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Abstract of the Dissertation

NEW DEVELOPMENT ON MARKET MICROSTRUCTURE AND

MACROSTRUCTURE: PATTERNS OF U.S. HIGH FREQUENCY DATA

AND A UNIFIED FACTOR MODEL FRAMEWORK

by

Xu Dong

Doctor of Philosophy

in

Applied Mathematics and Statistics

Quantitative Finance

Stony Brook University

2013

In this thesis we study the problem of modeling cross-sectional volatility structure of

U.S. stock market. The thesis contains two parts. In the first part we identify a particular

volatility spike phenomenon, that the cross-sectional volatility is significantly stronger at

every 5 minute. An empirical spike study is conducted on individual stock level by applying

Lee-Mykland jump detector. By constructing spike ratio statistics, the evolving paths of this

spike phenomenon is studied during the 1993 to 2009 time period. In the second part, we

model the volatility structure using factor structures. Particular, we propose two approaches

to build a better model for small sample size problem, which is a common issue for high

dimension models. We first study the fisher information matrix and derive Jeffrey’s prior for

the factor model. We extend the EM algorithm method for factor parameter estimation by

applying the Jeffrey’s prior, which turns to be more robust in the sense that risk would not

be underestimated under small sample size. Next we extend the statistical factor model to

be able to process empirical information.The fundamental(empirical) factor model and the

statistical(hidden) factor model are widely used in factor analysis. The fundamental factor

model is empirical, biased, and has small estimation variance. On the other hand, the

statistical factor model is subjective, unbiased, but has a bigger estimation variance. In this
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paper, a new factor model called EH Factor Model (Empirical-Factor—and—Hidden-Factor

Factor Model) is introduced to combine the two models under a unified framework. The EH

model allows to include exogenous information to help reducing the number of parameters,

and meanwhile it maintains a statistical factor structure so that the idiosyncratic variance

is kept. In this way, it reduces the estimation variance and the bias. We also compare the

EH model with a widely used hybrid approach, which firstly apply the fundamental factor

model and then treat the residuals with the statistical factor model. Compare with this

approach, The EH model does not require to assume that the column space of statistical

factor exposures is orthogonal to the fundamental factor exposures, and is also shown to be

more robust in a sense of less estimation variance and bias.

Keywords: factor model; EH factor model; fundamental factors; statistical factors; EM

algorithm
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1 Introduction

Dimensionality is an important feature of financial data. Under observation of single time

series with dimension 1 × n, much attention is paid on modeling and prediction through

a broad class of models such as ARMA-GARCH (Engle, 1982; Tsay 2002) and time-space

models where least-squares type estimation methods are popular (Aoki, 1990; Geyer et al,

1999), as well as analysis of the tail events, through heavy-tailed distributions (Kelker,

1970) and stable distribution (Rachev et al, 2011). On the other hand, with high dimension

data d× n, the analysis can also be conducted in a cross-sectional way. The cross-sectional

study refers to a class of research methods that involve observation of a population at one

specific point in time. It treats data across different instruments at the same time points

as of from the same category. The purpose of cross-sectional analysis often is associated

with describing the underneath property of the market and to answer the question that

how it behaves during certain time period. Causality and correlation analysis are also

conducted with lagged cross-sectional data. The materials and targets for cross-sectional

analysis in finance is in general very broad. Merton (1987) reports a positive correlation

between idiosyncratic risk and expected return. The type of research similar to Merton,

where data is firstly aggregated and few statistics per timestamp is draw, can be generally

concluded as exploratory data analysis method. The merit is that since few aggregated

statistics are calculated based on usually huge data set, it gives a better signal-to-noise

ratio through the large sample property. Another example of this type of cross-sectional

research is the periodic phenomenon study of the market (e.g. economic periodic bubble

decay model (Zhou et al, 2003). Another branch of cross-sectional analysis tool is based

on describing the market by a large set of parameters. Statistical factor model and time

series factor model are two examples. The factor loadings are estimated through factor time

series or a bunch of observations across different instruments, where cross-sectional factor

loadings represent a status of the market. For two different time point, if the factor loadings

vary, it means the market has a different covariance structure. While abundant research

has examined the time-series relation between volatility of the market and the expected

return (Campell and Hentschel, 1992; Glosten et al, 1993), the relationship between cross-

sectional volatility (sometimes reffered to as aggregate volatility) and return has received

less attention. Andrew Ang et al argue that if the volatility of the market is a systematic

risk factor, the arbitrage pricing theory or the factor model predicts that aggregate volatility
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should be priced in the cross-section of stocks and therefore stocks with different sensitivities

to innovations in aggregate volatility should have different expected returns (2006). Further,

they find that stocks with high sensitivities to innovations in aggregate volatility have low

average returns.

While using more parameters to describe the market is providing a more detailed measure

of the market, the shortcoming on the other hand is that it requires more samples for

estimation. Usually the estimation variance is linearly correlated with the inverse of sample

size (Aggarwal, 2005). In this thesis, we try to model the market volatility through both

low dimension parameterization methods and high dimension parameterization methods.

First we study the periodic phenomenon of the market using low dimension parameters.

We treat the cross-sectional returns at every minute as homogenous samples. Further, we

aggregate the minute data every other hour, so that we can amplify the signal-to-noise ratio

to the largest extend for periodic phenomenon on one hour level.

Among visual patterns evidence in financial time series are periodic patterns exhibited

at different time scales. Significant daily patterns can be observed in return volatility, bid-

ask spread, and trading volume [5]. Early studies about intraday patterns were based on

daily and weekly data (for example French [22], Gibbons and Hess [28], and Keim and

Stambaugh [37]). All three studies find that the average market close-to-close return on the

New York Stock Exchange (NYSE) was significantly negative on Mondays and significantly

positive on Fridays.

With the advent of high-frequency data, which has been recorded since the 1980s, it

became possible to explore these patterns in a fine-grained way. Wood et al. examined

minute-by-minute returns data for a large sample of stocks traded on the NYSE [52]. They

found significantly positive returns on average during the opening 30 minutes of trading

hours and the last 30 minutes prior to market close. This observation was echoed by Ding

and Lau [14] who analyzed market activity with regard to 200 stocks on the Singapore Stock

Exchange.

Trading volumes also show evidence of periodicity in intraday data. Specifically, a num-

ber of important studies were done by Wood, McInish and Ord [52], Jain and Joh [34],

Foster and Viswanathan [21], McInish and Wood [49], and Gerety and Mulherin(1992 [27]),

who employed hourly aggregated volume (measured as the number of shares traded) for all

NYSE and NASDAQ stocks and observed the intraday trading volumes forming a U-shaped
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pattern. In addition, Foster and Viswanathan [19] observed a similar pattern in regard to

volume data for individual NYSE stocks. Darrat et al [12] examined the Dow Jones index

stocks for 2003, based on which they reported a significant lead-lag relationship between

volume and volatility.

Much of the research on high-frequency data focuses on patterns of US stock markets;

besides, some research has been conducted on other markets, and this has reported similar

patterns. Intraday effects have been documented for the London Stock Exchange (LSE) [54]

[38] [1] [47] [17] [18], the Hong Kong Stock Exchange [31] [9], the Tokyo Stock Exchange

[30], and the Toronto Stock Exchange [49]. Among previous studies of stocks traded in

foreign exchanges, a few studies used large data sample, which included most of trading

records on the whole stock exchange. One of these studies is the project carried by the

University of Leeds’ International Institute of Banking and Financial Services [50] which

included a number of exploratory objectives, and documented a wide range of stock market

characteristics. Their study used data sampled at a one-minute frequency, and drew on

a total of 25 million observations. According to this study, there are major institutional

differences between the UK and US stock markets, which could be why the intraday patterns

of each are different. For example, their study showed a higher proportion of institutional

investors in the UK than in the US [36]. In addition, the mixture of order-driven and quote-

driven systems in the UK, introduced in October 1997, affected trading behaviors of this

market [5]. Based on samples from a trading time period of 8:30 a.m. to 16:30 p.m. GMT,

Abhyankar et al [1] found that the trading volume for the LSE had a two-humped pattern

instead of a U-shaped pattern, with highs at 09:00 a.m. and 15:00 p.m.

There are also some important findings in regard to other foreign exchange markets.

Although no U-shaped pattern has been observed in the dollar-yen or euro-dollar market

in the New York market, it is reported that overlapping business hours enhanced the cross-

region transaction activity for the overlapping time period. This perspective could be useful

in efforts to explore stock trading behavior as it is relating the human behavior to trading

hours [32]. Furthermore, the one-hour shift between regular time and daylight savings time

in the US leads to a corresponding shift in the overlapping trading time, which would make

trading behaviors during this time of particular interest.

The time-dependent nature of the market’s microstructure (e.g. orders submitted at

mid-day are executed more slowly than orders submitted around open and close) has been
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considered a reason for time-dependent intraday patterns [23]. In addition, the fact that

informed traders concentrate their trades at open and close of trading sessions offers an

alternative explanation for the U-shape pattern [35]. Atkin and Basu examined public an-

nouncements after trading hours using 400 NYSE stocks and found that public information

had a significant effect on the U-shaped pattern of volume. From this research, it was theo-

rized that the large volume of trades at the beginning of the day could be the result of the

aggregate amount of new information that becomes known overnight.

Inspired by the previous research, we investigate the minute data for finer periodic

phenomenon of the market. We find a five minute repetition of spikes both exists for cross-

sectional returns and cross-sectional volume. This is the first fine-resolution analysis of

market performance that we are aware of, except for a blog entry from a Taiwan Index

Futures (TIF) trader who observed a similar 5-minute pattern for the TIF. Based on this

finding, we try to identify this phenomenon on individual stock level by applying jump detec-

tion method. As cross-sectional phenomenon we further categorize different spike patterns

by clustering method and study how it evolves through 1993 to 2009 time period.

Figure 1. The Taiwan TIF Minute Pattern

Second we use high dimensional parametrization method to study the risk structure of the

market. First we analyze the fisher information, which gives an insight in understanding the

0
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estimation variance since the inverse of fisher information is the Cramer-Rao Lower Bound

of the estimated parameters. Then we propose a method for improving the factor model

under the small sample size by introducing Jeffrey’s Prior. The Jeffrey’s prior works as a

non-informative prior, and brings robustness at a small sample size situation. Based on the

Jeffrey’s prior, we modify the EM algorithm and it shows that when the sample size is small,

it gives a penalty on for betting on the small eigenvalues. Alternatively, we construct an EH

(empirical factor and hidden factor) model, which structures the factor loading matrix to

include empirical analysis information, and does one step maximum likelihood estimation

based on EM framework. The simulation shows EH model has a closer distance to real

covariance when the samples is small compared with the statistical factor model.

2 LowDimensionModels and the Cross-sectional Volatil-

ity

In finance, high quality data is essential for any meaningful analysis. New York Stock

Exchange has been recording high frequency data since 1993 of all the trades from multiple

exchange, aggregating in second level. However, previous research on the U.S. stock market

in our literature review from 1973 to present does not offer fine-grained exploratory analysis;

i.e., it does not include any patterns at the minute-to-minute level. In our view, researchers

have refrained from conducting this kind of analysis for one of two reasons: first, even as

recently as 2005, it was by no means common for researchers to have a powerful computing

system capable of scanning through all the TAQ data from 1993 to the present, which

totals approximately 5TB; Second, the high-frequency TAQ data were available only in an

unorganized format, so that extracting all the data required copying out approximately

1,000 CD/DVDs manually, and therefore making the extraction of the data is nontrivial

because of the longtitude of time period and the multiple times change of data format

without publishing notice. The changing formats of the TAQ data (three different formats

which has undergone changes from time to time) and data structure chosen for storing

this huge data set added extra diffi culties for researchers to work with the TAQ data and

arrange them in a manner canducive to studying. In sum, a significant time investment was

necessary to organize the information before it could be put to any productive research use.

5



On the other hand, the fact that high-frequency trading comprised more than 70% of the

total daily volume of the US stock market up to 2009 [15] made the idea of exploring the

high-frequency dynamics at a finer resolution interesting and challenging—both in terms of

academic theory and practical applicability.

Extracting the data from TAQ raw data CD/DVDs is nontrivial largely due to the highly

chaotic data organization. The TAQ data format consist of three main versions: TAQ1,

TAQ2 and TAQ3. The versions differ only slightly but it is important that they be carefully

aligned with each other. The TAQ trade records for each day are captured in two files: the

index file and the binary file. In binary files, all trades for one ticker are stored sequentially

in a data block. The location for each data block is indexed as the start position and the

end position, which is recorded in the index file. With the position information from the

index file, the extraction process can point to the the binary files and extract trading time,

trading price, shares per trade, and other useful information. Therefore the basic routine

for extracting data is a two-step process: first, the recorded beginning position and record

ending position for each symbol is located from the index file; second, this information is

used to extract the price, trading size, and trading time from the binary file.

Field Name Layout Description

SYMBOL Character 10 bytes Stock symbol

TDATE Binary 4 bytes Transaction date. Format: yyyymmdd

BEGREC Binary 4 bytes Start position

ENDREC Binary 4 bytes End position
Table 1. CT Index File (*.IDX)

Field Name Layout Description

TTIM Binary 4 bytes Trade time

PRICE Binary 4 bytes Actual trade price per share.

SIZE Binary 4 bytes Number of shares traded.

ENDREC Binary 4 bytes End position
Table 2. CT Binary File (*.BIN)

Our extraction process is highly dependent on the memory-mapped file technique. The

memory mapping technique greatly reduces the amount of memory necessary to perform
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I/O operations. For each day, the binary file can have a size in hundreds of megabytes, This

means significant time to be spent engaged in reading and writing processes if the extrac-

tion follows the regular I/O operation, because usual I/O operation requires moving data

into RAM before doing any calculation needed for the extraction. The memory mapping

technique enables the extraction process to avoid copying the whole file into the memory.

Instead it uses only a small size of RAM to create pages to locate a small part of the data.

After reading the small size of the data into RAM, the extraction process starts to compute

with the data available, and meanwhile the memory mapping technique starts to load the

next block of the binary file. In this way, the program maintains computing and loading

at the same time and therefore becomes much more effi cient. In addition, this technique

is operated under the help of the virtual memory manager, which is highly optimized for

Linux system, and therefore ensures the effi ciency of the technique.

The algorithm for extracting the minute data is designed so that for every minute the

last trade information is retained and the interval is omitted. In extracting the minute

volume information, we sum up all the prices multiplied by shares during one minute and

thereby obtain the total amount of money traded during any given minute.
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Figure 2. The Algorithm for the Data Extraction.

Based on the tick data from the TAQ data, we first conduct an exploratory data analysis

with the initial purpose of identifying patterns in the price process. We start the analysis

by considering the most important factors: returns, volatility, and volume. In the beginning

of this section, we use the absolute log return in our analysis. We make this decision

because (1) the correlation relationship of the absolute return and volume have been studied

through [29], and (2) volatility can be measured either by the squared return or by absolute

value of the return [8], which we will review in the next sub-section.

8



2.1 Advantage of Using Cross-Sectional Volatility

The concept of realized volatility (historical volatility) can be traced back as far as in the

work by Taylor [48]. It can be seen in some early high-frequency studies such as that by

Muller et al. [44]. The concept, however, has been drawn on more frequently since Andersen

et al. [3], which showed its power in process modeling.

The realized volatility v(ti) at time ti is defined as

v(ti) = v(∆t, n, p; ti) = [
1

n

n∑
j=1

|r(∆t; ti−n+j)|p]
1
p

where r is the regularly spaced return, n is the number of return observations, ∆t is the

observation time interval, and the size of the total sample is n∆t. The exponent p is often

set to 2.

Notably, the absolute return, which is the realized volatility when p is set to 1, is one

of the alternative measures of dispersion [26]. It has some important properties in studying

periodic patterns. When there exists a periodic pattern in a time series, the autocorrelation

coeffi cients are significantly higher for time lags that are integer multiples of the periodic

interval than for other lags. The general framework for determining seasonal volatility com-

prises several steps [24]. First, a grid of observation intervals are chosen, with consideration

of possible sources of bias, such as five different days of a complete week, business holidays,

daylight savings time, days when open or close time of the market changes, etc. For the

present research, we use the trading days as the time frame.

A number of papers have proposed different approaches for addressing volatility period-

icity. A few of these papers are based on factoring volatility into an essentially deterministic

seasonal part and stochastic part, in which the seasonal part is modeled by a set of smooth

functions [2]. Gencay et al., for example, used the wavelet multi-resolution method in their

study of volatility periodicity [25].

In our research, we use cross-sectional volatility, defined as

vc(t) = std(

r1,t

...

rd,t

)
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where ri,t is the return for the i-th instrument at time t. In this way, we treat the

different instruments at the same time point as samples from the same group and use vc(t)

as one parameter statistics to describe the second moment behaviors of market at time t.

Assuming there are d instruments, each following Gaussian (0, σ2
i ) distribution. Denote

the total observations in the time interval [t+ 1, t+T ] from d instruments as N , so that for

each instrument, there are N/d observations. xi,t is a sample from i-th instrument on time

t. Then the variance from maximum likelihood for σ2
i is

˜
σ

2

i =
∑N/d

j=1 x
2
i,t+j

d .When calculating

the cross-sectional variance, it is treating different instruments as of the same distribution

N(0, σ2), and the estimated variance
˜
σ

2

=
∑d

i=1

∑N/d
j=1 x

2
i,t+j

N =
∑d

i=1

˜
σ
2

i

d . For Gaussian distri-

bution N(0, σ2) with N samples, the Cramer-Rao Lower Bound is σ2

2N (Cramer, 1946; Rao,

1945). The Cramer-Rao Lower Bound for the individual instrument variance is similarly
σ2i

2(N/d) , which means the variance of estimation of cross-sectional volatility is 1/d of the

individual instrument.

2.2 Calculation of Cross-Sectional Volatility

First, we examine the intraday pattern of all stocks in Russell 3000. We extract every

minute’s trade price information for every stock from January 3, 2005, to December 28,

2009, excluding the ones evincing price discontinuity and form the n by 391 matrix, where

n is the total number of stocks traded multiplied by the total trading days, which vary

from year to year. Next, we consider every column of the matrix as comprising all the

information for one minute. We draw graphs in order to display general information for

every minute’s absolute log return information. The graphs in Figure 3 are as follows (from

the top one, subgraph 1, to the bottom, subgraph 5): subgraph 1 shows 10%, 25%, 50% and

75% percent level of the absolute log return; subgraph 2 shows a histogram representing the

distribution of the absolute log return; subgraph 3 shows the local maximum of the 25%

quantile; subgraph 4 shows the standard deviation of the absolute log return together with

the changing point; and subgraph 5 shows a spectrum view for the absolute log return. In

comparing the quantilegraph with the standard deviation graph, we can see the U-shape

pattern identified in previous research. In addition, in subgraph 2 a fat tail is evident for

the absolute log return. In subgraph 3 and subgraph 4, we use a local maximum detector

to find the 15 points that are most different from their two neighboring points.
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Figure 3. The Russell 3000 Index Information

It is noteworthy that the volatility and the absolute log price increase simultaneously at

some time points. The top 25% of the absolute log price as shown in subgraph 3 reaches its

local maximum at 10:00 a.m., 14:00 p.m., 14:30 p.m, and 15:00 p.m. The local maximums

for the absolute log price are at 10:30 a.m., 15:20 p.m., 15:30 p.m., and 15:40 p.m.. In

addition, the local maximums for volatility are at 10:35 a.m., 15:15 a.m. and 15:40 a.m.

Therefore, we suspect a repeated local maximum pattern exists at a fixed time interval on

both the absolute log returns and the volatility.

In order to improve our knowledge in regard to the details of the volatility curve, we fit

the data with the rational function whereby
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1/y =
ax+ b

cx2 + dx+ e

After fitting this function with the least-square method, we have a fitted inverse series.

By doing so we remove the general curve. Next we reset the observation window in order

to condense the data. This is necessary because on the 390-minute observation window

it is hard to identify trends within the data. As we assume that there is some pattern

based on 5-minute periods, our objectivity in the observation is not compromised by using

an observation window of 60 minutes. The benefit of using the 60-minute window is that

the 5-minute pattern, if indeed there is such an effect, would be easier to observe over this

time period. After scaling with the rational function and using the 60-minute observation

window, we calculate the "neighbor difference value" di for every minute in the 1 to 60

minute range by letting di = |yi−yi−1||yi−yi+1|, where integer i ∈ (1, 60). If the 5-minute

pattern does exist, there would be 12 local maximum points as [5, ..., 55, 60]. Therefore, we

sort all the di and mark out the top points with the highest di values, and the result is

that we find 14 local maximum points to be [1, 5, 10, 12, 15, 20, 22, 25, 30, 35, 40, 45, 50, 60],

during which only the 55 minute data point is not on the list of the local maximum points.

In conclusion, the exploratory data analysis here validates our assumption that there is a

5-minute-spike pattern in the intraday pattern. In later discussion, for simplicity, we call

the 5-minute-spike pattern as "the 5-minute pattern".
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Figure 4. The Scaled Volatility

We want to know the starting time for this pattern, and we also want to determine

whether it is consistent at different time periods of the day; therefore, we draw graphs for

the individual hours between 10:00 a.m. and 15:00 p.m. We exclude the first half hour of

trading, as it has a poor fit with our model, as Figure 4 shows.
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Figure 5. 1993 Volatility
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Figure 7. 2009 Volatility

From the volatility graphs for each year, it is evident that this pattern is not observable

before year 2000. In contrast, in 2009 the volatility spikes that occur at five-minute intervals

are easy to identify; Figure 7 shows spikes at every five minutes throughout the entire trading

hour period. For example, looking at the data point on the 31 minute point from the hourly

observation window, from the top to bottom, the volatility levels are all larger than the two

neighboring points—the 32 minute point and the 30 minute point. This volatility spike is

repeated again 5 minutes later, on the 36 minute point, and then again on the 40 minute

point, etc.

2.3 Cross-sectional Dollar-Volume Study

Information about volume is also necessary for understanding the intraday dynamics of the

stock market. In the previous section, we presented a minute volatility graph. However,

for our calculation of minute volatility, we used only the price from the last trade within
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every minute. The information during that minute was simply omitted. Therefore, we

want to utilize a statistic that comprises information for every trade that take place during

the period of any given minute. Moreover, in explaining the formation for a new price,

the number of shares traded at previous price is also an important factor. Therefore, it is

necessary to study the patterns of dollar-volume, which is a time series formed by the price

multiplied with the shares, in order to determine if the total money traded in any given

minute creates a notable pattern.

We calculate the money traded for every minute, by multiplying every trade price with

every trade size and adding all of the products up; for each stock. Then in a way that is

similar to our scaling of the volatility data, we scale this data to fit a rational function in

accordance with a 60-minute observation window. We find a similar 5-minute pattern in

this context. It should be noted here that the 5-minute pattern for the total money traded,

unlike that for the volatility graph, is more of a wave shape. Besides the 5-minute pattern,

we can clearly identify a 30-minute pattern, which comes much larger in the magnitude than

the 5-minute peaks.
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Figure 5. The Scaled Volume

In addition to observing a fixed 60-minute observation window for the overall 2009 dollar-

volume data, we conduct a further exploratory data analysis using different observation

windows lasting 5 minutes, 15 minutes, 60 minutes, and 120 minutes together with datasets

of 1 day, 30 days, 250 days, etc. We perform a series of analysis whereby we either exclude

or include the opening and closing 30 minutes of the trading time for each day as well

as exclude or include opening or closing 60 minutes of each day’s trading time. We also

compared 2009 graph to similar data plots from different years (2005 - 2008), the conclusion

is similar and therefore we only list two figures below. Based on this set of analysis, we are

able to offer evidence in support of the idea that different trading patterns have different

5-minute pattern shapes. Our conclusions are as follows:

1. The peak at 30 minutes is not due to an opening or closing effect. We exclude
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the opening and closing time by only considering 10:00 a.m.—3:30 p.m. period, and the

30-minute peak is still apparent.

2. Peaks occur every 5 minutes, but their strength varies. Using a 10-minute observation

window, comparing a graph starting at 10:00 a.m. with a graph starting at 9:55 a.m., we

can see that the peak in the latter graph has shifted from the beginning to the middle of the

observation window. This indicates that the 5-minute peaks vary in strength. In addition,

we should note that varying strength of the peaks does follow a pattern; that is, a weaker

5-minute peak comes after a stronger 5-minute peak . We also test to determine the spikes

at every 10-minutes do not always have the same strength.

3. Despite the observation that the 5-minute peaks vary in strength, we observe that

the peaks at the 30-minute intervals all share a similar strength level.

4. The 30-minute effect is observable consistently throughout the entire day based on

our results for the 360-minute observation window.

The conclusions above are also consistent with the volatility graphs, which are based on

the same test principles.
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Figure 6. Dollar-Volume Graph for 10:00 a.m. to 3:30 p.m.
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Figure 7. Dollar-Volume Graph with a 180-Minute Observation Window

2.4 Spike Phenomenon in Different Markets

We are interested in determining if there are differences in the way the dollar-volume behaves

in the NYSE and the NASDAQ (NASD) markets. Figure 8 shows that the markets have

similar general patterns. To compare the difference between dollar-volume patterns and

volatility patterns, we add the volatility curve. We aslo achieve a more comprehensive view

of the three curves by scaling them according to the individual sample mean value of each.

Based on this scaling, Figure 8 shows the scaled dollar—volume and the volatility graph for

the year 2009. It is interesting to see that though the dollar-volume and volatility patterns

both have a general U shape, they are different at either end: the volatility curve is high at

the beginning and low at the end whereas the dollar-volume graph is high at the end and
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low at the beginning.

Figure 8. The NYSE and the NASD Dollar-Volume Graph (2009)

Figure 9. The Scaled Dollar-Volume and Volatility Graph(2009)

After fitting and adapting the 60-minute observation window, we are able to see the 5-

minute patterns quite consistently in both curves, despite the differences at the end between

the dollar-volume curves and the volatility curve, as Figure 9 shows.
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Figure 10. The 5-Minute Patterns in the Dollar-Volume and Volatility Graph (2009)

As a conclusion for the previous three subsections, we identify a 5-min periodic phenom-

enon in both cross-sectional volatility and volume sense, and this phenomenon progressively

becomes more observable in time.

2.5 Jump Diffusion Detector Approach on Individual Stock Level

2.5.1 Review of Lee-Mykland Jump Detector

The 5-minute effect based on a large data sample consisting of thousands of stocks is clearly

presented in the previous section; yet we have not found a similar effect for individual stock.

The question is whether this effect simply does not exist for individual stocks, or it is diffi cult

to identify because of an insuffi cient number of samples. In order to answer this question,

we turn to the jump diffusion theory, which is well suited to identifying small jumps in data.

Specifically, we use the statistical jump detector in order to detect discontinuities in the time

series of prices. In regard to the discontinuities of the financial markets, researchers have

found jumps to be diffi cult to identify empirically because only discrete data are available

from continuous-time models and the jump detector is designed to identify jumps that are

associated with unstable volatility. We apply the Lee-Mykland nonparametric detector using

1-second high-frequency data from the U.S. equity market [40]. Our test construction, which

is described in the next section, is based on Lee-Mykland’s work.
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We follow Lee and Mykland’s paper to construct our test:

step1: Make the basic assumption(s)

step2: Construct statistics L

step3: Construct estimation L̂ for L

step4: Find asymptotic distribution for f(L̂), and construct the confidence interval

value as β

step5: Perform the test, and check the probability of misclassification

We consider a one-dimensional asset return process with a fixed complete probability

space (Ω, Ft, P ). The continuously compounded return is written as d logS(t).

When there are no jumps in the market, S(t) is represented as

d logS (t) = µ (t) dt+ σ(t)dW (t)

When there are jumps, S(t) is given by

d logS(t) = µ(t)dt+ σ(t)dW (t) + Y (t)dJ(t)

where J(t) is a counting process independent of W (t) while Y (t) is the jump size.

Discrete observations are made based on the return process. We assume there are n

observations of log price information during a [0,T] time period. For simplicity, we assume

that observation times are equally spaced: ∆t = ti − ti−1 = T/n.

Assumption. for any ε > 0,

sup
i

sup
ti6u6ti+1

|µ (u)− µ (ti)| = Op

(
∆t1/2−∈

)
sup
i

sup
ti6u6ti+1

|σ (u)− σ (ti)| = Op

(
∆t1/2−∈

)

This assumption ensures that the drift and diffusion coeffi cients are not changing dra-

matically over a short time interval. Therefore, we can replace µ(u) and σ(u) with µ(ti)

and σ (ti) respectively with some restrictions.

The statistic L is defined to detect the jump at time ti. We want to test that if the

realized asset return at that time is much greater than the usual continuous innovations.
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In order to determine so, we test a jump on ti by using the realized log return over an

instantaneous volatility, which is formularized as

L(i) , (logS(ti)− logS(ti−1))

σ̂ (ti)

The reason for dividing by the instantaneous volatility is to avoid the impact of the

volatility change. To estimate the instantaneous volatility, we use the previous K-1 data

window, which contained a ∆t interval, by

σ̂ (ti) ,

i−1∑
j=i−K+2

| logS(ti)− logS(ti−1)|| logS(ti−1)− logS(ti−2)|

K − 2

In our study, the drift (of order dt) is negligible compared to the diffusion (of order
√
dt).

Select a window size K = Op(∆tα), where −1 < α < −0.5.

For window i, if there is no jump in (ti−1, ti], then as ∆t→ 0,

|L(i)− L̂(i)| = Op(∆t
3
2−δ+α−ε),

where 0 < δ < 3
2 + α and

L̂(i) =
Ui
c

where Ui = 1√
∆t

(Wti −Wt) v N(0, 1) and c = E|Ui| =
√

2/
√
π

The above statements indicates that by using L̂(i), we can approximate the L(i)’s as-

ymptotical distribution with mean 0 and variance 1
c2 .

The following statements show how the jump test reacts to the arrival of jumps: when

∆t goes to 0, the test statistic becomes so large that we are able to detect the jump arrival

at time ti.

If there is a jump at any τ time in (ti−1, ti], then

L (i) ≈ Ui
c

+
Y (τ)

cσ
√

∆t

where Y (τ) is the actual jump size at actual jump time τ . Therefore, L(i) → ∞, as

∆t→ 0, and Ui = 1√
∆t

(Wti −Wt) v N(0, 1) and c = E|Ui| =
√

2/
√
π.
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Next, we need to determine a proper window size K. The window size K must be large

enough for the effect of jumps on estimating instantaneous volatility to disappear, but it

must also be smaller than the number of observations n. Because K = Op(∆tα), with

−1 < α < −0.5, therefore
√
days× nobs < K < days × nobs would fit, where nobs is the

observations per day. In the original papers, optimal K for one-hour, 30-minute, 15-minute

and 5-minute data was suggested as 78,110,156 and 270, respectively.

When there is a jump, the test statistic tends to be infinity as ∆t goes to 0, therefore

is generally larger than when there is no jump. In order to determine a rejection region

in accord with the hypothesis that there is no jump, the key question is how large the

test statistic will be when there is no jump. The study of the asymptotic distribution of

maximums of the test L(i) under the absence of jumps at any time in (ti−1, ti] lead to that,

as ∆t→ 0,

max |L(i)| − C
Sn

→ ξ

where ξ follows that P (ξ ≤ x) = exp(−e−x), Cn = (2 log n)1/2/c − log π+log(logn)
2c(2 logn)1/2

, and

Sn = 1
c(2 logn)1/2

, where n is the number of observations.

Therefore, with a significance level of α and let the threshold for |L(i)−Cn
Sn

is β, then

β = − log(− log(0.99)). Therefore, if |L(i)−Cn
Sn

< β, we reject the hypothesis of no jump at

ti.

The misclassification can be categorized as two cases: (1). the failure to detect an

existing jump (FTDi) at ti; (2). the mistake of wrongly including a jump which doesn’t

exist. Original paper shows if Â(T ) is the estimator of the jumps in [0,T] from the test, and

A(T ) refers to the real jumps, then the probability of global misclassification is

P (Â(T ) 6= A(T )) =
2√
2π
ynN + exp(−βn) + o(exp(−βn))

where βn = 1− α and yn = (βnSn + Cn)cσ
√

∆t.

2.5.2 Jump Detection Experiment on Individual Stocks

From our simulation work, we can confirm that the jump detector has a stable and effi cient

ability to detect jumps from random Brownian Motion. The testing error is small with
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K=2500 observation window using second tick data. To detect the movement of capital

on the stock market, we apply the jump detector to the TAQ high-frequency data with a

K=2500, alpha=0.01 significance level. A 10-minute-spike pattern in the jump probability

distribution is observed in individual stocks.

We record the probability that a jump would happen in an individual minute for all the

trading days in the following way: first, the jump detector is applied to detecting jumps

for IBM and SPY individually, and if there is a jump on a certain minute, say ti, where

0 < ti < 391 (9:30 to 16:00), then P [ti] increases by one. Next, the detector goes through

the whole trading days from 2005 to 2009 in this way, and after normalization, it results in

the jump probability distribution graphs for IBM and SPY.

Unlike the 5-minute patterns that we observed in previous sections based on thousands of

stocks, it is observable that every ten minutes the jump probability shows a sudden increase

in individual stocks.

Figure 11. Jump Probability for IBM
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Figure 12. Jump Probability for SPY

To verify this 10-minute observation, multiple price movements on other stocks are

tested. We apply the jump detector to FNM, AAPL, GE, INTC, and QQQQ in the same

way for general days, and record the probability that jumps would occur for individual

minutes from 9:30 a.m. to 16:00 p.m. We mark every ten minutes starting from 9:30 a.m.

in red, and it is evincing that these red lines mostly show a spike.

Figure 13. FNM Jump Probability
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Figure 14. AAPL Jump Probability

Figure 15. GE Jump Probability
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Figure 16. INTC Jump Probability

Figure 17. QQQQ Jump Probability

The jump probability spike in every ten minutes explains the source of the spike in

cross-sectional volatility, that the later is a result of individual stocks’price jump behaviors.

However, we don’t know if the jump is due to factors or exists in idiosyncratic volatility in

each instrument. For example, assuming the factor model that

yi = V xi + εi
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We do not know if the volatility spike exists in V , such that V = Vt is periodic or if

D = Dt such that the idiosyncratic volatility change on every ten minute level.

2.6 A Historical Evolving Path Study on the Spike Phenomenon

A direct observation gives an impression that the 5-minute phenomenon can be further

grouped according to the magnitude on each spike. First we labels the spikes according the

minute on which the spike occurs during one hour. We label 12 time points: T+1, T+6,

T+11, T+16, T+21, T+26, T+31, T+36, T+41, T+46, T+51, T+56. Here T refelcts the

fact that we assume every other hour the phenomenon is under same periodic patterns, and

T+i means the i-th minute during that hour. We construct spike ratio statistics and build

up the null hypothesis that the market is uniform and spike phenomenon doesn’t exist, so

that we can set up the boundary where the null hypothesis is rejected.

2.6.1 Cluster of Spike Ratio Statistics

From the top 100 stocks which have the top Lee-mykland spike ratio, a direct impression

that the spike on 1-min and 31-min may come from the same category, while the spikes on

other 5 minute interval come from other categories. We build the spike ratio number to test

this thought.

Figure. 18. The Similarity and Sub-groups of Different Spikes.

For a series x = {xt}, we define the spike ratio statistics

st,m =

 1

− 1
3

xt−1 ≤ xt ≤ xt+1

otherwise

The 1 and − 1
3 number is determined so that under neutral assumption that xt has only

1
3 chance to be the maximum among its neighbouring points, st,m should have a zero mean.
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For each month’s return time series, we first remove U shape phenomenon and normalize

the data by rational fit. Then for each minute we calculate the standard deviation as xt,m.

From xt,m we further obtain the st,m series by checking it’s neighbouring data points. First

k-means clustering is applied using 2 groups, with the result recorded in the following table:

Group 1(min) 6 16 26 36 46 56

Group 2(min) 1 11 21 31 41 51
Table 3. Clustering of Spike Ratio

Next we draw the cumsum plot for the st,m statistic. By assuming a neutral probability

of a spike striking on the t minute, a flat plot is expected; otherwise, the cumsum plot is

able to show a tendency how the spike statistics evolves in time. Each plot is normalized by

the total number of months from 1993 to 2009, so that the maximum possible spike ratio

would equal to 1.
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Figure 19. The Cumsum Plot of Spike Ratio Group 1.
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Figure 20. The Cumsum Plot of Spike Ratio Group 2.

As shown in Figure 19 and Figure 20, the spike occuring at different minute shows a

different evolving path. The 1-min group and 31-min are following the same path : they

show a positive cumsum spike ratio between 1993 and 1999 time period, which is followed

by a decrease in 2000 to 2001, and an amplified increase since middle 2001. Before 1999,

the cumsum spike ratio statistic is 0.13 for 1-min group and 0.05 for 31-min group. Between

1999 January and 2001 June, the cumsum spike ratio is -0.02 for 1-min group and -0.05 for

31-min group. After 2001, the cumsum spike ratio statistic is 0.43 for 1-min group and 0.40

for 31-min group. The spike ratio is therefore very high for 1-min and 31-min group since

the maximum possible spike ratio statistic is 1.

The 11-min, 21-min, 31-min and 41-min are similar in the sense that they only start to

show a positive cumsum since middle 2001. The average cumsum statitstic ratio for this

four groups is approximately 0.25.

Compare with cluster one, the second cluster has generally weaker spike ratio perfor-

mance. 16-min group and 36-min group have a similar cumsum spike ratio number: 0.13

versus 0.11. The other groups do not show strong spike performance.

The conclusion can also be reached from the table of average spike ratio statistics in

different time period. Generally, the time period can be divided into three parts: 1993-1999,

1999-2001.06 and 2001.07-2009. Since 2001.07, the spike phenomenon becomes prominent.
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1993­1999 1999­2001.06 2001.07­2009 1993­2009
1­min 0.4301 ­0.0729 0.9444 0.5915
6­min 0.0215 ­0.1146 0.1078 0.0425
11­min ­0.1935 ­0.1979 0.6046 0.2124
16­min ­0.086 0.0104 0.3562 0.1536
21­min ­0.129 ­0.0729 0.6569 0.2778
26­min ­0.2151 ­0.1146 0.0425 ­0.0621
31­min 0.129 ­0.2396 0.8922 0.4477
36­min ­0.086 ­0.2396 0.317 0.0948
41­min ­0.2151 0.1354 0.5654 0.2386
46­min ­0.0645 ­0.1563 0.3301 0.1209
51­min ­0.1505 ­0.0729 0.6961 0.2908
56­min ­0.129 ­0.1563 0.0686 ­0.0294

Table 4. Average spike ratio statistics in different years

2.6.2 Cluster of Modified Spike Ratio Statistics and the Confident Interval

To construct the confident interval, we construct the modified spike ratio statistic:

s1
t,m =

 1

0

xt−1 ≤ xt ≤ xt+1

otherwise

with

p(s1
t,m = 1) =

1

3

and

p(s1
t,m = 0) =

2

3

which becomes a binomial distribution B(n, 1
3 ). Assuming n is suffi ciently large, and

SN =
∑N
m=1 s

1
t,m has a asymptotical normal distribution that SN ∼ N( 1

3N,
2
9N). We con-

struct the null hypothesis that SN follows binomial distribution, that there is no spike

phenomenon.

With 5% and 95% interval drawn, as shown in figure and figure, the groups in first

cluster in the 2001 to 2009 all reject the null hypothesis. As a contrast, only 16-min and

46-min groups in the second cluster reject the null hypothesis (with 36-min group is on the

boundary).
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Figure 21. The Confidence Interval for Group 1.
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Figure 22. The Confidence Interval for Group 2.

It is also reflected in the Table 5. The boundary for average 5% and 95% interval is

[0.2, 0.4], and from the Table. it can be seen that in 1993-1998 time period, only 1-min

group rejects the null hypothesis (31-min group is close to the boundary with 0.39 value);

after 2001.07, all the 10n+ 1 min groups reject the hypothesis, and the 16-min, 36-min and

46-min reject the hypothesis.
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1993­1998 1999­2001.06 2001.07­2009 1993­2009
1­min 0.6129 0.1875 0.951 0.6912
6­min 0.3065 0.1563 0.3235 0.2794
11­min 0.1452 0.0938 0.6961 0.4069
16­min 0.2258 0.25 0.5098 0.3627
21­min 0.1935 0.1875 0.7353 0.4559
26­min 0.129 0.1563 0.2745 0.201
31­min 0.3871 0.0625 0.9118 0.5833
36­min 0.2258 0.0625 0.4804 0.3186
41­min 0.129 0.3438 0.6667 0.4265
46­min 0.2419 0.125 0.4902 0.3382
51­min 0.1774 0.1875 0.7647 0.4657
56­min 0.1935 0.125 0.2941 0.2255

Table 5. The average modified spike ratio for three time period.

As the conclusion in this section, in the two clusters between 10n+1 minute and 10n+6

minute groups, we find that the spike phenomenon has separated evolving path. The 1-min

and 31-min are starting early as back to 1993. While the 11-min, 21-min, 41-min and 51-min

groups are starting after 2011. Also the difference exists among 10n + 6 min group, that

only 16-min, 36-min and 46-min groups show a significant spike phenomenon under 5% and

95% interval.

2.7 Conclusion and Discussion

In this section, we identify a 5-minute spike phenomenon for both Nasdaq and NYSE market

during the time period 1993 to 2009. We find this phenomenon observable on individual

stock level. We further find this phenomenon can be subgrouped that the T+1 and T+31

minute groups are similar and have an early starting time back to 1993, while the T+11,

T+21, T+41 and T+51 group starts to be significant since 2001.

A possible explanation for this phenomenon is the usage of algorithm trading. The

algorithm trading has become popular since 1990, and currently count for 70% of the U.S

stock market volume and also occupy a high trading volume in foreign exchange markets

(Boehmer et al, 2012; Chaboud et al, 2009; HenderShott et al, 2011). In algorithm trading,

the trading system includes generally three parts: signal estimation, risk estimation and

portfolio selection. The risk estimation usually requires high computation resource and is
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done in a fixed time circle. When the risk estimation is re-evaluated, the portfolio needs

to be rebalanced, where the trading occurs. The fixed rebalancing time window can be

a causing reason for the 5-minute spike phenomenon. Nevertheless, this hypothesis needs

more detailed research and may be a result of more complicated and multiple causes.

3 High Dimension Models and the Small Sample Prob-

lem

3.1 Factor Model

In this section, we study a case where high dimension parametrization is used through factor

model. Typically, there are two different approaches when doing factor analysis. The first

type is to apply exploratory analysis by building up empirical factors( therefore we call

this type of method the empirical factor analysis ) and test how much variance is explained

through empirical factors [20]. For example, in the Fama-French factor model, risk-free rate,

market capitalization and book-to-market ratio are found to be three factors explained 90%

of the diversified portfoflio returns. The second type of factor analysis is through hidden

factor analysis, in which the whole factor structure is considered as unknown, and EM

algorithm is derived to iteratively estimate the factor loadings.

These two methods are exclusive between each other, and have their own merits. The

hidden factor model is unbiased and purely data driven, which theoretically would converge

to the true underlying market structure. However as discussed above for most of the case

the data is still insuffi cient to reduce the estimation variance. The empirical factor analysis,

on the other hand, has the merit of using prior information to further reduce the number

of parameters to estimate, and therefore decrease the variance. However, the empirical

construction of factors which are impacting the market would be hard and almost guaranteed

to be incomplete.

As the common problems encountered in high dimension parametrization, the sample

size is often less than suffi ciently large, so that the models can be ill-conditioned. Assuming

under the scenario that the portfolio manager needs to run a portfolio optimization based

on Russell 3000 index. To have a none degenerated sample covariance matrix, it requires to

have more than 3000 trading days’data, that is approximately 12 years. This requirement
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leads to two potential problems. First of all, a lot of instruments would not have a long

enough history. For example, the ETF GLD(SPDR Gold Shares) is only available since

2004. Also, it is questionable how good that old information can help with the estimation

accuracy.

To solve this problem, one way is to reduce the parameter that requires to be estimated.

The factor structure is a good candidate covariance structure. It states that the return of

any asset yi satisfies

yi = V xi + ε

where V is the factor loading of dimension d × k, which is far less than the number of

natural covariance parameters. The factor model has been widely applied and studied [20].

In the following sections, we first review the sample size effect during the EM algorithm

estimation on the statistical factor model, and we propose two approaches to solve this issue:

using Jeffrey’s prior and developing a so-called the EH factor model.

3.2 Sample Size Effect

In real practice, the quality of estimated factor covariance depends on sample size, which,

as discussed in the introduction part, can in certain situations be not enough. Although the

factor structure highly reduces the parameters that is required to be estimated, the updating

formula requires to calculate the inverse of sample covariance, therefore it requires at least

N = d samples to insure the sample covariance to be positive definite. Even if N ≥ d, the

sample covariance may not be close to the "true" market covariance Σ, as shown in the

following simulation.

In the simulation, we set up the "true" market as a factor structure, that

y = V x + ε and the covariance is Σ = V V T + D. In this case, Σ is 20 × 20, while V

is 20 × 10. From sample covariance C by forming random factor xi where i = 1, ..., N and

transform xi by V to get yi. Then we estimated factor structure V̄ and D̄. In this way

we obtain the estimator for Σ, denoted as Σ̄. We use three different ways to measure the

distance between Σ and C, and between Σ and Σ̄.

First we measure the Frobenius norm between Σ̄ and C, that is
∥∥Σ̄− C

∥∥
F
and com-

pared with
∥∥Σ̄− Σ

∥∥
F
. We want to compare both cases, because

∥∥Σ̄− C
∥∥
F
is the target

to minimize for maximum likelihood estimation, while
∥∥Σ̄− Σ

∥∥
F
is the target we want to
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minimize, which reflects the distance between the estimated covariance the the true market

covariance.

Second we calculate the Hellinger distance between estimated covariance and sample

covariance, and between true covariance. Hellinger distance is calculated by assuming two

covariance Σ1 and Σ2 are from two different distribution p and q, and the Hellinger distance

between p and q are defined as

H(p, q) =
1

2

∫
(p

1
2 − q 12 )2dx

= 1−
∫
p
1
2 q

1
2 dx (1)

Since here p and q are Gaussian distribution,

p(x|Σ) = (2π)−
p
2 |Σ1|−

1
2 exp(−x

TΣ−1
1 x

2
)

q(x|Σ) = (2π)−
p
2 |Σ2|−

1
2 exp(−x

TΣ−1
2 x

2
)∫

p
1
2 q

1
2 dx =

∫
(2π)−

p
2 |Σ1|−

1
4 |Σ2|−

1
4 exp(−1

4
xT (Σ−1

1 + Σ−1
2 )x)dx

= |Σ1|
1
4 |Σ2|

1
4 |Σ1 + Σ2

2
|− 1

2

H(Σ1,Σ2) = 1− |Σ1|
1
4 |Σ2|

1
4 |Σ1 + Σ2

2
|− 1

2 (2)

Also we evaluate the log likelihood l(V,D|data). We use l(V,D|C) as in 5 and also

compared with l(V,D|Σ). The later function reflects the log likelihood value of the parameter

when having a perfect sample covariance, and is an increasing function as V V T +D → Σ.

In our experiment, we use V20×10 and D20×20 as the true market. With each N =

20, ..., 200, we run the factor model for 100 times and each time with 1000 iterations. Since

the true market structure is unobservable where the decision on numbers of factor is not

guarantee to be optimal, we use V̄20×5 as the model factor loadings. In this way, the sanity of

the model would not depend on a miracle factor number decision and the distance between

the covariance estimation and the true covariance would not be 0 at the best case (where

we have a "perfect" sample covariance). Comparing the distance between Σ̄ and C, it can

be seen that Frobenius norm is not a good candidate to show the sample size effect, while

under Hellinger distance H(Σ̄, C) shows that when N goes to 80, which is four times of the

dimension d, the distance . As can be seen in Figure 1, while
∥∥Σ̄− C

∥∥
F
is not sensitive

to the sample size.
∥∥Σ̄− Σ

∥∥
F
sees a continuous drop as the sample size N. There is an
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interesting behavior that l(V,D|C) is a decreasing function while l(V,D|Σ) increases as the

sample size increases. The reason is that the model space by {V̄20×5, D̄20×20} is smaller than

the true covariance space {V20×5, D20×20} and therefore the more samples it draws, the less

chance the sample covariance can be explained by the model. Meanwhile, when measuring

the likelihood by l(V,D|Σ), the sample space is fixed by Σ, therefore the gap between model

space and true space is a constant piece, and therefore only sample size effects the likelihood

value.
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Figure 23. The Quality of Estimated Covariance.

3.3 The Hidden Factor EM Algorithm

3.3.1 Review of EM algorithm

Rubin proposed the following factor analysis method [46]:

The basic model is

y = V x+ ε (3)

where y, the i-th observation, is a vector of order d; x, vector of order p < d, is the hidden

factor variable following normal distribution N(0, 1); ε is the innovation that follows normal

distribution N(0, D); V is the factor loading matrix of the size d×p. Because of the property
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of linearity, y is a normal distribution with zero mean value and has the variance-covariance

matrix, Σ = E[yyT ], is

Σ = V V T +D (4)

The elements of V and D are parameters to be estimated from the data. Suppose that

from a random sample of N observations of y we find the sample covariance C, whose

elements are the usual estimates of variances and covariances of the components of y and

follow a Wishart distribution with d degree of freedom. The log likelihood function is given

by

L(V,D) = log
N∏
i=1

p(yi)

= −Np
2

log(2π)− N

2
log det(V V T +D)− 1

2

N∑
i=1

{Tr(V V T +D)−1yiy
T
i }

= −Np
2

log(2π)− N

2
log det(V V T +D)− N

2
Tr(V V T +D)−1C (5)

Another useful way to look at the log likelihood function is to consider the conditional

distribution of the observation given hidden factors, that

L = log

N∏
i=1

p(yi;xi)

=

N∑
i=1

lg{p(yi|xi)p(xi)}

=

N∑
i=1

lg p(yi|xi) +

N∑
i=1

lg p(xi) (6)

The EM algorithm proposed by Rubin iteratively follows two steps: evaluate E[L] (E-

step) based on current parameter V,D and find a new parameter V1,D1 which maximize the

E[L] (M-step).

Notice that to maximize the value of L, which is a function of V,D and {yi|i ∈ [1, N}, it

is the same to maximize only ΣNi=1 lg p(yi|xi) since x is independent of V,D and {yi}, and

therefore
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{V1, D1} = arg maxE[L]

= arg max{E[

N∑
i=1

lg p(yi|xi)]}

= arg max{E[−Np
2

lg 2π − N

2
lg detD −

N∑
i=1

(yi − V xi)TD−1(yi − V xi)
2

]}}

= arg max{−N
2

lg detD − 1

2

N∑
i=1

yTi D
−1yi +

N∑
i=1

E[xi|yi]TV TD−1yi −
1

2

N∑
i=1

Tr{V TD−1V E[xix
T
i |yi]}}(7)

3.3.2 E-step

In E-step, it find the explicit formula for 7 where E[xi|yi] and E[xix
T
i |yi] is expressed as a

function of current parameter {V,D} and the data yi, where yi ∈ [1, .., N ]. The calculation

of these suffi cient statistics are based on treating the yi and xi as joint normal distribution

and applying the formula for conditional expectation of first and second moment, that since

yi = V xi + εi, xi
yi

 ˜N(0,

 I V T

V D + V V T

)

By conditional expectation formula for multivariate normal distribution,

E[xi|yi] = V T (D + V V T )−1yi (8)

, δyi

where

δ = V T (D + V V T )−1 (9)

so that δ reflects the inverse transformation from the observation data to the conditional

expectation of the hidden factors.
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Notes that δ can also be writtenas :

δ = V T (D + V V T )−1 (10)

= V T (D−1 −D−1V (I + V TD−1V )−1V TD−1)

= {I − V TD−1V (I + V TD−1V )−1}V TD−1

= {(I + V TD−1V )(I + V TD−1V )−1 − V TD−1V (I + V TD−1V )−1}V TD−1

= {(I + V TD−1V )− V TD−1V }(I + V TD−1V )−1V TD−1

= (I + V TD−1V )−1V TD−1

Similarly, the conditional expectation of the second moment of the factor, E[xix
T
i |yi],

is calculated directly through the conditional expectation formula for multivariate normal

distribution, that

E[xix
T
i |yi] = V ar(xix

T
i |yi) + E[xi|yi]E[xi|yi]T

= I − V T (D + V V T )−1V + δyiy
T
i δ

T

, ∆ + δyiy
T
i δ

T (11)

where

∆ , I − V T (D + V V T )−1V

= I − δV (12)

Therefore, the expectation of log likelihood function can be written as a combination of

current V,D parameter and the sample covariance, and the next step updating formula for

V,D would be

{V1, D1} = arg max{−N
2

lg detD − 1

2

N∑
i=1

yTi D
−1yi +

N∑
i=1

yTi δ
TV TD−1yi −

1

2

N∑
i=1

Tr{V TD−1V (∆ + δyiy
T
i δ

T )}}

= arg max{−N
2

lg detD − N

2
Tr(D−1C) +NTr(δTV TD−1C)− N

2
Tr{V TD−1V (∆ + δCδT )}} (13)

3.3.3 M-step
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In M-step, the update formula for V is obtained by taking derivative of 13 and set it to

zero. The detail of the deduction as shown below,

∂E[L]

∂Vr,s
=

∂{−N2 lg detD − N
2 Tr(D

−1C) +NTr(δTV TD−1C)− N
2 Tr{V

TD−1V (∆ + δCδT )}
∂V

= N
∂Tr(δTV TD−1C)

∂Vr,s
− N

2

∂Tr{V TD−1V (∆ + δCδT )

∂Vr,s

= NTr(δTETr,sD
−1C)− N

2
Tr{ETr,sD−1V (∆ + δCδT ) + V TD−1Er,s(∆ + δCδT )}

= N(D−1CδT )s,r −N(D−1V (∆ + δCδT ))s,r

Therefore,

∂E[L]

∂V
= N(D−1CδT )T −N(D−1V (∆ + δCδT ))T = 0

D−1CδT = D−1V (∆ + δCδT )

V = CδT (∆ + δCδT )−1 (14)

And similarly

∂E[L]

∂(D−1)i,i
=

∂{−N2 lg detD − N
2 Tr(D

−1C) +NTr(δTV TD−1C)− N
2 Tr{V

TD−1V (∆ + δCδT )}
∂Di,i

= −N
2

[D]i,i −
N

2
Ci,i +N(CδTV T )i,i −

N

2
{V (∆ + δCδT )V T }i,i

D = diag(C − 2V δC + V (∆ + δCδT )V T ) (15)

We obtain this by solving the equation of setting the derivative of 7 to zero. Given a

random point as initial value, EM iteration starts from a random point and convergence is

guaranteed to a local maximum[Appendix B], and V is unique up to unitary transformation,

that

V V T +D = (V Q)(V Q)T +D (16)

where Q is arbitrary unitary transformation. That is

Σ = V V T +D (17)
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3.4 The Jeffrey’s Prior for the Factor Model Estimation.

3.4.1 The Fisher Information for Factor Model

Th EM algorithm has become a popular numerical method for its low complexity of imple-

mentation and robustness (McLachlan et al, 2007). The main drawback of the EM algorithm

is its speed of convergence. Dempster, Laird, and Rubin (1977) showed that the EM algo-

rithm exhibits a linear speed of convergence, with a rate of convergence obtained from the

information matrices associated to the missing and complete data sets, that

e(n+1)(Ψ) = C(Ψ)e(n)(Ψ)

and

C(Ψ) = I−1
c (Ψ)Im(Ψ)

where e(n)(Ψ) = |b(n)(Ψ)−bML(Ψ)| is the error term and C(Ψ) is the rate of convergence

of the EM algorithm, Ic(Ψ) is the information matrix associated to the complete data,

Im(Ψ) is the information matrix associated with the missing data. This relationship is the

fundamental for analyzing the convergence property of EM algorithm. In next section, we

will give detailed

The Cramer-Rao bound is a lower bound on the error variance of any unbiased estimate,

and as such serves as a useful benchmark for practical estimators[H.L.Van Trees, Detection,

Estimation and Modulation Theory].

Let y be the observed data, x be the missing data, and z = [y, x] is the complete data.

The fisher information matrix is defined as

Ic(Ψ) , Ez

[
−∂

2Lc(Ψ)

∂Ψ∂ΨT

]

Similary, we can define the fisher information when given y is observed, that is to take

expectation over the conditional distribution p(x|y):

Ic(Ψ; y) , Ex

[
−∂

2Lc(Ψ)

∂Ψ∂ΨT

]
Note we use Ez to treat all variables as random variables, while Ex means only x is the

random variable.

Here the symbol Ic(Ψ; y) means y is treated as parameters.
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3.4.2 Information Matrics and their Relationships

Fisher information matrix, as a metric, naturally arises in the maximum likelihood estima-

tion as a measure between estimated parameters.

Definition 1. Assuming y is the observable random variable, x is unobservable random

variable, and z = [x, y] as the complete data. Define Lo (Ψ) be the likelihood for observed

data, that

Lo (Ψ) = p(y; Ψ)

Define Lc

Let Lo(Ψ) be the likelihood function for observed data, then

p(y; Ψ) =
p(x, y; Ψ)

p(x|y; Ψ)

logLo(Ψ) = logLc(Ψ)− log p(x|y; Ψ) (18)

We let

Io(Ψ) = −∂
2 logLo(Ψ)

∂Ψ∂ΨT

With respect to the complete-data log likelihood, we let

Ic(Ψ) = −∂
2 logLc(Ψ)

∂Ψ∂ΨT

Taking the second derivative of both sides of negative 18 with respect to Ψ,

Io(Ψ) = Ic(Ψ) +
∂2 log p(x|y; Ψ)

∂Ψ∂ΨT
(19)

Take expectation of 19 over the conditional distribution of x,

Ex [I(Ψ)] = Io(Ψ)

Ex[Ic(Ψ)] = Ic(Ψ; y)

Im(Ψ; y) , E

[
−∂

2 log p(x|y; Ψ)

∂Ψ∂ΨT

]
Therefore

Io(Ψ) = Ic(Ψ; y)− Im(Ψ; y) (20)
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3.4.3 The Complete Information With Respect to z

For the factor model,

y = V x+ ε

we use the same assumptions for the factor model as previous section, that x ∼ N(0k×1, Ik×k),

ε ∼ N(0d×1, Dd×d).

The complete data is defined as

z ,

y
x

 ∼ N
0(d+k)×1,

D + V V T V

V T I


Define the covariance of z as

Ω ,

D + V V T V

V T I


The parameter is

Ψ =

 vec(V )

diag(D)

T

The complete data likelihood is therefore

Lc (Ψ) =

n∏
j=1

p (zj ; Ψ)

=

n∏
j=1

1

2πd+k|Ω|e
− 1
2 z

T
j Ω−1zj

and

logLc(Ψ) =

n∑
j=1

{
− (d+ k)

2
log 2π − 1

2
log |Ω| − 1

2

n∑
ι=1

zTj Ω−1zj

}

= −n(d+ k)

2
log 2π − n

2
log |Ω| − 1

2

n∑
j=1

zTj Ω−1zj (21)

To further simplify 21, using the property of schur complement, that

−n
2

log |Ω| = −n
2

log det

D + V V T V

V T I


= −n

2
log det(I) det(D + V V T − V I−1V T )

= −n
2

log |D|
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and the block matrix inversion formula, the inverse of Ω is

Ω−1 =

 D−1 −D−1V

−V TD−1 I + V TD−1V


Expanding zTj Ω−1zj terms,

zTj Ω−1zj =
[
yTj xTj

] D−1 −D−1V

−V TD−1 I + V TD−1V

yj
xj


= yTj D

−1yj − 2xTj V
TD−1yj + xTj (I + V TD−1V )xj

= (yTj − xTj V T )D−1(yj − V xj) + xTj xj

and therefore a more concise form for Lc(Ψ) is obtained, that

logLc (Ψ) = −n(d+ k)

2
log 2π − n

2
log |D| − 1

2

n∑
j=1

{
(yj − V xj)TD−1(yj − V xj) + xj

Txj
}

Review two matrix calculus equations::

∂ ln detX = Tr(X−1∂X)

and

∂(X−1) = −X−1(∂X)X−1

Therefore denoting di , Di,i,

∂ log detD

∂di
= D−1

i,i

= d−1
i

and
∂D−1

∂di
= −D−1eie

T
i D
−1

Plugging the two equations above, we get

∂ logLc (Ψ)

∂di
= −n

2
d−1
i −

1

2

n∑
j=1

{
−(yj − V xj)TD−1eie

T
i D
−1(yj − V xj)

}
= −n

2
d−1
i −

1

2

n∑
j=1

{
−
(
(yj − V xj)TD−1ei

)2}
= − n

2di
+

∑n
j=1(yj − V xj)2

i

2d2
i

(22)
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Similarly,

∂ logLc(Ψ)

∂Vr1,r2
=

1

2

n∑
j=1

{
2xTj E

T
r1,r2D

−1(yj − V xj)
}

=

n∑
j=1

Tr
{
xTj er2e

T
r1D

−1(yj − V xj)
}

=

n∑
j=1

(yj − V xj)r1(xj)r2
dr1

It can be validated that Ez
[
∂ logLc(Ψ)

∂di

]
= 0, since Ez

[
(yj − V xj)2

i

]
= E

[
ε2
i

]
= di, and

Ez

[
∂ logLc(Ψ)
∂Vr1,r2

]
= 0.

From 22, ∂
2 logLc(Ψ)
∂di∂dj

= 0 for i 6= j.

When i = j,
∂2 logLc (Ψ)

∂2di
=

n

2d2
i

−
n∑
j=1

(yj − V xj)2
i

d3
i

Therefore,

Ez

[
∂2 logLc (Ψ)

∂2di

]
=

n

2d2
i

−
n∑
j=1

Ez
[
(yj − V xj)2

i

]
d3
i

=
n

2di2
− ndi

d3
i

= − n

2d2
i

(23)

The cross term is

logLc (Ψ)

∂di∂Vr1,r2
= −

n∑
j=1

∂
(

(yj − V xj)T ei
)2

2d2
i ∂Vr1,r2

= − 1

2d2
i

n∑
j=1

(
−2(yj − V xj)ixTETr1,r2e

T
i

)
=

1

d2
i

n∑
j=1

(
(yj − V xj)ixTj er2er1eTi

)
(24)

The expectation of 24 has the value zero for any i, r1, r2, because (yj − V xj)i = εi and

xT er2 = xr2 while according to assumption Ez[eixr2 ] = 0 for any i and r2.

Therefore according to symmetry,

Ez

[
∂2 logLc (Ψ)

∂di∂Vr1,r2

]
= 0

Ez

[
∂2 logLc (Ψ)

∂Vr1,r2∂di

]
= 0
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Similarly,

∂2 logLc (Ψ)

∂Vr1,r2∂Vr3,r4
=

1

dr1

n∑
j=1

∂(yj − V xj)T er1
∂Vr3,r4

xr2

= − 1

dr1

n∑
j=1

(
eTr1

(
∂V

∂Vr3,r4
)xj

)
(xj)r2

)

= − 1

dr1

n∑
j=1

eTr1er3e
T
r4xj(xj)r2

=
1

dr1

n∑
j=1

eTr1er3(xj)r2(xj)r4

=

{−∑n
j=1(xj)r2 (xj)r4

dr1

0

r1 = r3

otherwise

Therefore,

Ez

[
∂2 logLc (Ψ)

∂Vr1,r2∂Vr3,r4

]
=

{− n
dr1

0

r1 = r3 r2 = r4

otherwise

We summarize the formulas above, that

∂2 logLc (Ψ)

∂2di
=

n

2d2
i

−
n∑
j=1

(yj − V xj)2
i

d3
i

l2 logLc (Ψ)

∂di∂Vr1,r2
=

1

d2
i

n∑
j=1

(
(yj − V xj)ixTj er2er1eTi

)
∂2 logLc (Ψ)

∂Vr1,r2∂Vr3,r4
=

1

dr1

n∑
j=1

eTr1er3(xj)r2(xj)r4 (25)

and

Ez

[
∂2 logLc (Ψ)

∂2di

]
= − n

2d2
i

Ez

[
∂2 logLc (Ψ)

∂di∂Vr1,r2

]
= 0

Ez

[
∂2 logLc (Ψ)

∂Vr1,r2∂Vr3,r4

]
= − n

dr1
Ir1=r3Ir2=r4

Therefore, the complete information matrix is

Ic (Ψ) =

 n
2d2i

0

0T diag
(

n
dr1

)


50



3.4.4 The Complete Information With Respect to x

By taking the integration over the conditional distribution of x|y, the complete information

with respect to x is also obtained based on 25:

Ex

[
∂2 logLc (Ψ)

∂2di

]
=

n

2d2
i

−
n∑
j=1

E
[
(yj − V xj)2

i

]
d3
i

=
n

2d2
i

−
n∑
j=1

E
[
eTi (yj − V xj)(yj − V xj)T ei

]
d3
i

=
n

2d2
i

−
eTi

{∑n
j=1 yjy

T
j + V V T

}
ei

d3
i

=
n

2d2
i

−
n
(
C + V V T

)
i,i

d3
i

Similarly,

Ex

[
∂2 logLc (Ψ)

∂di∂Vr1,r2

]
=

1

d2
i

n∑
j=1

E
[
(yj − V xj)ixTj er2eTr1ei

]
=

1

d2
i

eTi

n∑
j=1

E
[
(yj − V xj)xTj

]
er2e

T
r1ei

= − n

d2
i

eTi V er2e
T
r1ei (26)

= − n

d2
i

Vir2Ir1=i

and

Ex

[
∂2 logLc (Ψ)

∂Vr1,r2∂Vr3,r4

]
= − n

dr1
Ir1=r3Ir2=r4

Summarize the three formula above, and we get the complete data information matrix

with respect to x

Ex

[
∂2 logLc (Ψ)

∂2di

]
=

n

2d2
i

−
n
(
C + V V T

)
i,i

d3
i

Ex

[
∂2 logLc (Ψ)

∂di∂Vr1,r2

]
= − n

d2
i

Vir2Ir1=i

Ex

[
∂2 logLc (Ψ)

∂Vr1,r2∂Vr3,r4

]
= − n

dr1
Ir1=r3Ir2=r4 (27)
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Putting 27 in matrix form as

Ic (Ψ, x) =

n(C+V V T )
i,i

d3i
− n

2d2i
− n
d2i
Vir2Ir1=i

− n
d2i
Vir2Ir1=i − n

dr1
Ir1=r3Ir2=r4


3.4.5 The Missing Information With Respect to x

By multivariate conditional normal distribution property, when

y
x

 ∼ N
0(d+k)×1,

D + V V T V

V T I


, it has the property that

x|y ∼ N
(
V T (D + V V T )−1y, I − V T

(
D + V V T

)−1
V
)

We simplify the conditional distribution of x|y as

x|y ∼ N (δy,∆)

δ , V T (D + V V T )−1

∆ , I − V T (D + V V T )−1V

Therefore,

Lm ,
n∏
j=1

p(xi|yi; Ψ),

logLm = −nk
2

log 2π − 1

2

n∑
j=1

(xj − δyj)T ∆−1(xj − δyj)

from 20,

Im(Ψ; y) = Ic(Ψ; y)− Io(Ψ)

we just need to calculate

Io(Ψ) = −∂
2 logLo(Ψ)

∂Ψ∂ΨT

= −∂
2 log p(y; Ψ)

∂Ψ∂ΨT

Since

y ∼ N(0, D + V V T )
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the likelihood function for y is

logLo(Ψ) =

n∑
j=1

log p(yj ; Ψ)

= −nd
2

log 2π − n

2
log det

(
D + V V T

)
− 1

2

n∑
j=1

yTj (D + V V T )−1yj

Applying log determinant derivative trick,

∂ log det(D + V V T )

∂di
= Tr

{
(D + V V T )−1 ∂(D + V V T )

∂di

}
=

(
D + V V T

)−1

i,i

∂ log det(D + V V T )

∂Vr1,r2
= Tr

{
(D + V V T )−1 ∂(D + V V T )

∂Vr1,r2

}
= 2

{(
D + V V T

)−1
V
}
r1,r2

Using S , V V T +D,

∂2 logL0(Ψ)

∂d2
i

=
n

2
eTi S

−1eie
T
i S
−1ei −

n∑
j=1

(eTi S
−1yj)(e

T
i S
−1eie

T
i S
−1yj)

=
n

2
S−2
i,i −

n∑
j=1

S−1
i,i (S−1yj)

2
i

and similarly

∂2 logL0(Ψ)

∂di∂Vr1,r2
= n(S−1V )i,r2 −

n∑
j=1

(S−1yj)i
{

(S−1
i,r1

)(V TS−1yj)r2 + (S−1V )i,r2(S
−1yj)r1

}
and

∂2 logL0 (Ψ)

∂Vr1,r2∂Vr3,r4
= −n

{
S−1
r1,r3Ir2=r4

}
+ n

(
S−1

)
r1,r3

(
V TS−1V

)
r2,r4

+ n
(
S−1V

)
r1,r4

(
S−1V

)
r2,r3

−
n∑
j=1

{(
yTi S

−1
)
r3

(
V TS−1

)
r1,r4

+
(
yTi S

−1V
)
r4

(
S−1

)
r1,r3

}
·{(

yTj S
−1
)
r3
Ir2=r4 +

(
yTj S

−1
)
r3

(
V TS−1V

)
r2,r4

+
(
yTj S

−1V
)
r4

(
S−1V

)
r2,r3

}
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Denote Q , S−1V and p , S−1yj

∂2 logL0(Ψ)

∂d2
i

=
n

2
S−2
i,i −

n∑
j=1

S−1
i,i p

2
i

∂2 logL0(Ψ)

∂di∂Vr1,r2
= n(S−1V )i,r2 −

n∑
j=1

pi
{

(S−1
i,r1

)(V T p)r2 +Qi,r2pr1
}

∂2 logL0 (Ψ)

∂Vr1,r2∂Vr3,r4
= −n

{
S−1
r1,r3Ir2=r4

}
+ n

(
S−1

)
r1,r3

(
V TS−1V

)
r2,r4

+ nQr1,r4Qr2,r3

−
n∑
j=1

{
pr3Qr4,r1 +

(
yTi S

−1V
)
r4

(
S−1

)
r1,r3

}
and

I0 (Ψ) =

∂2 logL0(Ψ)
∂d2i

∂2 logL0(Ψ)
∂di∂Vr1,r2

0

∂2 logL0(Ψ)
∂di∂Vr1,r2

∂2 logL0(Ψ)
∂Vr1,r2∂Vr3,r4



3.4.6 Modification of the EM algorithm by Using Jeffrey’s Prior

Assuming the dimension of V is t× k

Since

Ic (Ψ) =

 n
2d2i

0

0T diag
(

n
dr1

)


Jeffrey’s Prior is

J(Ψ) = det (Ic (Ψ))
1
2

=
nt(k+1)

2t

t∏
i=1

dk+2
i

and

log J(Ψ) ∝
t∑
i=1

(k + 2) log di

Therefore, we can modify the EM factor model by applying Jeffrey’s Prior,

Notice the updating formula for V is the same since the Jeffrey’s Prior doesn’t has V

term. The updating formula for D is modified as

∂E[L+ log J(Ψ)]

D−1
i,i

= −N
2
Di,i −

N

2
Ci,i +

N

2
(CδTV T )i,i + (k + 2)Di,i
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Therefore by setting the right side equals to zero,

Di,i =
1

1− 2(k+2)
N

(C − V δC)i,i (28)

Comparing the new updating formula for D, it can be seen that it is actually amplify D

when the sample size is small or the factor numbers are big through the inverse of 1− 2(k+2)
N .

It is a reasonable choice for estimating the covariance under small sample situations,

because the smallest eigenvalue corresponds to the underestimated risk.

Under a simulation using 40 instruments and 10 factors, when the sample size is close to

its dimension, the Jeffrey’s Prior modified EM algorithm gives a significantly higher value

for the minimum eigenvalues.

0 50 100 150 200 250 300 350 400

10 ­2.4

10 ­2.3

10 ­2.2

10 ­2.1

Sample size

M
in

im
um

 e
ig

en
va

lu
e

True Covariance

EM

Jeffrey Prior EM

Figure 24. The Minimum Eigenvalue for Estimated Covariance.
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3.5 The EH Model Approach for Covariance Estimation

3.5.1 Extra information in factor structure

Splitting the factor loading matrix V as
[
V1 ... Vn

]
, and write the factor formula as

y = V x+ ε

=
[
V1 ... Vk

]
x+ ε

= V1x1 + ...Vkxk + ε (29)

if we denote yt as the return vector on t-th day, and we denote the market value for

instrument i as at,i, and the capital flow in or out of i-th instrument as ∆at,i, then

∆at = at ◦ yt (30)

where ◦ is element-wise product, and therefore

∆at = at ◦ (V1x1 + ...Vkxk) + at ◦ ε

= (V1 ◦ at)x1 + ...+ (Vk ◦ at)xk + at ◦ ε

, f1x1 + ...+ fkxk + at ◦ ε (31)

, ∆f1 + ...+ ∆fk + at ◦ ε (32)

∆fi has the unit as capital ($) times return (%), and reflects how much capital flow in

and out of the market acting through the i-th factor.

The 32 formula explains the relationship between factor model and the capital flow: the

capital flow on instruments is a results of capital flow through factors. This makes sense

especially for nowadays quantitative investing participants market: the information that

lead to pricing behavior is usually touching a basket of instruments which has features in

common. For example, in low interest rate environment, mutual fund portfolio manager

would seek to long yield generating stocks in order to obtain a stable and low risk cash flow.

Another point for the capital flow formula is that, it provides a perspective to understand

the forming of factors : each column of factor loadings is measuring one common feature

for different instrument. This perspective would help bring more information into factor

structure.
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In Rubin’s hidden factor model, the factor information is assumed to be always com-

pletely unknown, which is not the case. More often, we can assert reasonably certain facts

about factor loadings, even without having a completely idea of it. For example, in the

previous example of market with yield investing behavior, it is reasonable to assume one

factor loading would have the yield for each instrument as the coeffi cient that,

Vyield = cyield[v1, ...vd]
T

where vi is the annual yield for i-th instrument and cyield is an unknown parameter.

In this way, we split the factor into two parts : we claim we understand the relationship

between the i-th and j-th instruments and we can get the ratio of vi
vj
correct; we dont’

know the magnitude of the whole factor cyield. Here cyield acts like the capital performance

variable, which reflects how much bet would be put on this yield investment behavior.

Besides this example, the CAPM or Fama-French model provides empirical way to build

factor loadings using the market size. It is also reasonable to bring sector information into

factor construction. In total, these particular factor construction method relates to seperate

the information known and information unknown, and combine them through a constant

vector and an unkown performance scalar variable.

There are several reasons that we want to bring these information into factor structure.

First of all, it can further help reduce the number of factors. Although the factor model has

reduce the parameters from sample covariance Cd×d to {Vd×k, Dd}. However, still these

are a lot of parameters, which would have a high estimation variances. Second, when we

try to estimate that amount of parameters, we have to use long history of data, in that

case, we may lose the time effi ciency and the new rise factors. By saying time effi ciency, we

mean that the market is not time-invariant, and when market start to change, we want to

estimate how and to which direction it changes into by using a relative recent time window.

By predictively construct factor loading in our way, we require a much less samples to have

a good estimate and can better catch the new factors.

To expand the factor structure, first we can write factor loading matrix as

V ,
[
Ve Vh

]
(33)

where Ve is empirical factor loading matrix where we know partial information, and Vh

is the hidden factor loading matrix where we don’t know anything. Vh is the factor loading
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matrix in original EM factor algorithm.

Next, we assume the empirical factor loading matrix Ve has the structure

Ve = Uc (34)

where c is an unknown diagonal matrix


c1

...

cp

 , and U is a constant matrix.

In this way we split V into two parts: the empirical factors Uc, and the hidden factors

Ṽ . For the empirical factor, U is the constant matrix, which reflects the relative relationship

inside each factor, while c is the parameter to be estimated, which reflected the magnitude

of return associated with this factor. As a result, we have our factor structure as

y = V x+ ε

V = [Uc, Ṽ ] (35)

where the dimensions are

y : d× 1

x : (p+ k)× 1

ε : d× 1

U : d× p

c : p× p

Ṽ : d× k

V : d× (p+ k)

In next section, we discuss how to implement EM algorithm on this framework. We

would call our model as EH Factor Model(Empirical and Hidden factor model).

3.5.2 The EM algorithm for the EH Factor model

When using EM algorithm to solve for the update equations fro EH model, the challenge

is taking the derivative of E[L]. Unlike statistical factor model, we can not directly apply

block matrix calculus rules to
[
Uc Ṽ

]
. Instead, we need to calculate the derivative of E[L]
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w.r.t arbitrary element of V , and put the elements together to form ∂E[L]
∂V . In other words,

denoting Xrs as the (r, s) position element of X matrix, the definition of matrix calculus

is directly applied in order to calculate the matrix derivative, that∂E[L]
∂V = M where the

Mrs = ∂E[L]
∂V rs . Also notice that Tr

(
∂

[
Uc Ṽ

]
∂Ṽrs

)TD−1V

 = Tr

V TD−1(
∂

[
Uc Ṽ

]
∂Ṽrs

)

,
therefore

∂E[L]

∂Ṽrs
=

n∑
i=1

E[xi|yi]T
∂

[
Uc Ṽ

]
∂Ṽrs

T

D−1yi

−
n∑
i=1

Tr


∂

[
Uc Ṽ

]
∂Ṽrs

T

D−1V E[xix
T
i |yi]

 (36)

This is obtained by using ∂Tr(AXB)
∂Xrs

= Tr(A ∂X
∂Xrs

B). The trick is that since ∂X
∂Xrs

is

a matrix that the (i, j) entry is ∂Xi,j

∂Xr,s , therefore
∂X
∂Xrs

= Ers where Ers is a matrix that

is all 0 except on the (r, s) position where it is 1. Further Ers can be written as ereTs

where er is a vector has 0 for all positions except has 1 on the r-th position. Therefore
∂Tr(AXB)

∂Xrs
= Tr(AErsB) = Tr(Aere

T
s B) = Tr(eTs BAer) = (BA)rs

Similarly, to calculate Tr

(
∂

[
Uc Ṽ

]
∂Ṽrs

)TD−1V

 it only requires to realize that ∂
[
Uc Ṽ

]
∂Ṽrs

=[
0d×p Ers

]
where it contains a zero block submatrix because Uc is not a function of Ṽ .

Applying the tricks introduced above, it can be obtained that

∂E[L]

∂Ṽrs
=

n∑
i=1

E[xi|yi]T
 0T

Esr

D−1yi

−
n∑
i=1

Tr


 0T

Esr

D−1V E[xix
T
i |yi]

 (37)

Consider the first part on the right side of 37.
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n∑
i=1

E[xi|yi]T
 0T

Esr

D−1yi =

n∑
i=1

yTi D
−1
[
0 Ers

]
E[xi|yi]

=

n∑
i=1

yTi D
−1
[
0 Ers

]αi
Ai


=

n∑
i=1

yTi D
−1ErsAi

=

n∑
i=1

(Aiy
T
i D
−1)sr (38)

where E[xi|yi] is splited into two parts E[xi|yi] ,

αi
Ai

 ,with the shape that αi is p× 1

and Ai is k × 1

Apply the trace trick on the second part of 37, similar approach leads to

−
n∑
i=1

Tr


 0T

Esr

D−1V E[xix
T
i |yi]

 = −
n∑
i=1

Tr

D−1V E[xix
T
i |yi]

 0T

Esr


= −

n∑
i=1

Tr

D−1V

(Ki)12

(Ki)22

Esr
 (39)

= −
n∑
i=1

D−1V

(Ki)12

(Ki)22


rs

(40)

where E[xix
T
i |yi] ,

(Ki)11 (Ki)12

(Ki)21 (Ki)22

. The dimension for the four subblock is: (Ki)11

is p× p, (Ki)12 is p× k, (Ki)21 is k × p, (Ki)22 is k × k.

Therefore,

∂E[L]

∂Ṽrs
=

n∑
i=1

D−1yiA
T
i −D−1V

(Ki)12

(Ki)22


rs

(41)

and

∂E[L]

∂Ṽ
=

n∑
i=1

D−1yiA
T
i −D−1V

(Ki)12

(Ki)22

 (42)
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Set the derivative to zero, cancel D−1 on both sides and plug back V =
[
Uc Ṽ

]
, the

first update equation is obatined as

Uc

n∑
i=1

(
(Ki)12 + Ṽ

n∑
i=1

(Ki)22

)
=

n∑
i=1

yiA
T
i (43)

and

Ṽ =

(
n∑
i=1

yiA
T
i − Uc

n∑
i=1

(Ki)12

)(
n∑
i=1

(Ki)22

)−1

(44)

Next we take derivative of E[L] with respect to c. Since c is diagonal matrix, we can use

cj to denote the (j, j) position of c. Note that Uc can be write as Uc =
[
u1c1 ... upcp

]
where ui is the i-th column of U . The same argument in early steps gives

∂
[
Uc Ṽ

]
∂cj

=
[
Ũj 0

]
(45)

where Ũj =
[
0 .. 0 uj 0 .. 0

]
Following a similar approach as ∂E[L]

∂Vrs
, it leads to

∂E[L]

∂cj
= (αi)ju

T
j D
−1

n∑
i=1

yi −
n∑
i=1

uTj D
−1V

(Ki)11

(Ki)21


(:,j)

(46)

where (αi)j is j-th element of αi. and

(Ki)11

(Ki)21


(:,j)

denotes the j-th column of

(Ki)11

(Ki)21

.
Set the above equation to zero, we get

uTj D
−1

n∑
i=1

(αi)jyi = uTj D
−1

{
Uc

n∑
i=1

[(Ki)11](:,j) + Ṽ

n∑
i=1

[(Ki)21](:,j)

}
(47)

Define six notations for expression simplicity:
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M , {
n∑
i=1

[(Ki)11]−
n∑
i=1

(Ki)12(

n∑
i=1

(Ki)22)−1
n∑
i=1

[(Ki)21]}

Mj , {
n∑
i=1

[(Ki)11]−
n∑
i=1

(Ki)12(

n∑
i=1

(Ki)22)−1
n∑
i=1

[(Ki)21]}(:,j)

ũ , UTD−1U

ũj , uTj D
−1U

mj , uTj D
−1

{
n∑
i=1

(αi)jyi −
n∑
i=1

yiA
T
i (

n∑
i=1

(Ki)22)−1
n∑
i=1

[(Ki)21](:,j)

}

m ,
[
m1 ... mn

]T
and substitue 44 into 47, the result can be put into a clean form that

ũjcMj = mj (48)

Where the dimensions are: ũj is 1 × p, Mj is p × 1, and mj is 1 × 1. To use the

diagonal structure of c, write ũjcMj as the linear combination with ci as coeffi cients, that

is

ũjcMj =

p∑
q=1

(ũj)qcq(Mj)q

=
[
(ũj)1(Mj)1 ... (ũj)p(Mj)p

]
c1

...

cp


= (ũj ◦Mj)c̃ (49)

where ◦ is element-wise product, and c̃ is the take the diagonal part of c and put it as a

vector, that c̃ = vec(c).

Since j = 1, .., p, there are p equations in total which forms a full rank linear equation

system, and c̃ can be solved as

c̃ = (ũ ◦M)
−1
m (50)

Finally, reform c from c̃, and substitute 50 back to 44, we get the update formula for Ṽ .

Then we solve for the update equation for D matrix, which is easier and similar to

the corresponding step in the statsitical factor model. The trick is to use the formula
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∂ lg detX
∂X = XT , and we get

∂E[L]

∂D−1
=

1

2
nD − 1

2
nC + V nδC − 1

2
V (n∆ + δnCδT )V T (51)

Set the gradient to zero, and immediately it can be seen that

D = diag(C − 2V δC + V (∆ + δCδT )V T ) (52)

where diag(.) operator forms a diagonal matrix based on the diagonal element of the

input.

At last, notice
n∑
i=1

[(Ki)11] =
n∑
i=1

(∆ + δyiy
T
i δ

T )(1:p,1:p) (53)

and

n∑
i=1

(αi)jyi =

n∑
i=1

yie
T
j δyi

= nCδT ej (54)

and

n∑
i=1

yiA
T
i =

n∑
i=1

yi (δyi)
T
(p+1:p+k)

= (nCδT )(:,p+1:p+k) (55)

, combine 44, 50 and 52 up and plug back the suffi cient statistics, the clean version of

the updating equations are
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K11 = n(∆ + δCδT )(1:p,1:p)

K12 = n(∆ + δCδT )(1:p,p+1:p+k)

K21 = n(∆ + δCδT )(p+1:p+k,1:p)

K22 = n(∆ + δCδT )(p+1:p+k,p+1:p+k)

M = K11 −K12K
−1
22 K21

ũ = UTD−1U

Cδ = CδT

m = diag
{
nUTD−1

(
Cδ(:,1:p) −

(
Cδ
)

(:,p+1:p+k)
(K22)−1 (K11)

)}
c = diag

{
(ũ ◦M)

−1
m
}

Ṽ =
(
Cδ(:,p+1:p+k) − UcK12

)
(K22)

−1

V =
[
Uc Ṽ

]
D = diag

(
C − 2V δC + V

(
∆ + δCδT

)
V T
)

(56)

Note that K11 is not the same as (Ki)11 but a new symbol. The diag operator above

represents both the transformation from vector to matrix and from matrix to vector accord-

ing to the context. The above formula is the updating equations for the EM algorithm for

the EH model.

3.5.3 An Alternative Approach by Two Step MLE

A nature thinking other than EH algorithm is a two stage MLE. In this way, it treat the

non-empirical factor part as residual and proceed PCA or the hidden factor model on the

residual part. That is

y =
[
Uc Ṽ

]
x+ ε

= Ucx1 + (Ṽ x2 + ε)

, Ux̃+ r

where x̃ is the factor follow N(0, ccT ), and r contains residual information.

There are two alternative approaches for this estimation.
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Approach 1:

Step 1:

Denote U by it’s columns
[
u1 ... uk

]
,

Σ = UccTUT + Ṽ Ṽ T +D

= Σki=1uic
2
iu
T
i + Ṽ Ṽ T +D

vec(Σ) = Σki=1vec(uic
2
iu
T
i ) + vec(Ṽ Ṽ T +D)

= Σki=1(ui ⊗ ui)c2i + residuals

=
[
u1 ⊗ u1 ... uk ⊗ uk

]
c21

...

c2k

+ residuals

Here it is assumed that the residuals is in the complement space of
[
u1 ⊗ u1 ... uk ⊗ uk

]
.

Therefore the c parameter is obtained through
c21

...

c2k

 =
[
u1 ⊗ u1 ... uk ⊗ uk

]+
vec(Σ) (57)

In this step what we are doing is actually to maximize the function L = L(c|data).

Notice we don’t follow the more common way of regressing which projects the observation

y onto the R(U) space, and find the points cx so that ||Ucx − y||2 is minimized. Because

in this way, c is obtained by taking the diagonal part of sample covariance of cx, that is

c = diag(
cxc

T
x

N ), during which step all information except diagonal is discarded. Instead, we

use the above vectorization so that the projection is still onto a transformed space of R(U)

but the parameter here is only c.

Step 2:

In the second step, Ṽ and D is obtained by applying EM algorithm on the residuals,

that is

Ṽ , D = arg maxL(Ṽ , D|c, data)

= arg maxL(Ṽ , D|Σ− UccTUT )
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Obviously, there is no guarantee that the two step maximum likelihood would give the

same estimation of the parameters, that

arg maxL(Ṽ , D|Σ− Uc0) = arg maxL(Ṽ , D, c|Σ)

where c0 = arg maxL(c|Σ)

and fundamentally the two step maximum likelihood does not necessary to achieve the

global maximum likelihood.

maxL(Ṽ , D, c|data) = maxL(Ṽ , D|c, data) where c = arg maxL(c|data)

In the next simulation, we would include simulation that shows clear evidence that the

EH model out performs the two step maximum likelihood in most situations.

Approach 2:

In Approach 1, the main drawback is in 57, the projection matrix is a fat matrix so

that ci suffers numerical problem. The merit is that by taking kronecker product, the only

variables is the diagonal part of c matrix. As alternative approach, we compared using a

direct regression method, that

(cx) = U+y

c = diag((cx)(cx)T )

The drawback for this method is that (cx)(cx)T is not necessarily diagonal matrix so

that in theory the c is just an approximation.

In out test, we find that Approach 2 is better in the sense of less estimation errors, as

shown in Figure . In our later test we would apply the second approach.
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Figure 25. Compare of Two Different Projection Methods.

3.6 Simulation and Performance of the EH Model

3.6.1 Compare of the EH Model and the Statistical Factor Model

In our experiment, we use V20×10 and D20×20 as the true market. With each N = 20, ..., 200,

we run the factor model for 100 times and each time with 1000 iterations.

First we constrain the size of V̄ to be 20× 10. Then we varies the number of empirical

factors p from 0 to 10, and the number of hidden factors k would follow k = 20 − p. Note

that when p = 0, it is the original hidden factor model.

67



20 40 60 80 100 120 140 160
10

15

20

25

30

35

40

45

Sample s ize

Fr
ob

en
iu

s 
di

st
an

ce

Figure 26.

20 40 60 80 100 120 140 160
­80

­75

­70

­65

­60

­55

­50

­45

­40

Sample s ize

Lo
g 

lik
el

ih
oo

d

Figure 27.

68



20 40 60 80 100 120 140 160
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Sample s ize

H
el

lin
ge

r d
is

ta
nc

e

Figure 28.

As shown in Figure 2, Figure 3, and Figure 4, in all different measures, when more prior

structure information(p = 9) is provided through empirical factor loading U , the distance

to true covariance is smaller than using only hidden factors(p = 0). These effects become

more significant as the sample size decrease from N = 200, that sample size is ten times of

dimension d, to N = 20, where sample size is on the same size of d. Also it is noticeable

that is Hellinger distance is always a better measure in our experiment, that it is smoother

than the Frobenius norm as N increases, and is better than log likelihood since at larger N

the log likelihood can not discriminate different p value performance. In this simulation, it

proves how significant improvement that partial information can brings to the estimation,

especially when the sample size is limited in practical situation.

3.6.2 Imperfection Ratio Test

One problem for empirical factor is that it is not guaranteed to be correct. Therefore we test

the situations when the empirical factors has a built in noise, measured by an "imperfection

ratio" α, that is

U1 = U + αE (58)
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where E is a random matrix with N(0, 1) entries and the same size as U , and instead

of V = [Uc, Ṽ ], we use V1 = [U1c, Ṽ ] and apply the EH model to estimate (c, Ṽ ). We

calculate the difference between log likelihood from the EH model, L(VEH , DEH), and the log

likelihood of the complete hidden factor model, L(VRubin, DRubin).We test with α ∈ [0, 0.5]

and N ∈ [20, 200]. We fix the total factor T = 10, and the empirical factor p ∈ [0, 10] and the

hidden factor k = T −p. The result shows that a large region of the log likelihood difference

is positive. The first interesting point is that the region where EH model does better do

not depend on the number of empirical factors, as the zero contour level stays similar at

different p level as shown in Figure 5. When the sample size N ≤ 50 ≈ 2d (the green

and yellow region in Figure 5, the EH model always beats Rubin model. Similarly, when

α ∈ [0, 0.1], the EH model always win. And once again, these two regions stays unchanged

no matter what p value is. This shows that EH model’s advantage is at the region when

the data is highly insuffi cient or the empirical factor has a high quality. Despite these

two regions where EH dominates, the EH model has a region where it beats the complete

hidden factor model with small sample size and proper imperfection ratio, and vice versa.

The difference regarding different p level is the sharpness that how good the EH model

or the Rubin model is at their winning region. Figure 6 draws the Hellinger distance

difference H(VEH , DEH) − H(VRubin, DRubin). The Hellinger distance tells similar results

: the advantage of the EH model lies at the region where imperfect ratio is low and the

sample size is small.

,
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Figure 30.

More often, people would want to know that what would be the case if add empirical

factors while keep the original hidden factor number unchanged. We did the experiment
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by fixing k = 10, and p ∈ [0, 10]. Shown in Figure 6. the hidden factor number curve

stays at similar level with increasing p number. In this case, bringing empirical factors have

more benefits than the loss : the lower left part where the loglikelihood increases much more

rapidly from 1 to 30 as p increases, compared with the right corner where the value decreases

from 0 to −3. The Hellinger distance difference graph shows similar conclusion, compare

Figure 8 with Figure 6, the curvature at the upper right corner becomes more smooth, while

the benefits in the lower left corner stays similar.
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Figure 32.
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3.7 Compare of the EH Model and Two Step MLE

To compare the performance of the EH model, which does one step likelihood maximization,

with the two step MLE, which did first regression on the empirical factors and the second

step on the residuals.
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Figure 35.

As can be seen in Figure 33. to Figure 35., as the number of empirical factors increase,

the estimation error becomes dominating in the two step MLE method.

We illustrate the difference using the 25% and 75% quantile boxplot. We run simulation

with empirical factor p from 1 to 19 while keeping the total number for both empirical
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factors and hidden factors as 20, and again on each p level the simulation runs for 100

times. Each time the mean value of estimated covariance is calculated and deducted from

mean value of the true covariance, and we record the statistics mean(vec(Σ − Σ). We use

this statistics to show the estimation variance and bias by boxplotting on the 100 samples

for each p. In this way it gives an idea about the trade-off for the estimated covariance.

We repeat this experiment for four times under different the number of samples n and the

imperfect ratio α, corresponding to four scenarios as (1) large sample size, accurate empirical

factors(n = 400, α = 0); (2) small sample size, accurate empirical factors (n = 40, α = 0);

(3) large sample size, noisy empirical factors(n = 40, α = 0.3). (3) small sample size, noisy

empirical factors(n = 40, α = 0.3).

For case (1), as shown in Figure 36., when there is a perfect situation that enough

samples are observable and the empirical information is perfectly accurate. As shown in

Figure 3., the bias and variance for both the EH model and the statistical factor model

are similar, while for the hybrid model, the variance and bias is higher compared with the

previous two models.
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Figure 36.

For case (2), comparing Figure 37. and Figure 36., it can be seen that when there is not

enough sample size, the variance of the hybrid method is 10% to 20% smaller compared with

the other two models, which is a result of less parameters, but its bias almost double the

other two models. This biasedness comes from the first step regression, since the underlying
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assumption for this hybrid method is that the residual is perpendicular to the column space

of fundamental factors, but in reality the residual after regression contains Vh, which is

not necessarily perpendicular to empirical factor exposure Ve. On the other hand, both

statistical factor model and the EH model are unbiased. Further, comparing the EH factor

model and the statistical factor model, the EH factor model has a both smaller variance

and smaller bias due to the reducing of parameters.
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Figure 37.

For case (3), comparing Figure 38. and Figure 36., when adding noise to the empirical

factors, the variance of the hybrid method has increased from 0.0694 to 0.0924, and the bias

has increased from 0.0005 to 0.0011. The bias for the EH model stays at a similar level

while its variance slightly increases from 0.0448 to 0.0642. This shows that the EH model

is more robust to the inaccuracy in the empirical information.
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Figure 38.

For case (4), which is the worst situation that both the sample size is small and the

empirical factor is noisy, the variance for three models are similar, while the bias for the EH

model is significantly smaller(0.0002), compared with the hybrid method(0.0018) and the

statistical factor model(0.0013).
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Figure 39.
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Var Bias Var Bias Var Bias Var Bias

EH Factor Model 0.0448 0.0001 0.1219 0.0007 0.0642 0.0000 0.1251 0.0002

2MLE 0.0694 0.0005 0.1106 0.0018 0.0924 0.0011 0.1255 0.0018

Statis tical  Factor 0.0473 0.0001 0.1422 0.0009 0.0430 0.0001 0.1275 0.0013

N=400, α=0 N=40, α=0 N=400, α=0.3 N=40, α=0.3

Table 6. The variance and bias of three different models.

4 Conclusion

In this thesis we study the problem of modeling cross-sectional volatility structure of U.S.

stock market. We identify a particular volatility spike phenomenon, that the cross-sectional

volatility is significantly stronger at every 5 minute. An empirical spike study is conducted

on individual stock level by applying Lee-Mykland jump detector. By constructing spike

ratio statistics, the evolving paths of this spike phenomenon is studied during the 1993

to 2009 time period. In the second part, we model the volatility structure using factor

structures. Particular, we propose two approaches to build a better model for small sample

size problem, which is a common issue for high dimension models. We first study the fisher

information matrix and derive Jeffrey’s prior for the factor model. We extend the EM

algorithm method for factor parameter estimation by applying the Jeffrey’s prior, which

turns to be more robust in the sense that risk would not be underestimated under small

sample size. Next we extend the statistical factor model to be able to process empirical

information. A new factor model called EH model (Empirical-Factor-and-Hidden-Factor

model) is therefore introduced, which uses both fundamental information and statistical

factor framework through structuring the exposure matrix (factor loading matrix) into a

combination of an empirical information block and a hidden information block. In the

simulation experiment, this approach shows a better estimation performance in the sense of

less bias and smaller variance compared with statistical factor model and the hybrid method.

It has the most advantages over the other two models when (1). the sample size is small

compared with the covariance dimension; or (2). the empirical information is relatively

accurate.
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As a conclusion, we point out that the trade-off between the low dimension approach

and high dimension approach is a variance-bias tradeoff. Particular, it is most helpful to use

a simple model to detect signals, that under the help of large samples and few parameters

the model can have a low estimatinon variance. When trying to estimation the volatility

structure in a finer level, high dimension parametrization is preferred, but for which cases

the variance on estimating each parameter maybe challenging, that special linear algebra

structures would help under this circumstance.
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A Appendix A: Framework of EM Algorithm

EM algorithm is a method that find the maximum likelihood estimation in an iterative

way. Usually EM algorithm is used to estimate the models with hidden variables. Also,

if an explicit model can be formulated more easily with introducing additional data, EM

algorithm can be used. For example, if the original model is to estimate the parameter Ψ

which maximizes

logL(Ψ; y) = log p(y; Ψ)
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, then if assuming observing additional data x, the model has a more explicit structure

or an easier estimation, that

p(y; Ψ) =
∑
x

p(y|x; Ψ)p(x; Ψ)

=
∑
x

L(y|x; Ψ)p (x; Ψ)

= Ex|y [L(y|x; Ψ)]

that is to express probability p(y; Ψ) as as the marginal probability function of p(y, x; Ψ)

The way EM algorithm works is to iteratively increase Ex|y[logL(y|x; Ψ)] by defining

the Q function Q(Ψk+1; Ψk) as

Q(Ψk+1; Ψk) = Ex|y,ψk
[
logL(Ψk+1, y|x)

]
(59)

And the updating formula for find Ψk+1 is by solving the zero equation of 59.

B Appendix B: Convergence of EM algorithm

Dempster, Laird and Rubin (1977) showed the function L(Ψ; y) is non-decreasing.

Theorem 1. In each EM iteration step, the log likelihood is nondecreasing, that

L(Ψk+1; y) > L(Ψk; y)

proof:

Since

logL(Ψk+1; y) = log p(y; Ψk+1)

and

p(x|y; Ψ)p(y; Ψ) = p(x, y; Ψ)

, therefore

logL(Ψk+1; y) = log p(y; Ψk+1)

= log
{
p(y, x; Ψk+1)/p(x|y; Ψk+1)

}
Define the complete data as z = [x, y]

T .
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logL(Ψk+1; y) = log
{
p(z; Ψk+1)/p(x|y; Ψk+1)

}
= logL(Ψk+1; z)− log p(x|y; Ψk+1)

Take expectation with respect to x and using Ψk as the parameter, that is to use p(x; Ψk)

when taking the integration,

logL(Ψk+1; y) = Ex|y,Ψk [logL(Ψk+1; y)]− Ex|y,Ψk

[
log p(x|y; Ψk+1)

]
= Q(Ψk+1; Ψk)− Ex|y,Ψk

[
log p(x|y; Ψk+1)

]
Similarly,

logL(Ψk; y) = Q(Ψk; Ψk)− Ex|y,Ψk

[
log p(x|y; Ψk)

]
and therefore

logL(Ψk+1; y)− logL(Ψk; y) =
(
Q(Ψk+1; Ψk)−Q(Ψk; Ψk)

)
+
(
Ex|y,Ψk

[
log p(x|y; Ψk+1)

]
− Ex|y,Ψk

[
log p(x|y; Ψk)

])
First notice that

Q(Ψ
k+1

; Ψk)−Q(Ψ
k
; Ψk) > 0

since Ψk+1 is found by maximize Q(Ψ; Ψk).

Second

Ex|y,Ψk

[
log p(x|y; Ψk)

]
− Ex|y,Ψk log p(x|y; Ψk+1) = Ex|y,Ψk

[
log
{
p(x|y; Ψk+1)/p(x|y; Ψk)

}]
> logEx|y,Ψk

[
p(x|y; Ψk+1)/p(x|y; Ψk)

]
= log

∫
x

{
p(x|y; Ψk+1)/p(x|y; Ψk)

}
p(x|y; Ψk)dx

= log

∫
x

p(x|y; Ψk+1)dx

= log 1

= 0

Proof complete.
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C Appendix C: EM Algorithm for Exponential Family

For exponential family, EM algorithm has a simpler expression.

Theorem 2. In case y follows exponential family, that p(y; Ψ) = h(y)g(Ψ) exp
{

ΨTT (y)
}
,

the updating equation for Ψk+1 satisfies that

Ex|y,ψk [T (y)] = EΨk+1 [T (y)]

proof:

Q(Ψ
k+1

; Ψk) = Ex|y,ψk
[
logL(Ψk+1; y|x)

]
if y|x follows exponential family, that

p(y|x,Ψ) = h(y)g(Ψ) exp
{

ΨTT (y)
}

log p(y|x,Ψ) = log h(y) + log g(Ψ) + ΨTT (y)

Ex|y,ψk
[
logL(Ψk+1, y|x)

]
= log h(y) + log g(Ψk+1) + (Ψk+1)TEx|y,ψk [T (y)]

Notice by the property of exponential family,

∂ log g(Ψ)

∂Ψ
= −E[T (y)]

Therefore, take differentiation on both side with respect to Ψk+1, and set it to zero

0 = −EΨk+1 [T (y)] + Ex|y,ψk [T (y)]

Ex|y,ψk [T (y)] = EΨk+1 [T (y)]

where Ψk+1 is in T (y) function.
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