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Abstract of the Dissertation 
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by 
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Doctor of Philosophy 

in 
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2014 

 

In this dissertation, we propose a new classification ensemble method named 

Canonical Forest. This new ensemble method uses canonical linear discriminant 

analysis (CLDA) and bootstrap resampling method to create more accurate and 

diverse classifiers in an ensemble. Although CLDA is commonly used for 

dimension reduction, we note here CLDA serves as a linear transformation tool 

rather than a dimension reduction tool. Since CLDA will find the transformed 

space that separates the classes farther in distribution, classifiers built on this 

space will be more accurate than those on the original space. To further diversify 

the classifiers in an ensemble, CLDA is applied only on a partial mutually 

exclusive feature space for each bootstrap sample. To compare the performance of 
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Canonical Forest and other widely used ensemble methods including Bagging, 

Adaboost, Samme, Random Forest, and Rotation Forest, we tested them on 29 

real or artificial data sets. In addition to the classification accuracy, we also 

investigated the diversity and the bias and variance decomposition of each 

ensemble method. Because Canonical Forest cannot be applied to high-

dimensional data directly, we propose another version of Canonical Forest called 

High-Dimensional Canonical Forest (HDCF) that is specifically designed for the 

high-dimensional data. By implementing the algorithm of Random Subspace into 

Canonical Forest, we can naturally apply Canonical Forest to high-dimensional 

data without performing feature selection or feature reduction first. We compared 

the performance of HDCF with some current popular high-dimensional 

classification algorithms including SVM, CERP, and Random Forest using gene 

imprinting, estrogen and leukemia data sets. 
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Chapter 1 

Background 

Classification analysis is a procedure that builds a model or a rule using the 

features (predictor variables) in old data where each observation is associated 

with only one known class label and then uses this model or this rule to assign a 

class label to each observation in new data where observations are not associated 

with class labels. The features in the data could be either continuous or discrete. 

The learning algorithm in classification analysis is also known as supervised 

learning in data mining because it requires that known class labels are pre-

assigned to all observations in training data set. A training data set is the data set 

which is used to build the model during classification analysis. The algorithm 

implemented in a classification analysis is called a classifier. Although several 

measures can be used to evaluate the performance of a classifier, classification 

accuracy is the most commonly used one. In general, a good classifier should 

yield a low misclassification rate. When evaluating the performance of a 
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classification method, cross validation is a common method used in order to 

obtain a proper estimate. In  -fold cross validation, the data set is randomly 

divided into roughly equal-sized   mutually exclusive subsets. For each run, one 

subset serves as test data and the remaining     subsets serve as training data. 

This process is repeated   times with each subset serving as test data only once 

and is included in training data     times. Those   estimates from   repeated 

process are then combined to obtain the performance of a classifier. In the case 

where   is equal to  , which is the number of instances, it is called leave-one-out 

cross validation (LOOCV). In each run of LOOCV, only one instance serves as 

test data and the remaining     instances serve as training data. LOOCV is 

often used in the situation where the sample size is small.  

Classification analysis is widely used in many fields such as credit scoring, 

pattern recognition, DNA sequencing, medical diagnosis and also many other 

fields of science. For example, a bank could divide the existing customers into 

two possible groups: customers with “good credit” and customers with “bad credit” 

based on their credit history. These existing customers then serve as training data 

and the characteristics of these existing customers such as age, gender, occupation, 

income, etc. serve as features in classification analysis to generate a model or a 

rule to help the bank make a decision on the financial requests from new 

customers.  
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One of the earliest works on classification analysis is known as Linear 

Discriminant Analysis (LDA) that was first introduced in Fisher (1936). In this 

work, Fisher developed a linear discriminant model to classify the Iris flowers 

into three different species (Iris setosa, Iris virginica and Iris versicolor) based on 

their characteristics (length and width of the sepals and petals). After that, many 

different algorithms of classification analysis have been developed including 

logistic regression (Berkson, 1944), k-nearest neighbor (k-NN: Cover and Hart, 

1967), neural networks (Rosenblatt, 1958), decision trees, naïve Bayes (Duda and 

Hart, 1973), support vector machines (SVM: Vapnik, 1995), and nearest shrunken 

centroid (Tibshirani et al., 2002).  

LDA is a linear classifier that classifies instances by finding a reduced set of 

linear combination of original features that can better separate the distinct groups 

than using the original features. In the situation where the groups are not linearly 

separable, quadratic discriminant analysis (QDA) is often used. QDA is a more 

generalization of LDA, which allows the classifier to separate groups by quadratic 

boundaries.  

Logistic regression is one kind of regression analysis that is used when the 

response variable is dichotomous (i.e. Y=0 or Y=1). It predicts the probability of 

the outcome of an event by fitting the logit model on the response variable in 

regression analysis. When the outcomes of a response variable are more than two, 

http://en.wikipedia.org/w/index.php?title=Iris_setosa&action=edit&redlink=1
http://en.wikipedia.org/wiki/Iris_virginica
http://en.wikipedia.org/wiki/Iris_versicolor
http://en.wikipedia.org/wiki/Sepal
http://en.wikipedia.org/wiki/Petal
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it can be extended to multinomial logistic regression by fitting the multinomial 

logit model if the response variable is nominal, or it can be extended to ordinal 

logistic regression by fitting the ordinal logit model if the response variable is 

ordinal. It was Berkson who first introduced the logit model in 1944. A brief 

description of the origins of logistic regression can be found in Cramer (2002). 

k-NN is a very simple classification algorithm that classifies an instance only 

based on its k closest or nearest neighbors. That is, an instance is assigned to the 

class that is the majority class among its k nearest neighbors. Among many 

different distance measures, Euclidean distance is the most common distance 

measure used in a k-NN classifier. A small value of k often results in high 

variance and therefore is unstable. However, a large value of k often leads to high 

bias and therefore becomes less accurate. A proper value of k may be obtained by 

adopting cross-validation methods. 

A neural network is composed of many interconnected neurons or nodes and 

is organized in layers. A neuron is usually connected by a set of neurons that are 

associated with different weights from one layer to another layer. Although the 

idea of neural networks was first introduced by McCulloch and Pitts (1943), it 

was Rosenblatt (1958) who first introduced the perceptron and brought the neural 

networks to the classification world. 



5 
 

Naïve Bayes is a probabilistic classifier that predicts the class label by 

estimating the posterior probability of each class conditioning on the given 

features. The instance is then assigned to the class with the highest posterior 

probability. A naïve Bayes classifier is based on the Bayes theorem and it requires 

the assumption that the features are independent given a certain class.  

SVM is a binary classifier that finds an optimal hyperplane that can linearly 

separate two classes with a maximum margin. A maximum margin means that the 

distance from the nearest instance to this hyperplane is maximized on both sides. 

If such a linearly separating hyperplane cannot be found in the original input 

space, we can project the original input space into a higher dimensional space 

called kernel space where we can find an optimal linearly separating hyperplane. 

To classify on multi-class instances, SVM needs to reduce the multi-class 

classification to multiple two-class classifications. 

Nearest shrunken centroid is a classification algorithm modified based on 

nearest centroid. The nearest centroid classifies an instance by assigning the class 

of its closet centroid in squared distance. The nearest shrunken centroid also 

adopts this algorithm but makes a modification to it by shrinking the class 

centroids toward the overall centroids using a threshold. By shrinking the class 

centroids, nearest shrunken centroid may reduce the effects of noisy variables. 
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The algorithm of nearest shrunken centroid was developed by Tibshirani et al. 

(2002). 

Among all the various classification algorithms in classification analysis, 

decision trees are one of the current popular algorithms in classification analysis 

because they are simple to understand and interpret and they also perform well. 

There are many different versions of decision trees. Automatic Interaction 

Detection (AID) was the first decision tree method that was introduced by 

Morgan and Sonquist (1963). After that, many other different algorithms of 

decision trees have been proposed. Some popular algorithms of decision trees 

include CHAID (Chi-squared automatic interaction detection: Kass, 1980), CART 

(Classification and regression trees: Breiman et al., 1984), ID3 (Iterative 

Dichotomiser 3: Quinlan, 1986), C4.5 (Quinlan, 1993), and QUEST (Quick, 

unbiased and efficient statistical trees: Loh and Shih, 1997). 

In general, the algorithm of a decision tree begins with a binary split from the 

root node where the value of one of the input features is used for the split. After a 

split is made, the same process is applied to each new node until the tree stops 

splitting and this repeated process is called recursive partitioning. There are 

various splitting rules developed for decision trees to find the split. Among them, 

information gain and gini index are the two most commonly used splitting rules in 

decision trees. The nodes with no further splits are called terminal nodes. Each 
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observation is classified into only one terminal node that follows a unique path. 

That is, the observations in one terminal node should be mutually exclusive from 

the observations in other terminal nodes. Sometimes when the tree grows too 

large, the overfitting problem may occur. If a learning algorithm performs very 

well in classifying training data but gives poor results in predicting new data, it is 

said to overfit training data. For example, the misclassification rate on the training 

data is nearly zero but the misclassification rate on the new data is very large. 

When a tree is overfitting, some actions must be taken to downsize the tree to a 

proper size. These actions are called pruning. Minimal cost-complexity (Breiman 

et al., 1984) is one commonly used pruning method to avoid overfitting training 

data. First a tree is fully grown without any restrictions and then this tree is 

pruned back by deleting a pair of terminal nodes one at a time to minimize the 

cost-complexity risk. Cross validation method is often used for the trees to be 

pruned appropriately.  

Recently in classification analysis the concept of combining multiple 

classifiers is widely used to further improve the performance of individual 

classifiers. The way of combining multiple classifiers to produce a new classifier 

is called a classification ensemble method. The combination of the predictions 

from multiple base classifiers is usually through majority voting or weighted 

voting to produce the final prediction. For example, suppose we have an ensemble 
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classifier composed of three base classifiers classifying three instances with only 

two classes (i.e. Y = 0 or Y = 1). The predictions from these three classifiers are 

(0, 1, 1), (0, 0, 1), and (1, 1, 1), respectively. Then the final prediction from this 

ensemble classifier would be (0, 1, 1) if a majority voting was used. If a weighted 

voting was used instead, then the weight for each classifier must be taken into 

account and the result might be different. In fact, majority voting can be thought 

as a special case of weighted voting when the weight assigned to each base 

classifier is equal. 

In classification ensemble methodologies, it is known that a more powerful 

classifier can be generated by combining many weak classifiers to improve the 

accuracy (Ji and Ma 1997; Hastie et al., 2001), where a weak classifier means that 

it performs slightly better than random guess. That is, the classification accuracy 

of a weak classifier is only required to be slightly greater than 0.5. For any 

ensemble classifier, let   be the classification accuracy of each base classifier and 

  be the number of base classifiers in this ensemble classifier. Here we let 

      , where   is a nonnegative integer. If majority voting is used to 

combine base classifiers, then the classification accuracy of this ensemble 

classifier would be  

   ∑ (
 

 
)           
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under the assumption that the decisions of the base classifiers are independent. 

Lam and Suen (1997) showed that    is strictly increasing if   is greater than 0.5 

and strictly decreasing if   is smaller than 0.5. Ahn et al. (2007) also pointed out 

that the classification accuracy of an ensemble classifier will converge to 1 if   is 

greater than 0.5. Therefore, in order to be beneficial from using ensemble 

methodology, the base classifiers must perform better than random guess. If the 

base classifiers perform worse than random guess, then combining these 

classifiers will only lead to a poorer result. 

The number of base classifiers in an ensemble classifier is called the ensemble 

size. In general, the steps to create an ensemble classifier are: 

1. Generate multiple samples from the original training data set by using a 

resampling method 

2. Build multiple classifiers from each of those resampled samples 

3. A classification ensemble is built by combining these classifiers through 

majority voting or weighted voting 

Usually, we would like the base classifiers in an ensemble classifier to be 

diverse in order to improve the performance. Diversity means that the base 

classifiers have errors on different parts. Usually when we form a committee to 

make a decision on something, we would prefer to include people who have 
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different opinions. It will be meaningless to form a committee if the committee 

members are always in agreement. Likewise, the accuracy of a classification 

ensemble can only be further improved by having diverse base classifiers.  For 

example, suppose we have two ensemble classifiers A and B, and each of them is 

composed of three base classifiers and four instances. The performance from the 

three base classifiers in A are (1, 0, 1, 0), (0, 1, 1, 0), and (1, 1, 0, 0), respectively 

while the performance from the three base classifiers in B are (1, 1, 0, 0), (1, 1, 0, 

0), and (1, 1, 0, 0), respectively. Here 0 indicates that the decision is incorrect and 

1 indicates that the decision is correct. Now if we take a majority voting on 

combining base classifiers for A and B, the performance from A and B are (1, 1, 1, 

0) and (1, 1, 0, 0), respectively. It is not too hard to see that performance of 

ensemble A has been improved by having diverse classifiers and ensemble B has 

not gained anything from combining classifiers since the base classifiers in B are 

always in agreement. Since diversity plays an important role in the performance 

of an ensemble classifier, measures of diversity become important issues in 

ensemble classification analysis. Some good discussions on measures of diversity 

in an ensemble classifier can be found in Kuncheva and Whitaker (2003), 

Kuncheva (2004), and Brown and Kuncheva (2010). Since it requires diverse base 

classifiers for an ensemble classifier to have a better performance, decision trees 

are often used as base classifiers in ensemble methods due to the fact that they are 

sensitive to minor changes but still quite accurate. 
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Tukey (1977) seemed to be the first one who started using the ensemble 

methodology by combining two linear regression models (Bühlmann and Yu, 

2003; Rokach, 2010). After that, many classification ensemble methods have been 

developed to improve the classification accuracy. Early work of ensemble 

algorithms on classification analysis including Boosting (Schapire, 1990; Freund 

and Schapire, 1996), Bagging (Breiman, 1996), and Random Subspaces (Ho, 

1998) are now widely used due to their high classification accuracy.  

Boosting changes the distribution of the training dataset of current classifier 

adaptively based on the previous classifiers’ performance and then combines 

these classifiers through a weighted voting where the weight is obtained during 

training phase. Bagging generates different training data for each classifier using a 

bootstrap resampling method in order to increase the diversity of classifiers while 

still maintaining the accuracy of classifiers. The final class prediction of Bagging 

is obtained by taking a majority voting on these classifiers. Random Subspaces 

train each classifier using a randomly selected feature subset from the original 

feature space so that the diversity of classifiers can be further increased. Like 

Bagging, Random Subspaces combine the classifiers using a majority voting. 

Random Forest, a variant of Bagging, is developed by Breiman (2001) to further 

improve the diversity of Bagging and therefore improve the performance. Based 

on the algorithm of Bagging, Random Forest diversifies the classifiers more by 
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using only a random feature subspace at each node when growing a classification 

tree. Basically, both Random Subspace and Random Forest utilize the concept of 

feature subspace to further increase the diversity of an ensemble classifier. 

Recently two ensemble algorithms, Rotation Forest (Rodríguez et al., 2006) 

and CERP (Classification by Ensembles from Random Partitions: Ahn et al., 2007) 

have also received attention due to good performance. Rotation Forest applies 

Principal Component Analysis (PCA) to each bootstrap sample to further 

diversify the classifiers and then combines these classifiers through a majority 

voting. CERP partitions the input feature space into several mutually exclusive 

feature subspaces and each classifier is trained under each feature subspace. By 

randomly partitioning the feature space, CERP generates more diverse but less 

correlated classifiers. The classifiers in CERP are combined with a majority 

voting or an average voting. 

In this dissertation, we propose a new classification ensemble method named 

Canonical Forest. By applying CLDA (canonical linear discriminant analysis) to 

each bootstrap sample, Canonical Forest generates accurate and diverse classifiers. 

In Canonical Forest, CLDA is served as a linear transformation tool instead of a 

dimension reduction tool. That is, we still keep all the features while applying 

CLDA. Since CLDA will find the transformed space that separates the 

distribution farther among classes, classifiers built on this space will be more 
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accurate than those on the original space. To further diversify the classifiers, 

CLDA is applied to each partial mutually exclusive feature space instead of 

directly being applied to the whole feature space for each bootstrap sample. 

We also propose another version of Canonical Forest called HDCF (High 

Dimensional Canonical Forest) that is specifically designed for the high 

dimensional data since Canonical Forest cannot be applied to high dimensional 

data directly. By implementing the algorithm of Random Subspace into Canonical 

Forest, we can naturally apply Canonical Forest to high dimensional data without 

performing feature selection or feature reduction first. Basically, HDCF is very 

similar to Canonical Forest except that it only uses a random subset of features 

from the original feature space when constructing each base classifier. 

To investigate the performance of Canonical Forest, we compare it with some 

current popular ensemble methods including Boosting, Bagging, Random Forest, 

and Rotation Forest. Twenty nine real or artificial data sets are used to evaluate 

the performance of each ensemble method. Besides investigating the classification 

accuracy, we also investigate the bias and variance decomposition. 

We also compare the performance of HDCF with some current popular high 

dimensional classification algorithms including SVM, CERP, and Random Forest 
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using gene imprinting, estrogen and leukemia data sets. A brief introduction to 

these three data sets is included in Chapter 4. 
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Chapter 2 

Review of existing ensemble methods 

In this chapter, we will briefly introduce some current popular ensemble 

methods that were used to compare the performance of Canonical Forest and 

HDCF in this study. 

2.1 Adaboost 

Adaboost (Freund and Schapire 1996; 1997) is the most widely used boosting 

method and it is available as a package named Adaboost.M1 in R. Adaboost 

builds classifiers one at a time by changing the weight distribution of current 

classifier based on previous classifier’s classification and then combines these 

classifiers through weighted voting. At the beginning, the weights are equally 

assigned to each instance in training set. Then in next iteration, the weights of 

incorrectly classified instances are increased and the weights of correctly 



16 
 

classified instances are reduced. Therefore, the classifier is forced to focus more 

on those hard-to-classify instances during next iteration. The same process is 

repeated until the last iteration is done. After all the classifiers are built, a 

weighted voting method is used to combine all these classifiers. The weights of 

classifiers are obtained during the training phase. A decision stump (Iba and 

Langley, 1992) is often served as the base classifier in Adaboost. For a decision 

tree that only splits once is called a decision stump. That is, a decision stump 

utilizes only one feature to make a classification. 

LogitBoost is a variant version of Adaboost that was developed by Friedman 

et al. (2000). The main difference between LogitBoost and Adaboost is that 

LogitBoost uses the logistic loss function while Adaboost uses the exponential 

loss function. L2Boost (Friedman, 2001; Bühlmann and Yu, 2003) is another well-

known variant version of Adaboost by adopting the L2-loss function.  Another 

major difference between L2Boost and Adaboost is that L2Boost does not assign 

more weights to the misclassified instances like Adaboost does. SparseL2Boost 

(Bühlmann and Yu, 2006) is a modification of L2Boost that is aimed to increase 

the sparsity and therefore shows an advantage when dealing with high-

dimensional data with a lot of noise features. Recently, a new boosting algorithm 

that is specifically designed for the asymmetric mislabeled data named 

Asymmetric ƞ-Boost was proposed by Hayashi (2012). Asymmetric ƞ-Boost is a 
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generalization algorithm of Adaboost that adopts the asymmetric ƞ-loss function 

making the boosting algorithm more resistant to asymmetric mislabeled data. 

When applied to two-class classification problems, AdaBoost has been proven 

to be successful in producing accurate classifiers. However, when classifying 

instances with more than two classes, Adaboost needs to reduce the multi-class 

classification to multiple two-class classification. To overcome this problem, a 

multi-class Adaboost algorithm, Samme (Stagewise Additive Modeling using a 

Multi-class Exponential loss function), has been proposed by Zhu et al. (2009). 

Samme is a new boosting algorithm that naturally extends Adaboost to a multi-

class classification without reducing it to multiple two-class classification by 

slightly changing the weights on the misclassified instances. Samme has been 

proven to be quite successful when dealing with multi-class classification 

problems.   

2.2 Bagging 

Bagging (Bootstrap aggregating: Breiman, 1996) is one of the most well-

known ensemble methods. It utilizes a resampling method called bootstrap at the 

training phase when building a classifier in order to build more diverse classifiers. 

Here bootstrap resampling method means that it randomly draws instances from 
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data with replacement. For each base classifier, a bootstrap sample is drawn from 

the original training data set and then serves as the new training data set. Since 

each bootstrap sample is randomly drawn from the whole training data set with 

replacement, the distribution of each bootstrap sample is similar to the distribution 

of the original training data set. Therefore, these base classifiers trained with 

bootstrap samples are still maintaining the accuracies but now become more 

diverse. A simple majority voting is then used to combine these base classifiers to 

form the final classification. Although bagging classifiers usually can yield a 

better performance than a single classifier, it is not always the case. Breiman 

(1996) indicated that Bagging algorithm is most useful when the base classifiers 

are unstable. Here an unstable classifier means that the classifier tends to have a 

significantly different result while there is only a slight change on the training 

data. In Breiman’s study (1996), decision trees are chosen to be the base 

classifiers in Bagging algorithm because decision trees are accurate but tend to 

have different results even there is only a small difference between training data. 

Wagging (Weight aggregating: Bauer and Kohavi, 1999), a variant of Bagging, 

is an ensemble classifier that diversifies the base classifiers by adding random 

weights to the training instances instead of resampling from the training data. For 

each classifier, all training instances are assigned with equal weights and then 

Gaussian noise with mean zero and a specified standard deviation is added to each 
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weight to change the weights of these training instances. In this way, the 

classifiers in Wagging are diversified since the weights of instances in training 

data vary from one classifier to another. Webb (2000) proposed a new boosting 

method, named Multiboost, by combining the algorithm of Adaboost and 

Wagging. When decision trees are served as the base classifiers, Multiboost has a 

lower error rate than any of Adaboost, Bagging or Wagging in Webb’s study. It 

should be noted that continuous Poisson distribution, instead of Gaussian noise, is 

used to assign the weights of training instances in Multiboost.  

Panov and ǅeroski (2007) proposed to combine the algorithm of Bagging 

and Random Subspaces to create a more accurate and diverse ensemble classifier. 

Random Subspaces (Ho, 1998) is an algorithm that uses only a random subset of 

input features when training each base classifier to increase the diversity. The 

details about Random Subspace are provided in Chapter 3. By training each 

classifier with a bootstrap sample consisted of only a subspace of input features, 

this new algorithm proposed by Panov and ǅeroski (2007) is more diverse than 

Bagging and Random Subspaces and hence has a better performance.  

Double-Bagging (Hothorn and Lausen, 2003) is a CLDA based ensemble 

method that combines the algorithms of CLDA and Bagging. For each base 

classifier, Double-Bagging first takes a bootstrap sample from training data and 

then applies CLDA to the out of bag (OOB) sample to obtain the coefficient 



20 
 

matrix. The details about OOB sample are introduced in Section 2.3. The 

canonical features can be computed using this coefficient matrix in the bootstrap 

sample. The base classifier is then built using both the original features and the 

canonical features. Finally, a simple majority voting is used to combine all these 

base classifiers. 

2.3 Random Forest 

Random Forest (Breiman 2001), a variant version of Bagging, is a decision 

tree based ensemble method. To make base classifiers more diverse, the algorithm 

of Random Subspace is implemented into the algorithm of Bagging at each node 

when building a tree in Random Forest. Like Bagging, Random Forest also uses a 

bootstrap sampling method at the training phase when building a tree. When 

applying bootstrap sampling method, there are about one-third of the instances not 

contained in the bootstrap sample and this “left-out” sample is called out-of-bag 

(OOB) sample. One of the advantages of Random Forest is that it does not require 

using cross-validation to evaluate its performance. The performance of Random 

Forest can be evaluated simply using the OOB sample. Another important feature 

that Random Forest has is feature importance ranking. To rank the importance of 

features in Random Forest, the values of each feature are randomly permuted and 

OOB accuracy is calculated for each feature after permutation. The importance 
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score of a feature is then determined by the mean of the difference between the 

original OOB accuracy and the permuted OOB accuracy from all the trees. This 

measure of importance score is also called the measure of mean decrease in 

accuracy. Features with higher importance score are more important than features 

with lower importance score. 

To be more diverse than Bagging, Random Forest uses only a random subset 

of the features instead of all features at each node when growing a tree. Denote   

as the number of all the features. Only   features are selected at random from the 

  features and a split is made using only these m features at each node. Bagging 

can be thought as a special case of Random Forest when    . Different number 

of features used at each node when growing a tree can lead to different results. 

Square root of   is the default feature subset size of a node in the R Random 

Forest package named randomForest. Ahn et al. (2007) observed that this default 

yields consistently good results in many data sets. Because Random Forest only 

uses partial features at each node when growing a tree, it can be directly applied 

to high-dimensional data without performing feature selection first. It should be 

noted that when growing a tree, the tree needs to be grown to the largest size 

without any pruning method implemented in the algorithm of Random Forest. 

Due to the increase of diversity, Random Forest performs better than Bagging and 

therefore is often used in classification analysis. 
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2.4 Rotation Forest 

Rotation Forest is a new classification ensemble algorithm developed by 

Rodríguez et al. (2006).  To fit a classifier in an ensemble, it first randomly splits 

the training data of   features into   subsets. That is, each feature subset will 

contain roughly       features. Next, for each feature subset, a class is 

randomly removed and then a sample containing 75% of the original sample is 

drawn from this data set using bootstrap sampling method. Then principal 

component analysis (PCA) is applied to this bootstrap sample using the features in 

the subset. PCA is a frequently used tool in data reduction. By applying PCA, one 

can reduce the input features into a smaller set of uncorrelated components where 

each component is a linear combination of the original features.  

For a given input data set, we first find its covariance matrix and then 

calculate its eigenvalues and corresponding eigenvectors. The first component is 

then the eigenvector with the largest eigenvalue and accounts for most of the 

variation in input data. The second component is the eigenvector with the second 

largest eigenvalue and accounts for most of the remaining variation in input data. 

It should be noted that the second component is orthogonal to the first component. 

All other succeeding components follow this same rule and are orthogonal to all 

previous components. Usually, the first few components should account for most 
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of the variation in original data. Therefore, we can just use these components 

instead of all the input variables without losing too much information. More about 

data reduction will be discussed in Chapter 3. When applying PCA in Rotation 

Forest, all the components will be kept to preserve all the information. After 

applying PCA, a rotation matrix is built using the coefficients obtained from PCA 

and then multiplied to the original training data set (an     matrix) to obtain a 

new training data set. After all the base classifiers are built, a majority voting is 

used to combine these base classifiers. Rotation Forest is quite successful due to 

its high accuracy and diversity. 

RotBoost (Zhang and Zhang, 2008) is a recently proposed ensemble method 

that combines the algorithms of Rotation Forest and Adaboost to improve the 

performance. RotBoost first uses the algorithm of Rotation Forest to obtain the 

rotation matrix and then the new training data set is obtained using this rotation 

matrix. After the new training data set is formed, the algorithm of Adaboost is 

then used to build a classifier. Like Rotation Forest, Rotboost also utilizes a 

majority voting to form the final classification. By simultaneously reducing the 

bias and the variance, the performance of RotBoost showed superiority among the 

considered ensemble methods in Zhang and Zhang’s study. 

 



24 
 

2.5 CERP 

CERP was recently developed by Ahn et al. (2007) and it is a high-

dimensional data oriented classification ensemble algorithm. First the input 

feature space is randomly partitioned into several mutually exclusive feature 

subspaces with roughly equal sizes. Then under each subspace, a tree is grown 

with only the features in this subspace. By doing this, CERP avoids the problem 

of high dimensionality and therefore does not need a feature selection or 

dimension reduction before classifying. Ten-fold cross validation is used during 

the training phase to determine the number of subspaces which is also the 

ensemble size of CERP. Finally, a final classification is obtained by combining all 

these classifiers simply through a majority voting or average voting depending on 

its base classifiers. One of the two different base classifiers was used in Ahn et 

al.’s study: CART and logistic regression trees. CART-based CERP takes a 

majority voting to form the final classification and logistic regression tree-based 

CERP takes an average voting to form the final classification. Because all the 

feature subspaces are formed mutually exclusive, the correlations among the 

classifiers are substantially reduced in CERP. Hansen and Salamon (1990), Ho 

(1998) and Kuncheva et al. (2003) noted that the performance of an ensemble is 

further improved with less correlated base classifiers (Ahn et al., 2007). By 

partitioning the whole feature space into several mutually exclusive feature 
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subspaces, CERP becomes an accurate and efficient ensemble classifier. Ahn et al. 

(2007) also proposed to generate multiple ensembles by re-partitioning the feature 

space and then combine these ensembles to further improve the accuracy of CERP. 

Eleven ensemble classifiers were used in their study. 

LORENS (Logistic regression ensembles: Lim et al., 2010) is an ensemble 

method based on the algorithm of CERP that employs logistic regression as the 

base classifiers. Since logistic regression is a binary classifier, LORENS can be 

only applied to two-class classification problems. To overcome this problem, Lee 

et al. (2013) proposed an extended version of LORENS, named mLORENS 

(Multinomial logistic regression ensembles) that allows LORENS to be applied to 

multi-class problems by using multinomial logistic regression as its base 

classifiers. Both LORENS and mLORENS use the average voting method to 

combine the base classifiers. 
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Chapter 3 

Method 

3.1  Canonical Linear Discriminant Analysis 

Dimension reduction technique is often used to reduce the number of input 

features, specifically in high-dimensional data. When the number of features of 

the input data is too large, typically much larger than the number of instances, it is 

called high-dimensional data. In classification analysis, it is well known that 

classification methods can perform poorly on high-dimensional data. This is 

mainly because high-dimensional data usually consist of too many redundant 

features which are also called noise features. When data contain too many noise 

features, models built from these data may consist of too much useless 

information and result in poor performance during classification phase. Therefore, 

many classification methods need to reduce the original input feature space into a 

smaller feature set when classifying high-dimensional data. The way of reducing 
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original feature space into a smaller feature set is called dimension reduction. If 

the dimension reduction is successful, then this new feature set should still keep 

most of the information from the original input data. We then can train models 

using the new feature set instead of all the features. For example, if the input data 

are  -dimensional, it can be reduced to  -dimensional (   ) without losing too 

much information by applying dimension reduction technique. PCA and CLDA 

(Canonical Linear Discriminant Analysis) are the two most widely used 

dimension reduction techniques. 

The general idea of CLDA is to find a linear combination that maximizes the 

between-class variance relative to the within-class variance (Hastie et al. 2001). 

That is, it finds a linear transformation of features which separates the class 

distribution as far as possible. In this sense, classifier using the features extracted 

by CLDA performs better compared to the one using original features. Therefore, 

CLDA can always make a good separation among classes and hence is a better 

feature reduction method than PCA in classification analysis since PCA does not 

utilize the class information when performing feature reduction. The algorithm of 

CLDA modified from Hastie et al. (2001) is given in Figure 1.  

Although CLDA is known as a dimension reduction tool, we do not use it as a 

dimension reduction technique in this experiment. Instead, we keep all the 

components when applying CLDA to preserve all the information and to further 
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diversify the classifiers. Therefore, here CLDA only serves as a linear 

transformation tool to make the input data separate as far as possible among 

classes.  
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Given: 

 X: the objects in the training data set (an N x p matrix) 

 C: the number of classes 

 p: the number of variables 

   : the covariance of class i 

Procedure: 

1. Compute the class centroid matrix     , where the i-j entry is the mean 

of class i for variable j. 

2. Compute the common covariance matrix W : 

   ∑   

 

   

      

3. Compute           by using eigen-decomposition of W. 

4. Obtain the between covariance matrix    by computing the covariance 

matrix of   . 

5. Do the eigenvalue-decomposition of    such that          

6. The columns    of V define the coordinates of the optimal subspaces. 

7. Convert X to the coordinates in the new subspace: 

                     
        

8.    is the     canonical coordinate. 

 

Figure 1: Algorithm of CLDA. 
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3.2 Canonical Forest 

Rotation Forest is a PCA based ensemble method proposed by Rodríguez et al. 

in 2006. It has been proven to be a quite successful ensemble method due to its 

high classification accuracy comparing to other current widely used ensemble 

methods. However, like we discussed in previous section, CLDA is a more 

suitable feature extraction technique than PCA when it comes to classification 

analysis due to the fact that PCA does not utilize class information while CLDA 

does. Therefore, we propose a new classification ensemble method called 

Canonical Forest by replacing PCA with CLDA in the algorithm of Rotation 

Forest to further improve the classification accuracy. Basically, the main 

difference between Canonical Forest and Rotation Forest is on the method for 

feature extraction. CLDA is used in Canonical Forest while PCA is used in 

Rotation Forest.  

Let              be an instance represented by   features and let   be the 

training data composed of   instances in a form of an     matrix. Let   be the 

class labels         of the training data where             . The classifiers 

in an ensemble are denoted by         and the feature set is denoted by  . Like 

Rotation Forest, all the classifiers can be trained in parallel. To set up the training 

data for classifier   , we use the following steps. 
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1. Randomly split   into   subsets. The subsets are made disjoint to increase 

the diversity of an ensemble. For simplicity, assume that   is divisible by 

 . Then each feature subset contains       features. If   is not 

divisible by  , we let      ⁄     and the last subset is set to contain 

the remaining features. 

2. Denote      as the j-th subset of features of the training data for classifier 

  . For each of such subsets, draw a bootstrap sample with 75 percent of 

the original sample size.  

3. Run CLDA on      and obtain a coefficient matrix 

          
   

     
   

    
   

(  )  of size      Note that each of 

    
   

     
   

    
   

(  )
 has size of m because all the canonical components are 

kept without dimension reduction. 

4. Arrange the obtained coefficient matrix      into a     block diagonal 

matrix   , where  

   [

    
   

     
   

       
    

    

     

      
   

     
   

       
    

] 

 

5. Construct the rotation matrix   
  (a     matrix) by rearranging the rows 

of    so that they correspond to the original features in  . 

6. The new training data for classifier    is     
    . 
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Figure 2 shows the pseudocode for the entire algorithm of Canonical Forest. 

Here decision trees are used as base classifiers. Since the centroids of   classes in 

 -dimensional input space span at most     dimensional subspace, it is 

common to extract     features in CLDA for dimension reduction in general. 

However, we use CLDA as a linear transformation tool rather than a dimension 

reduction tool for this study. Therefore, we let the number of extracted features to 

be the number of the original features. This results in   extracted features in each 

subset of features even if   is greater than    . Although these extra features 

may not contribute much to the discriminatory power, they will encourage the 

classifiers to be more diverse and it can yield higher accuracy of the ensemble. 
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Input 

Given 

  : training data composed of n instances (an     matrix) 

  : the labels of the training data (an     vector) 

  : number of classifiers in an ensemble 

  : number of subsets 

          : set of class labels 

 

Training Phase 

For         

1. Randomly split   (the feature set) into   subsets:      (for         ) 

2. For         

 Let      be the data matrix that corresponds to the features in      

 Draw a bootstrap sample     
  (with sample size 75% of the number 

of instances in     ) from      

 Apply CLDA to     
  to obtain a coefficient matrix      

3. Arrange                 into a block diagonal matrix    

4. Construct the rotation matrix   
  by rearranging the rows of    so that they 

correspond to the original order of features in   

5. Use     
     as the training data to build a classifier    

 

Test Phase 

 For a given instance  , the predicted class label from classifier   is: 

                                    ∑     
 
       

      

 

Figure 2: Pseudocode of Canonical Forest. 
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3.3 Canonical Forest with the Weight-Adjusted 

Voting Algorithm 

Majority voting is a simple combining algorithm often used in ensemble 

methods when combining base classifiers. Although it is simple and efficient, 

sometimes it can be biased since it doesn’t take the performance of classifiers into 

account but assigns equal weights to each classifier instead. This could be a 

problem when some classifiers perform better on hard-to-classify instances. Here 

hard-to-classify instances are defined as those instances that are correctly 

classified by only a few classifiers. Therefore, the results might be misled if 

classifiers that perform better on hard-to-classify instances are assigned the same 

weight as those that perform worse on hard-to-classify instances. To solve this 

problem, Kim et al. (2011) proposed a new weighted voting algorithm named 

WAVE (Weight-Adjusted Voting for Ensemble of Classifiers). Unlike other 

weighted voting algorithms, WAVE can be applied after all the classifiers are 

built. That is, the classifiers can still be trained in parallel when applying WAVE.  

The general idea of WAVE is to assign more weights to the classifiers that can 

classify hard-to-classify instances better. To assign weights to each classifier 

properly, WAVE uses both the weight vector of classifiers and the weight vector 

of instances. The instances that are correctly classified by fewer classifiers receive 
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more weight and the classifiers that perform better on those hard-to-classify 

instances also receive more weight. Therefore, these two weight vectors are 

influenced by each other and are updated iteratively through a repeated process. 

The algorithms of obtaining weight vectors for both instances and classifiers are 

shown in Figure 3. Once the weight matrix is obtained, the classifiers are then 

combined using this weight matrix in an ensemble algorithm. To make the 

calculations easier, Kim et al. (2011) proved the convergence of both weight 

vectors of instances and classifiers and obtained the final weight vectors of 

instances and classifiers directly without going through an iterative process. The 

algorithm for obtaining the final weight vectors directly is shown in Figure 4. 

Because the weight vector of classifiers is obtained after the ensemble is formed, 

we can easily apply it to Canonical Forest to improve the performance.  
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Given 

  : number of instances in data 

  : number of classifiers in an ensemble 

  : an     performance matrix indicating whether the prediction is   

      correct (1) or wrong (0) 

    : an     matrix with all the entries equal to 1  

   : an     vector of 1’s 

   : a     identity matrix 

 

Procedure: 

1. Calculate   , the initial weight vector of instances: 

                                 
                 

  
                  

 

2. For          calculate    and    by repeating the following process 

until both    and    become stable, where    is the weight vector of 

classifiers. 

    
      

  
       

 

    
                 

  
                  

 

3. After    and    become stable, denote    and    as the final weight 

vectors for classifiers and instances, respectively. 

 

Figure 3: Pseudocode of obtaining the weight vectors through an iterative process. 
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Given 

  : number of instances in data 

  : number of classifiers in an ensemble 

  : an     performance matrix indicating whether the prediction is   

      correct (1) or wrong (0) 

    : an     matrix with all the entries equal to 1  

   : an     vector of 1’s 

   : a     identity matrix 

 

Procedure: 

1. Let                     

2. Find   , eigenvalues of           

3. Find   , eigenvector corresponding to            

4. Let   be the number of dominating eigenvalues such that       
                

5. Compute    
 ∑     

   
     

  
  ∑     

   
     

    
      

    , where    is the weight 

matrix of classifiers 

6. Compute    
                ∑     

   
     

  
                 ∑     

   
     

    
      

    , where    

is the weight matrix of instances 

 

Figure 4: Pseudocode of directly obtaining the final weight vectors. 
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3.4 High-Dimensional Canonical Forest (HDCF) 

Although Canonical Forest is an ensemble algorithm based on CLDA which is 

a commonly used dimension reduction tool for dealing with high-dimensional 

data, it cannot be directly applied to high-dimensional data since CLDA only 

serves as a linear transformation tool rather than a dimension reduction tool in 

Canonical Forest. Therefore, like most of the other classification methods, 

Canonical Forest needs to perform a feature selection or feature reduction before 

classifying on high-dimensional data. In order for Canonical Forest to be directly 

applied to high-dimensional data, we propose a different version of Canonical 

Forest called High-Dimensional Canonical Forest (HDCF) by implementing the 

algorithm of Random Subspace (Ho 1998) into Canonical Forest.  

Random Subspace is an ensemble algorithm that utilizes the random feature 

subspace to increase the diversity of classifiers. Unlike Bagging diversifies the 

classifiers by repeatedly resampling from the training data, Random Subspace 

diversifies the classifiers by randomly selecting feature subsets from the original 

feature space. That is, Random Subspace only uses a random subset of features 

instead of all features to construct a classifier. Since all the classifiers are 

generated independently, the classifiers can be trained in parallel in Random 

Subspace. However, it should be noted that generating independently does not 

mean that the classifiers are independent. After each classifier is constructed, an 
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average voting method is used to combine these classifiers. By using only some 

instead of all features, Random Subspace not only increases the diversity but also 

easily overcomes the problem caused by high-dimensional data and hence does 

not require a feature selection or feature reduction before classification. Therefore, 

Random Subspace is most useful when classifying on high-dimensional data but 

may be a bad choice when classifying on data with only a few features. The entire 

algorithm of Random Subspace is shown in Figure 5. 

Here we naturally extend Canonical Forest to be applied on high-dimensional 

data by implementing the idea of random feature subspace into the algorithm of 

Canonical Forest. That is, only some randomly selected features from the whole 

features are used when growing each tree in Canonical Forest. This new 

classification ensemble algorithm is called High-Dimensional Canonical Forest 

(HDCF) since it is specifically designed for high-dimensional data. The only 

difference between HDCF and Canonical Forest is that HDCF uses only a subset 

of whole feature set while Canonical Forest uses the whole feature set when 

growing a tree. Figure 6 shows the pseudocode for the entire algorithm of HDCF. 

Like Canonical Forest, decision trees are used as base classifiers in HDCF. 
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Input 

Given 

  : training data composed of n instances (an     matrix) 

  : the labels of the training data (an     vector) 

  : number of classifiers in an ensemble 

  : number of features selected from the feature set 

          : set of class labels 

 

Training Phase 

For         

1. Randomly select a feature subset    of size q from   (the feature set) 

2. Let    be the data matrix that corresponds to the features in    

3. Use        as the training data to build a classifier    

 

Test Phase 

 For a given instance  , let          be the probability that   belongs to 

class   from classifier   . The average probability that   belongs to class   

from   classifiers is: 

       
 

 
∑        

 

   

 

 Assign   to class   where        is the maximum           

 

Figure 5: Pseudocode of Random Subspace. 
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Input 

Given 

  : training data composed of n instances (an     matrix) 

  : the labels of the training data (an     vector) 

  : number of classifiers in an ensemble 

  : number of subsets 

  : number of features selected from the feature set 

          : set of class labels 

 

Training Phase 

For         

1. Randomly select a feature subset    of size q from   (the feature set) 

2. Randomly split    into K subsets:      (for   = 1, . . ., K) and Let    be the data 

matrix that corresponds to the features in    

3. For         

 Let      be the data matrix that corresponds to the features in      

 Draw a bootstrap sample     
  (with sample size 75% of the number 

of instances in     ) from      

 Apply CLDA to     
  to obtain a coefficient matrix      

4. Arrange                 into a block diagonal matrix    

5. Construct the rotation matrix   
  by rearranging the rows of    so that they 

correspond to the original order of features in     

6. Use      
     as the training data to build a classifier    

 

Test Phase 

 For a given instance x, the predicted class label from classifier   is: 

                                    ∑     
 
        

      

 

Figure 6: Pseudocode of High-Dimensional Canonical Forest. 
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Chapter 4 

Experiments 

4.1 Performance Comparison 

In this dissertation, we conducted an experiment using 29 real or artificial data 

sets to compare the performance of Canonical Forest with the performance of 

other widely used ensemble methods including Bagging, Adaboost, Samme, 

Random Forest, and Rotation Forest. We also provided weighted voting version 

of Canonical Forest using WAVE to further improve the performance of 

Canonical Forest. Decision trees were used as the base classifiers for all the 

ensemble methods. We used unpruned decision trees as base classifiers except for 

Adaboost and Samme. For Adaboost and Samme, we set the maximum depth of 

each single tree to be the number of classes, which is the default setting in the R 

package called adaboost.M1. A decision tree program named rpart available in the 

R package is used for the experiment. Rpart is based on the CART (Classification 
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and Regression Trees) algorithm (Breiman et al., 1984). In Random Forest, we set 

the number of features chosen at each node equal to the square root of the number 

of all features, which is the default setting in the R Random Forest package 

named randomForest. In Canonical Forest and Rotation Forest, the number of 

features in each subset is set to be    . If   is not divisible by 3, then the last 

subset was completed with the remaining features (1 or 2 features). It should be 

noted that the performance of all the ensemble methods were compared under the 

fixed same ensemble size for fair comparisons. 

The data are summarized in Table 1. Most of the data come from UCI Data 

Repository (Asuncion and Newman, 2007) and package mlbench (Leisch and 

Dimitriadou, 2010) of the R library. Since PCA and CLDA cannot be applied to 

discrete features, all the discrete features have been removed from each data set. 
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Table 1: Data used in the comparison of Canonical Forest with other ensemble 

methods. 

 
Data Set Observations Continuous 

Features 

Class Source 

aba 4177 7 2 UCI 

aus 690 11 2 UCI 

bld 345 6 2 UCI 

bod 507 24 2 Heinz et al. (2003) 

bos 506 12 3 UCI 

cir 1000 10 2 R library 

dia 768 8 2 Loh (2010) 

ech  131 5 2 UCI 

fis 159 6 7 Kim and Loh (2003) 

hea 270 10 2 UCI 

int 1000 9 2 Kim et al. (2011) 

ion  351 32 2 UCI 

iri 150 4 3 UCI 

lak 259 13 6 Loh (2010) 

led 6000 7 10 UCI 

mam 961 5 2 R library 

pid 532 7 2 UCI 

pks 195 22 2 R library 

pov 97 6 6 Kim and Loh (2001) 

rng 1000 10 2 R library 

sea 3000 7 3 Terhune (1994) 

snr 208 60 2 R library 

spe 267 44 2 UCI 

trn 1000 10 2 R library 

twn 1000 10 2 R library 

usn 1302 26 3 Statlib (2010) 

veh 846 18 4 UCI 

vol 1521 4 6 Loh (2010) 

vow 990 10 11 UCI 
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Figure 7 shows boxplots comparing Canonical Forest with the other ensemble 

methods for ensemble sizes 2, 4, 8, 16, 32, and 64. Twenty repetitions of 3-fold 

cross-validation were performed for each of the data sets. Here the comparison 

was done by using paired t-test. The x-axis indicates the ensemble size, B, and the 

y-axis indicates the t-test statistic. A positive t-test statistic shows that Canonical 

Forest has a better performance; a negative t-test statistic shows that Canonical 

Forest has a poorer performance. From Figure 7, we can see that the t-test statistic 

increases as ensemble size increases for Decision Trees and Bagging; t-test 

statistic decreases as ensemble size increases for Random Forest; no obvious 

trends are found for Adaboost, Samme, and Rotation Forest. 
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Figure 7: Boxplots of other ensemble methods compared to Canonical Forest 

using paired t-test. CanF stands for Canonical Forest; RnF stands for Random 

Forest; RotF stands for Rotation Forest. 
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Figure 8 shows the relative improvement of the other ensemble methods 

compared to Canonical Forest for ensemble sizes 2, 4, 8, 16, 32, and 64 using 

boxplots. The relative improvement is defined as 

    
                               

               
 

Here B is Canonical Forest and A is the ensemble method to be compared. 

From Figure 8, we can see that the relative improvement increases as the 

ensemble size increases for Decision Tree and Bagging; it decreases as the 

ensemble size increases for Random Forest; there are no obvious trends for 

Adaboost, Samme, and Rotation Forest.  

The result using relative improvement is quite consistent with the result using 

paired t-test. In general, we see that Canonical Forest is better than any other 

ensemble methods at each ensemble size, especially when the ensemble size is 

small.  
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Figure 8: Relative Improvement of the other ensemble methods compared to 

Canonical Forest represented using box-plot. CanF stands for Canonical Forest; 

RnF stands for Random Forest; RotF stands for Rotation Forest. 
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To compare the accuracy among different ensemble methods, we fixed the 

ensemble size at      and    . For each data set and ensemble method, twenty 

3-fold cross validations were performed. The average accuracies are shown in 

Table 2 and Table 3. We also show the accuracy of single tree as a reference. 

The results are marked with a plus or minus sign next to them if there is a 

significant difference between the respective ensemble method and Canonical 

Forest. If Canonical Forest is significantly more accurate than the compared 

method (column) for the particular data set (row), then we put a plus sign next to 

a result. If Canonical Forest is significantly less accurate, then we put a minus 

sign next to a result. The second + or - sign in Table 3 indicates that Canonical 

Forest with WAVE is used to compare with other methods. The comparison was 

done by using paired t-test at two-sided significant level α = 0.05.  
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Table 2: Classification accuracy of tree and ensemble methods comparing with 

Cononical Forest with ensemble size     . 

 
Data Set Tree Bagging Adaboost Samme Random 

Forest 

Rotation 

Forest 

Canonical 

Forest 

aba 0.7628+ 0.7755+ 0.7334+ 0.7711+ 0.7697+ 0.7820 0.7814 

aus 0.8546+ 0.8648 0.8542+ 0.8411+ 0.8624 0.8490+ 0.8628 

bld 0.6516+ 0.7007+ 0.6854+ 0.7039+ 0.7148+ 0.7041+ 0.7268 

bod 0.9036+ 0.9282+ 0.9735+ 0.9748+ 0.9402+ 0.9729+ 0.9776 

bos 0.7400+ 0.7710 0.7715+ 0.7760 0.7787 0.7615+ 0.7763 

cir 0.7054+ 0.7874 - 0.6674+ 0.8852 - 0.7852 - 0.7796 0.7780 

dia 0.7446+ 0.7555+ 0.7520+ 0.7477+ 0.7569+ 0.7542+ 0.7617 

ech  0.6347+ 0.6931 0.6702+ 0.6668+ 0.6878 0.6550+ 0.6920 

fis 0.8025+ 0.8252+ 0.8264+ 0.8179+ 0.8145+ 0.9145+ 0.9428 

hea 0.7430+ 0.7787+ 0.7806+ 0.7561+ 0.7891+ 0.7694+ 0.7980 

int 0.6666 - 0.6586 - 0.5234+ 0.5924 - 0.5294+ 0.7347 - 0.5664 

ion  0.8736+ 0.9056+ 0.9199+ 0.9217+ 0.9238+ 0.9430 - 0.9349 

iri 0.9457+ 0.9457+ 0.9440+ 0.9443+ 0.9487+ 0.9523 0.9580 

lak 0.3651+ 0.4041 0.4027 0.4023+ 0.4344 - 0.4027 0.4147 

led 0.6830+ 0.7076 0.7331 - 0.6967+ 0.7234 - 0.7218 - 0.7084 

mam 0.8268 0.8314 - 0.8318 - 0.8262 0.8329 - 0.8213+ 0.8270 

pid 0.7508+ 0.7766 0.7731+ 0.7574+ 0.7756 0.7695+ 0.7808 

pks 0.8456+ 0.8800+ 0.8651+ 0.9128 - 0.8862+ 0.8959 0.8964 

pov 0.6227+ 0.6139+ 0.6448 0.6320+ 0.6000+ 0.6129+ 0.6603 

rng 0.8186+ 0.8688+ 0.7280+ 0.9150 - 0.8870+ 0.9044 0.9024 

sea 0.5872+ 0.6068+ 0.5432+ 0.6465 - 0.6082+ 0.6052+ 0.6338 

snr 0.7154+ 0.7834+ 0.8216 0.8392 0.8075+ 0.8363 0.8272 

spe 0.7620+ 0.8052 0.8060 0.7903+ 0.8096 0.8150 0.8103 

trn 0.7280+ 0.8267+ 0.8399 0.8424 - 0.8454 - 0.8572 - 0.8380 

twn 0.8212+ 0.9342+ 0.9608+ 0.9588+ 0.9558+ 0.9684 0.9696 

usn 0.6748+ 0.7099+ 0.7270 - 0.7047+ 0.7155 0.7126 0.7166 

veh 0.6757+ 0.7080+ 0.7342+ 0.7483+ 0.7181+ 0.7369+ 0.7645 

vol 0.5176+ 0.5383+ 0.5382+ 0.4996+ 0.5320+ 0.5130+ 0.5517 

vow 0.5582+ 0.6518+ 0.8653 - 0.9149 - 0.7198+ 0.7805 - 0.7472 

(Win/Tie/Loss) (1/1/27) (3/7/19) (4/5/20) (7/3/19) (5/6/18) (5/10/14)  

  + Canonical Forest is significantly better, - Canonical Forest is significantly worse, level of significance 0.05    
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Table 3: Classification accuracy of tree and ensemble methods comparing with 

Cononical Forest with ensemble size      . 

 

Data Set Tree Bagging Adaboost Samme 
Random 

Forest 

Rotation 

Forest 

Canonical 

Forest 

Canonical 

Forest with 

WAVE 

aba 0.7628+ + 0.7764+ + 0.7336+ + 0.7796+ + 0.7709+ + 0.7825 0.7817 0.7819 

aus 0.8546+ + 0.8667 -  - 0.8544+ + 0.8354+ + 0.8651 0.8476+ + 0.8631 0.8641 

bld 0.6516+ + 0.7096+ + 0.6968+ + 0.6852+ + 0.7170+ + 0.7070+ + 0.7317 0.7313 

bod 0.9036+ + 0.9305+ + 0.9772 0.9792  0.9404+ + 0.9727+ + 0.9775 0.9785 

bos 0.7400+ + 0.7731 0.7762 -  - 0.7862 -  - 0.7828 -  - 0.7633+ + 0.7710 0.7718 

cir 0.7054+ + 0.7883 -  - 0.6590+ + 0.9132 -  - 0.7872 -  - 0.7733 0.7744 0.7758 

dia 0.7446+ + 0.7579+ + 0.7537+ + 0.7304+ + 0.7601   + 0.7558+ + 0.7628 0.7636 

ech  0.6347+ + 0.6912 0.6718+ + 0.6546+ + 0.6912 0.6618+ + 0.6927 0.6905 

fis 0.8028+ + 0.8233+ + 0.8248+ + 0.8189+ + 0.8173+ + 0.9182+ + 0.9456 0.9497 

   hea 1 0.7050+ + 0.7339+ + 0.7554 0.6939+ + 0.7507 0.7228+ + 0.7474 0.7481 

int 0.6664 -  - 0.6764 -  - 0.5302+ + 0.6514 -  - 0.5310+ + 0.7335 -  - 0.5618 0.5697 

ion  0.8736+ + 0.9091+ + 0.9222+ + 0.9245+ + 0.9266+ + 0.9442 -  - 0.9360 0.9365 

iri 0.9457+ + 0.9443+ + 0.9470+ + 0.9433+ + 0.9477+ + 0.9540 0.9597 0.9593 

lak 0.3647+ + 0.4085 0.4066 0.4075 0.4365 -  - 0.4058 0.4158 0.4145 

led 0.6830+ + 0.7078    + 0.7343 -  - 0.5829+ + 0.7296 -  - 0.7223 -  - 0.7090 0.7121 

mam 0.8268 0.8320 -  - 0.8334 -  - 0.8157+ + 0.8339 -  - 0.8230+ + 0.8283 0.8277 

pid 0.7513+ + 0.7780+ + 0.7744+ + 0.7448+ + 0.7787 0.7706+ + 0.7820 0.7817 

pks 0.8467+ + 0.8810+ + 0.8715+ + 0.9233 -  - 0.8844+ + 0.9003 0.8938 0.8936 

pov 0.6211+ + 0.6129+ + 0.6505    + 0.5897+ + 0.6062+ + 0.6077+ + 0.6624 0.6665 

rng 0.8184+ + 0.8719+ + 0.7320+ + 0.9210 -  - 0.8878+ + 0.9060 0.9059 0.9069 

sea 0.5872+ + 0.6083+ + 0.5446+ + 0.6737 -  - 0.6112+ + 0.6077+ + 0.6370 0.6370 

snr 0.7154+ + 0.7863+ + 0.8351 0.8560 -  - 0.8111+ + 0.8387 0.8322 0.8325 

spe 0.7599+ + 0.8062+ + 0.8054+ + 0.7919+ + 0.8101 0.8133 0.8118 0.8116 

trn 0.7280+ + 0.8268+ + 0.8452 0.8472 0.8476 0.8612 -  - 0.8444 0.8453 

twn 0.8212+ + 0.9389+ + 0.9644+ + 0.9620+ + 0.9618+ + 0.9700 0.9694 0.9695 

usn 0.6748+ + 0.7134+ + 0.7284 -  - 0.7111+ + 0.7192 0.7144+ + 0.7193 0.7198 

veh 0.6757+ + 0.7100+ + 0.7370+ + 0.7606    + 0.7220+ + 0.7398+ + 0.7655 0.7697 

vol 0.5176+ + 0.5384+ + 0.5381+ + 0.5082+ + 0.5327+ + 0.5100+ + 0.5517 0.5537 

vow 0.5582+ + 0.6553+ + 0.8853 -  - 0.9376 -  - 0.7374+ + 0.7870 -  - 0.7589 0.7641 

(Win/Tie/Loss)2 (1/1/27) (4/4/21) (5/6/18) (8/4/17) (5/8/16) (5/9/15)   

(Win/Tie/Loss)3 (1/1/27) (4/3/22) (5/5/19) (8/3/18) (5/7/17) (5/9/15)   

+ Canonical Forest is significantly better, - Canonical Forest is significantly worse (the second one stands for Canonical 
Forest with WAVE) 

1 Some features of data set hea were removed due to computational problems 

2 The summary result of Canonical Forest 
3 The summary result of Canonical Forest with WAVE 
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Table 4 and Table 5 show the summaries of the comparisons given in Tables 2 

and 3, respectively. The entry     shows the frequency that the method in column 

(j) is more accurate than the method in row (i). The number in parentheses shows 

the frequency that these differences are statistically significant. In Table 4, for 

example, the value in row 2, column 7 is 24 (19). This means that Canonical 

Forest was more accurate than Bagging in 24 of the 29 comparisons and less 

accurate in 5 comparisons. The number in the parentheses indicates that 

Canonical Forest has been significantly better than Bagging in 19 data sets. In 3 

of the remaining 5 cases, Bagging was significantly better than Canonical Forest 

(the entry in row 7, column 2 is 5 (3)).  
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Table 4: Summary of comparisons among different methods with ensemble size 

    . 

 

 Tree Bagging Adaboost Samme 

Random 

Forest 

Rotation 

Forest 

Canonical 

Forest 

Tree - 26 (26) 22 (22) 24 (21) 27 (25) 25 (24) 28 (27) 

Bagging 2 (0) - 15 (10) 14 (11) 20 (14) 17 (15) 24 (19) 

Adaboost 7 (5) 14 (9) - 15 (10) 19 (14) 16 (14) 24 (20) 

Samme 5 (3) 15 (13) 14 (9) - 16 (11) 17 (13) 21 (19) 

Random Forest 2 (2) 9 (4) 10 (10) 13 (11) - 15 (12) 23 (18) 

Rotation Forest 4 (1) 12 (7) 13 (9) 12 (8) 14 (10) - 19 (14) 

Canonical Forest 1 (1) 5 (3) 5 (4) 8 (7) 6 (5) 10 (5) - 

The entry     shows the frequency that the method in column (j) is more accurate than the method 

in row (i). The number in parentheses shows the frequency that these differences are statistically 

significant. 
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Table 5: Summary of comparisons among different methods with ensemble size 

     . 

 
 

Tree Bagging Adaboost Samme Random 

Forest 

Rotation 

Forest 

Canonical 

Forest 

Tree - 27 (26) 23 (22) 19 (19) 27 (26) 25 (25) 28 (27) 

Bagging 2 (0) - 15 (12) 13 (13) 21 (16) 16 (15) 24 (21) 

Adaboost 6 (5) 14 (10) - 14 (11) 18 (11) 16 (13) 21 (18) 

Samme 10 (6) 16 (11) 15 (14) - 16 (12) 19 (15) 19 (17) 

Random Forest 2 (1) 7 (3) 11 (10) 13 (10) - 15 (13) 21 (16) 

Rotation Forest 4 (1) 13 (8) 13 (10) 10 (9) 14 (14) - 18 (15) 

Canonical Forest 1 (1) 5 (4) 8 (5) 10 (8) 8 (5) 11 (5) - 

The entry     shows the frequency that the method in column (j) is more accurate than the method 

in row (i). The number in parentheses shows the frequency that these differences are statistically 

significant. 
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Tables 6 and 7 present the ranking of the methods based on the frequency that 

each method was significantly more accurate and significantly less accurate than 

other method. In Table 6, for example, the number of wins for Canonical Forest is 

117. It is obtained by the sum of the numbers in parentheses in the column of 

Canonical Forest in Table 4. Similarly, the number of losses is obtained by the 

sum of the numbers in parentheses in the row of Canonical Forest which is 25. 

Therefore, the dominance rank of Canonical Forest is           at ensemble 

size     .  

Tables 4 through 7 clearly show that Canonical Forest outperformed other 

widely used ensemble methods: Bagging, Adaboost, Samme, Random Forest, and 

Rotation Forest. The dominance rank of Canonical Forest (92 and 86) is 

substantially larger than the second best at both ensemble sizes.  
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Table 6: Rank of the methods using the significantly different results from the 

results in Table 4. 

 

Method Dominance rank 

(Wins-Losses) 

Wins Losses 

Canonical Forest 92 117 (82%) 25 (18%) 

Rotation Forest 34 83 (63%) 49 (37%) 

Random Forest 22 79 (58%) 57 (42%) 

Samme 0 68 (50%) 68 (50%) 

Bagging -7 62 (47%) 69 (53%) 

Adaboost -8 64 (47%) 72 (53%) 

Tree -133 12 (8%) 145 (92%) 
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Table 7: Rank of the methods using the significantly different results from the 

results in Table 5. 

 

Method 

Dominance rank 

(Wins-Losses) 

Wins Losses 

Canonical Forest 86 114 (80%) 28 (20%) 

Random Forest 31 84 (61%) 53 (39%) 

Rotation Forest 29 86 (60%) 57 (40%) 

Adaboost 5 73 (52%) 68 (48%) 

Samme -5 70 (48%) 75 (52%) 

Bagging -15 62 (45%) 77 (55%) 

Tree -131 14 (9%) 145 (91%) 
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To confirm the superiority of Canonical Forest is not just by chance, we 

performed the exact Binomial test on the classification accuracy of Tables 2 and 3. 

The one-sided test was adopted to obtain the p-values for the alternative 

hypothesis that Canonical Forest performs better than another method. That is, the 

null hypothesis was set to be       and the alternative hypothesis was set to be 

     , where   is the probability that Canonical Forest performs better than 

another method for a given data set. It should be noted that the problem of 

multiple comparisons may arise when we are trying to test all hypotheses 

simultaneously. When testing several hypotheses at the same time, although the 

type I error rate for each test is controlled at       , the overall type I error rate 

becomes        , where   is the number of hypotheses tested simultaneously. 

Since here we would like to test 6 hypotheses at the same time, the overall type I 

error rate increases to 0.265 when the type I error rate for each test is controlled at 

      . That is, the probability of having at least one type I error in these 6 

comparisons is equal to 0.265 which is quite high. Therefore, here we used Holm-

Bonferroni (Holm, 1979) correction to adjust the significance level for a multiple 

test to maintain the overall type I error rate of       . The entire algorithm of 

Holm-Bonferroni correction is shown is Figure 9. By using Holm-Bonferroni 

correction, the probability of having at least one type I error in these 6 

comparisons is now less than or equal to       . 
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Table 8 shows the p-values of the exact Binomial test. The six adjusted  , 

from the smallest to the largest, would be 0.008, 0.01, 0.013, 0.017, 0.025, and 

0.05. The p-values arranged in increasing order are compared with the Holm-

Bonferroni adjusted   values. The Holm-Bonferroni multiple comparison is 

performed sequentially beginning with the smallest p-value. As a result, for the 

ensemble size of     , Canonical Forest is significantly more accurate than the 

other methods. Except Samme, for the ensemble size of      , Canonical 

Forest is also significantly more accurate than the other methods. The p-value for 

the comparison with Samme, however, is quite close to the adjusted significance 

level of       . It should be noted that after applying WAVE to Canonical 

Forest, its performance became significantly more accurate than that of all the 

other methods. 

We did not include Canonical Forest with WAVE for the ensemble size of 

     because Canonical Forest performed very well with a small ensemble size. 

The gap in performance between Canonical Forest and the other methods 

decreases as the ensemble size increases. As we have expected, the classification 

accuracy of Canonical Forest has been slightly improved after implementing 

WAVE for the ensemble size of      . 
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Given: 

  : number of null hypotheses 

   : the corresponding p-value for null hypothesis    

  : type I error rate  

Procedure: 

9. Order the p-values such that                  

10. Let      be the corresponding null hypothesis of      

11. Compare      to 
 

       
 starting from     until find the 

smallest index   such that      
 

       
 where        

12. Do not reject any null hypotheses when    ; reject all the null 

hypotheses when     

13. For      , reject null hypotheses                    and 

do not reject hull hypotheses                    

 

Figure 9: Algorithm of Holm-Bonferroni correction. 
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Table 8: P-values of exact Binomial test for comparing Canonical Forest with 

other methods. 

 
Adjusted α 0.008 0.01 0.0125 0.017 0.025 0.05 

Method
1
 Tree Bagging Adaboost Samme 

Random 

Forest 

Rotation 

Forest 

p-value
1
       • 0.0004• 0.0008• 0.0053• 0.0145• 0.0318• 

Method
2
 Tree Bagging Adaboost 

Random 

Forest 

Rotation 

Forest  
Samme 

p-value
2
       • 0.0004• 0.0053• 0.0133• 0.0207• 0.0539 

Method
3
 Tree Bagging Adaboost 

Random 

Forest 

Rotation 

Forest  
Samme 

p-value
3
       • 0.0003• 0.0033• 0.0085• 0.0207• 0.0378• 

• The result is significant by using Holm-Bonferroni Correction at        

1 p-value was obtained comparing with Canonical Forest at ensemble size 64 

2 p-value was obtained comparing with Canonical Forest at ensemble size 500 

3 p-value was obtained comparing with Canonical Forest with WAVE at ensemble size 500 
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4.2  Diversity and κ-error Diagram 

In addition to the accuracy, we investigated the diversity of each ensemble 

method since the diversity plays an important role in the performance of an 

ensemble method. In general, ensemble methods tend to perform better if the base 

classifiers are more diverse. Here kappa statistic κ (Cohen, 1960) was used to 

investigate the diversity of base classifiers in ensemble methods. The kappa 

statistic κ is a measure of agreement   commonly used to measure the degree of 

agreement between two categorical variables. In classification analysis, the 

agreement between two classifiers    and    can also be measured by kappa 

statistic κ (Margineantu and Dietterich, 1997; Dietterice, 2000; Kuncheva and 

Whitaker, 2003; Rodríguez et al., 2006). To calculate κ between two classifiers, 

we first have to compute   , the relative observed agreement between two 

classifiers which is an estimate of the probability of reaching agreement between 

two classifiers, and   , the probability of reaching agreement between two 

classifiers by chance, given the observed counts (Margineantu and Dietterich 

1997). Then kappa statistic κ can be calculated by κ  
     

    
. The entire algorithm 

of computing κ between two classifiers is shown in Figure 10. An ensemble of   

classifiers will have          pairs of classifiers  (     )  Small values of κ 

indicate high disagreement (high diversity) between two classifiers and large 
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values of κ indicate high agreement (low diversity) between two classifiers. When 

κ   , these two classifiers can be considered identical. Since high diversity 

among classifiers in an ensemble would produce small values of κ, we prefer κ to 

be as small as possible. 
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Given: 

  : an     matrix where each entry     shows the number of 

instances that the first classifier assigns to class   while the 

second classifier assigns to class  . 

  : number of instances in test data 

  : the number of classes  

Procedure: 

1. Calculate   , the relative observed agreement between two 

classifiers: 

                 
∑    

 
   

 
 

2. Calculate   , the probability of reaching agreement between 

two classifiers by chance, given the observed counts: 

                                ∑ (∑
   

 
 
   ) 

    ∑
   

 
 
     

3. Compute kappa statistic κ, the measure of agreement between 

two classifiers: 

                             κ  
     

    
 

 

Figure 10: Algorithm of computing kappa statistic κ. 
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To clearly see the pattern of base classifiers in an ensemble classifier, 

Margineantu and Dietterich (1997) suggested using κ-error diagram to visualize 

the diversity and accuracy of base classifiers in an ensemble classifier. Since κ-

error diagram is an often used tool to investigate the diversity of ensemble 

methods (Dietterich, 2000; Kuncheva and Whitaker, 2003; Rodríguez et al., 2006), 

here we also chose to use κ-error diagram to explore the behavior of base 

classifiers on diversity and accuracy in each ensemble classifier. Figure 11 shows 

the κ-error diagrams for all the 29 data sets. For each κ-error diagram, the  -axis 

indicates the kappa statistic κ and the  -axis indicates the averaged error of 

           denoted as       
      

 
, where    and    are the error rates of 

          respectively. Since small values of κ indicate that the classifiers are 

more diverse and small values of      indicate high accuracy, the ideal location of 

dots is in the lower left corner. For each ensemble method, five hundred base 

classifiers were fitted using training data, then the result of the test data were used 

to calculate κ and the error rates for each given data set.  

By using the κ-error diagram, we can clearly see the relative position of the 

ensemble methods for each data set. To help read Figure 11, take data set aus as 

an example. Samme has the largest diversity but also has the highest error rate. 

The reason why Samme is very different from the other ensemble methods is 

because it is a weighted ensemble method. We can see that Canonical Forest has 
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the lowest error rate (the position of Canonical Forest is lower on the  -axis) but 

slightly less diverse (the position of Canonical Forest is farther on the  -axis) than 

the other four ensemble methods.  

In general, the position of Canonical Forest is always lower on the  -axis 

which means it has higher accuracy and is quite similar to Bagging and Rotation 

Forest on the  -axis which means it has comparable diversity compared to 

Bagging and Rotation Forest.  

To see the relative positions of each ensemble method clearly, we put all the 

ensemble methods together in just one plot for each data set by constructing the 

contour plot of κ-error diagram. Figure 12 shows contour plots of κ-error 

diagrams for all the 29 data sets. Here we used contour plots so that it is easier to 

distinguish all of them and hence make the differences look clearer. The  -axis 

indicates κ and the  -axis indicates the error rate of classification. Taking data set 

‘fis’ for example, Canonical Forest is on the lower right corner due to its lower 

error rate and less diversity than the other ensemble methods; Samme is on the 

upper left corner due to its higher error rate and higher diversity.  

In general, Samme is not shown in the most of these plots because of the very 

high error rate and diversity. Canonical Forest appears to outperform the other 

ensemble methods in terms of accuracy while the diversity is quite similar to that 
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of Bagging and Rotation Forest and less diverse than Samme and Random Forest. 

This suggests that if we can increase the diversity of Canonical Forest, it could be 

a more powerful ensemble method. 
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Figure 11: Kappa error diagram.  -axis = κ,  -axis =      (average error of the 

pair of classifiers). 
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Figure 12: Contour plot of κ-error diagrams for the five ensemble methods on    

the same plot for all the 29 data sets. 
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4.3 Bias and Variance Decomposition 

The bias and variance decomposition of the error (Geman et al., 1992) is a 

popular and useful approach. The bias measures the distance between the 

classifier and the target function and the variance measures variation among the 

predictions from different classifiers. Several authors including Kong and 

Dietterich (1995), Kohavi and Wolpert (1996), and Breiman (1998) have 

proposed different methods for the bias and variance decomposition. In this 

dissertation we used the decomposition proposed by Kohavi and Wolpert (1996). 

The same data sets as described in Table 1 (except data set ‘aus’ due to 

computational problem) were used to analyze the bias and variance 

decomposition. Here we used 3-fold cross-validation for each data. First we 

randomly split each data set into three parts: subset 1, subset 2 and subset 3. Then 

we used subset 1 as a test set and used subsets 2 and 3 for generating a training set. 

Next we randomly selected 3/4 from subsets 2 and 3 to be training set and 

repeated this process 20 times. To estimate the bias and variance properly, the 

unbiased estimators were used. After we analyzed the bias and variance 

decomposition using subset 1, the same logic is applied to subset 2 and subset 3. 

An ensemble of size 500 is used for each ensemble method. 
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Table 9 shows the comparison of bias
2
. To help read Win – Loss in Table 9, 

we take Samme as an example. The Win – Loss is 21 – 7 for Samme when 

compared to Canonical Forest.  This means that bias of Samme is smaller than the 

bias of Canonical Forest for 21 data sets and larger than the bias of Canonical 

Forest for 7 data sets. Samme appears to be the best among all the ensemble 

methods considered here in reducing bias while Canonical Forest is in the middle. 

Table 10 compares the variance. It shows that Canonical Forest dominates all the 

other methods in reducing the variance. In Tables 9 and 10, the p-values were 

obtained by performing Wilcoxon signed-rank test. We found that the high 

accuracy of Canonical Forest shown in the previous section was mainly due to the 

variance reduction. 
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Table 9: Comparison of contribution of Bias
2 

to error. 

 
Data Set Tree Bagging Adaboost Samme Random 

Forest 

Rotation 

Forest 

Canonical 

Forest 

aba 0.1856 0.1990 0.2272 0.1828 0.2039 0.1998 0.2047 

bld 0.2146 0.2480 0.2574 0.2231 0.2255 0.2722 0.2247 

bod 0.0632 0.0636 0.0236 0.0226 0.0530 0.0376 0.0188 

bos 0.1766 0.1892 0.1838 0.1672 0.1841 0.2021 0.1984 

cir 0.1713 0.1747 0.2374 0.0534 0.1771 0.2143 0.2115 

dia 0.1769 0.2045 0.2188 0.2039 0.2085 0.2142 0.2100 

ech 0.2021 0.2302 0.2154 0.2203 0.2373 0.2753 0.2358 

fis 0.1304 0.1310 0.1304 0.1163 0.1398 0.0563 0.0387 

hea 0.2059 0.2245 0.2223 0.2494 0.2187 0.2440 0.1988 

int 0.2087 0.2943 0.3703 0.2538 0.3573 0.2255 0.3419 

ion 0.0869 0.0668 0.0634 0.0672 0.0669 0.0517 0.0573 

iri 0.0376 0.0386 0.0417 0.0441 0.0405 0.0389 0.0257 

lak 0.4080 0.4586 0.4741 0.4623 0.4436 0.4452 0.4705 

led 0.2550 0.2572 0.2406 0.2865 0.2406 0.2467 0.2522 

mam 0.1615 0.1651 0.1547 0.1620 0.1646 0.1675 0.1651 

pid 0.1635 0.1921 0.1995 0.1953 0.1925 0.2029 0.2014 

pks 0.0925 0.1091 0.1103 0.0542 0.0930 0.0784 0.0928 

pov 0.2337 0.2703 0.2569 0.2420 0.2889 0.2810 0.2639 

rng 0.1138 0.0982 0.2079 0.0520 0.0862 0.0794 0.0824 

sea 0.3297 0.3593 0.3842 0.2413 0.3475 0.3558 0.3383 

snr 0.1574 0.1775 0.1312 0.1152 0.1527 0.1270 0.1419 

spe 0.1456 0.1588 0.1567 0.1528 0.1562 0.1473 0.1483 

trn 0.1377 0.1251 0.1233 0.1131 0.1163 0.1186 0.1380 

twn 0.0868 0.0464 0.0271 0.0278 0.0343 0.0275 0.0305 

usn 0.2155 0.2443 0.2339 0.2244 0.2457 0.2547 0.2529 

veh 0.2270 0.2391 0.2176 0.1747 0.2212 0.2130 0.2054 

vol 0.3586 0.3968 0.4017 0.3438 0.4013 0.3777 0.3943 

vow 0.2916 0.2909 0.0822 0.0475 0.1796 0.1736 0.1971 

Win - Loss 17 - 11 10 - 18 11 - 17 21 - 7 11 - 17 13 - 15  

p-value 0.7674 0.0282 0.0628 0.9936 0.1751 0.4070  
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Table 10: Comparison of contribution of Variance
 
to error. 

 
Data Set Tree Bagging Adaboost Samme Random 

Forest 

Rotation 

Forest 

Canonical 

Forest 

aba 0.0604 0.0266 0.0393 0.0412 0.0239 0.0180 0.0143 

bld 0.1579 0.0736 0.0688 0.1019 0.0809 0.0549 0.0580 

bod 0.0453 0.0159 0.0093 0.0089 0.0086 0.0064 0.0058 

bos 0.1003 0.0438 0.0433 0.0579 0.0356 0.0436 0.0373 

cir 0.1251 0.0444 0.1073 0.0446 0.0352 0.0240 0.0257 

dia 0.0867 0.0349 0.0248 0.0776 0.0302 0.0301 0.0272 

ech 0.1535 0.0670 0.0936 0.1026 0.0600 0.0665 0.0593 

fis 0.0720 0.0404 0.0587 0.1108 0.0397 0.0249 0.0142 

hea 0.1017 0.0482 0.0380 0.0725 0.0411 0.0484 0.0504 

int 0.2144 0.1303 0.1225 0.1394 0.1297 0.1049 0.1223 

ion 0.0493 0.0225 0.0209 0.0201 0.0075 0.0067 0.0123 

iri 0.0161 0.0110 0.0113 0.0221 0.0098 0.0100 0.0079 

lak 0.2413 0.1418 0.1492 0.1524 0.1412 0.1634 0.1423 

led 0.0605 0.0377 0.0261 0.1438 0.0330 0.0329 0.0407 

mam 0.0157 0.0093 0.0155 0.0356 0.0119 0.0181 0.0154 

pid 0.0893 0.0357 0.0275 0.0750 0.0321 0.0277 0.0296 

pks 0.0722 0.0330 0.0326 0.0286 0.0257 0.0344 0.0258 

pov 0.1652 0.1172 0.1071 0.1775 0.0952 0.1168 0.0977 

rng 0.0841 0.0375 0.0589 0.0294 0.0241 0.0196 0.0202 

sea 0.0968 0.0457 0.0744 0.1060 0.0429 0.0532 0.0394 

snr 0.1403 0.0579 0.0596 0.0622 0.0486 0.0455 0.0399 

spe 0.1078 0.0302 0.0302 0.0518 0.0217 0.0328 0.0335 

trn 0.1328 0.0492 0.0315 0.0469 0.0319 0.0181 0.0173 

twn 0.1035 0.0296 0.0117 0.0147 0.0113 0.0038 0.0042 

usn 0.1247 0.0485 0.0401 0.0730 0.0376 0.0473 0.0336 

veh 0.1317 0.0694 0.0640 0.0830 0.0586 0.0533 0.0469 

vol 0.1427 0.0748 0.0652 0.1534 0.0700 0.1227 0.0646 

vow 0.1876 0.0929 0.0546 0.0384 0.0908 0.0730 0.0841 

Win - Loss 0 - 28 5 – 23 6 - 22 1 - 27 9 - 19 11 - 17  

p-value 3.73 10-09 1.00 10-06 0.0012 2.00 10-06 0.0116 0.0314  
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4.4 High-Dimensional Canonical Forest (HDCF) 

We also conducted an experiment using data sets on gene imprinting, estrogen 

and leukemia to compare HDCF with Random Forest, CERP, and SVM which are 

popular and successful classification methods on high dimensional data sets. The 

brief descriptions for these three data sets excerpted from Ahn et al. (2007) are 

provided below. 

 Identification of Imprinted Genes (Greally, 2002): The data contain 131 

samples and 1446 features. Among these 131 samples, 43 are imprinted 

and 88 are non-imprinted. The available data set made by John Greally 

can be found at  

http://greallylab.aecom.yu.edu/ greally/imprinting_data.txt. 

 Classification of Chemicals for Estrogen Activity (Blair et al., 2000): 

The data contain 232 samples and 312 features. Among these 232 samples, 

131 chemicals show estrogen receptor binding activity and 101 are 

inactive in a competitive estrogen receptor binding assay (Blair et al., 

2000). The available data set can be found at  

http://www.ams.sunysb.edu/ hahn/research/CERP/estrogen.txt. 

 Classification of Leukemia Subtypes (Dudoit et al., 2002): The data 

contain 72 samples and 3571 features. Among these 72 samples, 47 are 

http://greallylab.aecom.yu.edu/~greally/imprinting_data.txt
http://www.ams.sunysb.edu/~hahn/research/CERP/estrogen.txt
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classified as acute myeoloid leukemia and 25 are classified as acute 

lymphoblastic leukemia. The available data set can be found at  

http://www.ams.sunysb.edu/ hahn/research/CERP/leukemia.txt. 

We evaluated the performance by comparing their classification accuracy, 

area under the curve (AUC), and also the balance between sensitivity and 

specificity. Decision trees were used as the base classifiers for all three ensemble 

methods: Random Forest, CERP, and HDCF. For both Random Forest and 

Canonical Forest, the ensemble sizes were fixed at      . In HDCF, the 

number of features in each subset is set to be    . If   is not divisible by 3, 

then the last subset was completed with the remaining features (1 or 2 features). 

Besides, the number of features selected from the feature set is set to be   

      in HDCF. For each data set, twenty repetitions of 10-fold cross-validation 

were performed.  

The results of classification accuracy are marked with a bullet next to them if 

HDCF is significantly better than the compared method. Since HDCF is not 

significantly worse than any methods for any data sets, we don’t have to use a 

symbol to show it. The comparison was done by using paired t-test at two-sided 

significant level of       . 

http://www.ams.sunysb.edu/~hahn/research/CERP/leukemia.txt
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Table 11 shows the classification accuracy along with sensitivity and 

specificity on gene imprinting data set. For gene imprinting data set, HDCF has 

the highest classification accuracy among all the methods and is significantly 

better than all other three methods. Although HDCF shows some imbalance 

between sensitivity and specificity, that’s because the data itself is quite 

unbalanced (the proportion of the majority and minority groups in responses in 

the data is only 0.33). Besides, HDCF is still the most balanced one compared to 

other methods and the sensitivity of HDCF (0.6628) is much larger than that of 

SVM (0.4767).  

For the estrogen data set (see Table 12), although HDCF is only significantly 

more accurate than SVM, it has the second highest classification accuracy and is 

only slightly less than CERP that has the highest classification accuracy. Because 

the data are quite balanced (the proportion of the responses in the data is 0.56), all 

the methods show good balance between sensitivity and specificity. It is worth 

mentioning that the balance between sensitivity and specificity in HDCF was 

slightly better than all the other methods. 

For leukemia data set (see Table 13), basically all the methods have pretty 

high classification accuracies. Therefore, it’s not surprised to find that they all 

have good balance between sensitivity and specificity due to such high 
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classification accuracy. Nevertheless, HDCF still has the highest classification 

accuracy and a better balance among all these methods.  

In general, it seems that Canonical Forest gives consistently better 

performance in terms of classification accuracy and balance between sensitivity 

and specificity among all these methods for these three data sets.  
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Table 11: Accuracy of classification methods for the imprinting data. 

 
Method ACC p-value

1
 AUC Sensitivity Specificity 

CERP 
  0.8653● 

(0.0137) 
1.35   10

-07
 

0.7974 

(0.0197) 

0.6000 

(0.0389) 

0.9949 

(0.0078) 

SVM 
  0.7893● 

(0.0151) 
1.18   10

-15
 

0.7094 

(0.0210) 

0.4767 

(0.0437) 

0.9420 

(0.0156) 

RF 
  0.8748● 

(0.0125) 
2.05   10

-05
 

0.8167 

(0.0189) 

0.6477 

(0.0408) 

0.9858 

(0.0110) 

HDCF 
0.8866 

(0.0087) 
- 

0.8294 

(0.0130) 

0.6628 

(0.0267) 

0.9960 

(0.0056) 

● HDCF is significantly better than the compared method 
1
 p-value was obtained by comparing the accuracy of HDCF with the accuracy of the compared  

  method using two-sided paired t-test. 
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Table 12: Accuracy of classification methods for the estrogen data. 

 
Method ACC p-value

1
 AUC Sensitivity Specificity 

CERP 
0.8494 

(0.0109) 
0.1508 

0.8424 

(0.0115) 

0.8962 

(0.0100) 

0.7886 

(0.0180) 

SVM 
  0.8289● 

(0.0098) 
9.83   10

-05
 

0.8197 

(0.0096) 

0.8908 

(0.0127) 

0.7485 

(0.0104) 

RF 
0.8394 

(0.0125) 
0.1396 

0.8341 

(0.0137) 

0.8752 

(0.0090) 

0.7931 

(0.0242) 

HDCF 
0.8448 

(0.0146) 
- 

0.8392 

(0.0144) 

0.8824 

(0.0186) 

0.7960 

(0.0162) 

● HDCF is significantly better than the compared method 
1
 p-value was obtained by comparing the accuracy of HDCF with the accuracy of the compared  

  method using two-sided paired t-test. 
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Table 13: Accuracy of classification methods for the leukemia data. 

 
Method ACC p-value

1
 AUC Sensitivity Specificity 

CERP 
0.9785 

(0.0084) 
0.1864 

0.9690 

(0.0121) 

0.9380 

(0.0242) 

1 

(0) 

SVM 
0.9771 

(0.0093) 
0.0724 

0.9670 

(0.0134) 

0.9340 

(0.0268) 

1 

(0) 

RF 
0.9819 

(0.0079) 
0.6663 

0.9745 

(0.0101) 

0.9500 

(0.0178) 

0.9990 

(0.0048) 

HDCF 
0.9826 

(0.0089) 
- 

0.9759 

(0.0111) 

0.9540 

(0.0196) 

0.9979 

(0.0065) 
1
 p-value was obtained by comparing the accuracy of HDCF with the accuracy of the compared  

   method using two-sided paired t-test. 
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4.5  Simulation Study 

We also conducted a simulation study to evaluate the performance of HDCF 

in comparison with Random Forest, CERP, and SVM using high dimensional 

simulated data. Here we adopted the simulation design that was generated by Lee 

et al. (2013). We generated two data sets with 120 instances and 500 independent 

features. One served as training set and another one served as test set. The number 

of instances assigned to each class is the same which is 40 for each class. To 

fairly evaluate the performance of each classification method, we generated one 

hundred pairs of these training and test sets and then took the average of the 

performance from these 100 testing sets. To generate 500 features in each data set, 

we first generated fifty features using three different normal distributions, and 

then generated the remaining 450 features from one normal distribution to serve 

as noise. Figure 13 shows the simulation design. Three data sets, A, B, and C 

were generated from the standard deviation   equal to 1, 2, and 3, respectively. 

For each of 100 pairs of training and test sets in each data set, the classifier was 

built using the training set and then evaluated using the test set. The accuracy 

averaged from the 100 test sets for each classification method from each data set 

is provided in Tables 14 through 16. 
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As expected, we can see that the classification accuracy decreases as the 

standard deviation increases. When standard deviation equals 1, all the methods 

perform very well. The performance of HDCF is better than all the other three 

methods and is significantly better than CERP and SVM. As the standard 

deviation increases to 2 and 3, the performances of these four methods drop 

dramatically. Nevertheless, HDCF still has the highest classification accuracy 

among all these methods and also performs significantly better than all the other 

methods. It is clear that HDCF outperforms all the other three methods in our 

simulation study especially when the standard deviation becomes larger. It is 

interesting that SVM has higher classification accuracy than Random Forest when 

the standard deviation goes up to 3 while it is less accurate than Random Forest 

when the standard deviations equal 1 and 2.  
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Table 14: Accuracy of classification methods for data set A. 

 
Method ACC p-value

1
 AUC Sensitivity Specificity 

CERP 
0.9503● 

(0.0223) 
1.96   10

-25
 

0.9628 

(0.0337) 

Class 1  0.9768 

              (0.0262) 

Class 2  0.8760 

              (0.0656) 

Class 3  0.9985 

              (0.0060) 

Class 1  0.9474 

              (0.0304) 

Class 2  0.9876 

              (0.0134) 

Class 3  0.9905 

              (0.0102) 

SVM 
0.9703● 

(0.0153) 
5.12   10

-08
 

0.9778 

(0.0205) 

Class 1  0.9633 

              (0.0327) 

Class 2  0.9515 

              (0.0335) 

Class 3  0.9963 

              (0.0114) 

Class 1  0.9779 

              (0.0155) 

Class 2  0.9798 

              (0.0166) 

Class 3  0.9979 

              (0.0053) 

RF 
0.9792 

(0.0130) 
0.0976 

0.9844 

(0.0163) 

Class 1  0.9785 

              (0.0238) 

Class 2  0.9598 

              (0.0310) 

Class 3  0.9993 

              (0.0043) 

Class 1  0.9820 

              (0.0148) 

Class 2  0.9889 

              (0.0119) 

Class 3  0.9979 

              (0.0050) 

HDCF 
0.9813 

(0.0132) 
- 

0.9860 

(0.0160) 

Class 1  0.9845 

              (0.0218) 

Class 2  0.9595 

              (0.0305) 

  Class 3       1      

              (0) 

Class 1  0.9813 

              (0.0149) 

Class 2  0.9923 

              (0.0109) 

Class 3  0.9985 

              (0.0041) 

● HDCF is significantly better than the compared method 
1
 p-value was obtained by comparing the accuracy of HDCF with the accuracy of the compared  

  method using two-sided paired t-test. 
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Table 15: Accuracy of classification methods for data set B. 

 
Method ACC p-value

1
 AUC Sensitivity Specificity 

CERP 
0.7237● 

(0.0446) 
2.10   10

-29
 

0.7928 

(0.1002) 

Class 1  0.7735 

              (0.0859) 

Class 2  0.5033 

              (0.0869) 

Class 3  0.8943 

              (0.0562) 

Class 1  0.8309 

              (0.0436) 

Class 2  0.8529 

              (0.0500) 

Class 3  0.9018 

              (0.0398) 

SVM 
0.7656● 

(0.0370) 
3.80   10

-14
 

0.8242 

(0.0776) 

Class 1  0.7508 

              (0.0808) 

Class 2  0.6735 

              (0.0888) 

Class 3  0.8725 

              (0.0519) 

Class 1  0.8858 

              (0.0404) 

Class 2  0.8150 

              (0.0499) 

Class 3  0.9476 

              (0.0266) 

RF 
0.7753● 

(0.0397) 
1.73   10

-09
 

0.8314 

(0.0880) 

Class 1  0.7925 

              (0.0672) 

Class 2  0.6068 

              (0.0944) 

Class 3  0.9265 

              (0.0500) 

Class 1  0.8588 

              (0.0445) 

Class 2  0.8684 

              (0.0419) 

Class 3  0.9358 

              (0.0302) 

HDCF 
0.7983 

(0.0373) 
- 

0.8487 

(0.0891) 

Class 1  0.8560 

              (0.0617) 

Class 2  0.5878 

              (0.0872) 

  Class 3  0.9510      

              (0.0374) 

Class 1  0.8454 

              (0.0421) 

Class 2  0.9090 

              (0.0354) 

Class 3  0.9430 

              (0.0271) 

● HDCF is significantly better than the compared method 
1
 p-value was obtained by comparing the accuracy of HDCF with the accuracy of the compared  

  method using two-sided paired t-test. 
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Table 16: Accuracy of classification methods for data set C. 

 
Method ACC p-value

1
 AUC Sensitivity Specificity 

CERP 
0.5502● 

(0.0468) 
1.23   10

-29
 

0.6626 

(0.0882) 

Class 1  0.5828 

              (0.0892) 

Class 2  0.3973 

              (0.0957) 

Class 3  0.6705 

              (0.0809) 

Class 1  0.7766 

              (0.0527) 

Class 2  0.7306 

              (0.0540) 

Class 3  0.8180 

              (0.0482) 

SVM 
0.6108● 

(0.0440) 
3.36   10

-06
 

0.7081 

(0.0895) 

Class 1  0.6185 

              (0.0921) 

Class 2  0.5045 

              (0.0875) 

Class 3  0.7093 

              (0.0848) 

Class 1  0.8220 

              (0.0544) 

Class 2  0.7099 

              (0.0640) 

Class 3  0.8843 

              (0.0397) 

RF 
0.5878● 

(0.0465) 
8.39   10

-16
 

0.6908 

(0.0890) 

Class 1  0.6020 

              (0.0934) 

Class 2  0.4560 

              (0.0969) 

Class 3  0.7053 

              (0.0779) 

Class 1  0.7981 

              (0.0518) 

Class 2  0.7320 

              (0.0585) 

Class 3  0.8515 

              (0.0429) 

HDCF 
0.6301 

(0.0459) 
- 

0.7226 

(0.1019) 

Class 1  0.7005 

              (0.0817) 

Class 2  0.4148 

              (0.0878) 

  Class 3  0.7750      

              (0.0791) 

Class 1  0.7684 

              (0.0498) 

Class 2  0.7956 

              (0.0484) 

Class 3  0.8811 

              (0.0424) 

● HDCF is significantly better than the compared method 
1
 p-value was obtained by comparing the accuracy of HDCF with the accuracy of the compared   

  method using two-sided paired t-test. 
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Figure 13: Simulation design. 
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Chapter 5 

Conclusion and Discussion 

We introduced a new ensemble method called Canonical Forest. It uses 

CLDA to perform a linear transformation on the original input data so that the 

transformed input data can be more distinct among classes. To enhance the 

diversity, the features are split into subsets, and then CLDA is applied on each 

subset separately. It should be noted that disjoint subsets would yield enhanced 

diversity because there is no overlap between subsets. However, the number of 

subsets is not necessarily related to the diversity of classifiers in Canonical Forest. 

A classifier is built using all the canonical components when applying CLDA. 

Here CLDA serves as a linear transformation tool rather than a dimension 

reduction tool since we keep all the features while applying CLDA. The reason 

why we chose CLDA is because it is a supervised learning method. When linearly 

transforming the data, CLDA utilizes the class information and makes the classes 

more separable after transformation. Therefore, this makes CLDA a better linear 
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transformation tool than other dimension reduction methods when applied in 

classification analysis. Canonical Forest is formed by combining these classifiers 

with a majority vote.  

Although both Double-Bagging and Canonical Forest are CLDA-based 

ensemble methods, they are different due to the fact that CLDA is applied to an 

OOB sample in Double-Bagging while CLDA is applied to a bootstrap sample in 

Canonical Forest. Besides, CLDA is applied to the whole feature space in Double-

Bagging while CLDA is applied to each mutually exclusive feature subset in 

Canonical Forest. 

Canonical Forest performed better in terms of accuracy than the other widely 

used ensemble methods especially when the ensemble size is small based on our 

experiment. Exact Binomial test showed the superiority of Canonical Forest over 

other ensemble methods. Besides, the performance of Canonical Forest is further 

improved by implementing WAVE. It slightly increased the frequency of 

significantly outperforming other ensemble methods. Through the investigation of 

bias and variance decomposition, we found that the reduction of variance played a 

major role in improving the accuracy of Canonical Forest. The gap in 

performance between Canonical Forest and the other methods decreased a little as 

the ensemble size increased. By investigating the κ-error diagram, we found that 

this is because Canonical Forest is slightly less diverse than the other ensemble 
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methods. Nevertheless, Canonical Forest still showed a better performance in 

terms of the classification accuracy when it was compared to the other methods 

with the ensemble size of 500 which is nearly optimal for the other methods. 

We also proposed another version of Canonical Forest, which is suitable for 

high-dimensional data, named HDCF (High Dimensional Canonical Forest) by 

implementing the algorithm of Random Subspace into Canonical Forest. Basically, 

the only difference between Canonical Forest and HDCF is the number of features 

used in training phase when growing a tree. Unlike Canonical Forest, HDCF uses 

only a feature subset instead of all the features when training the classifier. By 

doing so, HDCF can be applied to high-dimensional data without any feature pre-

selection. 

In our experiments, HDCF had the highest classification accuracy in gene 

imprinting and leukemia data sets and second highest classification accuracy in 

estrogen data set when comparing with the performance of three widely used 

high-dimensional classification methods: CERP, Random Forest and SVM. 

Besides the classification accuracy, we also investigated the balance between 

sensitivity and specificity for all these four classification methods. The 

performance of HDCF on the balance between sensitivity and specificity was 

quite comparable to the other three classification methods. We also evaluated the 

performance of HDCF by using the simulated data and HDCF gave consistently 
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better classification accuracies than the other three methods in all three simulated 

data. From the experiments and the simulation study, we have shown that HDCF 

is quite a comparable classification method for classifying high-dimensional data. 

Since both Canonical Forest and HDCF are CLDA-based ensemble methods, 

the performance of Canonical Forest and HDCF may depend on the performance 

of CLDA. Therefore, Canonical Forest and HDCF will perform better in the 

situations where CLDA performs better. In general, CLDA works better when the 

discriminatory information is in the mean instead of the variance of the data. 

Besides, CLDA also works better in balanced data (i.e., the number of instances 

for each class is roughly equal) than in unbalanced data because it needs 

representative instances for each class to make a better separation among classes. 
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Chapter 6  

Future Study 

In this dissertation, the discrete features were removed from all the data in the 

experiment because CLDA and PCA cannot be applied to discrete features. 

Although it is acceptable to apply CLDA or PCA to ordinal discrete features by 

treating them as continuous features, they still cannot be applied to nominal 

discrete features. We will continue working on this issue in the future study. 

It also should be noted that the number of features in each subset was set to be 

    for both Rotation Forest and Canonical Forest because this was the 

parameter setting used in the experiment in Rotation Forest (Rodríguez et al., 

2006). We used the same parameter setting to make a consistent comparison. We 

will further investigate the choice of   on the performance of Canonical Forest in 

future study like Kuncheva and Rodríguez (2007) did. 
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To overcome the issue that Canonical Forest works better in balanced data 

than unbalanced data, we will adopt weighted bootstrap sampling method instead 

of regular bootstrap sampling method when constructing each classifier in 

Canonical Forest. An experiment on evaluating the performance of Canonical 

Forest with weighted bootstrap sampling method will be conducted in our future 

study. 
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