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Abstract of the Dissertation

Convergent Lagrangian Particle Algorithms
for Compressible Fluid Dynamics

by

Hsin-Chiang Chen

Doctor of Philosophy

in

Applied Mathematics and Statistics

Stony Brook University

2015

The goal of this thesis is the study of Lagrangian particle meth-
ods for complex multiscale hydrodynamic problems. This research
has been motivated by difficulties arising in traditional mesh-based
methods for the simulation of certain classes of highly non-uniform,
complex free surface or multiphase problems. For such problems,
Eulerian meshes enhanced with special algorithms for resolving in-
terfaces such as volume-of-fluid, the level set method, arbitrary
Lagrangian Eulerian methods, or the method of front tracking
which is a hybrid method involving a moving Lagrangian mesh
over a fixed Eulerian mesh, are often used. In addition, they re-
quire adaptive mesh refinement (AMR). All these methods require
complex computationally intensive algorithms for the generation
and dynamic adaptation of high quality meshes.
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As the method of Smoothed Particle Hydrodynamics (SPH) pro-
poses an attractive alternative to the problems mentioned above,
a parallel SPH code has been developed in the 1st phase of the
research. The standard SPH algorithms have been enhanced with
new implementation of physics models (cavitation, boundary con-
ditions etc.) and applied to the simulation of mercury targets in-
teracting with strong proton pulses in support of the DOE Muon
Accelerator Project (MAP). Simulations of MAP experiments that
studied splashes of mercury driven by external energy deposition
have been performed and good agreement with experimental data
has been obtained [2]. But in the course of our work, severe
accuracy problems and limitations of SPH have been observed.
They confirmed studies published in last years that SPH has zero-
convergence order, and is not accurate for many classes of prob-
lems.

Motivated by the need to resolve SPH failures while preserving its
advantages, we have proposed a new Lagrangian particle method
[1, 3] for solving Euler equations for compressible inviscid fluid or
gas flows. Similar to smoothed particle hydrodynamics (SPH),
the method represents fluid cells with Lagrangian particles. The
main features of the method are (1) exact conservation of mass,
(2) continuous adaptivity to density changes enabling simulations
of large, non-uniform domains, (3) ability to handle material inter-
faces of any complexity, (4) scalability on modern supercomputers,
(5) insignificant increase of algorithmic complexity with increase of
spatial dimensionality leading to relatively simple codes in 3D. This
also simplifies the portability of codes to new supercomputer archi-
tectures. The main contributions of our method, which is different
from SPH in all other aspects, are (a) significant improvement of
approximation of differential operators based on a polynomial fit
and the corresponding weighted least squares problem and conver-
gence of prescribed order, (b) an upwinding second-order particle-
based algorithm with limiter, providing accuracy and long term
stability, and (c) accurate resolution of states at free interfaces
using ghost particles. Numerical verification test demonstrating
the convergence order are presented as well as examples of three-
dimensional complex free surface flows.
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Chapter 1

Introduction

1.1 Overview and Motivation

High resolution Lagrangian methods are essential for achieving predictive sim-

ulations of a wide spectrum of complex free surface/multiphase problems.

Most widely used approaches for the simulation of multiphase problems are

based on Eulerian meshes enhanced with special algorithms for resolving inter-

faces such as volume-of-fluid [8], the level set method [9], arbitrary Lagrangian

Eulerian methods [10], or the method of front tracking [11] which is a hybrid

method involving a moving Lagrangian mesh over a fixed Eulerian mesh. In

addition, they often use various adaptive features such as adaptive mesh re-

finement. These and finite element methods, most common for engineering

problems with irregular geometries, require complex computationally inten-

sive methods for the generation of high quality meshes.

Theoretically, the traditional Lagrangian formulation of fluid dynamics [7]
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is the basis for the most natural and accurate method for the simulation of

complex free surface and multiphase systems, but it suffers from the mesh

distortion problem in unsteady, turbulent flows. As a result, the Lagrangian

methods are widely used only in 1D for all problems except the dynamics of

solids that is characterized by small deformations. The overwhelming majority

of solid dynamics codes use finite element-based Lagrangian methods, the fact

that speaks for advantages of Lagrangian approaches within their applicability

range.

A way to extend the Lagrangian method to 3D was proposed in smoothed

particle hydrodynamics (SPH). SPH [14, 15] is a Lagrangian particle method

in computational fluid dynamics in which deforming Lagrangian cells are re-

placed with particles. SPH eliminates the main mesh tangling difficulty of the

original Lagrangian method while retaining many of its advantages. Due to its

Lagrangian nature, SPH is strictly mass-conservative and capable of robustly

handling interfaces of arbitrary complexity in the simulation of free surface and

multiphase flows. The representation of matter by particles provides adaptiv-

ity to density changes. Not only does this improve the traditional adaptive

mesh refinement of structural meshes, that introduces sharp boundaries be-

tween mesh patches of different resolution, but also it enables simulations of

large ranges of spatial scales (for instance expansion into vacuum and matter

islands separated by large vacuum domains). Lastly, there is insignificant in-

crease of algorithmic complexity with increase of spatial dimensionality. This

leads to relatively simple codes in 3D and also simplifies the portability of

codes to new supercomputer architectures.
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To explore the method of Smoothed Particle Hydrodynamics (SPH) as an

attractive alternative to to grid-based methods for complex non-uniform prob-

lems, a parallel SPH code has been developed in the 1st phase of the research.

The standard SPH algorithms have been enhanced with new implementation

of physics models (cavitation, boundary conditions etc.) and applied to the

simulation of mercury targets interacting with strong proton pulses in support

of the DOE Muon Accelerator Project (MAP). Simulations of MAP experi-

ments that studied splashes of mercury driven by external energy deposition

have been performed and good agreement with experimental data has been ob-

tained. But in the course of our work, severe accuracy problems and limitations

of SPH have been observed. They were especially evident in our implemen-

tation of a Poisson problem using SPH discretization of differential operators.

Solutions were accurate and second-order convergent only when particles were

located on nodes of a rectangular uniform mesh, and became completely in-

correct for irregularly placed particles. They confirmed studies published in

last years that SPH has zero-convergence order, and is not accurate for many

classes of problems.

The major drawback of SPH is a very poor accuracy of discrete differential

operators. It is widely accepted [20,21], including original SPH developers [15],

that the traditional SPH discretization has zeroth-order convergence for widely

used kernels. In addition, the SPH discretization of derivatives is convergent to

the order consistent with the interpolating polynomial for the kernel function

only if particles are located on a rectangular mesh (which is not the case for

unsteady flows). The reason why SPH produces stable and reasonable results
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for certain problems, despite using inaccurate and non-convergent discretiza-

tion of differential operators, is its connection to the Lagrangian/Hamiltonian

dynamics of particles [22]. In particular, the traditional discrete SPH equa-

tions for the compressible Euler equations are not accurate, but they accu-

rately represent equations of the Lagrangian dynamics of particles interacting

via isentropic potentials. The Lagrangian and Hamiltonian properties are

also responsible for the long term stability of the traditional SPH. But the

Hamiltonian dynamics of particles only approximately represent the dynam-

ics of continuum hydrodynamic systems, and the isentropic interaction energy

places additional restrictions.

A number of ’modern’ or ’corrected’ SPH methods have been developed

in recent years (see [20] and reviews [15, 21]). They include the moving-least-

squares SPH, ’Godunov’-SPH, P-SPH, PHANTOM etc. But they all improve

certain features of SPH at the expense of other properties such as conservation,

long-term stability, or prohibitively large number of neighbors that causes

other problems. They all still have zero-convergence order, except for the 1st

order convergent, moving-least-squates SPH [20], that suffers from long-term

stability and other issues.

We have proposed a new Lagrangian particle method for solving com-

pressible Euler equations that eliminates major deficiencies of SPH. First, the

presence of large linear errors in SPH differential operators is significantly im-

proved by the local polynomial fitting technique. Second, long term stability is

obtained using the upwinding discretization methods. Third, states at free in-

terfaces are accurately resolved using ghost particles. Last and fundamentally
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different from SPH in most of approximation, our method is easily generaliz-

able to coupled system of hyperbolic and elliptic or parabolic PDE’s for other

physics processes.

In the proposed Lagrangian particle method, approximations of spatial

derivatives are obtained by employing a local polynomial fit known also as

the generalized finite difference (GFD) method [25]. The main idea is to find

closest neighbors of each particle and approximate the spatial derivative of a

certain physical quantity around the particle location as a linear combination

of this quantity at neighboring particles. The optimal coefficients in this linear

combination are calculated by solving a least squares problem. Second order

accurate spatial discretization is used in the current algorithm, but the GFD

method makes it possible to use higher order discretizations with increased

particle neighborhoods. Our algorithms uses much smaller number of neighbor

particles compared to the Godunov-SPH or other recent SPH modifications

that may require hundreds of particles [21].

The conservative Lagrangian formulation of Euler equations is transformed

into a quasi-linear form, and an upwinding scheme is employed for the numer-

ical integration. Multiple partial dimensions are resolved using a Strang split-

ting method for Euler equations. Research on algorithms for elliptic problems

involving geometrically complex boundaries and interfaces is in progress [4,5].

Together with hyperbolic solvers, they form the basis for simulations of com-

plex multiphysics and multiphase systems. The Lagrangian particle method

has been implemented in all dimensions, and the 2D and 3D versions have been

parallelized using share-memory parallelization techniques and the OpenMP
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API. Several 1D, 2D, and 3D simulations are run for accuracy tests, verifi-

cation of order of convergence, and validation of the capabilities for solving

free surface problems. A ghost particle method has been developed for free

surface problems. Currently, the Lagrangian particle code is accurate for com-

plex free surface problem in weakly compressible regime (fluids and gases with

moderate density changes). It still some additional development in the case of

strong compressibility when the density of matter changes by many orders of

magnitude. This work is in progress and will be completed in the near future.

1.2 Dissertation Organization

The dissertation is organized as follows. Chapter 2 focuses on SPH. Section

2.1 introduces SPH integral and summation approximations. Section 2.2 de-

scribes SPH approximations of Euler equations and main algorithms, such as

time integration schemes, neighbour search algorithms, and the treatment of

solid boundaries. Section 2.3 demonstrates the capabilities of SPH for non-

linear problems based on the results of the simulations of mercury thimble

splash and the jet splash for Neutrino Factory and Muon Collider. Section 2.4

discusses the limitations of SPH, espacially the accuracy of different forms of

SPH approximations of the differential operators.

In Chapter 3, We focus on the proposed Lagrangian particle method. Sec-

tion 3.1 introduces the governing Euler equation in Lagrangian form, and the

quasi-linear form. Section 3.2 elaborates on the numerical discretizations and

main algorithms of the Lagrangian particle dynamics. Section 3.3 offers an

6



overview of the developed code for the proposed algorithm.

Section 3.4 gives numerical results demonstrating the accuracy, the order

of convergence, and the capability of solving free surface problems, of the

proposed algorithm.

In the last chapter we conclude out work and give our perspectives for the

future work.
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Chapter 2

Smoothed Particle

Hydrodynamics

Smoothed Particle Hydrodynamics was introduced by [12] and [13] for the

simulations in astrophysics. Due to many of its advantages, SPH has been

widely applied to diverse fields in fluid dynamics, geophysics, engineering, and

in the film and computer games industry.

SPH is a Lagrangian technique that discretizes the continuum into small

elements called the particles, and solves the underlying governing equations

based on these particles. In mathematical terms, these particles are inter-

polation points on which fluid properties can be calculated. In physics terms

they are matrial particles in the particle system that carries their own physical

states and locations in the Cartessian coordinates.

Unlike traditional mesh-based methods such as finite-difference methods,

SPH calculates the spatial derivatives based on analytical differentiation of
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the interpolation formula and does not need a grid (see sections 2.1.1 and

2.1.2). This makes diferent forms of SPH approximations of the spatial deriva-

tives possible (see section 2.1.3). Based on the approximations of the spatial

derivatives, different forms of SPH approximations of the equations of mass,

momentum, and energy can be obtained and are are simply sets of ordinary

differential equations (see section 2.2.2).

Since SPH depends use particles and there is no connectivity between any

two particles, it adds little complexity when generalizing to higher dimen-

sions, or generalizing to very complex geometries. This is a very important

motivation for SPH: the following quote is from the original developer of SPH

(from [14]):

Although very accurate finite-difference methods exist - and these

are better than SPH for some problems - they cannot handle com-

plex physics in three dimensions with the same ease.

This ease of solving complex physics in 3D makes particle-based methods such

as SPH the best candidate for free surface or multiphase problems. However,

there are some limitations of SPH as described in section 2.5. This motivates

us to develop the new Lagrangian particle method which will be introduced in

chapter 3.

In the following sections in this chapter, we will describe the theory of

SPH which leads to the approximations of Lagrangian fluid equations, and

some related numerical algorithms such as the time integration and the scheme

for moving partciles. All these can be found in the SPH literature and for a

9



comprehensive review of SPH, see [14], [15], [16], [22], [32], and the referrences

therein.

We have developed a model for cavitation in section 2.2.6 for the sim-

ulations of mercury splish from thimble (see section 2.4.1) and mercury jet

experiments for neutrino factory and muon collider (see section 2.4.2). We

have also developed a SPH code which is parallelized using MPI (a dirtributed

memory parallelization API). The SPH code will be described in section 2.3.

2.1 SPH Formulation

2.1.1 SPH Approximation of A Field Function

SPH expresses each of the fluid dynamic variables as an integral interpolant.

This allows any function to be expressed in terms of its values at a set of

regularly or irregularly-placed points, that is, the particles. Consider any

function A (r) expressed in the form

A (r) =

∫
A (r′) δ (r− r′) dr′ (2.1)

where the integration is taken over the entire three-dimensional space and

δ (r− r′) is the Dirac delta function. Note that eq. (2.1) is exact but not

practically useful. In SPH, the integral interpolant of any function A (r) is

defined as

AI (r) =

∫
A (r′)W (r− r′, h) dr′ (2.2)
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, where W (r− r′, h) is known as the smoothing kernel, and h is the smooth-

ing length, which determines the spatial extent over which W smoothes the

variable. Note that W must satisfy two properties,

∫
W (r− r′, h) dr′ = 1 (2.3)

and

lim
h→0

W (r− r′, h) = δ (r− r′) (2.4)

, such that limh→0AI (r) = A (r). In the original work of [13], a Gaussian kernel

is used. However, instead of the Gaussian kernel function, which has infinite

support, kernels with compact support, such as those based on spline functions,

are often used for computational efficiency. For example, [17] developed a

kernel function based on cubic spline functions:

W (q, h) =
σ

hv



1− 3
2
q2 + 3

4
q3 if 0 ≤ q ≤ 1

1
4

(2− q)3 if 1 ≤ q ≤ 2

0 if q > 2

(2.5)

where q = |r−r′|
h

, v is the number of dimensions, and σ is a normalization

constant with values 2
3
, 10

7π
, and 1

π
in one, two, and three dimensions, respec-

tively. This kernel has compact support; the second derivative is continuous;

and the dominant error term in the integral interpolant (i.e., equation (2.2))

is O (h2). The choice of the kernel function is instrumental for the success

of SPH. Basically, kernel functions should satisfy conditions such as positiv-
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ity, compact support, unity, and monotonicity. Details of the construction of

kernel functions can be found in Chapter 3 of [32].

The integral interpolant is then approximated by summation interpolant

in SPH:

As (r) =
∑
b

mb
Ab
ρb
W (r− rb, h) (2.6)

where the summation is taken over all particles b. Particle b has mass mb,

mass density ρb, velolcity vb and location rb. Any quantity A at location rb is

denoted by Ab. For example, the density can be estimated by equation (2.6)

as

ρ (r) =
∑
b

mbW (r− rb, h) (2.7)

2.1.2 SPH Approximation of The First Derivative of A

Field Function

Now, consider the integral interpolant expression for the gradient of any func-

tion A (r):

∇AI (r) =

∫
∇A (r′)W (r− r′, h) dr′

Using integration by parts and neglecting the part of surface integrals, the

above equation becomes

∇AI (r) =

∫
A (r′)∇W (r− r′, h) dr′ (2.8)

12



Therefore, summation approximation gives

∇As (r) =
∑
b

mb
Ab
ρb
∇W (r− rb, h) (2.9)

Equation (2.9) demonstates the fundamental difference of SPH compared with

mesh-based numerical methods in approximating the differential operator - the

SPH derivative of any function is obtained by differentiating the kernel - rather

than by using finite difference, finite element, or finite volume expressions

caculated from a grid.

2.1.3 Alternative SPH Approximations of First Deriva-

tives

Based on the integral and summation approximations described in section

2.1.2, SPH formulations of partial differential equations (PDEs) can be de-

rived. In fact, there are numerous ways to derive SPH formulations of PDEs

in addition to simply employing equation 2.9. For example, if we write

∇A =
1

g
(∇ (gA)− A∇g) (2.10)

where g is a differentiable function. The corresponding summation interpolant,

based on (2.9), is

∇Aa =
1

ga

∑
b

mb
gb
ρb

(Ab − Aa)∇aWab (2.11)

13



where ∇aWab denotes the gradient of W (ra − rb, h) with respect to the coor-

dinate of the particle a. Note that if we let g ≡ 1, (2.11) becomes

∇Aa =
∑
b

mb

ρb
(Ab − Aa)∇aWab (2.12)

If we let g ≡ ρ, (2.11) becomes

∇Aa =
1

ρa

∑
b

mb (Ab − Aa)∇aWab (2.13)

Instead of writing the first derivatives as in (2.10), we can also write

∇A = g

[
∇
(
A

g

)
+
A

g2
∇g
]

(2.14)

Based on (2.9), the corresponding summation interpolant is

∇Aa = ga
∑
b

mb

ρb
gb

(
Ab
g2
b

+
Aa
g2
a

)
∇aWab (2.15)

Let g ≡ ρ, (2.15) becomes,

∇Aa = ρa
∑
b

mb

(
Ab
g2
b

+
Aa
g2
a

)
∇aWab (2.16)

One good propertie of the equations (2.15) - (2.16) , is that quantities A

appear in paired particles. Also note that the approximations of (2.11) - (2.13)

are exact for A being a constant function, which property is not satisfied by

approximations (2.9) and (2.15) - (2.16).
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2.2 SPH Discretization of Lagrangian Fluid

Equations and Related Algorithms

2.2.1 The Euler equations in Lagrangian form

Based on the laws of conservation of mass, momentum, and energy, the Eu-

ler equations in Lagrangian form can be derived. Specifically, based on the

conservation of mass, the continuity equation is derived as

Dρ

Dt
= −ρ∇ · v (2.17)

where D
Dt

denotes total time derivative and v is the velocity field. Similarly,

conservation of momentum leads to the momentum equation:

Dv

Dt
= −1

ρ
∇P (2.18)

where P is the pressure. Finally, the conservation of energy leads to the

thermal energy equation:

Du

Dt
= −P

ρ
∇ · v (2.19)

where u is the thermal energy. We have assumed no viscosity and body forces

such as graviational forces. Note that to close the system, an equation of state

(EOS) such as u = f (P, ρ), is required.
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2.2.2 SPH approximations of Euler equations

There exist numerous forms of SPH approximations of the continuity, momen-

tum, and energy equations, each of which may carry its own advantages and

disadvanges. Therefore, the choice of which form to use depends on individual

problems. This concept applies to all SPH approximations of PDEs.

The continuity equation can be replaced by approximation of densities. We

have seen the most simple density approximation in SPH from equation (2.7),

that is, for particle a,

ρa =
∑
b

mbWab (2.20)

This estimate is usually called the summation density, which states that the

density of particle a is approximated as the weighted average of the densities

of the particles inside the support domain of particle a. However, this ap-

proach has its deficiencies when particle a is near boundaries, free surface, or

interfaces. For example, since there may not be particles outside the bound-

aries, the weighted sum gives spurious numerical approximations to the true

density. An alternative to estimate density can be derived by using equation

(2.13) with the continuity equation (2.17),

Dρa
Dt

=
∑
b

mbvab∇aWab (2.21)

where vab = va−vb. With this continuity density estimate, the initial density

needs to be set and density will only change when particles move relative to

each other. As a result, particles near interfaces will have correct approxima-
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tions of densities. One additional advantage of this approach is that rates of

change of all physical variables can be computed in one subroutine and there

is no need to compute density before other variables, thus saves computational

cost and suits computation over parallel processors.

One popular form for the momentum equation can be obtained by employ-

ing equation (2.16),

Dva
Dt

= −
∑
b

mb

(
Pb
ρ2
b

+
Pa
ρ2
a

)
∇aWab (2.22)

This approximation is frequently used because it is symmetric in that the force

on particle a from particle b is the same as the force on particle b from particle

a. Consequently, linear and angular momentum are conserved. Note that

artificial viscosity (Π) and external forces such as gravity (g) can be modeled

in SPH by rewriting (2.22) as follows (see [14] for details).

Dva
Dt

= −
∑
b

mb

(
Pb
ρ2
b

+
Pa
ρ2
a

+ Πab

)
∇aWab + g (2.23)

Using equation (2.13), we can write down the approximation for the equation

of energy (2.19):

Dua
Dt

=
Pa
ρ2
a

∑
b

mbvab · ∇aWab

Or if the thermal energy equation (2.19) is rewritten as

Du

Dt
= −∇

(
Pv

ρ

)
+ v · ∇

(
P

ρ

)
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Then the thermal energy equation for particle a can then be approximated

using (2.13) as

Dua
Dt

=
∑
b

mb

(
Pb
ρ2
b

)
vab · ∇aWab

By taking the average of the previous two apporximations, we have

Dua
Dt

=
1

2

∑
b

mb

(
Pb
ρ2
b

+
Pa
ρ2
a

)
vab · ∇aWab (2.24)

which has the same symmetric factors as equation (2.22).

2.2.3 Moving the particles

Particles can be moved according to either

Dra
Dt

= va (2.25)

or the XSPH variant ( [18])

Dra
Dt

= va + ε
∑
b

mb

(
vba
ρ̄ab

)
Wab (2.26)

where ρ̄ab = ρa+ρb
2

and ε with 0 ≤ ε ≤ 1 is a constant. The XSPH variant

moves a particle with a velocity that is closer to the average velocity in its

neighborhood, which prevents particles from penetrating each other.
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2.2.4 Time Integration

Various time integration schemes have been adopted in SPH such as the

Predictor-corrector algorithm ( [18]), the Verlet algorithm ( [35]), and the

Symplectic algorithm ( [36]). We describe the Predictor-Corrector algorithm

here as it is the underlying time-stepping scheme for the SPH simulations

presented later in this chapter.

Consider the continuity equation, the equations of momentum and energy,

and the equation for mvoing particles in the following form:

Dρa
Dt

= Aa

Dva
Dt

= Ba

Dua
Dt

= Ca

Dra
Dt

= Da (2.27)

where the calculations are with respect to particle a. The Predictor step gives

ρ
n+ 1

2
a = ρna +

∆t

2
Ana

v
n+ 1

2
a = vna +

∆t

2
Bn
a

u
n+ 1

2
a = una +

∆t

2
Cn
a

r
n+ 1

2
a = rna +

∆t

2
Dn
a (2.28)

And the equation of state is used to predict pressure: P
n+ 1

2
a = f

(
ρ
n+ 1

2
a , u

n+ 1
2

a

)
.

These values are then corrected in the Corrector step using forces at half time
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step (n+ 1
2
):

ρ
n+ 1

2
a = ρna +

∆t

2
A
n+ 1

2
a

v
n+ 1

2
a = vna +

∆t

2
B
n+ 1

2
a

u
n+ 1

2
a = una +

∆t

2
C
n+ 1

2
a

r
n+ 1

2
a = rna +

∆t

2
D
n+ 1

2
a (2.29)

At the end of the time step, values are computed as

ρn+1
a = 2ρ

n+ 1
2

a − ρna

vn+1
a = 2v

n+ 1
2

a − vna

un+1
a = 2u

n+ 1
2

a − una

rn+1
a = 2r

n+ 1
2

a − rna (2.30)

And the pressure is updated by the equation of state: P n+1
a = f (ρn+1

a , un+1
a ).

2.2.5 Modelling Solid Boundaries

In SPH the solid boundary is described by a set of discrete boundary parti-

cles. These solid boundary particles are modeled to avoid penetration by fluid

particles. There are several methods to achieve the expected repulsion, and

we review three in this section.
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Quasi-fluid boundary particles

[33] proposed to model boundary particles such that their physical properties

are evolved to satisfy the same equations as fluid particles during simula-

tion. To be specific, the boundary particles are placed on the boundary and

they follow the momentum equation (equation (2.22)), the continuity equa-

tion (equations (2.20) or (2.21)), the energy equation (equation (2.24)), and

the equation of state. However, these boundary particles remian fixed in po-

sition, or move according to certain externally given functions in the case of

moving solid boundaries such as wave makers (i.e., they do not move according

to equations (2.25) or (2.26)). Since the physical properties of the boundary

particles evolve in the same way as the fluid particles but they are either fixed

in position or move in a prespecified trajectory, these boundary particles are

called “quasi-fluid boundary particles”. Consider the equation of state that is

used to simulate incompressible fluid such as water in SPH (see [19] for details

of this equation of state):

P = B

[(
ρ

ρ0

)γ
− 1

]
(2.31)

Consequently, when a fluid particle approaches the boundary the density of

the boundary particles increase according to the continuity equation (equations

(2.20) or (2.21)), resulting in a pressure increase based on the equation of state

(2.31). As a result, the force exerted on the fluid particle increases due to the

pressure term
(
P
ρ2

)
in the momentum equation (equation (2.22)).

21



Repulsive boundary particles

In [19], solid boundaries are described by boundary particles which exert ex-

ternal forces on fluid particles. Unlike quasi-fluid boundary particles, whose

physical properties are updated, states of the repulsive boundary particles re-

main constant throughout the entire simulation. On the other hand, whether

and how the replusive boundary particles contribute to the particle approxi-

mation for the fluid particles are problem-dependent.

The form for the force is the Lennard-Jones force. Specifically, for a bound-

ary particle and fluid particle separated by a distance r = |r| the force per

unit mass f (r) is specified as

f (r) =


D
[(

r0
r

)p1 −
(
r0
r

)p2
]

r
r2 if r ≤ r0

0 if r > r0

(2.32)

where the constants p1 and p2 must satisfy the condition p1 > p2, and usually

p1 = 4 and p2 = 2 or p1 = 12 and p2 = 6 are specified. The choice of the cutoff

distance r0 is important since if r0 is too large then some particles may feel

the influence of the boudary particles in the initial distribution, and introduce

unnecessary initial disturbance. On the other hand, if r0 is too small, some

particles may have penetrated the boundary before they feel the repulsive force.

As a result, r0 is often set to be the initial particle spacing. The coefficient

D is problem-dependent (see [19] for details). Note that since f (r) = 0 when

r > r0, the boundary force is purely repulsive. After summing up all the

forces of the boundary particles k on the given particle a (i.e., fa =
∑

k fak),
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the momentum equation becomes

Dva
Dt

= −
∑
b

mb

(
Pb
ρ2
b

+
Pa
ρ2
a

)
∇aWab + fa (2.33)

Mirror boundary particles

[34] introduced mirror particles to reflect a symmetrical surface boundary

condition. The mirror particles are constructed in the following way. For

a given fluid particle a , if it is located within the distance of κh from the

boundary, a mirror particle is then placed symmetrically on the outside of the

boundary. For example, for plane boundaries in the Cartesian coordinate, the

mirror particles are simply reflected to the other side of the plane (see Figure

2.1 for the case κ = 2). Nevertheless, for arbitrary shaped boundaries, the

mirroring needs to be performed pointwise by considering the local tangent

plane.

Similar to repulsive boundary particles, mirror boundary particles do not

evolve their physical properties. Mirror boundary particles are generated at

every time step by reflecting nearby fluid particles (if any) across the solid

boundary and their physical properties are deduced from the corresponding

fluid particles. There are many ways in doing this. For example, we can assign

the density and pressure of the fluid particles directly to the corresponding

mirror boundary particles, and negate their velocity. Alternatively, we can

decompose the velocity of the fluid particle into normal (un) and tangential

(ut) velocity components, and assign to the corresponding mirror boundary
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Figure 2.1: 2D configuration of mirror particles. Black dots represent fluid
particles while gray dots represent mirror particles. We obtain this figure
from [32]: they use the term ”Ghost particles” for the mirror particles.

particle as follows:

unmirror
= −un; utmirror

= ut

.

Choice of Solid Boundary Particles

While there is no universally optimal choice for the modelling of solid bound-

aries, there are obvious trade-offs among them. For example, mirror boundary

particle carries the most accurate physical meaning of ”solid boundaries”, since

they are generated at each time step by reflecting both the location and states

of nearby fluid particles (if any). In this sense, they should be able to deliver

the most accurate results. However, the generation of mirror boundary parti-
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cles is usually a computationally intensive routine and has to be done at each

iteration of the simulation. Compared with quasi-fluid boundary particles and

repulsive boundary particles, which need to be generated only once during

initialization, the choice of using mirror boundary particles will slow down the

simulation.

However, both the quasi-fluid boundary particles and the repulsive bound-

ary particles do not carry the most accurate physical meaning in that they

are not located at the exact mirror position of nearby fluid particles. While

the quasi-fluid boundary particles update states by nearby fluid particles using

the SPH equations, they can be viewed as an approximate of mirror bound-

ary particles. As for the repulsive boundary particles, they require aritificial

parameters p1, p2, γ0, and D in (2.32), which is ad-hoc and it can be very

difficult to find the optimal parameters.

2.2.6 Cavitation Modelling

Hydrodynamic cavitation describes the process of vaporisation, bubble gen-

eration and bubble implosion. This occurs in a flowing liquid when the local

pressure declines to some point below the saturated vapor pressure of the liquid

and subsequent recovery above the vapor pressure.

In order to simulate the mercury splash from thimble (see section 2.4.1)

and the mercury jet experiments for Neutrino factory and muon collider (see

section 2.4.2), the cavitation needs to be modeled. The model we propose for

cavitation is based on critical pressure. The critical pressure (cp) is a pre-
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specified constant parameter in the simulation such that if a particle of index

i is updated to have pressure pi and pi ≤ cp, then pi is reset to zero after the

update. During the next time step, pi equals zero, and the nearby particles

which take particle i as a neighbour will use this value (zero) in the calculation

of the SPH derivatives. As a result, nearby particles which would have been

attracted near to partcile i in the case when the original value pi < 0 is used,

will not be pulled near to particle i in the case when pi is reset to 0. In the

latter case, those nearby particles may move away from particle i and this

helps the formation of cavitation bubbles. We will show the results in sections

2.4.1 and 2.4.2.

2.3 The Parallel SPH Code

The main body of the SPH code for solving the Euler equation was developed

by my teammate Tongfei Guo in 2011. The parallelization was also done by

Tongfei using the distributed memory parallelization model with MPI. The

modules he developed include the following:

1. Controller module

2. Storage module

3. Equation of state module

4. Initialization module

5. SPH Kernel module
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(a) Initial state (b) Jet hit the pool (middle
state)

(c) Jet hit the pool (end
state)

Figure 2.2: The simulation of a mercury jet entering into a mercury pool. Plot
courtesy Tongfei Guo [51].

6. Solver module

7. Bucket neighbour search and accmulator module

8. Time integration module

9. Parallelization module

Tongfei used the code to run simulations of nearly incompressible fluids, such

as the simulation of mercury jet entering into mercury pool. The results are

shown in Figure 2.2 (see [51] for the physics background of the simulation).

To run the simulations of the interactions of mecury with proton pulses, I

built on Tongfei’s code and add the following features to it:

1. The proposed cavitation model (see section 2.2.6)

2. The solid boundary modeled by mirror particles and repulsive particles

(see section 2.2.5)
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3. The grid-based visualization module

The simulation results of the mercury thimble splash present in section ??

are done with the mirror solid boundary particles and the visulization module

will be described in section 2.3.10. In addition to the listed items, during the

development of the SPH code, I have also added alternative implementations,

such as , different SPH kernels and forms of SPH discretization of the spatial

derivatives, to the code. The modules listed above are briefly described in the

following sections.

2.3.1 Controller module

The controller controls the work flow of the code. First it reads command

line inputs, and calls the initialization module to read input files. The major

task of the controller module is to create a loop from the initial time step to

the last time step, and call the time integration module at each time step.

Inside the loop, the controller calls some pre-and-post time integration rou-

tines. For example, before time integration, the lengh of time stepping needs

to be calculated (by the CFL condition), and after time integration a check

for outputting data for visualization is required.

2.3.2 Storage module

This storage module basically serves as the data storage center for all par-

ticle data. Particle data include location and all physical quantities such as

pressure, density, velocities, and thermal energy, and sound speed, of parti-
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cles. All other quantitities related to particles are also stored in this module,

such as the accumulated quantities of the product of some physical quantities

of the neighbouring particles and the SPH kernel derivative (which is com-

puted for the temporal derivative of some physical quantities such as density).

These data are saved using the primitive data structure - C arrays, to ensure

contiguous memory access, giving better efficiency of the code.

2.3.3 Equation of state module

The equation of state (EOS) calculates the pressure and the sound speed based

on the information of thermal energy and density. The code implements the

polytropic gas EOS and the stiffened polytropic gas EOS. All the simulations

done in section 2.4 are based on the stiffened polytropic gas EOS.

2.3.4 Initialization module

This module initializes the goemetry and the physical states of particles. Level

set fucntions and routines that generates particles in a cubic or hexagonal

packing are implemented for the initialization of particle geoemtry. Particles

states are initialized by specifying functions of any two quantities of pressure,

density, thermal energy, and using the EOS module to calculate the unspecified

one. A complete initialization also includes the assignment of velocities, and

reading all other quantities that are specified in the inputfile. Note that all

the above functionalities are hard-coded in the module, as a result, it becomes

necessary to reqrite code directly in the module. This is error-prone and should
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be avoided. The Lagrangian particle code introduced in section 3.3.2 takes care

of the initialization based on the design pattern abstract factory and prevents

this kind of modification, which yields a much safer code.

2.3.5 SPH Kernel module

The kernel module computes the SPH kernels and the SPH kernel derivatives.

It is called by the accmulator module with the input q in equation 2.5. There

are many kernel functions such as the cubic spline kernel (equation (2.5)). the

quadratic and quintic kernel functions. They are all implemented in the code

(see [32] for a review on SPH kernels).

2.3.6 Bucket neighbour search and accmulator module

The bucket neighobur search algorithm implements the algorithm introduced

in section 3.2.4, which requires only constant time for a particle to search

for its neighbours, if the fluid is nearly incompressible (i.e. the inter-particle

spacing is relatively constant). As a result, for all N particles to search for

neighbours, this algorithm runs in O(N) time.

In the compressible case, however, this algorithm fails and must be replaced

by other algorithms such as trees. The code only implements the bucket search

algorithm and is limited to simulations of weakly compressible fluids.

The accumulator module perfoms the SPH apporximations to the tem-

poral derivatives of physical quantities such as density (eqaution (2.21)) and

velocities (equation (2.22)). Different forms of SPH approximation to first
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derivatives (see section 2.1.3) are implemented in the module such that com-

binations can be made in the solver module.

Note that we discuss these two modules together since the accumulator

calculates the temporal derivatives at the time when neighbours are searched.

This saves space since no neighbour infomation needs to be saved. In the case

of constant neighbour search radius, the accumulator adds to both particles

when finding neighobours for one particle, due to the fact that each particle

takes the other as one of its neighbours. This yields a more efficient code with

clearly designed path of nearby buckets in the bucket search algorithm ( [17]).

2.3.7 Solver module

This module computes the SPH approximations for the Euler equation as

described in section 2.2.2. It solves for the SPH time derivative of pressure,

density, and velocities, based on equations (2.21), (2.22), and (2.24), which are

are computed by summing up the product of SPH kernel derivatives and some

combination of physical quantities of the neighbouring particles. In this mod-

ule, the summations are done by calling implementations of the accumulator

module that represent different SPH approximations to the Euler equation.

For instance, the momentum equation can be solved by equation (2.22) or

(2.23), which two forms are both implemented in the code.
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2.3.8 Time integration module

This module performs time integration for one time step based on algorithms

such as predictor-corrector and simpletic schemes. It calls the solver module in

between the middle updating steps. The code only implements the predictor-

corrector scheme.

2.3.9 Parallelization module

This module parallelizes the code using the distributed-memory model with

MPI. First the entire computational domain is divided into sub-domains which

is controlled by each distributed cores. Then buffer zones between any of

these sub-domains are generated. At the start of each time step, particles

lying inside the buffer zones are copied to the neighbouring sub-domains to

make each sub-domain self-sufficient sub-domains. That is, each core can

carry out all required computations during the update of one time step, such

as neighbour search and calling the accumulators. As a result, we obtain

updated quantities independently in each sub-domain. The particles in buffer

zone will be re-identified at the end of each time step, and at the begining of

the next time step, the updated information in buffer zones will be copied and

exchanged again. The exchange of information is done with MPI.

2.3.10 Grid-based visualization module

This module enables the use of contour plots in VisIt by transforming particle-

based vtk files to grid-based vtk files. Specifically, the normal output vtk files
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of SPH are based on particles, which cannot be visulaized in contour plots,

which functionality is provided only for grid-based vtk files. Contour plots

are necassary since it resolves interfaces better and enables visualization of

quantities inside the fluid objects (by slicing).

This module interpolates particle data to nodes on a regular grid using the

SPH kernel functions. That is, for each node in the regular grid it searches

nearby particles as neighbours and caculates the weighted average using SPH

kernel functions. The results can be seen in Figure 2.9, in which Figure 2.9(a)

is based on grid-based visualization and Figure 2.9(b) on particle-based visu-

alization.

2.4 Applications of SPH

In this section we validate SPH simulations of the interaction of mercury with

proton pulses. This research supported the high power accelerator target re-

search of the DOE Muon Accelerator Program (MAP).

Liquid metal targets for particle accelerators that convert intense proton

beams into neutrons or other particles important for fundamental studies and

applied studies. In collider-accelerators or neutrino factories, they are ex-

pected to enable new research in high energy / particle physics while in neu-

tron sources technological advances. The aim of the targetry group of MAP

is to explore the feasibility of high power targets for future particle accelera-

tors. Our group has performed mathematical modeling, software development

and simulations of liquid mercury jet targets interacting with high power pro-
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ton beams in magnetic fields. Simulations aimed to make predictions for the

first large targetry experiment at CERN called MERIT. The numerical simula-

tions aim to describe the hydrodynamic response of the target interacting with

proton pulses in magnetic fields and provide input for the design of reliable

targets. Previous simulations used FronTier, a multiphysics code with explicit

resolution of material interfaces based on front tracking. As FronTier simu-

lations were successful mostly in lower-power regimes, we used particle-based

SPH simulations to extend simulations to high energies and beyond projected

experimental conditions. The main conclusion of the targetry program is that

liquid mercury jet targets can reliably work in future accelerators and neutron

sources up to 8 MW power limit.

We compared the simulation results to the so called mercury thimble exper-

iments at the Brookhaven National Laboratory (BNL) and mercury jet target

experiment called MERIT performed at CERN. The reason for the success

will be described in the next section (section 2.5).

2.4.1 Mercury Thimble Experiments

In April 2001, Brookhaven National Laboratory (BNL) conducted series of

experiments on proton induced shocks using the Alternating Gradient Syn-

chrotron (AGS) beam (at energy 24 GeV) with different target configurations

such as a thimble (see [37] for details). The experimental layout of the mer-

cury thimble experiement is presented in Figure 2.3. Specifically, the volume

of the thimble excavated in a stainless steel bar is 1.3 cm3. It consists from
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Figure 2.3: The experimental layout of mercury thimble Figure courtesy: [37]
.

bottom to top of a half sphere (r = 6 mm), and a vertical cylinder (r = h = 6

mm). The mercury has a free surface in up-direction, where it can expand to.

The proton pulse has approximately Gaussian distribution and the intensity

range of 0.6 − 17 · 1012 protons at energy 24 GeV. The experimental results

include a high-speed photography of the liquid targets, which is to record the

shadow of the mercury, intercepting a laser light source, with a high speed

camera. Figure 2.4 demonstrates the photos of mercury splash resulted from

high-intensity proton beam (3.7 1012 protons). In addition to qualitatively

observe the shapes of mercury splash, the droplet velocities of the mercury

splashes resulted from proton-induced shocks with various beam parameters

were also recorded. These droplet velocities (free surface behaviours) were

observed with various proton beam parameters so that results from desired

scenarios (i.e. different beam parameters) can be extrapolated. Figure 2.5

depicts the droplet velocities versus various proton beam intensities.
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Figure 2.4: 2001 BNL experiment results of the mercury splash from thimble
at t = 0.08, 0.125, 0.7 ms after proton impact of 3.7 1012 protons, captured by
high-speed photography. Figure courtesy: [37]
.

Figure 2.5: Splash velocity of thimble and jet in the AGS beam. The splash
velocity in the case of the jet is about two times less than for the thimble.
Figure courtesy: [37]
.
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Figure 2.6: Temperature profile for the thimble, 24 GeV, 4 1012 protons/pulse.
Figure courtesy: [37]
.

The energy deposition of the thimble under the proton beam shock has been

simulated by the code MARS [] and the results has been presented in [37] (see

Figure 2.6). Based on the temperature profile shown in Figure 2.6, and the

transformations in Figure 2.7, the maximum pressure should be approximately

1.5 104 (bar) and we use the following formula to initialize the pressure profile

of the numerical simulation.

pmax exp

[
−
(

(y2 + z2)

0.16
+

(x− 0.6)2

2.7

)]
(2.34)

where pmax = 1.5 104 (bar) and the center of the semi-sphere of the thimble is

set to be the origin. The geometric configuration and the pressure profile are

depiced in Figure 2.8. Other settings include: density is is uniform (ρ = 13.534

(g/cm3)), and the EOS is used is stiffened polytropic gas with γ = 6, einf = 0

37



(a)

(b)

Figure 2.7: Isochoric increase of mercury temparature 2.7(a) and pressure
2.7(b) with increase of internal energy (data courtesy Sandia National Lab).
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(a) (b)

Figure 2.8: The geometric configuration and pressure profile of the mercury
thimble simulation. Figure 2.8(a) plots the thimble with energy deposited at
around (0.6,0,0), where is the peak of the Gaussian pressure distribution as
specified in (2.34). Figure 2.8(b) plots the pressure profile which only shows
the lower part (the semi-sphere part) of the thimble. The upper part of the
thimble (the cylinder part) is not shown only for visualization purposes.

and pinf = 47517 (bar).

Base on the above settings we run SPH simulations and show the free

surface behaviors in Figure 2.9. Compared with the photos in Figure 2.4,

they have similar mushroom shapes on top of the mercury column. Finally,

we present the droplet velocities in the z-direction in Figure 2.10. Note that

in Figure 2.5 droplet velocities under the intensity of 3.7 1012 is about 45

m/s. This corresponds to the simulated droplet velocities (see Figure 2.10)

under the condition that pmax = 15 kbar, which is around 42 m/s. From the

simulation results of the thimble mercury splash, we observed that the splash

velocity is sensitive to the value of the critical pressure used in the cavitation

model, as described in section 2.2.6. Good agreement with experimental data
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(a) Marcury surface (b) z-velocity, m/s

Figure 2.9: Simulation of the thimble experiment. Shape (left) and vertical
velocity (right) of the mercury splash column after 0.85 ms.
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Figure 2.10: Splash velocity of thimble observed from simulation results with
pmax equal to 10, 15, and 20 kbars.

was obtained for the critical pressure of 100 bar. This value was used in the

simulations shown in this section and all mercury jet simulations in the follwing

section.

2.4.2 Mercury Targets for Neutrino Factory and Muon

Collider

In this section, we report simulation results of the mercury jet interaction with

proton pulses in the neutrino factory and muon collider power regimes. The

4 MW beam of 8 GeV protons will be delivered in 150 bunches per second

for the neutrino factory and in 15 bunches per second for the muon collider.

20.8 teraproton bunches arrive at the neutrino factory target with the 6.67 ms
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Figure 2.11: Initial pressure distribution in cross-section of the mercury jet
due to neutrino factory beam energy deposition.

interval that is large compared to hydrodynamic time scales of the mercury

splash. In the case of the muon collider, 208 teraproton bunches arrive with the

time interval of 66.7 ms. Therefore it is sufficient to consider the interaction of

the mercury jet with only one proton pulse. We use the corresponding energy

deposition tables calculated at FNAL with the Monte Carlo code MARS (see

Figure 2.7). Assuming the isochoric regime of the energy deposition (the

deposition time scale is mush smaller than the hydrodynamic time scale), the

peak pressure is approximately 110 kbar in the muon collider target and 11

kbar in the target for the neutrino factory. The proton pulse enters the jet

under small angle and the energy deposition is not axially symmetric. The

energy deposition profile in the initial jet is shown in Figure 2.11.

After the energy deposition, strong pressure wave propagates to the jet

surface and reflects from the mercury - vacuum interface as a rarefaction wave.

Rarefaction waves focus in the center of the jet, break the liquid and create

an extensive cavitation zone. After the jet is disintegrated by cavitation and

surface instabilities, fragments of jet freely fly apart. The velocity of the

neutrino factory target splash is in the range of 15 - 35 m/s, with some small
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droplets reaching velocities of the order of 40 - 50 m/s (see Figures 2.12(a) and

2.12(b)). These velocities are in the same range as ones observed in MERIT

experiments. The exact comparison is not possible because of uncertainties

in the energy deposition and spot sizes. In the muon collider case, main

jet fragments disperse with the velocity of 90 - 110 m/s with some droplets

reaching much higher velocities (see Figure 2.12(c)). The simulation results

using 24 GeV, 12 teraprotons proton pulse is shown in Figure 2.13.

2.5 Limitations of SPH

2.5.1 Analysis of Accuracy

Approximation of field function

Assume that the function A is sufficiently smooth, we can apply Taylor series

expansion of A(r
′
) in the vicinity of r,

A(r
′
) = A(r) + A

′
(r)(r

′ − r) +
1

2
A

′′
(r)(r

′ − r)2 + · · · (2.35)

Substitute (2.35) into (2.2), and assume that

∫
Ω

W (r
′ − r, h)dr

′
= 1 (unity equation) (2.36)

and ∫
Ω

(r
′ − r)W (r

′ − r, h)dr
′
= 0 (symmetric kernel) (2.37)
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(a) Neutrino factory, 0.35 ms

(b) Neutrino factory, 1.0 ms

(c) Muon collider, 0.35 ms

Figure 2.12: Mercury jet dispersal after the deposition of 4 MW beam of 8
GeV protons. State of the neutrino factory jet target at 0.35 ms (a) and 1 ms
(b), and the muon collider target at 0.35 ms (c).
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Figure 2.13: Mercury target after interaction with 24 Gev, 12 teraproton pro-
ton pulse.
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Then the error introduced by (2.2) is

A (r) =

∫
A (r′)W (r− r′, h) dr′ +O

(
h2
)

(2.38)

unless higher order kernels are used. The error of the discrete approximation

(2.6) for (2.2), however, depends on how well the summations approximate

the integral. Following [22], we expand Ab by Taylor series expansion around

ra in (2.6), which yields

Aa =
∑
b

mb
Ab
ρb
Wab

= Aa
∑
b

mb

ρb
Wab +∇Aa

∑
b

mb

ρb
(rb − ra)Wab +O(h2) (2.39)

This shows that the SPH approximation of the field function A is truly second

order accurate if the following conditions hold:

∑
b

mb

ρb
Wab ≈ 1 (2.40)

and ∑
b

mb

ρb
(rb − ra)Wab ≈ 0 (2.41)

[22] argues that (2.41) is easier to satisfy than (2.40), since it requires only a

reasonably symmetric particle distribution. (2.40), however, depends strongly

on the particle distribution within kernel radius and the ratio of smoothing

radius to the particle spacing (∆p). In general, the above two conditions

are satisfied if the particle distribution is regular. To summarize, we quote
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from [22]:

Thus, maintaining a regular particle arrangement, together with

an appropriate choice of h
∆p

, can be very important in obtaining

accurate results in SPH.

Approximation of First Derivatives

Based on the theorem of integration by parts, we have

∇A(r) =

∫
S

A(r′)W (r′ − r, h) · ndS −
∫
A(r′)∇W (r′ − r, h)dr′ (2.42)

Assume even kernel, that is,

∫
S

f(r′)W (r′ − r, h) · ndS = 0 (2.43)

for any function f , Then apply (2.35) to (2.42), we have

∇A(r) = A(r)

∫
∇W (r− r′, h)dr′

+∇A(r)

∫
(r′ − r)∇W (r− r′, h)dr′ +O(h2) (2.44)

Since even kernel is assumed,

∫
∇Wdr′ =

∫
S

1 ·W · ndS −
∫

1′ ·Wdr′

= 0− 0 = 0 (2.45)
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By integration by parts,

∫
(r′ − r)kW (r′ − r, h)dr′ =

1

k + 1

∫ [
(r′ − r)k+1

]′
W (r′ − r, h)dr′

=
1

k + 1
[

∫
S

(r′ − r)k+1W (r′ − r, h) · ndS

−
∫

(r′ − r)k+1W ′(r′ − r, h)dr′]

= − 1

k + 1

∫
(r′ − r)k+1W ′(r′ − r, h)dr′ (2.46)

Then if we assume that (2.36) is satisfied, we have
∫

(r′−r)∇W (r−r′, h)dr′ =

1. The resulting error of equation (2.44) is therefore truly second order if (2.36)

and (2.45) hold.

Similar to the previous subsection, the errors of equation (2.9) can be found

by expanding Ab in a Taylor series around ra. That is,

∇As (ra) =
∑
b

mb
Ab
ρb
∇aWab

= Aa
∑
b

mb

ρb
∇aWab +∇aA

∑
b

mb

ρb
(rb − ra)∇aWab +O(h2) (2.47)

Note that the summations in (2.47) approximate the integrals in (2.44). As a

result, the errors resulted from (2.9) depends on how well these integrals are

approximated by these summations. That is, how well the following conditions

hold. ∑
b

mb

ρb
∇aWab ≈ 0 (2.48)
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and ∑
b

mb

ρb
(rb − ra)∇aWab ≈ 1 (2.49)

Discussion on SPH First Derivatives

Note that we can have exact SPH first derivative for constant functions if we

subtract the first term in (2.47). That is,

∇As (ra) =
∑
b

mb
(Ab − Aa)

ρb
∇aWab (2.50)

We can even have the SPH first derivative for linear functions by solving

χ∇aA =
∑
b

mb
(Ab − Aa)

ρb
∇aWab (2.51)

where

χ ≡
∑
b

mb

ρb
(rb − ra)∇aWab (2.52)

Nevertheless, none of the above forms of SPH derivatives correspond to

that which conserves momentum (see [22] for details) is:

∇Aa = ρa
∑
b

mb

(
Ab
ρ2
b

+
Aa
ρ2
a

)
∇aWab (2.53)

Note that (2.53) is the same as (2.16) with g replaced with ρ. Expanding Ab

in a Taylor series around ra in (2.53), we have

ρaAa
∑
b

mb

(
1

ρ2
b

+
1

ρ2
a

)
∇aWab+∇Aaρa

∑
b

mb

ρ2
b

(rb−ra)∇aWab+O(h2) (2.54)
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Although we could substract the first term in (2.54) to make the approximation

exact for constant functions, it will no longer conserve momentum. However,

with more less ”accurate” SPH derivatives such as (2.53), local conservation of

momentum between particle pairs is reserved and thus parpticle distribution

will remain more ”regular” during simulation. This is why for non-linear

problems such as those that run for a long time or involve strong shocks,

conservation of momentum is more important than linear errors - since the

conservation of momentum results in more stability and the corresponding

derivatives may be more accurate than those with less linear errors due to a

more regular particle distribution.

Relation of SPH to Hamiltonian Dynamics of Particles

The reason why SPH produces stable and reasonable results for certain prob-

lems, despite using inaccurate and non-convergent discretization of differen-

tial operators, is its connection to the Lagrangian / Hamiltonian dynamics

of particles [22]. In particular, the traditional discrete SPH equations for the

compressible Euler equations are not accurate, but they accurately represent

equations of the Lagrangian dynamics of particles interacting via isentropic

potentials. The Lagrangian and Hamiltonian properties are also responsible

for the long term stability of the traditional SPH. But the Hamiltonian dy-

namics of particles only approximately represent the dynamics of continuum

hydrodynamic systems, and the isentropic interaction energy places additional

restrictions.
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Chapter 3

A New Lagrangian Particle

Method

3.1 Governing Equations

Consider the one-dimensional Lagrangian formulation of the Euler equations,

written in the conservative form [6,7]

U
′

t +
[
F (U

′
)
]
x

= 0, (3.1)

U
′
=


V

u

E

 , F (U
′
) = V


−u

P

Pu

 , (3.2)

where V is the specific volume, u is the velocity, E is the specific total energy,

and P is the pressure.
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Assume that the equation of state (EOS) is of the form e = f (P, V ), where

e is the specific internal energy, e = E − u2/2. Equations (3.1) and (3.2) can

be written using U = [V u P ]T as the state vector

Ut + A(U)Ux = 0, (3.3)

U =


V

u

P

 , A(U) = V


0 −1 0

0 0 1

0 K 0

 , (3.4)

where

K =

(
P +

∂e

∂V

)/
∂e

∂P
. (3.5)

For example, using the polytropic gas EOS

e =
PV

γ − 1
, (3.6)

where γ is the ratio of specific heats, we obtain

A(U) = V


0 −1 0

0 0 1

0 ( c
V

)2 0

 , (3.7)

where c =
√
γPV is the speed of sound. Using the stiffened polytropic gas

EOS

e =
(P + γPinf)

γ − 1
− einf, (3.8)
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where the sound speed is calculated by

c =
√
γ(P + Pinf)V (3.9)

K is the same as in the case of polytropic gas EOS (i.e. k = ( c
V

)2). Note that

the transformation is exact (i.e. not a result of linerization). If the matrix A

is diagonalized as A = RΛR−1, equations (3.3) and (3.4) become

Ut +RΛR−1Ux = 0,

R−1Ut + ΛR−1Ux = 0, (3.10)

where

R−1 =


1 0 1

K

0 − 1
2
√
K
− 1

2K

0 1
2
√
K
− 1

2K

 , R =


1 1 1

0 −
√
K
√
K

0 −K −K

 ,

Λ = V


0
√
K

−
√
K

 (3.11)

Based on the governing equations (3.10) and (3.11), we have developed sta-

ble, particle-based, upwinding numerical schemes for the system of Euler’s

equations. Details are described in the next section.
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3.2 Numerical Discretization and Main Algo-

rithms

3.2.1 Discrete Lagrangian Equtions

To solve numerically the hyperbolic system of PDE’s (3.10) and (3.11), the

medium (compressible fluid or gas) is discretized by a distribution of particles.

Each particle represents a Lagrangian fluid cell of equal mass, and stores states

of the continuum medium such as the density (that is proportional to the

number density of Lagrangian particles), pressure, internal energy, velocity, as

well as material properties and pointers to data structures containing material

models, such as the EOS.

To construct a Lagrangian upwinding scheme, we represent the system

(3.10)-(3.11) in the following component-wise form

Vt +
1

K
Pt = 0, (3.12)

− 1

2
√
K
ut −

1

2K
Pt = −V

√
K

[
− 1

2
√
K
ux −

1

2K
Px

]
, (3.13)

1

2
√
K
ut −

1

2K
Pt = V

√
K

[
1

2
√
K
ux −

1

2K
Px

]
. (3.14)

As K > 0 for a thermodynamically consistent EOS, equation (3.13) describes

waves propagating from left to right, and equation (3.14) describes waves prop-

agating from right to left. For an upwinding scheme, the spatial derivatives

ux and Px will be computed on stencils within the corresponding physical do-

mains of dependence. Adding the subscripts l and r to the spatial derivatives
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in equations (3.13) and (3.14), respectively, to indicate that these terms, in

the discrete form, will be computed using one-sided derivatives, and solving

for the temporal derivatives, we obtain

Vt =
V

2
(uxr + uxl)−

V

2
√
K

(Pxr − Pxl) , (3.15)

ut =
V
√
K

2
(uxr − uxl)−

V

2
(Pxr + Pxl) , (3.16)

Pt = −V K
2

(uxr + uxl) +
V
√
K

2
(Pxr − Pxl) . (3.17)

Note that these one-sided derivatives Pxr, Pxl, uxr, and uxl, are computed based

on neighbouring particles which are to-the-right or to-the-left of the particle

of interest. For example, to compute Pxr and uxr, only the neighbouring

particles to-the-right of the particle of interest are utilized. This concept easily

generalizes to higher dimensions.

An important component of a particle-based numerical scheme is the cal-

culation of differential operators based on states at the location of particles.

In Section 3.3, we describe in detail a method for both numerical differenti-

ation and interpolation based on local polynomial fitting. In this section, we

simply assume that we can compute numerical approximations of differential

operators with a desired degree of accuracy on particle-based stencils located

in the physical domains of dependance.

The first-order (O(∆t,∆x) upwinding discretization of the system (3.15-

3.16) is obtained by the first-order discretization of spatial derivatives based

on the local polynomial fitting, and the first-order discretization of temporal
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derivatives of the state (V, u or P ) at the location of particle j,

staten+1
j − statenj

∆t
.

After the updates of states of each Lagrangian particle, particles are advanced

by a mixture of the forward Euler scheme and backward Euler scheme:

xn+1 − xn

∆t
=

1

2

(
un + un+1

)
(3.18)

The first order schemes is stable, provided that the standard CFL condition

is satisfied: dt <= l/max(c, u), where l is the smallest interparticle distance.

To reduce the amount of numerical diffusion of the first-order scheme and to

obtain a higher order scheme, we propose a modified Beam-Warming scheme

for the Lagrangian particle system. For the same reason as in the original work

on the Beam-Warming method [23], an additional term is added to equation

(3.3):

Ut + A(U)Ux −
∆t

2
A2(U)Uxx = 0

⇒ Ut = −RΛR−1Ux +
∆t

2
RΛ2R−1Uxx

⇒ R−1Ut = −ΛR−1Ux +
∆t

2
Λ2R−1Uxx (3.19)
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Equations (3.13) and (3.14) then become

− 1

2
√
K
ut −

1

2K
Pt = −V

√
K

[
− 1

2
√
K
uxl −

1

2K
Pxl

]
+

∆t

2
V 2K

[
− 1

2
√
K
uxxl −

1

2K
Pxxl

]
(3.20)

1

2
√
K
ut −

1

2K
Pt = V

√
K

[
1

2
√
K
uxr −

1

2K
Pxr

]
+

∆t

2
V 2K

[
1

2
√
K
uxxr −

1

2K
Pxxr

]
(3.21)

Solving equations (3.12), (3.20) and (3.21) yields

Vt =
V

2
(uxr + uxl)−

V

2
√
K

(Pxr − Pxl)

+
∆t

4

[
V 2
√
K (uxxr − uxxl)− V 2 (Pxxr + Pxxl)

]
(3.22)

ut =
V
√
K

2
(uxr − uxl)−

V

2
(Pxr + Pxl)

+
∆t

4

[
V 2K (uxxr + uxxl)− V 2

√
K (Pxxr − Pxxl)

]
(3.23)

Pt = −V K
2

(uxr + uxl) +
V
√
K

2
(Pxr − Pxl)

+
∆t

4

[
−V 2K

3
2 (uxxr − uxxl) + V 2K (Pxxr + Pxxl)

]
(3.24)

Note that in both equations (3.15) and (3.22), Vt can be calculated by the

relation: Vt = −Pt

K
. By discretizing spatial derivatives using the second order

local polynomial fitting, as described in Section 3.3, we obtaine numerical

scheme that is second order in both time and space, O(∆t2,∆x2,∆t∆x), and

conditionally stable. The CFL condition is simlar to the one of the grid-based

Beam-Warming scheme: in 1D, dt <= 2l/max(c, u). Note that time steps can
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be twice larger compared to the first-order scheme.

3.2.2 Time Integration and Directional Splitting

In this section, we focus on details of multidimensional schemes. We present

explicit formulas for equations in the three-dimensional space. The system in

the two-dimensional space is obtained by obvious reductions.

In the three-dimensional space, the conservative form of the Lagrangian

formulation of the Euler equations is:

U
′

t +
[
F1(U

′
)
]
x

+
[
F2(U

′
)
]
y

+
[
F3(U

′
)
]
z

= 0, (3.25)

where

U
′
=

[
V u v w E

]T
,

F1(U
′
) = V



−u

P

0

0

Pu


, F2(U

′
) = V



−v

0

P

0

Pv


, F3(U

′
) = V



−w

0

0

P

Pw


. (3.26)

Assuming that the EOS is of the form e = f (P, V ) and using U = [V u v w

P ]T as the state vector, we can rewrite the equations in the following form

Ut + A1Ux + A2Uy + A3Uz = 0, (3.27)
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where

U =



V

u

v

w

P


, A1 = V



0 −1 0 0 0

0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

0 K 0 0 0


,

A2 = V



0 0 −1 0 0

0 0 0 0 0

0 0 0 0 1

0 0 0 0 0

0 0 K 0 0


, A3 = V



0 0 0 −1 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

0 0 0 K 0


, (3.28)

where K is defined in equation (3.5). We solve the system of hyperbolic PDEs

(3.27 - 3.28) by using the directional splitting method by Strang [24]. Specif-

ically, instead of solving equation (3.27), one solves separately the following

three system of PDEs:

Ut + 3A1Ux = 0, (3.29)

Ut + 3A2Uy = 0, (3.30)

Ut + 3A3Uz = 0, (3.31)
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which is equivalent to solving

U1t + 3AU1x = 0, (3.32)

U2t + 3AU2y = 0, (3.33)

U3t + 3AU3z = 0, (3.34)

where

U1 =


V

u

P

 , U2 =


V

v

P

 , U3 =


V

w

P

 , A = V


0 −1 0

0 0 1

0 K 0

 . (3.35)

Each of the three system of equations (3.32) - (3.34) is solved by the techniques

introduced in section 3.2.1, and the solutions are combined in the following

order



V

u

v

w

p



(0)

(3.32)
−−−→



V

u

v

w

p



( ∆t
6

)

(3.33)
−−−→



V

u

v

w

p



( 2∆t
6

)

(3.34)
−−−→



V

u

v

w

p



( 4∆t
6

)
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(3.33)
−−−→



V

u

v

w

p



( 5∆t
6

)

(3.32)
−−−→



V

u

v

w

p



(∆t)

(3.36)

where ∆t denotes one discrete time step satisfying the CFL condition. The

Strang splitting method maintains the second order of accuracy if the accuracy

of each step is not lower than second, making it unnecessary for the first order

numerical scheme. To implement the modified Beam-Warming scheme within

the Strang splitting steps (3.32) - (3.34), we solve the following equations

U1t + 3

(
AU1x −

∆t

2
A2U1xx

)
= 0, (3.37)

U2t + 3

(
AU2y −

∆t

2
A2U2yy

)
= 0, (3.38)

U3t + 3

(
AU3z −

∆t

2
A2U3zz

)
= 0. (3.39)

The solutions to equations (3.37) - (3.39) are then combined by equation (3.36)

to obtain the complete second order solution to equation (3.27).

Note that the five-phase updating scheme (3.36) is in the order of xyzyx.

In order to prevent systematic error resulting from a constant order of update,

random ordering of update should be utilized. To be specific, we assign uniform

probability to each of the following six order of update: xyzyx, xzyzx, yxzxy,

yzxzy, zxyxz, and zyxyz.
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3.2.3 Local Polynomial Fitting

The local polynomial fitting on arbitrary sets of points has long been used to

obtain approximation of functions and their derivatives. Details of the method

and its accurracy is discussed in [25, 27, 28]. Generally, νth order derivative

can be approximated with (n − ν + 1)th order of accuracy using nth order

polynomial. For simplicity, a 2D example is discussed here. In the vicinity of

a point 0, the function value in the location of a point i can be expressed by

the Taylor series as

Ui = U0 +hi
∂U

∂x

∣∣∣∣
0

+ki
∂U

∂y

∣∣∣∣
0

+
1

2

(
h2
i

∂2U

∂x2

∣∣∣∣
0

+ k2
i

∂2U

∂y2

∣∣∣∣
0

+ 2hiki
∂2U

∂x∂y

∣∣∣∣
0

)
+ . . .

(3.40)

where, Ui and U0 are the corresponding function values in the location of points

i and 0, hi = xi − x0, ki = yi − y0, and the derivatives are calculated in the

location of the point 0. A polynomial can be used to approximate the original

function and we employ a second order polynomial in this example:

Ũ = U0 + hiθ1 + kiθ2 +
1

2
h2
i θ3 +

1

2
k2
i θ4 + hikiθ5 (3.41)

Here, the variables θ1, θ2, θ3, θ4 and θ5 are the estimates for ∂U
∂x

, ∂U
∂y

, ∂2U
∂x2 ,

∂2U
∂y2 , and ∂2U

∂x∂y
, respectively. In order to compute values of these variables,

we perform a local polynomial fitting using m >= 5 points in the vicinity of
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center point 0. The following linear system Ax = b



h1 k1
1
2
h2

1
1
2
k2

1 h1k1

h2 k2
1
2
h2

2
1
2
k2

2 h2k2

...
...

...
...

...

hn kn
1
2
h2
n

1
2
k2
n hnkn





θ1

θ2

θ3

θ4

θ5


=



U1 − U0

U2 − U0

...

Un − U0


, (3.42)

is usually overdetermined. As a proper selection of a neighborhood is impor-

tant for accuracy and stability, neighbor search algorithms used in our upwind

solvers are described in the next subsection.

An optimal solution to (3.42) is a solution x that minimizes the L2 norm

of the residual, i.e.,

min
x
‖Ax− b‖2, (3.43)

and the QR decomposition with column pivoting is employed to obtain x.

Suppose

A = Q

R
0

P T ,m ≥ n, (3.44)

where Q is an orthonomal matrix, R is an upper triangle matrix, and P is a

permutation matrix, chosen (in general) so that

|r11| ≥ |r22| ≥ · · · ≥ |rnn|. (3.45)
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Moreover, for each k,

|rkk| ≥ ‖Rk:j,j‖2 (3.46)

for j = k+ 1, · · · , n. One can numerically determine an index k, such that the

leading submatrix R11 in the first k rows and columns is well conditioned and

R22 is negligible:

R =

R11 R12

0 R22

 '
R11 R12

0 0

 (3.47)

Then k is the effective rank of A. Discussion about the numerical rank deter-

mination can be found in [29]. A simple way to determine numerical rank is

to set a tolerance ε and find the first k such that

Rkk < εR11. (3.48)

If there is such k, then the effective numerical rank is k− 1. The choice of ε is

set to be 10−3 or 10−2 in the numerical examples presented in later sections.

Note that simulation results are sensitive to the choice of ε in some cases (see

section 3.2.4 for examples). In general, based on the dynamic algorithm for

stencil selection, which is described in section 3.2.4, it often requires more

neighbours to obtain effective rank in the case of larger ε, but the spatial

derivatives calculated with larger ε’s are often more robust.

The solution for linear system (3.42) can be obtained as

x = P

 R−1
11 c1

0

 (3.49)
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where c1 is the first k elements of c = QT b. This can also be written as

x = A+b (3.50)

where

A+ = P

R−1
11 0

0 0

QT (3.51)

is the pseudoinverse of matrix A.

3.2.4 The neighbor Search Algorithm and Dynamic Sten-

cil Selection

In a simulation involving N Lagrangian particles, a new stencil of neighbors

- those particles used for solving equation (3.42) - is to be selected at the

begining of each time step for all the N particles. As a result, it is critical

that an efficient neighbor search algorithm is employed. The neighbor search

method is briefly introduced in the first subsection. While the neighbor search

is to obtain a group of particles lying within some pre-specified distance away

from the particle of interest, it is not necessary that all these neighbors are used

in numerical stencils. The selection process of stencil points from neighbors to

ensure the accuracy and stability is discussed in the second subsection.

Neighbor Search Algorithms

One of the main advantagees of the Lagrangian particle method compared to

grid-based methods is its ability to simulate large and extremely non-uniform
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domains. By a non-uniform domain we mean a domain in which only a small

fraction of the total volume occupied by matter, found typically in astrophysics

and high energy density physics, and other applications dealing with dispersed

fragments of matter. For these applications, we use 2k-tree neighbor search

algorithms [30]. The 2k-tree is a tree data structure in a k-dimensional space

in which each node has at most 2k dependents. Quadtree and octree are the

standard terms in 2D and 3D spaces, respectively. The tree construction can

be performed with O(N logN) operation, N being the total number of parti-

cles. In this process, the choice of the tree depth is essential and the optimal

empirical number is four or five. After the construction step, the search of

a tree for obtaining the neighborhood of a particle can be performed with

O(logN) operation. The neighbour search algorithm based on quadtree/oc-

tree in the current code is developed by [45, 46] and is implemented by my

teammates Gaurish Telang and Kwangmin Yu.

However the 2k-tree method is not universally optimal for all types of

problems. If the computational domain is almost uniformly filled with a weakly

compressible matter in which inter-particle distances change insignificantly

during the simulation allowing the use of the same neighbor search radius for

all particles, the search of neighbors of a particle can be performed in constant

time using algorithms such as the bucket search algorithm [17]. Specifically, in

the bucket search algorithm the entire computational domain is divided into

square (cubic) cells of the side length equal to two times the search radius r.

For each particle inside a cell, only the neighboring cells need to be considered

in the search process. For instance, 9 and 27 cells, which include the cell in
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which the particle of interest resides, should be searched for neighbours in the

2D and 3D cases, respectively. Assuming that the number of particles within

each cell can be approximated by a constant upper bound M , the neighbour

search cost of a particle is therefore 9M and 27M in 2D and 3D, respectively.

Clearly, the bucket search method is not applicable if different search radii

must be used for different particles. The 2k-tree neighbor search algorithm is

more universal and applicable to a wide range of problems.

Dynamic stencil selection

After the neighbor search step, each particle obtains a list of neighbors which

lie within the range of a pre-specified search radius. To enforce upwinding,

however, only one-sided information should be used when solving equation

(3.42). For the calculation of one-sided derivatives, each particle will, in gen-

eral, have four one-sided neighborhoods in two-dimensions, and six one-sided

neighborhoods in three-dimensions.

Without loss of generality, the process of the dynamic stencil selection will

be discussed using an example of computing uxr. After gathering one-sided

neighbors, two main issues must be resolved for accurate evaluation of spatial

derivatives. The first one is related to the shape of the stencil. To begin

with, the list of one-sided neighbors is sorted by their distance from the center

particle in ascending order (i.e. the neighbour which is nearnest to the center

particle is sorted to be the first in the list). Suppose we obtain the following

sorted list of 9 one-sided neighbors of the particle 0 (i.e. the 9 particles which

reside within the disk with pre-specified search radius and with center particle
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0, and are to-the-right of particle 0) for computing uxr:

{p1u, p2u, p3l, p4u, p5u, p6u, p7l, p8u, p9l} .

Here the subscripts u and l indicate the upper and lower half-planes in the

y-direction: yi >= y0 and yi < y0, respectively. If a simple distance-based

algorithm picks up six neighbors, then the corresponding stencil is composed

of

{p1u, p2u, p3l, p4u, p5u, p6u} ,

thus producing a highly unbalanced stencil in terms of the shape. Therefore,

besides sorting neighbors in ascending order of the distance from the center

particle, the order is rearranged such that neighbors from the upper half and

lower half occur interchangeably in the list

{p1u, p3l, p2u, p7l, p4u, p9l, p5u, p6u, p8u}

The six-neighbor stencil now becomes:

{p1u, p3l, p2u, p7l, p4u, p9l}

This approach yields more balanced-in-shape stencils, and typically results in

more accurate spatial derivatives.

The second issue is the optimization of the number of neighbors for solving

equation (3.42). In the case of second order local polynomial fitting in 2D,
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for example, five neighbors are required to solve equation (3.42). However, as

equation (3.48) suggests, the effective rank of the matrix A in equation (3.42)

may be less than five if

Rkk < εR11, k = 2, 3, 4, 5 (3.52)

To avoid rank deficiency, a dynamic process for selecting neighbors into the

stencil is designed. First, select the tolerance parameter ε as in equation (3.48).

For the case of second order local polynomial fitting in 2D, one starts with six

or seven neighbors in the stencil. Based on this stencil, the QR decomposition

with column pivoting is calculated. Then determine the effective rank by

equation (3.48). If the effective rank is no less than five the stencil is completed.

Otherwise, the next neighbor in the neighbor list is added to the stencil. The

process continues until the effective rank is regained. For instance, in some

cases one may need to use eight neighbors to obtain an effective rank of five,

depending on the shape of the stencil and also the tolerance parameter ε.

In cases that we have run out of neighbours for a particle in a specific

direction, but still have not obtained the effective rank of the desired order

of polynomial fitting, the order of local polynomial fitting is lowered for this

particle in the given direction. For instance, suppose in 2D that a partcile

has only six neighbours to the right in the x-direction, and using all of the six

neighbours does not attain the required effective rank of 5 (for second-order

polynomial fitting). Lowering to first order local polynomial fitting requires

only an effective rank of two. As a result, we start by selecting, say 3 neighbors,
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into the stencil and repeat the dynmic stencil selection process - for first-order

polynomial fitting of this particle to the right in the x-direction. Once effective

rank is ensured we are done. The worst case occurs when effective rank is not

attained even for first order polynomial fitting. In such a case, we set all

spatial derivatives to zero for this particle to the right in the x-direction.

One important thing to note is that the dynamic stencil selection process

remembers the order of local polynomial fitting in a time step. To be specific,

in a time step suppose the order of update of the Strang splitting is xyzyx (3D

case). Suppose during the first update in the x-direction (the first phase), the

order of local polynomial fitting is lowered to the first order on the right, and

remain second order on the left, due to the process of dynmaic stencil selection

described above. For the second update in the x-direction (the fifth phase),

we will start the dynamic stencil selection from first order on the right. The

reason for memorizing the order of local polynomial fitting is obvious - the

neighborhood is the same during each time step, so does the effective rank of

the data matrix (the matrix A in equation (3.42)) in each direction.

Note that simulation results may be sensitive to the value of the tolerance

parameter ε. Figure 3.1 shows the results of the gas jet expansion into vacuum

(the details are described in section 3.4.4 and see Figure 3.1(a) for the geo-

metric configuration of the gas jet at time 0). Clearly, the choice of ε = 10−2

generates better results (spatial derivatives) than the choice of ε = 10−3 since

the gas/vacuum interface is much smoother in the former case. This may due

to the reason that in the case of ε = 10−2, more neighbours are often required

to obtain the effective rank. It does not mean that using more neighbours
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(a) t = 0.000 ms, p = 4.873 10−2 (bar)

(b) t = 0.007 ms, ε = 10−3 (c) t = 0.007 ms , ε = 10−3, (zoomed-in)

(d) t = 0.007 ms, ε = 10−2 (e) t = 0.007 ms , ε = 10−2, (zoomed-in)

Figure 3.1: Pressure value of the gas jet simulation for two different ε’s.
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always generates more robust derivatives, since using too many neighbours

will certainly smooth out the results. It simply says that using few neighbours

may produce less stable results. Note, however, that our algorithm uses much

smaller number of neighbor particles compared to the modified versions of SPH

such as Godunov-SPH, P-SPH, PHANTOM etc. that may require hundreds

of particles [21].

Variable Neighbour Search Radius

In the simulations of weakly compressible fluid, the inter-particle distance for

all particiles is relatively a constant. As a result, we can use a constant value

as the neighbour search radius for all particles during the entire simulation

process. As a result, for weakly compressible fluid, the number of neighbours

for most particles is relatively constant. This indicates that a constant value

for the neighbour search radius makes most particles continue to have enough

neighbours through the entire simulation process.

On the other hand, in simulations of highly compressible gas or fluid, the

inter-particle distance between particles changes in several orders of magni-

tudes during the simulation process. For instance, in the gas jet expansion

presented in section 3.4.4, the number density of particles changes from uni-

form to extremely non-uniform with particles near the center of the jet having

much larger number density than those on the free surface of the expansion.

Therefore, it is necessary to update the radius of neighbour search for all par-

ticles based on their own local number densities, because using a constant

value of search radius gives too many neighbours for particles in dense areas,
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while too less neighoburs for those in sparse regions. Note that based on the

dynamic stencil selection process described in section 3.2.4, having less than

necessary neighbours may lead to lowering the order of local polynomial fitting

when computing spatial derivatives.

We propose using the specific volume to update the neighbour search radius

for each particle at the end of every time step. To be specific, we propose

updating the neighbour search radius of particle of index i (ri) based on the

following formula:

rt+1
i = rti

(
V t+1
i

V t
i

) 1
3

(3.53)

where the superscript t denotes the t-th time step and V denotes the specific

volume. Figure 3.2 plots the updated values of inter-partcile spacing of the

simulation of the gas jet expansion into vacuum at time 0.0125 (ms) (see

section 3.4.4 for details). Note that the value of inter-particle spacing (spi) for

each particle of index i is some constant fraction of the value of the neighbour

search radius (ri). For example, in the simulations presented in this thesis,

ri = C spi where C = 3 or 4.

3.2.5 Limiters

The second order Lagrangian particle algorithm is dispersive. To eliminate

the resulting oscillations, two new types of limiters: limiter based on divided

difference and flux-limiter were developed and coupled with the numerical inte-

gration. The applications of the algorithm with the limiters are demonstrated

in section 3.4.
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(a) t = 0.000 ms, inter-particle spacing = 0.05

(b) t = 0.0125 ms (c) t = 0.0125 ms , (zoomed-in)

Figure 3.2: Inter-particle spacing of the simulation of jet expansion into vac-
uum.
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The Limiter Based on Divided Difference

Since the source of dispersion comes from regions containing high gradients

or discontinuities, it is desirable not to include information from these regions

when calculating the spatial derivatives. This is accomplished by removing

neighbors from regions containing discontinuities and using a reduced order in-

terpolating polynomial with smaller number of stencil points, thus introducing

diffusion instead of dispersion locally in the regions containing discontinuities.

Similarly to [31], we use the divided differences to detect the region that

contains discontinuities. However, while the method of divided differences is

used in [31] for choosing one of different stencils, it is employed in our work for

switching between high order and low order spatial derivatives. The k-th order

divided difference of function value V between the two particles at locations

xj− 1
2

and xj− 1
2

+k, k ≥ 1, is defined recursively as follows.

V
[
xj− 1

2
, . . . , xj− 1

2
+k

]
≡
V
[
xj+ 1

2
, . . . , xj− 1

2
+k

]
− V

[
xj− 1

2
, . . . , xj− 3

2
+k

]
xj− 1

2
+k − xj− 1

2

.

(3.54)

For the case of k = 1,

V
[
xj− 1

2
, xj+ 1

2

]
≡
V
(
xj+ 1

2

)
− V

(
xj− 1

2

)
xj+ 1

2
− xj− 1

2

. (3.55)

And for the case k = 2,

V
[
xj− 1

2
, . . . , xj+ 3

2

]
≡
V
[
xj+ 1

2
, xj+ 3

2

]
− V

[
xj− 1

2
, xj+ 1

2

]
xj+ 3

2
− xj− 1

2

. (3.56)
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One important property of divided differences is expressed as

V
[
xi− 1

2
, . . . , xi− 1

2
+k

]
=
V (k)(ξ)

k!
(3.57)

for some ξ inside stencil xi− 1
2
< ξ < xi− 1

2
+k, for some k ≥ 1, as long as the

function V (x) is smooth in this stencil. If V (x) is discontinuous at some point

inside the stencil, then

V
[
xi− 1

2
, . . . , xi− 1

2
+k

]
= O

(
1

∆xk

)
. (3.58)

As a result, a smaller divided difference indicates that the function V (x) is

smoother in a stencil, thus providing a convenient measure for smoothness.

Let the pressure p(xj) at particle location xj represent the average pressure

in the interval [xj− 1
2
, xj+ 1

2
]. Define the cumulative pressure P (xj) as

P (xj+ 1
2
) = P (xj− 1

2
) + p(xj)

(
xj+ 1

2
− xj− 1

2

)
, for j ≥ 0,

P (x− 1
2
) ≡ 0. (3.59)

For k ≥ 1, the divided difference of k-th order is computed recursively by

P
[
xj− 1

2
, · · · , xj− 1

2
+k

]
≡
P
[
xj+ 1

2
, · · · , xj− 1

2
+k

]
− P

[
xj− 1

2
, · · · , xj− 3

2
+k

]
xj− 1

2
+k − xj− 1

2

.

(3.60)

For k ≥ 1, define the k-th degree divided difference for particle j on the left
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hand side as

DDleft
j (k) ≡

P
[
xj+ 3

2
−k, . . . , xj+ 1

2

]
− P

[
xj+ 1

2
−k, . . . , xj− 1

2

]
xj+ 1

2
− xj+ 1

2
−k

. (3.61)

Similarly, for k ≥ 1, define the k-th degree divided difference for particle j on

the right hand side as

DD
right
j (k) ≡

P
[
xj+ 1

2
, . . . , xj− 1

2
+k

]
− P

[
xj− 1

2
, . . . , xj− 3

2
+k

]
xj− 1

2
+k − xj− 1

2

. (3.62)

For computational efficiency, one can compute the divided differences itera-

tively:

DDleft
j (k) =

DDleft
j (k − 1)−DDleft

j−1 (k − 1)

xj+ 1
2
− xj+ 1

2
−k

, k ≥ 1

DD
right
j (k) =

DD
right
j+1 (k − 1)−DDright

j (k − 1)

xj− 1
2

+k − xj− 1
2

, k ≥ 1 (3.63)

And DDj+q(0) ≡ P (xj+ 1
2

+q), q being any integral number.

The proposed limiter works as a switch between higher and lower order

schemes to avoid the oscillatory behavior. Let us examine in more detail

the left-hand-side example. To choose between k − 1th and k − 2th order of

accuracy, we compute DDleft
j (k). For a selected global constant C, if

DDleft
j (k) > C (3.64)

we switch from (k − 1)th order to (k − 2)th order derivatives by excluding
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the neighbor of index j − (k − 1) (i.e. the k − 1th neighbor on the left-hand-

side of particle j). For example, if DDleft
j (3) > C, we use the first-order

local polynomial fitting for uxl(j), pxl(j), instead of the second-order one. In

this case, uxxl(j), and pxxl(j) are assigned 0. The same logic applies to the

right-hand-side derivatives.

The Flux-limiter

In the flux-limiter method, the magnitude of the correction depends on the

smoothness of data (represented by Φ), and can be written as

F (U ; j) = FL(U ; j) + Φ(U ; j)[FH(U ; j)− FL(U ; j)] (3.65)

In order to measure the smoothness of data, we can use the ratio of consecutive

gradients:

θj =
Uj − Uj−1

Uj+1 − Uj
(3.66)

Or we can use the average of the ratio of consecutive gradients from both

directions:

θj =
1

2

(
Uj − Uj−1

Uj+1 − Uj
+
Uj+1 − Uj
Uj − Uj−1

)
(3.67)

Equation (3.67) has the advantage that it is symmetric. If θj is near 1 the

data is presumably smooth. If θj is far from 1 there may be discontinuity near

data Uj. Let Φ(U ; j) ≡ φj to be a function of θj:

φj = φ(θj) (3.68)

78



Van Leer [47] proposed a smooth limiter function

φ(θ) =
|θ|+ θ

1 + |θ|
(3.69)

We let φ(θ) = 0 for θ < 0 or when θ is arbitrarily large. Nore that θ < 0 in

the case when Uj+1−Uj and Uj−Uj−1 are in opposite signs in both equations

(3.66) and (3.67)). θ is arbitrarily large when Uj+1−Uj = 0 in equation (3.66)

and when Uj+1 − Uj = 0 or Uj − Uj−1 = 0 in equation (3.67).

Without loss of generality, we demonstrate the idea using the flux for vol-

ume. Remind that in the proposed Lagrangian particle method the volume

flux is defined as (equation (3.22))

Vt =
V

2
(uxr + uxl)−

V

2
√
K

(Pxr − Pxl)

+
∆t

4

[
V 2
√
K (uxxr − uxxl)− V 2 (Pxxr + Pxxl)

]
(3.70)

Let the lower order flux (first order flux) of volume be defined as

FL(V ) =
V

2

(
uxr(1) + uxl(1)

)
− V

2
√
K

(
Pxr(1) − Pxl(1)

)
(3.71)

where the subscript (1) denotes the spatial derivatives obtained by first order

polynomial fitting. Then define the higher order flux (second order flux) of
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volume be defined as

FH(V ) =
V

2

(
uxr(2) + uxl(2)

)
− V

2
√
K

(
Pxr(2) − Pxl(2)

)
+

∆t

4

[
V 2
√
K
(
uxxr(2) − uxxl(2)

)
− V 2

(
Pxxr(2) + Pxxl(2)

)]
(3.72)

where the subscript (2) denotes the spatial derivatives obtained by second

order polynomial fitting.

In order to make the measure of the smoothness of data (θ) generalizable

to higher dimensions and applicable to the Lagrangian particle mehtod, we

propose using the one-sided spatial derivatives calculated by methods intro-

duced in section 3.2.3. Depneding on the type of data we have, θ of a particle

j is calculated as:

θj(u) =
uxl(1)

uxr(1)

(3.73)

θj(P ) =
Pxl(1)

Pxr(1)

(3.74)

where u is the velocity in the x, y, or z-direction and P is the pressure.

Alternatively, we can also use

θj(u) =
1

2

(
uxl(1)

uxr(1)

+
uxr(1)

uxl(1)

)
(3.75)

θj(P ) =
1

2

(
Pxl(1)

Pxr(1)

+
Pxr(1)

Pxl(1)

)
(3.76)

Note that equations (3.75) and (3.76) are better over (3.73) and (3.74) since
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they are symmetric. We choose

θj = min(θj(u), θj(P )) (3.77)

and calculate φj by (3.69). Note that we set φj = 0 when θj < 0 or θj is

arbitrarily large. Substituting the calculated φj, the lower and higher flux in

(3.71) and (3.72) into (3.65), we obtain the volume flux of particle j as:

Fj(V ) = FL(V ; j) + φj[FH(V ; j)− FL(V ; j)] (3.78)

Then time integration gives the volume at next time step as:

V n+1 = V n + ∆tFj(V ) (3.79)

3.2.6 Modelling of Free Surfaces using Ghost Particles

An important feature of the Lagrangian particle method is its ability to ro-

bustly handle free surface flows with geometrically complex interfaces. The

method is also generalizable to multiphase problems. Here by free surface flows

we mean flows of fluid or gas in vacuum, and by multiphase problem we mean

the interface dynamics between two immiscible fluids or gases. In this section,

we describe an algorithm for physically consistent solutions at free fluid or gas

interfaces.

In our method the fluid/vacuum interface is modeled by using ghost par-

ticles in the vacuum region. An geometric algorithm has been developed to
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create patches of ghost particles for each fluid particle in the vacuum region.

The local vacuum region of a fluid particle, is determined by its local neigh-

bourhood. For example, in 2D, we divide the local neighbourhood into 8

subdomains as shown in Figure 3.3. In Figure 3.3(a) the original local neigh-

bourhood (marked as a fainted circle region centered at the star) of a fluid

particle (marked as a star) is plotted. Since there are 3 empty regions with

no fluid neighbours (marked as dots), these 3 empty regions are identified as

vacuum regions and ghost particles (marked as squares) are filled inside these

3 regions. In the end, only those ghost particles lying inside the local neigh-

bourhood are generated for this fluid particle. In 3D, the same algorithm is

applied with local neighbourhood divided into 16 regions. Note that these

ghost particles are used only by the one corresponding fluid particle (by which

they are generated), for the calculation of spatial derivatives.

After identifying the location of ghost particles their physics states are as-

signed. Since the only use of ghost particles is to serve as neighbors of fluid

particles when calculating spatial derivatives, only two states are relevant:

pressure and velocities. As ghost particles represent vacuum, their pressure

state is assigned to zero. For the assignment of velocities, we propose two

methods. First, since ghost particles move with the fluid/gas, the ghost par-

ticles can simply be assigned the same velocities as the corresponding fluid

particles. The second method is based on a weighted 0th order local polyno-

mial fitting. To be specific, we compute weighted average of velocities of the

fluid particles that are in a neighborhood of the ghost particle. Let’s assume

that the weighting function of the particle 0 in a three-dimensional space is
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(a) Original neighbourhood (b) After ghost particles are filled

Figure 3.3: The local neighbourhood (fainted circle region) of a fluid particle
(star). The neighbour hood is divided into 8 regions. Inside each region, if
no fluid neighbours (dots) are found, ghost particles (squares) are filled. Only
those ghost particles lying inside the local neighbourhood are generated.

w(hj, kj, gj), where hj = xj − x0, kj = yj − y0, gj = zj − z0, and j is the index

of neighbor particles. The velocity u0 of particle 0 satisfies

min
u0

N∑
j=1

[(u0 − uj)w(hj, kj, gj)]
2 , (3.80)

which leads to the solution

u0 =

∑N
j=1 ujw

2
j∑N

j=1w
2
j

(3.81)

In Figure 3.4 we plot the simulation results of the gas jet expansion into

vacuum at time 0.0025 (ms) using these two methods. Note that the two

methods produce similar results, while the second one expands at a slightly
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slower velocity with a more smoothed direcitons of expansion, as expected.

Note that the two methods were adopted after comparing them with a more

sophisticated one based on a solution of the Riemann problem for boundary

particles in the direction normal to the interface. Our conclusion was that the

costly Riemann solver algorithm is not required for the fluid/vacuum interface

(but will be the most likely choice for the interface in multiphase problems).

3.3 Lagrangian Particle Hydrodynamics Code

In previous sections, the theory of the proposed Lagrangian particle method

for solving Euler equations and the related numerical algorithms have been

described. We have developed a corresponding code which implements the al-

gorithms and are capable of running 1D/2D/3D simulations. The construction

of the code strictly follows the idea of object-oriented design (OOD) principles:

1. The code divides the Lagrangian particle method into major tasks and

model the tasks using classes. Therefore, the code is conceptually clear

and easy to maintain.

2. The code models algorithms that may permit alternative solutions using

ploymorphic classes and well-designed public interface. In this manner,

future extensions of the algorithm can be done simply by constructing

derived classes of the parent class and implementing the alternative so-

lution by overriding the virtual methods.

3. The code hides data and implementation details in private sections of
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(a) t = 0.000 ms, p = 4.873 10−2 (bar)

(b) t = 0.0025 ms (c) t = 0.0025 ms

Figure 3.4: Pressure value of the simulation of jet expansion into vacuum.
In Figure 3.4(b) ghost particles are assigned the same velocities as their cor-
responding fluid particle. In Figure 3.4(c) ghost particles are assigned the
weighted average velocities of its neighbouring fluid particles as computed by
equation (3.81).

85



the class (implementation hiding). As a result, it is possible to correct or

improve old implementations, or adding data to classes, without affecting

the client code.

The implementation of the code put ultimate emphasis on time-efficiency

(over space-efficiency) by a judicious selection the data structure (see 3.3.3)

and very efficient implementations (for example, see 3.3.7). For 3D capabilities,

it is necessary to parallelize the code and the current has been parallelized

using shared-memory parallelization techniques based on the OpenMP API.

The current code is written in C++ and has about 20, 000 lines of code. I put

the code on my GitHub, and my GitHub page and the code documentation

page is located at

• https://github.com/HsinchiangChen/LPFluidCode

• http://hsinchiangchen.github.io/LPFluidCode/index.html

Figure 3.5 depicts the object-oriented design structure and the work flow of

the code. In the subsequent subsections, we describe how the work in the

proposed algorithm is divided into independent units based on C++ classes.

We will also describe the data structures and implementations chosen for each

task.
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Figure 3.5: The object-oriented design structure and the work flow of the code.
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3.3.1 The Geometry and State Classes and User Inputs

for Initialization

In this section we will show the procedures for the user of the code to set up

the initial settings of a specific simulation, and how the code handles these

settings. In general, the initialization of any simulation using the Lagrangian

particle algorithm involves three tasks, namely, initializing the particle geome-

try (particle location in the Cartessian coordinates), initializing particle states

such as pressure, density, and velocities in the x, y, and z-directions, and ini-

tialzing other parameters such as the choice of EOS, the physical end time,

etc.

The family of Geometry classes takes care of the first task by overloading

the operator() and using it as a level set function. The function prototype is

(in the base class Geometry)

virtual bool operator()(double x, double y, double z)=0;

returns true if (x, y, z) is within the spatial doamin of the defined geoemtry.

That is, the user needs to create a child class of the Geometry class and override

this function by specifying the level set function of the desired geometry. For

example, the level set function of a ball with center 0 and radius r in 3D can

be sepcified as

return x2 + y2 + z2 <= r2.

The seond task is initializing particle states, which is handled in the family

of State classes: The following functions in the State class return the pressure,
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density, and velocities in the x, y, and z-directions:

virtual double pressure(double x, double y, double z)=0;

virtual double density(double x, double y, double z)=0;

virtual void velocity(double x, double y, double z, double& vX,

double& vY, double& vZ)=0;

Then the user of the code can initialize the particle geometry and states of the

desired simulation by writting subclasses of the classes Geometry and State

and overriding these pure virtual functions.

The third task is creating an input file to specify parameters, such as

the choice of the geometry and state for the simulation. The class Initializer

reads the input file and is responsible for allocating memory and initialize data

arrays. (see section 3.3.2 for details). It becomes necessary to modify code

in the Initializer class when, say, different geometries are used. For example,

changing the geometry from a Circle to a Triangle in 2D requires changing the

code in Initializer from

Geometry* gp = new Circle();

to

Geometry* gp = new Triangle();

This sort of code modification is error-prone and should be avoided. We pre-

vent the modification by employing the Abstract Factory design pattern: cre-

ating factories for the Geometry and State classes, which are implemented in

the classes of GeometryFactory, StateFactory, and helper classes GeometryReg-
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istrar, and StateRegistrar. Using factories the code becomes

Geometry* gp = GeometryFactory::instance().createGeometry(gname);

State* sp = StateFactory::instance().createState(sname);

where ”gname” and ”sname” are strings specified in the input file, representing

the names of the desired particle goemetry and states. Note that these strings

(names geometry and state) are linked to the subclasses of Geometry and State

through the helper template classes GeometryRegistrar, and StateRegistrar.

For instance, the following codes link the name ”ball” with the Ball class and

the name ”gauss” with the GaussianPressureState class.

GeometryRegistrar<Ball> r1("ball");

StateRegistrar<GaussianPressureState> s1("gauss");

It follows that changing geometries or states requires only changing names

specified in the input file (and creating subclasses of the Geometry and State

if they do not exist yet, and link the names with classes as we did above).

To summarize, initialization of particle geometry and states of the desired

simulation in general requires three steps:

1. Derive from the Geometry and State classes, and override the level set

functions and the functions for states.

2. Register/Link the names of the created classes in Registrar.cpp.

3. Put the names of the desired geoemtries and states in the input file.
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3.3.2 The Initializer Class

The Initializer class initializes the simulation by

1. Reading the input file.

2. Creating Geometry and State objects, and utilizing them to allocate

memory of data arrays such as the particle location in the Cartessian

coordinates ((x,y,z)) and pressure, volume, velocities in the x, y, and

z-directions.

3. Forwarding data arrays or parameter values to other classes.

Note the Initializer class forwards the allocated memory (data arrays of lo-

cation and states) to the class ParticleData, which stores major data of the

simulation. It also serves as the input to the constructors of other classes to

distribute information from the input file to other classes. Using the Initial-

izer class as input not only prevents modification of the constructors of other

classes while the number of the content of input parametes are changed, but

it also simplifies the function prototypes.

3.3.3 The ParticleData class

The ParticleData class holds the majority of data used in the simulation. The

original idea is to save all data, such as location, pressure and volume, into a

single data structure as the following.

class ParticleData {

public:
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... // getter of the private data members

private:

double x, y, z;

double pressure, volume, velocity_x, velocity_y, velocity_z;

std::vector<int> neighbour_index;

... // other particle data

}

Then suppose there are a total of N particles, we will allocate memory using

ParticleData* parray = new ParticleData[N];

This design is intuitive in that it looks like each physical particle owns a

single ParticleData instance. Nevertheless, this data structure is not the most

efficient choice for the current code due to the data proximity problem. To be

specific, the memory locations for the same quantity, say pressure, of the N

particles, are not continguous. However, in order to read or update data, in

the current code we usually use loops to ”sequentially” go through a specific

quantity of all N particles. For example, to update pressure and volume for

all N particles, we write

for(size_t index=0; index<N; index++) {

pressure[index] = aFunc(...);

volume[index] = anotherFunc(...);

...

}
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As a result, it will be much more efficient if we use simple one-dimensional

arrays (or vectors in C++) to hold these particle data, because the mem-

ory is contiguous for such data structures. Therefore, the data stored in the

ParticleData class are mostly 1D arrays:

class ParticleData {

public:

... // getter of the private data members

private:

double* positionX;

double* positionY;

double* positionZ;

double* velocityU;

double* velocityV;

double* velocityW;

double* volume;

double* pressure;

double* soundSpeed;

int* neighbourList;

... // other particle data

}

The length of these data arrays is uniformly a bit larger than the total number

of fluid (and boundary) particles (N), say, 1.5N . The additional space is

left for ghost particles, whose number changes during the simulation. The
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only exceptions are those data arrays storing neighbour indices, such as the

neighbourList array in the above code. We set the length of neighbourList to

be (1.5N)K, where K is a pre-specified number representing the upperbound

of the number of neighbours a particle can possibly have, during the entire

simulation. Note that for efficiency, these array memory is only allocated

once at initialization. Updating information stored in these arrays rewrites

these arrays, but never re-allocate them. It is true that there are usually

spaces wasted, for example, the number of ghost particles at time 0 is M

with M << 0.5N , or K is larger than the number of neighbours for most

particles. However, the extra space left for the possible increase in the number

of ghost particles, or the number of neighbours of a particle, is worthwhile

since memory re-allocation is avoided - yielding a much better performance in

terms of time efficiency.

3.3.4 The LSSolver Classes

The algorithm for solving the least squares problem has been discussed in

section 3.2.3. The implementation is in the family of LSSover classes, which

has the interface:

class LSSolver {

public:

virtual int solve(double* result, double* b) = 0;

... // other functions

private:
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... // some data

};

Currently, only the QR decomposition algorithm has been implemented in

the subclass QRSolver, which is in fact a wrapper class of the LAPACK LA-

PACKE dgeqp3() routine that implements the QR decomposition with column

pivoting. Note that the constructor of the subclass, say the QRSolver class,

needs to take the data matrix (the A matrix in equation (3.42)) before calling

the solve() method. When calling the solve() method, the data array ”b” (the

b vector in equation (3.42)) is used as input, while the data array ”results”

will contain the calculated derivatives after the function returns. If solve()

returns 0 then the spatial derivatives are used for time integration. However,

it it returns non-zero values, the dynamic stencil selection process described

in section 3.2.4 will be employed to re-calculate the matrix A. The process

repeats until effective rank is attained, or the polynomial fitting order is low-

ered to 0, in which case the derivatives will be set to zero. Note that other

polymorphic subclasses can be created for other algorithms for solving least-

squares problem, such as SVD (see [29] for discussions on alternative solutions

for solving least-squares problems).

3.3.5 The EOS (Equation of State) Classes

The family of EOS classes is to calculate the internal energy e and the sound

speed cs based on values of pressure and specific volume (1/density). Different

EOS models have different functions for calculating the internal energy (e) and
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sound speed (cs) from pressure (P ) and specific volume (V ): e = f(P, V ) and

cs = g(P, V ). It follows that the interface for the abstract class EOS is:

class EOS {

public:

virtual double getEnergy(double pressure, double density) = 0;

virtual double getSoundSpeed(double pressure, double density) = 0;

... // other functions

private:

... // some data

};

Currently two EOS models have been implemented, namely, the polytropic

gas EOS (the PolytropicGasEOS class) and the stiffened polytropic gas EOS

(the StiffPolytropicGasEOS class). Note that the calculation of sound speed

is necessary in the proposed Lagrangian method only for the calculation of

the size of the time step based on CFL conditions, while the internal energy

is essentially not used anywhere in the method.

3.3.6 The NeighbourSearcher Classes

The family of NeighbourSearcher classes performs the nearest neighbour search.

The interface of the abstract class NeighbourSearcher class is as follows.

class NeighbourSearcher {

public:
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virtual int buildSearchStructure(const double* x, const double*

y, const double* z, size_t numParticles) = 0;

virtual int buildSearchStructure(const double* x, const double*

y, const double* z, size_t begin, size_t numParticles) = 0;

#ifdef _OPENMP

virtual int searchNeighbour(const double x0, const double y0,

const double z0, const double radius, int* result, double*

distance, size_t& result_length, int tid, int index = -1) = 0;

#else

virtual int searchNeighbour(const double x0, const double y0,

const double z0, const double radius, int* result, double*

distance, size_t& result_length, int index = -1) = 0;

#endif

... // other functions

private:

... // some data

};

Currently, the octree neighbour search algorithm, described in section 3.2.4 has

been implemented (the OctreeSearcher and the Octree classes) by my team-

mates Gaurish Telang and Kwangmin Yu.

The method buildSearchStructure() builds an octree based on data arrays

of particle locations (x, y, z). There are two versions of the buildSearchStruc-

ture() function to allow for the flexibility of using different portions of the data

arrays as the input for octree building.
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After the octree is built, we look for neighbours of a particle with index 0

by calling the function searchNeighbour() with the its location (x0, y0, z0) and

a search radius as the inputs. Note that the input search radius can be differ-

ent for different particles. Let the distance from the particle 0 to its neighbour

j be dj, the output of the method is an array of neighbour indices j (result),

the array of dj (distance), and the length of the two arrays (result length).

THe neighbour list index array (result), when returned, has been sorted in

ascending order of dj, which accomplishes the first step in the dynamic sten-

cil selction process described in section 3.2.4. There are two versions of the

method searchNeighbour(), and the first one is the multithreaded version. In

the multithreaded version, tid represents the thread index, and is used as an

input to prevent data races.

Note that the method buildSearchStructure() does not have a multithreaded

version since it contains OpenMP conditional compilation directives in its im-

plementation. As a result, as long as the compilation is done with OpenMP

enabled, and the number of threads specified in the input file is larger than

one, the tree building will automatically be parallelized.

3.3.7 The LPSolver Classes

The family of LPSolver classes performs the simulation for one time step - it

implements the time integration by Strang splitting and uses all the classes

that implement the algorithms described in section 3.2. The interface of the

LPSolver class is as follows.
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class LPSolver {

public:

virtual int solve(double dt) = 0;

...

private:

... // some data

};

Currently, only hyperbolic equations are solved and two classes have been im-

plemented: one is the HyperbolicSolver class for the 2D and 3D cases, and the

HyperbolicSolver1D class for the 1D case. The reason for using different classes

based on dimensionality is that in 1D, the Strang splitting is not used, and

many tasks such as neighbour search are not necessary. As a result, to avoid

numerous unnecessary conditional expressions based on the dimensionality, we

create a independent class for 1D. Besides, in many situations, the 1D code

is usually the best choice for testing new ideas/algorithms. Therefore, it is

better to save the 2D and 3D code from being modified when experimenting

with tests.

The procedures in HyperbolicSolver can be summarized as follows.

1. Generate ghost particles based on the current configuration of fluid par-

ticles.

2. Perform neighbour search based on NeighbourSearcher classes.

3. Select one-sided neighobur list based on the neighbour list obtained in

the previous step and the dynmaic stencil selection algorithm (the part
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which is based on the shape of the shape of the neighbourhood) described

in section 3.2.4.

4. Set the values of pressure and velocities for the ghost particles based on

the algorithms described in section 3.2.6.

5. Calculate the minimum spacing between particles, the maximum sound

speed of all particles, and the maximum speed of fluid flows. These

values are used to compute the lenth of time step for this iteration based

on the CFL criterion (by the TimeController classes).

6. Implement the time integration by the Strang directional splitting de-

scribed in section 3.2.2. In each phase of the directional splitting, the

spatial derivatives are computed by local polynomial fitting and the sec-

ond part of the dynamic stencil selection, which depends on the number

of neighbours and the effective rank, is performed. The least squares

problem is solved by using the LSSolver classes.

3.3.8 The ParticleViewer Classes

The family of ParticleViewer classes is created to output results for visualiza-

tion purposes. The interface of the abstract class ParticleViewer is as follows.

class ParticleViewer {

public:

virtual int writeResult(double time, std::size_t writeStep) = 0;

... // other functions

100



private:

... // some data

};

Currently, results obtained from two and three dimensions simulations are

visualized using the software VisIt, and results are saved in .vtk format (the

VTKParticleViewer clas). One dimensional results are saved in simple textfile

formats (the TXTParticleViewer1D class). Polymorphic behaviors happen in

that the writeResult() method output data in the vtk format in one case, and

in the txt format in the other. The inputs of writeResult() are the physical

time and the number of steps of outputting, respectively.

3.3.9 The TimeController classes

The family of TimeController classes controls the behavior between any two

time steps of the simulation, which involves three major tasks.

1. Calculate the time step used for next time step. For example, the time

step can be computed based on the CFL condition.

2. Solve the system of equations of the desired problem at the current time

step. For example, we can solve the Euler equation by using the LPSolver

classes.

3. Output data when necessary by using the ParticleViewer classes.

The interface of the TimeController class is:
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class TimeController {

public:

virtual int solve() = 0;

... // other methods

protected:

LPSolver* solver;

std::vector<ParticleViewer*> viewers;

private:

... // some data

};

Each different combination of the choices of algorithms for the three tasks listed

above may give one new type of TimeController. Currently, only one type,

which follows the algorithm described in section 3.2, has been implemented:

the time step is calculated based on the CFL condition, and the Euler equations

(equations (3.1) and (3.2)) are solved. In the future we may solve coupled

systems of hyperbolic and elliptic equatuions by creating a new subclass. In

general, we can add or modify any features between every two time steps of

the simulation of interest by creating new subclasses of the TimeController

class.

3.3.10 Scalability Tests

The code has been parallelized using the shared-memory OpenMP model. We

demonstrate the scalability of the current code by running the simulation of 3D
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gas jet expansion into vacuum. (see section 3.4.4 for the detailed simulation

settings). The initial inter-particle spacing (resolution) is 0.08 (cm), which

results in a total of 723049 fluid particles. We run the simulation using the

serialized version of the code, and the parallelized version using 4, 8, and 12

threads, and plot the speedups in Figure 3.6. Note that the speedups are

measured in terms of the time spent on the corresponding function during one

entire time step, with the dots denote the speedups for the entire time step, the

squares denote the speedups in the directional splitting routine, and the stars

denote the speedups in the neighbour search routine. This result demonstrate

that the code scales almost linearly. Figure 3.7 plots the time (on which the

speedups in Figure 3.6 are computed) spent on these routines. It is clear from

this plot that these two routines constitute more than 90 peprcent of the total

time (i.e. the time spent on all other functionalities during the simulation are

irrelevant).

3.4 Numerical Results

In this section, we present results of one- and two-dimensional simulation that

serve as verification tests for the Lagrangian particle method, including the

free surface algorithm,
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Figure 3.6: Scalability test (speedups) on the simulation of 3D gas jet into
vacuum. There are 723049 fluid particles in the simulation. The dots denote
the speedups for the entire time step, the squares denote the speedups in
the directional splitting routine, and the stars denote the speedups in the
neighbour search routine.
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Figure 3.7: Simulation time of one time step in the simulation of 3D gas jet
into vacuum. There are 723049 fluid particles in the simulation. The dots
denote simulation time of the entire time step, the squares denote the time
spent on the directional splitting routine, and the stars denote the time spent
on the neighbour search routine.
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3.4.1 1D Gaussian Pressure Wave Propagation with Pe-

riodic Boundaries

We study the propagation of a pressure wave in gas with the constant initial

density ρ = 0.01 and the initial Gaussian pressure distribution

p = 5 + 2e−100x2

(3.82)

in the domain −1.5 ≤ x ≤ 1.5 with periodic boundaries on both ends. The

polytropic gas EOS is used with γ = 5/3. The goal of the simulation is to

demonstrate the accuracy of the proposed algorithm in resolving nonlinear

waves with the formation of shocks. The benchmark data is obtained using

a highly refined, grid-based MUSCL scheme. The results, shown in Figure

3.8, are labeled as 1st for the first order local polynomial fitting, B.W. for the

Beam-Warming scheme with second order local polynomial fitting, and B.W.

lim. for the Beam-Warming scheme with the second order local polynomial

fitting with limiter, respectively. As expected, first order scheme is diffusive,

while the Beam-Warming scheme is dispersive near discontinuities. However,

results demonstrates that the proposed limiter method effectively reduces dis-

persions near sharp edges, resulting in maintaining globally the second order

of convergence.

We have also verified that the Lagrangian particle methods accurately re-

solves waves in stiff materials. Using the same initial conditions as before but
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Figure 3.8: Gaussian pressure wave propagation with periodic boundaries at
time 0.03 (top) and 0.04 (bottom). Coarse-resolution simulations results were
used to illustrate the behavior qualitatively.
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Number of particles Relative L2-norm error Rate of Convergence
240 0.051 NA
480 0.018 2.88
960 0.0049 3.60
1920 0.0012 4.02
3840 0.00029 4.23
7680 0.000068 4.24

Table 3.1: Convergence for the polytropic gas EOS case with γ = 5
3

and initial
density ρ0 = 1

V
= 0.01

Number of particles Relative L2-norm error Rate of convergence
240 0.069 NA
480 0.021 3.23
960 0.0056 3.84
1920 0.0014 3.97
3840 0.00035 4.0
7680 0.000093 3.8

Table 3.2: Convergence for the stiffened polytropic gas EOS case with γ = 6,
Pinf = 7000, einf = 0, and initial density ρ0 = 1

V
= 1

replacing the polytropic EOS with the stiffened polytropic EOS

E =
(P + γP∞)V

γ − 1
(3.83)

with γ = 6 and P∞ = 7000, we . The convergence results can be found in

Tables 3.1 and 3.2. In both cases, second order convergence is obtained.
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3.4.2 2D Gaussian Pressure Wave Propagation with Free

Surface

To test the proposed algorithm for two-dimensional problems involving free

surfaces, a circular disk of particles with stiffened polytropic gas EOS (with

γ = 6, pinf = 7000, and einf = 0, ρ = 1) and a Gaussian pressure profile was

initialized. The results are presented in two dimensions in Figure 3.9. Note

that the latest-time plot in Figure 3.9 represents the state when the pressure

waves have been reflected from the free surface for more than ten times. To

verify the accuracy, the analogous one-dimensional problem with cylindrical

coordinates under the Eulerian formulation is solved using a refined MUSCL

scheme with the method of front tracking for the free surface implemented

in the FronTier code [11]. The location and shape of the pressure wave and

the interface as well as the oscillatory motion of the free surface are in good

agreement with the Frontier simulation. The verification test and the fact that

the pressure wave maintains good symmetry after many reflections from the

free surface demonstrate that the method for modeling vacuum introduced in

section 3.2.6 works well with the proposed algorithm.

3.4.3 2D Collision Between Two Circular Disks

In previous test problems, particles are initialized using regular distributions,

such as the hexagonal packing, and slightly move with the flow. Nevertheless,

the magnitude of the particle movement is quite restricted in previous tests,

usually less than five percent of the initial inter-particle-spacing. In this sec-
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Figure 3.9: 2D Gaussian pressure wave propagation in disk with free surface.
Pressure distribution (bar) at initial time (left), 10 (middle), and 60 (right).

tion, a geometrically complex two-dimensional problem with intense particle

movement and object shape distortion is discussed.

The setup of the problem is as follows. Two fluid disks have initially uni-

form density ρ = 1 and zero pressure, and material properties described by

the stiffened polytropic EOS with γ = 6 and P∞ = 7000. The two disks move

toward each other with the relative longitudinal velocity of 20, but along lines

that do not connect their centers. The time sequence shows the distortion of

disks after the collision. While no benchmark data exists for such a problem,

we believe that the results are reasonable from physics point of view as they

agree with theoretical estimates of achievable pressure peaks. They demon-

strate the ability of the proposed method to handle geometrically complex

interfaces.

3.4.4 2D and 3D PJMIF related simulations

In this section we show 2D and 3D simulation results of free-surface problems

using the proposed Lagrangian particle method. The free-surface problems of
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Figure 3.10: 2D simulation of collision of two disks. Velocity distribution (10
m/s) at initial time (left), 21 (middle), and 54 (right).

interest are related to the Plasma Jet driven Magneto-Inertial Fusion (PJMIF).

PJMIF is a new fusion concept that serves as a potential propulsion tech-

nolgy for interstellar missions. PJMIF uses converging plasma jets that form a

uniform liner, which compresses a magnetized target to fusion conditions. It is

a hybrid method of the Inertial Confinement Fusion (ICF) and Magnetic Con-

finement Fusion (MCF), featuring potential benefits such as lower system mass

and lower cost. [38] suggest that a plasma liner can be formed by the merger

of a large number of radial, highly supersonic plasma jets. These plasma jets

implode on a magnetized plasma target and compresses it to conditions of the

fusion ignition. Such a plasma liner is assembled when the jets intersect and

merge with each other at the intermediate radius rm, as shown schematically

in Figure 3.11. For recent works on the dynamics of spherically symmetric

liners imploding on deuterium plasma targets or undergoing the self-implosion

process and properties of plasma liner/target after the implosion, one can refer

to [40–43]. The Plasma Liner Experiment (PLX) group in Los Alamos Na-

tional Lab (LANL) proposed a collaborative project to explore the feasibility

of plasma liner formation to reach a desirable stagnation pressure. They fo-
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Figure 3.11: Schematic of plasma jet induced magnetized target fusion: (a)
Plasma gun shoot supersonic jets; (b) Plasma liner is formed at the merging
radius; (c) Plasma liner implodes on the target. Plot courtesy: [39]

cused on the plasma liner magneto-inertial fusion and analysed the efficiency of

conversion [44] and preformed one-dimensional radiation-dyfrodynamic simu-

lations to show insights into the scaling of stagnation pressure. They also per-

formed three-dimensional SPH simulations to explore on the effects of discrete

plasma jets on the processes of plasma liner formation and self-implosion [42].

Recently, using the pulse-power-driven plasma railgun produced by the Hy-

perV Technologies Corp, results of single argon plasma jet propagation [41]

and two argon plasma jets merger [43] were reported by the PLX group.

In the next subsections, we first present two and three-dimensional simu-

lations results of a single gas jet expansion into vacuum using the Lagrangian

particle method. Then we analyze results of previous three-dimensional sim-

ulations of the jet merger and the liner formation and implosion done in [48]

using the grid-based MUSCL solver of the Frontier code and describe the cur-
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rent work in progress based on the Lagrangian particle code.

2D and 3D Simulations of Jet Expansion Into Vacuum

We use the Lagrangian particle code to solve the single gas jet expansion into

vacuum problem with the same parameters as specified in [41]. To be specific,

the states of are: ρ = 1.327e−6 (g/cm3), temparature T = 1.4 (eV), and

velocity V = 30 (km/s). In 2D, the jet consists of a rectangle of side length 5

(cm) and 20 (cm), and two semi-circles with radius 2.5 (cm) on both ends of

the rectangle. The equation of state is the polytropic gas EOS with γ = 5/3.

Figure 3.12 show the evolution of pressure of the 2D jet when it expands

into vacuum. The physical time is from time 0 to 0.0125 ms. The numerical

resolution, which is represented by the initial spacing among particles, is 0.05

(cm). There are 55489 fluid particles at initialzation.

In 3D, the jet consists of a cylinder with radius 2.5 (cm) and side length

10 (cm), and two semi-spheres with radius 2.5 (cm). The states are the same

as the 2D case. Figure 3.13 shows the evolution of pressure of the 3D jet

when it expands into vacuum. The physical time is from time 0 to 0.01 ms.

The numerical resolution, which is represented by the initial spacing among

particles, is 0.1 (cm). There are about 507358 fluid particles at initialzation

and the simulations was run using 24 threads.

2D and 3D Simulations of Two Jet Merger

[48] reports results of three-dimensional simulations of the jet merger and

the liner formation and implosion. They examine the structure of the liner

113



(a) t = 0.0000 ms (b) t = 0.0125 ms

(c) t = 0.0250 ms (d) t = 0.0375 ms

Figure 3.12: Pressure profile of the 2D jet expansion into vacuum. Figure
3.12(a) refers to the initial pressure, which is 4.873e−2 (bar). Figure 3.12(b)
refers to the pressure before the merging radius.
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(a) t = 0.0000 ms (b) t = 0.0025 ms

(c) t = 0.0050 ms (d) t = 0.0100 ms

Figure 3.13: Pressure profile of the 3D jet expansion into vacuum. Figure
3.13(a) refers to the initial pressure, which is 4.873e−2 (bar).
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Figure 3.14: Density (1/cm3) contours before merger (a, b) and after merger
(c, d) of 30 argon plasma jets. Plot courtesy: [48].

obtained by the merger of 30 plasma jets, the liner uniformity, the reduction

of the Mach number during the liner implosion, and compare with the theory

of oblique shock waves. Specifically, oblique shock waves heat the liner, reduce

the average Mach number, and contribute to the liner non-uniformity. Figures

3.14 and 3.15 show the density and pressure before and after merger of these

30 jets. During the jet merger process, the highest pressure appears along

the plane of interaction of the neighboring jets and the formation of high

pressure contours having shapes of the pentagon and hexagon are observed.

They also perform simplified two-dimensional simulations and obtained useful

information on the internal structure of plasma liners.
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Figure 3.15: Pressure (bar) contours before merger (a, b) and after merger (c,
d) of 30 argon plasma jets. Plot courtesy: [48].

117



In [48], the MUSCL solver within the FronTier code was used to carry out

the 2D and 3D jet merger simulations. FronTier is a hybrid LagrangianEule-

rian code based on the front tracking method [49]. The ability to propagate

and resolve topological changes of dynamically moving fronts (interfaces) be-

tween materials using Lagrangian meshes, is an important and special property

of this code. Wave simulations rely mostly on FronTiers interior solvers that

implement shock capturing schemes such as the Monotonic Upstream-centered

Scheme for Conservation Laws (MUSCL) and WENO. The FronTier code has

been used on various supercomputers for the simulation of fundamental (tur-

bulent fluid mixing) and applied problems (liquid accelerator targets, fuel jets,

pellet fueling of tokamaks, etc.).

However, the FronTier code does not support adaptive mesh refinements,

critically important to this problem. As a result, mesh refinements needs to

be done manually by stopping the simulation, saving the results, and restart

using a finer resolution. The Lagrangian particle method is perfectly suited

for PJMIF simulations because of its natural adaptivity and ability to simu-

late extremely non-uniform domains. To enable simulations of the plasma jet

merger and plasma liner formation, we have started work on (a) implemen-

tation of EOS with support of atomic physics processes in high-Z materials,

based on the Zeldovich average ionization model in local thermodynamic equi-

librium [50], (b) radiation model in thin optical limit based on accurately

pre-computed opacity values, and (c) improvement of the ability of the code

to work in strongly compressible regime. In section 3.4.3 we have shown that

the Lagrangian particle method works fine for free surface problems in the low

118



compressibility fluid regime. We have started the work on highly compressible

regime, characterized by orders of magnitude density changes, which requires

additional development.
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Chapter 4

Conclusions and Future Work

In this thesis we described the fundamentals of the SPH method for the simula-

tion of hydrodynamics , elaborated on the enhancements with new implemen-

tation of physics models (cavitation, boundary con- ditions etc.), presented the

simulations of mercury targets interacting with strong proton pulses and the

mercury thimble experiments, and explained in details why the SPH method

produces stable and reasonable results for certain problems. To recall, the

traditional discrete SPH equations for the compressible Euler equations are

not accurate, but they accurately represent equations of the Lagrangian dy-

namics of particles interacting via isentropic potentials. The problem is that

the Hamiltonian dynamics of particles only approximately represent the dy-

namics of continuum hydrodynamic systems. Furthermore, these traditional

SPH discretization only has zeroth-order convergence for widely used kernels,

and corrected or modern SPH methods such as the moving-least-squares SPH,

Godunov-SPH, P-SPH, PHANTOM etc, improve on inaccurate SPH deriva-
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tives, yet at the expense of of other features such as conservation, long-time

stability, or prohibitively large number of neighbors that may lead to other

problems.

While SPH has disadvantages, it has many good features as a candi-

date for simulations of the free surface or multiphase problems with complex

geoemtries. Motivated by the need to resolve SPH failures while preserving

its advantages, a Lagrangian particle method has been proposed for the sim-

ulation of Euler equations describing compressible inviscid fluids or gases. By

representing Lagrangian fluid cells with particles, similarly to SPH, the method

eliminates the mesh distortion problem of the original Lagrangian method and

is suitable for the simulation of complex free surface flows. The main contribu-

tions of our method, which is different from SPH in all other aspects, are (a)

significant improvement of approximation of differential operators based on

polynomial fits and the corresponding least squares problems and convergence

of prescribed order, (b) an upwinding second-order particle-based algorithm

with limiter, providing accuracy and long term stability, and (c) accurate res-

olution of states at free surfaces based on the technique of ghost particles.

Numerical verification tests demonstrate the second convergence order of the

method and its ability to resolve complex free surface flows.

The Lagrangian particle method has numerous advantages compared to

grid-based methods for the simulation of complex systems. It eliminates the

need for complex and costly algorithms for the generation and adaptation

of meshes, provides continous adaptivity to density changes, and is suitable

for extremely non-uniform domains typical for astrophysics or high energy
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density applications. The algorithmic complexity of key particle methods in-

significantly increases with the increase of spatial dimensions, making a 3D

code similar to a 1D code. In addition, particle algorithms are independent of

the geometric complexity of domains. In contrast, there is a huge increase in

algorithmic complexity of a 3D mesh generation and dynamic adaptation com-

pared to 1D as well as the increase associated with the geometric complexity

of domains.

The future development of the space-time discretization methods will ex-

plore new high resolution WENO-type solvers based on irregularly placed par-

ticle nodes and symplectic integrators. In addition, we will also work on im-

provements of the ability of the code for strongly compressible regime. In

order to run the plasma jet merger and plasma liner formation, future work

will also include the implementation of EOS with support of atomic physics

processes in high-Z materials, based on the Zeldovich average ionization model

in local thermodynamic equilibrium, and the radiation model in thin optical

limit based on accurately pre-computed opacity values. Our Lagrangian par-

ticle method is also generalizable to coupled multiphysics systems, including

the dynamics of incompressible fluids, solids, and plasmas.
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