𝑗)

𝑇0

𝑡=1

 (3.4.5) 

This is equivalent to a strategy of buying or short selling a fixed number of shares 

according to the model prediction on the next time point 𝑡 + 1.  

(2) Sharpe Ratio: 

𝑆𝑃𝑚,𝑗 =
𝑟̅𝑚,𝑗

𝑠𝑚,𝑗
 (3.4.6) 

Where the average return 𝑟̅𝑚,𝑗 =
∑ 𝑟𝑚,𝑡,𝑗
𝑇0
𝑡=1

𝑇0
 and the standard deviation 𝑠𝑚,𝑗 =

√
1

𝑇0−1
∑ (𝑟𝑚,𝑡,𝑗 − 𝑟̅𝑚,𝑗)

2𝑇0
𝑡=1 . Sharpe ratio quantifies the risk efficiency of a model 

performance. 

(3) Prediction Accuracy:  
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 Mean 
Standard 

Deviation 
Median Min Max 

Volume 11.8 60.2 3.9 0 24951.1 

Market cap 32.1 51.2 15.3 3.0 422.1 

Table 2. Descriptive statistics for 500 stocks’ trading volumes in 5 minute 

level (unit: thousands shares) and market capitalizations on May 31, 2013 

(unit: billions USD). 

 

 

𝐴𝑚,𝑗 =
∑ 𝐼(𝑟𝑚,𝑡,𝑗 > 0)
𝑇0
𝑡=1

𝑇0
 (3.4.7) 

Prediction accuracy is calculated by simply the ratio of the total number of correct 

predictions on the direction of the price movement over the total of tested intervals. 

3.5 Overall Performance  

We downloaded the data for the 500 stocks in the Standard & Poor’s 500, ranging 

from January 1, 2013 to May 31, 2013. There are 104 trading days and each day contains 

78 5-minute intervals, which makes 8112 time points (observations) in total. The raw 

data include open, high, low and close prices and also volume for each stock at each time 

point. Table 2 presented the basic statistics for 500 stocks’ trading volumes and their 

market capitalizations on May 31, 2013. 

Our DNN method together with the other three benchmark methods were applied on 

100 stocks with largest capital in S&P 500 to compare their performances.  

3.5.1 Forecasting Power 

Prediction accuracy was used as the main metric for the comparisons between the 

four methods. We also explored prediction accuracies on time points with large predicted 

returns. The rational is that returns close to zeros may mainly represent market noises and 

therefore harder to predict, and models may perform better in those time intervals with 

larger returns. 

The new returns were defined as:  
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𝑟𝑚,𝑡,𝑗
∗ = {

𝑟𝑚,𝑡,𝑗, 𝑤ℎ𝑒𝑛 |𝑦̂𝑚,𝑡,𝑗| > 𝐶𝑚,𝑗

0,                𝑤ℎ𝑒𝑛  |𝑦̂𝑚,𝑡,𝑗| ≤ 𝐶𝑚,𝑗
 (3.5.1) 

𝑚 = 1,… ,4 represented four methods: DNN, SNN (regular NN model), ARMA-GARCH 

and ARMAX-GARCH. 𝑗 = 1,… ,100 represented the 100 stocks involved in the study. 𝑡 

was the time point. The new accuracy rate for method 𝑚 and stock 𝑗 was defined as: 

𝐴𝑚,𝑗
∗ =

∑ 𝐼(𝑟𝑚,𝑡,𝑗
∗ > 0)

𝑇0
𝑡=1

∑ 𝐼(𝑟𝑚,𝑡,𝑗
∗ ≠ 0)

𝑇0
𝑡=1

 (3.5.2) 

In our study, the accuracy rates were calculated in each 100 time points, that is, for 

each method and each stock with 2000 testing time points, there would be 20 accuracy 

rates. We also defined the proportion of transactions as: 

𝑃𝑚,𝑗 =
∑ 𝐼(𝑟𝑚,𝑡,𝑗

∗ ≠ 0)
𝑇0
𝑡=1

𝑇0
 (3.5.3) 

𝐶𝑚,𝑗’s are pre-selected to ensure all 𝑃𝑚,𝑗 have the same value. 

Annualized Sharpe ratios were also calculated: 𝑆𝑃𝑚  in previous section was the 

Sharpe ratio for 5 minute level. The annualized Sharpe ratio, according to its definition, 

should be √𝑛 ∗ 𝑆𝑃𝑚 with 𝑛 being the number of 5 minute intervals in one year. 

All four methods are applied on all 100 stocks and each stock has at most 2000 

testing points divided into 20 intervals. So for each method, each stock, each interval, 

there is one prediction accuracy rate calculated based on the pre-defined 𝐶𝑚,𝑗’s which 

share the same proportion of transaction. Then we repeat the previous studies for 

different proportions of transactions: 90%, 70%, 50%, 30%, 10%. Figure 20 summarizes 

all the accuracy rates with the corresponding 95% confidence intervals. Each point and 

the confidence interval in Figure 20 represents 2000 = 100 (stocks) * 20 (accuracy rates 

per stock) accuracy rates. From Figure 20, we conclude the following two statements: 

(1) As the proportion of transaction decrease, all four models have increased 

performance in terms of prediction accuracy rate, which means larger predicted 

values does show better prediction on whether the stock would increase or 

decrease. 
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Each point in the figure represents the averaged prediction accuracy rate for one method 

applied in all 100 stocks using one set of 𝐶𝑚,𝑗  sharing the same proportion of 

transactions. DNN model always outperforms to the other models and the differences are 

significant. 

Figure 20. Accuracy rates and corresponding 95% confidence intervals for DNN, 

SNN, ARMA-GARCH and ARMAX-GARCH models applied on 100 leading stocks 

(2) Our designed method based on DNN models outperforms the other three 

benchmark methods especially when the proportion of transactions are below 50% 

- the confidence intervals show that the differences are significant. This suggests 

that larger predicted values from our method have more probability on predicting 

the right trend for stocks in the next 5 minute. 
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Table 3 presented the annualized Sharpe ratios for four methods at corresponding 

proportions of transactions. Medians with 25%, 75% quantiles of the 100 stocks were 

calculated and shown in the table. From Table 3, we observed that DNN outperformed to 

the other three methods in 4 out of 5 proportion of transactions: 90%, 70%, 50% and 30% 

in terms of annualized Sharpe ratio. And DNN reached the highest median annualized 

Sharpe ratio at the cut off values making 50% of the transactions. 

3.5.2 Computations 

Efficient R programs have been developed to implement our proposed model. 

Roughly, one DNN fitting takes approximately 0.8 seconds in a regular workstation (Intel 

Xeon E5-2620 @ 2.00GHz), which means that fitting 1000 DNNs at one step would take 

about 13.3 minutes. If this model were to be applied to support real-life trading, we can 

afford to update the model every three 5-minute intervals.  For data with higher 

frequencies and also with multiple stocks, we can use clusters to parallelize the process to 

speed up the model updating. 

Method 

Proportion of transactions 

90% 70% 50% 30% 10% 

DNN 
1.50 

(-1.07, 4.11) 

1.29 

(-1.24, 4.33) 

1.70 

(-0.50, 4.55) 

1.55 

(-0.73, 4.05) 

0.89 

(-1.10, 3.00) 

SNN 
0.92 

(-0.60, 3.05) 

1.08 

(-1.17, 3.69) 

1.20 

(-1.09, 3.10) 

1.23 

(-0.83, 3.51) 

1.66 

(-0.14, 3.39) 

ARMA 
0.63 

(-1.21, 1.47) 

0.16 

(-1.40, 1.53) 

0.23 

(-1.35, 1.88) 

0.14 

(-1.63, 1.63) 

0.48 

(-1.51, 1.80) 

ARMAX 
-0.44 

(-1.83, 1.31) 

-0.25 

(-1.75, 0.86) 

-0.55 

(-2.13, 0.93) 

0.06 

(-1.97, 1.48) 

0.27 

(-1.92, 1.93) 

Table 3. Annualized Sharpe ratios for four methods at different proportions of 

transactions.  

Each cell presented the median with 25%, 75% quantiles of annualized Sharpe ratios among the 

100 stocks with corresponding method and proportion of transactions applied. 
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Figure 21. Absolute return curves for all methods applied on ACN 

For ACN, DNN (red line) performed the best among four methods. The 2000 time 

points profit would be around 20% for DNN method. 

3.5.3 Case Studies 

The absolute returns were calculated for all 100 stocks at each time point as Formula 

(3.4.5). Both DNN method and ARMA-GARCH method outperformed to the other 

methods on 30 stocks out of 100 stocks. As two case studies, Figure 21 and Figure 22 

showed the absolute return curves for all four methods applied on Accenture Plc (ACN) 

and Baker Hughes Incorporated (BHI). Each figure contained five curves, with each 

representing one strategy. Each curve showed the portfolio value at each time point if we 

invested 1 dollars at time point 1, applying the corresponding strategy. The blue curve 

was for buy-and-hold strategy and actually showed the trend of market price. The other 

four curves represented strategies utilizing the four methods: red for DNN, green for 

SNN, brown for ARMA-GARCH and black for ARMAX-GARCH. But notice that these 

portfolio values did not consider the transaction costs. 
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Figure 22. Absolute return curves for all methods applied on BHI 

ARMA-GARCH (brown line) performed the best among the four methods. The 2000 time 

points profit would be around 20% for ARMA-GARCH method. 

 

 

3.6 Conclusions and Future Work 

Our method differs from the others and provides new information in two aspects. 

Firstly, we proposed a novel multi-layer NN framework with local connections to handle 

the large correlations existing only in high frequency stock data, which improves the 

prediction performance, while most related works that are designed for low-frequency 

data did not consider intra-market correlations. Secondly, we investigated and 

benchmarked the performance of our newly proposed model, together with a regular NN 

model and two classical econometric models for high-frequency forecasting. It is possible 

that large amount of transaction costs might dramatically reduce the profits in high-

frequency trading, however, our model can still help in providing effective solutions. For 

example, focusing on predictions with large returns may be used to design useful trading 
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strategies as it would not only reduce the number of transactions but also increase the 

prediction accuracy rates. 

For the future work, we plan to study the performance of our model for data with 

even higher frequency. We will study whether the prediction accuracy rates would 

remain the same for data at minute or even second level. For example, if for minute-level 

data, the prediction accuracy rates remain similar or just have minor decrease, then the 

framework based on our DNN models can make nearly 5 times of the profit as using 5-

minute level data within the same period of trading days. It is also possible that a new NN 

structure might be necessary according to the characteristics in data with higher 

frequencies.  

Another possible improvement for our framework is to establish a dynamic system 

for the DNN models. The system should allow 1000 DNN models (as introduced in 

Section 3.3.6) to be updated as needed. We need to study not only when to update but 

also what faction of the 1000 DNN models will be updated. It is definitely not optimal to 

update all 1000 DNN models at every time point, because it is quite time consuming and 

if there is only one record changed in the training data set, the DNN models should be 

similar as previous set of models. 

In the aspect of model structure, we think it may be worth to try on recurrent neural 

networks that are designed specifically for time series data. The crucial part is how to 

integrate the other environmental inputs (those technical indicators introduced in Section 

3.3.2) into the models and determine which part, the time series information or the 

environmental inputs, should have more effect on the outcomes and how to realize this 

importance through structure designs. 

For comparison, it is also worth to include random forests or other machine learning 

models. Random forests model is expected to have much less computational burden, but 

how well it can performance in this high frequency scale remains unknown. It is also 

possible that if random forests perform similarly with double layer neural network, we 

can make ensemble predictors based on both models. 
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CHAPTER 4 FUTURE WORK ON NEURAL NETWORKS 

4.1 Development of New Structures 

Recently, more and more researchers, especially those focusing on the mathematical 

models of neural networks, have been changing their interests to designing novel 

structures. For example, in 2006, Hinton and his collaborators [23] proposed the so-called 

“deep belief nets” model, and in 2007, they further introduced how a many-layered 

neural network model could be trained effectively and gain higher power [22]. Based on 

these work, nowadays deep learning has been developed and become a popular area in 

machine learning.  

Along with the growth of deep learning, some other creative and efficient neural 

network structures that did not receive much attention before have also been brought 

back for further studies. Convolutional neural networks and recurrent neural networks 

might be the two most accepted structures. Convolutional neural networks have been 

applied by Yann LeCun in his hand-written numbers recognition [38] [37]. The major 

characteristics of this structure is to use the shared weight (the convolution operations) in 

convolutional layers, which can both reduce the required number of parameters and 

improves performance, especially in image recognition where the convolution operations 

are meaningful. Recurrent neural networks are also a set of neural network models 

developed long time before and it is a structure designed specifically for time series like 

data. 

Combining the above ideas can provide broad choices for the structures of neural 

networks. As we believe that the most promising way to apply neural networks is to 

design data-oriented structures, for the S&P 500 stock price predictions, both 

convolutional neural networks and recurrent neural networks might find their way to help 

improve the performance. For GWA study, the data is less structured than stock price 

data set, but may still be suitable for convolutional structures. Although we can pre-

determine the types of structures based on our intuition and motivations, more structure 

related parameters still need many trials or systematic tuning process to determine their 
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best values. At some aspects, designing or choosing a suitable structure for neural 

networks is more like an art instead of scientific research. 

4.2 Development of New Training Algorithms  

Another aspect of neural network models that draw researchers’ attentions is the 

training algorithm. Back-propagation is usually the first choice because of its stability 

and comparably faster convergence speed. There are also some variations of back-

propagation algorithm like, such as using the second order derivatives (Hessian matrix) 

or Bayesian framework [48] to implement the algorithm. The biggest drawback for back-

propagation is its generalizability – each new structure may need significant change on 

the iterative formulas and thus need to rewrite the corresponding codes. So the other two 

algorithms (simulated annealing and genetic algorithm) might be more suitable when 

searching among different types of structures. 

In essence, the training algorithm is simply a nonlinear optimization (nonlinear 

programming) problem, which has long been a difficulty in computational area. Till now, 

no accepted algorithms can guarantee that the global minimal point for a general 

nonlinear optimization problem can be found. However, for different types of nonlinear 

optimization problems, there are a lot of researches focusing on improving the existed 

general algorithm based on the specialty of problems. Back-propagation with only the 

first derivatives is an implementation of gradient descent method and is an extension of 

Newton-Raphson method if including the Hessian matrix. Some other specific algorithms 

for neural network could be found in [45] [18] [61]. It might be worth to try a hybrid 

system of back-propagation and simulated annealing algorithms because back-

propagation is good at local convergence and simulated annealing enable the searching to 

jump out of local minimal point [43]. 

4.3 Other Distributions for Dependent Variables 

Continuous and multi-categorical outcomes are the two most common data types in 

statistics and machine learning, but there also exist other interesting outcome data type 

like count data (modeled by Poisson or Negative Binomial distribution) and censored 
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data (survival analysis). Among those popular machine learning models like SVM and 

Random Forests, neural networks might be the easiest one which could be extended to 

problems with the other types of outcome variables. There are very little researches 

tackling this topic. The most important step is to determine how to organize the outcome 

neurons to well represent the outcome variables and how to transfer from the last hidden 

layer to the outcome layer (see Figure 3). Since the outcome variables may not represent 

information in the same scale, designing a proper error function would also be very 

critical. For example for censored data, it might have one binary outcome neuron 

represents censoring or not, another continuous outcome neuron representing the follow-

up time. Then how to define the error function which can be minimized to fit the two 

outcome neurons simultaneously? It is a promising direction for neural networks related 

researches, and if the idea works, the application area of neural networks could be further 

extended.   
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