
 

   
SSStttooonnnyyy   BBBrrrooooookkk   UUUnnniiivvveeerrrsssiiitttyyy   

 
 
 

 
 
 
 

   
   
   
   
   

The official electronic file of this thesis or dissertation is maintained by the University 
Libraries on behalf of The Graduate School at Stony Brook University. 

   
   

©©©   AAAllllll    RRRiiiggghhhtttsss   RRReeessseeerrrvvveeeddd   bbbyyy   AAAuuuttthhhooorrr...    



 

 

“Bienvenido al vecindario”: Inserting Spanglish nonwords into  

English versus Spanish phonological neighborhoods. 

A Dissertation Presented 

by 

April Pufahl 

to 

The Graduate School 

in Partial Fulfillment of the 

Requirements 

for the Degree of 

Doctor of Philosophy 

in 

Cognitive Science 

 

Stony Brook University 

 

December 2014 

 



ii 

 

Stony Brook University 

The Graduate School 

 

April Pufahl 

 

We, the dissertation committee for the above candidate for the 

Doctor of Philosophy degree, hereby recommend 

acceptance of this dissertation. 

 

Arthur G. Samuel – Dissertation Advisor 

Professor, Cognitive Science 

 

 

Susan E. Brennan - Chairperson of Defense 

Professor, Cognitive Science 

 

 

Antonio L. Freitas  

Associate Professor, Social and Health Psychology 

 

 

Marie K. Huffman  

Associate Professor, Linguistics 

 

 

This dissertation is accepted by the Graduate School 

 

 

Charles Taber 

Dean of the Graduate School 

  



iii 

 

Abstract of the Dissertation 

“Bienvenido al vecindario”: Inserting Spanglish nonwords into  
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If speech perception and production share lexical representations, then properties of these 

representations should have similar effects in both modalities. Likewise, if the system supporting 

lexical processing is fundamentally the same regardless of the language implemented, then a 

given property should produce the same effect across all languages. However, previous research 

suggests cross-modal and cross-linguistic differences for one property: phonological 

neighborhood density, a measure of the number of similar-sounding words in a language. These 

studies have relied on existing words, affording little control over the numerous, and possibly 

confounding, properties associated with each word. To avoid these potential pitfalls, I created 48 

Spanglish nonwords that could be plausible words in both English and Spanish. Critically, 

nonwords were designed to systematically vary in the way they connect with existing words in 

each language, i.e., their new neighbors. The phonological neighborhoods these nonwords joined 

differed not only in overall density but also in the proportion of neighbors that are also neighbors 
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of one another (i.e., the clustering coefficient), and the number of neighbors that share the same 

onset or offset phoneme. In this way, the present research was designed to assess the role of 

clustering and position-specific neighbors in driving the phonological neighborhood density 

effects observed in English and Spanish. Results suggest that, while clustering and overall 

neighborhood density slows speech processing, offset neighbors facilitate perception and onset 

neighbors facilitate production. This, coupled with the fact that English neighbors tend to share 

onsets while Spanish neighbors tend to share offsets, can explain the previously observed cross-

modal and cross-linguistic differences. 

 

Keywords: phonological neighborhood density; clustering coefficient; cohort neighbors; rhyme 

neighbors; spoken word recognition; speech production 
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Chapter 1: Introduction 

The goal of the present research is to clarify the apparent cross-modal and cross-linguistic 

differences previously observed for one property of lexical representations: phonological 

neighborhood density. “Phonological” refers to phonemes, the smallest units of sound that affect 

meaning. Phonemes are defined contrastively. For example, /d/ and /t/ are phonemes in English 

because “bad” and “bat” have different meanings. Furthermore, “bad” and “bat” are neighbors of 

one another, since they differ by only one phoneme. Words in dense phonological neighborhoods 

are those for which many similar sounding words, or neighbors, exist in the language. In this 

introduction, I first briefly review the reasons why cross-modal and cross-linguistic differences 

are unexpected for properties of lexical representations. I then review the previous research on 

phonological neighborhood density and initial work on two factors (clustering and position-

specific neighbors) proposed to explain these effects. Finally, I describe how the present research 

was designed to assess the role of these factors in driving the phonological neighborhood density 

effects observed in English and Spanish. 

In everyday conversation, people act as both listeners and speakers. In order for 

successful communication to occur, the systems supporting speech perception and speech 

production must be integrated at some level of representation. Theorists disagree on the degree to 

which perception and production overlap. Some propose full integration (Allport, 1984; 

Coleman, 1998; Fowler, 1986; Liberman & Mattingly, 1985; MacKay, 1987; Martin & Saffran, 

2002). Others propose separate but connected sublexical representations (Dell, Schwartz, Martin, 

Saffran, & Gagnon, 1997; Hickok & Poeppel, 2004; Schwartz, Basirat, Ménard, & Sato, 2012). 

However, most assume shared lexical (lemma or word-level) representations (but see Levelt et 
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al., 1999; Monsell, 1987; Roelofs, 2003). If perception and production share the same lexical 

representations, it is logical that properties of those representations should have similar effects in 

both modalities. Indeed, some properties of words do have the same effect in both perception and 

production. For example, high frequency words are easier to perceive and produce than low 

frequency words (perception: e.g., Oldfield & Wingfield, 1965; Solomon & Postman, 1952; 

production: e.g., Dell, 1990). The same is true for concrete words relative to abstract words 

(perception: e.g., Kroll & Merves, 1986; production: e.g., Strain, Patterson, & Seidenberg, 1995). 

If perception and production share lexical representations, then not only should properties 

of those representations have similar effects in both modalities, but it is parsimonious to assume 

that this pattern should hold cross-linguistically. The goal of psycholinguistic research is to 

delineate the systems supporting language, in this case speech perception and speech production. 

One of the assumptions embedded in this goal is that, regardless of the specific language 

implemented, the system is fundamentally the same. Listeners and speakers of different 

languages are all using the same hardware; therefore, it is likely that they also use the same kinds 

of representations to solve the problem of perceiving and producing speech. Properties of these 

representations may differ across languages (for example, some languages include lexical tones 

while others do not), but it is assumed that a given property will produce the same effect across 

all languages. Indeed, the high frequency advantage in English speech perception has also been 

observed in German (Brysbaert et al., 2011) and Spanish (Carreiras, Alvarez, & De Vega, 1993) 

and the high frequency advantage in English speech production has also been observed in 

Chinese (Caramazza, Costa, Miozzo, & Bi, 2001) and Dutch (Jescheniak & Levelt, 1994), 

among others. Similarly, the advantage for concrete words relative to abstract words has also 

been observed in Dutch (de Groot, 1989). If perception and production share lexical 
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representations, and if those representations are similar across languages, it is logical that 

properties of those representations should have similar effects not only in both modalities but 

across all spoken languages as well. However, previous research suggests cross-modal and cross-

linguistic differences for one property: phonological neighborhood density. 

Phonological Neighborhood Density 

Phonological neighborhood density refers to the number of similar-sounding words in a 

language. These similar-sounding words are called “neighbors” and are traditionally defined as 

words that differ by changing, adding, or subtracting one phoneme (Luce et al., 1990 as cited in 

Dell & Gordon, 2003). For example, there are 50 words that sound similar to “cat” in English 

(e.g., “hat”, “catch”, and “at”), but only 25 that sound similar to “dog” (Marian, Bartolotti, 

Chabal, & Shook, 2012). Therefore, “cat” belongs to a denser phonological neighborhood than 

“dog”. 

The majority of researchers who have investigated the effects of phonological 

neighborhood density on speech perception and production have used English speaking subjects, 

and thus have investigated these effects within an English phonological neighborhood (for a 

review, see Dell & Gordon, 2003). Those studies demonstrate that, in perception, words with 

many neighbors are harder to recognize than words with few neighbors (Goldinger, Luce, & 

Pisoni, 1989; Luce & Pisoni, 1998; Vitevitch & Luce, 1998, 1999). For example, native speakers 

of English were more accurate typing spoken words from sparse versus dense neighborhoods 

(Goldinger et al., 1989; Luce & Pisoni, 1998). In fact, prominent theories of spoken word 

perception all propose competition between neighbors (TRACE: McClelland & Elman, 1986; 

Shortlist: Norris, 1994; Neighborhood Activation Model: Luce & Pisoni, 1998; PARSYN: Luce, 
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Goldinger, Auer, & Vitevitch, 2000; Distributed Cohort Model: Gaskell & Marslen-Wilson, 

1997, 1999, 2002).  

However, in production, neighbors appear to behave differently, facilitating rather than 

inhibiting performance. English words with many neighbors are easier to produce than words 

with few neighbors. Vitevitch (1997) compared two corpora of spoken words, one of substitution 

errors and another without errors. After controlling for length and grammatical class, he found 

that the words in the error corpus were more likely to be words in low density neighborhoods. 

Subsequent experiments (Harley & Bown, 1998; Vitevitch & Sommers, 2003) used an 

experimental tip-of-the-tongue paradigm and found that words in low density neighborhoods 

were more likely to elicit a tip-of-the-tongue state. Using spoonerisms and tongue-twisters, 

Vitevitch (2002) found that not only were speech errors more likely for words in low density 

neighborhoods, but pictures of those words were also named more slowly than words in high 

density neighborhoods. Collectively, the studies done in English suggest that high density makes 

lexical access more difficult in perception, but easier in production.  

Although it would be parsimonious to assume that a lexical property such as 

phonological neighborhood density would show similar cross-linguistic effects, there is evidence 

that the effects found in English do not generalize to other languages, such as Spanish. As just 

noted, for English, there appears to be a high density disadvantage in speech perception and a 

high density advantage in speech production. The opposite pattern appears to be true for Spanish: 

a high density advantage in speech perception and a high density disadvantage in speech 

production. On an auditory lexical decision task, native Spanish-speakers were faster and more 

accurate when the target word came from a dense, versus sparse, neighborhood (Vitevitch & 

Rodríguez, 2005). The research on Spanish production has been mixed, partly due to the number 
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of correlated and possibly confounded variables. Vitevitch and Stamer (2006) were the first to 

report a high density disadvantage for picture naming in Spanish. They later replicated this 

finding (Vitevitch & Stamer, 2009) by analyzing a subset of the data from the International 

Picture-Naming Project (E. Bates et al., 2003). Baus, Costa, and Carreiras (2008) were likewise 

able to replicate this effect. However, they found the opposite pattern, a high density advantage 

like that found in English, when using a new set of line drawings. Post hoc analyses ruled out the 

influence of three potential confounds that differentiated the two sets of stimuli (initial syllable 

structure, distribution of word onsets, and word length in phonemes) leaving no explanation for 

the contradictory findings.  

Recently, Sadat, Martin, Costa, and Alario (2013) argued for a methodological resolution, 

favoring linear mixed effects modeling over the t-tests and ANOVAs used previously. They 

argued that this avoided the loss of information that accompanies averaging across participants, 

items, and conditions. Furthermore, they were able to include a number of correlated variables 

(e.g., name agreement, age of acquisition, lexical frequency, neighborhood frequency) in the 

model in an attempt to control possible confounds. The results of their picture naming 

experiment confirmed the presence of a high density disadvantage: Native Spanish-speakers 

showed longer naming latencies for words in dense, versus sparse, neighborhoods. Using the 

subset of stimuli that overlapped with those used by Baus et al. (2008), they found that while a t-

test showed a high density advantage, the more sophisticated modeling analysis showed a trend 

towards a high density disadvantage. They argued that these kinds of analyses are required to 

detect the small effect of phonological neighborhood density and to control for the influence of 

confounding variables. Given this, in the current research, I used a similar kind of modeling in 

order to provide the most sensitive measurement. Critically, I also used a new procedure relying 
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on nonwords that avoids many of the inherent confounds, and cross-linguistic differences in 

stimuli.  

The observed cross-linguistic differences between the effects of phonological 

neighborhood density on speech perception and production in English and Spanish are a puzzle. 

Languages of course differ in their inventory of phonemes, and their lexical items. However, the 

architecture of the system, and how lexical and phonemic codes communicate, should not be 

language-dependent: There is no a priori reason to assume that the speech perception and 

production systems should be fundamentally different as a function of the language spoken. 

Presumably, the system uses the same kind of representations to solve the problem of perceiving 

and producing speech regardless of the language. This assumption has led to speculation 

regarding moderating variables behind the observed differences across languages. One line of 

reasoning suggests that the degree of clustering within the neighborhood is critical, while another 

suggests that position-specific neighbors could be driving effects. In what follows, I will 

consider the logic behind, and current evidence for, each theory.  

Clustering 

The first theory suggests that it is not the number of neighbors, but how clustered the 

neighborhood is, that matters. A quantitative measurement of neighborhood clustering is the 

clustering coefficient, defined as the proportion of a word’s neighbors that are also neighbors 

with one another (Vitevitch, 2008).  

𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 =  
# 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠

# 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠
 

Scores range from 0 to 1 with higher scores indicating greater clustering. For example, as shown 

in Figure 1 below, the words “badge” and “log” both have 13 phonological neighbors. This 
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means there can be 78 possible connections between these neighbors. This is calculated by 

taking the number of neighbors times the number of neighbors minus one, all divided by two.  

# 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠 =  
# 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 × (# 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 − 1)

2
 

13 × (13 − 1)

2
= 78 

Of these 78 possible connections, there are 45 between the neighbors of “badge” and 21 between 

the neighbors of “log”. Therefore, “badge” has a high clustering coefficient of 0.58 while “log” 

has a low clustering coefficient of 0.27. 

 

 

Figure 1: Illustration of the degree of clustering in the neighborhoods to which the words 

“badge” and “log” belong. Originally published as Figure 2 in Chan & Vitevitch, 2009.  

 

If activation spreads throughout the phonological network along these links between 

neighbors, then a word with a low clustering coefficient, like “log” will receive more activation 

than a word with a high clustering coefficient, like “badge”. This suggests that words like “log” 
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will be easier to process than words like “badge”. Empirical evidence suggests that this is indeed 

the case for perception (Chan & Vitevitch, 2009) and production (Chan & Vitevitch, 2010) in 

English. Chan and Vitevitch (2009) identified a set of CVC words that had either a high (average 

.35) or low (average .25) clustering coefficient. They found that participants were more accurate 

typing CVC words heard in white noise when the words had a low (72% accuracy) versus high 

(58% accuracy) clustering coefficient. Furthermore, participants were faster and more accurate 

on a lexical decision task for words with a low (888ms, 93.3% accuracy) versus high (900ms, 

91.6% accuracy) clustering coefficient. By comparing substitution errors to words matched in 

length and grammatical class (borrowed from the methodology from Vitevitch, 1997 described 

above), Chan and Vitevitch (2010) found that the errors were from words with a higher 

clustering coefficient (average .32) than the matched words (average .29). Using a picture-

naming task, they observed that participants were faster to name pictures of words with a low 

(739ms) versus high (772ms) clustering coefficient.  

These studies provide evidence that clustering is an important variable in English. 

However, the relationship between clustering and the effects of phonological neighborhood 

density reported in the literature is unclear. While these two variables are correlated, the 

relationship is weak and largely uninformative. Using the CLEARPOND database (Marian et al., 

2012), I selected all words in English (n = 10449) and Spanish (n = 8948) with three or more 

phonemes and three or more phonological neighbors [note: this is the lexical space of interest in 

the present research] and computed clustering coefficients. For both languages, there was a small 

but significant negative correlation between phonological neighborhood density and the 

clustering coefficient, English, r(10447) = -0.036, p < 0.01 and Spanish, r(8946) = -0.127, p < 

.01. This means that as phonological neighborhood density increases, there tends to be a slight 
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decrease in the degree of clustering between neighbors. Given this weak relationship, it is 

difficult to know how clustering might have influenced previously reported effects of 

phonological neighborhood density, since words from dense neighborhoods are not necessarily 

from clustered neighborhoods and vice versa.  

However, it is possible that clustering could play a role in the apparent cross-linguistic 

differences in the effects of phonological neighborhood density in English and Spanish 

(Arbesman, Strogatz, & Vitevitch, 2010a). Overall, the languages differ in degree of clustering. 

The average clustering coefficient for English (0.28) is higher than that for Spanish (0.19), 

reflecting the higher clustering of words in English (Arbesman, Strogatz, & Vitevitch, 2010b). 

This difference is less drastic when focusing on words with three or more phonemes and three or 

more phonological neighbors (i.e., the ones for which clustering should matter the most). Using a 

subset with only these words (the same sample I selected from the CLEARPOND database 

described above), I computed an average clustering coefficient of 0.30 for English and 0.28 for 

Spanish. By this metric, no cross-linguistic differences should be observed. Furthermore, with 

the lack of a strong relationship between density and clustering, it is premature to suggest how 

clustering could have affected previous results without knowing more about the degree of 

clustering for the stimuli used in previous studies of phonological neighborhood density. Since 

clustering was an uncontrolled variable, further investigation is needed to tease apart the many 

correlated factors that might be contributing to the divergent results. 

Position-Specific Neighbors 

The second theory suggests that, since speech unfolds in time, the portion of the neighbor 

that overlaps is critical. Previous research on position-specific neighbors has focused on 

comparing cohort vs rhyme neighbors. Cohort neighbors include all words in the language that 
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share the same onset phoneme(s). The number of overlapping phonemes required varies by 

study. Rhyme neighbors are those that share the same offset phoneme(s), generally the final 

vowel and any following consonants. Note that these definitions are broader than that of 

“neighbor”, which requires all but one phoneme to overlap. Since the purpose of the present 

research was to test whether position-specific effects were driving overall density effects, I did 

not compare cohort vs rhyme neighbors. Instead, I focused on the subset of neighbors that share 

the onset phoneme (or onset neighbors) and the subset of neighbors that share the offset 

phoneme (or offset neighbors). However, I expected effects to be similar for both definitions. 

Note also that the definition of onset used in the present research differs from typical usage in 

linguistics, in which “onset” refers to all consonants that appear before a vowel in the initial 

syllable. For present purposes, “onset” and “offset” simply refer to the initial and final 

phonemes. 

As noted above, prominent theories of spoken word perception all propose competition 

between neighbors. However, some emphasize competition between cohort neighbors (Shortlist: 

Norris, 1994; Distributed Cohort Model: Gaskell & Marslen-Wilson, 1997, 1999, 2002) while 

others include competition between all neighbors (TRACE: McClelland & Elman, 1986; 

Neighborhood Activation Model: Luce & Pisoni, 1998). These models therefore predict a high 

density disadvantage in speech perception, particularly for cohort and onset neighbors and 

perhaps less so for rhyme and offset neighbors.  

There is evidence that the cohort/rhyme status of a word’s neighbors matters for speech 

perception in English. Dumay et al. (2012) taught participants new neighbors for English hermit 

words (i.e., words without neighbors) like “carousel”. Critically, these new neighbors were either 

cohort or rhyme neighbors, overlapping in all but the final/initial phoneme, such as the new 
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words “carousem” and “barousel”. Participants were then asked to detect pauses which had been 

inserted into the hermit words, a task which previous research (Mattys & Clark, 2002; Mattys, 

Pleydell-Pearce, Melhorn, & Whitecross, 2005) has shown becomes harder as lexical 

competition increases. Results indicated that participants were about 30ms slower to detect 

pauses in hermit words that had gained a new cohort neighbor than those that had gained a 

rhyme neighbor or did not gain a neighbor. This suggests that cohort competitors engage in 

lexical competition to a greater degree than rhyme neighbors, which may compete weakly or not 

at all. 

This evidence that cohort neighbors are driving lexical competition is one possible 

explanation for the inconsistent effects of neighborhood density in speech perception in English 

versus Spanish. As with clustering, overall, English and Spanish differ in the kinds of neighbors 

most words have. English neighbors are more likely to be cohort competitors and Spanish 

neighbors are more likely to be rhyme neighbors (Dumay, Damian, & Bowers, in preparation). If 

words with mostly cohort neighbors are difficult to perceive, then this is consistent with the high 

density disadvantage in cohort-biased English and high density advantage in rhyme-biased 

Spanish. 

The effect of the cohort/rhyme status of a word’s neighbors on speech production is less 

clear. Dell, Burger, and Svec (1997) argued, when it comes to speech production, serial-order 

matters. The speech production “system must activate the present, deactivate the past, and 

prepare to activate the future” (Dell et al., 1997, pp 123). If this is true, then the portion of a 

neighbor that overlaps with the intended word is critical. Overlapping segments are thought to 

facilitate processing while non-overlapping segments interfere or compete. As a target word 

unfolds in time, the degree of facilitation and competition from any given neighbor changes. This 
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makes it difficult to predict overall word-level effects. For example, cohort neighbors should 

help start production quickly, but this facilitation changes to competition as the overlapping 

segments pass. The remaining non-overlapping segments provide interference that must be 

deactivated to produce the intended segment. Similarly, rhyme neighbors will make it difficult 

for the system to select the initial phoneme(s) of the target word. Later, as the target word 

unfolds, feedback between the overlapping final segments will support processing of those 

segments. While these predictions are informative at a fine-grained time scale, it is unclear what 

kind of facilitation/competition they predict for the production of words in their entirety.  

Not only are there unclear predictions for the effect of the cohort/rhyme status of a 

word’s neighbors on speech production, but there are also unclear results from the literature. As 

described above, Dumay et al. (2012) taught participants new neighbors for English hermit 

words. In addition to the perceptual task (pause detection) previously described, they also 

included a production task (picture naming). Participants were about 25ms quicker to name 

pictures of hermit words that gained a rhyme neighbor than those that gained a cohort neighbor 

or did not gain a neighbor. This suggests that rhyme neighbors have an overall facilitatory effect 

on speech production. It is unclear if cohort neighbors have no effect or if their combined 

facilitation and competition cancels out overall. 

While Dumay et al. (2012) found a facilitatory effect of rhyme neighbors on speech 

production, Bien, Baayen, and Levelt (2011) found an inhibitory effect. Native Dutch speakers 

were slower to produce verbs that had many rhyme neighbors, defined as the number of 

neighbors in which the first phoneme is the one exchanged. This is in contrast to evidence that it 

is easier to produce a series of rhyme neighbors like “pick” and “tick” than cohort neighbors like 

“pick” and “pin” (Sevald & Dell, 1994). However, as Bien, Baayen, and Levelt (2011) note, this 
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is due to the sequential nature of the production task they used, e.g., the competition from the 

neighbor “tick” when producing the initial word “pick” quickly turns to facilitation when “tick” 

is the next item produced. In their position-response association task, participants learned to 

associate two neighboring words with cues that would appear on the left or right side of the 

screen. This allowed experimenters to cue the production of these words without having to rely 

on picture naming, as most production studies have done. In one block, participants were cued to 

say each word 20 times, randomly mixed with distractor trials in which a single digit would 

appear at center screen to be named.  

In addition to the inhibitory effect of rhyme neighbors, Bien et al. (2011) also found a 

facilitatory effect of cohort neighbors, defined as those that share the first two phonemes: the 

more cohort neighbors, the shorter the naming latency. It is worth noting that both studies (Bien 

et al., 2011; Dumay et al., 2012) used naming latency as the primary measure. Presumably, this 

measure reflects how quickly the production system can get started, and would therefore be most 

likely to benefit from shared onset, or be hurt by its absence.  

Given these unclear predictions and results, it is difficult to predict how cohort/rhyme 

status position-specific neighbors might moderate the effects of phonological neighborhood 

density more broadly. But, if as Bien et al. (2011) observed, there is an advantage for producing 

words with cohort neighbors and a disadvantage for producing words with rhyme neighbors, then 

this is consistent with the high density production advantage in cohort-biased English and high 

density disadvantage in rhyme-biased Spanish. 

The Present Research 

The present research was designed to assess the role of clustering and position-specific 

neighbors in driving the phonological neighborhood density effects reported in the literature, 
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particularly as they relate to the apparent cross-linguistic differences observed in English and 

Spanish. Previous studies have focused on existing words in one language or another and 

therefore have had no control over the numerous, and possibly confounding, properties 

associated with each pre-existing word. These uncontrolled variables might be responsible for 

the inconsistent results across studies. To avoid these potential pitfalls, in the present study I 

focused on a set of nonwords that will be added to each language. I created 48 Spanglish 

nonwords that could be plausible words in both English and Spanish. Critically, nonwords were 

designed to systematically vary in the way they connect with existing words in each language, 

i.e., their new neighbors. The phonological neighborhoods these nonwords joined differed not 

only in overall density but also in the proportion of neighbors that are also neighbors of one 

another (i.e., the clustering coefficient), and the number of neighbors that share the same onset or 

offset phoneme. By adding these nonwords to the lexicons of native speakers of English and 

Spanish, I tested how these neighborhood characteristics affect perception and production. The 

appeal of this design is that any observed cross-linguistic differences in performance can be 

attributed to the fact that these identical items enter a lexical space with systematically different 

characteristics in each language. By using exactly the same lexical items in each language, the 

myriad confounds that come with existing words are side-stepped. In addition, each new word 

was inserted into a neighborhood chosen to have a high degree of clustering or a low one, with 

predominantly onset or offset neighbors; this was done in both English and Spanish. 

The advantages of this approach come with a cost: Stimulus selection required extensive 

corpus analysis, a suitable task for testing perception needed to be established, and a sizable 

number of native speakers of both English and Spanish need to be tested on both perception and 

production. For the production task, manual scoring of each of the many productions was done.  
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In Chapter 2, I describe the development and testing of a perceptual task that is suitable 

for the training conditions. The majority of previous research relied on lexical decision, but this 

task is inappropriate for the newly-created lexical items used in this project. [Fortunately, the 

standard production task, picture naming, is appropriate for this project since participants will 

learn the Spanglish nonwords by associating each with an unusual picture.] While some 

researchers have successfully used a pause detection task, the difference in logic behind their 

studies and the present study was enough to warrant caution. For example, Dumay et al. (2012) 

added a new neighbor to a hermit word, and used pause detection to look for the impact of this 

new neighbor on perception of the original hermit word. In the present study, I instead focused 

on neighborhoods with two or more neighbors and tested the newly learned Spanglish nonword 

directly, rather than looking for its impact on its neighbors. As described below, I attempted to 

replicate effects found with three different sets of stimuli using a pause detection task and a 

newly created “same/different” task, and found the latter to be a more valid measure.  

In Chapter 3, I describe the process of searching large databases of existing words in 

English and Spanish and their associated neighborhood characteristics, in order to identify 

possible Spanglish nonword stimuli. The critical neighborhood characteristics in this project 

(clustering coefficient and onset/offset densities) were not available from previous databases, but 

have now been calculated.  

In Chapters 4 and 5, I describe the methodology and results of the set of experiments that 

was conducted with native English speakers (in Stony Brook, NY) and native Spanish speakers 

(in San Sebastian, Spain). Finally, in Chapter 6, I discuss the implications of these findings. 
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Chapter 2: Task Norming 

Lexical decision has been the standard perceptual task used in previous studies of 

phonological neighborhood density. However, since the present research involved teaching 

participants a set of Spanglish nonwords, a word/nonword decision task seems inappropriate. A 

lesser-used option is a pause detection task. This task is presumed to be sensitive to the amount 

of lexical activation present from competing words (Mattys & Clark, 2002; Mattys et al., 2005). 

Previous researchers (Dumay & Gaskell, 2007; Gaskell & Dumay, 2003) have successfully used 

pause detection to detect increased reaction times for hermit words that recently gained a new 

neighbor as part of the experimental procedure. Furthermore, as described in Chapter 1, this 

increase in reaction times appears to be specifically driven by adding cohort (but not rhyme) 

neighbors (Dumay et al., 2012). Critically, the items used in the pause detection task were the 

original hermit words in English, i.e., pre-existing words that gained a novel neighboring word. 

In the present research, the items of interest are the newly added Spanglish nonwords, i.e., novel 

words that connect with two or more pre-existing neighbors. Therefore, it was unclear if pause 

detection would be sensitive to the characteristics of the neighborhood a new word enters.  

As such, I developed a “same/different” task designed to tap into fine-grained phonetic 

processing. In this task, participants heard two items and judged whether both instances 

contained exactly the same sounds (i.e., sequence of consonants and vowels). The first item was 

the target word spoken at a normal speech rate. To make the task challenging, the second item 

was compressed by 50% using Praat (Boersma & Weenink, 2014), meaning that it was spoken 

twice as fast as normal. For the “same” trials, participants heard another token of that same target 

word. For the “different” trials, participants heard a nonword variation of the target word that 
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was created by changing one of the consonant phonemes (usually a change in voicing or place of 

articulation). For example, the word “experiment” could become “experiNent”. Participants 

respond by pressing one of two buttons labeled “same” and “different”. The “same” trials are of 

primary interest, as they should tap into the degree of processing difficulty for the test words. If a 

given property of lexical representations makes recognition more difficult, then participants 

should be slower and/or less accurate to respond that the second word in a pair is indeed the 

same as the first. 

Materials and Procedure 

In order to test whether a pause detection task and/or the new “same/different” task 

would be sensitive to the kinds of neighborhood characteristics I wished to manipulate, I adapted 

stimuli from three previous experiments and attempted to replicate their reported effects, using 

both tasks.  

The first set of stimuli varied in uniqueness point, i.e., the point at which there are no 

other words in the lexicon that share the initial phonemes, a concept central to cohort models of 

speech perception (e.g., Marslen-Wilson & Welsh, 1978). Mattys and Clark (2002) used stimuli 

that varied in uniqueness point in order to manipulate lexical activity at word offset in the hopes 

that their new pause detection task would be sensitive to this activity. They compared 20 words 

like “pretzel” that have an early uniqueness point with 20 words like “settle” that have a late 

uniqueness point. Pauses were inserted after the target word (e.g., “pretzel”) which was 

embedded at the beginning of a 5-syllable string (e.g., “pret-zel-[150ms pause]-poe-faye-gol”). 

They found that detecting pauses after late (but not early) unique words was slower compared to 

nonword matched trials. This supported the hypothesis that the longer period of lexical 

competition for late versus early unique words was responsible for the slowed response. One 
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goal of the present task norming was to see if this result could be replicated using pauses 

embedded in the target words themselves following a modification used by Dumay and Gaskell 

(Dumay & Gaskell, 2007; Gaskell & Dumay, 2003). A second goal was to see if there is a 

corresponding cost for late unique words on the “same-different” task.  

The second set of stimuli were CVC words that varied in clustering coefficient (Chan & 

Vitevitch, 2009). Thirty-seven words had a low clustering coefficient (average .25) and 38 words 

had a high clustering coefficient (average .35). They found that participants were more accurate 

typing words heard in white noise (+24-dB signal-to-noise ratio) when the words had a low (72% 

accuracy) versus high (58% accuracy) clustering coefficient. Similarly, participants were faster 

and more accurate on a lexical decision task for words with a low (888ms, 93.3% accuracy) 

versus high (900ms, 91.6% accuracy) clustering coefficient. As with the uniqueness point 

manipulation, the goal of the present task norming was to see whether the pause detection and 

“same-different” tasks showed a facilitatory effect of low versus high clustering. 

The third set of stimuli were 72 high and 68 low frequency words used by Balota and 

Chumbley (1985). Note that four low frequency words from the original set were excluded by 

accident. In the original study, participants were faster producing high versus low frequency 

words. Frequency effects are the gold standard of lexical processing: They tend to be large and 

robust, so these items were included in the hope that they would provide a clear test of the 

sensitivity of the pause detection and “same-different” tasks.  

For the pause detection task, 200ms of silence was inserted as close to the end of each 

target word as possible, being careful not to create a new stop consonant. Pauses were intended 

to sound artificial, and not like a natural slowed speech rate. The stimuli for all three 

manipulations (uniqueness point, clustering, and frequency) were combined to produce one large 



 

 

19 

 

 

set of stimuli. Participants heard all 254 stimuli twice (both with and without a pause), 

randomized in two lists. For the first list, half of the stimuli were presented with a pause and half 

without a pause. Stimuli were then switched from pause to no pause and vice versa for the 

second list. Participants responded by pressing one of two buttons, labeled “pause” and “no 

pause”. Accuracy and reaction time were measured, with reaction times measured from pause 

onset for both pause present and pause absent trials (for the absent trials, the measurement was 

from the point where the pause had been inserted in the corresponding pause-present stimulus). 

The “same/different” task was as described above. Again, participants heard all 254 

target words twice (one “same” trial and one “different”), randomized in two lists, as was done 

for the pause detection task. On each trial, participants first heard the word spoken at a normal 

speech rate. For “same” trials, this was followed by a different production of the word (no 

phonemes changed) at 50% compression. For “different” trials, this was followed by the word at 

50% compression with one consonant phoneme changed. Participants responded by pressing one 

of two buttons, labeled “same” and “different”. Accuracy and reaction time were measured, with 

reaction times measured from word offset on all trials.  

Participants 

Sixty-six native English speakers from the Stony Brook University subject pool 

completed both tasks in a one-hour session, with the order of the tasks counterbalanced. Data for 

two participants on the “same/different” task was lost due to program error. Additionally, one 

participant performed near chance (50%) on the pause detection task with responses indicating 

that they were simply alternating their responses rather than performing the task as instructed. As 

such, their data was dropped from analysis. The final dataset included 65 participants for the 

pause detection task and 63 for “same different” task. 
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Analysis 

Reaction times for incorrect responses and responses <100ms or >2000ms were excluded 

from analysis. I used by participants and by items ANOVAs (analysis of variance) to analyze 

both the reaction time and percent accuracy data, which has long been the standard practice in 

the field. I repeated these analyses using LMMs (linear mixed models) to analyze the reaction 

time data and GLMMs (generalized linear mixed models) to analyze the percent accuracy data. 

Recently, researchers (Baayen, Davidson, & Bates, 2008; Baayen, 2008; Jaeger, 2008; Janssen, 

2012) have argued that this type of modeling is most appropriate when dealing with the 

language-as-fixed-effect fallacy (Clark, 1973). Overall, results were largely consistent regardless 

of the type of analysis used. In general, when there was a significant effect, the typical pattern 

was a significant by participants ANOVA, a non-significant by items ANOVA, and 

LMM/GLMMs that approached or reached significance. This pattern reflects the greater variance 

due to items than due to participants. Note that mixed models are considered more conservative 

(reducing the chance of a Type I error), since they model random effects by participants and by 

items simultaneously and do not average responses across either random effect.  

For the mixed models, random intercepts were included for participants and items. 

Adding random slopes for any of the fixed effects did not increase the model fits or change their 

interpretation. Similarly, transforming the reaction time data, either by base e log, base 10 log, or 

square root, had no effect on results. Therefore, the dependent variable was untransformed 

reaction times in milliseconds. I used log likelihood ratio tests to assess the fit of the various 

models compared to a null model including only random intercepts (Baayen, 2008). 

All analyses were conducted in R (R Core Team, 2014). The package ez (Lawrence, 

2013) was used to run the ANOVAs. The formatted ANOVA tables in this document were 
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created with package afex (Singmann & Bolker, 2014) and exported with package xtable (Dahl, 

2014). The package gplots (Warnes et al., 2014) was used to generate the barplots. The packages 

lme4 (D. Bates, Maechler M, Bolker, & S, 2014) and lmerTest (Kuznetsova, Bruun Brockhoff, 

& Haubo Bojesen Christensen, 2014) were used to fit and compare the LMMs and GLMMs. The 

package texreg (Leifeld, 2013) was used to create and export the formatted tables of the 

statistical models.  

For the pause detection task, I predicted that any significant differences would be seen in 

the reaction times, but not necessarily percent accuracy (overall, participants performed near 

ceiling on this task). In particular, I predicted that the pause absent trials may be the most valid, 

since the presence of the pause might interrupt natural processing.  

Similarly, for the “same/different” task, the focus was on the reaction times for the 

“same” trials (since the presence of a different phoneme might interrupt natural processing). I 

predicted that participants should be faster to respond “same” when a word has characteristics 

that make it easier to process (early uniqueness point, low clustering coefficient, or high 

frequency). Performance on “different” trials might show a similar pattern, but that was unclear. 

In general, results for percent accuracy should either parallel those for reaction times or show no 

effect. 

In what follows, I will present the predictions and results for each set of stimuli and for 

each task. 

Uniqueness Point - Predictions and Results 

For the uniqueness point stimuli, on both tasks participants should be faster when 

responding to early versus late unique words since early unique words have less lexical 

competition as the word unfolds. This prediction was confirmed, with the pause absent trials and 
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the same trials driving the overall effects. On the pause absent trials, there was a 28ms advantage 

for early (vs late) unique words. Similarly, on the “same” trials, there was a 22ms advantage for 

early (vs late) unique words. 

For the accuracy data, participants were less likely to notice the different phoneme in 

early unique words (a 15% drop in percent accuracy). This could be a type of perceptual 

restoration effect in which the unambiguous activation of the early unique word is robust enough 

to overcome the small phonetic mismatch on a “different” trial. Finally, participants were more 

accurate responding to early unique words during pause present (a 2% advantage) and “same” 

trials (a 2% advantage). This result is consistent with the reaction time advantage on these trials, 

suggesting a processing advantage for both speed and accuracy. 

See Figure 2 and Figure 3 and Table 1, Table 2, Table 3, and Table 4 below for details.  
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Figure 2: Mean reaction times on the pause detection and “same different” tasks for the set of stimuli that varied in uniqueness point. 

Standard errors are represented in the figure by the error bars attached to each column. 
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Table 1. ANOVA Results for the Effect of Uniqueness Point on Reaction Times 

Task & Trial df MSE F ges p 

Pause Detection overall (by ppts) 1, 64 1113.34 6.76 * .005 .01 

Pause Detection overall (by items) 1, 38 743.91 3.25 + .08 .08 

Pause Absent trials (by ppts) 1, 64 3578.29 7.01 * .01 .01 

Pause Absent trials (by items) 1, 38 2316.60 3.09 + .08 .09 

Pause Present trials (by ppts) 1, 64 2705.08 0.18 .0003 .68 

Pause Present trials (by items) 1, 38 1628.67 0.08 .002 .78 

Same/Different overall (by ppts) 1, 62 2361.77 3.58 + .003 .06 

Same/Different overall (by items) 1, 38 2105.11 2.88 + .07 .10 

Same trials (by ppts) 1, 62 3680.46 2.76 .003 .10 

Same trials (by items) 1, 38 2777.08 1.97 .05 .17 

Different trials (by ppts) 1, 62 6764.21 0.50 .0009 .48 

Different trials (by items) 1, 37 7770.30 0.35 .009 .56 

***p < 0.001, **p < 0.01, *p < 0.05, +p < 0.1 based on unrounded p values 

Note: The table reports the degrees of freedom (df), mean squared error (MSE), F value, generalized eta 

squared (ges), and p value for each ANOVA. 
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Table 2. LMM Results for the Effect of Uniqueness Point on Reaction Times 

 

Pause Detection 

overall 

Pause Absent 

trials 

Pause Present 

trials 

Same Different 

overall 
Same trials Different trials 

(Intercept) 559.39 (14.00)
***

 520.37 (17.72)
***

 601.64 (14.78)
***

 544.18 (21.05)
***

 536.34 (22.24)
***

 578.47 (27.14)
***

 

unique (late) 16.20 (8.52)
 +

 27.79 (15.14)
 +

 4.85 (12.04) 20.01 (13.79) 20.03 (16.12) 9.46 (24.64) 

AIC 65953.10 33853.96 31884.57 55616.70 32427.51 23211.22 

BIC 65985.51 33882.97 31913.45 55648.10 32456.20 23238.26 

Log Likelihood -32971.55 -16921.98 -15937.29 -27803.35 -16208.75 -11600.61 

Num. obs. 4827 2448 2379 3941 2293 1648 

Num. groups: Participants 65 65 65 63 63 63 

Num. groups: Items 40 40 40 40 40 39 

Variance: Participants 

(Intercept) 
10391.99 12917.15 9512.72 21797.35 23007.50 25160.51 

Variance: Items (Intercept) 327.19 1396.14 847.81 1122.75 1291.84 3766.30 

Variance: Residual 48069.41 54805.37 35635.11 74286.06 74553.68 67799.57 

***

p < 0.001, 
**

p < 0.01, 
*

p < 0.05, 
+
p < 0.1 

Note: For the fixed effects, the table displays estimates (β) followed by standard errors in parentheses. 
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Figure 3. Mean percent accuracy on the pause detection and “same different” tasks for the set of stimuli that varied in uniqueness 

point. Standard errors are represented in the figure by the error bars attached to each column. 
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Table 3. ANOVA Results for the Effect of Uniqueness Point on Percent Accuracy 

Task & Trial df MSE F ges p 

Pause Detection overall (by ppts) 1, 64 0.00 0.72 .002 .40 

Pause Detection overall (by items) 1, 38 0.00 0.18 .005 .67 

Pause Absent trials (by ppts) 1, 64 0.00 2.55 .006 .12 

Pause Absent trials (by items) 1, 38 0.00 1.35 .03 .25 

Pause Present trials (by ppts) 1, 64 0.00 5.92 * .02 .02 

Pause Present trials (by items) 1, 38 0.00 1.14 .03 .29 

Same/Different overall (by ppts) 1, 62 0.00 36.12 *** .16 <.0001 

Same/Different overall (by items) 1, 38 0.03 1.55 .04 .22 

Same trials (by ppts) 1, 62 0.00 4.21 * .02 .04 

Same trials (by items) 1, 38 0.00 2.08 .05 .16 

Different trials (by ppts) 1, 62 0.01 75.56 *** .25 <.0001 

Different trials (by items) 1, 38 0.11 2.06 .05 .16 

***p < 0.001, **p < 0.01, *p < 0.05, +p < 0.1 based on unrounded p values 

Note: The table reports the degrees of freedom (df), mean squared error (MSE), F value, generalized eta 

squared (ges), and p value for each ANOVA. 
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Table 4. GLMM Results for the Effect of Uniqueness Point on Percent Accuracy 

 

Pause Detection 

overall 

Pause Absent 

trials 

Pause Present 

trials 

Same Different 

overall 
Same trials Different trials 

(Intercept) 2.98 (0.15)*** 3.38 (0.23)*** 3.01 (0.22)*** 1.61 (0.27)*** 3.27 (0.23)*** 0.75 (0.56) 

unique (late) -0.08 (0.18) 0.28 (0.25) -0.37 (0.27) 0.38 (0.38) -0.35 (0.26) 1.12 (0.78) 

AIC 2378.00 922.47 1369.42 4287.19 1130.99 1899.59 

BIC 2404.22 945.92 1392.86 4313.25 1154.29 1922.88 

Log Likelihood -1185.00 -457.24 -680.71 -2139.60 -561.50 -945.80 

Num. obs. 5187 2594 2593 4993 2501 2492 

Num. groups: Participants 65 65 65 63 63 63 

Num. groups: Items 40 40 40 40 40 40 

Variance: Participants 

(Intercept) 

0.39 0.91 0.42 0.10 0.56 0.77 

Variance: Items (Intercept) 0.19 0.22 0.48 1.31 0.37 5.81 

Variance: Residual 1.00 1.00 1.00 1.00 1.00 1.00 

***

p < 0.001, 
**

p < 0.01, 
*

p < 0.05, 
+
p < 0.1 

Note: For the fixed effects, the table displays estimates (β) followed by standard errors in parentheses. 
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Clustering – Predictions and Results 

For the clustering stimuli, on both tasks participants should be faster when responding to 

words with low versus high clustering coefficients, since perceiving words from highly clustered 

neighborhoods should require more lexical activity than perceiving words from less clustered 

neighborhoods.  

However, reaction time results were in the unexpected direction on both tasks. 

Participants responded faster to words with high clustering coefficients than those with low 

clustering coefficients. On the pause detection task, this effect was driven by the pause absent 

trials (a 33ms high clustering advantage). On the “same/different” task, this effect was driven by 

the “different” trials (a 33ms high clustering advantage). However, recall that the primary 

predictions were for “same” trials because predictions for “different” trials were difficult to 

make. 

Results for percent accuracy were in the expected direction, indicating more accurate 

performance for words with low clustering coefficients. Participants were less likely to notice the 

different phoneme in words with high clustering coefficients (a 13% drop in percent accuracy), 

and this effect drove an overall disadvantage for words with high clustering coefficients on the 

“same/different” task.  

See Figure 4 and Figure 5 as well as Table 5, Table 6, Table 7, and Table 8 below for 

details. 
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Figure 4. Mean reaction times on the pause detection and “same different” tasks for the set of stimuli that varied in clustering. 

Standard errors are represented in the figure by the error bars attached to each column. 
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Table 5. ANOVA Results for the Effect of Clustering on Reaction Times 

Task & Trial df MSE F ges p 

Pause Detection overall (by ppts) 1, 64 747.00 19.42 *** .01 <.0001 

Pause Detection overall (by items) 1, 73 4089.08 2.11 .03 .15 

Pause Absent trials (by ppts) 1, 64 1521.53 22.92 *** .02 <.0001 

Pause Absent trials (by items) 1, 73 8374.11 2.27 .03 .14 

Pause Present trials (by ppts) 1, 64 1282.06 2.04 .002 .16 

Pause Present trials (by items) 1, 73 3198.21 0.66 .009 .42 

Same/Different overall (by ppts) 1, 62 1838.96 6.26 * .004 .02 

Same/Different overall (by items) 1, 73 3462.63 2.01 .03 .16 

Same trials (by ppts) 1, 62 3637.44 0.25 .0003 .62 

Same trials (by items) 1, 73 5487.33 0.75 .01 .39 

Different trials (by ppts) 1, 62 2469.25 14.22 *** .01 .0004 

Different trials (by items) 1, 73 8199.75 1.12 .02 .29 

***p < 0.001, **p < 0.01, *p < 0.05, +p < 0.1 based on unrounded p values 

Note: The table reports the degrees of freedom (df), mean squared error (MSE), F value, generalized eta 

squared (ges), and p value for each ANOVA. 
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Table 6. LMM Results for the Effect of Clustering on Reaction Times 

 

Pause Detection 

overall 

Pause Absent 

trials 

Pause Present 

trials 

Same Different 

overall 
Same trials Different trials 

(Intercept) 668.88 (15.99)
***

 673.53 (19.27)
***

 664.27 (15.72)
***

 673.37 (21.01)
***

 667.03 (23.11)
***

 690.64 (22.74)
***

 

clustering (high) -21.43 (14.51) -32.38 (20.83) -9.78 (12.81) -17.65 (13.28) -8.31 (16.55) -27.02 (17.86) 

AIC 125162.29 63760.58 61196.59 107662.77 57475.49 50156.76 

BIC 125197.90 63792.78 61228.69 107697.48 57507.04 50187.67 

Log Likelihood -62576.14 -31875.29 -30593.30 -53826.38 -28732.74 -25073.38 

Num. obs. 9155 4621 4534 7649 4070 3579 

Num. groups: Participants 75 75 75 75 75 75 

Num. groups: Items 65 65 65 63 63 63 

Variance: Participants 

(Intercept) 
3547.64 7263.39 2416.76 2573.77 3755.04 4339.44 

Variance: Items (Intercept) 9686.36 9847.20 10664.96 22239.70 24869.85 22827.39 

Variance: Residual 48533.04 53359.23 39705.68 72515.14 73800.50 65639.88 

***

p < 0.001, 
**

p < 0.01, 
*

p < 0.05, 
+
p < 0.1 

Note: For the fixed effects, the table displays estimates (β) followed by standard errors in parentheses.  
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Figure 5. Mean percent accuracy on the pause detection and “same different” tasks for the set of stimuli that varied in clustering. 

Standard errors are represented in the figure by the error bars attached to each column. 
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Table 7. ANOVA Results for the Effect of Clustering on Percent Accuracy 

Task & Trial df MSE F ges p 

Pause Detection overall (by ppts) 1, 64 0.00 0.54 .002 .47 

Pause Detection overall (by items) 1, 73 0.00 0.44 .006 .51 

Pause Absent trials (by ppts) 1, 64 0.00 0.07 .0003 .79 

Pause Absent trials (by items) 1, 73 0.00 0.04 .0006 .84 

Pause Present trials (by ppts) 1, 64 0.00 2.45 .006 .12 

Pause Present trials (by items) 1, 73 0.00 0.90 .01 .35 

Same/Different overall (by ppts) 1, 62 0.00 165.35 *** .19 <.0001 

Same/Different overall (by items) 1, 73 0.02 3.84 + .05 .05 

Same trials (by ppts) 1, 62 0.00 0.00 <.0001 .96 

Same trials (by items) 1, 73 0.01 0.00 <.0001 .99 

Different trials (by ppts) 1, 62 0.00 204.98 *** .24 <.0001 

Different trials (by items) 1, 73 0.06 4.91 * .06 .03 

***p < 0.001, **p < 0.01, *p < 0.05, +p < 0.1 based on unrounded p values 
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Table 8. GLMM Results for the Effect of Clustering on Percent Accuracy 

 

Pause Detection 

overall 

Pause Absent 

trials 

Pause Present 

trials 

Same Different 

overall 
Same trials Different trials 

(Intercept) 3.22 (0.13)
***

 3.66 (0.20)
***

 3.17 (0.16)
***

 2.16 (0.17)
***

 2.55 (0.19)
***

 2.32 (0.30)
***

 

clustering (high) -0.08 (0.11) 0.07 (0.21) -0.19 (0.16) -0.51 (0.22)
*

 -0.12 (0.22) -0.92 (0.39)
*

 

AIC 3781.70 1538.95 2173.47 7480.77 3015.59 3439.30 

BIC 3810.41 1564.89 2199.42 7509.34 3041.38 3465.08 

Log Likelihood -1886.85 -765.47 -1082.74 -3736.39 -1503.80 -1715.65 

Num. obs. 9696 4844 4852 9323 4666 4657 

Num. groups: Participants 75 75 75 75 75 75 

Num. groups: Items 65 65 65 63 63 63 

Variance: Participants 

(Intercept) 
0.08 0.33 0.22 0.85 0.73 2.71 

Variance: Items (Intercept) 0.51 0.81 0.65 0.17 0.62 0.76 

Variance: Residual 1.00 1.00 1.00 1.00 1.00 1.00 

***

p < 0.001, 
**

p < 0.01, 
*

p < 0.05, 
+
p < 0.1 

Note: For the fixed effects, the table displays estimates (β) followed by standard errors in parentheses. 
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Frequency – Predictions and Results 

For the frequency stimuli, on both tasks participants should be faster when responding to 

frequent versus infrequent words. Generally, frequent words are perceived faster and more 

accurately than infrequent words. However, frequent words tend to come from dense 

neighborhoods – so it is possible there could be more competition. The original experiment from 

which these stimuli were borrowed did not include measures beyond word frequency and 

orthographic length, so there are many potential confounds.  

On the pause detection task, there was a small 1% advantage in percent accuracy for high 

frequency words on the pause absent trials. There were no other significant effects. 

On the “same/different” task, results were in the expected direction. On the “same” trials, 

participants were faster (a 12ms advantage) and more accurate (a 3% advantage) when 

responding to the high versus low frequency words. Furthermore, participants were less likely to 

notice the different phoneme changed in the high frequency words (a 5% drop in accuracy). This 

difference could be a type of perceptual restoration effect in which the strong lexical activation 

of the high frequency word overcomes the small phonetic mismatch on a “different” trial. 

See Figure 6 and Figure 7 and Table 9, Table 10, Table 11, and Table 12 below for 

details. 
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Figure 6. Mean reaction times on the pause detection and “same different” tasks for the set of stimuli that varied in word frequency. 

Standard errors are represented in the figure by the error bars attached to each column. 



 

 

38 

 

 

Table 9. ANOVA Results for the Effect of Frequency on Reaction Times 

Task & Trial df MSE F ges p 

Pause Detection overall (by ppts) 1, 64 488.44 0.15 <.0001 .70 

Pause Detection overall (by items) 1, 138 3804.99 0.01 <.0001 .94 

Pause Absent trials (by ppts) 1, 64 975.46 0.74 .0005 .39 

Pause Absent trials (by items) 1, 138 9526.00 0.07 .0005 .79 

Pause Present trials (by ppts) 1, 64 706.23 0.21 .0001 .64 

Pause Present trials (by items) 1, 138 2344.69 0.19 .001 .66 

Same/Different overall (by ppts) 1, 62 650.88 0.72 .0002 .40 

Same/Different overall (by items) 1, 138 5732.04 0.06 .0005 .80 

Same trials (by ppts) 1, 62 1225.05 5.57 * .002 .02 

Same trials (by items) 1, 138 7133.88 0.39 .003 .54 

Different trials (by ppts) 1, 62 1511.93 1.71 .0009 .20 

Different trials (by items) 1, 138 12395.47 1.52 .01 .22 

***p < 0.001, **p < 0.01, *p < 0.05, +p < 0.1 based on unrounded p values 
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Table 10. LMM Results for the Effect of Frequency on Reaction Times 

 

Pause Detection 

overall 

Pause Absent 

trials 

Pause Present 

trials 

Same Different 

overall 
Same trials Different trials 

(Intercept) 613.75 (14.71)
***

 593.54 (17.55)
***

 635.61 (14.11)
***

 607.85 (21.09)
***

 612.40 (23.35)
***

 623.93 (22.19)
***

 

frequency (high) -1.80 (10.44) -4.46 (16.40) 1.85 (8.25) -0.40 (12.72) -13.37 (14.00) 20.86 (17.75) 

AIC 232228.91 118102.15 113537.05 191905.46 109167.67 82488.95 

BIC 232267.60 118137.45 113572.20 191943.06 109202.43 82522.36 

Log Likelihood -116109.45 -59046.07 -56763.52 -95947.73 -54578.83 -41239.47 

Num. obs. 16957 8598 8359 13625 7721 5904 

Num. groups: Participants 140 140 140 140 140 140 

Num. groups: Items 65 65 65 63 63 63 

Variance: Participants 

(Intercept) 
3398.96 8582.78 1637.97 4870.53 5448.50 8900.49 

Variance: Items (Intercept) 10423.40 11017.17 10667.32 22775.51 27972.08 20874.40 

Variance: Residual 50167.86 50611.52 44232.58 73600.13 76114.57 63090.32 

***

p < 0.001, 
**

p < 0.01, 
*

p < 0.05, 
+
p < 0.1 

Note: For the fixed effects, the table displays estimates (β) followed by standard errors in parentheses.  
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Figure 7. Mean percent accuracy on the pause detection and “same different” tasks for the set of stimuli that varied in word frequency. 

Standard errors are represented in the figure by the error bars attached to each column.  
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Table 11. ANOVA Results for the Effect of Frequency on Percent Accuracy 

Task & Trial df MSE F ges p 

Pause Detection overall (by ppts) 1, 64 0.00 0.03 <.0001 .87 

Pause Detection overall (by items) 1, 138 0.00 0.01 <.0001 .92 

Pause Absent trials (by ppts) 1, 64 0.00 2.45 .004 .12 

Pause Absent trials (by items) 1, 138 0.00 2.76 + .02 .10 

Pause Present trials (by ppts) 1, 64 0.00 1.15 .004 .29 

Pause Present trials (by items) 1, 138 0.00 0.52 .004 .47 

Same/Different overall (by ppts) 1, 62 0.00 3.54 + .006 .06 

Same/Different overall (by items) 1, 138 0.02 0.12 .0009 .73 

Same trials (by ppts) 1, 62 0.00 21.87 *** .04 <.0001 

Same trials (by items) 1, 138 0.01 2.42 .02 .12 

Different trials (by ppts) 1, 62 0.00 32.65 *** .04 <.0001 

Different trials (by items) 1, 138 0.09 0.85 .006 .36 

***p < 0.001, **p < 0.01, *p < 0.05, +p < 0.1 based on unrounded p values 
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Table 12. GLMM Results for the Effect of Frequency on Percent Accuracy 

 

Pause Detection 

overall 

Pause Absent 

trials 

Pause Present 

trials 

Same Different 

overall 
Same trials Different trials 

(Intercept) 3.03 (0.11)
***

 3.45 (0.16)
***

 2.90 (0.13)
***

 1.64 (0.14)
***

 2.59 (0.17)
***

 1.40 (0.27)
***

 

frequency (high) 0.04 (0.10) 0.21 (0.12)
 +

 -0.06 (0.14) 0.04 (0.19) 0.49 (0.20)
*

 -0.25 (0.35) 

AIC 7806.08 3024.46 4555.14 15588.15 4772.07 7102.94 

BIC 7837.30 3052.91 4583.59 15619.21 4800.35 7131.23 

Log Likelihood -3899.04 -1508.23 -2273.57 -7790.08 -2382.03 -3547.47 

Num. obs. 18123 9056 9067 17396 8689 8707 

Num. groups: Participants 140 140 140 140 140 140 

Num. groups: Items 65 65 65 63 63 63 

Variance: Participants 

(Intercept) 
0.21 0.12 0.41 1.12 1.08 4.02 

Variance: Items (Intercept) 0.49 0.99 0.48 0.10 0.55 0.77 

Variance: Residual 1.00 1.00 1.00 1.00 1.00 1.00 

***

p < 0.001, 
**

p < 0.01, 
*

p < 0.05, 
+
p < 0.1 

Note: For the fixed effects, the table displays estimates (β) followed by standard errors in parentheses. 
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Conclusion 

Table 13 presents a summary of the results of the task norming experiments. Overall, the 

“same/different” task proved to be a more valid measure of these lexical properties (i.e., 

uniqueness point, clustering, and frequency) than the pause detection task. This was especially 

true of the “same” trials, as expected. See the summary of task norming results in Table 13. 

Therefore, the “same/different” task was used to measure perceptual performance in the 

experiments to follow, with the focus on the “same” trials. 

 

Table 13. Summary of Task Norming Results 

 

Pause 

Detection 

overall 

Pause 

Absent 

trials 

Pause 

Present 

trials 

Same 

Different 

overall 

Same  

trials 

Different 

trials 

Uniqueness Point - RT early* early* ns early* early* ns 

Uniqueness Point - % ns ns early* late* early* late* 

Clustering - RT high* high* ns high* ns high* 

Clustering -% ns ns ns low* ns low* 

Frequency -RT ns ns ns ns high* ns 

Frequency -% ns high* ns ns high* low* 

* p < 0.1 on one or more statistical tests 

Note: The level listed is the one for which there was an advantage (i.e., a faster reaction time or 

higher percent accuracy.  
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Chapter 3: Creation of the Spanglish Nonword Stimuli 

I created 48 Spanglish nonwords that could be plausible words in both English and 

Spanish. Critically, nonwords were designed to systematically vary in the way they connect with 

existing words in each language, i.e., their new neighbors. The phonological neighborhoods 

these nonwords joined systematically differed not only in overall density but also in the 

proportion of neighbors that are also neighbors of one another (i.e., the clustering coefficient), 

and the number of neighbors that share the same onset or offset phoneme. In this way, the 

present research was designed to assess the role of clustering and position-specific neighbors in 

driving the phonological neighborhood density effects observed in English and Spanish. 

Generating Nonword Candidates 

To create a list of possible nonword candidates, real words in both languages (from the 

CLEARPOND database, Marian, Bartolotti, Chabal, & Shook, 2012) were used as seed words in 

Wuggy, a program that generates orthographic nonwords (Keuleers & Brysbaert, 2010). Any 

duplicates were removed. These orthographic nonwords were then transcribed in the 

International Phonetic Alphabet (IPA) based on how they would be produced in Spanish, the 

more orthographically transparent and phonetically restrictive of the two languages. This was 

done using the Spanish Phonetic Transcription Converter available online at http://learn-foreign-

language-phonetics.com/spanish-phonetic-transcription-converter.php?site_language=english . 

Again, any duplicates were removed. The IPA transcriptions were then converted to the format 

used by the CLEARPOND database to represent phonetic transcription (CPSAMPA, a modified 

version of the Extended Speech Assessment Methods Phonetic Alphabet, or X-SAMPA; Marian 

et al., 2012). See Table 14 below for an example of these steps for the Spanish seed word “grifo” 

http://learn-foreign-language-phonetics.com/spanish-phonetic-transcription-converter.php?site_language=english
http://learn-foreign-language-phonetics.com/spanish-phonetic-transcription-converter.php?site_language=english
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(“faucet” in English). The Spanglish nonword /blio/ was selected from the set of possible 

nonwords created from this procedure, with the selection process guided by the way that a 

possible nonword would fit into both the Spanish and the English lexicons.  
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Table 14. Example Nonwords Generated from the Spanish Seed Word “grifo”. 

Orthographic Nonword  

Generated in Wuggy 

Spanish IPA  

Transcription 

CPSAMPA  

Transcription 

bri-ño bɾiɲo b.4.i.J.o 

cri-ño kɾiɲo k.4.i.J.o 

fri-ño fɾiɲo f.4.i.J.o 

pri-ño pɾiɲo p.4.i.J.o 

ple-fo plefo p.l.e.f.o 

fle-fo flefo f.l.e.f.o 

cle-fo klefo k.l.e.f.o 

cli-bo kliβo k.l.i.B.o 

cli-ho klio k.l.i.o 

cli-jo klixo k.l.i.x.o 

cli-vo kliβo - 

cli-po klipo k.l.i.p.o 

cli-zo kliθo k.l.i.T.o 

cli-ño kliɲo k.l.i.J.o 

ble-fo blefo b.l.e.f.o 

bli-bo bliβo b.l.i.B.o 

bli-ho blio b.l.i.o 

bli-jo blixo b.l.i.x.o 

bli-vo bliβo - 

bli-po blipo b.l.i.p.o 

bli-zo bliθo b.l.i.T.o 

bli-ño bliɲo b.l.i.J.o 

che-fo ʧefo tS.e.f.o 

chi-bo ʧiβo tS.i.B.o 

chi-ho ʧio tS.i.o 

Example of 25 orthographic nonwords generated in Wuggy for the Spanish seed word “grifo”, 

along with the Spanish IPA transcription and CPSAMPA transcription used to query the 

CLEARPOND database. The Spanglish nonword /blio/ was created from this set (highlighted in 

yellow). The items highlighted in red are duplicates (same phonetic transcription). The item 

highlighted in green is a real word in Spanish, “chivo” as noted in top line of the CLEARPOND 

output in Figure 8 below. 
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The CPSAMPA transcriptions of each potential nonword were then queried in the 

CLEARPOND database available online at http://clearpond.northwestern.edu/spanishpond.html . 

Items that were real words in either language were removed. Additionally, the CLEARPOND 

database was used to gather measures of phonological neighborhood size and mean phonological 

neighborhood frequency as well as the list of phonological neighbors for each potential nonword, 

in each language. See Figure 8 below for an example of the CLEARPOND output for the 

potential nonwords in Table 14, using the Spanish lexicon. A comparable output was produced 

for these nonwords using CLEARPOND’s English lexicon.  

 

 

Figure 8. Example of the CLEARPOND output for the potential nonwords created from the 

Spanish seed word “grifo”.  

http://clearpond.northwestern.edu/spanishpond.html
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Clustering Measurement 

Nonwords with fewer than two neighbors in either language were eliminated, since it is 

impossible to have clustering when there is only one neighbor. To compute clustering 

coefficients for each nonword in each language, I first calculated the total number of connections 

possible between neighbors of a given nonword, i.e., the number of neighbors times the number 

of neighbors minus one, all divided by two. I then counted the actual number of connections 

between neighbors. The clustering coefficient is the actual number of connections divided by the 

total number of connections possible (Vitevitch, 2008). Values range from 0 to 1, with higher 

values indicating greater clustering. For example, as shown in Figure 9 below, the Spanglish 

nonword /blio/ has four neighbors in Spanish: helio, olió, lío, and valió. [Note that stress is not 

considered in these computations and is therefore a potential confounding factor. Also, note that 

“helio” is a neighbor because the “h” is silent, and “valio” is a neighbor because ‘b’ and ‘v’ are 

produced as the same phoneme in this position in Spanish.] Of the six possible connections 

between those words, three exist, giving a clustering coefficient of 3/6 or 0.5. That same 

nonword has four neighbors in English: bleed, bleep, bleach, and bleak. Of the six possible 

connections between those words, all six exist (i.e., each is a neighbor of the others) giving a 

clustering coefficient of 6/6 or 1. This pattern is typical of these languages, as English tends to be 

more clustered than Spanish. 
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Position-Specific Neighbors Measurement 

Since the purpose of the present research was to test whether position-specific effects 

were driving overall density effects, I focused on the subset of neighbors that share the 

onset/offset phoneme (rather than cohort/rhyme neighbors typically used in the literature). Onset 

and offset densities for each nonword in each language were defined as the number of neighbors 

that share the same onset or offset phoneme. It is important to note that because all the possible 

set of candidates were neighboring words, by definition, they only varied by one added, 

subtracted, or substituted phoneme. Therefore, these neighboring words shared more than just 

the onset or offset phoneme. This definition of onset density fits with the traditional definition of 

cohort neighbors, for which the overlapping first phoneme is most critical. However, this is not 

the case for offset density. Its definition allows for deviations from the traditional definition of 

rhyme neighbors, for which the final vowel and any subsequent consonants are critical. For the 

majority of the Spanglish nonwords (39/48), the final phoneme is a vowel, and therefore this 

more traditional definition of rhymes is maintained overall. However, for the Spanglish 

nonwords that end with a consonant, the definition of offset density does include some neighbors 

that would not traditionally be considered rhymes.  

An example of onset and offset neighborhood densities is illustrated in Figure 9 below. 

The Spanglish nonword /blio/ shares its onset with one Spanish neighbor, “valió”, since ‘v’ and 

‘b’ are both realized as the same phoneme in this word initial position in Spanish. Furthermore, 

/blio/ shares its offset with all four Spanish neighbors. The pattern in English is the opposite: 

/blio/ shares its onset with all four English neighbors but does not share its offset with any 

neighbors. Again, the pattern illustrated is the one most typical of these languages: English 

neighbors tend to share onsets while Spanish neighbors tend to share offsets. 
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Figure 9. Illustration of the English and Spanish phonological neighborhoods for the Spanglish 

nonword /blio/. 

 

Spanglish Nonword Stimuli 

Forty-eight critical Spanglish nonwords were chosen from the list of possible nonword 

candidates. The goal was to have the items systematically differ in the ways they connect with 

existing words in each language. Half the items enter a space that is more clustered in English 

than Spanish, while for the other half the opposite is true. Within this split, half of the items 

show the same onset/offset pattern in both languages, with half of those items having more onset 

than offset neighbors and the other half having more offset than onset neighbors. Again, for the 

other half, the opposite is true, with items showing contrasting onset/offset patterns in each 

language, as with the example nonword /blio/ shown in Figure 9. See Table 15 below for an 

illustration of the design. 
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Table 15. Illustration of the Experimental Design of the Spanglish Nonword Stimuli. 

Example 

Nonword 

English Neighborhood Spanish Neighborhood 

/blio/ More clustering More onset Less clustering More offset 

/anu/ More clustering More offset Less clustering More onset 

/ʧike/ More clustering More onset Less clustering More onset 

/eni/ More clustering More offset Less clustering More offset 

/kjo/ Less clustering More onset More clustering More offset 

/iti/ Less clustering More offset More clustering More onset 

/suθ/ Less clustering More onset More clustering More onset 

/isi/ Less clustering More offset More clustering More offset 

Note that the clustering comparison is across languages (i.e., the nonword enters a neighborhood 

that is either more clustered in English or in Spanish). The onset/offset comparison is within a 

language (e.g., the nonword /blio/ has more cohort than rhyme neighbors in English and more 

rhyme than cohort neighbors in Spanish). 

 

For a full list of the stimuli and associated measures, see the Appendix. 
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Chapter 4: Method 

Participants 

Forty-eight native speakers of English were recruited from the subject pool at Stony 

Brook University. Additionally, 48 native speakers of Spanish were recruited from the subject 

pool at the Basque Center for Cognition, Brain and Language. Since this population is typically 

bilingual (Basque and Spanish) or multilingual, in order to be eligible for this study, participants 

must have indicated that they acquired Spanish before the age of 3. For 43 of the 48 participants, 

Spanish was also the language they acquired first. Furthermore, participants must have indicated 

high levels of proficiency for Spanish and low levels for English. Participants rated themselves 

on a scale of 1 (low proficiency) to 10 (high proficiency). Average ratings were 9.4 for speaking, 

9.3 for understanding, 9.2 for writing, and 9.2 for reading Spanish. Thirty-four of the 48 

participants also indicated some proficiency in English. Their average age of acquisition was 7.9 

with a range of 3-15. Their average ratings were 4.1 for speaking, 4.9 for understanding, 4.4 for 

writing, and 5.1 for reading English.  

Additional participants were recruited, but their data had to be replaced for one of several 

reasons. Four participants were unable to attend the second session due to weather or other 

unanticipated issues. One participant did not follow task instructions. Five participants scored 

less than 70% accuracy on the picture association task (the new word training task – see below). 

Finally, data for six participants were lost due to program or experimenter error on one or more 

tasks.  
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Materials 

Real words: In order to compare nonword performance in each language with that for real 

words, I selected 52 line drawings of common objects from the International Picture Naming 

Project (Szekely et al., 2004). I computed clustering coefficients and onset and offset densities 

for the picture labels in each language, using the same method described in Chapter 3 for the 

nonword stimuli. While this set of stimuli could not be as well controlled as the nonwords (that 

was, of course, the whole point of teaching new lexical items that could be controlled this way), I 

attempted to select a range of values on each measure that was comparable. I then created 

“different” items used in the “same/different” perceptual task by changing one consonant 

phoneme to create a nonword in that language. This secondary set of stimuli provides a within-

subject comparison of naming for existing lexical items to naming for the newly-learned words. 

Spanglish nonwords: For details on the creation of the 48 Spanglish nonword stimuli, see 

Chapter 3. For the “different” items used in the “same/different” perceptual task, a Spanglish 

nonword neighbor was chosen from the items remaining after the 48 critical stimuli were 

selected. These were neighbors by substitution of one phoneme. For example, for the critical 

item /blio/, the Spanglish nonword /blia/ was chosen to be the “different” item. The “different” 

items were required to be similar enough to the target word to make the judgment challenging. 

However, note that the analyses focus on the “same” trials, as the task norming has shown that 

these are the critical trials for tapping lexical effects. 

Unusual objects: The critical Spanglish items were introduced into the listeners’ lexicons 

by associating each item with the picture of an unusual object. This picture could later be used to 

cue production of the newly learned Spanglish nonword. Forty-eight color pictures of unusual 

objects were borrowed from previous research (Dumay et al., 2012; Leach & Samuel, 2007; 
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Samuel & Larazza, in preparation). The items were chosen to be ones for which there is no 

common label, such as those shown in Figure 10 below. 

 

 

 

Figure 10. Sample pictures of the unusual objects used in the picture association learning task 

and picture naming task. 

 

Audio Recordings: In recording the critical Spanglish nonwords, the goal was to have a 

blend of an English and a Spanish accent because these items were taught to native speakers of 

each language. This was in addition to selecting only nonword stimuli with vowels and 

consonants that are common to the two languages. 

A native Spanish speaker, who was highly proficient in English, recorded all English, 

Spanish, and Spanglish stimuli used in the experiment. The speaker was a male undergraduate 

student from the same college-age population as the participants. He was a linguistics major 

familiar with reading and producing words transcribed in the International Phonetic Alphabet. 

Although originally from the Dominican Republic (he moved to the US at age 14), he was 

coached to produce real Spanish words in the manner typically produced in Spain, e.g., 

producing the final phoneme in “cruz” as /θ/ rather than /s/. When necessary, he listened to and 

imitated the productions of a Basque-Spanish bilingual living in the region from which the 

Spanish population was recruited.  
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Although lexical stress was not used in computing the neighbors, during recording the 

speaker matched the stress pattern of the majority of the neighboring words in both languages, or 

produced a neutral stress pattern. Multiple takes of the Spanglish nonword stimuli were recorded, 

once in an “English mode” immediately after recording the English word stimuli and another in a 

“Spanish mode” immediately after recording the Spanish word stimuli. For each, the speaker 

tried to pretend the Spanglish nonwords were real words in that language. After listening 

carefully to both sets of recordings, it was clear the “Spanish mode” set best represented the 

target IPA transcriptions. Additionally, since Spanish is the more restrictive of the two 

languages, particularly in the vowel space, it seemed native Spanish speakers would be less 

likely to accept English-accented nonwords than native English speakers would be to accept 

Spanish-accented nonwords. Thus, the tokens used in the experiment were those recorded in 

“Spanish mode”. 

All words were filtered to remove background noise and converted to a sampling rate of 

44 kHz (Goldwave, version 5.70). A second token of each word and nonword, as well as all the 

“different” tokens, were compressed by 50% using Praat (Boersma & Weenink, 2014) for use in 

the “same/different” task.  

For a full list of the stimuli and associated measures, see the Appendix. 

Procedure 

Participants were recruited for two one-hour sessions, scheduled on separate days, up to a 

week apart. Each participant was tested individually. 

On the first day, they began by completing the “same/different” task on real words in 

their native language. Wearing headphones, participants listened to pairs of spoken words, 

played one after the other (ISI = 500ms). Their task was to judge whether both instances 
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contained exactly the same sounds (i.e., sequence of consonants and vowels). The first word was 

spoken at a normal speech rate and the second word (or nonword) was spoken twice as fast to 

make the task challenging. Participants were told that when they heard the word a second time, 

sometimes one sound that is part of that word would be different, for example “experiment” 

could become something like “experiNent”. Participants indicated whether the word contained 

all the same sounds, or contained a different sound, by pressing one of two response buttons. 

They were asked to respond quickly and accurately. The program advanced to the next trial (ITI 

= 1 second) after a response was made or after 3 seconds if no response was made. Responses 

and reaction times were recorded. Each of the 4 practice items and 48 experimental items were 

heard twice (one “same” and one “different” trial) randomized in two blocks.  

Next, participants completed a picture-naming task on the same target words in their 

native language. Their exposure to these words during the “same-different” task should have 

increased the likelihood that participants would produce the desired label for each picture. 

Participants wore a headset with headphones and a microphone positioned close to their lips. 

They saw a line drawing of an object appear on the computer screen and were instructed to name 

the picture as quickly as possible. All productions were recorded using DMDX (Forster & 

Forster, 2003) and naming accuracy and latencies were measured individually using CheckVocal 

(Protopapas, 2007).  

The last task on Day 1 was the picture-association learning task. Each of the 48 nonwords 

was randomly paired with one of the pictures of unusual objects. On Day 1, participants learned 

half (24) of the picture-nonword pairings. On each trial, the computer displayed two pictures side 

by side, while the nonword associated with one of the pictures was presented over headphones. 

Participants indicated which picture matched the nonword by pressing one of two response 
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buttons (left button = left picture, right button = right picture). Once a response was made, the 

incorrect picture disappeared to provide feedback regarding the correct picture-nonword pairing. 

The incorrect picture displayed was randomly chosen trial-by-trial from the other unusual 

pictures. Participants heard each nonword 24 times, randomized within blocks. Responses and 

reaction times (measured from word offset) were recorded. Samuel and Larraza (in revision) 

have shown that, with this learning procedure, participants produce essentially perfect choice 

behavior after approximately 10 exposures to each picture. This was replicated in the present 

research. 

On the second day, participants began with the picture-association learning task in order 

to learn the other half (24) of the picture-nonword pairings. This was followed by the 

“same/different” task and picture-naming task using all 48 nonword stimuli following the same 

procedure used with real words. 
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Chapter 5: Results 

Analysis 

The central theoretical question of the present research was whether clustering and/or 

position-specific neighbors could be driving the previously observed effects of phonological 

neighborhood density in English and in Spanish. As such, the fixed effects of interest were 

phonological neighborhood density, the clustering coefficient, the number of neighbors sharing 

the onset phoneme, and the number of neighbors sharing the offset phoneme. Table 16 below 

summarizes the various models used for analysis. When modeling the data, I first assessed how 

well overall phonological neighborhood density predicted performance (model 1). This allowed 

for a direct comparison with previous results. I then modeled each of the remaining fixed effects 

alone (models 2, 4, and 6 for the clustering coefficient, onset neighbors, and offset neighbors 

respectively) to see if they were good predictors of overall behavior. The critical models were 

those in which phonological neighborhood density was combined with these fixed effects 

(models 3, 5, and 7 for the clustering coefficient, onset neighbors, and offset neighbors 

respectively). In these combined models, the two fixed effects (e.g., phonological neighborhood 

density and the clustering coefficient) act as controls for one another, with the better predictor 

explaining more of the variance. A comparison of the estimates from these statistical models was 

used to determine the direction (facilitation or inhibition) and predictive power of these effects.  
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Table 16. Summary of the fixed and random effects included in each of the models used for the analysis.  

 Null model Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 

# Neighbors         

Clustering Coefficient         

# Onset Neighbors         

# Offset Neighbors         

Items (Intercept)         

Participants (Intercept)         
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The dependent measures of interest were reaction times on “same” trials in the 

“same/different” (perceptual) task and naming latencies on the picture naming (production) task. 

These were collected for pre-existing lexical items in each language, and for the newly learned 

Spanglish nonwords (referred to as English or Spanish nonwords depending on the lexicon the 

items joined). Note that the real word stimuli could not be controlled as well as the nonwords, 

which is why the latter were designed to vary systematically along the fixed effects of interest. 

Reaction times for incorrect responses and responses <100ms or >2000ms were excluded from 

analysis. Additionally, naming latencies were only included when the correct item was produced. 

For the Spanglish nonwords, this meant producing each phoneme correctly (because if a different 

phoneme was learned, then a different neighborhood, with different characteristics, would be 

activated). 

LMMs were used to model the data. Random intercepts were included for participants 

and items. When I attempted to include random slopes for the fixed effects, some of these 

models failed to converge. For the majority that did converge, adding random slopes did not 

increase the fit of the models or change their interpretation. Even for those that did increase the 

fit, the interpretation did not change (i.e., estimates remained largely unchanged). Similarly, 

transforming the reaction time data, either by base e log, base 10 log, or square root, had no 

effect on results. Therefore, the dependent variable was untransformed reaction times in 

milliseconds, since this simplifies the interpretation of the model estimates. I report the model 

estimates (β), standard errors (SEs), t values, and p values.  

All analyses were conducted in R (R Core Team, 2014). The packages lme4 (D. Bates et 

al., 2014) and lmerTest (Kuznetsova et al., 2014) were used to fit LMMs. The package texreg 

(Leifeld, 2013) was used to create and export the formatted tables of the statistical models.  
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Hypotheses 

For phonological neighborhood density, I predicted a replication of the most common 

pattern of results reported for each language, particularly for the real word stimuli. That is, for 

English words, I predicted a high density disadvantage in speech perception and a high density 

advantage in speech production. And, for Spanish words, I predicted a high density advantage in 

speech perception and a high density disadvantage in speech production. However, as reviewed 

in Chapter 1, previous results have been rather inconsistent, with both facilitation and inhibition 

being observed. The existence of both patterns suggests that there are multiple controlling 

variables, and the present research was designed to test two of these possibilities (clustering and 

position-specific neighbors).  

For the clustering coefficient, previous research predicts a high clustering disadvantage in 

both modalities. However, since the rationale behind clustering depends on spreading activation, 

it is difficult to predict a priori how far and how strongly activation will spread among links 

between neighbors. Additionally, the previous research on the clustering coefficient has focused 

on simple CVC words, which may or may not generalize to the more complex stimuli used in the 

present research.  

For position-specific neighbors, previous research suggests an onset neighbor 

disadvantage in speech perception and an offset neighbor advantage in speech production. The 

rationale behind the effect of position-specific neighbors taps into one of the fundamental 

characteristics of speech – that it unfolds over time. As such, there is a strong anticipatory 

component to perceiving speech. Theories have typically described the system as one that 

activates and eliminates possible word candidates based on the speech that has already unfolded. 

Likewise, in production, the system prepares for the soon-to-be produced items while 
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deactivating those already produced. Due to the nature of the tasks used in the present research, I 

predicted the largest effects from onset neighbors. For tasks that use single word perception, like 

the “same/different” task used in the present research, the lack of prior noise or need for word 

segmentation means the word’s onset is a clear and reliable cue to perception. It should therefore 

have a strong effect on overall performance. In this case, the shared onsets presumably increase 

the number of word candidates under consideration during perception, leading to an inhibitory 

effect. This is in contrast to a facilitatory effect in production, in which onset neighbors support 

processing of the shared onset. This should help production start quickly and reduce naming 

latencies. 

Perception of Existing English Words 

Results did not replicate the high density disadvantage previously observed for the 

perception of English words. The pattern of results suggests a tiny 0.55ms increase in reaction 

time per neighbor (model 1 β = 0.55, SE = 0.96, t(46) = 0.57, p = 0.57). There was a hint that 

clustering could be driving some of this small disadvantage, but this was not significant (model 

3, β = 124.91, SE = 107.24, t(49) = 1.17, p = 0.25).  

Like overall neighborhood density, onset neighbors were not good predictors of overall 

behavior. However, the data suggests that offset neighbors could be beneficial for perception. 

The combined model 7 estimated a 3.91ms increase per neighbor (β = 3.91, SE = 2.56, t(46) = 

1.52, p = 0.13) combined with a 4.52ms decrease per offset neighbor (β = -4.52, SE = 3.21, t(46) 

= -1.41, p = 0.17).  

See Figure 11 and Table 17 below for details. Figure 11 displays the reaction times for 

perceiving English words on the “same/different” task as a function of the four fixed effects of 

interest (# phonological neighbors, clustering coefficient, # onset neighbors, and # offset 
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neighbors). Each colored circle represents the reaction time for one of the 48 native speakers of 

English on one of the 48 English word stimuli. The x-axis reflects the range of possible values 

for each fixed effect. For example, phonological neighborhood density of the English words 

ranged from 3 to 49 neighbors, with the onset and offset densities comprising a subset of these 

neighbors. By definition, the clustering coefficient ranges from 0 to 1. As stated above, reaction 

times greater than 2000ms (or less than 100ms) were dropped prior to analysis, so the y-axis 

reflects this range. Both regression and lowess lines were added to each graph to highlight the 

overall pattern of responses. The regression line is the trend line from a linear regression model 

of the data. The lowess line is a localized regression line created by fitting simple regression 

models to subsets of the data. In this way, a lowess line can capture any curvature to the data that 

a simple regression line would not reflect. This same format was used for the subsequent figures 

in this chapter.  
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Figure 11. Reaction times for perceiving English words on the “same/different” task. 
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Table 17. LMMs for the Perception of English Words on the “Same/Different” Task.  

 Null model Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 

Intercept 615.92
***

 605.45
***

 574.91
***

 569.97
***

 609.92
***

 607.75
***

 615.56
***

 599.16
***

 

 (24.78) (30.85) (41.25) (43.21) (31.29) (31.44) (29.24) (30.84) 

# Neighbors  0.55  0.37  1.18  3.91 

  (0.96)  (0.96)  (1.96)  (2.56) 

Clustering Coefficient   131.52 124.91     

   (106.02) (107.24)     

# Onset Neighbors     0.50 -1.22   

     (1.61) (3.27)   

# Offset Neighbors       0.03 -4.52 

       (1.21) (3.20) 

AIC 29394.83 29396.51 29395.31 29397.17 29396.73 29398.37 29396.83 29396.57 

BIC 29417.46 29424.79 29423.59 29431.11 29425.02 29432.31 29425.12 29430.51 

Log Likelihood -14693.42 -14693.26 -14692.65 -14692.58 -14693.37 -14693.19 -14693.42 -14692.28 

Num. obs. 2115 2115 2115 2115 2115 2115 2115 2115 

Num. groups: Items 48 48 48 48 48 48 48 48 

Num. groups: Participants 48 48 48 48 48 48 48 48 

Variance: Items 

(Intercept) 
5314.38 5265.82 5140.06 5117.59 5296.86 5251.57 5314.24 4989.48 

Variance: Participants 

(Intercept) 
22840.25 22843.10 22832.12 22834.50 22843.22 22839.21 22840.39 22836.85 

Variance: Residual 57193.18 57193.72 57186.16 57186.60 57193.77 57192.94 57193.18 57196.33 
***

p < 0.001, 
**

p < 0.01, 
*

p < 0.05, 
+

p < 0.1 

Note: For the fixed effects, the table displays estimates (β) followed by standard errors in parentheses. 
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Production of Existing English Words 

Results did not replicate the high density advantage previously observed for the 

production of English words. In fact, the pattern of results suggests a disadvantage, a pattern 

previously reported for Spanish (Vitevitch & Stamer, 2006). There was a non-significant 1.29ms 

increase in naming latency per neighbor (model 1 β = 1.29, SE = 0.97, t(47) = 1.33, p = 0.19).  

As was the case with overall neighborhood density, the pattern of results suggests a 

disadvantage for both onset and offset neighbors. Estimates from the combined models (5 and 7) 

indicate that the overall (non-significant) effect was driven by the onset neighbors. Model 5 

estimated a 2.30ms increase in naming latencies per onset neighbor (compared to the 2.42ms 

estimate from model 4) and only a 0.08ms increase per neighbor (compared to the 1.29ms 

estimate from model 1), indicating the majority of the variance was explained by the subset of 

neighbors sharing the onset. The reverse pattern was true of the offset neighbors. Model 7 

estimated a 0.18ms increase per offset neighbor (compared to the 1.53ms estimate from model 6) 

and a 1.16ms increase per neighbor (compared to the 1.29ms estimate from model 1), indicating 

the majority of the variance was explained by the overall number of neighbors.  

Contrary to expectations, there was a hint that clustering could be advantageous for 

production, but this was not significant (model 3, β = -161.90, SE = 106.44, t(47) = -1.52, p = 

0.14).  

See Figure 12 and Table 18 below for details. 
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Figure 12. Naming latencies for producing English words on the picture naming task. 
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Table 18. LMMs for the Production of English Words on the Picture Naming Task.  

 Null model Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 

Intercept 807.34
***

 782.50
***

 850.14
***

 828.94
***

 778.52
***

 778.35
***

 787.60
***

 782.75
***

 

 (16.85) (25.07) (37.73) (39.25) (25.34) (25.66) (22.96) (25.47) 

# Neighbors  1.29  1.52  0.08  1.16 

  (0.97)  (0.96)  (1.98)  (2.65) 

Clustering Coefficient   -136.58 -161.90     

   (107.85) (106.44)     

# Onset Neighbors     2.42 2.30   

     (1.60) (3.27)   

# Offset Neighbors       1.53 0.18 

       (1.22) (3.32) 

AIC 53093.99 53094.27 53094.41 53094.00 53093.78 53095.78 53094.45 53096.26 

BIC 53119.10 53125.65 53125.80 53131.67 53125.17 53133.44 53125.84 53133.93 

Log Likelihood -26543.00 -26542.13 -26542.21 -26541.00 -26541.89 -26541.89 -26542.23 -26542.13 

Num. obs. 3935 3935 3935 3935 3935 3935 3935 3935 

Num. groups: Items 48 48 48 48 48 48 48 48 

Num. groups: Participants 48 48 48 48 48 48 48 48 

Variance: Items 

(Intercept) 
6543.27 6294.52 6325.95 5993.54 6228.28 6227.91 6320.42 6294.00 

Variance: Participants 

(Intercept) 
6546.69 6548.29 6545.14 6546.81 6547.63 6547.69 6549.12 6548.41 

Variance: Residual 39676.48 39676.08 39675.56 39674.91 39675.86 39675.86 39676.10 39676.08 
***

p < 0.001, 
**

p < 0.01, 
*

p < 0.05, 
+

p < 0.1 

Note: For the fixed effects, the table displays estimates (β) followed by standard errors in parentheses. 
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Perception of Existing Spanish Words 

Results did not replicate the high density advantage previously observed for the 

perception of Spanish words. Instead, I observed a high density disadvantage. There was a 

significant 2.64ms increase in reaction time per neighbor (model 1 β = 2.64, SE = 1.34, t(46) = 

1.97, p = 0.05).  

There was a trend suggesting that onset neighbors could be driving this disadvantage 

(model 4 β = 3.81, SE = 2.04, t(46) = 1.87, p = 0.07). However, the combined model (5) 

indicates that overall neighborhood density is the better predictor (even though n.s.), since the 

estimate for onset neighbors dropped from 3.81 to 0.46.  

There was also a hint that offset neighbors were driving the observed effects (model 6 β = 

2.17, SE = 1.43, t(46) = 1.52, p = 0.14). Critically, the combined model (7) shows a 7.79ms 

decrease in reaction time per offset neighbor (β = -7.79, SE = 5.37, t(46) = -1.45, p = 0.15) 

combined with a 9.82ms increase per neighbor (β = 9.82, SE = 5.13, t(46) = -1.92, p = 0.06). 

This indicates an overall high density disadvantage but an advantage from offset neighbors. It is 

possible that this offset boost was responsible for the high density advantage reported in previous 

studies, particularly since Spanish neighbors tend to share offsets. 

The clustering coefficient was not a good predictor of overall behavior (model 2 β = 

17.17, SE = 40.12, t(46) = 0.43, p = 0.67). As shown in the green data displayed in the upper 

right corner of Figure 13, both the regression and lowess lines are essentially flat, indicating no 

differences in reaction time as a function of clustering.  

See Figure 13 and Table 19 below for details.  
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Figure 13. Reaction times for perceiving Spanish words on the “same/different” task. 
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Table 19. LMMs for the Perception of Spanish Words on the “Same/Different” Task.  

 
Null model Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 

Intercept 417.33
***

 393.96
***

 413.11
***

 390.13
***

 393.65
***

 393.62
***

 402.44
***

 383.92
***

 

 
(20.31) (23.39) (22.56) (25.14) (23.82) (23.79) (22.47) (24.20) 

# Neighbors 
 2.64

*

  2.63
*

  
2.35 

 9.82
+

 

  
(1.34) 

 
(1.34) 

 
(3.87) 

 
(5.12) 

Clustering Coefficient 
  

17.17 15.96 
    

   
(40.12) (38.54) 

    
# Onset Neighbors 

    3.81
+

 0.46 
  

     
(2.04) (5.86) 

  
# Offset Neighbors 

      
2.17 -7.79 

       
(1.43) (5.37) 

AIC 28185.00 28183.26 28186.81 28185.09 28183.63 28185.26 28184.74 28183.21 

BIC 28207.66 28211.60 28215.15 28219.09 28211.96 28219.26 28213.08 28217.21 

Log Likelihood -14088.50 -14086.63 -14088.41 -14086.55 -14086.81 -14086.63 -14087.37 -14085.60 

Num. obs. 2137 2137 2137 2137 2137 2137 2137 2137 

Num. groups: Items 48 48 48 48 48 48 48 48 

Num. groups: 

Participants 
48 48 48 48 48 48 48 48 

Variance: Items 

(Intercept) 
3124.15 2834.02 3108.30 2820.20 2858.81 2833.29 2946.57 2682.42 

Variance: Participants 

(Intercept) 
16046.42 16049.67 16045.16 16048.42 16055.36 16050.41 16047.99 16052.87 

Variance: Residual 27843.31 27844.01 27843.59 27844.30 27844.15 27844.03 27843.71 27844.63 
***

p < 0.001, 
**

p < 0.01, 
*

p < 0.05, 
+

p < 0.1 

Note: For the fixed effects, the table displays estimates (β) followed by standard errors in parentheses. 
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Production of Existing Spanish Words 

Results did replicate the high density disadvantage previously observed for the 

production of Spanish words. There was a significant 6.29ms increase in naming latency per 

neighbor (model 1 β = 6.29, SE = 2.26, t(47) = 2.78, p = 0.008).  

Both onset and offset neighbors were good predictors of overall behavior (see models 4 

and 6). Critically, the combined model (5) indicated a significant 10.21ms decrease in naming 

latency per onset neighbor (β = -10.21, SE = 10.02, t(49) = -1.02, p = 0.31) combined with a 

12.42ms increase per neighbor (β = 12.42, SE = 6.43, t(47) = 1.93, p = 0.06). This indicates an 

overall high density disadvantage but an advantage from onset neighbors. This provides support 

for the hypothesis that onset neighbors support processing of the shared onset, in turn helping 

production start quickly and reducing naming latencies. 

It seems that offset neighbors were driving the overall high density disadvantage. There 

was a significant 6.68ms increase in naming latency per offset neighbor, (model 6 β = -6.68, SE 

= 2.33, t(46) = 2.87, p = 0.006). The combined model (7) suggests that offset neighbors are a 

better predictor than overall neighborhood density, since the estimate for offset neighbors was 

reduced only slightly (from 6.68 to 5.90) while the estimate for neighborhood density was 

reduced substantially (from 6.29 to 0.77).  

The clustering coefficient was not a good predictor of overall behavior (model 2 β = 

31.99, SE = 74.38, t(50) = 0.43, p = 0.67). As shown in the green data displayed in the upper 

right corner of Figure 14, both the regression and lowess lines are essentially flat, indicating no 

differences in naming latency as a function of clustering. 

See Figure 14 and Table 20 below for details. 
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Figure 14. Naming latencies for producing Spanish words on the picture naming task. 
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Table 20. LMMs for the Production of Spanish Words on the Picture Naming Task.  

 
Null model Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 

Intercept 840.55
***

 785.04
***

 833.01
***

 781.01
***

 790.84
***

 793.97
***

 794.76
***

 793.25
***

 

 (19.53) (27.28) (26.20) (31.17) (29.31) (28.26) (24.47) (29.96) 

# Neighbors  6.29
**

  6.25
**

  12.42
+

  0.77 

  (2.26)  (2.26)  (6.43)  (8.84) 

Clustering Coefficient   31.99 18.72     

   (74.38) (70.09)     

# Onset Neighbors     8.05
*

 -10.21   

     (3.62) (10.02)   

# Offset Neighbors       6.68
**

 5.90 

       (2.33) (9.16) 

AIC 50409.81 50404.48 50411.62 50406.41 50406.99 50405.47 50404.07 50406.07 

BIC 50434.68 50435.57 50442.71 50443.72 50438.08 50442.78 50435.16 50443.38 

Log Likelihood -25200.90 -25197.24 -25200.81 -25197.20 -25198.50 -25196.73 -25197.04 -25197.03 

Num. obs. 3708 3708 3708 3708 3708 3708 3708 3708 

Num. groups: Items 48 48 48 48 48 48 48 48 

Num. groups: Participants 48 48 48 48 48 48 48 48 

Variance: Items 

(Intercept) 
10141.42 8785.10 10100.90 8777.30 9350.85 8451.38 8652.92 8659.15 

Variance: Participants 

(Intercept) 
7295.85 7294.11 7293.35 7292.64 7300.69 7285.89 7290.97 7291.32 

Variance: Residual 43674.43 43661.69 43674.50 43661.40 43658.79 43670.37 43664.98 43664.49 
***

p < 0.001, 
**

p < 0.01, 
*

p < 0.05, 
+

p < 0.1 

Note: For the fixed effects, the table displays estimates (β) followed by standard errors in parentheses. 
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Perception of English Nonwords 

As we have seen, the results for existing words in both languages were rather messy, with 

some outcomes matching prior findings but many others mismatching. As noted in Chapter 1, a 

fundamental and recurring problem in this literature is the natural confounding of any variables 

with the factors of interest. This is why, in the current study, the approach was to eliminate as 

many confounding variables as possible by introducing carefully chosen new “words” into the 

English and Spanish lexicons. With items selected this way, the results for the nonwords did 

replicate the high density disadvantage previously observed for the perception of English words. 

There was a significant 3.28ms increase in reaction time per neighbor (model 1 β = 3.28, SE = 

1.20, t(48) = 2.74, p = 0.009).  

Both onset and offset neighbors were good predictors of overall behavior (see models 4 

and 6). There was a nearly significant 3.49ms increase in naming latency per onset neighbor, 

(model 4 β = 3.49, SE = 1.79, t(45) = 1.95, p = 0.057). However, the combined model (5) 

suggested that overall neighborhood density is a better predictor than onset neighbors, since the 

estimate for neighborhood density was reduced only slightly (from 3.49 to 3.47) while the 

estimate for onset neighbors was reduced substantially (from 3.28 to -0.36). Clearly these two 

factors are explaining much of the same variance (as is to be expected, since onset neighbors are 

simply a subset of the overall number of neighbors). 

There was a significant 2.76ms increase in naming latency per offset neighbor, (model 6 

β = 2.76, SE = 1.38, t(48) = 2.00, p = 0.052). Critically however, the combined model (7) 

suggested a 3.40ms decrease in reaction time per offset neighbor (β = -3.40, SE = 3.17, t(47) = -

1.07, p = 0.29) combined with a 6.05ms increase per neighbor (β = 6.05, SE = 2.84, t(47) = 2.13, 
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p = 0.04). This indicates an overall high density disadvantage but an advantage from offset 

neighbors. It also mirrors the pattern observed for perception of existing words in Spanish. 

The clustering coefficient was not a good predictor of overall behavior (model 2 β =  

-13.91, SE = 19.74, t(44) = -0.71, p = 0.49). As shown in the green data displayed in the upper 

right corner of Figure 15, both the regression and lowess lines are essentially flat, indicating no 

differences in reaction time as a function of clustering. 

See Figure 15 and Table 21 below for details. 
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Figure 15. Reaction times for perceiving English nonwords on the “same/different” task. 
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Table 21. LMMs for the Perception of English Nonwords on the “Same/Different” Task.  

 Null model Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 

Intercept 506.71
***

 482.96
***

 513.94
***

 487.02
***

 492.31
***

 483.07
***

 493.42
***

 479.28
***

 

 (21.66) (23.15) (23.96) (25.60) (22.77) (23.17) (22.56) (23.33) 

# Neighbors  3.28
**

  3.21
**

  3.47
+

  6.05
*

 

  (1.19)  (1.20)  (1.86)  (2.84) 

Clustering Coefficient   -13.91 -6.89     

   (19.74) (18.63)     

# Onset Neighbors     3.49
+

 -0.36   

     (1.79) (2.70)   

# Offset Neighbors       2.76
*

 -3.40 

       (1.38) (3.17) 

AIC 29045.19 29040.16 29046.70 29042.03 29043.54 29042.15 29043.33 29041.03 

BIC 29067.83 29068.46 29074.99 29075.98 29071.83 29076.10 29071.63 29074.99 

Log Likelihood -14518.59 -14515.08 -14518.35 -14515.01 -14516.77 -14515.07 -14516.67 -14514.52 

Num. obs. 2120 2120 2120 2120 2120 2120 2120 2120 

Num. groups: Items 48 48 48 48 48 48 48 48 

Num. groups: Participants 48 48 48 48 48 48 48 48 

Variance: Items 

(Intercept) 
1538.35 1183.22 1504.09 1173.16 1327.13 1184.40 1348.39 1115.85 

Variance: Participants 

(Intercept) 
19894.06 19900.40 19899.55 19903.51 19896.28 19900.49 19898.59 19899.75 

Variance: Residual 47675.32 47670.69 47677.95 47672.21 47682.10 47669.71 47667.59 47677.41 
***

p < 0.001, 
**

p < 0.01, 
*

p < 0.05, 
+

p < 0.1 

Note: For the fixed effects, the table displays estimates (β) followed by standard errors in parentheses. 
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Production of English Nonwords 

Overall, participants were not very good at producing the newly learned Spanglish 

nonwords. This was despite the fact that they all performed near ceiling on the picture 

association task after the first eight repetitions. This left only 731 observations of a possible 2304 

(48 items time 48 participants) for analysis. Because of this, it is difficult to put too much faith in 

the results on this task, but see Figure 16 and Table 22.  

Phonological neighborhood density was not a good predictor of overall behavior (model 

1 β = -0.90, SE = 1.97, t(34) = -0.46, p = 0.65). However, the pattern of data suggests a tiny high 

density advantage of subtracting 0.90ms per neighbor.  

Similar to overall phonological neighborhood density, neither onset nor offset densities 

were good predictors of naming latencies. Though non-significant, results from the combined 

models (5 and 7) suggest an advantage from onset neighbors and a disadvantage from offset 

neighbors. Naming latencies decreased by 3.13ms for each onset neighbor (model 5 β = -3.13, 

SE = 4.71, t(42) = -0.66, p = 0.51). Naming latencies increased by 1.63ms for each offset 

neighbor (model 7 β = 1.63, SE = 5.42, t(36) = 0.30, p = 0.77). 

The clustering coefficient was not a good predictor of overall behavior, however the 

pattern of data suggest a high clustering disadvantage (model 2 β = 39.63, SE = 31.82, t(40) = 

1.25, p = 0.22). That is, naming latencies tended to increase as clustering increased. 
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Figure 16. Naming latencies for producing English nonwords on the picture naming task. 

 



 

 

81 

 

 

 

Table 22. LMMs for the Production of English Nonwords on the Picture Naming Task.  

 Null model Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 

Intercept 1061.38
***

 1068.09
***

 1041.62
***

 1046.69
***

 1071.24
***

 1069.54
***

 1064.66
***

 1069.99
***

 

 (16.48) (22.00) (22.94) (28.37) (20.79) (22.09) (19.69) (22.92) 

# Neighbors  -0.90  -0.60  0.68  -2.26 

  (1.97)  (1.98)  (3.08)  (4.93) 

Clustering Coefficient   39.63 38.43     

   (31.82) (32.09)     

# Onset Neighbors     -2.32 -3.13   

     (3.00) (4.71)   

# Offset Neighbors       -0.65 1.63 

       (2.16) (5.41) 

AIC 10066.63 10068.42 10067.08 10068.99 10068.03 10069.98 10068.54 10070.33 

BIC 10085.01 10091.40 10090.06 10096.56 10091.00 10097.55 10091.51 10097.90 

Log Likelihood -5029.32 -5029.21 -5028.54 -5028.50 -5029.02 -5028.99 -5029.27 -5029.17 

Num. obs. 731 731 731 731 731 731 731 731 

Num. groups: Items 48 48 48 48 48 48 48 48 

Num. groups: 

Participants 
48 48 48 48 48 48 48 48 

Variance: Items 

(Intercept) 
2884.56 2896.30 2866.73 2872.74 2879.87 2868.52 2902.58 2867.38 

Variance: Participants 

(Intercept) 
5573.26 5598.91 5651.49 5667.02 5618.94 5615.21 5590.76 5593.54 

Variance: Residual 50217.97 50187.42 50086.10 50070.75 50160.14 50163.79 50195.76 50197.79 
***

p < 0.001, 
**

p < 0.01, 
*

p < 0.05, 
+

p < 0.1 

Note: For the fixed effects, the table displays estimates (β) followed by standard errors in parentheses. 
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Perception of Spanish Nonwords 

The pattern of results did replicate the high density advantage previously observed for the 

perception of Spanish words, however they did not reach significance. Results suggested a 

3.06ms decrease in reaction time per neighbor (model 1 β = -3.06, SE = 2.84, t(43) = -1.08, p = 

0.29).  

Onset neighbors were not a significant predictor of overall behavior (model 5 β = 0.83, 

SE = 5.54, t(45) = 0.15, p = 0.88). Results indicated a tiny 0.83ms increase per onset neighbor. 

There was a hint that offset neighbors were driving the observed effects (model 6 β = -

4.55, SE = 2.95, t(44) = -1.54, p = 0.13). The combined model (7) suggested a 4.63ms decrease 

in reaction time per offset neighbor  (β = -4.63, SE = 4.25, t(44) = -1.09, p = 0.28) combined 

with a 0.11ms increase per neighbor (β = 0.11, SE = 4.03, t(43) = 0.03, p = 0.98). This result 

adds support to the view that it is this boost from offset neighbors that was responsible for the 

high density advantage reported in previous studies, particularly since Spanish neighbors tend to 

share offsets. 

The clustering coefficient was a significant predictor of overall behavior. Results 

indicated a high clustering disadvantage (model 3 β = 56.82, SE = 24.33, t(45) = 2.34, p = 0.02). 

See Figure 17 and Table 23 below for details. 
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Figure 17. Reaction times for perceiving Spanish nonwords on the “same/different” task. 
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Table 23. LMMs for the Perception of Spanish Nonwords on the “Same/Different” Task.  

 Null model Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 

Intercept 411.92
***

 427.21
***

 387.24
***

 393.86
***

 419.84
***

 428.10
***

 426.95
***

 426.68
***

 

 (17.89) (22.82) (20.14) (26.39) (20.16) (23.57) (20.33) (22.68) 

# Neighbors  -3.06  -1.09  -3.78  0.11 

  (2.84)  (2.81)  (5.61)  (4.03) 

Clustering Coefficient   59.63
*

 56.82
*

     

   (23.27) (24.33)     

# Onset Neighbors     -2.39 0.83   

     (2.82) (5.54)   

# Offset Neighbors       -4.55 -4.63 

       (2.95) (4.25) 

AIC 27655.44 27656.29 27651.26 27653.11 27656.72 27658.27 27655.12 27657.12 

BIC 27677.99 27684.48 27679.45 27686.94 27684.91 27692.10 27683.31 27690.95 

Log Likelihood -13823.72 -13823.15 -13820.63 -13820.56 -13823.36 -13823.13 -13822.56 -13822.56 

Num. obs. 2076 2076 2076 2076 2076 2076 2076 2076 

Num. groups: Items 48 48 48 48 48 48 48 48 

Num. groups: Participants 48 48 48 48 48 48 48 48 

Variance: Items 

(Intercept) 
1544.69 1489.55 1264.15 1257.50 1512.87 1487.37 1429.49 1429.35 

Variance: Participants 

(Intercept) 
13052.42 13051.56 13040.88 13041.11 13052.09 13051.47 13049.21 13049.19 

Variance: Residual 32441.78 32441.77 32441.64 32441.71 32440.80 32442.14 32443.62 32443.65 
***

p < 0.001, 
**

p < 0.01, 
*

p < 0.05, 
+

p < 0.1 

Note: For the fixed effects, the table displays estimates (β) followed by standard errors in parentheses. 
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Production of Spanish Nonwords 

As was the case in English, overall, participants were not very good at producing the 

newly learned Spanglish nonwords. This was despite the fact that they all performed near ceiling 

on the picture association task after the first eight repetitions. While the Spanish population 

performed slightly better than the English population, there were only 906 observations of a 

possible 2304 (48 items x 48 participants) for analysis.  

The pattern of data suggests a non-significant high density disadvantage (model 1 β = 

5.12, SE = 5.09, t(42) = 1.01, p = 0.32). Naming latencies increased by 5.12ms per neighbor.  

There was a significant effect of onset neighbors. Critically, the combined model (5) 

indicated a significant 21.36ms decrease in naming latency per onset neighbor (β = -21.36, SE = 

9.97, t(47) = -2.14, p = 0.04) combined with a significant 24.54ms increase per neighbor (β = 

24.54, SE = 10.25, t(49) = 2.39, p = 0.02). This indicates an overall high density disadvantage 

but an advantage from onset neighbors. As was the case for the production of Spanish words, this 

result provides support for the hypothesis that onset neighbors support processing of the shared 

onset, in turn helping production start quickly and reducing naming latencies. 

Offset densities were not a good predictor of naming latencies (model 7 β = 0.13, SE = 

8.28, t(50) = 0.02, p = 0.99). 

Finally, the pattern of data suggests a high clustering disadvantage (model 3 β = 60.99, 

SE = 45.96, t(45) = 1.33, p = 0.19). That is, naming latencies tended to increase as clustering 

increased. 

See Figure 18 and Table 24 for details. 
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Figure 18. Naming latencies for producing Spanish nonwords on the picture naming task. 
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Table 24. LMMs for the Production of Spanish Nonwords on the Picture Naming Task.  

 Null model Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 

Intercept 1101.72
***

 1076.23
***

 1084.97
***

 1041.03
***

 1102.74
***

 1048.55
***

 1087.77
***

 1076.19
***

 

 (18.15) (30.96) (25.42) (40.18) (24.33) (32.08) (26.68) (31.08) 

# Neighbors  5.12  7.25  24.54
*

  5.04 

  (5.09)  (5.24)  (10.25)  (7.11) 

Clustering Coefficient   41.48 60.99     

   (44.74) (45.96)     

# Onset Neighbors     -0.31 -21.36
*

   

     (5.02) (9.97)   

# Offset Neighbors       4.22 0.13 

       (5.96) (8.28) 

AIC 12665.43 12666.43 12666.58 12666.71 12667.43 12664.13 12666.93 12668.43 

BIC 12684.67 12690.48 12690.63 12695.57 12691.47 12692.99 12690.98 12697.29 

Log Likelihood -6328.72 -6328.22 -6328.29 -6327.36 -6328.71 -6326.07 -6328.47 -6328.22 

Num. obs. 906 906 906 906 906 906 906 906 

Num. groups: Items 48 48 48 48 48 48 48 48 

Num. groups: 

Participants 
47 47 47 47 47 47 47 47 

Variance: Items 

(Intercept) 
3398.14 3230.01 3263.31 2964.59 3398.56 2511.97 3316.79 3229.90 

Variance: Participants 

(Intercept) 
7535.32 7460.16 7455.05 7304.33 7538.68 7387.73 7504.99 7460.36 

Variance: Residual 62317.44 62346.17 62342.58 62396.50 62315.97 62417.63 62328.19 62346.15 
***

p < 0.001, 
**

p < 0.01, 
*

p < 0.05, 
+

p < 0.1 

Note: For the fixed effects, the table displays estimates (β) followed by standard errors in parentheses. 
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Chapter 6: Discussion 

The present research was motivated by the apparent cross-modal and cross-linguistic 

differences previously reported for one property of linguistic representations: phonological 

neighborhood density. These differences have been puzzling because they contradict two basic 

assumptions about language. One assumption is that perception and production share lexical 

representations. Therefore, a given lexical property should have similar effects in both 

modalities. This is how word frequency behaves: frequent words have a processing advantage in 

both perception and production (see Chapter 1 for review). A second assumption is that the 

system supporting language is fundamentally the same regardless of the language implemented. 

Continuing the example, word frequency behaves the same way in Spanish as it does in English. 

This reasoning motivated the search for possible alternative explanations (clustering and 

position-specific neighbors) for the observed effects of phonological neighborhood density in 

English and Spanish.  

The present results allow us to keep the above assumptions intact by providing evidence 

that position-specific neighbors are driving the contradictory effects of phonological 

neighborhood density observed cross-modally and cross-linguistically. In Figure 19 below, I’ve 

summarized the pattern of results for words and nonwords, across modality and population by 

including a heatmap of the significance of the various model estimates. Contrary to previous 

results, the present results suggest a high density disadvantage, regardless of modality or 

language. All the significant findings indicate that processing slowed down as the number of 

neighbors increased. This is clearly seen in the number of red squares in the first four columns of 

Figure 19. However, it is worth noting that for the results with the Spanglish nonwords, the 
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observed, though largely non-significant, pattern matches what was to be expected based on 

previous results (see the last four rows in the first column of Figure 19). That is, as predicted, the 

present results for nonwords replicated the high density disadvantage in English speech 

perception (a 3.28ms increase per neighbor) and high density advantage in English speech 

production (a 0.90ms decrease per neighbor), as well as the high density advantage in Spanish 

speech perception (a 3.06ms decrease per neighbor) and high density disadvantage in Spanish 

speech production (a 5.12 increase per neighbor). 
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Figure 19. Summary of model estimates.  

For the column headings, note that the variable after the period was other variable controlled in the model. For example, 

Neighbors.Clustering and Clustering.Neighbors were the estimates from model 3. Neighbors.Clustering is the estimate for the number 

of neighbors when controlling for the clustering coefficient. 
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Effects for the clustering coefficient replicated the high clustering disadvantage reported 

previously (Chan & Vitevitch, 2009, 2010). However, the effect does not appear to be very 

robust as only one significant effect was found, for the perception of Spanish nonwords (though 

others approached significance). Nor does it appear to explain the overall effect of phonological 

neighborhood density. Finally, there was also an unexpected, though non-significant, high 

clustering advantage observed for the production of English words.  

However, position-specific neighbors do appear to explain the apparent cross-modal and 

cross-linguistic differences observed for phonological neighborhood density. In particular, onset 

neighbors aid production and offset neighbors aid perception. Since neighbors in English tend to 

share onsets, this is a likely explanation for the high density advantage previously observed for 

English speech production. Similarly, since neighbors in Spanish tend to share offsets, this is a 

likely explanation for the high density advantage in Spanish speech perception. In particular, the 

significant effects for onset neighbors are consistent in English and Spanish. Onset neighbors 

slow down perception of Spanish words and English nonwords and speed up production of 

Spanish words and nonwords. The significant effects for offset neighbors were less clear: 

speeding up perception of English nonwords and slowing down production of Spanish words. 

The position-specific effects reported here are consistent with the cohort effects observed 

by Dumay et al. (2012). As reviewed in Chapter 1, they observed that participants were about 

30ms slower to perceive words that gained a cohort neighbor. This is consistent with the present 

findings that onset neighbors are driving the high density disadvantage typically reported for 

English perception (whereas offset neighbors appear to aid perception). However, the present 

results are inconsistent with the rhyme effects observed by Dumay et al. (2012). They observed 

that participants were about 25ms faster to produce words that gained a rhyme neighbor. The 
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present results suggest a disadvantage for producing words with many offset neighbors, however, 

this was only significant for the production of real words in Spanish.  

While the present results for production are inconsistent with those observed by Dumay 

et al. (2012) in English they are consistent with those observed by Bien et al. (2011) in Dutch. As 

reviewed in Chapter 1, their results suggest that rhyme neighbors inhibit production and cohort 

neighbors facilitate production. This parallels the pattern for offset and onset neighbors observed 

in the present research. I observed facilitation from offset neighbors for the production of 

Spanish words and nonwords. I also observed inhibition from onset neighbors for the production 

of English and Spanish words, though this was not significant in English.  

The present results add clarity to a contradictory literature on the topic of phonological 

neighborhood density. One of the challenges of psycholinguistic research is that natural 

languages are not well suited for experimentation. Any property one might want to study is 

confounded with other properties. The back and forth regarding the effects of phonological 

neighborhood density on Spanish production is an excellent example of this problem. As 

reviewed in Chapter 1, Vitevitch and Stamer (2006) first reported a high density disadvantage for 

picture naming in Spanish. Baus, Costa, and Carreiras (2008) were able to replicate this effect, 

not only with the original Spanish stimuli but also with German translations of the stimuli, for 

which there was no difference in phonological neighborhood density. That is to say, they found a 

high density disadvantage for German picture naming when the “high” and “low” density words 

did not actually vary in phonological neighborhood density - they were instead arbitrarily 

grouped by the density of their Spanish translations. Baus et al. then found the opposite pattern (a 

high density advantage) for Spanish picture naming using a new set of line drawings, which they 

argued were better controlled. In response, Vitevitch and Stamer (2009) replicated their effect 
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with English translations of this new set of Spanish stimuli (which, like the German translations, 

did not actually vary in phonological neighborhood density). They then went on to find a high 

density advantage using a larger dataset from the international picture naming project. The 

takeaway from this back and forth is that stimuli selection is critical. However, to date, it has 

been unclear what possible confounds might be driving the contradictory results. The present 

results suggest that position-specific neighbors might have been the confounding variable at 

play. 

Further evidence for the difficulty of experimental control in psycholinguistic research 

comes from Sadat et al. (2013). As described in Chapter 1, their methodology allowed them to 

simultaneously model a number of correlated variables (e.g., name agreement, age of acquisition, 

lexical frequency, and neighborhood frequency) in the model in an attempt to control possible 

confounds. Their results confirmed the presence of a high density disadvantage for picture 

naming in Spanish. The present results add support for this conclusion using a different 

approach. Instead of using a mathematical approach to deal with the confounds inherent in 

natural language, the present experiment inserted new words into each lexicon in a way that was 

systematically controlled with regard to the variables of interest.  

Theoretical Explanations 

Phonological neighbors, in general, should be detrimental to performance because of the 

confusability they introduce during processing. Across multiple areas of cognition, theories posit, 

and the evidence supports, parallel activation of similar representations during processing (e.g., 

McClelland, Rumelhart, & PDP Research Group, 1986). For speech processing, the parallel 

activation of phonological neighbors should reduce the likelihood that the desired word’s 
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representation is the one perceived or produced. Even during error-free processing, parallel 

activation should increase processing time. This is supported by the present results.  

One defining characteristic of spoken language is that it unfolds in time. As a result, the 

parallel activation of phonologically similar representations is dynamic and time-sensitive (Dell, 

Burger, et al., 1997). When phonologically similar representations are activated in parallel, the 

non-overlapping portions are most problematic for processing. Overlapping portions should 

facilitate, or at least not interfere. Therefore, it is logical that the degree of facilitation and 

competition from these co-activated word candidates should vary as a function of the position-

specific location of phonological overlap between neighboring words. Critically, the non-

overlapping segments are the ones that increase confusability. Therefore, the location of those 

non-overlapping segments is critical.  

Word onsets are particularly important for perception. For example, both Shortlist 

(Norris, 1994) and TRACE (McClelland & Elman, 1986) create a list of lexical candidates 

organized according to the onset segment. Similarly, according to the Distributed Cohort Model 

(Gaskell & Marslen-Wilson, 1997, 1999, 2002) incoming speech activates all lexical candidates 

that share the onset segment. Candidates are eliminated if subsequent segments do not match. 

Experimentally, the visual world paradigm (e.g., Allopenna, Magnuson, & Tanenhaus, 1998) has 

been used to demonstrate robust cohort competitor effects. These experiments demonstrate the 

anticipatory nature of speech perception. As the initial phonemes in the word “beaker” unfold, 

participants are equally likely to look at a picture of a beaker or a picture of a beetle (a cohort 

neighbor). By comparison, looks to a picture of a speaker (a rhyme neighbor) arose later and 

were not as likely (a peak fixation probability of 0.1 for rhyme neighbors compared to 0.2 for 

cohort neighbors in a display of 4 pictures). Given this, it is not surprising that the present results 
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suggest that neighbors with shared onsets are driving the observed high density disadvantage in 

speech perception. Offset neighbors, by contrast, appear to aid perception, or at least not have the 

same detrimental effect as onset neighbors.  

In perception, the confusability resulting from the activation of phonological neighbors 

makes selection difficult. Multiple lexical representations at least partially match the 

phonological input. In production, this kind of phonological selection is not at play. Perception 

begins broadly, ready for any utterance, whereas production begins narrowly, with a specific 

message intended to be uttered. While phonological activation is the driving force in perception, 

semantic activation is the driving force in production. In production, semantic, not phonological, 

neighbors make processing difficult. This is why semantic errors are common in production. 

Phonology, by comparison, plays a lesser role due to the nature of the task itself. 

Phonological confusability in production is thought to arise from links between lexical 

and sublexical (phonological) representations. Dell and Gordon (2003) proposed an interactive 

model to account for the high density advantage observed in English production. Their two-step 

model involves 1) the activation of the lexical (lemma) representation and 2) the phonological 

representations associated with it. The links between lexical and phonological representations are 

interactive such that activation spreads bidirectionally between levels. A target word is first 

activated semantically, so the bulk of the competition arises from words with semantic rather 

than phonological similarity. For example, when producing the word “cat”, the semantic 

neighbor “dog” will also be weakly activated. In step two, the phonological representations for 

/k/, /æ/, and /t/ will be activated (as well as /d/, /ɑ/, and /g/ to a lesser extent). Activation from 

these phonemes then feeds back into the lexicon, activating the many phonological neighbors of 

“cat”. These in turn, send activation back down to the phonological level, strengthening the 
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activation of the overlapping phonemes. In this way, phonological neighbors boost activation of 

the shared phonological representations, and this activation helps distinguish the target word 

from words that are semantically, but not phonologically, related.  

The present results support interactive activation models like Dell and Gordon's (2003) 

which posit facilitation from overlapping segments. Lexical representations of neighboring 

words will increase activation for the shared phonological segments, thereby facilitating 

processing of those shared segments. The present research extends these models by providing 

evidence that the position of this overlap is critical. The naming latency task used in the present 

research should be most sensitive to onsets, since the measurement is how quickly the production 

system can get started. Therefore I hypothesized that onset neighbors should facilitate 

production. The present results supported this.  

Additional support for the facilitative effect of shared onsets in production comes from 

investigations of malapropisms. Malapropisms are word substitution errors in which the 

substituted word is a real word that is unrelated in meaning but similar in pronunciation to the 

intended word. Of 397 word substitution errors Fay and Cutler (1977) analyzed, 183 were 

malapropisms, making this a common production error. Overwhelmingly, the word produced in 

error was the nearest cohort competitor, i.e. a neighbor that shares onset phonemes, of the 

intended word, for example “equivalent” and “equivocal”. This suggests that words with shared 

onsets are highly activated during production. While this activation does sometimes lead to 

errors, it should also facilitate processing of the shared onset phonemes.  

Alternative Accounts 

The interactive activation and competition account developed by Chen and Mirman 

(2012) provides an alternative explanation for when and how neighbors should facilitate or 
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inhibit processing. Though similar to the interactive model proposed by Dell and Gordon (2003) 

described above, this model also includes inhibitory connections between lexical representations. 

These connections are weighted by a sigmoid function so that weakly active neighbors exert less 

influence than strongly activated neighbors. In this account, weak and strong neighbors are 

defined by the number of semantic features they share in common. In this way, their model 

accounts for both phonological neighbors (through bidirectional connections between lexical and 

sublexical representations) and semantic neighbors (through weighted connections between 

lexical representations). Their simulations demonstrated that the net effect of co-activated 

representations depends on these semantic connections: weakly activated semantic neighbors 

lead to a net facilitatory effect whereas strongly activated semantic neighbors lead to a net 

inhibitory effect. Though the present research did not use semantic similarity as a measurement, 

others (e.g., Mirman & Magnuson, 2008) have demonstrated that this is a reliable predictor of 

word recognition performance.  

Another possible explanation for the cross-modal differences observed for phonological 

neighborhood density stems from clarifying the level of processing at which these effects occur. 

While neighborhood density appears to be an important property of lexical representations, 

phonotactic probability appears to be an important property of sublexical representations. 

Phonotactic probability refers to the frequency with which segments and series of segments 

occur within words of a given language. As such, it is positively correlated with neighborhood 

density, since words with many phonological neighbors are also those that contain segments that 

frequently occur in that language. In a series of experiments, Vitevitch and Luce (2005, 1998, 

1999) demonstrated that the lexical status of the stimuli was the critical factor determining 

competition or cooperation. When the items were real words, and could therefore activate lexical 
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representations, words in low density neighborhoods with low phonotactic probability were 

repeated faster than those in high density neighborhoods with high phonotactic probability. 

When the items were nonwords, and therefore largely only activated sublexical representations, 

nonwords in high density neighborhoods with high phonotactic probability were repeated faster 

than those in low density neighborhoods with low phonotactic probability. The authors 

concluded that these two correlated properties act at different levels of processing: neighborhood 

density has a lexical locus with increased density leading to increased competition between word 

representations whereas phonotactic probability has a sublexical locus with increased probability 

leading to increased facilitation between sublexical representations. In summary, they argued 

that what appeared to be a dissociation between perception and production at the lexical level is 

instead a dissociation between levels of processing.  

Given the above reasoning, one would have predicted opposite effects observed for 

words and nonwords in the present research. Competition at the lexical level should have led to a 

net high density disadvantage for the production of real words. By contrast, facilitation at the 

sublexical level should have led to a net high density advantage for the production of nonwords. 

However, the present results do not support this. Instead, results were largely consistent across 

words and nonwords. As neighborhood density increased, so did naming latencies. However, 

naming latencies decreased as the neighbors sharing onsets increased. It is possible that this 

contradiction is due to participants accepting these nonwords as new lexical items. Indeed this 

was a goal of the study and the picture association task used was meant to encourage this. The 

repetition task used by Vitevitch and Luce (2005, 1998, 1999) likely did not encourage 

participants to think of these nonwords as new lexical items they learned during the experiment. 

Additionally, the present research did not include measures of phonotactic probability so it is 
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unclear if this would have exerted an effect above and beyond that of overall neighborhood 

density. 

Future Directions 

In addition to exploring the above alternative accounts, future research could explore the 

role of position-specific neighbors using stimuli from previous experiments on phonological 

neighborhood density. Such experiments would be a critical replication of the present effects. 

Furthermore, future research should consider the role of phonological stress in moderating the 

strength of competition and facilitation between neighbors. Unfortunately, the databases used for 

the present experiment did not include phonological stress in the phonetic transcriptions, so this 

could not be included as a potential confound. Phonological stress may be of particular 

importance in languages like Spanish, which include many accented words. For example, the 

Spanglish nonword /blio/ might interact more strongly with its neighbors “valió” and “olió” than 

its neighbors “helio” and “lío” if spoken with final accented stress. This is similar to Chen and 

Mirman's (2012) idea of weakly and strongly activated neighbors, using stress pattern instead of 

semantic similarity.  

It would also be interesting to see if more robust effects from position-specific neighbors 

emerge with broader definitions of neighbors than those used in the present research. As noted 

previously, since the purpose of the present research was to test whether position-specific effects 

were driving overall density effects, I focused on the subset of neighbors that share the onset 

phoneme and the subset of neighbors that share the offset phoneme. However, a broader 

definition might be necessary, particularly in perception, since the full word form is unclear 

when the utterance begins to unfold. Therefore, restricting the analysis to competition/facilitation 

from only words with all but one overlapping phoneme, means eliminating partially overlapping  
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words that might also be influencing behavior. To this end, Bien et al.'s (2011) approach of 

including multiple measures of neighbors at various positions (e.g., all the words that share the 

first phoneme, first two phonemes, etc.) is desirable. Finally, a more time sensitive perceptual 

task, like those using the visual word paradigm, might be able to tease apart the effects of 

overlapping and non-overlapping segments in real time, rather than observing their net effects on 

whole word perception.  

Conclusion 

Overall, the present research supports the idea that phonological neighbors are bad for 

processing. Each additional neighbor adds milliseconds to participants’ response time. However, 

not all neighbors are alike. In particular, neighbors sharing the onset phoneme can aid 

production, and words sharing the offset phoneme can aid perception. Results for clustering 

suggest a high clustering disadvantage; however this effect did not appear to be driving the 

overall effects of phonological neighborhood density. These results are most consistent with 

interactive activation models of speech processing. 
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Appendix 

List of word and nonword stimuli 

 

KEY 

More clustering in English than Spanish 

More clustering in Spanish than English 

More onset than offset neighbors (within language) 

More offset than onset neighbors (within language) 
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