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Abstract of the Dissertation 

An empirical study on concentration-QTc model 

by 

Tian Feng 

Doctor of Philosophy 

in 

Applied Mathematics and Statistics 

(Statistics) 

Stony Brook University 

2015 

 

QT interval is a measure of the time from the beginning of the Q wave to the end of the T 

wave in the heart's electrical cycle, it is often corrected to lessen its dependence to heart rate, and 

the corrected value is known as the QTc interval. Prolongation of the QTc interval is a primary 

biomarker for assessing proarrhythmic risk of drugs, thus it is routinely evaluated in new drug 

development. Concentration-QTc model with data from early phase single ascending dose (SAD) 

study is widely used to evaluate the drug-induced QTc prolongation, and the mixed effects 

model (MEM) is popular for this purpose. But some statistical issues in existing concentration-

QTc model are rarely addressed, such as the limitation of the conventional sampling strategy in 

SAD study design, the baseline adjustment in crossover SAD study, and the violation of 

covariance matrix structure when applying the maximum likelihood (ML) method to analyzing 

the MEM. Several statistical issues in concentration-QTc model are addressed in this work. 

       First, multi-oscillator function chosen by some model fitting criteria, such as AIC, is 

widely used to account for circadian rhythm effect in concentration-QTc model. An evaluation of 

the limitations of the conventional SAD design sampling strategy to recover the true underlying 

oscillator function is given.  Subsequently, we propose a modified sampling strategy to improve 

the ability to recover the true underlying function. The superiority of this new sampling strategy 

is examined and confirmed via simulation studies.   

https://en.wikipedia.org/wiki/Electrical_conduction_system_of_the_heart
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       Secondly, in a crossover SAD study with period-specific pre-dose QTc baseline, the most 

efficient way to adjust pre-dose baseline in concentration-QTc model is unclear. We propose a 

novel conditional ΔQTc model by incorporating the pre-dose baseline and the pre-dose-averaged 

baseline as covariates in this model. We demonstrate the advantage of the proposed conditional 

ΔQTc model comparing to existing models, both analytically and through simulation studies.  

       Finally, given that the MEM with ML method is dominant in concentration-QTc model, 

we proposed several alternative modeling and analysis approaches. We first adopted the 

Bayesian method and compared which to the Frequentist ML method. Furthermore, since the 

ML method for MEM requires the correctly specified covariance matrix structure which is 

usually hard to verify, we examined the generalized estimating equation (GEE) and the 

generalized method of moments (GMM) as more robust alternatives and comparisons between 

these and the ML method are made. 
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Chapter 1  Introduction 

 

Evaluation of QT/QTc interval prolongation via the “thorough QT/QTc” (TQT) study is 

essential in assessing cardiovascular safety in new drug application. Explicit guidelines for 

conducting the TQT study has been implemented in the International Conference of 

Harmonization (ICH) E14. However, it is widely accepted that TQT study has many 

disadvantages including low cost-effectiveness, requirement of large sample size, and high false 

positive rate. Since the plasma concentration of the drug and electrocardiogram (ECG) samples 

are also collected in phase 1 single ascending dose (SAD) clinical trials, using the concentration-

QTc model as an alternative to the traditional TQT study in evaluation of QT/QTc prolongation 

is under active investigation. Various models are proposed by researchers, however several 

statistical issues are neglected in the current development of concentration-QTc models, such as 

(1) the limitation of conventional sampling strategy in SAD study design, (2) baseline adjustment 

of concentration-QTc model with data from crossover SAD study, and (3) violation of 

covariance matrix structure when using the maximum likelihood (ML) method for mixed effects 

model (MEM). In this dissertation, we endeavor to address these three issues. In the ensuing 

Chapter 1, we first provide a brief introduction to the QT/QTc interval in section 1.1. This is 

followed by a discussion on the deficits of TQT study in section 1.2, and a review of the current 

development of concentration-QTc models in Sections 1.3 and 

1.4. Finally in Section 1.5, an outline of the dissertation is 

presented. 

 

1.1 Introduction to QT/QTc interval 

In a normal electrocardiogram (ECG), the QT 

interval is a measure of time between the beginning of the 

QRS complex to the end of the T-wave, it represents the 

Figure 1.1 Schematic 

representation of normal ECG trace 

(https://en.wikipedia.org/wiki/Elect

rocardiography) 

 

http://en.wikipedia.org/wiki/ECG
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duration of ventricular depolarization and subsequent repolarization (Figure 1.1). A delay in 

cardiac repolarization may result in the development of ventricular tachyarrhythmias like torsade 

de pointes (TdP) which means “twisting of the spikes”. Occurrence of TdP may cause dizziness, 

syncope and degenerate into ventricular fibrillation which is highly possible to lead to sudden 

death. Prolongation of the QT interval is regarded as an imperfect but widely-accepted biomarker 

in the assessment of the proarrhythmic risk of a therapeutic drug, and thus the evaluation of the 

QT prolongation is essential in the safety assessment of a new drug application.  

RR interval is time measure from the onset of one QRS complex to the onset of the next 

QTS complex where QRS complex is an electrocardiogram corresponds to the depolarization of 

the right and left ventricles of the human heart, RR interval is the inverse of heart rate. The 

dependence of measured QT interval on RR interval is routinely corrected by different formulae, 

thus the corrected QT value, known as the QTc, is used in further analysis instead of the QT 

interval. A typical method for correcting the QT interval for RR interval is given by the formula: 

𝑄𝑇𝑐 = 𝑄𝑇/𝑅𝑅𝛼. 

The Bazzet’s and the Fridericia’s methods are the two most frequently used approaches to assign 

the α value with Bazett (1920) choosing 𝛼 = −0.5 while Fridericia (1920) using 𝛼 = −1/3. It is 

also recognized that 𝛼 can be assigned to other values via the linear mixed effects model based 

on the observed data. Individual method (Malik and Camm 2001, Malik 2001, De sai et al. 2003) 

has also been proposed to allow subject-specific 𝛼 if sufficiently large number of pretreatment 

QT interval measurements in each subject are available. The correction method is beyond the 

scope of this dissertation. In the following sections, QTc denotes the response of interest with an 

appropriate correction of QT values.   

Other than the RR intervals, the QT/QTc interval are potentially affected by some 

subject-related factors, such as food intake, gender, obesity, age, alcoholism, etc. Between 16 to 

23 milliseconds increase of the QT/QTc interval have been reported during the first 60 minutes 

after a meal (Nagy et al. 1997). Females also tend to have around 10 milliseconds longer QTc 

interval on average than males (Stramba-Badiale et al. 1997, Bonate et al. 2003). 10 kg increase 

in fat mass also links with around 5 milliseconds increase in QTc (Carella et al. 1996, El-Gamal 

et al. 1995). Moreover, QTc is subject to circadian rhythm effect (within-day variations). Figure 
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4 in Piotrovsky (2005) is an example of the circadian rhythm of QTc in healthy volunteers. A 

more detailed introduction to QTc circadian rhythm is given in Chapter 2. 

 

1.2 Thorough QT/QTc (TQT) Study 

1.2.1 Introduction to thorough QT (TQT) study 

Since the 1980s, arising evidence reveals that some non-antiarrhythmic drugs 

significantly prolong QT/QTc interval and lead to cardiotoxic potential, even risk of sudden 

death (De Ponti et al. 2000, Malik and Camm 2001). Several drugs such as Terfenadine and 

Cisapride were withdrawn from the market due to such concerns, thus evaluation of the 

proarrhythmic potential of drugs before FDA approval is essential. The International Conference 

on Harmonization topic E14 (ICH E14) established clear guidelines in 2005. It requires a 

“thorough QT (TQT) study” as part of a new drug application.  

A TQT study is a short-duration but intensive and expensive study to evaluate the 

potential risk of new drugs to prolong the QT/QTc interval. A TQT study is typically performed 

in either a crossover design or a parallel design.  

Parallel design is suitable for drugs with long washout period, and it is conducted in 

healthy volunteers who are randomly assigned to one of the 4 treatment arms: placebo arm, 

therapeutic dose arm, supratherapeutic dose arm, and also a positive-control arm. For each 

subject, ECG measurements will be taken multiple times in the 24 hours following drug/placebo 

administration. In the day prior to drug administration, time-matched ECG measurements are 

taken as the baseline ECG evaluation. Typically, each arm consists of 40-80 subjects (Yan et al. 

2010, Zhang 2008). An example of a TQT study in parallel design is shown in Figure 1.2. 

Crossover design is usually suitable for drugs with short washout period, each subject 

will have placebo, therapeutic and supratherapeutic dose of tested drug and positive control in 

each of the 4 periods. At the beginning of each period, baseline ECG evaluation always consists 

of several ECG measurements right before the drug administration at each period. 

The requirement of supratherapeutic dose arm in a TQT study is due to the proarrhythmic 

risk found to be significantly amplified by unexpected increases in drug concentration at 

approved doses resulting from drug metabolism. The aim of active-control is to assess the assay 
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sensitivity, usually a single dose of 400 mg moxifloxacin is used, at least one time point must 

show that a lower 1-sided 95% confidence interval greater than 5 ms for mean QTc baseline-

adjusted change from placebo (Rohatagi et al. 2009) to establish assay sensitivity.  

 

Figure 1.2 An example of a TQT study in parallel design 

 

 

Figure 1.3 An example of a TQT study in crossover design 

 

       The primary endpoint for the TQT study is the time-matched and baseline-corrected QTc 

difference from placebo. According to ICH E14, a negative TQT study is defined as “one in 

which the upper bound of the 95% one-sided confidence interval for the largest time-matched 

mean effect of the drug on the QTc interval excludes 10 milliseconds (ms)”.  This definition is 
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chosen to provide a reasonable assurance that the mean effect of the study drug on the QT/QTc 

interval is not greater than 5 ms.  

       The common way to evaluate a TQT study is through an intersection-union test (IUT) as 

follows, 

𝐻0: ⋃ {𝜇1(𝑡𝑠) − 𝜇0(𝑡𝑠) ≥ 10}
𝑇
𝑠=1        𝑉𝑆      𝐻a: ⋂ {𝜇1(𝑡𝑠) − 𝜇0(𝑡𝑠) < 10}

𝑇
𝑠=1 , 

where T is the number of ECG measurements at time points 𝑡1, 𝑡2, … , 𝑡𝑇, 𝜇1(𝑡𝑠) and 𝜇0(𝑡𝑠) are 

the baseline corrected QTc values for drug  and placebo arms respectively at s-th post-dose time 

point. Comparison between the therapeutic arm and the placebo arm, and between the 

supratherapeutic arm and the placebo arm are analyzed via IUT, respectively.  Then 95% one-

sided confidence intervals for 𝜇1(𝑡𝑠) − 𝜇0(𝑡𝑠) at each time point were calculated. When the 

upper bound of the largest time-matched difference exceeds the threshold of 10 ms, the study is 

classified as “positive”. The ICH E14 indicates that a positive study does not necessarily imply 

that the drug is proarrhythmic, however it has great influences on the evaluations of the drug 

carried out in the later stage of drug development, where additional ECG safety evaluation in 

subsequent clinical studies should be performed. In contrast, if the result of the “through QT/QTc 

study” is negative, requirements for ECG safety evaluations will be lessened in the later clinical 

trials. Similar IUT analysis is also applied between active control arm and placebo arm, as 

mentioned before, at least one time point has to have a lower 1-sided 95% confidence interval 

greater than 5 ms for the mean QTc baseline-adjusted change from placebo to establish assay 

sensitivity. 

       

1.2.2 Drawbacks of TQT study 

       TQT study is known to be not cost-effective. Typically, a TQT study costs millions of 

dollars. If high-quality ECG data and appropriate experimental design can be implemented in 

other clinical trial, then the number of clinical trials needed would be reduced without losing the 

confidence in evaluating proarrhythmic risk. Phase 1 single ascending dose (SAD) study is a 

potential alternative since ECG evaluations and wide range of drug concentrations are available 

in phase 1 SAD studies.  

       Moreover, TQT study analyzed by IUT is known to have a high false-positive probability 

(Hutmacher et al. 2008) and may lead to wrong conclusion due to its binary “positive/negative” 
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decision rule. Russell et al. (2008) mentioned that when high variability in QT response is 

anticipated, a sample size of larger than 500 patients would be needed to achieve adequate power 

using the IUT to meet the ICH E14 definition of “negative study”. 

      Last but not the least, due to tolerability concerns, a TQT study cannot be conducted in 

healthy volunteers in some clinical trials, such as those with certain oncology agents (Garnett et 

al. 2008). However evaluations of the QT prolongation risk of these drugs are also expected 

during the drug development process, and thus alternatives to the TQT study need to be 

considered to accomplish this goal. 

 

1.3 Introduction to concentration-QTc model 

      Researchers have been actively investigating the role of concentration-QTc model in the 

evaluation of cardiovascular risk (Garnett et al. 2008, Darpo et al.2014, Russell et al. 2008, 

Rohatagi et al. 2009) by evaluating the relationship between drug concentration and QTc 

prolongation, instead of performing IUT on data from the TQT study. ICH E14 also mentioned 

the possibility of replacing the TQT study by a concentration-QTc model with data from early 

phase clinical studies in Section 2.2.5, which suggests “evaluating the relationship between 

concentration and QT/QTc effects or more intensively evaluating ECGs, based on data collected 

during early phase clinical studies”. ICH E14 Q&A (2014) emphasized the value of 

concentration-QTc model and indicated that concentration-QTc model is “an important 

component of a totality of evidence assessment of the risk of QT prolongation”, and it further 

suggested that concentration-QTc model can be built in early phase studies as part of the 

conventional QT study. 

       Comparing to conventional IUT analysis used in TQT study, concentration-QTc model 

with data from early phase clinical studies always contain a much wider range of dosage arms 

which exceeds the supratherapeutic dose, not only can it provide information of QTc 

prolongation on doses higher than the supratherapeutic dose, but it can also predict QTc 

prolongation at lower doses which are not included in the TQT study, and thus extensive 

knowledge of drug-induced QTc prolongation can be derived from concentration-QTc model. In 

addition, concentration-QTc model also allows a more thorough understanding of the variability 

inherent in the data. 
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       In summary, if high-quality ECG measurements, elaborate experimental design and data 

analysis accomplished in early clinical studies are able to detect the QTc prolongation with high 

confidence, then it may obviate the need to conduct the TQT study entirely.  

 

1.4 Current development of concentration-QTc model with data 

from crossover SAD design        

    Before the introduction to the current development of concentration-QTc models, 

crossover single ascending dose (SAD) design is introduced. Table 1.1 provides the experimental 

design of a typical 4-period crossover phase 1 SAD design. In each of the 4 periods, each subject 

is given either a placebo or a certain dosage of the tested drug. Usually a crossover design is 

suitable for drugs with short washout time, the time between adjacent periods are long enough to 

allow the drug to washout. In each period, each subject has several unevenly spaced time-

matched measurements of drug concentration and ECG measurements in a 24-hour interval. 

Baseline ECG measurements are taken right before drug administration at each period. The 

sample size in a phase 1 SAD study is usually not very large (around 20).  

 

Table 1.1 A typical design of a phase 1 crossover single ascending dose (SAD) study 

PANEL 
Number of 

Subjects 
Period 1 Period 2 Period 3 Period 4 

A 

N=2 Placebo DOSE 3 DOSE 5 DOSE 7 

N=2 DOSE 1 Placebo DOSE 5 DOSE 7 

N=2 DOSE 1 DOSE 3 Placebo DOSE 7 

N=2 DOSE 1 DOSE 3 DOSE 5 Placebo 

B 

N=2 Placebo DOSE 4 DOSE 6 DOSE 8 

N=2 DOSE 2 Placebo DOSE 6 DOSE 8 

N=2 DOSE 2 DOSE 4 Placebo DOSE 8 

N=2 DOSE 2 DOSE 4 DOSE 6 Placebo 
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Table 1.2 Format of data from a phase 1 crossover single ascending dose (SAD) study for the 𝑘-

th subject 

Subject  Period  Time  QTc  Drug concentration  

𝑘  

 1 

Baseline 𝑦𝑘1,−1 0 

𝑡1 𝑦𝑘11 𝐶𝑘11 

𝑡2 𝑦𝑘12 𝐶𝑘12 

… … … 

𝑡𝑆 𝑦𝑘1𝑆 𝐶𝑘1𝑆 

 2 

baseline 𝑦𝑘2,−1 0 

𝑡1 𝑦𝑘21 𝐶𝑘21 

𝑡2 𝑦𝑘22 𝐶𝑘22 

… … … 

𝑡𝑆 𝑦𝑘2𝑆 𝐶𝑘2𝑆 

 …… … … … 

 𝐽 

baseline 𝑦𝑘𝐽,−1 0 

𝑡1 𝑦𝑘𝐽1 𝐶𝑘𝐽1 

𝑡2 𝑦𝑘𝐽2 𝐶𝑘𝐽2 

… … … 

𝑡𝑆 𝑦𝑘𝐽𝑆 𝐶𝑘𝐽𝑆 

 

     Here, we denote 𝑦𝑘𝑗𝑠  as the QTc value for subject 𝑘 (𝑘 = 1,2, … , 𝐾)  at time 𝑡𝑠 (𝑠 =

1,2, … , 𝑇) of period 𝑗 (𝑗 = 1,2, … , 𝐽), and 𝐶𝑘𝑗𝑠 denotes the drug concentration value for subject 𝑘 

at time 𝑡𝑠 of period 𝑗. Furthermore, 𝑠 = −1 indicates the pre-dose ECG measurement is taken at 

time 𝑡−1 . Let 𝒚𝒌  and 𝑪𝒌  be the 𝐽𝑇 × 1  vector of the QTc value and concentration value for 

subject 𝑘, respectively. The QTc and drug concentration data for subject 𝑘 is summarized in 

Table 1.2. 

       A key difference in different concentration-QTc models using data from crossover SAD 

studies with period-specific pre-dose QTc baseline lies in different ways to adjust the QTc 

baseline QTc. There are 3 types of concentration-QTc models: raw QTc model, ΔQTc model and 

ΔΔQTc model. The raw QTc (rQTc) model simply ignores the baseline information and model 

the post-dose QTc values directly, while the ΔQTc model takes the difference between the post-

dose QTc value and pre-dose baseline QTc value and build model on the change from baseline 

QTc value (ΔQTc). The ΔΔQTc model calculates the ΔΔQTc by first calculating the ΔQTc 

values and then takes the differences of ΔQTc values between the treatment period and the 

placebo period, hence the ΔΔQTc model uses the change from placebo adjusted for baseline as 
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the response variable. This section gives a brief introduction to the three types of the 

concentration-QTc models, a comprehensive discussion on the model comparison is given in 

Chapter 3 and a novel conditional ΔQTc (cΔQTc) model is also proposed. 

 

1.4.1 Raw QTc (rQTc) model 

       Piotrovsky (2005) gave a comprehensive introduction on how to build a concentration-

QTc model based on the raw QTc value, including the use of multi-oscillator functions to model 

the circadian rhythm effect (time effect). Rohatagi et al. (2008) also presented how to formulate 

the rQTc model with multi-oscillator functions to model circadian rhythm effect. Huh and 

Hutmacher (2015) indicated that using time as a categorical variable in the model also provided 

high accuracy in estimation of the drug effect. The formulation of the rQTc is as follows. 

𝒚𝒌 = 𝛽 ∗ 𝑪𝒌 + 𝑻𝒌 + 𝒆𝒌 

       Here, 𝒚𝒌  and 𝑪𝒌  are as defined above, 𝛽 ∗ 𝑪𝒌  is the vector of drug induced QTc 

prolongation, while 𝛽 is the slope of drug effect. Sometimes 𝛽 is also allowed to vary between 

different subjects. Following convention, 𝒆𝒌  is the error vector consists of the all random 

variation, including measurement error and other random effect for 𝒚𝒌, and covariance structure 

of 𝒆𝒌 is determined based on prior knowledge or the data we have. 

The 𝐽𝑇 × 1 vector 𝑻𝒌 consists of the time effect 𝑇𝑘𝑗𝑠 for subject 𝑘 at time 𝑡𝑠 in period 𝑗. It 

is used to model the circadian rhythm effect (time effect), which is usually modelled by 

incorporation of categorical time covariate in the model, or by using the multi-oscillator 

functions. The multi-oscillator function is formulated as follows. 

𝑇𝑘𝑗𝑠 = 𝑄𝑇𝑐0 ∗ (1 + 𝑜𝑠𝑐𝑘𝑠), 

𝑜𝑠𝑐𝑘𝑠 = 𝑎𝑚𝑝24𝑘 ∗ cos (
2𝜋∗(𝑡𝑠−𝑎𝑐𝑟24𝑘)

24
) + 𝑎𝑚𝑝12𝑘 ∗ cos (

2𝜋∗(𝑡𝑠−𝑎𝑐𝑟12𝑘)

12
) + 𝑎𝑚𝑝6𝑘 ∗

cos (
2𝜋∗(𝑡𝑠−𝑎𝑐𝑟6𝑘)

6
). 

Sometimes only one or two cosine functions (such as 24hr-osc+12hr-osc) are included in the 

model to account for the circadian rhythm effect. Typically, in concentration-QTc model with 

data from phase 1 SAD crossover study, only data from the placebo period are included in this 

part to pick up the choice of oscillator functions. The choice of oscillator functions among 
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various candidate functions is based upon a comparison of some model fitting criteria, such as 

AIC. Other covariates, such as gender, age, BMI (body mass index) etc. are also included in the 

model in an appropriate manner. After picking up the oscillator function, all the data will be 

pooled together to build the final model. A discussion on the use of oscillator function to model 

QTc circadian rhythm effect is provided in Chapter 2. 

 

1.4.2 Change-From-Baseline QTc (ΔQTc) Model 

       Change-from-baseline QTc (ΔQTc) model is the most widely used method for 

concentration-QTc model which uses change-from baseline QTc as the response variable rather 

than the raw QTc.  

       Rohatgi et al. (2008) presented the calculation of ΔQTc and how to model drug effect 

with ΔQTc model. Azzam et al. (2015) also applied ΔQTc model on data from SAD design with 

categorical time effect. The definition of baseline for a crossover phase 1 SAD study is the pre-

dose QTc measurement which is taken shortly prior to drug/placebo administration at each 

period, usually the average of 3 QTc baseline measurements is considered as the QTc baseline 

used in the analysis.  

       In the ΔQTc model, the circadian rhythm effect of QTc is also modeled by the oscillator 

function, or using time as a categorical variable. Here we denote the QTc change from baseline 

as ∆𝒚𝒌𝒋𝒔 as follows: 

∆𝑦𝑘𝑗𝑠 = 𝑦𝑘𝑗𝑠 − 𝑦𝑘𝑗,−1. 

      Here 𝑦𝑘𝑗,−1 is the period-specific pre-dose QTc baseline measurement for subject 𝑘 in 

period 𝑗. Let 𝜟𝒚𝒌 be a 𝐽𝑇 × 1 vector consists of ∆𝑦𝑘𝑗𝑠.The model is formulated as: 

𝜟𝒚𝒌 = 𝛽 ∗ 𝑪𝒌 + 𝑻𝒌 + 𝒆𝒌, 

where 𝛽 ∗ 𝑪𝒌, 𝑻𝒌 and 𝒆𝒌 are all defined in the same manner as those in the rQTc model above. 
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1.4.3 Double-Delta-QTc (ΔΔQTc)Model 

       The other model is the ΔΔQTc model, which is in good concordance with the primary 

endpoint “time-matched baseline adjusted QTc difference from placebo” defined in ICH E14. 

Garnett et al. (2008) presented the use of ΔΔQTc in concentration-QTc model and stated that it 

automatically accounted for the within-subject circadian rhythm effect, and Florin et al. (2011) 

explicitly described how to calculate the ΔΔQTc. This type of model is suitable for crossover 

SAD study since each subject has a placebo arm where ΔΔQTc can be computed. The procedure 

for calculating ΔΔQTc is as follows. First, QTc change from baseline (ΔQTc) is calculated, then 

the difference in ΔQTc between the drug period and corresponding placebo period is calculated 

and defined as the ΔΔQTc. We denote 𝒋 = 𝒑 as the placebo period and ∆∆𝒚𝒌𝒋𝒔 as the ΔΔQTc 

value for subject 𝒌 at time 𝒕𝒔 in period 𝒋 as follows:       

∆𝒚𝒌𝒋𝒔 = 𝒚𝒌𝒋𝒔 − 𝒚𝒌𝒋,−𝟏, 𝒋 ≠ 𝒑, 

∆𝒚𝒌𝒑𝒔 = 𝒚𝒌𝒑𝒔 − 𝒚𝒌𝒑,−𝟏, 𝒋 = 𝒑, 

∆∆𝒚𝒌𝒋𝒔 = ∆𝒚𝒌𝒋𝒔 − ∆𝒚𝒌𝒑𝒔. 

The ΔΔQTc is modeled as the following: 

𝜟𝜟𝒚𝒌 = 𝜷 ∗ 𝑪𝒌 + 𝒆𝒌. 

Here 𝜟𝜟𝒚𝒌 is a 𝑱𝑻 × 𝟏 vector consists of  ∆∆𝒚𝒌𝒋𝒔  for subject 𝒌, while 𝜷 ∗ 𝑪𝒌 and 𝒆𝒌 denote the 

drug effect and variation associated with 𝜟𝜟𝒚𝒌, respectively. Garnett et al. (2008) mentioned 

that the merit of the ΔΔQTc-type model is that it automatically accounted for the within-subject 

circadian rhythm. Thus in principal, we do not need to consider circadian rhythm effect in 

ΔΔQTc model here. 

 

1.5 Dissertation Outline 

This dissertation makes contributions to the concentration-QTc model from three aspects.  

       First, when researchers use the multi-oscillator functions to model the QTc circadian 

rhythm effect, usually several possible candidate functions are fitted simultaneously on the 

baseline/placebo data and the oscillator function with the best fit (quantified by smallest AIC or 
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BIC) is chosen to model the circadian rhythm effect. However in practice, drug concentration 

and ECG samples are measured in an unevenly spaced sampling strategy where the 

measurements are intensively measured around the Tmax (the time when concentration arrives 

the peak value) or waking hours of subjects, but are usually sparse elsewhere. Thus it is 

questionable whether the current sampling drug concentration/ECG sampling strategy can 

choose the right oscillator model or not. In Chapter 2, a comprehensive study is conducted to 

demonstrate the limitation of the current drug concentration/ECG sampling strategy and a 

possible modification is proposed, examined and validated via simulation studies.  

Secondly, various types of concentration-QTc models have been proposed to evaluate the 

QTc prolongation by exploring the relationship between drug concentration and QTc 

prolongation, for which a brief introduction is given in Section 1.4. These concentration-QTc 

models are distinguished by their different ways in QTc baseline adjustment, which induces 

different efficiencies between models in estimating drug effect β – however such difference has 

not been studied yet. In Chapter 3, a comprehensive study is conducted to compare the 

efficiencies between these models, with the variance of the estimated drug effect for each model 

being derived to explain the differences in efficiencies between models. A novel conditional 

ΔQTc model (cΔQTc model) is proposed that is superior over other existing models in terms of 

having higher efficiency. 

Lastly, methods other than the mixed effects models (MEM) analyzed in the Frequentist 

maximum likelihood (ML) approach are rarely mentioned in concentration-QTc modeling. 

Application of the Bayesian method is useful when we have reliable prior information on the 

parameters. When prior knowledge is not available, the Bayesian method with non-informative 

prior distributions is also viable and comparable to the Frequentist’s approach. Comparison 

between the ML method and the Bayesian method will be evaluated via simulation studies.  

Moreover, correctly specified covariance matrix structure is essential for the MEM with 

ML method but always hard to verify, the generalized estimating equations (GEE) and the 

generalized method of moments (GMM) do not impose distribution assumptions on the data and 

often produce consistent estimates when the covariance structure of data is mis-specified. 

Therefore, applications of the GEE and the GMM to concentration-QTc model are proposed and 

comparisons made to the MEM with the ML method.  
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Chapter 2 Evaluation of sampling strategies in identifying 

multi-oscillator functions 

 

       The QT/QTc interval data are known to be subject to within-day variation. As such, in 

the current practice of the concentration-QTc model, multi-oscillator functions are widely used 

to account for the circadian rhythm effect in QTc. The choice of oscillator functions among 

various candidate functions is typically based upon a comparison of some model fitting criteria, 

such as the AIC. A typical phase 1 single ascending dose (SAD) study collects only a limited 

number of ECG measurements throughout the course of a 24 hour period, with the large majority 

being measured during the waking hours or around the Tmax (the time when the maximal drug 

concentration happens), and very minimal measured during the nighttime hours or at time other 

than the Tmax. This conventional experimental design feature may affect the precision in 

identifying the true underlying oscillator function that may be generating the circadian rhythm 

effect in measurements. The potential impact of this important issue on evaluating QTc 

prolongation has drawn little attention in the literature. An evaluation of the potential limitations 

of the typical SAD design sampling strategy to identify the true underlying oscillator model is 

given in Chapter 2. Possible modifications in sampling strategy to improve the ability to identify 

the true underlying oscillator function are also proposed and examined via simulation.   

 

2.1 Introduction to circadian rhythm effect of QT/QTc interval       

       Within-day variation (circadian rhythm) is a key characteristic of QT/QTc interval (Guo 

and Phyllis 2002).  Evidence has shown that healthy subjects have an increase in QTc after food 

intake (Nagy et al. 1997), and QTc also tends to be higher at nighttime than in the daytime 

(Semetana et al. 2003, Kemal et al. 1999). In Smetana et al. (2003), ECG measurements were 

obtained on healthy volunteers every 30 seconds for a 24 hour interval.  Their results clearly 

demonstrated a QTc circadian rhythm effect within a 24-hour interval. The QTc tends to be 

higher in nighttime than daytime for all the QT correction methods except for Bazett’s method 
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(Figure 2 in Smetana et al. 2003). Molnar et al. (1996) also concluded that the QTc interval is 

longer during sleep, showing further that the QTc interval peaks shortly after awakening (Figure 

4 in Molnar et al. 1996). 

       Since the phenomenon of the circadian rhythm effect is pronounced in monitoring the 

QTc intervals over the course of a 24-hour period, adjustment for circadian rhythm effect is 

typically done when evaluating the QTc prolongation with concentration-QTc model (Piotrovsky 

2005, Rohatagi et al. 2009). The current method for modeling the QTc circadian rhythm effect 

and its potential limitations are introduced in Section 2.2. 

 

2.2 Application of multi-oscillator function in modelling QTc 

circadian rhythm effect 

2.2.1 Current method in modeling QTc circadian rhythm effect 

       In order to account for the known circadian rhythm of QT/QTc measurements over time, 

the multi-oscillator functions are routinely applied to the concentration-QTc model. These multi-

oscillator functions typically include one or more cosine functions as previously described in 

Section 1.4.1.  We revisit these functions here.        

       We denote 𝑦𝑘𝑗𝑠 as the QTc value for subject 𝑘 (𝑘 = 1,2, … , 𝐾) at time 𝑡𝑠 (𝑠 = 1,2, … , 𝑇) 

of period 𝑗 (𝑗 = 1,2, … , 𝐽). Let 𝒚𝒌 be the 𝐽𝑇 × 1 vector of the QTc value for subject 𝑘. Typically 

the 𝐽𝑇 × 1 vector  𝑻𝒌, consisting of the time effect 𝑇𝑘𝑗𝑠  for subject 𝑘 at time 𝑡𝑠  in period 𝑗, is 

used to model the circadian rhythm effect (time effect), which is usually modeled by 

incorporation of a categorical time covariate in the model, or by using the multi-oscillator 

functions. The multi-oscillator function is formulated as follows. 

𝑇𝑘𝑗𝑠 = 𝑄𝑇𝑐0 ∗ (1 + 𝑜𝑠𝑐𝑘𝑠), 

𝑜𝑠𝑐𝑘𝑠 = 𝑎𝑚𝑝24𝑘 ∗ cos (
2𝜋∗(𝑡𝑠−𝑎𝑐𝑟24𝑘)

24
) + 𝑎𝑚𝑝12𝑘 ∗ cos (

2𝜋∗(𝑡𝑠−𝑎𝑐𝑟12𝑘)

12
) + 𝑎𝑚𝑝6𝑘 ∗

cos (
2𝜋∗(𝑡𝑠−𝑎𝑐𝑟6𝑘)

6
).                                                        (2.1) 

       The 𝑜𝑠𝑐𝑘𝑠 part usually consists of 3 cosines functions, allowing for different effects over 

cosine periods of 24 hours, 12 hours and 6 hours. Each component has its own amplitude 

(amp24, amp12, and amp6, for 24, 12, and 6 hours, respectively) and phase (acr24, acr12, and 
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acr6 for 24, 12, and 6 hours, respectively). In some concentration-QTc models, all 3 cosine 

functions are included in the model, while some researchers only use one or two cosine functions 

in the model. 

       The model build-up and selection process when utilizing multi-oscillator functions to 

model the circadian rhythm effect in rQTc model and ΔQTc model consists of following steps. 

First, various multi-oscillator functions consisting of different combinations of cosine function 

components in (2.1) are fitted on the QTc (or ΔQTc) data from the placebo arm.  Next, the multi-

oscillator function that results in the best model fit (conventionally quantified by the model fit 

with the smallest AIC) is selected as the best model fit to the observed data. Finally, all the data 

(both placebo and treatment data) are pooled together to build the final model using the selected 

oscillator functions from the previous step. The flow chart of multi-oscillator function selection 

for fitting QTc circadian rhythm is shown in Figure 2.1. 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Typical procedures in choosing a multi-oscillator function in concentration-QTc 

model. 

 

2.2.2 Current sampling strategy of SAD study 

In order to better assess the drug-induced QTc interval prolongation, time points of ECG 

and drug concentration measurements in SAD studies are usually matched.  Thus, the sampling 

For the rQTc model, fit 𝒚𝒌 = 𝑻𝒌 + 𝒆𝒌 on the data with different choice of 

𝑜𝑠𝑐𝑘𝑠.  

For the ΔQTc model, fit 𝛥𝒚𝒌 = 𝑻𝒌 + 𝒆𝒌 on the data with different choice of 

𝑜𝑠𝑐𝑘𝑠.  

𝑜𝑠𝑐𝑘𝑠 can be sum of 3 cosine functions, or combination of 2 cosine 

functions, or a single cosine function. 

Choose the model with smallest AIC, then consider it as the best oscillator function 

for the data. And this choice is used in the final model. 

Extra ECG data from placebo period (or time-matched baseline day 

if available). 
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strategy of ECG measurements over a day is the same as the sampling strategy of drug 

concentrations.  

       In a typical SAD study, sampling time points of drug concentrations are generally 

designed to be distributed relatively intensively around the Tmax but can be relatively sparse at 

other time points. The number of sampling time points in waking time are also more than that 

during the nighttime considering the subjects’ welfare.  The ECG measurements are taken under 

the same sampling strategy as drug concentrations, and the sampling strategy are consistent over 

all periods. Therefore, the sampling strategy for ECG measurements is the same in placebo 

period as in the other periods.  

       Due to the unevenly spaced distributed sampling points, particularly between 12 and 24 

hours, it is unclear whether the true underlying multi-oscillator function can be identified and 

estimated well. The possible consequences caused by the typical sampling strategy of SAD 

studies are discussed in the next section. 

       

2.2.3 Potential issues of current sampling strategy in multi-oscillator function 

selection 

       The multi-oscillator function defined in formula (2.1) consists of 3 individual cosine 

functions, and we refer to them as 24hr-function, 12hr-function and 6hr-function based on cosine 

model differences. Each function has its own amplitude (amp24, amp12, amp6) which defines 

the maximum/minimum value of the cosine function, and its own phase (acr24, acr12, acr6) 

which defines the horizontal translation of cosine function comparing to a standard cosine 

function with phase of 0. The current sampling strategy may limit the ability to identify the true 

underlying multi-oscillator function, which is of course always unknown, from several aspects.   

       First, it may result in an inability to consistently distinguish various oscillator functions 

with different time length of cosine periods due to that the limited and unevenly spaced sampling 

time points in the 24-hour period. Since the time length between two adjacent measurements can 

be as large as 12 hours, which is problematic to distinguish between various oscillator functions.  

Second, the circadian rhythm effect we aim to estimate is only around 10ms, which is rather 
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small comparing to variation from other sources, such as random error, between-subject 

variation. Fitting a parametric model on the data may result in unstable parameter estimates of 

the true underlying oscillator functions.  

 

2.3 Simulation study 

One difficulty in evaluating the sampling strategy in identifying the true multi-oscillator 

function is that the true underlying model is not known, thus Monte Carlo simulation study 

would be an ideal method for this purpose.  

       The most widely used multi-oscillator function is a sum of 24hr-function and 12hr-

function. Moreover, Smetana et al. (2003) and Molnar et al. (1996) both show that the QTc is 

relatively smooth in the daytime, and then reaching peak value at nighttime, thus the sum of the 

24hour-function and the 12hour-function should be reasonable to reflect the QTc circadian 

rhythm effect (Figure 2.2).  

       Therefore, the sum of 24hr and 12hr models is used as the true model in the simulation to 

generate the QTc over time data and we investigate the chance that the true model is picked up 

by comparing the model fit criteria, AIC under the current sampling strategy.  

       Moreover, the modified sampling strategy will also be evaluated. As discussed in section 

2.2, one of the potential issues of current sampling strategy is that the limited and unevenly 

distributed sampling points make some of the adjacent time points are as far as 12 hours away, 

thus it’s not feasible to distinguish between the various multi-oscillator functions from this data. 

In reality, the sampling strategy is limited by many factors such as study cost, subject welfare, 

thus it may not be possible to add more time points, so we investigate whether we can modify the 

sampling strategy by rearranging the sampling points to make it more evenly distributed by 

moving one measurement in the 1st 12hour (2nd hour post-dose) to the 2nd 12hours (15th hour 

post-dose).  

       In simulation, the data are generated based on the true model, 

𝑦𝑘𝑠 = 𝑄𝑇𝑐0 ∗ (1 + 𝑎𝑚𝑝24 ∗ cos(
2𝜋 ∗ (𝑡𝑠 − 𝑎𝑐𝑟24)

24
) + 𝑎𝑚𝑝12 ∗ cos (

2𝜋 ∗ (𝑡𝑠 − 𝑎𝑐𝑟12)

12
)) + 𝑏𝑘

+ 𝜀𝑘𝑠 
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Parameters in the model are set as follows, amp24=-0.03, amp12=-0.016, acr24=6, 

acr12=0, QTc0 = 400. The true underlying QTc along time used in the simulation is shown in 

the black line of Figure 2.2, the red line is the QTc along time under the current sampling 

strategy, and the blue line is the QTc along time under the modified sampling strategy. 

       Here 𝑏𝑘 and 𝜀𝑘𝑠 denote subject random effect and random error, respectively, and they 

are assumed to be independent with each other and both normally distributed with mean 0. We 

fix the total variance of between-subject variation and random error to be 300, and the variances 

of 𝑏𝑘 and 𝜀𝑘𝑠 are changed to investigate how they affect the identifiable rate. Typically, sample 

size for a FIH (first-in-man) “single ascending dose” study around 16, impact of larger sample 

size is also investigated. Simulation scenarios are summarized in Table 2.1. In each simulation, 

simulated data is generated based on the true model described above, and then all of the 6 

candidate oscillator (Table 2.2) models are fitted using maximum likelihood (ML) method 

(Pinheiro and Bates 2006, Pinheiro et al. 2012). For each model, number of simulations achieve 

the smallest AIC among all the models is calculated, the portion of simulations with 24hr+12hr 

model achieving the smallest AIC is regarded as the identifiable rate of the true model under 

each simulation scenario. Simulation was run 1000 times under each simulation scenario.  

 

Figure 2.2 Mean QTc of true model with current sampling strategy (red) and modified sampling 

strategy (blue) 
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Table 2.1 Simulation scenarios in evaluating the current sampling strategy 

Scenario 
Sampling 

Strategy 

Between-subject 

variance 

Random 

error 

variance 

Sample 

Size 

1 

1,2,4,6,8,12,24 

240 60 
16 

2 180 120 

3 240 60 
32 

4 180 120 

5 

1,4,6,8,12,15,24 

240 60 
16 

6 180 120 

7 240 60 
32 

8 180 120 

 

Table 2.2 Summary of multi-oscillator functions included in the simulation 

Model Type Multi-oscillator function (osc) Note 

𝑦𝑘𝑠 = 𝑄𝑇𝑐0 ∗

(1 + 𝑜𝑠𝑐) + 𝑏𝑘 +

𝜀𝑘𝑠, 

for subject 𝑘 at time 

𝑡𝑠. 

 

 

 

 

𝑎𝑚𝑝24 ∗ cos (
2𝜋 ∗ (𝑡𝑠 − 𝑎𝑐𝑟24)

24
) + 𝑎𝑚𝑝12 ∗ cos (

2𝜋 ∗ (𝑡𝑠 − 𝑎𝑐𝑟12)

12
)

+ 𝑎𝑚𝑝6 ∗ cos (
2𝜋 ∗ (𝑡𝑠 − 𝑎𝑐𝑟6)

6
) 

 

𝑎𝑚𝑝12 ∗ cos (
2𝜋 ∗ (𝑡𝑠 − 𝑎𝑐𝑟12)

12
) + 𝑎𝑚𝑝6 ∗ cos (

2𝜋 ∗ (𝑡𝑠 − 𝑎𝑐𝑟6)

6
) 

 

𝑎𝑚𝑝24 ∗ cos (
2𝜋 ∗ (𝑡𝑠 − 𝑎𝑐𝑟24)

24
) + 𝑎𝑚𝑝12 ∗ cos (

2𝜋 ∗ (𝑡𝑠 − 𝑎𝑐𝑟12)

12
) 

True 

model 

𝑎𝑚𝑝24 ∗ cos (
2𝜋 ∗ (𝑡𝑠 − 𝑎𝑐𝑟24)

24
) 

 

𝑎𝑚𝑝12 ∗ cos (
2𝜋 ∗ (𝑡𝑠 − 𝑎𝑐𝑟12)

12
) 

 

𝑎𝑚𝑝6 ∗ cos (
2𝜋 ∗ (𝑡𝑠 − 𝑎𝑐𝑟6)

6
) 

 

 

 

2.4 Simulation results 

       Simulation results are summarized in Table 2.3. The results clearly show that under the 

current sampling strategy (scenario 1-4), the identifiable rate of the true model is small. 

Increasing variance of random error reduces identifiable rate (1 vs 2, 3 vs 4), and increasing the 

sample size improves the recovery rate to some extent (1,2 vs 3,4), but the identifiable rate still 
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very low. For the modified sampling strategy, the identifiable rate is around 80%. Although 

increase in sample size and decrease in random error variance both improve the identifiable rate 

of the modified sampling strategy, but the impact of changes in sample size and random error 

variance is trivial comparing to the identifiable rate of the modified sampling strategy. Therefore, 

it can be concluded that the modified sampling strategy significantly improves the identifiable 

rate of the true model, and it is also robust to changes in sample size and random error variance 

in terms of consistent identifiable rate.  

 

Table 2.3 Percentage of simulations with smallest AIC for each model  

Scenario 24hr+12hr+6hr 12hr+6hr 24hr+12hr 24hr 12hr 6hr 

1 3.60% 6.50% 9.60% 20.20% 22.80% 37.30% 

2 2.20% 5.30% 5.10% 24.30% 23.90% 39.20% 

3 3.40% 12.00% 14.90% 13.90% 19.50% 36.30% 

4 2.80% 6.80% 8.20% 17.40% 22.50% 42.30% 

5 13.70% 0.00% 86.00% 0.30% 0.00% 0.00% 

6 13.30% 0.20% 80.70% 4.50% 0.20% 1.10% 

7 14.20% 0.00% 85.80% 0.00% 0.00% 0.00% 

8 13.90% 0.00% 85.90% 0.20% 0.00% 0.00% 

 

The parameter estimates (Table 2.4) in each simulation scenario show that both sampling 

strategies provide unbiased estimates of oscillator function parameters, but the variance, and 

mean square error (MSE) both tend to be higher under the current sampling strategy when 

sample size and variance components are the same. This indicates that modified sampling 

strategy provides a more stable estimates of oscillator function parameters as we have expected.  

       In Figure 2.3, the current sampling strategy cannot reflect the peak area of QTc in the 24 

hour interval but the modified sampling strategy can, thus it may raise a question that 

improvement in identifiable rate of modified sampling strategy is just a coincidence because it 

covers the peak area of QTc, not because modified sampling strategy make the unevenly spaced 

sampling strategy to be more evenly spaced.  

To further confirm that improvement in identifiable rate is associated with evenly spaced 

sampling strategy, true model was modified by assigning 0.03 instead of -0.03 to amp24 so that 

the peak QTc area can be reflected by the current sampling strategy as well (Figure 2.3). But the 

identifiable rate is still low for the current sampling strategy (Table 2.5). This further confirms 
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that when the number of sampling points cannot be modified, to make the sampling time points 

more evenly distributed is essential in improving the identifiable rate of true oscillator model. 

 

Table 2.4 Parameter estimates of true model on all the simulation scenarios 

Scenario 
QTc0 amp24 

Mean s.d. MSE Mean s.d. MSE 

1 400.02 6.61 43.66 -0.03013 0.022564 0.000509 

2 399.76 8.19 67.09 -0.02892 0.032113 0.001031 

3 400.01 4.75 22.56 -0.02967 0.01624 0.000264 

4 400.17 5.99 35.83 -0.03024 0.023354 0.000545 

5 399.98 4.08 16.61 -0.03036 0.005742 3.31E-05 

6 399.93 3.72 13.84 -0.03043 0.008256 6.83E-05 

7 400.07 2.91 8.46 -0.03009 0.004414 1.95E-05 

8 400.08 2.71 7.35 -0.03013 0.005945 3.53E-05 

Scenario 
amp12 acr24 

Mean s.d. MSE Mean s.d. MSE 

1 -0.0165 0.01169 0.00014 6.071341 1.468837 2.160413 

2 -0.0159 0.01684 0.00028 6.054165 1.806567 3.263355 

3 -0.0161 0.00815 6.6E-05 5.988998 1.153124 1.328484 

4 -0.0167 0.01205 0.00015 5.963482 1.205373 1.452805 

5 -0.0167 0.0037 1.4E-05 5.940378 0.464877 0.219449 

6 -0.0172 0.00511 2.8E-05 5.869026 0.740907 0.565548 

7 -0.0163 0.00267 7.2E-06 5.959888 0.32079 0.104412 

8 -0.0166 0.00375 1.4E-05 5.940691 0.468572 0.222858 

Scenario 
acr12 

   Mean s.d. MSE 

   1 0.00145 0.85026 0.72222 

   2 -0.0124 1.07768 1.16039 

   3 0.06782 0.65176 0.42896 

   4 0.03397 0.83944 0.70512 

   5 -0.0497 0.52836 0.28135 

   6 -0.1281 0.76282 0.59773 

   7 -0.0409 0.3715 0.13954 

   8 -0.0453 0.54748 0.30148 

   



 

22 
 

 

Figure 2.3 Mean QTc of true model with current sampling strategy (red) and modified sampling 

strategy (blue) with new true underlying oscillator function 

 

 

Table 2.5 Percentage of simulations with smallest AIC for each model when peak QTc area is 

reflected in both sampling strategies 

Scenario 24hr+12hr+6hr 12hr+6hr 24hr+12hr 24hr 12hr 6hr 

1 3.10% 8.10% 6.10% 40.60% 42.10% 0.00% 

2 2.40% 6.80% 4.10% 43.50% 43.20% 0.00% 

3 4.20% 16.20% 12.50% 33.00% 34.10% 0.00% 

4 3.20% 8.50% 5.90% 38.50% 43.90% 0.00% 

5 13.70% 0.00% 86.00% 0.30% 0.00% 0.00% 

6 13.50% 0.60% 81.10% 4.60% 0.20% 0.00% 

7 14.20% 0.00% 85.80% 0.00% 0.00% 0.00% 

8 13.90% 0.00% 85.90% 0.20% 0.00% 0.00% 
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2.5 Conclusion and discussion 

       To conclude, through comprehensive simulation study, the current sampling strategy of a 

typical SAD cannot guarantee that right oscillator function to be chosen to fit the QTc circadian 

rhythm effect. In order to improve the identifiable rate, the sampling strategy should be arranged 

as evenly spaced as possible, but it may not be feasible under some SAD study.  

       Moreover, another alternative would be totally ignoring the complicated multi-oscillator 

function, and use time as a categorical variable with linear mixed effects model instead, this 

method is more suitable for some SAD studies which fewer ECG measurements are available 

within a day so that oscillator functions would be evenly more problematic in modeling circadian 

rhythm effect. Hummer et al. (2015) mentioned to use time as a categorical variable to account 

for the QTc circadian rhythm effect and concluded that it will not reduce the precision in drug 

effect estimation evenly if the true underlying model is a multi-oscillator function. As the 

categorical time effect is more and more popular in concentration-QTc model, we will use the 

categorical time effect to model QTc circadian rhythm effect in the latter parts of this 

dissertation. 
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Chapter 3  Use of period-specific pre-dose baseline in 

concentration-QTc model for crossover SAD study 

 

            Various types of concentration-QTc models are used to explore the relationship between 

drug concentration and QTc prolongation. One of the essential differences in these 

concentration-QTc models with data from phase 1 crossover SAD study is how period-specific 

pre-dose QTc baseline are treated in the model. Different ways in treating the baseline QTc in 

concentration-QTc models result in different efficiencies in estimating the drug effect slope, and 

to our best knowledge, no studies have been conducted to compare the efficiencies of these 

models. In this chapter, rQTc model, ΔQTc model and ΔΔQTc model are briefly introduced, and 

the conditional ΔQTc (cΔQTc) model is proposed. Comprehensive study is conducted to 

compare efficiencies of the current models, the advantage of the proposed cΔQTc model over the 

existing models in terms of efficiency is also illustrated via derivations and simulation study.  

 

3.1 Introduction to concentration-QTc models       

       Various concentration-QTc models are applied to quantify the relationship between drug 

concentration and QTc prolongation with data from phase 1 crossover single ascending dose 

(SAD) study. Typically, regression slope of QTc prolongation on drug concentration is the main 

parameter of interest. By estimating the drug effect slope and its variability, confidence interval 

of the slope is computed, together with the geometric mean of Cmax (maximal concentration) for 

a given dose, we are able to estimate the mean effect of QTc prolongation induced by a tested 

drug.  

       For concentration-QTc models with data from phase 1 crossover SAD study, different 

metrics in treating period-specific pre-dose QTc measurement and placebo period QTc 

measurements result in different types of concentration-QTc models. The most widely used 

models are rQTc model, ΔQTc model and ΔΔQTc model, an introduction to these models are 

presented in Section 1.4. All of the models share the same goal, which is to estimate the drug 
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effect slope, but they have different efficiencies in estimating the slope. The difference in 

efficiencies among different concentration-QTc models remain unclear. In this chapter, we aim 

to provide a comprehensive comparison on model efficiencies, and a novel conditional ΔQTc 

(cΔQTc) model is proposed which is more efficient than the other models. This chapter is 

formulated as follows. In Section 3.2, assumption and notation of the QTc data are introduced. 

Then the mean and variance-covariance structure of each concentration-QTc model is provided 

in Section 3.3. Section 3.4 and 3.5 present the derivations of the variance for the estimated drug 

effect slope for each model. We demonstrate our results via simulation studies in Section 3.6. 

Section 3.7 lends a general conclusion to Chapter 3. 

 

3.2 General assumption and notation for concentration-QTc model 

comparison 

       Consider a phase 1 crossover single ascending dose (SAD) study with 𝐽 periods, at each 

period, one pre-dose and 𝑇 post-dose ECG measurements for subject 𝑘 (𝑘 = 1,… , 𝐾)  are taken.  

       An example of a typical crossover SAD study with 4 periods and 16 subjects is 

summarized in Table 3.1. In this example, 8 doses of the tested drug are included in the study, 

with DOSE8 the highest while DOSE1 is the lowest. Each subject has 3 periods with different 

doses of drug and 1 period with placebo. At each period, drug concentrations are measured at 

selected time points within 24 hours after the first administration of drug/placebo, ECG 

measurements are usually taken at the same time points when drug concentrations are taken. 

Usually the number of post-dose time points is unevenly distributed as described in Chapter 2, 

with intensive distribution of time points around Tmax, and relatively sparsely distributed time 

points at other time. 

 For convenience of illustration, we will use 𝐽 = 4  in Sections 3.2 and 3.3, and the 

conclusions reached using 𝐽 = 4  can be easily extended to an SAD study with the number of 

periods other than 4.  

            In this study, we assume the QTc circadian rhythm effect is same for all the subjects, 

since phase 1 SAD study is an in-house study, factors affect the circadian rhythm effect are 
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controllable. We also assume that QTc prolongation is linearly dependent on drug concentration 

which is the most widely accepted relationship in the current concentration-QTc model. Lastly, 

we assume that QTc values is naturally different between subjects and can be quantified with a 

subject random effect, and QTc values are also different between periods within a subject which 

is quantified by a subject-by-period random effect and these two random effects are independent 

with each other.  

 

Table 3.1 A typical design of a phase1 single ascending dose (SAD) study (DOSE1< DOSE2< 

DOSE3< DOSE4< DOSE5< DOSE6< DOSE7< DOSE8) 

PANEL Number of 

Subjects 

Period 1 Period 2 Period 3 Period 4 

A N=2 Placebo DOSE 3 DOSE 5 DOSE 7 

N=2 DOSE 1 Placebo DOSE 5 DOSE 7 

N=2 DOSE 1 DOSE 3 Placebo DOSE 7 

N=2 DOSE 1 DOSE 3 DOSE 5 Placebo 

B N=2 Placebo DOSE 4 DOSE 6 DOSE 8 

N=2 DOSE 2 Placebo DOSE 6 DOSE 8 

N=2 DOSE 2 DOSE 4 Placebo DOSE 8 

N=2 DOSE 2 DOSE 4 DOSE 6 Placebo 

 

Next, notations and assumptions of model comparisons are introduced.  

       Let scalar 𝑦𝑘𝑗,−1  be the pre-dose QTc measurement for subject 𝑘  in the 𝑗 th period, 

𝑦𝑘𝑗𝑠 (𝑠 = 1,2, … , 𝑇) is the post-dose QTc measurement 𝑘 in the 𝑗th period at time 𝑡𝑠.  Let  𝑇 × 1  

vector 𝒚𝒌𝒋  be the 𝑇 post-dose QTc measurements for subject 𝑘 in the 𝑗th period (𝑗 = 1, … , 𝐽) 

which consists of 𝑦𝑘𝑗𝑠 (𝑠 = 1,2, … , 𝑇) .  

Usually, we assume that the repeated-measures QTc data follow multivariate normal 

distribution for each subject and independent across subjects. The underlying model for subject 𝑘 

is 
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(

 
 
 
 
 

𝑦𝑘1,−1
𝒚𝒌𝟏
𝑦𝑘2,−1
𝒚𝒌𝟐
𝑦𝑘3,−1
𝒚𝒌𝟑
𝑦𝑘4,−1
𝒚𝒌𝟒 )

 
 
 
 
 

~𝑁

{
 
 
 

 
 
 

(

 
 
 
 
 

𝜂
𝜂𝟙 + 𝝅𝒌𝟏

𝜂
𝜂𝟙 + 𝝅𝒌𝟐

𝜂
𝜂𝟙 + 𝝅𝒌𝟑

𝜂
𝜂𝟙 + 𝝅𝒌𝟒)

 
 
 
 
 

,𝜮

}
 
 
 

 
 
 

 ,                (3.1) 

where 𝟙 is a vector of 1’s, 𝜂 is the grand mean QTc value at baseline measurement, and 𝝅𝒌𝒋 =

(𝜋𝑘𝑗1, 𝜋𝑘𝑗2, … , 𝜋𝑘𝑗𝑇)′, where 𝜋𝑘𝑗𝑠 = 𝑇𝑠 + 𝐶𝑘𝑗𝑠 ∗ 𝛽. Here 𝑇𝑠 is the mean circadian rhythm effect 

on 𝑠-th post-dose QTc, 𝐶𝑘𝑗𝑠 is the observed drug concentration for subject 𝑘 in the 𝑗th period at 

time 𝑡𝑠. Therefore, 𝛽 ∗ 𝐶𝑘𝑗𝑠 is the drug induced QTc prolongation at drug concentration level of 

𝐶𝑘𝑗𝑠. Also, 𝛽 is the durg effect slope which quantifies the relationship between QTc prolongation 

and drug concentration. 

       Moreover, we do not consider period effect and other covariates, such as gender, age and 

BMI in the model here. We also assume that washout periods are sufficiently long so that no 

carryover effect is not considered. However, in the real concentration-QTc model, all the 

covariates that affect QTc should be considered and included in the model as appropriate. In 

model (3.1), 𝜮 is the covariance matrix of the QTc measurements for subject 𝑘.        

For model (3.1), the covariance matrix is formulated as follows. The covariance matrix is 

decomposed into within-period covariance matrix 𝜮𝒘 and between-period covariance matrix 𝜮𝒃 

in the below form. 

𝜮 = (

𝜮𝒘 𝜮𝒃
𝜮𝒃 𝜮𝒘

𝜮𝒃 𝜮𝒃
𝜮𝒃 𝜮𝒃

𝜮𝒃 𝜮𝒃
𝜮𝒃 𝜮𝒃

𝜮𝒘 𝜮𝒃
𝜮𝒃 𝜮𝒘

)

4(𝑇+1)×4(𝑇+1)

 

For within-period covariance matrix 𝜮𝒘,   

𝜮𝒘 = 𝑐𝑜𝑣 (
𝑦𝑘𝑗,−1
𝒚𝒌𝒋

) = (
𝑣1 𝝉𝟏

′

𝝉𝟏 𝜮𝟏
), 

where 𝑣1 is the variance of pre-dose QTc measurement, which can be different from the post-

dose measurements if it is calculated as the mean value of several pre-dose QTc measurements, 
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however, here we assume there is only 1 pre-dose QTc measurement. In addition, 𝝉𝟏 is the 𝑇 × 1 

covariance vector between the pre-dose QTc measurement and post-dose QTc measurements, 

and 𝜮𝟏 is the 𝑇 × 𝑇 covariance matrix for the post-dose QTc measurements in the same period.  

       For 𝑗 and 𝑗′ ( 𝑗 ≠ 𝑗′), we have 

𝜮𝒃 = 𝑐𝑜𝑣 ((
𝑦𝑘𝑗,−1
𝒚𝒌𝒋

) , (
𝑦𝑘𝑗′,−1
𝒚𝒌𝒋′

)) = (
𝑣2 𝝉𝟐

′

𝝉𝟐 𝜮𝟐
), 

𝑣2 is the covariance between pre-dose QTc measurements from different periods, 𝝉𝟐 is the 𝑇 × 1 

covariance vector between the pre-dose QTc measurement in a period and the post-dose QTc 

measurements in another period, 𝜮𝟐  is the 𝑇 × 𝑇  covariance matrix between post-dose QTc 

measurements from different periods. 

       Let 𝜎𝑠
2 denote the variance of subject random effect, 𝜎𝑝

2 denote the variance of subject-

by-period random effect, 𝜎2 denote the variance of random error, random effects and random 

error here are independent with each other. So that 𝑣1 = 𝜎𝑠
2 + 𝜎𝑝

2 + 𝜎2, 𝜮𝟏 = (𝜎𝑠
2 + 𝜎𝑝

2) ∗

𝑱𝑻 + 𝜎
2 ∗ 𝑰𝑻, 𝝉𝟏 = (𝜎𝑠

2 + 𝜎𝑝
2) ∗ 𝟙𝑻, 𝑣2 = 𝜎𝑠

2,  𝜮𝟐 = 𝜎𝑠
2 ∗ 𝑱𝑻, 𝝉𝟐 = 𝜎𝑠

2 ∗ 𝟙𝑻, here 𝟙𝑻 is a 𝑇 × 1 

matrix of 1’s, 𝐽𝑇 is a 𝑇 × 𝑇 matrix of 1’s, 𝐼𝑇 is the identity matrix. So the structure of 𝜮 for each 

𝑘 is double compound symmetry.  

Here, the covariance matrix structure we assume here is the same as Lu (2014) except 

that Lu (2014) used subject-by-time random effect to model the circadian rhythm effect while we 

use categorical time effect. By setting up the mean and covariance structure of the repeated 

measures QTc data, comparing efficiencies of different concentration-QTc models under the 

same data generation is meaningful.  

Moreover, the correlation between two QTc measurements within the same day may 

reduce as the time points are further apart, which makes the double compound symmetry 

structure invalid in reality (Stylianou et al. 2008, Meng et al. 2010), thus it is important to access 

the robustness of models derived from the double compound symmetry structure in the presence 

of violation of covariance matrix structure. In the simulation part, scenarios with autoregressive 

with order 1 (AR(1)) random error structure is also evaluated, in these scenarios, 𝜮𝐰 =
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(𝜎𝑠
2 + 𝜎𝑝

2) ∗ 𝑱(𝑻+𝟏) + 𝜎
2 ∗ 𝝆(𝑻+𝟏)∗(𝑻+𝟏), where the (𝑠, 𝑠′)th element of 𝝆(𝑻+𝟏)∗(𝑻+𝟏) is 𝜌|𝑡𝑠−𝑡𝑠′|, 

where 𝑡𝑠 denotes time corresponding to 𝑠-th post-dose time point in each period. 

       In concentration-QTc model, the primary interest is to test if the upper bound of the drug-

induced QTc prolongation is larger than 10 ms or not, and it is usually tested by the following 

hypothesis:  

 

𝐻0: Upper bound of one-sides 95% confidence interval of drug induced QTc prolongation>10ms 

VS 

𝐻𝑎: Upper bound of one-sides 95% confidence interval of drug induced QTc prolongation<10ms 

(3.2) 

Then the upper bound of one-sided 95% confidence interval of the drug-induced QTc 

prolongation is calculated as 𝐶 ∗ 𝑈. 𝐵. 𝑜𝑓 𝛽, where 𝐶 is the Cmax (peak plasma concentration of 

a drug after administration) of a given dose and the dose should be available after SAD study 

when a therapeutic dose is determined, 𝑈.𝐵. 𝑜𝑓 𝛽  is the upper bound of one-sided 95% 

confidence interval of estimated 𝛽 calculated from the concentration-QTc model based on and 

the estimation of  𝛽  and its standard error.  

       Based on the hypothesis, the important factor that affects the power of different 

concentration-QTc models is the variance of the estimate of 𝛽  when all the models provide 

unbiased and consistent estimate of 𝛽 , thus it is important to compare the variance of the 

estimated drug effect slope between different concentration-QTc models. 

 

3.3 Mean and covariance matrix structure of each model 

Section 3.2 presents the mean and covariance structure of the repeated measures QTc 

data from a SAD study, while in Section 3.3, the mean and covariance matrix structure of each 

concentration-QTc model are derived and presented. 
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3.3.1 Raw QTc (rQTc) model 

Section 1.4.1 introduces the form of the rQTc model, which is as follows 

𝒚𝒌 = 𝛽 ∗ 𝑪𝒌 + 𝑻𝒌 + 𝒆𝒌. 

Under our model assumption, 𝒚𝒌 is the 4𝑇 × 1 vector of the QTc value consists of 𝑦𝑘𝑗𝑠, 

𝑪𝒌 is the 4𝑇 × 1 vector and concentration value consists of 𝐶𝑘𝑗𝑠 for subject 𝑘, respectively. Let 

𝜮𝒓 denote the covariance matrix for the rQTc model for each subject.       

So for each subject 𝑘, we have 

𝐸(𝒚𝒌) = 𝐸 (

𝒚𝒌𝟏
𝒚𝒌𝟐
𝒚𝒌𝟑
𝒚𝒌𝟒

) = (

𝜂𝟙 + 𝝅𝒌𝟏
𝜂𝟙 + 𝝅𝒌𝟐
𝜂𝟙 + 𝝅𝒌𝟑
𝜂𝟙 + 𝝅𝒌𝟒

), 

𝜮𝒓 = 𝐶𝑂𝑉(𝒚𝒌) = 𝐶𝑂𝑉(

𝒚𝒌𝟏
𝒚𝒌𝟐
𝒚𝒌𝟑
𝒚𝒌𝟒

) = (

𝜮𝒘𝒓 𝜮𝒃𝒓
𝜮𝒃𝒓 𝜮𝒘𝒓

𝜮𝒃𝒓 𝜮𝒃𝒓
𝜮𝒃𝒓 𝜮𝒃𝒓

𝜮𝒃𝒓 𝜮𝒃𝒓
𝜮𝒃𝒓 𝜮𝒃𝒓

𝜮𝒘𝒓 𝜮𝒃𝒓
𝜮𝒃𝒓 𝜮𝒘𝒓

)

4𝑇×4𝑇

, 

       The notations are the same as those in Section 3.2, where 𝜂 is the grand mean QTc value, 

𝝅𝒌𝒋 = (𝜋𝑘𝑗1, 𝜋𝑘𝑗2, … , 𝜋𝑘𝑗𝑇)′, and 𝜋𝑘𝑗𝑠 = 𝑇𝑠 + 𝐶𝑘𝑗𝑠 ∗ 𝛽. In addition, 𝜮𝒘𝒓 = 𝜮𝟏 and 𝜮𝒃𝒓 = 𝜮𝟐 as 

defined in Section 3.2. 

       In general, the covariance matrix follows double compound symmetry structure with 𝜎𝑠
2 

as the variance of subject random effect, 𝜎𝑝
2 as the variance of subject-by-period random effect, 

𝜎2 as the variance of random error.  

       In summary, under our model assumption, the rQTc model can be written as  

𝑦𝑘𝑗𝑠 = 𝜂 + 𝛽 ∗ 𝐶𝑘𝑗𝑠 + 𝑇𝑠 + 𝑏𝑘 + 𝑏𝑘(𝑗) + 𝑒𝑘𝑗𝑠, 

where 𝑏𝑘  is the subject random effect,  𝑏𝑘(𝑗)  is subject by period random effect, we usually 

assume that 𝑏𝑘~𝑁(0, 𝜎𝑠
2) , 𝑏𝑘(𝑗)~𝑁(0, 𝜎𝑝

2)  and they are independent with each other.  

Therefore, the rQTc model includes time, drug concentration as fixed effects, and subject, 

subject-by-period as random effects. 
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3.3.2 ΔQTc model 

Section 1.4.2 introduced the form of the ΔQTc model, which is as follows 

𝜟𝒚𝒌 = 𝛽 ∗ 𝑪𝒌 + 𝑻𝒌 + 𝒆𝒌. 

Here we denote QTc change from baseline as ∆𝒚𝒌𝒋𝒔, and calculate which as 

∆𝑦𝑘𝑗𝑠 = 𝑦𝑘𝑗𝑠 − 𝑦𝑘𝑗,−1. 

Here 𝑦𝑘𝑗,−1 is the baseline QTc measurement for subject 𝑘 in period 𝑗, while 𝜟𝒚𝒌 is a 4𝑇 × 1 

vector consists of ∆𝑦𝑘𝑗𝑠 for all j and s indices. 

The change from pre-dose QTc vector for subject 𝑘 is formulated as follows, 

𝜟𝒚𝒌 = (

𝜟𝒚𝒌𝟏
𝜟𝒚𝒌𝟐
𝜟𝒚𝒌𝟑
𝜟𝒚𝒌𝟒

) =

(

 

𝒚𝒌𝟏 − 𝑦𝑘1,−1 ∗ 𝟙𝑻
𝒚𝒌𝟐 − 𝑦𝑘2,−1 ∗ 𝟙𝑻
𝒚𝒌𝟑 − 𝑦𝑘3,−1 ∗ 𝟙𝑻
𝒚𝒌𝟒 − 𝑦𝑘4,−1 ∗ 𝟙𝑻)

 . 

𝐸(𝜟𝒚𝒌) = (

𝝅𝒌𝟏
𝝅𝒌𝟐
𝝅𝒌𝟑
𝝅𝒌𝟒

), 

where 𝝅𝒌𝒋 has the same definition as in (3.1), and 

𝝅𝒌𝒋 = (𝜋𝑘𝑗1, 𝜋𝑘𝑗2, … , 𝜋𝑘𝑗𝑇)′, 𝜋𝑘𝑗𝑠 = 𝑇𝑠 + 𝐶𝑘𝑗𝑠 ∗ 𝛽. 

For each period 𝑗, we have 

𝐶𝑂𝑉(𝜟𝒚𝒌𝒋, 𝜟𝒚𝒌𝒋) 

= 𝐶𝑂𝑉(𝒚𝒌𝒋) + 𝟙𝑻 ∗ 𝑉𝐴𝑅(𝑦𝑘𝑗,−1) ∗ 𝟙𝑻
′ − 2 ∗ 𝐶𝑂𝑉 (𝒚𝒌𝒋, (𝑦𝑘𝑗,−1 ∗ 𝟙𝑻)) 

= 𝜮𝟏 + 𝑣1 ∗ 𝑱𝑻 − 2 ∗ (𝜎𝑠
2 + 𝜎𝑝

2) ∗ 𝑱𝑻=𝜎2 ∗ (𝑰𝑻 + 𝑱𝑻). 

For different periods 𝑗 and 𝑗′ (𝑗 ≠ 𝑗′ ), we have 

𝐶𝑂𝑉(𝜟𝒚𝒌𝒋, 𝜟𝒚𝒌𝒋′) 



 

32 
 

= 𝐶𝑂𝑉 ((𝒚𝒌𝒋 − 𝑦𝑘𝑗,−1 ∗ 𝟙𝑻), (𝒚𝒌𝒋′ − 𝑦𝑘𝑗′,−1 ∗ 𝟙𝑻)) 

= 𝜮𝟐 − 𝝉𝟐 ∗ 𝟙𝑻′ − 𝝉𝟐 ∗ 𝟙𝑻′ + 𝜮𝟐 = 𝟎 

 

Together we have 

𝜮𝜟 = 𝐶𝑂𝑉(𝜟𝒚𝒌) = 𝐶𝑂𝑉(

𝜟𝒚𝒌𝟏
𝜟𝒚𝒌𝟐
𝜟𝒚𝒌𝟑
𝜟𝒚𝒌𝟒

) = (

𝜞 𝟎
𝟎 𝜞

𝟎 𝟎
𝟎 𝟎

𝟎 𝟎
𝟎 𝟎

𝜞 𝟎
𝟎 𝜞

)

4𝑇×4𝑇

, 

where 𝜞 = 𝜎2 ∗ (𝑰𝑻 + 𝑱𝑻), 𝜮𝜟 is the covariance matrix of each subject for ΔQTc model. 

       In summary, under our model assumption, the ΔQTc model can be written as 

𝛥𝑦𝑘𝑗𝑠 = 𝛽 ∗ 𝐶𝑘𝑗𝑠 + 𝑇𝑠 + 𝑏𝑘(𝑗) + 𝑒𝑘𝑗𝑠, 

where 𝑏𝑘(𝑗)  is subject by period random effect and 𝑏𝑘(𝑗)~𝑁(0, 𝜎
2) and they are independent 

with each other. Thus the ΔQTc model includes time, drug concentration as fixed effects, and 

subject-by-period as random effect. 

 

3.3.3 ΔΔQTc model 

Section 1.4.3 introduced the form of the ΔΔQTc model, which is as follows 

𝜟𝜟𝒚𝒌 = 𝜷 ∗ 𝑪𝒌 + 𝒆𝒌. 

Here 𝜟𝜟𝒚𝒌 is a 3𝑇 × 1 vector of  ∆∆𝑦𝑘𝑗𝑠  for subject 𝑘. Furthermore, ∆∆𝑦𝑘𝑗𝑠  is calculated as 

follows (𝑗 = 𝑝 denotes the placebo period): 

∆𝒚𝒌𝒋𝒔 = 𝒚𝒌𝒋𝒔 − 𝒚𝒌𝒋,−𝟏, 𝒋 ≠ 𝒑, 

∆𝒚𝒌𝒑𝒔 = 𝒚𝒌𝒑𝒔 − 𝒚𝒌𝒑,−𝟏, 𝒋 = 𝒑, 

∆∆𝒚𝒌𝒋𝒔 = ∆𝒚𝒌𝒋𝒔 − ∆𝒚𝒌𝒑𝒔. 
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    Without loses of generality, we assume period 1 is the placebo period, and thus the 

change from placebo adjusted for baseline vector is 

𝜟𝜟𝒚𝒌 = (

𝚫𝚫𝒚𝒌𝟐
𝚫𝚫𝒚𝒌𝟑
𝚫𝚫𝒚𝒌𝟒

) = (

𝚫𝒚𝒌𝟐 − 𝚫𝒚𝒌𝟏
𝚫𝒚𝒌𝟑 − 𝚫𝒚𝒌𝟏
𝚫𝒚𝒌𝟒 − 𝚫𝒚𝒌𝟏

) = [
−𝑰𝑻 𝑰𝑻
−𝑰𝑻 𝟎
−𝑰𝑻 𝟎

     
𝟎 𝟎
𝑰𝑻 𝟎
𝟎 𝑰𝑻

] ∗ (

𝜟𝒚𝒌𝟏
𝜟𝒚𝒌𝟐
𝜟𝒚𝒌𝟑
𝜟𝒚𝒌𝟒

), 

So                                      𝑬(𝜟𝜟𝒚𝒌) = 𝐸 (

𝜟𝜟𝒚𝒌𝟐
𝜟𝜟𝒚𝒌𝟑
𝜟𝜟𝒚𝒌𝟒

) = (
𝛽 ∗ 𝑪𝒌𝟐
𝛽 ∗ 𝑪𝒌𝟑
𝛽 ∗ 𝑪𝒌𝟒

), 

𝜮𝜟𝜟 = 𝐶𝑂𝑉(𝜟𝜟𝒚𝒌) = 𝐶𝑂𝑉 (

𝚫𝚫𝒚𝒌𝟐
𝚫𝚫𝒚𝒌𝟑
𝚫𝚫𝒚𝒌𝟒

) 

= [
−𝑰𝑻 𝑰𝑻
−𝑰𝑻 𝟎
−𝑰𝑻 𝟎

     
𝟎 𝟎
𝑰𝑻 𝟎
𝟎 𝑰𝑻

] ∗ 𝜮𝜟 ∗ [
−𝑰𝑻 𝑰𝑻
−𝑰𝑻 𝟎
−𝑰𝑻 𝟎

     
𝟎 𝟎
𝑰𝑻 𝟎
𝟎 𝑰𝑻

]

′

 

                = [
𝟐𝜞 𝜞 𝜞
𝜞 𝟐𝜞 𝜞
𝜞 𝜞 𝟐𝜞

] = 𝜎2 ∗ (𝑰𝟑𝑻 + 𝑱𝟑𝑻 + [
𝑱𝑻 𝟎 𝟎
𝟎 𝑱𝑻 𝟎
𝟎 𝟎 𝑱𝑻

] + [
𝑰𝑻 𝑰𝑻 𝑰𝑻
𝑰𝑻 𝑰𝑻 𝑰𝑻
𝑰𝑻 𝑰𝑻 𝑰𝑻

]) , where 

𝜞 = 𝜎2 ∗ (𝑰𝑻 + 𝑱𝑻). 

       From the above derivation, the ΔΔQTc model includes drug concentration as fixed 

effects, and subject, subject-by-period, subject-by-time as random effects. And the random 

effects and random error are independent with each other.  

 

3.3.4 Conditional ΔQTc (cΔQTc) model  

       Lu (2014) proposed an analysis of covariance (ANCOVA) model for analyzing 

traditional crossover TQT study with period-specific pre-dose baseline, and his work 

incorporates the period-specific pre-dose QTc baseline and subject-averaged pre-dose QTc 

baseline in the model and demonstrates the efficiency of the proposed model. To our best 

knowledge, the use of baseline has not been addressed in the concentration-QTc models. In this 

section, we propose a conditional ΔQTc (cΔQTc) model which uses ΔQTc as the response 
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variable, and incorporate period-specific pre-dose QTc baseline and subject-averaged pre-dose 

QTc baseline as covariates in the model.  

       First, distribution of ΔQTc conditional on pre-dose baseline is derived. It is assumed that 

((𝑦𝑘1,−1, 𝑦𝑘2,−1, 𝑦𝑘3,−1, 𝑦𝑘4,−1), 𝜟𝒚𝒌𝟏′, 𝜟𝒚𝒌𝟐′, 𝜟𝒚𝒌𝟑′, 𝜟𝒚𝒌𝟒′)′ follows a multivariate normal 

distribution and 

𝐶𝑂𝑉 (((𝑦𝑘1,−1, 𝑦𝑘2,−1, 𝑦𝑘3,−1, 𝑦𝑘4,−1), 𝜟𝒚𝒌𝟏
′ , 𝜟𝒚𝒌𝟐

′ , 𝜟𝒚𝒌𝟑
′ , 𝜟𝒚𝒌𝟒

′ )
′

) 

= (
𝜮𝒃𝒃 𝜮𝒃𝜟′
𝜮𝒃𝜟 𝜮𝜟

)
(4𝑇+4)×(4T+4)

, 

where                               𝜮𝒃𝒃 = 𝐶𝑂𝑉(

𝑦𝑘1,−1
𝑦𝑘2,−1
𝑦𝑘3,−1
𝑦𝑘3,−1

) = 𝜎𝑠
2 ∗ 𝑱𝟒 + (𝜎𝑝

2 + 𝜎2) ∗ 𝑰𝟒,   

𝜮𝜟 = 𝐶𝑂𝑉(

𝜟𝒚𝒌𝟏
𝜟𝒚𝒌𝟐
𝜟𝒚𝒌𝟑
𝜟𝒚𝒌𝟒

) = (

𝜞 𝟎
𝟎 𝜞

𝟎 𝟎
𝟎 𝟎

𝟎 𝟎
𝟎 𝟎

𝜞 𝟎
𝟎 𝜞

)

4𝑇×4𝑇

,  𝜞 = 𝜎2 ∗ (𝑰𝑻 + 𝑱𝑻), 

𝜮𝒃𝜟 = 𝐶𝑂𝑉

(

 
 
(

𝑦𝑘1,−1
𝑦𝑘2,−1
𝑦𝑘3,−1
𝑦𝑘3,−1

) ,(

𝜟𝒚𝒌𝟏
𝜟𝒚𝒌𝟐
𝜟𝒚𝒌𝟑
𝜟𝒚𝒌𝟒

)

)

 
 

=

(

 
 

(−𝝈𝟐) ∗ 𝟙𝑻 𝟎

𝟎 (−𝝈𝟐) ∗ 𝟙𝑻

𝟎                  𝟎
𝟎                  𝟎

𝟎                  𝟎
𝟎                  𝟎

(−𝝈𝟐) ∗ 𝟙𝑻 𝟎

𝟎 (−𝝈𝟐) ∗ 𝟙𝑻)

 
 

4𝑇×4

 

= −𝜎2 ∗ (

𝟙𝑻 𝟎
𝟎 𝟙𝑻

𝟎 𝟎
𝟎 𝟎

𝟎 𝟎
𝟎 𝟎

𝟙𝑻 𝟎
𝟎 𝟙𝑻

)

4𝑇×4

. 

       Based on the property of multivariate normal distribution, the distribution of 𝜟𝒚𝒌 

condition on period-specific pre-dose QTc is also multivariate normal. Let 𝜮𝑪  denote the 
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covariance matrix of 𝜟𝒚𝒌 conditional on the pre-baseline QTc measurement for each subject. 

The covariance matrix is derived in the next step. 

 𝜮𝑪 = 𝐶𝑂𝑉

(

 
 
(

𝜟𝒚𝒌𝟏
𝜟𝒚𝒌𝟐
𝜟𝒚𝒌𝟑
𝜟𝒚𝒌𝟒

) |
|(

𝑦𝑘1,−1
𝑦𝑘2,−1
𝑦𝑘3,−1
𝑦𝑘3,−1

)

)

 
 
= 𝜮𝜟 − 𝜮𝒃𝜟𝜮𝒃𝒃

−𝟏𝜮𝒃𝜟
′. 

𝜮𝒃𝒃
−𝟏

 can be calculated as follows (Dobin et al. 2005): 

𝜮𝒃𝒃
−𝟏=(𝜎𝑠

2 ∗ 𝑱𝟒 + (𝜎𝑝
2 + 𝜎2) ∗ 𝑰𝟒)

−1 =
1

𝜎𝑝2+𝜎2
∗ 𝑰𝟒 −

𝜎𝑠
2

(𝜎𝑝2+𝜎2)∗(𝜎𝑝2+𝜎2+4𝜎𝑠2)
∗ 𝑱𝟒. 

So that we have 

𝜮𝒃𝜟𝜮𝒃𝒃
−𝟏𝜮𝒃𝜟

′ 

=
𝜎4

𝜎𝑝2 + 𝜎2
∗ (

𝑱𝑻 𝟎
𝟎 𝑱𝑻

𝟎 𝟎
𝟎 𝟎

𝟎 𝟎
𝟎 𝟎

𝑱𝑻 𝟎
𝟎 𝑱𝑻

)

4𝑇×4T

 −  
𝜎𝑠
2 ∗ 𝜎4

(𝜎𝑝2 + 𝜎2) ∗ (𝜎𝑝2 + 𝜎2 + 4𝜎𝑠2)
∗ 𝑱𝟒𝐓∗𝟒𝐓 

𝜮𝑪 = 𝜮𝜟 − 𝜮𝒃𝜟𝜮𝒃𝒃
−𝟏𝜮𝒃𝜟

′ 

= 𝜎2 ∗ 𝑰𝟒𝑻∗𝟒𝑻 +
𝜎2∗𝜎𝑝

2

𝜎𝑝2+𝜎2
∗ (

𝑱𝑻 𝟎
𝟎 𝑱𝑻

𝟎 𝟎
𝟎 𝟎

𝟎 𝟎
𝟎 𝟎

𝑱𝑻 𝟎
𝟎 𝑱𝑻

)

4𝑇×4T

+
𝜎𝑠
2∗𝜎4

(𝜎𝑝2+𝜎2)∗(𝜎𝑝2+𝜎2+4𝜎𝑠2)
∗ 𝑱𝟒𝐓∗𝟒𝐓. 

𝐸

(

 
 
(

𝜟𝒚𝒌𝟏
𝜟𝒚𝒌𝟐
𝜟𝒚𝒌𝟑
𝜟𝒚𝒌𝟒

) |
|(

𝑦𝑘1,−1
𝑦𝑘2,−1
𝑦𝑘3,−1
𝑦𝑘3,−1

)

)

 
 
= (

𝝅𝒌𝟏
𝝅𝒌𝟐
𝝅𝒌𝟑
𝝅𝒌𝟒

) + 𝜮𝒃𝜟𝜮𝒃𝒃
−𝟏 ∗

(

 
 
(

𝑦𝑘1,−1
𝑦𝑘2,−1
𝑦𝑘3,−1
𝑦𝑘3,−1

)− 𝐸(

𝑦𝑘1,−1
𝑦𝑘2,−1
𝑦𝑘3,−1
𝑦𝑘3,−1

)

)

 
 

= (

𝝅𝒌𝟏
𝝅𝒌𝟐
𝝅𝒌𝟑
𝝅𝒌𝟒

) + 𝜮𝒃𝜟𝜮𝒃𝒃
−𝟏 ∗

(

 
 
(

𝑦𝑘1,−1
𝑦𝑘2,−1
𝑦𝑘3,−1
𝑦𝑘3,−1

)− (

𝜂
𝜂
𝜂
𝜂

)

)
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       For subject 𝑘, the averaged pre-dose baseline across periods within subject can serve as 

an estimate for 𝜂. Kenward and Roger (2009) also mentioned that incorporating the averaged 

pre-dose baseline across periods within the same subject will reduce the between subject 

variation. Therefore the cΔQTc model includes drug concentration and time as fixed effects, and 

pre-dose QTc and the averaged pre-dose QTc across periods of the same subject as covariates. It 

has a double compound symmetry covariance structure with 
𝜎2∗𝜎𝑝

2

𝜎𝑝2+𝜎2
 as variance of subject-by-

period random effect, 
𝜎𝑠
2∗𝜎4

(𝜎𝑝2+𝜎2)∗(𝜎𝑝2+𝜎2+4𝜎𝑠2)
 as the variance of subject random effect, 𝜎2 is the 

variance of the random error, and the random effects and random error are independent with each 

other. 

 

3.4 𝒗𝒂𝒓(�̂�) of concentration-QTc models 

       Each of the concentration-QTc models in Section 3.3 belongs to the family of linear 

mixed effects model 𝒀 = 𝑿𝜶 + 𝒁𝜸 + 𝝐, where 𝒀 is the observed response vector, 𝑿 is the design 

matrix of fixed effects, 𝒁 is the design matrix of random effects, 𝜶 is the unknown fixed effects 

while 𝜸  is the unknown random effects to be estimated, and 𝝐  is the unobserved vector of 

random errors. Typically, the maximum likelihood (ML) method or restricted maximum 

likelihood (ML) method are used for parameter estimates in mixed effects model (Laird and 

Ware 1982), and the assumption for ML method is that 𝜸 and 𝝐 both follow multivariate normal 

distribution with mean vector 0, and 𝒗𝒂𝒓(𝜸) = 𝑮  while 𝒗𝒂𝒓(𝝐) = 𝑹 . Let 𝑽  denote the 

covariance matrix of 𝒀 then we have 𝑽 = 𝒁𝑮𝒁′ + 𝑹. 

       The estimator �̂� = (𝑿′�̂�−𝟏𝑿)−𝑿′�̂�−𝟏𝒀 is the best linear unbiased estimator (BLUE) of 𝜶 

if �̂� is known which is usually not true, thus we usually use the ML estimates �̂�  and �̂�  to 

calculate �̂�. The approximate covariance matrix of �̂� is (𝑿′�̂�−𝟏𝑿)−, therefore the variance of the 

estimated drug effect slope for each model can be derived by its design matrix of fixed effects, 

𝑿, and the estimated covariance matrix of the response vector, �̂�. The ML estimator �̂� is a 

consistent estimator of 𝑽, thus the variance of drug effect var(�̂�) for each model will be derived 
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based on (𝑿′𝑽−𝟏𝑿)−instead of (𝑿′�̂�−𝟏𝑿)−  because we have prior knowledge of 𝑽 under our 

model assumption. 

       In this section, the variance of the drug effect slope, 𝑣𝑎𝑟(�̂�), for each model is derived 

and compared. The power of each model to exclude a QTc prolongation effect in hypothesis 

testing (3.2) depends on 𝑣𝑎𝑟(�̂�),  and comparisons of 𝑣𝑎𝑟(�̂�) between all models could provide 

a guideline on the efficiencies of each model. Subsequently it also indicates which model would 

have higher power to exclude a small QTc prolongation effect in hypothesis testing (3.2). 

       Before going any further, some notations are introduced first. Let 𝑪 = {𝑪𝒌𝒋𝒔} be a 𝑲𝑱𝑻-

dimension vector whose element 𝑪𝒌𝒋𝒔 denotes the observed drug concentration for subject 𝒌 at 

period 𝒋  and time 𝒕𝒔 . Let 𝑪𝒌𝒋  be the 𝑻 -dimension vector which denotes the observed drug 

concentration for subject 𝒌 at period 𝒋. We have: 

𝑪..̅̅ ̅ =
𝟏

𝑲𝑱
∑∑𝑪𝒌𝒋

𝑱

𝒋=𝟏

𝑲

𝒌=𝟏

, 𝑪𝒌.̅̅ ̅̅ =
𝟏

𝑱
∑𝑪𝒌𝒋

𝑱

𝒋=𝟏

 

𝑪... = ∑ ∑ ∑ 𝑪𝒌𝒋𝒕
𝑻
𝒕=𝟏

𝑱
𝒋=𝟏

𝑲
𝒌=𝟏 ,   𝑪...̅̅̅̅ =

𝟏

𝑲𝑱𝑻
𝑪..., 

𝑪𝒌.. =∑∑𝑪𝒌𝒋𝒕

𝑻

𝒕=𝟏

𝑱

𝒋=𝟏

,   𝑪𝒌𝒋. =∑𝑪𝒌𝒋𝒕

𝑻

𝒕=𝟏

 

 

3.4.1 𝒗𝒂𝒓(𝜷�̂�) of the rQTc model 

       From 3.3.1, let 𝑿𝒓 denote the design matrix for the fixed effects with dimension 𝐾𝐽𝑇 ×

(𝑇 + 1), 𝑽𝑟 denote the covariance matrix for the rQTc model with dimension 𝐾𝐽𝑇 × 𝐾𝐽𝑇, so 

𝑿𝒓 =

[
 
 
 
 
 
𝑰𝑻 𝑪𝟏𝟏
𝑰𝑻 𝑪𝟏𝟐
⋮ ⋮
𝑰𝑻 𝑪𝒌𝒋
⋮ ⋮

𝑰𝑻 𝑪𝑲𝑱]
 
 
 
 
 

= [𝑬 𝑪], here 𝑬 =

[
 
 
 
 
 
𝑰𝑻
𝑰𝑻
…
𝑰𝑻
…
𝑰𝑻]
 
 
 
 
 

, 𝑪 =

[
 
 
 
 
 
𝑪𝟏𝟏
𝑪𝟏𝟐
…
𝑪𝒌𝒋
…
𝑪𝑲𝑱]

 
 
 
 
 

, 
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𝑽𝑟 = 𝑰𝐾⊗𝜮𝒓, 𝜮𝑟 = 𝑰𝐽⊗𝜴+ 𝜎𝑠
2 ∗ 𝑱𝐽𝑇×𝐽𝑇, Ω= 𝜎2 ∗ 𝑰𝑇 + 𝜎𝑝

2 ∗ 𝑱𝑇×𝑇. 

      Here 𝑬 is a matrix of dimension 𝐾𝐽𝑇 × 𝑇 which is to model the time effect, and 𝑪 is 𝐾𝐽𝑇-

dimension vector which is the vector of the observed drug concentration. 

       The covariance matrix of the fixed effects can be rewritten as follows 

(𝑿𝑟
′𝑽𝒓

−𝟏𝑿𝒓)
−𝟏 = [

𝐄′𝑽𝑟
−𝟏𝑬 𝑬′𝑽𝑟

−𝟏𝑪

𝑪′𝑽𝑟
−𝟏𝑬 𝑪′𝑽𝑟

−𝟏𝑪
]

−𝟏

 

Our interested element, 𝑣𝑎𝑟(𝛽�̂�), is the bottom right corner element of the matrix, where 

𝛽�̂� is the estimated drug effect slope by rQTc model. And according to Henderson et al. (1981), 

𝑣𝑎𝑟(𝛽�̂�) can be expressed as 

(𝑪′𝑽𝑟
−𝟏𝑪 − 𝑪′𝑽𝑟

−𝟏𝑬 ∗ (𝑬′𝑽𝑟
−𝟏𝑬)−𝟏 ∗ 𝑬′𝑽𝑟

−𝟏𝑪)−1, 

𝑽𝑟
−𝟏 = 𝑰𝐾⊗𝜮𝒓

−𝟏
, 𝜮𝒓

−𝟏 = 𝑰𝐽⊗𝛀−𝟏 −
σs

2

(𝑇∗𝜎𝑝2+𝜎2)∗(𝑇∗𝜎𝑝2+𝜎2+𝐽𝑇∗𝜎𝑠2)
𝑱𝐽𝑇×𝐽𝑇, 

(see Appendix 1.1) 

(𝑬′𝑽𝑟
−𝟏𝑬)−𝟏 =

1

𝐾
(
1

𝐽
𝛀 + σs

2𝑱𝑇×𝑇) , 

(see Appendix 1.2) 

so 𝑽𝑟
−𝟏𝑬 = 𝟙𝐾𝐽⊗𝛀−𝟏 −

σs
2∗𝐽

(𝑇∗𝜎𝑝2+𝜎2)∗(𝑇∗𝜎𝑝2+𝜎2+𝐽𝑇∗𝜎𝑠2)
𝑱𝐾𝐽𝑇×𝑇 

Further algebraic calculation can show that the variance for the estimated drug effect 

slope 𝑣𝑎𝑟(𝛽�̂�) for the rQTc model (see Appendix 1.3) is formulated as, 

1

𝑣𝑎𝑟(𝛽�̂�)
= 

∑ ∑ (𝑪𝑘𝑗 − 𝑪..̅̅ ̅)
′
𝜴−1𝐽

𝑗=1 (𝑪𝑘𝑗 − 𝑪..̅̅ ̅)
𝐾
𝑘=1 −

𝜎𝑠
2

(𝑇∗𝜎𝑝2+𝜎2)∗(𝑇∗𝜎𝑝2+𝜎2+𝐽𝑇∗𝜎𝑠2)
∑ (𝐶𝑘.. − 𝐶...̅̅ ̅)

2𝐾
𝑘=1       
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3.4.2 𝒗𝒂𝒓(𝜷�̂�) of the ΔQTc model 

       From Section 3.3.2, let 𝑿𝜟 denote the design matrix for the fixed effects for ΔQTc model 

with dimension 𝐾𝐽𝑇 × (𝑇 + 1),  𝑽𝛥  denote the covariance matrix for ΔQTc model with 

dimension 𝐾𝐽𝑇 × 𝐾𝐽𝑇, so that 

𝑿Δ =

[
 
 
 
 
 
𝑰𝑻 𝑪𝟏𝟏
𝑰𝑻 𝑪𝟏𝟐
⋮ ⋮
𝑰𝑻 𝑪𝒌𝒋
⋮ ⋮

𝑰𝑻 𝑪𝑲𝑱]
 
 
 
 
 

= [𝑬 𝑪], 𝑽Δ = 𝑰𝐾⊗𝜮𝜟 = 𝑰𝐾𝐽⊗𝜞, 𝜞 = 𝜎2(𝑰𝑇 + 𝑱𝑇×𝑇). 

Then we have 

(𝑿Δ
′𝑽Δ

−𝟏𝑿Δ)
−𝟏 = [

𝐄′𝑽Δ
−𝟏𝑬 𝑬′𝑽Δ

−𝟏𝑪

𝑪′𝑽Δ
−𝟏𝑬 𝑪′𝑉Δ

−𝟏𝑪
]

−𝟏

 

Similarly to Section 3.4.1, 𝑣𝑎𝑟(𝛽�̂�)  can be expressed as 

(𝑪′𝑽Δ
−𝟏𝑪 − 𝑪′𝑽Δ

−𝟏𝑬 ∗ (𝑬′𝑽Δ
−𝟏𝑬)−𝟏 ∗ 𝑬′𝑽Δ

−𝟏𝑪)−1 

𝑽Δ
−𝟏 = 𝑰𝐾𝐽⊗𝜞−𝟏,  (𝑬′𝑽Δ

−𝟏𝑬)−𝟏 =
1

𝐾𝐽
𝜞, 𝑽Δ

−𝟏𝑬 = 𝟙𝐾𝐽⊗𝜞−𝟏 

Further algebraic calculation can show that the variance for the estimated drug effect slope 

𝑣𝑎𝑟(𝛽�̂�) for the ΔQTc model is expressed as 

1

𝑣𝑎𝑟(𝛽�̂�) 
= ∑ ∑ (𝑪𝑘𝑗 − 𝑪..̅̅ ̅)

′
𝜞−1𝐽

𝑗=1 (𝑪𝑘𝑗 − 𝑪..̅̅ ̅)
𝐾
𝑘=1 . 

 

3.4.3 𝒗𝒂𝒓(𝜷𝜟�̂�) of the ΔΔQTc model 

       From Section 3.3.3, let 𝑿𝜟𝜟 denote the design matrix for the fixed effects for the ΔΔQTc 

model with dimension 𝐾(𝐽 − 1)𝑇 × 𝑇, 𝑽𝛥𝛥 denote the covariance matrix for the ΔΔQTc model 

with dimension 𝐾(𝐽 − 1)𝑇 × 𝐾(𝐽 − 1)𝑇, so that 
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𝑿ΔΔ = 𝑪 =

[
 
 
 
 
 
𝑪𝟏𝟏
𝑪𝟏𝟐
…
𝑪𝒌𝒋
…
𝑪𝑲𝑱]

 
 
 
 
 

 

       Usually, the data from placebo period are not included in the design matrix because the 

drug concentrations in placebo periods are supposed to be zero.  

𝑽ΔΔ = 𝑰𝐾⊗𝜮ΔΔ,  𝑽𝛥𝛥
−𝟏 = 𝑰𝐾⊗𝜮ΔΔ

−𝟏
 

𝜮ΔΔ = (𝑰𝐽−1 + 𝐽𝐽−1) ⊗ 𝜞,  𝜮ΔΔ
−𝟏 = 𝑰𝐽−1⊗𝜞−𝟏 −

1

𝐽
∗ 𝑱𝐽−1⊗𝜞−𝟏 

𝜞 = 𝜎2(𝑰𝑇 + 𝑱𝑇×𝑇). 

       The covariance matrix of the fixed effects can be rewritten as follows 

(𝑿ΔΔ
′𝑽ΔΔ

−𝟏𝑿ΔΔ)
−𝟏
= 1/[∑∑(𝑪𝑘𝑗 − 𝑪𝑘.̅̅ ̅̅ )

′
𝜞−1

𝐽

𝑗=1

(𝑪𝑘𝑗 − 𝑪𝑘.̅̅ ̅̅ )

𝐾

𝑘=1

] 

       So for the ΔΔQTc model, the variance for the estimated drug effect slope 

𝑣𝑎𝑟(𝛽𝛥�̂�) satisfies the following equation: 

1

𝑣𝑎𝑟(𝛽𝛥�̂�)
= ∑ ∑ (𝑪𝑘𝑗 − 𝑪𝑘.̅̅ ̅̅ )

′
𝜞−1𝐽

𝑗=1 (𝑪𝑘𝑗 − 𝑪𝑘.̅̅ ̅̅ )𝐾
𝑘=1 . 

 

3.4.4 𝒗𝒂𝒓(𝜷�̂�) of the cΔQTc model 

       From Section 3.3.4, let 𝑿𝒄  denote the design matrix for the fixed effects for cΔQTc 

model with dimension 𝐾𝐽𝑇 × (𝑇 + 3), 𝑽𝑐 denote the covariance matrix for cΔQTc model with 

dimension 𝐾𝐽𝑇 × 𝐾𝐽𝑇, so that 
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𝑿𝒄 =

[
 
 
 
 
𝑰𝑻 𝑷𝟏𝟏
𝑰𝑻 𝑷𝟏𝟐

𝑺𝟏 𝑪𝟏𝟏
𝑺𝟏 𝑪𝟏𝟐… …

𝑰𝑻 𝑷𝒌𝒋

… …
𝑺𝒌 𝑪𝒊𝒋

… …
𝑰𝑻 𝑷𝑲𝑱

… …
𝑺𝑲 𝑪𝑲𝑱]

 
 
 
 

 

Here, 𝑷𝒌𝒋 = 𝑦𝑘𝑗,−1 ∗ 𝟙𝑻  represent the period-specific pre-dose QTc baseline for period 𝑗  of 

subject 𝑘. 𝑺𝒌 =
1

𝐽
∑ 𝑷𝒌𝒋
𝐽
𝑗=1  is the average pre-dose QTc  measurements across periods of subject 

𝑘. 

       Let 𝑽c = 𝑰𝐾⊗𝜮c, and from Section 3.3.4, 𝜮c is a double compound symmetry structure 

with 
𝜎2∗𝜎𝑝

2

𝜎𝑝2+𝜎2
 as the variance of the subject-by-period random effect, and 

𝜎𝑠
2∗𝜎4

(𝜎𝑝2+𝜎2)∗(𝜎𝑝2+𝜎2+𝐽𝜎𝑠2)
 as 

the variance of the subject random effect, while 𝜎2 is the variance of the random error.  

       In Kenward and Roger (2009), the authors mentioned several ways in analyzing 

crossover trials that have within-period baseline measurements, and their analysis indicated that 

inclusion of fixed subject effect in the model will remove the between-subject information in the 

model. Inclusion of fixed subject effect in the model reduces the between-subject variance 

dramatically in our analysis. Therefore, for the sake of computational convenience, we assume 

that between-subject variance has negligible influence on the derivation of the variance of the 

estimated drug effect slope for the cΔQTc model 𝑣𝑎𝑟(𝛽�̂�), so that 𝑽c̃ is used in the derivation 

instead of 𝑽c where  

𝑽c̃ = 𝑰𝐾⊗𝜮c̃,  𝜮c̃ = 𝑰𝐽⊗ (𝜎2 ∗ 𝑰𝑇 +
𝜎2∗𝜎𝑝

2

𝜎𝑝2+𝜎2
∗ 𝑱𝑇×𝑇) = 𝑰𝐽⊗𝜸, 

where we denote 𝜸 = 𝜎2 ∗ 𝑰𝑇 +
𝜎2∗𝜎𝑝

2

𝜎𝑝2+𝜎2
∗ 𝑱𝑇×𝑇. 

       Let 𝑬𝟏 =

[
 
 
 
 
 
𝑰𝑻
𝑰𝑻
…

𝑷𝟏𝟏
𝑷𝟏𝟐
…

𝑺𝟏
𝑺𝟏
…

𝑰𝑻
…
𝑰𝑻

𝑷𝒌𝒋
…
𝑷𝑲𝑱

𝑺𝒌
…
𝑺𝑲]
 
 
 
 
 

= [𝑬 𝑩] , and 𝑩 = [𝑷 𝑺] , 𝑷 =

[
 
 
 
 
 
𝑷𝟏𝟏
𝑷𝟏𝟐
…
𝑷𝒌𝒋
…
𝑷𝑲𝑱]

 
 
 
 
 

, 𝑺 =

[
 
 
 
 
 
𝑺𝟏
𝑺𝟏
…
𝑺𝒌
…
𝑺𝑲]
 
 
 
 
 

, thus the 

design matrix for cΔQTc model can be formulated as 𝑿𝒄 = [𝑬𝟏  𝑪]. 
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       Then we have (𝑿𝑐
′𝑽�̃�

−𝟏
𝑿𝒄)

−𝟏 = [
𝑬𝟏′𝑽�̃�

−𝟏
𝑬𝟏 𝑬𝟏′𝑽�̃�

−𝟏
𝑪

𝑪′𝑽�̃�
−𝟏
𝑬𝟏 𝑪′𝑽�̃�

−𝟏
𝑪
]

−𝟏

, similarly, 𝑣𝑎𝑟(𝛽�̂�) can be 

expressed as 

 

(𝑪′𝑽�̃�
−𝟏
𝑪 − 𝑪′𝑽�̃�

−𝟏
𝑬𝟏 ∗ (𝑬𝟏′𝑽�̃�

−𝟏
𝑬𝟏)

−𝟏 ∗ 𝑬𝟏′𝑽�̃�
−𝟏
𝑪)−1. 

       First, we will derive (𝑬𝟏′𝑽�̃�
−𝟏
𝑬𝟏)

−𝟏,  

(𝑬𝟏′𝑽�̃�
−𝟏
𝑬𝟏)

−𝟏 = [
𝑬′𝑽�̃�

−𝟏
𝑬 𝑬′𝑽�̃�

−𝟏
𝑩

𝑩′𝑽�̃�
−𝟏
𝑬 𝑩′𝑽�̃�

−𝟏
𝑩
]−𝟏 = [

1

𝐾𝐽
𝜸 + 𝑩..̅̅ ̅ ∗ 𝑰𝑵𝑽 ∗ 𝑩..̅̅ ̅′ −𝑩..̅̅ ̅ ∗ 𝑰𝑵𝑽

−𝑰𝑵𝑽 ∗ 𝑩..̅̅ ̅′ 𝑰𝑵𝑽
], 

where 𝑰𝑵𝑽 = (∑ ∑ (𝑩𝒊𝒋 − 𝑩..̅̅ ̅)′𝜸
−𝟏(𝑩𝒊𝒋 − 𝑩..̅̅ ̅)

𝐽
𝑗=1

𝐾
𝑘=1 )

−𝟏
.           (see Appendix 1.4) 

  Based on the results above, we have 

𝑽�̃�
−𝟏
𝑬𝟏 ∗ (𝑬𝟏

′ 𝑽�̃�
−𝟏
𝑬𝟏)

−𝟏 ∗ 𝑬𝟏′ 𝑽�̃�
−𝟏

 

=
1

𝐾𝐽
𝑱𝑲𝑱×𝑲𝑱⊗𝜸−𝟏 + 𝑽�̃�

−𝟏
(𝑩 − 𝑬 ∗ 𝑩..̅̅ ̅) ∗ [(𝑩 − 𝑬 ∗ 𝑩..̅̅ ̅)

′𝑽�̃�
−𝟏
(𝑩 − 𝑬 ∗ 𝑩..̅̅ ̅)]

−𝟏

∗ (𝑩 − 𝑬 ∗ 𝑩..̅̅ ̅)
′𝑽�̃�

−𝟏
 

=
1

𝐾𝐽
𝑱𝑲𝑱×𝑲𝑱⊗𝜸−𝟏 + 𝑺𝑼𝑴 

  (see Appendix 1.5 ) 

       So we have  

𝑪′𝑽�̃�
−𝟏
𝑪 − 𝑪′𝑽�̃�

−𝟏
𝑬𝟏 ∗ (𝑬𝟏′𝑽�̃�

−𝟏
𝑬𝟏)

−𝟏 ∗ 𝑬𝟏′𝑽�̃�
−𝟏
𝑪 

= 𝑪′ [𝑽�̃�
−𝟏
−
1

𝐾𝐽
𝑱𝑲𝑱×𝑲𝑱⊗𝜸−𝟏] 𝑪 − 𝑪′ ∗ 𝑺𝑼𝑴 ∗ 𝑪 

= ∑ ∑ (𝑪𝑘𝑗 − 𝑪..̅̅ ̅)
′
𝜸−1𝐽

𝑗=1 (𝑪𝑘𝑗 − 𝑪..̅̅ ̅)
𝐾
𝑘=1 − 𝑪′ ∗ 𝑺𝑼𝑴 ∗ 𝑪. 
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       Based on practical experience, we found that 𝑪′ ∗ 𝑺𝑼𝑴 ∗ 𝑪 has very little impact on 

derivation of 𝑣𝑎𝑟(𝛽�̂�), a simulation in Section 3.4.5 will validate the impact of ignoring subject 

random effect 
𝜎𝑠
2∗𝜎4

(𝜎𝑝2+𝜎2)∗(𝜎𝑝2+𝜎2+J∗𝜎𝑠2)
 and 𝑪′ ∗ 𝑺𝑼𝑴 ∗ 𝑪 in deriving 𝑣𝑎𝑟(𝛽�̂�), therefore we have 

1

𝑣𝑎𝑟(𝛽�̂�)
≈ ∑ ∑ (𝑪𝑘𝑗 − 𝑪..̅̅ ̅)

′
𝜸−1𝐽

𝑗=1 (𝑪𝑘𝑗 − 𝑪..̅̅ ̅)
𝐾
𝑘=1 . 

 

3.4.5 Validation of derived 𝒗𝒂𝒓(𝜷�̂�) for the cΔQTc model 

       When deriving 𝑣𝑎𝑟(𝛽�̂�) for the cΔQTc model in Section 3.4.4, an approximation is used 

by ignoring the between subject variation 
𝜎𝑠
2∗𝜎4

(𝜎𝑝2+𝜎2)∗(𝜎𝑝2+𝜎2+J∗𝜎𝑠2)
 of the cΔQTc model and 

𝑪′ ∗ 𝑺𝑼𝑴 ∗ 𝑪  in the derivation, finally we result in 𝑣𝑎𝑟(𝛽�̂�) ≈ 1/∑ ∑ (𝑪𝑘𝑗 −
𝐽
𝑗=1

𝐾
𝑘=1

𝑪..̅̅ ̅)
′
𝜸−1 (𝑪𝑘𝑗 − 𝑪..̅̅ ̅). Simulation study below shows the approximation is reasonable.  

       We denote 𝑣𝑎𝑟(𝛽�̂�) as the upper right element of (𝑿𝒄′𝑽c
−1𝑿𝒄)

− where we don’t exclude 

the between subject variation and the 𝑪′ ∗ 𝑺𝑼𝑴 ∗ 𝑪 term, while 𝑣𝑎𝑟(𝛽�̂�)
̃ = 1/∑ ∑ (𝑪𝑘𝑗 −

𝐽
𝑗=1

𝐾
𝑘=1

𝑪..̅̅ ̅)
′
𝜸−1 (𝑪𝑘𝑗 − 𝑪..̅̅ ̅). Details of drug concentration simulation process and QTc simulation is 

introduced in Section 3.6. In each simulation, percentage difference between the true asymptotic 

variance and the approximation 
𝑣𝑎𝑟(𝛽�̂�)
̃ −𝑣𝑎𝑟(𝛽�̂�)

𝑣𝑎𝑟(𝛽�̂�)
× 100% is calculated. From Table 3.2, in all the 

simulation scenarios, 𝑣𝑎𝑟(𝛽�̂�)
̃  tends to underestimate 𝑣𝑎𝑟(𝛽�̂�), but the percentage difference is 

trivial (less than 4%), thus 1/∑ ∑ (𝑪𝑘𝑗 − 𝑪..̅̅ ̅)
′
𝜸−1𝐽

𝑗=1 (𝑪𝑘𝑗 − 𝑪..̅̅ ̅)
𝐾
𝑘=1  is a reasonable 

approximation of 𝑣𝑎𝑟(𝛽�̂�). 
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Table 3.2 Summary of percentage difference between 𝑣𝑎𝑟(𝛽�̂�)  and 𝑣𝑎𝑟(𝛽�̂�)
̃  based on 1000 

simulations 

Scenario 𝜎𝑠
2 𝜎𝑝

2 𝜎2 Mean sd 

1 240 15 45 -3.88% 1.29% 

2 225 30 45 -2.59% 0.91% 

3 210 45 45 -2.03% 0.80% 

4 195 60 45 -1.71% 0.79% 

5 180 30 90 -3.73% 1.16% 

6 150 60 90 -2.51% 0.94% 

7 120 90 90 -1.90% 0.84% 

8 90 120 90 -1.52% 0.82% 

 

3.5 Comparison of  𝒗𝒂𝒓(�̂�) between concentration-QTc models 

       In Section 3.4, variance of drug effect slope estimation for each model 𝒗𝒂𝒓(𝜷�̂�) , 

𝒗𝒂𝒓(𝜷�̂�) , 𝒗𝒂𝒓(𝜷𝜟�̂�)  and 𝒗𝒂𝒓(𝜷�̂�)  are derived. As mentioned before, the variance of the 

estimated drug effect slope for each model directly relates to the power of each model to exclude 

a small QTc prolongation effect in hypothesis testing (3.2), therefore comparison of variance of 

estimated drug effect slope between all of the models will provide guidance on which model is 

the most efficient. In the current development of current concentration-QTc models, to our best 

knowledge, ΔQTc model is the most popular choice, thus we compare the other 3 variances 

to 𝒗𝒂𝒓(𝜷�̂�) . 

 

3.5.1 𝒗𝒂𝒓(𝜷�̂�) vs 𝒗𝒂𝒓(𝜷�̂�) 

First we see that 

1

𝑣𝑎𝑟(𝛽�̂�)
−

1

𝑣𝑎𝑟(𝛽�̂�)
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=
1

𝑇∗𝜎𝑝2+𝜎2
[
𝜎2−𝜎𝑝

2

𝜎2(𝑇+1)
∑ ∑ (𝐶𝑘𝑗. −

𝐶…

𝐾𝐽
)
2

𝐽
𝑗=1

𝐾
𝑘=1 −

𝜎𝑠
2

(𝑇∗𝜎𝑝2+𝜎2+𝐽𝑇∗𝜎𝑠2)
∑ (𝐶𝑘.. −

𝐶…

𝐾
)
2

𝐾
𝑘=1 ]  (Appendix 

1.6) 

The rQTc model is more efficient than the ΔQTc model if 
1

𝑣𝑎𝑟(𝛽�̂�)
−

1

𝑣𝑎𝑟(𝛽�̂�)
> 0, which 

means that  

(𝑇 ∗ 𝜎𝑝
2 + 𝜎2 + 𝐽𝑇 ∗ 𝜎𝑠

2)

𝜎2(𝑇 + 1)

𝜎2 − 𝜎𝑝
2

𝜎𝑠2
>

∑ (𝐶𝑘.. −
𝐶…
𝐾 )

2
𝐾
𝑘=1

∑ ∑ (𝐶𝑘𝑗. −
𝐶…
𝐾𝐽)

2
𝐽
𝑗=1

𝐾
𝑘=1

 

       Since 
∑ (𝐶𝑜𝑛𝑐𝑘..−

𝐶…
𝐾
)
2

𝐾
𝑘=1

∑ ∑ (𝐶𝑜𝑛𝑐𝑘𝑗.−
𝐶…
𝐾𝐽
)
2𝐽

𝑗=1
𝐾
𝑘=1

> 0,  a necessary condition for this inequality holds true is 

𝜎2 > 𝜎𝑝
2 . Otherwise when 𝜎2 < 𝜎𝑝

2 ,  
1

𝑣𝑎𝑟(𝛽�̂�)
−

1

𝑣𝑎𝑟(𝛽�̂�)
< 0  which indicates 𝜎2 < 𝜎𝑝

2  is a 

sufficient condition for ΔQTc model is more efficient than rQTc model.  

 

3.5.2 𝒗𝒂𝒓(𝜷𝜟�̂�) vs 𝒗𝒂𝒓(𝜷�̂�) 

First we have 

1

𝑣𝑎𝑟(𝛽�̂�)
−

1

𝑣𝑎𝑟(𝛽𝛥�̂�)
 

=∑∑(𝑪𝒌𝒋 − 𝑪..̅̅ ̅)
′
𝜞−𝟏

𝑱

𝒋=𝟏

(𝑪𝒌𝒋 − 𝑪..̅̅ ̅)

𝑲

𝒌=𝟏

−∑∑(𝑪𝒌𝒋 − 𝑪𝒌.̅̅ ̅̅ )
′
𝜞−𝟏

𝑱

𝒋=𝟏

(𝑪𝒌𝒋 − 𝑪𝒌.̅̅ ̅̅ )

𝑲

𝒌=𝟏

 

=∑∑(𝑪𝒌.̅̅ ̅̅ − 𝑪..̅̅ ̅)
′𝜞−𝟏

𝑱

𝒋=𝟏

(𝑪𝒌.̅̅ ̅̅ − 𝑪..̅̅ ̅)

𝑲

𝒌=𝟏

> 0 

The last inequality holds true since 𝜞−1 is a positive definite matrix. This indicates that 𝑣𝑎𝑟(𝛽�̂�) 

is always less than 𝑣𝑎𝑟(𝛽𝛥�̂�), and the advantage is proportional to the between-subject drug 

concentration variation.  
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3.5.3 𝒗𝒂𝒓(𝜷�̂�) vs 𝒗𝒂𝒓(𝜷�̂�) 

Here we have 

𝟏

𝒗𝒂𝒓(𝜷�̂�)
−

𝟏

𝒗𝒂𝒓(𝜷�̂�)
 

≈∑∑(𝑪𝒌𝒋 − 𝑪..̅̅ ̅)
′
𝜸−𝟏

𝑱

𝒋=𝟏

(𝑪𝒌𝒋 − 𝑪..̅̅ ̅) −∑∑(𝑪𝒌𝒋 − 𝑪..̅̅ ̅)
′
𝜞−𝟏

𝑱

𝒋=𝟏

(𝑪𝒌𝒋 − 𝑪..̅̅ ̅)

𝑲

𝒌=𝟏

𝑲

𝒌=𝟏

 

=
𝟏

(𝑻 + 𝟏) ∗ (𝑻𝝈𝒑𝟐 + 𝝈𝟐 + 𝝈𝒑𝟐)
∑∑(𝑪𝒌𝒋. −

𝑪...
𝑲𝑱
)
𝟐

> 𝟎

𝑱

𝒋=𝟏

𝑲

𝒌=𝟏

 

This indicates that 𝒗𝒂𝒓(𝜷�̂�) is always less than 𝒗𝒂𝒓(𝜷�̂�). By including period-specific 

pre-dose baseline QTc and averaged pre-dose QTc across different periods within the same 

subject in cΔQTc model, between-subject variation and between-period within-subject variation 

are both reduced, and this also results in a decrease in variation when estimating the drug effect 

slope, thus 𝒗𝒂𝒓(𝜷�̂�) is also reduced comparing to 𝒗𝒂𝒓(𝜷�̂�). 

 

3.6 Simulation study  

3.6.1 Simulation set-up 

       We use simulation studies to compare the efficiency of each model. The study design is 

summarized in Table 3.1, thus the number of subjects in the simulation is 16. 10mg, 50mg, 

100mg, 150mg, 200mg, 300mg, 400mg, 600mg is assigned to dose1-dose8. Table 3.3 

summarizes that models compared in the simulation study. Concentration models included in the 

comparison are summarized in Table 3.2. 

       To generate the repeated measures QTc data, model (3.1) in Section 3.2 is used with 𝜎𝑠
2, 

𝜎𝑝
2  and 𝜎2  are the variance for subject random effect, subject-by-period random effect, and 

random error, respectively. Total variance is fixed at 300 and 8 scenarios are considered. In order 
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to investigate the robustness of each model when the within-day random error departure from CS 

structure, autoregressive with order 1 (AR(1)) within-day random error is simulated for each 

scenarios with 9 correlations, 𝜌 = 0.1, 0.2, . . . , 0.8, 0.9, as mentioned in Section 3.2, in these 

scenarios, in these scenarios, 𝜮𝐰 = (𝜎𝑠
2 + 𝜎𝑝

2) ∗ 𝑱(𝑻+𝟏) + 𝜎
2 ∗ 𝝆(𝑻+𝟏)∗(𝑻+𝟏), where the (𝑠, 𝑠′)th 

element of 𝝆(𝑻+𝟏)∗(𝑻+𝟏) is 𝜌|𝑡𝑠−𝑡𝑠′|, where 𝑡𝑠 denotes time corresponding to the time point 𝑠 in 

each period. The variance components for different simulation scenarios is described in Table 

3.4. 

       In each period, 1 pre-dose QTc and 8 post-dose QTc measurements are available, the 8 

post-dose QTc measurements are at 1
st
, 2

nd
, 4

th
, 6

th
, 8

th
, 12

th
, 15

th
, 24

th
 hour post-dose. Mean QTc 

within each period is (397.6, 391.4, 390.8, 392.8, 394.4, 392.8, 393.6, 408.5, 393.6), which is 

calculated from the circadian rhythm model 400 ∗ (1 − 0.03 ∗ cos (
2𝜋∗(t−6)

24
) − 0.016 ∗

cos (
2𝜋∗t

12
)).  

       One-compartmental model is used to simulate drug concentration, 

𝐶𝑘𝑗𝑠 =
𝐷𝑂𝑆𝐸∗𝑘𝑎𝑘

𝑉𝑘∗(𝑘𝑎𝑘−𝑘𝑒𝑘)
∗ (exp(−𝑘𝑒𝑘 ∗ 𝑡𝑠) − exp(−𝑘𝑎𝑘 ∗ 𝑡𝑠)) ∗ exp(𝑁(0, 0.1

2)), 

𝑘𝑒𝑘 =
𝐶𝐿𝑘

𝑉𝑜𝑙𝑘
⁄ . 

Here 𝐶𝐿 is the volume of plasma cleared of the drug per hour, 𝑉𝑜𝑙 is the volume of distribution, 

𝑘𝑎  is the infusion rate, we assume the pharmacokinetics parameter vary between different 

subjects, such that 𝐶𝐿𝑘 = 𝐶𝐿 ∗ exp(𝑏1) , 𝑉𝑘 = 𝑉 ∗ exp(𝑏2) , 𝑘𝑎𝑘 = 𝑘𝑎 ∗ exp (𝑏3). Furthermore, 

𝑏1, 𝑏2, 𝑏3 are between-subject variability of all the population pharmacokinetics parameters and 

they are assumed to be distributed as 𝑁(0, 0.22). 𝐶𝐿 is set to be 12 L/hr, 𝑉𝑜𝑙 is set to be 60 L and 

𝑘𝑎 is set to be 0.7 ℎ𝑟−1. 

The 600mg is chosen as the ‘dose of interest’. The mean Cmax of 600mg based on the 

one-compartmental PK model is 6.05mg/L, thus for each of simulation scenario, we assign 

𝛽 = 0.33 to investigate the power of each model to rule out a small QTc prolongation effect, 

since when 𝛽 = 0.33 , the mean Cmax of 600mg induces a QTc prolongation of 2ms, which is 

less than regulatory concern of 10ms. Moreover, we assign 𝛽 = 1.65 to investigate type-1 error 
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of each model, since the regulatory criteria to define a positive TQT study is that the upper 

bound of 1-sided 95% confidence interval of mean effect of drug induced QTc prolongation is 

larger than 10ms. When 𝛽 = 1.65, the mean Cmax of 600mg induces a QTc prolongation of 

around 10ms, the type-1 error for each model at each scenario should be similar to make the 

power comparison meaningful. Each simulation is run 1000 times. 

 

Table 3.3 Concentration-QTc models included in the simulation study 

Model Type Model Formulation Covariance Matrix Structure 

rQTc  𝑦𝑘𝑗𝑠 = 𝑇𝑠 + 𝛽 ∗ 𝐶𝑘𝑗𝑠 + 𝑏𝑘 + 𝑏𝑘(𝑗) + 𝜖𝑘𝑗𝑠   Double compound symmetry 

 ΔQTc 𝛥𝑦𝑘𝑗𝑠 = 𝑇𝑡 + 𝛽 ∗ 𝐶𝑘𝑗𝑠 + 𝑏𝑘(𝑗) + 𝜖𝑘𝑗𝑠   Subject-by-period random effect 

 cΔQTc 
𝛥𝑦𝑘𝑗𝑠 = 𝑇𝑠 + 𝛽 ∗ 𝐶𝑘𝑗𝑠 + 𝛽1 ∗ 𝑦𝑘𝑗,−1 + 𝛽2 ∗

𝑦𝑘,−1 + 𝑏𝑘 + 𝑏𝑘(𝑗) + 𝜖𝑘𝑗𝑠  
Double compound symmetry  

  ΔΔQTc 𝛥𝛥𝑦𝑘𝑗𝑠 = 𝛽 ∗ 𝐶𝑘𝑗𝑠 + 𝑏𝑘(𝑗) + 𝑏𝑘(𝑠) + 𝜖𝑘𝑗𝑠  
Double compound 

symmetry  with subject-by-time 

random effect  

 

Table 3.4 Simulation scenarios and values of covariance parameters 

Scenario  𝝈𝒔
𝟐  𝝈𝒑

𝟐    𝝈𝟐    ρ 

1 240 15 45 

0, 0.1, 

0.2, …,  

0.8, 0.9 

2 225 30 45 

3 210 45 45 

4 195 60 45 

5 180 30 90 

6 150 60 90 

7 120 90 90 

8 90 120 90 

        

3.6.2 Hypothesis testing in the simulation study 

       As mentioned in Section 3.2, the hypothesis testing conducted for concentration-QTc 

model is 
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𝐻0: Upper bound of one-sides 95% confidence interval of drug induced QTc prolongation>10ms 

VS 

𝐻𝑎: Upper bound of one-sides 95% confidence interval of drug induced QTc prolongation<10ms 

For each model, upper bound of one-sided 95% confidence interval of the drug-induced 

QTc prolongation is calculated as 𝐶 ∗ 𝑈. 𝐵. 𝑜𝑓 𝛽 , where 𝑪 is the Cmax of a given dose and 

𝑈.𝐵. 𝑜𝑓 𝛽 is the upper bound one-sided 95% confidence interval of estimated drug effect slope 

for each model. Thus in each simulation, the geometric mean of Cmax at dose of 600mg is 

calculated as 𝐶𝑚𝑎𝑥̅̅ ̅̅ ̅̅ ̅̅ , then U.B. of drug effect slope is calculated as �̂� + 𝑞𝑡(0.95, 𝑑𝑓) ∗ 𝑠𝑑(�̂�), 

here the standard deviation of the estimated drug effect slope 𝑠𝑑(�̂�) and degree of freedom are 

estimated based on restricted maximum likelihood estimate (REML) of each model (Bates et al. 

2015).  

In each simulation, percentage of simulations with 𝐶𝑚𝑎𝑥̅̅ ̅̅ ̅̅ ̅̅ ∗ (�̂� + 𝑞𝑡(0.95, 𝑑𝑓) ∗

𝑠𝑑(�̂�)) < 10 for each model is calculated. In the hypothesis testing above, it’s considered as 

power to exclude a small QTc prolongation effect when the drug is “safe” and true 𝛽 = 0.33 , 

and it is considered as type-1 error when the drug is “not safe” and true 𝛽 = 1.65.   

   

3.6.3 Simulation results 

       Figure 3.1 and Figure 3.2 show the results of simulations from different scenarios.  

In all the simulation scenarios, when the covariance structure is specified correctly for all 

the models (ρ=0), all the models have similar type-1 errors under each simulation scenario, no 

model has shown an advantage over the others when the drug is “not safe”, the similar type-1 

errors between models make the comparison of powers between models meaningful. The cΔQTc 

model always have the largest power to exclude a small QTc prolongation effect when the drug 

is “safe”, while the power of ΔΔQTc model is always the lowest. These are consistent with our 

derivations that 𝑣𝑎𝑟(𝛽�̂�) is always smaller than 𝑣𝑎𝑟(𝛽�̂�), and 𝑣𝑎𝑟(𝛽𝛥�̂�)  is always larger than 

𝑣𝑎𝑟(𝛽�̂�) in Section 3.5. The ΔQTc model is more powerful comparing to the rQTc model when 
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𝜎𝑝
2 is larger than 𝜎2(scenario 4 and 8), this is consistent with our conclusion in Section 3.5.1 

that 𝜎𝑝
2 > 𝜎2 is a sufficient condition for 𝑣𝑎𝑟(𝛽�̂�) < 𝑣𝑎𝑟(𝛽�̂�), which indicates the ΔQTc model 

is more powerful than the rQTc model when 𝜎𝑝
2 > 𝜎2. These results indicate that derivation and 

comparison of variance of estimated drug effect slope have been verified in the simulation study. 

Our proposed cΔQTc model always performs better than the other models in terms of higheer 

power to exclude a small drug prolongation effect when the drug is “safe”. 

       When the AR(1) structure is imposed on the data, the cΔQTc model still has the largest 

power in almost all the scenarios. Type-1 error of all models increase comparing to the 

simulation scenarios when the covariance structure is correctly specified (ρ=0), but no model 

has shown advantage over the others in terms of a smaller type-1 error when the random errors 

within the same period for a subject is AR(1) structure. The rQTc model seems to be affected 

most by AR(1) within-period random error structure as it has the largest type-1 error in all the 

scenarios when the within-subject random error correlation is large (ρ>0.7). 

 

3.7 Conclusion and discussion 

       Different concentration-QTc models have been applied by researchers without explaining 

the rationale behind them. For concentration-QTc model with data from phase 1 crossover SAD 

study, the differences among models are mainly based on how to treat the period-specific pre-

dose QTc baseline in each model. In chapter 3, we compare the efficiencies of each model by 

assuming the covariance matrix structure of the QTc measurements is double compound 

symmetry, and the period-specific pre-dose QTc baseline has the same distribution as the post-

dose QTc. The cΔQTc model is proposed which reduces the variance of the estimated drug effect 

slope by including period-specific pre-dose QTc baseline and subject-averaged pre-dose QTc 

baseline as covariates in the model. We conclude our proposed cΔQTc model is most efficient in 

detecting a safe drug comparing to the existing models via derivations of the variance of drug 

effect slope and intensive simulation. 
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Figure 3.1 Simulation results (type-1 error) in model comparison 
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Figure 3.2 Simulation results (power) in model comparison 
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Chapter 4 Application of Bayesian method, GEE and GMM 

in concentration-QTc model 

 

       The mixed effects model analyzed with the maximum likelihood (ML) method is widely 

used in parameter estimation and statistical inference of the concentration-QTc model. In 

contrast, other methods, such as the mixed effects model in a Bayesian framework, the 

Generalized Estimating Equations (GEE) and the Generalized Methods of Moments (GMM), are 

rarely addressed. In this chapter, applications of the mixed effects model with the Bayesian 

method, the GEE and the GMM in the concentration-QTc model are proposed and discussed. For 

the purpose of illustration of the novel applications of these methods, the rQTc model and its 

counterparts of the above methods are used in the entire chapter. 

 

4.1 Mixed effects model with the Bayesian method 

4.1.1   Introduction to mixed effects model with the Bayesian method 

       With the rapid development of computation resource, when estimating parameters of the 

mixed effects model, some advanced but computationally intensive method other than the 

maximum likelihood (ML) method, such as the Bayesian method, begins to gain popularity. The 

Bayesian method automatically takes prior knowledge of parameters into consideration, it 

applies the Bayes’ theorem on parameters’ prior distributions and the likelihood function to 

produce posterior distribution of the parameters. Inferences on the parameters are performed on 

the derived posterior distribution. Gibbs sampler, which belongs to Markov chain Monte 

Carlo (MCMC) algorithm, is among the most popular methods to approximate a desired 

multivariate probability distribution when the direct sampling is difficult (Casella and Edward 

1992).  

      In the research of concentration-QTc model, linear mixed effects model with the 

maximum likelihood (ML) method is widely used, but the Bayesian method is rarely mentioned. 

https://en.wikipedia.org/wiki/Markov_chain_Monte_Carlo
https://en.wikipedia.org/wiki/Markov_chain_Monte_Carlo
https://en.wikipedia.org/wiki/Algorithm
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Chain et al. (2011) has provided a framework of the Bayesian mixed effects model parameter 

estimate and inference of concentration-QTc model, they used non-informative prior 

distributions for all the parameter of interests and then inferences on parameters were made on 

the derived posterior distribution. In their work, comparison of the Bayesian method and the ML 

method has not been addressed. Browne et al. (2006) compared mixed effects model with the 

ML method and the Bayesian method with non-informative prior distributions via simulation 

studies. They concluded that in a mixed effect model with only subject random effect on 

intercept, the Bayesian method is better than the ML method in terms of higher coverage of the 

small random effect variance by confidence interval, especially when the intra-class correlation 

is small, although they both cannot achieve the nominal coverage. When prior distribution is 

available on parameters of interest, the Bayesian method can use this information in parameter 

estimate and inference while the ML method cannot, but how different they are when reliable 

prior information on parameters are available are not clear. Finally we do add the cautionary note 

that with a wrongly specified prior, the Bayesian method can produce misleading results.  

       In Section 4.1, an application of the Bayesian method on the concentration-QTc model 

with normality assumptions on random effects and random error is proposed. Moreover, a 

comparison between the Bayesian method and the ML method is discussed.  

 

4.1.2   Application of the Bayesian method in concentration-QTc model 

       As described in Chapter 3, the rQTc model with data from crossover single ascending 

dose (SAD) study is formulated as follows, 

𝑦𝑘𝑗𝑠 = 𝑇𝑠 + 𝛽 ∗ 𝐶𝑘𝑗𝑠 + 𝑏𝑘 + 𝑏𝑘(𝑗) + 𝜖𝑘𝑗𝑠. 

       Here 𝑦𝑘𝑗𝑠 denotes the QTc value for subject 𝑘 at time 𝑡𝑠 of period 𝑗, 𝑇𝑠 is the categorical 

time effect at time 𝑡𝑠, 𝐶𝑘𝑗𝑠 is the observed drug concentration for subject 𝑘 at time 𝑡𝑠 of period 𝑗, 

𝑏𝑘 is the subject random effect and 𝑏𝑘(𝑗) is subject-by-period random effect, and 𝜖𝑘𝑗𝑡 is the i.i.d. 

random error. In mixed effects model with the ML method and the Bayesian method, we always 

assume that the random effects and random error are normally distributed, such that, 
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𝑏𝑘~𝑁(0, 𝜎𝑠
2),  𝑏𝑘(𝑗)~𝑁(0, 𝜎𝑝

2), 𝜖𝑘𝑗𝑡~𝑁(0, 𝜎
2) and the random effects and random error here 

are all independent with each other. 

       Now we introduce how to estimate the parameters with the Bayesian method. Given 

𝑦𝑘𝑗𝑠|𝛽, 𝑇𝑠, 𝜎𝑠
2, 𝜎𝑝

2, 𝜎2~𝑁(𝑇𝑠 + 𝛽 ∗ 𝐶𝑘𝑗𝑠 + 𝑏𝑘 + 𝑏𝑘(𝑗), 𝜎
2) , the non-informative priors are 

assigned to the parameters as follows, 

𝛽~𝑁(0,1000000),    𝑇𝑠~𝑁(0,1000000) for each 𝑠, 

1/𝜎𝑠
2~𝐺𝑎𝑚𝑚𝑎(0.001,0.001), 1/𝜎𝑝

2~𝐺𝑎𝑚𝑚𝑎(0.001,0.001), 1/𝜎2~𝐺𝑎𝑚𝑚𝑎(0.001,0.001) 

The shapes of the non-informative prior distribution for the parameters are almost flat, thus it has 

no preferences on specific values for a specific parameter, which is similar to the ML method. 

Based on the prior distributions, posterior distribution of each parameter is generated via Gibbs 

sampler using JAGS (Plummer 2003). Inference on each parameter is then performed using the 

derived posterior distribution. When we have reliable information on some of the parameters, the 

non-informative prior distributions described above are replaced with the available prior 

distributions of those parameters. 

 

4.1.3   Comparison between the Bayesian method with non-informative prior 

distributions and the ML method in concentration-QTc model  

       Browne and Draper (2006) compared the ML method and the Bayesian method with non-

informative prior distributions in a 2-level hierarchical model with only subject random effect on 

the intercept. Their simulation study indicated that these two methods are very similar in terms of 

bias of fixed effects estimation, but the confidence interval coverage of the small random effect 

variance is higher in the Bayesian method especially when the intra-class correlation is small. 

The rQTc model with data from crossover SAD study can be consider a 3-level hierarchical 

model, thus we will investigate if the better coverage of small random effect variance for the 

Bayesian method with non-informative prior distributions still holds, and further comparison 

between the ML method and the Bayesian method with non-informative prior distributions in 
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terms of power and type-1 error in the hypothesis testing conducted in the concentration-QTc 

model will also be investigated. 

       We use simulation studies to compare the two methods. The study design and QTc data 

simulation procedures are the same as those in Chapter 3. Simulation scenario is summarized in 

Table 4.1. Here in order to compare the Bayesian method with non-informative prior 

distributions and the ML method on their confidence interval coverage of the random effects 

variances, we intentionally set the variance of subject random effect and the variance of subject-

by-period random effect to be small. 

       In each simulation, the 95% confidence interval for each covariance parameter are 

computed, coverage of the true parameter for each method is computed as the number of 

simulations that the 95% confidence interval of the parameter estimate covers the true value of 

the parameter, and also the estimated random effect variance is not 0. Similarly as in chapter 3, 

the type-1 error and power in each scenario are also computed and compared between the two 

methods. The number of simulation for each scenario is 1000. 

 

 Table 4.1 Simulation scenarios for comparison between the Bayesian method with non-

informative prior distributions and the ML method 

Scenario 𝜎𝑠
2 𝜎𝑝

2 𝜎2 

1 5 205 90 

2 10 200 90 

3 15 195 90 

4 20 190 90 

5 25 185 90 

6 30 180 90 

7 205 5 90 

8 200 10 90 

9 195 15 90 

10 190 20 90 

11 185 25 90 

12 180 30 90 
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       From Table 4.2, we can see that when the underlying between-subject variation is small 

(scenario 1-6), the Bayesian method with non-informative prior distributions has better 

confidence interval coverage of the true value of the subject random effect variance, 𝜎𝑠
2 , 

comparing to ML method. But when estimating the variance of subject-by-period random effect, 

𝜎𝑝
2, the advantage in the Bayesian method with non-informative prior distributions in terms of 

confidence interval coverage is not found, especially when the 𝜎𝑝
2 is small (scenario 7-12). 

       From Table 4.3, we can conclude that the two methods nearly have the same type-1 error 

and power in the hypothesis testing conducted in the concentration-QTc model, which indicates 

when we set the non-informative prior distributions for the parameters in the Bayesian method, 

the Bayesian method and the ML method have similar ability in detecting QTc prolongation. 

       In conclusion, the Bayesian method with non-informative prior distributions on 

parameters perform similarly to the ML method in detecting a QTc prolongation effect in terms 

of similar power and type-1 error in the hypothesis testing conducted along with the 

concentration-QTc model. But when we are interested in estimating the random effect variance, 

the Bayesian method should be applied to produce a more reliable confidence interval for subject 

random effect variance, especially the when the between subject variance is small. But the ML 

method could provide a more reliable confidence interval for subject-by-period random effect 

variance. 
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Table 4.2 Coverage of variance component by confidence interval based on 1000 runs of 

simulations under each simulation scenario 

Scenario 

 𝜎𝑠
2   𝜎𝑝

2 

ML 

method 

Bayesian 

method 

ML 

method 

Bayesian 

method 

1 57.20% 99.70% 95.60% 95.90% 

2 61.60% 99.00% 94.40% 94.20% 

3 70.50% 95.80% 95.80% 95.50% 

4 76.70% 94.20% 95.60% 95.50% 

5 77.40% 87.30% 94.00% 94.40% 

6 82.40% 86.60% 94.60% 94.30% 

7 94.00% 95.50% 92.10% 84.50% 

8 94.10% 95.40% 95.30% 89.40% 

9 93.90% 95.00% 94.80% 92.60% 

10 92.30% 93.90% 93.30% 92.10% 

11 93.00% 94.40% 94.30% 94.10% 

12 93.50% 94.80% 95.00% 94.50% 

 

Table 4.3 Simulation results (type-1 error and power) in comparison between the Bayesian 

method with non-informative prior distribution and the ML method 

True 

slope 
Scenario 

Bayesian 

method 

ML 

method 

True 

slope 
Scenario 

Bayesian 

method 

ML 

method 

0.33 

1 69.80% 69.60% 

1.67 

1 6.20% 6.50% 

2 69.80% 69.80% 2 4.10% 4.10% 

3 70.60% 70.20% 3 5.60% 5.20% 

4 71.90% 71.20% 4 4.80% 4.60% 

5 71.40% 70.50% 5 4.70% 4.80% 

6 70.50% 70.10% 6 5.00% 5.00% 

7 95.10% 95.50% 7 5.80% 6.00% 

8 92.30% 92.50% 8 5.20% 5.70% 

9 89.60% 89.50% 9 4.80% 4.90% 

10 85.20% 85.30% 10 4.80% 4.50% 

11 84.30% 83.60% 11 4.40% 4.30% 

12 85.30% 85.10% 12 4.60% 4.80% 
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4.1.4   Comparison between the Bayesian method with informative prior 

distributions and the ML method in concentration-QTc model  

       An advantage of the Bayesian method over the ML method is that when prior information 

on parameter is available, the Bayesian method is able to incorporate the prior information in the 

model while the ML method cannot. For example, when we use concentration-QTc model with 

the Bayesian method to evaluate the QTc prolongation of biosimilar drug, we may use the 

information of the drug effect slope of its reference drug as prior distribution if it is available. 

 An explanatory simulation study is conducted to compare the Bayesian method and the 

ML method when reliable prior information is available for the drug effect slope. 

 Study design and QTc data simulation procedures are the same as those in Chapter 3. 

Only one simulation scenario is used with 𝜎𝑠
2 = 150, 𝜎𝑝

2 = 60, 𝜎2 = 90. Prior distribution of 

drug effect slope is assumed to be normal. When the true underlying β=0.33, the mean of the 

prior distribution of β has 4 scenarios, 3 of them are similar to the true underlying β, which are 

the same as the true underlying β, and around 10% smaller/larger than the true underlying β 

(0.33, 0.28, 0.38). The other scenario is when the prior information is not consistent with true 

underlying β from the trial (1.65). Similarly, when the true underlying β=1.65, the mean of the 

prior distribution of β also has 4 scenarios (1.65, 1.48, 1.82, 0.33). In addition, the standard 

deviation of the prior distribution of β has 2 scenarios (0.5, 1), because the standard deviation of 

the estimated drug effect slope in the previous simulation is around 0.5. In each simulation, 

similarly as before, the type-1 error and power in each scenario are also computed and compared 

between the two methods. The number of simulation for each scenario is 1000. 

From Table 4.4, it can be concluded that when reliable prior information of drug effect 

slope is available, the Bayesian method always perform better than the ML method in terms of 

smaller type-1 errors and larger powers. But when the prior information is not consistent with the 

trial results, the Bayesian method may result in erroneous inference. And when the “belief” on 

prior distribution is stronger which is indicated by a smaller value of standard deviation of the 

prior distribution, the type-1 error gets larger and the power gets smaller which make the 

inference more erroneous. 
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Table 4.4 Simulation results (type-1 error and power) in comparison between the Bayesian 

method with informative prior distribution and the ML method 

 True slope  
Prior distribution 

of  β  
Note  

ML 

method  

 Bayesian 

method 

0.33 

(when the 

drug is 

“safe”)   

𝑁(0.33,  0.52) 

 Prior agrees with 

trial  

79.0% 99.9% 

𝑁(0.33,1) 78.7% 88.6% 

𝑁(0.28,  0.52) 77.5% 99.8% 

𝑁(0.28,1) 77.9% 89.8% 

𝑁(0.38,  0.52) 78.3% 99.4% 

𝑁(0.38,1) 78.1% 88.7% 

𝑁(0.1.65,  0.52) Prior does NOT 

agree with trial 

 79.1% 48.8%  

𝑁(1.65,1)  76.9% 70.2%  

 1.65 

(when the 

drug is “NOT 

safe”)  

𝑁(1.65,  0.52) 

 Prior agrees with 

trial  

6.4% 2.8% 

𝑁(1.65,1) 5.2% 3.5% 

𝑁(1.48,  0.52) 5.9% 2.7% 

𝑁(1.48,1) 5.9% 3.7% 

𝑁(1.82,  0.52) 4.5% 0.5% 

𝑁(1.82,1) 5.8% 2.8% 

𝑁(0.33,  0.52) Prior does NOT 

agree with trial 

 5.4% 67.9%  

𝑁(0.33,1)  7.3%  14.1% 

 

  

4.2 Generalized Estimating Equation (GEE) 

4.2.1   Introduction to GEE 

       The generalized estimating equation (GEE) is a semiparametric method to estimate the 

parameters of a generalized linear model with correlated outcomes. It is proposed by Zeger and 

Liang (1986) and Zeger et al. (1988).  

      Let 𝑦𝑘𝑙  is the response for subject 𝑘  at time 𝑙 (𝑙 = 1,2,3, … 𝐿) , 𝒚𝒌  is the 𝐿 × 1  vector 

consists of 𝑦𝑘𝑙, 𝑔(. ) is a link function, 𝒙𝒌𝒍 is a 𝑝 × 1 vector of covariates for subject 𝑘 at time 𝑙, 

𝜽 is a 𝑝 × 1 vector of regression coefficients. Furthermore, 𝑽𝒌 is the covariance matrix of the 

within-subject outcomes 𝒚𝒌. Given the marginal response 𝜇𝑘𝑙 = 𝐸(𝑦𝑘𝑙) to a linear combination 

of covariates 𝑔(𝜇𝑘𝑙) = 𝒙𝒌𝒍′𝜽, 𝝁𝒌 is the 𝐿 × 1 vector consists of 𝜇𝑘𝑙 . The GEE estimator of 𝜽 is 

the solution of  
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∑
𝝏𝝁𝒌
𝝏𝜽

𝑽𝒌
−𝟏(

𝑲

𝒌=𝟏

𝒀𝒌 − 𝝁𝒌) = 𝟎 

       Typically, the equations can be solved via the Newton-Raphson algorithm. In the GEE 

framework, usually we have 𝑣𝑎𝑟(𝑦𝑘𝑙) = 𝜙𝑣(𝜇𝑘𝑙),  𝜙 is a possibility unknown scale parameter, 

and 𝑣(. ) is a known function for the variance, for identity link function 𝑔(𝜇𝑘𝑙) = 𝜇𝑘𝑙, we usually 

have 𝑣(𝜇𝑘𝑙) = 1. Then 𝑽𝒌  usually has the form  𝑽𝒌 = 𝜙𝑨𝒌
𝟏/𝟐𝑹𝒌𝑨𝒌

𝟏/𝟐 , where 𝑨𝒌  is a 𝐿 × 𝐿 

diagonal matrix with 𝑣𝑎𝑟(𝑦𝑘𝑙) as the 𝑙-th diagonal element, 𝑹𝒌 is a 𝐿 × 𝐿 working correlation 

matrix which indicates the structure of 𝑽𝒌. We can define the working correlation structure by 

ourselves, such as use the sample correlation matrix of the response vector, or we can also 

specify the structure of 𝑽𝒌  and estimate the nuisance parameters associated with 𝑽𝒌  together 

with 𝜽 via iterative algorithm. Standard deviation of the GEE estimate of 𝜽 is always given by 

Huber sandwich estimator (Freedman 2006). 

       GEE does not require the distributional assumptions, it only needs correct specification of 

the mean structure of the outcome given the covariates. When modeling correlated outcomes, it 

is a natural alternative of parametric models, such as ML method, especially when the ML 

estimate is hard to derive. GEE could provide consistent estimates of parameters and their 

associated standard errors even when the covariance structure is mis-specified, but the efficiency 

of the parameter estimate is higher when the covariance structure is closer to the true underlying 

covariance structure. 

       GEE is a popular method in the field of epidemiology when the outcomes are correlated 

and the population-averaged effects is of main interest (Hubbard et al. 2010), but the GEE is not 

able to estimate subject-level effect, which is the strength of the ML method in the mixed effects 

model. For example, in the concentration-QTc model, our assumption is that there is only a fixed 

effect associated with the drug effect β, which means the drug effect is a population-averaged 

effect, and it’s same for all the subjects, then ML method and the GEE are both applicable to 

estimate β. If we assume the drug effect for subject 𝑘  is 𝛽𝑘  and further assume that 𝛽𝑘  is 

distributed as 𝑁(𝛽, 𝜎𝛽
2), then ML method is able to estimate 𝛽, 𝜎𝛽

2 and each 𝛽𝑘, but GEE is 

only able to estimate 𝛽. 
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       The main focus of the concentration-QTc model is the drug induced QTc prolongation in 

population level, which can be considered as population-averaged effect, ML method is widely 

used for this purpose but the GEE has not been applied to this yet. One of the pitfalls of the ML 

method is that there is still no definitive method for determining the covariance structure. Use of 

some model selection criteria, such as AIC, to pick up the covariance structure is one of the 

common methods, but Keselman et al. (1998) reported AIC, BIC only have less than 50 percent 

of chance to pick up the right covariance structure. Wrong specification of covariance matrix 

may result in erroneous inferences on parameter estimates. Since the GEE is consistent under the 

wrong specification of covariance structure of response vector when sample size is large, thus it 

is a natural alternative for the ML method when the covariance structure is unclear and the 

sample size is large relative to the number of measurements per subject. Therefore, the GEE is 

more applicable to a parallel SAD study, rather than a crossover SAD study. 

 

4.2.2   Application of the GEE in concentration-QTc model 

       In Section 4.2.2, an application of the GEE in parallel SAD study design is proposed. A 

comparison between the GEE and the ML method when the covariance structure is wrongly 

specified is compared via simulation study in Section 4.4. 

       An example of parallel SAD study design is as follows. In parallel SAD design, number 

of groups is equal to the number of doses, in each dose group, we usually have 8 subjects, 6 of 

them have a dose of tested drug and the other 2 take placebo. The ECG measurements and drug 

concentration measurements are collected in the same time points in a 24 hour post-dose time 

interval. 

       Let 𝑦𝑘𝑠 be the QTc value for subject 𝑘 (𝑘 = 1,2, … , 𝐾) at time 𝑡𝑠 (𝑠 = 1,2,3,… , 𝑇), and 

𝐶𝑘𝑠 be the drug concentration for subject 𝑘 at time 𝑡𝑠. In parallel SAD design, each subject is 

only measured in a single period, thus here we only consider the subject random effect to 

account for the within-subject correlation. So the rQTc model in the parallel design is formulated 

as 

𝑦𝑘𝑠 = 𝛽 ∗ 𝐶𝑘𝑠 + 𝑇𝑠 + 𝑏𝑘 + 𝜖𝑘𝑠, 
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here 𝛽 is the slope of drug effect, 𝑇𝑠 is the categorical time effect of time 𝑡𝑠 to account for the 

circadian rhythm effect, 𝑏𝑘 is the subject random effect and we usually assume 𝑏𝑘~𝑁(0, 𝜎𝑠
2), 

𝜖𝑘𝑡 is the random error and we usually assume 𝜖𝑘𝑠~𝑁(0, 𝜎
2).  

Usually, we use the ML method to estimate the parameters. And the normality 

assumptions on subject random effect 𝑏𝑘 and random error 𝜖𝑘𝑠 are essential for the ML method, 

but no distributional assumption is required for the GEE.  

Let 𝑿𝒌 denote the design matrix contains the data of drug concentration and categorical 

time effect for subject 𝑘 , and 𝝋 = (𝛽, 𝑇1, 𝑇2, … , 𝑇𝑇)  denote the parameters to be estimated, 

𝑽𝒌 = 𝐶𝑂𝑉(𝒚𝒌) is the covariance matrix of 𝒚𝒌, it’s compound symmetry structure if the model 

assumption holds. Then the rQTc model can be reformulated as 

𝒚𝒌 = 𝑿𝒌𝝋+ 𝒃𝒌 + 𝝐𝒌. 

 The log-likelihood function of the model is  

𝒍(𝝋) =
𝑲

𝟐
𝒍𝒐𝒈(𝟐𝝅) −

𝟏

𝟐
𝜮𝒌=𝟏
𝑲 [𝒍𝒐𝒈(|𝑽𝒌|) + (𝒚𝒌 − 𝑿𝒌𝝋)

𝑻𝑽𝒌
−𝟏(𝒚𝒌 − 𝑿𝒌𝝋)]     

To solve 𝝋, we have  
𝜕𝒍(𝝋)

𝜕𝝋
= 0, such that ∑  𝑿𝒌 𝑽𝒌

−𝟏(𝑲
𝒌=𝟏 𝒚𝒌 − 𝑿𝒌𝝋) = 𝟎.                   

       When applying the GEE to concentration-QTc model, the link function is linear, thus 

𝝁𝒌 = 𝛽 ∗ 𝑪𝒌 + 𝑻 = 𝑿𝒌𝝋 , 𝑽𝒌 = 𝐶𝑂𝑉(𝒚𝒌)  is the covariance matrix of 𝒚𝒌  with a compound 

symmetry structure under our model assumption. So the estimating equation of the GEE to 

estimate 𝝋 is as follows, 

∑ 𝑿𝒌 𝑽𝒌
−𝟏(

𝑲

𝒌=𝟏

𝒚𝒌 − 𝑿𝒌𝝋) = 𝟎 

The Newton-Raphson method is always used to estimate 𝝋 from the above equation (Yan and 

Fine 2002, Yan 2004). When 𝑽𝒌 is considered a nuisance parameter when estimating 𝝋, we can 

specify a structure of the working correlation matrix, such as compound symmetry, AR(1), and 

estimate 𝝋 and nuisance parameters associated with the working correlation matrix using some 

iterative algorithm. We can also give a fixed correlation matrix as the working correlation 
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matrix, such as the sample correlation matrix, since if the true underlying correlation structure of 

𝒚𝒌 is unknown, sample correlation matrix should serve as a reasonable approximation to it.  

We note that the equation in the GEE is the same as the equation in the ML method, 

therefore when the covariance structure is the same for the two methods, the parameter estimates 

should be similar between the two methods. For example, if we have only random subject effect 

in the ML method which means the covariance matrix structure of the response vector in the ML 

method is compound symmetry, and when using the GEE, we also specify the working 

correlation structure to be compound symmetry, the parameter estimates from the two methods 

should be very close. In general, when the link function in the GEE is linear, and the covariance 

matrix structure of the response vector is the same for the GEE and the ML method, the 

parameter estimates should be very close between these two methods. 

 

4.3 Generalized Method of Moments (GMM) 

4.3.1   Introduction to GMM 

       Generalized method of moments (GMM) is a method for estimating parameters in 

statistical models. It was developed by Hansen in (1982), Hansen shared the 2013 Nobel Prize in 

Economics for this work. 

       GMM can be seen as a generalization of many other estimation methods, such as the 

ordinary least square (OLS), the generalized estimating equation (GEE) and the maximum 

likelihood (ML) method. Certain number of moment conditions need to be specified and these 

moment conditions are functions of the model parameters and the data, such that the expectation 

of the function is zero at the underlying true value of the parameters. Then the GMM method 

estimates the parameters by minimizing certain norm of the sample averages of the moment 

conditions. The requirement of the GMM is that we have some appropriate moment conditions 

available to estimate the parameters, no distributional assumption on the data is required. 

       Suppose we have available data consists of 𝐾 observation vectors {𝒀𝒌}, 𝑘 = 1,2, … , 𝐾, 

each observation 𝒀𝒌  is a 𝑛 -dimension multivariate random vector. In addition, 𝜽  is a 𝑝 -

dimensional parameter of interest, 𝜽0 is the underlying true value of  𝜽. In order to apply the 

https://en.wikipedia.org/wiki/Norm_(mathematics)
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GMM, we need to have some moment conditions 𝑓(𝒀, 𝜽), which is a function of the data and the 

parameter, such that 

𝐸[𝑓(𝒀𝒌, 𝜽0)] = 𝟎. 

       Then we will have the sample average of the moment conditions 

𝑚(𝜽) =
𝟏

𝑲
∑ 𝑓(𝒀𝒌, 𝜽)
𝑲
𝒌=𝟏 , 

the GMM estimator �̂� can solved by setting the sample moment condition equal to 0, 

𝑚(𝜽 ) =
𝟏

𝑲
∑ 𝑓(𝒀𝒌, 𝜽 )
𝑲
𝒌=𝟏 = 0. 

When the number of moment conditions is larger than the number of parameters to estimate, 

Hansen (1982) introduced a positive definite weight matrix 𝑾, and the GMM estimator �̂� can be 

written as 

�̂� = arg𝑚𝑖𝑛𝜽 (
𝟏

𝑲
∑ 𝑓(𝒀𝒌, 𝜽)
𝑲
𝒌=𝟏 )′𝑾(

𝟏

𝑲
∑ 𝑓(𝒀𝒌, 𝜽)
𝑲
𝒌=𝟏 ). 

The GMM estimator solves the estimating equation 

(
𝜕𝑚(𝜽)

𝜕𝜽
)
′

𝑾 𝑚(𝜽) = 𝟎. 

𝜕𝑚(𝜽)

𝜕𝜽
 and 𝑾 together gives the relative importance of each of the original moment conditions 

used in the GMM (Lai and Small 2007). The “two-step” approach proposed by Hansen is one of 

the most popular one in deriving the GMM estimator. 

 

4.3.2   Application of GMM in concentration-QTc model 

       In this section, the application of the GMM to concentration-QTc model is introduced. 

       Similar to the GEE, the GMM also needs a large sample size thus it is more suitable for a 

parallel SAD design. We will revisit the model for the parallel SAD design, 

𝑦𝑘𝑠 = 𝛽 ∗ 𝐶𝑘𝑠 + 𝑇𝑠 + 𝑏𝑘 + 𝜖𝑘𝑠. 
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By rewriting the model we have 

𝒚𝒌 = 𝑿𝒌𝝋+ 𝒃𝒌 + 𝝐𝒌. 

Here 𝑿𝒌 denote the design matrix containing the data of drug concentration and categorical time 

effect for subject 𝑘, 𝝋 is the vector of parameters including 𝛽 and 𝑇𝑠, and 𝑽𝒌 = 𝐶𝑂𝑉(𝒚𝒌) is the 

covariance matrix of 𝒚𝒌.  

We have 𝐸[𝑿𝒌𝑽𝒌
−𝟏(𝒚𝒌 − 𝑿𝒌𝝋)] = 𝟎, then the moment condition in this case is  

𝑚(𝝋) =
𝟏

𝑲
∑ 𝑿𝒌𝑽𝒌

−𝟏(𝒚𝒌 − 𝑿𝒌𝝋)𝑘 .  

To obtain the GMM estimates, we need to solve the equation 𝑚(𝝋) = 𝟎. By using a 

fixed covariance matrix for 𝑽𝒌, GMM is equivalent to GEE with fixed working correlation 

matrix in terms of parameter estimate. If 𝑽𝒌 is a diagonal matrix with the same elements on the 

diagonal, then GMM is equivalent to GEE with independent working correlation structure. 

However, when GEE with an estimated working correlation matrix, such as a compound 

symmetry matrix, that has nuisance parameters other than 𝝋, then GEE cannot be embedded into 

the framework of the GMM (Ziegler 2011). 

 

4.4 Comparison between the ML method, GEE, GMM in 

concentration-QTc model 

4.4.1 Simulation study in comparing the ML method, GEE and GMM 

       In Sections 4.2 and 4.3, we proposed novel applications of the GEE and the GMM in 

concentration-QTc model and connections between them. In Section 4.4, simulation study is 

conducted to compare the ML method, the GEE and the GMM in concentration-QTc model.  

       In Section 4.2.2, we gave a brief introduction to parallel SAD design which is revisited 

here.  
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Table 4.5 Study design of SAD parallel study 

Period Group 
Sample  

Size 

Time of 

measurements 

1 DOSE1 

"3+1"  
-1, 1, 2, 4, 6, 8, 

12, 15, 24 

2 DOSE2 

3 DOSE3 

4 DOSE4 

5 DOSE5 

6 DOSE6 

7 DOSE7 

8 DOSE8 

     

   An example of  parallel SAD study is shown in Table 4.5, each subject only has one dose 

of drug or placebo, number of subjects in each sequence usually follows a “3:1” ratio which 

means the number of subjects taking drug in each period is as three times as many as those 

taking placebo. The dosages 10mg, 50mg, 100mg, 150mg, 200mg, 300mg, 400mg, 600mg are 

assigned to dose1-dose8 as we did in Chapter 3. For each subject, one QTc measurement is taken 

before the drug/placebo administration, and 8 post-dose QTc measurements and drug 

concentrations are taken at the 1
st
, 2

nd
, 4

th
, 6

th
, 8

th
, 12

th
, 15

th
, and the 24

th
 hour post-dose. 

       To generate the repeated measures QTc data, we assume QTc variation is only subject to 

subject random effect, which is normally distributed with mean 0, variance 𝜎𝑠
2 and random error 

is also normally distributed with mean 0, with variance 𝜎2. We fix 𝜎𝑠
2 = 180 and 𝜎2 = 90. 

AR(1) within-day random error is simulated with 9 correlations, 𝜌 =  0.1, 0.2, … , 0.8, 0.9, in 

these AR(1) within-day random error scenarios, the within-subject covariance is calculated as 

(𝜎𝑠
2 + 𝜎𝑝

2) ∗ 𝑱(𝑇+1) + 𝜎
2 ∗ 𝝆(𝑻+𝟏)∗(𝑻+𝟏), where the (𝑠, 𝑠′)th element of 𝝆(𝑻+𝟏)∗(𝑻+𝟏) is 𝜌|𝑡𝑠−𝑡𝑠′|, 

here 𝑡𝑠 denotes the time corresponding to the 𝑠-th time point in each period. Drug concentration 

simulation process is the same as that in Chapter 3 using a one-compartmental model. 

       Since the GEE and the GMM both need large sample size to obtain reasonable parameter 

estimates, we use the sample size scheme of “6+2” (total sample size of 64) in each scenario at 

first and then increase the sample size for the purpose to investigate the properties of each 

method.  
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Five methods are included for comparison, the ML method with subject random intercept 

and independent random error, the GEE with fixed sample correlation, the GEE with compound 

symmetry correlation structure, the GEE with independent correlation structure, and the GMM 

with moment condition 𝑚(𝝋) =
𝟏

𝑲
∑ 𝑿𝒌(𝒚𝒌 − 𝑿𝒌𝝋)𝒌  as described in Section 4.3.2. Pepe and 

Anderson (1994) and Pan et al. (2000) mentioned that a diagonal working covariance matrix 

should be used or a key assumption should be verified, especially for time-varying covariates. 

Since drug concentration is a time-varying covariate, the GEE with independent correlation 

structure and its counterpart in GMM are included here. By comparing the 5 methods in AR(1) 

random error structure, we aim to investigate performances of each method when the covariance 

matrix structure is wrongly specified for ML method under different sample size scenario. 

      For each scenario, type-1 error and power in detecting a “safe” drug in the hypothesis 

testing conducted in concentration-QTc model is calculated. Bias and MSE in estimating β are 

also compared. The number of simulation is 1000 under each simulation scenario. 

 

4.4.2 Simulation results in comparing the ML method, GEE and GMM 

       From Figure 4.1, we can see that in all the sample size scheme, the type-1 error of the 

ML method increases when the covariance matrix structure is wrongly specified for ML method 

(ρ>0). Type-1 errors of all the GEE methods and the GMM are similar and consistent with 

change of the AR(1) correlation, and type-1 errors tend to decrease as sample size increases. This 

indicates that in terms of type-1 error, the ML method is more sensitive to mis-specification of 

the covariance matrix structure while the GEE methods and the GMM are more robust.  

From Figure 4.2, the GEE with fixed sample correlation has a comparable power to the 

ML method in detecting a “safe” drug in all the simulation scenarios; however considering the 

ML method has inflated type-1 error when the covariance matrix structure is mis-specified (ρ > 

0), we conclude that in terms of hypothesis testing in concentration-QTc model, the GEE with 

fixed sample correlation is superior to the ML method. The power of the GEE with compound 

symmetry correlation structure tends to decrease when the AR(1) correlation increases when the 

sample size is not that large (“6+2”, “9+3”), however it has comparable power to GEE with fixed 
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sample correlation and the ML method when the sample size is large (“36+12”, “72 

+24”). This should be due to that the compound symmetry correlation structure is more severely 

violated when AR(1) correlation becomes larger which may reduce the efficiency of the GEE 

with compound symmetry structure. The GEE with independent correlation structure and the 

GMM only have comparable power to the other methods when the sample size is large (“36+12”, 

“72+24”), which indicates that the choice of correlation structure for the GEE, and the choice of 

moment condition for the GMM would affect the efficiency of the parameter estimates. 

       Figure 4.3 indicates that the bias of the estimated drug effect �̂� of all the models are 

similar when the slope is small (β=0.33). GEE with sample correlation has larger bias when the 

drug effect slope is large (β=1.65). However Figure 4.4 indicates that GEE with fixed sample 

correlation as working correlation matrix always has comparable MSE in estimating β to the ML 

method when the covariance matrix structure is correctly specified for the ML method (ρ=0), 

while the GEE with fixed sample correlation has smaller MSE than the ML method when the 

covariance matrix structure is wrongly specified for the ML method (ρ > 0). The MSE of the 

GEE with independent structure and the GMM are mostly affected by the sample size, this 

indicates that more careful choice of working correlation matrix structure in the GEE and 

moment condition in the GMM would provide a more efficient parameter estimates, although 

their estimates are still consistent. 

 The performance of parameter estimates (bias, MSE) between the ML method and the 

GEE with compound symmetry working correlation matrix structure are very similar, so does the 

performance between the GEE with independent working correlation structure and the GMM. 

These results further confirm the connections between these methods as illustrated in Sections 

4.2 and 4.3.  
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Figure 4.1 Simulation results (type-1 error) in comparing the ML method, the GEE and the 

GMM 
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Figure 4.2 Simulation results (power) in comparing the ML method, the GEE and the GMM 
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Figure 4.3 Bias of each method when estimate β (calculated as the mean difference between 

estimated �̂� and true β) 
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Figure 4.4 MSE of each method when estimate β (calculated as the mean squared difference 

between �̂� and true β) 
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4.5 Conclusion and discussion 

       In Chapter 4, several novel applications in the concentration-QTc model are proposed, 

the comparisons between the traditional ML method and the newly proposed methods are also 

conducted. Comparison between these methods are summarized in Table 4.6 and Table 4.7. 

       For mixed effects model, the Bayesian method has the ability to include prior distribution 

of the parameters while the ML method cannot. With reliable prior distributions on the 

parameters, the Bayesian method outperforms ML method with larger power and smaller type-1 

error in the hypothesis testing conducted in concentration-QTc model. But inferences may be 

erroneous when the prior information is not consistent with the trial result. Thus application of 

the Bayesian method with informative prior information should be cautious when the parameter 

estimate is quite different from the prior distribution. When we don’t have a specific prior 

distributions for parameters, the Bayesian method with non-informative prior distribution has 

similar performances to the ML method in terms of similar power and type-1 error in detecting a 

“safe” drug.  

       The GEE and the GMM are two popular methods in modeling correlated outcomes. Their 

distribution free nature render these two methods more attractive when the maximum likelihood 

function is hard to derive. Furthermore, when the covariance structure is wrongly specified, 

which is always a case in mixed effects model with the ML method, the GEE and the GMM can 

still provide consistent parameter estimation when the sample size is relatively large. The GEE 

method with a sample correlation matrix as the working correlation matrix has comparable 

power to the ML method in excluding a small QTc prolongation effect and identifying a “safe” 

drug, and it can better control the type-1 error while the type-1 error of the ML method is 

severely affected by the wrong specification of covariance matrix. Moreover, the GEE with 

sample correlation can also provide parameter estimates with smaller mean square error 

comparing to ML method. 
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Table 4.6 Summary of comparison between the ML method and the Bayesian method 

  ML method Bayesian method 

How to treat 

parameter  

1. Treat parameter as a single point 

2. Not able to consider prior belief  

1. Treat parameter as a random variable  

2. Able to include prior belief in the 

model if available  

 Parameter 

estimate 

Obtain point estimate of the 

parameter by maximizing the 

likelihood function  

Obtain a posterior distribution of the 

parameter and make inference of 

parameter based on it  

(e.g. use maximum a posteriori 

probability (MAP) estimate to get a 

point estimate)  

Assumption 

and 

performance  

1. Both need correctly specify the distribution of the data give the 

parameters 

2. In the mixed effects model, the Bayesian method with non-

informative prior distributions yield more confidence interval 

coverage on the subject random effect variance 

3. Comparing to ML method, the Bayesian method yield more efficient 

parameter estimate with reliable prior information, but inference may 

be erroneous when the prior information is not consistent with the 

data  

 

 

Table 4.7 Summary of comparison between the ML method, the GEE and the GMM 

  ML method  GEE  GMM  

 Focus of 

interest 

 Both population-level 

effect and subject-level 

effect 

Population-level effect 

Depends on 

the moment 

condition 

 Assumption 

Correctly specified 

distribution and 

covariance structure for 

the data  

Correctly specified mean 

structure   

Correctly 

specified 

moment 

condition  

Connection  

1. The ML method and the GEE are similar when the link function in 

GEE is linear and covariance structure is specified the same for the 

methods 

2. The ML method is in the GMM framework as we specified the first 

derivative of the likelihood function as the moment condition  

3. The GEE with independent correlation structure and the GEE with 

fixed correlation matrix are both in the framework of the GMM  
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Chapter 5 Real data analysis 

 

       Data analysis on real data from a phase 1 SAD data is presented in this chapter. Models 

with the ML method (rQTc, ΔQTc, ΔΔQTc and cΔQTc), the Bayesian method, the GEE and the 

GMM are all compared in the real data analysis. 

  

5.1 Introduction to the real data 

 The data is from a typical 4-period phase 1 single ascending dose (SAD) study with 16 

subjects, each subject have 3 periods of drug with different doses and 1 period of placebo, the 

study design is summarized in Table 5.1. 

 

Table 5.1 Study design of real data from a phase 1 crossover SAD study 

Number of 

Subjects 
Period 1 Period 2 Period 3 Period 4 

N=2 Placebo DOSE3 DOSE5 DOSE7 

N=2 DOSE1 Placebo DOSE5 DOSE7 

N=2 DOSE1 DOSE3 Placebo DOSE7 

N=2 DOSE1 DOSE3 DOSE5 Placebo 

N=2 Placebo DOSE4 DOSE6 DOSE8 

N=2 DOSE2 Placebo DOSE6 DOSE8 

N=2 DOSE2 DOSE4 Placebo 200mg 

N=2 DOSE2 DOSE4 DOSE6 DOSE8 

 

 Information of dosage is not revealed here, but the order of dosage is essentially the same 

as Table 1.1 with DOSE1<DOSE2<DOSE3<DOSE4<DOSE5<DOSE6<DOSE7<DOSE8. In 

each period, each subject has two pre-dose ECG measurements, thus the average of the two QTc 

values is considered as the period-specific pre-dose QTc baseline. In each period, 7 drug 
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concentration measurements and QTc measurements are taken at the 1
st
, 2

nd
, 4

th
, 6

th
, 8

th
, 12

th
 and 

24
th

 hour post-dose. We choose the highest dose (DOSE8) as the dose of interest. 

 

5.2 Analysis of the real data 

5.2.1 Comparison of model efficiencies 

 First, rQTc, ΔQTc, ΔΔQTc and cΔQTc models are fitted using the classic ML method, 

respectively and the results of the estimated drug effect are summarized in Table 5.2.  

 

Table 5.2 Estimated QTc prolongation from rQTc, ΔQTc, ΔΔQTc and cΔQTc models 

 Model 
Estimated drug 

effect slope �̂�  

Standard error of estimated 

drug effect slope �̂�   

1-sided 95% 

upper bound of  �̂� 

1-sided 95% 

upper bound 

of  QTc 

prolongation 

 rQTc 0.00407  0.00515  0.0125  6.51ms  

 ΔQTc  0.00295  0.00538  0.0118 6.15ms  

 cΔQTc  0.00488  0.00452  0.0123  6.41ms 

 ΔΔQTc  0.00949  0.00447  0.0168  8.75ms 

  

From Table 5.2, we can see that the standard error is smaller in the cΔQTc model 

comparing to the rQTc model and the ΔQTc model, the estimated drug effect slope and the 

estimated upper bound of the QTc prolongation are similar between the 3 models.  

 The estimated variance of drug effect slope is the smallest in the ΔΔQTc model, but the 

drug effect slope estimate of the ΔΔQTc model is quite different from the other 3 models, which 

makes it produce the largest upper bound of the QTc prolongation, this may be due to several 

reasons, such as the true underlying unknown covariance structure of repeated measures QTc 

data is not exactly double compound symmetry. But based on the fact that the ΔΔQTc model 

gives the largest value of upper bound of the estimated QTc prolongation, and this estimate is 

quite different from the other 3 models, this may indicate that the ΔΔQTc model should be used 

with caution even if it has the smallest standard error of estimated drug effect slope. 
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5.2.2 Application of the Bayesian method, GEE and GMM 

 First, we fit the rQTc model with both the ML method and the Bayesian method with 

non-informative prior distribution. For the Bayesian method, the estimated drug effect slope is 

obtained by calculating the mean from the posterior sample, and the posterior median (0.00415) 

is similar to the mean. Standard error of estimated drug effect is also calculated from the 

posterior sample of drug effect β. The 1-sided 95% upper bound of  �̂� is computed as the 95th 

percentile of the posterior sample. From Table 5.3, we can conclude that the ML method and the 

Bayesian method produce very similar estimates. Table 5.4 shows that estimated standard 

deviation with its two-sided 95% confidence interval based on the ML method and the Bayesian 

method. Both methods produce similar results in estimating the variance component for rQTc 

model. 

Moreover, the GEE and the GMM are also fitted here although they are more suitable for 

a parallel design when the sample size is relatively large. From Table 5.3, the GEE with different 

working correlation matrix structures produce different estimates of drug effect slope �̂�, and this 

may be a result of the small sample size of the crossover SAD study. Although the upper bound 

of QTc prolongation from the GEE with CS correlation structure, the GEE with independent 

correlation structure and the GMM are all less than 10ms, the significantly inconsistent estimates 

between the GEE with different correlation structures indicate that it should be cautious when 

apply the GEE with data from crossover SAD study, when the sample size is relatively small 

compared to the number of measurements per subject. 
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Table 5.3 Estimated QTc prolongation from the ML method, the Bayesian method, the GEE with 

sample correlation, the GEE with compound symmetry structure, the GEE with independent 

structure and the GMM 

 Model 

Estimated 

drug effect 

slope �̂�  

Standard error of 

estimated drug effect 

slope �̂�   

1-sided 95% 

upper bound 

of  �̂� 

1-sided 95% 

upper bound 

of  QTc 

prolongation 

 ML method 0.00407  0.00515  0.0125  6.51ms  

Bayesian  

method 
0.00407  0.00512  0.0126 6.57ms  

 GEE  

(sample 

correlation) 

0.0433  0.0368  0.104  54.2ms 

GEE  

(CS) 
 0.00463  0.00349  0.0104  5.42ms 

GEE  

(Independent) 
-0.00291  0.00612  0.00716  3.73ms 

GMM -0.00291  0.00838  0.0109  5.68ms 

 

Table 5.4 Estimated standard deviation and two-sided 95% confidence interval of random error, 

subject random effect, subject-by-period random effect between the ML method and the 

Bayesian method for the rQTc model 

Method  
σ 

standard deviation of 

random error  

𝜎𝑠 
standard deviation of 

subject random effect   

𝜎𝑝 
standard deviation of subject-

by-period random effect    

ML method 11.20 (10.36, 11.94)   12.41 (8.36, 18.21) 6.43 (4.76, 8.54)  

Bayesian method 11.20 (10.5, 12.1)   12.49 (8.66, 19.40)  6.44 (4.75, 8.57)  
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Chapter 6  Conclusion and future work 

 

6.1 Conclusion and contribution 

       Concentration-QTc model is becoming increasingly popular in evaluation of 

proarrhythmic risk in drug application. However several outstanding statistical issues within the 

current development of concentration-QTc model must be addressed. This dissertation endeavors 

to improve the current concentration-QTc model from the following aspects. 

       First, when researchers model the circadian rhythm effect of QTc with multi-oscillator 

function, limitations in sampling strategy to identify the true underlying multi-oscillator function 

is never addressed. We conduct simulation studies to evaluate the ability of the current sampling 

strategy in identifying the true underlying function. The result is not surprising that due to the 

limited number of QTc measurements between the 12
th

 hour and the 24
th

 hour post-dose, 

unevenly distributed sampling strategy produces unstable parameter estimates and thus we are 

not able to pick up the right multi-oscillator function. To further validate our hypothesis that the 

poor identifiable rate of the current sampling strategy is due to the unevenly spaced sampling 

strategy, we revised the sampling strategy to make the sampling time points more evenly 

distributed. The identifiable rate to the true model has thence been significantly increased. 

Therefore, thorough considerations are needed when using multi-oscillator functions when the 

time points are limited and also relatively unevenly distributed. In addition, we found the usage 

of categorical time covariate is another reasonable alternative (Huh and Hutmacher 2015) to 

model the circadian rhythm effect in the concentration-QTc model. 

       Secondly, when conducting concentration-QTc model with data from phase 1 crossover 

single ascending dose (SAD) study with period-specific QTc baseline measurement, different 

concentration-QTc models have different ways to treat the period-specific pre-dose QTc baseline. 

The comparison of efficiency between each model has not been discussed. We compare the 

efficiencies of each model under the same framework by assuming the covariance structure of 

the data is double compound symmetry. We proposed a cΔQTc model that reduces the variance 
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of estimated drug effect slope by including period-specific pre-dose QTc baseline and subject-

averaged pre-dose QTc baseline as covariates in the model. By deriving and comparing the 

variance of the estimated drug effect slope �̂� for each model we can conclude that our proposed 

cΔQTc model is most efficient comparing to the existing models. Simulation studies also 

validated the advantage in efficiency of our proposed model. 

       Finally, methods other than the maximum likelihood (ML) method are rarely applied in 

concentration-QTc model. We propose 3 novel applications of statistical methods here. First, we 

provide a framework of Bayesian method and shows that the Bayesian method with non-

informative prior distributions has advantage over ML method in estimating the variance of 

subject random effect variance, especially when the variance of subject random effect is small. 

Also, the Bayesian method with reliable prior distributions outperforms the ML method with 

larger power and smaller type-1 error in the hypothesis testing conducted with concentration-

QTc model. Second, we discuss the connections between the ML method, the generalized 

estimating equation (GEE) and the generalized method of moments (GMM). We also applied the 

GEE and the GMM to concentration-QTc model. Simulation study shows that GEE with fixed 

sample correlation has comparable performance as the ML method in terms of power to detect a 

“safe” drug while it can better control the type-1 error rate. The GEE with sample correlation 

always produces drug effect slope estimate with smaller mean square error when the covariance 

matrix specification of the ML method is incorrect (ρ > 0). 

 

6.2 Future work  

First, the advantage of the proposed cΔQTc model is based on the fact that the covariance 

matrix structure of repeated measures QTc data is double symmetry, whether the advantage in 

efficiency of the cΔQTc model still holds in cases other than double symmetry covariance matrix 

structure, such as unspecified structure, TOEP structure, is not clear. We will explore the 

properties of our proposed model in more covariance matrix structures. 

Second, we provide a framework of applying the GMM in rQTc model with a certain 

moment condition and show the GMM could provide consistent estimate of drug effect slope, 
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although it is not efficient. Some other moment conditions may be able to achieve a reasonable 

GMM estimate with a smaller size comparing to the current moment condition we used. Further 

work will also be done in exploring a better choice of moment condition when applying the 

GMM method. 

Last but not the least, all of our work are based on the current study design of phase 1 

single ascending dose (SAD) studies, how to improve the reliability of QTc prolongation 

estimate with concentration-QTc model by modifying SAD study design is not clear. Thus more 

work will also be done in investigating the improvement of SAD study design to make the QTc 

prolongation estimate from SAD study to be more reliable. The most immediate study maybe to 

examine the possibility of increased sample size in SAD study and its benefit in terms of test 

power and the type I error rate. Given that the SAD study with a very modest sample size is 

proposed to replace the large TQT study in assessing the proarrhythmic risk of drugs – a middle 

ground might be the more reasonable choice for both the FDA and the pharmaceutical industry. 
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Appendix 

 

Appendix 1.1  

For a matrix with double compound symmetric structure 𝑰𝐽⊗𝜴+ 𝜎𝑠
2 ∗ 𝑱𝐽𝑇×𝐽𝑇, its inverse, if 

exists, is 𝑰𝐽⊗𝜴−𝟏 −
σs

2

(𝑇∗𝜎𝑝2+𝜎2)∗(𝑇∗𝜎𝑝2+𝜎2+𝐽𝑇∗𝜎𝑠2)
𝑱𝐽𝑇×𝐽𝑇.  

Here Ω= 𝜎2 ∗ 𝑰𝑇 + 𝜎𝑝
2 ∗ 𝑱𝑇×𝑇. 

 

Proof:  

Let = 𝑰𝐽⊗𝜴 , 𝑯 = 𝜎𝑠
2 ∗ 𝑱𝐽𝑇×𝐽𝑇, it’s obvious that matrix 𝑯 has rank one. According to Miller 

(1981),  

(𝑮 + 𝑯)−1 = 𝑮−1 −
1

1 + 𝑔
𝑮−𝟏𝑯𝑮−𝟏 

where 𝑔 = 𝑡𝑟(𝑯𝑮−1). 

 

According Dobbin et al. 2005,  

𝜴−𝟏 =
1

𝜎2
∗ 𝑰𝐓 −

𝜎𝑝
2

𝜎2 ∗ (𝜎2 + T ∗ 𝜎𝑝2)
∗ 𝑱𝐓 

𝑔 = 𝑡𝑟(𝑯𝑮−1) = 𝑡𝑟(𝜎𝑠
2 ∗ 𝑱𝐽𝑇×𝐽𝑇 ∗ 𝑰𝐽⊗𝜴−𝟏) 

= 𝜎𝑠
2 ∗ 𝐽𝑇 ∗ [

1

𝜎2
−

𝑇 ∗ 𝜎𝑝
2

𝜎2 ∗ (𝜎2 + T ∗ 𝜎𝑝2)
] 

=
𝜎𝑠
2 ∗ 𝐽𝑇

(𝜎2 + T ∗ 𝜎𝑝2)
 

 

𝑮−𝟏𝑯𝑮−𝟏 = 𝜎𝑠
2 ∗ (𝑰𝐽⊗𝜴−𝟏) ∗  𝑱𝐽𝑇×𝐽𝑇 ∗ (𝑰𝐽⊗𝜴−𝟏) 

=
𝜎𝑠
2

(𝜎2 + T ∗ 𝜎𝑝2)
∗ 𝑱𝐽𝑇×𝐽𝑇 ∗ (𝑰𝐽⊗𝜴−𝟏) =

𝜎𝑠
2

(𝜎2 + T ∗ 𝜎𝑝2)
2 ∗ 𝑱𝐽𝑇×𝐽𝑇 
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So 

(𝑮 + 𝑯)−1 = 𝑮−1 −
1

1 + 𝑔
𝑮−𝟏𝑯𝑮−𝟏 

= 𝑰𝐽⊗𝜴−𝟏 −
1

1 +
𝜎𝑠2 ∗ 𝐽𝑇

(𝜎2 + T ∗ 𝜎𝑝2)

∗
𝜎𝑠
2

(𝜎2 + T ∗ 𝜎𝑝2)
2 ∗ 𝑱𝐽𝑇×𝐽𝑇 

= 𝑰𝐽⊗𝜴−𝟏 −
σs
2

(𝑇 ∗ 𝜎𝑝2 + 𝜎2) ∗ (𝑇 ∗ 𝜎𝑝2 + 𝜎2 + 𝐽𝑇 ∗ 𝜎𝑠2)
𝑱𝐽𝑇×𝐽𝑇 

 

Appendix 1.2  

For a matrix 𝑽𝑟with block diagonal structure and each block with double compound symmetric 

structure  𝑽𝑟 = 𝑰𝐾⊗𝜮𝒓, where 𝜮𝒓 = 𝑰𝐽⊗𝜴+ 𝜎𝑠
2 ∗ 𝑱𝐽𝑇×𝐽𝑇, let  𝑬 = 𝟙𝑲𝑱⊗ 𝑰𝑻, then 

(𝑬′𝑽𝑟
−𝟏𝑬)−𝟏 =

1

𝐾
(
1

𝐽
𝛀 + σs

2𝑱𝑇×𝑇).  

 

Proof:  

𝑬′𝑽𝑟
−𝟏𝑬 = [𝑰𝑻 𝑰𝑻  …  𝑰𝑻] ∗ (𝑰𝐾⊗𝜮𝒓

−𝟏) ∗ [
𝑰𝑻
…
𝑰𝑻

] 

= [𝑰𝑻 𝑰𝑻  …  𝑰𝑻] ∗ [𝑰𝐾𝐽⊗𝜴−𝟏 −
σs
2

(𝑇 ∗ 𝜎𝑝2 + 𝜎2) ∗ (𝑇 ∗ 𝜎𝑝2 + 𝜎2 + 𝐽𝑇 ∗ 𝜎𝑠2)
∗ (𝑰𝐾⊗ 𝑱𝐽𝑇×𝐽𝑇)]

∗ [
𝑰𝑻
…
𝑰𝑻

] 

= [𝟙𝑲𝑱′ ⊗ 𝜴−𝟏 −
𝐽 ∗ σs

2

(𝑇 ∗ 𝜎𝑝2 + 𝜎2) ∗ (𝑇 ∗ 𝜎𝑝2 + 𝜎2 + 𝐽𝑇 ∗ 𝜎𝑠2)
∗ (𝟙𝑲𝑱′ ⊗ 𝑱𝑇×𝑇)] ∗ [

𝑰𝑻
…
𝑰𝑻

] 

= 𝐾𝐽 ∗ 𝜴−𝟏 −
𝐾 ∗ 𝐽2 ∗ σs

2

(𝑇 ∗ 𝜎𝑝
2 + 𝜎2) ∗ (𝑇 ∗ 𝜎𝑝

2 + 𝜎2 + 𝐽𝑇 ∗ 𝜎𝑠
2)
∗ 𝑱𝑇×𝑇 

= 𝐾𝐽 ∗ [𝜴−𝟏 −
𝐽σs

2

(𝑇 ∗ 𝜎𝑝2 + 𝜎2) ∗ (𝑇 ∗ 𝜎𝑝2 + 𝜎2 + 𝐽𝑇 ∗ 𝜎𝑠2)
∗ 𝑱𝑇×𝑇] 
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According to Appendix 1.1, we have 

[𝜴−𝟏 −
𝐽σs

2

(𝑇∗𝜎𝑝2+𝜎2)∗(𝑇∗𝜎𝑝2+𝜎2+𝐽𝑇∗𝜎𝑠2)
∗ 𝑱𝑇×𝑇]

−1 = 𝛀 + 𝐽𝜎𝑠
2𝑱𝑇×𝑇 , 

So (𝑬′𝑽𝑟
−𝟏𝑬)−𝟏 =

1

𝐾
(
1

𝐽
𝛀 + σs

2𝑱𝑇×𝑇). 

 

Appendix 1.3  

For rQTc model, the inverse of 𝑣𝑎𝑟(�̂�) is 

∑ ∑ (𝑪𝑘𝑗 − 𝑪..̅̅ ̅)
′
𝜴−1𝐽

𝑗=1 (𝑪𝑘𝑗 − 𝑪..̅̅ ̅)
𝐾
𝑘=1 −

𝜎𝑠
2

(𝑇∗𝜎𝑝2+𝜎2)∗(𝑇∗𝜎𝑝2+𝜎2+JT∗𝜎𝑠2)
(∑ Ck..

2K
k=1 −

1

K
∗ C…

2). 

Proof:  

1

𝑣𝑎𝑟(�̂�)
= 𝑪′𝑽𝑟

−𝟏𝑪 − 𝑪′𝑽𝑟
−𝟏𝑬 ∗ (𝑬′𝑽𝑟

−𝟏𝑬)−𝟏 ∗ 𝑬′𝑽𝑟
−𝟏𝑪 

 

𝑽𝑟
−𝟏𝑬 ∗ (𝑬′𝑽𝑟

−𝟏𝑬)−𝟏 

= [𝟙𝐾𝐽⊗𝛀−𝟏 −
σs
2 ∗ 𝐽

(𝑇 ∗ 𝜎𝑝2 + 𝜎2) ∗ (𝑇 ∗ 𝜎𝑝2 + 𝜎2 + 𝐽𝑇 ∗ 𝜎𝑠2)
𝑱𝐾𝐽𝑇×𝑇] ∗

1

𝐾
(
1

𝐽
𝛀 + σs

2𝑱𝑇×𝑇) 

=
1

𝐾𝐽
𝟙𝐾𝐽⊗ 𝑰𝑻 +

σs
2

𝐾 ∗ (𝑇 ∗ 𝜎𝑝
2 + 𝜎2)

𝑱𝐾𝐽𝑇×𝑇 −
σs
2

𝐾 ∗ (𝑇 ∗ 𝜎𝑝
2 + 𝜎2 + 𝐽𝑇 ∗ 𝜎𝑠

2)
𝑱𝐾𝐽𝑇×𝑇

−
σs
4 ∗ 𝐽𝑇

𝐾 ∗ (𝑇 ∗ 𝜎𝑝2 + 𝜎2) ∗ (𝑇 ∗ 𝜎𝑝2 + 𝜎2 + 𝐽𝑇 ∗ 𝜎𝑠2)
𝑱𝐾𝐽𝑇×𝑇 

=
1

𝐾𝐽
𝟙𝐾𝐽⊗ 𝑰𝑻 +

(𝑇 ∗ 𝜎𝑝
2 + 𝜎2 + 𝐽𝑇 ∗ 𝜎𝑠

2) ∗ σs
2 − (𝑇 ∗ 𝜎𝑝

2 + 𝜎2) ∗ σs
2 − σs

4 ∗ 𝐽𝑇

𝐾 ∗ (𝑇 ∗ 𝜎𝑝2 + 𝜎2) ∗ (𝑇 ∗ 𝜎𝑝2 + 𝜎2 + 𝐽𝑇 ∗ 𝜎𝑠2)
 

=
1

𝐾𝐽
𝟙𝐾𝐽⊗ 𝑰𝑻 =

1

𝐾𝐽
𝑬 

 

𝑽𝑟
−𝟏𝑬 ∗ (𝑬′𝑽𝑟

−𝟏𝑬)−𝟏 ∗ 𝑬′𝑽𝑟
−𝟏

 

=
1

𝐾𝐽
𝑬 ∗ [𝟙𝐾𝐽

′ ⊗𝛀−𝟏 −
σs
2 ∗ 𝐽

(𝑇 ∗ 𝜎𝑝2 + 𝜎2) ∗ (𝑇 ∗ 𝜎𝑝2 + 𝜎2 + 𝐽𝑇 ∗ 𝜎𝑠2)
𝑱𝑇×𝐾𝐽𝑇] 

=
1

𝐾𝐽
𝑱𝐾𝐽×𝐾𝐽⊗𝛀−𝟏 −

σs
2

𝐾 ∗ (𝑇 ∗ 𝜎𝑝2 + 𝜎2) ∗ (𝑇 ∗ 𝜎𝑝2 + 𝜎2 + 𝐽𝑇 ∗ 𝜎𝑠2)
𝑱𝐾𝐽𝑇×𝐾𝐽𝑇 
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𝑪′𝑽𝑟
−𝟏𝑪 − 𝑪′𝑽𝑟

−𝟏𝑬 ∗ (𝑬′𝑽𝑟
−𝟏𝑬)−𝟏 ∗ 𝑬′𝑽𝑟

−𝟏𝑪 

= 𝑪′[𝑽𝑟
−𝟏 − 𝑽𝑟

−𝟏𝑬 ∗ (𝑬′𝑽𝑟
−𝟏𝑬)−𝟏 ∗ 𝑬′𝑽𝑟

−𝟏]𝑪 

= 𝑪′ {[𝑰𝐾𝐽⊗𝜴−𝟏 −
σs
2

(𝑇 ∗ 𝜎𝑝2 + 𝜎2) ∗ (𝑇 ∗ 𝜎𝑝2 + 𝜎2 + 𝐽𝑇 ∗ 𝜎𝑠2)
∗ (𝑰𝐾⊗ 𝑱𝐽𝑇×𝐽𝑇)]

− [
1

𝐾𝐽
𝑱𝐾𝐽×𝐾𝐽⊗𝛀−𝟏

−
σs
2

𝐾 ∗ (𝑇 ∗ 𝜎𝑝2 + 𝜎2) ∗ (𝑇 ∗ 𝜎𝑝2 + 𝜎2 + 𝐽𝑇 ∗ 𝜎𝑠2)
𝑱𝐾𝐽𝑇×𝐾𝐽𝑇]} 𝑪 

= 𝑪′ [𝑰𝐾𝐽⊗𝜴−𝟏 −
1

𝐾𝐽
𝑱𝐾𝐽×𝐾𝐽⊗𝛀−𝟏] 𝑪

−
σs
2

(𝑇 ∗ 𝜎𝑝
2 + 𝜎2) ∗ (𝑇 ∗ 𝜎𝑝

2 + 𝜎2 + 𝐽𝑇 ∗ 𝜎𝑠
2)
𝑪′ [𝑰𝐾⊗ 𝑱𝐽𝑇×𝐽𝑇

−
1

𝐾
𝑱𝐾𝐽𝑇×𝐾𝐽𝑇] 𝑪 

 

 

𝑪′ [𝑰𝐾𝐽⊗𝜴−𝟏 −
1

𝐾𝐽
𝑱𝐾𝐽×𝐾𝐽⊗𝛀−𝟏] 𝑪 

=∑∑𝑪𝑘𝑗′𝜴
−1

𝐽

𝑗=1

𝑪𝑘𝑗

𝐾

𝑘=1

− 𝐾𝐽 ∗ (𝑪..̅̅ ̅
′
∗ 𝜴−1 ∗ 𝑪..̅̅ ̅) 

=∑∑(𝑪𝑘𝑗 − 𝑪..̅̅ ̅)
′
𝜴−1

𝐽

𝑗=1

(𝑪𝑘𝑗 − 𝑪..̅̅ ̅)

𝐾

𝑘=1

 

 

 

𝑪′ [𝑰𝐾⊗ 𝑱𝐽𝑇×𝐽𝑇 −
1

𝐾
𝑱𝐾𝐽𝑇×𝐾𝐽𝑇] 𝑪 

= 𝑪′ ∗ (𝑰𝐾⊗ 𝑱𝐽𝑇×𝐽𝑇) ∗ 𝑪 − 𝑪
′ ∗ (

1

𝐾
𝑱𝐾𝐽𝑇×𝐾𝐽𝑇) ∗ 𝑪 

=∑Ck..
2

𝐾

𝑘=1

− 𝐾 ∗ C...̅̅ ̅
2
=∑(Ck.. − C...̅̅ ̅)

2

𝐾

𝑘=1

 

 

So  
1

𝑣𝑎𝑟(�̂�)
= ∑ ∑ (𝑪𝑘𝑗 − 𝑪..̅̅ ̅)

′
𝜴−1𝐽

𝑗=1 (𝑪𝑘𝑗 − 𝑪..̅̅ ̅)
𝐾
𝑘=1 −

𝜎𝑠
2

(𝑇∗𝜎𝑝2+𝜎2)∗(𝑇∗𝜎𝑝2+𝜎2+JT∗𝜎𝑠2)
∑ (Ck.. −
𝐾
𝑘=1

C...̅̅ ̅)
2 
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Appendix 1.4  

[
𝑬′𝑽�̃�

−𝟏
𝑬 𝑬′𝑽�̃�

−𝟏
𝑩

𝑩′𝑽�̃�
−𝟏
𝑬 𝑩′𝑽�̃�

−𝟏
𝑩
]−𝟏 = [

1

𝐾𝐽
𝜸 + 𝑩..̅̅ ̅ ∗ 𝑰𝑵𝑽 ∗ 𝑩..̅̅ ̅′ −𝑩..̅̅ ̅ ∗ 𝑰𝑵𝑽

−𝑰𝑵𝑽 ∗ 𝑩..̅̅ ̅′ 𝑰𝑵𝑽

] 

where 𝑰𝑵𝑽 = (∑ ∑ (𝑩𝒊𝒋 − 𝑩..̅̅ ̅)′𝜸
−𝟏(𝑩𝒊𝒋 − 𝑩..̅̅ ̅)

𝐽
𝑗=1

𝐾
𝑘=1 )

−𝟏
. 

 

Proof: 

      According to equation (8) in Henderson et al (1981), when 𝑨 is nonsingular and 𝑫 is possibly 

singular 

[
𝑨 𝑼
𝑽 𝑫

]−𝟏 = [
𝑨−𝟏 + 𝑨−𝟏𝑼(𝑫− 𝑽𝑨−𝟏𝑼)−𝟏𝑽𝑨−𝟏 −𝑨−𝟏𝑼(𝑫− 𝑽𝑨−𝟏𝑼)−𝟏

−(𝑫 − 𝑽𝑨−𝟏𝑼)−𝟏𝑽𝑨−𝟏 (𝑫 − 𝑽𝑨−𝟏𝑼)−𝟏
] 

Let 𝑨 = 𝑬′𝑽�̃�
−𝟏
𝑬, 𝑼 = 𝑬′𝑽�̃�

−𝟏
𝑩, 𝑽 = 𝑩′𝑽�̃�

−𝟏
𝑬, 𝑫 = 𝑩′𝑽�̃�

−𝟏
𝑩. 

𝑩.. = ∑ ∑ 𝑩𝒊𝒋
𝐽
𝑗=1

𝐾
𝑘=1 , 𝑩..̅̅ ̅ =

1

𝐾𝐽
𝑩... 

𝑨−𝟏 = [𝑬′(𝑰𝐾𝐽⊗𝜸)−𝟏𝑬]−𝟏 =
1

𝐾𝐽
𝜸 

𝑼 = 𝑬′𝑽�̃�
−𝟏
𝑩 = 𝑬′(𝑰𝐾𝐽⊗𝜸)−𝟏𝑩 = 𝜸−𝟏𝑩.. 

𝑽 = 𝑩′𝑽�̃�
−𝟏
𝑬 = 𝑩′(𝑰𝐾𝐽⊗𝜸)−𝟏𝑬 = 𝑩..

′𝜸−𝟏 

 

(𝑫 − 𝑽𝑨−𝟏𝑼)−𝟏 = (𝑩′𝑽�̃�
−𝟏
𝑩−

1

𝐾𝐽
𝑩..′𝜸

−𝟏𝜸𝜸−𝟏𝑩..)
−𝟏

 

= (∑∑𝑩𝒊𝒋′𝜸
−𝟏𝑩𝒊𝒋

𝐽

𝑗=1

𝐾

𝑘=1

−
1

𝐾𝐽
𝑩..′𝜸

−𝟏𝑩..)

−𝟏

 

= (∑∑(𝑩𝒊𝒋 − 𝑩..̅̅ ̅)′𝜸
−𝟏(𝑩𝒊𝒋 − 𝑩..̅̅ ̅)

𝐽

𝑗=1

𝐾

𝑘=1

)

−𝟏

= 𝑰𝑵𝑽 
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𝑨−𝟏 + 𝑨−𝟏𝑼(𝑫 − 𝑽𝑨−𝟏𝑼)−𝟏𝑽𝑨−𝟏 

=
1

𝐾𝐽
𝜸 +

1

𝐾𝐽
𝜸𝜸−𝟏𝑩.. ∗ 𝑰𝑵𝑽 ∗ 𝑩..

′𝜸−𝟏 ∗
1

𝐾𝐽
𝜸 =

1

𝐾𝐽
𝜸 + 𝑩..̅̅ ̅ ∗ 𝑰𝑵𝑽 ∗ 𝑩..̅̅ ̅′ 

 

−(𝑫− 𝑽𝑨−𝟏𝑼)−𝟏𝑽𝑨−𝟏 

= −𝑰𝑵𝑽 ∗ 𝑩..
′𝜸−𝟏 ∗

1

𝐾𝐽
𝜸 = −𝑰𝑵𝑽 ∗ 𝑩..̅̅ ̅′ 

 

−𝑨−𝟏𝑼(𝑫− 𝑽𝑨−𝟏𝑼)−𝟏 

= −
1

𝐾𝐽
𝜸𝑩.. ∗ 𝑰𝑵𝑽 = −𝑩..̅̅ ̅ ∗ 𝑰𝑵𝑽 

 

So  

[
𝑬′𝑽�̃�

−𝟏
𝑬 𝑬′𝑽�̃�

−𝟏
𝑩

𝑩′𝑽�̃�
−𝟏
𝑬 𝑩′𝑽�̃�

−𝟏
𝑩
]−𝟏 = [

1

𝐾𝐽
𝜸 + 𝑩..̅̅ ̅ ∗ 𝑰𝑵𝑽 ∗ 𝑩..̅̅ ̅′ −𝑩..̅̅ ̅ ∗ 𝑰𝑵𝑽

−𝑰𝑵𝑽 ∗ 𝑩..̅̅ ̅′ 𝑰𝑵𝑽

] 

where 𝑰𝑵𝑽 = (∑ ∑ (𝑩𝒊𝒋 − 𝑩..̅̅ ̅)′𝜸
−𝟏(𝑩𝒊𝒋 − 𝑩..̅̅ ̅)

𝐽
𝑗=1

𝐾
𝑘=1 )

−𝟏
. 

 

Appendix 1.5  

𝑽�̃�
−𝟏
𝑬𝟏 ∗ (𝑬𝟏

′ 𝑽�̃�
−𝟏
𝑬𝟏)

−𝟏 ∗ 𝑬𝟏′ 𝑽�̃�
−𝟏

 

=
1

𝐾𝐽
𝑱𝑲𝑱×𝑲𝑱⊗𝜸−𝟏 + 𝑽�̃�

−𝟏
(𝑩 − 𝑬 ∗ 𝑩..̅̅ ̅) ∗ [(𝑩 − 𝑬 ∗ 𝑩..̅̅ ̅)

′𝑽�̃�
−𝟏
(𝑩 − 𝑬 ∗ 𝑩..̅̅ ̅)]

−𝟏

∗ (𝑩 − 𝑬 ∗ 𝑩..̅̅ ̅)
′𝑽�̃�

−𝟏
 

Proof: 

𝑽�̃�
−𝟏
𝑬𝟏 = 𝑽�̃�

−𝟏
[𝑬   𝑩] = [𝑽�̃�

−𝟏
𝑬    𝑽�̃�

−𝟏
𝑩] 

𝑬𝟏
′ 𝑽�̃�

−𝟏
= [

𝑬′𝑽�̃�
−𝟏

𝑩′𝑽�̃�
−𝟏] 
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𝑽�̃�
−𝟏
𝑬𝟏 ∗ (𝑬𝟏

′ 𝑽�̃�
−𝟏
𝑬𝟏)

−𝟏

∗ 𝑬𝟏
′ 𝑽�̃�

−𝟏
 

= [𝑽�̃�
−𝟏
𝑬    𝑽�̃�

−𝟏
𝑩] ∗ [

1

𝐾𝐽
𝜸 + 𝑩..̅̅ ̅ ∗ 𝑰𝑵𝑽 ∗ 𝑩..̅̅ ̅′ −𝑩..̅̅ ̅ ∗ 𝑰𝑵𝑽

−𝑰𝑵𝑽 ∗ 𝑩..̅̅ ̅′ 𝑰𝑵𝑽

] ∗ [
𝑬′𝑽�̃�

−𝟏

𝑩′𝑽�̃�
−𝟏] 

= [
1

𝐾𝐽
𝑽�̃�

−𝟏
𝑬 ∗ 𝜸 + 𝑽�̃�

−𝟏
𝑬 ∗ 𝑩..̅̅ ̅ ∗ 𝑰𝑵𝑽 ∗ 𝑩..̅̅ ̅

′
− 𝑽�̃�

−𝟏
𝑩 ∗ 𝑰𝑵𝑽 ∗ 𝑩..̅̅ ̅

′
    − 𝑽�̃�

−𝟏
𝑬 ∗ 𝑩..̅̅ ̅ ∗ 𝑰𝑵𝑽

+ 𝑽�̃�
−𝟏
𝑩 ∗ 𝑰𝑵𝑽] ∗ [

𝑬′𝑽�̃�
−𝟏

𝑩′𝑽�̃�
−𝟏] 

=
1

𝐾𝐽
𝑽�̃�

−𝟏
𝑬 ∗ 𝜸 ∗  𝑬′𝑽�̃�

−𝟏
+ 𝑽�̃�

−𝟏
𝑬 ∗ 𝑩..̅̅ ̅ ∗ 𝑰𝑵𝑽 ∗ 𝑩..̅̅ ̅

′
∗ 𝑬′𝑽�̃�

−𝟏
− 𝑽�̃�

−𝟏
𝑩 ∗ 𝑰𝑵𝑽 ∗ 𝑩..̅̅ ̅

′
∗ 𝑬′𝑽�̃�

−𝟏

− 𝑽�̃�
−𝟏
𝑬 ∗ 𝑩..̅̅ ̅ ∗ 𝑰𝑵𝑽 ∗ 𝑩′𝑽�̃�

−𝟏
+ 𝑽�̃�

−𝟏
𝑩 ∗ 𝑰𝑵𝑽 ∗ 𝑩′𝑽�̃�

−𝟏
 

=
1

𝐾𝐽
𝑱𝑲𝑱×𝑲𝑱⊗𝜸−𝟏 + 𝑽�̃�

−𝟏
𝑬 ∗ 𝑩..̅̅ ̅ ∗ 𝑰𝑵𝑽 ∗ (𝑩..̅̅ ̅

′
∗ 𝑬′𝑽�̃�

−𝟏
− 𝑩′𝑽�̃�

−𝟏
) + 𝑽�̃�

−𝟏
𝑩 ∗ 𝑰𝑵𝑽 ∗ (𝑩′𝑽�̃�

−𝟏

− 𝑩..̅̅ ̅
′
∗ 𝑬′𝑽�̃�

−𝟏
) 

=
1

𝐾𝐽
𝑱𝑲𝑱×𝑲𝑱⊗𝜸−𝟏 + 𝑽�̃�

−𝟏
(𝑩 − 𝑬 ∗ 𝑩..̅̅ ̅) ∗ 𝑰𝑵𝑽 ∗ (𝑩 − 𝑬 ∗ 𝑩..̅̅ ̅)

′𝑽�̃�
−𝟏

 

=
1

𝐾𝐽
𝑱𝑲𝑱×𝑲𝑱⊗𝜸−𝟏 + 𝑽�̃�

−𝟏
(𝑩 − 𝑬 ∗ 𝑩..̅̅ ̅) ∗ [(𝑩 − 𝑬 ∗ 𝑩..̅̅ ̅)

′𝑽�̃�
−𝟏
(𝑩 − 𝑬 ∗ 𝑩..̅̅ ̅)]

−𝟏

∗ (𝑩 − 𝑬 ∗ 𝑩..̅̅ ̅)
′𝑽�̃�

−𝟏
 

 

 

Appendix 1.6  

(3.4.1) − (3.4.2) 

=
1

𝑇 ∗ 𝜎𝑝2 + 𝜎2
[
𝜎2 − 𝜎𝑝

2

𝜎2(𝑇 + 1)
∑∑(𝐶𝑘𝑗. −

𝐶…
𝐾𝐽
)
2

𝐽

𝑗=1

𝐾

𝑘=1

−
𝜎𝑠
2

(𝑇 ∗ 𝜎𝑝2 + 𝜎2 + JT ∗ 𝜎𝑠2)
∑(𝐶𝑘.. −

𝐶…
𝐾
)
2𝐾

𝑘=1

] 

 

Proof: 

(3.4.1)= 
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 ∑∑(𝑪𝑘𝑗 − 𝑪..̅̅ ̅)
′
𝜴−1

𝐽

𝑗=1

(𝑪𝑘𝑗 − 𝑪..̅̅ ̅)

𝐾

𝑘=1

−
𝜎𝑠
2

(𝑇 ∗ 𝜎𝑝2 + 𝜎2) ∗ (𝑇 ∗ 𝜎𝑝2 + 𝜎2 + JT ∗ 𝜎𝑠2)
∑(Ck.. − C...̅̅ ̅)

2

𝐾

𝑘=1

 

 

(3.4.2)= 

∑∑(𝑪𝑘𝑗 − 𝑪..̅̅ ̅)
′
𝜞−1

𝐽

𝑗=1

(𝑪𝑘𝑗 − 𝑪..̅̅ ̅)

𝐾

𝑘=1

 

 

𝜴−𝟏 − 𝜞−𝟏 = (
1

𝜎2
∗ 𝑰𝑇 −

𝜎𝑝
2

(𝑇𝜎𝑝2 + 𝜎2) ∗ 𝜎2
∗ 𝑱𝑇) − (

1

𝜎2
∗ 𝑰𝑇 −

1

(𝑇 + 1)𝜎2
∗ 𝑱𝑇)

=
𝜎2 − 𝜎𝑝

2

(𝑇 + 1)𝜎2(𝑇𝜎𝑝2 + 𝜎2)
∗ 𝑱𝑇 

 

(3.4.1) − (3.4.2) 

=∑∑(𝑪𝑘𝑗 − 𝑪..̅̅ ̅)
′
(𝜴−1 − 𝜞−1)

𝐽

𝑗=1

(𝑪𝑘𝑗 − 𝑪..̅̅ ̅)

𝐾

𝑘=1

−
𝜎𝑠
2

(𝑇 ∗ 𝜎𝑝2 + 𝜎2) ∗ (𝑇 ∗ 𝜎𝑝2 + 𝜎2 + JT ∗ 𝜎𝑠2)
(∑𝐶𝑘..

2

𝐾

𝑘=1

−
1

𝐾
∗ 𝐶…

2) 

=
𝜎2 − 𝜎𝑝

2

𝜎2(𝑇 + 1) ∗ (𝑇 ∗ 𝜎𝑝2 + 𝜎2)
∑∑(𝑪𝒌𝒋 − 𝑪..̅̅ ̅)

′

𝑱

𝒋=𝟏

𝑱𝑻×𝑻(𝑪𝒌𝒋 − 𝑪..̅̅ ̅)

𝐾

𝑘=1

−
𝜎𝑠
2

(𝑇 ∗ 𝜎𝑝2 + 𝜎2) ∗ (𝑇 ∗ 𝜎𝑝2 + 𝜎2 + JT ∗ 𝜎𝑠2)
(∑𝐶𝑘..

2

𝐾

𝑘=1

−
1

𝐾
∗ 𝐶…

2) 

=
𝜎2 − 𝜎𝑝

2

𝜎2(𝑇 + 1) ∗ (𝑇 ∗ 𝜎𝑝2 + 𝜎2)
∑∑(𝐶𝑘𝑗. −

𝐶...
𝐾𝐽
)
2

𝐽

𝑗=1

𝐾

𝑘=1

−
𝜎𝑠
2

(𝑇 ∗ 𝜎𝑝2 + 𝜎2) ∗ (𝑇 ∗ 𝜎𝑝2 + 𝜎2 + JT ∗ 𝜎𝑠2)
∑(𝐶𝑘.. −

𝐶…
𝐾
)
2𝐾

𝑘=1
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=
1

𝑇 ∗ 𝜎𝑝2 + 𝜎2
[
𝜎2 − 𝜎𝑝

2

𝜎2(𝑇 + 1)
∑∑(𝐶𝑘𝑗. −

𝐶...
𝐾𝐽
)
2

𝐽

𝑗=1

𝐾

𝑘=1

−
𝜎𝑠
2

(𝑇 ∗ 𝜎𝑝2 + 𝜎2 + JT ∗ 𝜎𝑠2)
∑(𝐶𝑘.. −

𝐶…
𝐾
)
2𝐾

𝑘=1

] 

 

 

 


