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Toward Reliable Analysis of Individual Genomes

Abstract of the Dissertation

High-throughput DNA sequencing technologies have given us the power to understand
genetic disease at extraordinarily detailed resolution. It is now possible to sequence a per-
son’s whole genome and search for the genetic markers that contribute to specific disease, or
even markers that contribute to the possibility of developing a new one. However, the task
of understanding and sifting through billions of data-points is not a trivial one. There are di-
verse statistical, algorithmic and practical implementation challenges that must be met so
that we can accurately and reliably analyze the vast swaths of data that come from human
DNA sequences. Indeed, strategies for detecting human sequence variation in exome and
whole genome sequencing data are myriad, but the reliability of these methods, even when
applied to the same underlying sequencing data, is unclear. Furthermore, in the context of
imperfect agreement among results stemming from these various methods, powerful strate-
gies for assessing and recovering true, but missed, sequence variation have yet to be devised.
Most research effort has focused on mitigating false detection. It is in this context that high-
throughput sequencing technologies are used for both research and clinical investigations.

In the medical genomics realm, our understanding of the genetic origins of human disease
has been empowered by these technologies, but unreliable analyses have led to a number of
false positive research findings. The community has since recognized the need for robust and
comprehensive sequencing and analysis methods, particularly in cases where only a small
number of samples from probands or affected families are available. In the clinical realm,
most agree that there exists an enormous amount of potential for these technologies to trans-
form clinical care, but the practicality of their use is currently understudied, particularly for
individual patients among complex cohorts, such as those harboring psychiatric afflictions.

In order to move the field of human genetics research forward and to contribute toward
the successful implementation of genomics-guided medical care, several key advancements
are needed: a characterization of the reliability of current high-throughout analysis methods,
methods for recovering missed sequence variants from discordant detection sets, an under-
standing of current infrastructural deficiencies for implementation, general guidance on how
to use diverse sets of analysis results in the context of generating robust relationships between
human sequence variation and disease, and new methodological approaches for generating se-
quence analysis results that accurately characterize uncertainties in the underlying data, so that
the reliabilities of their inferences remain robust throughout the lifetime of their use.
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0
Introduction

Genetic disease accounts for 20-30% of infant deaths18 and 30-50% of post-neonatal deaths116.

3-5% of all births result in genetic disease87 and 12% of all chronic adult aliments have a sig-

nificant genetic component93. Clinical and research investigations into the precise genetic

contributors of human disease have historically been difficult, slow, low-yielding and gen-

erally imprecise. Since the advent of high throughput and genome-scale DNA sequencing

technologies, researchers and clinicians can quickly and cheaply study the mechanisms of ge-
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netic disease at nucleotide resolution. The implications for biomedical research and human

health care have thus far been invaluable. In 2010, whole genome sequencing (WGS) led to

the discovery of the genetic basis of Miller Syndrome257. In another instance WGS was used

to investigate the genetic basis of Charcot-Marie-Tooth neuropathy174, and it has since fu-

eled a discussion about returning genome wide test results to study participants189. In 2011,

WGS led to the diagnosis of a pair of twins with dopa (3,4-dihydroxyphenylalanine) respon-

sive dystonia (DRD; OMIM #128230) and to the discovery that they carried compound het-

erozygous mutations in the SPR gene encoding sepiapterin reductase. This information led

to the clinical supplementation of l-dopa therapy with 5-hydroxytryptophan (a serotonin pre-

cursor), which resulted in remarkable clinical improvements in both twins10. The application

of these technologies has since led to the discovery of the genetic basis of many other human

disorders, and it has even shed light on the genetic architecture of complex diseases such as

autism53,126,127, heart disease223 and cancer60. The health care industry has, in parallel to this

development, begun to shift its focus from reactive to preventative measures, where the use

genomic information, many speculate, will be of immense value (through reactive measures

taken in the context of assessing disease risk loci). Some have further speculated that such a

shift could improve life span, improve the quality of life people experience and vastly reduce

healthcare costs.

Empirical estimates seem to suggest that exome sequencing can identify a putative dis-

ease associated variant in only about 10-50% of the cases for which it is applied182. However,

the diagnostic yield for complex traits is likely to be significantly lower, such as for neuro-

psychiatric illness where the underlying genetic architecture of these diseases is still largely

undefined and controversial141,197,198,301. In contrast to the cost of exome sequencing, which

targets and sequences only the exonic regions of the genome, the cost of a whole genome is

decreasing more rapidly as new technologies emerge. In addition, there is emerging evidence
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that exon capture and sequencing only achieves high depth of sequencing coverage in about

90% of the exons, whereas whole genome sequencing does not involve a capture step and thus

obtains better coverage on >95% of all exons in the genome. Of course, even the definition of

the exome is a moving target, as the research community is constantly annotating and finding

new exons not previously discovered312,322. Indeed, whole genome sequencing is known to

yield higher sensitivity for detecting short genomic deletions and insertions even in genomic

regions accessible to both technologies73. As a consequence, whole genome sequencing is be-

coming recognized by the community as a much more cost effective and comprehensive way

to assess coding and non-coding regions of the genome.

Before high-throughput DNA sequencing can be reliably used in clinical applications, there

are still a number of statistical, algorithmic and practical implementation challenges that must

be met. In this thesis document, I will discuss four studies that aim to assess the reliability and

accuracy of variant calling in exome sequencing data, asses the usefulness and practicality

of sequencing a single human genome in the context of clinical care, use high-throughput

sequencing technology in a robust way to facilitate the discovery of the genetic basis of a

Mendelian disorder and develop methods for comprehensive uncertainty characterization in

the context of detecting human sequence variation, so as to increase the reliability of these

data.

The first study225 involves the sequencing and analysis of 15 human exomes and one whole

genome from four families. Variant detection reliability is assessed by comparing the detec-

tion outputs from a range of sequence analysis tools. Large scale validation data were gener-

ated and used to (i) investigate validity of discordant variants and (ii) recover missed sequence

variation using machine learning models. Models were also used to characterize the discrimi-

natory power of various predictors of variant calling errors.

The second study228 aims to assess the usefulness and practical limitations of clinical-grade

3



whole genome sequencing in the context of a person with severe obsessive compulsive dis-

order (OCD), who has also been treated with deep brain stimulation (DBS) for his OCD. The

study involves the sequencing, analysis and interpretation of this persons whole genome, as

well as a clinical evaluation of his progress since receiving DBS for his OCD.

The third study226 aims to contribute to our understanding of the genetic basis of a newly

discovered disorder, which is characterized by global developmental delay, intellectual dis-

ability (ID), characteristic facial dysmorphology, generalized hypotonia, and variable neuro-

logic features, all in male individuals. Comprehensive genomic analyses involving several

affected families, as well as one large family, were undertaken. Functional RNA sequenc-

ing studies were undertaken for one of these families in the context of comprehensive whole

genome sequencing. In addition, collaborative efforts with another group enabled zebrafish

studies of a candidate gene.

The final study229 reviews the state of uncertainty quantification in DNA sequencing appli-

cations, describe sources of error, and proposes methods that can be used for accounting and

propagating these errors and their uncertainties through subsequent calculations. The proposed

methods are then used in case studies with synthetic data to determine whether these methods

are useful for increasing the reliability of some aspects of sequence analysis.
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1
Variability in variant detection for

individual exomes and genomes.

1.1 Motivation

Recent studies have substantiated the prevalence of rare mutations in the human genome212,291.

Whole-genome sequencing (WGS) can uncover substantially more genetic variation than tra-
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ditional single-nucleotide polymorphism (SNP) arrays, thus explaining a larger fraction of

human phenotypic diversity224,14. This in turn is driving the sequencing of personal genomes

aimed at obtaining highly accurate information about each person’s genome13,63.

Given the existence of multiple sequencing platforms and multiple data-analysis pipelines

for next-generation sequencing, researchers and clinicians may be under the impression that

these methods all work similarly to identify genetic variants from personal genomes. How-

ever, one group recently reported that when variants detected in the same sample by the 1000

genomes project (1KGP) and the Complete Genomics (CG) platform were compared, 19%

of the single-nucleotide variants (SNVs) derived were unique to one dataset265. This is likely

due to differences in technology, data collection, read-alignment methods, and variant-calling

algorithms. The group further concluded that ’current research resources and informatics

methods do not adequately account for the high level of variation that already exists in the

human population, and significant efforts are needed to create resources that can accurately

assess personal genomes for health, disease, and prediction of treatment outcomes‘265. As an

illustration of the widely differing methods currently being used, one of the above-referenced

papers used Illumina sequencing data processed with the Short Oligonucleotide Analysis

Package (SOAP) pipeline212 whereas the other group used Illumina sequencing data pro-

cessed with the Genome Analysis Toolkit (GATK) pipeline291. Neither group published a

comparison of the overlap (concordance or discordance) between pipelines. Other researchers

have worked on establishing a rigorous filtering pipeline to optimize SNV calling, reporting

that the cumulative application of 12 individual filters resulted in a 290-fold reduction in the

error rate249. Another group has worked to optimize their own pipeline utilizing, among other

things, GATK and SAMtools, although it is not clear if this group compared their results with

anything from SOAP155. This same group published a comparison of data obtained using se-

quencing from Illumina and CG, which showed an unexpectedly high level of discordance
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between the two platforms42, which has been debated in blog postings248,41.

Despite these previous studies comparing technical platforms, there have not been many

published systematic evaluations of a number of currently used bioinformatics pipelines when

generating variant calls from the same set of raw sequence data. Additionally, despite the ex-

istence of many variant-calling software tools221, their concordance using near-default set-

tings has not been thoroughly investigated, making it difficult to assess the relative effects on

variant calling of differences in sequencing platforms versus differences in implementations

of bioinformatics pipelines. Ideally, researchers and clinicians should have little to no uncer-

tainty about the correct pipeline parameterizations for each sequencing experiment, and hence

little variability with respect to their pipeline implementations; however this is rarely, if ever,

the case. Indeed, knowledge about the perfect and most appropriate parameterization is often

not available or easily obtainable when performing in-depth sequence analysis, and, some-

times the ’correct‘ parameters may never be precisely characterized due to the complex nature

of the experiment. Researchers, clinicians and policy-makers stand to benefit from a greater

understanding of the variability introduced by imperfect and non-standardized implementa-

tions of the available bioinformatics pipelines.

There are currently two major misconceptions with respect to variant calling in high through-

put sequencing data. The first is that variant calling is a relatively solved problem, and the

second is that newer statistical and algorithmic methods will not result in a qualitative differ-

ence in the quality of variant calling; new and better sequencing technology is needed. These

misconceptions are virtually ubiquitous when it comes to detecting differences at the single

nucleotide level (SNVs), particularly in the human medical genetics realm. Accurately de-

tecting small insertions or deletions (INDELs), and large duplications or deletions (CNVs) as

well as complex structural rearrangements (SVs) is a more difficult problem, however, and it

remains an active field of research209,305. The implication of these misconceptions is that the

7



development of more robust methods for detecting sequence variation at any scale has slowed,

and popular methods are now considered ”gold standard” in terms of their ability to outper-

form most other methods240. Despite this, the recent inception of the US precision medicine

initiative has stoked a need to revisit and improve standard methods so that DNA sequencing

technologies can be reliably used for routine medical care. A recent report detailing the pre-

cision medicine road map for research in sequencing informatics stresses the need for nine

major areas of investigation, most notably are areas (iii), (iv) and (v), which call for a better

understanding of sequence errors and error modeling, comprehensive comparisons between

various high-throughput sequence analysis pipelines, and better evaluations of bench marking

strategies, respectively8.

Substantial work has been dedicated to the study of and mitigation of false positive vari-

ant calls258. This is, for the most part, due to the fact that putative false positive calls can be

validated in a simple and cost-efficient way. One would only need to randomly sample and

validate a collection of detected variants. Validating false negative calls and determining the

overall false negative rate(s) for a detection algorithm/pipeline is difficult, as false negatives

are inherently difficult to detect. Determining how often a particular analysis pipeline misses

true sequence variation can be assessed using synthetic data/studies, though this strategy is

generally only useful for assessing performance on idealized data sets. Real data tends to be

more complex than synthetic data sets. In real use-case scenarios, a truth set is invariably un-

available and the rate in which a detection pipeline misses true variants is generally unknown

and poorly characterized. For practical applications of human DNA sequencing to be useful,

it is critically important to have good estimates about the rate at which sequence variants are

missed, as these could in practice represent dangerous misdiagnoses. Yet, methods for recov-

ering false negative calls from sets of existing variant calls generated by a variety of methods

are currently underdeveloped.
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To address this issue, we carried out a study of 15 exomes and one whole genome from

15 research participants, analyzing the data with a range of different variant-calling pipelines

using near-default parameters. Variant sets derived from the different pipelines will be com-

pared and methods for recovering lost sequence variants will be developed using machine

learning techniques. Our results have significant implications for analyzing personal genomes

from next-generation sequencing experiments.

1.2 Methods

1.2.1 Ethics approval

The collection and genomic analysis of the DNA were approved by the institutional review

board at the University of Utah, and written informed consent was obtained from all study

participants. Research was carried out in compliance with the Helsinki Declaration.

1.2.2 Sample collection

The samples used in our study all came from families of human research participants ascer-

tained in clinics at the University of Utah (see Figure 1.1 for pedigree drawings). Blood sam-

ples were collected and genomic DNA extracted using alkaline lysis and ethanol precipitation

(Gentra Puregene; Qiagen Corp., Valencia, CA USA). DNA was quality-checked on agarose

gels and quantified using a microvolume spectrophotometer (NanoDrop 2000; Thermo Fisher

Scientific Inc., West Palm Beach, FL, USA).

1.2.3 Whole-genome sequencing and analysis with Complete Genomics

After quality control to ensure lack of genomic degradation, we sent DNA samples (10 ug) to

Complete Genomics (CG) (Mountain View, CA, USA) for sequencing. The whole-genome

9



Figure 1.1: Family pedigrees contained within the 15 sequenced exomes. Of the fifteen exomes that were
sequenced, 14 were sequenced from families chosen for future disease discovery related work. Each
sequenced individual (numbered) is displayed in the context of his or her constituent family pedigree.
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DNA was sequenced using nanoarray-based short-read sequencing by ligation technology64,

including an adaptation of the pairwise end-sequencing strategy256. Reads were mapped to the

Genome Reference Consortium assembly GRCh37. Owing to the proprietary data formats, all

the sequencing data quality control, alignment, and variant calling were performed by CG as

part of their sequencing service, using their version 2.0 pipeline34.

1.2.4 Exome capture and sequencing with Illumina HiSeq2000

Exome capture for all 15 samples was carried out using a commercially available in-solution

method (SureSelect Human All Exon v2; Agilent Technologies Inc., Wilmington, DE, USA),

following the manufacturer’s guidelines. This method is designed to target all human exons,

regions totaling approximately 44 Mb, covering 98.2% of the Consensus Coding Sequence

(CCDS) database. For the capture, a DNA-shearing instrument (focused-ultrasonicator; Co-

varis Inc., Woburn, MA, USA) was used to randomly fragment the pure and high molecular

weight genomic DNA samples (experiments carried out by BGI-Shenzhen, Shenzhen, China),

resulting in DNA fragments with a base-pair peak of 150 to 200 bp. Adaptors were then lig-

ated to both ends of the resulting fragments. The adaptor-ligated templates were purified by

magnetic beads (Agencourt AMPure SPRI; Beckman Coulter Inc., Brea, CA, USA), and frag-

ments with an insert size of approximately 250 bp were excised. Extracted DNA was ampli-

fied by ligation-mediated (LM)-PCR, purified, and hybridized (SureSelect Library; Agilent

Technologies) for enrichment. Hybridized fragments bound to the strepavidin beads, whereas

the unbound non-hybridized fragments were washed out after 24 hours of hybridization. Cap-

tured LM-PCR products were analyzed using a microfluidics-based platform (2100 Bioan-

alyzer; Agilent Technologies) to estimate the magnitude of the enrichment. Paired-end se-

quencing was performed using a sequencing platform (HiSeq2000; Illumina Inc., San Diego,

CA, USA) with average read lengths of 90 bp. Raw image files were processed (Pipeline ver-
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sion 1.6; Illumina Inc.) for base-calling, using the default parameters. FASTQ files were pro-

duced from the pipeline for downstream sequence data analysis. A gender check was compati-

ble with the known genders of the collected human participants.

1.2.5 SNP arrays

DNA samples were genotyped on the SNP arrays (Human610-Quad, version 1; Illumina

Inc.) with approximately 610,000 markers (including approximately 20,000 non-polymorphic

markers) at the Center for Applied Genomics (Children’s Hospital of Philadelphia, Philadel-

phia, PA USA). Total genomic DNA extracted from whole blood was used in the experiments.

Standard data-normalization procedures and canonical genotype-clustering files provided by

Illumina were used to process the genotyping signals. Concordance between SNPs from the

arrays and SNPs from exome sequencing was determined by calculating the percentage of

variants from exome sequencing and comparing this with the same genotype derived from the

SNP arrays.

1.2.6 Alignment and variant calling

BWA-GATK variant calling

Burrows-Wheeler aligner (BWA; version 0.5.9160) was used to align the sequencing reads,

with default parameters, to the human reference genome sequence GRCh37. Alignments were

converted from sequence alignment map (SAM) format to sorted, indexed binary alignment

map (BAM) files (SAMtools version 0.1.18; sourceforge.net). The Picard tool was used to

remove duplicate reads. GATK software tools (version 1.5; www.broadinstitute.org) were

used for improvement of alignments and genotype calling and refining with recommended

parameters57. BAM files were re-aligned with the GATK IndelRealigner, and base quality
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scores were re-calibrated by the GATK base quality recalibration tool. Genotypes were called

by the GATK UnifiedGenotyper, and the GATK VariantRecalibrator tool was used to score

variant calls by a machine-learning algorithm and to identify a set of high-quality SNPs using

the Variant Quality Score Recalibration (VQSR) procedure. GATK was used to filter high-

quality insertions and deletions (indels) by hard criteria, ’QD < 2.0, ReadPosRankSum < -20.0

FS > 200.0‘. Finally, we removed SNVs and indels located outside of regions targeted by

exome capture. To increase sensitivity, only those indels with depth (DP) of 10 or more, and

with more than 4 reads supporting the indel events were included in the final high-confidence

indel set. At a later date, one exome was processed with newer versions of the GATK v2.3-9

UnifiedGenotyper and GATK v2.3-9 HaplotypeCaller modules.

BWA-SAMtools genotype calling

Using the above BAM files, we used SAMtools (version 0.1.18) to generate genotype calls161.

The ’mpileup‘ command in SAMtools was used to identify SNPs and indels, and we removed

variants with DP coverage less than 10, and variants located outside of exome-capture regions.

SOAP pipeline

Adaptor and low-quality sequences were removed before mapping. Sequence reads identified

from each individual were then aligned to human reference genome GRCh37 using SOA-

Paligner (version 2.21164) with a maximum of five mismatches. Duplicate reads were re-

moved. Consensus genotypes in target regions were called by SOAPsnp (version 1.03)162

with recommended parameters. SNV results were filtered (Phred-like SNV quality ≥20, over-

all depth 8 to 500, copy number estimate <2, and distance between two adjacent SNVs ≥5).

For a heterozygous SNV, the quality of the minor allele was required to be at least 20, depth
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of coverage for the minor allele at least 4, and the ratio of major allele to minor allele less than

5. For indel calling, SOAPindel was used, which adopts local assembly based on an extended

de Bruijn graph165. For SOAPindel, the aligner BWA was used to align the reads to the hu-

man reference sequence with default parameters. Initially, putative indels were assumed to

be located near the unmapped reads whose mates mapped to the reference genome. SOAPin-

del then executed a local assembly (k-mer=25) on the clusters of unmapped reads. Clusters

with coverage of less than 5 were not used. The assembly results were aligned to the refer-

ence in order to find the potential indels. To distinguish true-positive and false-positive indels,

SOAPindel generates Phred quality scores, which take into consideration the depth of cover-

age, indel size, number of neighboring variants, distance to the edge of the contig, and posi-

tion of the second different base pair. Only those indels with a quality score of 10 or higher

were retained in the final indel call set.

GNUMAP pipeline

Diploid and monoploid SNVs for each individual were called using the GNUMAP pipeline

(version 3.1.043). GNUMAP-SNP utilizes a novel probabilistic pair-hidden Markov model,

which accounts for uncertainty in the read calls as well as read mapping in an unbiased fash-

ion. Raw reads were initially aligned to the full genome using an alignment score of 260 or

greater, which for this dataset allowed for only one SNV per read. A k-mer size of 12 and a

jump size of 10 were also used. Only SNVs within exome regions with a P<0.001 were re-

ported. The GNUMAP pipeline cannot currently call indels.
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BWA-SNVer pipeline

BWA160 was used to align the sequencing reads to GRCh37 with default parameters. Dupli-

cate reads were removed by Picard, and SNVer (version 0.2.1) was then used for detecting

SNVs in each sample307. Similar to GATK57, only the mapped short reads with mapping

quality of greater than 20 were considered, and only bases with base quality greater than 17

counted. SNVer estimated the empirical error rate for those selected reads in making variant

calls. We set the number of haploids to 2 for analysis of individual samples, and set the vari-

ant allele frequency threshold of greater than 0 for detecting both rare and common SNVs.

SNVer provides multiplicity control, and we performed Bonferroni correction and controlled

the family-wise error rate at the 0.05 level to report identified SNVs. Indels cannot currently

be called by the BWA-SNVer pipeline.

1.2.7 Post-variant calling analyses

Post-variant-calling analyses were performed using Golden Helix SVS (version 7.6.10289,

ANNOVAR306, the R suite of statistical programming tools (www.r-project.org), and custom

Perl scripts.

1.2.8 MiSeq sequencing for validation

Validation variants were randomly selected from sets of particularly controversial variants,

indels and SNVs unique to GATK, indels and SNVs unique to SOAP, and variants (both

SNVs and indels) shared by these two pipelines. PCR primers were designed using the soft-

ware program Primer 3 (sourceforge.net), to produce amplicons (ranging in size from 100 to

200 bp) containing variants of interest in approximately the center of the amplicon. Primers

were obtained in 96-well plate format, 10 μmol/L dilution each (Sigma-Aldrich, St Louis,
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MO, USA). All primers were first tested for PCR efficiency using a HAPMAP DNA sam-

ple (Catalog ID NA12864l Coriell Institute for Medical Research, Camden, NJ, USA) and

DNA polymerase (LongAmp® Taq DNA Polymerase; New England Biolabs, Beverly, MA,

USA). k8101-49685 genomic DNA was used as template for the validation experiment. Af-

ter quality-control steps using agarose gel, the product was purified (ExoSAP-IT® reagentsl

Affymetrix Inc., Santa Clara, CA, USA) and pooled. Final PCR products were quantified

(Qubit® dsDNA BR Assay Kitl Invitrogen Corp., Carlsbad, CA, USA), then library construc-

tion for the sequencer platform (MiSeq Personal Sequencer; Illumina Inc.) was performed.

Finally, before being loaded onto the MiSeq machine, the quality and quantity of the sam-

ple was verified using the Bioanalyzer (Agilent Technologies) and quantitative PCR (Kapa

Biosystems Inc., Woburn, MA, USA).

1.2.9 Predictive models from validation data

MiSeq validation data were also use to build predictive models of false negative sequence

variation. Note that for this part of the study, MiSeq validation data from two additional publi-

cations73,209 were used. To build predictive models that can distinguish between true negative

and false negative sequence variation, training data sets that contain both types are required.

Isolating false negative sequence variants from K8101 exome sequencing data

In order to isolate false negative sequence variants, SNV and INDEL calls were generated us-

ing the GATK HaplotypeCaller and the FreeBayes caller from K8101 raw exome sequence

data. GATK calls were generated as described above, using the GATK HaplotypeCaller ver-

sion 3.5. FreeBayes calls were generated by first aligning the raw sequence data to the hg19

human reference sequence using bwa mem version 0.7.10-r789 with default parameters. Du-
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plicate reads were then marked using Picard MarkDuplicates version 2.0.1, and reads were

realigned using the GATK IndelRealigner. SNV and INDEL calls were generated using Free-

Bayes version 1.0.2 with default parameters.

Once SNV and INDEL calls were generated with both the GATK HaplotyperCaller and

FreeBayes using the same raw K8101 exome sequencing data, variants that were validated

via MiSeq re-sequencing but were unique to each caller were isolated. Note that if a variant

was validated but was unique to one caller, this variant represents a false negative calls with

respect to the other caller. False negative SNV and INDEL calls were collected for both the

GATK and the FreeBayes variant caller.

Isolating true negative sequence variants from K8101 exome sequencing data

Binary classification models work most efficiently if both classes have a similar set of predic-

tors. For the false negative call sets, both GATK and FreeBayes return variant call sets that

have a number of informative predictor variables for each variant. However, non-variant sites

do not contain the same number or types of characteristic predictor variables. In order to gen-

erate a true negative call set with the same predictor variables as the false negative call set, a

new procedure was devised. The following procedure to generate true negative call sets with

informative predictor variables was performed in the same way for both SNV and INDEL

calls, for both GATK and FreeBayes call sets. For each false negative call set, a new reference

sequence was generated. For each new reference sequence, genomic locations several bases

up or downstream of false negative loci were edited away from the reference base. For each

false negative call set and its respective edited reference sequence, raw exome sequencing data

for K8101 was then realigned and variants were called as described above. The results should

include initial full exome call set, plus additional variants corresponding to locations that were

edited in the reference sequence. These ’variant’ sites are in fact true negatives, but now are
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characterized with the full predictor set, similar to the false negative call set.

Building predictive models using a variety of machine learning techniques

Using false negative and true negative call sets, several predictive models were built using

5 different machine learning techniques. These include, a random forest classifier, a support

vector machine classifier, a logistic regression, a k-nearest neighbors classifier and a gradi-

ent tree boosting classifier. Models were trained using 10-fold cross validation, and hyper-

parameters were chosen among the most performant sets among 20,000 models, which were

generated using a randomized grid search approach. Models were evaluated by assessing their

area under the receiver operator characteristic (AUROC) curve.

A Phylogenetic method of extracting false negative sequence variants

The above approach to building models capable of classifying false negative sequence vari-

ation relies on and leverages the existence of a large validation data set for one human sam-

ple. In the absence of such a data set, another approach can be taken. Henn et al. 2016 de-

scribes a phylogenetically motivated approach for detecting and characterizing false nega-

tive sequence variation in human mitochondrial sequence. Briefly, test samples are assigned

to a haplogroup on the mtDNA phylogeny298 using the haplogrep algorithm144, and the ab-

sence of haplogroup-defining sequence variation in the sample is assumed to be the result of

a false negative call. This approach was applied to 1072 human samples taken from the 1000

genomes phase 3 project292, and a large false negative set was generated. True negatives were

generated in the same way as describe above. Note that for this set, it was only possible to

generate false and true negative sets for SNVs, due to the nature of the human mtDNA phy-

ologeny. In addition, since many false negatives were not present in any form in the original
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call set, the false negative set here is derived from those sequence variants that were marked

as false negative by the phylogenetic method, but were indeed present in pre-filtered sets. Pre-

dictive models were built and optimized as previously described for the MiSeq set.

1.2.10 Accessing data

The data used in the analyses performed in this study can be found on the Sequence Read

Archive. Accession numbers SRS402291 and SRS402299 correspond to the 15 exomes and

the single whole genome analyzed during the course of this study.

1.3 Results

1.3.1 Data production summary

Fifteen DNA samples from four different families (Figure 1.1) were prepared by exon cap-

ture (Agilent 44 MB SureSelect protocol; Agilent Technologies), followed by sequencing on

(HiSeq2000; Illumina Inc.). On average, we obtained sequence coverage of approximately

120X (range, 100 to 154X) on targeted regions for these 15 samples. For all samples, se-

quence reads covered more than 80% of the targeted region with a depth of greater than 20

reads per base (Figure 1.2; Table 1.1). Five different pipelines were used for read alignment

and variant calling (SNVs and indels when possible) (Table 1.2). In addition, one whole

genome was sequenced and analyzed by CG with 95% of the exome region covered by 20

reads or more per base, resulting in greater than 88% of the genome covered with a depth of

greater than 20 reads per base. Variant calls were generated by CG with their in-house analy-

sis pipeline (version 2.0).
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Figure 1.2: Frac on of target capture region covered versus coverage depth for 15 exomes. All exomes
have at least 20 reads or more per base pair in > 80% or more of the 44 MB target region.
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1.3.2 SNV analysis

Concordance with SNP genotyping arrays

Sensitivity and specificity for detecting common SNPs was calculated for each Illumina variant-

calling pipeline for four samples that were genotyped with the Illumina Human610-Quad

version 1 SNP array (see Tables 1.3 and 1.4). We caution that this analysis was restricted to

a set of common SNPs targeted by the SNP array, and that these tend to be within regions

containing little to no repeated sequences and without extreme GC contents. Therefore, al-

though widely used in published literature, concordance with SNP arrays does not adequately

measure real-world performance on all variants in personal genomes. With this major caveat

in mind, performance for each pipeline was measured by treating the Illumina Human610-

Quad version 1 SNP arrays as a true-positive reference, and comparing the exome-capture

sequencing results with this reference set. The average specificity for each of the five Illumina

pipelines was generally high, ranging from 99.59% to 99.87% (Table 1.4), consistent with the

fact that each of these pipelines have been optimized to minimize false negatives for known

common SNPs. The average sensitivity ranged among the five pipelines from 86.6% (with

GNUMAP) to 95.3% (with GATK1.5). Sensitivity decreased when the variant set was iter-

atively restricted to the intersection between two or more variant-calling pipelines, whereas

specificity naturally shows the opposite trend of increasing values under the same series of

intersections (Table 1.4).

Evaluation of performance by inheritance analysis

To explore the validity of SNVs called by each Illumina pipeline, we performed an inheritance

analysis for two families contained within the 15 sequenced exomes. Previous calculations

have estimated the average expected number of de novo non-synonymous coding mutations
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Sample Software Compared Sites Concordance Sites Concordance rate
Mother-1 SOAPsnp 6088 6074 99.77%

GATK 1.5 6249 6224 99.60%
SNVer 5723 5708 99.74%
GNUMAP 5458 5434 99.56%
SAMTools 5885 5848 99.37%

Son-1 SOAPsnp 6366 6353 99.80%
GATK 1.5 6341 6323 99.72%
SNVer 6255 6239 99.74%
GNUMAP 5850 5828 99.62%
SAMTools 6383 6362 99.67%

Son-2 SOAPsnp 6412 6401 99.83%
GATK 1.5 6426 6413 99.80%
SNVer 6336 6325 99.83%
GNUMAP 5906 5889 99.71%
SAMTools 6477 6450 99.58%

Father-1 SOAPsnp 6247 6238 99.86%
GATK 1.5 6304 6288 99.75%
SNVer 6205 6192 99.79%
GNUMAP 5805 5786 99.67%
SAMTools 6344 6327 99.73%

Table 1.3: Concordance rates with common SNPs genotyped on Illumina 610K genotyping chips; all
pipelines are very good with identifying already known, common SNPs.
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Sensitivity Specificity
Mean* SD Mean* SD

SOAPsnp 94.68 2.26 99.79 0.03
GATK1.5 95.34 1.16 99.72 0.08
SNVer 92.33 4.4 99.78 0.04
GNUMAP 86.6 3.23 99.64 0.06
SAMtools 94.47 4.22 99.59 0.16
Any pipeline 97.67 1.2 99.62 0.11
≥ 2 pipelines* 96.64 2.28 99.69 0.07
≥ 3 pipelines* 95.62 3.13 99.73 0.05
≥ 4 pipelines* 92.6 3.4 99.82 0.04
5 pipelines* 80.58 5.26 99.87 0.01

Table 1.4: Sensitivity and specificity was calculated for each pipeline by comparing Illumina
Human610-Quad version 1 SNP arrays with exome-capture sequencing results, based on the four
samples whose genotyping data was available. *Intersection of variants contained in the number of
pipelines specified.
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per individual exome to be approximately 1 to 2217,215,216,257. However, we found that the

number of putative de novo mutations per child per exome was much higher if only the par-

ents of the child were used to filter out inherited mutations. Adding an additional familial

generation to the filtering process, in our case a grandparent, significantly reduced the number

of putative de novo variants to a value comparable with that of the previously reported value

of expected de novo non-synonymous mutations. In addition, significant variation was seen

in the number of putative de novo mutations between the two families (Table 1.5), consistent

with previous findings46.

Variant-calling pipeline concordance

SNV concordance between all 5 Illumina pipelines across all 15 exomes was 57.4% on av-

erage, and Ti/Tv ratios showed a generally increasing trend for sets of variants intersected

by an increasing number of variant-calling pipelines (Figure 1.3). We found that for novel

SNVs (those not found in dbSNP135) the overall concordance (11.4%) was much lower than

the overall concordance between known SNVs (59.6%) (Figure 1.3). In a previous paper, we

validated with Sanger sequencing or Sequenom genotyping 17 SNVs found in 3 of the cur-

rent pilot samples179. Of these 17 validated SNVs, 16 were detected by all 5 pipelines, and

the remaining variant was called by 4 of the 5 pipelines. Additional validation analyses are

presented later in this paper.

A more detailed analysis of SNVs of one sample (k8101-49685) revealed that the exome

variant calls had moderate to high depth of coverage (Figure 1.4). The range of read depths

along with read-depth uniformity of variant calls varied between pipelines (Figure 1.4). Over-

all concordance between all five pipelines for sample k8101-49685 was 57.5%; however, sub-

setting variants called by Illumina pipelines using increasingly stringent read-depth thresholds

did not increase SNV concordance (Figure 1.5), and overall concordance was lowest when
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Number of putative de novo coding
non-synonymous or nonsense SNVs detected

Family 1 Without using the
grandparents as a filter

Using the grandparents
as a filter

Child A 241 1
Child B 211 0
Child C 102 6
Child D 242 3
Family 2
Child A 49 NAa

Child B 41 NAa

Table 1.5: De novo single-nucleotide variants (SNVs) were detected in two families contained within
the 15 study exomes. Family 1 had a grandparent available for filtering purposes, whereas family 2 did
not. To minimize false positives in the pool of SNVs associated with each child, only highly concor-
dant SNVs were used (SNVs detected by all five pipelines). To construct a comprehensive set of SNVs
for each parent, and hence increase filtering accuracy, false negatives for parent SNVs were reduced by
taking the union of all SNV calls from all five pipelines. aN/A, no grandparent available.
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Figure 1.3: Mean single-nucleo de variants (SNV) concordance over 15 exomes between five alignment
and variant-calling pipelines. The alignment method used, followed by the SNV variant calling algo-
rithm is annotated here in shorthand: BWA-GATK, SOAP-Align-SOAPsnp, BWA-SNVer, BWA-
SAMtools, and GNUMAP-GNUMAP. (A) Mean SNV concordance between each pipeline was de-
termined by matching the genomic coordinate as well as the base-pair change and zygosity for each
detected SNV. (B) The same analysis as in (A) but filtered to include only SNVs already found in db-
SNP135. (C) The same analysis as in (A), but filtered to include novel SNVs (that is, SNVs not found
in dbSNP135).
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Figure 1.4: Histograms of Illumina read depth at SNV coordinates. Read depth taken from each pipeline’s
independently aligned BAM file at genomic coordinates of SNVs called by each of the 5 alignment
and variant calling pipelines. A) SOAPsnp, B) SNVer, C) SAMtools, D) GNUMAP and E) GATK,
respectively. Frequency of read depths for all SNVs (A, B, C, D, and E) as well as for SNVs having
depths between 0 and 50 (a, b, c, d, and e) were plotted.
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Figure 1.5: SNV concordance measured at varying Illumina read depth threshold values. SNV concordance
for a single exome, ”k8101-49685”, between five alignment and variant detection pipelines: GATK,
SOAPsnp, SNVer, SAMtools, and GNUMAP. Concordance between each pipeline was determined by
matching the genomic coordinate as well as the base pair change and zygosity for each detected SNV.
Concordance was measured at varying Illumina read depth threshold values in each independently
aligned BAM file, ranging from > 0 (no threshold) to > 30 reads.
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read-depth threshold values were at their highest (32.7% concordance when depth was re-

quired to be greater than 30 supporting reads).

Sequencing platform concordance

For sample k8101-49685, we selected variants generated by the CG pipeline that fell within

the exon-capture regions of the Agilent SureSelect version 2 capture kit. We found that of the

21,050 SNVs identified by CG and located within the UCSC refGene regions, 19,407 (92%)

were also within regions targeted for capture by the Agilent SureSelect version 2 kit. Of these,

2,085 (11%) were not called by any of the Illumina-based exome-analysis pipelines, despite

computed high mappability scores for these variants (Figure 1.6)159. Of these 2,085 SNVs

uniquely called by CG, an average of 558 had no sequence coverage as mapped by any of the

Illumina-based exome-analysis pipelines. The Illumina exome read-depth for the remaining

1,527 CG-unique SNVs was calculated, and the majority of these SNVs were found to be in

regions of very low Illumina sequence coverage (<20 reads) in the exome data sets (Figure

1.7).

We found that 89.3% of CG SNVs (17,322 of 19,407) were contained within the union of

all five Illumina pipelines (35,653 putative SNVs), whereas 18,331 of these 35,653 putative

Illumina SNVs were not called by CG, suggesting a high false positive rate in the union of the

Illumina calls and/or conversely a high false-negative rate in the CG calls (Figure 1.6). Over-

all concordance displayed marginal increases when VQLOW SNVs (low-quality CG variants)

were removed from the pool of CG SNVs (Figure 1.6). Overall concordance remained stable

as the depth of coverage threshold value associated with Illumina data calls increased (Figure

1.8A).

When only highly concordant Illumina SNVs (SNVs called by all five Illumina pipelines)

were compared with the CG SNVs, only 64.4% (12507) of CG SNVs were contained within
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Figure 1.6: Single-nucleo de variant (SNV) concordance, between two sequencing pipelines (Illumina and
Complete Genomics (CG)) for a single exome, k8101-49685. For the Illumina sequencing, exons were
captured using the Agilent SureSelect version 2 panel of capture probes. CG SNVs consisted of a sub-
set of all SNVs called by CG that fell within the Agilent SureSelect version 2 exons. Concordance was
determined by matching the genomic coordinates, base-pair composition, and zygosity status for each
detected SNVs. Illumina SNVs consisted of all SNVs (the union) called by the five variant-calling
pipelines GATK, SAMtools, SOAPsnp, SNVer, and GNUMAP, which increased the false positives
but decreased the false negatives. Concordance was measured between Illumina SNVs and (A) all CG
SNVs, (C) only high-quality (VQHIGH) CG SNVs, and (D) only low quality (VQLOW) CG SNVs. (B)
Genome mappability analyses were performed on 2,085 discordant SNVs, which were found by the CG
pipeline and not found by any of the five Illumina data pipelines.
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Figure 1.7: Histograms of illumina read depth at genomic coordinates of the unique to Complete Genomics
SNV calls.Histograms of read depth taken from each of the five Illumina pipeline’s independently
aligned BAM file at genomic coordinates of SNVs that were found by Complete Genomics but not
by any of the 5 Illumina pipelines: GATK, GNUMAP, SNVer, SAMtools and SOAPsnp, A, B, C, D
and E respectively. All coordinates fell within the range of the Agilent SureSelect v.2 exons.
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the concordant Illumina set, suggesting a high false-negative rate in this highly concordant Il-

lumina set. Overall agreement decreased as the depth of coverage threshold value for Illumina

calls increased, consistent with an increasing false-negative rate (Figure 1.8B).

Cross-platform comparison of unique-to-pipeline SNVs

SNVs from sample k8101-49685 that were uniquely detected by only one of the five Illumina

variant-calling pipelines were compared with SNVs called by CG (Figure 1.9). Of the SNVs

uniquely called by GATK, 809 of 1671 (48%) were concordant with CG data. The concor-

dance was much lower for the other four pipelines, 49 of 1,102 SNVs (4%) for GNUMAP,

45 of 886 (5%) for SAMtools, 29 of 226 (12%) for SNVer, and 24 of 908 (3%) for SOAP-

snp. Concordance improved for SNVs that were called by more than a single Illumina data

pipeline, and the concordance was the highest for variants found by all five Illumina pipelines

(Figure 1.9).

For variants that were novel as well as unique to a single Illumina pipeline, concordance

with CG data was low (see Additional file 1, Figure S7). For GATK, 25% (13 of 51) of novel

and unique-to-pipeline SNVs were concordant with CG data; for GNUMAP and SOAPsnp, no

novel and unique-to-pipeline SNVs were concordant (0 of 470 and 0 of 229 respectively); for

SAMtools, 0.2% (1 of 418) of novel and unique-to-pipeline SNVs were concordant; and for

SNVer, 6% (1 of 18) of novel and unique-to-pipeline SNVs were concordant. Concordance

rates of novel and unique-to-pipeline SNVs increased for variants called by an increasing

number of pipelines (Figure 1.9).
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Figure 1.8: SNV concordance for a single exome, ”k8101-49685”, between two sequencing pipelines: Illu-
mina and Complete Genomics For the Illumina sequencing, exons were captured using the Agilent Sure-
Select v.2 panel of capture probes. Complete Genomics SNVs consist of a subset of all SNVs called
by CG that fell within the Agilent SureSelect v.2 exons. Concordance was determined by matching the
genomic coordinates, base pair composition, and zygosity status for each detected SNV. Concordance
was measured between CG SNVs and A) the union of all SNVs called by 5 variant calling pipelines
(”Illumina-data calls”) and B) only SNVs that all 5 Illumina pipelines collectively called (”concordant
Illumina-data calls”).
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Figure 1.9: Cross-valida on of illumina SNV calls using Complete Genomics SNV calls. SNVs called by
each Illumina-data pipeline were cross-validated using SNVs called by Complete Genomics, an or-
thogonal sequencing technology, in sample ”k8101-49685”. The percentage of Illumina SNVs that
were validated by CG sequencing was measured for variants having varying degrees of Illumina-data
pipeline concordance. The same analysis was performed for variants that were considered novel (ab-
sent in dbSNP135).
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1.3.3 Indel analysis

Variant-calling pipeline concordance

For indel calls, initial agreement between SOAPindel, SAMtools and GATK was very low

at 3.0% (Figure 1.10). Indel coordinates were subsequently left-normalized and intervalized

using a total range of 20 genomic coordinates (10 bp in each direction of their genomic coor-

dinates). We found that increasing the intervalized indel range to as much as 60 genomic co-

ordinates only marginally differed from having 20, so we chose to use 20 as a reasonable and

conservative range for intervalizing indels. This method increased the overall concordance to

26.8% between the three indel-calling pipelines (Figure 1.11). For novel indels, the concor-

dance (4.7%) was much lower than the overall concordance among known indels (43.3%). In

an earlier paper, we previously validated with Sanger sequencing three indels found in three

of the current pilot samples179. These three validated indels were detected by all three indel-

calling pipelines.

Sequencing platform concordance

Indels falling within the range of the Agilent SureSelect version 2 exons were excised from

the whole genome of sample k8101-49685 sequenced and analyzed by CG. Indels were again

left-normalized and intervalized using a total range of 20 genomic coordinates, 10 in either

direction. The normalized and intervalized CG indel calls were compared with all normalized

and intervalized indels detected by the three Illumina data pipelines, and 32% were in agree-

ment (Figure 1.12).
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Figure 1.10: Mean indel concordance among 15 exomes between three indel detec ng pipelines: GATK,
SAMtools and SOAPindel. Concordance was measured between raw, pre-standardized, indel calls.
Indels were considered in agreement if the genomic coordinates, length and composition of indels
matched between pipelines
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Figure 1.11: Mean indel concordance over 15 exomes between 3 indel-calling pipelines: GATK, SOAPindel,
and SAMtools. Mean concordance was measured between (A) all indels, (B) known indels (indels found
in dbSNP135), and (C) unknown indels (indels not found in dbSNP135). Indels were left normalized
and intervalized to a range of 20 genomic coordinates (10 coordinates on each side of the normalized
position) to allow for a reasonably standardized indel metric for comparison. To determine whether or
not indels were matching, the genomic coordinates as well as the base length and composition of each
indel were considered.
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Figure 1.12: Indel concordance for a single exome, k8101-49685, between two sequencing pipelines: Il-
lumina and Complete Genomics (CG). Illumina indels consist of a union of all indels called by each of
the three indel-calling pipelines GATK, SOAPindel, and SAMtools. CG indels consisted of a subset
of indels called by CG that fell within the Agilent SureSelect version 2 exons. Both Illumina and CG
indels were left normalized and intervalized to a range of 20 genomic coordinates (10 coordinates on
each side of the normalized position). To determine whether or not indels were matching, the genomic
coordinates as well as the base length and composition of each indel were considered.
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Cross-platform comparison of unique-to-pipeline indels

For the three Illumina data indel-calling pipelines, unique-to-pipeline indels were compared

with indels discovered by CG (Figure 1.13). Concordance with CG indels was relatively low

for all three pipelines with unique-to-GATK indels, showing a concordance of 24% with CG

indels (324 of 1366), unique-to-SAMtools showing 29% concordance with CG indels (142 of

498) and unique-to-SOAPindel having 12% of called indels being concordant with CG indels

(147 of 1246). Concordance rates improved for variants that were called by two Illumina data

pipelines and further improved for variants called by all three of the indel-calling pipelines,

63% (1241 of 1986) and 90% (963 of 1069), respectively.

Novel (to dbSNP135) and unique-to-pipeline indels were also compared to CG indel calls,

and the concordance rates for each pipeline were similar to those of the unique-to-pipeline

only variants (Figure 1.13). Novel and unique-to-GATK indels had 24% of its indels con-

cordant with CG indels (299 of 1236), novel and unique-to-SAMtools had 28% of its indels

concordant with CG indels (96 of 343) and novel and unique-to-SOAPindel had 5% of its in-

dels concordant with CG indels (53 of 1056). Novel indels that were called by two Illumina

data pipelines displayed an increased concordance rate, 54% (229 of 423). Variants called by

all three of the indel-calling pipelines showed the highest concordance rate for novel, unique-

to-pipeline indels, 84% (103 of 122).

1.3.4 MiSeq validation of pooled PCR amplicons

To validate variants called by the two more widely used pipelines (SOAP and GATK), we

used the orthogonal approach of PCR amplification of genomic DNA regions containing se-

lected SNVs and indels, followed by pooled MiSeq sequencing. The PCR amplification (in-

stead of exon capture), longer read lengths on the MiSeq platform, and the much higher depth
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Figure 1.13: Cross-valida on of illumina indel calls using Complete Genomics indel calls. Indels called
by each Illumina-data pipeline were cross-validated using indels called by Complete Genomics for
sample ”k8101-49685”. The percentage of Illumina indels that were validated by CG sequencing was
measured across varying degrees of Illumina pipeline concordance. The same analysis was done for
novel indels (indels not found in dbSNP 135).
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of coverage provided a strong method of validation for SNVs and indels. A total of 1,140

SNVs found in sample k8101-49685 were selected for MiSeq validation; 760 of these SNVs

were randomly selected from the set of SNVs that were unique to the GATK version 1.5 and

SOAPsnp version 1.03 pipelines, 380 SNVs from each pipeline respectively. An additional

380 SNVs were randomly selected from the set of variants that were in agreement between

GATK and SOAPsnp. After some analysis of the quality of the MiSeq data using FASTX,

the MiSeq paired-end read data (version 2 sequencing kit, 250 × 250 bp reads) was trimmed

to 150 bp and then aligned with BWA version 0.6.2 to the human reference genome sequence

GRCh37, and variants were called with GATK UnifiedGenotyper version 2.3-9.

Of the 1,140 SNVs targeted for MiSeq validation, 919 (81.0%) were successfully am-

plified and sequenced, with an average read depth of 5,392. Validation rates for unique-to-

GATK SNVs were high, with 306 of 315 (97.1%,) being successfully validated. For unique-

to-SOAPsnp, 174 of 289 SNVs (60.2%) were validated. SNVs that were called by both GATK

and SOAP were validated in 312 of 315 instances (99.1%) (Figure 1.14).

For indels found in sample k8101-49685, 960 were randomly selected for validation. Of

these, 386 were randomly selected from the unique-to-GATK indel set, 387 were randomly

selected from the unique-to-SOAPindel set, and 187 were randomly selected from set of indels

overlapping between the two (SOAPindel and GATK). Of the 960 indels that were targeted

for sequencing, 841 (83.5%) were successfully amplified and sequenced, with an average cov-

erage of 4,866.

Unique-to-GATK indels had a validation rate of 180 of 336 (54.0%), being validated. The

validation rate for unique-to-SOAPindel was found to be 44.6% ,with 148 of 332 validating.

For indels that were called by both SOAPindel and GATK, 132 of 169 (78.1%) were success-

fully validated (Figure 1.14).
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Figure 1.14: MiSeq valida on experiment on a subset of Illumina-data calls. A total of 1,140 SNVs from
sample k8101-49685 were randomly sampled for MiSeq validation, with 380 sampled from the set of
unique-to-GATK SNVs, 380 sampled from the set of unique-to-SOAPsnp SNVs, and 380 sampled
from the set that were overlapping between these two pipelines. There were 919 (81.0%) of these vari-
ants that were successfully amplified and sequenced. BWA version 0.6.2 and GATK version 2.3-9
were used to process the sequencing data for variant-calling. Additionally, 960 indels from sample
k8101-49685 were randomly selected for validation. Of these, 386 were randomly selected from the
unique-to-GATK indel set, 387 were randomly selected from the unique-to-SOAPindel set, and 187
were randomly selected from the set of indels overlapping between the two (SOAPindel and GATK).
There were 841 (83.5%)of these indels that were successfully amplified and sequenced. BWA version
0.6.2 and GATK version 2.3-9 were used to determine the number of variants that were also success-
fully validated across these sets.
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1.3.5 GATK v2.3-9 and the new HaplotyperCaller

Newer implementations of SNV and indel-calling pipelines continually advance the field of

variant discovery and analysis by increasing the accuracy by which variants can be reliably

called. Here, we show an example of the differences between previous versions of GATK

with respects to SNV calls and indel calls on the same sample, k8101-49685. The vast ma-

jority of SNV calls made by both the GATK UnifiedGenotyper version 2.3-9 and the GATK

HaplotypeCaller version 2.3-9 modules overlapped with the SNV calls made by the GATK

UnifiedGenotyper version 1.5, showing an overall concordance of 91.0% (27,150 of 29,912)

and 87.0% (26,751 of 30779) respectively. However, for indel calls, the picture was quite dif-

ferent, with the GATK UnifiedGenotyper version 2.3-9 and GATK HaplotypeCaller version

2.3-9 modules showing an overall concordance with the GATK UnifiedGenotyper version 1.5

calls of 54.7% (1,688 of 3,085) and 54.6% (1,858 of 3,404) respectively (Figure 1.15).

1.3.6 Predictive models

For the GATK HaplotypeCaller, 12 false negative INDEL calls were isolated and no true neg-

ative calls were recovered. For SNVs, 88 false negative calls were isolated, and 75 true neg-

ative calls were recovered. For the FreeBayes caller, 315 false negative INDEL calls were

isolated and 266 true negative calls were recovered. For SNVs, 291 false negative calls were

isolated, and 277 true negative calls were recovered. For the phylogenetic method, 2886 false

negative and 2788 true negative SNVs were isolated and recovered, respectively. Because the

GATK HaplotypeCaller set is small, we have excluded it from further analysis. The subse-

quent analyses focus instead on the FreeBayes and phylogenetic sets.
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Figure 1.15: A comparison between recent versions of various GATK variant calling modules. The simi-
larity between SNV and indel calls made between two versions of GATK, v1.5 and v2.3-9, was mea-
sured. SNV and indel calls were made using both the UnifiedGenotyper and HaplotypeCaller modules
on the same k8101-49685 participant sample. Pairwise comparisons were made between the GATK
UnifiedGenotyper v1.5 and each of the GATK v2.3-9 modules (the UnifiedGenotyper and Haplotype-
Caller).
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Model performance

For the models built using FreeBayes false and true negative SNVs, the random forest and

gradient tree boosting classifiers performed similarly with a mean AUROC of 0.92 (sd=0.04),

k-nearest neighbors performed well with a mean AUROC of 0.91 (sd=0.04), followed by the

support vector machine classifier which had an AUROC of 0.90 (sd=0.05), and lastly the lo-

gistic regression had an AUROC of 0.87 (sd=0.08). For the models built using FreeBayes

false and true negative INDELs, the random forest classifier performed best with an AUROC

of 0.76 (sd=0.06), followed by the gradient tree boosting classifier with an AUROC of 0.74

(sd=0.04) and the k-nearest neighbor classifier with an AUROC of 0.71 (sd=0.06). Both the

logistic regression and support vector machine classifiers performed poorly with AUROC

scores of 0.50 (sd=0.05) and 0.48 (sd=0.13), respectively (Figure 1.16).

For the models built using the set of false and true negatives constructed using the phylo-

genetically motivated approach, the gradient tree boosting classifier performed the best with

a mean AUROC of 0.58 (sd=0.03). The k-nearest neighbor classifier achieved an AUROC

of 0.57 (sd=0.03), and the random forest and support vector machine classifiers had AUROC

scores of 0.57 (sd=0.03) and 0.56 (sd=0.03), respectively (Figure 1.16). Lastly, the logistic

regression classifier achieved an AUROC of 0.54 (sd=0.02).

Predictor importance

To obtain some insight as to which predictors were important in determining class, a mea-

sure of predictor importance was used (Figure 1.17). Predictor importance was obtained from

the random forest classifier by computing the total increase in node purity weighted by the

probability of reaching said node, averaged across all trees. The resulting value can be in-

terpreted as the discriminatory power of the predictor, where higher values indicate a higher

47



Figure 1.16: Machine learning model performance across all true and false nega ve call sets. Model per-
formance (AUROC) for is plotted for each model built across the three distinct call sets. Box plots are
generated using the performance from each fold in a 10-fold cross-validation experiment. All models
perform quite well for the FreeBayes SNV set, but perform less well for the INDEL set. All models
perform only moderately better than chance alone for the sets of false and true negative SNVs that were
isolated using the phylogenetic methodology.
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Figure 1.17: Predictor importance across the three different modeling tasks. Predictor importance was
measured using the random forest classifier. The total increase in node purity weighted by the probabil-
ity of reaching that node, averaged across all trees, is plotted for the top 10 most important variables for
models built using FreeBayes false and true negative SNVs INDELS and false and true negative SNVs
that were isolated using the phylogenetically motivated approach.

degree of discriminatory power. Interestingly, for models built using FreeBayes false and true

negative SNVs, there seems to be a dominant predictor, followed by a number of weaker pre-

dictors. This is in contrast to models built using FreeBayes false and true negative INDELs,

where there are seems to be a large number of weakly informative predictors. For the models

built using the set of false and true negatives constructed using the phylogenetically motivated

approach, there seems to be one dominant predictor and several intermediately informative

predictors. See Table 1.6 for the predictors used for model building.

1.4 Discussion

Significant advances have been made in detecting genomic variation in ‘next-generation’ se-

quencing data, despite considerable sources of uncertainty221. However, we have found that
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Predictor Description
AC Allele count in genotypes
AD Allelic depths for the ref and alt alleles
AF Allele Frequency, for each ALT allele
AN Total number of alleles in called genotypes

BaseQRankSum Z-score from Wilcoxon rank sum test of
Alt Vs. Ref base qualities

ClippingRankSum
Z-score From Wilcoxon rank sum test of
Alt vs. Ref number of hard clipped
bases

DP Approximate read depth

ExcessHet Phred-scaled p-value for exact test of
excess heterozygosity

FS Phred-scaled p-value using Fisher’s
exact test to detect strand bias

GQ Genotype Quality

MLEAC Maximum likelihood expectation
(MLE) for the allele counts

MLEAF Maximum likelihood expectation
(MLE) for the allele frequency

MQ Mapping Quality

MQRankSum Z-score From Wilcoxon rank sum
test of Alt vs. Ref read mapping qualities

PL Normalized, Phred-scaled likelihoods
for genotypes

QD Variant Confidence/Quality by Depth

QUAL The Phred-scaled probability that a REF/ALT
polymorphism exists at this site given sequencing data

ReadPosRankSum Z-score from Wilcoxon rank sum test
of Alt vs. Ref read position bias

SOR Symmetric Odds Ratio of 2x2
contingency table to detect strand bias

AA_len Alternative allele length

Table 1.6: A list and description of predictors that were consistently present among all false and true
negative sets used in model building
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there still exists significant discrepancy between the overall variant sets called by five dif-

ferent variant-calling pipelines applied to the same raw sequencing data using near-default

parameters, along with differences noted between two next-generation sequencing (NGS)

platforms. There are, of course, relatively large regions of overlap between all pipelines even

when highly specialized parameterizations are not used. This suggests that there exists a ‘re-

gion’ of variants that can be called robustly by many different pipelines regardless of meticu-

lous parameterization. The field has naturally focused on this robust set of calls, but we wish

to highlight here the considerable degree of discordance as well as the high false-negative

rates.

1.4.1 A discussion about variant quality and the case for multiple methods for sequence

analysis in personal genomes

For the five variant-calling pipelines included in our study, a large number of calls (both SNV

and indel) are shared among them in each exome, 21,146 on average for SNVs. Although all

five pipelines converge on a relatively large number of SNVs, this still represents less than

60% of the total SNV call set determined by all five pipelines, and hence there still exists a

considerable degree of variation between pipelines used, with near-default parameterization

on the same raw sequencing data. This disagreement is likely to be the result of many factors

including alignment methods, post-alignment data processing, parameterization efficacy of

alignment and variant-calling algorithms, and the underlying models utilized by the variant-

calling algorithm(s).

SAMtools, SOAPsnp, and GATK use similar Bayesian methods to compute the posterior

probability of the true genotype161,190,163,164,167, but they differ in the prior probabilities used.

For example, SAMtools (MAQ) sets the prior probability for a heterozygous SNV at 0.001

for novel variants, and 0.2 for known SNVs. SOAPsnp uses a more complex method of as-
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signing prior probabilities by distinguishing the homozygous genotype for the reference al-

lele from the homozygous genotype for the alternative, and distinguishing transition (A↔G,

C↔T) mutations from transversion (A/G↔C/T) mutations. GATK is similar to SAMtools but

utilizes more advanced pre-processing and post-processing steps, such as local re-alignment

around possible indel loci, and quality recalibration of both base quality and variant quality to

improve overall variant-call performance. By modeling allele frequency, SNVer uses a fre-

quentist framework for calling variants307. SNVer formulates variant calling as a hypothesis-

testing problem so that a prior probability is not required, and SNVer could act as a comple-

mentary method to Bayesian methods. GNUMAP, which employs a probabilistic Needleman-

Wunsch algorithm, might also be considered an orthogonal method, as even its computational

framework for sequence alignment is novel43.

Each variant-calling pipeline detects variants that others do not, and the accuracy of these

discordant variants is expected to be low, but not zero. Indeed, for our comparison of SNVs

called by SOAP, GATK, or both, MiSeq validation of unique-to-GATK and unique-to-SOAP

variants demonstrated relatively high rates of validation, with 306 of 315 of the randomly

selected SNVs from unique-to-GATK and 174 of 289 SNVs from unique-to-SOAPsnp be-

ing validated. Indels had lower, but still non-zero, validation rates, with 180 of 336 unique-

to-GATK indels and 148 of 332 unique-to-SOAPindel indels being validated. Given that

‘unique-to-pipeline’ variants exist even in regions of relatively high sequence coverage, it is

necessary to develop other approaches for including or excluding these variants from down-

stream analyses.

In the realm of biomedical research, every variant call is a hypothesis to be tested in light

of the overall research design. Missing even a single variant can mean the difference between

discovering a disease-contributing mutation or not182. For this reason, our data suggest that

using a single bioinformatics pipeline for discovering disease-related variation is not always
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sufficient. A more comprehensive approach can be taken; all variants discovered by multi-

ple variant-calling pipelines, when coupled with appropriate no-calling and quality filtering,

could be included in downstream analyses, so as to not miss potentially disease-contributory

variants. This is something that we intuitively implemented in a prior project263, but for which

these data now provide empirical support.

One can minimize false positives by increasing stringency filters, but this automatically

and correspondingly increases the false-negative rate. The intersection between multiple

variant-calling pipelines will minimize the false-positive rate, but we have also shown that

each pipeline uniquely identifies some true variants. Hence, clinicians and policy-makers

should be aware that propagating forward the intersection of variant calls will result in a

high false-negative rate with exome sequencing and WGS, and we discuss below the advan-

tage brought to bear on this issue by studying families. Therefore, processing single sample

datasets from one sequencing platform with multiple variant-calling pipelines should not be

the long-term solution for generating variant calls with high sensitivity and specificity, and we

discuss alternative approaches below.

1.4.2 The case for indel standardization

Although the focus of most variant-calling software has been on detecting SNVs, it is the case

that large-scale structural copy number variants and small indels are known to also be a bio-

logically relevant and prevalent form of genetic variation206,196. Indeed, initial indel mapping

efforts revealed upwards of 800,000 indels in a diverse population that map to known human

genes, some of which can be associated with genetic disease194,195, while recent estimates

from the 1000 Genomes Project47 suggest a 10:1 ratio of SNVs to indels in individual human

genomes. Reliably detecting indels is therefore a crucial component of constructing a compre-

hensive set of clinically relevant genetic variants.
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In contrast to SNVs, few indel-calling tools have been developed, so current knowledge of

the existing variation due to indels, as well as the clinical implications of indels, has lagged.

In spite of the fact that indel detection is becoming an important aspect of structural-variant

analysis206, indel calling is relatively imprecise and inaccurate. For example, the position

of an indel with respect to its reference is, in many cases, ambiguous. An indel can often be

represented at any of multiple locations. Krawitz et al.150 designed an indel coordinate com-

parison metric, the equivalent indel region (eir), for comparing indel calls between pipelines,

and GATK provides a tool which attempts to normalize indel position by left-justifying the in-

del within its multiple possible coordinate representations. Indeed, commonly used databases

such as dbSNP have not yet entirely addressed the imprecision of indel-calling pipelines150

and report only a single position for an indel, which could lead to disparate clinical diag-

noses/outcomes between similarly affected individuals. We suggest that a more comprehen-

sive approach should be taken, with all potential positions for each indel expressed and ac-

counted for, so that downstream analysis can take advantage of the known existing ambiguity.

Our data demonstrates large discrepancies between indel-calling pipelines and suggests

potentially high numbers of false positives and/or false negatives. Although putative false

positives can be tested via modest resequencing efforts, false negatives and ‘no-calls‘ require

large-scale, often impractical, resequencing projects to discover them. Because of this limi-

tation, few data exist on false-negative rates across pipelines, and inferring these rates from

unique calls between pipelines is likely to be inadequate. Indel frequency, indel size, read

length, and read depth are all known to affect the accuracy of indel-calling pipelines, and the

performance of different pipelines also depends, in part, on experimental conditions214. We

show that a relatively simple method can increase comparison accuracy for indels between

pipelines and between individuals; left-normalized and intervalized indel calls allow rapid and

reasonable comparison of called indels between different indel-calling pipelines, as well as
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between individuals who have had their genome or exome sequenced. The issues highlighted

in our indel comparisons demonstrate the difficulties associated with attaining accurate and

standardized indel calls, and our data illustrate the need for robust and ubiquitous indel stan-

dardization metrics/methods to allow for objective comparisons across pipelines and across

sequencing projects.

1.4.3 Recovering lost variants from diverse data sets

We found that machine learning models perform relatively well when trained to extract missed

variants from existing data sets (Figure 1.16). Our modeling results further support the notion

that using several variant calling algorithms on the same underlying sequencing data is ideal.

Indeed, in conjunction with validation data, predictive models are relatively straight forward

to implement, and can lead to improved overall sensitivity without risking the addition of a

substantial amount of false positive sequence variants. Ideally, our models could be effec-

tively trained without the need for large-scale validation data sets. However, we found that

building models using phylogenetic relationships between mtDNA sequences were not as ef-

fective as the validation-based approach (Figure 1.16).

In our analysis of FreeBayes false negatives, we found that QUAL scores (Table 1.6) were

not a strong predictor of false negative calls (Figure 1.17). We also found that measures and

proxies of sequencing read depth did not strongly inform our models. Both QUAL and mea-

sures of sequence read depth are, counter intuitively, among the most widely used criteria

for filtering unreliable calls. The data used to train the models were of a high average read

depth (with a mean of over 100 sequence reads at the variation position for both training class

sets), so it is not surprising that depth is not a substantial predictor in this case, as the data are

generally sufficient in quantity. However, the QUAL score is a model based statistic which

corresponds to a general characterization of the uncertainty about each call. Our data suggests
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that current formulations of QUAL scores are not good at representing the reliability of calls

with respects to the likelihood of a false negative detection. This is important from a practical

perspective because it suggests that QUAL scores should not necessarily be used as a criteria

for variant filtration.

It is important to note that even with a small amount of feature engineering, our validation-

based models performed quite well for SNV data sets and well, although comparatively worse,

for INDEL sets (Figure 1.16). There are several other likely important features in high-throughput

sequencing data that would be informative for model building. As one example for alignment

based sequence analysis pipelines, local sequence characteristics are likely to be of paramount

importance in building predictive models for detecting both false negative and false positive

sequence variants. Indeed, others have shown that that sequence complexity limits sensitivity

for alignment based callers «citation». As a consequence, features characterizing sequence

similarity within a pre-defined window might be strong predictors of calling errors.

Assembly based variant calling methods represent an important algorithmic improvement

over existing alignment based methods because they perform better in repetitive genomic re-

gions. Consequently, feature design for predictive models should be tailored to the underly-

ing algorithmic and statistical methodology employed by the different callers. It is likely that

callers using distinct methodologies will be sensitive to different data characteristics, and so

models may perform better if features were designed in a caller-specific manner.

One could, of course, also argue that some portion of the feature space should be variant

type specific. Indeed, our results show that model performance was not only worse for re-

covering false negative INDEL calls, but that the relationship between the features and the

response was in stark contrast to that of the SNV models. INDEL predictors were universally

weakly informative while SNV predictors were dominated by a single strong predictor and

other moderate to weak predictors (Figure 1.17). This suggests to us that there are important
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differences between SNVs and INDELs in terms of (i) how the predictors relate to calling

errors and (ii) the set of predictors that are important for detecting these errors. These differ-

ences do not seem to be perfectly represented by a uniform set of predictors. INDELs, unlike

SNVs, have a number of additional characteristic dimensions. They are defined by a length

that can be greater than 1, and those INDELs that consist of multiple bases can be character-

ized by their base content, their sequence similarity to the region of interest, as well as other

practical informatics based representations (such as the size of the equivalence region150). To

obtain a better understanding of false negatives, and variant calling errors in general, more

work is needed toward developing a comprehensive set of predictors for both SNVs and IN-

DELs.

1.4.4 The case for studying large families for discovering disease-related genetic vari-

ation

Our analysis of two families, one containing only two generations (parents and children) and

the other containing three generations (one grandparent, both parents, and children) demon-

strates that the ability to accurately distinguish de novo variants from familial inherited vari-

ants may be more strongly limited by high false-negative rates in the parents than by high

false-positive rates in the children. This can be significantly improved by having sequence

data from one or more grandparents or other relatives. This finding is particularly salient

for single-generation de novo studies, which attempt to characterize novel variants that are

associated with genetic disease observed in the children of healthy parents227,127,210,273,313.

While such ‘no-call’ or false-negative errors in parents can be ameliorated somewhat with

higher sequencing depth and/or more comprehensive variant-calling strategies, larger and

more comprehensive pedigrees provide a powerful, complementary source for discovering and

studying human genetic variation. Although most studies utilizing NGS data to date have fo-

57



cused on ‘quads’ or ’trios’227,127,210,273,313, studying large and/or consanguineous families can

maximize the utility of filtering strategies and statistical approaches for identifying disease-

contributory variants in genetic disease36.

1.4.5 The case for different platforms for a more comprehensive “exome”

The relative merits of WGS are expanding as both the cost of the technique decreases and

as more scientists and clinicians use the technique in an increasing number of studies/anal-

yses13,257,237,58. We have shown that WGS with the version 2.0 CG pipeline delivers SNVs

and indels not discovered by the Agilent exon capture and Illumina sequencing, and that these

variants have a very low number of reads (<20) at those positions in the Agilent exomes, ar-

guing that the capture of those regions was not efficient. Conversely, there were a signifi-

cant number of variants in our data that were unanimously called by the five Illumina variant-

calling pipelines but not by the CG WGS. Exon capture and sequencing at high depth with one

platform can yield a much higher depth of coverage in most exonic regions, whereas WGS

offers a more uniform and comprehensive coverage that appears to cover regions missed by

exon capture and sequencing. To attain a truly comprehensive set of exonic variants, WGS

on one platform could be combined with exon capture and sequencing on a different plat-

form. This combination of the depth of exonic sequencing provided by exon capture with the

breadth of coverage of WGS on a different sequencing platform, alongside the use of multiple

variant-calling pipelines, provides a powerful means to maximize sensitivity and specificity

for any one personal genome. However, as costs for sequencing are reduced, we anticipate

that sequencing whole genomes on two or more platforms may become a feasible option for

similarly maximizing accuracy.
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1.4.6 The current state of variant discovery

Many of the most recent advancements that have been made in variant discovery and se-

quencing analysis are those related to indel discovery and analysis. Indeed, newer versions

of GATK have improved upon the false-negative and false-positive rates of their indel calls

in both UnifiedGenotyper and with the newer HaplotypeCaller. By leveraging local de novo

assembly, similarly to the SOAPindel pipeline used in this study, the new HaplotypeCaller

from GATK potentially greatly improves upon its indel-calling accuracy. The more distinct

differences observed between GATK indel calls by different versions reflects the fact that

indel discovery is in the earlier stages of development, when large differences are often ob-

served between and within pipelines, with accuracy potentially remaining relatively low. For

example, in each pipeline, SNV calling relies on set algorithms, which are not dramatically

changed in updated versions of the software. Therefore, we do not see great leaps in accu-

racy for SNVs with newer versions of GATK, despite the fact that we found in the current

study that at least one other pipeline (SOAP) did uniquely discover some validated SNVs that

were not discovered by any other pipeline or any version of BWA-GATK tested here, and vice

versa. We also note that GATK discovered comparatively more unique SNVs not discovered

by any other pipeline. One caveat is that we processed the MiSeq data with the newest BWA-

GATK pipeline, so this might favor the exome variants previously called by GATK, but it is

nonetheless the case that SOAP identified variants that GATK missed in the same exome data

using near-default parameters.

1.4.7 Some limitations of the study

It is important to note that our study did not examine somatic mutations in tumor samples,

so our conclusions and our testing pipelines focus only on germline mutations from diploid
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genomes. We recognize that variant calling in cancer genomes represents similar but some-

what distinct challenges, and that software tools (such as SNVMix105) are typically developed

specifically for somatic mutations in cancer genomes. Our efforts were designed to evaluate

whether or not rare variants within personal genomes can be reliably and comprehensively

generated from sequencing data, with or without sequencing data from other family members.

Hence, we did not evaluate pipelines that specifically employ imputation or multi-unrelated-

sample variant-calling algorithms, such as Thunder168, IMPUTE2309,119,120, or BEAGLE27,28,

or specific procedures within the software tools used that allow for calling of multiple unre-

lated sample (such as those available by GATK)221. Additionally, software tools that are only

commercially available (such as CLCBio) are not evaluated in our comparative study. Pre-

dictive models built in this work are in the context of a single human sample of mtDNA, and

as a consequence the results are not automatically generalizable to all sequenced human sam-

ples. Additional classification validation experiments across a large number of human samples

is needed to build more informative and general models. It is also important to note that the

predictive power of both sets of models built for FreeBayes INDELs and the phylogenetic

set may be substantially improved by using a more sophisticated set of predictors. This study

was conducted to see whether a naive model building approach would result in powerful and

accurate models.

1.5 Concluding remarks

We have shown that there remains significant discrepancy in SNV and indel calling between

many of the currently available variant-calling pipelines when applied to the same set of Illu-

mina sequence data under near-default software parameterizations, thus demonstrating funda-

mental methodological variation between these commonly used bioinformatics pipelines. In
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spite of this methodological variation between pipelines, there exists a set of robust calls that

are shared between all pipelines even under lax parameterization. We have further shown that

the relatively recent CG version 2.0 WGS pipeline detects a set of exon variants that are not

detected by several variant-calling pipelines with an Illumina-based exon-capture sequenc-

ing strategy, even in regions of high mappability159. Therefore, each single existing exon-

capture, NGS platform, or variant-calling pipeline is likely to miss some true functional rare

variants. Some authors have suggested using two separate sequencing platforms on the same

samples154, while others have suggested that technical replicates for exon capture may help

to further improve accuracy of heterozygote variant calls111. With current technologies and

cost considerations, exon capture and deep sequencing combined with WGS is still too ex-

pensive for most laboratories, and is therefore not likely to be a practical solution in the short

term, despite providing the best combination of depth and breadth of coverage for genetic

analyses of selected exonic regions. As an alternative, considering current prices, we suggest

that utilizing the total list of variants derived from multiple (and orthogonal) variant-calling

pipelines is a more feasible first option for reducing false negatives in a discovery setting.

However, we fully acknowledge that in this scenario, the rates of false positives and false neg-

atives are inversely and directly dependent on one another; that is decreasing the false-positive

rate with filters will increase the false-negative rate, and vice versa97. We have demonstrated

that studying larger multi-generational families can increase the accuracy for de novo variants.

We also note that the standardization of indel discovery and reporting in a way that allows

more accurate comparison of indels between sequencing platforms, variant-calling pipelines,

and most importantly between individuals in a population is a critical step that needs to be ad-

dressed before this functionally important class of variants can be comprehensively assessed

in either a research or a clinical setting.
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2
Integrating a personal genome into

clinical treatment.

2.1 Motivation

Deep brain stimulation (DBS) has emerged as a relatively safe and reversible neurosurgical

technique that can be used in the clinical treatment of traditionally treatment resistant psy-
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chiatric disorders. DBS enables the adjustable and stable electrical stimulation of targeted

brain structures. A recent paper by Höflich et al117 notes variability in treatment outcomes for

DBS patients, which is likely due to variable responses to differences in targeted stimulation

regions and in post-operative stimulation parameters. Both sources of variation, the authors

note, will effect the stimulation of different brain tissue fibers having different anatomical and

functional connections. Furthermore, the authors suggest that not every target will be suitable

for every person, as there exists a large degree of inter-individual variability of brain region

activation during a reward task in healthy volunteers, and suggest that future work could (and

should) focus on developing surgical plans based on individual-specific activations, functional

connectivity and/or tractography. This work exempli-fies the large degree of clinically rele-

vant biological variability that exists in terms of individual clinical characteristics.

Ongoing clinical trials testing the “Effectiveness of Deep Brain Stimulation for Treating

People With Treatment Resistant Obsessive-Compulsive Disorder” detail the below exclusion

criteria:

• current or past psychotic disorder,

• a clinical history of bipolar mood disorder, and/or

• an inability to control suicide attempts, imminent risk of suicide in the investigator’s

judgment, or a history of serious suicidal behavior, which is defined using the Columbia-

Suicide Severity Rating Scale (C-SSRS) as either: one or more actual suicide attempts

in the 3 years before study entry with the lethality rated at 3 or higher, or one or more

interrupted suicide attempts with a potential lethality judged to result in serious injury

or death.

These study criteria exclude the most severe cases of OCD, as many people with severe

OCD also have severe depression, usually with passive (and sometimes active) suicidal ideation294,7,12.
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Obsessions and compulsions can be quite severe, with very poor insight, sometimes to a delu-

sional or psychotic degree, and there can also be co-occurring psychoses in any individual.

Each person is to some degree unique in his or her psychiatric presentation, and a tailored

evaluation schema could prove more effective in clinical treatment. Due in part to these above

hurdles, there are few detailed descriptions of the efficacy of DBS for OCD, with the num-

ber of published case studies on the efficacy of DBS for OCD covering upwards of 100 peo-

ple261,101,22,30,193,109,102,56,146,133,55,29,276,80,170,171.

An explosive growth in exome and whole genome sequencing (WGS)182 has occurred in

parallel to the emergence of DBS for OCD, led in part by dramatic cost reductions. This in

turn has given medical practitioners an efficient and comprehensive means to medically as-

sess coding and non-coding regions of the genome, leading to much promise in terms of as-

sessing and treating human disease. In our own efforts to push forward the field of precision

medicine, we report here one effort to integrate the areas of clinical neuropsychiatry, brain

machine interfaces and personal genomics in the individualized care of one person. We eval-

uate and treat an individual with DBS for treatment refractory OCD, gauge the feasibility and

usefulness of the medical integration of genetic data stemming from whole genome sequenc-

ing, and search for rare variants that might alter the course of medical care for this person.

As mentioned above, there have been relatively few reports on studies detailing the effective

application of DBS for OCD; we report here one such study.

2.2 Methods

2.2.1 Ethics compliance

Research was carried out in compliance with the Helsinki Declaration. Dr. Gholson J. Lyon

(GJL) conducted all clinical evaluations and he is an adult psychiatry and child/adolescent
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psychiatry diplomate of the American Board of Psychiatry and Neurology. GJL obtained IRB

approval number 00038522 at the University of Utah in 2009-2010 to evaluate candidates for

surgical implantation of the Medtronic Reclaim® DBS Therapy for OCD, approved under a

Humanitarian Device Exemption (HDE) for people with chronic, severe, treatment-resistant

OCD? . The interdisciplinary treatment team consisted of one psychiatrist (GJL), one neurol-

ogist and one neurosurgeon. Implantation ultimately occurred on a clinical basis at another

site. Written consent was obtained for phenotyping and whole genome sequencing through

Protocol number 100 at the Utah Foundation for Biomedical Research, approved by the Inde-

pendent Investigational Review Board, Inc. Informed and written consent was also obtained

using the Illumina Clinical Genome Sequencing test consent form, which is a clinical test or-

dered by the treating physician, G.J.L.

2.2.2 Evaluation and recruitment for DBS for treatment-refractory OCD

GJL received training regarding DBS for OCD at a meeting hosted by Medtronic in Min-

neapolis, Minnesota, in September 2009. The same author attended a Tourette Syndrome

Association meeting on DBS for Tourette Syndrome, Miami, Florida, in December 2009.

Approximately ten candidates were evaluated over a one-year period in 2010. The individ-

ual discussed herein received deep brain stimulation surgery at another site, and then returned

for follow-up with GJL. Another psychiatrist, Dr. Reid Robison, provided ongoing consul-

tation throughout the course of this study. Although other candidates have since returned for

follow-up (with GJL), no others have been surgically treated.
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2.2.3 CLIA WGS and the Management of Results from sequencing data

CLIA WGS using the Illumina Individual Genome Sequencing test

Whole genome sequencing was ordered on this individual as part of our ongoing effort to

implement precision medicine in the diagnosis, treatment, and preventive care for individu-

als. His genome was sequenced in the Illumina Clinical Services Laboratory (CLIA-certified,

CAP-accredited) as part of the TruSight Individual Genome Sequencing (IGS) test, a whole-

genome sequencing service using Illumina’s short- read sequencing technology. Although

clinical genome sequencing was ordered by GJL on a clinical basis (thus not requiring IRB

approval), the clinical phenotyping and collection of blood and saliva for other research pur-

poses was approved by the Institutional Review Board (iIRB) (Plantation, Florida) as part of

a study protocol at the Utah Foundation for Biomedical Research (UFBR). Consistent with

laboratory-developed tests, WGS has not been cleared or approved by the U.S. Food and Drug

Administration181.

The entire procedure included barcoded sample tracking of the blood collected by GJL

from this person, followed by DNA isolation and sequencing in the Illumina CLIA lab. The

sequence was generated from extracted DNA, sequenced using the Illumina HiSeq 2000 se-

quencer. Briefly, DNA was fragmented, and the fragments were attached to the surface of

a glass microscope slide. The fragments were then sequenced using fluorescently labeled

nucleotides, which were excited by a laser and imaged using digital equipment. These frag-

ments were then assessed for quality using a variety of metrics to ensure that only robust se-

quences were analyzed. Fragments were aligned to the NCBI reference sequence. Fragments

that aligned to more than one region of the reference genome were excluded from the report.

Additionally, fragments were excluded from the analysis on the basis of quality and align-

ment scores. Each nucleotide site reported was sequenced an average of 30 times, so there was
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Figure 2.1: Data sta s cs and SNP characteris cs for the Illumina CLIA WGS pipelineWGS was per-
formed using the Illumina CLIA WGS pipeline. We report the volume of data, the quality of the data
as well as whole genome SNP characteristics and more general characteristics of SNVs reported by the
Illumina CLIA WGS pipeline, including: the total number of SNVs, the total number of SNVs that are
within genes, coding regions, UTRs, splice site regions as well as the number of SNVs that were stop
gained, stop lost, non-synonymous, synonymous and mature mRNA.
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on average 30-fold redundancy for each base pair reported. Additionally, no positions were

called when the genotype quality score was less than 30 or depth was less than 6. Only single

nucleotide variants are called and validated in the Illumina Clinical Services Laboratory. Data

statistics are summarized in Figure 2.1.

WGS data analysis and variant prioritization

For the bioinformatics analyses, Illumina utilized the internal assembler and variant caller

CASAVA (short for Consensus Assessment of Sequence And VAriation). Reads were mapped

to the Genome Reference Consortium assembly GRCh37. Data for sequenced and assembled

genomes was provided on one hard drive, formatted with the NTFS file system and encrypted

using the open source cross platform TrueCrypt software (www.truecrypt.org) and the Ad-

vanced Encryption Standard (AES) algorithm (Federal Information Processing Standards Pub-

lication 197).

Genotyping array data was generated in parallel of the CLIA whole genome sequencing,

using the Illumina HumanOmni2.5-8 bead chip. The encrypted hard drive contains several

files, including a “genotyping folder” within which there is a genotyping report in a text-based

tab-delimited format.

Insertions, deletions and structural alterations are not validated variant types in the Illumina

Clinical Services Laboratory. Insertions and deletions provided in the gVCF file are for inves-

tigative or research purposes only. A medical report and the raw genomic data were provided

back to the ordering physician (GJL) on an encrypted hard drive as part of the Illumina Under-

stand your Genome Symposium, held in October 2012, which included the clinical evaluation

of 344 genes (Table 2.1).

To perform more comprehensive downstream analyses using a greater portion of the ge-

nomic data, all of the variants that were detected by the Illumina CLIA WGS pipeline were
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imported and analyzed within the Omicia Opal web-based clinical genome interpretation plat-

form, version 1.5.0. The Omicia system annotates variants and allows for the identification

and prioritization of potentially deleterious alleles. Omicia Scores, which are computationally

derived estimates of deleteriousness, were calculated by using a decision-tree based algorithm,

which takes as input the Polyphen, SIFT, MutationTaster and PhyloP score(s), and derives an

integrative score between 0 and 1. Receiver operating characteristic (ROC) curves are plotted

for that score based on annotations from HGMD. For further details on the method and the

program see www.omicia.com.

We also applied a recently published method, ERDS (Estimation by Read Depth with

SNVs) version 1.06.04321, in combination with genotyping array data, to generate a set of

CNV calls (Figure 2.2). ERDS starts from read depth information inferred from BAM files,

but also integrates other information including paired end mapping and soft-clip signature, to

call CNVs sensitively and accurately. We collected deletions and duplications that were >200

kb in length, with confidence scores of >300. CNVs that were detected by the ERDS method

were visually inspected by importing and visualizing the read alignment data in the Golden

Helix Genome Browser, version 1.1.1. CNVs were also independently called from Illumina

HumanOmni2.5-8v1 genotyping array data. Array intensities were imported and analyzed

within the Illumina GenomeStudio software suite, version 1.9.4. LogR values were exported

from GenomeStudio and imported into Golden Helix SVS, version 7.7.5. A Copy Number

Analysis Method (CNAM) optimal segmentation algorithm was used to generate a list of pu-

tative CNVs, which was then restricted to include only CNVs that were >200kb in length with

average segment LogR values of > 0.15 and < -0.15 for duplications and deletions, respec-

tively. LogR and covariate values were plotted and visually inspected at all genomic locations

where the CNAM method detected a CNV. CNVs that were simultaneously detected by both

methods (ERDS and CNAM) were considered to be highly confident CNVs. Highly confi-
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dent CNVs were, again, visually inspected within Golden Helix Genome Browser to further

eliminate any artefactual CNV calls.

Managing sequencing results

There are multiple steps involved in the management of clinical test results, beginning with

bar-coded tracking of orders and the return of results to the clinician’s office from the outside

CLIA-certified testing facility. The results are transferred to the clinician, who reviews, signs,

and interprets the results and incorporates them into the medical health record. The patient is

notified, and needed follow-up is arranged.

In an ongoing effort to develop ways to incorporate genomic data into clinical EHR, we

also collaborated with the Sequence Ontology Group to convert the data into the GVFclin for-

mat. The Genome variant format (GVF), which uses Sequence Ontology to describe genome

variation247, has been extended for use in clinical applications. This extended file format,

called GVFClin69, adds the necessary attributes to support Health Level 7 compatible data for

clinical variants. The GVF format represents genome annotations for clinical applications us-

ing existing EHR standards as defined by the international standards consortium: Health Level

7. Thus, GVFclin can describe the information that defines genetic tests, allowing seamless

incorporation of genomic data into pre-existing EHR systems.

2.3 Results

2.3.1 Pertinent clinical symptoms and treatment

A 37-year old man and U.S. veteran (here named with pseudonymous initials M.A.) was eval-

uated by GJL in 2010 for severe, treatment-refractory obsessive compulsive disorder (OCD),

which is an illness that can be quite debilitating207. M.A. had a lifelong history of severe ob-
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Figure 2.2: Implementa on of the analy c-interpre ve split model for the clinical incorpora on of a whole
genome. We have implemented the analytic-interpretive split model here with MA, with WGS being
performed in a CLIA certified and CAP accredited lab at Illumina as part of the Individual Genome Se-
quencing test developed by them. The WGS acts as a discrete deliverable clinical unit from which mul-
tiple downstream interpretive analyses were performed. We used the ERDS CNV caller, the Golden
Helix SVS CNAM for CNV calling, and the Omicial Opal and the AssureRx Health Inc. pipelines for
variant annotation and clinical interpretation of genomic variants. By archiving and offering to him
the encrypted hard drive containing his “raw” sequencing data, any number of people, including the
individual and/or his/her health care providers can analyze his genome for years to come. Abbrevia-
tions: CLIA, Clinical Laboratory Improvement Amendments; CAP, College of American Pathologists;
CASAVA, Consensus Assessment of Sequence and Variation; ERDS, Estimation by Read Depth with
SNVs; CNAM, Copy Number Analysis Method; WGS, Whole Genome Sequencing.
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sessions and compulsions, including contamination fears, scrupulosity, and the fear of harm-

ing others, with much milder symptoms in childhood that got much worse in his early 20’s.

His Yale-Brown Obsessive Compulsive Scale (YBOCS)103,104 ranged from 32-40, indicating

extremely severe OCD. Perhaps the worst period of OCD included a 5-day, near continuous,

period of tapping on his computer keyboard as a compulsion to prevent harm from occurring

to his family members. M.A. had suffered throughout his life from significant periods of de-

pression with suicidal ideation, and he had attempted suicide at least three times. His prior

psychiatric history also includes episodes of paranoia relating to anxieties from his OCD, and

he continues to be treated with biweekly injections of risperidone.

His treatment history included over 15 years of multiple medication trials, including clomipramine

and multiple SSRIs at high doses, including fluoxetine at 80 mg by mouth daily, along with

several attempts with outpatient exposure and ritual prevention (ERP) therapy100. M.A. in-

quired and was evaluated by GJL at the University of Utah and then at two other centers inde-

pendently offering deep brain stimulation for OCD. One of these centers required (as a con-

dition for eligibility for an ongoing clinical trial) a two-week inpatient hospitalization with

intensive ERP, which subsequently occurred and was documented as improving his YBOCS

score to 24 at discharge. He maintains that he actually experienced no improvement during

that hospitalization, but rather told the therapists what they wanted to hear, as they were “try-

ing so hard”.

The teams at the University of Utah and two other centers declined to perform surgery due

to his prior history of severe depression, suicide attempts and possible psychoses with para-

noia. Through substantial persistence of M.A. and his family members, a psychiatrist and

neurosurgeon at a fourth center decided that he was an appropriate candidate for surgical

implantation of the Medtronic Reclaim® DBS Therapy device for OCD, approved under a

Humanitarian Device Exemption (HDE) for people with chronic, severe, treatment-resistant
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OCD? , and he was implanted in January of 2011 (Figure 2.3). The device targets the nucleus

accumbens / anterior limb of the internal capsule (ALIC).

2.3.2 Clinical results for DBS for treatment-refractory OCD

After healing for one month, the implanted device (equipped with the Kinetra Model 7428

Neurostimulator) was activated on February 14, 2011, with extensive programming by an out-

patient psychiatrist, with bilateral stimulation of the ALIC. Final settings were case positive,

contact 1 negative on the left side at 2.0 V, frequency 130 Hz, and pulse width 210 usec, and

case positive, contact 5 negative on the right side with identical settings.

Over the next few months, his voltage was increased monthly in increments of 0.2-0.5 V by

an outpatient psychiatrist. He returned to one of the author’s (GJL) for psychiatric treatment

in July 2011, at which time his voltage was set at 4.5 V bilaterally. His depression had imme-

diately improved after the surgery, along with many of his most irrational obsessions, but his

YBOCS score still remained in the 35-38 range. From July 2011-December 2011, his voltage

was increased bilaterally on a monthly basis in increments of 0.2 V, with steady improve-

ment with his OCD until his battery started to lose charge by December 2011. This caused

him considerable anxiety, prompting him to turn off his battery in order to “save battery life”,

which unfortunately led to a complete relapse to his baseline state in a 24 hour period, which

was reversed when he turned the battery back on. The battery was surgically replaced with

a rechargeable Activa RC neurostimulator battery in January 2012, and the voltage has been

increased monthly in 0.1-0.2 V increments until the present time (May 2013).

At every visit, M.A. has reported improvements, with reductions of his obsessions and

compulsions, marked by a steady decline in his YBOCS score (Figure 2.4). M.A. has started

to participate in many activities that he had never previously been able to engage in. This in-

cludes: exercising (losing 50 pounds in two years) and volunteering at the church and other
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Figure 2.3: Sagi al and transverse computed tomography (CT) images of the brain and skull of MA. We
show here sagittal and transverse sections taken from CT scans. Imaging was performed before (A)
and after (B) MA received deep brain stimulation surgery for his treatment refractory OCD. Two
deep brain stimulator probes can be seen to be in place from a bifrontal approach (B), with tips of the
probes located in the region of the hypothalamus. Leads traverse through the left scalp soft tissues.
Streak artifact from the leads somewhat obscures visualization of the adjacent bifrontal and left parietal
parenchyma. We did not observe any intracranial hemorrhage, mass effect or midline shift or extra-
axial fluid collection. Brain parenchyma was normal in volume and contour.
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Figure 2.4: Yale Brown Obsessive Compulsive Scale (YBOCS) scores were measured for MA over a three
year and seven months period of me. A time series plot (A) shows a steady decline in YBOCS scores
over the period of time spanning his DBS surgery (s) and treatment. Incremental adjustments to neu-
rostimulator voltage are plotted over a period of time following DBS surgery. Mean YBOCS scores are
plotted for sets of measurements taken before and after Deep Brain Stimulation (DBS) surgery (B) (p =
0.0099, one tailed unpaired t-test with Welch’s correction).
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organizations. In fact, M.A. started dating and recently became engaged to be married, high-

lighting his improvement in daily functioning. New issues that M.A. reports are consistent

tenesmus, occasional diarrhea (which he can now tolerate despite prior contamination obses-

sions) and improved vision (going from 20/135 to 20/40 vision, as documented by his op-

tometrist), with him no longer needing to wear glasses. It is unknown whether the DBS im-

plant has contributed to any of these issues. Attempts to add fluoxetine at 80 mg by mouth

daily for two months to augment any efficacy from the DBS and ERP were unsuccessful,

mainly due to no discernible benefit and prominent sexual side effects. M.A. still receives an

injection of 37.5 mg risperidone every two weeks for his past history of psychoses; otherwise,

he no longer takes any other medications. There has not been any exacerbation of psychoses

in this individual during the two years of treatment with DBS.

2.3.3 CLIA certified WGS results

Illumina WGS clinical evaluations

The Illumina WGS clinical evaluation included manual annotation of 344 genes, which led to

the following conclusion:

• “No pathogenic or likely pathogenic variants were found in the 344 genes evaluated

that are expected to be clinically significant for the patient. The coverage for these 344

genes is at least 99%. Therefore, significant variants could exist that are not detected

with this test.”

The clinical evaluation did, however, identify M.A. as a carrier for a variant (c.734G>A

,p.Arg245Gln) in PHYH, which has been associated in the autosomal recessive or compound

heterozygote states with Refsum disease, which is an inherited condition that can lead to vi-

sion loss, anosmia, and a variety of other signs and symptoms. In silico prediction programs
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suggest little impact; however, the variant is rare with a 1000 Genomes frequency of 0.18%.

In this regard, it is worth noting that M.A. has always had poor night vision and enlarged

pupils, and, as a result of this genetic finding, we met with M.A.’s treatment team at his Vet-

eran’s Affair’s (V.A.) medical center and learned that he had recently been diagnosed with

bilateral cataracts, enlarged pupils, and vision loss. We also learned that M.A.’s mother and

maternal grandfather have a history of enlarged pupils with poor vision, and we are currently

following up whether this might be related in any way to this particular variant and Refsum

disease.

Disease variant discovery

Further downstream analyses identified and prioritized several other potentially clinically rele-

vant variants (Figure 2.5).

Variants that were imported into the Omicia Opal system were filtered to include those

that had a high likelihood of being damaging (as defined by an Omicia score > 0.7) and those

that have supporting Online Mendelian Inheritance in Man (OMIM; an online database of

human genetics and genetic disorders) evidence. We chose to filter based on an Omicia Score

of > 0.7 as this value derives a slightly more inclusive list of variants which still cannot be

dismissed, but for which we have additional corroborating evidence (i.e., Illumina Genome

Network (IGN) validation and annotation). A screen shot of the Omicia web-app showing the

prioritized variants is shown in Figure 2.6. See table 2.2 for a list of those variants that met the

filtering criteria. We highlight here some of the findings.

M.A. was found to be a heterozygote for a p.Val66Met change in BDNF, which encodes a

protein that is a member of the nerve growth factor (NGF) family. The protein is induced by

cortical neurons, and is deemed necessary for the survival of striatal neurons in the brain. In

drug naïve patients, BDNF serum levels were found to be significantly decreased in OCD pa-
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Figure 2.5: Illumina CLIA Whole genome sequencing data summarized in the form of a Circos plot. We
show here a summary of the genomic coordinates corresponding to the 344 genes that were clini-
cally evaluated by the Illumina CLIA WGS pipeline, the frequency of IGN validated SNVs across
the genome (plotted in red) and a summary of highly confident copy number variants (CNVs) that were
simultaneously detected by the Estimation by Read Depth with SNVs (ERDS) and Copy Number Anal-
ysis Method (CNAM) detection methods (plotted in black). Duplications and deletions are depicted as
elevations and declinations, respectively.

79



Figure 2.6: Screen shot of the Omicia Opal system showing the list of priori zed variants.
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tients when compared to controls (36.90 ± 6.42 ng/ml versus 41.59 ± 7.82 ng/ml; p = 0.043)184,

suggesting a link between this protein and OCD. Moreover, a study including 164 proband-

parent trios with obsessive-compulsive disorder107 uncovered significant evidence of an asso-

ciation between OCD and all of the BDNF markers that were tested, including the exact vari-

ant found here in this person, p.Val66Met. This particular variant has been further studied in a

sample of 94 nuclear families264, which included 94 probands with schizophrenia-spectrum

disorders and 282 family members. The results of this study suggest that the p.Val66Met

polymorphism may play a role in the phenotype of psychosis. Similar anxiety-related behav-

ioral phenotypes have also been observed among mice and humans having the p.Val66Met

variant in BDNF286. In humans, the amygdala mediates conditioned fear52, normally inhib-

ited by ‘executive centers’ in medial prefrontal cortex205. Deep brain stimulation of the path-

ways between medial prefrontal cortex and the amygdala increased the extinction of condi-

tioned fear in a rat model of OCD259. Studies using functional magnetic resonance imaging

(fMRI) demonstrate that humans with the p.Val66Met variant exhibit exaggerated activation

of the amygdala in response to an emotional stimulus in comparison to controls lacking the

variant200,156. It is thought that this variant may influence anxiety disorders by interfering

with the learning of cues that signal safety rather than threat and may also lessen efficacy of

treatments that rely on extinction mechanisms, such as exposure therapy286. In this regard, it

is interesting to note that this person did indeed obtain very little benefit from exposure ther-

apy prior to surgery.

M.A heterozygously carries the p.Glu429Ala allele in MTHFR, encoding a protein that

catalyzes the conversion of 5,10-methylenetetrahydrofolate to 5-methyltetrahydrofolate, a co-

substrate for homocysteine remethylation to methionine, and which has been shown to confer

an elevated susceptibility to psychoses. Variants in MTHFR influence susceptibility to occlu-

sive vascular disease, neural tube defects, colon cancer and acute leukemia. Variants in this
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gene are associated with methylenetetra-hydrofolate reductase deficiency. In addition, a meta-

analysis comparing 1,211 cases of schizophrenia with 1,729 controls found that the MTHFR

p.Glu429Ala allele was associated with susceptibility to schizophrenia5 (odds ratio, 1.19; 95%

CI, 1.07- 1.34; p = 0.002). According to the Venice guidelines for the assessment of cumula-

tive evidence in genetic association studies, the MTHFR association exhibited a strong degree

of epidemiologic credibility89. Pharmacogenetic studies have found a consistent association

between the MTHFR p.Glu429Ala allele and metabolic disorder in adult, adolescent and chil-

dren taking atypical antipsychotic drugs50,299.

M.A. is also heterozygous for the p.Val108Met variant in catechol-O-methyltransferase

(COMT), which catalyzes the transfer of a methyl group from S-adenosylmethionine to catecho-

lamines, including the neurotransmitters dopamine, epinephrine, and norepinephrine. The mi-

nor allele A of this 472G>A variant produces a valine to methionine substitution, resulting in

a less thermostable COMT enzyme that exhibits a 3-fold reduction in activity. A substantial

body of literature implicates this variant as possibly elevating the risk for various neuropsy-

chiatric disorders in some Caucasian populations but not necessarily in other genetic back-

grounds44,65,153,246,172,281,128. There is some evidence that MTHFR x COMT genotype interac-

tions might also be occurring in M.A. to influence his neuropsychiatric status260, and the same

is true for BDNF x COMT interactions6.

Pharmacogenetic variants

Pharmacogenetic analyses were performed using the Omicia Opal platform. Pharmacogenetic

variants were identified and prioritized by activating the “Drugs and Pharamcology” track

within the Opal system and by requiring these variants to have prior evidence within any one

of several supporting databases (i.e., OMIM, HGMD, PharmGKB, LSDB and GWAS). Priori-

tized variants are shown in Table 2.3. Below, we highlight pharmacogenetic variants found to

83



be informative in terms of future medication choices for M.A.

M.A. is heterozygous for a c.19G>A p.Asp7Asn allele in ChAT, encoding choline O-

acetyltransferase, which synthesizes the neuro-transmitter acetylcholine. This particular vari-

ant (rs1880676) is significantly associated with both risk for schizophrenia in Caucasians (P =

0.002), olanzapine response (P = 0.04) and for other psychopathology (P = 0.03)186. Allele A

is associated with increased response to olanzapine in people with schizophrenia as compared

to allele G. This association was significant (p= 0.04) in the Spanish cohort186.

M.A. is homozygous for a p.Ile359Leu change in CYP2C9, and this variant has been linked

to a reduction in the enzymatic activity of CYP2C9173. CYP2C9 encodes a member of the

cytochrome P450 superfamily of enzymes. Cytochrome P450 proteins are mono-oxygenases,

which catalyze many reactions associated with drug metabolism as well as reactions asso-

ciated with the synthesis of cholesterol, steroids and other lipids280. CYP2C9 localizes to

the endoplasmic reticulum and its expression is induced by rifampin. CYP2C9 is known to

metabolize xenobiotics, including phenytoin, tolbutamide, ibuprofen as well as S-warfarin.

Studies identifying individuals who are poor metabolizers of phenytoin and tolbutamide sug-

gest associations between metabolism and polymorphisms found within this gene. CYP2C9 is

located within a cluster of cytochrome P450 genes on chromosome 10211. Fluoxetine is com-

monly used in the treatment of OCD; it has been shown to be as effective as clomipramine and

causes less side effects239,238. CYP2C9 acts to convert fluoxetine to R-norfluoxetine254, and

so M.A. may not be able to adequately biotransform fluoxetine320. However, CYP2C9 does

not play a rate-limiting role for other SSRIs or clomipramine. In his own treatment experi-

ence, M.A. had no response to an 80 mg daily dose of fluoxetine, although he did experience

sexual side effects at that dosage.

The protein encoded by DPYD is a pyrimidine catabolic enzyme and it acts as the initial

and rate-limiting factor in uracil and thymidine catabolism pathways. M.A. was found to be a
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carrier of two variants in this gene, p.Ile543Val and p.Arg29Cys, for which he is a heterozy-

gote and homozygote, respectively. Variants within DPYD result in dihydropyrimidine dehy-

drogenase deficiency, an error in pyrimidine metabolism associated with thymine-uraciluria

and an increased risk of toxicity in cancer patients receiving 5-fluorouracil chemotherapy.

Two transcript variants encoding different isoforms have been described for DPYD134,278.

M.A. is heterozygous both for a c.590G>A p.Arg197Gln allele (rs1799930) and a c.803G>A

p.Arg268Lys allele (rs1208) in NAT2, encoding an enzyme that functions to both activate and

deactivate arylamine and hydrazine drugs and carcinogens267,25. Genotype AG for rs1799930

is associated with increased risk of toxic liver disease in people with tuberculosis when treated

with ethambutol, isoniazid, pyrazinamide and rifampin as compared to genotype GG. Allele G

for rs1208 is not associated with risk of hypersensitivity when treated with sulfamethoxazole

and trimethoprim in people with infection.

Copy number variants

ERDS identified 60 putative CNVs, all of which were visually inspected within the Golden

Helix Genome Browser. Many of the CNVs detected by the ERDS method were found to

be located within chromosomal boundary regions and were determined to be false positives

due to highly variable read depth in these regions. The CNAM method detected 35 putative

CNVs, which were visually inspected by plotting the LogR and covariate values in Golden

Helix SVS. Only six CNVs were simultaneously detected by both the ERDS and CNAM

methods, and were visually inspected as further confirmation to be included among the set

of highly confident CNVs (Table 2.4). To our knowledge, these CNVs have not been previ-

ously associated in any way with M.A.’s disease phenotype, but we are archiving these results

for future analysis as knowledge of CNVs and disease associations expands.
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Return of results

A board-certified genetic counselor was consulted by GJL prior to returning results, and all

therapy and counseling was provided by GJL. Although we believe in archiving and managing

all genetic results and not just a small subset of genes, we did analyze the 57 genes that are

currently recommended for “return of results” by the American College of Medical Genetics.

These results are shown in Table 2.5, and one of us (GJL) met with M.A. to go over the results

with him, along with adding some of the findings into his paper-based medical record. Lastly,

we did contact the physicians and other officials at the U.S. Veterans Affairs office to offer

to incorporate these data into the electronic medical record for M.A. at the VA, but we were

informed that the VistA health information system (HIS)45,242,151,26 does not currently have

the capability to incorporate any genomic variant data.

2.4 Discussion

2.4.1 DBS for treatment-refractory OCD

Deep brain stimulation for M.A.’s treatment refractory OCD has provided a quantifiable and

significant improvement in the management of his symptoms. M.A. has regained a quality

of life that he had previously not experienced in over 15 years, which is highlighted by him

participating in regular exercise, working as a volunteer in his local church, dating, and even-

tually getting married, all of which act to illustrate a dramatic improvement in his daily func-

tioning since receiving DBS treatment for his OCD.

One significant aspect of this study is the rechargeable, and hence depleteable, nature of

the Activa RC neurostimulator battery, which serves to illustrate the efficacy of DBS for OCD

for this individual. On one such illustrative occasion, M.A. forgot to take the recharging de-
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vice on a four-day weekend trip. Once his battery was depleted, all of his symptoms gradually

returned to their full level over a 24 hour period, including severe OCD, depression and sui-

cidality. Since that episode, M.A. always takes his recharging device with him on extended

trips, but there have been other such instances in which his battery has become depleted for

several hours, with the noticeable and intense return of his OCD symptoms and the cessation

of his tenesmus. The electrical stimulation is having a demonstrable effect on his OCD, and

these data are complementary to other data-sets involving turning DBS devices off for one

week at a time80.

There are many ethical and regulatory issues relating to deep brain stimulation that have

been discussed elsewhere83,290,86,84,85,82,70, and we report here our one positive experience,

made possible when the US Food and Drug Administration granted a Humanitarian Device

Exemption (HDE) to allow clinicians to use this intervention. The rechargeable nature of the

new battery has been reassuring to M.A., as he is able to exert self-control over his battery

life, whereas he previously had no control with the original “single-use” battery that must be

replaced when the battery depletes (usually at least once annually). We assume that other per-

sons treated with DBS for OCD will likely also start receiving rechargeable batteries. In this

regard, it is worth noting that the recent development of an injectable class of cellular-scale

optoelectronics paves the way for implanted wireless devices140, and we fully expect that

there will be more brain-machine neural interfaces used in humans in the future3,4,231,293,218.

2.4.2 Clinical WGS

There are still many challenges in showing how any one mutation can contribute toward a

clear phenotype, particularly in the context of genetic background and possible environmental

influences204. Bioinformatics confounders, such as poor data quality221, sequence inaccuracy,

and variation introduced by different methodological approaches225 can further complicate
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biological and genetic inferences. Although the variants discussed in the results section of our

study have been previously associated with mental disease, we caution that the data presented

are not sufficient to implicate any particular mutation as being necessary or sufficient to lead

to the described phenotype, particularly given that mental illness results from a complex in-

teraction of any human with their surrounding environment and social support structures. The

genetic architecture of most neuropsychiatric illness is still largely undefined and controver-

sial141,198,197,301. We provide our study as a cautionary one: WGS cannot act as a diagnostic

and prognostic panacea for neuropsychiatric disorders, but instead could act to elucidate risk

factors for psychiatric disease and pharmacogenetic variants that can inform future medication

treatments.

During our study, we found that M.A. carries at least three alleles that have been associ-

ated with neuropsychiatric phenotypes, including variants in BDNF, MTHFR, and ChAT

(Table 2.6). And, although we have discovered informative phamacogenetic variants in this

person, these discoveries have not led to the immediate alteration of this person’s medication

schema. We have archived these discoveries and expect that these variants will be useful over

the course of his life-long medical care. We feel that this information is inherently valuable, as

one can never predict with certainty what the future might hold, and a more complete medical

profile on individual patients will facilitate more informed medical choices.

Integrating WGS data into the Electronic Medical Health Record

In the context of the incomplete, and sometimes proprietary, nature of human gene mutation

databases, it is likely that analyses and medical guidance gleaned from these WGS data will

differ from institution to institution. It is therefor important that people be given the opportu-

nity, like with many other traditional medical tests, to obtain “second opinions”. For this to

be possible, one must accurately describe the contents of short-read sequencing data in terms
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of the existing electronic medical health standards, so that these data can be incorporated into

an electronic medical health record. Accurately describing the contents of next generation

sequencing (NGS) results is particularly critical for clinical analysis of genomic data. How-

ever, genomics and medicine use different, often incompatible terminologies and standards

to describe sequence variants and their functional effects. In our efforts to treat this one per-

son with severe mental illness, we have implemented the GVFclin format for the variants that

were discovered during the sequencing of his whole genome. We hope to eventually incorpo-

rate his genetic data into his electronic health record, if and when the VistA health information

system (HIS)45,242,151,26 is upgraded to allow entry of such data. We did already counsel M.A.

regarding several genetic variants that may be clinically relevant to predisposing him to his

psychiatric disorder21.

Returning genetic results

There is considerable controversy in the field of medical genetics concerning the extent of

return of genetic results to people, particularly in the context of “secondary”, “unrelated”,

“unanticipated” or “incidental” findings stemming from new high-throughput sequencing

techniques. Some people have concerns regarding the clinical utility of much of the data, and

in response have advocated for selectively restricting the returnable medical content. One

such set of recommendations has been provided by the American College of Medical Genet-

ics which recently released guidelines in which they recommended the “return of secondary

findings” for 57 genes, without detailed guidance for the rest of the genome. These types of

recommendations take a more paternalistic approach in returning test results to people, and

generally involve a deciding body of people that can range in size from a single medical prac-

titioner to a committee of experts. We believe that anyone should be able to access and man-

age their own genome data316, just like how anyone should be able to own and manage their
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medical and radiology test results, particularly if the testing is performed with suitably ap-

propriate clinical standards in place, i.e. CLIA in America178,177. In this regard, we found by

means of WGS that M.A carries a variant in PHYH, this revelation ended up improving his

care despite not being related in any known or direct way to his psychiatric disorder, which is

the main focus of this study. As stated in our Results section, M.A. has been diagnosed with

bilateral cataracts and has been counseled in ways to reduce further damage to and deteriora-

tion of his vision.

2.5 Concluding remarks

One can learn a substantial amount from detailed study of particular individuals268,269,175,176,297,245,68,311,

and we believe that we are entering an era of precision medicine in which we can learn from

and collect substantial data on informative individual cases. Incorporating insights from a

range of scientific and clinical disciplines into the study and treatment of any one person is

therefore beginning to emerge as a tractable, and more holistic, approach, and we document

here what we believe to be the first integration of deep brain stimulation and whole genome

sequencing for precision medicine in the evaluation, treatment and preventive care for one

severely mentally ill individual, M.A. We have shown that DBS has been successful in aiding

in the care and beneficial clinical outcome of his treatment refractory OCD, and we have also

demonstrated that it is indeed feasible, given current technologies, to incorporate health infor-

mation from WGS into the clinical care of one person with severe mental illness, including

with the return of these health information to him directly. On a comparative level, deep brain

stimulation has thus far been a more direct and effective intervention for his mental illness

than anything discovered from his whole genome sequencing. Despite this, health information

stemming from these WGS data was nevertheless immediately useful in the care of this per-
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son, as a variant associated with his ophthalmologic phenotype did indeed inform and enrich

his care, and we expect that these data will continue to inform his care as our understandings

of human biology and the genetic architecture of disease improves. Of course, the genomic

data would have been more helpful if obtained much earlier in his medical course, as it could

have provided guidance on which medications to avoid or to provide in increased doses.
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3
Variants in TAF1 are associated with a

new syndrome.

3.1 Motivation

Transcription factor II D (TFIID) consists of the TATA binding protein (TBP) and 12-14

TBP associated factors (TAFs). TFIID promotes transcriptional initiation by recognizing
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promoter DNA and facilitating the nucleation of other general transcription factors for as-

sembly into a functional preinitiation complex40,136,149,232,20,19, and it also functions as a co-

activator by interacting with transcriptional activators232. Subunits of TFIID have been sug-

gested to play a possible role in neurodegenerative diseases and developmental delay when

disrupted262,185,208,271,131,112,114. Indeed, variants in TAF2 [MIM 604912] and TBP [MIM

600075] have been implicated in intellectual disability (ID) and developmental delay, with or

without corpus callosum hypoplasia262,1,112. Recent work toward understanding the molec-

ular basis of Cornelia de Lange syndrome (CdLS [MIM 122470, 300590, 300882, 614701,

and 610759]) has also implicated mutations in TAF6 [MIM 602955], a component of TFIID,

as playing an important role in the pathogenesis of this syndrome317. CdLS is a phenotypi-

cally and genetically heterogeneous syndrome characterized by distinct facial features, hir-

sutism, developmental delay, intellectual disability and limb abnormalities54, with mutations

in several different genes implicated in contributing to this heterogeneous clinical presenta-

tion187,142,98,129. Two mutations in TAF6 were implicated in the pathogenesis of some cases

with phenotypic features of CdLS and were shown, through biochemical investigations, to

reduce binding of TAF6 to other core components of TFIID317.

A recent paper nominated TAF1 [MIM 313650] as a candidate gene for intellectual dis-

ability (ID), based on segregation of missense variants in two different pedigrees; however,

no clinical information other than intellectual disability was provided121. TAF1 is the largest

subunit of the TFIID complex, and has been ranked 53rd among the top 1,003 constrained

human genes in a recent population-scale study272, suggesting a critical role for this protein

in normal cellular function. Previous work in Drosophila cells has shown that TAF1 deple-

tion increases the magnitude of the initial transcription burst and causes delay in the shutoff

of transcription upon removal of the stimulus233. The authors showed that the magnitude of

the transcriptional response to the same signaling event, even at the same promoter, can vary
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greatly depending on the composition of the TFIID complex in the cell. In addition and con-

sistent with the notion that TAF1 is important in controlling the binding patterns of TFIID

to specific promoter regions, this study showed that the set of genes conferring increased ex-

pression were enriched for TATA-containing promoters, suggesting an association between

the depletion of TAF1 and increased expression of genes with the TATA-motif. The ge-

nomic region containing TAF1 has also been suggested to play an important role in X-linked

dystonia-parkinsonism (XDP [MIM 314250]), although the exact mechanism remains unde-

termined185,114,62,67. XDP is an X-linked recessive movement disorder characterized by adult

onset dystonia and parkinsonism, which leads to eventual death due to oropharyngeal dystonia

or secondary infections222. Studies investigating the molecular basis of XDP demonstrated

aberrant neuron-specific TAF1 isoform expression levels in neuronal tissue containing TAF1

variants. Herzfeld et. al (2013) corroborated previous reports which suggested that a reduction

in TAF1 expression is associated with large-scale expression differences across hundreds of

genes114, and studies in rat and mice brain also corroborate the importance and relevance of

TAF1 expression patterns specific to neuronal tissues271,131.

In this study, we describe a recognizable syndrome attributed to mutations in TAF1. This

work represents a collaborative research effort between independent groups engaged in study-

ing the molecular basis of human disease. A “genotype-first” approach287 was taken to find

families with variants in TAF1. This approach included phenotypic evaluations and the screen-

ing of families with individuals harboring mutations in TAF1. This process was facilitated by

utilizing databases such as DECIPHER and reporting initial findings on the BioRxiv preprint

server226. These efforts culminated in a study cohort of 14 affected individuals from 11 un-

related families, 12 of which (from 9 unrelated families) contain single nucleotide changes in

TAF1 and 2 of which contain large duplications involving TAF1 (from 2 unrelated families).
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3.2 Methods

Several strategies were used to identify candidate disease-related sequence variation. These

included whole genome sequencing, exome sequencing, targeted gene panel sequencing and

microarray-based strategies. Sanger sequencing was used to validate sequence variations.

Many of the families studied here underwent genotyping for a small number of genomic re-

gions using clinical microarrays or gene-specific sequencing.

To evaluate structural CNS defects, our colleagues performed in vivo functional modeling

of TAF1 using transient knockdown in developing zebrafish embryos. The optic tectum is

a neuroanatomical structure that occupies the majority of the space within the midbrain and

its size is a proxy for head size (microcephaly)24, which is one of the most robustly observed

phenotype.

A splice-blocking morpholino (MO) targeting the donor site of exon 9 of the sole zebrafish

taf1 ortholog (ENSDART00000051196) was designed, stainings were performed for acety-

lated tubulin to evaluate the structure of the optic tectum. In total, 134 control embryos, 133

taf1 MO-injected, 109 taf1 MO+WT TAF1 RNA-injected and 78 WT TAF1 mRNA-injected

embryos were analyzed by measuring the area of the optic tectum at three days post fertiliza-

tion.

3.2.1 Cluster analysis

Nonsynonymous TAF1 hemi or homozygote variants from European and Latino populations

were taken from the ExAC database. Unique genomic positions were collected. Following

Cucala 200851, these locations were set such that

0 = X0 <= X1 <= · · ·Xn <= Xn + 1 = 1
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we then compute all j− i ordered spacing’s such that

Di, j = Xj − Xi

j∑
k=i+1

Dk, 1 <= i < j <= n

we also let

Ui = Binc(Di,j, j− i, n+ 1, j+ i), 1 <= i < j <= n

and compute the hypothesis-free scan statistic, which is

∧HF = sup
1<=i<j<=n

1
Ui,j

p-values are computed via a Monte Carlo procedure. To identify more than one cluster, a mul-

tiple procedure is introduced. If there exists an interval that represents a significant cluster in

the initial search, which Cacala 2008 and we note here as [Xi∗ ,Xj∗ ], then let T∗ = 1−Xj∗ +Xi∗ .

We will then transform the data such that

X2k =


Xk
T∗ if 1 <= k <= i∗

Xk+j∗−j∗−Xj∗+Xi∗
T∗ if i∗ + 1 <= k <= n− j∗ + i∗

and test for clusters as described above

3.2.2 Family 1 specific methods

Below, we described sequencing and analysis methods that are specific to Family 1, one of the

larger of the study families.
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Complete Genomics whole genome sequencing and variant detection for Family 1

After quality control to ensure lack of genomic degradation, we sent 10 g DNA of each sam-

ple to Complete Genomics (CG) at Mountain View, California for sequencing. The whole-

genome DNA was sequenced with a nanoarray-based short-read sequencing-by-ligation tech-

nology, including an adaptation of the pairwise end-sequencing strategy. Reads were mapped

to the Genome Reference Consortium assembly GRCh37. Due to the proprietary data formats,

all the sequencing data QC, alignment and variant calling were performed by CG as part of

their sequencing service, using their version 2.0 pipeline. Complete Genomics WGS was op-

timized to cover 90% of the exome with 20 or more reads and 85% of the genome with 20 or

more reads.

Illumina HiSeq 2000 whole genome sequencing and variant detection for Family 1

After the samples were quantified using Qubit® dsDNA BR Assay Kit (Invitrogen), 1 μg of

each sample was sent out for whole genome sequencing using the Illumina® Hiseq 2000 plat-

form. Sequencing libraries were generated from 100 ng of genomic DNA using the Illumina

TruSeq Nano LT kit, according to manufacturer recommendations. The quality of each li-

brary was evaluated with the Agilent bioanalyzer high sensitivity assay (less than 5% primer

dimers), and quantified by qPCR (Kappa Biosystem, CT). The pooled library was sequenced

in three lanes of a HiSeq2000 paired end 100 bp flow cell. The number of clusters passing

initial filtering was above 80%, and the number of bases at or above Q30 was above 85%. Il-

lumina reads were mapped to the hg19 reference genome using BWA v0.6.2-r126, and variant

detection was performed using the GATK v. 2.8-1-g932cd3a. Illumina WGS resulted in an

average mapped read depth coverage of 37.8X (SD=1.3X). >90% of the genome was covered

by 30 reads or more and >80% of the bases had a quality score of >30. A second analytical
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pipeline was used to map the Illumina reads and detect variants using novoalign v3.00.04 and

the FreeBayes caller v9.9.2-43-ga97dbf8. Additional variant discovery procedures included

Scalpel v0.1.1 for insertion or deletion (INDEL) detection, RepeatSeq v0.8.2 for variant detec-

tion in short tandem repeat regions, and the ERDS (estimation by read depth) method v1.06.04

and PennCNV (2011Jun16 version) for detecting larger copy number variants (CNVs).

Sanger Sequencing

PCR primers were designed using Primer 3 (http://primer3.sourceforge.net) to produce ampli-

cons of around 700 bp in size, with variants of interest located approximately in the center of

each amplicon. Primers were obtained from Sigma-Aldrich®. Upon arrival, all primers were

tested for PCR efficiency using a HAPMAP DNA sample (Catalog ID NA12864, Coriell In-

stitute for Medical Research, USA) and LongAmp® Taq DNA Polymerase (New England Bi-

olabs, USA). PCR products were visually inspected for amplification efficiency using agarose

gel electrophoresis. PCR products were further purified using QIAquick PCR Purification Kit

(QIAGEN Inc., USA), quantified by Qubit® dsDNA BR Assay Kit (Invitrogen Corp., USA),

and diluted to 5 - 10 ng/µl in water for Sanger sequencing using the ABI 3700 sequencer. The

resulting *.ab1 files were loaded into the CodonCode Aligner V4.0.4 for analysis. All se-

quence traces were manually reviewed to ensure the reliability of the genotype calls (Figure

3.1).

DNA Microarrays

DNA samples were genotyped on Illumina Omni 2.5 DNA microarrays (which contain ap-

proximately 2.5 million markers). Total genomic DNA extracted from whole blood was used

in the experiments. Standard data-normalization procedures and canonical genotype-clustering
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Figure 3.1: Sanger sequencing traces for all 10 family members from family 1 for variants found in
ZNF41, ASB12, PION and TAF1.
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files provided by Illumina were used to process the genotyping signals.

Variant detection

Human sequence variation ranges in manifestation from differences that can be detected at

the single nucleotide level, to whole chromosome differences. In our study, we used a num-

ber of bioinformatics software packages to extract signals for differences seen at the levels of

single nucleotide variants (SNV), small insertions/deletions (INDELs), variants in short tan-

dem repeat structure (STRs), and variants in copy number (CNVs) (see Figure 3.3 and 3.3 for

a general map of the analyses performed). When possible, we used more than a single bioin-

formatics software package to detect different classes of genetic variants, so as to arrive at

a comprehensive and high-quality set of variants for each person sequenced. Standard data

quality filtering approaches were used for all genetic variants detected by the various differ-

ent methods. This includes, when appropriate, requiring sequencing to be at a depth of 10 or

more reads at the location of a sequence variant, and a variant phred quality score of 30 or

above. Specific variant detection parameters, which themselves detail internal or pipeline spe-

cific variant detection thresholds, are described below or in the documentation of the software

which has been described in detail elsewhere. We expect variants where all pipelines agree

to be more reliable in terms of their validation rate, whereas those variants that were unique

to single pipelines will likely have lower yet potentially vastly different validation rates. This

expectation has been shown to be true in our previous studies that have used high-throughput

MiSeq validation methods225. This information was carried through to the various stages of

the variant prioritization and functional annotation stages of the study. If a variant was anno-

tated as being highly deleterious by functional annotation or by frequency inference, sequence

error was more easily identified by first checking how many detection pipelines found it. In

contrast, if a variant was detected by one sequencing platform and not the other, sequence
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depth and quality variation between platforms contributed to these instances and were not as

easily dismissed as errors.

bwa-GATK

Illumina reads were mapped to the hg19 reference genome using BWA v. 0.7.5a using de-

fault ‘mem’ parameters. BWA was directed to mark shorter split hits as secondary, so as to

make the output compatible with Picard and the Genome Analysis Took Kit (GATK). BWA

sequence alignments were converted into binary format using SAMtools v0.1.19-44428cd,

and duplicate reads were marked using Picard tools v1.84. GATK 2.8-1-g932cd3a was used

to realign the reads around putative INDELs, and base quality scores were then recalibrated.

Variants were detected using the GATK HaplotypeCaller, and variant quality scores were

then recalibrated using the GATK variant quality score recalibration (VQSR) protocol. The

GATK HaplotypeCaller works by generating a reference graph assembly, which starts out as

a directed DeBruijn graph. The GATK HaplotypeCaller then tries to match each sequence

read to a path in the reference graph, this is called the ’read-threading’ graph. The graph is

then pruned by removing sections of the graph that are supported by fewer than 2 reads, which

are considered to be the result of stochastic errors. Haplotype sequences are then constructed

using likelihood scores for each path in the graph. A Smith-Waterman alignment of each hap-

lotype to the original reference sequence is used to generate potential variant calls, which are

then modeled using a genotype likelihood framework.

novoalign-FreeBayes

SNP and INDELs were also detected with a novoalign-FreeBayes pipeline, using novoalign

v3.00.04 to map reads to the hg19 reference genome, and the FreeBayes caller v9.9.2-43-
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Figure 3.2: A conceptual map of human sequence varia on. Here, we show approximate sizes, as well
as the associated signature, of the various different types of human sequence variation that can be cur-
rently detected with the WGS and informatics technologies employed in this work. The frequency axis
shows the approximate frequency of the various genetic variation types that currently detectable via
germline WGS. Above the visual signatures of the different types of human sequence variation, the
general names of the different informatics software tools for detecting the variation are noted which
include, the Genome Analysis Took Kit (GATK), Scalpel, RepeatSeq PennCNV, the estimation by
read depth with single-nucleotide variants (ERDS) CNV caller and the FreeBayes caller. We do not
differentiate here by raw sequencing data generated by different sequencing technologies, but its im-
portant to note that Complete Genomics (CG) is listed here as a software tool but in actuality what we
are referring to is the CG sequencing technology as well as its own proprietary sequence analysis.
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Figure 3.3: A generalized map of the flow of work performed during the course of the study for Family 1.
Briefly, the family was sequenced using two different sequencing technologies, the Illumina (which
includes WGS on the HiSeq 2000 and genotyping array data from Illumina Omni 2.5 microarrays)
and the Complete Genomics (CG) sequencing platforms. Raw sequencing data resulting from the CG
sequencing was processed using the internal CG informatics pipeline v. 2.0. Six variant discovery
pipelines analyzed raw sequencing data resulting from the Illumina-based sequencing. Variants result-
ing from all of the post-sequencing data analysis and variant discovery pipelines were filtered using
standard filtering methods/thresholds (see Methods section) and pooled for further post-variant discov-
ery analyses. From the pooled variant data set, two family-based study designs were performed, a quad
based study design and a study design that incorporates data from all of the sequenced members of the
family. For these two studies, two variant prioritization strategies were employed, ‘CADD’ and ‘Cod-
ing’. Both prioritization schemes required variants to be in low population frequencies (minor allele
frequency of less than 1%), but the CADD strategy further required variants to have a CADD score of
greater than 20 whereas the coding scheme required variants to be coding and non-synonymous.
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ga97dbf8 to detect variants. Novoalign was used to map the first 50,000 reads to the ref-

erence sequence in order to determine the empirical insert size for the Illumina paired end

reads. Once the insert size was determined, novoalign was then used to map all of the Illumina

reads to the reference sequence using default parameters. Sequence alignment output from

novoalign was used to generate variant calls using FreeBayes with default parameters. Free-

Bayes uses a Bayesian genotype likelihood approach, but generalizes its use to perform over

haplotype sequences, which is in contrast to precise alignment based implementations.

bwa-Scalpel

Sequence alignments obtained from the above ‘bwa-GATK’ pipeline were used in conjunction

with Scalpel v0.1.1209 to extract INDELS from the WGS data. Scalpel was run with near-

default parameterizations in ‘single’ mode. The minimum coverage threshold and minimum

coverage ratio for emitting a variant was set to 3 and 0.1 respectively, and the threshold at

which low coverage nodes were removed was set to 1. Scalpel uses both sequence mapping

and assembly to detect INDELs. First, Scalpel extracts aligned sequence reads to construct a

de Bruijn graph. Low coverage nodes and sequencing errors are then removed and a repeat

analysis of the each region is performed to tune the k-mer size. Assembled sequences are then

aligned back to the reference genome where a standard Smith-Waterman-Gotoh alignment

algorithm with affine gap penalties is used to detect candidate variants.

RepeatSeq and Scalpel

We used RepeatSeq115 v0.8.2 to extract variants in short tandem repeats across the genome

using default settings. RepeatSeq uses a Bayesian model selection approach to assign the

most probable genotype using information about the full length of the sequence repeat, the
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repetitive unit size and the average base quality of mapped reads. Scalpel has been shown to

perform well in terms of detecting variants in short tandem repeat regions. For this reason,

we also consider Scalpel to be a good informatics pipeline for use in profiling STR regions.

Scalpel was used to detect sequence variants in STRs using the same methods described in the

section detailing pipelines on SNVs and INDELs (above).

CNVs

Bedtools v2.17.0244 was used to compare CNVs. CNVs were required to overlap reciprocally

by 90%. Hypervariable and invariant CG CNVs were excluded from the analysis, and CG

CNVs were required to have a ‘CNVTypeScore’ of greater than 30.

PennCNV

The PennCNV305 software package (2011Jun16 version) was used to perform Copy Num-

ber Variant CNV calling using the Illumina Omni 2.5 microarray data for all the samples. For

kilobase-resolution detection of CNVs, PennCNV uses an algorithm that implements a hidden

Markov model, which integrates multiple signal patterns across the genome and uses the dis-

tance between neighboring SNPs and the allele frequency of SNPs. The two signal patterns

that it uses are the Log R Ratio (LRR), which is a normalized measure of the total signal in-

tensity for two alleles of the SNP and the B Allele Frequency (BAF), a normalized measure of

the allelic intensity ratio of two alleles. The combination of both signal patterns is then used to

infer copy number changes in the genome.

Microarrays often show variation in hybridization intensity (genomic waves), that is re-

lated to the genomic position of the clones, and that correlates to GC content among the ge-

nomic features considered. For adjustment of such genomic waves in signal intensities, the
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cal_gc_snp.pl PennCNV program was used to generate a GC model that considered the GC

content surrounding each Illumina Omni2.5 marker within 500kb on each side (1Mb total).

The detect_cnv.pl program in the mode – test for individual CNV calling was used, the Hid-

den Markov Model used is contained in the hhall.hmm file provided by the latest PennCNV

package, and custom Population Frequency of B allele (PFB) file for all the SNPs in the Il-

lumina Omni2.5 array was generated from 600 controls (which consists of 600 unaffected

parents from the Simons Simplex Collection), the GC model described above was also used

during CNV calling. Chromosome X CNVs were called separately using the – test mode with

the –chrx option. We excluded CNVs with an inter-marker distance of >50kb and required

each CNV to be supported by at least 10 markers.

ERDS

To detect CNVs from the Illumina WGS data, the Estimation by Read Depth with SNVs

(ERDS) v1.06.04321 method was employed, using default pipeline parameterization. ERDS

uses WGS read depth information contained within sequence alignment files, along with soft-

clip signatures, to detect CNVs. CNVs that were detected by the ERDS method were filtered

to include CNVs that were greater than 200 kilobases in scale and CNVs called with a confi-

dent score of greater than 300.

Disease variant prioritization, post variant discovery analyses

We performed analyses to prioritize sequence variants conforming to three disease model

pathways: de-novo, autosomal recessive and x-linked models of transmission. X-chromosome

skewing in the mother of the two affected boys suggests that genetic components of the dis-

ease phenotype are most likely segregating and following an X-linked mode of inheritance.
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Recent work illustrates the existence of a substantial amount of complexity in elucidating ge-

netic factors of human disease, with many syndromes likely being the result of an array of

different genetic aberrations in conjunction with environmental effects and modification of

gene/variant function by ancestral background95,180,275. There are also many still uncharac-

terized noncoding regions of the genome35, along with continuous re-annotation of protein

coding portions72. In light of this complexity, we sought to identify variants following de

novo, autosomal recessive and x-linked models of transmission that may be contributing, to-

gether or alone, to the disease phenotype. It is possible that a disease-contributory variant in

the germline of a somatically mosaic parent could pass on to both children, appearing as ’de

novo’ when compared to DNA from the blood of the parents32,192,277,284. Similarly, variants

benign in the heterozygous state might prove deleterious if present in the homozygous state in

the two children, so we sought to identify these autosomal recessive variants as well.

In general, to identify de-novo variants, we isolated genetic variants shared by both affected

boys. Variants in common with all other healthy people in the family were then filtered out.

For X-linked variants, all X-chromosome variants shared by the two affected boys as well

as their mother were identified. Then, variants in common with all other healthy males were

removed. Autosomal recessive variants were identified by first selecting all heterozygous

variants shared by the mother and father of the two affected children. Then, homozygous vari-

ants shared by the two affected boys where both parents were heterozygous were selected.

Finally, homozygous variants that were also present in any other healthy family member were

removed.

Variant prioritization for Family 1

We used several methods to prioritize and identify possible disease-contributory germ-line

variants, including VAAST122,137,263,315, Golden Helix SVS v8.1.4289, ANNOVAR (2013Aug23
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version)306, and GEMINI v0.9.1230. VAAST employs a likelihood-based statistical frame-

work for identifying the most likely disease-contributory variants given genomic makeup and

population specific genomic information. SVS, ANNOVAR and GEMINI employ more tra-

ditional annotation and filtering-based techniques that leverage data stored in public genomic

databases (i.e., dbSNP 137, 1000 Genomes phase 1 data, NHLBI 6500 exomes, etc.).

More detailed methodology for the analysis of Family 1 is available below. The Illumina

data were also re-analyzed in the recent development of SeqHBase, a big data-based tool set

for analyzing family based sequencing data to detect de novo, inherited homozygous, or com-

pound heterozygous mutations that may contribute to disease manifestations110.

SVS, ANNOVAR and GEMINI

Recent work has identified differences between results generated by available annotation soft-

ware packages, which can, in part, be the result of differences in choice of transcript by the

user188. To capture and analyze this variability, we used three annotation and filtering soft-

ware packages with similar databases to filter and prioritize disease variants. For variants

conforming to each disease model, ANNOVAR, SVS and GEMINI were used to filter and

annotate them.

To be consistent among the different software tools, we used the same filtering strategy

for each of the three software packages. Depending on the analysis, filtering criteria required

each variant to be characterized by a population frequency of less than 1 percent in the avail-

able variant frequency databases (this includes genotype frequencies derived from the 1000

genomes project as well as genotype frequencies reported in dbSNP 138 and the Exome Se-

quence Project, which includes genotype frequencies, among other information, on 6500 in-

dividuals of various recently derived ancestral lineages), a CADD (Combined Annotation

Dependent Depletion) score of greater than 20 (top 1% of all possible human genomic variants
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in terms of deleteriousness) or be either a non-synonymous or a splice site variant. Variants

that passed these filters were then annotated by gene and variant type using UCSC’s Known

Genes table for annotation.

VAAST

VAAST v2.0 was used to identify variants that are likely contributing to disease219,315. SNPs

and INDELs were converted into the GVF file format using the vast_converter tool, anno-

tated using the the VAAST annotation tool (VST) and then converted into a condenser file

(*.cdr). VAAST was run in CLRT mode without grouping variants when they are located

within the same feature. Amino acid substation frequencies were included in the likelihood

ratio test when scoring variants, and the maximum expected frequency of the ‘causal’ allele

in the background population was set to 0.01. 10,000 permutations were performed. The

VAAST background file that was used contains 1057 “1000 genome project” genomes, 54

Complete Genomics genomes, 184 genomes from Danish exomes, and 9 genomes from 10

Gen data247. Variants from dbSNP and NHLBI ESP that have a sample size >= 100 were ran-

domly spiked into the dataset based on their allele frequencies. Coding variants only within

CDS regions of the RefSeq gene set with 10 nts around each exon splice regions”. The back-

ground file used in this study is public and freely available for download on the VAAST web-

site (http://www.yandell-lab.org/software/VAAST).

RNA sequencing and analysis

We conducted RNA sequencing with RNA isolated from blood from Family 1. Blood was

collected from the two probands, their parents and the maternal grandparents. Except for the

single blood draws for the grandparents, two blood draws were taken on separate days for
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each subject. The blood was collected in PAXgene Blood RNA tubes and the RNA was iso-

lated with the PAXgene Blood RNA kit (QIAGEN) according to the manufacturer’s recom-

mendations. The final pooled library was measured by qPCR using the KAPA SYBR® Fast

Universal qPCR kit (Kapa Biosystem, Wilmington, MA) and sequenced on a HiSeq 2000

across three lanes (paired-end 100bp). A mean of 49,792,652 (sd = 11,666,119) properly

paired reads were generated and a mean spliced mapping percentage of 85.41 (sd = 7.1) per

sample was observed. HISAT138 was used for spliced alignment to the UCSC human refer-

ence sequence hg19 using 10 alignment threads and the –rna-strandness RF flag for stranded

libraries. Stringtie236 was used to quantify transcripts using the UCSC hg19 transcript anno-

tations, with estimates of abundances being restricted to these annotated transcripts. Cuffd-

iff295 was used to perform differential expression analysis using 32 threads with the –library-

type fr-firststrand flag for our stranded libraries. The R package CummeRbund152 was used

to analyze, filter and visualize the results from the Cuffdiff differential expression analysis.

WebGestalt304 was used to perform gene set enrichment analyses using Molecular Signa-

tures Database (MSigDB) for Transcription Factor Targets288, KEGG135, GO48, and HPO145

databases for gene annotations and set inclusion information. We used various analysis tools

in the CummeRbund package152 to evaluate the quality of our RNA sequencing data/analysis

for Family 1.

3.3 Results

Shared phenotypic features representing the cardinal features of this syndrome (see Figures

3.4 and 3.6, and Tables 3.1 and 3.2) include global developmental delay, intellectual disabil-

ity, characteristic facial dysmorphologies, and generalized hypotonia. Shared facial dysmor-

phologies include prominent supraorbital ridges, down slanted palpebral fissures, sagging
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cheeks, long philtrum, low-set and protruding ears, long face, high palate, pointed chin and

anteverted nares. The probands also share a characteristic gluteal crease, with a sacral caudal

remnant, although spine MRI imaging on two probands did not show any major underlying

defect. The affected individuals have generalized hypotonia, as well as joint hypermobility.

Other widely shared features include hearing impairment, microcephaly and hypoplasia of

the corpus callosum. Interestingly, probands 8A (in Figure 3.5 as II-1 in family 8) and 11A

(in Figure 3.6 as II-1 in family 11) are also affected by abnormal thoracic cage development.

Some additional neurological features include spastic diplegia, dystonic movements, and

tremors. Individuals 8A, 10A (in Figure 3.6 as IV-3 in family 10), and 11A had progressive

symptoms, and one individual (11A) died of severe cardiopulmonary insufficiency attributed

to an infection. Importantly, probands bearing duplications of TAF1 (10A and 11A) not only

demonstrated severe and progressive neurodegeneration, they also do not share some of the

more common features of the rest of the probands (see Table 3.1,and Figures 3.4 and 3.6 for

comparison).

All 14 affected individuals were found to contain sequence variants in TAF1, the majority

of which are missense variants (11 out of 14). One proband (5A in Figure 3.5 as II-1 in fam-

ily 5) was found to have a variant which influences TAF1 splicing, and two probands (10A

and 11A) have a duplication that involves TAF1. As stated above, the two CNV duplication

probands exhibit less overlap with those that harbor single nucleotide changes (Table 3.1) and

exhibit severe progressive neurologic impairment. All of the mutations reported here, includ-

ing the duplications, are de novo or co-segregate with the phenotype in other affected male

individuals (see Figures 3.5 and 3.6).

Families 1 and 10 could be tested for X-chromosome inactivation, which showed that fe-

male carriers of TAF1 mutations and duplications demonstrated highly skewed inactivation

(99:1). The female carriers in families 5 and 11 were not informative for the polymorphic
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Features
(Human Phenotype Ontology Nos.)

Proband
1A 1B 2A 3A 4A 5A 6A 7A 8A 8B 8C 9A 10Aa 11Aa

Sex M M M M M M M M M M M M M M
Age (years) 15 13 5 6 9 3 22 11 9 4 1 3 16 8
Postnatal growth retardation
(HP: 0008897) + + + + + + − − + + + + UK +

Delayed gross motor
development (HP: 0002194) + + + + + + + + + + + + + +

Delayed speech and language
development (HP: 0000750) + + + + + + + + + + + UK + +

Oral-pharyngeal dysphagia (HP:
0200136) + + + + UK + UK − + + + UK + UK

Prominent supraorbital ridges
(HP: 0000336) + + − + UK − + − + + + + + +

Downslanted palpebral fissures
(HP: 0000494) + + + − + + + − + + + − + UK

Sagging cheeks + + − − − + − − + + + + + +
Long philtrum (HP: 0000343) + + + + + + − + + + + + − −
Low-set ears (HP: 0000369) + + + + + + + − + + + + − +
Protruding ears (HP: 0000411) + + + + + + + − + + + − − +
Long face (HP: 0000276) + + − − UK + + − + + + + + +
High palate (HP: 0000218) UK UK + + − + + − + + + + + +
Pointed chin (HP: 0000307) + + − − + + + − + + + − + +
Anteverted nares (HP: 0000463) − − + + + + − + + + + + − +
Hearing impairment (HP:
0000365) + + + + UK + − − + + + − UK −

Chromic otitis media (HP:
0000389) + + + − + + − + + + + − UK −

Strabismus (HP: 0000486) + + + + UK + + − + − − + + −
Microcephaly (HP: 0000252) + + + + + − − + + + + + − −
Hypoplasia of the corpus
callosum (HP: 0002079) + + + UK + + + UK + + + + UK −

Generalized hypotonia (HP:
0001290) + + + + + + + − + + + + − +

Unusual gluteal crease with
sacral caudal remnant and
sacral dimple (abnormal sacral
segmentation [HP:0008468]
and prominent protruding coccyx
[HP: 0008472])

+ + + + + + + + + + + + UK −

Joint hypermobility (HP:
0001382) + + − + UK + − − + + + + − UK

Autistic behaviors (HP:
0000729) + + + − UK UK + + + + + − + +

Intellectual disability (HP:
0001249) + + + + + UK + + + + + + + +

Table 3.1: This table demonstrates clinical features shared by eight or more probands across all affected
individuals in the families. Abbreviations are as follows: M, male; and UK, unknown. a Probands
containing duplications; they are generally less similar to the probands containing SNVs and share
fewer common clinical features.
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Figure 3.4: Images of the Facial Phenotype from Families 1, 2, and 4–9. Cardinal facial dysmorphologies
include prominent supraorbital ridges (seen in 1A, 1B, 2A, 6A, 8A–8C, and 9A), down-slanted palpe-
bral fissures (1A, 1B, 2A, 4A, 5A, 6A, 8A–8C, and 9A), sagging cheeks (1A, 1B, 5A, 8A–8C, and 9A),
a long philtrum (1A, 1B, 2A, 4A, 5A, 8A–8C, and 9A), low-set and protruding ears (1A, 1B, 2A, 4A,
5A, 6A, 8A–8C, and 9A), a long face (1A, 1B, 2A, 5A, 6A, 8A–8C, and 9A), a high palate (5A, 6A,
8A–8C, and 9A), a pointed chin (1A, 1B, 2A, 4A, 5A, 6A, and 8A–8C), and anteverted nares (2A, 4A,
5A, 7A, 8A–8C, and 9A).
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Figure 3.5: TAF1 Domains, Variant Scores, and ExAC Sequence Varia on Plot. (A) Pedigree drawings
of the nine families who were found to harbor TAF1 SNVs (NCBI Gene ID: 6872 according to the
GRCh37.p13 assembly). Black dots indicate maternal carriers. (B) All nine SNVs are listed and an-
notated with CADD, SIFT, GERP++, and phyloP scores (which indicate conservation across 99 ver-
tebrate genomes and humans). All of the SNVs are considered to be potentially deleterious by all of
the listed annotations, except for c.3708A>G, which is a splice-site variant and as a consequence is not
necessarily expected to be categorized as deleterious by any of the listed scores, because it does not
affect amino acid composition of the predicted protein. (C) Known TAF1 domains are shown with re-
spect to their corresponding genic positions. All but non-synonymous variants reported in the ExAC
Browser for TAF1 are plotted below as lines; white and gray indicate exon boundaries. Red lines indi-
cate the relative positions of the eight missense variants described in this paper (see Table 2). Numerals
link the sequence variants shown on the ExAC plot to their familial origin, and those noted with a star
fall within TAF1 regions that are significantly underrepresented by non-synonymous sequence varia-
tion in the ExAC Browser in European and Latin populations (p values of 0.032 and 0.037 for the first
[c.2419T>C, c.2926G>C, and c.3736C>T] and second [c.3708A>G ] clusters, according to Cucala’s
hypothesis-free multiple scan statistic with a variable window 27).
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Figure 3.6: Duplica ons Involving TAF1 from Families 10 and 11. (A) Pedigree drawings of families 10
and 11. (B) The facial phenotype of proband 10A is notable for prominent supraorbital ridges, down-
slanted palpebral fissures, sagging cheeks, a long face, a high palate, and a pointed chin. (C) Chromo-
some X cytobands are plotted above a more focused view of the region containing duplications that
involve TAF1 in families 10 and 11. UCSC refGenes (from the UCSC Genome Browser tables) whose
canonical transcript start or stop sites overlap either of the two duplications are plotted.
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CAG repeat in the human androgen-receptor gene.

All missense variants were found to affect evolutionarily conserved residues (Figure 3.5B),

and were not present in any frequency in public databases such as dbSNP 137, 1000 Genomes

phase 1 data, NHLBI 6500 exomes, or ExAC version 0.2, which contains allelic informa-

tion derived from 60k exome sequences. The TAF1 missense variants were also predicted

to be deleterious by a range of prediction scores (CADD, SIFT, GERP++ and phyloP) (Fig-

ure 3.5B). The splice site variant discovered in Family 5 was not predicted to be deleterious

by the prediction scores listed; however, this variant does not change the amino acid content

of the predicted protein, but instead affects TAF1 splicing in both the mother and proband. In

addition, the SNVs described here fall within regions of the TAF1 gene that are relatively

sparsely covered by non-synonymous sequence variations reported in the ExAC database

(Figure 3.5C). Indeed, four of these missense variants (c.2419T>C, c.2926G>C, c.3736C>T,

and c.3708A>G) were found to be within the two regions of TAF1 that are significantly un-

derrepresented by non-synonymous sequence variation reported in the ExAC database when

restricted to European and Latin populations (Figure 3.5C). Additional variants found in Fam-

ilies 6 and 7 (c.4549A>C, c.4355G>A) also fall within a region that is underrepresented by

non-synonymous sequence variation, although this last cluster is not statistically significant (p

value of 0.29).

For the zebrafish studies,the relative area of the optic tectum was reduced by approxi-

mately 10% in embryos injected with a MO targeting the donor site of exon 9 of the D. rerio

taf1 (p<0.0001) (Figure 3.7A-B). The effect is specific to the MO knockdown, as the pheno-

type could be reliably re-stored by co-injection of MO and wild-type human TAF1 mRNA

(p<0.0001). Notably, overexpression of WT human TAF1 mRNA did not result in a pheno-

type that was significantly different from controls (p=0.79).

To confirm these findings, CRISPR/Cas9 was used to disrupt taf1. For the CRISPR exper-
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iments, taf1 guide RNA was generated as described132. In agreement with observations of a

relative reduction in the area of the optic tectum in taf1 MO embryos with respects to con-

trol embryos, F0 taf1 CRISPR mutant embryos showed a relative reduction in the area of this

structure with respect to un-injected controls (p<0.001) (Figure 3.7C). Unfortunately, the rel-

atively small effects seen with MO knockdown and CRISPR-mediated mosaicism in F0 em-

bryos precluded observations about whether differences exist between WT and mutated TAF1

constructs in terms of rescuing the neuroanatomical defect.

3.3.1 Family 1 specific results

Whole genome sequencing

Complete Genomics WGS was optimized to cover 90% of the exome with 20 or more reads

and 85% of the genome with 20 or more reads (Table 3.3). Illumina WGS resulted in an aver-

age mapped read depth coverage of 37.8X (SD=1.3X). >90% of the genome was covered by

30 reads or more and >80% of the bases had a quality score of >30.

Concordance among variant detection pipelines

SNP and INDEL concordance across SNP and INDEL detecting pipelines applied to Illu-

mina raw data was computed. In agreement with various other studies that have focused on

computing SNP and INDEL concordance across pipelines, the mean concordance for SNPs

across the two SNP detecting pipelines (GATK and FreeBayes) among the 10 sequenced indi-

viduals was 81.8%, whereas the mean concordance for INDELs between GATK and Free-

Bayes was 62.2% (with a mean of 80.3% of Scalpel calls being detected by the other two

pipelines). Agreement between CNV detecting pipelines was low; with 6.3% percent of Pen-

nCNV found by ERDS and 0.9% percent of ERDS CNVs found by PennCNV. No known
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Figure 3.7: Suppression or Gene c Muta on of Endogenous taf1 Induces Decreased Size of the Op c
Tectum In Vivo. (A) Dorsal view of a control embryo (top) and an embryo injected with a morpholino
(MO) targeting the donor site of exon 9 of D. rerio taf1 3 days after fertilization. An antibody against
α-acetylated tubulin was used for visualizing the axon tracts in the brain of evaluated embryos. The
assay consisted of measuring the area of the optic tectum (highlighted with the dashed ellipse), a neu-
roanatomical structure that occupies the majority of the space within the midbrain. (B) A boxplot
shows quantitative differences in the size of the optic tectum for each condition tested across three
biological replicates. Suppression of taf1 consistently induced a decrease of �10% in the relative area
of the optic tectum (p < 0.0001). The MO phenotype could be restored by co-injection of MO and
wild-type (WT) human TAF1 mRNA (p < 0.0001), denoting the specificity of the phenotype due to
taf1 suppression. Overexpression of WT human TAF1 mRNA alone did not induce a phenotype that
was significantly different from that of controls (p = 0.79). The numbers of embryos evaluated per con-
dition were as follows: control, 134; taf1 MO, 133; taf1 MO + WT TAF1 RNA, 109; and WT TAF1
RNA, 78. (C) A boxplot shows quantitative differences in the size of the optic tectum between unin-
jected controls and F0 embryos with CRISPR-disrupted taf1. The phenotype observed for both MO-
injected embryos and embryos with CRISPR-disrupted taf1 was concordant and reproducible across
different experiments and across the two different methodologies. The p values were calculated with a
Student’s t test.
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disease-contributory CNVs were discovered, but we archive in our study 8 de-novo CNVs

that are not currently associated with any biological phenotype (see Table 3.4 for the list of

CNVs).

Between Illumina and CG sequencing platforms, the SNP concordance was 77.1% whereas

the INDEL concordance was 44.8%. CNV concordance between the two sequencing plat-

forms was 5.7%. To make these cross platform comparisons, variants generated from the dif-

ferent informatics pipelines applied to the Illumina raw data were combined into a larger set

that only included unique calls from each caller.

Study design comparisons

We explored differences between study-design scenarios in their output in terms of variants

conforming to the disease models (de-novo, autosomal recessive and X-linked, see Figure

3.8). Results were compared between two distinct study designs: a quad study design and a

full family study, which integrates data from all of the sequenced family members as well as

all of the variant detecting pipelines previously described. We found that there was a mean

fold difference of 2.4 to 14.0 in the number of variants that were segregating in terms of the

three different disease models (a mean fold difference of 2.4 was observed for the autosomal

recessive disease model, 3.1 for the de-novo disease model and 14.0 for the X-linked disease

model). For each disease model, simple python set operations, SVS operations and GEMINI

operations were used to divide variants segregating according to each model. For the de-novo

disease model, python set operations, SVS and GEMINI identified 52,360, 40,440 and 42,625

variants respectively for a quad-based study design and 17,908, 12,298 and 14,249 variants for

a study design incorporating all of the family members recruited into the study. Similarly for

the autosomal recessive disease model, 59,111, 57,614 and 64,366 variants were found using

a quad study design and 37,678, 20,579 and 22,302 variants were found when using all of
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the family members. Lastly, for the x-linked model, 26,228, 27,121 and 39,316 variants were

found under a quad study design whereas 2,322, 2,538 and 1,958 variants were found when all

family members were incorporated into the analysis.

We also explored differences in disease variation discovery due to varying prioritization

schemes. We looked at these differences in combination with applying a quad or full fam-

ily study design. In general, 40 variants were identified using a quad based study design and

using the CADD scheme, whereas 14 variants were found using the same study design but in-

stead using the Coding prioritization scheme, with only two variants being identified by both;

a non-frameshift substitution in NLGN4X and a nonsynonymous variant in TAF1 conferring a

p.Ile1337Thr change (Table 3.5). 8 variants were identified using the full-family based study

design in combination with the CADD prioritization scheme whereas 7 variants were found

using this same study design and the coding scheme, only one of which was found using both

schemes; a nonsynonymous variant in TAF1 conferring a p.Ile1337Thr change.

Multi-generational pedigrees reduce erroneous findings

More variants are reliably eliminated when a greater portion of the family is incorporated

into the analysis. This is likely due to varying false positive and false negative rates across

sequencing and informatics platforms due in part to variation in data quality across the se-

quenced portion of each genome in each individual. Trio and quad-based study designs are

prevalent in the literature99,127,210,227, and many human genetics studies using high-throughput

sequencing technologies only employ the use of a single, or a limited number, of variant

detection pipelines. Our findings highlight the need for more comprehensive family-based

study designs, and we demonstrate benefits in focusing high-throughput sequencing efforts on

studying large related cohorts, where intra-familial relationships allow for more rigorous vari-

ant filtering and identification of true positive alleles that might be contributing to a disease
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Figure 3.8: Bar plots showing differences in the number of variants conforming to de-novo, autosomal
recessive and X-linked disease models using python set operations, SVS and Gemini software between
quad and full family-based study designs in the Family 1 study.
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Model Location Ref Alt VariantCaller Annotation Function Scheme

Recessive chr1:210851705 TT T CG, GATK, FreeBayes,
RepeatSeq

ANNOVAR,
GEMINI, SVS KCNH1:UTR3 CADD, score:27.5

Recessive chr1:224772440 AATAATTTG TA CG, GATK, FreeBayes GEMINI intergenic CADD, score:22.1

Recessive chr2:60537356 TTTTATTT ATTATTA CG, FreeBayes,
GATK, RepeatSeq GEMINI intergenic CADD, score:22.3

Recessive chr8:109098066 AT A CG, FreeBayes, GATK,
RepeatSeq GEMINI intergenic CADD, score:24.6

Recessive chr15:66786022 ACAAA A FreeBayes, GATK GEMINI SNAPC5:intronic CADD, score:23.6

Recessive chr16:49061346 TA T CG, GATK, FreeBayes ANNOVAR,
GEMINI intergenic CADD, score:25.3

Recessive chr16:49612367 GAC G CG, GATK, FreeBayes GEMINI, SVS ZNF423:intronic CADD, score:20.5

Recessive chr10:135438929 T G CG, GATK, FreeBayes ANNOVAR,
GEMINI, SVS I171L Coding, gene:FRG2B

Recessive chr10:135438951 GGCCC AGCCT FreeBayes, Scalpel GEMINI, SVS sub Coding, gene:FRG2B
Recessive chr10:135438967 C T FreeBayes, GATK GEMINI, SVS R158Q Coding, gene:FRG2B

Recessive chr15:85438314 C CTTG CG, FreeBayes,
GATK, Scalpel GEMINI K141delinsIE Coding, gene:SLC28A1

De-novo chr1:53925373 G GCCGCCC CG, FreeBayes, Scalpel GEMINI, SVS A83delinsAAP Coding, gene:DMRTB1
X-linked chrX:34961492 T C CG, GATK, FreeBayes GEMINI Y182H Coding, gene:FAM47B

X-linked chrX:70621541 T C CG, GATK, FreeBayes ANNOVAR,
GEMINI, SVS I1337T Coding, gene: TAF1;

CADD, score: 22.9

Table 3.5: A table of prioritized genetic variations in TAF1 intellectual disability syndrome. Variants
conforming to the three disease models, de-novo, autosomal recessive and X-linked were identified.
We show a list resulting from the CADD prioritization scheme as well as from the coding prioritiza-
tion scheme. Both schemes required each variant to have a low population frequency (minor allele
frequencey of less than 1%). The coding scheme required all variants to also be within a coding region
of the genome and to be a non-synonymous change. The CADD scheme requires all variants to have
a CADD score of greater than 20, along with the aforementioned population frequency. A variation in
TAF1 was the only variation to be reliably detected using both prioritization schemes.
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phenotype.

We were able to minimize false negative variant detections by using many orthogonal in-

formatics pipelines, as each alone miss some true and possibly functional sequence variants

but together capture a greater portion of the true call set. The multi-generational pedigree

structure allowed us to minimize false positive findings by using expanded disease model

operations that included three generations, effectively reducing false positive findings by cor-

roborating genotypic evidence across the familial generations. In general, reductions in false

negative and false positive calls should increase the efficacy of prioritization strategies, and

reduce the number of candidate variants to a manageable and robust number in terms of per-

forming validation and functional follow-up studies. In our study, we found this reduction to

vary across disease models, with autosomal recessive, de novo and X-linked models having

candidate variant reductions of 2.4, 3.1 and 14.0 fold respectively. Further, the number of fi-

nal prioritized variants was reduced by a factor of 3.8 across both of the prioritization schemes

that were employed (53 unique variants were identified through prioritization using a quad

study design and 14 were identified using the full-family study design).

Before WGS was performed, a SNV of unknown significance was detected by clinical

gene-panel sequencing: ZNF41; p.Asp397Glu. This variant was determined to be a variant

of unknown significance due to the clinical ambiguity of the variant as well as the limited

scope of the gene panel. There is some previous work implicating other variants in this gene

as contributing to X-linked mental retardation279, although during the course of this study, the

significance of this finding was challenged241. When the study was expanded to include WGS

data generated by CG on the two affected children and their parents, this variant was still iden-

tified as a putative disease-contributory variant. Only when a larger portion of the family was

recruited for genotyping and additional Illumina-based WGS performed were we able to show

that this variant was observed in other, unaffected, family members, including a male cousin.
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We found this to be the case for other variants detected under a quad-based study design. For

example, functional prediction algorithms (Polyphen and SIFT) indicated that another variant,

located in ASB12, was deleterious and thus suspected as a potential disease-contributory vari-

ant. This inference was found to be invalid due to its presence in other unaffected members of

their family (see Figure 3.1 for Sanger sequence traces which show ZNF41 and ASB12 vari-

ants to be present in other members of the family, despite being identified as important in dis-

ease using a quad-based study design). In another instance, a variant in PION was thought to

be de novo in the children, but was found to be the result of poor sequencing coverage at that

position, as this variant was indeed present in the mother, hence not de novo in the children

(Figure 3.1). We have observed that some studies use trio or quad based designs and assert

genetic “causality” when there is very little evidence supporting their case. This runs the risk

of polluting the literature further with many false positive findings125.

An extensive literature review was conducted in pursuit of genotype-phenotype correlations

with the above variants. FRG2B and FAM47B are not known to be involved in the pathogen-

esis of any human disease, although the detailed molecular function of these genes has been

largely unexplored. FRG2B is homologous to FRG2, which locates on chromosome 4 and has

been implicated in playing a role in the pathogenesis of facioscapulohumeral muscular dys-

trophy (FSHD) in patients with substantial reductions in a 11-150 unit 4q35 microsatellite re-

peat92,250,252. However, reductions in the homologous 10qt26 microsatellite repeat, proximal

to FRG2B, have not been associated with FSHD. ZNF423 acts as a transcriptional regulator,

and variants in ZNF423 coding regions have been implicated in the pathogenesis of Joubert

syndrome37,106. The variant that we have identified in ZNF423 is located within an intron, and

its molecular function is unknown. SLC28A1 is thought to mediate sodium-depedent fluxes of

uridine, adenosine and azidodeoxythymidine255, whereas SNAPC5, also known as SNAP19,

plays a scaffolding role in the forming the complete SNAP complex, which is required for the
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transcription of snRNA genes113. The molecular functions of KCHN1 and DMRTB1 are not

well understood or studied.

X-chromosome Skewing in Family 1

The X-chromosome skewing assay revealed that the mother of the two affected boys has

skewed, 99:1, X-chromosome inactivation (Figure 3.9). The grandmother, as well as the aunt

of the affected boys, does not show any appreciable X-chromosome skewing, suggesting the

possibility of a newly arising deleterious X-chromosome variant.

RNA sequencing for family 1

RNA libraries were generated and the final pooled library was sequenced on a HiSeq 2000

across three lanes (paired-end 100bp). A mean of 49,792,652 (sd = 11,666,119) properly

paired reads were generated and a mean spliced mapping percentage of 85.41 (sd = 7.1) per

sample was observed (Table 3.6). HISAT138 was used for spliced alignment to the UCSC hu-

man reference sequence hg19 and Stringtie236 was used to quantify known transcripts. Cuffd-

iff295 was used to perform differential expression analysis and CummeRbund152 was used to

analyze, filter and visualize the results from the Cuffdiff differential expression analysis. We-

bGestalt304 was then used to perform gene set enrichment analyses using the Molecular Sig-

natures Database (MSigDB) for transcription factor targets288, KEGG135, GO48, and HPO145

databases for gene annotations and set inclusion information. We used various analysis tools

in the CummeRbund package152 to evaluate the quality of our RNA sequencing data/analysis

for Family 1 (Figure 3.10).

213 genes were found to be differentially expressed in the two affected male probands from

Family 1 in comparison to their unaffected parents and grandparents. 179 out of the 213 genes
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Figure 3.9: (A) Pedigree structure of all individuals in Family 1 that were sequenced during the course
of this study and images of the two affected siblings, who display strikingly similar facial dysmor-
phology. Affected brothers, III-1 III-2, are sons to mother II-2, who tested positive for extreme X-
chromosome skewing (B). Individuals with a star next to their number indicates that their whole
genomes were sequenced with both the Complete Genomics sequencing and analysis pipeline as well
as with Illumina sequencing technology and the various downstream analysis pipelines. All other num-
bered individuals had their whole genomes sequenced only with the Illumina WGS technology, fol-
lowed by the downstream analysis pipelines described in the methods section. (C) The affected have
distinctive shared facial features, including broad, upturned nose, sagging cheeks, downward sloping
palpebral fissures, prominent periorbital ridges, deep-set eyes, relative hypertelorism, a high-arched
palate, and prominent ears.
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Figure 3.10: RNA sequencing data quality evalua ons for Family 1. Various analysis tools in the Cum-
meRbund R package47 were used to evaluate the quality of our RNA sequencing-based differential
expression analysis for Family 1. (A) The degree of read count dispersion between the affected and
unaffected groups was plotted; both groups appear to be quite similar in this regard. (B) The squared
coefficient of variation in log base 10 FPKM values, used here as a measure of cross-replicate vari-
ability, was plotted. In general, we saw a higher degree of variability in the unaffected group than the
affected group. (C) MA plot shows no obvious evidence of systematic bias between conditions. (D)
The Jensen-Shannon distance (shown on the y-axis of D) was used to constructed Dendrograms be-
tween replicates (a and b) and groups (affected vs unaffected). The replicates are generally closer to
each other than they are to other samples and their replicates. The replicates among the affected group
(U1a-b and U2a-b) appear closer to each other than they are with any of the other replicate samples in
the unaffected group (I-1, II-2a, II-2b, I-2, II-1a, II-1b).
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were expressed less (down-regulated) in the affected, whereas 34 out of the 213 were ex-

pressed more (up-regulated) in the affected. Among those genes that were up-regulated in the

affected, 24 out of the 34 were expressed with a log base 2 fold change value of greater than

1, and no genes were found to be up-regulated with a log base 2 fold change value of greater

than 2. Among those genes that were down-regulated in the affected, 161 out of 179 were ex-

pressed with a log base 2 fold change value of less than -1, and 41 out of 179 were expressed

with a log base 2 fold change value of less than -2.

Among the genes that were up-regulated in the affected boys, we found no obvious inter-

pretable biological signal. We present the results from the gene set enrichment performed on

the set of genes that were down-regulated in the affected with a log base 2 fold change of less

than -1, as this set represent the genes that are significantly down-regulated and to a poten-

tially biologically relevant level (Figure 3.11). Transcription factor target enrichment analysis

revealed a significant enrichment for genes regulated by E-box proteins (CANNTG promoter

motifs, BH corrected p-value of 0.0052). KEGG pathway enrichment analysis revealed an en-

richment for genes involved in Parkinson’s, Alzheimer’s, Huntington’s disease, and cardiac

muscle contraction (BH corrected p-values of 2.95e-07, 1.54e-06, 2.13e-06, and 2.13e-06,

respectively). Enrichments in genes associated with HPO annotations include type 1 muscle

fiber predominance, laxity of ankles, fingers and wrists (all four phenotypes were reported

with a BH corrected p-value of 0.0481).

It is important to note that the RNA sequencing results are preliminary and potentially con-

founded by age or sex-specific expression differences between the affected and unaffected

groups, and the results here were derived from a single family, as these were the samples

that we were able to collect to date. Complete blood counts were not performed on the blood

samples used for RNA sequencing; thus, our result could be also confounded by secondary

differences in mRNA abundances. The RNA and whole genome sequencing data have been
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Figure 3.11: RNA sequencing results from Family 1. Blood extracted RNA from Family 1 was sequenced
with stranded sequencing libraries and 100bp paired end reads on the HiSeq2000 platform. (A, large
panel). Transcript quantifications (FPKM) were similar between the affected (U1 and U2) and un-
affected individuals, suggesting no strong signal for large scale transcription differences involving
thousands of genes between them. (A, small panel) 215 genes were found to be differentially ex-
pressed. The small panel in A represents a “volcano” plot, where the x-axis is the log base 2 fold
change and the y-axis is the –log base 10 p-vale. The dashed line represents the threshold for signif-
icance. There were many more genes found to be down-regulated (180) than up-regulated (35). (B)
Gene set enrichment analyses performed with WebGestalt(J. Wang et al., 2013) for down-regulated
genes with a log base 2 fold change value of less than -1 revealed enrichments in transcription factor
binding targets, disease pathways, and phenotypes related to TAF1 syndrome.
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deposited to Sequence Read Archive (SRA) under BioProject ID PRJNA301337.

3.4 Discussion

Recent structural work in yeast points to an epigenetic role of the TAF1-TAF7 complex in

general TFIID function and/or pre-initiation complex (PIC) assembly20,19. Human TAF1 is

a 1893 amino acid long multifunctional protein that has been reported to possess DNA pro-

moter binding, histone acetylation and protein phosphorylation activities59,199,38,157. The his-

tone acetyltransferase (HAT) activity of TAF1 can be blocked by TAF7 binding39,96. Studies

suggest that phosphorylation of TAF7 at Ser264 causes release from TFIID, alleviating its

inhibitor effect on TAF1143. Therefore, mutations that disrupt this inhibitory protein-protein

interaction could have devastating effects on gene expression profiles during human devel-

opment. Intriguingly, four of the eight missense variants in TAF1 change residues that are

conserved in higher eukaryotes and map to domains important for TAF7 binding. Variants

p.Cys807Arg, p.Pro596Ser, and p.Asp976His from families 2, 8 and 9 fall within an evo-

lutionarily conserved central domain (DUF3591) that spans residues 586-1049. DUF3591

encompasses the TAF1 HAT domain and numerous points of contact with TAF7303. The re-

cently reported human TAF1-TAF7 crystal structure reveals that Cys807 is buried in the cen-

ter of a hetero-dimeric triple barrel formed by segments of TAF1 and TAF7303. Replacement

of the cysteine, a polar amino acid capable of disulfide bond formation, with the large basic

amino acid arginine (p.Cys807Arg) is predicted to destabilize the triple barrel fold and po-

tentially interfere with the interaction of TAF1 and TAF7. The p.Asp976His variant also has

the potential to disrupt TAF1-TAF7 binding. The acidic Asp976 maps to a separate TAF1-

TAF7 protein interface within DUF3591 and undergoes intermolecular hydrogen binding in

the highly conserved glycine-rich loop of TAF1. This loop interacts extensively with a highly
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conserved Arg-rich motif in TAF7. The acidic to basic amino acid change (p.Asp976His)

has the potential to disrupt the architecture of the glycine-rich motif and its ability to effec-

tively bind to TAF7. The p.Arg1246Trp mutation described in this work and the published

p.Arg1190Cys TAF1 variant121 reside in the RAP74 interacting domain (RAPiD) of TAF1

(residues 1120-1279), which also has been shown to be important for TAF7 binding266,303.

The number of TAF1 de novo missense mutations co-segregating with intellectual disabil-

ity syndromes and predicted to affect TAF7 binding is quite striking, further strengthening

the importance of TAF7 in the regulation of TAF1 function. TAF1 is a difficult protein to

work with in isolation and it is likely to be unstable in the absence of a binding partner, such

as TAF796,19,303. Thus we speculate that variants that are not within any known protein do-

main (i.e p.Ile1337Thr) may affect domain packing of TAF1, which may interfere with the

TAF1-TAF7 interacting surface19,303 or mark the protein for proteolytic degradation.

Bromodomains are a common feature of transcription factors that possess HAT activity.

TAF1 contains two bromodomains (Bromo1: 1397-1467 and Bromo2: 1520-1590), each of

which consist of a bundle of four alpha helices that form a hydrophobic pocket that can recog-

nize acetylated lysines found on the N-terminal tails of histones130,81. A close examination of

the published TAF1 bromodomain structure reveals that the p.Arg1431His mutation in Fam-

ily 7 is a surface residue on one face of the alpha helix. It forms hydrogen bonds with two

residues on a nearby helix, most likely playing a supporting role in maintaining the bromod-

omain fold. Mutation of p.Arg1431His to a histidine could affect the stability of the acetyl-

lysine ligand binding site in TAF1 and alter promoter recognition.

3.4.1 Speculation about the phenotypic spectrum of TAF1 syndrome

Phenotypic variance among TAF1 syndrome probands is not unexpected, as it is not uncom-

mon for syndromes whose pathogenesis is linked to mutations in large genes or in genes with
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many interacting partners spanning many functional domains to vary widely in their pheno-

typic presentation180,270,319. Indeed, proteins affecting fundamental and more global cellular

processes, if disrupted, are expected to exert an abnormal effect on a wide range of cellular

processes. Given that a protein can be mutated in many different ways, mutations affecting

proteins with important global functions may have varied effects, particularly for large pro-

teins with many functional domains270,319. If mutations in such a protein lead to disease, the

implication is that the disease phenotype, depending on the particular mutation and environ-

mental influencers, could be quite variable, with a range of disease phenotypes manifesting

across affected individuals180 (Figure 3.12; G1). In contrast, some proteins have more con-

strained cellular functions that are responsible for regulating or affecting a more limited num-

ber of cellular processes. If mutations in these proteins lead to human disease, one would ex-

pect that, in most or the majority of cases, the disease phenotype will be less variable to re-

flect the constrained function of the protein (Figure 3.12; G0). TAF1 is a large, multi-domain

protein that is involved in general transcription initiation, a ubiquitous cellular process. Con-

sequently, mutations spanning different TAF1 domains are expected to result in potentially

discordant, but related, clinical presentations for TAF1 syndrome. Although the phenotypic

overlap among all probands in this study is remarkable, each family has their own idiosyn-

crasies that can be explained by differences brought about by mutations occurring in different

TAF1 functional domains or regions, alongside other genetic and environmental influences.

The genetic link between the disease phenotype and the larger duplications that were found in

two probands included in our study suggests a larger role for the surrounding genomic region

in various human disease phenotypes.
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Figure 3.12: Conceptual figure linking phenotypic variability to characteris cs of prototypic genes and
proteins associated with human disease. Proteins that affect fundamental or global cellular processes, if
functionally mutated, are expected to result in a range of cellular consequences. Mutations leading to
human disease that are due, in part, to changing such proteins may have more varied molecular and as a
consequence phenotypic effects. For example, gene G1 is shown to have a higher node degree than G0,
resulting in a phenotypic spectrum (depicted here as a continuous distribution) with a higher variance
than G1, which, in contrast, has a more constrained cellular function, leading to a disease phenotype
that is less variable, reflecting the constrained function of the gene and its protein product.
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3.5 Concluding remarks

In conclusion, we have presented evidence showing that mutations involving TAF1 contribute

to the phenotype described here. Differences in genetic background and the environment can

certainly account for the phenotypic differences between the various males in these fami-

lies308,118,123,23,33,183,180. Other studies also suggest a functional link between developmen-

tal delay and the TFIID multi-protein complex262,208,112, although the phenotypic variability

and expression of other variants in TAF1 and in other TAFs remains to be determined. We

have also provided the results of initial studies that suggests a possible regulatory role for at

least one variant presented here, and have shown that zebrafish knockdown and mutant studies

for this gene have a quantifiable, albeit small, effect on a neuronal phenotype. In our current

study we do not see a clear mechanistic link between the missense and splice-site variants

versus the duplications in two of the probands, and the duplication probands share less phe-

notypic features with the rest of the disease cohort. There are many possible explanations for

why a duplication of a gene might mimic the effect of a disruptive missense or splice site vari-

ant, and our current study lacks the necessary experimental evidence to point to any particular

scenario with certainty. Further work is needed to tease apart the contributions of these dupli-

cations and their constituent genes to this more complex phenotype. It should also be noted

that exome and/or whole genome sequencing have not yet been performed in Family 10 or 11,

so there could be other mutations contributing to the phenotypes of the probands.
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4
Better accounting for uncertainty in DNA

sequencing data

4.1 Motivation

Personalized and genomics-guided medical care has the potential to enhance the way we treat

and prevent human disease by relying more heavily on highly accurate and rich character-
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izations of individuals, rather than on population scale phenomenon. Thus, it is becoming

increasingly important and relevant for analysis methods to guarantee rigorous accounts of

individuals, whose medical treatment will be shaped by these results. At the forefront of per-

sonalized medicine is DNA sequencing, and relatively standardized methods for analyzing

these data have been developed9,295,49,221,314,108. As sequencing becomes more routine in the

clinic, it is important to consider the accuracy of these data and the validity of the conclusions

based on them.

DNA sequencing data contain two major types of quantitative uncertainty, which we refer

to here as aleatory and epistemic. Aleatory uncertainty refers to the variability that is inher-

ent to most biological systems, such as stochastic fluctuations in a quantity through time or

variation across space. This is considered to be a form of uncertainty because the value of

the quantity can change each time a measurement is taken, and we cannot predict precisely

what the next value will be77. In the context of DNA sequencing studies, variability can arise

from sequencing DNA that has been extracted from tissues with differing genotypes, sequenc-

ing large populations for the purpose of determining population allele frequencies, and from

varying RNA expression levels across space or time, just to name a few sources. Epistemic

uncertainty, on the other hand, refers to incomplete knowledge about a quantity, which can

arise from imperfect measurement, limited sampling effort, or ignorance about the underlying

processes that influence a quantity77. Again, in the context of DNA sequencing, this type of

uncertainty can result from poor base detection, sparse sequence data, or from a fundamental

lack of understanding about how sources of error arise in these data and how they are related.

These two forms of uncertainty have important practical differences. For example, epistemic

uncertainty can in principle be reduced by empirical effort, and although aleatory uncertainty

(variability) can sometimes be better characterized through repeated experimentation, it can-

not generally be reduced by empirical effort. The differences between these two forms of un-
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certainty are often significant in practical settings.

Substantial progress has been made toward quantifying and propagating uncertainty through

calculations and inferences made on human sequencing data, and this progress has already

yielded more accurate characterizations of population scale phenomenon282,300,283,91,148,139.

However, these methods are limited in that they are not easily extended for use in the many

different, and often times piecemeal, analyses that are currently necessary for implement-

ing personalized genomics. Furthermore, the treatment of uncertainty is currently limited in

scope, due to the difficulties inherent in modeling different sources and types of uncertainty

that often arise in personalized genomics-based analyses. A general framework for propa-

gating uncertainty through calculations is needed, so that computations can be made with as

much rigor as is possible given the available technologies.

We describe sources of error that arise in high-throughput sequencing data, describe com-

ponents of these errors that are the consequence of manifestations of different types of uncer-

tainties, advocate for the development of new DNA sequencing analysis methods for com-

puting with uncertain data in the context of personalized genomics applications, and describe

prospective methods that allow for incorporation of uncertainties into their computational

frameworks so that genomic inferences can more accurately represent the true state of knowl-

edge.

4.1.1 Sources of uncertainty in DNA sequencing

DNA is composed of categorically defined units, nucleotide bases. Nucleotides, or sequences

of nucleotides, consist primarily of adenine (A), guanine (G), thymine (T), or cytosine (C)

bases. In practice, the reliability of DNA sequence detection varies from base to base and is

usually influenced by the specific sequencing technology being employed. High-throughput

and short-read sequencing technologies generally quantify detection reliability using proba-
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bility values that characterize the chance that a base was correctly detected71,251. This value

depends in part on the chemistry used in the sequencing, the particular equipment being used

to detect DNA, sequence composition, among other things. Relatively short sequence reads

( 150 consecutive bases) are generated through iterative and consecutive base detection, which

are then aligned to a reference sequence. The alignment procedure also generally produces

probability values that characterize the chance of having correctly aligned a sequence to its re-

spective genomic location. These two values taken together give the analyst information about

the chance that a base is correct.

Errors in high-throughput sequencing data (base calling errors, variant calling errors, etc.)

result from complicated and sometimes unforeseen technical and data processing factors. Sev-

eral empirical studies have identified a number of different important and quantifiable sources

of error. In a recent perspective piece258, the authors review these different sources, which

include upstream steps during sample preparation and sequence library preparation, as well as

from the sequencing, imaging, data processing and bioinformatics steps225. More specifically,

errors originating from sample preparation are sometimes due to a combination of human er-

rors in sample handling (which can include sample swaps or DNA/RNA degradation), sample

contamination and low quantities of input DNA. During the preparation of sequence libraries,

human errors can result in cross-contamination of DNA samples across different library prepa-

rations, and errors can occur when PCR amplification incorporates an incorrect base during

early synthesis cycles258. Primer-mediated sequence amplification biases, the synthesis of

chimeric reads, barcode or adapter errors and machine failures are among the other sources of

error that originate during sequence library preparation. During base imaging and sequencing,

user errors combined with the incorporation of additional bases during single sequence cycles,

DNA damage, overlapping signals, strand biases, sequence complexity243 and machine fail-

ures can contribute to sequence error. Moreover, errors in bioinformatics steps resulting from
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poor sequence alignment in regions where mapping is difficult159 also contribute to sequence

error.

Analysts use a variety of algorithmic and statistical approaches for mitigating errors and for

quantifying uncertainties about DNA sequence related estimates. Contemporary tools lever-

age efficient sequence alignment-based frameworks for detecting similarities and differences

between sample and reference sequences161,57. Initial analysis steps entail excluding putative

sequence error or low-quality sequences using data quality thresholds (i.e., if a sequence is

of x or less quality, then exclude it from the analysis). Variations of the Smith-Waterman285

algorithm are then used to match and align similar sequences. Once the sample sequence has

been aligned to the reference sequence, various statistical approaches are used to identify the

most likely genotype, including Bayesian inference57,94, frequentist hypothesis testing307, and

others318. More recent algorithmic enhancements use local sequence assembly to mitigate er-

rors caused by aberrant alignments and to detect complicated sequence differences between

the sample and the reference sequence253,209,166. ‘Error correction’ and hybrid-sequencing ap-

proaches generate high quality sequence data by correcting error-prone long read technologies

with high-fidelity short read sequencing technologies158,147. These error correction techniques

enable reference-free assemblies of larger genomes, reduce sequence alignment artifacts and

allow for the sequencing of genomes with no known reference sequence.

There are two major deficiencies in current analysis approaches with respect to the appreci-

ation of uncertainty and errors in DNA sequencing data. The first deficiency is that epistemic

uncertainties are currently not well quantified. The second is that uncertainty, even if quan-

tified, is often not properly incorporated into subsequent analyses and calculations. These

limitations are compounded by the fact that there are no software implementations that allow

for uncertainty quantifications to be carried through and used in routine downstream calcula-

tions and analyses. Moreover, software libraries for computing with epistemically uncertain
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data are almost non-existent and are not widely available to most practicing bioinformaticians.

We view the accurate representation and incorporation of uncertainties into DNA sequenc-

ing analyses as a necessary piece of a more general computational solution that generates full,

honest and robust determinations of the reliabilities of inferences stemming from these data.

It is important to recognize that heuristic filtering approaches essentially discard imprecise or

poorly collected/understood data, but these data should and can be included in the analysis.

4.1.2 Quantifying uncertainty

Among the various sources of error and uncertainty discussed above, those that are known

to arise through random processes or are a result of system-level variability can be modeled

using established statistical approaches. They are often times aleatory in nature because more

sequencing data will not reduce the resulting allelic variability; it would simply result in a

more precise characterization of it.

When errors are not known to be random and could instead be systematic in nature, then

established statistical approaches may not always conveniently apply. Systematic errors are,

in some cases, due to inaccuracies in instrument calibration or due to a bias in the way that

the instrument takes particular measurements191. As just one example in the context of DNA

sequencing in personal genomics applications, if either the reverse or forward DNA strand is

sequenced more than what one would expect through a random sampling of each, it is con-

sidered evidence of potential sequence bias. This type of bias leads to uncertainty about the

underlying sequence composition that is epistemic in nature; the analyst simply does not have

representative samples of both DNA strands. In these situations, the analyst has less or some-

times even no information about what the other strand looks like in terms of its allelic compo-

sition. This creates epistemic uncertainty about the true genetic sequence, and therefore one

cannot reasonably make any distributional assignments in lieu of the missing data.
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In situations where distributional assignments are not well justified, epistemic uncertainties

can often be conveniently modeled using intervals78. Intervals are a reflection of our inabil-

ity to assign any distributional information to the various possible states of some variable of

interest. The state of the art in DNA sequence analysis simply discards or ignores data that

show evidence of systematic error. But this is unnecessarily strict and throws away potentially

useful information. In the case of sequence strand bias, one conservative strategy might be to

construct an interval (in this case, a set) that includes all possible bases. Although such an in-

terval is a quantitative admission of ignorance, it can accurately represent the epistemic uncer-

tainty that results from one strand being sequenced less often than expected. This uncertainty

concerns one of the two DNA strands, the other of which may be well characterized. Instead

of discarding unreliable data, charactering its uncertainty and carrying these uncertain data

through analyses, although not always resulting in something easily interpreted, can in many

cases be useful. It remains an open question as to how one should model systematic uncertain-

ties in sequence data. Schemes are needed for understanding and better modeling systematic

uncertainties so that they can be accurately quantified and propagated through calculations.

In the sub-sections below we suggest two, of many possible, aspects of DNA sequencing

analysis where improvements in quantifying and propagating uncertainties can be achieved

using existing computational tools. We provide two hypothetical situations, in Box 1 and 2,

which exemplify how analysts might perform these computations in situations of pervasive

uncertainty. These methods and examples should not be taken as comprehensive solutions

to the problem at hand, but rather propositions. The challenge of accurately quantifying both

epistemic and aleatory uncertainties in DNA sequence related data sets and then subsequently

propagating them through analyses is not a solved problem. We hope to stimulate some dis-

cussion so that comprehensive solutions might, in the future, be found.
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4.1.3 Uncertainty about dependencies

Uncertainties about dependency relationships are an important consideration when combining

sources of error for making inferences based off of high-throughput DNA sequencing data,

as errors can result from varied or shared processes. As an example, multi-sample variant

callers use information spanning many different samples to generate calls. This means that

the variant detection between individual samples is not a completely independent process, and

so performing logical operations on these variants using information about their probability

of being correct cannot be done assuming their independence (Figure 4.1). When knowledge

about the dependency relationship between two variables is unavailable, their conjunction

(e.g., the probability of the joint event A & B) can be computed using the formula , where a

represents the probability of some event, A, to occur and and b represents the probability of

another event, B, to occur78,90. Similarly, the logical disjunction can be computed using the

formula . These represent the tightest possible bounds on calculations when we do not know

the dependence; they quantify our epistemic uncertainty about the underlying relationship

between A and B. It is in these cases that we are left to compute with intervals or even im-

precise probability distributions (if the input operands are distributions), rather than simple

point values and precise distributions. Interval analysis213,2,202,201,66 is the simplest method

for performing arithmetic and logical operations on interval data, and the results can be made

as precise as possible given the input values. Probability bounds analysis77,88,310,74,76 allows

quantities with epistemic uncertainty represented by intervals to be combined with random

distributions representing aleatory uncertainty in mathematical expressions. This method is

part of the theory of imprecise probabilities302; it allows calculations when only bounds on the

input distributions are known.
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4.1.4 Probability of shared alleles under conditions of uncertainty

Genomic variants can act as predictors of disease, disease progression, and outcome. In

cases of inherited genetic disease, even seemingly trivial uncertainty calculations may make

an important difference.

For instance, imagine a case where a pathogenic variant has been detected in a mother with

a 0.9 probability of being correct, but was detected in the son with a 0.5 probability of be-

ing correct (Figure 4.1). Typically, analysts filter out low-quality variant calls, which, in this

case, would result in an analysis that says the mother and son do not share this variant. Instead

of filtering the lower-quality variant, one could instead calculate the chance that this variant

is present in both the child and the mother. If we assume that the variant detection’s for the

mother and son are independent, then the probability that they both have the variant is 0.9 ×

0.5 = 0.45.
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Figure 4.1: Here, we demonstrate how uncertainty about dependencies results in requiring the necessary
framework for computing with interval values, which are quantitative representations of epistemic
uncertainty. Uncertainty about variant detection depicted as blurring (left) and encoded as probabilities
that are logically conjoined (right) using calculations that assume independence or calculations that
make no assumptions about their relation.
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In many practical sequencing applications, variants are detected using information spanning

multiple related or unrelated cohorts, so genotype inferences are no longer made in an entirely

independent manner. Performing the same logical operations, but instead assuming nothing

about the dependence relation between the two estimates, results in the simple conjunction 0.5

& 0.9 degenerating into an interval answer, in this case [0.4, 0.5].

It is important to note that for pedagogical purposes, we assumed in this example that the

variant quality scores (which are translated into probability values) were computed with ab-

solute precision, and that they accurately represent uncertainty about the call. In practice, this

is rarely if ever the case, despite the fact that they are almost always reported as such. Indeed,

Phred quality scores that are less than 30 are considered unreliable, which translates into a

0.999 lower bound on variant calling accuracies. These quality scores have been shown to un-

derestimate the probability of variant calling errors made by various different variant-calling

algorithms225,209. This is perhaps a more pervasive and important issue needing attention from

the field, although some statistical and algorithmic approaches have been developed for gener-

ating more accurate quality scores57,220,296.

4.1.5 Model uncertainty

Statistical models inform most DNA analysis algorithms, but this task is often made difficult

by sparse data sets, a lack of prior knowledge for use in inferences, and the presence of im-

precise or otherwise uncertain input data (due to, for example, noisy or poor raw sequence

data). Methods that can make inferences in the presence of these complicating difficulties are

needed.

Robust Bayesian16,17,124,234,235,203 inference allows for the consideration and analysis of

imprecise sample data or ignorance about the appropriate prior assumptions (both of which

are the manifestations of epistemic uncertainty and can be modeled using intervals, bounding
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approaches and robust Bayesian approaches). In a robust Bayesian analysis, results are con-

sidered robust if neither imprecision in the input data nor differences in the prior probability

distribution have large effect on the output.

Like robust Bayesian approaches, confidence structures79,11,75 characterize inferential un-

certainty about statistical estimates from sparse or imprecise data, but the confidence structure

approach does not require the use of prior knowledge. Confidence structures are similar to

Bayesian posterior distributions because they estimate distribution parameters from sample

data. They give us confidence intervals for all levels of confidence (see Figure 4.2), and, with

them, analysts can guarantee statistical performance through their repeated use. Confidence

structures are useful in practical applications because they can be used in arithmetic or logical

calculations, and the results will still guarantee statistical performance, i.e., they will still yield

true confidence intervals.

4.1.6 Statistical inference under conditions of pervasive uncertainty

A common task in sequence analysis is to determine sequence composition in single- or

multisample data sets. This task is often made difficult by sparse data sets, a lack of prior

knowledge for use in statistical inferences, and the presence of imprecise or otherwise un-

certain input data (due to, for example, noisy or poor raw sequence data).

Imagine a data set comprising sparse DNA sequences generated from an individual of a

never-before sequenced population. The analyst is initially faced with two distinct problems

inherent in the particularities of the experiment: sparse data and no prior information about

expected allele frequencies. Suppose the available data come from eight sequence reads, and

we observe {T, T, A, T, T, T, T, T} at a particular locus (Figure 4.2), with each base char-

acterized as being detected with some degree of uncertainty, due either to known systematic

error or from combining estimates of error from multiple sources. The analyst is now faced
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with a third, and perhaps more difficult, analysis challenge: figuring out how to incorporate

epistemic uncertainty about base detection in the quantification of allele frequencies.

For the sake of simplifying this example, let us say that the bases are recorded with accu-

racies represented by interval probabilities: [0.9, 0.99], [0.8, 0.9], [0.4, 0.6], [0.8, 0.9], [0.98,

0.99], [0.7, 0.9], [0.4, 0.9], [0.8, 0.85], respectively. An analyst could then use a simple model

that computes allele frequencies as probabilities from a multinomial distribution. With each

base itself modeled as a Bernoulli process with interval probabilities, a confidence structure on

allele frequencies can be obtained using the formula Ix([kA, kA + 1], [nkA + 1, nkA]), where kA

and n are the number of observed alleles of interest out of the total, respectively, and Ix is the

regularized incomplete beta function [66]. The resulting confidence structure does not assume

or require prior knowledge about the expected allele frequencies and we can, from it, compute

confidence intervals about the estimate. In particular, we can say with 95% confidence that

the allele frequency of adenine at this locus is between 0.002 and 0.526. This broad range re-

flects the fact that there were only eight data samples, no prior allele frequency information,

and uncertainty about each base call.

4.2 Simulation studies

4.2.1 Simulation study design

Although conceptually appealing, the confidence structure approach to quantifying uncertainty

in high-throughput sequencing data has not yet been applied even to simulated data. To de-

termine whether this methodology (i) accurately propagates uncertainty in sequence data, and

(ii) does so in a way that improves estimates based off of these data in comparison to standard

methods, we performed a simulation study. Illumina sequencing data was generated for three

people, each with a data set that mimics 10X, 20X and 30X average sequencing coverage.
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1,000 variant sites were randomly chosen across the genome to be the focus of the simu-

lation study. To frame the simulation in terms of an analysis that is routinely performed in

human genomics labs and in clinical study, two of the three individuals will be considered

‘parent’ samples, while one will be considered the ‘child’ sample. Both parent samples will

be given 500 unique SNVs, with 250 being in the heterozygote form and 250 being in the ho-

mozygote form. The child sample will receive all variants in the same form as they are repre-

sented in each parent. Variants will be detected using the GATK HaplotypeCaller and de novo

variants will then subsequently isolated by returning the set of variants that are present in the

child, but not in either parent. Note that since all variants were ‘inherited’ (that is, present in

one or the other parent), there are no true de novo variants. As a consequence, any de novo

variants detected in the child represent false negative calls in the parents. Comparisons will be

made between the false de novo calls made by GATK, and the confidence structure analog.

It is important to note that the simulations will be evaluating two fundamental tasks in vari-

ant calling. The first is task is accurately determining an individual genotype given limited

sequence data, and the second is computing the probability of a shared genotype across related

individuals, where the genotype is determined with a degree of uncertainty for each member.

The de novo analysis is designed to efficiently compare both aspects of variant calling be-

tween GATK and the confidence structure method for sites where GATK failed to provide a

correct answer. De novo calls will be accurate if and only if genotype calls in the individual

members of the family are accurate. Exploring characteristics of the joint calls (the de novo

calls) will serve to evaluate the methods ability to propagate uncertainty in the underlying

genotypes to the joint inference.

Although limited in terms of its ability to fully evaluate the performance of the confidence

structure methodology, this pilot study will reveal key features and differences between the

confidence structure method and the conventional analysis performed with GATK. Further
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studies will be needed in order to evaluate the sensitivity and specificity of genome-scale vari-

ant calls with the confidence structure method. Of course, the confidence structure method is

also flexible in terms of being able to model a wide variety of error processes (both aleatory

and epistemic in nature), and so a careful consideration and evaluation of these errors will be

needed before the confidence structure methodology can be applied in more practical settings.

Illumina sequence data were simulated using ART, version 03.19.15, with 150 bp paired

end reads. For both the confidence structure method and GATK, raw sequence reads were

aligned to the hg19 human reference sequence, and duplicate reads were marked using Picard

MarkDuplicates version 2.0.1. GATK HaplotypeCaller was used to call variants according

to the developers recommendations, and de novo calls were isolated by returning the set of

variants that are present in the child, but not in either parent.

Confidence structure calls were made by considering, for each sample, all possible geno-

types. For each sample, supporting reads were extracted from the same alignments used for

the GATK pipeline, using the samtools pileup function version 0.1.19-44428cd. Homozy-

gous genotype probabilities were formulated in the following way: p(Gg) = p(Aa|d)2, where

d represents reads that support the Aa allele. g, in this case, represents the homozygous sub-

set of all possible genotypes and a represents their corresponding alleles. p(Aj|d) is mod-

eled with a multinomial confidence structure, which is constructed using a special formula-

tion of the regularized incomplete beta function; Ix([kA, kA + 1], [nkA + 1, nkA]) (see above

for more details). Heterozygote genotype probabilities were formulated in a similar way:

p(Gg) = 2 · [p(Aai|d) · p(Aaj|d)], where i and j are matrix coordinates of the non-homozygous

components of a Cartesian product between two {A, T, G, C} sets. De novo calls were gen-

erated by performing pairwise logical conjunctions using the resultant individual genotypes

that were computed for both the child and parent samples. If the most likely genotype was

anything other than the true underlying genotype, then it was considered a false de novo call.
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For the purposes of this small pilot study, all probability bounds operations were performed

assuming variable independence.

4.2.2 Results

Out of the 1,000 loci assessed, GATK calls resulted in 21, 49 and 113 false de novo calls in

the 10X, 20X and 30X data sets, respectively. In comparison, the confidence structure method

resulted in 2, 5 and 26 false de novo calls in the 10X, 20X and 30X data sets, respectively. In

other words, using the confidence structure methodology recovered 94%, 90% and 77% of the

variants missed by GATK.

The vast majority of variant sites that were miss-called as reference by the GATK have a

0 value for non-reference genotype probabilities. Of course, this invariance is not very infor-

mative. In contrast, the confidence structure method accurately characterizes the underlying

uncertainty, and can be expressed in simple terms by looking at the width of the resulting con-

fidence interval (Figure 4.3). Indeed, if we plot the distribution of confident interval widths

from the true positive sites and false negative sites in the parents (with respect to GATK

calls), the widths of the false negative sites are significantly larger than those of the true nega-

tive sites (see Figure 4.5, for all panes p<0.05, Kolmogorov–Smirnov test).

Importantly, if genotypes that are used as input for the de novo analysis are uncertain, the

result of the de novo analysis is also uncertain. In general, this operation using GATK calls

does not result in an accurate representation of the uncertainty in such an analysis, because

computing with input genotyps from GATK calls in such a way that accurately propagates

the uncertainty is not a straight forward process. For confidence structure genotype infer-

ences, that uncertainty propagation is straightforward, and our initial analyses suggest that

these structures accurately represent the underlying uncertainty (Figure 4.4).
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4.3 Concluding remarks

4.3.1 Uncertainty in DNA sequencing data

As DNA sequencing technologies migrate from science to commerce, incentives to publish

full accounts of error rates diminish. Even if commercial entities have access to large-scale

in-house sequence validation data, proprietary and business interests may prevent open pub-

lication of these critical data. Commercial entities now routinely provide fee-for-analysis ser-

vices, but cannot, or otherwise choose not to, release specific information about data process-

ing procedures used in the analyses. Although practically useful, and perhaps even reliable

for the problems at hand, this practice fundamentally violates basic conventions required to

call the endeavor science. Furthermore, many of the most accurate and most widely used soft-

ware tools for sequence alignment and variant detection are, in fact, closed-source and their

algorithms are described only in general terms without explicit, published definitions (e.g.,

novoalign, GATK HaplotypeCaller). As such, they are not available even to scientists work-

ing on applied problems. In principle, software tools can be partially validated against syn-

thetic data whose true nature is known and specifically described, but validation experiments

performed on real, and often more complex, data are generally necessary for making post-hoc

determinations of sequencing error rates. Indeed, methods that perform similarly with syn-

thetic data may perform decidedly differently on real data209. Thus, costly empirical work is

generally needed for better characterizing specific or more global sequencing error rates aris-

ing from the various sources of error.

Our view is that error estimates and related uncertainties should be incorporated into anal-

yses as they arise, from uncertainties in initial measurements to uncertainties and errors from

combinations and mathematical manipulations of data and inferences. This strategy allows

for dynamic control over error rates and false findings, and it leverages the available data for

159



responsive and real-time estimates of putative errors. We view uncertainty propagation and

post-hoc error quantifications as complementary approaches, and many studies have found

practical use in quantifying errors and accuracies of inferences in a post-hoc manner209,225,73.

Here we have focused on describing uncertainties arising in detecting DNA sequences and in

differences between sample and reference sequences, but other techniques uncover informa-

tion on higher-order biological phenomenon. One such example is Hi-C169, which is a method

that allows researchers to better understand the three-dimensional organization of DNA in

the cell169,61, microbial community composition15,31, and others274. Higher-order inferences

should be made with algorithmic and statistical strategies that allow for the full appreciation

of uncertainties in underlying measurements and determinations, as validating these inferences

can sometimes be difficult due to the complexity of these systems and the rarity and precious

nature of the underlying biological samples.

There is a need for rigorous uncertainty accounting across DNA detection and downstream

sequencing-related analyses. As we progress through a scientific era in which nucleotide res-

olution studies are becoming the normal means of genetic dissection, science has found that

even single nucleotide mutations can result in serious human disease182,263. It is therefore

dangerous for an analysis to be wrong about any given variant call, particularly for biological

samples that cannot be used for secondary studies or for orthogonal validations. Robust and

full uncertainty accounting allows the analyst to better understand and predict when data and

inferences are reliable and when they are not. This in turn informs data collection efforts, im-

proves the reliability of published biological inferences based on error-prone DNA sequencing

technologies and improves the quantitative rigor associated with all analyses based on DNA

sequencing.
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4.3.2 Confidence structure models

We have presented confidence structures as one way to improve uncertainty modeling in

DNA sequencing data. Unlike current strategies, confidence structures provide a rich suit of

methods that enable the simple use of and propagation of comprehensive characterizations

of uncertainty through a number of complex downstream calculations. Indeed, the methods

described here are general in that they can be used to estimate genetic disease risk, compute

population parameters and facilitate the robust reporting of genetic results to patients.

Our simulation studies provide an initial demonstration of one simple application of confi-

dence structure methods. Confidence structure based genotypes were computed for individual

samples and across related samples for identifying de novo sequence variation. The results

are promising in that the confidence structure methods seem to accurately characterize and

propagates uncertainty about genotypes through simple calculations. Current methods do not

provide obvious methods by which uncertainty can be propagated through downstream calcu-

lations and, as a consequence, these methods represent an important improvement over current

approaches.
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Figure 4.2: Here, we show how variability in sequence composition can be characterized using a statisti-
cal inference routine that can compute over epistemically uncertain input data, which in this case refers
to interval probability values characterizing base calling errors. Sequence data (A) are used to estimate
the frequency of an allele (B), in this case for adenine, at a particular locus using a multinomial model
and confidence structures for statistical inference.
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Figure 4.3: Confidence structure genotype inference for loci associated with 21 GATK false de novo calls
in the 30X sequence data set. 50% confidence intervals are plotted for genotype probabilities for all
possible genotype combinations for each the 21 loci for the ’father’ (right) and ’child’ (left). The vast
majority of the loci contain confidence structure genotype calls that are easily distinguishable from ran-
dom sequence error, although loci with large degrees of uncertainty are represented by correspondingly
large intervals.
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Figure 4.4: Joint genotype probabili es between the ’father’ and ’child’ using confidence structure geno-
type inference are plo ed for 21 loci spanning false de novo calls made by GATK on 30X coverage se-
quence data. Uncertainty in the joint genotypes is encoded in the width of the 50% confidence intervals
for each loci. Note that all but 2 loci result in clearly distinguishable genotype calls. The locus on the
bottom has large uncertainty due to the fact that input genotypes from both the ’child’ and ’father’ sam-
ples contained a relatively large degree of uncertainty. As a consequence, the joint probability is also
represented as being uncertain.
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Figure 4.5: Histograms and density plots of the widths of confidence intervals for true nega ve de novo
genotypes and false de novo genotypes with respect to GATK calls. For each coverage level, the widths
of 50% confidence intervals for confidence structure estimates of true negative de novo genotypes are
plotted in blue and false de novo genotypes are plotted in red. In general, the widths of intervals for the
false de novo calls are larger, and as a consequence represent loci whose underlying sequence data are
more uncertain than true negative calls (p<0.05 for all coverage levels, Kolmogorov–Smirnov test).
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5
Conclusions

In this doctoral thesis, we pursued four distinct but intimately related studies aimed at assess-

ing and improving the reliability of analyzing individual genomes, and assessing the feasi-

bility of using individual genomes for genomic-guided medical care. The first study focused

on assessing the reliability and accuracy of variant calling in exome and whole genome se-

quencing data. Predictive models were also designed for recovering missed sequence variation

(false-negative detection). The second study focused on assessing the usefulness and practi-
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cality of sequencing a single human genome in the context of clinical care. The third study

focused on using high-throughput sequencing technology in a robust way to facilitate the dis-

covery of the genetic basis of a Mendelian disorder. The fourth and final study focused on

developing methods for comprehensive uncertainty characterization in the context of detecting

human sequence variation, so as to increase the reliability of these data.

We have found that there are still several challenges in using high-throughput DNA se-

quencing technologies for applied tasks. For example, SNV detection is thought to be a rela-

tively simple analysis task, but applying the most popular analysis methods to the same data

set results in sets of SNVs that are widely discordant. Agreement between different INDEL

detection methods applied to the same data set is even worse. Furthermore, if different se-

quencing technologies are used to sequence the same sample, the SNVs and INDELs that are

detected in the resulting sequence data are also discordant. Variant calling is of course far

from a solved problem, and new methods are needed to generate robust results that contain

full characterizations of the underlying uncertainty. Predictive methods in the context of re-

sults from many callers can offset the likelihood of missing important sequence variation, but

the generality of models developed with validation data is thus far unclear, and more work

is needed. In chapter 1, guidance on how to generate reliable analysis results given current

technologies and cost considerations have been crafted, and important future directions for the

field are discussed.

In chapter 2, we found that incorporating the use of an individual genome into the study and

clinical treatment of a person is indeed feasible, given current technologies. However, storing

genome-scale sequencing data in their full and most informative form is currently not possi-

ble, and the informativeness of a single genome is to some degree dependent on and limited

by the condition being studied, as well as the time in which the assay was performed. Early in-

tervention, we believe, will be where genome-scale sequencing will exert most of its value. In
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the study case, genomic information was useful for his ophthalmological care, but weakly so

for his neuropsychiatric disorder. We found pharmacologically related sequence variation to

be quite informative and useful for current and future care, and his DBS for his OCD demon-

strated a positive influence over his OCD symptoms.

In chapter 3 we show evidence that mutations involving TAF1 contribute to a new syn-

drome characterized by global developmental delay, intellectual disability, characteristic facial

dysmorphologies, generalized hypotonia and other recognizable features. During the variant

prioritization steps of one large pedigree containing affected individuals, we found that more

variants are reliably eliminated when a greater portion of the family is incorporated into the

analysis. Based partly on findings in chapter 1, we suspect that this observation is likely due

to varying false positive and false negative rates across sequencing and informatics platforms.

In using a large pedigree for variant prioritization in the context of applying multiple analy-

sis pipelines to each sample, we were able to simultaneously eliminate likely false-positives

while maximizing the detection of true positives. This study highlights the need for more

comprehensive family-based study designs, and it demonstrates the benefits of focusing high-

throughput sequencing efforts on studying large related cohorts, where intra-familial relation-

ships allow for more rigorous variant filtering and identification of true positive alleles that

might be contributing to a disease phenotype.

In the last chapter and final study, new statistical algorithms for characterizing high-throughout

sequence data were developed, and simulation studies were undertaken. Methods for propa-

gating holistic uncertainty quantifications of sequence variants are needed so that downstream

analyses can take advantage of the known existing uncertainty. Confidence-structure based

models were formulated to account for the most basic forms of sequence uncertainty, and

these methods were used to detect de novo sequence variants in a simulated trio cohort. Com-

parisons with GATK, a popular analysis tool, show that the new methods are more sensitive
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and at the same time propagate uncertainty in a way that makes the reliability of the under-

lying data apparent. This preliminary work is promising, as the application of these methods

represent an entirely new approach to sequence analysis which enables simple and obvious

procedures for propagating uncertainty through all downstream calculations. The application

of these methods can be of use in a variety of different fields and analyses. For example, these

methods can be used to assess the genetic risk of disease, estimate population characteristics

and in general enable reliable analysis for use in applied settings where clinical tasks require

robust results that are honest about the underlying uncertainties.
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