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Abstract of the Dissertation 

Population Genetics and Experiments in Metabolic Enzymes of Drosophila melanogaster 

by 

Erik Lavington 

Doctor of Philosophy 

in 

Graduate Program in Genetics 

 

Stony Brook University 

2015 

Control of metabolic flux, the flow of metabolites through a complex metabolic network, is of 
importance in understanding how an organism is sensing and responding to nutrient changes in its 
environment. Metabolic flux control can be measured for, and a control coefficient assigned to, 
each enzyme in a pathway. Measuring metabolic flux control in multicellular organisms is 
complicated by the fact that nutrient sensing and metabolic flux control may vary by tissue type. 
Major effects should be detectable in genomic information, as enzymes with high control 
coefficients will exhibit genetic patterns of adaptation when the pathway is under selection 
pressure. I used genetic variation within and among populations of Drosophila melanogaster, as 
well as divergence between D. melanogaster and the closely related D. simulans, to identify 
candidate genes for experimental study. I then conducted experiments with candidate genes using 
tissue specific RNA interference knockdown, focusing on two enzymes comprising the 
glycerophosphate shuttle in the context of starvation resistance, adipokinetic hormone (AKH) 
signaling, the Drosophila analog of glucagon signaling, and Insulin/Insulin-like signaling. None 
of the genes that I studied had a significant effect on starvation resistance when knocked down in 
Insulin-like protein secreting cells. I found that glycerophosphate oxidase, but not 
glycerophosphate dehydrogenase, significantly increased the average time to death in starvation 
conditions when knocked down in AKH secreting cells. Because the glycerophosphate shuttle is 
important in transferring nicotinamide adenine dinucleotide equivalents between the cytosol and 
inner matrix of the mitochondrion, this result implicates the coupling of reduction-oxidation state 
with AKH signaling.
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Introduction 
 
The purpose of this dissertation was to use evidence of adaptation in the metabolic network of 

Drosophila melanogaster to find candidate genes for further testing in the context of a phenotype 

in which metabolism is expected to play a central role. I used a novel approach correlating 

expression data from one population with SNP allele frequencies for 20 populations along a 

latitudinal gradient. I compared these results with three widely used tests of selection to determine 

what, if any, patterns are shared between tests. I then tested candidate genes as to their effect, if 

any, on starvation resistance using tissue specific knockdown of gene activity.  

Experiments designed to find candidate genes for more detailed study are typically strictly forward 

genetics screen on a particular phenotype. Candidate genes are those that have a major effect on 

the phenotype among all genes tested, often most of the genome. How the candidates arise are a 

function of the experimental design, from the type and amount of genetic variation to the 

phenotypic measures. Knock-out lines of deletions covering the genome in an otherwise isogenic 

background work well to determine the structure and components of a network but ignore 

population variation. Quantitative trait mapping using inbred lines uses population variation but 

for two, and only two, lines.  

Tests of genetic patterns of adaptation have been developed for use prior to the relatively new era 

of affordable high-throughput sequencing has been applied to new genomic data sets. Fay et al 

(FAY et al. 2002) used the amino acid replacement to synonymous substitution ratio (A/S) and 

assumptions of the McDonald-Kreitman tests on 45 genes in Drosophila melanogaster to 

determine whether positive selection is acting on particular loci,  in contrast to  demographic events 

which effect all loci similarly. Shapiro et al (2007) took this further with 419 genes and  Mackay 

et al (MACKAY et al. 2012) performed McDonald-Kreitman (MK) tests (MCDONALD and 

KREITMAN 1991) across the entire genome of Drosophila melanogaster for both coding and 

modified MK tests for non-coding regions (JENKINS et al. 1995; ANDOLFATTO 2005; EGEA et al. 

2008). Studies using Fst outlier tests are quite common, as are software resources (BEAUMONT and 

NICHOLS 1996; ANTAO et al. 2008; FOLL and GAGGIOTTI 2008). Hohenlohe et al  (2010) used both 

Fst scans between three populations of fresh water and marine three-spine sticklebacks. They 
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found that several regions of significantly increased or decreased Fst overlapped when comparing 

the three freshwater populations and that some of these significant outlier regions overlapped with 

previously described QTL linkage groups. 

In contrast to commonly used methods using evidence of adaptation to find candidate genes for 

further testing, I used a novel approach focusing on a limited set of genes, rather than the whole 

genome, correlating expression data from one population with SNP allele frequencies for 20 

populations along a latitudinal gradient. While it has been common to use one or two tests of 

selection, I also compared these results with three widely used tests of selection to determine what, 

if any, patterns are shared between tests. I then tested candidate genes as to their effect, if any, on 

starvation resistance using tissue specific knockdown of gene activity.  

Metabolism is of central importance to life. Understanding the control of flux through metabolic 

pathways is of interest for a broad scope of study. It is believed that most enzymes in the pathway 

have little effect on flux when their activity is modified and therefore have little control of flux 

(Fell 1998; Olson-Manning et al. 2013). Observations of large whole metabolic shifts or individual 

metabolic enzyme activity associations with pathology have moved, with our increased 

understanding, from assayable effects to defining causes and targets of treatment (Martins et al. 

2006; Kroemer and Pouyssegur 2008; Fontana et al. 2010, to name a few). For example, cancer 

metabolism includes the founding, and the subsequent modification, of the Warburg effect which 

was initially thought to be the down regulation of mitochondrial oxidative phosphorylation, but 

now is accepted as the up regulation of the glycolytic pathway (Bensinger and Christofk 2012). In 

addition, metabolic enzymes have become potential targets for drug therapies alongside classical 

signaling pathways (Wu and Zhao 2013; Losman and Kaelin 2013). Research in longevity has 

implicated metabolic enzymes indirectly as downstream targets of the Insulin/Insulin-like 

signaling pathway (Partridge et al. 2011) and lifespan studies in our lab with Drosophila 

melanogaster have also shown direct effects of central metabolic enzyme activity on lifespan 

(Talbert et al., in review). Consequently, a better understanding of metabolic flux control and the 

role of metabolic enzymes in life history traits promises to yield insights into how these genes may 

be used as targets to treat human disease.  
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Experimental studies to evaluate flux control through a metabolic network require a great deal of 

prior knowledge and complex experiments for each enzyme. The goal of such metabolic control 

analysis is to measure the “control coefficients” for each enzyme by perturbing enzyme activity 

and assessing flux or some proxy. The control exercised by a step enzyme is calculated as the 

change in defined output of the network (flux) given the either increased or reduced activity of that 

enzyme. To understand the relative control across an entire network, this must be repeated for a 

range of perturbations for each enzyme (Fell 1992).  

In an example of estimating the flux control from sucrose to starch in a potato tuber (Geigenberger 

et al. 2004) used data collected from several studies to determine control based on an approximate 

control coefficient. They calculated the control coefficients from each of the studied enzymes. The 

data from experiments using tubers or isolated discs of tuber tissue were all normalized to 

respective full activity (“wild-type”) levels for comparison across all of the enzymes. The control 

coefficients were calculated as the slope of curves near full activity of the enzyme, with the 

expectation that most would   be small. With only limited information about the structure of the 

network, one might expect flux from sucrose to starch to be controlled at a step closer to the branch 

points of sucrose or glucose-6-phosphate (G6P) and not the amyloplastidial ATP/ADP translocator 

(AATPT), yet this is what they found. This counterintuitive conclusion would also be missed if 

one were to focus on only the direct enzymatic pathway from sucrose to starch, thus highlighting 

the importance of including as many steps involved in the measured flux as possible.  

Given the difficulty of experimentally quantifying flux control even for a single enzyme through 

a network as large and complex as central metabolism, it would be important to utilize other 

observations to produce a candidate list of enzymes that are most likely to control flux. We might 

assume that natural selection acts upon the flux of a pathway and the response to selection and 

associated evidence appears in the genes with the largest control coefficients (Eanes 2011). Again, 

we would expect that most enzymes have low control coefficients (Kacser and Burns 1981) and 

would not stand out when looking at molecular data. Dykhuizen et al. (Dykhuizen et al. 1987) first 

combined metabolic flux control theory with fitness measures (assayed as growth rate) to predict 

the control coefficients of two enzymes involved in lactose metabolism in Escherichia coli, β-

galactosidase and β-galactoside permease. Using chemostats, with lactose as the limiting nutrient, 

they measured relative fitness of strains with known enzyme activities. Except for genetic variants 
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with very low β-galactosidase activity, they were able to predict fitness of E.coli strains via flux 

control (most showed low control coefficients). Changes in β-galactoside permease, having a much 

larger control coefficient than β-galactosidase, resulted in large changes in fitness whereas even 

very large changes in β-galactosidase activity resulted in only small changes in fitness until activity 

levels were extremely low. Consequently, if the environment favored shifting flux in the pathway 

one might expect genetic variation in expression to appear at the permease step.  

With an association between fitness and metabolic flux control, we can connect flux control with 

molecular signatures of selection within a network of interest. Given the central importance of 

metabolism, we could reasonably expect variation in glycolytic flux to be a target of selection for 

many traits, including starvation resistance, lifespan, fertility and fecundity. However, the presence 

or absence of flux control can be inferred in cases where the footprint of selection can be observed 

in molecular data (Eanes 2011). For example, when Flowers et al (2007) investigated patterns of 

adaptive evolution in glycolytic enzymes of D.melanogaster they found these signals clustered 

around the major branch point glucose-6-phosphate. While current high-throughput sequencing 

methods have made it relatively easy to scan the entire genomes of both model and non-model 

organisms for genetic variation (Stinchcombe and Hoekstra 2008; Fabian et al. 2012) such a wide 

view over networks as large and complex as metabolism would be expected to yield large numbers 

of non-interacting targets. We chose to focus on a particular portion of the metabolic pathway to 

find candidate genes that may have local control so as to generate fine-grain analyses. 

With this focus on the glycolytic pathway, our lab has used data from high-throughput sequencing 

techniques and the population genetics of the system to predict the enzymes that are under adaptive 

selection in a relatively recent evolutionary time scale in Drosophila melanogaster. This may 

identify loci that we suspect have significant flux control (Eanes 2011). The populations in our 

study were sampled along a latitudinal gradient on the eastern coast of North America, from the 

southern end of Florida to Maine, as well as from further inland in Sudbury, Ontario. This 

historically tropical species has adapted to temperate climates since its colonization in North 

America less than 200 years ago, and  maintains stable local populations in the northern as well as 

the southern parts of its range (Reaume and Sokolowski 2006). Many of the genes in this pathway 

possess SNPs that vary in a latitude-dependent fashion (Sezgin et al. 2004) that posits a gradient 

in local tropical-temperate selection. Specifically, we used sequence data from the DGRP lines 
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(Mackay et al. 2012) and calculated an allele effect on cis-acting whole-fly adult gene expression 

(Ayroles et al. 2009) for each SNP. We then used bulk pyrosequencing to estimate SNP allele 

frequencies across the 20 populations (Lavebratt and Sengul 2006; Doostzadeh et al. 2008). 

Results from a principal component analysis of the variance-covariance matrix of population SNP-

associated expression variation across the north-south cline provided a multivariate description of 

patterns of expression change with latitude. It predicted a general down-regulation of enzymes at 

the entrance to the glycolytic pathway and an up-regulation of cofactor shuttles, Gpdh and Gpo-1, 

as well as on the mitochondrial side of the glutamate-aspartate shuttle. The genes studied here, 

Gpdh, Gpo-1, and HexA, are significant players in that analysis. 

Additionally, experiments in our lab (Talbert et al., in revision.) have shown that metabolic enzyme 

activity perturbation can have a significant effect on lifespan, oxidative stress resistance and 

starvation resistance. The experiments were performed with lines of D. melanogaster that 

compared ‘full’ activity against ‘reduced’ activity genotypes that were generated by P-element 

mutagenesis. For each gene, many mutant alleles were screened and ‘full’ activity and 

‘knockdown’ or ‘knockout’ alleles were saved, assayed, and placed in identical genetic 

backgrounds using a controlled cross design(Merritt et al. 2006). Because dietary restriction is an 

important feature in life span extension (CHIPPINDALE et al. 1993; PARTRIDGE et al. 2005; TATAR 

2011; PIPER et al. 2014), a diet effect was also tested in the lifespan experiments. Results show a 

significant effect of Gpdh, HexA, Gdh, and Men activity on lifespan for one or both diets. 

Reduction of Idh activity had no effect on lifespan, even though the expected dietary effect was 

still observed. Mdh2 activity perturbation had a significant effect on low nutrient food, but not 

with high nutrient food. Also of note is that there was no diet effect (wherein flies are expected to 

be longer lived on low nutrient food) (PARTRIDGE et al. 1987; CHIPPINDALE et al. 1993), of Gpdh 

genotypes. The results of starvation resistance are all significant. The result of HexA hints at a 

possible trade-off between longevity and starvation resistance. It is of special interest that Gpdh 

showed a significant extension of life span in the genotype with lowered activity. Reduced 

NAD+/NADH ratio was first associated with starvation in rat livers(KREBS 1967) and later 

confirmed in D.melanogaster (ZHU and RAND 2012). Gpdh and Gpo-1 represent the cytosolic and 

mitochondrial, respectively, sides of the glycerol-phosphate shuttle that is used to transfer 



 

6 

 

NAD/NADH equivalents and thereby should play a direct role in the reduction-oxidation (redox) 

state of the cell (O’Brien and MacIntyre 1972).  

Starvation resistance is an important phenotype in wild Drosophila. Heritability for starvation 

resistance has been reported as near 1.0 (SERVICE and ROSE 1985), indicating that the vast majority 

of variation is genetic. Selection experiments have also shown that there is great genetic variation 

for starvation resistance in wild populations (HOFFMANN and HARSHMAN 1999). While latitudinal 

variation for starvation resistance has been seen in Indian populations (KARAN et al. 1998), it has 

not found in South America or Australia (ROBINSON et al. 2000; HOFFMANN et al. 2005). 

Although high heritability and lack of latitudinal variation outside of India may diminish the 

importance of starvation resistance in natural populations, starvation resistance remains an 

attractive study system to test candidate genes given and association of metabolism to starvation 

resistance in QTL studies (HARBISON 2004; AYROLES et al. 2009). 

This study investigates what effect, if any, perturbation of the metabolic pathway has in the context 

of adipokinetic hormone (AKH) signaling during starvation. AKH producing cells in the corpora 

cardiaca (CC) are required for starvation induced hyperactivity (Lee and Park 2004). Furthermore, 

metabolic state sensing has been linked to AKH release from the CC cells in response to starvation 

through AMPK (Braco et al. 2012). HexA uses ATP as a cofactor and is near the major branch 

point of glucose-6-phosphate (Flowers et al. 2007) and Gpdh, and Gpo-1 are partners in the 

glycerophosphate shuttle and use NAD(P) and FAD as cofactors, respectively. Position in the 

overall pathway, the use of highly connected cofactors and predicted metabolic flux control makes 

these genes attractive candidates to affect starvation response by control of metabolic flux and 

therefore metabolic state.  

To test the effect of candidate genes in AKH signaling starvation response, I have used tissue 

specific RNAi knockdown using RNAi constructs from the Transgenic RNAi Project (TRiP) under 

the control of GAL4 UAS and GAL4 drivers expressed under the control of Akh (Lee and Park 

2004) and dILP2 (Rulifson et al. 2002) Drosophila melanogaster promoters. Insulin signaling is 

known to play a role in starvation resistance (Clancy et al. 2001; Ikeya et al. 2002; Broughton et 

al. 2005; Wang et al. 2008) although coupling of metabolic state with dILP release lies outside of 

the dILP producing cells (Geminard et al. 2009). The assay used is the same as used with the P-
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element lines, but this tests the effect of enzyme activity knockdown, by RNAi knockdown, on 

cells that are required for a starvation-induced behavior. The P-element excision lines reduce 

activity in all cells at all developmental times and could reflect the effect of perturbation of the 

response to a change in AKH signaling, rather than a direct effect on AKH signaling (e.g. timing 

or magnitude) (BHARUCHA et al. 2008). 
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Chapter 1 - A Small System—High-Resolution Study of Metabolic Adaptation 

in the Central Metabolic Pathway to Temperate Climates in Drosophila 

melanogaster 
Erik Lavington,1 Rodrigo Cogni,z,1 Caitlin Kuczynski,1 Spencer Koury,1 Emily L. Behrman,2 Katherine 

R. O’Brien,2 Paul S. Schmidt,2 and Walter F. Eanes*,1 

1Department of Ecology and Evolution, Stony Brook University 

2Department of Biology, University of Pennsylvania 

zPresent address: Department of Genetics, University of Cambridge, Cambridge, United Kingdom 

*Corresponding author:  E-mail: walter.eanes@stonybrook.edu. 

Associate editor: Michael Purugganan 

 

Abstract 

In this article, we couple the geographic variation in 127 single-nucleotide polymorphism (SNP) 

frequencies in genes of 46 enzymes of central metabolism with their associated cis-expression variation to 

predict latitudinal or climatic-driven gene expression changes in the metabolic architecture of Drosophila 

melanogaster. Forty-two percent of the SNPs in 65% of the genes show statistically significant clines in 

frequency with latitude across the 20 local population samples collected from southern Florida to Ontario. 

A number of SNPs in the screened genes are also associated with significant expression variation within 

the Raleigh population from North Carolina. A principal component analysis of the full variance– 

covariance matrix of latitudinal changes in SNP-associated standardized gene expression allows us  to 

identify those major genes in the pathway and its associated branches that are likely targets of natural 

selection. When embedded in a central metabolic context, we show that these apparent targets are 

concentrated in the genes of the upper glycolytic pathway and pentose shunt, those controlling glycerol 

shuttle activity, and finally those enzymes associated with the utilization of glutamate and pyruvate. These 

metabolites possess high connectivity and thus may be the points where flux balance can be best shifted. 

We also propose that these points are conserved points associated with coupling energy homeostasis and 

energy sensing in mammals. We speculate that the modulation of gene expression at specific points in 

central metabolism that are associated with shifting flux balance or possibly energy-state sensing plays a 

role in adaptation to climatic variation. 

Key words: energy sensing, metabolism, life history, clines, gene expression   variation. 
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Introduction 

A goal of modern evolutionary genetics should be to integrate our understanding of the causes of genetic 

and molecular variation among genes into larger functional contexts. The promise of exploring adaptive 

natural selection on all genes in the genome (Clark et al. 2007; Greenberg et al. 2008; Andres et al. 2009; 

Liti et al. 2009) has led to the expectation that we can predict how the inherent roles, properties, network, 

and pathway context of enzymes determine their relative participation in adaptive evolution (Lu and 

Rausher 2003; Cork and Purugganan 2004; Flowers et al. 2007, 2009; Alvarez-Ponce 

et al. 2009, 2012; Obbard et al. 2009; Ramsay et al. 2009; Jumbo-Lucioni et al. 2010; Eanes 2011; Clark et 

al. 2012). Using interspecific and intraspecific contrasts, it is claimed that a significant portion of the amino 

acid replacements among Drosophila species are mutations involved in adaptive change (Smith and Eyre-

Walker 2002; Shapiro et al. 2007), but little progress has been made in defining those context-dependent 

properties that determine the likelihood that a given gene participates in adaptive response. Although much 

of the focus has been on amino acid mutations, where functional effect is ambiguous in most cases, only a 

handful of studies have focused on geographic variation in expression polymorphism (Whitehead and 

Crawford 2006; Fraser et al. 2010; Fraser 2013). 

Drosophila melanogaster is one of the best models with which to explore natural selection in a geographic 

and ecological context. In temperate regions, the population is envisioned as a seasonal metapopulation, 

where populations die back during the winter followed by local reestablishment of populations in the spring 

that are seeded through survivors in basements, barns, and compost piles, and thus contributing to a local 

genetic continuity through time (Ives 1945, 1954; Reaume and Sokolowski 2006; Shpak et al. 2010; 

Garrigan et al. 2010). This local survival of populations has led to the expectation that there are adaptations 

that are associated with the colonization of cosmopolitan populations that span a wide range of 

environments from subtropical to temperate and that often are associated with seasonal variation in seasonal 

nutrient availability. Many adaptations must involve changes in metabolic architecture, as energy tradeoffs 

are known to shift along the climatic gradient. The presence of latitudinal clines in the frequencies of alleles 

in many metabolic genes (Sezgin et al. 2004) suggests this spatial-seasonal model is plausible for studying 

genetic response in a defined context, namely the pathways of central metabolism. There has been 

considerable progress in describing variation at the full genome level in D. melanogaster (Clark et al. 2007; 

Kolaczkowski et al. 2011; Vishnoi et al. 2011; Fabian et al. 2012). These studies have explored genome-

wide patterns of differentiation at very low resolution across the entire genome at geographic range 

extremes and matched them to coarse functional classes but have not examined patterns of variation in finer 

geographical detail in well-defined functional contexts. 
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The goal of this study is to evaluate clinal variation in single-nucleotide polymorphisms (SNPs) associated 

with cis-expression variation in central metabolic genes across D. melanogaster populations spanning a 

seasonal climate gradient in the eastern US and use this knowledge to predict geographic changes in central 

metabolic pathway architecture. It is expected that this can be used to identify gene targets and mechanisms 

of adaptation. The pathway represents the central flow and partitioning of energy as nutrient levels change 

(Gershman et al. 2007), and it is likely that this partitioning varies geographically with those life history 

challenges associated with somatic maintenance and reproduction. Moreover, aside from simple energy 

partitioning, it is well known that particular metabolites of central metabolism play key signaling roles in 

energy-state sensing. It follows that variation in expression of associated enzymes in close pathway 

proximity to these metabolites may respond to changing selection pressures to reset signal levels that couple 

nutritional state to overall downstream metabolic and stress responses (Moore et al. 2003; Kim and Dang 

2005; Kim et al. 2008; Rathmell and Newgard 2009; Wellen et al. 2009). 

Results 

General Summary of Clines and Expression Quantitative Trait Nucleotides 

We used bulk pyrosequencing to examine allele frequencies for 127 SNPs in 46 genes of central metabolism 

across 20 local populations spanning a latitudinal gradient from southern Florida to Ontario. SNP selection 

was not intended to be exhaustive but to use the bulk pyrosequencing approach to screen several SNPs per 

gene. The number of SNPs screened per gene depended partly on the resident variation, which varies 

considerably among loci. For example, six genes possess a single screened SNP, and several have as many 

as seven screened SNPs; the average number per gene is 2.6 SNPs. Each SNP was tested for clinal variation 

by a linear regression of allele frequency against latitude. We find that 53 of 127 

SNPs are significantly clinal in 30 of 46 genes at a< 0.05. We might have expected six to seven significant 

SNPs at this type I error rate, so the prevalence of clines in these genes is clear. Our tests of SNPs within 

genes are not statistically independent, and the possibility of reporting a gene with a significant cline simply 

because of type 1 error obviously increases with the number of SNPs sampled per gene. We are unable to 

test for a gene-wise error by controlling for the linkage correlation because the bulk pyrosequencing 

produces only a mean frequency estimate for each population. Overall, using a value cutoff of q < 0.04 

(Storey and Tibshirani 2003) that takes into account our multiple tests of clinal significance (but ignores 

within gene linkage disequilibrium), we still predict a significant cline in one or more SNPs in 30 of 46 

genes (supplementary table S1, Supplementary Material online). 
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Among genes, there is evidence for cis-expression effects for many of these SNPs. Our SNPs were selected 

for pyrosequencing focusing on amino acid changes and those SNPs acting best as proxies for haplotype 

structure. They were not preselected for cis-expression association. Many potential SNPs cannot be 

screened because they possess closely linked polymorphisms that overlap pyrosequencing primers or are in 

close proximity and interfere with the pyrosequencing estimate. Finally, a small proportion fails for 

unknown reasons. 

For each screened SNP, we tested association with expression variation using a nested analysis of variance 

(ANOVA) of the Affymetrix Drosophila 2.0 array expression data reported in Ayroles et al. (2009) and the 

original 37 sequences of the Drosophila melanogaster Genetic Reference Panel (DGRP) first released in 

2009 (Mackay et al. 2012). We observe cases of significant expression quantitative trait nucleotides 

(eQTNs) in 21 genes if we ignore nonindependence and multiple tests. Using multiple test criteria within 

each gene to control for a gene-wise error rate (Stranger et al. 2007), we find that 12 of 46 genes possess at 

least one significant eQTN in the coding region of one or both sexes using the FDR of 10%. Ten of these 

12 genes possess a significant cline in the most significant eQTN (supplementary table S1, Supplementary 

Material online). We should note that the relative allelic expression variation for several genes is not subtle. 

For example, in the DGRP, the relative differences in expression associated with the SNP alleles in Raleigh, 

NC, at Gpdh and Got2 are 47% and 29%, whereas those associated with the alleles at Idh-f3, Hex-A, and 

Pgd are 18%. For each gene, the SNP with the largest cis-acting effect was used with the SNP allele 

frequency to predict, assuming additivity, the mean gene expression expected for each gene and each 

collection locality (see Materials and Methods). This matrix of population-by-gene mean expression was 

used in the principal component analysis (PCA). 

PCA 

The PCA of the full geographic-expression data of 45 genes (Adh was removed) allows us to identify the 

major patterns of across population gene expression variation and covariation along the eastern US climatic 

gradient. We have carried out the PCA on the variance–covariance matrix of standardized eQTN 

expression. High gene loadings on the first principal component will reflect those genes with both strong 

allele frequency variation and the large average allelic effects on expression. The percent variances 

associated with the first three PCs were 50%, 12%, and 8%, respectively. Table 1 shows the individual gene 

expression loadings associated with the first three principal components, as ranked by by sign respectively, 

decreasing and increasing mean expression with increasing latitude. The population scores for the first PC 

axis shows a strong correlation with latitude (fig. 1; r = 0.833, P < 0.0001). This is because the most of the 

variance–covariance among genes in mean population expression is associated with the latitudinal 
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distribution of population allele frequencies. The six genes with the highest positive loadings and significant 

eQTNs are Men-b, Gpdh, Got-2, Gdh, Pdk, and Acon. The five genes with the most negative loadings and 

significant eQTNs are Idh-f3, Pgd, Tpi, UGPase, and Hex-A. 

To show overall patterns of increased and decreased expression, these gene loadings are placed into a 

central– peripheral metabolic pathway context in figure 2. The support associated with each step is scaled 

by the format of the arrow and the direction of expression change with latitude is indicated by color (see 

fig. 2). 

Discussion 

The goal of this study is to identify steps or nodes in the central and peripheral metabolic pathway of 

glycolysis where SNP-associated expression variation is an apparent target of natural selection in response 

to environmental correlates of latitude. In the apparent absence of isolating structures, geographic clines 

have frequently been interpreted as evidence of selection and adaptation to climate and associated variables. 

Our question is whether adaptation associated with the clines involves the modulation of gene expression 

in this pathway, and whether this modulation is focused on particular nodes, networks, or genes. In this 

study, we use a two-step approach where both latitudinal patterns and observed SNP effects on expression 

are integrated and then evaluated in the context of the central metabolic pathway to identify those steps that 

are most likely to be involved in climatic adaptation and suggest a mechanism. 

Several steps within this well-described pathway predict interesting shifts in metabolic architecture 

(highlighted in fig. 2) that we propose could reflect selection on either of two related phenotypes. The first 

phenotype is a shift in flux balance or the partitioning of flux. The genes most strongly associated with 

clinal climatic change are those linked with metabolites with the highest connectivity in the overall 

metabolic network. Wagner and Fell (2001) in assessing the network architecture of central metabolism in 

Escherichia coli (similar in metazoans) placed glutamate and pyruvate first and second in their connectivity 

rank, followed by CoA, 2-oxglutarate, glutamine, and aspartate (see fig. 2). Gdh, Got2, and Idh-f3 directly 

affect glutamate and 2-oxglutarate, and Got2 also affects aspartate well. Pdk, PC, and Men-b all impact the 

metabolism of pyruvate. Wagner and Fell (2001) did not address the energy cofactors, NAD/NADH, 

NADP/ NADPH, and ATP/ADP because those possess even greater connectivity. However, Hex-A, Pgd, 

Gdh, Gpdh, and Gpo-1 use these cofactors that reflect energy state. This observation raises the speculation 

that expression selection for genes at the nodes with the highest connectedness is central to changing 

metabolic flux balance, and it is expression variation in these genes that is responding to selection along 

the cline to shift this balance. 
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A second phenotype could be the cellular levels of the highly connected metabolites themselves and their 

effect on energy-state sensing in response to changing nutrient levels. The nutrient response networks are 

early features of evolution and appear widely conserved. In these networks, metabolite levels trigger 

downstream transcriptional changes to shifting nutrient input. The detection of nutrient state and its 

response generally acts through the levels of metabolites that are most reactive to nutrient input. For 

example, in plants where light, temperature, and CO2 affect photosynthesis, it is the sugars that signal 

energy levels and initiatedownstream gene transcription that determines plastic growth responses (e.g., 

Heisel et al. 2013; Xiong et al. 2013). Many studies in mammals have shown that perturbation of the 

enzymes of the central metabolic pathway sets energy state and determine insulin secretion especially 

through mitochondrial function (e.g., Guay et al. 2007). In D. melanogaster, there are comparable pancreatic 

models of energy or nutrient sensing that involve neurosecretory cells (Toivonen and Partridge 2008; Nassel 

and Winther 2010). 

This introduces the hypothesis that natural genetic variation in key metabolic enzymes may play a role not 

only in shifting flux balance but also in setting homoeostatic limits, acting as “energy-stats” that determine 

the nutritional set points that trigger downstream responses of the wellestablished sensing pathways in 

Drosophila (Baker and Thummel 2007; Savraj 2009). If the sensing mechanisms are universally conserved 

around the same common metabolites, then we should have in Drosophila the same interest in the enzymes 

associated with cofactor shuttles (see Eto et al. [1999], as well as certain branches that share metabolites 

with high connectivity [e.g., glutamate and pyruvate]). As discussed in more individual detail below, these 

shifts should involve the hexokinases, those enzymes of the NAD/ NADH cofactor or redox shuttles, and 

those enzymes at the glutamate node. Moreover, enzymes with function in the mitochondria also hold 

special interest because of well-established signaling responses to nutrient levels associated with 

mitochondrial function (Wiederkehr and Wollheim 2006; Baltzer et al. 2010; Cho et al. 2011). Therefore, 

we might propose that expression variation observed in genes encoding these enzymes may respond to the 

climatic variation along a latitudinal tropical-temperate gradient that varies seasonal and locally in the 

availability of nutrients. The unparalleled biochemical and physiological knowledge of many steps in the 

central metabolic pathway allows a functional interpretation of the consequences of expression variation. 

Overall, in the upper glycolytic pathway and its branches, there appears to be coordinated decreases in 

expression with latitude. Both of the principal hexokinase genes, Hex-A and Hex-C (Duvernell and Eanes 

2000), show lower SNP-associated expression with increasing latitude, as do the enzymes of the pentose 

shunt (G6pd, Pgd, TA), Tpi, fbp, Gapdh1, and UGPase. These reductions along with reduced Pepck suggest 

an overall decrease in gluco- and glyconeogenesis with latitude with an increase in fatty acid synthesis. The 

hexokinases have singly emerged as having jack-of-all-trade function in both animals and plants (Cho and 
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Yoo 2011) and especially in the roles of nutrient signaling associated with glucose and glucose- 6-phosphate 

(Moore et al. 2003; Cho and Yoo 2011). The role of glucokinase mutations in the misreading of glucose 

sensing in humans is very well established; many regulatory mutations in glucokinase reset the blood 

glucose levels where insulin in secreted, creating hypo- and hyperglycemia (Matschinsky 2005; 

Matschinsky et al. 2006). 

Here, the two major genes (Gdh and Got2) for enzymes coupled to glutamate metabolism in the 

mitochondria both show increases in population-level expression with latitude. Glutamate is important 

because it stands at the intersection of carbohydrate and amino acid metabolism and will clearly reflect 

nutrition status (Brosnan 2000). Both enzymes control the entry of amino acids into carbohydrate and 

energy metabolism. It is well established that glutamate is an important signaling molecule for energy state 

(Karaca et al. 2011). Moreover, regulatory mutations in human GDH are also associated with 

hyperinsulinism; they reset energy-state signaling associated with amino acid levels (Stanley 2004). Given 

GDH’s regulatory sensitivity to redox state, the parallel and elevated level of expression with the glycerol 

shuttle genes (Gpdh and Gpo1) is particularly intriguing. 

The third general observation is the increasing expression of Gpdh and Gpo-1 with latitude. Both enzymes 

are associated with the essential glycerol shuttle that transfers NAD/NADH equivalents into the 

mitochondria for subsequent use in oxidative phosphorylation. This is the major cofactor shuttle in insects 

(O’Brien and MacIntyre 1972; MacIntyre and Davis 1987; Carmon and MacIntyre 2010) and should control 

the redox balance in the mitochondria. The essential role of the NAD/NADH shuttles in nutrient sensing in 

mammals has been noted repeatedly (Eto et al. 1999), and it is well established that starvation in Drosophila 

significantly changes the redox ratio upward (Zhu and Rand 2012). Furthermore, by setting NAD/NADH 

ratio, this shuttle should couple metabolic status with transcriptional control through the sirtuins, the NAD-

dependent histone deacetylases (Imai et al. 2000) shown to affect chromatin silencing and impact life span 

in number of organisms (Imai 2011). Both members, Gpdh and Gpo-1, show enhanced activity, but this 

does not predict direction, just an increase in shuttle function in the north. 

Although a number of robust and novel connections emerge from our analysis, we note several caveats. 

The whole body measures of adult expression make it difficult to predict functional responses for genes 

whose enzyme products possesses roles in many tissues and often are functionally and physiologically 

reversible, possessing both energy producing and energy consuming roles (e.g., PGI). Other genes are more 

specialized (e.g., PEPCK in the fat body) and are effectively irreversible in those tissues, so the predicted 

response is less equivocal. Nevertheless, as first entries into these questions, we believe that we have 

recovered informative signal from the expression that is averaged across many tissues. 
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In some genes, there are undoubtedly SNPs with stronger expression effects that we have not screened. 

Although relatively comprehensive, the SNPs we evaluated with bulk pyrosequencing are not random. We 

emphasized coding regions, SNPs that are amino acid replacement polymorphisms, and those that are 

associated with haplotype structure. They were not initially targeted for expression effects. It is possible 

that although coding regions can have significant effects on gene expression (Kudla et al. 2009), we may 

have found better candidates for cis-expression SNPs in 50-noncoding regions (Massouras et al. 2012). 

Furthermore, the availability of suitable polymorphisms varies gene-by-gene, and we cannot screen every 

SNP with possible expression effects. In some cases, we have not screened the SNP with the greatest 

expression effect in a gene but a linked SNP that is in disequilibrium. In this case, our SNP is a weaker 

proxy for a SNP of greater effect. Therefore, we may underestimate the latitudinal change in cis-expression 

at some genes. Finally, we assume that the allelic effects estimated in the Raleigh DGRP do not significantly 

change across the cline. This is impossible to assess without independent studies as Ayroles et al. (2009) in 

other populations. 

Many of the SNPs are amino acid polymorphisms or are in linkage disequilibrium with amino acid 

polymorphisms. Some amino acid changes are associated with transcript expression, but others have no 

expression effects. These may have functional catalytic influence and are clinal because of these catalytic 

differences. For example, there are no cis-expression variable sites in the Pdp gene, but there are three 

prominent amino acid polymorphisms (all in linkage disequilibrium) that are strongly clinal. These residues 

in PDP might play a role in the regulation and activation of PDH. Without a detailed functional study, this 

cannot be determined and in many cases the required functional characterizations would be challenging. 

It is important to recognize that the absence of either cis-expression variation or clines in many genes is 

expected. This is because the control of flux in pathways and networks is likely to be distributed unevenly 

and concentrated at different steps as consequence of pathway architecture or the unique regulation of the 

enzymatic steps and pathway (Fell 1997; Olson-Manning et al. 2013). If extant expression variation reflects 

functional responses under selection, then the absence of cis-effect variation could simply reflect the lack 

of potential for step control at that point. Thus, the absence of effects, if real and not an artifact, is just as 

informative to understand the metabolic architecture as the presence. For example, Pyk and Idh, and the 

lower elements of the glycolytic pathway are possibly ineffective as targets of selection because they 

possess low control. Alternatively, some genes may possess pleiotropic constraints or tissue-specific 

tradeoffs or are poor mutagenic targets for cis-based expression variation. Without the independent, and 

albeit difficult, experimental assessment of metabolic control at each step (Eanes 2011), it is impossible to 

address this hypothesis. It is also unclear how increased or reduced activity in the near-equilibrium 

bidirectional enzymes with wide tissue specificity, such as the central glycolytic core (e.g., Tpi, Pgi, and 
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Eno), affects bias in glycolytic, gluconeogenic, or glycogenic flux. It is proposed theoretically (Wright and 

Rausher 2010) and shown empirically (Olson- Manning et al. 2013) that flux control localizes at the top of 

one-way pathways. However, the central pathway is not easily interpreted in that top–bottom context. 

The goal of our report is to integrate the population genetics of geographic variation of SNPs with gene 

expression effects and then interpret this integration in the functional context of the central metabolic 

pathway. From this integration, interesting associations emerge that suggest hypotheses about selection on 

the pathway that requires further consideration. We have not proven flux balance nor energy sensing as the 

phenotypes that has come under selection for these genes: Rather, we have introduced them as hypotheses 

that emphasize different roles of expression selection on metabolic genes. For example, this is in contrast 

to the often advanced hypothesis that genetic variation is maintained through temperature-dependent kinetic 

tradeoffs that maintain constant flux and performance along a thermal cline (Place and Powers 1979; 

DiMichele and Powers 1982; Hall and Koehn 1983). Our hypothesis, that energy sensing and resource 

utilization represent the functional basis for selection on metabolic enzymes across environmental 

gradients, generates predictions that can be tested experimentally. Driven by the need to understand diet-

associated ageing and causes of metabolic syndrome, huge progress has been made in unraveling the 

downstream components of energy sensing in D. melanogaster and other models (Taguchi and White 2008; 

Toivonen and Partridge 2008; Fontana et al. 2010), but the initial sensing mechanism is unknown. In 

Drosophila, experimental manipulation of gene expression is tractable using both P-element-associated 

knockouts of whole-body expression (Merritt et al. 2005; Eanes et al. 2006, 2008), as well as tissue-specific 

RNAi knockdown (Dietzl et al. 2007; Schnorrer et al. 2010). This should allow the targeted suppression 

and overexpression of genes of interest in the neurosecretory cells (Giannakou et al. 2004; Lee and Park 

2004) and the evaluation of sensing. The effects of these manipulations on energy sensing and associated 

life history phenotypes can then be evaluated. The study of genetic variation in central metabolism and 

adaptation is a long running and multidimensional problem generally associated with energy production 

(Zera 2011). However, the expanding participation of metabolic enzymes in roles outside the theme of 

simple energy production is increasingly being recognized (Kim and Dang 2005; Marden 2013), and this 

model advances a new role for expression and catalytic based genetic variation in metabolic genes in 

adaptation to changing environments. 

Materials and Methods 

Data Sources—Pathway  Genes Identified 

To assemble the 46 candidate genes presenting enzymes of the core pathways, we used FLYBase. Some 

genes possess multiple orthologs; one is the somatic member involved in core metabolism. We have used 
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several criteria to determine the most relevant member of each gene set. First is high homology to vertebrate 

members. Second, core enzymes have high somatic expression that is not specific to testis or ovaries. 

Central metabolic genes have exceptionally high codon biases. Third, mitochondrial proteins have high pIs 

(Hartmann et al. 1991; Dinur-Mills et al. 2008). In the case of genes with only a candidate gene CG 

definition, we have introduced abbreviations that are similar or identical with those used in mammalian 

names. 

As our database for SNP identification, we used the 37 D. melanogaster genome sequences released in 

August 2010 by the DGRP (Mackay et al. 2012). These sequences had already been assembled and 

annotated to the FlyBase reference sequence (version 5.12). Nevertheless, final choice of useful SNPs was 

carried out gene-by-gene by further manual inspection. The coding regions of each gene were extracted and 

the quality score for each base assessed. SNPs where the minority allele quality score was less than 30 were 

reset to the majority allele. Most of these cases appear as singletons. Finally, focal SNPs for the cline were 

selected where the minority allele was more than 0.10 in the DGRP. 

Selection of SNPs 

Many SNPs could not be screened by pyrosequencing because flanking polymorphisms bias amplification 

in the bulk preparation or the pyrosequencing step failed. Many SNPs were also selected before the Ayroles 

et al. (2009) expression data were available. Amino acid polymorphisms were favored. We also favored 

SNPs that were diagnostic of important haplotypes seen in the DGRP collection. We only used sites with a 

minority allele that was more than 10% in the Raleigh data, and attempts were made to minimize LD among 

sites by spacing SNPs at distance of more than 500 bp when possible. 

Population Collections 

In 2009 and 2010, we collected samples from 18 local populations across the eastern United States. Adults 

were collected by sweep net and immediately separated by sex. Males were preserved in 95% ethanol and 

stored at -70 oC. Females were allowed to oviposit, preserved, and stored. We also included the 2005 

population data from Raleigh, NC (Mackay et al. 2012);   we   obtained   34   inbred   DGRP   lines   from   

the Bloomington  Stock  Center.  We  included  two  collections (pooled) from 2007 and 2008 from Sudbury, 

ON. In each isofemale line, the progeny from the F1 generation was preserved in EtOH for bulk DNA 

preparation. Two female progenies were collected from each preserved line and pooled with the collected 

males in the bulk sample for pyrosequencing. By sampling two progenies per line in the F1 generation, we 

are sampling two to four independent chromosomes from the population per line, with an average of 3. The 

expected number  of  chromosomes  per  bulked  sample  is  therefore three  times  the  number  of  female  
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lines  plus  twice  the number of wild-collected males. The average number of independent genomes pooled 

per population sample was n = 114.7. The entire data base thus consisted of 2,524 genomes. The sources 

and sample sizes of the 20 population samples are provided in supplementary table S2, Supplementary 

Material online. 

Pyrosequencing 

Bulk DNA purification was performed with Puregene Core Kit A (Qiagen) using 42–100 flies per 

population (sample sizes in supplementary table S2, Supplementary Material online). We used 

pyrosequencing in the bulk DNA preps to estimate SNP frequency (Lavebratt and Sengul 2006; Doostzadeh 

et al. 2008). We checked the precision of the method by comparing the estimated frequency of each SNP 

to the expected frequency for the DGRP population based on the genome sequences (r = 0.99). 

Pyrosequencing was carried out using the PyroMark MD machine and peak heights scored to estimate SNP. 

Primers were designed using the PyroMark Assay Design software.  A  universal  biotinylated  primer  was  

used in combination with two locus-specific primers (Guo and Milewicz 2003). In a few cases, performance 

of universal primer was poor, and direct-biotinylated locus-specific primers were used. 

Clines 

Allele frequency estimates were arc-sine transformed (Sokal and Rohlf 1981) and tested by linear 

regression against latitude. Individual probabilities for single tests are determined by random permutation 

of latitudes 10,000 times. We might expect a proportion of these cline discoveries to be false positives. The 

within-gene SNP tests are not independent, but we cannot capture the within population SNP correlation 

structure because the pyrosequencing provides mean estimates without individual genotypes. The entire set 

was tested for set-wide significance using q values (Storey and Tibshirani 2003), and a q value of 4% was 

assigned as a cutoff as support of a cline in each SNP. 

Expression Variation and eQTNs 

We downloaded the whole-adult Affymetrix Drosophila 2.0 array expression data (accession number E-

MEXP-1594) reported in Ayroles et al. (2009) and the original 37 sequences of the DGRP first released in 

2009 (Mackay et al. 2012). Probes with underlying SNPs were removed or masked (Benovoy et al. 2008; 

Chen et al. 2009). The sex effect for each gene was removed and the residuals rescaled to standardized 

deviates using the total sample variance. A nested ANOVA is carried out on standardized residuals to 

estimate SNP allele, nested line in SNP, and nested vial within line effects (Yijkl = µ, + Ai + Bij + Cijk + 

"ijkl, where Yijkl is an individual expression measure, Ai is the effect of the ith allele, Bij is the effect of 

line j within the ith SNP allele, and Cijk is the effect of kth vial within line j and the ith SNP allele and "ijkl 
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is the error term within vials) using the JMP program (JMP-SAS). We used the parameter, ai specifying the 

genotypic effect for each pair of alleles, to estimate population mean expression (see below). 

Some of the within-gene SNP-specific expression effects are not independent. To test for gene-wide 

significance, we incorporate linkage disequilibrium among sites within each gene and carried out random 

permutations of expression across lines, keeping the haplotype structure intact. Sexes were treated 

separately (Massouras et al. 2012). For each 10,000 perturbation set, the highest F value was taken among 

the SNPs and the 5% tail of the distribution for the 10,000 permutations set as the FDR. 

Population Mean Expression and PCA 

For each gene, the SNP with the largest cis-acting effect (irrespective of significance) was used. The scaled 

allelic effect of the ith SNP was used with the SNP allele frequency, qi, to predict, assuming additivity, the 

mean expression, yi, expected for each collection locality by the simple equation yi = a(1 - 2qi). Thus, the 

variance in gene expression across populations depends on the cis-acting effect estimate, a, and the variation 

in allele frequencies, qi. We subjected the variance–covariance matrix for all the genes and populations to 

a PCA and extracted the major components. The gene loadings on these factors can then be used to 

summarize the major sources of overall variance–covariance structure of changes in expression for different 

pathways. 

Supplementary Material 

Supplementary tables S1 and S2 are available at Molecular Biology and Evolution online 

(http://www.mbe.oxfordjour nals.org/). 

Acknowledgments 

The authors thank Thomas Merritt for supplying the lines from Sudbury, ON, John True, and Joe Lachance 

for additional collections from New York, and Frank Jiggins for suggestions on the manuscript. This work 

was supported by National Institutes of Health grant GM090094 to W.F.E. and John True and Collaborative 

National Foundation Science grants DEB0921372 to W.F.E. and DEB0542859 and DEB0921307 to P.S.S. 

References 

Alvarez-Ponce D, Aguade M, Rozas J. 2009. Network-level molecular evolutionary analysis of the 

insulin/TOR signal transduction pathway across 12 Drosophila genomes. Genome Res. 19:234–242. 

Alvarez-Ponce D, Guirao-Rico S, Orengo DJ, Segarra C, Rozas J, Aguade´ 



 

20 

 

M. 2012. Molecular population genetics of the insulin/TOR signal transduction pathway: a network-level 

analysis in Drosophila melanogaster. Mol Biol Evol. 29:123–132. 

Andres AM, Hubisz MJ, Indap A, Torgerson DG, Degenhardt JD, Boyko AR, Gutenkunst RN, White TJ, 

Green ED, Bustamante CD, et al. 2009. Targets of balancing selection in the human genome. Mol Biol 

Evol. 26:2755–2764. 

Ayroles JF, Carbone MA, Stone EA, Jordan KW, Lyman RF, Magwire MM, Rollmann SM, Duncan LH, 

Lawrence F, Anholt RR, et al. 2009. Systems genetics of complex traits in Drosophila melanogaster. Nat 

Genet. 41:299–307. 

Baker KD, Thummel CS. 2007. Diabetic larvae and obese flies—emerging studies of metabolism in 

Drosophila. Cell Metab. 6:257–266. 

Baltzer C, Tiefenbo¨ck SK, Frei C. 2010. Mitochondria in response to nutrients and nutrient-sensitive 

pathways. Mitochondrion 10: 589–597. 

Benovoy D, Kwan T, Majewski J. 2008. Effect of polymorphisms within probe-target sequences on 

olignonucleotide microarray experiments. Nucleic Acids Res. 36:4417–4423. 

Brosnan JT. 2000. Glutamate, at the interface between amino acid and carbohydrate  metabolism.  J Nutr. 

130:988S–990S. 

Carmon A, MacIntyre R. 2010. The alpha-glycerophosphate cycle in Drosophila melanogaster VI. Structure 

and evolution of enzyme paralogs in the genus Drosophila. J Hered. 101:225–234. 

Chen L, Page GP, Mehta T, Feng R, Cui XQ. 2009. Single nucleotide polymorphisms affect both cisand 

trans-eQTLs. Genomics 93: 501–508. 

Cho J, Hur JH, Walker DW. 2011. The role of mitochondria in Drosophila 

aging.  Exp  Gerontol. 46:331–334. 

Cho YH, Yoo SD. 2011. Signaling role of fructose mediated by FINS1/FBP in Arabidopsis thaliana. PLoS 

Genet. 7:e1001263. 

Clark AG, Eisen MB, Smith DR, Bergman CM, Oliver B, Markow TA, Kaufman TC, Kellis M, Gelbart 

W, Iyer VN, et al. 2007. Evolution of genes and genomes on the Drosophila phylogeny. Nature 450: 203–

218. 



 

21 

 

Clark NL, Alani E, Aquadro CF. 2012. Evolutionary rate covariation reveals shared functionality and 

coexpression of genes. Genome Res. 22:714–720. 

Cork JM, Purugganan MD. 2004. The evolution of molecular genetic pathways and networks. Bioessays 

26:479–484. 

Dietzl G, Chen D, Schnorrer F, Su KC, Barinova Y, Fellner M, Gasser B, Kinsey K, Oppel S, Scheiblauer 

S, et al. 2007. A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. 

Nature  448:151–156. 

DiMichele L, Powers DA. 1982. Physiological basis for swimming endurance differences between LDH-

B genotypes of Fundulus heteroclitus. Science 216:1014–1016. 

Dinur-Mills M, Tal M, Pines O. 2008. Dual targeted mitochondrial proteins are characterized by lower 

MTS parameters and total net charge. PLoS One 3:e2161. 

Doostzadeh J, Shokralla S, Absalan F, Jalili R, Mohandessi S, Langston JW, Davis RW, Ronaghi M, 

Gharizadeh B. 2008. High throughput automated allele frequency estimation by pyrosequencing. PLoS One 

3: e2693. 

Duvernell DD, Eanes WF. 2000. Contrasting molecular population genetics of four hexokinases in 

Drosophila melanogaster, D. simulans and D. yakuba. Genetics 156:1191–1201. 

Eanes WF. 2011. Molecular population genetics and selection in the glycolytic pathway. J Exp Biol. 

214:165–171. 

Eanes WF, Merritt TJ, Flowers JM, Kumagai S, Sezgin E, Zhu CT. 2006. Flux control and excess capacity 

in the enzymes of glycolysis and their relationship to flight metabolism in Drosophila melanogaster. Proc 

Natl Acad Sci U S A. 103:19413–19418. 

Eanes WF, Merritt TJ, Flowers JM, Kumagai S, Zhu CT. 2008. Direct evidence that genetic variation in 

glycerol-3-phosphate and malate dehydrogenase genes (Gpdh and Mdh1) impacts adult ethanol tolerance 

in Drosophila melanogaster. Genetics  181:607–614. 

Eto K, Suga S, Wakui M, Tsubamoto Y, Terauchi Y, Taka J, Aizawa S, Noda M, Kimura S, Kasai H, et al. 

1999. NADH shuttle system regulates K(ATP) channel-dependent pathway and steps distal to cytosolic 

Ca(2 + ) concentration elevation in glucose-induced insulin secretion. J Biol Chem.  274:25386–25392. 

Fabian DK, Kapun M, Nolte V, Kofler R, Schmidt PS, Schlotterer C, Flatt 



 

22 

 

T. 2012. Genome-wide patterns of latitudinal differentiation among populations of Drosophila 

melanogaster from North America. Mol Ecol. 21:4748–4769. 

Fell DA. 1997. Understanding the control of metabolism. London: Portland Press. 

Flowers J, Sezgin E, Kumagai S, Duvernell D, Matzkin L, Schmidt P, Eanes 

W. 2007. Adaptive evolution of metabolic pathways in Drosophila. Mol Biol  Evol. 24:1347–1354. 

Flowers JM, Hanzawa Y, Hall MC, Moore RC, Purugganan MD. 2009. Population genomics of the 

Arabidopsis thaliana flowering time gene network. Mol Biol Evol. 26:2475–2486. 

Fontana L, Partridge L, Longo VD. 2010. Extending healthy life span— from yeast to humans. Science 

328:321–326. 

Fraser HB. 2013. Gene expression drives local adaptation in humans. 

Genome Res. 23:1089–1096. 

Fraser HB, Moses AM, Schadt EE. 2010. Evidence for widespread adaptive evolution of gene expression 

in budding yeast. Proc Natl Acad  Sci U S A. 107:2977–2982. 

Garrigan D, Lewontin R, Wakeley J. 2010. Measuring the sensitivity of single-locus “neutrality tests” using 

a direct perturbation approach. Mol Biol Evol. 27:73–89. 

Gershman B, Puig O, Hang L, Peitzsch RM, Tatar M, Garofalo RS. 2007. High-resolution dynamics of the 

transcriptional response to nutrition in Drosophila: a key role for dFOXO. Physiol Genomics. 29: 24–34. 

Giannakou ME, Goss M, Junger MA, Hafen E, Leevers SJ, Partridge L. 2004. Long-lived Drosophila with 

overexpressed dFOXO in adult fat body. Science  305:361. 

Greenberg AJ, Stockwell SR, Clark AG. 2008. Evolutionary constraint and adaptation in the metabolic 

network of Drosophila. Mol Biol Evol. 25: 2537–2546. 

Guay C, Madiraju SRM, Aumais A, Joly E, Prentki M. 2007. A role for ATP-citrate lyase, malic enzyme, 

and pyruvate/citrate cycling in glucose-induced insulin secretion. J Biol Chem. 282:35657–35665 

Guo DC, Milewicz DM. 2003. Methodology for using a universal primer to label amplified DNA segments 

for molecular analysis. Biotechnol Lett. 25:2079–2083. 



 

23 

 

Hall JG, Koehn RK. 1983. The evolution of enzyme catalytic efficiency and adaptive inference from steady-

state data. Evol Biol. 16:53–69. Hartmann C, Christen P, Jaussi R. 1991. Mitochondrial protein charge. 

Nature  352:762–763. 

Heisel TJ, Li CY, Grey KM, Gibson SI. 2013. Mutations in histone acetyltransferase1 affect sugar response 

and gene expression in Arabidopsis. Front Plant Sci. 4:1–13. 

Imai S. 2011. Dissecting systemic control of metabolism and aging in the NAD World: the importance of 

SIRT1 and NAMPT-mediated NAD biosynthesis. FEBS Lett. 585:1657–1662. 

Imai S, Armstrong CM, Kaeberlein M, Guarente L. 2000. Transcriptional silencing and longevity protein 

Sir2 is an NAD-dependent histone deacetylase. Nature  403:795–800. 

Ives PT. 1945. Genetic structure of American populations of Drosophila melanogaster. Genetics 30:167–

196. 

Ives PT. 1954. Genetic changes in American populations of Drosophila melanogaster. Proc Natl Acad Sci 

U S A. 40:87–92. 

Jumbo-Lucioni P, Ayroles JF, Chambers MM, Jordan KW, Leips J, Mackay TF, De LM. 2010. Systems 

genetics analysis of body weight and energy metabolism traits in Drosophila melanogaster. BMC Genomics 

11:297. 

Karaca M, Frigerio F, Maechler P. 2011. From pancreatic islets to central nervous system, the importance 

of glutamate dehydrogenase for the control of energy homeostasis. Neurochem Int. 58:510–517. 

Kim J, Bang H, Ko S, Jung I, Hong H, Kim-Ha J. 2008. Drosophila ia2 modulates secretion of insulin-like 

peptide. Comp Biochem Physiol A Mol Integr Physiol. 151:180–184. 

Kim JW, Dang CV. 2005. Multifaceted roles of glycolytic enzymes. Trends Biochem Sci. 30:142–150. 

Kolaczkowski B, Kern AD, Holloway AK, Begun DJ. 2011. Genomic differentiation between temperate 

and tropical Australian populations of Drosophila melanogaster. Genetics  187:245–260. 

Kudla G, Murray AW, Tollervey D, Plotkin JB. 2009. Coding-sequence determinants of gene expression 

in Escherichia coli. Science 324: 255–258. 

Lavebratt C, Sengul S. 2006. Single nucleotide polymorphism (SNP) allele frequency estimation in DNA 

pools using pyrosequencing. Nat Protoc. 1:2573–2582. 



 

24 

 

Lee G, Park JH. 2004. Hemolymph sugar homeostasis and starvation-induced hyperactivity affected by 

genetic manipulations of the adipokinetic hormone-encoding gene in Drosophila melanogaster. Genetics  

167:311–323. 

Liti G, Carter DM, Moses AM, Warringer J, Parts L, James SA, Davey RP, Roberts IN, Burt A, Koufopanou 

V, et al. 2009. Population genomics of domestic and wild yeasts. Nature 458:337–341. 

Lu Y, Rausher MD. 2003. Evolutionary rate variation in anthocyanin pathway genes. Mol Biol Evol. 

20:1844–1853. 

MacIntyre RJ, Davis MB. 1987. A genetic and molecular analysis of the alpha glycerophosphate cycle in 

Drosophila melanogaster. Isozymes Curr Top Biol Med Res. 14:195–227. 

Mackay TFC, Richards S, Stone EA, Barbadilla A, Ayroles JF, Zhu D, Casillas S, Han Y, Magwire MM, 

Cridland JM, et al. 2012. The Drosophila melanogaster genetic reference panel. Nature 482:173–178. 

Marden JH. 2013. Nature’s inordinate fondness for metabolic enzymes: why metabolic enzyme loci are so 

frequently targets of selection. Mol Ecol. 22:5743–5764. 

Massouras A, Waszak SM, Albarca-Aguilera M, Hens K, Holcombe W, Ayroles JF, Dermitzakis ET, Stone 

EA, Jensen JD, Mackay TF, et al. 2012. Genomic variation and its impact on gene expression in Drosophila 

melanogaster. PLoS Genet. 8:e1003055. 

Matschinsky FM. 2005. Glucokinase, glucose homeostasis, and diabetes mellitus. Curr Diab Rep. 5:171–

176. 

Matschinsky FM, Magnuson MA, Zelent D, Jetton TL, Doliba N, Han Y, Taub R, Grimsby J. 2006. The 

network of glucokinase-expressing cells in glucose homeostasis and the potential of glucokinase activators 

for diabetes therapy. Diabetes 55:1–12. 

Merritt TJ, Duvernell D, Eanes WF. 2005. Natural and synthetic alleles provide complementary insights 

into the nature of selection acting on the Men polymorphism of Drosophila melanogaster. Genetics 

171:1707–1718. 

Moore B, Zhou L, Rolland F, Hall Q, Cheng WH, Liu YX, Hwang I, Jones T, Sheen J. 2003. Role of the 

Arabidopsis glucose sensor HXK1 in nutrient, light, and hormonal signaling. Science 300:332–336. 

Nassel DR, Winther AME. 2010. Drosophila neuropeptides in regulation of physiology and behavior. Prog 

Neurobiol. 92:42–104. 



 

25 

 

O’Brien  SJ,  MacIntyre  RJ.  1972.  The  a-glycerophosphate  cycle in 

Drosophila melanogaster. I. Biochemical and developmental aspects. 

Biochem Genet. 7:141–161. 

Obbard DJ, Welch JJ, Kim KW, Jiggins FM. 2009. Quantifying adaptive evolution in the Drosophila 

immune system. PLoS Genet. 5: e1000698. 

Olson-Manning CF, Lee CR, Rausher MD, Mitchell-Olds T. 2013. Evolution of flux control in the 

glucosinolate pathway in Arabidopsis thaliana. Mol Biol Evol. 30:14–23. 

Place AR, Powers DA. 1979. Genetic variation and relative catalytic efficencies: lactate dehtdrogenase-B 

allozymes of Fundulus heteroclitus. Proc Natl Acad Sci U S A. 76:2354–2358. 

Ramsay H, Rieseberg LH, Ritland K. 2009. The correlation of evolutionary rate with pathway position in 

plant terpenoid biosynthesis. Mol Biol Evol. 26:1045–1053. 

Rathmell JC, Newgard CB. 2009. A glucose-to-gene link. Science 324: 1021–1022. 

Reaume CJ, Sokolowski MB. 2006. The nature of Drosophila melanogaster. Curr Biol. 16:R623–R628. 

Savraj SG. 2009. Insulin/TOR signaling in growth and homeostasis: a view from the fly world. Int J 

Biochem Cell Biol. 41:1006–1010. 

Schnorrer F, Schonbauer C, Langer CCH, Dietzl G, Novatchkova M, Schernhuber K, Fellner M, Azaryan 

A, Radolf M, Stark A, et al. 2010. Systematic genetic analysis of muscle morphogenesis and function in 

Drosophila. Nature  464:287–291. 

Sezgin E, Duvernell DD, Matzkin LM, Duan Y, Zhu CT, Verrelli BC, Eanes WF. 2004. Single-locus 

latitudinal clines and their relationship to temperate adaptation in metabolic genes and derived alleles in 

Drosophila melanogaster. Genetics 168:923–931. 

Shapiro JA, Huang W, Zhang C, Hubisz MJ, Lu J, Turissini DA, Fang S, Wang HY, Hudson RR, Nielsen 

R, et al. 2007. Adaptive genic evolution in the Drosophila genomes. Proc Natl Acad Sci U S A. 104:2271–

2276. 

Shpak M, Wakeley J, Garrigan D, Lewontin RC. 2010. A structured coalescent process for seasonally 

fluctuating populations. Evolution 64: 1395–1409. 



 

26 

 

Smith  NG,  Eyre-Walker  A.  2002.  Adaptive  protein  evolution in 

Drosophila. Nature 415:1022–1024. 

Sokal RR, Rohlf FJ. 1981. Biometry. New York: Freeman. 

Stanley CA. 2004. Hyperinsulinism/hyperammonemia syndrome: insights into the regulatory role of 

glutamate dehydrogenase in ammonia metabolism. Mol Gene Metabol. 81:45–51. 

Storey JD, Tibshirani R. 2003. Statistical significance for genomewide studies. Proc Natl Acad Sci U S A. 

100:9440–9445. 

Stranger BE, Forrest MS, Dunning M, Ingle CE, Beazley C, Thorne N, Redon R, Bird CP, de Grassi A, 

Lee C, et al. 2007. Relative impact of nucleotide and copy number variation on gene expression phenotypes. 

Science  315:848–853. 

Taguchi A, White MF. 2008. Insulin-like signaling, nutrient homeostasis, and life span. Annu Rev Physiol. 

70:191–212. 

Toivonen JM, Partridge L. 2008. Endocrine regulation of aging and reproduction in Drosophila. Mol Cell 

Endocrinol.  299:39–50. 

Vishnoi A, Sethupathy P, Simola D, Plotkin JB, Hannenhalli S. 2011. Genome-wide survey of natural 

selection on functional, structural, and network properties of polymorphic sites in Saccharomyces 

paradoxus. Mol Biol Evol. 28:2615–2627. 

Wagner A, Fell DA. 2001. The small world inside large metabolic networks. Proc R Soc Lond B Biol Sci. 

268:1803–1810. 

Wellen KE, Hatzivassiliou G, Sachdeva UM, Bui TV, Cross JR, Thompson CB. 2009. ATP-citrate lyase 

lin Whitehead A, Crawford DL. 2006. Neutral and adaptive variation in gene expression. Proc Natl Acad 

Sci U S A. 103:5425–5430. 

Wiederkehr A, Wollheim CB. 2006. Minireview: implication of mitochondria in insulin secretion and 

action. Endocrinology 147: 2643–2649. 

Wright KM, Rausher MD. 2010. The evolution of control and distribution of adaptive mutations in a 

metabolic pathway. Genetics 184: 483–502.ks cellular metabolism to histone acetylation.  Science  

324:1076–1080. 



 

27 

 

 

Chapter 1 Figures and Tables 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Relationship of population projections on the first axis and latitude. 
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Figure 2. The central metabolic pathway and its immediate branches. The color reflects the direction of 

expression change with increasing latitude (green increasing, red decreasing). Thick arrows are genes 

with both significant clines and significant expression effects. They possess high PCA1 loadings. Thin 

colored lines have significant expression effects but no significant clines. Dotted lines have nonsignificant 

expression effects but may or may not have significant clines. The latter two groups are simply suggestive 

of change and direction. Black solid lines (ATPCL) are not available. The red and yellow dots represent 

NADH and NAD cofactors, respectively, and the large red dotted line is the cytoplasmic-mitochondrial 

boundary. The metabolities with highest connectivity are boxed. The results for Men, Gpt, and Pfrx are 

not included to prevent undue complexity. 
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Table 1.  Gene loadings for the first three factors. aBoth significant cline and allelic effect. bSignificant 

allelic effect only. cSignificant cline in gene only. 
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Chapter 2- Population Genetics of metabolic enzymes in North American 

Drosophila melanogaster 

 

Background 

Experiments designed to find candidate genes for more detailed study are typically strictly forward 

genetics screen on a particular phenotype. Candidate genes are those that have a major effect on 

the phenotype among all genes tested, often most of the genome. How the candidates arise are a 

function of the experimental design, from the type and amount of genetic variation to the 

phenotypic measures. Knock-out lines of deletions covering the genome in an otherwise isogenic 

background work well to determine the structure and components of a network but ignore 

population variation. Quantitative trait mapping using inbred lines uses population variation but 

for two, and only two, lines. 

Tests of genetic patterns of adaptation have been developed for use prior to the relatively new era 

of affordable high-throughput sequencing has been applied to new genomic data sets. Fay et al 

(2002) used the amino acid replacement to synonymous substitution ratio (A/S) and assumptions 

of the McDonald Kreitman tests on 45 genes in Drosophila melanogaster to determine whether 

positive selection is acting on particular loci as demographic events would have effected all loci 

similarly. Shapiro et al (SHAPIRO et al. 2007) took this further with 419 genes and  Mackay et al 

(MACKAY et al. 2012) performed McDonald-Kreitman (MK) tests (MCDONALD and KREITMAN 

1991) across the entire genome of Drosophila melanogaster for both coding and modified MK 

tests for non-coding regions (JENKINS et al. 1995; ANDOLFATTO 2005; EGEA et al. 2008). Studies 

using Fst outlier tests are quite common, as are software resource (BEAUMONT and NICHOLS 1996; 

ANTAO et al. 2008; FOLL and GAGGIOTTI 2008). Hohenlohe et al  (2010)used both Fst scans 

between three populations of fresh water and marine three-spine sticklebacks. They found that 

several regions of significantly increased or decreased Fst overlapped when comparing the three 

freshwater populations and that some of these significant outlier regions overlapped with 

previously described QTL linkage groups.  

Here, I consider common population genetics tests in the context of candidate gene selection and 

test whether any of these tests find genes similar to results from Lavington et al (2014), or each 

other. The tests used require only genetic information to detect genes that deviate from neutrality. 
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A major assumption is that gene networks, or at least a set of genes, are known and defined such 

that appropriate attention is paid to this defined set of genes rather than the whole genome. This 

risks leaving out genes that have not been identified as part of the network, however the main 

question remains for the network as it is defined: for a phenotype of interest, and a defined 

underlying genetic network for this phenotype, which gene(s) exhibit(s) patterns of selection? 

The phenotype of interest here is metabolic flux and the genetic network is 61 genes in glycolysis, 

the TCA cycle, the glycerophosphate shuttle, malate-aspartate shuttle and transitions to other 

metabolic pathways. I performed McDonald-Kreitman tests (MCDONALD and KREITMAN 1991) 

on each gene and a Hudson-Kreitman-Aguade test (HUDSON et al. 1987) on all genes together 

using protein coding sequences of 61 metabolic network genes extracted from the Drosophila 

Population Genomics Project (Release 1.0) sequences (MACKAY et al. 2012). I also performed an 

Fst outlier test on SNPs described in Lavington et al (2014).  

Methods and Materials 

Data- Protein coding sequences were extracted from 37 Raleigh, North Carolina genome 

sequences of the Drosophila Population Genomics Project release 1.0 (DGRP). Protein coding 

sequences as determined by FlyBase release 5.22. Corresponding Drosophila simulans were either 

from FlyBase release 1.3, or a consensus file generated from alignments of whole genome 

sequences described in (BEGUN et al. 2007). Quality filtering of DGRP sequences and collection 

of SNP data of North American populations used was described in Lavington et al (2014). Only 

SNPs with reliable reads for all 20 populations were used for a total 131 SNPs.  

Population polymorphism, divergence, and McDonald-Kreitman tests- Population polymorphism 

and divergence measures and MKA tests (MCDONALD and KREITMAN 1991) were performed in 

DNAsP 5 (LIBRADO and ROZAS 2009).  

Hudson-Kreitman-Aguade test –The HKA test (HUDSON et al. 1987) was performed using the 

software package HKA (https://bio.cst.temple.edu/~hey/software/software.htm#HKA) with 

10,000 iterations.  

Fst outliers – Fst outlier test (BEAUMONT and BALDING 2004) was performed on SNP data from 

20 populations described in software package BayeScan2.1 (FOLL and GAGGIOTTI 2008) 
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(http://cmpg.unibe.ch/software/BayeScan/) based on sizes of 5000, thinning interval of 10, 20 pilot 

runs of 5000 each and a burn in of 50000. Posterior Odds (PO) are used instead of Bayes Factor 

(BF) and Jeffrey’s scale of evidence can still be used. BayeScan limits the value of Log10(PO) to 

a maximum of 1000 when tending to infinity. 

Correlation between tests – Even when using the data same source, each tests uses different 

information and are expected to be independent. To test whether results from each test were 

independent, correlation of candidate gene calls was tested by filling a 2x2 contingency table 

between two tests with the cells filled by counts of significant/non-significant calls for each gene 

for each test. For example, Pgls SNPs were not Fst outliers, but the gene did deviate from neutrality 

in the McDonald-Kreitman test. Thus Pgls would add one to the significant MK/non-significant 

Fst outlier cell. Most tests were expected and observed to be non-significant. An over 

representation of genes significant for both tests, relative to genes independently significant for 

either of the tests, would suggest non-independence of the results of the two tests. Total counts 

varied between comparisons as not all tests were performed on all genes. Statistical analyses were 

performed in DNAsP 5. 

Results and Discussion 

Results of the McDonald-Kreitman tests presented here (Table  1) expands not only the genes 

tested, but also the pathway as compared to Flowers et al. (2008). The conclusion remains the same 

with the main pattern of adaptation within this set of genes clustered around the branch point of 

Glucose-6-phosphate.  

The whole model, that is the sum of deviations of all genes in the test, Hudson-Kreitman-Aguade 

test (Tables 2 & 3) violated neutrality (χ2=98.341, d.f.=60, p=0.0013) with the main contributions 

to the overall deviation from sea, Idh (cytosolic), and one of the mitochondrial aconitase genes 

(CG9244). Gpdh, Pepck, Idh-β, and Irp-1B also contributed to a lesser extent. This is a relatively 

small list, but certainly suggests an importance of citrate cycling between the mitochondrion and 

cytosol, with both mitochondrial and cytosolic aconitases, and IDH genes, as well as the 

mitochondrial citrate transporter sea.  

Fst outliers are distributed throughout the pathway without a clear pattern (Table 4 & Fig 1). It is 

quite possible that many of the outliers are false positives for a variety of reasons (HOLSINGER and 
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WEIR 2009; BIERNE et al. 2013). Problems with drawing conclusions about adaptation from Fst 

outlier tests alone are understood and can arise from sample site selection, incorrect assumptions 

about the migration rates between subpopulations (LUIKART et al. 2003), and admixture (GOSSET 

and BIERNE 2013; KAO et al. 2015).  

No significant non-independence of tests was found when a simple test was applied in pairwise 

comparisons (Table 5). This is not an unexpected result as each of these tests focuses on a different 

aspect of the data. There is a wide range of timescales considered between the polymorphism of 

North American flies (clinal variation and Fst outlier tests) and divergence from D. simulans (MK 

and HKA tests). Even within time scales, there is a difference between the Fst outlier test and the 

factor analysis from Lavington et al (2014) results and between the MK and HKA test results. 

Again, this is not altogether surprising as each of the tests examines a different aspect of the data 

even as data is shared between them. Taken together, we see only one candidate, Irp-1B, that 

violated neutrality for all three tests, and several that violate neutrality in two or three tests (Fig 2 

& Table 6). There are gaps to fill in for the tests to cover all genes evenly, but the patterns of 

significant results described here support serious consideration of the glycerophosphate shuttle, 

malate-aspartate shuttle, and citrate cycling between the mitochondrion and cytoplasm for further 

experiments. 

Some correlation between the factor analysis and Fst outlier test could have arisen due to the 

population sampling that was specifically designed to follow a potential gradient (FOURCADE et 

al. 2013). Extreme cases of demographic differences such as admixture or bottlenecks at any point 

along the cline, or sampling that happened to not be representative of that subpopulation, could 

have a significant effect but moderate differences, including isolation by distance should not 

(BEAUMONT and NICHOLS 1996; WILKINS 2004).  

Multiple testing was of major concern, but it is important to note that the purpose of this study was 

to find candidate genes for use in experiments, and not to make statements about adaptation. The 

trends in the measures are of interest here, not necessarily statistical significance of each case made 

robust to multiple testing. That being said, each of these tests is reasonably conservative, in that it 

is difficult to violate the null hypothesis of neutrality and the differing results of each test highlight 

a problem with using only one type of data, let alone one type of test, for finding candidate genes.  
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These tests were a preliminary exploration of many different signals of adaptation and how results 

from each test of adaptation compared to all others. This has generated a set of candidate genes to 

be validated by experiments, as well as further analyses of the data used here. Ongoing work 

(Talbet et al, in revision) based on six candidate genes drawn from Lavington et al (2014) has 

found significant effects of enzyme activity knockdown of some of these candidates and a 

significant effect of all six tested candidates on starvation resistance. Of particular interest as 

candidates for future work are the two components of the glycerophosphate shuttle, Gpdh and 

Gpo-1 for their role in cellular reduction-oxidation state (O’BRIEN and MACINTYRE 1972) and this 

work brings citrate cycling, particularly Irp-1B as obvious candidates for experimentation. 

More work can also be done with the results used here. For instance, genes that fail to deviate from 

neutrality would be the best candidates for use in determining reasonable estimates of effective 

population size, Ne and migration rates, Nm. The history of these particular genes should reflect 

the demographic history. Multiple inferences of changing Ne could be made given that our lab has 

geographic sampling of 20 populations, temporal data for one of these populations, and public 

access to whole genome sequences of the DGRP (WAPLES 2005). Also, a more detailed look at 

the Fst results could determine which, if any, populations are generally differentiated from the rest 

and re-run the Fst outlier test without this population (BEAUMONT and NICHOLS 1996).    

Also, important tests on data from one population for polymorphism data like Tajima’s D (TAJIMA 

1989), and polymorphism data using an outgroup Fay and u’s H (FAY and WU 2000) and Fu and 

LI’s D and F tests (FU and LI 1993) that are sensitive to demographic changes and selection were 

not considered here. The design of this study was simple and included two tests for each of two 

data types. The number and types of tests considered here were chosen somewhat arbitrarily. A 

more comprehensive future approach to testing correlation would include these measures.  

This approach could easily be quantitative as well, disregarding the statistical cutoff and using 

quantitative, as opposed to the categorical significant/not significant, inputs. Correlation between 

tests and patterns of significance were naïve to the network structure. Connectivity of enzymes 

and substrates can also be quantified and included the in analysis. Excluding the network structure 

facilitated analysis and was considered conservative, but at the cost of confidence in the final 

inferences. 
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The classic tests considered here had been developed in a time of limited data but are finding 

traction in this population genomics era. However, the findings here caution against using only 

one test of selection. This may mean altering sampling design to include a geographic or temporal 

component.  
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Chapter 2 Figures and Tables 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Results of Fst outlier test performed with BayeScan2.1. All results (A). Detail of BayeScan2.1 
results for low Fst value outliers (B). Detail of BayeScan2.1 results for high Fst value outliers (C). 
Vertical lines represent q=0.05. 
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Fig 2. Number of significant tests by gene. Number of significant tests is represented as 
color: Blue = 0, Green = 1, Yellow = 2, Orange = 3, Red = 4. Dotted lines are genes 
where only three tests were completed. Grey lines are genes that were not tested. The 
dotted horizontal blue line  
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CG 

number Gene NI Alpha 

Fisher's exact 

test p-value 

G-test G 

value 

G-test p-

value 

CG11198 ACC 3.315 -2.315 0.001239 11.247 0.0008 

CG3481 Adh 0.438 0.563 0.581538 0.559 0.45449 

CG6058 Ald 0.346 0.654 0.564783 0.71 0.39936 

CG2139 aralar1 10 -9 0.02781 6.977 0.00826 

CG30499 
Ribulose-phosphate 3 

epimerase 
0 1 1 NA NA 

CG4706 mito Acon 0.174 0.826 0.071357 4.306 0.03798 

CG9244 mito Acon 10.444 -9.444 0.059935 4.083 0.04331 

CG7176 cIdh 0 1 0.322474 NA NA 

CG17654 Eno 0.302 0.698 0.262105 2.184 0.13944 

CG31692 fbp 9.333 -8.333 0.046775 4.7 0.03015 

CG12055 Gapdh1 4.286 -3.286 0.310777 1.531 0.21595 

CG5320 Gdh 2.796 -1.769 0.383117 1.246 0.2643 

CG7254 GlyP 0.141 0.859 0.005941 8.767 0.00307 

CG8430 Got1 0.295 0.705 0.125855 3.355 0.06699 

CG4233 Got2 0.092 0.908 0.003851 10.149 0.00144 

Cg9042 Gpdh NA NA 1 NA NA 

Cg8256 Gpo-1 1.585 -0.585 0.694226 0.278 0.59787 

CG8094 Hex-C 2.583 -1.583 NA NA NA 

CG32026 Idh-alpha NA NA 0.22222 NA NA 

CG6439 Idh-beta 0.531 0.469 1 0.189 0.664 

CG5208 Idh-gamma 0.833 0.167 1 0.021 0.88565 

CG6342 Irp-1B (cyto Acon) 15 -14 0.002181 10.37 0.00128 

CG5214 Kdh 3.704 -2.704 0.180706 2.361 0.12437 

CG7430 KdhE3 2.444 -1.444 0.57479 0.678 0.41041 

CG11661 KgdE1 0.481 0.519 0.645043 0.422 0.51618 

CG5362 Mdh1 12.75 -11.75 0.026534 6.775 0.00924 

CG10120 Men 0.731 0.269 0.746149 0.195 0.65906 

CG5889 Men-b 0 1 1 NA NA 
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CG 

number Gene NI Alpha 

Fisher's exact 

test p-value 

G-test G 

value 

G-test p-

value 

CG8417 Mpi 3.15 -2.15 0.320129 1.537 0.21503 

CG8808 Pdk 5.077 -4.077 0.28638 2.124 0.14503 

CG17725 Pepck 0.49 0.51 0.308082 1.089 0.29668 

CG4001 Pfk 1.833 -0.833 1 0.176 0.67522 

CG8251 Pgi 16.667 -15.667 0.015152 7.074 0.00782 

CG1721 Pglym78 NA NA NA NA NA 

CG17645 Pglym87 2.667 -1.667 0.384123 1.319 0.25085 

CG5165 Pgm 92.4 -91.4 0 30.224 0 

CG7070 Pyk 1.444 -0.444 1 0.123 0.72571 

CG7471 Rpd3 1.974 -0.974 0.691604 0.652 0.41923 

CG1065 Scsalpha NA NA 0.507692 NA NA 

CG5718 Sdh-A 1.165 -0.165 0.801015 0.086 0.76962 

CG6666 SdhC 1.179 -0.179 1 0.041 0.83895 

CG6629 Sdh-C NA NA 0.307692 NA NA 

CG10219 SdhD 1.6 -0.6 1 0.116 0.73314 

CG6782 sea 0 1 1 NA NA 

CG11963 skap 0.417 0.583 0.647844 0.659 0.41706 

CG10622 SucB 4.483 -3.483 0.214292 2.27 0.13193 

CG2827 TA NA NA NA NA NA 

CG2171 Tpi NA NA 0.507692 NA NA 

CG4104 Tps1 0.152 0.848 0.00733 8.47 0.00361 

CG9364 Treh 0.223 0.777 0.001619 10.507 0.00119 

CG9122 Trh 0.471 0.529 0.42846 0.871 0.35064 

CG4347 UGP NA NA 0.242967 NA NA 

CG3724 6Pgd 1.762 -0.762 0.614615 0.361 0.54811 

CG12529 G6PD 0.128 0.872 0.00371 10.113 0.00147 

CG1640 Gpt 0.641 0.659 0.138318 2.625 0.1052 

CG3001 Hex-A NA NA NA NA NA 

CG6861 kdn 0 1 1 NA NA 

CG7010 Pdh 1.714 -0.714 1 0.183 0.6689 

CG12151 Pdp 0.342 0.658 0.138312 2.907 0.08819 

CG3400 Pfrx NA NA NA NA NA 

CG17333 Pgls 7 -6 0.022769 5.668 0.01727 

Table 1. Results of McDonald-Kreitman tests. Some could not be calculated due to the presence 
of random zeros in the contingency table. P-values for genes that significantly deviate from 
neutrality are in italics. P-values for genes that significantly deviate from neutrality after 
Bonferroni correction are in bold. 
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   Polymorphic sites within D. melanogaster 

Gene inheritance  observed expected variance deviation 

ACC Autosomal  80 92.81 892.23 0.184 

Adh Autosomal  18 11.57 24 1.721 

Ald Autosomal  14 10.18 19.81 0.735 

aralar1 Autosomal  36 30.01 113.6 0.316 

CG30499 Autosomal  6 8.69 15.7 0.461 

CG4706 (mAcon) Autosomal  23 41.92 205.05 1.746 

CG9244 (mAcon) Autosomal  5 19.85 56.44 3.909 

cIdh Autosomal  6 23.92 77.04 4.169 

Eno Autosomal  20 18.61 50.76 0.038 

Fbp Autosomal  16 17.92 47.73 0.077 

Gapdh1 Autosomal  9 8.78 15.93 0.003 

Gdh Autosomal  17 15.06 36.1 0.104 

GlyP Autosomal  35 35.19 150.16 0 

Got1 Autosomal  21 23.31 73.75 0.072 

Got2 Autosomal  31 21.6 64.91 1.361 

Gpdh Autosomal  23 13.87 31.74 2.624 

Gpo-1 Autosomal  56 41.95 205.3 0.961 

Hex-C Autosomal  14 18.98 52.42 0.473 

Idh-alph Autosomal  13 10.49 20.72 0.303 

Idh-beta Autosomal  31 21.01 61.98 1.61 

Idh-gamma Autosomal  13 14.81 35.15 0.093 

Irp-1B (cAcon) Autosomal  17 33.28 136.09 1.948 

Kdh Autosomal  13 15.53 37.93 0.169 

KdhE3 Autosomal  11 13.02 28.75 0.142 

KgdE1 Autosomal  28 28.23 102.22 0.001 

Mdh1 Autosomal  14 13.22 29.45 0.02 

Men Autosomal  19 26.61 92.34 0.627 

Men-b Autosomal  28 24.74 81.54 0.131 

Mpi Autosomal  7 11.96 25.24 0.975 

PCB Autosomal  40 52.34 306.61 0.497 

Pdk Autosomal  16 15.29 36.99 0.014 

Pepck Autosomal  54 34.5 145.01 2.621 

Pfk Autosomal  25 27.05 94.95 0.044 

Pgi Autosomal  10 13.32 29.79 0.37 

Pglym78 Autosomal  14 10.72 21.38 0.504 

Pglym87 Autosomal  10 11.65 24.25 0.112 

Pgm Autosomal  16 21.99 66.87 0.537 
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   Polymorphic sites within D. melanogaster 

Gene inheritance  observed expected variance deviation 

Rpd3 Autosomal  43 32.55 130.91 0.834 

Scsalpha Autosomal  16 11.5 23.76 0.854 

Sdh-A Autosomal  54 43.68 220.77 0.482 

SdhC Autosomal  4 4.97 7.26 0.13 

Sdh-C Autosomal  12 16.52 41.87 0.489 

SdhD Autosomal  7 5.14 7.58 0.458 

Sea Autosomal  1 14.38 33.57 5.332 

Skap Autosomal  7 13.05 28.85 1.268 

SucB Autosomal  33 26.75 93.15 0.42 

Taldo Autosomal  16 13.19 29.35 0.268 

Tpi Autosomal  16 10.4 20.43 1.536 

Tps1 Autosomal  52 49.83 280.25 0.017 

Treh Autosomal  56 41.61 202.33 1.023 

Trh Autosomal  37 26.22 90.05 1.29 

UGP Autosomal  37 28.18 101.91 0.763 

6Pgd Sex-linked  8 16.3 40.95 1.681 

G6PD Sex-linked  23 27.39 97.03 0.199 

Gpt Sex-linked  27 24.32 79.21 0.091 

Hex-A Sex-linked  13 10.37 20.36 0.339 

kdn Sex-linked  8 10.87 21.85 0.378 

Pdh Sex-linked  16 10.05 19.41 1.827 

Pdp Sex-linked  22 18.8 51.63 0.198 

Pfrx Sex-linked  11 13.64 30.92 0.226 

Pgls Sex-linked  9 13.27 29.63 0.616 
 

Table 2. HKA test results for polymorphic sites within D. melanogaster 
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   Divergent sites between species 

Gene inheritance  observed expected variance deviation 

ACC Autosomal  178.35 165.55 659.77 0.249 

Adh Autosomal  14.22 20.64 28.33 1.458 

Ald Autosomal  14.35 18.17 24.12 0.604 

aralar1 Autosomal  47.54 53.53 105.21 0.341 

CG30499 Autosomal  18.19 15.5 19.83 0.365 

CG4706 (mAcon) Autosomal  93.7 74.78 175.63 2.039 

CG9244 (mAcon) Autosomal  50.27 35.42 58.04 3.802 

cIdh Autosomal  60.59 42.67 75.51 4.254 

Eno Autosomal  31.81 33.2 53.08 0.036 

Fbp Autosomal  33.89 31.97 50.4 0.073 

Gapdh1 Autosomal  15.43 15.66 20.08 0.002 

Gdh Autosomal  24.92 26.86 39.87 0.095 

GlyP Autosomal  62.97 62.78 133.85 0 

Got1 Autosomal  43.89 41.58 72.76 0.073 

Got2 Autosomal  29.14 38.53 65.31 1.352 

Gpdh Autosomal  15.62 24.75 35.79 2.327 

Gpo-1 Autosomal  60.78 74.83 175.82 1.123 

Hex-C Autosomal  38.84 33.86 54.53 0.455 

Idh-alph Autosomal  16.22 18.72 25.04 0.251 

Idh-beta Autosomal  27.49 37.48 62.8 1.589 

Idh-gamm Autosomal  28.22 26.41 38.99 0.084 

Irp-1B (cAcon) Autosomal  75.65 59.37 122.93 2.156 

Kdh Autosomal  30.24 27.71 41.56 0.154 

KdhE3 Autosomal  25.24 23.22 32.95 0.124 

KgdE1 Autosomal  50.59 50.36 96.1 0.001 

Mdh1 Autosomal  22.81 23.59 33.62 0.018 

Men Autosomal  55.08 47.47 88.11 0.658 

Men-b Autosomal  40.87 44.13 79.24 0.134 

Mpi Autosomal  26.3 21.34 29.55 0.833 

PCB Autosomal  105.7 93.36 250.56 0.608 

Pdk Autosomal  26.57 27.28 40.69 0.012 

Pepck Autosomal  42.05 61.55 129.87 2.927 

Pfk Autosomal  50.3 48.25 90.23 0.046 

Pgi Autosomal  27.08 23.76 33.94 0.325 

Pglym78 Autosomal  15.84 19.12 25.71 0.419 

Pglym87 Autosomal  22.43 20.78 28.57 0.095 

Pgm Autosomal  45.22 39.23 66.97 0.536 

Rpd3 Autosomal  47.62 58.07 118.88 0.918 
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  Divergent sites between species 

Gene inheritance  observed expected variance deviation 

Scsalpha Autosomal  16 20.5 28.09 0.723 

Sdh-A Autosomal  67.59 77.92 187.4 0.568 

SdhC Autosomal  9.84 8.87 10.29 0.092 

Sdh-C Autosomal  34 29.48 45.14 0.453 

SdhD Autosomal  7.3 9.16 10.67 0.326 

Sea Autosomal  39.03 25.65 37.51 4.771 

Skap Autosomal  29.32 23.28 33.05 1.107 

SucB Autosomal  41.46 47.71 88.76 0.44 
Taldo Autosomal  20.73 23.54 33.53 0.235 

Tpi Autosomal  12.95 18.55 24.75 1.268 

Tps1 Autosomal  86.7 88.88 231.33 0.02 

Treh Autosomal  59.84 74.23 173.58 1.193 

Trh Autosomal  36 46.78 86.24 1.347 

UGP Autosomal  41.46 50.27 95.86 0.811 

6Pgd Sex-linked  45.76 37.46 52.7 1.306 

G6PD Sex-linked  67.35 62.96 106.01 0.182 

Gpt Sex-linked  53.22 55.9 89.83 0.08 

Hex-A Sex-linked  21.22 23.84 30.02 0.23 

kdn Sex-linked  27.86 24.99 31.78 0.26 

Pdh Sex-linked  17.14 23.09 28.88 1.228 

Pdp Sex-linked  40.03 43.22 63.51 0.161 

Pfrx Sex-linked  34 31.36 42.04 0.166 

Pgls Sex-linked  34.78 30.51 40.62 0.45 
 

Table 3. HKA test results for divergent sites between D. melanogaster and D. simulans 
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SNP prob log10(PO) q value alpha Fst 

6Pgd 616 0.18484 -0.64446 0.27861 0.11159 0.035828 

ACC 2814 0.035607 -1.4327 0.73039 0.001305 0.031304 

ACC 48 0.11482 -0.887 0.41696 0.060329 0.033686 

ACC 608 0.76115 0.50335 0.035862 -0.7593 0.017181 

Acon 1382 0.04761 -1.3011 0.65721 0.014312 0.031751 

Adh 39 0.041608 -1.3624 0.69354 -0.00483 0.031131 

Adh 578 0.085817 -1.0275 0.49753 0.039647 0.032814 

Aralar 2014 0.052611 -1.2555 0.62232 -0.01696 0.030851 

Aralar 421 0.97239 1.5468 0.006051 -1.3157 0.010125 

Aralar 819 1 1000 0 -2.1032 0.004716 

Aralar 843 0.036607 -1.4202 0.7226 -0.00609 0.031091 

ATPCL 1364 0.039808 -1.3824 0.69842 -0.00074 0.031248 

ATPCL 1370 0.041808 -1.3602 0.6859 -0.00742 0.031066 

ATPCL 3138 0.069014 -1.13 0.5639 -0.03242 0.030513 

ATPCL 527 0.9944 2.2493 0.001217 1.5202 0.13074 

ATPCL 684 0.038608 -1.3962 0.70994 -0.00099 0.03124 

cIdh 489 0.041808 -1.3602 0.6859 -0.00717 0.031064 

cIdh 5'UTR-106 0.04781 -1.2992 0.65404 -0.01198 0.030955 

cIdh 735 0.14243 -0.77967 0.34265 -0.0912 0.029289 

Eno 231 0.073615 -1.0998 0.53023 -0.03317 0.030504 

Eno 423 0.041208 -1.3667 0.696 0.000925 0.031294 

Fbp 367 0.039608 -1.3847 0.7008 0.008879 0.031553 

Fbp 480 0.96339 1.4202 0.007849 -1.1678 0.011398 

G6pdh 1145 0.71514 0.39977 0.046688 -0.665 0.018544 

G6pdh 1407 0.11822 -0.87265 0.39749 -0.07495 0.029657 

G6pdh 738 0.04861 -1.2916 0.64749 -0.01552 0.030872 

Gapdh 850 0.033407 -1.4614 0.7395 0.003307 0.031342 

Gapdh1 825 0.054611 -1.2383 0.6061 -0.01974 0.030787 

Gdh 1062 0.041608 -1.3624 0.69354 0.010477 0.031634 

Gdh 216 0.070814 -1.118 0.55865 0.0333 0.032545 

Gdh 3'UTR 367 1 1000 0 2.2145 0.20967 

Gdh 5'UTR 21 0.042008 -1.358 0.68056 0.011672 0.031669 

Gdh 84 0.079616 -1.063 0.50446 0.037091 0.032686 

Gdh 986 0.066013 -1.1507 0.57402 -0.02664 0.030628 

Got-1 1225 0.22725 -0.53155 0.26411 -0.17906 0.027607 

Got-1 246 0.36147 -0.2471 0.15549 -0.30227 0.025242 

Got-1 984 0.055411 -1.2316 0.60181 -0.02088 0.030763 

Got-2 27 0.053611 -1.2468 0.6144 -0.0171 0.030829 

Got-2 501 0.090218 -1.0036 0.49046 0.043958 0.032955 

Got-2 882 0.037608 -1.4081 0.71214 0.005862 0.03145 
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SNP prob log10(PO) q value alpha Fst 

Gpdh 1011 0.31726 -0.33283 0.18819 -0.25532 0.026109 

Gpdh 108 0.031406 -1.4891 0.74126 -0.0011 0.031211 

Gpdh 330 0.036607 -1.4202 0.7226 0.002486 0.031359 

Gpdh 741 0.034207 -1.4508 0.73772 -0.00074 0.031238 

Gpdh 828 0.47289 -0.04713 0.10551 -0.39958 0.023295 

Gpo1 162 0.061212 -1.1857 0.58836 0.023021 0.03211 

Gpo1 3946 0.36267 -0.24485 0.13883 0.2869 0.044184 

Gpo1 4194 0.05241 -1.2572 0.62615 -0.0147 0.030885 

Gpo1 4364 1 1000 0 1.9047 0.17156 

Gpo1 4833 0.45989 -0.06983 0.12103 -0.4407 0.02296 

Gpt  1512 1 1000 0 1.7987 0.15618 

Gpt  494 0.038608 -1.3962 0.70994 -0.00704 0.031062 

Gpt  667 1 1000 0 2.0161 0.1832 

Gpt 99 0.05021 -1.2768 0.64067 -0.01493 0.030906 

Hex-A  3'UTR-127 0.9766 1.6204 0.004614 0.99983 0.081097 

Hex-A  3'UTR-205 0.24705 -0.48398 0.23514 -0.18622 0.027441 

Hex-A  3'UTR-293 0.11662 -0.87936 0.4074 -0.07444 0.029698 

Hex-C 636 0.067413 -1.1409 0.56902 -0.03043 0.030549 

Hex-C 99 0.93279 1.1423 0.013266 -1.1296 0.012105 

Hext-1 728 0.078216 -1.0713 0.51769 -0.04014 0.030359 

Idh-α 41 0.064613 -1.1607 0.5789 -0.02809 0.030591 

Idh-α 576 0.073415 -1.1011 0.53623 -0.03669 0.030417 

Idh-β 101 0.035407 -1.4353 0.73411 0.004299 0.031396 

Idh-β 1047 0.094819 -0.97984 0.47575 -0.05064 0.030116 

Idh-β 630 0.23085 -0.52269 0.24998 0.14349 0.037173 

Idh-γ 246 0.9968 2.4934 0.00046 1.1836 0.09492 

Idh-γ 852 0.036207 -1.4252 0.72459 -0.00314 0.031178 

Irp-1B Aconitase 1259 0.05061 -1.2732 0.63716 -0.01686 0.030854 

Irp-1B Aconitase 1521 0.039408 -1.387 0.70314 -0.00143 0.031217 

Irp-1B Aconitase 630 0.86197 0.79553 0.019504 -0.90372 0.014838 

kdn 1380 0.94859 1.266 0.010269 -1.1271 0.011912 

kdn 63 0.036607 -1.4202 0.7226 -0.00574 0.0311 

KgdE1 1401 0.25465 -0.46641 0.21991 -0.19974 0.0272 

KgdE1 2997 0.11382 -0.89129 0.42616 0.058583 0.033575 

Mdh-2 480 0.071414 -1.114 0.55328 -0.03439 0.030471 

Mdh-2 963 0.043209 -1.3452 0.67782 -0.00062 0.031259 

Men 1419 0.17984 -0.65902 0.30559 -0.12515 0.028619 

Men 1866 1 1000 0 1.2998 0.10349 

Men 5'upst. 136 0.9956 2.3545 0.000818 -1.446 0.008743 

Men 881 0.10782 -0.91775 0.4437 -0.05961 0.029969 
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SNP prob log10(PO) q value alpha Fst 

Men-b 1705 0.037207 -1.4129 0.7143 0.004206 0.03138 

Men-b 45 0.11002 -0.9079 0.43508 0.058635 0.033602 

Men-b 504 0.062212 -1.1782 0.58368 -0.02642 0.030635 

Mpi 669 0.83997 0.72006 0.026196 0.79854 0.069828 

Pdh 357 0.038608 -1.3962 0.70994 -0.0072 0.031072 

Pdh 534 0.079216 -1.0653 0.51117 -0.03952 0.030347 

Pdh 702 0.04921 -1.286 0.64412 0.013923 0.031757 

Pdk 675 0.13143 -0.82012 0.38718 0.081477 0.034736 

Pdk 870 0.044609 -1.3308 0.67503 -0.00648 0.031089 

Pdp 1313 0.027606 -1.5468 0.74302 0.003322 0.031352 

Pdp 1399 0.071614 -1.1127 0.54776 -0.03084 0.030555 

Pdp 726 0.036607 -1.4202 0.7226 0.001682 0.031303 

Pdp 78 0.035007 -1.4404 0.73593 -0.0029 0.031166 

Pepck 1158 0.04841 -1.2935 0.6508 0.015502 0.031803 

Pepck 1195 0.9998 3.6988 2.50E-05 -1.7692 0.006354 

Pepck 1479 0.10642 -0.9241 0.45203 -0.06059 0.029921 

Pfk 2016 0.035607 -1.4327 0.73039 -0.00234 0.031185 

Pfk 501 0.983 1.762 0.003272 1.0642 0.085879 

Pfrx 1548 0.045009 -1.3267 0.6722 -0.00738 0.031064 

Pfrx 303 0.16923 -0.69099 0.33039 -0.11797 0.028785 

Pgi 24 0.035407 -1.4353 0.73411 0.001107 0.031303 

Pgi 985 0.66813 0.3039 0.05857 -0.61205 0.019466 

Pgk 333 0.090418 -1.0026 0.48323 -0.04523 0.030249 

Pgk 639 0.4985 -0.00261 0.089295 -0.42257 0.022846 

Pgls 19 0.072014 -1.1101 0.54208 -0.03339 0.030509 

Pgls 308 0.09902 -0.95899 0.4602 -0.06026 0.029987 

Pgls 607 0.05121 -1.2678 0.63357 -0.01352 0.030947 

Pglym78 144 0.053011 -1.252 0.61841 -0.01835 0.030805 

Pglym78 255 0.18384 -0.64734 0.29239 0.12469 0.036617 

Pgm 129 0.053811 -1.2451 0.6103 -0.01666 0.030843 

Pgm 1393 0.13143 -0.82012 0.38718 -0.08378 0.029455 

Pgm 1450 1 1000 0 1.3683 0.11046 

Pgm 155 0.046609 -1.3108 0.66337 -0.01122 0.030974 

Pyk 1376 0.09802 -0.96388 0.46809 0.050952 0.033285 

Pyk 180 0.046209 -1.3147 0.66637 -0.01415 0.030892 

Pyk 711 0.13243 -0.81633 0.36579 -0.0847 0.029437 
Pyruvate carboxylase 
1693 0.585517 0.150033 0.072807 0.48728 0.053284 
Pyruvate carboxylase 
1774 0.047409 -1.303 0.66032 0.015304 0.031801 
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SNP prob log10(PO) q value alpha Fst 

Pyruvate carboxylase 
1792 0.9858 1.8414 0.002216 -1.2703 0.010257 

Pyruvate carboxylase 
2631 0.059012 -1.2026 0.59294 -0.02101 0.030757 

SdhD 261 0.057812 -1.2121 0.59741 -0.01945 0.030786 

Tpi 234 0.17784 -0.66494 0.31819 0.1093 0.035753 

Tpi 399 0.32527 -0.3169 0.17224 -0.24564 0.026154 

Tps1 2409 0.036007 -1.4277 0.72656 -0.003 0.031162 

Tps1 303 0.05121 -1.2678 0.63357 -0.01439 0.030904 

Transaldolase 129 0.076015 -1.0848 0.52404 -0.03489 0.03045 

Transaldolase 531 0.9988 2.9202 0.000156 1.2265 0.098096 

Treh 1071 0.29046 -0.38789 0.20399 -0.22503 0.026653 

Treh 122 0.14103 -0.78467 0.35438 -0.09688 0.029241 

UGPase 318 0.041608 -1.3624 0.69354 0.01014 0.031599 

UGPase 45 0.045409 -1.3227 0.66931 -0.0098 0.030989 
 

Table 4. Table of results of Fst outlier analysis of SNP data from 20 populations in BayeScan2.1 
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 Significant results  

 both MK only other only neither p value 

MK vs Factor analysis 7 8 8 24 0.1844 
MK vs Fst outliers 7 8 8 26 0.1772 

MK vs HKA 2 14 2 31 0.5879 

 
 

both HKA only other only neither  

HKA vs Fst outliers 2 5 17 40 1 
HKA vs Factor analysis 3 4 12 27 0.6666 

 both Fst only other only neither  
Fst outliers versus Factor 

analysis 7 11 8 19 
0.5381 

 

Table 5. Values entered into 2x2 contingency table and two-tailed p value results of Fisher’s exact test. 
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Gene Factor analysis Fst outlier MK HKA 
Irp-1B (cAcon) yes yes yes yes 

Fbp yes yes yes no 

PC yes yes yes no 

G6PD yes yes yes no 

Gdh yes yes no no 

Gpo-1 yes yes no no 

Hex-A yes yes — no 

Got2 yes no yes no 

Idh-beta yes no no yes 

6Pgd yes no no no 

Pdk yes no no no 

Gpdh yes no — yes 

Men-b yes no — no 

Tpi yes no — no 

UGP yes no — no 

aralar1 no yes yes no 

ACC no yes yes no 

Pgm no yes yes no 

Pepck no yes no yes 

Idh-gamma no yes no no 

Pfk no yes no no 

Men no yes no no 

Gpt no yes no no 

Taldo no yes — no 

Hex-C no yes — no 

kdn no yes — no 

Pgi no no yes no 

mAcon (CG4706) no no yes yes 

Pgls no no yes no 

Mdh1 no no yes no 

Tps1 no no yes no 

Treh no no yes no 

Eno no no no no 

Got1 no no no no 

KgdE1 no no no no 

Pdp no no no no 

Pglym87 no no no no 

Ald no no no no 

Pdh no no no no 

Gapdh1 no no no no 
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Gene Factor analysis Fst outlier MK HKA 
SdhD no no no no 

Idh (cytosolic) no no — yes 

Idh-alpha no no — no 

sea no no — yes 

Pfrx no no — no 

Pglym78 no no — no 

Mpi — yes no no 

mAcon (CG9244) — no yes no 

Adh — no no no 

Kdh — no no no 

KdhE3 — no no no 

SucB — no no no 

Rpd3 — no no no 

Sdh-A — no no no 

SdhC — no no no 

skap — no no no 

Trh — no no no 

CG30499 — no — no 

Sdh-C — no — no 

Scsalpha — no — no 

GlyP — — yes no 

     

Table 6. Significant results of tests by gene. Results of each test for each gene are significant 
“yes”, not significant “no” or were not performed “—“. 
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Chapter 2 Supplementary Tables 

  CG 

number   Gene   linkage   Sites   S   η   π   k 

  ϴ per 

site 

  ϴ per 

gene 

CG11198 ACC Autosomal 7583 80 80 0.002349 17.8108 0.002527 19.1637 

CG3481 Adh Autosomal 771 18 18 0.005278 4.0691 0.005593 4.3118 

CG6058 Ald Autosomal 1092 14 14 0.002591 2.8288 0.003071 3.3536 

CG2139 aralar1 Autosomal 2049 36 36 0.004652 9.5315 0.004209 8.6237 

CG30499 
Ribulose-

phosphate 3 
epimerase 

Autosomal 666 6 6 0.002448 1.6306 0.002158 1.4373 

CG4706 mito Acon Autosomal 2352 23 23 0.002778 6.5345 0.002343 5.5096 

CG9244 mito Acon Autosomal 2052 55 55 0.001569 3.2192 0.006421 13.175 

CG7176 cIdh Autosomal 1251 6 6 0.001248 1.5616 0.001149 1.4373 

CG17654 Eno Autosomal 1503 20 20 0.004234 6.3634 0.003188 4.7909 

CG31692 Fbp Autosomal 1005 16 16 0.00456 4.5826 0.003814 3.8327 

CG12055 Gapdh1 Autosomal 998 9 10 0.002907 2.9009 0.0024 2.3955 

CG5320 Gdh Autosomal 1650 17 17 0.002996 4.9429 0.002468 4.0723 

CG7254 GlyP Autosomal 2535 35 37 0.003774 9.5661 0.003496 8.8632 

CG8430 Got1 Autosomal 1251 21 21 0.004647 5.8138 0.004021 5.0305 

CG4233 Got2 Autosomal 1182 31 31 0.007812 9.2342 0.006283 7.4259 

Cg9042 Gpdh Autosomal 1083 23 23 0.006333 6.8589 0.005087 5.5096 

Cg8256 Gpo-1 Autosomal 2175 56 57 0.005285 11.4955 0.006278 13.6541 

CG8094 Hex-C Autosomal 1365 14 14 0.003698 5.048 0.002457 3.3536 

CG32026 Idh-alpha Autosomal 1134 13 13 0.002317 2.6276 0.002746 3.1141 

CG6439 Idh-beta Autosomal 1113 31 33 0.008565 9.533 0.007102 7.905 

CG5208 Idh-gamma Autosomal 1209 13 13 0.00303 3.6637 0.002576 3.1141 

CG6342 
Irp-1B (cyto 

Acon) Autosomal 2700 17 17 0.001039 2.8048 0.001508 4.0723 

CG5214 Kdh Autosomal 1407 13 13 0.001722 2.4234 0.002213 3.1141 

CG7430 KdhE3 Autosomal 1515 11 11 0.001277 1.9339 0.001739 2.635 

CG11661 KgdE1 Autosomal 3027 28 28 0.001619 4.9009 0.002216 6.7073 

CG5362 Mdh1 Autosomal 1014 14 14 0.001558 1.5796 0.003307 3.3536 

CG10120 Men Autosomal 2218 19 19 0.002308 5.1201 0.002052 4.5514 

CG5889 Men-b Autosomal 1849 28 28 0.004202 7.7688 0.003628 6.7073 

CG8417 Mpi Autosomal 1191 7 7 0.000482 0.5736 0.001408 1.6768 

CG1516 PC Autosomal 3546 40 40 0.003092 10.964 0.002702 9.5818 
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  Gene 

 G+C 

content 

 Tajima's 

D 

 Fu & Li's 

D* 

 Fu& 

Li's F*  Fu Fs 

 K 

(JC) 

 Fu & Li's 

D  Fu& Li's F 

ACC 0.5508 -0.2595 0.4682 0.2552 -7.785 0.024 0.5484 0.3214 

Adh 0.5781 -0.1864 -0.573 -0.5262 -1.851 0.019 -0.2814 -0.2993 

Ald 0.6133 -0.5011 -1.1342 -1.0941 -5.892 0.013 -0.8075 -0.8443 

aralar1 0.5664 0.372 -0.0281 0.1277 -5.142 0.024 -0.0876 0.0358 

Ribulose-
phosphate 3 
epimerase 

0.5704 0.3653 -0.424 -0.213 -1.621 0.028 -0.4829 -0.2579 

mito Acon 0.5024 0.633 0.7979 0.8781 -1.065 0.041 1.1928 1.2017 

mito Acon 0.5588 -2.7364*** -5.4115** -5.328** 1.552 0.001 -6.4492** -6.1588** 

cIdh 0.5562 0.2348 0.387 0.3976 -2.72 0.05 0.3753 0.392 

Eno 0.5949 1.1003 0.3103 0.6744 -4.265 0.021 0.6094 1.0201 

Fbp 0.5504 0.6382 -0.0244 0.226 0.001 0.035 -0.0746 0.205 

Gapdh1 0.5998 0.6392 -0.8768 -0.4658 -6.955 0.016 0.2445 0.4465 

Gdh 0.6078 0.7029 0.0709 0.3275 -24.008 0.015 -0.0746 0.2092 

GlyP 0.5726 0.2807 0.0219 0.1302 -19.769 0.025 0.3369 0.3557 

Got1 0.5547 0.5248 0.3778 0.5036 -9.899 0.036 0.3754 0.5168 

Got2 0.5811 0.851 -0.3191 0.0898 -2.72 0.025 -0.4228 0.0486 

Gpdh 0.5577 0.8333 0.7979 0.9568 -1.488 0.015 1.1928 1.2877 

Gpo-1 0.5912 -0.5735 -0.2679 -0.4432 -12.854 0.028 0.0678 -0.2059 

Hex-C 0.5513 1.6177 0.6427 1.128 -0.26 0.029 0.6639 1.1853 

Idh-alpha 0.5981 -0.4946 -0.8455 -0.8618 -1.462 0.014 -0.9745 -0.9743 

Idh-beta 0.5675 0.7232 0.6909 0.8311 -4.174 0.025 0.7418 0.8923 

Idh-gamma 0.5498 0.5588 -0.3756 -0.0879 0.501 0.024 0.059 0.2726 
Irp-1B (cyto 

Acon) 0.553 -1.0233 -1.0757 -1.2482 -10.158 0.029 -1.2486 -1.4093 

Kdh 0.5829 -0.7023 0.0943 -0.1909 -2.636 0.022 0.059 -0.2368 

KdhE3 0.5855 -0.8198 -0.1552 -0.4311 -2.752 0.017 -0.3738 -0.6474 

KgdE1 0.5753 -0.9333 -1.0446 -1.1916 -11.902 0.017 -1.251 -1.3771 

Mdh1 0.5801 -1.6937# -1.5784 -1.9022 -1.736 0.023 -1.7884 -2.1078# 

Men 0.5594 0.4165 -0.1127 0.0727 -3.872 0.025 -0.1762 0.037 

Men-b 0.5647 0.5484 0.4817 0.5964 -3.804 0.022 0.4975 0.6251 

Mpi 0.5338 -1.8527* -2.3967# -2.6071* -4.578 0.022 -2.5902* -2.795* 

PCB 0.5957 0.5132 -0.4025 -0.1068 -1.779 0.03 -0.5915 -0.2594 
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  CG 

number   Gene   linkage   Sites   S   η   π   k 

  ϴ per 

site 

  ϴ per 

gene 

CG8808 Pdk Autosomal 1240 16 16 0.002073 2.5706 0.003091 3.8327 

CG17725 Pepck Autosomal 1503 54 54 0.00834 12.5345 0.008606 12.9355 

CG4001 Pfk Autosomal 2367 25 25 0.00298 7.0541 0.00253 5.9887 

CG8251 Pgi Autosomal 1674 10 10 0.001058 1.7718 0.001431 2.3955 

CG1721 Pglym78 Autosomal 768 14 14 0.006585 5.0571 0.004367 3.3536 

CG17645 Pglym87 Autosomal 879 10 10 0.003601 3.1652 0.002725 2.3955 

CG5165 Pgm Autosomal 1672 16 16 0.001516 2.5345 0.002292 3.8327 

CG7070 Pyk Autosomal 1539 48 48 0.004802 7.3904 0.007471 11.4982 

CG7471 Rpd3 Autosomal 1566 43 43 0.007527 11.7868 0.006578 10.3005 

CG1065 Scsalpha Autosomal 987 16 16 0.003329 3.2853 0.003883 3.8327 

CG5718 Sdh-A Autosomal 1956 54 54 0.006385 12.4895 0.006613 12.9355 

CG6666 SdhC Autosomal 786 12 12 0.004547 3.5736 0.003657 2.8746 

CG6629 Sdh-C Autosomal 459 4 4 0.001995 0.9159 0.002088 0.9582 

CG10219 SdhD Autosomal 549 7 7 0.002976 1.6336 0.003054 1.6768 

CG6782 sea Autosomal 954 1 1 0.000057 0.0541 0.000251 0.2395 

CG11963 skap Autosomal 1509 7 7 0.0013 1.961 0.001111 1.6768 

CG10622 SucB Autosomal 1251 33 34 0.007497 9.3784 0.00651 8.1446 

CG2827 TA Autosomal 996 16 17 0.006567 6.5405 0.004089 4.0723 

CG2171 Tpi Autosomal 744 16 16 0.005429 4.039 0.005152 3.8327 

CG4104 Tps1 Autosomal 2430 52 52 0.004632 11.2553 0.005126 12.4564 

CG9364 Treh Autosomal 1791 56 59 0.007732 13.8483 0.007891 14.1332 

CG9122 Trh Autosomal 1668 37 38 0.006719 11.2072 0.005457 9.1028 

CG4347 UGP Autosomal 1542 37 37 0.006586 10.1562 0.005748 8.8632 

CG3724 6Pgd Sex-linked 1396 8 8 0.001183 1.6517 0.001373 1.9164 

CG12529 G6PD Sex-linked 1574 23 23 0.003688 5.8048 0.0035 5.5096 

CG1640 Gpt Sex-linked 1707 27 27 0.004975 8.4925 0.003789 6.4677 

CG3001 Hex-A Sex-linked 1626 13 13 0.000525 0.8529 0.001915 3.1141 

CG6861 kdn Sex-linked 1393 8 8 0.001278 1.7808 0.001376 1.9164 

CG7010 Pdh Sex-linked 1200 16 16 0.003721 4.4655 0.003194 3.8327 

CG12151 Pdp Sex-linked 1428 22 22 0.00498 7.1111 0.00369 5.27 

CG3400 Pfrx Sex-linked 1611 11 11 0.002462 3.967 0.001636 2.635 

CG17333 Pgls Sex-linked 732 9 9 0.00304 2.2252 0.002945 2.1559 
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  Gene 

 G+C 

content 

 Tajima's 

D 

 Fu & Li's 

D* 

 Fu& Li's 

F*  Fu Fs  K (JC) 

 Fu & Li's 

D  Fu& Li's F 

Pdk 0.5273 -1.0742 -0.4251 -0.7505 -7.982 0.022 -0.5203 -0.8547 

Pepck 0.5874 -0.1121 -0.1009 -0.1243 -4.991 0.029 -0.1845 -0.2926 

Pfk 0.5836 0.6103 0.3231 0.4954 -5.489 0.022 0.1732 0.3526 

Pgi 0.5723 -0.7887 -0.8768 -0.9964 -3.155 0.016 -0.992 -1.1042 

Pglym78 0.6203 1.6263 1.0869 1.485# -7.216 0.021 1.1544 1.5776# 

Pglym87 0.5778 0.9734 0.8334 1.0303 1.485 0.026 0.7663 0.8854 

Pgm 0.5416 -1.1049 0.3764 -0.1257 -3.338 0.028 0.3712 -0.1638 

Pyk 0.5971 -1.2848 -3.0514* -2.9003* 0.079 0.003 -3.6426** -3.3634** 

Rpd3 0.5335 0.5157 -0.5989 -0.2581 -7.879 0.031 -0.1434 0.1234 

Scsalpha 0.6108 -0.4659 -0.0244 -0.1984 -4.83 0.016 0.3712 0.1004 

Sdh-A 0.5479 -0.1247 0.0422 -0.0182 -4.06 0.035 0.3267 0.1912 

SdhC 0.4727 0.7603 0.975 1.0655 0.408 0.045 1.024 1.1203 

Sdh-C 0.5878 -0.1073 -0.016 -0.0503 0.38 0.022 -0.3634 -0.4932 

SdhD 0.5971 -0.0725 0.5291 0.4014 -0.762 0.013 0.5275 0.4001 

sea 0.5639 -1.1309 -1.7498 -1.8171 -1.385 0.042 -1.7817 -1.8534 

skap 0.5252 0.4772 0.5291 0.6002 -3.681 0.02 0.5275 0.6068 

SucB 0.5314 0.5331 1.3729# 1.2889 1.793 0.034 1.5314# 1.4162 

TA 0.5707 1.9928# 1.5997** 2.0379** 0.175 0.021 1.7083* 2.2165** 

Tpi 0.6453 0.1756 -0.4251 -0.2702 -5.539 0.018 -0.5203 -0.3381 

Tps1 0.5747 -0.3482 -0.6214 -0.6258 -2.319 0.037 -0.6179 -0.6297 

Treh 0.5404 -0.0732 0.4654 0.3316 -14.162 0.034 0.6458 0.4563 

Trh 0.563 0.8199 0.4608 0.6909 -5.921 0.022 0.5802 0.8486 

UGP 0.5202 0.5164 0.2221 0.3818 -9.477 0.027 0.1483 0.375 

6Pgd 0.6106 -0.4005 -0.6878 -0.7006 -2.485 0.034 -0.7757 -0.7789 

G6PD 0.5948 0.1823 0.7979 0.7008 -0.951 0.044 0.7983 0.7158 

Gpt 0.566 1.0814 1.4812* 1.5935# -8.602 0.032 1.6399* 1.7431# 

Hex-A 0.562 -2.2992** -3.6647** -3.7944** -1.866 0.013 -2.0079# -2.5245* 

kdn 0.6183 -0.2051 -0.0203 -0.0913 -2.178 0.02 0.6559 0.451 

Pdh 0.5759 0.5385 -0.0244 0.1876 -0.101 0.014 -0.0746 0.1638 

Pdp 0.5637 1.1833 0.751 1.0568 -6.539 0.029 0.7983 1.1289 

Pfrx 0.5998 1.5575 -0.1552 0.4587 0.109 0.021 0.3682 0.9113 

Pgls 0.5642 0.0955 -1.0966 -0.8464 -4.048 0.049 -1.2226 -0.9462 

Supplementary table 1. Population genetic measures and tests of the DGRP with a single 
Drosophila simulans reference sequence as an outgroup for tests and measures of divergence. 
Tables produced using DNAsP 5.0 (LIBRADO and ROZAS 2009).  
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Chapter 3- Starvation Experiments with RNAi Knockdown of Metabolic 

Enzymes in AKH and dILP Producing Cells of Drosophila melanogaster 

 

Background 

 

Metabolism is of central importance to life. Understanding the control of flux through metabolic 

pathway is of interest for a broad scope of study. It is believed that most enzymes in the pathway 

have little effect on flux when their activity is modified and therefore have little control of flux 

(Fell 1998; Olson-Manning et al. 2013). Observations of large whole metabolic shifts or individual 

metabolic enzyme activity associations with pathology have moved, with our increased 

understanding, from assayable effects to defining causes and targets of treatment (Martins et al. 

2006; Kroemer and Pouyssegur 2008; Fontana et al. 2010, to name a few). For example, cancer 

metabolism includes the founding, and the subsequent modification, of the Warburg effect which 

was initially thought to be the down regulation of mitochondrial oxidative phosphorylation, but 

now is accepted as the up regulation of the glycolytic pathway (Bensinger and Christofk 2012). In 

addition, metabolic enzymes have become potential targets for drug therapies alongside classical 

signaling pathways (Wu and Zhao 2013; Losman and Kaelin 2013). Research in longevity has 

implicated metabolic enzymes indirectly as downstream targets of the Insulin/Insulin-like 

signaling pathway (Partridge et al. 2011) and lifespan studies in our lab with Drosophila 

melanogaster have also shown direct effects of central metabolic enzyme activity on lifespan 

(Talbert et al., in review). Consequently, a better understanding of metabolic flux control and the 

role of metabolic enzymes in life history traits promises to yield insights into how these genes may 

be used as targets to treat human disease.  

Experimental studies to evaluate flux control through a metabolic network require a great deal of 

prior knowledge and complex experiments for each enzyme. The goal of such metabolic control 

analysis is to measure the “control coefficients” for each enzyme by perturbing enzyme activity 

and assessing flux or some proxy. The control exercised by a step enzyme is calculated as the 

change in defined output of the network (flux) given the either increased or reduced activity of that 

enzyme. To understand the relative control across an entire network, this must be repeated for a 

range of perturbations for each enzyme (Fell 1992).  
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In an example of estimating the flux control from sucrose to starch in a potato tuber (Geigenberger 

et al. 2004) used data collected from several studies to determine control based on an approximate 

control coefficient.. They calculated the control coefficients from each of the studied enzymes. 

The data from experiments using tubers or isolated discs of tuber tissue were all normalized to 

respective full activity (“wild-type”) levels for comparison across all of the enzymes. The control 

coefficients were calculated as the slope of curves near full activity of the enzyme, with the 

expectation that most would   be small. With only limited information about the structure of the 

network, one might expect flux from sucrose to starch to be controlled at a step closer to the branch 

points of sucrose or glucose-6-phosphate (G6P) and not the amyloplastidial ATP/ADP translocator 

(AATPT), yet, this is what they found. This counterintuitive conclusion would also be missed if 

one were to focus on only the direct enzymatic pathway from sucrose to starch, thus highlighting 

the importance of including as many steps involved in the measured flux as possible.  

Given the difficulty of experimentally quantifying flux control even for a single enzyme through 

a network as large and complex as central metabolism, it would be important to utilize other 

observations to produce a candidate list of enzymes that are most likely to control flux. We might 

assume that natural   selection acts upon the flux of a pathway and the response to selection and 

associated evidence appears in the genes with the largest control coefficients (Eanes 2011). Again, 

we would expect that most enzymes have low control coefficients (Kacser and Burns 1981) and 

would not stand out when looking at molecular data. Dykhuizen et al. (Dykhuizen et al. 1987) first 

combined metabolic flux control theory with fitness measures (assayed as growth rate) to predict 

the control coefficients of two enzymes involved in lactose metabolism in Escherichia coli, β-

galactosidase and β-galactoside permease. Using chemostats, with lactose as the limiting nutrient, 

they measured relative fitness of strains with known enzyme activities. Except for genetic variants 

with very low β-galactosidase, they were able to predict fitness of E.coli strains via flux control 

(most showed low control coefficients). Changes in β-galactoside permease, having a much larger 

control coefficient than β-galactosidase, resulted in large changes in fitness whereas even very 

large changes in β-galactosidase activity resulted in only small changes in fitness until activity 

levels were extremely low. Consequently, if the environment favored shifting flux in the pathway 

one might expect genetic variation in expression to appear at the permease step. With this 

association between fitness and metabolic flux control, we can connect flux control with molecular 
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signatures of selection within a network of interest. Given the central importance of metabolism, 

we could reasonably expect variation in glycolytic flux to be a target of selection for many traits, 

including starvation resistance, lifespan, fertility and fecundity. However, the presence or absence 

of flux control can be inferred in cases where the footprint of selection can be observed in 

molecular data (Eanes 2011). For example, when Flowers et al (2007) investigated patterns of 

adaptive evolution in glycolytic enzymes of D.melanogaster they found these signals clustered 

around the major branch point glucose-6-phosphate. While current high-throughput sequencing 

methods have made it relatively easy to scan the entire genomes of both model and non-model 

organisms for genetic variation (Stinchcombe and Hoekstra 2008; Fabian et al. 2012) such a wide 

view over networks as large and complex as metabolism would be expected to yield large numbers 

of non-interacting targets. We chose to focus on a particular portion of the metabolic pathway to 

find candidate genes that may have local control so as to generate fine-grain analyses. 

With this focus on the glycolytic pathway, our lab has used data from high-throughput sequencing 

techniques and the population genetics to predict the enzymes that are under adaptive selection in 

a relatively recent evolutionary time scale in Drosophila melanogaster. This may identify loci that 

we suspect have significant flux control (Eanes 2011). The populations in our study were sampled 

along a latitudinal gradient on the eastern coast of North America, from the southern end of Florida 

to Maine, as well as from further inland in Sudbury, Ontario. This historically tropical species has 

adapted to temperate climates since its colonization in North America less than 200 years ago, and  

maintains stable local populations in the northern as well as the southern parts of its range (Reaume 

and Sokolowski 2006). Many of the genes in this pathway possess SNPs that vary in a latitude-

dependent fashion (Sezgin et al. 2004) that posits a gradient in local tropical-temperate selection. 

Specifically, we used sequence data from the DGRP lines (Mackay et al. 2012) and calculated an 

allele effect on cis-acting whole-fly adult gene expression (Ayroles et al. 2009) for each SNP. We 

then used bulk pyrosequencing to estimate SNP allele frequencies across the 20 populations 

(Lavebratt and Sengul 2006; Doostzadeh et al. 2008). Results from a principal component analysis 

of the variance-covariance matrix of population SNP-associated expression variation across the 

north-south cline provided a multivariate description of patterns of expression change with 

latitude. It predicted a general down-regulation of enzymes at the entrance to the glycolytic 

pathway and an up-regulation of cofactor shuttles, Gpdh and Gpo-1, and well as on the 
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mitochondrial side of the glutamate-aspartate shuttle. The genes studied here, Gpdh, Gpo-1, and 

HexA, are significant players in that analysis. 

Additionally, experiments in our lab (Talbert et al., in revision.) have shown that metabolic enzyme 

activity perturbation can have a significant effect on lifespan, oxidative stress resistance and 

starvation resistance. The experiments were performed with lines of D. melanogaster that 

compared ‘full’ activity against ‘reduced’ activity genotypes that were generated by P-element 

mutagenesis. For each gene, many mutant alleles were screened and ‘full’ activity and 

‘knockdown’ or ‘knockout’ alleles were saved, assayed, and placed in identical genetic 

backgrounds using a controlled cross design(Merritt et al. 2006). Because dietary restriction is an 

important feature in life span extension (CHIPPINDALE et al. 1993; PARTRIDGE et al. 2005; TATAR 

2011; PIPER et al. 2014), a diet effect was also tested in the lifespan experiments. Results show a 

significant effect of Gpdh, HexA, Gdh, and Men activity on lifespan for one or both diets. 

Reduction of Idh activity had no effect on lifespan, even though the expected dietary effect was 

still observed. Mdh2 activity perturbation had a significant effect on low nutrient food, but not 

with high nutrient food. Also of note is that there was also no diet effect (wherein flies are expected 

to be longer lived on low nutrient food) (Partridge et al  1987; Chippindale et al. 1993), of Gpdh 

genotypes. The results of starvation resistance are all significant. The result of HexA hints at a 

possible trade-off between longevity and starvation resistance. It is of special interest that Gpdh 

showed a significant extension of life span in the genotype with lowered activity. Gpdh and Gpo-

1 represent the cytosolic and mitochondrial, respectively, sides of the glycerol-phosphate shuttle 

that is used to transfer NAD/NADH equivalents and thereby should play a direct role in the 

reduction-oxidation (redox) state of the cell (O’Brien and MacIntyre 1972).  

This study investigates what effect, if any, perturbation of the metabolic pathway has in the context 

of adipokinetic hormone (AKH) signaling during starvation. AKH producing cells in the corpora 

cardiaca (CC) are required for starvation induced hyperactivity (Lee and Park 2004). Furthermore, 

metabolic state sensing has been linked to AKH release from the CC cells in response to starvation 

through AMPK (Braco et al. 2012). HexA uses ATP as a cofactor and is near the major branch 

point of glucose-6-phosphate (Flowers et al. 2007) and Gpdh, and Gpo-1 are partners in the 

glycerophosphate shuttle and use NAD(P) and FAD as cofactors, respectively. Position in the 

overall pathway, the use of highly connected cofactors and predicted metabolic flux control makes 
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these genes attractive candidates to affect starvation response by control of metabolic flux and 

therefore metabolic state.  

To test the effect of candidate genes in AKH signaling starvation response, I have used tissue 

specific RNAi knockdown using RNAi constructs from the Transgenic RNAi Project (TRiP) under 

the control of GAL4 UAS and GAL4 drivers expressed under the control of Akh (Lee and Park 

2004) and dILP2 (Rulifson et al. 2002) Drosophila melanogaster promoters. Insulin signaling is 

known to play a role in starvation resistance (Clancy et al. 2001; Ikeya et al. 2002; Broughton et 

al. 2005; Wang et al. 2008) although coupling of metabolic state with dILP release lies outside of 

the dILP producing cells (Geminard et al. 2009).  

Methods and Materials 

Drosophila Stocks: The following TRiP stocks were obtained from Bloomington Stock Center, 

Bloomington, IL.: Gpdh (CG9042) BDSC#51474, Gpo-1 (CG8256)BDSC#55319, HexA 

(CG3001) BDSC#35155, Men (CG10120) BDSC#38256, Mdh2 (CG7998) BDSC#36606, Gdh 

(CG5320) BDSC#51473, Idh (CG7176) BDSC#41708, Pdk (CG8808) BDSC#35142, Cary2 

control: y[1] v[1] ; P{y[+t7.7]=CaryP}attP2 (BDSC#36303), Cary40 control: 

y[1]v[1];P{y[+t7.7]=CaryP}attP40 (BDSC#36304), tub-GAL4 (BDSC#5138): y[1] w[*]; 

P{w[+mC]=tubP-GAL4}LL7/TM3, Sb[1] Ser[1]. Both the dILP2-GAL4 and Akh-GAL4 driver lines 

were derived from stocks with the driver cassette inserted in a P-element. The Akh-Gal4 driver 

line was crossed with In(1)w[m4h]; Df(3L)Ly, sens[Ly-1]/TM3, ry[RK] Sb[1] Ser[1] 

P{ry[+t7.2]=Delta2-3}99B (BDSC#2030) and driver P-element retentions and excisions screened 

and placed in a w;CyO/6326;TM3, Sb/~ background. The dILP2-GAL4 drier line was crossed with 

y[1] w[*]; CyO, H{w[+mC]=PDelta2-3}HoP2.1/PPO1[Bc] and driver P-element retentions and 

excisions screened and placed in a w;Cy/~;VT46 background . Akh-GAL4 driver was derived from 

BDSC#25684. The dILP2-GAL4 driver was derived from BDSC#52660 w[1118]; 

P{w[+mC]=Ilp3-GAL4.C}2/CyO .  Long term stocks were maintained at 18oC with 12:12 hours 

light:dark cycle. All crosses were performed at 25oC. All flies were handled at room temperature 

with CO2 anesthesia and held in incubators set to 12:12 hours light:dark cycle and 50-70% 

humidity. All food consisted of cornmeal-yeast flake-corn syrup diet stabilized with agar at 

concentrations per 100ml of 3.75g corn meal, 3.75g inactive yeast flake, 7.3g corn syrup solids, 
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1g agar, with final concentration of 2mg/ml of p-hydroxybenzoic acid methyl ester dissolved in 

ethanol (0.75% final concentration of ethanol). All vials and bottles were supplemented with 

active-dry yeast (Red Star Baker’s Yeast) applied to the top of cooled food.  

Crosses: Five TRiP males were crossed with 10 corresponding control line (Cary2 or Cary40) 5-

10 day old virgin females per vial to generate TRiP/Cary heterozygotes. Virgin females were 

collected twice daily and held at 18oC for 5-7 days before mating. Fifty TRiP/Cary females were 

crossed with 25 GAL4 males in each bottle. TRiP and control genotypes emerged together within 

each bottle and were separated by eye color. GAL4 driver and excision control genoere crossed to 

TRiP/control females separately with two bottles per GAL4 genotype (Supplemental Figs 1 & 2). 

Mating adults were transferred three times to new vials every two days or new bottles every 24 

hours. ‘18oC constant’ cross bottles were transferred from 25oC to 18oC immediately after parental 

adults had been removed. Males were separated by bottle of origin (GAL4 genotype) and eye color 

(TRiP genotype) and held at either 18oC or 25oC. All assays were performed on 5-7 day old males 

held in vials of 10-20 individuals (Supplemental Fig 3).  

Starvation: Flies were held in standard vials with about ¼ of a rayon ball moistened with distilled 

water. Starvation vials were held in one 10x10 vial rack at 18oC or 25oC with 12:12 hours light:dark 

and 50-70% humidity. Dead flies were counted every 6 hours from start at room temperature. F2 

males were placed in vials of 10 individuals each, 10 vials per TRiP genotype (TRiP or Cary) per 

bottle of origin for a total of 800 flies per experiment. F2 Males from replicate bottles of the same 

F1 cross parents were pooled and randomized by true bottle of origin across replicate vials. 

Genotypes and bottle of origin were randomized across an 8x10 grid of vials. Flies were transferred 

to new food vials at least 4 hours prior, or 18 hours for temperature shift experiments, to starvation 

start in the final randomization under CO2 anesthesia. Flies were then transferred to starvation vials 

without anesthesia. Parametric Survival tests were performed in JMP 11 (SAS). 

Locomotor activity: Locomotor activity was measured by a TriKinetics Drosophila Activity 

Monitor, by placing one fly in each 5x60mm glass tube with 1mm thick walls. Food or Distilled 

water and agar was placed at one end and capped with a 10mm long plastic cap. After placing a 

fly in the tube, the other end was capped with a 6mm cap with a small hole for air exchange. Fed 

flies were given standard diet to about 10mm and starved flies were given a 3% agar in distilled 
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water to about 10mm. Males flies 6-7 days old were used and had been acclimated to the light 

cycle while in vials of 20 individuals each at 18oC. Vials of flies were transferred to 25oC at least 

18 hours prior to being transferred to locomotor activity tubes. Analysis of sleep and activity 

measures was performed in pySolo v1.0. Significant differences in variances between pairs were 

tested by calculating F. Means and standard deviations were exported and pairwise t-tests were for 

equal or unequal variances performed accordingly (Sokal and Rohlf 1995). Each experiment used 

64 total flies: 32 fed and 32 starved, 8 flies from each of two bottles for each of the two Akh-GAL4 

versions. Flies were reared as described for starvation experiments but only individuals carrying 

the TRiP insert were used. 

Individual fly data 

Wet weight was taken on individual male flies 5-7 days old. Flies were transferred to -20oC for 

one hour prior to weighing on a Cahn C32 microbalance. Flies were kept on ice except when being 

weighed. Analysis of Variance was performed in JMP 11 (SAS). 

Results and Discussion 

The general pattern observed is that there is no significant effect on starvation resistance of 

knockdown in IPCs (Fig 1 & Table 1). While statistical analyses considered each replicate bottle 

separately, the graphs combine data from the same genotypes coming from different bottles and 

allude to the fact that significant effects of the GAL4 or TRiP elements are driven largely by one 

of the two replicate bottles. This is not an unreasonable expectation, given that the release of dILPs 

appears to be under the control of signals from the fat body (Geminard et al. 2009). The results of 

the dILP2-GAL4 starvation experiments support Geminard et al’s (2009) model of dILP signaling 

coupled to nutrient signaling outside of the dILP releasing cells. These also serve as a negative 

control to test the effects the TRiP inserts with a GAL4 driver other than the Akh-GAL4.  

The knockdown of any of the genes tested in AKH producing cells has no significant effect on 

starvation resistance (Fig 2 & Table 2) with the possible exception of Gpo-1. As with the dILP2-

GAL4 experiments, the statistical tests show whole-model significance, yet the GAL4 and TRiP 

effects are driven by bottle and vial effects. The experiment with Gpo-1 is quite interesting, but 
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the strength of the effect of the TRiP element alone raised concern. To address this in more detail, 

we replicated the starvation experiments at varied temperatures.  

It is widely believed that the wild-type Saccharomyces cerevisiae GAL4 used in D. melanogaster 

expression constructs, and under the control of the dILP2 and Akh promoters here, are temperature 

sensitive. However, Mondal et al. (2007) have shown that this full length wild-type version of 

GAL4 is not temperature sensitive. To rule out a temperature dependent effect of Gpo-1 TRiP 

RNAi, we replicated starvation experiments at different temperature regimes (Fig 3 & Table 3). 

Again, we saw a significant Gpo-1 TRiP effect even at 18oC, the presumed non-permissive 

temperature. For comparison, I replicated starvation experiments for HexA and Gpdh using the 

Akh-GAL4 driver at different temperatures (Fig 4 & Table 4). Again, for all experiments under 

these temperature regimens, the convincing result was for the Gpo-1 TRiP insert and the other 

significant effects seemed to be driven by bottle of origin effects. A general pattern of increased 

differences in survival by genotype did arise as temperature decreased. 

The increased differences of survival by genotype is correlated by the temperature effect on body 

size for Drosophila (ALPATOV 1930; Imai 1933 and many others, also see Partridge et al. 1994). 

Wet weight, and not dry weight, was taken to facilitate metabolite measures with the same flies.  

Wet weights correlate well with dry weights (CHIPPINDALE et al. 1998; OKAMOTO et al. 2009) and 

leave the option of taking dry weight or metabolite measures at a later time. Weights by genotype 

reflect similar patterns seen in the starvation experiments (Fig 5 & Table 5). Notably, Gpo-1 TRiP 

flies are lighter regardless of the GAL4-Akh genotype. This is likely what is driving the starvation 

sensitivity differences with regard to the Gpo-1 TRiP experiments. A more detailed examination 

of temperature effect shows that temperature is the dominant effect, far above even the Gpo-1 

TRiP genotype effect (Fig 6 & Table 6).  

Analysis of Activity Index during the first full day of Gpdh flies, hours 11-34 of starvation (Fig 

7), indicated no difference between starved flies by RNAi activity or between starved and fed flies 

of similar RNAi activity (Between Akh-GAL4 Retention: t = 0.734, d.f = 30, p = 0.4686; Between 

Akh-GAL4 Excision: t = 0.91583, d.f. = 30, p = 0.3671). There is also no significant difference 

between genotypes for fed or starved flies (Between fed: t = 0.2908, d.f = 22.62, p = 0.7739; 

Between starved: t = 0.9618, d.f. = 19.29, p = 0.3482). The lack of a difference between genotypes 
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within starved or fed states supports the lack of an effect of RNAi, but the lack of a difference 

between fed and starved flies suggests a lack of power due to small sample size. Inspection of the 

graphs shows a hint of an activity increase at 0900 as well as reduced sleep periods. More replicates 

would likely find a clearer difference between fed and starved flies, but this also leads to an issue 

with drawing conclusions about genotype differences. 

Analysis of Activity Index during the first full day of Gpo-1 flies, hours 11-34 of starvation (Fig 

8), indicate a significant difference by genotype for both fed and starved (Between fed: t = 3.29, 

d.f. = 17.00, p = 0.0043; Between starved: t = 3.11, d.f. = 23.73, p = 0.0049). There was also a 

significant difference in Activity Index between fed and starved flies with active (Between Akh-

GAL4 Retention: t = 2.16, d.f =30, p = 0.0388; Between Akh-GAL4 Excision: t = 6.42, d.f. = 21.02, 

p = <0.0001). This experiment suffers from the same problem of power as with the Gpdh 

experiment. More replicates would need to draw firm conclusions about genotypic differences.  

Gpo-1 TRiP experiments suggest an effect on starvation resistance, though the cause is unclear. 

The large effect of the presence of the Gpo-1 TRiP construct alone, regardless of the presence or 

absence of the Akh-GAL4 driver, would suggest a position effect. However, the Cary40 control 

line contains an insert at the same genomic position and using the same source vector but without 

the vermillion gene or the Gpo-1 specific RNAi sequence. Also, the Gpdh, Gdh, Idh, and Men 

TRiP lines used here also use the same attp40 insertion site without such obvious effects. These 

comparisons rule out the position effect and a general presence of TRiP insert effect and point to 

an effect specific to the Gpo-1 TRiP construct. 

It is possible that there may be low to moderate expression of Gpo-1 dsDNA, perhaps ubiquitously. 

Viability tests of the TRiP constructs with a ubiquitous tubulin-GAL4 driver suggest that Gpo-1 

TRiP works, as this combination rare yields adults (Supplemental Table 1, p < 0.0001). Whole-fly 

enzyme activity of GPO-1 could be determined and tested between RNAi and control flies, as well 

as Gpo-1 RNA content in the whole body by qPCR. Determination of Gpo-1 RNAi efficiency in 

the AKH producing cells will be challenging due to the small number and location of the cells. 

Expression of the RNAi throughout the body is attractive because this would mean that there opens 

the possibility of a major effect of Gpo-1 with the experiments here, but outside the context of 

AKH signaling, given the effect on wet weight and starvation resistance. We have not yet 
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developed a P-element excision series with Gpo-1, as has been done with the other genes tested 

here. The results here suggest that doing so could prove fruitful, particularly in testing the general 

effect of perturbation of the glycerophosphate shuttle, and not just Gpdh, the partner to Gpo-1 in 

this shuttle.  

It is also possible that the Akh-GAL4 driver is not working properly or RNAi knockdown with the 

TRiP lines is inefficient in this context. Metabolic state sensing could be robust to metabolic flux 

perturbations. The model of metabolic state coupled to AKH signaling through AMPK within 

AKH producing cells (Lee and Park 2004; Braco et al. 2012) could be complicated if RNAi 

knockdown in this study is inefficient. That is, unless the sensing system is robust to general 

perturbation and this study has missed a specific effector. Remote sensing, similar to 

Insulin/Insulin-like signaling (Colombani et al. 2003; Geminard et al. 2009) is a possibility and 

preliminary experiments with knockdown and overexpression in the fat body would be in order.  

Using starvation as an assay risks involving the Insulin/Insulin-like signaling pathway as well as 

possibly AKH signaling. Significant effects of metabolic enzyme perturbation in the fat body on 

starvation resistance are of great interest whether AKH or dILP signaling, or both, is involved. 

Release of AKH into the hemolymph in this case may be a clearer assay with respect to starvation 

induced AKH signaling as care should be taken to make sure that effects of Insulin/Insulin-like 

signaling and AKH signaling can be distinguished from each other.  
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Fig 1. TRiP x dILP2-GAL4 starvation experiments. All experiments were performed at 25oC 
constant temperature. Red lines are flies with the dILP2-GAL4 driver, blue lines are flies with that 
element excised. Solid lines are flies with the TRiP insert, dotted lines are flies with the Cary 
control insert. 
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Fig 1 continued. TRiP x dILP2-GAL4 starvation experiments. All experiments were performed at 
25oC constant temperature. Red lines are flies with the dILP2-GAL4 driver, blue lines are flies with 
that element excised. Solid lines are flies with the TRiP insert, dotted lines are flies with the Cary 
control insert. 
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Fig 2. TRiP x Akh-GAL4starvation experiments. All experiments were performed at 25oC constant. 
Red lines are flies with the Akh-GAL4 driver, blue lines are flies with that element excised. Solid 
lines are flies with the TRiP insert, dotted lines are flies with the Cary control insert. 
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Fig 2 continued. TRiP x Akh-GAL4starvation experiments. All experiments were performed at 
25oC constant. Red lines are flies with the Akh-GAL4 driver, blue lines are flies with that element 
excised. Solid lines are flies with the TRiP insert, dotted lines are flies with the Cary control insert. 
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Fig 3. Results of starvation experiments using Gpo-1 TRiP with Akh-GAL4.Red lines are flies 
with the Akh-GAL4 driver, blue lines are flies with that element excised. Solid lines are flies with 
the TRiP insert, dotted lines are flies with the Cary control insert. Two replicates are shown for 
the 18-25oC temperature shift. 
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Fig 4. Results of starvation experiments using Gpdh TRiP and HexA TRiP with Akh-GAL4.Red lines 
are flies with the Akh-GAL4 driver, blue lines are flies with that element excised. Solid lines are 
flies with the TRiP insert, dotted lines are flies with the Cary control insert. 
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absence of insertions labeled as (+) and (‒), respectively.  
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Fig 6. Temperature effect of weights of individual flies by genotype for Gpo-1 TRiP x Akh-

GAL4 crosses. Presence and absence of insertions labeled as (+) and (‒), respectively. Flies 
were reared and treated similarly to flies used in starvation assays. Rearing conditions and 
temperature regimes were replicated so that flies weighed were representative of flies used in 
starvation experiments at the start of starvation. 
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Gpdh x Akh-GAL4 locomotor activity and sleep 

Fig 7. Locomotor activity and sleep analysis of Gpdh RNAi flies. All flies carry the TRiP insert. Blue 
represents flies carrying the Akh-GAL4 insert, red carrying the GAL4 excision chromosome. Dark 
colors represent starved flies, light colors fed flies. Zeitgeber depicts the light status (black=off, 
white=on) and hour of day (24h format). Flies were transferred to locomotor activity assay vials at 
about 14:00 on the day previous to data shown. 
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Gpo-1 x AKh-GAL4 locomotor activity and sleep 

Fig 8. Locomotor activity and sleep analysis of Gpo-1 RNAi flies. All flies carry the TRiP insert. Blue 
represents flies carrying the Akh-GAL4 insert, red carrying the GAL4 excision chromosome. Dark 
colors represent starved flies, light colors fed flies. Zeitgeber depicts the light status (black=off, 
white=on) and hour (24h format). Flies were transferred to locomotor activity assay vials at about 
14:00 on the day previous to data shown. 
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Gpdh x dILP2-GAL4     

Source Nparm d.f. 
Two-
tailed χ2 Prob > χ2 

Gal4 1 1 1.087 0.2972 
Bottle[Gal4] 2 2 3.599 0.1654 
TRiP[Gal4,Bottle] 4 4 1.940 0.7469 
Vial[Bottle,Gal4,TRiP] 72 72 8.444 1.0000 
whole model  79 15.141 1.0000 
     
Pdk x dILP2-GAL4     

Source Nparm d.f. 
Two-
tailed χ2 Prob > χ2 

Gal4 1 1 24.278 <.0001 

Bottle[Gal4] 2 2 62.719 <.0001 

TRiP[Gal4,Bottle] 4 4 37.638 <.0001 

Vial[Bottle,Gal4,TRiP] 72 72 168.257 <.0001 

whole model  79 262.556 <.0001 

     
Idh x dILP2-GAL4     

Source Nparm d.f. 
Two-
tailed χ2 Prob > χ2 

Gal4 1 1 9.793 0.0018 

Bottle[Gal4] 2 2 21.240 <.0001 

TRiP[Gal4,Bottle] 4 4 24.379 <.0001 

Vial[Bottle,Gal4,TRiP] 71 71 109.930 0.0021 

whole model  78 147.439 <.0001 

     
Gdh x dILP2-GAL4     

Source Nparm d.f. 
Two-
tailed χ2 Prob > χ2 

Gal4 1 1 6.366 0.0116 

Bottle[Gal4] 2 2 9.327 0.0094 

TRiP[Gal4,Bottle] 4 4 12.827 0.0122 

Vial[Bottle,Gal4,TRiP] 72 72 123.735 0.0001 

whole model  79 140.803 <.0001 
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HexA x dILP2-GAL4     

Source Nparm d.f. 
Two-
tailed χ2 Prob > χ2 

Gal4 1 1 19.074 <.0001 

Bottle[Gal4] 2 2 14.678 0.0006 

TRiP[Gal4,Bottle] 4 4 13.217 0.0103 

Vial[Bottle,Gal4,TRiP] 70 70 126.545 <.0001 

whole model  77 164.312 <.0001 

     
Men x dILP2-GAL4     

Source Nparm d.f. 
Two-
tailed χ2 Prob > χ2 

Gal4 1 1 43.978 <.0001 

Bottle[Gal4] 2 2 66.397 <.0001 

TRiP[Gal4,Bottle] 4 4 9.256 0.055 
Vial[Bottle,Gal4,TRiP] 72 72 138.328 <.0001 

whole model  79 243.590 <.0001 

     
Mdh2 x dILP2-GAL4     

Source Nparm d.f. 
Two-
tailed χ2 Prob > χ2 

Gal4 1 1 18.374 <.0001 

Bottle[Gal4] 2 2 17.611 0.0001 

TRiP[Gal4,Bottle] 4 4 16.813 0.0021 

Vial[Bottle,Gal4,TRiP] 72 72 76.111 0.3477 
whole model  79 122.559 0.0012 

 
 
 
 
 
  

Table 1. Results of Parametric Survival tests for TRiP x dILP2 starvation experiments. 
All experiments using the dILP2-GAL4 driver were performed at a constant temperature 
of 25oC.  
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Idh x Akh-GAL4     

Source Nparm d.f. 
Two-
tailed χ2 Prob > χ2 

Gal4 1 1 5.999 0.0143 
Bottle[Gal4] 2 2 10.638 0.0049 
TRiP[Gal4,Bottle] 4 4 10.329 0.0352 
Vial[Bottle,Gal4,TRiP] 72 72 148.085 <.0001 
whole model  79 171.342 <.0001 
     
Mdh2 x Akh-GAL4     

Source Nparm d.f. 
Two-
tailed χ2 Prob > χ2 

Gal4 1 1 9.133 0.0025 
Bottle[Gal4] 2 2 9.957 0.0069 
TRiP[Gal4,Bottle] 4 4 8.535 0.0738 
Vial[Bottle,Gal4,TRiP] 72 72 150.107 <.0001 
whole model  79 168.389 <.0001 
     
HexA x Akh-GAL4     

Source Nparm d.f. 
Two-
tailed χ2 Prob > χ2 

Gal4 1 1 33.1155 <.0001 
Bottle[Gal4] 2 2 4.8513 0.0884 
TRiP[Gal4,Bottle] 4 4 24.3126 <.0001 
Vial[Bottle,Gal4,TRiP] 72 72 129.3311 <.0001 
whole model  79 180.9590 <.0001 
     
Gpo-1 x Akh-GAL4     

Source Nparm d.f. 
Two-
tailed χ2 Prob > χ2 

Gal4 1 1 11.3156 0.0008 
Bottle[Gal4] 2 2 11.1605 0.0038 
TRiP[Gal4,Bottle] 4 4 64.3339 <.0001 
Vial[Bottle,Gal4,TRiP] 64 64 57.2158 0.7132 
whole model  71 122.5475 0.0001 
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Men x Akh-GAL4     

Source Nparm d.f. 
Two-
tailed χ2 Prob > χ2 

Gal4 1 1 62.960 <.0001 
Bottle[Gal4] 2 2 1.209 0.5464 
TRiP[Gal4,Bottle] 4 4 33.141 <.0001 
Vial[Bottle,Gal4,TRiP] 72 72 142.498 <.0001 
whole model  79 238.876 <.0001 
     
Tpi x Akh-GAL4     

Source Nparm d.f. 
Two-
tailed χ2 Prob > χ2 

Gal4 1 1 0.788 0.3747 
Bottle[Gal4] 2 2 40.243 <.0001 
TRiP[Gal4,Bottle] 4 4 32.434 <.0001 
Vial[Bottle,Gal4,TRiP] 72 72 130.817 <.0001 
whole model  79 188.083 <.0001 
     
Gpdh x Akh-GAL4     

Source Nparm d.f. 
Two-
tailed χ2 Prob > χ2 

Gal4 1 1 18.79 <.0001 
Bottle[Gal4] 2 2 4.80 0.0907 
TRiP[Gal4,Bottle] 4 4 78.80 <.0001 
Vial[Bottle,Gal4,TRiP] 72 72 173.15 <.0001 
whole model  79 263.38 <.0001 
     
Gdh x Akh-GAL4     

Source Nparm d.f. 
Two-
tailed χ2 Prob > χ2 

Gal4 1 1 72.248 <.0001 
Bottle[Gal4] 2 2 77.568 <.0001 
TRiP[Gal4,Bottle] 4 4 15.605 0.0036 
Vial[Bottle,Gal4,TRiP] 72 72 127.576 <.0001 
whole model 79  259.590 <.0001 

 
 
 
 
 
 
  

Table 2. Results of Parametric Survival tests for 25oC constant temperature starvation 
experiments with TRiP x Akh-GAL4. 
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Gpo-1 x Akh-GAL4 18-30oC shift   

Source Nparm d.f. 
Two-
tailed χ2 Prob > χ2 

Gal4 1 1 0.112 0.7383 
Bottle[Gal4] 2 2 2.305 0.3158 
TRiP[Gal4,Bottle] 4 4 5.953 0.2027 
Vial[Bottle,Gal4,TRiP] 72 72 91.444 0.0608 
whole model  79 98.555 0.0674 
     

Gpo-1 x Akh-GAL4 18oC constant   

Source Nparm d.f. 
Two-
tailed χ2 Prob > χ2 

Gal4 1 1 6.512 0.0107 
Bottle[Gal4] 2 2 12.382 0.002 
TRiP[Gal4,Bottle] 4 4 137.349 <.0001 
Vial[Bottle,Gal4,TRiP] 69 69 113.267 0.0006 
whole model  76 234.715 <.0001 
     
Gpo-1 x Akh-GAL4 
Rep1 18-25oC shift   

Source Nparm d.f. 
Two-
tailed χ2 Prob > χ2 

Gal4 1 1 8.004 0.0107 
Bottle[Gal4] 2 2 0.923 0.002 
TRiP[Gal4,Bottle] 4 4 23.616 <.0001 
Vial[Bottle,Gal4,TRiP] 72 72 54.559 0.0006 
whole model  79 78.405 <.0001 
     
Gpo-1 x Akh-GAL4 
Rep2 18-25oC shift   

Source Nparm d.f. 
Two-
tailed χ2 Prob > χ2 

Gal4 1 1 0.295 0.5869 
Bottle[Gal4] 6 6 4.817 0.5675 
TRiP[Gal4,Bottle] 8 8 39.641 <.0001 
Vial[Bottle,Gal4,TRiP] 64 64 44.296 0.9713 
whole model  79 83.068 0.3553 

 
 
 
 
 

Table 3. Results of Parametric Survival tests for Gpo-1 x Akh-GAL4 temperature regime 
experiments.  
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Gpdh x Akh-GAL4 18oC constant   

Source Nparm d.f. 
Two-
tailed χ2 Prob > χ2 

Gal4 1 1 106.725 <.0001 
Bottle[Gal4] 2 2 30.528 <.0001 
TRiP[Gal4,Bottle] 4 4 48.838 <.0001 
Vial[Bottle,Gal4,TRiP] 72 72 101.501 0.0126 
whole model  79 235.382 <.0001 
     

Gpdh x Akh-GAL4 18-25oC shift   

Source Nparm d.f. 
Two-
tailed χ2 Prob > χ2 

Gal4 1 1 14.152 0.0002 
Bottle[Gal4] 2 2 1.357 0.5073 
TRiP[Gal4,Bottle] 4 4 13.245 0.0101 
Vial[Bottle,Gal4,TRiP] 72 72 106.667 0.005 
whole model  79 131.122 0.0002 
     
Gpdh x Akh-GAL4 18-30oC shift   

Source Nparm d.f. 
Two-
tailed χ2 Prob > χ2 

Gal4 1 1 30.367 <.0001 
Bottle[Gal4] 2 2 10.507 0.0052 
TRiP[Gal4,Bottle] 4 4 7.028 0.1344 
Vial[Gal4,Bottle,TRiP] 72 72 105.433 0.0063 
whole model  79 148.188 <.0001 
     
HexA x Akh-GAL4 18-25oC shift   

Source Nparm d.f. 
Two-
tailed χ2 Prob > χ2 

Gal4 1 1 39.349 <.0001 
Bottle[Gal4] 2 2 7.735 0.0209 
TRiP[Gal4,Bottle] 4 4 4.421 0.352 
Vial[Bottle,Gal4,TRiP] 72 72 152.603 <.0001 
whole model  79 190.294 <.0001 

 
 
 
 
 
 
  

Table 4. Results of Parametric Survival tests for Gpdh x Akh-GAL4 and Gpdh x Akh-GAL4 
temperature regime experiments.  



 

81 

 

Gpdh x Akh-GAL4     

Source Nparm d.f 
Sum of 
Squares F Ratio Prob > F 

GAL4 1 1 0.050467 21.501 <.0001 

Bottle[GAL4] 2 2 0.001341 0.286 0.7523 
TRiP[GAL4,Bottle] 4 4 0.036131 3.848 0.0063 

whole model  7 0.087939 5.352 <.0001 

      
HexA x Akh-GAL4     

Source Nparm d.f 
Sum of 
Squares F Ratio Prob > F 

GAL4 1 1 0.011517 3.638 0.0597 
Bottle[GAL4] 2 2 0.015066 2.380 0.0985 
TRiP[GAL4,Bottle] 4 4 0.014108 1.114 0.3551 
whole model  7 0.040691 1.836 0.0902 
      
Gpo-1 x Akh-GAL4     

Source Nparm d.f 
Sum of 
Squares F Ratio Prob > F 

GAL4 1 1 0.041003 8.823 0.0038 

Bottle[GAL4] 2 2 0.000908 0.098 0.9071 
TRiP[GAL4,Bottle] 4 4 0.277933 14.951 <.0001 

whole model  7 0.318013 9.776 <.0001 

 
 
 
 
 
 
 
 
 
 
  

Table 5. Results of Analysis of Variance of TRiP and Akh-GAL4 effects on weight. Flies 
were reared and held at 25oC constant temperature. 
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Gpo-1 x Akh-GAL4 18-25oC shift    

Source Nparm d.f. 
Sum of 
Squares F Ratio Prob > F 

GAL4 1 1 0.009445 3.173 0.0783 
Bottle[GAL4] 2 2 0.005727 0.962 0.3861 
TRiP[GAL4,Bottle] 4 4 0.139112 11.683 <.0001 

whole model  7 0.154284 7.404 <.0001 

      

Gpo-1 x Akh-GAL4 18oC shift    

Source Nparm d.f. 
Sum of 
Squares F Ratio Prob > F 

GAL4 1 1 0.055014 10.422 0.0018 

Bottle[GAL4] 2 2 0.066365 6.286 0.0028 

TRiP[GAL4,Bottle] 4 4 0.216436 10.251 <.0001 

whole model  7 0.328891 8.901 <.0001 

      

Gpo-1 x Akh-GAL4 18oC constant    

Source Nparm d.f. 
Sum of 
Squares F Ratio Prob > F 

GAL4 1 1 0.111505 10.134 0.002 

Bottle[GAL4] 2 2 0.122663 5.574 0.0053 

TRiP[GAL4,Bottle] 4 4 0.087998 2.000 0.1015 
whole model  7 0.322166 4.183 0.0005 

 
 
 
Gpo-1 x Akh-GAL4 Temperature effect   

Source Nparm d.f. 
Sum of 
Squares F Ratio Prob > F 

Temp regimen 2 2 1.50586 107.359 <.0001 

GAL4[Temp regimen] 3 3 0.20444 9.717 <.0001 

Bottle[Temp regimen,GAL4] 6 6 0.18992 4.513 0.0002 

TRiP[GAL4,Temp 
regimen,Bottle] 

12 12 
0.57539 

6.837 
<.0001 

whole model  23 2.44585 15.163 <.0001 

 
  

Table 6. Results of Analysis of Variance of Gpo-1 x Akh-GAL4 effects on individual fly 
weight at different temperature regimes. Data from the three temperature regimens shown 
here were combined for the Temperature effect analysis. 
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Supplementary Fig 1. Cross design to generate experimental flies. This set of crosses is an example 
of the design used. Specific crosses will differ from this but the overall design is the same. TRiP 
constructs inserted at attP2 are on the third chromosome. The dILP2-GAL4 construct is inserted in 
the second chromosome, as depicted here, and the Akh-GAL4 construct is inserted in the third 
chromosome.  

Supplementary Fig 2. Collection design of experimental flies. For a given experiment, two replicate 
bottles of TRiP/Cary females are crossed with GAL4 retention males (bottles A & B) and GAL4 excision 
males (bottles C & D). Males from each bottle are collected every 24 hours and separated into vials 
according to the bottle of origin and the TRiP genotype as determined by eye color (TRiP v+ or Cary v). 
Males are held in vials of 10-20 individuals for 5-7 days prior to the start of the experiment. 
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Supplemental Fig 3. Temperature regime for Constant and Temperature Shift experiments. For all 
experiments, parents of experimental flies were allowed to lay eggs at 25oC for 24 hours. For all 
temperature shift experiments, flies were held at 18oC from collection until shift to assay 
temperature. Temperature shift occurred 18-24 hours prior to transfer to starvation vials.   
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t-test between 

TRiP and Cary 

p-values  

Target gene 

TRiP;tub-

GAL4 

Cary;tub-

GAL4 TRiP;TM3 Cary;TM3 

tub-

GAL4 TM3 

HexA 2 56 34 52 0.0081 0.3519 
Gpdh 64 77 76 64 0.4815 0.5133 
Gpo-1 6 140 97 140 <0.0001 0.0551 
Pdk 42 47 38 39 0.6730 0.9337 
Men 129 90 114 97 0.2407 0.5982 
Idh 124 121 74 58 0.9391 0.5839 
Mdh2 0 80 71 58 0.0005 0.4118 
Gdh 50 74 80 42 0.2443 0.0561 

  

Supplemental Table 1. Viability assay of TRiP lines crossed with tubulin-GAL4 driver. The tubulin-

GAL4 driver line used segregates TM3, Sb[1], Ser[1] and identified by the Sb phenotype. The TRiP 
insert was identified by red (wild-type) eyes and the Cary control insert was identified by vermillion 
(v) eye color. Two replicate vials of 10 TRiP/Cary heterozygote females crossed with 5 tub-

GAL4/TM3 males were transferred to new food every two days three or four times. Progeney were 
collected and males scored once daily. Data here are sums of counts across all vials for the given 
genotype. Two-tailed Student’s t-test p-values are presented between the TRiP and Cary control 
inserts with either the tub-GAL4 or TM3 (no GAL4 driver) chromosome. Viability is expected to be 
impacted by deletion of many of these genes. 
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