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Abstract of the Dissertation

Turbulent Combustion Study of Scramjet
Problem

by

Xiaoxue Gong

Doctor of Philosophy

in

Applied Mathematics and Statistics

Stony Brook University

2015

In this thesis we study the turbulent mixing and turbulent combustion

in a model scramjet combustor with a Large Eddy Simulation (LES) strategy.

LES resolves the large and energetic motions while the small subscale motions

are modeled. Here the filtered Navier-Stokes equations are solved by a fifth-

order finite difference Weighted-Essentially Non-Oscillatory (WENO) scheme

dimension by dimension. Subgrid terms are closed by the dynamic Smagorin-

sky model. Chemical source terms are calculated directly using a finite rate

chemistry model with a reduced chemistry mechanism. The equilibrium tur-

bulent boundary layer model of J. Larsson is used to calculate the shear stress
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and heat flux at the wall. Inflow turbulent is generated by the digital filtering

method.

The main result is a methodology to predict the mesh convergence for

three-dimensional turbulent combustion simulation, based on a less expensive

suites of one-dimensional and two-dimensional simulations. We first deter-

mine the grid requirements for finite rate chemistry with detailed and reduced

chemical mechanism respectively in the context of one-dimensional simula-

tions. These criteria are verified through simulation in a two-dimensional

context and refined with corrections due to turbulent transport. They are

then applied to three-dimensional simulations. A grid sensitivity study of the

turbulent boundary layer is conducted in a 2D context.

Simulation results are validated through comparison with a simulation of

the same problem conducted by J. Larsson, using a different methodology and

by comparison to experiments performed at Stanford University.

iv



To my parents and my husband

v



Table of Contents

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . ix

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Backgound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Turbulence Theory, Governing Equations and Numerical Meth-

ods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 Introduction to Turbulence . . . . . . . . . . . . . . . . . . . . 8

2.2 Conservation Laws and Governing Equations . . . . . . . . . . 13

2.2.1 Navier-Stokes Equation . . . . . . . . . . . . . . . . . . 13

2.2.2 Equations of State for Single Species and Mixture . . . 15

2.2.3 Transport Properties . . . . . . . . . . . . . . . . . . . 20

2.3 Turbulent Modeling Approaches . . . . . . . . . . . . . . . . . 21

2.3.1 DNS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

vi



2.3.2 RANS . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.3 LES . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4 Numerical Scheme . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5 Turbulent Inflow Generation . . . . . . . . . . . . . . . . . . . 39

3 Turbulent Boundary Layer . . . . . . . . . . . . . . . . . . . . 43

3.1 Introduction to Turbulent Boundary Layer . . . . . . . . . . . 44

3.2 Wall Resolved LES . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3 Wall Modeled LES . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4 Equilibrium Wall Model . . . . . . . . . . . . . . . . . . . . . 52

3.5 Grid Sensitivity Study of the Turbulent Boundary Layer Model 56

3.5.1 Configuration . . . . . . . . . . . . . . . . . . . . . . . 56

3.5.2 Turbulent Wall Bounded Flow Generation . . . . . . . 58

3.5.3 Choice of the Matching Point . . . . . . . . . . . . . . 61

3.5.4 Results and Analysis . . . . . . . . . . . . . . . . . . . 63

4 Turbulent Combustion . . . . . . . . . . . . . . . . . . . . . . . 69

4.1 Chemical Kinetics . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2 Flame Structures . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.2.1 Premixed Flame . . . . . . . . . . . . . . . . . . . . . 74

4.2.2 Diffusion Flame . . . . . . . . . . . . . . . . . . . . . . 77

4.3 Combustion Models . . . . . . . . . . . . . . . . . . . . . . . . 78

4.4 One Dimensional Laminar Flame Study with Finite Rate Chem-

istry Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.4.1 Simulation Configuration . . . . . . . . . . . . . . . . . 84

vii



4.4.2 Convergence of Premixed Flame . . . . . . . . . . . . . 85

4.4.3 Convergence of Diffusion Flame . . . . . . . . . . . . . 87

4.4.4 Thickened Flame Model . . . . . . . . . . . . . . . . . 88

4.4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.5 Two dimensional Turbulent Flame Study with Finite Rate Chem-

istry Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.5.1 Simulation Configuration . . . . . . . . . . . . . . . . . 92

4.5.2 Energy Spectrum Analysis . . . . . . . . . . . . . . . . 92

4.5.3 Resolved Fraction of Turbulent Kinetic Energy . . . . . 95

4.5.4 Turbulent Diffusion . . . . . . . . . . . . . . . . . . . . 96

4.5.5 Reaction Width Analysis . . . . . . . . . . . . . . . . . 98

4.5.6 Grid Sensitivity of the Chemical Reactions . . . . . . . 98

5 Scramjet 3D Simulation . . . . . . . . . . . . . . . . . . . . . . 104

5.1 Model Configuration . . . . . . . . . . . . . . . . . . . . . . . 105

5.2 3D Turbulence and Turbulent Diffusion . . . . . . . . . . . . . 106

5.3 Turbulent Boundary Layer in Model Scramjet Combustor Sim-

ulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.4 Comparison of Finite Rate Chemistry and Flamelet Simulations

with Experiment . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.4.1 The 3D Finite Rate Chemistry and Flamelet Simulation

Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.4.2 Comparison of Pressures on Upper Wall . . . . . . . . 115

5.4.3 Comparison of OH Production . . . . . . . . . . . . . . 116

5.4.4 Comparison of H2O Production . . . . . . . . . . . . . 119

viii



5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6 Conclusions and Future Work . . . . . . . . . . . . . . . . . . 123

6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.2 Recommendation for Future Work . . . . . . . . . . . . . . . . 125

Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

A Mathematical Derivation of the Thin Boundary Layer Model

for Compressible Flow . . . . . . . . . . . . . . . . . . . . . . . . . 128

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

ix



List of Figures

1.1 Specific impulses of three kinds of jets and rocket [60]. . . . . . 2

1.2 A schematic diagram for HyShot-II Model (Image source Gardner

[23] ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 A diagram for the model scramjet combustor (Image source Gamba

[21]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 A schematic plot of the transverse jet in supersonic cross flow

(Image source Gamba [20] ). . . . . . . . . . . . . . . . . . . . . 4

2.1 Turbulence in nature, (a) wake behind the plane, (b) cloud un-

der Kelvin-Helmholtz instability, (c) “The Great Wave Off Kana-

gawa”, (d) turbulent flame. . . . . . . . . . . . . . . . . . . . . . 9

2.2 Turbulence length scales [57] . . . . . . . . . . . . . . . . . . . . 12

2.3 Schematic plot of a typical turbulent energy spectrum [47]. . . 14

2.4 Grid resolution of DNS, LES and RANS [47] . . . . . . . . . . . 22

3.1 Turbulent boundary layer filled with eddies of many different

scales (Image source J. R. Garcia [22].) . . . . . . . . . . . . . . 45

3.2 Comparison of laminar and turbulent velocity profiles. (Image

source Hoffman [27].) . . . . . . . . . . . . . . . . . . . . . . . . 45

x



3.3 Structure of a turbulent boundary layer [37]. . . . . . . . . . . . 46

3.4 The number of cells needed to resolve the boundary layer for plane

channel flow. (Image source Piomelli [53].) . . . . . . . . . . . . 50

3.5 Sketch of Wall model by Larsson [37]. Left plot shows the wall-

stress models. The filtered Navier-Stokes equation are solved on

the left grid. The wall shear stress are estimated from algebraic

relation or by solving thin boundary layer equation on embed grid

(middle grid). Right plot demonstrate the hybrid LES/RANS

model. The Navier Stokes equations are solved on the right grid

with different turbulence models for LES and RANS parts). . . 54

3.6 Image of an idealized transition process on a flat plate. (Image

source Hoffman [27].) . . . . . . . . . . . . . . . . . . . . . . . . 57

3.7 Generation of inflow boundary condition. The plot comes from

Urbin [66] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.8 Convergence of shear stress and heat flux at the wall. . . . . . . 64

3.9 Average velocity profiles for different grids in the boundary layer.

Uinf is the free stream velocity. Note specifically the compare of

Grid II to III in the range of 0.2 < y/δ < 0.6. The importance of

(a) over (b) is subtle but important. . . . . . . . . . . . . . . . 66

4.1 Reaction rates for each reaction in the full chemistry mechanism

for H2/O2 mixed stoichiometrically under model scramjet com-

bustor temperatures of 1276 K and pressure of 100 kPa. . . . . . 73

4.2 Premixed flame (Image source [51]). . . . . . . . . . . . . . . . . 76

4.3 General Flame structure. . . . . . . . . . . . . . . . . . . . . . . 77

xi



4.4 Convergence of the flame speed of a premixed flame as a function

of the grid resolution. The horizontal lines indicate the fine grid

flame speed and a variation of ±10% about this value. The unit

of the flame speed is 10 m/s. . . . . . . . . . . . . . . . . . . . . 86

4.5 Convergence of the heat release rate of a diffusion flame as a func-

tion of the grid resolution. Horizontal lines indicate the energy

release of the fine grid flame and a ±10% variation about this value. 88

4.6 Heat-release rate in diffusion flame by different thickening factors.

The x and y axis represent space and time. . . . . . . . . . . . . 90

4.7 Temporal turbulent kinetic energy (TKE) spectra, with several

grid sizes, at a down steam location in the chamber. The red

doted line shows the k−5/3 slope and the black dashed line shows

the k−3 slope. . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.8 The ratio of modeled to total turbulent kinetic energy in the com-

bustion chamber . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.9 Convergence of heat release rate of a diffusion flame as a function

of the grid resolution. Horizontal dashed lines indicate the energy

release of the fine grid flame and a ±10% variation about this value. 97

4.10 Temperature snapshot in the combustion chamber . . . . . . . . 99

4.11 OH concentration snapshot in the combustion chamber . . . . . 99

5.1 Sketch of the model scramjet combustion chamber (Image source

[72]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

xii



5.2 Convergence of the heat release rate of a diffusion flame as a

function of the grid resolution. Horizontal dashed lines indicate

the energy release of the fine grid flame and a ±10% variation

about this value. . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.3 Temporal TKE spectra at a down stream location in the chamber.

The doted line shows the k−5/3 slope. . . . . . . . . . . . . . . 108

5.4 The ratio of modeled to total turbulent kinetic energy in the com-

bustion chamber . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.5 Scramjet schematic plot . . . . . . . . . . . . . . . . . . . . . . 109

5.6 Velocity profile in the combustion chamber . . . . . . . . . . . . 110

5.7 Normalised velocity in the combustion chamber. Uinf is the main

stream velocity. . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.8 Boundary layer thickness δ95 . . . . . . . . . . . . . . . . . . . . 112

5.9 Upper wall pressure for the finite rate chemistry model, the flamelet

model and experiment . . . . . . . . . . . . . . . . . . . . . . . 117

5.10 Instantaneous snapshot of mass fraction of H2O in the scramjet.

Top to bolttom, frame (a) flamelet (b) finite rate chemistry, both

vertical cross section. Frames (c) flamlet, (d) finite rate chemistry,

both a horizontal plane. . . . . . . . . . . . . . . . . . . . . . . 118

5.11 Left: Mass fraction of OH in finite rate chemistry simulation in

several end-view planes corresponding to the OH PLIF data (right

frame) from experiment . . . . . . . . . . . . . . . . . . . . . . 120

5.12 OH mass fraction in a vertical cross section., comparing finite rate

chemistry simulation, flamelet simulation and experiment . . . . 121

xiii



5.13 OH mass fraction in end views of the combustion chamber, com-

paring finite rate chemistry simulation and experiment . . . . . 121

xiv



List of Tables

3.1 Grid resolution study of the turbulent boundary layer . . . . . . 63

3.2 Error ratio of the wall shear stress and heat flux of each simu-

lation. ym denotes the location of the matching point. By the

simulation result of this section, we have an error approximation

of the TBL model at different grids. . . . . . . . . . . . . . . . . 65

4.1 Reaction Mechanism of Hong [28]. . . . . . . . . . . . . . . . . . 100

4.2 Summary of minimal mesh requirements for reduced and full

chemistry, based on 1D flame analysis, but with laminar or 2D or

3D turbulent diffusivity. . . . . . . . . . . . . . . . . . . . . . . 101

4.3 Grid resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.4 Turbulent diffusion as a fraction of the total diffusion coefficient.

The last three column show scaled values of these quantities to

remove the leading order ∆x effect. . . . . . . . . . . . . . . . . 101

4.5 Reaction widths for the detailed chemistry mechanism in 2D dif-

fusion flames. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.6 Mesh convergence of 2D simulations . . . . . . . . . . . . . . . . 103

xv



5.1 Computational Set-Ups of our simulation and Stanford PSAAP

center’s simulation. . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.1 Summary of minimal mesh requirements for reduced and full

chemistry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

xvi



Acknowledgements

I would like to express my special appreciation and sincere gratitude to my

advisor, Professor James Glimm, who gave me patient guidance and inspiring

suggestions on my research. Professor Glimm is a tremendous advisor, who

is always willing to spend time to help his student to overcome difficulties in

research and to grow from a student to a professional researcher. Professor

Glimm is also a role model. The devotion and enthusiasm he has for research

motivate me in my pursuit of Ph.D degree and future career. I feel proud

to be his student and enjoy the five-years time worked under the guidance of

Professor Glimm.

I would like to thanks Professor Robert Harrison, Roman Samulyak and

Alan Calder for being my dissertation committee. You are the most outstand-

ing professors in your field of specialization. I feel grateful to have you in my

defense committee. I am also thankful for your valuable suggestions on my

thesis.

I want to thanks the Army Research Organization for their support of this

research through grants W911NF1310249 and W911NF1410482. Same thanks

goes to U.S. Department of Energy via Los Alamos National Laboratory and

Center for Turbulence Research of Stanford University. I want to express

xvii



special thanks to Professor Johan Larsson for sharing information and inspiring

discussions.

Many thanks to my group members and my friends: Dr. Tulin Karman,

Ying Xu, Hyunkyung Lim, Vinay Mahadeo and Ryan Kaufman. Among them,

I want to express my special gratitude towards Tulin and Ryan for their time

on reviewing my thesis and presentation.

I also want to thanks Dr. Houman in Google. I spent a wonderful sum-

mer in his team last year as an intern. He inspired me to use my math and

statistical skills to find solutions for industry problems.

Lastly, I want to thanks my parents for their unconditional love and

support. I want to express my special thanks to my husband, Youlong, for his

love, patience, encouragement and support during my Ph.D study and during

our long distance relationship.

xviii



Chapter 1

Introduction

1.1 Backgound

A jet engine is an air breathing engine which carries fuel on board and

uses oxygen ingested from the atmosphere for combustion. There are three

kinds of jet engine: turbo-machinery based jet engines, ramjets, and supersonic

combustion ramjets (scramjets). The specific impulses of these jet engines are

shown in Fig 1.1. This figure indicates the advantage of scramjet when the

Mach number is above six. The scramjet is the most promising engine for

hypersonic flight. It has been a very hot research area for last several decades.

The schematic plot of HyShot-II, a scramjet combustion chamber, is

shown in Fig 1.2. The structure of the scramjet combustion chamber is simple.

The front part (inlet ramp) of the engine generates the shocks which compress

the inflow supersonic air. The velocity of the inflow air decreases as a result

of the compression but it is still supersonic. Meanwhile, the fuel is injected

(transversely in HyShot II) into this high enthalpy crossflow. After the fuel

1



Figure 1.1: Specific impulses of three kinds of jets and rocket [60].

Figure 1.2: A schematic diagram for HyShot-II Model (Image source Gardner

[23] ).

2



mixes with the air, it burns and expands to the outlet and generates thrust

for the aircraft. There is no ignition device needed. Although the structure is

simple, the physical phenomena in the combustion chamber are complex due

to shock waves, chemical reactions, turbulent mixing and turbulent boundary

layers. These effects are nonlinear and couples with each other. This fact

makes the prediction and simulation of the scramjet combustion difficult.

The research for scramjet engine has stretched over several decades. The

evolution of scramjet development can be found in a review paper of Fry [17].

Many flight and ground experiments have been conducted. Among them, the

HyShot II scramjet engine designed by the University of Queensland, Aus-

tralia, was successfully launched in 2002. The HEG facility of the German

Aerospace Agency DLR has carried out HyShot II scramjet ground tests [23].

This thesis focuses on the numerical simulation of a model scramjet com-

bustor designed by Gamba [21]. Gamba carried out experiments to investigate

the mixing, ignition, and combustion in supersonic combustion in the compact,

optically accessible scramjet combustor model at Stanford 6” Expansion Tube

Facility. Fig. 1.3 shows the configuration plot of the model scramjet combustor.

The diagnostic techniques of this experiment include the PLIF (Planar Laser

Induced Fluorescence) imaging of OH concentration on orthogonal planes, the

Chemiluminescence imaging of OH∗ and the pressure measurement at the top

wall.

Besides flight and ground experiments, numerous Computational Fluid

Dynamic (CFD) techniques have been used to understand the physics inside

scramjet combustion chamber. The fuel choices in these simulations include

3



Figure 1.3: A diagram for the model scramjet combustor (Image source Gamba

[21]).

Figure 1.4: A schematic plot of the transverse jet in supersonic cross flow

(Image source Gamba [20] ).

hydrocarbon fuel and hydrogen fuel. For simulation approach, both Reynolds

Average Navier-Stokes (RANS) approach [14, 18, 44, 49] and Large Eddy Sim-

ulation (LES) approach [6, 36, 29] are applied. Various combustion models are

used with either detailed or reduced chemistry mechanism. The most popular

method among them is the flamelet method.

One classical flow structure in scramjet simulation is the transverse jet in

supersonic cross flow (JICF). Fig. 1.4 is the schematic plot of JICF which has

many flow features [20]: the vortical structures generated by the interaction

4



of the jet with the crossflow, a bow shock produced by the blockage effect of

the jet, the upstream recirculation region caused by the bow-shock-induced

boundary layer separation, and another recirculation region downstream of

the injector. One important parameter, which determine the characteristics

of JICF, is the jet-to-crossflow momentum flux ratio J defined as

J =
ρjetu

2
jet

ρ∞u2
∞

(1.1)

The jet exit Reynolds number defined as

ReD = ρjetUjetD/µjet (1.2)

is another important parameter. Here D is the diameter of H2 injector. Gamba

[20] used the OH PLIF imaging to investigate the reaction in JICF at J =

5.0. He measured the thickness of the diffusion flame (OH layer) near the

injector and found the thickness of the flame is between 300 - 900 microns.

The Kolmogorov length scale in the scramjet combustor is approximately 10

microns (the estimation of the Kolmogorov length scale is in Sec. 5.1). Thus

the Kolmogorov scale is much smaller than the chemical scale. Thus We have

the numerical capacity to resolve chemistry while we do not have the capacity

to resolve turbulence. The fact leads us to choose the “finite rate chemistry”

method. We will further discuss it in Chap. 4.
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1.2 Thesis Structure

This thesis presents our work of the numerical simulation of the model

scramjet combustor by Gamba. It is organized as follows.

The first chapter explains the background of scramjet simulation.

The second chapter includes the major theories, governing equations and

numerical methods used in scramjet simulation. Basic knowledge of turbulence

and three turbulence modelling methodologies are introduced. The governing

Naiver-Stokes equations of compressible fluid are covered. We explain the main

modules in the compressible Frontier code we use to simulate model scramjet

combustor:

1. The hyperbolic module: The numerical discretization scheme for solving

the hydrodynamics dimension by dimension.

2. The EOS module: The Equation of State and transport properties.

3. The parabolic module: Molecular transport effects and subgrid scaled

terms.

4. Turbulent inflow generation.

The third chapter focuses on the implementation and grid sensitivity

study of the turbulent boundary layer through suits of two dimensional simu-

lation.

The fourth chapter studies the chemical combustion in the combustion

chamber. The finite rate chemistry mechanism with both detailed and re-

duced chemical mechanism is explored. Then grid sensitivity study of one-

6



dimensional laminar flames and two-dimensional diffusional flames are con-

ducted. The thickened flame model is also explored.

The fifth chapter shows the result and analysis of scramjet 3D simula-

tion, which applies the resolution predicted from the third and fourth chapter.

The scramjet 3D simulation result is compared with the experiment and the

Larsson’s simulation.

The sixth chapter concludes the results in this thesis and makes sugges-

tion for future study.

7



Chapter 2

Turbulence Theory, Governing Equations and

Numerical Methods

2.1 Introduction to Turbulence

Turbulence is “unsteady, periodic motion in which all three velocity com-

ponents fluctuate, mixing matter, momentum, and energy.” Many flows in

nature are turbulent, see Fig. 2.1. Turbulent flows occur at high Reynolds

numbers, when different scales of eddies arise from the complex interaction

between the viscous terms and the inertia terms in the momentum equations

[19]. Here, Reynolds number is defined as the ratio of inertial stress and vis-

cous stress and can often be expressed as uL/ν (u is velocity, L is character

length and ν is the viscosity coefficient).

At low Reynolds numbers, flows are laminar. Transitions from laminar

flow to turbulence flow occur between Re = 2000 to Re = 13000. There are

several characteristics of turbulence [64].

1. Randomness. Turbulent flows are chaotic and can not be described by

8



(a) (b)

(c) (d)

Figure 2.1: Turbulence in nature, (a) wake behind the plane, (b) cloud un-

der Kelvin-Helmholtz instability, (c) “The Great Wave Off Kanagawa”, (d)

turbulent flame.
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deterministic methods. Instead, turbulent flows are usually described

through statistical approaches.

2. Diffusivity. The diffusivity of turbulence speeds up the mixing , the

momentum, heat and mass transfer process. The diffusivity of turbu-

lent is very important in many applications, for example, the turbulence

combustion process of scramjet chamber.

3. Dissipation. The viscous shear stress transfers energy from kinetic energy

to the internal energy of the flow. Thus a sustained turbulence flow

requires a continuous supply of energy.

The existence of turbulence has a large influence on the flow. For example,

the near wall turbulence increases the shear stress at the wall; the turbulence

in combustion chamber speeds up the mixing and the chemical reactions.

Although turbulence is an important phenomenon, understanding turbu-

lence is difficult. Actually, turbulence was considered by Nobel Laureate and

Richard Feynman to be “one of the biggest outstanding problems in classical

physics.” Two important theories of turbulence are the energy cascade and

the Kolmogorov hypotheses.

The turbulent flow field contains eddies with different sizes. The large

eddies have most of kinetic energy. They are unstable and transfer the energy

to smaller eddies. The smaller eddies follow similar processes, and transfer

the energy to even smaller eddies. The energy cascade is the process that the

kinetic energy that enters the turbulence at the large scale eddies is transferred

to smaller and smaller scale eddies, until the Reynolds number of these eddies
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is small enough and these eddies are stable. The kinetic energy of the smallest

scale eddies is dissipated away through viscosity and convert into heat. This

process is summarized by L.F. Richardson [58] as:

Big whirls have little whirls

Which feed on their velocity;

And little whirls have lesser whirls,

And so on to viscosity

in the molecular sense.

We denote the energy dissipation rate at which turbulence kinetic energy is

converted into thermal internal energy as ε ≡ ν
∂u

′
i

∂xk

∂u
′
i

∂xk
.

The Kolmogorov’s hypothesis is based on three hypothesis together with

dimensional arguments. The first hypothesis of similarity states that “in every

turbulent flow at sufficiently high Reynolds number, the statistics of the small

scale motions (l < lEI) have a universal form that is uniquely determined by

ε and ν.” Here lEI is the length scale which separates the large, energetic,

geometric dependent scales from small universal scales. The size range l < lEI

is called the universal equilibrium range. The range where l > lEI is called the

energy containing range.

The second hypothesis of similarity states that “ in every turbulent flow

at sufficiently high Reynolds number, the statistics of the motions of scale l

in the range l0 � l � η have a universal form that is uniquely determined

by ε and independent of ν.” This hypothesis splits the universal equilibrium

range into two subranges: the inertial subrange where motions are uniquely
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Figure 2.2: Turbulence length scales [57]

determined by ε and the dissipation range where motions are affected by vis-

cousity. Different length scales are related to these three ranges of turbulence,

summarized as Fig 2.2.

The large and energetic eddies have a length scale of the same order

with the problem geometry, denoted by l and velocity length scale of uc. The

Kolmogorov length scale, velocity scale and time scale are:

length scale: ηk =

(
ν3

ε

)1/4

(2.1)

velocity scale: uη =
(
ν3ε
)1/4

(2.2)

time scale: τη =
(ν
ε

)1/2

(2.3)

The ratios of the Kolmogorov scales to the integral scales are related to

the Reynolds number by

η

l
∼ Re−3/4 (2.4)

uη
uc
∼ Re−1/4 (2.5)
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τη
τ
∼ Re−1/2 (2.6)

The intermediate scales in the inertial range of turbulence are called as the

Taylor scales λT . The ratio of Taylor scales to the Kolmogorov scales and the

energetic large scales are:

λT
l
∼ Re−1/2 (2.7)

λT
η
∼ Re1/4 (2.8)

The distribution of the turbulent kinetic energy over these three scales

can be observed by a spectral analysis. In the spectrum analysis we represent

different length scales by their wave number (k) and represent the velocity field

in Fourier space. By multiplying the velocity at a particular wave number with

its complex conjugate we get the spectrum analysis presenting the distribution

of kinetic energy across ranges of wave numbers.

Kolmogorov’s 5/3 spectrum law states that the energy spectrum E(κ) in

the inertial range follows E(κ) = Cε2/3κ−5/3 where ε is the energy dissipation

rate, κ is XXX and C is the universal Kolmogorov constant. The typical

energy spectrum of all three ranges are shown in Fig. 2.3.

2.2 Conservation Laws and Governing Equations

2.2.1 Navier-Stokes Equation

The governing equations for our simulation are the reactive compressible

Navier-Stokes equations for an ideal reactive gas [51, 56], which describe the
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Figure 2.3: Schematic plot of a typical turbulent energy spectrum [47].

conservation of mass, momentum and energy:

∂ρ

∂t
+

∂

∂xj

(
ρuj

)
= 0 , (2.9)

∂

∂t

(
ρui

)
+

∂

∂xj

(
ρuiuj

)
+
∂p

∂xi
=
∂τij
∂xj

, (2.10)

∂E

∂t
+
∂
[

(E + p)uj
]

∂xj
=

∂

∂xj

(
τijui

)
− ∂qj
∂xj

+H , (2.11)

together with the balance equation for the mass fraction of each species in the

mixture:

∂

∂t

(
ρYi

)
+

∂

∂xj

(
ρujYi

)
=

∂2

∂x2
j

(
ρdiYi

)
+ ṁi . (2.12)

Here ρ is the density, u is the velocity, E is the specific energy, Yi is the mass

fraction of species i, and ṁi is the production rate of species i. H is the rate of

heat release from the chemical reactions. The viscous stress tensor τij derived
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from Newtonian fluid reflects the proportionality between the shear stress and

the rate of deformation:

τij = 2µS∗ij = µ

[(
∂ui
∂xj

+
∂uj
∂xi

)
− 2

3
δij
∂uk
∂xk

]
, (2.13)

where µ is the dynamic viscosity coefficient and δ is the Kronecker delta. The

heat flux qj is calculated by Fourier’s law of conduction, an empirical-base

derivation relates the heat transfer with temperature gradient,

qj = −k ∂T
∂xj

, (2.14)

where T is the temperature and k is the thermal conductivity coefficient. Cal-

culation of the production rates ṁi and hear release rate H will be introduced

in Sec. 4.1.

2.2.2 Equations of State for Single Species and Mixture

The compressible Navier-Stokes equations (2.9-2.11) are open equations

since the number of unknown variables (ρ, u, E and P ) is larger than the num-

ber of equations. The equation of state (EOS) is needed to couple the pressure

P and the specific energy E in order to close the Navier-Stokes equations. In

other words, we require functions

P = P (E, ρ,u) and E = E(P, ρ,u) . (2.15)

EOS are thermodynamic equations describing the state of matter under
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a given set of physical conditions. The state of gas is commonly described by

the state variables: pressure P , temperature T and specific volume V = 1/ρ.

Actually, experiments show that only two state variables are needed to define

the state of pure gas in equilibrium or undergoing a steady or quasi-steady

process. In other words, there exists a function f(P, V, T ) = 0.

Specific internal energy e is defined as the energy associated with the

random, disordered motion of molecules. The e is a function of the state or

state variables (since state is described by state variables):

e = e(V, T ) . (2.16)

Specific enthalpy H is defined as

H = e+ PV . (2.17)

Using the first law of thermal dynamics, it can be derived that the specific

heat for a constant volume process is

Cv =

(
∂e

∂T

)
V

. (2.18)

It can be derived that the specific heat for a constant pressure process is

Cp =

(
∂H

∂T

)
P

. (2.19)

The Cp and Cv are thermodynamic properties and depend only on the state.
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Besides the internal energy e and the enthalpy H, another important

thermodynamics concept is the entropy S defined by the second law of ther-

modynamics. Combining the first and second law, we have the fundamental

thermodynamics identity :

de = −PdV + TdS + ΣiuidNi . (2.20)

Here last term ΣiuidNi denotes the change of internal due to changing numbers

of particles. Ni is the number of particle i and ui is the chemical potential of

partical i.

Our model scramjet combustor simulation makes an assumption of ideal-

gas EOS. The ideal-gas satisfies the law of Boyel and Gay-Lussac (law of ideal

gas):

PV =
RT

M
(2.21)

where R is the universal gas constant and M is the molecular weight of the gas.

It can be derived, through the concept of entropy, that the internal energy of

an ideal gas only depends on the temperature of the gas and is independent

of the specific volume, i.e, e = e(T ). The enthalpy

H = e(T ) + PV = e(T ) +
RT

M
(2.22)

of ideal-gas is also a function of the temperature only. It is easy to see Cp and

Cv are both functions of T only. Since internal energy e only depends on T,
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we have

de =

(
∂e

∂T

)
V

dT +

(
∂e

∂V

)
T

dV = Cv(T )dT (2.23)

since the second term ∂e
∂V

= 0. We can also have

dH = Cp(T )dT (2.24)

Subtract Eq. (2.23) from Eq. (2.24) we get

dH − de = (Cp(T )− Cv(T ))dT (2.25)

Since dH − de = d(H − e) = d(PV ) = d(RT
M

), we can further derive

Cp(T )− Cv(T ) =
R

M
. (2.26)

The ratio of specific heats is denoted by γ:

γ =
Cp
Cv

(2.27)

The specific heat Cp(T ) of all ideal-gas is approximated by fourth order poly-

nomials with the coefficients calculated through a least square fit by NASA

[43]

Cp

R
= a1 + a2T + a3T

2 + a4T
3 + a5T

4 (2.28)

H(T ) follows the integral form of equation (2.28)

H

RT
= a1 +

a2

2
T +

a3

3
T 2 +

a4

4
T 3 +

a5

5
T 4 +

a6

T
(2.29)
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Here a1, a2, a3, a4, a5, a6 and a7 are the numerical coefficients tabulated in

NASA thermodynamic table [43]. The pressure P and the internal energy E

of a ideal gas can be coupled by equation:

e = H(T ) + PV =

(
a1 +

a2

2
T +

a3

3
T 2 +

a4

4
T 3 +

a5

5
T 4 +

a6

T
+

1

M

)
RT

(2.30)

1. when we know P and V , we first calculated the temperature as T =

PVM/R, then use the temperature to calculate e.

2. when we know e and V , we solve the non-linear equation of e = H(T )+

RT
M

for the temperature of T , then P is calculated by P = RT/(MV ).

The specific energy E is related to the specific internal energy e by E =

e+ ρ(u2 + v2 + w2)/2.

The mixture of ideal gas is also an ideal gas. The above equations can be

used with some modifications. To adapt the EOS of pure species to a mixture,

the molecular weight M is replaced by the average M for mixture of n species:

M =
n∑
i=1

YiMi (2.31)

The specific heat Cp and enthalpy H of mixture can be calculated empirically

by:

Cp =
n∑
i=1

YiCpi , (2.32)

and

H =
n∑
i=1

YiHi . (2.33)
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2.2.3 Transport Properties

The transport properties included in the our model scramjet combustor

are viscosity, thermal conductivity, and mutual diffusivity. The dynamic vis-

cosity and thermal conductivity are calculated by semi-empirical mixture rules

[10]:

µ =
n∑
i=1

µi

1 + Mi

Yi

∑j=n
j=1,j 6=i

YjGij

Mj

, (2.34)

k =
n∑
i=1

ki

1 + Mi

Yi

∑j=n
j=1,j 6=i

YjGij

Mj

, (2.35)

where dimensionless quantity Gij are

Gij =
1√
8

(
1 +

Mi

Mj

)−1/2
[

1 +

(
µi
µj

)−1/2(
Mj

Mi

)1/4
]2

. (2.36)

The dynamic viscosity and thermal conductivity of a single gas species are

computed by the elementary gas model:

µi = 2.6693 · 10−5

√
MiT

δ2
i Ω

(2,2)
ij

. (2.37)

ki = µi

(
cp,i +

5

4

R

Mi

)
. (2.38)

Here Mi is the molecular mass of species i. δi is a characteristic diameter of

the molecule i, which is often called the collision diameter. The dimensionless

quantity Ωij is called the “collision integral for viscosity” which accounts for

the paths molecules take during a binary collision. Cp is the heat capacity, the
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calculation of which has been introduced in Sec. 2.2.2.

The calculation of the binary diffusion coefficient of mixture is complex

and is omitted here. Details of the binary diffusion coefficient calculation can

be found in [15].

2.3 Turbulent Modeling Approaches

There are three main methodologies for turbulent flow simulation: Reynolds-

averaged Navier-Stokes (RANS), large eddy simulation (LES) and direct nu-

merical simulation (DNS). All these three methodologies solve the governing

Navier-Stokes equations. However they have a different way of predicting the

fluid dynamics.

In Sec. 2.1, we describe three different length scales of turbulence. DNS

is the simulation methodology which resolves the turbulent scale down to the

Kolmogorov scales. RANS only resolves the large and energetic scales. LES

lies midway between DNS and RANS. The grid resolutions of these three kinds

of turbulence simulation approaches are illustrated in Figure 2.4. We introduce

these methodologies and discuss their advantages and disadvantages.

2.3.1 DNS

DNS solves the Navier-Stokes equations directly without any turbulence

modeling. In DNS, the whole range of spatial and temporal scales of turbu-

lence, from the large integral scale lc down to the small Kolmogorov scale ηk,

are resolved directly.
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Figure 2.4: Grid resolution of DNS, LES and RANS [47]

DNS is computationally expensive. We know from Sec. 2.1 that ηk
l
∼

Re−3/4. Since DNS needs to resolve both the large integral scale and the small

Kolmogorov scale, the number of grids needed to resolve the small scales in

each dimension is∼ Re3/4. Thus the total number of grids in three dimensional

simulation is ∼ Re9/4. Assuming the time resolution is proportional to space

resolution, the overall cost is about Re3.

This huge computational cost prevents the use of DNS for a wide variety

of flows, especially at large Reynolds number. For a three dimensional flow

with Re ≈ 5000, the grid points needed will be 250 million cells. Thus the

application of DNS is restricted to flows with low Reynolds number.

Although DNS is expensive, the accuracy of the DNS result can be com-

parable with the experiment. In circumstances when the experiment data are

unavailable, the DNS data is often used for validation and verification purpose.
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In conclusion, DNS works as a powerful research tool for turbulent flows at

low to moderate Reynolds numbers.

2.3.2 RANS

The RANS solves the time-averaged Navier-Stokes equations. In RANS,

the fluid dynamics are decomposed into two parts: the time averaged part and

the fluctuation part. There are two kinds of decomposition: the Reynolds aver-

aging decomposition and the Favre averaging decomposition. In the Reynolds

averaging decomposition, an instantaneous solution variable φ is decomposed

into time averaging part φ̄ and fluctuation part φ
′
:

φ = φ̄+ φ
′

(2.39)

In the Favre averaging decomposition, an instantaneous solution variable φ is

decomposed into mass weighted time averaging part φ̃ and fluctuation part

φ
′′
:

φ = φ̃+ φ
′′

(2.40)

where

φ̃ ≡ ρφ

ρ̄
(2.41)

In derivation of governing RANS equations, Reynolds averaging is applied

to density ρ, pressure p, shear stress τ and heat flux q; while Favre averaging is

applied to the velocity field u, specific internal energy e , and specific enthalpy

h. The Governing Favre-Averaged Navier-Stokes Equation for compressible
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flow are:

1. continuity equation

∂ρ̄

∂t
+

∂

∂xi
(ρ̄ũi) = 0 , (2.42)

2. momentum equation

∂

∂t
(ρ̄ũi) +

∂

∂xj
(ρ̄ũiũj) +

∂p̄

∂xj
=

∂

∂xj

(
τ̄ij − ρu

′′
i u

′′
j

)
, (2.43)

3. energy equation

∂

∂t

[
ρ̄

(
ẽ+

1

2
ũiũi

)
+

1

2
ρu

′′
i u

′′
i

]
+

∂

∂xj

[
ρ̄

(
h̃+

1

2
ũiũi

)
+
ũj
2
ρu

′′
i u

′′
i

]

=
∂

∂xj

[(
τ̄ij − ρu

′′
i u

′′
j

)
ũi − q̄j

]
+

∂

∂xj

[
−ρu′′

jh
′′ − ρu′′

ju
′′
i u

′′
i + ρu

′′
i τij

]
. (2.44)

Here we have four unknown terms,

1. ρu
′′
i u

′′
j , Favre-averaged reynolds stress tensor,

2. ρu
′′
jh

′′ , turbulent transport of heat,

3. ρu
′′
ju

′′
i u

′′
i , turbulent transport of kinetic energy,

4. ρu
′′
i τij, turbulent molecular diffusion.

These terms reflect the effect of turbulence on the mean flow.

To close the mean flow equations, a turbulence model is needed to calcu-

late these terms. These turbulence models are often based on the Boussinesq
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hypothesis that the Reynolds stress could be linked to the mean rate of defor-

mation:

τij = −ρu′′
i u

′′
j = µt

(
∂Ui
∂xj

+
∂Uj
∂xi

)
(2.45)

where µt is the turbulent viscosity.

There are many flavors of RANS turbulence model. To name a few, there

are zero equation model, the mixing length model; the one equation models,

like the Spalart-Almaras model; the two equation models, the k − ε style

models and the k − ω model for example; the seven equation model, namely,

the Reynolds stress model. The number of equations represent the number of

additional PDEs that need to be resolved. More details of these RANS model

can be found in [47].

Compared with DNS, RANS can obtain an averaged solution on a much

coarser grid. Thus RANS is very economical by computational resource and

time. For many applications, the averaged solution or the steady state solution

is preferable. Thus RANS is a widely used approach for engineering problems.

However, RANS could not predict the transient behaviour of fluctuating

flow field. In problems like turbulent mixing and combustion where the chem-

ical reactions are driven by the unsteady turbulent mixing of the fuel and the

oxidizer, RANS might lose its accuracy.

2.3.3 LES

In LES, the larger turbulent motions are resolved, while the effects of

smaller scale motions are modeled. LES lies in the midway between DNS
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and LES in terms of computational expense and simulation accuracy. LES is

motivated by the shortcomings of DNS and RANS. Compared with RANS,

LES is more accurate because it resolves the large scale unsteady motions

down to the inertial range. Compared with DNS, LES is more economic in

computational cost because DNS spends most of the computational resource

in resolving the small dissipative motions while LES models the effect of these

motions.

The governing equations of LES are the space filtered Navier-Stokes equa-

tion. The motions and eddies with scale smaller than the filter width are

removed by the filtering. The larger and important eddies remain and are

governed by the resulting equations.

A space filter G decomposes a variable φ(x) into the sum of a filtered

component φ̄ and a residual component φ
′
. The filtered conponent is defined

by

φ̄ =

∫
φ(x

′
)G(x, x

′
)dx

′
(2.46)

For compressible flow, the Favre filtering is defined in the similar way as the

Favre Averaging in Sec. 2.3.2:

φ̃ =

∫
ρ(x

′
)φ(x

′
)G(x, x

′
)dx

′∫
ρ(x′)G(x, x′)dx′ (2.47)

The Favre filtered Navier-Stokes equations for compressible flow are [40]:
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1. Filtered continuity equation

∂ρ̄

∂t
+
∂ρ̄ũi
∂xj

= 0 ,

2. Filtered momentum equation

∂ρ̄ũi
∂t

+
∂ρ̄ũiũj
∂xj

+
∂P̄

∂xj
=

∂

∂xj

(
τ̄ij − T ij

)
,

3. Filtered energy equation

∂Ē

∂t
+
∂(Ē + P̄ )ũj

∂xj
=
∂τ̄ijũj
∂xj

+
∂

∂xj

(
κ̄
∂T̃

∂xj

)
+

∂

∂xj

(∑
H̃kρ̄D̃

∂ψ̃

∂xj

)
− ∂qHi
∂xi

+ Se ,

4. Filtered concentration equation

∂ρ̄ψ̃k
∂t

+
∂ρ̄ψ̃kũj
∂xj

=
∂

∂xj

(
ρ̄D̃

∂ψ̃k
∂xj

)
−
∂q

(ψ)
k,j

∂xj
+ Sψ,k .

The subgrid scaled (SGS) terms τij, q
(H)
i , and q

(ψ)
i are expressed as

τij = ρ (ũiuj − ũiũj) , (2.48)

q
(H)
i = ρ̄

(
c̃pTui − c̃pT̃ ũi

)
, (2.49)

q
(ψ)
k,i = ρ̄

(
ψ̃kui − ψ̃kũi

)
. (2.50)

Here the filtered variable ρ̄, ψ̃, ũi , p̄ and Ē denotes, respectively, the fil-

tered density, species mass fraction, velocity, pressure, and total specific
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energy Ē = ρ̄ẽ+ ¯̃u
2

k/2 + τkk/2. H̃k is the species enthalpy of species k:

H̃k = ẽk +
p̄

ρ̄
(2.51)

where ẽk is the filtered specific internal energy of each species. we assume

q
(T )
i = 0 [26]. The viscous stress tensor τ̄ij is

τ̄ij = µ̄

((
∂ũi
∂xj

+
∂ũj
∂xi

)
− 2

3

∂ũk
∂xk

δij

)
(2.52)

where µ = νρ is the filtered dynamic viscosity.

There are several SGS models to close the space filtered Navier-Stokes

equation. We discuss the Classical Smagorinsky model [62] and the dy-

namic Smagorinsky model [24] in detail in this section.

Classical Smagorinsky Model

The Smagorinsky model assumes a the local equilibrium of the subgrid

scales. The Smagorinsky model for eddy-viscosity is combined with the

Yoshizawa model for SGS turbulent kinetic energy. For compressible

flow, the subgrid terms in species concentration and energy equation

also use the gradient-transport models.

The SGS stress Tij is decomposed into anisotropic and isotropic tensors

and each tensor is modeled separately:

Tij = (Tij − Tkk
δij
3

) + Tkk
δij
3

(2.53)
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with

an-isotropic tensor T aij = Tij − Tkk
δij
3

(2.54)

and

isotropic tensor T iij = Tkk
δij
3

(2.55)

The anisotropic part is modelled based on the concept of turbulent vis-

cosity

T aij = −2ρ̄νtS̃
a
ij (2.56)

where S̃ij = 1
2

(
∂ũi
∂xj

+
∂ũj
∂xi

)
, Saij = S̃ij− δij

3
S̃kk, By the classical Smagorin-

sky model, the simple algebraic model holds for νt:

νt = (Cs∆̄)2|S̄| (2.57)

with ∆̄ = (∆x∆y∆z)1/3 and S̄ ≡ 2
√

2SijSij. Cs is a constant with value

between 0.065-0.25. Thus for the anisotropic part we have

T aij = −2ρ̄(Cs∆̄)2|S̄|Saij (2.58)

The isotropic part of SGS stress based on Yoshizawa model [74] with the

argument that kSGS = (CI∆)2|S̃|2,

Tkk = −2ρ̄(CI∆̄)2|S̄|2 (2.59)
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Cs is a model constant. The full SGS terms can be expressed as:

Tij = −2ρ̄(Cs∆̄)2|S̄|Saij +
δij
3

2ρ̄(CI∆̄)2|S̄|2 (2.60)

A gradient-transport assumption is used for the SGS mass species trans-

port,

λkj = −ρ̄ νt
Sct

∂Ỹk
∂xj

(2.61)

where Sct is the turbulent Schmidt number. The SGS heat transport

can be derived with similar assumption,

Qj = − c̃pνt
Prt

∂T̃

∂xj
= −kt

∂T̃

∂xj
(2.62)

where Prt is the turbulent Prandtl number.

Once the four coefficients CS, CI , Prt and Sct are specified, the filtered

Navier-Stokes equation for compressible flow is closed. According to Ger-

mano et al. [24], there are several limitations of the classical Smagorin-

sky model. First, the model constant CS, CI , Prt and Sct should be

changed to adapt to different flows. Second, the model does not have a

correct limiting behaviour neat walls. Third, the model always assumes

a positive eddy viscosity, even for laminar flows.

To overcome these limitations, a Dynamic Smagorinsky Model (DSM) is

introduced by Germano [24].
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Dynamic Smagorinsky Model

The Dynamic Smagorinsky model calculates the model coefficients CS,

CI , Prt and Sct dynamically. In DSM, a dynamic procedure is intro-

duced base on the Smagorinsky model applied at two different filter

levels. The SGS stress at grid level ∆̄ is

Tij = −2ρ̄(Cs∆̄)2|S̃|S̃aij +
δij
3

2ρ̄(CI∆̄)2|S̃|2 (2.63)

A test filter is introduced with a filter width ̂̄∆ larger than the grid filter.

The SGS stress at the test filter level ̂̄∆ is by defination:

tij = ρ̂uiuj −
ρ̂uiρ̂uî̄ρ (2.64)

At the same time the SGS stress at the test filter level can be modeled

by:

Tij = −2̂̄ρ(Cs
̂̄∆)2|̂̃S|̂̃Saij +

δij
3

2̂̄ρ(CI
̂̄∆)2|̂̃S|2 . (2.65)

By applying Germano’s identity, we have

Lij = tij − T̂ij =

(
ρ̂uiρui
ρ̄

)
− ρ̂uiρ̂uî̄ρ (2.66)

where Lij is the Leonard stress tensor. The anisotropic part of Lij is

L1
ij = taij − T̂ aij = 2(Cs∆̄)2 ¯̂ρ|S̃|S̃aij − 2(Cs

̂̄∆)2̂̄ρ|̂̃S|̂̃Saij = C2
sM

a
ij (2.67)
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where

Ma
ij =

 ¯̂ρ|S̃|S̃aij − 2

( ̂̄∆
∆̄

)2 ̂̄ρ|̂̃S|̂̃Saij
 ∆̄2 (2.68)

Eq. (2.67) includes 5 independent equations but only has one unknown

variables Cs. Lily [39] proposed a least-squared approach to solve for Cs:

C2
s =

〈L2
ijM

2
ij〉

〈M2
ijM

2
ij〉

, (2.69)

where 〈.〉 operator denotes the average over equation number. If the

value of C2
s is negative, its value will be clipped to zero.

Actually, the value of C2
s calculated from this equation is quite unstable

with space and time. The value of C2
s may be zero in large fraction of the

flow field after clipping. To remove the large fluctuations and the zero

values of C2
s , different averaging approaches are proposed. Usually the

numerator and denominator are averaged over homogeneous flow direc-

tions. Meneveau [46] proposed an averaging method based on the fluid

imaginary particle trajectory. Some authors used a time averaging of C2
s

which might introduce errors before the flow becomes statistical station-

ary. In the absence of a homogeneous flow direction, local averaging may

be used. In our model scramjet comustor simulation, the local averaging

method is applied. the C2
s is clipped to be zero.

The model coefficient CI is computed as

C2
I =

〈Likk〉
〈M i

kk〉
(2.70)
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where

M i
kk =

− ̂
ρ
(

2̃SijS̃ij

)
+ 2

( ̂̄∆
∆̄

)2 ̂̄ρ(2
̂̃
Sij
̂̃
Sij

) ∆̄2 (2.71)

Applying similar procedures to the SGS mass species transport and the

SGS heat transport, we can have Prt and Sct calculated as:

Prt = Cs
〈(
∑
M

P (H)
i M

(H)
i )+〉

〈(
∑
L

(H)
i M

(H)
i )+〉

(2.72)

where

L
(H)
i = ¯̂ρc̃pT̃ ũi −

̂̄ρc̃p̂̄ρT̃ ̂̄ρũî̄ρ , (2.73)

M
(H)
i = ∆2

(
ρ̄c̃p|S̃|

∂T̂

∂xi

)
− ∆̂2̂̄ρ̂̃cp|̂̃S| ∂ ̂̃T

∂xi
, (2.74)

and

Sct = Cs
〈(
∑
M

(ψ)
i M

(ψ)
i )+〉

〈(
∑
L

(ψ)
i M

(ψ)
i )+〉

(2.75)

where

Lψi =
̂̄
ρũiψ̃ −

̂̄ρũî̄ρψ̃̂̄ρ , (2.76)

Mψ
i = ∆2

̂
ρ̄|S̃| ∂ψ̃

∂xi
− ∆̂2̂̄ρ|̂̃S| ∂ ̂̃ψ

∂xi
. (2.77)

2.4 Numerical Scheme

In our model scramjet combustor simulation, a conservative finite differ-

ence approach is used as the numerical discretization scheme. Since the
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governing equations in our project are the conservative of mass, momen-

tum, energy and weight of species, the conservative methods (include

the conservative finite difference methods and the finite volume meth-

ods) are more suitable than the conventional finite difference methods.

The conservative methods are also better for the shock-capturing prob-

lems: they can estimate the shock speed correctly and satisfy the the

Rankine-Hugoniot relation across discontinuities.

In conservative finite difference methods, the governing equations can be

solved dimension by dimension. Thus the conservative finite difference

methods are better than the finite volume methods, which could be com-

putationally expensive for multi-dimensional problems with high order

accuracy. For each dimension, we have the equation

∂U

∂t
+
∂F

∂x
= 0 (2.78)

where F is a function of U . The discretization is simple:

∂Ûi
∂t

+
Fi+ 1

2
− Fi− 1

2

∆x
= 0 (2.79)

where Ûi is the cell-averaged conservative variable of cell i, Fi± 1
2

is the

flux at location i ± 1
2

(cell faces of cell i). The value of Fi± 1
2

can be

approximate Fi’s in cell centers of local stencil using reconstruction or

interpolation.

In our model scramjet combustor simulation, a 5th order finite differ-
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ence Weighted Essentially Non-Oscillatory (WENO) scheme of Jiang

and Shu [31] is used as our conservative finite difference scheme. WENO

schemes use the idea of adaptive stencils to automatically adjust the

stencil weight. It can achieve high order accuracy and non-oscillatory

property near discontinuities [31]. WENO schemes have been widely

used to solve compressible Navier-Stokes equations, together with high-

order Runge-Kutta methods.

The WENO scheme is constructed based on Essentially Non-Oscillatory

(ENO) scheme. Harten [25] constructed the first ENO scheme in 1987.

The first WENO scheme is a third order finite volume scheme by Liu,

Osher and Chan [41]. The fifth order finite difference WENO scheme

applied in our problem is constructed by Jiang and Shu [31] in 1996.

The reason we prefer the finite difference WENO over the finite volume

WENO is that the finite difference WENO is more economic and Fron-

Tier has structured grid. Although the finite volume WENO scheme

can allow for non-smooth and non-structured scheme, the finite volume

WENO scheme are several times expensive than the finite difference

WENO scheme at the same order of accuracy.

The ENO scheme applies uniform high order polynomial reconstruction

of Fi± 1
2

on local stencils. There are several candidate stencils available

for this kind of polynomial reconstruction. ENO chooses the smoothest

stencil and use that stencil to reconstruct flux Fi+ 1
2
. Near discontinuity,

ENO choose the stencil on the continuous side. Thus the ENO scheme

is locally adaptive.
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Different from ENO, WENO makes use of all available stencil. Different

weights are assigned to different stencils based on the smoothness of each

stencil. In smooth region, it assigns similar weights to all stencils and

could achieve a higher order of accuracy than ENO. Near discontinuity,

WENO assigns small weight to the discontinues stencils and large weight

to continuos stencil. In this way, the WENO scheme is also locally

adaptive.

There are several steps in of WENO reconstruction [61]. Take Eq. (2.78)

as example.

(a) we need to split F (u) into two monotone parts:

f(u) = f+(u) + f−(u) (2.80)

to ensure df+(u)/du ≥ 0 and df−(u)/du ≤ 0. The Lax-Friedrichs

splitting is commonly used:

f±(u) =
1

2
(f(u)± αu) (2.81)

where

α = maxu|f
′
(u)| (2.82)

In the following steps, reconstruction of df+(u)/du ≥ 0 and df−(u)/du ≤

0 are conducted separately.

(b) The approximation of Fi from each sub-stencils needs to be com-

puted. Here we have three stencils and each stencil has three points.
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The approximations are:

f
(0)
i+1/2 =

1

3
f̄i−2 −

7

6
f̄i−1 +

11

6
f̄i (2.83)

f
(1)
i+1/2 = −1

6
f̄i−1 +

5

6
f̄i +

1

3
f̄i+1 (2.84)

f
(2)
i+1/2 =

1

3
f̄i +

5

6
f̄i+1 − f̄i+2 (2.85)

(c) The weights γ0, γ1, γ2 need to be found to make the combination

fi+1/2 = γ0f
(0)
i+1/2 + γ1f

(1)
i+1/2 + γ2f

(2)
i+1/2 (2.86)

to have fifth order accuracy. The value of γ’s is γ0 = 1
10

, γ1 = 3
5
,

γ2 = 3
10

(d) Find the nonlinear weights ω0, ω1, ω2 to make

ui+1/2 = ω0f
(0)
i+1/2 + ω1f

(1)
i+1/2 + ω2f

(2)
i+1/2 (2.87)

fifth order in smooth regions and non-oscillatory at shocks. The ω’s

can be calculated by

ωk =
αk

α1 + α1 + α2

(2.88)

where

αk =
γk

(ε+ ISk)p
(2.89)

Here ε is introduced here to prevent zero denominator. Its value is
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set to be ε = 10−6.

The IS’s are calculated by taylor expansion analysis:

IS0 =
13

12
(f−2 − 2f−1 + f0)2 +

1

4
(f−2 − 4f−1 + 3f0)2 (2.90)

IS1 =
13

12
(f−1 − 2f0 + f1)2 +

1

4
(f−1 − f1)2 (2.91)

IS2 =
13

12
(f0 − 2f1 + f2)2 +

1

4
(3f0 − 4f1 + f2)2 (2.92)

The time discretization of WENO schemes is realized by third-order

TVD Runge-Kutta method:

u(1) = un + ∆tL(un) (2.93)

u(2) =
3

4
un +

1

4
u(1) +

1

4
∆tL(u(1)) (2.94)

un+1 =
1

3
un +

2

3
u(2) +

2

3
∆tL(u(2)) (2.95)

Thus we have 3rd-order in time and 5th-order in space finite difference

WENO scheme.

In implementation of the WENO scheme into the compressible hyper-

bolic solver, we apply eigenvalue decomposition to the hyperbolic part of

Navier-Stokes Equation and apply WENO scheme to decomposed equa-

tions on eigenvector space.

The draw back of WENO is that it can lead to numerical damping of tur-

bulence, since these fluctuations can be seen as shock-like oscillations by
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the scheme. In many scramjet simulation, authors use separate schemes

for shock-capturing and the non-shock part. ENO or WENO is used near

the shock while other schemes are used at other place. For example, in

the LES simulation of hyshot-II[38], Larsson uses unstructured essen-

tially non-oscillatory (ENO) second-order to accurate capture shock and

a HLLC approximate Riemann solver in continous region.

2.5 Turbulent Inflow Generation

When LES and DNS approach are used for turbulence simulation and

the turbulence in the flow field is mainly resolved, accurate prescription

of inflow turbulence is required. There are many effective methods to

generate inflow turbulence. These methods fall into two categories: syn-

thetic turbulence techniques and rescaling-reintroducing method. The

synthetic turbulence techniques generate a random field using models

and this is added to a mean flow profile. The rescaling-reintroducing

method takes the flow field at a downstream station, rescales it and im-

pose it as inflow condition. We will introduce rescaling-reintroducing

method in Sec. 3.5.2.

The random-noise method is a widely used synthetic turbulence tech-

niques. However, the turbulence generated by the random-noise method

lacks energy in the low wavenumber range. As the result, the pseudo

turbulence would damp to zero quickly.

Another popular synthetic turbulence technique is the digital filtering
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approach by Klein [33]. which is later improved by Xie [71] and Touber

[65]. The digital filtering method of Klein [33] assumes that the second

order correlation of homogenuous turbulence has a Gaussian form while

Xie [71] and Touber [65] assume it has a exponential form. The method

use here follow Touber’s procedure.

To enforce the inflow turbulence to have a second order correlation of

exponential form, the digital filtering method applies the discrete filter

operator FN

vk = FN(rk) =
N∑

j=−N

bjrk+j (2.96)

where the filter coefficient

bj ≈
b̃j(∑N

k=−N b̃
2
k

) (2.97)

and

b̃k = exp

(
−πk
n

)
(2.98)

The new set of variables v has zero-mean and two-points correlation of:

vkvk+m

vkvk
= exp

(
−πm

2n

)
(2.99)

Assume vk is assigned to one dimensional flow field with grid size of ∆x

and integral length scale of Ix. We set n to be Ix/∆x and N to be 2n.
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Then the correlation function R(xk + x) of one dimensional flow field is:

R(xk + x) = R(xk +m∆x) =
vkvk+m

vkvk
= exp

(
−πm

2n

)
= exp

(
− πx

2Ix

)
(2.100)

is exponential form. Here xk is a point of reference, x + xk is a point

some distance away from the reference point and m = x/∆x. Ix is the

integral length scale.

To generate a two-dimensional inflow velocity profile for three-dimensional

flow, the two-dimensional filter coefficients are defined as

bjk = bjbk . (2.101)

At the zero time step, the velocity field (fluctuation part) is computed

by Eq. (2.96). At the next step, the velocity field is calculated in the

same way and then correlated in time to the previous calculated velocity

field by:

Ψk = voldk exp

(
−π∆t

2τ

)
+ vk

√
1− exp

(
−π∆t

2τ

)
. (2.102)

Here Ψk is the velocity field for the new step, voldk is the velocity field of

old step and vk is the filtered velocity field, ∆t is the time step and τ

is the Lagrangian time scale. Eq. (2.102) enforced the velocity field to

follow the two-points correlation in steam-wise direction.

For turbulent inflow with mean inflow velocity of ū, v̄, w̄ and Reynolds
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stress value of R, the velocities at inflow boundary are:


u

v

w

 =


〈u〉

〈v〉

〈w〉

+


√
R11 0 0

R21/
√
R11

√
R22 − (R21/

√
R11)2

0 0
√
R33



uu

vv

ww


(2.103)

where uu, vv, ww are the velocity fluctuation calculated by Eq. (2.102).

Experiment shows that the scramjet model combustor has an inflow tur-

bulence intensity of 1.6% (u
′
/U where u

′
is the rms value in one the three

components). Considering that the energy in the randomized filed tends

to dissipate very quickly and we are using WENO solver, a turbulence

inflow with density of 2.3% is implemented. We have

R11 = R22 = R33 = u′u′ = v′v′ = w′w′ = 1939m2/s2 (2.104)

and

Rij = 0 (i 6= j) (2.105)

The integral length scale Ix is set to 1.0 cm.
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Chapter 3

Turbulent Boundary Layer

In the supersonic ramjet problem, LES is used to simulate the turbulent

flow. Turbulence gives rise to eddies of different length scales. The large

and most energetic eddies scale with the bulk velocity and the integral

length scale while the smallest eddies scale with the dissipation rate and

the Kolmogorov length scale. By Kolmogorov’s hypothesis, these small

eddies are universal and can be modeled. LES computes the energetic

and flow dependent large eddies directly and models the small eddies.

LES can achieve good accuracy with a lower computational cost than

Direct Numerical Simulation (DNS) at high Reynolds numbers.

LES loses its power for flows at a boundary layer. LES assumes a sep-

aration between the large energetic eddies and the small eddies. At a

boundary layer, the large and energetic eddies scale with the distance

from the wall. The grid size that resolves the main stream flow is not

sufficient to resolve such energetic eddies at the boundary layer. To re-

solve the boundary layer, refined grids near the boundary are commonly
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used. Wall-resolved LES has a grid scaled with the small eddies at the

wall, including the inner most part of the boundary layer. However, the

computational cost to resolve the inner most layer can be as expensive

as DNS. Due the computational burden to resolve the inner layer, it is

generally accepted that the inner layer should be modeled, rather than

resolved.

Despite the difficulty of resolving the boundary layer, the ability to cap-

ture near wall processes is very important for the scramjet simulation.

Larsson [36] has performed a Rayleigh-Fanno analysis of the Hyshot com-

bustor at nominal conditions, with combustion heat release, wall friction

and wall heat losses taken from RANS. It shows that the pressure-change

due to these phenomena is about +1 bar (with combustion heat release),

+1 bar (with wall friction), and -1 bar (with wall heat losses) compared

with the RANS pressure of 2.5 bar.

3.1 Introduction to Turbulent Boundary Layer

Turbulent boundary flow is different from a laminar boundary flow. In a

laminar boundary flow, there are well-behaved stream lines. In a turbu-

lent boundary flow, many vortices exist in the near wall region. Fig. 3.1

shows a photo of a fully developed Turbulent Boundary Layer (TBL).

The existence of these vortices changes the mean velocity profile at the

boundary. Fig. 3.2 compares the velocity profile for a laminar bound-

ary layer and a turbulent boundary layer. The velocity gradient close
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Figure 3.1: Turbulent boundary layer filled with eddies of many different scales

(Image source J. R. Garcia [22].)

to the wall is much steeper for a TBL than for a laminar boundary layer.

Figure 3.2: Comparison of laminar and turbulent velocity profiles. (Image

source Hoffman [27].)

In this section, we follow the exposition of Pope [57]. A TBL has several

layers and each layer has distinct turbulent characteristics. These layers

are shown in Fig. 3.3.

Here δ is the boundary layer thickness. The boundary layer thickness

δ has many definitions. The most widely used one is δ99, the value of
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Figure 3.3: Structure of a turbulent boundary layer [37].

wall-normal distance at which point where wall-parallel velocity reaches

99% of the free stream velocity.

Close to the wall, the kinetic viscosity ν and the wall shear stress τw are

the most important parameters. Corresponding viscous velocity scales

and length scales are defined based on the the kinetic viscosity ν and

wall shear stress τw. The friction velocity:

uτ ≡
√
τw
ρw

(3.1)

is the viscous velocity scale. The velocity measured in terms of the

friction velocity is denoted by

u+ ≡ u

uτ
=

u√
τw
ρw

. (3.2)
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The viscous length scale near the wall is δν = ν/uτ , which we call the

wall unit. The distance from the wall measured in wall-units is denoted

by

y+ ≡ y

δν
=

ν

uτ
y . (3.3)

y+ and u+ are dimensionless variables. y+ can be seen as a local Reynolds

number. It determines the relative important effects of the viscous and

turbulence phenomena. In the viscous wall region, defined as y+ < 50,

the effects of molecular viscosity on the shear stress are large; while in

the outer layer, defined as y+ > 50, the effects of molecular viscosity can

be neglected. In the viscous sublayer, defined as y+ < 5, the turbulent

shear stress is much smaller than molecular shear stress.

According to Prandtl, the inner layer in a sufficiently high Reynolds

number flow has a velocity profile determined by viscous scale. and the

inner layer profile is independent of the main stream velocity. In other

words, u+ is a function of y+ only. The inner layer can be divided into

three parts: the viscous sublayer, the buffer layer and the log-law layer.

In the viscous sublayer, where y+ < 5, the turbulent shear stress can be

neglected compared to the molecular shear stress. A linear relationship

holds for the viscous sublayer:

u+ = y+ . (3.4)

In the overlap region of the inner and outer layers, the logarithmic law
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of the wall of Von Karman holds:

u+ =
1

κ
ln(y+) +B . (3.5)

Here, B is a constant and κ is the von Karman constant, with approxi-

mate values:

κ = 0.41, B = 5.2 . (3.6)

The region between the viscous sublayer and the log-law region is called

the buffer layer.

3.2 Wall Resolved LES

Wall Resolved LES has expensive calculation cost for flow with high

Reynolds number. To resolve the whole boundary layer stucuture, the

Wall Resolved LES need to resolve the dynamics of the inner layer dom-

inated by quasi-streamwise vortices which have sizes in same order with

viscose length scale δν . To resolve the inner layer, it need a constant grid

spacing scaled with wall unit.

Assume that the domain LES resolves in the inner layer has a size of

C1δ × C2δ ×Nδν (We assume we solve the inner layer from the wall up

to the position of y+ = N). To resolve the inner layer, LES should have a

grid size of ∆ ∼ δν . Thus the grid needed in the wall parallel direction is

Ciδ/∆ ∼ δ/δv (i = 1, 2) cells. According to Pope, the length scale ratio

δ/δv increases approximately as 0.09Re0.88. Here the Reynolds number
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is the bulk Reynolds number of the main stream:

Reb ≡
Ubδ

ν
. (3.7)

In the wall normal direction, we need N cells. Thus the total number of

cells needed to resolve the inner layer is

Ninner = N

(
C1δ

∆

)(
C2δ

∆

)
∼
(
δ

δν

)2

∼ Re1.76
b . (3.8)

Thus it is very expensive for LES to resolve the inner layer.

In contrast to the inner layer, the cost to resolve the outer layer is much

smaller. In the inviscid outer layer, the energetic motions scale with the

outer length scale δ. Chapman [13] estimated the number of cells need

to resolve the outer layer is proportional to Re0.4 for flat plat boundary

layer and independent of Re for plane channel flow.

Fig. 3.4 shows the number of cells needed to resolve the boundary layer

for plane channel flow. At Reynolds number of O(106), about 99% of the

points are used to resolve the inner layer (the inner 10% of the boundary

layer). For high Reynolds numbers, we could only afford the coarse grid

size which only resolve the out layer in LES. The computational cost of

the coarse grid is still independent or weekly dependent of Re.

When the LES is implemented on coarse grid which only resolved the

outer layer and does not resolve the inner layer, numerical errors rises in

the near-wall region. As we seen in Fig. 3.2, velocity gradient is larger
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Figure 3.4: The number of cells needed to resolve the boundary layer for plane

channel flow. (Image source Piomelli [53].)
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near the wall. Coarse grid LES will underestimate the wall shear stress

and distorts the exterior LES if the no extra model is applied for inner

layer LES. Thus wall model is needed for the inner layer on the coarse

grid simulation.

3.3 Wall Modeled LES

There are many approaches for the modeling of inner layer [53]. These

models are divided to two catergories: wall stress models that calculate

the wall shear stress and hybrid LES/RANS method.

Hybrid LES/RANS method (left plot of Fig. 3.5) uses the RANS to

simulation the near-wall region and LES in the exterior region. The grid

resolution tangential to the wall are determined by the exterior LES, the

grid resolution normal to the wall are determined by RANS. The hybrid

LES/RANS method is a successful and widely used wall model. However,

Hybrid LES/RANS method is numerically more expensive than wall-

stress model because full evolution equations are solved down to the

wall. Another drawback of hybrid LES/RANS method is that the skin

friction calculated is consistently under-predicted by around 10%−15%.

In the wall-stress model, the LES extends all the way down to the wall.

LES only resolves the outer layer motion. The inner layer motion is

resolved by a simplified wall model. The wall model relate the instan-

taneous velocity and temperature in the overlap layer from the LES to

the wall shear stress and heat flux, and provides them as a boundary
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condition back to the LES.

The wall model can be algebraic functions, the logarithmic law for exam-

ple, or differential equations (the thin boundary layer equation) solved

on a local embedded grid. The wall model used in our model scramjet

combustor simulation is the equilibrium wall model of Larsson [32].

3.4 Equilibrium Wall Model

The equilibrium wall model is derived from the thin boundary layer

equation with the assumption that the change of physical variables along

direction tangential to the wall is much smaller compared with the change

along wall normal direction and we can introduce the approximation that

the physical variables are constant along wall parallel directions. Another

assumption is the equilibrium assumption (the pressure is constant). As

a result there are only two independent variables in the equilibrium wall

model for compressible flow: the velocity and the temperature. The

governing equations for equilibrium wall model are:

∂

∂y

[
(µ+ µt)

∂u

∂y

]
= 0 , (3.9)

and

∂

∂y

[
cp

(
µt
Prt

+
µ

Pr

)
∂T

∂y
+ (µ+ µt)u

∂u

∂y

]
= 0 . (3.10)

Here ρw and τw are the local instantaneous density and wall stress. The

thin boundary layer equation and the equilibrium wall model equations
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are simplified RANS equations. See Sec. A for the deviation.

The interaction of the inner layer wall model and outer layer LES is

shown in Fig. 3.5. We first pick a point in the overlap region of the

inner layer and outer layer as the matching point. The governing one

dimensional equations Eqs. (3.9-3.10) are solved on embeded grid from

the matching point all the way down to the wall. The temperature,

velocity and species concentration at the matching point from LES set

the outer boundary condition of Eqs. (3.9-3.10). The no-slip boundary

condition of Eqs. (3.9-3.10) is applied at the Wall. After Eqs. (3.9-3.10)

are solved, we obtain the tangential velocity and temperature gradient

in wall-normal direction, which give the wall shear stress and heat flux.

Then the wall shear stress and heat flux are fed back to the outer layer

LES.

In order to resolve the wall normal velocity and temperature gradient,

the first off-wall point should have a small distance from wall in the same

order of wall-units. The our implementation, the first node is at y+ = 1.

Then geometric grid stretching is used for embedded grid from wall to the

matching point. In this way, the number of grid points N from the wall

to the matching point is proportional to log(Re). It is weakly dependent

on the Reynolds number. In our simulation, N is approximately 50.

The calculation of the viscosity coefficient µ and heat capacity cp of the

gas mixture are introduced in Sec. 2.2.3. The dynamic viscosity µt is
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Figure 3.5: Sketch of Wall model by Larsson [37]. Left plot shows the wal-

l-stress models. The filtered Navier-Stokes equation are solved on the left grid.

The wall shear stress are estimated from algebraic relation or by solving thin

boundary layer equation on embed grid (middle grid). Right plot demonstrate

the hybrid LES/RANS model. The Navier Stokes equations are solved on the

right grid with different turbulence models for LES and RANS parts).
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computed by the mixing-length model:

µt = κρwy

√
τw
ρw

[
1− exp

(
− y

+

A+

)]2

. (3.11)

The Von Karman constant κ = 0.41, and A+ = 17. Since coefficients

µ, µt, and cp on the embedded grids are dependent of the solution of

one dimensional equations Eqs. (3.9-3.10), an iterative solver needs to

be used. We start from an initial guess: linear profiles of u and T . We

compute coefficients µ, µt and cp on each point based on the initial linear

solution. Then we solve the governing equations Eqs. (3.9-3.10) with sin-

gle tridiagonal matrix algorithm (TDMA) sweep. After that, we obtain

the new state variable u and T . We compute the new coefficients µ, µt

and cp. We repeat the process until the distribution of state variables u

and T converge.

After we have converged to a state variable distribution u and T in the

inner layer, we compute the wall shear stress and heat flux by

τw = −µw
u0

y0

, (3.12)

and

qw = − cp
Pr

µw
T0 − Tw
y0

. (3.13)
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3.5 Grid Sensitivity Study of the Turbulent Bound-

ary Layer Model

3.5.1 Configuration

In this section, we study the grid sensitivity of the boundary layer model

for 2D simulations of a supersonic flat plate boundary layer. The inflow

O2 has an average density of 1.241×10−4 kg/m3, velocity of 1890 m/s

and temperature of 1276 K, same with the scramjet inflow condition. If

we have laminar inflow, the supersonic flow above the flat plate has a

transition from a laminar boundary layer to a turbulent boundary layer

at a position downstream from the inlet. The transition is shown in

Fig. 3.6.

However, the distance from the inlet to the transition point is too long to

be computationally affordable. Thus to have fully developed turbulence,

the rescaling-reintroducing method of Urbin and Knight [66] is used. We

discuss this method in Sec. 3.5.2.

In our TBL simulation, the wall is located at y = 0. The computational

domain is [240, 10] mm in the stream-wise and wall-normal directions.

The recycling station is located at 40 mm downstream of the inflow. To

get fully developed boundary layer turbulence through the rescaling and

reintroducing method, the simulation was run for about 20 flow throughs.

Here δ is the inflow boundary layer thickness with value of δ = 2.25 mm.

The error in the calculation of the wall shear stress and the heat flux
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Figure 3.6: Image of an idealized transition process on a flat plate. (Image

source Hoffman [27].)
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has two sources: First, the model error of the turbulent boundary layer

model; Secondly, the discrepancy between the real state variables (u and

T ) and the numerical value of these values. This is to say that the

physical profile of the matching point might not be well resolved.

Larsson [32] argued that the second error is un-avoidable, because the

first grid cell off the wall can not be well resolved. Larsson also indicates

that we could greatly reduced the second error by not using the first grid

cell off the wall. We will discuss this question in Section 3.5.3.

3.5.2 Turbulent Wall Bounded Flow Generation

We have discussed the digital filtering method in producing the free

stream turbulence in Sec. 2.5. The Rescaling-Reintroducing method

is a popular method to introduce inflow boundary turbulence. The

Rescaling-Reintroducing method was first proposed by Spalar [63]. Lund

[42] introduced modifications in the method to deal with the growth

terms. Urbin further modified the method to adapt better to the com-

pressible turbulent boundary layer. Here we follow the exposition of

Urbin [66].

The idea of the Rescaling-Reintroducing method can be seen in Fig. 3.7.

We take the flow field at a downstream station, rescaled it and impose

it as inflow condition. In the rescaling step, flow field components are

decomposed into time averaged and fluctuation parts. Separate scaling

laws are applied to each part.
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Figure 3.7: Generation of inflow boundary condition. The plot comes from

Urbin [66]

For compressible flow, we apply the Van Driest-Fernholz and Finley

transformation of the velocity U , denoted as UVD:

(3.14)

UVD =
U∞
A
sin−1

(
A
U

U∞

)
, (3.15)

and

A =

√
[(γ − 1)/2]M2

∞Prt
1 + [(γ − 1)/2]M2

∞Prt
, (3.16)

where Prt = 0.89. The inner layer and outer layer are scaled in different

ways. For the inner layer, we have by the law of the wall:

U inn
VD = µτ (x)f1(y+) . (3.17)
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On the outer layer, we have by the defect law:

U∞VD − Uout
VD = µτ (x)f2(η) , (3.18)

where η = y/δ is the outer coordinate. The functions f1 and f2 are both

universal and are independent of x. Thus we have the scaling law:

U inn
VD, inl = βUVD,rec(y

+
in) , (3.19)

for the inner region and

Uout
VD, inl = βUVD, rec(ηinl) + (1− β)U∞VD , (3.20)

in the outer layer. Here the subscript inl denotes the inlet and rec denotes

the recycling station. β is the ratio of friction velocity at the inlet station

and the velocity at the recycled station. The treatment of the fluctuation

part is similar. The velocity fluctuation in the inner and outer sides are

rescaled by:

u
′′inn
inl = βu

′′

rec(y
+
inl, z, t), u

′′out
inl = βu

′′

rec(ηinl, z, t) . (3.21)

The rescaling of the mean wall-normal velocity and the temperature is:

V inn
inl = Vrec(y

+
inl), V out

inl = Vrec(ηinl) , (3.22)
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and

T inn
inl = Trec(y

+
inl), T out

inl = Trec(ηinl) . (3.23)

Here we assume that the steamwise pressure gradient is small compared

with the wall-normal temperature gradient. The fluctuation v
′′inn
inl of the

wall-normal velocity is calculated in the similar way of u
′′
. Assuming

the pressure fluctuations are assumed to be small compared with tem-

perature fluctuations, the fluctuation of temperature is scaled as:

T
′′inn
inl = T

′′

rec(y
+
inl, z, t), T

′′out
inl = T

′′

rec(ηinl, z, t) . (3.24)

Finally, we take a weighted average of the inner and outer profile for the

complete profile of velocity and temperature:

uinl = (U inn
inl + u

′′inn
inl )[1−W (ηinl)] + (Uout

inl + u
′′out
inl )W (ηinl) , (3.25)

with the weight

W (η) =
1

2

(
1 +

{
tanh

[
4(η −B)

(1− 2B)η +B

]
/tanh(4)

})
. (3.26)

3.5.3 Choice of the Matching Point

In the calculation of the wall shear stress and heat flux, the first grid

cell off the wall is commonly used as the matching point. Larsson [32]

demonstrated that there are persistent numerical and subgrid errors in

the matching point if we use this choice, while a better choice can elim-
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inate this persistent error.

Assume the wall is located at y = 0 and the matching point is located at

y = ym. Assume ym is located at y+ > 50, in the log layer. The length

scale of motions in the log layer is proportional to the wall distance y.

Assuming the stress carrying motion has length scale Li = Ciy (i = 0,

1, 2) and assuming that we need N cells located within this length scale

to resolve the stress carrying motion, we have

∆xi ≤
Li
N

=
Ciym
N

. (3.27)

If we use the first grid off the wall as the matching point, which means

ym = ∆y, we will have

∆y ≤ C1
∆y

N
, (3.28)

which means C1 ≥ N . However, the numerical Nyquist criterion indi-

cates N ≥ 2. And the kinematic damping by the wall indicates C1 < 2.

Thus Eq. (3.28) does not hold. It means that the dynamics at the first

grid off the wall could not be well resolved. The TBL model is fed with

inaccurate information if we choose the first grid cell off the wall as the

matching point.

Larsson observed that it is not required that the TBL to be applied

between the first grid point and the wall; actually the TBL model equa-

tions are valid for any interval from the wall to a point in the inner layer.

Larsson found that he could achieve grid convergence by fixing ym and

refining the grid.

62



3.5.4 Results and Analysis

To study the grid convergence of the wall shear stress and the heat flux

as the resolution is varied, we conduct numerical experiments with four

levels of resolution, see Table 3.1. At each level of grid resolution, we

Table 3.1: Grid resolution study of the turbulent boundary layer

simulation ∆x (mm) ∆y (mm)

grid level I 0.5 0.5

grid level II 0.25 0.25

grid level III 0.125 0.125

grid level IV 0.125 0.0625

conduct two simulations with two choices of the matching point location:

the first choice is to set the matching at a fixed location of ym = 0.25

mm while in the second choice the matching point is the first cell off the

wall.

The average shear stress and heat flux at the wall in each simulation

are shown in Fig. 3.8. The shear stress and heat flux are averaged from

the recycling station to the outlet. The averaged boundary thickness is

about 3.0 mm from the recycling station to the outlet, corresponding

to a averaged inner layer thickness of about 0.3 mm. Thus the fixed

matching poing ym = 0.25 mm is located in the inner layer.

The averaged wall shear stress and heat flux converge with grid refine-

ment when the location of the matching point is fixed (y = 0.25 mm).
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(a) Averaged shear stress at the wall. The dashed dot horizontal

lines indicate a ±10 % variation about the averaged shear stress

of the finest grid.

(b) Averaged heat flux at the wall. The dashed dot horizontal

lines indicate a ±10 % variation about the averaged heat flux of

the finest grid.

Figure 3.8: Convergence of shear stress and heat flux at the wall.
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The averaged wall shear stress and heat flux computed from use of the

first grid cell off the wall as matching point do not converge. This result

verifies the point made in Sec.3.5.3: the velocity and temperature pro-

files at first grid cell off the wall are not well resolved and thus are not

accurate; by having the matching point several cells away from the wall,

we could achieve convergence of wall shear stress and heat flux.

The average velocity profiles (Fig. 3.9) of four grid resolutions with the

matching point fixed at y = 0.25 mm also show the convergence trend.

The velocity profiles of grid II-IV agree quite well with each other.

Table 3.2: Error ratio of the wall shear stress and heat flux of each simulation.

ym denotes the location of the matching point. By the simulation result of this

section, we have an error approximation of the TBL model at different grids.

∆y (mm) ym (mm) number of cells from number of cells in error ratio in error ratio in

ym to the wall boundary layer wall shear stress wall heat flux

0.5000 0.2500 1 6 0.189 0.133

0.2500 0.2500 2 12 0.104 0.028

0.1250 0.2500 3 24 0.004 0.046

0.0625 0.2500 5 48

0.5000 0.2500 1 6 0.189 0.133

0.2500 0.1250 1 12 0.142 0.053

0.1250 0.0625 1 24 0.111 0.008

0.0625 0.0312 1 48 0.194 0.148

The error ratio of the wall shear stress and heat flux of each simulation

are summerized in Table 3.2. Here the marginal convergence of the av-

eraged wall shear stress and heat flux are accessed. Clear convergence
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(a) Fixed matching point at y = 0.25 mm

(b) Use first cell off the wall as matching point

Figure 3.9: Average velocity profiles for different grids in the boundary layer.

Uinf is the free stream velocity. Note specifically the compare of Grid II to III

in the range of 0.2 < y/δ < 0.6. The importance of (a) over (b) is subtle but

important.
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might require one more level of mesh refinement. We observe from Ta-

ble 3.2 :

(a) At grid level IV and grid level III, when grid size ∆y is less or equal

to 0.125 mm and we have ≥ 3 cells from the matching point to the

wall the ratio of discrepancy is about 5% for both the wall shear

stress and the heat flux. The average wall shear stress and heat

flux have achieved marginal convergence.

(b) At grid level II when grid size ∆y is less or equal to 0.25 mm and

we have 2 cells from the matching point to the wall, the ratio of

error is about 10% for both the wall shear stress and the heat flux;

(c) Using the first cell of the wall as the matching point introduces

an consistent error of about 20% in the averaged wall shear stress

occurs even at the finest grid level.

As a conclusion, we obtain a decreased error in the calculation of wall

shear stress and heat flux as we have more grid resolution within the

boundary layer and more cells located between the wall and the match-

ing point wall normal direction. To obtain a better accuracy in the

calculation of the wall shear stress and heat flux, it is better to have

local mesh refinement at the boundary. If a maximum of 10% error is

allowed in the averaged values of wall shear stress and heat flux, it is

predicted that a mesh resolution of ∆y ≥ 0.25 mm is required for the

scramjet simulation.

On the choice of the matching point, we should abandon the use of the
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first grid off the wall. The only requirement for he matching point is that

it should be located in the inner layer, the matching point could located

from the first cell up to the nth cell off the wall where n = 0.1δ/∆.

Larsson estimated using the fourth cell off the wall is sufficient to have

accurate input at the matching point. Thus we can choose the matching

point location to be

n = min

(
0.1δ

∆
, 4

)
(3.29)
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Chapter 4

Turbulent Combustion

In gaseous combustion, two classes of flames are often considered: pre-

mixed and non-premixed (diffusion) flames. A premixed flame is a flame

in which the oxidizer has been mixed with the fuel before it reaches the

flame front. For example, combustion in homogeneous charge spark ig-

nition engines are premixed flames. A diffusion flame is a flame in which

the oxidizer combines with the fuel by diffusion. In diffusion flame,

reactants are initially separated, and reaction occurs only at interface

between fuel and oxidizer. One example of a diffusion flame is a candle

flame. The flame in scramjet combustor is also a diffusion flame.

In this chapter, we study the grid sensitivity of our finite rate chemistry

model in the context of one-dimensional and two-dimensional flows. The

grid sensitivity analysis in three dimensional simulation is too expensive

for a detailed exploration of all its many parameters. Based on 1D and

2D simulations, we excluded some model and parameter choices. In 1D,

we study the grid sensitivity in resolving the premixed and non-premixed
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laminar flames with detailed and reduced mechanism separately. In 2D,

we study the the gird sensitivity of turbulent combustion. Then we use

the turbulent diffusion coefficient computed in a 2D and 3D context in

the 1D problem analysis to and get a less stringent mesh requirement.

4.1 Chemical Kinetics

In balance equations for the mass fraction of species i:

∂

∂t

(
ρYi

)
+

∂

∂xj

(
ρujYi

)
=

∂2

∂x2
j

(
ρdiYi

)
+ ṁi , (4.1)

∂
∂t

(
ρYi

)
is the local rate of change and ∂

∂xj

(
ρujYi

)
is the convection

term. ∂2

∂x2j

(
ρdiYi

)
is the diffusive flux. ṁi is the chemical source term,

the calculation of which involves the chemical Kinetics.

The reaction rate wj for single reaction j follows the Law of Mass Action:

the reaction rate is proportional to the products of the concentration

reactants. The reaction rate wj for reaction j in a mechanism with n

reactions is

wj = kfj

n∏
i=1

(
ρYk
Mi

)νji
− krj

n∏
i=1

(
ρYi
Mi

)ν′′ji
. (4.2)

Here kfj and krj represent forward and reverse rate coefficients of reaction

j as a function of the temperature. νji and ν
′′
ji are the stoichiometric

coefficients of species i for the reaction and production side of reaction
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j. The forward and reverse rate coefficients kfj and krj can be computed

empirically by the Arrhenius Law. The forward rate coefficient is:

kfj = AjT
nj exp

(
−Ej
RT

)
, (4.3)

where Aj, nj and Ej are the pre-exponential constant, the temperature

exponent, and the activation energy of reaction j. Their values can be

found in the reaction mechanism tables. The reverse rate coefficient krj

is computed from the forward coefficient and the equilibrium constant

from reaction j by

krj =
kfj(

Pa

RT

) n∑
i=1

νji

exp

(
∆Sj

R
− ∆Hj

RT

) (4.4)

where Pa = 1 bar. The ∆Hj and ∆Sj are respectively the enthalpy and

entropy changes of reaction j.

The chemical source term, the production rates ṁi, is the sum over all

production terms in the mechanism,

ṁi =
N∑
j=1

Miνjiwj , (4.5)

where N is the number of reactions, Mi is the molecular mass of species

i, wj is the rate for reaction j and νji is the stoichiometric coefficient of

species i in the reaction j.

The heat release rate is expressed as the sum over the heat release of all
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chemical reactions:

Hi =
N∑
j=1

Mihiwj (4.6)

where hi is the heat release in reaction i.

In last several decades, lots of experiment has been done to measure

the rate of gas phase reactions. Many authors have selected reactions

and their rate data and combined them elementary reaction tables. In

our problem, the fuel is H2. There are many studies of the detailed

hydrogen-air reaction mechanisms, such as Jachimowski’s 33-reaction

mechanism [30], Hong et al.’s 21-reaction mechanism [28] and Williams’s

21-reaction mechanism [70]. Additional discussion can be found from

the text and references cited in [2, 5, 73, 59, 16]. The mechanism by

[28] has 8 species (H, O, OH, H2O, H2, O2, HO2, and H2O2) and 20

reactions, as in Tab. 4.1. The rates of each reaction with H2 and O2

mixed stoichiometrically under temperatures of 1276 K and a pressure

of 100 kPa are shown in Fig. 4.1.

In the detailed mechanism, the chemical source terms wi’s contain the

contributions from many fast reactions. Thus, the reactive chemistry

equations contain a system of stiff non-linear equations. Solving these

non-linear equation requires an adaptive solver and high computational

cost [60].

Therefore, the reduced chemistry mechanisms are developed and are

widely used. Balakrishnan [3] conducted a numerical investigation of

the extinction and ignition limits in laminar non-premixed counter flow
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(a) full range of all reactions (b) enlargement showing minor reactions

Figure 4.1: Reaction rates for each reaction in the full chemistry mechanism

for H2/O2 mixed stoichiometrically under model scramjet combustor temper-

atures of 1276 K and pressure of 100 kPa.

for both detailed and reduced chemistry of H2/Air reactions. Pantano

[48] used a four-step reduced mechanism in a 3D direct numerical simu-

lation (DNS) of a spatially evolving planar turbulent reacting jet for the

combustion of methane with air.

The reduced reaction mechanism assumes the Quasi-Steady-State for

intermediate species. The fast reactions depleting the quasi-steady state

intermediate species are eliminated. The slow rate reactions remain and

determine the rates of global reactions.

A four-step reaction mechanism [8] for H2/O2 interactions has been suc-

cessfully verified against the result of detailed chemistry in the main

reaction zone for high-temperature ignition [60]. This four-step reaction

mechanism has 15 elementary steps and the 4 global steps.

73



I) H + O2 
 OH + O

II) O + H2 + M 
 H + OH + M

III) OH + H2 
 H + H2O

IV) H + H + M 
 H2 + M

with global reaction rates as:

wI = w1 + w6 + w12 + w15 − w17 + w18 − w20 + w21

wII = w2 − w3 + w6 + w12 + w14 + w16 + w17 + w18 + w21

wIII = w3 + w4 + w8 + w10 + w13 + w15 + w18

wIV = w5 + w9 + w10 − w12 + w16 + w17 + w20

It neglects H2O2 and compute the partial density of HO2 from quasi-

steady assumption. It aggregates the reaction rates of elementary re-

actions into 4 global reactions. This four-step reaction mechanism is

used in the finite rate chemistry model in our model scramjet combustor

simulation.

4.2 Flame Structures

4.2.1 Premixed Flame

For a premixed flame, the fuel and oxidizer are completely mixed be-

fore the combustion takes place. The fuel and oxidizer are mixed at low

temperature before they enter the combustion chamber. The chemical
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reaction chain is sensitive to the temperature. At low temperature, the

“chain-breaking” mechanism drives the reaction chain thus the combus-

tion reactions are “frozin”. When a strong heat source (ignitor) raises

the temperature beyond the ignition temperature, the combustion starts.

The equivalence ratio of a given mixture is an important parameter for

premixed gases. It is defined as

φ = s
YF
YO

(4.7)

where

s =
ν

′
OMO

ν
′
FMF

(4.8)

is the mass stoichiometric ratio. Here the index F and O stands for fuel

and oxidizer respectively. Rich combustion happens when φ > 1 (the

fuel is in excess) and lean combustion happens when φ < 1 (the oxidizer

is in excess).

In premixed combustion, there are two stable states, the unburnt states

and the burned gas states. They are separated by the flame front as

in Fig 4.2. The laminar burning velocity sL, defined as the velocity at

which flame front propagate in the direction normal to itself and relative

to the flow into the unburnt mixture [51].

A basic case of a premixed flame is a one-dimensional laminar premixed

flame. Computing one-dimensional laminar premixed flames can be seen

as the first step toward more complex flames. The structure of one
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Figure 4.2: Premixed flame (Image source [51]).

76



(a) Structure of a laminar premixed flame

[35].

(b) Structure of a laminar diffusion flame. [1]

Figure 4.3: General Flame structure.

dimensional laminar premixed flame is shown in Fig. 4.3(a).

4.2.2 Diffusion Flame

In a diffusion combustion, the fuel and oxidizer enter combustion cham-

ber separately before they mix and burn during continuous inter-diffusion.

The combustion occurs at the interface between the fuel and the oxidizer.

The structure of a diffusion flame is shown in Fig 4.3(b). In diffusion

flames, the simple, measurable parameters, like the rate of burning and

the flame velocity in premixed flames, can not be easily defined. The

burning in a diffusion flame depends more on rate of mixing than on

the rates of chemical processes involved. The rate of reaction is directly

related to the amounts of fuel and oxidant diffusing into the reaction

zone.
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4.3 Combustion Models

There are several turbulent combustion models for the premixed and

the diffusion flames. For the premixed flames, there are Bray-Moss-

Libby Model and Coherent Flame Model which assume the infinitely fast

chemistry; there is the flamelet model based on G-equation with finite

rate chemistry assumption. For diffusion flames, there are conserved

scalar equilibrium model (with infinitely fast chemistry assumption), the

flamelet model base on mixture fraction and conditional moment closure

model (with finite rate chemistry assumption). The PDF Transport

Equation model and the linear Eddy Model work for both diffusion flame

and premixed flame. We will discuss the flamelet model for diffusion

flames in detail. The description of other models can be found in [51].

William [68] saw the turbulent diffusion flames as an combination of

stretched laminar flamelet. Peter [50] derived the flamelet equation

Eq. (4.10) for the diffusion flame. The flamelet is a thin reactive-diffusion

layer in the turbulence flow field [51]. The flame surface is defined as the

surface of stoichiometric mixture where [51]:

Z(x, t) = Zst (4.9)

Here Z is the mixture fraction. The flamelet equation describe the

reactive-diffusive structure at the vicinity of the flame surface. It as-

sumes the mass fraction and temperature can be expressed as a function
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of the mixture fraction Z. The governing flamelet equation is:

ρ
∂ψ

∂t
=

ρ

Le

χ

2

∂2ψ

∂Z2
+ ω (4.10)

where ψ is the “reactive scaler” [51] which could be the mass fraction

of each chemical species or the temperature. If ψ stands for the mass

fraction of species i, D is the mass diffusivity of the species i, Le is the

Lewis number Lei = λ/(ρcpDi) = D/Di, and ω is the chemical produc-

tion rate. If ψ represent the temperature, D is the thermal diffusivity,

Le is 1 and ω is the heat release rate in chemical reactions. χ is the

scaler dissipation rate defined by

χ = 2D| 5 Z|2 . (4.11)

The scalar dissipation rate is a very important parameter is diffusion

flames. It controls the mixing and determines the reaction rates.

The flamelet equation for mass fraction is derived from the scalar trans-

port equation (of species k)

ρ
∂Yk
∂t

+ ρui
∂Yk
∂xi
− ∂

∂xi

(
ρD

∂Yk
∂xi

)
= ωk (4.12)

and scalar transport equation for mass fraction Z

ρ
∂Z

∂t
+ ρui

∂Z

∂xi
− ∂

∂xi

(
ρD

∂Z

∂xi

)
= 0 . (4.13)
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Assume xi is a locally orthogonal coordinate system attached to the flame

surface. x1 is normal to the flame surface and x2 and x3 are parallel to

the surface. Now replace the coordinate xi with the mixture fraction

Z and x2 and x3 by Z2 = x2, Z3 = x3 and t = τ . The coordinate Z

is normal to the flame surface by the definition of flame surface. After

transformation of the coordinates , Eq. (4.12) is converted to

ρ

(
∂Yk
∂τ

+ u2
∂Yk
∂Z2

+ u3
∂Yk
∂Z3

)
− ∂(ρD)

∂x2

∂Yk
∂Z2

− ∂(ρD)

∂x3

∂Yk
∂Z3

−ρD

[(
∂Z

∂xi

)2
∂2Yk
∂Z2

+ 2
∂Z

∂x2

∂2Yk
∂Z∂Z2

+ 2
∂Z

∂x3

∂2Yk
∂Z∂Z3

+
∂2Yk
∂Z2

2

+
∂2Yk
∂Z3

2

]
= ωk

(4.14)

The flamelet model assumes the flame is thin in Z direction, the mass

fraction derivative in the flame surface normal direction is much larger

than in the flame surface tangential direction. By an order-of-magnitude

analysis it can be found that the second derivative of Z and the time

derivative are the dominant term on the left side of Eq. (4.14). Other

terms can be neglected. Then Eq. (4.10) for mass fraction of species

is obtained. The flamelet equation for temperature can be derived in

similar way.

To apply the flamelet model to the simulation of turbulent flames, it

assumes the “separation of scale”: the chemical time scale are small and

the reactions only happen in a thin layer near the flame surface. This

thin layer is assumed to have a scale smaller than the turbulence scale

and the structure of the reaction zone remains laminar and unaffected
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by the turbulence.

One of the widely used flamelet models is the steady laminar flamelet

model with a steady state flame assumption. The time derivative in

Eq. (4.10) could be neglected. The governing equation of steady laminar

flamelet model becomes

ρ

Le

χ

2

∂2ψ

∂Z2
+ ω = 0 (4.15)

The solution of the steady laminar flamelet model on Z space is a function

of the dissipation rate and boundary conditions. Thus the solutions can

be pre-calculated and saved in tabular form. After we solve Eq. (4.15)

and have the solution of Z in the flow field, the temperature and the mass

fraction of each species can be found by a table look up. No calculation

is needed for chemical reactions during simulation since all information is

precomputed. This greatly reduces the time spend on chemical reactions.

There are also unsteady flamelet model, such as the “lagrangian flamelet

model” [55] and “Eulerian flamelet Model” [54].

Larsson’s simulation uses the “Flamelet/Progress-Variable” model of

Pierce and Moin [52]. This model uses the reaction progress variable C

as the parameter instead of the scalar dissipation rate χ in the flamelet

model. The progress variable can be defined as the mass fraction of one

of the reactants or a sum of several reactants. Larsson [36] takes the

mass fraction of H2O to be the progress variable C. An additional trans-

port equation is solved for the filtered progress variable. Similar to the
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flamelet model, the flamelet method uses precomputed and tabulated

solutions, parameterised in terms of the mass fraction Z and reaction

the progress progress variable C To reduce the table dimensions, the

operating pressure is assumed a priori as a global constant. The mass

fraction of each species Yi and the source term wH2O can be computed

as the function of the filtered mixture fraction Z̃, the sub filter variance

Z̃
′′
Z

′′
and the filtered C̃:

Ỹi = Ỹi(Z̃, Z̃
′′Z ′′ , C̃) , w̃H2O = w̃H2O(Z̃, Z̃ ′′Z ′′ , C̃) , (4.16)

The filtered mixture fraction Z̃, the sub-filter variance Z̃ ′′Z ′′ and the

filtered C̃ are calculated by the LES transport equations.

In Sec. 1.1 we know that in the our model scramjet combustor simulation

with high Reynolds number, the Kolmogorov scale (about 10 microns)

is smaller than the flame width, so that the scale separation assumption

is not satisfied. The turbulence eddies might penetrate and wrinkle the

flame front and destroy the laminar flamelet structure. Thus the locally

one-dimension structure and might not be a good approximation of the

flames in the scramjet combustion chamber.

Instead, we use a straight-forward approach to simulate the turbulent

combustion in our model scramjet combustor simulation: we solve the

scalar transport equation for all species for the mass fraction of each

species. The chemical production rates are calculated by reaction rates

of each chemical reactions directly. At each time step, a system of ODEs
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based on the reacting species are solved for the change of mass fraction

of each species from chemical reactions:

dρYk
dt

= ωi = Mk

n∑
j=1

νkjrj (4.17)

We refer to our approach as the “finite rate chemistry approach” in other

parts of the thesis. The difference between our finite rate chemistry

model and flamelet model is: we plan to resolve the chemical reaction

rather than model it.

Our finite rate chemistry model is computationally more expensive than

the flamelet model. Since we need to solve systems of ODEs at each

time step for every single grid cell. When we use the detailed mecha-

nism, the system of ODEs might include stiff equations. To reduce the

computational cost of this approach, a reduced chemistry mechanism is

preferred to a detailed chemistry mechanism. We refer to our approach

as the “finite rate chemistry approach” in other parts of the thesis.
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4.4 One Dimensional Laminar Flame Study with

Finite Rate Chemistry Model

In this section we apply the finite rate chemistry model to the simulation

of one dimensional premixed and the diffusion flames. The purpose of

the chapter is to analyze the grid sensitivity of the finite rate chemistry

model in resolving the one dimensional flames, to give guidance to the

mesh resolution required for three dimensional scramjet simulation.

We considered two H2/O2 reaction mechanisms: the detailed mechanism

[28] and the reduced mechanism [8] are considered here. We predict

resolution requirements for these two mechanisms. We also considered

the thickened flame model.

4.4.1 Simulation Configuration

We consider a long tube at a constant pressure. The initial conditions

of 1D study is in consistent with the 3D scramjet simulation configu-

ration. For the premixed flame, H2 and O2 are mixed uniformly in a

stoichiometric ratio initially.

For the diffusion flame, H2 is to the left, O2 to the right. O2 has a

temperature of 1500 K, higher than the H2 flash point.

The hydro part of the 1D simulation are solved use the WENO scheme

described in Sec. 2.4. The molecular diffusion coefficients are computed

dynamically with the formula’s in Sec. 2.2.3. Two H2/O2 reaction mech-
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anisms: the detailed mechanism [28] and the reduced mechanism [8] are

used separately to calculate chemistry source terms.

We try to estimate the mesh requirements for our finite rate chemistry

model to resolve the diffusion and premixed flames. Here, a flame is con-

sidered to be resolved when certain measured parameter (indicator) of

the flame is preserved and is insensitive to changes in grid size. The lam-

inar flame speed are considered to be the indicator of premixed flames.

The diffusion flame lacks such a simple, measurable parameter as flame

speed. We use the total heat release within 0.12 ms (one flow through

in 3D scramjet simulation) as the indicator.

4.4.2 Convergence of Premixed Flame

In the numerical experiment, initially we ignite the left end of the tube

to generate a flame transverses from left end to the right end in the one

dimensional tube with H2/O2 premixed.

We conduct several numerical simulations of different grid resolution, the

grid size ranges from 0.0625 mm to 1 mm.

The convergence of the flame speed is shown in Fig. 4.4. To achieve

an error of less than 10%, we need a grid size of 0.0625 mm for the

detailed chemistry mechanism and 0.125 mm for the reduced chemistry

mechanism.
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Figure 4.4: Convergence of the flame speed of a premixed flame as a function

of the grid resolution. The horizontal lines indicate the fine grid flame speed

and a variation of ±10% about this value. The unit of the flame speed is 10

m/s.

86



4.4.3 Convergence of Diffusion Flame

In the numerical experiment, The flame begins as the H2/O2 is mixed by

molecular diffusion in the middle of the tube. The speed of the diffusion

flame depends on the diffusion. The width of a diffusion flame is generally

thicker than the width of a premixed flame. Thus the grid resolution

required to resolve a diffusion is less restrictive than the premixed flame.

We conduct several numerical simulations of different grid resolution,

the grid size ranges from 0.0625 mm to 1 mm. The convergence of to-

tal energy release is shown in Fig. 4.5. To achieve an error of less than

10%, we need a grid size of approximately 0.1 mm for the detailed chem-

istry mechanism and approximately 0.5 mm for the reduced chemistry

mechanism.

The heat release rate for a diffusion flame depends on the diffusivity.

The convergence of heat release rate over grid is also diffusivity corre-

lated. In 2D and 3D simulations, turbulent mixing will speed up the

mixing process of H2/O2 together with molecular diffusion. We compute

the average ratio of the turbulent transport coefficient with the molec-

ular transport coefficient in Sec. 4.5.4 and Sec. 5.2. Then we replace

the molecular transport coefficient in the 1D diffusion flames with the

total transport coefficient (sum of molecular and turbulent transport co-

efficients). The convergence of heat release rates within 1 flow through

under different grid resolutions are re-examined. Minimal mesh require-

ments to achieve an error of less than 10% of the heat release within 1
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(a) The reduced chemistry mechanism. (b) The detailed chemistry mechanism.

Figure 4.5: Convergence of the heat release rate of a diffusion flame as a

function of the grid resolution. Horizontal lines indicate the energy release of

the fine grid flame and a ±10% variation about this value.

flow through, for different mechanisms and flow regimes are summarised

in Table 4.2.

4.4.4 Thickened Flame Model

The thickened flame model [11] thicken the flame front artificially to

allow numerical solution of the flame front on a coarser grid. The thick-

ened flame model solves a modified problem, with modified diffusion

parameters and reaction rate parameters:

D → TF ×D k → TF × k µ→ TF × µ A→ A

TF
E → E

TF

(4.18)

88



Here TF is the flame thickening parameter.

Ying [72] has applied the thickened flame model to the simulation of

one dimensional hydrogen-oxygen premixed flame. The hydrogen-oxygen

premixed flame has a very thin flame front, in the order between 10−2 cm

and 10−1 cm [72]. If N cells (N > 3) lines in the flame width is needed

to resolve the flame, the mesh size should be in order of 10−3 cm. Thus

resolving the premixed flame requires very fine grid resolution. After

the thickened flame model is applied the the premixed flame, a lower

resolution requirement by a factor of eight is obtained, in the case of

a thickening factor of 10 [72]. Thus the thickened flame model is very

useful in the simulation of premixed flame.

When it comes to the diffusion flames, the thickened flame model delays

the ignition time. We conduct 1D diffusion flame simulation with dif-

ferent thickening factor. The heat release rate in these simulations are

shown in Fig 4.6. We can observe this ignition delay in Fig 4.6.

In the context of our motivating simulation problem, the flow in the

scramjet combustion chamber is supersonic and the residence time of

the combustible fuel in the combustion chamber is limited to 12 ms.

We find that even a modest level of flame thickening (TF = 2), with

the associated ignition delay, reduces the overall heat release. Thus this

method is not effective. The thickened flame model is excluded form the

model lists of 3D scramjet simulation.
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(a) No thickening (b) Thickening factor = 2

(c) Thickening factor = 4 (d)

Figure 4.6: Heat-release rate in diffusion flame by different thickening factors.

The x and y axis represent space and time.
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4.4.5 Conclusion

We have explored both the detailed and the reduced chemistry mech-

anisms. We find that reduced mechanism requires less stringent grid

resolution, by a factor of about 2 to 4 in comparison with the detailed

chemistry mechanism. The thickened flame model is excluded since it

lead to ignition delay.

4.5 Two dimensional Turbulent Flame Study with

Finite Rate Chemistry Model

The 2D simulation is more complex than the 1D ones: it contains tur-

bulence, shock waves and boundary layers besides the 1D phenomena of

molecular mixing and combustion.

On one hand, turbulence speeds up chemical reactions. The turbulent

flow contains a wide range of eddies of different length scales. These

eddies increases the mixing process the fuel and oxidizer, allowing the

chemical reaction to start. On the other hand, combustion releases heat

and generate flow instability by buoyancy and gas expansion, which in

turn enhances the turbulence.

In this section, we will study the mesh convergence of LES with finite

rate chemistry model in the two-dimensional turbulent reactive flow sim-

ulation, and to understand turbulent diffusion, which is also important

in the three-dimensional simulation.
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4.5.1 Simulation Configuration

We choose our 2D simulation as an XZ plane cut from the model scramjet

combustor.

The inflow turbulence is generated by a synthetic turbulent generator of

Touber [65]. The turbulent intensity is 2.3% and the length scale of the

randomised turbulence is about 10 mm. The inflow O2 has an average

density of 1.241×10−4 kg/m3, velocity of 1890 m/s and temperature of

1276 K. The inflow H2 has a density of 4.2× 10−4 kg/m3, velocity of 615

m/s and a temperature of 300 K.

The grids for our convergence study are defined by Table 4.3.

4.5.2 Energy Spectrum Analysis

The dynamic choice of parameters for the SGS construction compares

two resolved grid levels, the current grid and a coarser one, the test

filter. We assume an asymptotic (power law) behaviour for the dynamic

coefficient and then the information taken from these two grid levels is

sufficient to predict the unknown coefficient needed to model the sub-

grid terms describing the solution at a still smaller grid level. Thus the

fundamental requirement for LES is that the computational grid cutoff

lies in a scaling region. 2D turbulence has a further complication with

two different scaling regions and an inverse cascade, those above and

below the length scale of the perturbation driving the turbulence. From
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the above analysis, we take as a convergence requirement that the grid

cutoff must lie within one of these two scaling ranges.

According to Kolmogorov’s hypothesis, fully developed turbulence has

three length scales ranges: the dissipation range, the inertial subrange

and the energy-containing range [57]. The inertial subrange is a univer-

sally equilibrium range, with an energy spectrum of E(κ) = Cε2/3κ−5/3.

Beyond the classical k−5/3 Kolmogorov scaling, a variety of other expo-

nents have been reported in a variety of contexts. Specifically to the

point here is the 2D nature of scaling exponents [34, 7], with a classical

theory predicting two scaling ranges, k−5/3 for the smaller k values and

k−3 for larger k values. The transition between the two ranges is the

largest k value in the turbulence driver or initial conditions.

Fig. 4.7 displays the temporal turbulent kinetic energy (TKE) spectrum

as a function of frequency k for several meshes. The data comes from a

probe located in the down stream of model scramjet combustor cham-

ber. We draw three conclusions from this figure. First, we observe an

approximate k−5/3 and k−3 slopes as expected. We interpret this fact

as showing that the flow is well resolved. Second, the turbulent kinetic

spectra of grid IV agrees quite well with the turbulent kinetic energy

spectra of grid III. Thirdly, the inertial range, with a slope of k−5/3,

starts at a frequency of 2.0× 105 Hz. Considering that the average flow

speed is 1500 m/s at the probing point, the grid levels I, III and IV

correspond to frequencies of 1.8 × 106 Hz, 3.6 × 106 Hz and 7.2 × 106

Hz respectively; the filter sizes of grid levels I, III and IV correspond to
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Figure 4.7: Temporal turbulent kinetic energy (TKE) spectra, with several

grid sizes, at a down steam location in the chamber. The red doted line shows

the k−5/3 slope and the black dashed line shows the k−3 slope.

94



half of these frequencies. All of these values are strictly within the sec-

ond scaling region, meaning that the SGS requirement for a grid cutoff

within a scaling region is satisfied.

4.5.3 Resolved Fraction of Turbulent Kinetic En-

ergy

Pope [57] introduced a measurement of the turbulent resolution as the

comparison of the resolved turbulent kinetic energy to the modeled ki-

netic energy. The resolved turbulent kinetic energy is

kres = 0.5〈(ũi − 〈ũi〉)(ũi − 〈ũi〉)〉 . (4.19)

The modeled turbulent kinetic energy is estimated as

kSGS =
ν2
SGS

C2
S∆2

(4.20)

where νSGS is the turbulent viscosity in the dynamic SGS model [9]. The

ratio M = kSGS/(kSGS + kres) of modeled TKE to total TKE is used to

measure how much turbulent kinetic energy is modeled by the LES grid,

with smaller values, corresponding to more of the turbulence resolved

rather than modeled. The spatial distribution of M values for different

grids is displayed in Fig. 4.8.

In the interior of the chamber, we see an increase in the resolved turbulent

kinetic energy. As we refine the grid, we see the higher M values confined
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grid I

grid II

grid III

grid IV

Figure 4.8: The ratio of modeled to total turbulent kinetic energy in the

combustion chamber

to the boundary and inlet regions. Thus the turbulence is well resolved

at grids II, III and IV [57].

4.5.4 Turbulent Diffusion

Turbulent diffusion plays an important role in modelling thermal diffu-

sion and the mixing of reactants at a sub-grid level. Table 4.4 shows

the percentage of turbulent diffusion coefficient as a fraction of the total

diffusion coefficient. Here the turbulent diffusion coefficient are com-

puted by dynamical Smagorinksy model through Eq (2.57), (2.62) and

(2.61); the molecular diffusion coefficient are computed dynamically as

in Sec. 2.2.3. These values are averaged over the shear layer within one

scramjet residence time. We observe that the percentage of the turbulent

diffusion decreases with increasing grid resolution.

In [45], a scaling law was proposed for the turbulent coefficient Dcoef =
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(a) The reduced chemistry mechanism. (b) The detailed chemistry mechanism.

Figure 4.9: Convergence of heat release rate of a diffusion flame as a function

of the grid resolution. Horizontal dashed lines indicate the energy release of

the fine grid flame and a ±10% variation about this value.

C∆x
4
3 . Columns 4, 5 and 6 of Table 4.4 show the scaled mean turbulent

transport coefficient. We observe only a mild dependence of the scaled

coefficient on grid level, indicating that the scaling removes most of the

grid dependence. We re-do the 1D convergence study of heat release

of diffusion flame, with new total (molecular plus turbulent) diffusivity

(based on the fraction of turbulent viscosity out of total diffusivity), see

Fig. 4.9. To achieve an error of less than 10%, we need a grid size of

approximately ∆x = 0.52 mm for the reduced chemistry and 0.125 mm

for the detailed chemistry.
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4.5.5 Reaction Width Analysis

The width of each reaction is shown in Table 4.5, for a diffusion flame

with 2D turbulent mixing. The flame thickness of reaction i is defined

as [69]:

δi =

∫∞
−∞wi(x)dx

maxx{wi(x)}
(4.21)

where wi is the rate of reaction i. As the turbulent diffusion coefficient

derived from the 2D simulation is mesh dependent, we also specify the

mesh used to define it: 0.125 mm. We observe that reactions 1, 9, 10

and 18 have much wider reaction zones than the remaining ones.

For the present analysis, we assume that at least N (N ≥ 3) cells in the

reaction zone of each reaction are needed for numerical resolution. To

resolve the detailed chemistry mechanism reaction for the 2D diffusion

flame, we need a resolution of 0.22 mm. To resolve the chemistry reac-

tion using the reduced chemistry mechanism for the 2D diffusion flame,

we need a resolution of 0.34 mm. Thus the reduced mechanism has

a diminished resolution requirement relative to the detailed chemistry

mechanism.

4.5.6 Grid Sensitivity of the Chemical Reactions

The reaction and turbulence can be observed from a snapshot of temper-

ature and OH concentration in the combustion chamber, see Figs. 4.10

and 4.11. These figures show the increase in the resolved turbulence
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grid I

grid II

grid III

grid IV

Figure 4.10: Temperature snapshot in the combustion chamber

grid I

grid II

grid III

grid IV

Figure 4.11: OH concentration snapshot in the combustion chamber

level as the mesh is refined. The mesh convergence is measured by

two parameters: the total energy released from the chemical reactions in

the combustion chamber and the percentage of H atoms that burn into

H2O [38] at the outlet of combustion chamber. The energy release and

percentage of H are averaged over scramjet residence time for each grid,

see Table 4.6.

With an acceptance discrepancy level set to 10%, the results indicate

that the combustion has reached grid-convergence at grid III.
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Table 4.1: Reaction Mechanism of Hong [28].
Reaction
Hydrogen-oxygen chain
1. H+O2 
 O+OH
8. OH+OH 
 H2O+O
9. O+H2
 H+OH
10. OH+H2
 H+H2O
Direct recombination
18.H2+M
 H+H+M

H2+H2
 H+H+H2

H2+O2
 H+H+O2

7. H2O+M 
 H+OH+M
H2O+H2O
 OH+H+H2O

19. O+O+M
 O2+M
20. O+H+M
 OH+M
Hydroperoxyl reactions
2. H+O2(+M)
 HO2(+M)

H+O2(+O2)
 HO2(+O2)
H+O2(+H2O)
 HO2(+H2O)

11. H+HO2
 OH+OH
12. H+HO2
 H2O+O
13. H+HO2
 H2+O2

14. O+HO2
 OH+O2

15. H2O2+H
 HO2+H2

Hydrogen peroxide reaction
3. H2O2(+M) 
 2OH(+M)
4. OH+H2O2 
 HO2+H2O

OH+H2O2 
 HO2+H2O
6. 2HO2 
 O2+H2O2

16. H2O2+H
 H2O+OH
17. H2O2+O
 OH+HO2
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Table 4.2: Summary of minimal mesh requirements for reduced and full chem-

istry, based on 1D flame analysis, but with laminar or 2D or 3D turbulent

diffusivity.

Flow Regime Full Chemistry Reduced Chemistry

1D laminar flame analysis 0.1 mm 0.5 mm

1D flame analysis; 2D turbulent diffusivity 0.125 mm 0.52 mm

1D flame analysis; 3D turbulent diffusivity 0.25 mm 0.625 mm

Table 4.3: Grid resolution
x (mm) y (mm)

Grid I 0.5 0.5
Grid II 0.5 0.25

Grid III 0.25 0.25
Grid IV 0.125 0.125

Table 4.4: Turbulent diffusion as a fraction of the total diffusion coefficient.
The last three column show scaled values of these quantities to remove the
leading order ∆x effect.

turbulent turbulent turbulent scaled scaled scaled

dynamic thermal species (OH) dynamic thermal species (OH)

viscosity conductivity diffusivity viscosity conductivity diffusivity

fraction fraction fraction coefficient coefficient coefficient

Grid I 0.90 0.75 0.73 0.0000360 0.00193 0.149
Grid II 0.28 0.62 0.58 0.0000359 0.00199 0.187
Grid III 0.26 0.40 0.57 0.0000326 0.00203 0.184
Grid IV 0.16 0.21 0.29 0.0000410 0.00200 0.142
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Table 4.5: Reaction widths for the detailed chemistry mechanism in 2D diffu-

sion flames.
No Reaction flame width (mm)

1 H+O2 
 O+OH 1.147
2 H+O2(+M)
 HO2(+M) 1.613

H+O2(+O2)
 HO2(+O2) 1.378
H+O2(+H2O)
 HO2(+H2O) 1.505

3 H2O2(+M) 
 2OH(+M) 0.862
4 OH+H2O2 
 HO2+H2O 1.258

OH+H2O2 
 HO2+H2O 1.359
5 OH+HO2 
 H2O+O2 1.467
6 2HO2 
 O2+H2O2 0.667

2HO2 
 O2+H2O2 0.890
7 H2O+M 
 H+OH+M 1.625

H2O+H2O
 OH+H+H2O 1.250
8 OH+OH 
 H2O+O 1.219
9 O+H2
 H+OH 1.100

O+H2
 H+OH 1.013
10 OH+H2
 H+H2O 1.096
11 H+HO2
 OH+OH 1.440
12 H+HO2
 H2O+O 1.445
13 H+HO2
 H2+O2 1.345
14 O+HO2
 OH+O2 1.417
15 H2O2+H
 HO2+H2 0.959
16 H2O2+H
 H2O+OH 1.054
17 H2O2+O
 OH+HO2 1.313
18 H2+M
 H+H+M 1.325

H2+H2
 H+H+H2 1.373
H2+O2
 H+H+O2 1.259

19 O+O+M
 O2+M 1.319
20 O+H+M
 OH+M 1.240
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Table 4.6: Mesh convergence of 2D simulations
energy release energy release percentage percentage

of reduced of detailed of H atoms in H2O of H atoms in H2O

chem (J/s) chem (J/s) in reduced chem in detailed chem

grid I 1.036 1.106 21.9 % 22.3%
grid II 1.392 1.304 32.23% 31.45%
grid III 1.640 1.541 36.9% 34.4%
grid IV 1.775 1.686 41.0 % 40.2%
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Chapter 5

Scramjet 3D Simulation

In Chap. 3 we assess the convergence of the averaged value of wall shear

stress and shear flux under 1D context and predict the resolution require-

ment to achieve grid convergence within 10% error ratio is 0.25 mm. In

Sec. 4.4 and Sec 4.5 we made predictions regarding mesh resolutions

needed to resolve turbulent combustion to be 0.5 mm. We apply the

predicted grid to the simulation of 3D scramjet model scramjet.

We present a 3D finite rate chemistry simulation with a mesh resolution

of [∆x,∆y,∆z]= [0.5 mm, 0.25 mm, 0.25 mm] for this claim. This sim-

ulation compared with a independent simulation by Stanford PSAAP

Center on the same problem, and they are compared to experiment re-

sults. The comparisons appear to be satisfactory.
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Figure 5.1: Sketch of the model scramjet combustion chamber (Image source

[72]).

5.1 Model Configuration

The scramjet model model combustor (see Fig. 5.1) [21] studied here

is designed to be geometrically simple while representative of realistic

scramjet combustion conditions in Mach 5-8 flight conditions. The ex-

periment setup is defined in detail in [21].

The model scramjet combustor has an angled intake ramp followed by a

rectangular combustor section 75 mm wide, 15 mm high, and 315.4 mm

long. Fuel is injected through a single injector on the center-line which is

D = 2 mm in diameter. The distance of the injection port downstream

from the flat plate leading edge is L = 70 mm. Six high-bandwidth

pressure transducers are mounted in plugs inserted into the center-line

of the top wall of the model combustor to allow pressure measurements

[21].

The H2 flows out of the nozzle vertically and is bent downstream by the

cross flow O2 stream. The inflowing oxygen has an initial temperature
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TO2 ≈ 1200 K, pressure PO2 = 0.4 bar and cross flow velocity UO2 ≈ 1800

m/s. Together with a kinematic viscosity of ν = 5.36 × 10−4 m2/s,

the Reynolds number for the cross flow can be computed as ReO2 =

LU/ν = 2.35× 105, where L is the height of the O2 inlet. The hydrogen

is injected into the combustion chamber with a pressure PH2 = 12.5

bar, temperature TH2 = 300K and jet exit velocity UH2 = 1132.5 m/s.

With the kinematic viscosity ν = 1.6× 10−4 m2/s, the Reynolds number

ReH2 = DU/ν = 1.4× 105, where D is the diameter of the fuel jet.

We estimate the dissipation rate ε as by ε = 〈u′
u

′〉3/2/l, where l is the

size of the most energetic turbulent eddies assumed to be a quarter of the

diameter of the fuel jet. The Kolmogorov scale η = (ν
3

ε
)
1/4

is estimated

to be approximately 10 microns.

5.2 3D Turbulence and Turbulent Diffusion

3D turbulence has one scaling range, in contrast to the two ranges of

2D turbulence. See Fig. 5.3, showing temporal TKE as in Fig. 4.7. Due

to the change of the scaling exponent from -3 to -5/3, we expect larger

turbulent diffusivity and a lower fraction of resolved turbulence. In fact

the turbulent dynamic viscosity has increased from 2.4 × 10−5 kg/m·s

(2D) to 7.3 × 10−5 kg/m·s (3D), and the fractional resolution of TKE

plotted in a XZ cross section, Fig. 5.4, is to be compared to Fig. 4.8 and

still shows low levels of modeled turbulence within the flame region.

The turbulent viscosity, turbulent thermal conductivity and the turbu-
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(a) The reduced chemistry mechanism. (b) The detailed chemistry mechanism.

Figure 5.2: Convergence of the heat release rate of a diffusion flame as a

function of the grid resolution. Horizontal dashed lines indicate the energy

release of the fine grid flame and a ±10% variation about this value.

lent species (OH) diffusivity as a fraction of the total viscosity, thermal

conductivity and species (OH) diffusivity are approximately 0.65, 0.67

and 0.84 in the 3D simulation.

We re-do the 1D convergence study of heat release of diffusion flame.

with a new total (molecular plus turbulent) diffusivity (i.e., assuming

the same ratio between turbulent viscosity and molecular viscosity for

the 1D and 3D models), see Fig. 5.2. To achieve an error of less than 10%,

we need a grid size of approximately ∆x = 0.625 mm for the reduced

chemistry and 0.25 mm for the detailed chemistry.
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Figure 5.3: Temporal TKE spectra at a down stream location in the chamber.

The doted line shows the k−5/3 slope.

Figure 5.4: The ratio of modeled to total turbulent kinetic energy in the

combustion chamber
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Figure 5.5: Scramjet schematic plot

5.3 Turbulent Boundary Layer in Model Scramjet

Combustor Simulation

The schematic plot of turbulence boundary layer in the model scramjet

combustor is shown in Fig. 5.5. The scramjet simulation has solid wall

boundary conditions at the top, bottom, front and back walls. The

Sec. 5.3 simulation has a grid resolution of (∆x, ∆y, ∆z) = (0.5 mm,

0.25 mm, 0.25 mm).

The velocity contour within the combustion chamber is shown in Fig. 5.6.

We observe that the main stream velocity is decreasing in the combustion

chamber as the flow moves to the outlet. To assess the boundary layer

flow, the time averaged velocity normalised the main stream velocity

within the combustion chamber is shown in Fig. 5.7.

The boundary layer thickness δ increase from inlet to the outlet. The

boundary layer thickness δ95 at different locations on each wall are shown

in Fig. 5.8. Here the boundary layer thickness in Fig. 5.8 is δ95, the value

of wall-normal distance at which point the velocity reaches 95% of the
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(a) xz plane (y = 1.6 cm). Side wall is located at y = ±3.75 cm

(b) xy plane. (z = 3.2 cm)

Figure 5.6: Velocity profile in the combustion chamber
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(a) xz plane.(y = 1.6 cm).

(b) xy plane. (z = 3.2 cm).

Figure 5.7: Normalised velocity in the combustion chamber. Uinf is the main

stream velocity.
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(a) Top and bottom wall.

(b) Front and back wall.

Figure 5.8: Boundary layer thickness δ95
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main stream velocity. We plot δ95 instead of δ99 because a 1% velocity

difference is too small compared with the velocity fluctuations in the

interior part of the turbulent chamber to be clearly observable. Near the

inlet, the boundary layer at each wall has a thickness of about 1 mm; At

most parts of the top wall, boundary layer thickness is about 3 mm, At

most parts of the bottom wall, boundary layer thickness is about 5 mm.

At most parts of the side walls, boundary layer thickness is larger than

7 mm,

Initially we use the first cell off the wall as the matching point. Based on

analysis of Sec 3.5, an 20% error (at most) might occur. This potential

error explains the flow blockage, and the high pressure at the outlet. To

reduce this error, we might need to abandon the strategy of using the

first cell off the wall as the matching point.

According to the analysis of Sec. 3.5.4, we made a better choice of the

matching point. The boundary thickness shown in Fig. 5.8 means we

allow another choice of the matching point. Near the inlet, we use the

first point as the matching point as boundary layer thickness δ ≈ 1 mm.

At the region x > 3 mm we use the interpolated state at y = 2.5 mm as

the input to the TBL model. According to error analysis of Sec. 3.5.4,

the choice could reduce the potential error in the calculation of wall shear

stress and heat flux to under 10%.
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Our Simulation Stanford PSAAP Center Simulaiton

Turbulent combustion finite rate chemistry flamelet/progress-variable

reduced mechanism detailed mechanism

LES

Subgrid turbulent stress dynamic smargorinky model eddy-viscosity hypothesis model of Vreman

Subgrid convective energy gradient transport hypotheses gradient transport hypotheses

and scalar flux with dynamic Prt and Sct with fixed Prt = Sct = 0.5

Space discritization uniform grid unstructured grid, locally refinement

11M cells 54 M cells

Turbulence inflow Digital filtering method

Turbulent boundary layer Equilibrium wall model

Table 5.1: Computational Set-Ups of our simulation and Stanford PSAAP

center’s simulation.

5.4 Comparison of Finite Rate Chemistry and Flamelet

Simulations with Experiment

In this section, we compare the finite rate chemistry and flamelet simu-

lations to each other and to the experiments [21].

5.4.1 The 3D Finite Rate Chemistry and Flamelet

Simulation Models

Stanford PSAAP center and we conduct large eddy simulation of model

scramjet combustor with different physical models, summerized by Ta-

ble 5.1. We call our simulation “finite rate chemistry simulation” and

Stanford PSAAP center’s simulation “flamelet simulation”.

The finite rate chemistry simulation uses a uniformly grid with 11 million
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cells; the mesh size is [∆x,∆y,∆z]= [0.5 mm, 0.25 mm, 0.25 mm]. The

flamelet model simulation uses an nonuniform grid, refinement near the

boundaries and the fuel inlet, with an overall mesh of 54 million cells.

The finite rate chemistry simulation uses the reduced chemistry model

discussed in Sec. 4.1, solving the scalar transport equation for all species

and calculating the finite rate chemistry source terms directly. Dynamic

SGS models are used to compute the turbulent diffusion coefficient in

the LES transport equations. Turbulent boundary layers are from the

method of [32].

The flamelet methodology, explained in Sec. 4.3, is used as the com-

bustion model. The eddy-viscosity hypothesis model proposed by Vre-

man [67]. The sub-grid heat flux and species transport are modeled

using the gradient transport hypotheses with fixed turbulent Prandtl

and Schmidt numbers. The H2 combustion mechanism coincides with

the refined model referred in Sec. 4.1. Further details come from the

related simulation [38].

5.4.2 Comparison of Pressures on Upper Wall

Fig. 5.9 shows the upper pressure, comparing the finite rate chemistry

simulation, the flamelet model and experiment [21]. Time averaging

of the point-wise pressure removes turbulent fluctuations and records a

mean pressure value. The smoother nature of the flamelet plot is due to

the use of a longer period for the time averaging.
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We divide the combustion chamber into the regions A = [-2, 3] cm, B

= [3, 7] cm, C = [7, 11] cm and D = [11, 23] cm. Region A and D

show satisfactory agreement among the two simulations and the exper-

iment. Region B, which is the flame ignition regime, shows satisfactory

agreement between the finite rate chemistry simulation and the experi-

ment, while the pressure of the flamelet model is too large. The early

ignition of famelet model reflects a known weakness of steady flamelet

models, which assume steady burning and thus are unable to predict

ignition. Consistent early ignition in “Jet In Cross Flow” problem were

also observed by Chan [12] when she compared the simulation result of

DNS and LES with flamelet model. She attributed the early ignition to

the omission of heat-transfer into the one-dimensional flame-structure in

flamelet model.

The early ignition in the flamelet-model can be also be seen from a

comparison of the water content in region A between the two simulations,

see Fig. 5.10. Region C is the reverse, with the flamelet simulation

and experiment in satisfactory agreement while the finite rate chemistry

simulation has too low a pressure.

5.4.3 Comparison of OH Production

We compare the OH concentration with the OH PLIF (Planar Laser-

Induced Fluorescence) plots from experiment at several end-view planes

from the finite rate chemistry simulation, see Figs. 5.11 and 5.12. The
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Figure 5.9: Upper wall pressure for the finite rate chemistry model, the flamelet

model and experiment
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Figure 5.10: Instantaneous snapshot of mass fraction of H2O in the scramjet.

Top to bolttom, frame (a) flamelet (b) finite rate chemistry, both vertical cross

section. Frames (c) flamlet, (d) finite rate chemistry, both a horizontal plane.
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results appear to be satisfactory, other than the lower level of OH in the

simulation along the chamber wall.

5.4.4 Comparison of H2O Production

Fig. 5.10 shows the water content in the combustion chamber by simu-

lation of finite rate chemistry model compared with the flamelet model.

The difference appears to be due to two previously noted (see Sec. 5.4.2)

features of these simulations. Namely, the delayed burning off the finite

rate chemistry and its slow burning after ignition.

5.5 Conclusions

We see that the 3D turbulent model modifies the conclusions of Secs. 4.4,

4.5, by a further increase of the turbulent diffusion and thus a further

increase in the minimal numerical mesh needed for convergence.

Extensive comparison of the finite rate chemistry and the flamelet model

simulations have been conducted. Broadly speaking, these comparisons

show consistency and substantial agreement between these two simula-

tions as well as consistency with experiment. Most comparisons to ex-

periments are qualitative, as the experiments did not calibrate the colour

images of concentrations with specific concentration values. Figs. 5.11

and 5.12 show satisfactory agreement of the finite rate chemistry sim-

ulation with experiment, with the exception of a lower level of chamber

119



x/h = 5

x/h = 7

x/h = 9

x/h = 11

x/h = 13

Figure 5.11: Left: Mass fraction of OH in finite rate chemistry simulation

in several end-view planes corresponding to the OH PLIF data (right frame)

from experiment
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(a) finite rate chemistry simulation

(b) flamelet-based simulation

(c) experiment PLIF measurement

Figure 5.12: OH mass fraction in a vertical cross section., comparing finite

rate chemistry simulation, flamelet simulation and experiment

(a) finite rate chemistry simulation (b) experiment.

Figure 5.13: OH mass fraction in end views of the combustion chamber, com-

paring finite rate chemistry simulation and experiment
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wall burning in the simulation in Fig. 5.12. Fig. 5.10 shows a higher

level of burning for the finite rate chemistry simulation, due in part to

its early ignition, as noted above. Quantitative experimental data are

provided by the pressure measurements on the top wall. Agreement of

both simulations with this data is satisfactory with exceptions as noted.

A few consistent differences between the simulations have been noted.

The finite rate chemistry simulation tends to burn less, and starts burn-

ing more slowly. The second of these properties, the slower start to the

combustion, reflects a known weakness of steady flamelet models in not

capturing flame ignition. Further details of comparison are not mean-

ingful as neither simulation can be regarded as fully converged.
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Chapter 6

Conclusions and Future Work

6.1 Conclusion

In this thesis, we study the physical processes, including the turbu-

lent boundary layer, turbulent mixing and turbulent combustion, in the

model scramjet combustor using Large Eddy Simulation.

In Chap. 3 we explore the turbulent boundary layer model and assess

mesh convergence requirements for the averaged value of wall shear stress

and heat flux through suits of two-dimensional simulations.

In Chap. 4, we examine the mesh requirement for the finite rate chem-

istry model to resolve the turbulent combustion through suits of one-

dimensional and two-dimensional simulations. There are three predic-

tion approaches:

(a) Convergence study of one-dimensional laminar diffusion flame. We

first conduct the simulation with laminar diffusion coefficients. Later
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Table 6.1: Summary of minimal mesh requirements for reduced and full chem-

istry.

Flow Regime Full Chemistry (mm) Reduced Chemistry (mm)

1D laminar flame analysis 0.1 0.5

1D flame analysis with 2D turbulent diffusivity 0.125 0.52

1D flame analysis with 3D turbulent diffusivity 0.25 0.625

2D flame width analysis 0.22 0.34

we add the turbulent diffusion coefficient from 2D and 3D simula-

tion onto laminar diffusion coefficient and get a less stringent crite-

ria.

(b) Two-dimensional flame width analysis.

The results are summerized in Tab. 6.1. Top four row of Tab. 6.1 predict

the mesh needed for the finite rate chemistry model to resolve the chemi-

cal reactions. They show some level of consistency (although not perfect

consistency). We also find that reduced chemistry, which removes the

fast and transient reactions, has a less stringent mesh requirement than

the full chemistry.

In Chap. 5 we applied the predictions made in Chap. 3 and Chap. 4 to the

3D simulation of model scramjet combustor. TKE analysis and turbulent

resolution analysis in 3D scramjet simulation shows the turbulence in

them combustion chamber is well resolved.

The simulation result are compared with the experiment and Stanford’s

simulation. Qualitative comparison of OH mass fractions show satisfac-

tory agreement of the finite rate chemistry simulation with experiment,
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with exceptions of a lower level of chamber wall burning and a higher

level of burning near outlet. Quantitative measurements of top wall pres-

sure shows satisfactory agreement of both simulations with experiment

except for: flamelet simulation has a higher level of burning due to early

ignition; finite rate chemistry model has lower level of burning due to ig-

nition delay. The satisfactory agreement of simulation with the Gamba’s

experiment data verifies predictions made in Chap. 3 and Chap. 4.

6.2 Recommendation for Future Work

Although the current scramjet simulation result presented in this thesis

have demonstrated good agreement with the experiment, it could be

further developed in a number of ways.

First recommendation is the implementation of local mesh refinement

functionality into current FronTier package. The flame thickness list

in Tab. 4.5 is the averaged flame thickness in the combustion chamber.

Actually the flames near the H2 inflow nozzle has a smaller width than

the averaged value. So it is better to have local mesh refinement near

H2 inflow nozzle. We can also have less error in the calculation of the

wall shear stress and heat flux with mesh refinement near wall.

Another recommendation is the time efficiency optimization of FronTier

code especially in

(a) Parallel Computing.

The parallel computing of scramjet project is realized by MPI. In
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the implemenation of parallel computing, the scramjet simulation

domain are split into several uniform rectangles (subdomains) and

each processor is in charge of one subdomain. This kind of splitting

is not time efficient because the computational burden is not evenly

distributed on these subdomains. Some subdomains contains lots

of “obstacle states” and are fast than others. Thus lots of compu-

tational resources are wasted when the fast subdomains stops and

waits for the slow subdomains. Thus a better subdomain splitting

algorithm are needed.

(b) Computation of EOS and transport coefficients.

In scramjet simulation, EOS and transport coefficient functions are

called quite frequently by hyperbolic, parabolic, boundary layer and

chemistry modules. Calculation of the EOS parameters and the

transport coefficients for gas mixtures require lots of computational

resources. Optimization of the EOS and transport coefficients code

will greatly reduce computational cost.
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Appendix A

Mathematical Derivation of the Thin

Boundary Layer Model for Compressible Flow

In this section we shows the derivation the Thin Boundary Layer Model of
[4] from the Navier-Stokes equation. The compressible Navier-Stokes equation
expresses conservation of mass, momentum, and energy. The law of conserva-
tion of mass is

∂ρ

∂t
+

∂

∂xj

(
ρuj

)
= 0 . (A.1)

Conservation of momentum is given by the equation

∂

∂t

(
ρui

)
+

∂

∂xj

(
ρuiuj

)
+
∂p

∂xi
=
∂τij
∂xj

. (A.2)

The equation for conservation of energy is:

∂E

∂t
+
∂
[

(E + p)uj
]

∂xj
=

∂

∂xj

(
τijui

)
− ∂qj
∂xj

. (A.3)

For a Newtonian fluid, assuming Stokes Law for mono-atomic gases, the vis-
cous stress is given by:

τij = 2µS∗ij = µ

[(
∂ui
∂xj

+
∂uj
∂xi

)
− 2

3
δij
∂uk
∂xk

]
. (A.4)

The energy equation could also be written in terms of physical variable hb:

ρ

(
∂hb
∂t

+ ui
∂hb
∂xi

)
=
∂p

∂t
+

∂

∂xj
(τijui)−

∂qj
∂xj

. (A.5)
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In this equation, hb is defined as:

hb = h+
1

2
u2
k , (A.6)

and the specific enthalpy is given by

h = e+
p

ρ
(A.7)

where
e = cvT (A.8)

is the specific internal energy. Some authors define hb to be the total enthalpy
and h as the static enthalpy. We assume the perfect gas law is applicable here,
which assumes that

p

ρ
=

R

M
T = (γ − 1) cvT , (A.9)

h = cvT + (γ − 1) cvT = γcvT = cpT . (A.10)

Thus

hb = cpT +
1

2
u2
k . (A.11)

The heat flux, q̇ is given by Fourier’s law

q̇ = −k∇T . (A.12)

Within the turbulent boundary layer, we replace the instantaneous quantities
in the Eqs. (A.1 - A.3). by the sum of their mean and fluctuating parts. We
introduce the Reynolds decomposition for ρ and p and the Favre decomposition
for T , ui, hb and h. By taking an average of the governing equations we have:

∂ρ̄

∂t
+

∂

∂xj

(
ρ̄ũj

)
= 0 , (A.13)

∂

∂t

(
ρ̄ũj

)
+

∂

∂xj

(
ρ̄ũiũj

)
= − ∂p̄

∂xi
+
∂τ ij
∂xj
− ∂

∂xj

(
ρu′′i u

′′
j

)
,

∂

∂t

[
ρ̄h̃b

]
+

∂

∂xj

[
ρ̄ũjh̃b + ρu

′′
jh

′′
b − τijui + qj

]
=
∂P

∂t
, (A.14)
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where the density averaged hb is give by

h̃b = cvT̃ +
ũkũk

2
+
P

ρ
+
ũ

′′
k

2
. (A.15)

Next we substitute the unknown terms into the known terms. For example we
have

τji = τ̃ji + τ
′′
ji , (A.16)

ρu
′′
jhb = ρu

′′
j (cpT +

1

2
u2
i ) == cpρu

′′
i T + ũiρu

′′
i u

′′
j +

1

2
ρu′′2

iu
′′
j , (A.17)

qj = −k ∂T
∂xj

= −k ∂T̃
∂xj
− k∂T

′′

∂xj
, (A.18)

and
uiτij = ũiτ̃ij + u

′′
i τij + ũiτ

′′
ij . (A.19)

Then we rewrite equations Eqs. (A.1 - A.3) as :

∂ρ̄

∂t
+

∂

∂xj

(
ρ̄ũj

)
= 0 , (A.20)

∂

∂t

(
ρ̄ũj

)
+

∂

∂xj

(
ρ̄ũiũj + ρu′′i u

′′
j − τ̃ij − τ

′′
ij

)
= − ∂p̄

∂xi
, (A.21)

∂

∂t
(ρhb) +

∂

∂xj

(
ρũjh̃b + ũiρu

′′
i u

′′
j +

1

2
ρu

′′
ju

′′
i u

′′
i

)

+
∂

∂xj

(
−cpρu

′′
jT − k

∂T̃

∂xj
− ũiτ̃ij − k

∂T ′′

∂xj
− τ̃ij − τ

′′
ij

)
=
∂p

∂t
. (A.22)

These are open equations in that they contain new undefined terms. Clo-
sure requires same assumptions. The Reynolds stress τ turbij = ρu

′′
i u

′′
j can be

modelled using an eddy-viscosity assumption:

τ turbij = −ρu′′
i u

′′
j ≈ 2µtS̃

∗
ij −

2

3
ρkδij , (A.23)

where µt is the turbulent viscosity. The term cpρu
′′
jT corresponding to turbu-

lent transport of heat, can be modelling using a gradient approximation for
the turbulent-flux:

qturbj = cpρu
′′
jT = cp

µt
Prt

∂T̃

∂xj
. (A.24)
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Here Prt is the turbulent Prandtl number, which is taken to be a constant
with value 0.9. The term τ

′′
ij is neglected if | τ̃ij |>>| τ

′′
ij | which is true for

nearly all flows. The terms cpk
∂T ′′

∂xi
,
ρu

′′
j u

′′
i u

′′
i

2
and τ̃Iau

′′
i are neglected for similar

reasons. Thus the filtered averaged equations for compressible flow become:

∂ρ

∂t
+

∂

∂xj
[ρũi] = 0 , (A.25)

ρũi
∂t

+
∂

∂xj

[
ρũiũj − (µ+ µt)

(
∂ũi
∂xj

+
∂ũj
∂xi
− 2

3

∂ũk
∂xk

δij

)]
+
∂p

∂xi
= 0 , (A.26)

and

ρh̃b
∂t

+
∂

∂xj

[
ρũjh̃b − ũi (µ+ µt)

(
∂ũi
∂xj

+
∂ũj
∂xi
− 2

3

∂ũk
∂xk

δij

)
+
(
cp
µ

Pr
+ k
) ∂T̃
∂xj

]
=
∂p

∂t
.

(A.27)
For the boundary layer flow, we use an order-of-magnitude analysis to derive
a simplified system of equations. If y is the wall normal direction, we assume
that

ṽ � ũ, w̃ ,
∂

∂x
,
∂

∂z
� ∂

∂y

Omitting lower order terms, we have the new boundary layer equations (for
three dimensional flow):

∂

∂x
(ρũ) +

∂

∂y
(ρṽ) +

∂

∂z
(ρw̃) = 0 , (A.28)

ρũ

∂t
+ ρũ

∂ũ

∂x
+ ρw̃

∂w̃

∂z
+ ρṽ

∂ũ

∂y
+
∂p̃

∂x
=

∂

∂y
(µ+ µt)

∂ũ

∂y
, (A.29)

ρh̃b
∂t

+ρũ
∂h̃b
∂x

+ρṽ
∂h̃b
∂y

+ρw̃
∂h̃b
∂z

=
∂

∂y

[
ũ (µ+ µt)

∂ũ

∂y
+

(
k + cp

µt
Prt

∂T̃

∂y

)]
+
∂p

∂t
.

(A.30)
Our model is a equilibrium stress model without pressure gradient so that the
left hand side of the momentum equation is zero. According to Bernoulli’s

law, hb = h +
u2k
2

along a stream line is constant, so the left hand side of the
energy equation is zero. So our boundary layer equation is further simplified
to become:

∂

∂y

[
(µ+ µt)

∂u

∂y

]
= 0 , (A.31)
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∂

∂y

[
cp

(
µt
Prt

+
µ

Pr

)
∂T

∂y
+ (µ+ µt)u

∂u

∂y

]
= 0 . (A.32)
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