

SSStttooonnnyyy BBBrrrooooookkk UUUnnniiivvveeerrrsssiiitttyyy

The official electronic file of this thesis or dissertation is maintained by the University
Libraries on behalf of The Graduate School at Stony Brook University.

©©© AAAllllll RRRiiiggghhhtttsss RRReeessseeerrrvvveeeddd bbbyyy AAAuuuttthhhooorrr...

DEVELOPMENT OF A NOVEL DOUBLE NEURAL

NETWORK AND ITS APPLICATIONS

A Dissertation Presented

by

Hao Chen

to

The Graduate School

in Partial Fulfillment of the

Requirements

for the Degree of

Doctor of Philosophy

in

Applied Mathematics and Statistics

Stony Brook University

December 2015

ii

Stony Brook University

The Graduate School

Hao Chen

We, the dissertation committee for the above candidate for the

Doctor of Philosophy degree, hereby recommend

acceptance of this dissertation.

Song Wu – Dissertation Advisor

Assistant Professor, Department of Applied Mathematics and Statistics

Wei Zhu – Chairperson of Defense

Professor, Deputy Chair, Department of Applied Mathematics and Statistics

Pei Fen Kuan

Assistant Professor, Department of Applied Mathematics and Statistics

Keli Xiao – Outside Member

Assistant Professor, College of Business

The dissertation is accepted by the Graduate School

Charles Taber

Dean of the Graduate School

iii

ABSTRACT OF THE DISSERTATION

Development of a novel double neural network and its applications

by

Hao Chen

Doctor of Philosophy

in

Applied Mathematics and Statistics

Stony Brook University

2015

Artificial neural network model is a powerful method that has been widely applied in

many different areas. It is essentially a nonlinear statistical model, empirically proved

with good prediction accuracy, and has been applied in both regression and classification

problems. One challenge in applying artificial neural network models is constructing

proper structure adaptive to specific problems. This thesis work is to introduce a novel,

double-layered feed-forward neural network (DNN) model with special link patterns. Its

applications to genome-wide association studies and stock price prediction in high

frequency time scale have been explored.

Detecting gene-gene interactions in traditional Genome-wide associate studies

(GWAS) is mostly at the SNP level, called SNP-SNP interactions, which ignores the

existence of large amount of correlations embedded among nearby SNPs. Popular

existing methods with this mechanism, such as multifactor-dimensionality reduction

(MDR) and random forests, would usually suffer from redundant interaction tests, due to

the correlations between SNPs, and subsequently from less powers. With our new DNN

model, we can take advantage of the correlations between SNPs and perform interaction

test at the level of SNP blocks. Extensive simulation studies have been conducted to

compare our new method with Random Forests. And our simulation results suggest that

iv

the DNN model can have higher power than Random Forests in detecting the existence of

causal SNPs – no matter the effect is interactive or marginal.

We also have applied the DNN model to financial markets, forecasting changes of

stock prices in high frequency. One advantage of our DNN model is that it utilizes

correlation information between different stocks, a pattern more commonly observed in

high-frequency data but ignored in most existing methods. Our method has been tested on

the 100 stocks with largest capital in S&P 500 using 5-minute data, and its performance

has been benchmarked with a single layer neural network model and the classical

ARMA-GARCH model. The DNN model clearly outperforms to the other models in

terms of prediction accuracy and Sharpe ratio. Given the parallelizable scheme of our

method with DNN models, it may be capable for designing profitable trading strategies in

high frequency time scale.

v

Table of Contents

ABSTRACT OF THE DISSERTATION .. iii

LIST OF TABLES ... ix

LIST OF FIGURES .. x

ACKNOWLEDGEMENTS ... xi

CHAPTER 1 FUNDEMENTAL OF ARTIFICIAL NEURAL NETWORKS 1

1.1 Introduction ... 1

1.2 Model Structures ... 2

1.2.1 Single Hidden Layer Neural Networks ... 2

1.2.2 Two Hidden Layers Neural Networks .. 4

1.2.3 Single-layer vs. Multi-layer Structures ... 5

1.2.4 Number of Neurons in Hidden Layers .. 6

1.2.5 Connections between Layers .. 7

1.3 Training Neural Networks ... 9

1.3.1 Input Processing .. 9

1.3.2 Error Functions ... 9

1.3.3 Learning Algorithms ... 11

1.3.3.1 Back-propagation ... 11

1.3.3.2 Simulated Annealing .. 14

1.3.3.3 Genetic Algorithm .. 15

1.3.4 Parameter Selection .. 17

1.4 Neural Networks in Research and Applications ... 17

1.5 Motivations and Contributions .. 18

CHAPTER 2 GENOME-WIDE ASSOCIATION STUDY USING NEURAL

NETWORK MODELS ... 21

vi

2.1 Introduction ... 21

2.1.1 Some Notations in Genetics.. 21

2.1.2 Genome-Wide Association Study... 24

2.1.3 Difficulties in GWAS ... 25

2.2 Existing Popular Epistasis Methods in GWAS ... 26

2.2.1 Multifactor-Dimensionality Reduction ... 26

2.2.2 Classification Tree and Random Forests .. 29

2.2.3 Bayesian Epistasis Association Mapping (BEAM) 30

2.3 Neural Network Models Applied in GWAS ... 33

2.3.1 Existing Applications of Neural Networks in GWAS 33

2.3.2 Our Novel Structure of Neural Network Models 34

2.4 Simulation Studies and Real Data Application ... 37

2.4.1 Overall Simulation Procedures ... 38

2.4.2 Simulation Settings ... 39

2.4.2.1 Pattern “2+1” .. 40

2.4.2.2 Pattern “2+2” .. 40

2.4.3 Model Structure for Simulation Studies ... 41

2.4.4 Simulation Studies Results ... 42

2.4.5 Real Data Analysis ... 46

2.4.5.1 Model Structure and Parameter Decreasing Method 46

2.4.5.2 Real Data Analysis Results .. 47

2.5 Discussions and Future Work ... 49

CHAPTER 3 HIGH FREQUENCY TRADING USING NEURAL NETWORK

MODELS .. 51

3.1 Review of Neural Network Models in Finance ... 51

vii

3.2 Forecasting in Financial Data .. 53

3.2.1 Challenges in Low Frequency Data .. 53

3.2.2 Challenges in High Frequency Data ... 53

3.3 Forecasting High Frequency Data Using Neural Networks 54

3.3.1 Overview of the Framework ... 55

3.3.2 Generating Input Variables ... 58

3.3.2.1 Intra-interval Proportions ... 58

3.3.2.2 Exponential Moving Average (EMA) 58

3.3.2.3 Advance/Decline (AD), Advance/Decline volume (ADv) and

Advance/Decline Ratio (ADR) indicators ... 58

3.3.3 Sector Analysis ... 59

3.3.4 Target Function and Regularization ... 60

3.3.5 Learning Algorithm .. 61

3.3.6 The Ensemble NN and Back-testing ... 61

3.4 Benchmark Methods and Evaluation Metrics ... 63

3.4.1 Benchmark Methods ... 63

3.4.1.1 ARMA-GARCH .. 63

3.4.1.2 ARMAX-GARCH.. 63

3.4.1.3 The Regular Neural Network Model.. 63

3.4.2 Evaluation Metrics .. 64

3.5 Overall Performance ... 65

3.5.1 Forecasting Power .. 65

3.5.2 Computations .. 68

3.5.3 Case Studies .. 69

3.6 Conclusions and Future Work ... 70

viii

CHAPTER 4 FUTURE WORK ON NEURAL NETWORKS .. 72

4.1 Development of New Structures ... 72

4.2 Development of New Training Algorithms .. 73

4.3 Other Distributions for Dependent Variables .. 73

REFERENCE .. 75

ix

LIST OF TABLES

Table 1. Joint probabilities of genotypes of two SNP loci. .. 23

Table 2. Descriptive statistics for 500 stocks’ trading volumes in 5 minute level (unit:

thousands shares) and market capitalizations on May 31, 2013 (unit: billions USD). 65

Table 3. Annualized Sharpe ratios for four methods at different proportions of

transactions. .. 68

file:///S:/MyPapers/Thesis/Thesis%20HC%20v06.docx%23_Toc435090406
file:///S:/MyPapers/Thesis/Thesis%20HC%20v06.docx%23_Toc435090407
file:///S:/MyPapers/Thesis/Thesis%20HC%20v06.docx%23_Toc435090407
file:///S:/MyPapers/Thesis/Thesis%20HC%20v06.docx%23_Toc435090408
file:///S:/MyPapers/Thesis/Thesis%20HC%20v06.docx%23_Toc435090408

x

LIST OF FIGURES

Figure 1. Single hidden layer neural network models. ... 2

Figure 2. Sigmoid-like function .. 3

Figure 3. A two-layer neural network structure .. 5

Figure 4. Local connection between input layer and 1st hidden layer................................ 7

Figure 5. Direct connection... 8

Figure 6. An illustration of Single Nucleotide Polymorphism (SNP) 21

Figure 7. Two association patterns – causal SNPs are genotyped or not 25

Figure 8. Steps for Multifactor-Dimensionality Reduction method 27

Figure 9. Double layer neural network model with local connections from input layer to

the first hidden layer ... 35

Figure 10. LD pattern among 216 SNPs in COGEND study ... 38

Figure 11. Neural network structure for simulation studies. .. 41

Figure 12. Simulation study results for pattern “2+1”. ... 44

Figure 13. Simulation study results for pattern “2+2”. ... 45

Figure 14. DNN structure for COGEND data analysis... 46

Figure 15. Eliminated LD blocks with corresponding error function values. 48

Figure 16. Correlations in different time scale. .. 54

Figure 17. The Double Layer Neural Network Framework. .. 57

Figure 18. Correlation analysis for stocks in S&P 500 sectors... 59

Figure 19. Dynamic back-testing process ... 62

Figure 20. Accuracy rates and corresponding 95% confidence intervals for DNN, SNN,

ARMA-GARCH and ARMAX-GARCH models applied on 100 leading stocks 67

Figure 21. Absolute return curves for all methods applied on ACN 69

Figure 22. Absolute return curves for all methods applied on BHI 70

file:///S:/MyPapers/Thesis/Thesis%20HC%20v06.docx%23_Toc435090409
file:///S:/MyPapers/Thesis/Thesis%20HC%20v06.docx%23_Toc435090410
file:///S:/MyPapers/Thesis/Thesis%20HC%20v06.docx%23_Toc435090411
file:///S:/MyPapers/Thesis/Thesis%20HC%20v06.docx%23_Toc435090412
file:///S:/MyPapers/Thesis/Thesis%20HC%20v06.docx%23_Toc435090413
file:///S:/MyPapers/Thesis/Thesis%20HC%20v06.docx%23_Toc435090414
file:///S:/MyPapers/Thesis/Thesis%20HC%20v06.docx%23_Toc435090415
file:///S:/MyPapers/Thesis/Thesis%20HC%20v06.docx%23_Toc435090416
file:///S:/MyPapers/Thesis/Thesis%20HC%20v06.docx%23_Toc435090417
file:///S:/MyPapers/Thesis/Thesis%20HC%20v06.docx%23_Toc435090417
file:///S:/MyPapers/Thesis/Thesis%20HC%20v06.docx%23_Toc435090418
file:///S:/MyPapers/Thesis/Thesis%20HC%20v06.docx%23_Toc435090419
file:///S:/MyPapers/Thesis/Thesis%20HC%20v06.docx%23_Toc435090422
file:///S:/MyPapers/Thesis/Thesis%20HC%20v06.docx%23_Toc435090423
file:///S:/MyPapers/Thesis/Thesis%20HC%20v06.docx%23_Toc435090424
file:///S:/MyPapers/Thesis/Thesis%20HC%20v06.docx%23_Toc435090425
file:///S:/MyPapers/Thesis/Thesis%20HC%20v06.docx%23_Toc435090426
file:///S:/MyPapers/Thesis/Thesis%20HC%20v06.docx%23_Toc435090427
file:///S:/MyPapers/Thesis/Thesis%20HC%20v06.docx%23_Toc435090428
file:///S:/MyPapers/Thesis/Thesis%20HC%20v06.docx%23_Toc435090428
file:///S:/MyPapers/Thesis/Thesis%20HC%20v06.docx%23_Toc435090429
file:///S:/MyPapers/Thesis/Thesis%20HC%20v06.docx%23_Toc435090430

xi

ACKNOWLEDGEMENTS

First of all, I would like to express my sincere thanks to my PhD advisor, Professor

Song Wu. It is he who has led me to this PhD program and also introduced me to the area

of machine learning, which interests me a lot and has made me believe that this is exactly

the field I would like to work on. It is really amazing that, through Prof. Wu’s guidance, I

have grown to a PhD degree holder with knowledge of statistics and machine learning

much more than I entered this program. During the years of research under Prof. Wu’s

guide, I also learned many other important skills such as: critical thinking, presentation

skills, scientific writing skills etc. I understood that I still had a long way to improve

these soft skills which might be more vital to my future career than technical skills. It’s

really my pleasure that at the corner of changing my major, I can have Prof. Wu as my

research advisor and receive many priceless counsel from him.

I would like to thank my other committee members: Prof. Wei Zhu, Prof. Pei Fen

Kuan and Prof. Keli Xiao, for reading through my dissertation and kindly providing me

your comments and helps.

Also, I have special thanks to Prof. Wei Hou and Prof. Jie Yang in Medical Center of

Stony Brook University for their financial support throughout my PhD study. Working as

a research assistant in their projects has brought me large amount of experience for

statistical consulting in aspects from modeling to writing up statistical reports.

I would like to thank all of my friends at Stony Brook University or working nearby.

It’s you guys bringing me a lot of fun and warmness beside of my research work. All

those great time with you guys will remain in my memory and remind me the happy time

at Stony Brook.

At last and to me the most important, I would like to thank my parents, Xiaoxing

Chen and Aijuan Ni, for uncountable aspects and never ending love from them. It is with

your firm support, I can face any difficulties and challenges not only for my previous

student life but also for my future work.

1

CHAPTER 1 FUNDEMENTAL OF ARTIFICIAL NEURAL NETWORKS

1.1 Introduction

Artificial neural networks (abbreviated as “neural networks” in this thesis) were first

proposed by McCullouch and Pitts in 1943, as a simplified mathematical model to mimic

brain functions. In their original seminal papers [42], it was shown that with different

threshold switches for neurons in the neural networks, even simple networks of this kind

were able to model nearly any logic or arithmetic functions [32]. Later in 1947, the two

authors indicated a practical field of application in the recognition of special patterns by

neural networks [52] [34]. However, after that, research on neural networks has been

quiet for a long time due to the difficulties in estimating the unknown parameters. It was

not until 1986 when Rumelhart and others [58] proposed an efficient backpropagation

algorithm for parameter estimations of the neural networks, and the development of this

field has almost been explosive.

In early 1990’s, Kurt Hornik [26] [25] and Lee K. Jones [29] further laid down the

theoretical foundations for neural networks, in which it proved that standard multilayer

feed-forward networks are capable of approximating any measurable function to any

desired degree of accuracy in a very specific and satisfying sense. Also, around the same

time period, Yann LeCun’s researches on handwritten zip code recognition [38] [37]

witnessed the great success of neural network models on pattern recognition. The

database related to this project, MNIST (Mixed National Institute of Standards and

Technology), has now become a benchmark dataset to compare different image

processing systems.

Neural network models are essentially a set of nonlinear regression or classification

statistical models. Around and after the year of 2000, many studies have demonstrated

that simple neural network models may not achieve better performance comparing with

other machine learning models like Random Forests and Support Vector Machine. This

seems to put the practical usage of neural networks in question. However, more recently

the development of new structures of neural networks, like deep learning [23] and

convolutional neural networks [36] [8], has shown much better performance among

2

machine learning models in pattern recognitions and thus has sparked new interests in

neural networks. These new developments pointed out new directions for neural network

models, that is, specific structures should be constructed according to the problems and

datasets to be analyzed.

1.2 Model Structures

The model structure of neural networks can vary quite differently to deal with a broad

range of nonlinear problems. In this section, we introduce some of the most widely used

structures, often called as the single or two hidden layer feed-forward neural network

(since we will be working with feed-forward neural networks throughout the whole thesis,

sometimes we will omit the word “feed-forward” for simplicity). There have been a great

amount of more advanced neural network structures, which will be introduced and

investigated in later sections.

1.2.1 Single Hidden Layer Neural Networks

A single hidden layer neural network is a two-stage regression or classification model,

typically represented by a network diagram as shown in Figure 1. It consists of three

layers: input layer – the 𝑋s, hidden layer – the 𝑊s, and output layer – the 𝑌s. Each

circled node in the graph is

a variable (or neuron) in

the model with different

colors distinguishing their

relative positions; each line

connects a pair of nodes

from two adjacent layers

and represents an unknown

parameter (weight). The

bottom layer consists of 𝑃

nodes, which are

explanatory variables

serving as inputs of the

X neurons are the input variables, Y neurons are the output

variables and W neurons are hidden neurons.

Figure 1. Single hidden layer neural network models.

3

model. Similar to linear regression, categorical factors may be transformed into dummy

variables, if necessary. The 𝐾 nodes at the top correspond to the response variables. For a

univariate regression, 𝐾 simply equals to one and there is only one unit 𝑌1 at the top. For

the purpose of generalizability, in the following we will deal with more general scenario

with arbitrary dimension of 𝐾 in the response. The middle layer is the most important

part in the structure, consisting of 𝑁 nodes, which are not directly observable. These

variables are therefore “hidden” and only exist in concept. Variation in these latent

variables enriches the class of neural networks.

The relationships between adjacent layers can be described by the following

representations:

𝑊𝑛 = 𝜎(∑𝛼𝑛𝑝

𝑃

𝑝=1

∗ 𝑋𝑝) , for 𝑛 = 1,… ,𝑁 (1.2.1)

𝑌𝑘 = 𝑔𝑘 (∑𝜃𝑘𝑛

𝑁

𝑛=1

∗ 𝑊𝑛) , for 𝑘 = 1,… , 𝐾 (1.2.2)

𝛼𝑠, 𝜃𝑠 are the model parameters, which are also called “weights”. 𝜎(∙) is the “activation

function” (or “link function”) that controls the non-linearity of the model, and 𝑔𝑘(∙)s are

the link functions in generalized linear models (identity functions for 𝑌 coming from

normal distribution and softmax functions for 𝑌 coming from multinomial distribution).

Basically, each 𝑊 is a non-

linear transformation of a linear

combination of 𝑋s, and each 𝑌

is another non-linear

transformation of a linear

combination of the 𝑊 s. If 𝜎(∙)

is the identity function, the

model degenerates to a standard

linear model.

The choice of activation 𝑓(𝑥) =
1

1+𝑒−𝑥
 Figure 2. Sigmoid-like function

4

function 𝜎 is usually flexible, but generally it adopts the sigmoid-like shape as shown in

Figure 2. The reason of restricting the choice in sigmoid-like function comes from the

origins of neural networks. Simply speaking, the use of sigmoid-like function is to

smoothen the step function: 𝑠(𝑥) = {
0, 𝑥 < 0
1, 𝑥 ≥ 0

, which mimic the pattern of neural

activation. Since the step function is not smooth, or even not continuous, it will cause

inconvenience in the optimization. Therefore the smoother, sigmoid-like function is

introduced into the model and widely adopted.

Common choices of activation functions include logistic function 𝑓(𝑥) =
1

1+𝑒−𝑥

(Figure 2), and hyperbolic tangent function 𝑓(𝑥) =
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥
=

1−𝑒−2𝑥

1+𝑒−2𝑥
. Hyperbolic tangent

function differs from logistic function in that it ranges within (-1, 1) interval. The logistic

function can be extended or stretched to make it range in (-1, 1), that is 𝑓(𝑥) =
2

1+𝑒−𝑥
−

1 =
1−𝑒−𝑥

1+𝑒−𝑥
. The “extended” logistic function and the hyperbolic tangent function are then

very similar. Since there are no restrictions on weights, i.e. they can be either positive or

negative, the more symmetric hyperbolic tangent function or “extended” logistic function

are more favored in real applications.

1.2.2 Two Hidden Layers Neural Networks

If one more hidden layer, the 𝑍 neurons, is added into the single layer network

(Figure 3), then the model becomes a double-layer structure, which will be discussed

thoroughly in this thesis and be applied into two different areas. As shown in Figure 3, it

is more complicated and can better capture more complex patterns among inputs.

Similarly, the relationships between variables in adjacent layers can be described by the

following formulas:

𝑊𝑛 = 𝜎(∑𝛼𝑛𝑝

𝑃

𝑝=1

∗ 𝑋𝑝) , for 𝑛 = 1,… ,𝑁 (1.2.3)

𝑍𝑚 = 𝜎 (∑𝛽𝑚𝑛

𝑁

𝑛=1

∗ 𝑊𝑛) , for 𝑚 = 1, … ,𝑀 (1.2.4)

5

𝑌𝑘 = 𝑔𝑘 (∑ 𝜃𝑘𝑚

𝑀

𝑚=1

∗ 𝑍𝑚) , for 𝑘 = 1,… , 𝐾 (1.2.5)

If more hidden layers were added to the network, more complicated multi-layer structure

can be constructed. In general,

activation functions used below the

top layer usually take the same form

(see Formula 1.2.3 and 1.2.4). In the

following, we will give more

discussions on how to choose

between simple and complicated

structures. Also, neural networks are

really a large class of models, in

which some parameters need to be

pre-specified and some need to be

tuned. In the next section, we will

also discuss how to set up those

important ones that are closely

related to the model performance.

1.2.3 Single-layer vs. Multi-layer Structures

Kurt Hornik and his colleagues proved that if the number of nodes (neurons) is taken

arbitrarily large, both single-layer and multi-layer structures can be universal

approximations for continuous functions in ℝ𝑃 [25] [26], that is, they can approximate

the target functions arbitrarily well.

In practice, single-layer networks are indeed widely adopted, due to their simple

structures and maybe faster training processes. However, as shown in Figure 1, the

single-layer network structure may fail to take into account of more subtle and local

patterns among input variables, leading to the inefficiency in transmitting information

The Y neurons at the top layer are output

variables, the X neurons at the bottom layer are

the input variables. The W and Z neurons in

between are the first and second hidden layers

respectively.

Figure 3. A two-layer neural network structure

6

from the bottom to the top layers. For cases that there might be local structures embedded

among input features, the more flexible hierarchical multi-layer structure is more

advantageous and allows different levels of resolution.

One successful application of multi-layer models is on image processing. LeCun’s

work on zip code data demonstrates how multi-layer network models can be applied in

recognizing handwritten digits from images [38] [37]. The input factors are usually

hundreds or even thousands numbers ranging from -1 to 1, describing pixel information.

In this case, single hidden layer structure is inadequate since most vital features to

differentiate the digits are local signatures and need more than one resolution. Multi-layer

models are also very suitable for financial data, which are well known to be dependent.

More examples will be given in later sections.

In general, for situations with few input factors (<30) and without much background

knowledge, single-layer structures is a powerful tool. Otherwise, flexible multi-layer

structures should be considered.

1.2.4 Number of Neurons in Hidden Layers

The number of neurons, e.g. 𝑁 and 𝑀 in the double hidden layer model in Figure 3, is

another set of important parameters that can be tuned to improve the model performance.

There is no systematic rule about how to specify these numbers. However, several

aspects need to be considered while determining their values:

(1) Number of input factors. The first hidden layer right above the bottom resembles

a feature selection process on the input factors, which suggests that 𝑁 > 𝑝 may

not fulfill the target. The same rational can be applied to the relationship between

𝑀 and 𝑁.

(2) Number of observations in the data. If the number of observations in the data is

small, too many parameters in the model would lead to a severe over-fitting issue

(e.g. the total number of parameters in the double hidden layer model is 𝑁 × 𝑃 +

𝑀 ×𝑁 + 𝐾 ×𝑀). So, 𝑁 and 𝑀 cannot be too large.

7

(3) Datasets can suggest how to connect the input layer to the first hidden layer, so

that 𝑁 is controlled by such connections. We will cover this topic in more details

in the next section.

Cross-validation may serve as a way to choose these tuning parameters, by

performing grid-search among many, if not all, possible combinations of 𝑁 and 𝑀 and

choosing the best pair. However, as will be discussed later, cross-validation is usually

used to estimate regularization parameters, so using it to optimize 𝑁 and 𝑀 again seems

redundant. The common practice is to specify them to be some numbers that are

reasonable, in a range of 5 to 100 [20].

1.2.5 Connections between Layers

There are mainly three types of patterns that connect between layers: full connection,

local connection, and direct connection. Full connection means that all nodes in the upper

layer connect with all nodes in the lower layer. The structure shown in Figure 1 and

Figure 3 belongs to this type, and is the most common connection. When all information

from lower layer is needed to get the upper layer or any set of neurons in lower layer may

interact with each other, this pattern would be a proper choice, while the main drawback

is that too many parameters are needed. Several researchers [54] [16] [12] have used

single-layer model with this pattern to analyze the stock market data, with input signals

describing specific aspects of the whole stock market and certain stock.

If nodes in the upper layer only gather information from partial nodes in the lower

𝑋 neurons from 𝑠𝑖 to 𝑛𝑖 only contribute to hidden neuron 𝑊𝑖.

Figure 4. Local connection between input layer and 1st hidden layer.

8

layer, this suggests the structure of local connections. Figure 4 shows an example of how

the input layer is locally connected with the hidden layer right above it. Each neuron in

the hidden layer “retrieves information” only from a subset of all input factors: 𝑊𝑖 only

connects to 𝑋s whose indices ranging from 𝑠𝑖 to 𝑛𝑖, constrained that 𝑠1 = 1 and 𝑛𝑁 = 𝑃.

Here, how to group the inputs is a vital step, which is usually determined by the

background knowledge or experimentation. Additionally, overlapping between nearby

groups is acceptable, which is to say 𝑠2 may be smaller than 𝑛1. The local connectivity

has been successfully used in LeCun’s work on handwritten zip code recognition in

image [38] [37]. If justified, local connections can eliminate irrelevant connections and

reduce the total number of parameters, yielding much more efficient neural networks.

Direct connection is a pattern which reflects the phenomenon that some input factors

may affect the output more directly than others. Therefore, these factors should be

“linked” to higher hidden layers or even to the output layer directly. Figure 5 shows an

example for two input factors directly connected to nodes in the second hidden layer.

This pattern is very useful in a variety of data sets. In genetics, some demographic

variables, such as

gender, age or life style,

obviously do not

function at the same

level as more detailed

genetic information,

such as single

nucleotide

polymorphism, so it is

recommended to

connect those input

factors directly to

higher hidden layer. For

stock market data, some

market indicators, such
Input neurons 𝑋𝑝+1 and 𝑋𝑝+2 are directly connected to the

second hidden layer (𝑍 neurons).

Figure 5. Direct connection.

9

as risk-free interest rate and unemployment rate, which reflect the overall economic

environment, may affect the prediction on the stock performance more than historical

data from other stocks, so they may be directly connected to the output layer.

The combinations of the basic connections can generate a rich class of network

structures.

1.3 Training Neural Networks

1.3.1 Input Processing

In fitting neural networks, the scaling of the input variables plays an important role in

the parameter/weight estimation. For example, a variable that ranges between -10 and 10

will outweigh a variable that ranges between -1 and 1, that is, variables measured at

different scales do not contribute equally to the model fitting. Typically, the inputs of a

neural network model need to be prepossessed and scaled to the same range like (-1, 1).

The rescaling can also benefit the regularization and choosing the initial values. For

financial data or time series data, relative increase rate or logarithm of the rate are often

used instead of raw stock prices or indexes [43], which serves to have rescaled the

outcome variables.

Feature construction (like PCA) is usually an important preprocessing step for other

machine learning methods, however, it is relatively less important in neural networks.

The reason is that when the “information” flows from the lower layer to higher layer in

the network, it already resembles a process of feature construction. The only issue is that

the process is so complicated that the constructed features become almost uninterpretable.

Nevertheless, if the prediction accuracy is our final goal, sacrificing the interpretability

may be worthwhile.

1.3.2 Error Functions

To estimate the unknown parameters or the weights in the neural network models, we

need to minimize the error functions. Depending on the nature of the response variable,

we may have either regression or classification problems. Also, in order to avoid the

10

over-fitting issue, regularization terms may be added to the error functions. Below we

will discuss how to construct a proper error function.

Let’s consider the double layer neural network in Figure 3, and denote its complete

set of parameters (weights) as Ω, which consists of {𝛼𝑛𝑝, 𝛽𝑚𝑛 and 𝜃𝑘𝑚: 𝑛 = 1,… ,𝑁; 𝑝 =

1, … , 𝑃; 𝑘 = 1,… , 𝐾;𝑚 = 1,… ,𝑀} .

For regression models, the error function can be simply set to be the sum-of-squared

errors:

𝑅(Ω) = ∑∑(𝑦𝑖𝑘 − 𝑦̂𝑖𝑘)
2

𝑁

𝑖=1

𝐾

𝑘=1

 (1.3.1)

For classification models (categorical responses), the error function can be the cross-

entropy (deviance):

𝑅(Ω) = −∑∑𝑦𝑖𝑘log (𝑦̂𝑖𝑘)

𝑁

𝑖=1

𝐾

𝑘=1

 (1.3.2)

And the corresponding classifier is 𝐺(𝑥) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑘{𝑦̂𝑘(𝑥)} [20].

Since the number of parameters in Ω is typically large, it is very easy to over-fit the

network model, so a global minimizer of 𝑅(Ω) is usually not desired. Instead, early

stopping rules may be placed to obtain local minimizer, or regularization may be added

through some penalty terms to avoid overfitting. In this study, we will focus on the

penalty methods, which will be discussed below.

A 𝐿2 −penalty can be used in the network models. Then the final form of error

functions becomes:

𝑅𝑝(Ω) = 𝑅(Ω) + 𝜆𝐽(Ω) = 𝑅(Ω) + 𝜆‖Ω‖2 (1.3.3)

In the above formula, 𝑅(Ω) is the original error function in (1.3.1) or (1.3.2), 𝐽(Ω) is

the penalty term, with 𝜆 ≥ 0 being a tuning parameter. Larger values of 𝜆 will tend to

11

shrink the weights toward zero. To choose an appropriate value for the hyper-parameter 𝜆,

cross-validation can be applied.

1.3.3 Learning Algorithms

Next, we discuss how to minimize the error function defined in (1.3.3). Since this is a

non-linear problem, numerical algorithms will be applied for the optimization. In the

following, we will discuss three popular methods:

1. Back-propagation: This is essentially a search method that is based on gradient

descent. The first-order derivatives of 𝑅𝑝(Ω) with respect to elements of the

parameter vector Ω are computed first, and then Ω are updated with some part of

the derivatives until certain stopping criteria are reached.

2. Simulated annealing: This is a stochastic search method, which does not rely on

derivatives. Briefly, we start with an initial guess Ω0, and proceed with random

updating of the initial guess until a “cooling temperature” or stopping criterion is

reached.

3. Genetic algorithm: This is an evolutionary stochastic search, which starts with a

population of 𝑠 initial guessesΩ0 , and updates the population of guesses by

genetic selection, breeding, and mutation for many generations, until the best

coefficient vector is found among the last generation population.

1.3.3.1 Back-propagation

This algorithm was firstly introduced by Rumelhart et al in 1986 [58] [59], for

optimizing nonlinear functions in (1.3.3). Again, the two hidden layer structure (Figure 3)

is used to demonstrate the process.

Firstly we make a random guess Ω0 for Ω. Then suppose we are at the 𝑟th iteration

and the estimations for Ω are denoted as Ω𝑟. Then the derivatives of 𝑅𝑝(Ω) with respect

to Ω at Ω𝑟 are expressed as:

∇𝑟=
𝜕𝑅𝑝(Ω)

𝜕Ω
|
Ω=Ω𝑟

 (1.3.4)

∇𝑟 consists of three sets of elements:

12

{
𝜕𝑅𝑝(Ω)

𝜕𝛼𝑛𝑝
|
Ω=Ω𝑟

: 𝑛 = 1,… ,𝑁; 𝑝 = 1,… , 𝑃} (1.3.5)

{
𝜕𝑅𝑝(Ω)

𝜕𝛽𝑚𝑛
|
Ω=Ω𝑟

: 𝑚 = 1,… ,𝑀; 𝑛 = 1,… ,𝑁} (1.3.6)

{
𝜕𝑅𝑝(Ω)

𝜕𝜃𝑘𝑚
|
Ω=Ω𝑟

: 𝑘 = 1,… , 𝐾;𝑚 = 1, … ,𝑀} (1.3.7)

 We use the following formula to update the estimations of Ω:

Ω𝑟+1 = Ω𝑟 − 𝛾𝑟 ∙ ∇𝑟 (1.3.8)

𝛾𝑟 is called the learning rate, which is a positive series decreasing to zero. It is common to

set: 𝛾𝑟 = 1/𝑟.

To illustrate how the formula works, let’s take a look at the second-order Taylor

expansion of 𝑅𝑝(Ω):

𝑅𝑝(Ω) = 𝑅𝑝(Ω𝑟) + (Ω − Ω𝑟)
′ ∙ ∇𝑟 +

1

2
(Ω − Ω𝑟)

′𝐻𝑟(Ω − Ω𝑟)

Suppose Ω𝑟 is close to the minimum point. Then, taking the derivative of the above

equation with respect to Ω yields:

0 = 0 + ∇𝑟 + 𝐻𝑟(Ω − Ω𝑟)
′

So, Ω at the step 𝑟 + 1 is: Ω𝑟+1 = Ω𝑟 − 𝐻𝑟
−1 ∙ ∇𝑟.

𝐻𝑟 is the Hessian matrix of 𝑅𝑝(Ω𝑟). It is usually very time-consuming to calculate the

Hessian matrix, and the inverse of 𝐻𝑟 may bring some other problems like the singularity

issue. The learning rate 𝛾𝑟 in (1.3.8) can be viewed as a simplification of the inverse of

Hessian matrix. There are some other ways to handle this problem as well, such as the

BFGS (Boyden-Fletcher-Goldfarb-Shanno) algorithm, please refer to other reference for

details [48].

The explicit form of ∇𝑟 could be derived by the chain rule for differentiation. To

derive the explicit form of ∇𝑟, we first need to rewrite Formula (1.2.3) – (1.2.5) with an

additional subscript 𝑖 representing different observations:

13

𝑊𝑖𝑛 = 𝜎(∑𝛼𝑛𝑝

𝑃

𝑝=1

∗ 𝑋𝑖𝑝) , for 𝑛 = 1,… ,𝑁 (1.2.3)*

𝑍𝑖𝑚 = 𝜎 (∑𝛽𝑚𝑛

𝑁

𝑛=1

∗ 𝑊𝑖𝑛) , for 𝑚 = 1, … ,𝑀 (1.2.4)*

𝑦̂𝑖𝑘 = 𝑔𝑘 (∑ 𝜃𝑘𝑚

𝑀

𝑚=1

∗ 𝑍𝑖𝑚) , for 𝑘 = 1,… , 𝐾 (1.2.5)*

Then by the chain rule of differentiation, we have:

𝜕𝑅𝑝(Ω)

𝜕𝜃𝑘𝑚
=∑

𝜕𝑅𝑝(Ω)

𝜕𝑦̂𝑖𝑘

𝜕𝑦̂𝑖𝑘
𝜕𝜃𝑘𝑚

𝑖

=∑
𝜕𝑅𝑝(Ω)

𝜕𝑦̂𝑖𝑘
𝑔𝑘
′ (∑ 𝜃𝑘𝑚

𝑀

𝑚=1

∗ 𝑍𝑖𝑚)𝑍𝑖𝑚
𝑖

=∑𝜖𝑖𝑘𝑍𝑖𝑚
𝑖

(1.3.9)

In the last equation of (1.3.9), we assign:

𝜖𝑖𝑘 =
𝜕𝑅𝑝(Ω)

𝜕𝑦̂𝑖𝑘
𝑔𝑘
′ (∑ 𝜃𝑘𝑚

𝑀

𝑚=1

∗ 𝑍𝑖𝑚)

(1.3.10)

Using the defined 𝜖𝑖𝑘, we can have:

𝜕𝑅𝑝(Ω)

𝜕𝛽𝑚𝑛
=∑

𝜕𝑅𝑝(Ω)

𝜕𝑍𝑖𝑚

𝜕𝑍𝑖𝑚
𝜕𝛽𝑚𝑛

𝑖

=∑∑𝜖𝑖𝑘′𝜃𝑘′𝑚𝜎
′ (∑𝛽𝑚𝑛

𝑁

𝑛=1

∗ 𝑊𝑖𝑛)𝑊𝑖𝑛

𝑘′𝑖

=∑𝜂𝑖𝑚𝑊𝑖𝑛

𝑖

(1.3.11)

In the last equation of (1.3.11), we assign:

𝜂𝑖𝑚 =∑𝜖𝑖𝑘′𝜃𝑘′𝑚𝜎
′ (∑𝛽𝑚𝑛

𝑁

𝑛=1

∗ 𝑊𝑖𝑛)

𝑘′

(1.3.12)

Using the defined 𝜂𝑖𝑚, we can have:

𝜕𝑅𝑝(Ω)

𝜕𝛼𝑛𝑝
=∑

𝜕𝑅𝑝(Ω)

𝜕𝑊𝑖𝑛

𝜕𝑊𝑖𝑛

𝜕𝛼𝑛𝑝
𝑖

=∑∑𝜂𝑖𝑚′𝛽𝑚′𝑛𝜎
′ (∑𝛼𝑛𝑝

𝑃

𝑝=1

∗ 𝑋𝑖𝑝)𝑋𝑖𝑝
𝑚′𝑖

 (1.3.13)

14

We firstly calculate the derivatives for 𝜃𝑘𝑚, then through 𝜖𝑖𝑘, the derivatives of 𝜃𝑘𝑚

are “propagated” to the next level, 𝛽𝑚𝑛. After calculating the derivatives for 𝛽𝑚𝑛, the

derivatives are again “propagated” to 𝛼𝑛𝑝, through 𝜂𝑖𝑚. At last, we come up with the

derivatives for 𝛼𝑛𝑝. Since the derivatives are calculated from the output layer parameters

𝜃𝑘𝑚 to the input layer parameters 𝛼𝑛𝑝, this algorithm is named as “back-propagation”.

The inconvenience is that every time ∇𝑟 needs to be re-derived for different network

structures. Back-propagation is probably the most widely used algorithm in dealing with

neural networks, due to its fast implementation. However, since its estimation heavily

depends on initial values that are chosen randomly, there is no guarantee that any single

estimation is optimal. To solve this problem, we might use several different initial values

to start the back-propagation processes and choose the best one or average on top ones to

alleviate the issue of initial values.

1.3.3.2 Simulated Annealing

Simulated annealing originated from stochastic methods, consisting of a mutation

process and an accept/reject algorithm. The algorithm works as follows [20]:

1. At the step 𝑟 = 0, generate a randomly vector Ω0 for the unknown parameters,

based on which the error function is calculated: Ψ0 = 𝑅𝑝(Ω0)

2. At the step 𝑟 + 1, randomly perturbate previous vector Ω𝑟 to be Ω̂. For example,

let Ω̂ = Ωr(1 + 𝜖) with 𝜖~𝑁(0, 0.032). And then calculate the corresponding

error function: Ψ̂ = 𝑅𝑝(Ω̂)

3. The cooling temperature at step 𝑟 + 1 is then defined as:

𝑇(𝑟 + 1) =
𝑇̅

1 + ln (𝑟 + 1)

where 𝑇̅ is a pre-specified scalar, i.e. the “temperature”, which will be discussed

in more details after introducing the whole process.

4. Define metropolis ratio:

𝑀(𝑟 + 1) = exp (
−(Ψ̂ − Ψ𝑟)

𝑇(𝑟 + 1)
)

15

5. Let 𝐶(𝑟 + 1) = min (1,𝑀(𝑟 + 1)), and generate a random number 𝑈 uniformly

from the interval (0, 1). If 𝑈 < 𝐶(𝑟 + 1), Ω𝑟+1 = Ω̂ ; otherwise Ω𝑟+1 = Ω𝑟.

6. Continue until 𝑟 = 𝑇̅

Parameter 𝑇̅ is a key parameter in this algorithm, since it controls the total number of

iterations. So, on one hand, 𝑇̅ should be large enough to ensure many perturbations have

been tried before reaching the computational minima; on the other hand, 𝑇̅ cannot be too

large as it may lead to longer estimation, but with only marginal gain on the parameter

estimation. It is suggested that some trials should be performed to find a balanced value

for 𝑇̅ in this trade-off.

The difference of new error function to the error function in the previous step: Ψ̂ −

Ψ𝑟 determines how unlikely the process will accept the new “guess”. Note that since the

scaling factor of the difference 𝑇(𝑟 + 1) is a deceasing function of step 𝑟, this suggests

that for similar values of Ψ̂ − Ψ𝑟 , Ω in later steps (larger 𝑟) is more likely to stay

unchanged.

1.3.3.3 Genetic Algorithm

Genetic algorithm (GA) is another popular stochastic search method in nonlinear

optimization, which originated from the evolutionary theory. Same as simulated

annealing, no derivatives need to be calculated throughout the algorithm, and it also starts

with one random initialization vector Ω0. The GA algorithm works as follows:

1. Set up a set of random guesses for Ω , which is called a population (e.g. 𝑁∗

random vectors): 𝛀𝟎 = {Ω0𝑖: 𝑖 = 1,2, … ,𝑁∗}.

2. In the 𝐺th generation, 𝑁∗ pairs of “parents” were chosen from the population 𝛀𝑮

to “generate” new children –members in 𝛀𝑮 can be parents of more than one child.

2.1 Suppose Ω𝐺1 and Ω𝐺2 are chosen as one pair. Crossover and mutation are

then performed on these two members to yield a new vector.

2.2 Crossover is to swap part of parents’ “DNA” – the parameter vectors in

the algorithm. There are several kinds of crossovers: shuffle crossover,

arithmetic crossover, single-point crossover [43]. Arithmetic crossover

can only be used when the parameters are in real-valued encoding.

16

2.3 Mutation is to make changes directly on a member. For example, define

mutation probability 𝑝𝑟̃ as: 𝑝𝑟̃ = 0.15 +
0.33

𝐺
, which determines whether

mutation happens on certain child. If mutation exists for example on the

𝑗th parameter of child 𝐶1, then change 𝐶1𝑗 to 𝐶1𝑗̃ as following:

𝐶1̃𝑗 =

{

 𝐶1𝑗 + 𝑠 [1 − 𝑟2

(1−
𝐺

𝐺∗
)
𝑏

] 𝑖𝑓 𝑟1 > 0.5

𝐶1𝑗 − 𝑠 [1 − 𝑟2
(1−

𝐺

𝐺∗
)
𝑏

] 𝑖𝑓 𝑟1 ≤ 0.5

𝑟1 and 𝑟2 are two real numbers randomly chosen from [0,1]. 𝑠 and 𝑏 are

two parameters which should be pre-determined. More detailed

discussions on the crossover and mutation can be found in [43].

3. Evaluate the error functions 𝑅𝑝 in (1.3.3) for {Ω𝐺1, Ω𝐺2, 𝐶1, 𝐶2}, and chooses the

two with smallest 𝑅𝑝 to be the members in generation (𝐺 + 1).

4. 𝑅𝑝 is calculated on both the 𝐺 th and (𝐺 + 1) th generations. If the smallest 𝑅𝑝

among 𝐺 th generation is also the smallest among (𝐺 + 1) th generation, that

particular member will replace the one with highest 𝑅𝑝 in (𝐺 + 1)th generation.

5. Repeat the above steps to 𝐺∗ times, with the best member in the last generation

being the desired parameter estimation. 𝐺∗ is the parameter determining when to

stop, just like 𝑇̅ in simulated annealing algorithm.

Both genetic algorithm and simulated annealing are stochastic methods for

optimization, and share the common advantage of trying new solutions randomly in the

neighborhood of existing solutions. If the new solutions are better or not too worse than

existing ones, the new solutions are used for searches in the next step. However, one

more advantage for genetic algorithm is that it keeps several possible solutions (𝑁∗

members in current population) and generate more ways to move from the existing

solution to new better solutions through the crossover (mutation is like the “updating”

method in simulated annealing).

Back-propagation is a greedy algorithm that can perform exhaustive search in a

particular local area. However, since it can only move the target function in one direction,

the optimization can be easily trapped in a local minimum. In contrast, stochastic

17

methods may move the target function both up and down so it can escape from local

minima; however, the optimization then has the risk of leaving an area too soon. Based

on these characteristics, hybrid methods that combine the strengths of both back-

propagation and stochastic methods have also been proposed [43].

1.3.4 Parameter Selection

After several trials of model fitting, researchers may notice that some input factors

may be more important than others, and some may be more dispensable and should be

excluded. So how to retain those important factors and filter out unimportant ones is an

interesting problem. Here we will describe a method called parameter decreasing method

(PDM) for parameter selection [65]. Although for the prediction purpose, it may not be

necessary or productive to conduct parameter selection in neural networks due to its

unique structure, for some cases where the model interpretation is important, selecting

proper factors can be very meaningful.

Let’s use the local connections in Figure 4 to illustrate how the PDM works. Each

group of input factors {𝑋𝑠𝑖, … , 𝑋𝑛𝑖} together with their corresponding higher neuron 𝑊𝑖 is

viewed as one unit. PDM conducts selection at this “unit” level, that is, the process

eliminates one unit each time and evaluates how model performance may change, such as

the accuracy rate based on a validation data set. After going through all units, the one

having least impact on performance would be discarded. This process will iterate until

some stopping criteria meets – the maximum number of remaining units or the maximum

decrease of performance when eliminating one unit. This resembles a backward selection

procedure.

1.4 Neural Networks in Research and Applications

After backpropagation algorithm was proposed, the research field of neural networks

had undergone dramatic changes, and gradually evolved to cover a wide range of models

and learning methods in many fields, from explosives detection system in airport [62] to

handwriting recognition in artificial intelligence [37], and to photographing and cancer

cell detection [74].

18

As a powerful prediction tool, neural network can be a great option for certain

applications. For example, it can be applied in marketing analyses to help identify

potential customers and their preference for specific needs, based on their browsing

history on internet, goods bought in the past and other demographic information. With

these information, merchants would know who may be their potential customers and

what they need, and then could design targeted advertisements. Not only could this type

of analysis help merchants reduce their advertisement costs significantly [69], it can also

help customers receive relevant information more efficiently. Classification, predictive

modeling, pattern recognition and novelty detection (like E-mail spam filtering [9]) might

be the most wide application field for neural networks.

Neural networks can also contribute in unsupervised learning like clustering and

nonlinear principal component analysis [21] [33]. The idea of performing nonlinear

principal component analysis utilizing neural networks is trying to replicate input neurons

in output neurons, so that the hidden neurons would serve as a good set of representatives

for input neurons. Neural networks have had a promising application in artificial

intelligence, since the origin of neural network models is to mimic functionalities of

human brains. Many aspects of artificial intelligence really need powerful machine

learning models like: learning, natural language processing and manipulation.

More recently, applications of neural networks in financial industry have been

proposed. Many published papers have proved its success in financial market. Some of

the automated trading systems are also built upon neural network models. In Chapter 3 of

this thesis, we will give a more detailed summary on how the neural networks have been

applied in finance, especially on stock price predictions.

1.5 Motivations and Contributions

Although neural network models have been widely applied in different areas, most of

the applications still utilize the single layer neural networks, which is the simplest model

structure in the family of neural networks. Single layer neural networks might be enough

for analyzing some simple data sets, when the number of covariates is small compared

with the sample size and covariates are almost independent with each other. However, for

19

more complicated datasets, single layer neural networks may not perform well. Many

researchers comparing neural networks with other machine learning methods like SVM

or Random Forests often concluded that neural networks cannot outperform to the other

competitors in some specific applications. As we mentioned in Section 1.1, the reason

may lie on the fact that most of them actually only tried the single layer neural networks.

After reviewing many papers on neural network applications, we believe that to

achieve the best performance of neural networks, special structures should be designed

for different datasets, tailored to their own data characteristics. In this thesis work, we

will design a novel double layer neural network model with local connections from input

layer to the first hidden layer. Our model with this unique design is expected to utilize the

correlation information and help improve the model performance. We demonstrated that

neural network models with this structure can better deal with covariates which high

correlations. Our model have been applied and tested in two different areas:

 Genome-wide Association Studies (GWAS). In GWAS, hundreds and thousands

of SNPs are genotyped, and SNPs that are physically close are usually highly

correlated with each other. Our model tries to utilize these correlation information

to help detect causal SNPs (and their interactions). Simulation studies have been

conducted to test our model and compare with Random Forests. The model has

also been applied to a real COGEND data. (Chapter 2)

 Prediction of stock price movement at 5-minute level. Stock prices show greater

correlations in high frequency scale than in daily or monthly level. Our model will

incorporate the price correlation information and other technical indicators to help

in price prediction in high-frequency data. We also design a framework for our

unique model to help make decisions on transactions. The model was tested on

S&P 500 stock prices from 1/1/2013 to 5/31/2013. (Chapter 3)

In addition, we have developed in-house software for the model implementation,

which are mainly written in C language to achieve better computational speed. Different

from existing packages for neural networks, we calculate the first derivatives of error

functions in their explicit form instead of using numerical methods. So our in-house

20

software can train our neural network models much faster than those existing ones, e.g.

the “nnet” packages in R.

21

CHAPTER 2 GENOME-WIDE ASSOCIATION STUDY USING NEURAL NETWORK

MODELS

2.1 Introduction

2.1.1 Some Notations in Genetics

In modern genetics, genome refers to the entirety of an organism's hereditary

information, which is usually mediated through a combination of four possible DNA

nucleobases, namely A, T, C and G. Particularly, a human genome consists of

approximately 3 billion of nucleobases, packed into 23 pairs of chromosomes. For a

diploid species like human, one of the paired chromosomes originates from the paternal

and another one from the maternal. Both the paternal and maternal chromosomes contain

almost identical nucleobases sequences with over 99.9% similarity, except at certain

Two double strands are selected here as an explanation of SNPs. For the first double-

strand, there is a loci with genotype C/G. At the same loci of the second double-strand,

the genotype is T/A. Then we know this loci is a C/T polymorphism if we choose the

red strands as the representative (http://en.wikipedia.org/wiki/Single-nucleotide

polymorphism).

Figure 6. An illustration of Single Nucleotide Polymorphism (SNP)

22

nucleobases, which are called as single-nucleotide polymorphism, or SNPs. Figure 6

shows an example of SNP with C/T polymorphism. Base on the newest summary data of

dbSNP database (http://www.ncbi.nlm.nih.gov/projects/SNP), there are approximately 38

million (about 1 percent of the total genome) of validated SNPs in human genome.

Although in theory, any of the four nucleobases may appear at any genomic position,

in practice, it has been observed that most SNPs are actually bi-allelic, which means they

only contain two possible nucleobases, generating three genotypes. For example, if a

SNP has two alleles, A and C, the possible outcomes (genotypes) of this SNP could only

be AA, AC and CC. AA and CC are called homozygotes, and AC is called heterozygote.

In the rest of this paper, we assume SNPs are bi-allelic.

In a nature population, if subjects mate at random, a phenomenon called Hardy-

Weinberg Equilibrium (HWE) may occur, which states that the allele frequencies of a

SNP in a population remain constant from generation to generation unless specific

disturbing influences are introduced. To illustrate HWE, let's take a single SNP locus

with A/C alleles as an example: Suppose the frequency of allele A to be 𝑃(𝐴) = 𝑝, then

allele frequency of allele C is𝑃(𝐶) = 𝑞 = 1 − 𝑝; from the HWE, we have 𝑃(𝐴𝐴) =

𝑝2; 𝑃(𝐴𝐶) = 2𝑝𝑞; 𝑃(𝐶𝐶) = 𝑞2. Generally speaking, the allele frequency of each SNP is

different.

Minor allele frequency (MAF) is an important characteristic of SNP, defined as:

𝑀𝐴𝐹 = min {𝑝, 1 − 𝑝} for each SNP. Usually, SNPs with very small MAF (for example

less than 0.01) is difficult to be studied thoroughly due to their low frequencies, which

also cause some difficulties for the genome- wide association studies. This topic will be

discussed in the third section of this chapter. With the development of new genotyping

technology, more SNPs with small MAF that could not be discovered before are reported

more and more recently.

Another important characteristic of SNP is the Linkage Disequilibrium (LD) among

SNP loci. The LD refers to non-random associations between the genotypes of different

loci. If a group of SNP loci follow an LD pattern, then some combinations of their

genotypes would appear more often than random formations. It is known that the LD

strength between SNPs is closely related to their physical distance. Because of the LD,

23

we can infer unknown SNPs based on known SNPs and it serves as the major principal

for the artificial neural network methods we plan to study in this thesis.

Table 1 shows the joint probabilities of genotypes of two SNP loci, expressed as their

haplotype frequencies. If the two loci are independent, then:

𝑝𝐴𝐵 = 𝑝𝐴𝑝𝐵; 𝑝𝐴𝑏 = 𝑝𝐴𝑝𝑏
(2.1.1)

𝑝𝑎𝐵 = 𝑝𝑎𝑝𝐵; 𝑝𝑎𝑏 = 𝑝𝑎𝑝𝑏

Otherwise, an extra parameter D needs to be introduced and the haplotype

frequencies are redefined as:

𝑝𝐴𝐵 = 𝑝𝐴𝑝𝐵 + 𝐷; 𝑝𝐴𝑏 = 𝑝𝐴𝑝𝑏 − 𝐷
(2.1.2)

𝑝𝑎𝐵 = 𝑝𝑎𝑝𝐵 − 𝐷; 𝑝𝑎𝑏 = 𝑝𝑎𝑝𝑏 + 𝐷

The quantity D is the so-called LD measure. It reflects the difference compared with

the expected genotype combination frequencies under the assumption of independence.

𝐷 ≠ 0 means the two loci are in linkage disequilibrium.

From the definition of D, we know that D's for different loci pairs may have different

ranges. Then the direct comparison between D's is not sensible. We need to do some

normalization on the parameter. One type of normalization is 𝐷′ =
𝐷

𝐷𝑚𝑎𝑥
, with:

𝐷𝑚𝑎𝑥 = {
min(𝑝𝐴𝑝𝐵, 𝑝𝑎𝑝𝑏) , 𝑤ℎ𝑒𝑛 𝐷 < 0

min(𝑝𝑎𝑝𝐵, 𝑝𝐴𝑝𝑏) , 𝑤ℎ𝑒𝑛 𝐷 > 0

Table 1. Joint probabilities of genotypes of two SNP loci.

The probabilities of each genotype combination are shown in Formulas (2.1.1) and (2.1.2) for the

two SNP loci being independent or not.

Probabilities 𝐴𝐴 𝐴𝑎 𝑎𝑎

𝐵𝐵 𝑝𝐴𝐵
2 2𝑝𝐴𝐵𝑝𝑎𝐵 𝑝𝑎𝐵

2

𝐵𝑏 2𝑝𝐴𝐵𝑝𝐴𝑏 2(𝑝𝐴𝐵𝑝𝑎𝑏 + 𝑝𝐴𝑏𝑝𝑎𝐵) 2𝑝𝑎𝐵𝑝𝑎𝑏

𝑏𝑏 𝑝𝐴𝑏
2 2𝑝𝐴𝑏𝑝𝑎𝑏 𝑝𝑎𝑏

2

24

Another kind of normalization is to use the correlation coefficient, which is expressed as:

𝑟 =
𝐷

√𝑝𝐴𝑝𝑎𝑝𝐵𝑝𝑏
.

2.1.2 Genome-Wide Association Study

It is well known that most common human traits, such as diseases, are likely to be

complex, that is, many genetic factors may contribute to development of these complex

traits. Typically, it is very hard to identify these genetic factors, as each causal gene may

only make a small contribution to the disease phenotype. Many approaches have been

developed to uncover causal genes (or SNPs) for complex traits/diseases. Roughly

speaking, the existing methods can be categorized into three groups: candidate-gene

studies, linkage mapping and genome-wide association studies [24].

Here we give a brief introduction to the candidate-gene association studies, which can

be easily extended to the genome-wide association studies. In a simple case-control study,

candidate-gene studies compare the frequencies of alleles or genotypes of a particular

variant between disease (case) and control groups. The genes are usually preselected,

based on certain biological hypotheses or the location of the candidate within a

previously determined region of linkage. One limitation of this approach is that they can

identify only a fraction of genetic risk factors, even for diseases with well-understood

pathophysiology and if the test hypotheses are broad (for example, involving the testing

of all genes in the insulin-signaling pathway). When the fundamental physiological

defects of a disease are unknown, the candidate-gene approach is clearly inadequate.

As an extension of candidate-gene studies, genome-wide association approaches

surveys most of the genome for causal genetic variants. Here the genetic variants could

be genes or base loci - SNPs. This is a data-driven discovery approach with no

assumption on causal variants, and it could exploit the strengths of association studies

without having to guess the identity of the causal genes. The genome-wide association

approach therefore represents an unbiased yet fairly comprehensive option that can be

attempted even in the absence of convincing evidence regarding the function or location

of the causal genes or SNPs.

25

2.1.3 Difficulties in GWAS

From genetics, we know that a major part of the genetic variations are due to SNPs.

This means if we had known all SNPs in human genome, we could in theory understand

how most of the genetic factors may affect different phenotypes. However, even the most

recent SNP array platform can only survey 1 million SNPs, which is still a small fraction

of all the SNP loci. So a GWAS study is typically performed with incomplete SNP list. In

this case, the LD pattern we introduced previously may help identify the missing causal

SNPs, based on the hope that sampled SNPs correlated with the missing causal SNPs

provide information for that disease. Figure 7 shows how LD pattern is used in genome-

wide association studies. Figure 7a shows the desired situation: the causal SNP is

genotyped, so we can directly analyze its association with some phenotype (for example

diseased or not). In Figure 7b, the casual SNP (blue one) is not genotyped; however,

SNPs are in an LD pattern with it are genotyped (red ones). In either case, we can still

perform association studies based on the genotyped SNPs, because they provide some

genetic information of casual SNPs, however, the power may be less when causal SNPs

is missing from the genotyped set.

Epistasis (SNP-SNP interaction) is another layer of difficulties in GWAS [13]. For a

set of 1 million SNPs, an exhausted search for all possible interactions is almost

Two kinds of associations are shown here. Picture a shows the direst association which means

the SNP marked red is the causal SNP and genotyped in the study. Picture b shows the

indirect association - the blue SNP is the causal one but not genotyped, those red ones are

genotyped and associated with the causal blue one [24].

Figure 7. Two association patterns – causal SNPs are genotyped or not

26

computationally infeasible. However, some pseudo-exhaustive searching has been

developed to specifically deal with epistasis, such as Multifactor-Dimensionality

Reduction method (MDR, introduced in Section 2.2.1). They can usually handle about

ten SNP loci at one time. Another group of methods try to discover epistasis effects based

on SNPs with significant marginal effects. However, some constructed examples [70]

show that SNPs having high interaction effects may not have high marginal effect at all.

How to find out the SNP interactions has become one of the hardest problems in GWAS,

which will be a focus of this thesis.

In addition to SNP-SNP interactions, SNP-environment interaction also plays an

important role in GWAS. For most biological traits, genetic factors alone cannot fully

predict the phenotypes. Environmental factors like ethnicity and lifestyle may affect the

phenotypes as well. Determining which environmental factors should be included in the

study is a hard but important problem

2.2 Existing Popular Epistasis Methods in GWAS

In a simplified form, a GWAS can be viewed as a statistic model: the SNP data are

the input variables, and the phenotype of interest, e.g. disease status, is the response

variable. Then in the case of binary phenotype, the most straightforward idea is to fit a

logistic regression model to the data. However, typically the number of SNPs are much

larger than the number of observations. This yields a "small p, large n" problem and the

common regression methods cannot be directly applied. In this chapter, we will review

three popular epistasis methods: multifactor-dimensionality reduction, random forests

and Bayesian epistasis association mapping. These three methods are suggested to be the

most widely used ones among tons of existing methods [3] [10].

2.2.1 Multifactor-Dimensionality Reduction

MDR method is a well-known method in GWAS, not only because it is

straightforward and its computation process is very easy to implement, but also because it

27

performs exhaustive search: searching for all possible interaction combinations among

the potential causal factors (genes or SNPs).

MDR was first introduced by Ritchie and others in 2001 [57]. In the original paper,

the authors used this method to investigate sporadic breast cancer and discovered a four-

locus interaction term having high association with the disease. It was arguably the first

time to identify such a high-order interaction for a complex multifactorial disease. In a

following paper [56], they discussed the power of MDR with more details.

Figure 8 demonstrates the four general steps to implement the MDR method in a

case-control study:

Figure 8. Steps for Multifactor-Dimensionality Reduction method

1. Determine the potential causal SNP loci and their genotypes; 2. For each

possible interaction term, generate case-control ratios for each genotype; 3.

Identify high risk multilocus genotypes; 4. Cross-validate step 2 and 3. [57]

28

(1) A set of n genetic and/or discrete environmental factors is selected from the pool

of all factors.

(2) The n factors and their possible multifactor classes or cells are represented in a n-

dimensional space. As an example in this figure, a two-locus case is considered,

which means a two-dimensional space. Totally there are nine two-locus genotype

combinations. Then, the ratio of the number of cases to the number of controls is

estimated within each multifactor class.

(3) Each multifactor cell in n-dimensional space is labeled either as high-risk if the

cases/controls ratio meets or exceeds some threshold or as low-risk otherwise. In

this way, a model is formed by pooling high-risk cells into one group and low risk

cells into another group. Usually we choose 1 as the threshold in case-control

studies because it is the totally randomized ratio for each cell.

(4) A 10-fold cross-validation is done for the above three steps. That is, the MDR

model is developed for each possible 9/10 of the subjects and then used to make

predictions about the disease status for each subject in the rest 1/10 of the subjects.

The proportion of subjects on which incorrect predictions are made is an

estimation of the prediction error of that model.

Suppose the total number of factors is m, and is bigger than two. We should try each

𝑛 = 2, 3, … ,𝑚 and each possible combination of n factors in the above four steps.

Among all the n-factor models, the one maximizing the cases/controls ratio of the high-

risk group is selected. [57] computes the training error for the 9/10 data and chooses the

one with the lowest training error. For the selected n-factor model, there are two

quantities which can represent its goodness of fit. One is the prediction error, and the

other is the times the model is chosen among the 10-fold cross-validation – the cross-

validation consistency of size of n. Then the optimal n among 2, 3, … ,𝑚 is selected

according to the two quantities (usually the two quantities give the same conclusion [57].

And the prediction error is the more important quantity, if the two quantities does not

imply the same conclusion, we need to either use prediction error as the criteria or

redesign the cross-validation process). This n is the final size of the model, and the

optimal set for the chosen order forms the best multifactor model.

29

A strong selling point of MDR is that it can simultaneously detect and characterize

multiple genetic loci associated with diseases. It searches through any levels of

interaction regardless of the significance of the main effects. It is therefore able to detect

high-order interactions even when the underlying main effects are statistically

insignificant. However, as mentioned in [50], this "strength" is also a weakness: MDR

can "only" identify interactions. If the real model has three loci and the effect is additive,

MDR can only consider them all as a 3-factor interaction effect, although one can post-

process the final model to further examine the 3-factor interaction in fact is additive.

In the situation with small number of factors, MDR can usually perform very well.

However, when the number of factors become larger, MDR will quickly become

computational infeasible. Another difficulty is empty cells in high-dimensional situation.

For example, for a 5-dimension table, there are 243 genotypes cells, so it is very likely

that many genotype cells may have zero or few observations. This will make the MDR

model very unstable.

2.2.2 Classification Tree and Random Forests

Classification and regression tree (CART) is a popular method in statistical learning

and data mining, and has been well adopted in GWAS. Since Random Forests with

CART is already well-known in other fields, we will not explain this model in details but

focus on vital aspects when the Random Forest model is applied in GWAS. Detailed

introductions could be found in [20], and the application of Random Forest in GWAS

could be found in [71].

Two central steps are involved in single tree (CART model) construction: partitioning

and pruning. Training population in parent node is divided into two offspring nodes in

order to achieve the best partition “score”. The term “score” could have different choices

which serve as a measurement of how well certain covariate partitions the population in

parent node. Popular choices include Gini index and cross-entropy. After recursively

going through the partition steps and being stopped by certain criteria, a large tree is

generated, with each node representing a partition rule. Usually this tree would over-fit

the training data and a second step called pruning is needed. A quantity called maximum

chi-square statistics can be applied in the pruning process, which shows how well the

30

partition is not only for this single node but also for the whole sub-tree rooted at this node.

So all nodes with maximum chi-square statistics below some threshold will be pruned

because the whole sub-tree would not contribute much to distinguish population. The

variables in the remaining nodes have the most impacts on distinguishing the training

population. The tree method is very intuitive and has easy interpretation, however it has

some instability issues, that is, a small change on an important variable could lead to a

very different tree.

A much more popular tree-based method in GWAS is Random Forests (abbreviated

as RF in this section), which is an ensemble of many CARTs. All SNPs – our potential

biomarkers for certain disease – consists of the pool of variables from which subsets of

variables are chosen to build up single CARTs. And also the training population for each

CART is a random sample from the original population. Taking into account of the above

two randomness, every CART in RF will probably choose out different set of variables,

which can lead to the definition of important index for every variable, showing the

impact of each variable to distinguish population. With the final predictive model, the

important indexes also provide the significance order for all potential causal SNPs, which

would be of great convenience in GWAS.

2.2.3 Bayesian Epistasis Association Mapping (BEAM)

BEAM method was first proposed in 2007 [72]. In the original paper, the authors

reported that this algorithm could handle about 106
 SNPs at the same time, which is quite

impressive and very different from previous methods in GWAS. In a real data application

with age-related macular degeneration (AMD), it was shown that BEAM method dealt

with 96,932 SNPs from 146 individuals and ran for about 5 hours [72]. Below is a brief

introduction of BEAM [72].

Suppose there are 𝑁𝑑 cases and 𝑁𝑢 controls genotyped at 𝐿 SNP loci. Let case

genotypes be 𝐷 = (𝑑1, 𝑑2, … , 𝑑𝑁𝑑) with 𝑑𝑖 = (𝑑𝑖1, 𝑑𝑖2, … , 𝑑𝑖𝐿) representing genotypes of

patient 𝑖 at 𝐿 SNP loci, and let control genotypes be 𝑈 = (𝑢1, 𝑢2, … , 𝑢𝑁𝑢) with 𝑢𝑖 =

(𝑢𝑖1, … , 𝑢𝑖𝐿) The 𝐿 SNPs are partitioned into three groups: group 0 contains SNPs

unlinked to the disease, group 1 contains SNPs contributing independently to the disease

31

risk and group 2 contains SNPs that jointly influence the disease risk (interactions). Let

𝐼 = (𝐼1, … , 𝐼𝐿) indicate the membership of the SNPs with 𝐼𝑗 = 0, 1, 2, respectively. Then

all we have to do is to infer the set 𝑗: 𝐼𝑗 > 0. Let 𝑙0, 𝑙1, 𝑙2 denote the number of SNPs in

each group (𝑙0 + 𝑙1 + 𝑙2 = 𝐿), and let 𝐷0, 𝐷1 and 𝐷2 denote case genotypes of SNPs in

group 0, 1 and 2, respectively.

Let Θ1 = {(𝜃𝑗1, 𝜃𝑗2, 𝜃𝑗3): 𝐼𝑗 = 1} be the genotype frequencies of each SNP in group 1

in the disease population, (𝑛𝑗1, 𝑛𝑗2, 𝑛𝑗3) be the genotype counts for cases of SNP 𝑗. Then

the likelihood of 𝐷1 is

𝑃(𝐷1|Θ1) = ∏ ∏𝜃
𝑗𝑘

𝑛𝑗𝑘

3

𝑘=1𝑗:𝐼𝑗=1

Assuming a Dirichlet(𝛼) prior for (𝜃𝑗1, 𝜃𝑗2, 𝜃𝑗3), where 𝛼 = (𝛼1, 𝛼2, 𝛼3). Integrate out

Θ1 and obtain the marginal probability:

𝑃(𝐷1|𝐼) = ∏ (
Γ(|𝛼|)

Γ(𝑁𝑑 + |𝛼|)
∏

Γ(𝑛𝑗𝑘 + 𝛼𝑘)

Γ(𝛼𝑘)

3

𝑘=1

)

𝑗:𝐼𝑗=1

Here |𝛼| = 𝛼1 + 𝛼2 + 𝛼3.

For the SNPs in group 2, they contribute to the disease through interactions. Thus we

should take every combination of genotypes into consideration - there are totally 3𝑙2

possible genotype combinations with frequency Θ2 = (𝜌1, … , 𝜌3𝑙2) in the disease

population. Let 𝑛𝑘 be the counts for cases of genotype combination 𝑘. The likelihood of

𝐷2 is

𝑃(𝐷2|Θ2) =∏𝜌𝑘
𝑛𝑘

3𝑙2

𝑘=1

Again, a Dirichlet(𝛽) distribution is assumed for prior of Θ2 = (𝜌1, … , 𝜌3𝑙2) . After

integration, we get:

32

𝑃(𝐷2|𝐼) =
Γ(|𝛽|)

Γ(𝑁𝑑 + |𝛽|)
∏

Γ(𝑛𝑘 + 𝛽𝑘)

Γ(𝛽𝑘)

3𝑙2

𝑘=1

With |𝛽| = ∑ 𝛽𝑘
3𝑙2
𝑘=1 .

The remaining data 𝐷0 consists of SNPs with the same distribution as in the control

population. Let 𝑛𝑗𝑘 and 𝑚𝑗𝑘, 𝑘 = 1, 2, 3 denote the counts of genotype 𝑘 at SNP 𝑗 in 𝐷0

and 𝑈. Also assuming Dirichlet priors with parameters 𝛾 = (𝛾1, 𝛾2, 𝛾3) for 𝜃𝑗 , 𝑗 = 1,… , 𝐿.

Here 𝜃𝑗 , 𝑗 = 1,… , 𝐿 are the genotype frequencies in the control population. We integrate

out Θ and obtain:

𝑃(𝐷0, 𝑈|𝐼) =∏(
Γ(|𝛾|)

Γ(|𝛾| + ∑ (𝑛𝑗𝑘 +𝑚𝑗𝑘)
3
𝑘=1)

∏
Γ(𝑛𝑗𝑘 +𝑚𝑗𝑘 + 𝛾𝑘)

Γ(𝛾𝑘)

3

𝑘=1

)

𝐿

𝑗=1

With |𝛾| = 𝛾1 + 𝛾2 + 𝛾3.

The posterior distribution of 𝐼 is

𝑃(𝐼|𝐷, 𝑈) ∝ 𝑃(𝐷1|𝐼)𝑃(𝐷2|𝐼)𝑃(𝐷0, 𝑈|𝐼)𝑃(𝐼)

With the prior of 𝐼 being 𝑃(𝐼) = 𝑝1
𝑙1𝑝2

𝑙2(1 − 𝑝1 − 𝑝2)
𝐿−𝑙1−𝑙2. It is mentioned that this

prior could be modified based on some knowledge about the disease.

The algorithm will use the last formula to give an estimation to the indicator 𝐼. In

such a situation, the posterior distribution is known except for a normalizing constant,

MCMC sampling method (more specifically the Metropolis-Hastings algorithm) is used.

Each proposed move is accepted according to the MH ratio, which is just a ratio of

gamma functions. What we get is the penetrance of each marginal effect and interaction

effect (the distribution of 𝐼). There are some strategies making the whole algorithm more

efficient mentioned in [72].

To test whether a set of SNPs is associated with the disease, the authors introduced a

new statistics called 𝐵 statistics. For a set 𝑀 of 𝑘 SNPs to be tested, the null hypothesis is

that SNPs in 𝑀 are not associated with the disease. The effect could be marginal and

every interaction effects. Then:

33

𝐵𝑀 = 𝑙𝑛
𝑃𝐴(𝐷𝑀, 𝑈𝑀)

𝑃0(𝐷𝑀, 𝑈𝑀)

Here, 𝐷𝑀 and 𝑈𝑀 denote the genotype data for the SNPs in 𝑀 . 𝑃0 and 𝑃𝐴 are the

likelihood function under null hypothesis and alternative hypothesis.

For the alternative model, 𝑃𝐴(𝐷𝑀, 𝑈𝑀) should be factored into 𝑃𝐴(𝐷𝑀) and 𝑃𝐴(𝑈𝑀).

The authors also assumed that 𝑃𝐴(𝑈𝑀) and 𝑃0(𝐷𝑀, 𝑈𝑀) follow a common distribution –

an equal mixture of two distributions: one assumes independence among SNPs in 𝑀,

𝑃𝑖𝑛𝑑(𝑋) which is given in Formula *; the other assumes saturated interaction among

SNPs in 𝑀 , 𝑃𝑗𝑜𝑖𝑛(𝑋) which is given in Formula *. 𝑋 here could be 𝑈𝑀 or (𝐷𝑀, 𝑈𝑀).

𝑃𝐴(𝐷𝑀) = 𝑃𝑗𝑜𝑖𝑛(𝐷𝑀) because we want to test a saturated interaction effect of the SNPs in

𝑀. So above all, the 𝐵𝑀 could be written as:

𝐵𝑀 = 𝑙𝑛
𝑃𝑗𝑜𝑖𝑛(𝐷𝑀)(𝑃𝑖𝑛𝑑(𝑈𝑀) + 𝑃𝑗𝑜𝑖𝑛(𝑈𝑀))

𝑃𝑖𝑛𝑑(𝐷𝑀, 𝑈𝑀) + 𝑃𝑗𝑜𝑖𝑛(𝐷𝑀, 𝑈𝑀)

In [72], the authors also introduced a conditional 𝐵 statistics which is used to test

additional association effects conditioned on some known causal SNPs in 𝑀.

2.3 Neural Network Models Applied in GWAS

2.3.1 Existing Applications of Neural Networks in GWAS

Neural networks have been applied to genome-wide association studies in some

papers. Tomita and others [65] have used neural networks to analyze the SNP data in a

Childhood Allergic Asthma study. For each SNP, its three genotypes are coded as (0.1,

0.1), (0.1, 0.9) and (0.9, 0.9), respectively. In this form, the number of inputs in the ANN

is twice as many as the number of SNPs. The SNP can also be coded as 0, 1 and 2.

However, based on our simulation studies, the two different SNP coding show very little

difference on the prediction errors. So in this thesis, we just use the original form of SNP

data. Another feature of this paper is the usage of parameter decreasing method (PDM)

for feather selection, which has been introduced in section 1.3.4. As more input variables

(SNPs) being removed from the model, the remaining SNPs would be the “significant”

factors for the outcome.

34

Later, Mutoh and others [46] also used the similar SNP coding techniques as Tomita

in a study of Helicobacter pylori infection, but they employed a different method to select

significant SNPs. Interestingly, they used a parameter increasing method to add SNPs

into the neural network models, which can be viewed as an inverse process of PDM. Also,

they have tried an exhausted search among all the combinations of three SNPs.

Both the above papers use the single layer neural network models and

backpropagation method for the parameter estimation. Both give prediction accuracy

rates around 70% to 80%, which seems to be very good compared with others. Some

other researches like Okut and others’ [48] apply neural network models in Bayesian

frame in order to achieve better computational properties, but again based on the single

layer neural network.

2.3.2 Our Novel Structure of Neural Network Models

One limitation for the single layer neural networks is that they did not take into

consideration the fact that SNPs with a LD block are highly correlated with each other,

but are rarely correlated with SNPs outside of the block. Ignoring this information may

lead to less efficient detection of causal SNPs. This motivates us to construct a double-

layer neural network, referred as DNN hereafter, to analyze SNP epistasis effects, which

utilizes the information within LD blocks.

One big advantage of DNN is to avoid redundant SNP-SNP interactions within the

LD blocks while still retaining informative SNPs in the model. For example, suppose we

have three SNPs A, B and C; SNPs A and B belong to one gene and SNP C belongs to

another gene that interacts with the first gene; then, due the LD between A and B, we can

predict that the A-C interaction would be very similar to the B-C interaction, and only

one interaction may be significant because of the masking effect between them; however,

ignoring either interaction may introduce bias to the model and subsequently be less

powerful. To circumvent this, we proposed the DNN model, in which the first layer is

used to "summarize" the SNP information in one gene or in one LD block, and the

second layer is used to analyze interactions at gene level.

35

Additionally, in genome-wide association studies, some environmental variables may

also be considered into the models, such as age, ethnicity and lifestyle. These factors may

be added as "neurons" in the second layer.

Figure 9 illustrate the DNN model structure we construct. Suppose there are 𝑃 SNPs,

which serve as inputs of DNN and are divided into 𝑁 groups based on the LD

information among them. Then 𝑁 is the number of "normal" neurons in the first hidden

layer. The first layer also contains 𝑁1 "abnormal" neurons which represent environmental

factors or other covariates. We call them "abnormal" because they are not generated from

the input layer. The second hidden layer contains 𝑀 neurons which are summarized from

the first hidden layer information. In this application, we consider a case-control study,

The input 𝑋 neurons are locally connected to 𝑊 neurons (as in formula (2.3.1)). Input neurons

𝑊* are directly connected to 𝑍 neurons. This structure is designed specifically for GWAS to

consider interaction effects in gene level. The partition of 𝑋 neurons is determined by linkage-

disequilibrium.

Figure 9. Double layer neural network model with local connections from input layer to the

first hidden layer

36

which has a binary outcome, i.e. 0 and 1, corresponding to two outcomes, 𝑌1 and 𝑌2.

The formulas to describe relations between adjacent layers are similar to those in

(1.2.3)* - (1.2.5)* in section 1.3.3.1, and they are expressed as:

𝑊𝑖𝑢 = 𝜎(∑ 𝛼𝑢𝑝

𝑛𝑢

𝑝=𝑠𝑢

∗ 𝑋𝑖𝑝) , for 𝑢 = 1,… ,𝑁 (2.3.1)

𝑍𝑖𝑚 = 𝜎(∑ 𝛽𝑚𝑛

𝑁+𝑁1

𝑛=1

∗ 𝑊𝑛) , for 𝑚 = 1,… ,𝑀 (2.3.2)

𝑦̂𝑖𝑘 = 𝑔𝑘 (∑𝜃𝑘𝑛

𝑁

𝑛=1

∗ 𝑍𝑖𝑛) , for 𝑘 = 1,… , 𝐾 (2.3.3)

Notice that Formula (2.3.1) is different from (1.2.3)*, because neuron 𝑊𝑖𝑢 only gather

information from 𝑋𝑖𝑠𝑢 to 𝑋𝑖𝑛𝑢 as introduced in Section 1.2.5 of local connections. Then

the first derivatives for all parameters could be calculated as:

𝜕𝑅𝑝(Ω)

𝜕𝜃𝑘𝑚
=∑

𝜕𝑅𝑝(Ω)

𝜕𝑦̂𝑖𝑘

𝜕𝑦̂𝑖𝑘
𝜕𝜃𝑘𝑚

𝑖

=∑
𝜕𝑅𝑝(Ω)

𝜕𝑦̂𝑖𝑘
𝑔𝑘
′ (∑ 𝜃𝑘𝑚

𝑀

𝑚=1

∗ 𝑍𝑖𝑚)𝑍𝑖𝑚
𝑖

=∑𝜖𝑖𝑘𝑍𝑖𝑚
𝑖

(2.3.4)

With: 𝜖𝑖𝑘 =
𝜕𝑅𝑝(Ω)

𝜕𝑦̂𝑖𝑘
𝑔𝑘
′ (∑ 𝜃𝑘𝑚

𝑀
𝑚=1 ∗ 𝑍𝑖𝑚) (2.3.5)

𝜕𝑅𝑝(Ω)

𝜕𝛽𝑚𝑛
=∑

𝜕𝑅𝑝(Ω)

𝜕𝑍𝑖𝑚

𝜕𝑍𝑖𝑚
𝜕𝛽𝑚𝑛

𝑖

=∑∑𝜖𝑖𝑘′𝜃𝑘′𝑚𝜎
′ (∑ 𝛽𝑚𝑛

𝑁+𝑁1

𝑛=1

∗ 𝑊𝑖𝑛)𝑊𝑖𝑛

𝑘′𝑖

=∑𝜂𝑖𝑚𝑊𝑖𝑛

𝑖

(2.3.6)

With: 𝜂𝑖𝑚 = ∑ 𝜖𝑖𝑘′𝜃𝑘′𝑚𝜎
′(∑ 𝛽𝑚𝑛

𝑁
𝑛=1 ∗ 𝑊𝑖𝑛)𝑘′ (2.3.7)

𝜕𝑅𝑝(Ω)

𝜕𝛼𝑢𝑝
=∑

𝜕𝑅𝑝(Ω)

𝜕𝑊𝑖𝑢

𝜕𝑊𝑖𝑢

𝜕𝛼𝑛𝑝
𝑖

=∑∑𝜂𝑖𝑚′𝛽𝑚′𝑛𝜎
′ (∑ 𝛼𝑢𝑝

𝑛𝑢

𝑝=𝑠𝑢

∗ 𝑋𝑖𝑝)𝑋𝑖𝑝
𝑚′𝑖

 (2.3.8)

37

Formula (2.3.4) – (2.3.8) are quite similar with (1.3.9) – (1.3.13), only with (2.3.8)

slightly different with (1.3.13) because of local connections. Then the vector of all the

parameters Ω is updated through:

Ω𝑟+1 = Ω𝑟 − 𝛾𝑟 ∙ ∇𝑟 (2.3.9)

𝛾𝑟 is the learning rate, and is usually set to: 𝛾𝑟 = 1/𝑟 . ∇𝑟 is the derivatives of all

parameters (shown in Formula (2.3.4), (2.3.6) and (2.3.8)) at 𝑟th step. More detailed

discussions could be found in Section 1.3.3.1.

2.4 Simulation Studies and Real Data Application

In this section, we performed extensive simulations to examine the statistical

properties of our method, and then applied it to a real dataset. To mimic the real data

setting, our simulation studies are designed based on a real data, called COGEND

(Collaborative Genetic Study of Nicotine Dependence). In this dataset, there are 2022

observations (908 in control group and 1114 in case group). The covariates include 216

candidate SNPs that were identified from previous linkage studies [39], and three

patient-level characteristics: age, gender and color (representing ethnicity). Age is a

continuous variable, with gender and color being binary variables. Each SNP loci is

coded as 3 possible values: 0, 1 and 2. The phenotype of interest is binary, i.e. whether a

patient is addicted to Nicotine. The use of our DNN model will focus on identifying

genetic factors of Nicotine dependence based on this group of candidate SNPs, and

improved understanding of these factors may suggest novel, powerful strategies to reduce

or eliminate nicotine dependence.

We first divided the 216 SNPs into different linkage disequilibrium groups. The

pairwise SNP LD measures – the 𝐷 parameters (as introduced in section 2.1.1) – were

calculated through maximizing the likelihood function of the whole population based on

the probabilities in Table 1. The byproducts of this process will give 𝑝𝑎 and 𝑝𝑏 in Table 1,

which are the MAFs for each SNP locus. The pairwise 𝐿𝐷 values are shown in Figure 10,

in which there are totally 17 LD blocks based on their within-block correlations. Our

DNN model will summarize block level information in the first hidden layer and then test

38

any interactions between block level information could contribute to determine the

outcome.

In the following, we will design corresponding simulation studies to apply our DNN

model on different settings and compare it with the random forest model to benchmark its

performance. After the simulation study, our DNN model with PDM (Section 1.3.4) will

be applied on the whole COGEND data to identify the most possible LD blocks that

contain causal SNPs.

2.4.1 Overall Simulation Procedures

(1) We adopted two LD blocks in Figure 10 in our simulations: block 1 contains SNP

44 to SNP 54 and SNP 63 to SNP 69; block 2 contains SNP 74 to SNP 113. Here we

combine SNP 44~54 and 63~69 into one block because the two sets of SNPs have strong

LD. In this simulation study, no patient characteristics are included. So there would be

totally 58 SNPs in this data.

For each point in the figure, we draw two lines with slopes equal to 1 and -1 from that point.

Suppose the lines intersect with x-axis on coordinates A and B, then the point represents the

𝐷 parameter between SNPs A and B. Black point means a strong correlation and white point

means a weak correlation or even independence. Based on this figure, there are 17 groups of

SNPs.

Figure 10. LD pattern among 216 SNPs in COGEND study

39

(2) In each block, a few SNPs are set to be the causal SNPs. Causal SNPs from the

same block interact with each other to determine a block level information and the two

block level information will again interact to determine the outcome – Nicotine

dependence or not. The two interaction patterns can be altered to generate several

different patterns, and will be illustrated with more details later.

(3) After the outcome variable generated, causal SNPs are removed from the

simulated dataset to mimic the case that causal SNPs may not be sampled in real data.

We expect the two models have the ability to detect causal SNPs’ existence even the real

causal SNPs are not genotyped and presented in the data set (as Figure 7b).

(4) Data sets with different sizes (100, 200, 500 and 1000) are sampled from

COGEND data using the schema in previous step. During the sampling, we try to make

the outcome to be balanced, i.e. half of patients are Nicotine dependent and half are not.

(5) For each dataset generated, a permutation test is performed to compare whether

the fitted DNN model has significantly lower value for error function. If so, we think

there are causal SNPs existing in the two blocks.

(6) Repeat the above 5 steps for 200 times and count the number of times we

correctly detect the existence of causal SNPs 𝑁, then calculate the power as: 𝑁/200.

(7) Random Forest model is also applied on the same data set and calculate the power

of detecting the causal SNPs.

2.4.2 Simulation Settings

Two sets of studies with different interactive patterns are conducted. We name them

as “2+1” and “2+2”. In the “2+1” pattern, there are two causal SNPs which have

interactive effect on the outcome from the first LD block and one causal SNPs which has

marginal effect on the outcome from the second LD block. In the “2+2” pattern, there are

two causal SNPs in the first LD block and also has two causal SNPs in the second LD

block, with the same interaction pattern as that in “2+1”. Detailed settings are given in

the following two sections.

40

2.4.2.1 Pattern “2+1”

Causal SNPs from block 1 are set to be SNP 50 and SNP 65. Causal SNP from block

2 is SNP X, and we have tried different positions for SNP X: 99, 97, 95, 113, 94, 90,

74~79, 81~84, 86 or 91. The block level information are defined as follows:

𝑏𝑙𝑜𝑐𝑘 1 = {
1, 𝑖𝑓 𝑆𝑁𝑃 50 = 1 𝑜𝑟 2 𝑎𝑛𝑑 𝑆𝑁𝑃 65 = 0 𝑜𝑟 1
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (2.4.1)

𝑏𝑙𝑜𝑐𝑘 2 = {
1, 𝑖𝑓 𝑆𝑁𝑃 𝑋 = 2
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (2.4.2)

Then the phenotype is determined as:

𝑃(𝑝ℎ𝑒𝑛𝑜𝑡𝑦𝑝𝑒 = 1) = {
𝛽, 𝑖𝑓 𝑏𝑙𝑜𝑐𝑘 1 = 1 𝑎𝑛𝑑 𝑏𝑙𝑜𝑐𝑘 2 = 1
𝜖, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Phenotype = 1 means the patient is Nicotine dependent. So in this simulation study, when

block 1 = 1 and block 2 = 1 are true, they have synergistic effect on causing Nicotine

dependence. Parameter 𝛽 is called the penetrance and represents the proportion of

genotype causes for Nicotine dependence. Different values for 𝛽: 0.3, 0.4, 0.5, 0.6, 0.7

will be tested in the simulation study. Parameter 𝜖 is set to be 0.01 as a random cause for

Nicotine dependence, indicating that even a patient does not have the genetic cause, he or

she still has a small probability to be Nicotine dependent.

2.4.2.2 Pattern “2+2”

The only difference of “2+2” pattern from previous pattern is that: block 2 has two

causal SNPs – SNP 80 and SNP X. We also have tried different positions for SNP X: 99,

97, 95, 113, 94, 90, 74~79, 81~84, 86 and 91. The block level information are defined as:

𝑏𝑙𝑜𝑐𝑘 1 = {
1, 𝑖𝑓 𝑆𝑁𝑃 50 = 1 𝑜𝑟 2 𝑎𝑛𝑑 𝑆𝑁𝑃 65 = 0 𝑜𝑟 1
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (2.4.3)

𝑏𝑙𝑜𝑐𝑘 2 = {
1, 𝑖𝑓 𝑆𝑁𝑃 80 = 0 𝑜𝑟 1 𝑎𝑛𝑑 𝑆𝑁𝑃 𝑋 = 0 𝑜𝑟 1
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (2.4.4)

The other parts are exactly the same with “2+1” pattern:

𝑃(𝑝ℎ𝑒𝑛𝑜𝑡𝑦𝑝𝑒 = 1) = {
𝛽, 𝑖𝑓 𝑏𝑙𝑜𝑐𝑘 1 = 1 𝑎𝑛𝑑 𝑏𝑙𝑜𝑐𝑘 2 = 1
𝜖, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

41

With 𝛽 = 0.3, 0.4, 0.5, 0.6 𝑜𝑟 0.7 and 𝜖 = 0.01.

2.4.3 Model Structure for Simulation Studies

The model structure used in our simulation studies is a little different from Figure 9,

because here in the simulation studies, there are no environmental factors. We would like

to formulate our double layer neural network models in more details here, with model

structure shown in Figure 11.

From Section 2.4.1, block 1 contains 18 SNPs and block 2 contains 40. And after

determining the causal SNPs and phenotypes, we eliminate the causal SNPs from our

generated data set, which means finally block 1 contains 16 SNPs, block 2 contains 39

SNPs for “2+1” pattern and 38 SNPs for “2+2” pattern. The two patterns make little

There are two blocks – SNP groups in the input layer so that the structure has two

neurons in the first hidden layer. Then three neurons in the second layer. It has two

outcome neurons because the outcome variable is binary.

Figure 11. Neural network structure for simulation studies.

42

difference in model structure, so without loss of generality, we use “2+1” pattern as our

example. For simplicity, 𝑋1 to 𝑋16 represent SNPs from block 1 and 𝑋17 to 𝑋55 represent

SNPs from block 2. Each of the 𝑋 has discrete value: 0, 1 or 2 for genotype aa, Aa and

AA respectively.

𝑋 variables are the input neurons and are linked to the first hidden layer and then to

the second hidden layer through the following formulas:

𝑊1 = 𝜎(∑𝛼𝑝 ∗ 𝑋𝑝

16

𝑝=1

) 𝑎𝑛𝑑 𝑊2 = 𝜎(∑ 𝛼𝑝 ∗ 𝑋𝑝

55

𝑝=17

)

𝑍𝑚 = 𝜎(∑𝛽𝑚𝑛 ∗ 𝑊𝑛

2

𝑛=1

) 𝑤𝑖𝑡ℎ 𝑚 = 1, 2, 3

Then the Z neuros are connected with the two outcome neurons through:

𝑇𝑘 = ∑ 𝜃𝑘𝑚 ∗ 𝑍𝑚

3

𝑚=1

 𝑤𝑖𝑡ℎ 𝑘 = 1, 2

𝑌1 =
𝑒𝑇1

𝑒𝑇1 + 𝑒𝑇2
 𝑎𝑛𝑑 𝑌2 =

𝑒𝑇2

𝑒𝑇1 + 𝑒𝑇2

Here 𝑌1 and 𝑌2 represent the probability of phenotype = 0 (not being Nicotine dependent)

and phenotype = 1 (being Nicotine dependent). If 𝑌2 > 0.5 , we predict that the

corresponding patient is more likely to be Nicotine dependent.

2.4.4 Simulation Studies Results

For each choice of SNP X, we have one figure showing the powers calculated for

DNN and Random Forest models using different sample sizes (1000, 500, 200 and 100)

and at different penetrance. Figure 12 and Figure 13 shows the simulation results for

pattern “2+1” and pattern “2+2” correspondingly.

Each sub-figure has y label named with a SNP number which represent the SNP X in

our simulation settings. Different colors in one sub-figure are for different sample sizes:

red for 1000, green for 500, blue for 200 and black for 100. Solid lines are for DNN

43

models and dashed lines are for random forest models. Each point on the line represents

the power for specific model detecting the existence of causal SNPs at each penetrance

value.

All settings show that larger penetrance and larger sample sizes lead to better powers,

as expected. For larger sample sizes (1000 or 500), DNN models always have better

performance than Random Forests (implemented using Random Jungle software [60]

[41]) in terms of power. For small sample sizes (200 or 100), the two models may have

better performance in different choices for SNP X.

We also find that for pattern “2+1”, both models almost have little powers in

detecting the significance for X = 90 and 113. For the pattern “2+2”, both models have

no powers for X = 74, 77, 78, 94, 97, 82 and 86. We suspect this phenomenon is related

to the characteristics of the specific SNPs – whether the causal SNPs have high

correlations with other SNPs within the second LD block and even the correlations with

SNPs from the first LD block. Also we notice that the “problematic” SNPs for pattern

“2+1” and “2+2” are very different and pattern “2+1” has only two of such kind of SNPs

which might because the marginal effect is easier to be detected than the interactive effect.

The above suspicions need more simulation studies to validate.

44

Figure 12. Simulation study results for pattern “2+1”.

Each line represents power curve along with penetrance (x-axis) for one specific method (solid

line for DNN and dashed line for Random Forests) at a specific sample size (four colors).

45

Figure 13. Simulation study results for pattern “2+2”.

Each line represents power curve along with penetrance (x-axis) for one specific method (solid

line for DNN and dashed line for Random Forests) at a specific sample size (four colors).

46

2.4.5 Real Data Analysis

The goal of this analysis is to identify which LD blocks may contribute significantly

to the phenotype – the blocks have the largest impact on whether the patient will be

Nicotine dependent or not.

2.4.5.1 Model Structure and Parameter Decreasing Method

Out DNN structure for this real data analysis is shown in Figure 14, similar to that in

Figure 9, and the parameters are set as: 𝑃 = 216 because COGEND data has totally 216

SNP loci to analyze; 𝑁 = 17 because our preliminary analysis results (in Figure 10)

show that the 216 SNPs could be divided into 17 LD blocks; 𝑁1 = 3 because COGEND

data has 3 environmental factors: age, gender and ethnicity. So we have 20 (= 𝑁 + 𝑁1)

neurons in the first hidden layer; 𝑀 = 6 (6 neurons in the second hidden layer) based on

our trials and the number of neurons in the first hidden layer; 𝐾 = 2 because the

216 input variables (SNPs) are locally connected to 17 𝑊 neurons based on results shown in

Figure 10. 𝑊 neurons with 3 𝑊∗ neurons (3 environmental factors included in COGEND

data) are fully connected to 𝑍 neurons.

Figure 14. DNN structure for COGEND data analysis

47

phenotype is a binary variable (Nicotine dependent or not); the penalization parameter 𝜆

is pre-specified to be 0.5 based on our trials.

The relationships between each two layers are shown in Formula (2.3.1) – (2.3.3) and

parameter estimation process (using back-propagation algorithm) is shown in Formula

(2.3.4) – (2.3.9). To reduce the local minimal problem of back-propagation algorithm, we

try 50 randomly selected initial values for parameter set Ω . Each initial value will

converge to a local minimal (might be the global minimal) of the error function 𝑅𝑝(Ω)

and the estimation corresponding to the smallest 𝑅𝑝(Ω) value will be chosen as our final

parameter estimation.

PDM (as introduced in Section 1.3.4) is applied on the above DNN model to select

the most important LD blocks (the 𝑊 neuron in Figure 14): (1) Initially, we have the full

model as shown in Figure 14 and the corresponding parameter estimations for 𝑅(Ω)

(Note that 𝑅(Ω) value is different from 𝑅𝑝(Ω) and shows how well our model is fitted to

the data, refer to Formula (1.3.2) and (1.3.3)). Then we try 17 reduced DNN models –

each with one 𝑊 neuron and its related 𝑋 neurons being excluded. The reduced DNN

models would usually have a higher 𝑅(Ω) value and the one with least 𝑅(Ω) value shows

that the excluded 𝑊 neuron and related 𝑋 neurons have the least impact on the outcome

variable. So the 𝑊 neuron (also the corresponding 𝑋 neurons) with least 𝑅(Ω) value is

removed to obtain a model, which will serve as full model in the next step. (2) In the next

step, we try another 16 reduced DNN models to filter out the 𝑊 neuron that has the least

impact on the outcome. Eliminating that 𝑊 neuron (also the corresponding 𝑋 neurons)

leads to our model after the second elimination. (3) Repeat the process in (2) until there

are two 𝑊 neurons left in the model, which represent the two LD blocks having the most

impact on the outcome.

2.4.5.2 Real Data Analysis Results

Figure 15 shows the analysis results. Each point on the curve represents one fitted

model with x-axis value showing the number of eliminated LD blocks. And the value

above each point means which LD block is excluded in this step. For example, the point

at x-axis value 0 means the full model which has all 17 LD blocks information. The point

at x-axis value 1 means the reduced model which has 16 LD blocks as the 5th LD block is

48

removed due to having the least 𝑅(Ω) value. The point at x-axis value 2 means the

reduced model which has 15 LD blocks as the 5th and 11th LD blocks are removed. As

fewer LD blocks are included in the model, the 𝑅(Ω) value almost goes up as we

expected. Several unexpected drop down may because we do not reach the global

minimal point for the previous model or both models. Increasing the number of trials for

initial values may help reduce this phenomenon.

The remaining LD blocks are the 4th and 13th LD blocks which are believed to have

the most impact on Nicotine dependence. The 4th LD block consists of SNPs from gene

CHRNG on chromosome 2 and the 13th LD block consists of SNPs from gene IREB2,

AGPHD1, PSMA4, CHRNA5, CHRNA3 and CHRNB4 on chromosome 15. It’s also

worth to notice that the 6th LD block has the third most impact on Nicotine dependence

based on our results in Figure 15 (the point at x-axis value equal to 15). This LD block

Y axis is 𝑅(Ω) values for fitted DNN model. Each point on the curve represents one DNN

models with a number above the point shown the eliminated LD block comparing to the

previous point’s model. After 15 eliminations, LD block 4 and 13 remain in the final model.

Figure 15. Eliminated LD blocks with corresponding error function values.

49

consists of only one SNP loci (rs2276560) on chromosome 2, and this SNP belongs to no

genes. Comparing that the 4th LD block has 6 SNPs and the 13th LD block has 72 SNPs,

we think at single SNP level, SNP rs2276560 might have the most impact on Nicotine

dependence.

2.5 Discussions and Future Work

Our studies have demonstrated that our DNN model can have better power in

detecting causal SNPs than the Random Forest. For future works, more thorough

simulation studies should be carried out to further examine the properties of the DNN:

 More methods need to be included for comparison, such as MDR, BEAM and

penalized logistic regression [50]. PLINK is another popularly accepted software

in GWAS, providing the analysis on GWAS data through linear or logistic

regression and also other traditional statistics and tests applicable in GWAS [53].

 In the simulation studies, we observe that both DNN and Random Forests have

very little powers when causal SNPs are in some specific positions (summarized

in Section 2.4.3.3). We suspect that it is because different causal SNPs may have

different correlations with other SNPs nearby. More simulation studies need to be

designed to address this question.

 Our simulation studies only focus on two LD blocks data set, which is much

smaller than common data sets in GWAS. Like the COGEND data set has already

contain 17 blocks. So designing a more general framework to detect the existence

or even the positions of causal SNPs by utilizing our designed DNN model

structures would be vital in the future. Among the two tasks, determining the

positions of causal SNPs is more difficult and also more meaningful to GWAS.

Since our DNN model summarizes LD block information in the first hidden layer

(as in Figure 9), we may apply the parameter decreasing method (Section 1.3.4) to

select among all neurons in the first hidden layer (LD blocks). The last neurons

remaining in the model would have highest possibilities to contain the causal

SNPs.

50

 For the real data analysis, PDM is currently considered as the best practice for

factor selection in our DNN model frame. However, the procedure requires the

fitted DNN model to be stable, that is, repeating the parameter estimation process

will give similar model estimations and stable error function values. This may be

an issue for the DNN model, as the global minimal of the error function is usually

not achievable, which may be the reason that in Figure 15, there are some drop-

downs of 𝑅(Ω) values when one LD block is eliminated. So a more stable

procedure, such as averaging several DNN fittings, needs to be developed in the

future.

 Another aspect about real data analysis is the computational time for testing

among the whole genome. For our DNN model to test on COGEND data (216

SNPs from 2022 individuals with only 1 trial for initial values in parameter

estimation) using parameter decreasing method, it takes less than one hour. MDR

suffers a lot for testing higher interactive effects and BEAM is reported to analyze

among 96,932 SNPs from 146 individuals for about 5 hours [72]. So to further

evaluate the applicability of our proposed method, we also need to compare the

computational burdens among widely applied methods.

51

CHAPTER 3 HIGH FREQUENCY TRADING USING NEURAL NETWORK MODELS

3.1 Review of Neural Network Models in Finance

The predicting power of neural networks has been noticed by financial industry for

quite a long time, and has been used successfully for price forecasting problems. [17]

provided a good review for applications of NN models in stock markets for researches

published during 2005 to 2010. Apart from the researches summarized in [17], some new

frameworks of NN have been proposed recently, such as fuzzy NN [14], partially

connected NN [4], hybrid of non-linear ICA and NN [11], Legendre NN with random

time strength function [40], hybrid system built upon recurrent NN structure [55] and

constructive NN models with specific training algorithm [28]. In these studies, the neural

network based approaches have been compared with many other traditional baseline

methods including multiple regression, ARIMA model, and the results supported the

better performance of neural network.

Some researches have also compared neural network models with other machine

learning models in stock price prediction: [30] compared single-layer NN with SVM in

stock prediction, and concluded that NN was better than SVM. [51] compared four

machine learning models applied in stock prediction: Random forests, SVM, NN (single

layer) and naive-Bayes. Random forests was claimed to have the best performance and

naive-Bayes was the worst.

By reviewing the listed studies, we notice that recent applications of neural networks

in finance mainly focused on further studies of newly designed architectures and hybrid

systems, some of which were quite successful. Along this line of research, in this thesis,

we will also propose a new neural network structure for stock market prediction. For this

purpose, proper input variables are very important. Based on the literatures, there are

mainly four types of variables used in the prediction models, which are discussed as

follows:

1. Historical price and volume. Historical prices and volumes are the raw market data.

The historical prices recorded a stock’s price movement in the past, and volume

52

shows how active a stock was, reflecting the force of demand/supply behind the price

movement. The rationales to include the historical data as inputs are based on the

assumptions that (1) in financial markets, history may repeat itself, and (2)

observations in a time series are not independent so past data can provide information

to the future. It is usually difficult to determine how many past time points should be

included, that is, short history may lower the prediction accuracy due to the

information loss, while long series would include too much noises. Usually 10-20

historical time points should be enough.

2. Technical indicators: Technical indicators are mathematical transformations of the

raw price and volume data, often including up and down volume, advance/decline

data and other inputs. These indicators help preprocess the raw data into clearer

formats. For example, it would be easier to assess whether a stock is trending using

certain technical indicators such as moving averages, relative strength index, and

MACD (moving average convergence/divergence). Technical indicators should also

be included, as a complementary to the raw data.

3. Economic indicators: Economic indicators measure the economic activity, and are the

summary of current economic performance. Macroeconomic environment likely

impacts most of the stocks in the same way, that is, the majority of stocks advance in

bull markets and decline in bear market. Therefore, it is usually useful to include

some of the economic indicators to gauge the overall market status.

4. Periodical signals: It has been long observed that markets experience cycles and there

are periodical signals that repeatedly occur as patterns in price movement. For

example, The January effect hypothesizes that there is a seasonal anomaly in the

financial market where stocks’ prices increase in the month of January more than in

other months. This type of calendar effect may create an opportunity for investors and

may be included as model inputs.

Some of these inputs will be included in our model later.

53

3.2 Forecasting in Financial Data

3.2.1 Challenges in Low Frequency Data

Forecasting is such a major problem in financial markets, it has been intensively

studies in the past decades with low-frequency data (daily, monthly, and yearly) [35] [31]

[5], and the major group of methods is based on technical analysis that formulates

predictions using the time series of prices [6] [49] [27] [66] [19].

There are also some challenges exist in traditional forecasting models on financial

data. For instance, for distributions of returns and volatilities, while they significantly

affect the performance of econometric models, they are typically very difficult to be

determined and inconsistent forecasting may arise from different assumptions. Gaussian

models was popular for its simplification, but it is rarely satisfied and has poor fitting of

real-world data [1]. Other distributions discussed in recent work include stable Levy

distribution [67] [7], t-distribution [68], and power law distributions [63] [64]. No matter

what distributions were used, these assumptions are usually compromises to the real-

world data and thus biased. Another important issue is how to measure correlations in

financial markets, as different methods affect the performances of forecasting models

quite significantly. Pearson correlation has been widely used for its low computational

cost; however, it correctly measures the association between variables only when the

samples are normally distributed. Although other correlation measures, such as Kendall’s

𝝉 [47] [73] and Spearman correlation [44], have been used in non-Gaussian cases, their

computational costs are usually higher and it is unclear that they are not optimal either.

3.2.2 Challenges in High Frequency Data

Recently, high-frequency data and the related high frequency trading [15] strategies

have opened new ways for research and practice in finance, especially for problems in

stock market forecasting. While some of the methods in low frequency data are still

applicable to the high-frequency setting, most are usually limited in handling the more

complex data structure associated with them. And among the limited published

researches, most of them have used minute level data to test model performances [2].

54

(a) Daily Data (b) 5-min Data

Figure 16. Correlations in different time scale.

Picture a and b show the correlations between Apple and

IBM in two different time scales – daily level and 5 minute

level. The 5 minute level data shows a much stronger

correlation.

Apart from the challenges mentioned in Section 3.2.1, high frequency data has other

important properties which may impact model performances dramatically.

Comparing to low-frequency data, correlations between stocks in high-frequency data

are usually non-ignorable, and therefore the dependence structure among stocks is more

important in explaining the market movement in high-frequency data. Figure 16 shows a

comparison of correlation between the returns of IBM Inc. and Apple Inc. in daily data

and 5-min data. Figure 16(a) plots the overall relationship in daily returns from January 1,

2013 to June 1, 2013, and Figure 16(b) shows the relationship of them in 5-min data

(June 3, 2013). Obviously, the dependence between the two stocks is much more

significant in the 5-minute data than that in the daily data. Although identifying dynamic

dependence in high-frequency data between two stocks is not difficult, modeling the

dependence structure

among the whole stock

market and using them for

market forecasting is

complicated. However, it

is an important problem to

solve, as from the

perspectives of market

policymakers, regulators

and private investors, there

is a great interest in being

able to forecast and

simulate the market

movements.

3.3 Forecasting High Frequency Data Using Neural Networks

In this study, we propose a new framework for market forecasting with high-

dimensional high-frequency stock data , and focus on designing a novel double layer NN

(DNN) structure that does not require specific distributions assumptions and also avoids

55

the explicit calculation of correlations. The main ideas can be briefly summarized as

follows:

 For a target stock, we first examine its dependence with the rest of stocks in the

market as well as their volatility information. We try to capture these important

information among the high-dimension data as the initial steps.

 We further incorporate these information with different types of technical

indicators (TIs). The TIs at the levels of individual stocks and market are included

into different layers of the neural network.

 For the TIs, we focus on the moving average (MA), which indicates the trend and

momentum of a stock, and the advance/decline (AD) lines that show the strength

of a current trend and its likelihood of reversing.

In the following, our proposed model will be described in details.

3.3.1 Overview of the Framework

Our overall goal is to forecast the price movement of individual stocks within one

exchange, i.e. S&P 500, based solely on their historical data. Let 𝑆𝑡,𝑗 denote the close

price of stock 𝑗 (𝑖 = 1,… , 𝐽) for the 5-minute interval at time 𝑡 (𝑡 = 1,… , 𝑇), and let

𝑋𝑡,𝑗 =
𝑆𝑡+1,𝑗−𝑆𝑡,𝑗

𝑆𝑡,𝑗
 be the relative change from time 𝑡 to 𝑡 + 1. The goal here is to predict

𝑋𝑡+1,𝑗 – the close price for next 5-minute interval based on 𝑆𝑖,𝑗 (𝑖 = 1, . . , 𝑡; 𝑗 = 1,… , 𝐽).

To make the one-step prediction on the return 𝑋𝑡+1,𝑗 for a specific stock 𝑗 , we

construct a double layer neural network (DNN) model structure as shown in Figure 17.

Our design is quite different from the most commonly used NN structures in financial

forecasting, as it allows us the flexibility of incorporating input variables with different

features into the model in a hierarchical way. As shown in later sections, this design can

not only improve the model performance, but also dramatically reduce the number of

parameters, leading to faster implementation.

The bottom layer consists of two types of inputs: The 𝑋𝑠 = {𝑋𝑡,𝑗′ : 𝑗
′ = 1,… , 𝑗 − 1, 𝑗 +

1, … ,500} and the 𝑄𝑠 = {𝑄𝑘,𝑗: 𝑘 = 𝑡 − 9,… , 𝑡}, where index 𝑗 is for the stock of interest.

56

The 𝑋s include the price information for the rest 499 stocks in S&P 500, excluding stock

𝑗, within the current 5-minute interval at time 𝑡, and the 𝑄𝑠 include information of the

intra-interval proportions for stock 𝑗 in 10 most recent 5-minute intervals. Local

connections from the input layer to the first hidden layer (𝑊 layer, Figure 17) are applied,

i.e., one hidden neuron gather information only from a group of consequent input neurons.

The 𝑋s are categorized into ten groups according to the predefined sectors in S&P 500,

and 𝑄 part is also categorized into ten groups, one for each time interval. In total, there

are 𝑁 = 20 hidden neurons (the 𝑊𝑠) in the first-hidden layer. The relationship between

the 𝑊𝑠 and the 𝑋𝑠 and 𝑄𝑠 are expressed as follows:

𝑊𝑛 = 𝜎(∑ 𝛼𝑛𝑝

𝑒𝑛

𝑝=𝑠𝑛

∗ 𝑋𝑝) , 𝑛 = 1,… , 10 (3.3.1)

𝑊𝑛 = 𝜎(∑ 𝛼𝑛𝑝

𝑒𝑛

𝑝=𝑠𝑛

∗ 𝑄𝑝) , 𝑛 = 11,… ,𝑁 (3.3.2)

where 𝜎(𝑥) =
1−𝑒−𝑥

1+𝑒−𝑥
 is the activation function, 𝑠𝑛 and 𝑒𝑛 are the starting and ending

indexes for 𝑛𝑡ℎgroup of input variables.

In addition to the 20 𝑊𝑠, another 15 inputs neurons, corresponding to different

exponential moving averages for stock 𝑗, are added into the first hidden layer to connect

with five hidden neurons (the 𝑍𝑠) in the second hidden layer. The relationship between

the 𝑍𝑠 and the 𝑊𝑠 and 𝐸𝑀𝐴𝑠 can be expressed as follows:

𝑍𝑚 = 𝜎 (∑𝛽𝑚𝑛

20

𝑛=1

∗ 𝑊𝑛 + ∑ 𝛽𝑚𝑛′

15

𝑛′=1

∗ 𝐸𝑀𝐴𝑛′) (3.3.3)

Finally, three more input neurons, corresponding to the advanced-decline information

in S&P 500 (see the next section for details), are added into the second hidden layer with

the 𝑍𝑠, which are jointly connected to the output 𝑌. The relationship between the the 𝑌

and the 𝑍𝑠 and 𝐴𝐷𝑠 can be expressed as follows:

57

𝑔(𝑌) = ∑ 𝜃𝑘𝑚

5

𝑚=1

∗ 𝑍𝑚 + ∑ 𝜃𝑘𝑚′

3

𝑚′=1

∗ 𝐴𝐷𝑚′ (3.3.4)

where 𝑔(∙)is the link function. Here, since 𝑌 = 𝑋𝑡+1,𝑗 is continuous, 𝑔 can simply take an

identity function, i.e. 𝑔(𝑥) = 𝑥. However, this model structure can be readily extended to

binary or multi-categorical outputs, where 𝑔 can take a soft-max function, i.e. 𝑔(𝑥) =

𝑒𝑥

1+𝑒𝑥
.

Inputs in the bottome layers are summarized into hidden variables 𝑊s, which then

subsequently interacts with the input EMAs and form the second-layer hidden

variables 𝑍 s. The 𝑍 variables and market indicators serve as the final input for

forecasting.

Figure 17. The Double Layer Neural Network Framework.

58

3.3.2 Generating Input Variables

The input variables consist of several technical indicators for a specific stock of

interest and also a few market indicators that gauge the overall upward/downward market

trend.

3.3.2.1 Intra-interval Proportions

For a particular 5-minute interval at time 𝑡, the relationship between its open, high,

low and close prices may provide meaningful information regarding to the price

movement, particularly for short-term momentum movements. For example, a close

located nearby the low or nearby the high may suggest different market sentiment that is

useful in the prediction. Three intra-interval proportions, 𝑄𝑡,𝑗 = (
𝑎𝑡,𝑗

𝑑𝑡,𝑗
,
𝑏𝑡,𝑗

𝑑𝑡,𝑗
,
𝑐𝑡,𝑗

𝑑𝑡,𝑗
), are used

to summarize the information for a time interval 𝑡,where 𝑎𝑡,𝑗 = 𝐻𝑖𝑔ℎ − 𝑂𝑝𝑒𝑛; 𝑏𝑡,𝑗 =

𝑂𝑝𝑒𝑛 − 𝐶𝑙𝑜𝑠𝑒; 𝑐𝑡,𝑗 = 𝐶𝑙𝑜𝑠𝑒 − 𝐿𝑜𝑤 and 𝑑𝑡,𝑗 = 𝐻𝑖𝑔ℎ − 𝐿𝑜𝑤.

3.3.2.2 Exponential Moving Average (EMA)

Although the original price series (𝑆𝑡,𝑗) and its corresponding EMAs carry essentially

the same information, we favor EMAs as input variables as they are smoother and could

generate more stable performance in the perdition. The EMAs are calculated with the

following formula and 𝑚 controls the decaying rate:

𝐸𝑀𝐴𝑡(𝑚, 𝑆𝑡,𝑗) = 𝛼𝑆𝑡,𝑗 + (1 − 𝛼)𝐸𝑀𝐴𝑡−1(𝑚, 𝑆𝑡,𝑗) (3.3.5)

where 𝑡 ≥ 𝑚 and 𝛼 =
2

𝑚+1
. We use 𝑚 = 1 − 10, 20, 30, 40, 50, 100 as inputs. Notice

that 𝑚 = 1 leads to 𝛼 = 1 which means 𝐸𝑀𝐴𝑡(1, 𝑆𝑡,𝑗) = 𝑆𝑡,𝑗.

3.3.2.3 Advance/Decline (AD), Advance/Decline volume (ADv) and Advance/Decline

Ratio (ADR) indicators

These indicators are used to measure the market breadth. The AD indicator counts the

net number of advancing stocks within the 5-minute interval at time 𝑡 , which is the

number of advancing stocks less the number of declining stocks. ADv is the net volume

of advancing stocks within a time interval 𝑡, which is the volume of advancing stocks less

the volume of declining stocks. The ADR is calculated by dividing the volume of

advancing stocks by the volume of declining stocks.

59

3.3.3 Sector Analysis

Since the price movements of different stocks are correlated, we try to incorporate

these correlations into our DNN model structure to borrow information from other stocks

in predicting the stock of interest. The pair-wise correlation among all S&P 500 stocks

has been estimated and plotted in the Figure 18, based on returns in the first 2000 training

intervals in the tested periods, which can be approximately viewed as independent

samples. Our analyses on the ten S&P 500 sectors, including Consumer Discretionary,

Consumer Staples, Energy, Financials, Health Care, Industrials, Materials, Information

Technology, Telecommunication Services and Utilities, indicates that stocks within one

sector tend to move in the same direction, and the correlations are largely within sectors.

For example, stocks in Energy or Utilities have very litter correlations with stocks

outsides these sectors. To reduce the number of parameters in the model, which

Figure 18. Correlation analysis for stocks in S&P 500 sectors

The pairwise correlations among 500 stocks, which are grouped according to

their sectors, are calculated. The redness indicates the correlation strength.

60

subsequently alleviate computing burdens, we decide to summarize the section

information first (the bottom input layer in Figure 17) and then use them to interact with

EMAs of a specific stock for forecasting.

3.3.4 Target Function and Regularization

The complete parameter set, Ω, consists of all the links in the DNN model structure.

For example, Ω = {𝛼𝑛𝑝, 𝛽𝑚𝑛 , 𝛽𝑚𝑛′ , 𝜃𝑘𝑚 and 𝜃𝑘𝑚′: 𝑛 = 1,… ,𝑁; 𝑛′ = 1,… ,10; 𝑝 =

1, … , 𝑃; 𝑘 = 1,… , 𝐾;𝑚 = 1,… ,𝑀; 𝑚′ = 1,… ,3} .

For the regression problem, the target function can be simply set to be the sum-of-

squared errors:

𝑅(Ω) =∑(𝑦𝑖 − 𝑦̂𝑖)
2

𝐼

𝑖=1

 (3.3.6)

𝑦𝑖 is the actual return for 𝑖th training data point and 𝑦̂𝑖is the predicted return based on

neural network model.

Since the number of parameters in Ω is typically large, it is very easy to over-fit the

network model and in those situations, a global minimizer of 𝑅(Ω) is not desired. Usually,

early stopping rules may be placed to obtain local minimizer, which means the model is

only trained for some cycles and stopped well before it approaches the global minimum.

Alternatively, regularization may be added through some penalty terms, which is how we

implement the algorithm here.

A 𝐿2-penalty can be used in the network models, and correspondingly the target

function becomes

𝑅𝑝(Ω) = 𝑅(Ω) + 𝜆𝐽(Ω) = 𝑅(Ω) + 𝜆‖Ω‖2 (3.3.7)

where 𝑅(Ω) is the original error function, 𝐽(Ω) is the penalty term, with 𝜆 ≥ 0 being a

tuning parameter (as introduced in Section 1.3.2). Larger values of 𝜆 will tend to shrink

the weights toward zero. To choose an appropriate value for the hyper-parameter 𝜆 ,

61

cross-validation (CV) should be applied. However, in practice we found a pre-specified

penalization coefficient 𝜆 of 0.5 works well. Therefore, to save the computing time on

CV, we prefix 𝜆 to be 0.5 in our implementation.

3.3.5 Learning Algorithm

Minimizing the penalized target function in the above is a non-linear, non-convex

problem, and numerical algorithms need to be applied. The gradient descent algorithm is

applied here (as introduced in Section 1.3.3.1). Let 𝜂 ∈ Ω represent a parameter in neural

network models. The target function is minimized in an iterative process:

𝜂𝑟+1 = 𝜂𝑟 − 𝛾𝑟 ∗
𝜕𝑅𝑝

𝜕𝜂
|
η=𝜂𝑟

 (3.3.8)

where 𝛾𝑟 is the learning rate at step 𝑟 which is chosen to be: 𝛾𝑟 = 1/𝑟. The process stops

when |
𝜂𝑟+1−𝜂𝑟

𝜂𝑟
| < 10−6.

The implementation of the algorithm is realized using the C language, which was

compiled into a dynamic link file and loaded into R version 3.1.2 to carry out the

subsequent analyses.

3.3.6 The Ensemble NN and Back-testing

In practice, we found that predications based on one single NN had some stability

issues, that is, for the same period of data, if we ran NN multiple times, the prediction

results may vary dramatically. The reason may lie in two-fold: 1) given the high

dimensionality of the parameter space, the random start point of the algorithm may yield

a big difference; 2) since the prediction pattern in financial market is well-known to be

low, different local minima from the target functions may perform quite differently.

Therefore, to increase the stability of our NN model, for each training data set, 1000 NN

models will be trained and the top 50% performers will be selected for prediction. This

resembles the idea of ensembles of methods, which led to the following dynamic back

testing process.

62

At time 𝑡, the 5-minute intervals at time point from 𝑡 − 2100 to 𝑡 − 101 form the

training data set. 1000 neural network models are built upon randomly selected 1000 time

points from the training data set and validated on the validation data set consisting of 5-

minute intervals at time points from 𝑡 − 100 to 𝑡 − 1. Each NN model has a profit curve

over the 100 time points and has a ranking at each point showing how many models

(curves) are better than this particular model at each point. The summation of these

rankings for all 100 time points shows how well this particular model can profit on the

validation data set. Fifty percent of the top models are chosen as a “committee” and this

“committee” is applied to predict one step ahead returns along the next 100 5-minute

intervals at time points (𝑡 + 1 to 𝑡 + 100), which means the “committee” is updated

every 100 time points. Figure 19 illustrates this dynamic training process.

Because of this “moving” design, our model needs to be updated for each new time

point, which leads to very high computation burden. To make the model computationally

feasible, we update the “committee” every 100 time points. This is not unreasonable as

the fitted model is generated based on the committee and would only be affected when

reasonable training data have been replaced.

Figure 19. Dynamic back-testing process

The most recent intervals are divided into training (Blue) and validation

(Yellow) periods. The NN models are trained with the training data and then

their performances are evaluated with the validation data. The top NN models

are then combined to predict the movement in the test period (Red).

63

3.4 Benchmark Methods and Evaluation Metrics

3.4.1 Benchmark Methods

3.4.1.1 ARMA-GARCH

The first baseline method we use to compare with our framework is ARMA(1,1)-

GARCH(1,1), a well-known approach for financial time series. For the time series of

return for stock 𝑗,

𝑋𝑡,𝑗 = 𝜙0,𝑗 + 𝜙1,𝑗𝑋𝑡−1,𝑗 + 𝜖𝑡,𝑗 + 𝜑1,𝑗𝜖𝑡−1,𝑗 (3.4.1)

where the residuals

𝜖𝑡,𝑗 = 𝜎𝑡,𝑗𝑢𝑡,𝑗

(3.4.2)

and the time-dependent variance

𝜎𝑡,𝑗
2 = 𝛼0,𝑗 + 𝛼1,𝑗𝜎𝑡−1,𝑗

2 + 𝛽1,𝑗𝜖𝑡−1,𝑗
2

(3.4.3)

The unknown parameters {𝜙0, 𝜙1, 𝜑1, 𝛼0, 𝛼1, 𝛽1} are estimated via maximum likelihood

method. Notice that unit innovation 𝑢𝑡,𝑗 is a strong white noise process which can be

estimated by 𝑢̂𝑡,𝑗 =
𝜖̂𝑡,𝑗

𝜎̂𝑡,𝑗
.

3.4.1.2 ARMAX-GARCH

The second baseline approach is an extension of ARMA(1,1)-GARCH(1,1). For the

given time series 𝑋𝑡,𝑗, ARMAX-GARCH model considers endogenous variable 𝑋𝑡,𝑗 and a

set of exogenous variables 𝑌1𝑡,𝑗, 𝑌2𝑡,𝑗, . . ., 𝑌1𝑡,𝑗. Then, the original model is modified as:

𝑋𝑡,𝑗 = 𝜙0,𝑗 + 𝜙1,𝑗𝑋𝑡−1,𝑗 +∑𝜇𝑖,𝑡−1,𝑗𝑌𝑖,𝑡−1

𝑛

𝑖=1

+ 𝜖𝑡,𝑗 + 𝜑1,𝑗𝜖𝑡−1,𝑗 (3.4.4)

where 𝑛 is the number of exogenous variables. In our experiments, we include input

variables of intra-interval proportions, EMA and A/D in our double neural network.

3.4.1.3 The Regular Neural Network Model

The third baseline approach is the single hidden layer neural network, which is the

simplest but probably also the most widely used NN structure. It consists of three layers:

the bottom input layer, the middle hidden layer and the top output layer. Every neuron in

64

the hidden layer is fully connected with all other neurons in the input and output layers.

This model includes the same input variables as ARMAX-GARCH. The function “nnet”

in the standard R package “nnet” was used to implement this regular NN model.

3.4.2 Evaluation Metrics

For certain stock 𝑗 at each time intervals 𝑡, a prediction would be made for the next

interval 𝑡 + 1 based on a specific model 𝑚. If the model prediction is consistent with the

true price movement, a profit is yielded; otherwise a loss incurs. Let us denote the return

for model 𝑚 at interval 𝑡 as 𝑟𝑚,𝑡,𝑗 = 𝑠𝑔𝑛(𝑦̂𝑚,𝑡,𝑗𝑦𝑡,𝑗) ∗ |𝑦𝑡,𝑗| . 𝑦𝑡,𝑗 = 𝑋𝑡+1,𝑗 is the real

increase rate during next 5 minute and 𝑦̂𝑚,𝑡,𝑗 is the predicted increase rate from model 𝑚

during next 5 minute. Assume the total number of intervals being tested is 𝑇0. We used

the following criteria to evaluate/compare the performance of different models.

(1) Absolute return:

𝑟𝑚,𝑗 =∏(1 + 𝑟𝑚,𝑡,𝑗)

𝑇0

𝑡=1

 (3.4.5)

This is equivalent to a strategy of buying or short selling a fixed number of shares

according to the model prediction on the next time point 𝑡 + 1.

(2) Sharpe Ratio:

𝑆𝑃𝑚,𝑗 =
𝑟̅𝑚,𝑗

𝑠𝑚,𝑗
 (3.4.6)

Where the average return 𝑟̅𝑚,𝑗 =
∑ 𝑟𝑚,𝑡,𝑗
𝑇0
𝑡=1

𝑇0
 and the standard deviation 𝑠𝑚,𝑗 =

√
1

𝑇0−1
∑ (𝑟𝑚,𝑡,𝑗 − 𝑟̅𝑚,𝑗)

2𝑇0
𝑡=1 . Sharpe ratio quantifies the risk efficiency of a model

performance.

(3) Prediction Accuracy:

65

 Mean
Standard

Deviation
Median Min Max

Volume 11.8 60.2 3.9 0 24951.1

Market cap 32.1 51.2 15.3 3.0 422.1

Table 2. Descriptive statistics for 500 stocks’ trading volumes in 5 minute

level (unit: thousands shares) and market capitalizations on May 31, 2013

(unit: billions USD).

𝐴𝑚,𝑗 =
∑ 𝐼(𝑟𝑚,𝑡,𝑗 > 0)
𝑇0
𝑡=1

𝑇0
 (3.4.7)

Prediction accuracy is calculated by simply the ratio of the total number of correct

predictions on the direction of the price movement over the total of tested intervals.

3.5 Overall Performance

We downloaded the data for the 500 stocks in the Standard & Poor’s 500, ranging

from January 1, 2013 to May 31, 2013. There are 104 trading days and each day contains

78 5-minute intervals, which makes 8112 time points (observations) in total. The raw

data include open, high, low and close prices and also volume for each stock at each time

point. Table 2 presented the basic statistics for 500 stocks’ trading volumes and their

market capitalizations on May 31, 2013.

Our DNN method together with the other three benchmark methods were applied on

100 stocks with largest capital in S&P 500 to compare their performances.

3.5.1 Forecasting Power

Prediction accuracy was used as the main metric for the comparisons between the

four methods. We also explored prediction accuracies on time points with large predicted

returns. The rational is that returns close to zeros may mainly represent market noises and

therefore harder to predict, and models may perform better in those time intervals with

larger returns.

The new returns were defined as:

66

𝑟𝑚,𝑡,𝑗
∗ = {

𝑟𝑚,𝑡,𝑗, 𝑤ℎ𝑒𝑛 |𝑦̂𝑚,𝑡,𝑗| > 𝐶𝑚,𝑗

0, 𝑤ℎ𝑒𝑛 |𝑦̂𝑚,𝑡,𝑗| ≤ 𝐶𝑚,𝑗
 (3.5.1)

𝑚 = 1,… ,4 represented four methods: DNN, SNN (regular NN model), ARMA-GARCH

and ARMAX-GARCH. 𝑗 = 1,… ,100 represented the 100 stocks involved in the study. 𝑡

was the time point. The new accuracy rate for method 𝑚 and stock 𝑗 was defined as:

𝐴𝑚,𝑗
∗ =

∑ 𝐼(𝑟𝑚,𝑡,𝑗
∗ > 0)

𝑇0
𝑡=1

∑ 𝐼(𝑟𝑚,𝑡,𝑗
∗ ≠ 0)

𝑇0
𝑡=1

 (3.5.2)

In our study, the accuracy rates were calculated in each 100 time points, that is, for

each method and each stock with 2000 testing time points, there would be 20 accuracy

rates. We also defined the proportion of transactions as:

𝑃𝑚,𝑗 =
∑ 𝐼(𝑟𝑚,𝑡,𝑗

∗ ≠ 0)
𝑇0
𝑡=1

𝑇0
 (3.5.3)

𝐶𝑚,𝑗’s are pre-selected to ensure all 𝑃𝑚,𝑗 have the same value.

Annualized Sharpe ratios were also calculated: 𝑆𝑃𝑚 in previous section was the

Sharpe ratio for 5 minute level. The annualized Sharpe ratio, according to its definition,

should be √𝑛 ∗ 𝑆𝑃𝑚 with 𝑛 being the number of 5 minute intervals in one year.

All four methods are applied on all 100 stocks and each stock has at most 2000

testing points divided into 20 intervals. So for each method, each stock, each interval,

there is one prediction accuracy rate calculated based on the pre-defined 𝐶𝑚,𝑗’s which

share the same proportion of transaction. Then we repeat the previous studies for

different proportions of transactions: 90%, 70%, 50%, 30%, 10%. Figure 20 summarizes

all the accuracy rates with the corresponding 95% confidence intervals. Each point and

the confidence interval in Figure 20 represents 2000 = 100 (stocks) * 20 (accuracy rates

per stock) accuracy rates. From Figure 20, we conclude the following two statements:

(1) As the proportion of transaction decrease, all four models have increased

performance in terms of prediction accuracy rate, which means larger predicted

values does show better prediction on whether the stock would increase or

decrease.

67

Each point in the figure represents the averaged prediction accuracy rate for one method

applied in all 100 stocks using one set of 𝐶𝑚,𝑗 sharing the same proportion of

transactions. DNN model always outperforms to the other models and the differences are

significant.

Figure 20. Accuracy rates and corresponding 95% confidence intervals for DNN,

SNN, ARMA-GARCH and ARMAX-GARCH models applied on 100 leading stocks

(2) Our designed method based on DNN models outperforms the other three

benchmark methods especially when the proportion of transactions are below 50%

- the confidence intervals show that the differences are significant. This suggests

that larger predicted values from our method have more probability on predicting

the right trend for stocks in the next 5 minute.

68

Table 3 presented the annualized Sharpe ratios for four methods at corresponding

proportions of transactions. Medians with 25%, 75% quantiles of the 100 stocks were

calculated and shown in the table. From Table 3, we observed that DNN outperformed to

the other three methods in 4 out of 5 proportion of transactions: 90%, 70%, 50% and 30%

in terms of annualized Sharpe ratio. And DNN reached the highest median annualized

Sharpe ratio at the cut off values making 50% of the transactions.

3.5.2 Computations

Efficient R programs have been developed to implement our proposed model.

Roughly, one DNN fitting takes approximately 0.8 seconds in a regular workstation (Intel

Xeon E5-2620 @ 2.00GHz), which means that fitting 1000 DNNs at one step would take

about 13.3 minutes. If this model were to be applied to support real-life trading, we can

afford to update the model every three 5-minute intervals. For data with higher

frequencies and also with multiple stocks, we can use clusters to parallelize the process to

speed up the model updating.

Method

Proportion of transactions

90% 70% 50% 30% 10%

DNN
1.50

(-1.07, 4.11)

1.29

(-1.24, 4.33)

1.70

(-0.50, 4.55)

1.55

(-0.73, 4.05)

0.89

(-1.10, 3.00)

SNN
0.92

(-0.60, 3.05)

1.08

(-1.17, 3.69)

1.20

(-1.09, 3.10)

1.23

(-0.83, 3.51)

1.66

(-0.14, 3.39)

ARMA
0.63

(-1.21, 1.47)

0.16

(-1.40, 1.53)

0.23

(-1.35, 1.88)

0.14

(-1.63, 1.63)

0.48

(-1.51, 1.80)

ARMAX
-0.44

(-1.83, 1.31)

-0.25

(-1.75, 0.86)

-0.55

(-2.13, 0.93)

0.06

(-1.97, 1.48)

0.27

(-1.92, 1.93)

Table 3. Annualized Sharpe ratios for four methods at different proportions of

transactions.

Each cell presented the median with 25%, 75% quantiles of annualized Sharpe ratios among the

100 stocks with corresponding method and proportion of transactions applied.

69

Figure 21. Absolute return curves for all methods applied on ACN

For ACN, DNN (red line) performed the best among four methods. The 2000 time

points profit would be around 20% for DNN method.

3.5.3 Case Studies

The absolute returns were calculated for all 100 stocks at each time point as Formula

(3.4.5). Both DNN method and ARMA-GARCH method outperformed to the other

methods on 30 stocks out of 100 stocks. As two case studies, Figure 21 and Figure 22

showed the absolute return curves for all four methods applied on Accenture Plc (ACN)

and Baker Hughes Incorporated (BHI). Each figure contained five curves, with each

representing one strategy. Each curve showed the portfolio value at each time point if we

invested 1 dollars at time point 1, applying the corresponding strategy. The blue curve

was for buy-and-hold strategy and actually showed the trend of market price. The other

four curves represented strategies utilizing the four methods: red for DNN, green for

SNN, brown for ARMA-GARCH and black for ARMAX-GARCH. But notice that these

portfolio values did not consider the transaction costs.

70

Figure 22. Absolute return curves for all methods applied on BHI

ARMA-GARCH (brown line) performed the best among the four methods. The 2000 time

points profit would be around 20% for ARMA-GARCH method.

3.6 Conclusions and Future Work

Our method differs from the others and provides new information in two aspects.

Firstly, we proposed a novel multi-layer NN framework with local connections to handle

the large correlations existing only in high frequency stock data, which improves the

prediction performance, while most related works that are designed for low-frequency

data did not consider intra-market correlations. Secondly, we investigated and

benchmarked the performance of our newly proposed model, together with a regular NN

model and two classical econometric models for high-frequency forecasting. It is possible

that large amount of transaction costs might dramatically reduce the profits in high-

frequency trading, however, our model can still help in providing effective solutions. For

example, focusing on predictions with large returns may be used to design useful trading

71

strategies as it would not only reduce the number of transactions but also increase the

prediction accuracy rates.

For the future work, we plan to study the performance of our model for data with

even higher frequency. We will study whether the prediction accuracy rates would

remain the same for data at minute or even second level. For example, if for minute-level

data, the prediction accuracy rates remain similar or just have minor decrease, then the

framework based on our DNN models can make nearly 5 times of the profit as using 5-

minute level data within the same period of trading days. It is also possible that a new NN

structure might be necessary according to the characteristics in data with higher

frequencies.

Another possible improvement for our framework is to establish a dynamic system

for the DNN models. The system should allow 1000 DNN models (as introduced in

Section 3.3.6) to be updated as needed. We need to study not only when to update but

also what faction of the 1000 DNN models will be updated. It is definitely not optimal to

update all 1000 DNN models at every time point, because it is quite time consuming and

if there is only one record changed in the training data set, the DNN models should be

similar as previous set of models.

In the aspect of model structure, we think it may be worth to try on recurrent neural

networks that are designed specifically for time series data. The crucial part is how to

integrate the other environmental inputs (those technical indicators introduced in Section

3.3.2) into the models and determine which part, the time series information or the

environmental inputs, should have more effect on the outcomes and how to realize this

importance through structure designs.

For comparison, it is also worth to include random forests or other machine learning

models. Random forests model is expected to have much less computational burden, but

how well it can performance in this high frequency scale remains unknown. It is also

possible that if random forests perform similarly with double layer neural network, we

can make ensemble predictors based on both models.

72

CHAPTER 4 FUTURE WORK ON NEURAL NETWORKS

4.1 Development of New Structures

Recently, more and more researchers, especially those focusing on the mathematical

models of neural networks, have been changing their interests to designing novel

structures. For example, in 2006, Hinton and his collaborators [23] proposed the so-called

“deep belief nets” model, and in 2007, they further introduced how a many-layered

neural network model could be trained effectively and gain higher power [22]. Based on

these work, nowadays deep learning has been developed and become a popular area in

machine learning.

Along with the growth of deep learning, some other creative and efficient neural

network structures that did not receive much attention before have also been brought

back for further studies. Convolutional neural networks and recurrent neural networks

might be the two most accepted structures. Convolutional neural networks have been

applied by Yann LeCun in his hand-written numbers recognition [38] [37]. The major

characteristics of this structure is to use the shared weight (the convolution operations) in

convolutional layers, which can both reduce the required number of parameters and

improves performance, especially in image recognition where the convolution operations

are meaningful. Recurrent neural networks are also a set of neural network models

developed long time before and it is a structure designed specifically for time series like

data.

Combining the above ideas can provide broad choices for the structures of neural

networks. As we believe that the most promising way to apply neural networks is to

design data-oriented structures, for the S&P 500 stock price predictions, both

convolutional neural networks and recurrent neural networks might find their way to help

improve the performance. For GWA study, the data is less structured than stock price

data set, but may still be suitable for convolutional structures. Although we can pre-

determine the types of structures based on our intuition and motivations, more structure

related parameters still need many trials or systematic tuning process to determine their

73

best values. At some aspects, designing or choosing a suitable structure for neural

networks is more like an art instead of scientific research.

4.2 Development of New Training Algorithms

Another aspect of neural network models that draw researchers’ attentions is the

training algorithm. Back-propagation is usually the first choice because of its stability

and comparably faster convergence speed. There are also some variations of back-

propagation algorithm like, such as using the second order derivatives (Hessian matrix)

or Bayesian framework [48] to implement the algorithm. The biggest drawback for back-

propagation is its generalizability – each new structure may need significant change on

the iterative formulas and thus need to rewrite the corresponding codes. So the other two

algorithms (simulated annealing and genetic algorithm) might be more suitable when

searching among different types of structures.

In essence, the training algorithm is simply a nonlinear optimization (nonlinear

programming) problem, which has long been a difficulty in computational area. Till now,

no accepted algorithms can guarantee that the global minimal point for a general

nonlinear optimization problem can be found. However, for different types of nonlinear

optimization problems, there are a lot of researches focusing on improving the existed

general algorithm based on the specialty of problems. Back-propagation with only the

first derivatives is an implementation of gradient descent method and is an extension of

Newton-Raphson method if including the Hessian matrix. Some other specific algorithms

for neural network could be found in [45] [18] [61]. It might be worth to try a hybrid

system of back-propagation and simulated annealing algorithms because back-

propagation is good at local convergence and simulated annealing enable the searching to

jump out of local minimal point [43].

4.3 Other Distributions for Dependent Variables

Continuous and multi-categorical outcomes are the two most common data types in

statistics and machine learning, but there also exist other interesting outcome data type

like count data (modeled by Poisson or Negative Binomial distribution) and censored

74

data (survival analysis). Among those popular machine learning models like SVM and

Random Forests, neural networks might be the easiest one which could be extended to

problems with the other types of outcome variables. There are very little researches

tackling this topic. The most important step is to determine how to organize the outcome

neurons to well represent the outcome variables and how to transfer from the last hidden

layer to the outcome layer (see Figure 3). Since the outcome variables may not represent

information in the same scale, designing a proper error function would also be very

critical. For example for censored data, it might have one binary outcome neuron

represents censoring or not, another continuous outcome neuron representing the follow-

up time. Then how to define the error function which can be minimized to fit the two

outcome neurons simultaneously? It is a promising direction for neural networks related

researches, and if the idea works, the application area of neural networks could be further

extended.

75

REFERENCE

[1] T. G. ANDERSEN, T. BOLLERSLEV, F. X. DIEBOLD and H. EBENS, The distribution of
realized stock return volatility, Journal of financial economics, 61 (2001), pp. 43-
76.

[2] K. BRETNEY and Z. COBURN, High frequency trading with an artificial neural
network, Mimeo, 2008.

[3] R. M. CANTOR, K. LANGE and J. S. SINSHEIMER, Prioritizing GWAS results: a
review of statistical methods and recommendations for their application, The
American Journal of Human Genetics, 86 (2010), pp. 6-22.

[4] P.-C. CHANG, D.-D. WANG and C.-L. ZHOU, A novel model by evolving partially
connected neural network for stock price trend forecasting, Expert Systems with
Applications, 39 (2012), pp. 611-620.

[5] G. M. CHEN, M. FIRTH and O. M. RUI, The dynamic relation between stock
returns, trading volume, and volatility, Financial Review, 36 (2001), pp. 153-174.

[6] T.-L. CHEN, C.-H. CHENG and H. J. TEOH, Fuzzy time-series based on Fibonacci
sequence for stock price forecasting, Physica A: Statistical Mechanics and its
Applications, 380 (2007), pp. 377-390.

[7] T. C. CHIANG, H.-C. YU and M.-C. WU, Statistical properties, dynamic conditional
correlation, scaling analysis of high-frequency intraday stock returns: Evidence
from Dow-Jones and nasdaq indices, Physica A, 388 (2009), pp. 1555-1570.

[8] D. C. CIREŞAN, U. MEIER, L. M. GAMBARDELLA and J. SCHMIDHUBER,
Convolutional neural network committees for handwritten character
classification, Document Analysis and Recognition (ICDAR), 2011 International
Conference on, IEEE, 2011, pp. 1135-1139.

[9] J. CLARK, I. KOPRINSKA and J. POON, A neural network based approach to
automated e-mail classification, null, IEEE, 2003, pp. 702.

[10] H. J. CORDELL, Detecting gene–gene interactions that underlie human diseases,
Nature Reviews Genetics, 10 (2009), pp. 392-404.

[11] W. DAI, J.-Y. WU and C.-J. LU, Combining nonlinear independent component
analysis and neural network for the prediction of Asian stock market indexes,
Expert Systems with Applications, 39 (2012), pp. 4444-4452.

[12] F. D. DE FREITAS and A. R. DE ALMEIDA, Portfolio selection with predicted returns
using neural networks, IASTED International Conference on Artificial Intelligence
and Applications, 2001, pp. 99-103.

[13] W. N. FRANKEL and N. J. SCHORK, Who's afraid of epistasis?, Nature genetics, 14
(1996), pp. 371-373.

[14] M. GHIASSI, J. SKINNER and D. ZIMBRA, Twitter brand sentiment analysis: A
hybrid system using n-gram analysis and dynamic artificial neural network,
Expert Systems with Applications: An International Journal, 40 (2013), pp. 6266-
6282.

[15] P. GOMBER, B. ARNDT, M. LUTAT and T. UHLE, High-frequency trading, Available
at SSRN 1858626 (2011).

76

[16] N. GRADOJEVIC, R. GENÇAY and D. KUKOLJ, Option pricing with modular neural
networks, Neural Networks, IEEE Transactions on, 20 (2009), pp. 626-637.

[17] E. GURESEN, G. KAYAKUTLU and T. U. DAIM, Using artificial neural network
models in stock market index prediction, Expert Systems with Applications, 38
(2011), pp. 10389-10397.

[18] M. T. HAGAN and M. B. MENHAJ, Training feedforward networks with the
Marquardt algorithm, Neural Networks, IEEE Transactions on, 5 (1994), pp. 989-
993.

[19] M. R. HASSAN, B. NATH and M. KIRLEY, A fusion model of HMM, ANN and GA for
stock market forecasting, Expert Systems with Applications, 33 (2007), pp. 171-
180.

[20] T. HASTIE, R. TIBSHIRANI, J. FRIEDMAN, T. HASTIE, J. FRIEDMAN and R.
TIBSHIRANI, The elements of statistical learning, Springer, 2009.

[21] J. HERRERO, A. VALENCIA and J. DOPAZO, A hierarchical unsupervised growing
neural network for clustering gene expression patterns, Bioinformatics, 17 (2001),
pp. 126-136.

[22] G. E. HINTON, Learning multiple layers of representation, Trends in cognitive
sciences, 11 (2007), pp. 428-434.

[23] G. E. HINTON, S. OSINDERO and Y.-W. TEH, A fast learning algorithm for deep
belief nets, Neural computation, 18 (2006), pp. 1527-1554.

[24] J. N. HIRSCHHORN and M. J. DALY, Genome-wide association studies for common
diseases and complex traits, Nature Reviews Genetics, 6 (2005), pp. 95-108.

[25] K. HORNIK, Approximation capabilities of multilayer feedforward networks,
Neural networks, 4 (1991), pp. 251-257.

[26] K. HORNIK, M. STINCHCOMBE and H. WHITE, Multilayer feedforward networks
are universal approximators, Neural networks, 2 (1989), pp. 359-366.

[27] S.-H. HSU, J. P.-A. HSIEH, T.-C. CHIH and K.-C. HSU, A two-stage architecture for
stock price forecasting by integrating self-organizing map and support vector
regression, Expert Systems with Applications, 36 (2009), pp. 7947-7951.

[28] R. S. JOAO, T. F. GUIDONI, J. R. BERTINI, M. NICOLETTI and A. O. ARTERO, Stock
Closing Price Forecasting Using Ensembles of Constructive Neural Networks,
Intelligent Systems (BRACIS), 2014 Brazilian Conference on, IEEE, 2014, pp. 109-
114.

[29] L. K. JONES, A simple lemma on greedy approximation in Hilbert space and
convergence rates for projection pursuit regression and neural network training,
The annals of Statistics (1992), pp. 608-613.

[30] Y. KARA, M. ACAR BOYACIOGLU and Ö . K. BAYKAN, Predicting direction of stock
price index movement using artificial neural networks and support vector
machines: The sample of the Istanbul Stock Exchange, Expert systems with
Applications, 38 (2011), pp. 5311-5319.

[31] J. M. KARPOFF, The relation between price changes and trading volume: A survey,
Journal of Financial and quantitative Analysis, 22 (1987), pp. 109-126.

[32] T. KOHONEN, An introduction to neural computing, Neural networks, 1 (1988),
pp. 3-16.

77

[33] M. A. KRAMER, Nonlinear principal component analysis using autoassociative
neural networks, AIChE journal, 37 (1991), pp. 233-243.

[34] D. KRIESEL, A brief introduction to neural networks, Retrieved August, 15 (2007),
pp. 2011.

[35] C. G. LAMOUREUX and W. D. LASTRAPES, Heteroskedasticity in stock return data:
volume versus GARCH effects, The Journal of Finance, 45 (1990), pp. 221-229.

[36] S. LAWRENCE, C. L. GILES, A. C. TSOI and A. D. BACK, Face recognition: A
convolutional neural-network approach, Neural Networks, IEEE Transactions on,
8 (1997), pp. 98-113.

[37] B. B. LE CUN, J. DENKER, D. HENDERSON, R. E. HOWARD, W. HUBBARD and L. D.
JACKEL, Handwritten digit recognition with a back-propagation network,
Advances in neural information processing systems, Citeseer, 1990.

[38] Y. LECUN, Generalization and network design strategies, Connections in
Perspective. North-Holland, Amsterdam (1989), pp. 143-55.

[39] M. D. LI, Identifying susceptibility loci for nicotine dependence: 2008 update
based on recent genome-wide linkage analyses, Human genetics, 123 (2008), pp.
119-131.

[40] F. LIU and J. WANG, Fluctuation prediction of stock market index by Legendre
neural network with random time strength function, Neurocomputing, 83 (2012),
pp. 12-21.

[41] J. MALLEY, J. KRUPPA, A. DASGUPTA, K. MALLEY and A. ZIEGLER, Probability
machines: consistent probability estimation using nonparametric learning
machines, Methods of information in medicine, 51 (2012), pp. 74.

[42] W. S. MCCULLOCH and W. PITTS, A logical calculus of the ideas immanent in
nervous activity, The bulletin of mathematical biophysics, 5 (1943), pp. 115-133.

[43] P. D. MCNELIS, Neural networks in finance: gaining predictive edge in the market,
Elsevier Acad. Press, 2005.

[44] M. B. MIKHAIL, B. R. WALTHER and R. H. WILLIS, Does forecast accuracy matter
to security analysts?, The Accounting Review, 74 (1999), pp. 185-200.

[45] M. F. MØ LLER, A scaled conjugate gradient algorithm for fast supervised learning,
Neural networks, 6 (1993), pp. 525-533.

[46] H. MUTOH, N. HAMAJIMA, K. TAJIMA, T. KOBAYASHI and H. HONDA, Exhaustive
exploring using Artificial Neural Network for identification of SNPs combination
related to Helicobacter pylori infection susceptibility, Chem-Bio Informatics
Journal, 5 (2005), pp. 15-26.

[47] R. NEWSON, Parameters behind “nonparametric” statistics: Kendall’s tau,
Somers’ D and median differences, Stata Journal, 2 (2002), pp. 45-64.

[48] H. OKUT, D. GIANOLA, G. J. ROSA and K. A. WEIGEL, Prediction of body mass
index in mice using dense molecular markers and a regularized neural network,
Genetics research, 93 (2011), pp. 189-201.

[49] P.-F. PAI and C.-S. LIN, A hybrid ARIMA and support vector machines model in
stock price forecasting, Omega, 33 (2005), pp. 497-505.

[50] M. Y. PARK and T. HASTIE, Penalized logistic regression for detecting gene
interactions, Biostatistics, 9 (2008), pp. 30-50.

78

[51] J. PATEL, S. SHAH, P. THAKKAR and K. KOTECHA, Predicting stock and stock price
index movement using trend deterministic data preparation and machine
learning techniques, Expert Systems with Applications, 42 (2015), pp. 259-268.

[52] W. PITTS and W. S. MCCULLOCH, How we know universals the perception of
auditory and visual forms, The Bulletin of mathematical biophysics, 9 (1947), pp.
127-147.

[53] S. PURCELL, B. NEALE, K. TODD-BROWN, L. THOMAS, M. A. FERREIRA, D. BENDER,
J. MALLER, P. SKLAR, P. I. DE BAKKER and M. J. DALY, PLINK: a tool set for whole-
genome association and population-based linkage analyses, The American
Journal of Human Genetics, 81 (2007), pp. 559-575.

[54] E. F. PUTRA and R. KOSALA, Application of artificial neural networks to predict
intraday trading signals, (2011).

[55] A. M. RATHER, A. AGARWAL and V. SASTRY, Recurrent neural network and a
hybrid model for prediction of stock returns, Expert Systems with Applications, 42
(2015), pp. 3234-3241.

[56] M. D. RITCHIE, L. W. HAHN and J. H. MOORE, Power of multifactor dimensionality

reduction for detecting gene‐gene interactions in the presence of genotyping
error, missing data, phenocopy, and genetic heterogeneity, Genetic epidemiology,
24 (2003), pp. 150-157.

[57] M. D. RITCHIE, L. W. HAHN, N. ROODI, L. R. BAILEY, W. D. DUPONT, F. F. PARL and
J. H. MOORE, Multifactor-dimensionality reduction reveals high-order
interactions among estrogen-metabolism genes in sporadic breast cancer, The
American Journal of Human Genetics, 69 (2001), pp. 138-147.

[58] D. RUMELHART, G. HINTON and R. WILLIAMS, Learning internal representations
by error propagation In: DE Rumelhart and JL McClelland, editors, Parallel
Distributed Processing: Explorations in the Microstructure of Cognition, Vol. 1:
Foundations, MIT Press, 1986.

[59] D. E. RUMELHART, G. E. HINTONT and R. J. WILLIAMS, Learning representations
by back-propagating errors, NATURE, 323 (1986), pp. 9.

[60] D. F. SCHWARZ, I. R. KÖ NIG and A. ZIEGLER, On safari to Random Jungle: a fast
implementation of Random Forests for high-dimensional data, Bioinformatics, 26
(2010), pp. 1752-1758.

[61] Y. SHANG and B. W. WAH, Global optimization for neural network training,
Computer, 29 (1996), pp. 45-54.

[62] P. M. SHEA and V. LIN, Detection of explosives in checked airline baggage using
an artificial neural system, Neural Networks, 1989. IJCNN., International Joint
Conference on, IEEE, 1989, pp. 31-34.

[63] A. A. TODA, The double power law in income distribution: Explanations and
evidence, Journal of Economic Behavior & Organization, 84 (2012), pp. 364-381.

[64] A. A. TODA and K. J. WALSH, The double power law in consumption and
implications for testing Euler equations, Available at SSRN 2319454 (2014).

[65] Y. TOMITA, S. TOMIDA, Y. SUZUKI, T. SHIRAKAWA, T. KOBAYASHI and H. HONDA,
Artificial Neural Network Model for Prediction of Childhood Allergic Asthma

79

Using Single Nucleotide Polymorphism Data, Genome Informatics, 14 (2003), pp.
593-594.

[66] C.-F. TSAI and Y.-C. HSIAO, Combining multiple feature selection methods for
stock prediction: Union, intersection, and multi-intersection approaches, Decision
Support Systems, 50 (2010), pp. 258-269.

[67] J. VOIT, The statistical mechanics of financial markets, Springer Science &
Business Media, 2013.

[68] M. L. WEITZMAN, Subjective expectations and asset-return puzzles, The
American Economic Review (2007), pp. 1102-1130.

[69] B. WIDROW, D. E. RUMELHART and M. A. LEHR, Neural networks: Applications in
industry, business and science, Communications of the ACM, 37 (1994), pp. 93-
105.

[70] C. YANG, Z. HE, X. WAN, Q. YANG, H. XUE and W. YU, SNPHarvester: a filtering-
based approach for detecting epistatic interactions in genome-wide association
studies, Bioinformatics, 25 (2009), pp. 504-511.

[71] H. ZHANG and G. BONNEY, Use of classification trees for association studies,
Genetic epidemiology, 19 (2000), pp. 323-332.

[72] Y. ZHANG and J. S. LIU, Bayesian inference of epistatic interactions in case-control
studies, Nature genetics, 39 (2007), pp. 1167-1173.

[73] W. ZHOU, K. XIAO and F. SONG, Dynamic rank correlation computing for financial
risk analysis, Knowledge Science, Engineering and Management, Springer, 2011,
pp. 269-280.

[74] Z.-H. ZHOU, Y. JIANG, Y.-B. YANG and S.-F. CHEN, Lung cancer cell identification
based on artificial neural network ensembles, Artificial Intelligence in Medicine,
24 (2002), pp. 25-36.

