

SSStttooonnnyyy BBBrrrooooookkk UUUnnniiivvveeerrrsssiiitttyyy

The official electronic file of this thesis or dissertation is maintained by the University
Libraries on behalf of The Graduate School at Stony Brook University.

©©© AAAllllll RRRiiiggghhhtttsss RRReeessseeerrrvvveeeddd bbbyyy AAAuuuttthhhooorrr...

Canonical Forest

A Dissertation Presented

by

Yu-Chuan Chen

to

The Graduate School

in Partial Fulfillment of the

Requirements

for the Degree of

Doctor of Philosophy

in

Applied Mathematics and Statistics

(Statistics)

Stony Brook University

January 2014

ii

Stony Brook University

The Graduate School

Yu-Chuan Chen

We, the dissertation committee for the above candidate for the

Doctor of Philosophy degree, hereby recommend

acceptance of this dissertation.

Dr. Hongshik Ahn – Dissertation Advisor

Professor, Department of Applied Mathematics and Statistics

Dr. Wei Zhu – Chairperson of Defense

Deputy Chair, Professor, Department of Applied Mathematics and Statistics

Dr. Song Wu – Member

Assistant Professor, Department of Applied Mathematics and Statistics

Dr. Yiyi Zhou – Outside Member

Assistant Professor, Department of Economics

This dissertation is accepted by the Graduate School

Charles Taber

Dean of the Graduate School

iii

Abstract of the Dissertation

Canonical Forest

by

Yu-Chuan Chen

Doctor of Philosophy

in

Applied Mathematics and Statistics

(Statistics)

Stony Brook University

2014

In this dissertation, we propose a new classification ensemble method named

Canonical Forest. This new ensemble method uses canonical linear discriminant

analysis (CLDA) and bootstrap resampling method to create more accurate and

diverse classifiers in an ensemble. Although CLDA is commonly used for

dimension reduction, we note here CLDA serves as a linear transformation tool

rather than a dimension reduction tool. Since CLDA will find the transformed

space that separates the classes farther in distribution, classifiers built on this

space will be more accurate than those on the original space. To further diversify

the classifiers in an ensemble, CLDA is applied only on a partial mutually

exclusive feature space for each bootstrap sample. To compare the performance of

iv

Canonical Forest and other widely used ensemble methods including Bagging,

Adaboost, Samme, Random Forest, and Rotation Forest, we tested them on 29

real or artificial data sets. In addition to the classification accuracy, we also

investigated the diversity and the bias and variance decomposition of each

ensemble method. Because Canonical Forest cannot be applied to high-

dimensional data directly, we propose another version of Canonical Forest called

High-Dimensional Canonical Forest (HDCF) that is specifically designed for the

high-dimensional data. By implementing the algorithm of Random Subspace into

Canonical Forest, we can naturally apply Canonical Forest to high-dimensional

data without performing feature selection or feature reduction first. We compared

the performance of HDCF with some current popular high-dimensional

classification algorithms including SVM, CERP, and Random Forest using gene

imprinting, estrogen and leukemia data sets.

v

Table of Contents

Abstract ... iii

List of Figures .. vii

List of Tables .. viii

1 Background ..1

2 Review of existing ensemble methods ...15

2.1 Adaboost ..15

2.2 Bagging ...17

2.3 Random Forest ..20

2.4 Rotation Forest ..22

2.5 CERP...24

3 Method ..26

3.1 Canonical Linear Discriminant Analysis ..26

3.2 Canonical Forest ...30

3.3 Canonical Forest with the Weight-Adjusted Voting Algorithm34

3.4 High-Dimensional Canonical Forest (HDCF) ..38

4 Experiments ..42

4.1 Performance Comparison..42

4.2 Diversity and κ-error Diagram ..62

4.3 Bias and Variance Decomposition ..82

vi

4.4 High-Dimensional Canonical Forest (HDCF) ..86

4.5 Simulation Study ...93

5 Conclusion and Discussion ..99

6 Future Study ...103

References ...105

vii

List of Figures

Figure 1: Algorithm of CLDA ...29

Figure 2: Pseudocode of Canonical Forest ..33

Figure 3: Pseudocode of obtaining the weight vectors through an iterative process

..36

Figure 4: Pseudocode of directly obtaining the final weight vectors37

Figure 5: Pseudocode of Random Subspace ..40

Figure 6: Pseudocode of High-Dimensional Canonical Forest41

Figure 7: Boxplots of other ensemble methods compared to Canonical Forest

using paired t-test ...46

Figure 8: Relative Improvement of the other ensemble methods compared to

Canonical Forest represented using box-plot ...48

Figure 9: Algorithm of Holm-Bonferroni correction ...60

Figure 10: Algorithm of computing kappa statistic κ ..64

Figure 11: Kappa error diagram ...68

Figure 12: Contour plot of κ-error diagrams for the five ensemble methods on the

same plot for all the 29 data sets ...74

Figure 13: Simulation design ...98

viii

List of Tables

Table 1: Data used in the comparison of Canonical Forest with other ensemble

methods ..44

Table 2: Classification accuracy of tree and ensemble methods comparing with

Canonical Forest with ensemble size ...50

Table 3: Classification accuracy of tree and ensemble methods comparing with

Canonical Forest with ensemble size ...51

Table 4: Summary of comparisons among different methods with ensemble size

 ...53

Table 5: Summary of comparisons among different methods with ensemble size

 ...54

Table 6: Rank of the methods using the significantly different results from the

results in Table 4 ..56

Table 7: Rank of the methods using the significantly different results from the

results in Table 5 ..57

Table 8: P-values of exact Binomial test for comparing Canonical Forest with

other methods ...61

Table 9: Comparison of contribution of Bias
2

to error ...84

Table 10: Comparison of contribution of Variance to error85

Table 11: Accuracy of classification methods for the imprinting data90

Table 12: Accuracy of classification methods for the estrogen data91

Table 13: Accuracy of classification methods for the leukemia data92

Table 14: Accuracy of classification methods for data set A95

Table 15: Accuracy of classification methods for data set B96

ix

Table 16: Accuracy of classification methods for data set C97

1

Chapter 1

Background

Classification analysis is a procedure that builds a model or a rule using the

features (predictor variables) in old data where each observation is associated

with only one known class label and then uses this model or this rule to assign a

class label to each observation in new data where observations are not associated

with class labels. The features in the data could be either continuous or discrete.

The learning algorithm in classification analysis is also known as supervised

learning in data mining because it requires that known class labels are pre-

assigned to all observations in training data set. A training data set is the data set

which is used to build the model during classification analysis. The algorithm

implemented in a classification analysis is called a classifier. Although several

measures can be used to evaluate the performance of a classifier, classification

accuracy is the most commonly used one. In general, a good classifier should

yield a low misclassification rate. When evaluating the performance of a

2

classification method, cross validation is a common method used in order to

obtain a proper estimate. In -fold cross validation, the data set is randomly

divided into roughly equal-sized mutually exclusive subsets. For each run, one

subset serves as test data and the remaining subsets serve as training data.

This process is repeated times with each subset serving as test data only once

and is included in training data times. Those estimates from repeated

process are then combined to obtain the performance of a classifier. In the case

where is equal to , which is the number of instances, it is called leave-one-out

cross validation (LOOCV). In each run of LOOCV, only one instance serves as

test data and the remaining instances serve as training data. LOOCV is

often used in the situation where the sample size is small.

Classification analysis is widely used in many fields such as credit scoring,

pattern recognition, DNA sequencing, medical diagnosis and also many other

fields of science. For example, a bank could divide the existing customers into

two possible groups: customers with “good credit” and customers with “bad credit”

based on their credit history. These existing customers then serve as training data

and the characteristics of these existing customers such as age, gender, occupation,

income, etc. serve as features in classification analysis to generate a model or a

rule to help the bank make a decision on the financial requests from new

customers.

3

One of the earliest works on classification analysis is known as Linear

Discriminant Analysis (LDA) that was first introduced in Fisher (1936). In this

work, Fisher developed a linear discriminant model to classify the Iris flowers

into three different species (Iris setosa, Iris virginica and Iris versicolor) based on

their characteristics (length and width of the sepals and petals). After that, many

different algorithms of classification analysis have been developed including

logistic regression (Berkson, 1944), k-nearest neighbor (k-NN: Cover and Hart,

1967), neural networks (Rosenblatt, 1958), decision trees, naïve Bayes (Duda and

Hart, 1973), support vector machines (SVM: Vapnik, 1995), and nearest shrunken

centroid (Tibshirani et al., 2002).

LDA is a linear classifier that classifies instances by finding a reduced set of

linear combination of original features that can better separate the distinct groups

than using the original features. In the situation where the groups are not linearly

separable, quadratic discriminant analysis (QDA) is often used. QDA is a more

generalization of LDA, which allows the classifier to separate groups by quadratic

boundaries.

Logistic regression is one kind of regression analysis that is used when the

response variable is dichotomous (i.e. Y=0 or Y=1). It predicts the probability of

the outcome of an event by fitting the logit model on the response variable in

regression analysis. When the outcomes of a response variable are more than two,

http://en.wikipedia.org/w/index.php?title=Iris_setosa&action=edit&redlink=1
http://en.wikipedia.org/wiki/Iris_virginica
http://en.wikipedia.org/wiki/Iris_versicolor
http://en.wikipedia.org/wiki/Sepal
http://en.wikipedia.org/wiki/Petal

4

it can be extended to multinomial logistic regression by fitting the multinomial

logit model if the response variable is nominal, or it can be extended to ordinal

logistic regression by fitting the ordinal logit model if the response variable is

ordinal. It was Berkson who first introduced the logit model in 1944. A brief

description of the origins of logistic regression can be found in Cramer (2002).

k-NN is a very simple classification algorithm that classifies an instance only

based on its k closest or nearest neighbors. That is, an instance is assigned to the

class that is the majority class among its k nearest neighbors. Among many

different distance measures, Euclidean distance is the most common distance

measure used in a k-NN classifier. A small value of k often results in high

variance and therefore is unstable. However, a large value of k often leads to high

bias and therefore becomes less accurate. A proper value of k may be obtained by

adopting cross-validation methods.

A neural network is composed of many interconnected neurons or nodes and

is organized in layers. A neuron is usually connected by a set of neurons that are

associated with different weights from one layer to another layer. Although the

idea of neural networks was first introduced by McCulloch and Pitts (1943), it

was Rosenblatt (1958) who first introduced the perceptron and brought the neural

networks to the classification world.

5

Naïve Bayes is a probabilistic classifier that predicts the class label by

estimating the posterior probability of each class conditioning on the given

features. The instance is then assigned to the class with the highest posterior

probability. A naïve Bayes classifier is based on the Bayes theorem and it requires

the assumption that the features are independent given a certain class.

SVM is a binary classifier that finds an optimal hyperplane that can linearly

separate two classes with a maximum margin. A maximum margin means that the

distance from the nearest instance to this hyperplane is maximized on both sides.

If such a linearly separating hyperplane cannot be found in the original input

space, we can project the original input space into a higher dimensional space

called kernel space where we can find an optimal linearly separating hyperplane.

To classify on multi-class instances, SVM needs to reduce the multi-class

classification to multiple two-class classifications.

Nearest shrunken centroid is a classification algorithm modified based on

nearest centroid. The nearest centroid classifies an instance by assigning the class

of its closet centroid in squared distance. The nearest shrunken centroid also

adopts this algorithm but makes a modification to it by shrinking the class

centroids toward the overall centroids using a threshold. By shrinking the class

centroids, nearest shrunken centroid may reduce the effects of noisy variables.

6

The algorithm of nearest shrunken centroid was developed by Tibshirani et al.

(2002).

Among all the various classification algorithms in classification analysis,

decision trees are one of the current popular algorithms in classification analysis

because they are simple to understand and interpret and they also perform well.

There are many different versions of decision trees. Automatic Interaction

Detection (AID) was the first decision tree method that was introduced by

Morgan and Sonquist (1963). After that, many other different algorithms of

decision trees have been proposed. Some popular algorithms of decision trees

include CHAID (Chi-squared automatic interaction detection: Kass, 1980), CART

(Classification and regression trees: Breiman et al., 1984), ID3 (Iterative

Dichotomiser 3: Quinlan, 1986), C4.5 (Quinlan, 1993), and QUEST (Quick,

unbiased and efficient statistical trees: Loh and Shih, 1997).

In general, the algorithm of a decision tree begins with a binary split from the

root node where the value of one of the input features is used for the split. After a

split is made, the same process is applied to each new node until the tree stops

splitting and this repeated process is called recursive partitioning. There are

various splitting rules developed for decision trees to find the split. Among them,

information gain and gini index are the two most commonly used splitting rules in

decision trees. The nodes with no further splits are called terminal nodes. Each

7

observation is classified into only one terminal node that follows a unique path.

That is, the observations in one terminal node should be mutually exclusive from

the observations in other terminal nodes. Sometimes when the tree grows too

large, the overfitting problem may occur. If a learning algorithm performs very

well in classifying training data but gives poor results in predicting new data, it is

said to overfit training data. For example, the misclassification rate on the training

data is nearly zero but the misclassification rate on the new data is very large.

When a tree is overfitting, some actions must be taken to downsize the tree to a

proper size. These actions are called pruning. Minimal cost-complexity (Breiman

et al., 1984) is one commonly used pruning method to avoid overfitting training

data. First a tree is fully grown without any restrictions and then this tree is

pruned back by deleting a pair of terminal nodes one at a time to minimize the

cost-complexity risk. Cross validation method is often used for the trees to be

pruned appropriately.

Recently in classification analysis the concept of combining multiple

classifiers is widely used to further improve the performance of individual

classifiers. The way of combining multiple classifiers to produce a new classifier

is called a classification ensemble method. The combination of the predictions

from multiple base classifiers is usually through majority voting or weighted

voting to produce the final prediction. For example, suppose we have an ensemble

8

classifier composed of three base classifiers classifying three instances with only

two classes (i.e. Y = 0 or Y = 1). The predictions from these three classifiers are

(0, 1, 1), (0, 0, 1), and (1, 1, 1), respectively. Then the final prediction from this

ensemble classifier would be (0, 1, 1) if a majority voting was used. If a weighted

voting was used instead, then the weight for each classifier must be taken into

account and the result might be different. In fact, majority voting can be thought

as a special case of weighted voting when the weight assigned to each base

classifier is equal.

In classification ensemble methodologies, it is known that a more powerful

classifier can be generated by combining many weak classifiers to improve the

accuracy (Ji and Ma 1997; Hastie et al., 2001), where a weak classifier means that

it performs slightly better than random guess. That is, the classification accuracy

of a weak classifier is only required to be slightly greater than 0.5. For any

ensemble classifier, let be the classification accuracy of each base classifier and

 be the number of base classifiers in this ensemble classifier. Here we let

 , where is a nonnegative integer. If majority voting is used to

combine base classifiers, then the classification accuracy of this ensemble

classifier would be

 ∑ (

)

9

under the assumption that the decisions of the base classifiers are independent.

Lam and Suen (1997) showed that is strictly increasing if is greater than 0.5

and strictly decreasing if is smaller than 0.5. Ahn et al. (2007) also pointed out

that the classification accuracy of an ensemble classifier will converge to 1 if is

greater than 0.5. Therefore, in order to be beneficial from using ensemble

methodology, the base classifiers must perform better than random guess. If the

base classifiers perform worse than random guess, then combining these

classifiers will only lead to a poorer result.

The number of base classifiers in an ensemble classifier is called the ensemble

size. In general, the steps to create an ensemble classifier are:

1. Generate multiple samples from the original training data set by using a

resampling method

2. Build multiple classifiers from each of those resampled samples

3. A classification ensemble is built by combining these classifiers through

majority voting or weighted voting

Usually, we would like the base classifiers in an ensemble classifier to be

diverse in order to improve the performance. Diversity means that the base

classifiers have errors on different parts. Usually when we form a committee to

make a decision on something, we would prefer to include people who have

10

different opinions. It will be meaningless to form a committee if the committee

members are always in agreement. Likewise, the accuracy of a classification

ensemble can only be further improved by having diverse base classifiers. For

example, suppose we have two ensemble classifiers A and B, and each of them is

composed of three base classifiers and four instances. The performance from the

three base classifiers in A are (1, 0, 1, 0), (0, 1, 1, 0), and (1, 1, 0, 0), respectively

while the performance from the three base classifiers in B are (1, 1, 0, 0), (1, 1, 0,

0), and (1, 1, 0, 0), respectively. Here 0 indicates that the decision is incorrect and

1 indicates that the decision is correct. Now if we take a majority voting on

combining base classifiers for A and B, the performance from A and B are (1, 1, 1,

0) and (1, 1, 0, 0), respectively. It is not too hard to see that performance of

ensemble A has been improved by having diverse classifiers and ensemble B has

not gained anything from combining classifiers since the base classifiers in B are

always in agreement. Since diversity plays an important role in the performance

of an ensemble classifier, measures of diversity become important issues in

ensemble classification analysis. Some good discussions on measures of diversity

in an ensemble classifier can be found in Kuncheva and Whitaker (2003),

Kuncheva (2004), and Brown and Kuncheva (2010). Since it requires diverse base

classifiers for an ensemble classifier to have a better performance, decision trees

are often used as base classifiers in ensemble methods due to the fact that they are

sensitive to minor changes but still quite accurate.

11

Tukey (1977) seemed to be the first one who started using the ensemble

methodology by combining two linear regression models (Bühlmann and Yu,

2003; Rokach, 2010). After that, many classification ensemble methods have been

developed to improve the classification accuracy. Early work of ensemble

algorithms on classification analysis including Boosting (Schapire, 1990; Freund

and Schapire, 1996), Bagging (Breiman, 1996), and Random Subspaces (Ho,

1998) are now widely used due to their high classification accuracy.

Boosting changes the distribution of the training dataset of current classifier

adaptively based on the previous classifiers’ performance and then combines

these classifiers through a weighted voting where the weight is obtained during

training phase. Bagging generates different training data for each classifier using a

bootstrap resampling method in order to increase the diversity of classifiers while

still maintaining the accuracy of classifiers. The final class prediction of Bagging

is obtained by taking a majority voting on these classifiers. Random Subspaces

train each classifier using a randomly selected feature subset from the original

feature space so that the diversity of classifiers can be further increased. Like

Bagging, Random Subspaces combine the classifiers using a majority voting.

Random Forest, a variant of Bagging, is developed by Breiman (2001) to further

improve the diversity of Bagging and therefore improve the performance. Based

on the algorithm of Bagging, Random Forest diversifies the classifiers more by

12

using only a random feature subspace at each node when growing a classification

tree. Basically, both Random Subspace and Random Forest utilize the concept of

feature subspace to further increase the diversity of an ensemble classifier.

Recently two ensemble algorithms, Rotation Forest (Rodríguez et al., 2006)

and CERP (Classification by Ensembles from Random Partitions: Ahn et al., 2007)

have also received attention due to good performance. Rotation Forest applies

Principal Component Analysis (PCA) to each bootstrap sample to further

diversify the classifiers and then combines these classifiers through a majority

voting. CERP partitions the input feature space into several mutually exclusive

feature subspaces and each classifier is trained under each feature subspace. By

randomly partitioning the feature space, CERP generates more diverse but less

correlated classifiers. The classifiers in CERP are combined with a majority

voting or an average voting.

In this dissertation, we propose a new classification ensemble method named

Canonical Forest. By applying CLDA (canonical linear discriminant analysis) to

each bootstrap sample, Canonical Forest generates accurate and diverse classifiers.

In Canonical Forest, CLDA is served as a linear transformation tool instead of a

dimension reduction tool. That is, we still keep all the features while applying

CLDA. Since CLDA will find the transformed space that separates the

distribution farther among classes, classifiers built on this space will be more

13

accurate than those on the original space. To further diversify the classifiers,

CLDA is applied to each partial mutually exclusive feature space instead of

directly being applied to the whole feature space for each bootstrap sample.

We also propose another version of Canonical Forest called HDCF (High

Dimensional Canonical Forest) that is specifically designed for the high

dimensional data since Canonical Forest cannot be applied to high dimensional

data directly. By implementing the algorithm of Random Subspace into Canonical

Forest, we can naturally apply Canonical Forest to high dimensional data without

performing feature selection or feature reduction first. Basically, HDCF is very

similar to Canonical Forest except that it only uses a random subset of features

from the original feature space when constructing each base classifier.

To investigate the performance of Canonical Forest, we compare it with some

current popular ensemble methods including Boosting, Bagging, Random Forest,

and Rotation Forest. Twenty nine real or artificial data sets are used to evaluate

the performance of each ensemble method. Besides investigating the classification

accuracy, we also investigate the bias and variance decomposition.

We also compare the performance of HDCF with some current popular high

dimensional classification algorithms including SVM, CERP, and Random Forest

14

using gene imprinting, estrogen and leukemia data sets. A brief introduction to

these three data sets is included in Chapter 4.

15

Chapter 2

Review of existing ensemble methods

In this chapter, we will briefly introduce some current popular ensemble

methods that were used to compare the performance of Canonical Forest and

HDCF in this study.

2.1 Adaboost

Adaboost (Freund and Schapire 1996; 1997) is the most widely used boosting

method and it is available as a package named Adaboost.M1 in R. Adaboost

builds classifiers one at a time by changing the weight distribution of current

classifier based on previous classifier’s classification and then combines these

classifiers through weighted voting. At the beginning, the weights are equally

assigned to each instance in training set. Then in next iteration, the weights of

incorrectly classified instances are increased and the weights of correctly

16

classified instances are reduced. Therefore, the classifier is forced to focus more

on those hard-to-classify instances during next iteration. The same process is

repeated until the last iteration is done. After all the classifiers are built, a

weighted voting method is used to combine all these classifiers. The weights of

classifiers are obtained during the training phase. A decision stump (Iba and

Langley, 1992) is often served as the base classifier in Adaboost. For a decision

tree that only splits once is called a decision stump. That is, a decision stump

utilizes only one feature to make a classification.

LogitBoost is a variant version of Adaboost that was developed by Friedman

et al. (2000). The main difference between LogitBoost and Adaboost is that

LogitBoost uses the logistic loss function while Adaboost uses the exponential

loss function. L2Boost (Friedman, 2001; Bühlmann and Yu, 2003) is another well-

known variant version of Adaboost by adopting the L2-loss function. Another

major difference between L2Boost and Adaboost is that L2Boost does not assign

more weights to the misclassified instances like Adaboost does. SparseL2Boost

(Bühlmann and Yu, 2006) is a modification of L2Boost that is aimed to increase

the sparsity and therefore shows an advantage when dealing with high-

dimensional data with a lot of noise features. Recently, a new boosting algorithm

that is specifically designed for the asymmetric mislabeled data named

Asymmetric ƞ-Boost was proposed by Hayashi (2012). Asymmetric ƞ-Boost is a

17

generalization algorithm of Adaboost that adopts the asymmetric ƞ-loss function

making the boosting algorithm more resistant to asymmetric mislabeled data.

When applied to two-class classification problems, AdaBoost has been proven

to be successful in producing accurate classifiers. However, when classifying

instances with more than two classes, Adaboost needs to reduce the multi-class

classification to multiple two-class classification. To overcome this problem, a

multi-class Adaboost algorithm, Samme (Stagewise Additive Modeling using a

Multi-class Exponential loss function), has been proposed by Zhu et al. (2009).

Samme is a new boosting algorithm that naturally extends Adaboost to a multi-

class classification without reducing it to multiple two-class classification by

slightly changing the weights on the misclassified instances. Samme has been

proven to be quite successful when dealing with multi-class classification

problems.

2.2 Bagging

Bagging (Bootstrap aggregating: Breiman, 1996) is one of the most well-

known ensemble methods. It utilizes a resampling method called bootstrap at the

training phase when building a classifier in order to build more diverse classifiers.

Here bootstrap resampling method means that it randomly draws instances from

18

data with replacement. For each base classifier, a bootstrap sample is drawn from

the original training data set and then serves as the new training data set. Since

each bootstrap sample is randomly drawn from the whole training data set with

replacement, the distribution of each bootstrap sample is similar to the distribution

of the original training data set. Therefore, these base classifiers trained with

bootstrap samples are still maintaining the accuracies but now become more

diverse. A simple majority voting is then used to combine these base classifiers to

form the final classification. Although bagging classifiers usually can yield a

better performance than a single classifier, it is not always the case. Breiman

(1996) indicated that Bagging algorithm is most useful when the base classifiers

are unstable. Here an unstable classifier means that the classifier tends to have a

significantly different result while there is only a slight change on the training

data. In Breiman’s study (1996), decision trees are chosen to be the base

classifiers in Bagging algorithm because decision trees are accurate but tend to

have different results even there is only a small difference between training data.

Wagging (Weight aggregating: Bauer and Kohavi, 1999), a variant of Bagging,

is an ensemble classifier that diversifies the base classifiers by adding random

weights to the training instances instead of resampling from the training data. For

each classifier, all training instances are assigned with equal weights and then

Gaussian noise with mean zero and a specified standard deviation is added to each

19

weight to change the weights of these training instances. In this way, the

classifiers in Wagging are diversified since the weights of instances in training

data vary from one classifier to another. Webb (2000) proposed a new boosting

method, named Multiboost, by combining the algorithm of Adaboost and

Wagging. When decision trees are served as the base classifiers, Multiboost has a

lower error rate than any of Adaboost, Bagging or Wagging in Webb’s study. It

should be noted that continuous Poisson distribution, instead of Gaussian noise, is

used to assign the weights of training instances in Multiboost.

Panov and ǅeroski (2007) proposed to combine the algorithm of Bagging

and Random Subspaces to create a more accurate and diverse ensemble classifier.

Random Subspaces (Ho, 1998) is an algorithm that uses only a random subset of

input features when training each base classifier to increase the diversity. The

details about Random Subspace are provided in Chapter 3. By training each

classifier with a bootstrap sample consisted of only a subspace of input features,

this new algorithm proposed by Panov and ǅeroski (2007) is more diverse than

Bagging and Random Subspaces and hence has a better performance.

Double-Bagging (Hothorn and Lausen, 2003) is a CLDA based ensemble

method that combines the algorithms of CLDA and Bagging. For each base

classifier, Double-Bagging first takes a bootstrap sample from training data and

then applies CLDA to the out of bag (OOB) sample to obtain the coefficient

20

matrix. The details about OOB sample are introduced in Section 2.3. The

canonical features can be computed using this coefficient matrix in the bootstrap

sample. The base classifier is then built using both the original features and the

canonical features. Finally, a simple majority voting is used to combine all these

base classifiers.

2.3 Random Forest

Random Forest (Breiman 2001), a variant version of Bagging, is a decision

tree based ensemble method. To make base classifiers more diverse, the algorithm

of Random Subspace is implemented into the algorithm of Bagging at each node

when building a tree in Random Forest. Like Bagging, Random Forest also uses a

bootstrap sampling method at the training phase when building a tree. When

applying bootstrap sampling method, there are about one-third of the instances not

contained in the bootstrap sample and this “left-out” sample is called out-of-bag

(OOB) sample. One of the advantages of Random Forest is that it does not require

using cross-validation to evaluate its performance. The performance of Random

Forest can be evaluated simply using the OOB sample. Another important feature

that Random Forest has is feature importance ranking. To rank the importance of

features in Random Forest, the values of each feature are randomly permuted and

OOB accuracy is calculated for each feature after permutation. The importance

21

score of a feature is then determined by the mean of the difference between the

original OOB accuracy and the permuted OOB accuracy from all the trees. This

measure of importance score is also called the measure of mean decrease in

accuracy. Features with higher importance score are more important than features

with lower importance score.

To be more diverse than Bagging, Random Forest uses only a random subset

of the features instead of all features at each node when growing a tree. Denote

as the number of all the features. Only features are selected at random from the

 features and a split is made using only these m features at each node. Bagging

can be thought as a special case of Random Forest when . Different number

of features used at each node when growing a tree can lead to different results.

Square root of is the default feature subset size of a node in the R Random

Forest package named randomForest. Ahn et al. (2007) observed that this default

yields consistently good results in many data sets. Because Random Forest only

uses partial features at each node when growing a tree, it can be directly applied

to high-dimensional data without performing feature selection first. It should be

noted that when growing a tree, the tree needs to be grown to the largest size

without any pruning method implemented in the algorithm of Random Forest.

Due to the increase of diversity, Random Forest performs better than Bagging and

therefore is often used in classification analysis.

22

2.4 Rotation Forest

Rotation Forest is a new classification ensemble algorithm developed by

Rodríguez et al. (2006). To fit a classifier in an ensemble, it first randomly splits

the training data of features into subsets. That is, each feature subset will

contain roughly features. Next, for each feature subset, a class is

randomly removed and then a sample containing 75% of the original sample is

drawn from this data set using bootstrap sampling method. Then principal

component analysis (PCA) is applied to this bootstrap sample using the features in

the subset. PCA is a frequently used tool in data reduction. By applying PCA, one

can reduce the input features into a smaller set of uncorrelated components where

each component is a linear combination of the original features.

For a given input data set, we first find its covariance matrix and then

calculate its eigenvalues and corresponding eigenvectors. The first component is

then the eigenvector with the largest eigenvalue and accounts for most of the

variation in input data. The second component is the eigenvector with the second

largest eigenvalue and accounts for most of the remaining variation in input data.

It should be noted that the second component is orthogonal to the first component.

All other succeeding components follow this same rule and are orthogonal to all

previous components. Usually, the first few components should account for most

23

of the variation in original data. Therefore, we can just use these components

instead of all the input variables without losing too much information. More about

data reduction will be discussed in Chapter 3. When applying PCA in Rotation

Forest, all the components will be kept to preserve all the information. After

applying PCA, a rotation matrix is built using the coefficients obtained from PCA

and then multiplied to the original training data set (an matrix) to obtain a

new training data set. After all the base classifiers are built, a majority voting is

used to combine these base classifiers. Rotation Forest is quite successful due to

its high accuracy and diversity.

RotBoost (Zhang and Zhang, 2008) is a recently proposed ensemble method

that combines the algorithms of Rotation Forest and Adaboost to improve the

performance. RotBoost first uses the algorithm of Rotation Forest to obtain the

rotation matrix and then the new training data set is obtained using this rotation

matrix. After the new training data set is formed, the algorithm of Adaboost is

then used to build a classifier. Like Rotation Forest, Rotboost also utilizes a

majority voting to form the final classification. By simultaneously reducing the

bias and the variance, the performance of RotBoost showed superiority among the

considered ensemble methods in Zhang and Zhang’s study.

24

2.5 CERP

CERP was recently developed by Ahn et al. (2007) and it is a high-

dimensional data oriented classification ensemble algorithm. First the input

feature space is randomly partitioned into several mutually exclusive feature

subspaces with roughly equal sizes. Then under each subspace, a tree is grown

with only the features in this subspace. By doing this, CERP avoids the problem

of high dimensionality and therefore does not need a feature selection or

dimension reduction before classifying. Ten-fold cross validation is used during

the training phase to determine the number of subspaces which is also the

ensemble size of CERP. Finally, a final classification is obtained by combining all

these classifiers simply through a majority voting or average voting depending on

its base classifiers. One of the two different base classifiers was used in Ahn et

al.’s study: CART and logistic regression trees. CART-based CERP takes a

majority voting to form the final classification and logistic regression tree-based

CERP takes an average voting to form the final classification. Because all the

feature subspaces are formed mutually exclusive, the correlations among the

classifiers are substantially reduced in CERP. Hansen and Salamon (1990), Ho

(1998) and Kuncheva et al. (2003) noted that the performance of an ensemble is

further improved with less correlated base classifiers (Ahn et al., 2007). By

partitioning the whole feature space into several mutually exclusive feature

25

subspaces, CERP becomes an accurate and efficient ensemble classifier. Ahn et al.

(2007) also proposed to generate multiple ensembles by re-partitioning the feature

space and then combine these ensembles to further improve the accuracy of CERP.

Eleven ensemble classifiers were used in their study.

LORENS (Logistic regression ensembles: Lim et al., 2010) is an ensemble

method based on the algorithm of CERP that employs logistic regression as the

base classifiers. Since logistic regression is a binary classifier, LORENS can be

only applied to two-class classification problems. To overcome this problem, Lee

et al. (2013) proposed an extended version of LORENS, named mLORENS

(Multinomial logistic regression ensembles) that allows LORENS to be applied to

multi-class problems by using multinomial logistic regression as its base

classifiers. Both LORENS and mLORENS use the average voting method to

combine the base classifiers.

26

Chapter 3

Method

3.1 Canonical Linear Discriminant Analysis

Dimension reduction technique is often used to reduce the number of input

features, specifically in high-dimensional data. When the number of features of

the input data is too large, typically much larger than the number of instances, it is

called high-dimensional data. In classification analysis, it is well known that

classification methods can perform poorly on high-dimensional data. This is

mainly because high-dimensional data usually consist of too many redundant

features which are also called noise features. When data contain too many noise

features, models built from these data may consist of too much useless

information and result in poor performance during classification phase. Therefore,

many classification methods need to reduce the original input feature space into a

smaller feature set when classifying high-dimensional data. The way of reducing

27

original feature space into a smaller feature set is called dimension reduction. If

the dimension reduction is successful, then this new feature set should still keep

most of the information from the original input data. We then can train models

using the new feature set instead of all the features. For example, if the input data

are -dimensional, it can be reduced to -dimensional () without losing too

much information by applying dimension reduction technique. PCA and CLDA

(Canonical Linear Discriminant Analysis) are the two most widely used

dimension reduction techniques.

The general idea of CLDA is to find a linear combination that maximizes the

between-class variance relative to the within-class variance (Hastie et al. 2001).

That is, it finds a linear transformation of features which separates the class

distribution as far as possible. In this sense, classifier using the features extracted

by CLDA performs better compared to the one using original features. Therefore,

CLDA can always make a good separation among classes and hence is a better

feature reduction method than PCA in classification analysis since PCA does not

utilize the class information when performing feature reduction. The algorithm of

CLDA modified from Hastie et al. (2001) is given in Figure 1.

Although CLDA is known as a dimension reduction tool, we do not use it as a

dimension reduction technique in this experiment. Instead, we keep all the

components when applying CLDA to preserve all the information and to further

28

diversify the classifiers. Therefore, here CLDA only serves as a linear

transformation tool to make the input data separate as far as possible among

classes.

29

Given:

 X: the objects in the training data set (an N x p matrix)

 C: the number of classes

 p: the number of variables

 : the covariance of class i

Procedure:

1. Compute the class centroid matrix , where the i-j entry is the mean

of class i for variable j.

2. Compute the common covariance matrix W :

 ∑

3. Compute by using eigen-decomposition of W.

4. Obtain the between covariance matrix by computing the covariance

matrix of .

5. Do the eigenvalue-decomposition of such that

6. The columns of V define the coordinates of the optimal subspaces.

7. Convert X to the coordinates in the new subspace:

8. is the canonical coordinate.

Figure 1: Algorithm of CLDA.

30

3.2 Canonical Forest

Rotation Forest is a PCA based ensemble method proposed by Rodríguez et al.

in 2006. It has been proven to be a quite successful ensemble method due to its

high classification accuracy comparing to other current widely used ensemble

methods. However, like we discussed in previous section, CLDA is a more

suitable feature extraction technique than PCA when it comes to classification

analysis due to the fact that PCA does not utilize class information while CLDA

does. Therefore, we propose a new classification ensemble method called

Canonical Forest by replacing PCA with CLDA in the algorithm of Rotation

Forest to further improve the classification accuracy. Basically, the main

difference between Canonical Forest and Rotation Forest is on the method for

feature extraction. CLDA is used in Canonical Forest while PCA is used in

Rotation Forest.

Let be an instance represented by features and let be the

training data composed of instances in a form of an matrix. Let be the

class labels of the training data where . The classifiers

in an ensemble are denoted by and the feature set is denoted by . Like

Rotation Forest, all the classifiers can be trained in parallel. To set up the training

data for classifier , we use the following steps.

31

1. Randomly split into subsets. The subsets are made disjoint to increase

the diversity of an ensemble. For simplicity, assume that is divisible by

 . Then each feature subset contains features. If is not

divisible by , we let ⁄ and the last subset is set to contain

the remaining features.

2. Denote as the j-th subset of features of the training data for classifier

 . For each of such subsets, draw a bootstrap sample with 75 percent of

the original sample size.

3. Run CLDA on and obtain a coefficient matrix

() of size Note that each of

()
 has size of m because all the canonical components are

kept without dimension reduction.

4. Arrange the obtained coefficient matrix into a block diagonal

matrix , where

 [

]

5. Construct the rotation matrix
 (a matrix) by rearranging the rows

of so that they correspond to the original features in .

6. The new training data for classifier is
 .

32

Figure 2 shows the pseudocode for the entire algorithm of Canonical Forest.

Here decision trees are used as base classifiers. Since the centroids of classes in

 -dimensional input space span at most dimensional subspace, it is

common to extract features in CLDA for dimension reduction in general.

However, we use CLDA as a linear transformation tool rather than a dimension

reduction tool for this study. Therefore, we let the number of extracted features to

be the number of the original features. This results in extracted features in each

subset of features even if is greater than . Although these extra features

may not contribute much to the discriminatory power, they will encourage the

classifiers to be more diverse and it can yield higher accuracy of the ensemble.

33

Input

Given

 : training data composed of n instances (an matrix)

 : the labels of the training data (an vector)

 : number of classifiers in an ensemble

 : number of subsets

 : set of class labels

Training Phase

For

1. Randomly split (the feature set) into subsets: (for)

2. For

 Let be the data matrix that corresponds to the features in

 Draw a bootstrap sample
 (with sample size 75% of the number

of instances in) from

 Apply CLDA to
 to obtain a coefficient matrix

3. Arrange into a block diagonal matrix

4. Construct the rotation matrix
 by rearranging the rows of so that they

correspond to the original order of features in

5. Use
 as the training data to build a classifier

Test Phase

 For a given instance , the predicted class label from classifier is:

 ∑

Figure 2: Pseudocode of Canonical Forest.

34

3.3 Canonical Forest with the Weight-Adjusted

Voting Algorithm

Majority voting is a simple combining algorithm often used in ensemble

methods when combining base classifiers. Although it is simple and efficient,

sometimes it can be biased since it doesn’t take the performance of classifiers into

account but assigns equal weights to each classifier instead. This could be a

problem when some classifiers perform better on hard-to-classify instances. Here

hard-to-classify instances are defined as those instances that are correctly

classified by only a few classifiers. Therefore, the results might be misled if

classifiers that perform better on hard-to-classify instances are assigned the same

weight as those that perform worse on hard-to-classify instances. To solve this

problem, Kim et al. (2011) proposed a new weighted voting algorithm named

WAVE (Weight-Adjusted Voting for Ensemble of Classifiers). Unlike other

weighted voting algorithms, WAVE can be applied after all the classifiers are

built. That is, the classifiers can still be trained in parallel when applying WAVE.

The general idea of WAVE is to assign more weights to the classifiers that can

classify hard-to-classify instances better. To assign weights to each classifier

properly, WAVE uses both the weight vector of classifiers and the weight vector

of instances. The instances that are correctly classified by fewer classifiers receive

35

more weight and the classifiers that perform better on those hard-to-classify

instances also receive more weight. Therefore, these two weight vectors are

influenced by each other and are updated iteratively through a repeated process.

The algorithms of obtaining weight vectors for both instances and classifiers are

shown in Figure 3. Once the weight matrix is obtained, the classifiers are then

combined using this weight matrix in an ensemble algorithm. To make the

calculations easier, Kim et al. (2011) proved the convergence of both weight

vectors of instances and classifiers and obtained the final weight vectors of

instances and classifiers directly without going through an iterative process. The

algorithm for obtaining the final weight vectors directly is shown in Figure 4.

Because the weight vector of classifiers is obtained after the ensemble is formed,

we can easily apply it to Canonical Forest to improve the performance.

36

Given

 : number of instances in data

 : number of classifiers in an ensemble

 : an performance matrix indicating whether the prediction is

 correct (1) or wrong (0)

 : an matrix with all the entries equal to 1

 : an vector of 1’s

 : a identity matrix

Procedure:

1. Calculate , the initial weight vector of instances:

2. For calculate and by repeating the following process

until both and become stable, where is the weight vector of

classifiers.





3. After and become stable, denote and as the final weight

vectors for classifiers and instances, respectively.

Figure 3: Pseudocode of obtaining the weight vectors through an iterative process.

37

Given

 : number of instances in data

 : number of classifiers in an ensemble

 : an performance matrix indicating whether the prediction is

 correct (1) or wrong (0)

 : an matrix with all the entries equal to 1

 : an vector of 1’s

 : a identity matrix

Procedure:

1. Let

2. Find , eigenvalues of

3. Find , eigenvector corresponding to

4. Let be the number of dominating eigenvalues such that

5. Compute
 ∑

 ∑

 , where is the weight

matrix of classifiers

6. Compute
 ∑

 ∑

 , where

is the weight matrix of instances

Figure 4: Pseudocode of directly obtaining the final weight vectors.

38

3.4 High-Dimensional Canonical Forest (HDCF)

Although Canonical Forest is an ensemble algorithm based on CLDA which is

a commonly used dimension reduction tool for dealing with high-dimensional

data, it cannot be directly applied to high-dimensional data since CLDA only

serves as a linear transformation tool rather than a dimension reduction tool in

Canonical Forest. Therefore, like most of the other classification methods,

Canonical Forest needs to perform a feature selection or feature reduction before

classifying on high-dimensional data. In order for Canonical Forest to be directly

applied to high-dimensional data, we propose a different version of Canonical

Forest called High-Dimensional Canonical Forest (HDCF) by implementing the

algorithm of Random Subspace (Ho 1998) into Canonical Forest.

Random Subspace is an ensemble algorithm that utilizes the random feature

subspace to increase the diversity of classifiers. Unlike Bagging diversifies the

classifiers by repeatedly resampling from the training data, Random Subspace

diversifies the classifiers by randomly selecting feature subsets from the original

feature space. That is, Random Subspace only uses a random subset of features

instead of all features to construct a classifier. Since all the classifiers are

generated independently, the classifiers can be trained in parallel in Random

Subspace. However, it should be noted that generating independently does not

mean that the classifiers are independent. After each classifier is constructed, an

39

average voting method is used to combine these classifiers. By using only some

instead of all features, Random Subspace not only increases the diversity but also

easily overcomes the problem caused by high-dimensional data and hence does

not require a feature selection or feature reduction before classification. Therefore,

Random Subspace is most useful when classifying on high-dimensional data but

may be a bad choice when classifying on data with only a few features. The entire

algorithm of Random Subspace is shown in Figure 5.

Here we naturally extend Canonical Forest to be applied on high-dimensional

data by implementing the idea of random feature subspace into the algorithm of

Canonical Forest. That is, only some randomly selected features from the whole

features are used when growing each tree in Canonical Forest. This new

classification ensemble algorithm is called High-Dimensional Canonical Forest

(HDCF) since it is specifically designed for high-dimensional data. The only

difference between HDCF and Canonical Forest is that HDCF uses only a subset

of whole feature set while Canonical Forest uses the whole feature set when

growing a tree. Figure 6 shows the pseudocode for the entire algorithm of HDCF.

Like Canonical Forest, decision trees are used as base classifiers in HDCF.

40

Input

Given

 : training data composed of n instances (an matrix)

 : the labels of the training data (an vector)

 : number of classifiers in an ensemble

 : number of features selected from the feature set

 : set of class labels

Training Phase

For

1. Randomly select a feature subset of size q from (the feature set)

2. Let be the data matrix that corresponds to the features in

3. Use as the training data to build a classifier

Test Phase

 For a given instance , let be the probability that belongs to

class from classifier . The average probability that belongs to class

from classifiers is:

∑

 Assign to class where is the maximum

Figure 5: Pseudocode of Random Subspace.

41

Input

Given

 : training data composed of n instances (an matrix)

 : the labels of the training data (an vector)

 : number of classifiers in an ensemble

 : number of subsets

 : number of features selected from the feature set

 : set of class labels

Training Phase

For

1. Randomly select a feature subset of size q from (the feature set)

2. Randomly split into K subsets: (for = 1, . . ., K) and Let be the data

matrix that corresponds to the features in

3. For

 Let be the data matrix that corresponds to the features in

 Draw a bootstrap sample
 (with sample size 75% of the number

of instances in) from

 Apply CLDA to
 to obtain a coefficient matrix

4. Arrange into a block diagonal matrix

5. Construct the rotation matrix
 by rearranging the rows of so that they

correspond to the original order of features in

6. Use
 as the training data to build a classifier

Test Phase

 For a given instance x, the predicted class label from classifier is:

 ∑

Figure 6: Pseudocode of High-Dimensional Canonical Forest.

42

Chapter 4

Experiments

4.1 Performance Comparison

In this dissertation, we conducted an experiment using 29 real or artificial data

sets to compare the performance of Canonical Forest with the performance of

other widely used ensemble methods including Bagging, Adaboost, Samme,

Random Forest, and Rotation Forest. We also provided weighted voting version

of Canonical Forest using WAVE to further improve the performance of

Canonical Forest. Decision trees were used as the base classifiers for all the

ensemble methods. We used unpruned decision trees as base classifiers except for

Adaboost and Samme. For Adaboost and Samme, we set the maximum depth of

each single tree to be the number of classes, which is the default setting in the R

package called adaboost.M1. A decision tree program named rpart available in the

R package is used for the experiment. Rpart is based on the CART (Classification

43

and Regression Trees) algorithm (Breiman et al., 1984). In Random Forest, we set

the number of features chosen at each node equal to the square root of the number

of all features, which is the default setting in the R Random Forest package

named randomForest. In Canonical Forest and Rotation Forest, the number of

features in each subset is set to be . If is not divisible by 3, then the last

subset was completed with the remaining features (1 or 2 features). It should be

noted that the performance of all the ensemble methods were compared under the

fixed same ensemble size for fair comparisons.

The data are summarized in Table 1. Most of the data come from UCI Data

Repository (Asuncion and Newman, 2007) and package mlbench (Leisch and

Dimitriadou, 2010) of the R library. Since PCA and CLDA cannot be applied to

discrete features, all the discrete features have been removed from each data set.

44

Table 1: Data used in the comparison of Canonical Forest with other ensemble

methods.

Data Set Observations Continuous

Features

Class Source

aba 4177 7 2 UCI

aus 690 11 2 UCI

bld 345 6 2 UCI

bod 507 24 2 Heinz et al. (2003)

bos 506 12 3 UCI

cir 1000 10 2 R library

dia 768 8 2 Loh (2010)

ech 131 5 2 UCI

fis 159 6 7 Kim and Loh (2003)

hea 270 10 2 UCI

int 1000 9 2 Kim et al. (2011)

ion 351 32 2 UCI

iri 150 4 3 UCI

lak 259 13 6 Loh (2010)

led 6000 7 10 UCI

mam 961 5 2 R library

pid 532 7 2 UCI

pks 195 22 2 R library

pov 97 6 6 Kim and Loh (2001)

rng 1000 10 2 R library

sea 3000 7 3 Terhune (1994)

snr 208 60 2 R library

spe 267 44 2 UCI

trn 1000 10 2 R library

twn 1000 10 2 R library

usn 1302 26 3 Statlib (2010)

veh 846 18 4 UCI

vol 1521 4 6 Loh (2010)

vow 990 10 11 UCI

45

Figure 7 shows boxplots comparing Canonical Forest with the other ensemble

methods for ensemble sizes 2, 4, 8, 16, 32, and 64. Twenty repetitions of 3-fold

cross-validation were performed for each of the data sets. Here the comparison

was done by using paired t-test. The x-axis indicates the ensemble size, B, and the

y-axis indicates the t-test statistic. A positive t-test statistic shows that Canonical

Forest has a better performance; a negative t-test statistic shows that Canonical

Forest has a poorer performance. From Figure 7, we can see that the t-test statistic

increases as ensemble size increases for Decision Trees and Bagging; t-test

statistic decreases as ensemble size increases for Random Forest; no obvious

trends are found for Adaboost, Samme, and Rotation Forest.

46

Figure 7: Boxplots of other ensemble methods compared to Canonical Forest

using paired t-test. CanF stands for Canonical Forest; RnF stands for Random

Forest; RotF stands for Rotation Forest.

47

Figure 8 shows the relative improvement of the other ensemble methods

compared to Canonical Forest for ensemble sizes 2, 4, 8, 16, 32, and 64 using

boxplots. The relative improvement is defined as

Here B is Canonical Forest and A is the ensemble method to be compared.

From Figure 8, we can see that the relative improvement increases as the

ensemble size increases for Decision Tree and Bagging; it decreases as the

ensemble size increases for Random Forest; there are no obvious trends for

Adaboost, Samme, and Rotation Forest.

The result using relative improvement is quite consistent with the result using

paired t-test. In general, we see that Canonical Forest is better than any other

ensemble methods at each ensemble size, especially when the ensemble size is

small.

48

Figure 8: Relative Improvement of the other ensemble methods compared to

Canonical Forest represented using box-plot. CanF stands for Canonical Forest;

RnF stands for Random Forest; RotF stands for Rotation Forest.

49

To compare the accuracy among different ensemble methods, we fixed the

ensemble size at and . For each data set and ensemble method, twenty

3-fold cross validations were performed. The average accuracies are shown in

Table 2 and Table 3. We also show the accuracy of single tree as a reference.

The results are marked with a plus or minus sign next to them if there is a

significant difference between the respective ensemble method and Canonical

Forest. If Canonical Forest is significantly more accurate than the compared

method (column) for the particular data set (row), then we put a plus sign next to

a result. If Canonical Forest is significantly less accurate, then we put a minus

sign next to a result. The second + or - sign in Table 3 indicates that Canonical

Forest with WAVE is used to compare with other methods. The comparison was

done by using paired t-test at two-sided significant level α = 0.05.

50

Table 2: Classification accuracy of tree and ensemble methods comparing with

Cononical Forest with ensemble size .

Data Set Tree Bagging Adaboost Samme Random

Forest

Rotation

Forest

Canonical

Forest

aba 0.7628+ 0.7755+ 0.7334+ 0.7711+ 0.7697+ 0.7820 0.7814

aus 0.8546+ 0.8648 0.8542+ 0.8411+ 0.8624 0.8490+ 0.8628

bld 0.6516+ 0.7007+ 0.6854+ 0.7039+ 0.7148+ 0.7041+ 0.7268

bod 0.9036+ 0.9282+ 0.9735+ 0.9748+ 0.9402+ 0.9729+ 0.9776

bos 0.7400+ 0.7710 0.7715+ 0.7760 0.7787 0.7615+ 0.7763

cir 0.7054+ 0.7874 - 0.6674+ 0.8852 - 0.7852 - 0.7796 0.7780

dia 0.7446+ 0.7555+ 0.7520+ 0.7477+ 0.7569+ 0.7542+ 0.7617

ech 0.6347+ 0.6931 0.6702+ 0.6668+ 0.6878 0.6550+ 0.6920

fis 0.8025+ 0.8252+ 0.8264+ 0.8179+ 0.8145+ 0.9145+ 0.9428

hea 0.7430+ 0.7787+ 0.7806+ 0.7561+ 0.7891+ 0.7694+ 0.7980

int 0.6666 - 0.6586 - 0.5234+ 0.5924 - 0.5294+ 0.7347 - 0.5664

ion 0.8736+ 0.9056+ 0.9199+ 0.9217+ 0.9238+ 0.9430 - 0.9349

iri 0.9457+ 0.9457+ 0.9440+ 0.9443+ 0.9487+ 0.9523 0.9580

lak 0.3651+ 0.4041 0.4027 0.4023+ 0.4344 - 0.4027 0.4147

led 0.6830+ 0.7076 0.7331 - 0.6967+ 0.7234 - 0.7218 - 0.7084

mam 0.8268 0.8314 - 0.8318 - 0.8262 0.8329 - 0.8213+ 0.8270

pid 0.7508+ 0.7766 0.7731+ 0.7574+ 0.7756 0.7695+ 0.7808

pks 0.8456+ 0.8800+ 0.8651+ 0.9128 - 0.8862+ 0.8959 0.8964

pov 0.6227+ 0.6139+ 0.6448 0.6320+ 0.6000+ 0.6129+ 0.6603

rng 0.8186+ 0.8688+ 0.7280+ 0.9150 - 0.8870+ 0.9044 0.9024

sea 0.5872+ 0.6068+ 0.5432+ 0.6465 - 0.6082+ 0.6052+ 0.6338

snr 0.7154+ 0.7834+ 0.8216 0.8392 0.8075+ 0.8363 0.8272

spe 0.7620+ 0.8052 0.8060 0.7903+ 0.8096 0.8150 0.8103

trn 0.7280+ 0.8267+ 0.8399 0.8424 - 0.8454 - 0.8572 - 0.8380

twn 0.8212+ 0.9342+ 0.9608+ 0.9588+ 0.9558+ 0.9684 0.9696

usn 0.6748+ 0.7099+ 0.7270 - 0.7047+ 0.7155 0.7126 0.7166

veh 0.6757+ 0.7080+ 0.7342+ 0.7483+ 0.7181+ 0.7369+ 0.7645

vol 0.5176+ 0.5383+ 0.5382+ 0.4996+ 0.5320+ 0.5130+ 0.5517

vow 0.5582+ 0.6518+ 0.8653 - 0.9149 - 0.7198+ 0.7805 - 0.7472

(Win/Tie/Loss) (1/1/27) (3/7/19) (4/5/20) (7/3/19) (5/6/18) (5/10/14)

 + Canonical Forest is significantly better, - Canonical Forest is significantly worse, level of significance 0.05

51

Table 3: Classification accuracy of tree and ensemble methods comparing with

Cononical Forest with ensemble size .

Data Set Tree Bagging Adaboost Samme
Random

Forest

Rotation

Forest

Canonical

Forest

Canonical

Forest with

WAVE

aba 0.7628+ + 0.7764+ + 0.7336+ + 0.7796+ + 0.7709+ + 0.7825 0.7817 0.7819

aus 0.8546+ + 0.8667 - - 0.8544+ + 0.8354+ + 0.8651 0.8476+ + 0.8631 0.8641

bld 0.6516+ + 0.7096+ + 0.6968+ + 0.6852+ + 0.7170+ + 0.7070+ + 0.7317 0.7313

bod 0.9036+ + 0.9305+ + 0.9772 0.9792 0.9404+ + 0.9727+ + 0.9775 0.9785

bos 0.7400+ + 0.7731 0.7762 - - 0.7862 - - 0.7828 - - 0.7633+ + 0.7710 0.7718

cir 0.7054+ + 0.7883 - - 0.6590+ + 0.9132 - - 0.7872 - - 0.7733 0.7744 0.7758

dia 0.7446+ + 0.7579+ + 0.7537+ + 0.7304+ + 0.7601 + 0.7558+ + 0.7628 0.7636

ech 0.6347+ + 0.6912 0.6718+ + 0.6546+ + 0.6912 0.6618+ + 0.6927 0.6905

fis 0.8028+ + 0.8233+ + 0.8248+ + 0.8189+ + 0.8173+ + 0.9182+ + 0.9456 0.9497

 hea 1 0.7050+ + 0.7339+ + 0.7554 0.6939+ + 0.7507 0.7228+ + 0.7474 0.7481

int 0.6664 - - 0.6764 - - 0.5302+ + 0.6514 - - 0.5310+ + 0.7335 - - 0.5618 0.5697

ion 0.8736+ + 0.9091+ + 0.9222+ + 0.9245+ + 0.9266+ + 0.9442 - - 0.9360 0.9365

iri 0.9457+ + 0.9443+ + 0.9470+ + 0.9433+ + 0.9477+ + 0.9540 0.9597 0.9593

lak 0.3647+ + 0.4085 0.4066 0.4075 0.4365 - - 0.4058 0.4158 0.4145

led 0.6830+ + 0.7078 + 0.7343 - - 0.5829+ + 0.7296 - - 0.7223 - - 0.7090 0.7121

mam 0.8268 0.8320 - - 0.8334 - - 0.8157+ + 0.8339 - - 0.8230+ + 0.8283 0.8277

pid 0.7513+ + 0.7780+ + 0.7744+ + 0.7448+ + 0.7787 0.7706+ + 0.7820 0.7817

pks 0.8467+ + 0.8810+ + 0.8715+ + 0.9233 - - 0.8844+ + 0.9003 0.8938 0.8936

pov 0.6211+ + 0.6129+ + 0.6505 + 0.5897+ + 0.6062+ + 0.6077+ + 0.6624 0.6665

rng 0.8184+ + 0.8719+ + 0.7320+ + 0.9210 - - 0.8878+ + 0.9060 0.9059 0.9069

sea 0.5872+ + 0.6083+ + 0.5446+ + 0.6737 - - 0.6112+ + 0.6077+ + 0.6370 0.6370

snr 0.7154+ + 0.7863+ + 0.8351 0.8560 - - 0.8111+ + 0.8387 0.8322 0.8325

spe 0.7599+ + 0.8062+ + 0.8054+ + 0.7919+ + 0.8101 0.8133 0.8118 0.8116

trn 0.7280+ + 0.8268+ + 0.8452 0.8472 0.8476 0.8612 - - 0.8444 0.8453

twn 0.8212+ + 0.9389+ + 0.9644+ + 0.9620+ + 0.9618+ + 0.9700 0.9694 0.9695

usn 0.6748+ + 0.7134+ + 0.7284 - - 0.7111+ + 0.7192 0.7144+ + 0.7193 0.7198

veh 0.6757+ + 0.7100+ + 0.7370+ + 0.7606 + 0.7220+ + 0.7398+ + 0.7655 0.7697

vol 0.5176+ + 0.5384+ + 0.5381+ + 0.5082+ + 0.5327+ + 0.5100+ + 0.5517 0.5537

vow 0.5582+ + 0.6553+ + 0.8853 - - 0.9376 - - 0.7374+ + 0.7870 - - 0.7589 0.7641

(Win/Tie/Loss)2 (1/1/27) (4/4/21) (5/6/18) (8/4/17) (5/8/16) (5/9/15)

(Win/Tie/Loss)3 (1/1/27) (4/3/22) (5/5/19) (8/3/18) (5/7/17) (5/9/15)

+ Canonical Forest is significantly better, - Canonical Forest is significantly worse (the second one stands for Canonical
Forest with WAVE)

1 Some features of data set hea were removed due to computational problems

2 The summary result of Canonical Forest
3 The summary result of Canonical Forest with WAVE

52

Table 4 and Table 5 show the summaries of the comparisons given in Tables 2

and 3, respectively. The entry shows the frequency that the method in column

(j) is more accurate than the method in row (i). The number in parentheses shows

the frequency that these differences are statistically significant. In Table 4, for

example, the value in row 2, column 7 is 24 (19). This means that Canonical

Forest was more accurate than Bagging in 24 of the 29 comparisons and less

accurate in 5 comparisons. The number in the parentheses indicates that

Canonical Forest has been significantly better than Bagging in 19 data sets. In 3

of the remaining 5 cases, Bagging was significantly better than Canonical Forest

(the entry in row 7, column 2 is 5 (3)).

53

Table 4: Summary of comparisons among different methods with ensemble size

 .

 Tree Bagging Adaboost Samme

Random

Forest

Rotation

Forest

Canonical

Forest

Tree - 26 (26) 22 (22) 24 (21) 27 (25) 25 (24) 28 (27)

Bagging 2 (0) - 15 (10) 14 (11) 20 (14) 17 (15) 24 (19)

Adaboost 7 (5) 14 (9) - 15 (10) 19 (14) 16 (14) 24 (20)

Samme 5 (3) 15 (13) 14 (9) - 16 (11) 17 (13) 21 (19)

Random Forest 2 (2) 9 (4) 10 (10) 13 (11) - 15 (12) 23 (18)

Rotation Forest 4 (1) 12 (7) 13 (9) 12 (8) 14 (10) - 19 (14)

Canonical Forest 1 (1) 5 (3) 5 (4) 8 (7) 6 (5) 10 (5) -

The entry shows the frequency that the method in column (j) is more accurate than the method

in row (i). The number in parentheses shows the frequency that these differences are statistically

significant.

54

Table 5: Summary of comparisons among different methods with ensemble size

 .

Tree Bagging Adaboost Samme Random

Forest

Rotation

Forest

Canonical

Forest

Tree - 27 (26) 23 (22) 19 (19) 27 (26) 25 (25) 28 (27)

Bagging 2 (0) - 15 (12) 13 (13) 21 (16) 16 (15) 24 (21)

Adaboost 6 (5) 14 (10) - 14 (11) 18 (11) 16 (13) 21 (18)

Samme 10 (6) 16 (11) 15 (14) - 16 (12) 19 (15) 19 (17)

Random Forest 2 (1) 7 (3) 11 (10) 13 (10) - 15 (13) 21 (16)

Rotation Forest 4 (1) 13 (8) 13 (10) 10 (9) 14 (14) - 18 (15)

Canonical Forest 1 (1) 5 (4) 8 (5) 10 (8) 8 (5) 11 (5) -

The entry shows the frequency that the method in column (j) is more accurate than the method

in row (i). The number in parentheses shows the frequency that these differences are statistically

significant.

55

Tables 6 and 7 present the ranking of the methods based on the frequency that

each method was significantly more accurate and significantly less accurate than

other method. In Table 6, for example, the number of wins for Canonical Forest is

117. It is obtained by the sum of the numbers in parentheses in the column of

Canonical Forest in Table 4. Similarly, the number of losses is obtained by the

sum of the numbers in parentheses in the row of Canonical Forest which is 25.

Therefore, the dominance rank of Canonical Forest is at ensemble

size .

Tables 4 through 7 clearly show that Canonical Forest outperformed other

widely used ensemble methods: Bagging, Adaboost, Samme, Random Forest, and

Rotation Forest. The dominance rank of Canonical Forest (92 and 86) is

substantially larger than the second best at both ensemble sizes.

56

Table 6: Rank of the methods using the significantly different results from the

results in Table 4.

Method Dominance rank

(Wins-Losses)

Wins Losses

Canonical Forest 92 117 (82%) 25 (18%)

Rotation Forest 34 83 (63%) 49 (37%)

Random Forest 22 79 (58%) 57 (42%)

Samme 0 68 (50%) 68 (50%)

Bagging -7 62 (47%) 69 (53%)

Adaboost -8 64 (47%) 72 (53%)

Tree -133 12 (8%) 145 (92%)

57

Table 7: Rank of the methods using the significantly different results from the

results in Table 5.

Method

Dominance rank

(Wins-Losses)

Wins Losses

Canonical Forest 86 114 (80%) 28 (20%)

Random Forest 31 84 (61%) 53 (39%)

Rotation Forest 29 86 (60%) 57 (40%)

Adaboost 5 73 (52%) 68 (48%)

Samme -5 70 (48%) 75 (52%)

Bagging -15 62 (45%) 77 (55%)

Tree -131 14 (9%) 145 (91%)

58

To confirm the superiority of Canonical Forest is not just by chance, we

performed the exact Binomial test on the classification accuracy of Tables 2 and 3.

The one-sided test was adopted to obtain the p-values for the alternative

hypothesis that Canonical Forest performs better than another method. That is, the

null hypothesis was set to be and the alternative hypothesis was set to be

 , where is the probability that Canonical Forest performs better than

another method for a given data set. It should be noted that the problem of

multiple comparisons may arise when we are trying to test all hypotheses

simultaneously. When testing several hypotheses at the same time, although the

type I error rate for each test is controlled at , the overall type I error rate

becomes , where is the number of hypotheses tested simultaneously.

Since here we would like to test 6 hypotheses at the same time, the overall type I

error rate increases to 0.265 when the type I error rate for each test is controlled at

 . That is, the probability of having at least one type I error in these 6

comparisons is equal to 0.265 which is quite high. Therefore, here we used Holm-

Bonferroni (Holm, 1979) correction to adjust the significance level for a multiple

test to maintain the overall type I error rate of . The entire algorithm of

Holm-Bonferroni correction is shown is Figure 9. By using Holm-Bonferroni

correction, the probability of having at least one type I error in these 6

comparisons is now less than or equal to .

59

Table 8 shows the p-values of the exact Binomial test. The six adjusted ,

from the smallest to the largest, would be 0.008, 0.01, 0.013, 0.017, 0.025, and

0.05. The p-values arranged in increasing order are compared with the Holm-

Bonferroni adjusted values. The Holm-Bonferroni multiple comparison is

performed sequentially beginning with the smallest p-value. As a result, for the

ensemble size of , Canonical Forest is significantly more accurate than the

other methods. Except Samme, for the ensemble size of , Canonical

Forest is also significantly more accurate than the other methods. The p-value for

the comparison with Samme, however, is quite close to the adjusted significance

level of . It should be noted that after applying WAVE to Canonical

Forest, its performance became significantly more accurate than that of all the

other methods.

We did not include Canonical Forest with WAVE for the ensemble size of

 because Canonical Forest performed very well with a small ensemble size.

The gap in performance between Canonical Forest and the other methods

decreases as the ensemble size increases. As we have expected, the classification

accuracy of Canonical Forest has been slightly improved after implementing

WAVE for the ensemble size of .

60

Given:

 : number of null hypotheses

 : the corresponding p-value for null hypothesis

 : type I error rate

Procedure:

9. Order the p-values such that

10. Let be the corresponding null hypothesis of

11. Compare to

 starting from until find the

smallest index such that

 where

12. Do not reject any null hypotheses when ; reject all the null

hypotheses when

13. For , reject null hypotheses and

do not reject hull hypotheses

Figure 9: Algorithm of Holm-Bonferroni correction.

61

Table 8: P-values of exact Binomial test for comparing Canonical Forest with

other methods.

Adjusted α 0.008 0.01 0.0125 0.017 0.025 0.05

Method
1
 Tree Bagging Adaboost Samme

Random

Forest

Rotation

Forest

p-value
1
 • 0.0004• 0.0008• 0.0053• 0.0145• 0.0318•

Method
2
 Tree Bagging Adaboost

Random

Forest

Rotation

Forest
Samme

p-value
2
 • 0.0004• 0.0053• 0.0133• 0.0207• 0.0539

Method
3
 Tree Bagging Adaboost

Random

Forest

Rotation

Forest
Samme

p-value
3
 • 0.0003• 0.0033• 0.0085• 0.0207• 0.0378•

• The result is significant by using Holm-Bonferroni Correction at

1 p-value was obtained comparing with Canonical Forest at ensemble size 64

2 p-value was obtained comparing with Canonical Forest at ensemble size 500

3 p-value was obtained comparing with Canonical Forest with WAVE at ensemble size 500

62

4.2 Diversity and κ-error Diagram

In addition to the accuracy, we investigated the diversity of each ensemble

method since the diversity plays an important role in the performance of an

ensemble method. In general, ensemble methods tend to perform better if the base

classifiers are more diverse. Here kappa statistic κ (Cohen, 1960) was used to

investigate the diversity of base classifiers in ensemble methods. The kappa

statistic κ is a measure of agreement commonly used to measure the degree of

agreement between two categorical variables. In classification analysis, the

agreement between two classifiers and can also be measured by kappa

statistic κ (Margineantu and Dietterich, 1997; Dietterice, 2000; Kuncheva and

Whitaker, 2003; Rodríguez et al., 2006). To calculate κ between two classifiers,

we first have to compute , the relative observed agreement between two

classifiers which is an estimate of the probability of reaching agreement between

two classifiers, and , the probability of reaching agreement between two

classifiers by chance, given the observed counts (Margineantu and Dietterich

1997). Then kappa statistic κ can be calculated by κ

. The entire algorithm

of computing κ between two classifiers is shown in Figure 10. An ensemble of

classifiers will have pairs of classifiers () Small values of κ

indicate high disagreement (high diversity) between two classifiers and large

63

values of κ indicate high agreement (low diversity) between two classifiers. When

κ , these two classifiers can be considered identical. Since high diversity

among classifiers in an ensemble would produce small values of κ, we prefer κ to

be as small as possible.

64

Given:

 : an matrix where each entry shows the number of

instances that the first classifier assigns to class while the

second classifier assigns to class .

 : number of instances in test data

 : the number of classes

Procedure:

1. Calculate , the relative observed agreement between two

classifiers:

∑

2. Calculate , the probability of reaching agreement between

two classifiers by chance, given the observed counts:

 ∑ (∑

)

 ∑

3. Compute kappa statistic κ, the measure of agreement between

two classifiers:

 κ

Figure 10: Algorithm of computing kappa statistic κ.

65

To clearly see the pattern of base classifiers in an ensemble classifier,

Margineantu and Dietterich (1997) suggested using κ-error diagram to visualize

the diversity and accuracy of base classifiers in an ensemble classifier. Since κ-

error diagram is an often used tool to investigate the diversity of ensemble

methods (Dietterich, 2000; Kuncheva and Whitaker, 2003; Rodríguez et al., 2006),

here we also chose to use κ-error diagram to explore the behavior of base

classifiers on diversity and accuracy in each ensemble classifier. Figure 11 shows

the κ-error diagrams for all the 29 data sets. For each κ-error diagram, the -axis

indicates the kappa statistic κ and the -axis indicates the averaged error of

 denoted as

, where and are the error rates of

 respectively. Since small values of κ indicate that the classifiers are

more diverse and small values of indicate high accuracy, the ideal location of

dots is in the lower left corner. For each ensemble method, five hundred base

classifiers were fitted using training data, then the result of the test data were used

to calculate κ and the error rates for each given data set.

By using the κ-error diagram, we can clearly see the relative position of the

ensemble methods for each data set. To help read Figure 11, take data set aus as

an example. Samme has the largest diversity but also has the highest error rate.

The reason why Samme is very different from the other ensemble methods is

because it is a weighted ensemble method. We can see that Canonical Forest has

66

the lowest error rate (the position of Canonical Forest is lower on the -axis) but

slightly less diverse (the position of Canonical Forest is farther on the -axis) than

the other four ensemble methods.

In general, the position of Canonical Forest is always lower on the -axis

which means it has higher accuracy and is quite similar to Bagging and Rotation

Forest on the -axis which means it has comparable diversity compared to

Bagging and Rotation Forest.

To see the relative positions of each ensemble method clearly, we put all the

ensemble methods together in just one plot for each data set by constructing the

contour plot of κ-error diagram. Figure 12 shows contour plots of κ-error

diagrams for all the 29 data sets. Here we used contour plots so that it is easier to

distinguish all of them and hence make the differences look clearer. The -axis

indicates κ and the -axis indicates the error rate of classification. Taking data set

‘fis’ for example, Canonical Forest is on the lower right corner due to its lower

error rate and less diversity than the other ensemble methods; Samme is on the

upper left corner due to its higher error rate and higher diversity.

In general, Samme is not shown in the most of these plots because of the very

high error rate and diversity. Canonical Forest appears to outperform the other

ensemble methods in terms of accuracy while the diversity is quite similar to that

67

of Bagging and Rotation Forest and less diverse than Samme and Random Forest.

This suggests that if we can increase the diversity of Canonical Forest, it could be

a more powerful ensemble method.

68

aba

aus

bld

bod

bos

 Bagging Samme Random Forest Rotation Forest Canonical Forest

69

cir

dia

ech

fis

hea

70

int

ion

iri

lak

led

71

mam

pid

pks

pov

rng

72

sea

snr

spe

trn

twn

73

usn

veh

 vol

 vow

Figure 11: Kappa error diagram. -axis = κ, -axis = (average error of the

pair of classifiers).

74

75

76

77

78

79

80

81

Figure 12: Contour plot of κ-error diagrams for the five ensemble methods on

the same plot for all the 29 data sets.

82

4.3 Bias and Variance Decomposition

The bias and variance decomposition of the error (Geman et al., 1992) is a

popular and useful approach. The bias measures the distance between the

classifier and the target function and the variance measures variation among the

predictions from different classifiers. Several authors including Kong and

Dietterich (1995), Kohavi and Wolpert (1996), and Breiman (1998) have

proposed different methods for the bias and variance decomposition. In this

dissertation we used the decomposition proposed by Kohavi and Wolpert (1996).

The same data sets as described in Table 1 (except data set ‘aus’ due to

computational problem) were used to analyze the bias and variance

decomposition. Here we used 3-fold cross-validation for each data. First we

randomly split each data set into three parts: subset 1, subset 2 and subset 3. Then

we used subset 1 as a test set and used subsets 2 and 3 for generating a training set.

Next we randomly selected 3/4 from subsets 2 and 3 to be training set and

repeated this process 20 times. To estimate the bias and variance properly, the

unbiased estimators were used. After we analyzed the bias and variance

decomposition using subset 1, the same logic is applied to subset 2 and subset 3.

An ensemble of size 500 is used for each ensemble method.

83

Table 9 shows the comparison of bias
2
. To help read Win – Loss in Table 9,

we take Samme as an example. The Win – Loss is 21 – 7 for Samme when

compared to Canonical Forest. This means that bias of Samme is smaller than the

bias of Canonical Forest for 21 data sets and larger than the bias of Canonical

Forest for 7 data sets. Samme appears to be the best among all the ensemble

methods considered here in reducing bias while Canonical Forest is in the middle.

Table 10 compares the variance. It shows that Canonical Forest dominates all the

other methods in reducing the variance. In Tables 9 and 10, the p-values were

obtained by performing Wilcoxon signed-rank test. We found that the high

accuracy of Canonical Forest shown in the previous section was mainly due to the

variance reduction.

84

Table 9: Comparison of contribution of Bias
2

to error.

Data Set Tree Bagging Adaboost Samme Random

Forest

Rotation

Forest

Canonical

Forest

aba 0.1856 0.1990 0.2272 0.1828 0.2039 0.1998 0.2047

bld 0.2146 0.2480 0.2574 0.2231 0.2255 0.2722 0.2247

bod 0.0632 0.0636 0.0236 0.0226 0.0530 0.0376 0.0188

bos 0.1766 0.1892 0.1838 0.1672 0.1841 0.2021 0.1984

cir 0.1713 0.1747 0.2374 0.0534 0.1771 0.2143 0.2115

dia 0.1769 0.2045 0.2188 0.2039 0.2085 0.2142 0.2100

ech 0.2021 0.2302 0.2154 0.2203 0.2373 0.2753 0.2358

fis 0.1304 0.1310 0.1304 0.1163 0.1398 0.0563 0.0387

hea 0.2059 0.2245 0.2223 0.2494 0.2187 0.2440 0.1988

int 0.2087 0.2943 0.3703 0.2538 0.3573 0.2255 0.3419

ion 0.0869 0.0668 0.0634 0.0672 0.0669 0.0517 0.0573

iri 0.0376 0.0386 0.0417 0.0441 0.0405 0.0389 0.0257

lak 0.4080 0.4586 0.4741 0.4623 0.4436 0.4452 0.4705

led 0.2550 0.2572 0.2406 0.2865 0.2406 0.2467 0.2522

mam 0.1615 0.1651 0.1547 0.1620 0.1646 0.1675 0.1651

pid 0.1635 0.1921 0.1995 0.1953 0.1925 0.2029 0.2014

pks 0.0925 0.1091 0.1103 0.0542 0.0930 0.0784 0.0928

pov 0.2337 0.2703 0.2569 0.2420 0.2889 0.2810 0.2639

rng 0.1138 0.0982 0.2079 0.0520 0.0862 0.0794 0.0824

sea 0.3297 0.3593 0.3842 0.2413 0.3475 0.3558 0.3383

snr 0.1574 0.1775 0.1312 0.1152 0.1527 0.1270 0.1419

spe 0.1456 0.1588 0.1567 0.1528 0.1562 0.1473 0.1483

trn 0.1377 0.1251 0.1233 0.1131 0.1163 0.1186 0.1380

twn 0.0868 0.0464 0.0271 0.0278 0.0343 0.0275 0.0305

usn 0.2155 0.2443 0.2339 0.2244 0.2457 0.2547 0.2529

veh 0.2270 0.2391 0.2176 0.1747 0.2212 0.2130 0.2054

vol 0.3586 0.3968 0.4017 0.3438 0.4013 0.3777 0.3943

vow 0.2916 0.2909 0.0822 0.0475 0.1796 0.1736 0.1971

Win - Loss 17 - 11 10 - 18 11 - 17 21 - 7 11 - 17 13 - 15

p-value 0.7674 0.0282 0.0628 0.9936 0.1751 0.4070

85

Table 10: Comparison of contribution of Variance

to error.

Data Set Tree Bagging Adaboost Samme Random

Forest

Rotation

Forest

Canonical

Forest

aba 0.0604 0.0266 0.0393 0.0412 0.0239 0.0180 0.0143

bld 0.1579 0.0736 0.0688 0.1019 0.0809 0.0549 0.0580

bod 0.0453 0.0159 0.0093 0.0089 0.0086 0.0064 0.0058

bos 0.1003 0.0438 0.0433 0.0579 0.0356 0.0436 0.0373

cir 0.1251 0.0444 0.1073 0.0446 0.0352 0.0240 0.0257

dia 0.0867 0.0349 0.0248 0.0776 0.0302 0.0301 0.0272

ech 0.1535 0.0670 0.0936 0.1026 0.0600 0.0665 0.0593

fis 0.0720 0.0404 0.0587 0.1108 0.0397 0.0249 0.0142

hea 0.1017 0.0482 0.0380 0.0725 0.0411 0.0484 0.0504

int 0.2144 0.1303 0.1225 0.1394 0.1297 0.1049 0.1223

ion 0.0493 0.0225 0.0209 0.0201 0.0075 0.0067 0.0123

iri 0.0161 0.0110 0.0113 0.0221 0.0098 0.0100 0.0079

lak 0.2413 0.1418 0.1492 0.1524 0.1412 0.1634 0.1423

led 0.0605 0.0377 0.0261 0.1438 0.0330 0.0329 0.0407

mam 0.0157 0.0093 0.0155 0.0356 0.0119 0.0181 0.0154

pid 0.0893 0.0357 0.0275 0.0750 0.0321 0.0277 0.0296

pks 0.0722 0.0330 0.0326 0.0286 0.0257 0.0344 0.0258

pov 0.1652 0.1172 0.1071 0.1775 0.0952 0.1168 0.0977

rng 0.0841 0.0375 0.0589 0.0294 0.0241 0.0196 0.0202

sea 0.0968 0.0457 0.0744 0.1060 0.0429 0.0532 0.0394

snr 0.1403 0.0579 0.0596 0.0622 0.0486 0.0455 0.0399

spe 0.1078 0.0302 0.0302 0.0518 0.0217 0.0328 0.0335

trn 0.1328 0.0492 0.0315 0.0469 0.0319 0.0181 0.0173

twn 0.1035 0.0296 0.0117 0.0147 0.0113 0.0038 0.0042

usn 0.1247 0.0485 0.0401 0.0730 0.0376 0.0473 0.0336

veh 0.1317 0.0694 0.0640 0.0830 0.0586 0.0533 0.0469

vol 0.1427 0.0748 0.0652 0.1534 0.0700 0.1227 0.0646

vow 0.1876 0.0929 0.0546 0.0384 0.0908 0.0730 0.0841

Win - Loss 0 - 28 5 – 23 6 - 22 1 - 27 9 - 19 11 - 17

p-value 3.73 10-09 1.00 10-06 0.0012 2.00 10-06 0.0116 0.0314

86

4.4 High-Dimensional Canonical Forest (HDCF)

We also conducted an experiment using data sets on gene imprinting, estrogen

and leukemia to compare HDCF with Random Forest, CERP, and SVM which are

popular and successful classification methods on high dimensional data sets. The

brief descriptions for these three data sets excerpted from Ahn et al. (2007) are

provided below.

 Identification of Imprinted Genes (Greally, 2002): The data contain 131

samples and 1446 features. Among these 131 samples, 43 are imprinted

and 88 are non-imprinted. The available data set made by John Greally

can be found at

http://greallylab.aecom.yu.edu/ greally/imprinting_data.txt.

 Classification of Chemicals for Estrogen Activity (Blair et al., 2000):

The data contain 232 samples and 312 features. Among these 232 samples,

131 chemicals show estrogen receptor binding activity and 101 are

inactive in a competitive estrogen receptor binding assay (Blair et al.,

2000). The available data set can be found at

http://www.ams.sunysb.edu/ hahn/research/CERP/estrogen.txt.

 Classification of Leukemia Subtypes (Dudoit et al., 2002): The data

contain 72 samples and 3571 features. Among these 72 samples, 47 are

http://greallylab.aecom.yu.edu/~greally/imprinting_data.txt
http://www.ams.sunysb.edu/~hahn/research/CERP/estrogen.txt

87

classified as acute myeoloid leukemia and 25 are classified as acute

lymphoblastic leukemia. The available data set can be found at

http://www.ams.sunysb.edu/ hahn/research/CERP/leukemia.txt.

We evaluated the performance by comparing their classification accuracy,

area under the curve (AUC), and also the balance between sensitivity and

specificity. Decision trees were used as the base classifiers for all three ensemble

methods: Random Forest, CERP, and HDCF. For both Random Forest and

Canonical Forest, the ensemble sizes were fixed at . In HDCF, the

number of features in each subset is set to be . If is not divisible by 3,

then the last subset was completed with the remaining features (1 or 2 features).

Besides, the number of features selected from the feature set is set to be

 in HDCF. For each data set, twenty repetitions of 10-fold cross-validation

were performed.

The results of classification accuracy are marked with a bullet next to them if

HDCF is significantly better than the compared method. Since HDCF is not

significantly worse than any methods for any data sets, we don’t have to use a

symbol to show it. The comparison was done by using paired t-test at two-sided

significant level of .

http://www.ams.sunysb.edu/~hahn/research/CERP/leukemia.txt

88

Table 11 shows the classification accuracy along with sensitivity and

specificity on gene imprinting data set. For gene imprinting data set, HDCF has

the highest classification accuracy among all the methods and is significantly

better than all other three methods. Although HDCF shows some imbalance

between sensitivity and specificity, that’s because the data itself is quite

unbalanced (the proportion of the majority and minority groups in responses in

the data is only 0.33). Besides, HDCF is still the most balanced one compared to

other methods and the sensitivity of HDCF (0.6628) is much larger than that of

SVM (0.4767).

For the estrogen data set (see Table 12), although HDCF is only significantly

more accurate than SVM, it has the second highest classification accuracy and is

only slightly less than CERP that has the highest classification accuracy. Because

the data are quite balanced (the proportion of the responses in the data is 0.56), all

the methods show good balance between sensitivity and specificity. It is worth

mentioning that the balance between sensitivity and specificity in HDCF was

slightly better than all the other methods.

For leukemia data set (see Table 13), basically all the methods have pretty

high classification accuracies. Therefore, it’s not surprised to find that they all

have good balance between sensitivity and specificity due to such high

89

classification accuracy. Nevertheless, HDCF still has the highest classification

accuracy and a better balance among all these methods.

In general, it seems that Canonical Forest gives consistently better

performance in terms of classification accuracy and balance between sensitivity

and specificity among all these methods for these three data sets.

90

Table 11: Accuracy of classification methods for the imprinting data.

Method ACC p-value

1
 AUC Sensitivity Specificity

CERP
 0.8653●

(0.0137)
1.35 10

-07

0.7974

(0.0197)

0.6000

(0.0389)

0.9949

(0.0078)

SVM
 0.7893●

(0.0151)
1.18 10

-15

0.7094

(0.0210)

0.4767

(0.0437)

0.9420

(0.0156)

RF
 0.8748●

(0.0125)
2.05 10

-05

0.8167

(0.0189)

0.6477

(0.0408)

0.9858

(0.0110)

HDCF
0.8866

(0.0087)
-

0.8294

(0.0130)

0.6628

(0.0267)

0.9960

(0.0056)

● HDCF is significantly better than the compared method
1
 p-value was obtained by comparing the accuracy of HDCF with the accuracy of the compared

 method using two-sided paired t-test.

91

Table 12: Accuracy of classification methods for the estrogen data.

Method ACC p-value

1
 AUC Sensitivity Specificity

CERP
0.8494

(0.0109)
0.1508

0.8424

(0.0115)

0.8962

(0.0100)

0.7886

(0.0180)

SVM
 0.8289●

(0.0098)
9.83 10

-05

0.8197

(0.0096)

0.8908

(0.0127)

0.7485

(0.0104)

RF
0.8394

(0.0125)
0.1396

0.8341

(0.0137)

0.8752

(0.0090)

0.7931

(0.0242)

HDCF
0.8448

(0.0146)
-

0.8392

(0.0144)

0.8824

(0.0186)

0.7960

(0.0162)

● HDCF is significantly better than the compared method
1
 p-value was obtained by comparing the accuracy of HDCF with the accuracy of the compared

 method using two-sided paired t-test.

92

Table 13: Accuracy of classification methods for the leukemia data.

Method ACC p-value

1
 AUC Sensitivity Specificity

CERP
0.9785

(0.0084)
0.1864

0.9690

(0.0121)

0.9380

(0.0242)

1

(0)

SVM
0.9771

(0.0093)
0.0724

0.9670

(0.0134)

0.9340

(0.0268)

1

(0)

RF
0.9819

(0.0079)
0.6663

0.9745

(0.0101)

0.9500

(0.0178)

0.9990

(0.0048)

HDCF
0.9826

(0.0089)
-

0.9759

(0.0111)

0.9540

(0.0196)

0.9979

(0.0065)
1
 p-value was obtained by comparing the accuracy of HDCF with the accuracy of the compared

 method using two-sided paired t-test.

93

4.5 Simulation Study

We also conducted a simulation study to evaluate the performance of HDCF

in comparison with Random Forest, CERP, and SVM using high dimensional

simulated data. Here we adopted the simulation design that was generated by Lee

et al. (2013). We generated two data sets with 120 instances and 500 independent

features. One served as training set and another one served as test set. The number

of instances assigned to each class is the same which is 40 for each class. To

fairly evaluate the performance of each classification method, we generated one

hundred pairs of these training and test sets and then took the average of the

performance from these 100 testing sets. To generate 500 features in each data set,

we first generated fifty features using three different normal distributions, and

then generated the remaining 450 features from one normal distribution to serve

as noise. Figure 13 shows the simulation design. Three data sets, A, B, and C

were generated from the standard deviation equal to 1, 2, and 3, respectively.

For each of 100 pairs of training and test sets in each data set, the classifier was

built using the training set and then evaluated using the test set. The accuracy

averaged from the 100 test sets for each classification method from each data set

is provided in Tables 14 through 16.

94

As expected, we can see that the classification accuracy decreases as the

standard deviation increases. When standard deviation equals 1, all the methods

perform very well. The performance of HDCF is better than all the other three

methods and is significantly better than CERP and SVM. As the standard

deviation increases to 2 and 3, the performances of these four methods drop

dramatically. Nevertheless, HDCF still has the highest classification accuracy

among all these methods and also performs significantly better than all the other

methods. It is clear that HDCF outperforms all the other three methods in our

simulation study especially when the standard deviation becomes larger. It is

interesting that SVM has higher classification accuracy than Random Forest when

the standard deviation goes up to 3 while it is less accurate than Random Forest

when the standard deviations equal 1 and 2.

95

Table 14: Accuracy of classification methods for data set A.

Method ACC p-value

1
 AUC Sensitivity Specificity

CERP
0.9503●

(0.0223)
1.96 10

-25

0.9628

(0.0337)

Class 1 0.9768

 (0.0262)

Class 2 0.8760

 (0.0656)

Class 3 0.9985

 (0.0060)

Class 1 0.9474

 (0.0304)

Class 2 0.9876

 (0.0134)

Class 3 0.9905

 (0.0102)

SVM
0.9703●

(0.0153)
5.12 10

-08

0.9778

(0.0205)

Class 1 0.9633

 (0.0327)

Class 2 0.9515

 (0.0335)

Class 3 0.9963

 (0.0114)

Class 1 0.9779

 (0.0155)

Class 2 0.9798

 (0.0166)

Class 3 0.9979

 (0.0053)

RF
0.9792

(0.0130)
0.0976

0.9844

(0.0163)

Class 1 0.9785

 (0.0238)

Class 2 0.9598

 (0.0310)

Class 3 0.9993

 (0.0043)

Class 1 0.9820

 (0.0148)

Class 2 0.9889

 (0.0119)

Class 3 0.9979

 (0.0050)

HDCF
0.9813

(0.0132)
-

0.9860

(0.0160)

Class 1 0.9845

 (0.0218)

Class 2 0.9595

 (0.0305)

 Class 3 1

 (0)

Class 1 0.9813

 (0.0149)

Class 2 0.9923

 (0.0109)

Class 3 0.9985

 (0.0041)

● HDCF is significantly better than the compared method
1
 p-value was obtained by comparing the accuracy of HDCF with the accuracy of the compared

 method using two-sided paired t-test.

96

Table 15: Accuracy of classification methods for data set B.

Method ACC p-value

1
 AUC Sensitivity Specificity

CERP
0.7237●

(0.0446)
2.10 10

-29

0.7928

(0.1002)

Class 1 0.7735

 (0.0859)

Class 2 0.5033

 (0.0869)

Class 3 0.8943

 (0.0562)

Class 1 0.8309

 (0.0436)

Class 2 0.8529

 (0.0500)

Class 3 0.9018

 (0.0398)

SVM
0.7656●

(0.0370)
3.80 10

-14

0.8242

(0.0776)

Class 1 0.7508

 (0.0808)

Class 2 0.6735

 (0.0888)

Class 3 0.8725

 (0.0519)

Class 1 0.8858

 (0.0404)

Class 2 0.8150

 (0.0499)

Class 3 0.9476

 (0.0266)

RF
0.7753●

(0.0397)
1.73 10

-09

0.8314

(0.0880)

Class 1 0.7925

 (0.0672)

Class 2 0.6068

 (0.0944)

Class 3 0.9265

 (0.0500)

Class 1 0.8588

 (0.0445)

Class 2 0.8684

 (0.0419)

Class 3 0.9358

 (0.0302)

HDCF
0.7983

(0.0373)
-

0.8487

(0.0891)

Class 1 0.8560

 (0.0617)

Class 2 0.5878

 (0.0872)

 Class 3 0.9510

 (0.0374)

Class 1 0.8454

 (0.0421)

Class 2 0.9090

 (0.0354)

Class 3 0.9430

 (0.0271)

● HDCF is significantly better than the compared method
1
 p-value was obtained by comparing the accuracy of HDCF with the accuracy of the compared

 method using two-sided paired t-test.

97

Table 16: Accuracy of classification methods for data set C.

Method ACC p-value

1
 AUC Sensitivity Specificity

CERP
0.5502●

(0.0468)
1.23 10

-29

0.6626

(0.0882)

Class 1 0.5828

 (0.0892)

Class 2 0.3973

 (0.0957)

Class 3 0.6705

 (0.0809)

Class 1 0.7766

 (0.0527)

Class 2 0.7306

 (0.0540)

Class 3 0.8180

 (0.0482)

SVM
0.6108●

(0.0440)
3.36 10

-06

0.7081

(0.0895)

Class 1 0.6185

 (0.0921)

Class 2 0.5045

 (0.0875)

Class 3 0.7093

 (0.0848)

Class 1 0.8220

 (0.0544)

Class 2 0.7099

 (0.0640)

Class 3 0.8843

 (0.0397)

RF
0.5878●

(0.0465)
8.39 10

-16

0.6908

(0.0890)

Class 1 0.6020

 (0.0934)

Class 2 0.4560

 (0.0969)

Class 3 0.7053

 (0.0779)

Class 1 0.7981

 (0.0518)

Class 2 0.7320

 (0.0585)

Class 3 0.8515

 (0.0429)

HDCF
0.6301

(0.0459)
-

0.7226

(0.1019)

Class 1 0.7005

 (0.0817)

Class 2 0.4148

 (0.0878)

 Class 3 0.7750

 (0.0791)

Class 1 0.7684

 (0.0498)

Class 2 0.7956

 (0.0484)

Class 3 0.8811

 (0.0424)

● HDCF is significantly better than the compared method
1
 p-value was obtained by comparing the accuracy of HDCF with the accuracy of the compared

 method using two-sided paired t-test.

98

120

instances

significant features: 50
Noise

450
10 10 10 5 5 5 5

Class 1

40

40

40

80

35

50

35

45

120

35

50 Class 2

40

40

80

30

35

50

45 Class 3

40

40

40

35

35

Figure 13: Simulation design.

99

Chapter 5

Conclusion and Discussion

We introduced a new ensemble method called Canonical Forest. It uses

CLDA to perform a linear transformation on the original input data so that the

transformed input data can be more distinct among classes. To enhance the

diversity, the features are split into subsets, and then CLDA is applied on each

subset separately. It should be noted that disjoint subsets would yield enhanced

diversity because there is no overlap between subsets. However, the number of

subsets is not necessarily related to the diversity of classifiers in Canonical Forest.

A classifier is built using all the canonical components when applying CLDA.

Here CLDA serves as a linear transformation tool rather than a dimension

reduction tool since we keep all the features while applying CLDA. The reason

why we chose CLDA is because it is a supervised learning method. When linearly

transforming the data, CLDA utilizes the class information and makes the classes

more separable after transformation. Therefore, this makes CLDA a better linear

100

transformation tool than other dimension reduction methods when applied in

classification analysis. Canonical Forest is formed by combining these classifiers

with a majority vote.

Although both Double-Bagging and Canonical Forest are CLDA-based

ensemble methods, they are different due to the fact that CLDA is applied to an

OOB sample in Double-Bagging while CLDA is applied to a bootstrap sample in

Canonical Forest. Besides, CLDA is applied to the whole feature space in Double-

Bagging while CLDA is applied to each mutually exclusive feature subset in

Canonical Forest.

Canonical Forest performed better in terms of accuracy than the other widely

used ensemble methods especially when the ensemble size is small based on our

experiment. Exact Binomial test showed the superiority of Canonical Forest over

other ensemble methods. Besides, the performance of Canonical Forest is further

improved by implementing WAVE. It slightly increased the frequency of

significantly outperforming other ensemble methods. Through the investigation of

bias and variance decomposition, we found that the reduction of variance played a

major role in improving the accuracy of Canonical Forest. The gap in

performance between Canonical Forest and the other methods decreased a little as

the ensemble size increased. By investigating the κ-error diagram, we found that

this is because Canonical Forest is slightly less diverse than the other ensemble

101

methods. Nevertheless, Canonical Forest still showed a better performance in

terms of the classification accuracy when it was compared to the other methods

with the ensemble size of 500 which is nearly optimal for the other methods.

We also proposed another version of Canonical Forest, which is suitable for

high-dimensional data, named HDCF (High Dimensional Canonical Forest) by

implementing the algorithm of Random Subspace into Canonical Forest. Basically,

the only difference between Canonical Forest and HDCF is the number of features

used in training phase when growing a tree. Unlike Canonical Forest, HDCF uses

only a feature subset instead of all the features when training the classifier. By

doing so, HDCF can be applied to high-dimensional data without any feature pre-

selection.

In our experiments, HDCF had the highest classification accuracy in gene

imprinting and leukemia data sets and second highest classification accuracy in

estrogen data set when comparing with the performance of three widely used

high-dimensional classification methods: CERP, Random Forest and SVM.

Besides the classification accuracy, we also investigated the balance between

sensitivity and specificity for all these four classification methods. The

performance of HDCF on the balance between sensitivity and specificity was

quite comparable to the other three classification methods. We also evaluated the

performance of HDCF by using the simulated data and HDCF gave consistently

102

better classification accuracies than the other three methods in all three simulated

data. From the experiments and the simulation study, we have shown that HDCF

is quite a comparable classification method for classifying high-dimensional data.

Since both Canonical Forest and HDCF are CLDA-based ensemble methods,

the performance of Canonical Forest and HDCF may depend on the performance

of CLDA. Therefore, Canonical Forest and HDCF will perform better in the

situations where CLDA performs better. In general, CLDA works better when the

discriminatory information is in the mean instead of the variance of the data.

Besides, CLDA also works better in balanced data (i.e., the number of instances

for each class is roughly equal) than in unbalanced data because it needs

representative instances for each class to make a better separation among classes.

103

Chapter 6

Future Study

In this dissertation, the discrete features were removed from all the data in the

experiment because CLDA and PCA cannot be applied to discrete features.

Although it is acceptable to apply CLDA or PCA to ordinal discrete features by

treating them as continuous features, they still cannot be applied to nominal

discrete features. We will continue working on this issue in the future study.

It also should be noted that the number of features in each subset was set to be

 for both Rotation Forest and Canonical Forest because this was the

parameter setting used in the experiment in Rotation Forest (Rodríguez et al.,

2006). We used the same parameter setting to make a consistent comparison. We

will further investigate the choice of on the performance of Canonical Forest in

future study like Kuncheva and Rodríguez (2007) did.

104

To overcome the issue that Canonical Forest works better in balanced data

than unbalanced data, we will adopt weighted bootstrap sampling method instead

of regular bootstrap sampling method when constructing each classifier in

Canonical Forest. An experiment on evaluating the performance of Canonical

Forest with weighted bootstrap sampling method will be conducted in our future

study.

105

References

[1] Ahn, H., Moon, H., Fazzari, M. J., Lim, N., Chen, J. J. and Kodell, R. L., 2007.

Classification by Ensembles from Random Partitions of High-Dimensional

Data. Computational Statistics and Data Analysis, 51 6166-6179.

[2] Asuncion, A., Newman, D. J., 2007. UCI Machine Learning Repository.

University of California, Irvine, School of Information and Computer Science,

http://www.ics.uci.edu/ ~mlearn/MLRepository.html.

[3] Bauer, E. and Kohavi, R., 1999. An Empirical Comparison of Voting

Classification Algorithms: Bagging, boosting and variants. Machine Learning,

36 (1/2) 105-139.

[4] Berkson, J., 1944. Application of the logistic function to bio-assay. Journal of

the American Statistical Association, 39 (227) 357-365.

[5] Blair, R., Fang, H., Branham, W. S., Hass, B., Dial, S. L., Moland, C. L., Tong,

W., Shi, L., Perkins, R. and Sheehan, D. M., 2000. Estrogen Receptor Relative

Binding Affinities of 188 Natural and Xenochemicals: Structural Diversity of

Ligands. Toxicological Sciences, 54 138-153.

106

[6] Breiman, L., 1996. Bagging predictors. Machine Learning, 24 123-140.

[7] Breiman, L., 1998. Arcing classifiers. The Annals of Statistics, 26 801-849.

[8] Breiman, L., 2001. Random Forest. Machine Learning, 45 5-32.

[9] Breiman, L., Friedman, J. H., Olshen, R. A. and Stone, C. J., 1984.

Classification and Regression Trees. Wadsworth, Belmont, CA.

[10] Brown, G., and Kuncheva, L.I., 2010. ”Good” and ”bad” diversity in

majority vote ensembles. 9th Int. Workshop on Multiple Classifier Systems

(MCS 2010), 124-133.

[11] Bühlmann, P. and Yu., B., 2003. Boosting with the L2 loss: regression and

classification. Journal of the American Statistical Association, 98 324-339.

[12] Bühlmann, P. and Yu, B., 2006. Sparse boosting. Journal of Machine

Learning Research, 7 1001-1024.

[13] Cohen, J., 1960. A coefficient of agreement for nominal scales. Educational

and Psychological Measurement, 20(1) 37-46.

[14] Cover, T. and Hart, P., 1967. Nearest neighbor pattern classification. IEEE

Transactions on Information Theory, 13(1) 21-27.

[15] Cramer, J.S., 2002. The Origins of Logistic Regression. Tinbergen Institute

Working Paper No. 2002-119/4, Tinbergen Institute.

[16] Dietterich, T. G., 2000. Ensemble Methods in Machine Learning. Multiple

Classifier Systems, 1-15.

107

[17] Duda, R., and Hart, P., 1973. Pattern Classification and Scene Analysis. John

Wiley and Sons, New York.

[18] Dudoit, S., Fridlyand, J., and Speed, T. P., 2002. Comparison of

Discrimination Methods for the Classification of Tumors Using Gene

Expression Data. Journal of the American Statistical Association, 97 77-87.

[19] Fisher, R.A., 1936. The use of multiple measurements in taxonomic

problems. Annals of Eugenics, 7(2) 179-188.

[20] Freund, Y. and Schapire, R., 1996. Experiments with a new boosting

algorithm. In Machine Learning: Proceedings of the Thirteenth International

Conference, 148-156.

[21] Freund, Y. and Schapire, R., 1997. A decision-theoretic generalization of

online learning and an application to boosting. Journal of Computer and

System Sciences, 55 119-139.

[22] Friedman, J., 2001. Greedy function approximation: a gradient boosting

machine. Annals of Statistics, 29 1189-1232.

[23] Friedman, J., Hastie, T. and Tibshirani, R., 2000. Additive logistic regression:

a statistical view of boosting. Annals of Statistics, 28(2) 337-407.

[24] Geman, S., Bienenstock, E., and Doursat, R., 1992. Neural networks and the

bias/variance dilemma. Neural Computation, 4 1-48.

108

[25] Greally, J. M., 2002. Short Interspersed Transposable Elements (SINEs) Are

Excluded from Imprinted Regions in the Human Genome. Proceedings of

National Academy of Science, 99 327-332.

[26] Hansen, L. and Salamon, P., 1990. Neural network ensembles. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 12 993–1001.

[27] Hastie, T., Tibshirani, R. and Friedman, J., 2001. The Elements of Statistical

Learning: Data Mining, Inference, and Prediction. Springer Verlag, New

York.

[28] Hayashi, K., 2012. A boosting method with asymmetric mislabeling

probabilities which depend on covariates. Computational Statistics, 27 203-

218.

[29] Heinz, G., Peterson, L. J., Johnson, R. W. and Kerk, C. J., 2003. Exploring

relationships in body dimensions. Journal of Statistics Education, 11.

http://www.amstat.org/~publicati ons/jse/v11n2/datasets.heinz.html.

[30] Ho, T. K., 1998. The random subspace method for constructing decision

forests. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20

832-844.

[31] Holm, S. (1979). A simple sequentially rejective multiple test procedure.

Scandinavian Journal of Statistics, 6 65-70.

[32] Hothorn, T. and Lausen, B., 2003. Double-Bagging: Combining classifiers

by bootstrap aggregation. Pattern Recognition, 36 1303-1309.

109

[33] Iba, W. and Langley, P., 1992. Introduction of one-level decision trees. In

Machine Learning: Proceedings of the Ninth International Conference, 233-

240.

[34] Jeetha, R., 2009. An Integrated Study on Decision Tree Induction Algorithms

in Data Mining. Articlebase.com.

http://www.articlesbase.com/computers-articles/an-integrated-study-on-

decision-tree-induction-algorithms-in-data-mining-1287150.html

[35] Ji, C. and Ma, S., 1997. Combinations of Weak Classifiers. IEEE

Transactions on Neural Networks, 8(1) 32-42.

[36] Kass, C.V., 1980. An Exploratory Technique for Investigating Large

Quantities of Categorical Data. Journal of Applied Statistics, 29(2) 119-127.

[37] Kim, H. and Loh, W.-Y., 2001. Classification trees with unbiased multiway

splits. Journal of the American Statistical Association, 96 589-604.

[38] Kim, H. and Loh, W.-Y., 2003. Classification trees with bivariate linear

discriminant node models. Journal of Computational and Graphical Statistics,

12 512-530.

[39] Kim, H., Kim, H., Moon, H. and Ahn, H., 2011. Iterative Weight-Adjusted

Voting Algorithm for Ensemble of Classifiers. Journal of the Korean

Statistical Society, 40 437-449.

110

[40] Kohavi, R., Wolpert, D. H., 1996. Bias plus variance decomposition for zero-

one loss functions. In Proceedings of the Thirteenth International Conference

on Machine Learning. Morgan Kaufmann, 275-283.

[41] Kong, E. B., and Dietterich, T. G., 1995. Error-correcting output coding

corrects bias and variance. In Proceedings of the Twelfth International

Conference on Machine Learning. Morgan Kaufmann, 313-321.

[42] Kuncheva, L.I., 2004. Diversity in Multiple Classifier Systems (editorial).

Information Fusion, 6(1) 3-4.

[43] Kuncheva, L.I. and Rodríguez, J. J., 2007. An experimental study on rotation

forest ensembles. Multiple Classifier Systems, 459-468.

[44] Kuncheva, L.I. and Whitaker, C.J., 2003. Measures of Diversity in Classifier

Ensembles. Machine Learning, 51 181-207.

[45] Kuncheva, L.I., Whitaker, C.J., Shipp, C. and Duin, R., 2003. Limits on the

majority vote accuracy in classifier fusion. Pattern Analysis and Applications,

6(1) 22-31.

[46] Lam L., and Suen, C. Y., 1997. Application of majority voting to pattern

recognition: An analysis of its behavior and performance. IEEE Transaction

on Systems, Man and Cybernetics, 27 553-568.

[47] Lee, K., Ahn, H., Moon, H., Kodell, R. L. and Chen, J. J., 2013. Multinomial

Logistic Regression Ensembles. Journal of Biopharmaceutical Statistics, 23

681-694.

111

[48] Leisch, F. and Dimitriadou, E., 2010. mlbench: Machine Learning

Benchmark Problems. R package version 2.0-0.

[49] Lim, N., Ahn, H., Moon, H. and Chen, J.J., 2010. Classification of High-

dimensional Data with Ensemble of Logistic Regression Models. Journal of

Biopharmaceutical Statistics, 20 160-171.

[50] Loh, W.-Y., 2010. Improving the precision of classification trees. Annals of

Applied Statistics, 4 1710-1737.

[51] Loh, W.-Y., and Shih, Y.S., 1997. Split Selection Methods for Classification

Trees. Statistica Sinica, 7 815-840.

[52] Margineantu, D. D., and Dietterich, T. G., 1997. Pruning Adaptive Boosting.

In Machine Learning: Proceedings of the Fourteenth International

Conference, 211-218.

[53] McCulloch, W., Pitts, W., 1943. A Logical Calculus of Ideas Immanent in

Nervous Activity. Bulletin of Mathematical Biophysics, 5 (4) 115-133.

[54] Morgan, J.N., and Sonquist, J.A., 1963. Problems in the analysis of survey

data, and a proposal. Journal of the American Statistical Association, 58 415-

434.

[55] Panov, P. and Džeroski, S., 2007. Combining bagging and random subspaces

to create better ensembles. Advances in Intelligent Data Analysis VII. Springer

Berlin, 118-129.

112

[56] Quinlan, J.R., 1993. C4.5: Programs for Machine Learning. Morgan

Kaufmann Publishers.

[57] Rodríguez, J. J., Kuncheva, L. I. and Alonso, C. J., 2006. Rotation Forest: A

New Classifier Ensemble Method. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 28(10) 1619-1630.

[58] Rokach, L., 2010. Pattern Classification Using Ensemble Methods: Series in

Machine Perception and Artificial Intelligence. World Scientific Publishing

Company.

[59] Rosenblatt, F., 1958. The Perceptron: A Probalistic Model For Information

Storage And Organization In The Brain. Psychological Review, 65 (6) 386-

408.

[60] Schapire, R. E., 1990. The strength of weak learnability. Machine Learning,

5 197-227.

[61] Statlib, 2010. Datasets archive. Carnegie Mellon University, Department of

Statistics, http://lib.stat.cmu.edu.

[62] Terhune, J. M., 1994. Geographical variation of harp seal underwater

vocalisations. Canadian Journal of Zoology, 72 892-897.

[63] Tibshirani, R., Hastie, T., Narasimhan, B., Chu, G., 2002. Diagnosis of

multiple cancer types by shrunken centroids of gene expression. Proc Natl

Acad Sci U S A, 99 6567-6572.

[64] Tukey, J.W., 1977. Exploratory data analysis. Addison-Wesley, New York.

113

[65] Vapnik, V., 1995. The Nature of Statistical Learning Theory. Springer

Verlag, New York.

[66] Webb, G.I., 2000. MultiBoosting: A Technique for Combining Boosting and

Wagging. Machine Learning, 40(2) 159-196.

[67] Zaiane, O. R., 1999. Introduction to Data Mining. University of Alberta,

Department of Computing Science,

http://webdocs.cs.ualberta.ca/~zaiane/courses/cmput690/index.html.

[68] Zhang, C.-X. and Zhang, J.-S., 2008. RotBoost: a technique for combining

rotation forest and AdaBoost. Pattern Recognition Letters, 29 (10) 1524-1536.

[69] Zhu, J., Rosset, S., Zou, H., and Hastie, T., 2009. Multi-class Adaboost.

Statistics and Its Interface, 2 349-360.

