

SSStttooonnnyyy BBBrrrooooookkk UUUnnniiivvveeerrrsssiiitttyyy

The official electronic file of this thesis or dissertation is maintained by the University
Libraries on behalf of The Graduate School at Stony Brook University.

©©© AAAllllll RRRiiiggghhhtttsss RRReeessseeerrrvvveeeddd bbbyyy AAAuuuttthhhooorrr...

Computing Teichmüller Maps and Applications of
Conformal Geometry to Sensor Networks

A Dissertation Presented
by

Mayank Goswami

to
The Graduate School

in Partial Fulfillment of the
Requirements

for the Degree of
Doctor of Philosophy

in
Applied Mathematics and Statistics

Stony Brook University

August 2013

Copyright by
Mayank Goswami

2013

Stony Brook University
The Graduate School

Mayank Goswami

We, the dissertation committee for the above candidate for the
Doctor of Philosophy degree, hereby recommend

acceptance of this dissertation.

Joseph S.B. Mitchell – Dissertation Advisor
Professor, Department of Applied Mathematics and Statistics

Michael A. Bender – Chairperson of Defense
Associate Professor, Department of Computer Science

Xianfeng Gu – Dissertation Co-Advisor
Associate Professor, Department of Computer Science

Xiangmin Jiao
Associate Professor, Department of Applied Mathematics and Statistics

Jie Gao–External Member
Associate Professor, Department of Computer Science

This dissertation is accepted by the Graduate School

Charles S. Taber
Interim Dean of the Graduate School

ii

Abstract of the Dissertation

Computing Teichmüller Maps and Applications of Conformal Geometry to
Sensor Networks

by
Mayank Goswami

Doctor of Philosophy
in

Applied Mathematics and Statistics
Stony Brook University

2013

By the Riemann-mapping theorem, one can always bijectively map an n-polygon
P to another n-polygon Q conformally; in fact, any two simply connected domains
can be conformally mapped to each other. However, this mapping need not neces-
sarily map the vertices of P to the vertices of Q. In this case, one wants to find the
“best" mapping between these polygons, i.e., one that minimizes the maximum an-
gle distortion over all points in the base polygon, and maps the vertices of P to the
vertices of Q. Such maps are called Teichmüller maps or extremal quasiconformal
maps.

In the first part of this work we present a variational approach in the continu-
ous setting; we use the Hamilton-Krushkal, Reich-Strebel, necessary and sufficient
condition for optimality to get an iterative method that successively improves the
maximum distortion of the starting map. This procedure is proven to converge to
the unique extremal quasiconformal or Teichmüller map. We then provide a nu-
merical method for computing such maps by using this continuous construction
and employing methods from convex optimization. Our method works not only for
the polygon problem mentioned above, but also for the general extremal problem
on punctured spheres.

In the second part of this work we present some of the ways in which we use
conformal geometry to help resolve some real-world problems encountered in the
field of Wireless Sensor Networks (WSNs). We 1) use Möbius transformations to

iii

navigate through the path-space of a sensor network, 2) use harmonic measure to
analyze the traffic pattern resulting from random routing, and 3) use the relation
between Teichmüller theory and billiards to get dense curves in WSNs which are
useful for many applications like serial data fusion, motion planning for data mules
and node indexing.

iv

Contents

Contents v

List of Tables ix

List of Figures x

Acknowledgements xiv

1 Introduction 1
1.1 Conformal geometry . 1

1.1.1 Holomorphic functions and conformal maps 2
1.1.2 Riemann surfaces . 5

1.2 Quasiconformal geometry . 6
1.2.1 Quasiconformal maps . 6

1.3 Teichmüller theory . 7
1.3.1 Teichmüller space . 8
1.3.2 Extremal quasiconformal maps 8
1.3.3 Quadratic differentials . 9
1.3.4 Teichmüller maps and relation to holomorphic quadratic

differentials . 12
1.4 Problems considered . 12

1.4.1 Computing Teichmüller maps 12
1.4.2 Exploration of path-space using sensor network geometry . 15
1.4.3 Traffic analysis and source-location privacy under random

walks . 16

v

1.4.4 Topology dependent space filling curves for sensor net-
works and applications . 16

1.5 Layout and References . 17

2 Computing Teichmüller Maps 18
2.1 Introduction . 18
2.2 Problem statements . 20

2.2.1 Polygon mapping . 21
2.2.2 Punctured sphere mapping 21
2.2.3 Discrete polygon mapping 22
2.2.4 Teichmüller mapping . 23
2.2.5 Representing the Teichmüller map 24

2.3 Preliminaries . 25
2.3.1 Relation between polygon mapping and punctured sphere

mapping . 25
2.3.2 Ingredients of the proof . 26

2.4 Continuous construction . 30
2.4.1 Summary of the construction 30
2.4.2 Constructing self homeomorphisms gi 30
2.4.3 The reduction lemma . 34
2.4.4 Choosing a good value of t 35
2.4.5 Convergence of the continuous construction 38
2.4.6 Polygon mapping problem 39

2.5 Discretization . 39
2.5.1 Finding points inside polygon 40
2.5.2 Solving the Beltrami equation 40
2.5.3 The starting map between polygons 41
2.5.4 The minimization program 41
2.5.5 Discretization of the vector field method 44
2.5.6 Choosing t during the algorithm 44

2.6 Future work: complexity and approximation 45

3 Exploring Path Space Using Sensor Network Geometry 46
3.1 Introduction . 46

vi

3.2 Related work . 50
3.3 Algorithms . 52

3.3.1 Embedding into circular domains with Ricci flow 53
3.3.2 Multipath Routing . 57
3.3.3 Recovery From Failure . 63

3.4 Simulations . 64
3.4.1 Multipath routing . 65
3.4.2 Routing with link failures 68

3.5 Conclusion . 73

4 Traffic Analysis and Source-Location Privacy Under Random Walks 75
4.1 Introduction . 75
4.2 Overview . 77
4.3 Theory . 81

4.3.1 Continuous theory . 82
4.3.2 Discrete theory . 83

4.4 Traffic analysis on random walks 86
4.4.1 Settings . 86
4.4.2 ALG1: Integration along domain boundary 87
4.4.3 ALG2: Maximum likelihood method 89

4.5 Simulations . 91
4.6 Related work . 95
4.7 Discussions . 96

5 Topology Dependent Space Filling Curves 99
5.1 Introduction . 99

5.1.1 Related work . 100
5.1.2 Our contribution . 103

5.2 Theoretical foundation . 105
5.2.1 Dense curve for simply connected domains and the annulus 105
5.2.2 Dense curve for a multiply connected domain 107
5.2.3 Billiards curve in the multiply connected domain 109
5.2.4 Comparison with space filling curves 113

5.3 Algorithms for discrete conformal mapping 114

vii

5.4 Simulations . 120
5.4.1 Dense curve discretization 120
5.4.2 Comparison with various network covering approaches . . . 120
5.4.3 Covering network with holes 122

5.5 Dense curve applications . 123

Bibliography 125

viii

List of Tables

1 Results of different sources and destinations in a uniformly dis-
tributed network with average edge links 20. 66

2 Results of graphs with different sensor densities. 68
3 Comparison of different p1 and p2 settings. 73

ix

List of Figures

1 Conformal and quasiconformal mappings from a human face sur-
face to the planar disk. 7

2 Beltrami coefficient. 7
3 Holomorphic quadratic differential bases on a pentagon. 9
4 Holomorphic quadratic differentials on a pentagon. (a) and (b)

show [0.2(φ′1)2 + 0.8(φ′2)2]dz2, (c) and (d) show [−0.2(φ′1)2 +

1.2(φ′2)2]dz2. 10
5 Holomorphic quadratic differential bases on a hexagon. 10
6 Holomorphic quadratic differentials on a hexagon. 11

7 Teichmüller map between two pentagons. 23

8 Consider some part of the network experiencing heavy inference (or
jamming attacks), shown as the dark colored circles. Links inside
these ‘failure’ regions have much higher loss rate. A route that hits
a small failure region might be able to get around by performing
some random walks in the neighborhood, as in the case of path
γ1. A route that hits a large failure region has difficulty recovering
from it – as simple random walk is likely to wander around for a
long time, as shown by the path γ2. In this case a path that makes
big de-tours would perform much better, as shown by the path γ3. . 48

9 The circle packing metric. 55
10 The multiple paths on the domain D (in the middle) are the greedy

paths under transformations fj . The figure shows two transforma-
tions fj and fj+1 respectively. 58

x

11 For two curves γ1 and γ2 from s to t, the initial directional spread
is shown as θi and the final directional spread is shown as θf 59

12 For a pair of source and destination, each hole Ci will produce two
intervals θ+

i and θ−i such that any two paths falling in the same
interval will hit the hole and share some segments of the boundary.
Thus any set of disjoint paths can only select one path inside each
interval. 61

13 Multipath Routing Algorithm. Left column: original network; mid-
dle column: network applying Ricci flow; right column: network
applying Ricci flow and a Möbius transformation (zoomed in). First
row: m = 3; second row: m = 5. 66

14 Multipath Routing Algorithm in a region with holes. Up: original
network; Bottom: network applying Ricci flow. Here κ(s, t) = 9. . . 69

15 Routing delivery rate versus average degree (TTL = 500; link fail-
ure rate = 0.8). Möbius is our method. Greedy and Ricci are
greedy routings on the original and Ricci flow coordinates respec-
tively. GreedyRand and RicciRand are greedy routings on the
original and Ricci flow coordinates with random walk respectively. . 71

16 Routing delivery rate versus TTL (time-to-live) of packets (Avg.
Degree = 10; link failure rate = 0.8). 71

17 Routing delivery rate versus link failure rate (Avg.Degree = 10;
TTL = 500). 72

18 Distribution of routing path lengthes (Avg.Degree = 10; TTL = 500;
link failure rate = 0.8). 72

19 The first hit distribution ω′x and ω′o for random walk inside a unit
disk starting at x and o respectively. 79

20 The probability for a Brownian motion starting from x ∈ R and
exiting from an interval I[a, b] on the boundary ∂R is the same as
the probability of a Brownian motion starting from f(x) ∈ R′ and
exiting from an interval I[f(a), f(b)] on the boundary ∂R′. 80

21 Edge weight and vertex position—(a) shows the edge weight. (b)
shows that the vertex position function is harmonic. 84

xi

22 Left: Distance from center vs. Errorave under TM model. Right:
Nmsg vs. Errorave/Errormax under TM model. 92

23 Left: Distance from center vs. Errorave under UDG model. Right:
Nmsg vs. Errorave/Errormax under UDG model. 92

24 Nmsg vs. Errorave/Errormax. Left:TM model. Right:UDG model. 93
25 Nmsg vs. Errorave/Errormax. Left:TM model. Right:UDG model. 93
26 Nmsg vs. Errorave/Errormax. Left:TM Model. Right:UDG Model. 93
27 First Hit Distribution. Left: Original domain. Right: Parameter

domain. 94
28 Ndomain vs. Errorave. Left:TM model. Right:UDG model. 94
29 Nmsg vs. Errorave for two sources. 95

30 The Hilbert curve (source: Wikipedia). 101
31 (i) A torus cut open along two curves a, b. (ii) The flattened torus.

The line ` : y = kx is shown on the flattened torus (the top and
bottom edges are the cut b, the left and right edges are the cut a).
Since the top edge and bottom edge are actually the same, the line
will go through the torus as shown by the parallel lines. It will not
intersect itself and can be shown to be arbitrarily close to any point
on the torus. 104

32 Reflect twice to create a torus with four copies of a square. 106
33 Conformal mapping for a topological torus. 106
34 Multiply connected domain. 107
35 Tiling of H by copies of D and the curve γθ 108
36 The slit domain D . 109
37 Decomposing γθ into two curves; one in H and one in Ĥ 113
38 Exact harmonic 1-forms {ω4, ω5, ω6}. 117
39 Holomorphic 1-forms basis {τ1, τ2, τ3}. 117
40 Conformal mapping from the domain to the annulus, γ0 is mapped

to the outer circle, γ1 is mapped to the inner circle. 118
41 The Moore curve (source: Wikipedia). 121
42 Comparison of network coverage 122

xii

43 Comparison of average shortest distance from unvisited nodes to
visited nodes . 122

44 Conformal mapping for a network with holes. 123
45 A dense curve on the network in Figure 44. 124
46 Dense curve applications. 124

xiii

Acknowledgements

Most graduate students would agree that six years of graduate study is a phase of
life for which the Dickensian phrase "It was the best of times, it was the worst of
times..." seems pretty apt. However, I had the privilege of meeting many interesting
and remarkable people during my studies at Stony Brook, which rendered the num-
ber of "worst of" times negligible. I would like to take this opportunity to thank all
of them.

First, I would like to thank Professor Xianfeng (David) Gu for being what
I consider a perfect advisor. This dissertation would not be possible without his
constant support and his never-ending belief in my abilities. If not for him, I would
have not been exposed to the beautiful theory of Teichmüller maps, which also led
me to explore more about the connections between Teichmüller theory and billiards.
I would also like to thank Professor Jie Gao for providing me an opportunity to
work with her; she is one of the most efficient people I have worked with and is a
true professional, around whom everyone’s productivity increases exponentially. I
would also like to thank NSF for providing the grants to David and Jie from which
I was funded.

Many thanks to Professor Joseph S.B. Mitchell, Professor Michael A. Bender
and Professor Xiangmin (Jim) Jiao for always being present whenever I needed
their help. Their understanding of the subject matter is deep and firm, and graduate
students like me need examples of professors like them for guiding us in the early
stages of academia. Discussions with Joe and Michael have opened up further
avenues of research for me, and I would derive great satisfaction if I could help
them solve some of the many open problems we have discussed.

For the Teichmüller maps problem (chapter 2 of this thesis), I would like to
thank Professor Irwin Kra, Professor Frederick Gardiner, Professor Christopher

xiv

Bishop and Vamsi Pingali. The results obtained would not be possible were it not
for the numerous discussions I had with them.

I would also like to thank my co-authors Xiaomeng Ban, Wei Zeng, Rui Shi
and Ruirui Jiang, without whose help Chapters 3,4 and 5 of my thesis would not
exist.

I have collaborated on projects which have not been mentioned in this thesis.
Working with Džejla, Pablo and Michael on the sorting problem was a pleasure;
Džejla’s dedication to her work, Michael’s multifaceted skills, and Pablo’s preci-
sion made the entire experience very enjoyable. I would also like to thank Prof.
Svetlozar Rachev and Prof. Pradeep Dubey for making me familiar with the fields
of finance and game theory, respectively. I hope to work more with them in the
future.

Special thanks to all my officemates—Kan Huang, Yinghua Li, Irina Kostit-
syna and Shane D’Mello from the math tower, and Džejla Medjedovic, Roozbeh
Ebrahimi, Golnaz Ghasemiesfeh, Pablo Montes Arango and Akshay Patil from the
computer science building, for providing a lively atmosphere during work, and for
all the problem discussions. I hope we can collaborate on multiple projects in fu-
ture.

I would like to express my gratitude to all my friends from Stony Brook—
Vatsa, Abhinav, Biligbaatar, Bruno, Ranaji, Shishir, Kaya, Tamara, Maryam, Bu-
dassi, Lala, Garnet, Rao, Rajul, Vaibhav and Chakku. Their company made my stay
in Stony Brook pleasurable, making the six years seem shorter.

Last but not the least, I would like to thank my parents Lokesh and Manjula,
and my brother Aman for being selfless and always trusting. It would be impossible
to finish this work without their never-ending love and understanding.

xv

Chapter 1

Introduction

1.1 Conformal geometry

Conformal geometry is one of the oldest fields in mathematics, abound with ele-
gant theories developed by some of the greatest mathematicians. It started with the
study of conformal (angle-preserving) transformations of the complex plane, and
has developed into a field which lends and borrows ideas, to and from surprisingly
varying fields, such as differential geometry, complex analysis, algebraic topology
and dynamics.

In the last half a century, conformal geometry has found various applications
of practical significance. It is widely used in computer graphics, computational
geometry, sensor networks, optimization, and also in many theories in physics, such
as super string theory and the theory of modular spaces.

In pure mathematics, often it happens that proving existence of quantities
which optimize a certain functional suffices for achieving the immediate goals.
However, many such quantities are later found to be very important practically,
and one must then turn the existence proofs into constructive ones, and then devise
numerical methods for computing them. In the first half of this work, we will be
concerned with such a problem—computing Teichmüller maps.

Teichmüller theory is the study of quasiconformal maps, which are maps that
stretch angles but by a bounded amount. It is an active area of research, and while
some may think it an an obscure branch of complex analysis, its deep connections

1

to topology are evident from the fact that recently it has been used by Lipman Bers
to give a simpler proof of Thurston’s classification theorem for surface homeomor-
phisms.

Teichmüller maps, also called extremal quasiconformal maps are homeomor-
phisms between Riemann surfaces (Definition 2) which are the closest to being
conformal. While their existence was proven by O. Teichmüller in 1939 ([117]
and [118]), constructing them has been a long-standing open problem. The first
half of this work will address the issue of computing these maps.

In the second half of this work, we will describe some applications of confor-
mal geometry to the field of wireless sensor networks, thus reinforcing our claim
that conformal geometry has and will continue to play an important part in fields
of practical significance. We will encounter several problems such as analyzing
traffic from random routing, devising multiple source-destination paths in a sensor
network, and will play "billiards" on an appropriate table to obtain dense curves in
a sensor network.

We begin by outlining some basic concepts in conformal geometry which will
be used in all the subsequent chapters. All of the material in this chapter is classical
and can be found in books on complex analysis and Riemann surfaces, such as
[3, 29, 30, 35].

1.1.1 Holomorphic functions and conformal maps

Let U be an open set contained in the complex plane C. A function f : U → C is
said to be holomorphic at a point z0 ∈ U if the complex derivative

f
′
(z0) = lim

h→0

f(z0 + h)− f(z)

h

exists. Note that h is a complex number, and the limit is the same for all complex
sequences converging to 0. If f is holomorphic at every point z0 ∈ U , we say f is
holomorphic on U .

If one writes f = u + iv, where u and v are real functions, one finds that
holomorphic functions satisfy the Cauchy-Riemann equations

2

∂u

∂x
=
∂v

∂y
and

∂u

∂y
= −∂v

∂x
.

Conversely, if u and v have continuous first partial derivatives and satisfy the
Cauchy-Riemann equations, then f is holomorphic. Defining the operator

∂

∂z̄
=

∂

∂x
+ i

∂

∂y
,

one can summarize the above equations as ∂f
∂z̄

= 0. Examples of holomorphic
functions include all polynomials in z and the exponential function ez. [97] is an
excellent book for an introduction to properties of holomorphic functions.

If f is holomorphic and in addition the derivative is non-zero, f is called con-
formal. Conformal maps preserve the Euclidean angle between tangent vectors at a
point. Sizes, however, may be distorted by conformal maps.

Examples of conformal maps—Möbius transformations: Möbius transforma-
tions are rational functions defined on the complex plane C. The general form of a
Möbius transformation is

f(z) =
az + b

cz + d
.

Here a, b, c, d ∈ C and satisfy ad− bc 6= 0. If c 6= 0 we can extend this mapping to
the Riemann Sphere (or the extended complex plane, i.e., with a point of infinity)
Ĉ = C ∪ {∞} by specifying f(−d/c) = ∞ and f(∞) = a/c. In the case when
c = 0, we specify f(∞) =∞.

Here are the important properties of Möbius transformations:

1. Möbius transformations are all the bijective holomorphic mappings from Ĉ
to itself. This also implies that they are conformal.

2. Möbius transformations carry circles and lines (which can be regarded as
circles passing through∞) to circles and lines. Thus, given a circular domain,
any Möbius transformation will map it to another circular domain.

3

3. To every Möbius transformation one can associate a matrix

Mf =

[
a b

c d

]
.

Any other matrix which is a (nonzero) scalar multiple of this matrix repre-
sents the same Möbius transformation. Composition of two Möbius transfor-
mations is equivalent to matrix multiplication, i.e., Mf◦g = Mf ·Mg.

4. Given distinct z1, z2, z3 ∈ Ĉ and distinct w1, w2, w3 ∈ Ĉ, there is a unique
Möbius transformation f satisfying f(zi) = wi , i = 1, 2, 3. In other
words, if one considers the unique circles C1 and C2, defined by z1, z2, z3

and w1, w2, w3 respectively, then the transformation f maps the circle C1 to
C2 and is unique. Determining f explicitly is equivalent to finding determi-
nants of four 3× 3 matrices.

Let D denote the unit disk centered at the origin in C. The set of all conformal
maps from D to itself is a subgroup of the group of Möbius transformations, where
a, b, c, d ∈ R. It is well-known that any such map is of the form

f(z) = eiθ
z − z0

1− z̄0z
,

for some θ ∈ (0, 2π) and some z0 ∈ D.

Riemann Mapping: One of the most important results in complex analysis, the
Riemann mapping theorem, will be used extensively in this work.

Theorem 1 (Riemann Mapping). Let Ω be a simply connected domain in the com-
plex plane C, not equal to the entire complex plane. Then there exists a biholo-
morphic map f : D −→ Ω. Further, f is unique up to composition by a Möbius
transformation.

That f is biholomorphic implies it is conformal. One can therefore state as
a corollary that any two simply connected domains in C (not equal to C) can be
mapped conformally and bijectively to each other.

4

1.1.2 Riemann surfaces

The concept of a Riemann surface originated as a tool to deal with the problem
of multi-valued functions. Generally, analytic continuation of a starting function
element along different paths leads to different values (called branches) of the func-
tion. Riemann resolved the problem by extending the domain of the function to
many copies of the complex plane; in this way the function becomes analytic on
this extended covering surface.

Later it was observed that a Riemann surface is nothing but patches from the
complex plane glued together in a special way, so as to get a two-manifold with a
special structure. This is the widely accepted definition of a Riemann surface today,
which we make precise next.

Let M be a two dimensional real manifold. A complex chart on M is a
homeomorphism φ from an open subset A ⊂ R to an open subset B ⊂ C. Let
φ1 : A1 → B1 and φ2 : A2 → B2 be two complex charts. φ1 and φ2 are said to be
compatible if the map

φ2 ◦ φ1
−1 : φ1(A1 ∩ A2)→ φ2(A1 ∩ A2)

is biholomorphic.
A complex atlas on M is a system of charts which cover M , and in which any

two charts are compatible. Two complex atlases are regarded equivalent if all charts
in the union of the atlases are pairwise compatible.

Definition 2 (Riemann surface). A Riemann surface R is a pair (M,σ), where M
is a connected two-manifold and σ is an equivalence class of complex atlases on
M .

Examples of Riemann surface include the complex plane, domains in the com-
plex plane, the Riemann sphere Ĉ and all Riemannian manifolds (oriented two-
manifolds with a Riemannian metric).

5

1.2 Quasiconformal geometry

Given two Riemann surfaces M and N , a map f : M → N is conformal if its
restriction on any local conformal parameters is holomorphic. Geometrically, a
conformal map preserves angles, and transforms infinitesimal circles to infinitesi-
mal circles, as shown in Figure 1 frame (a),(b) and (c).

1.2.1 Quasiconformal maps

A generalization of conformal maps are quasiconformal maps, which are orienta-
tion preserving homeomorphisms between Riemann surfaces with bounded con-
formality distortion, in the sense that their first order approximations takes small
circles to small ellipses of bounded eccentricity, as shown in Fig.1 frame (d) and
(e). Mathematically, f : C → C is quasiconformal provided that it satisfies the
Beltrami equation:

fz̄ = µ(z)fz. (1)

for some complex-valued function µ satisfying ||µ||∞ < 1. µ is called the Beltrami
coefficient, and is a measure of the non-conformality of f . In particular, the map f is
conformal around a small neighborhood of pwhen µ(p) = 0. As shown in Figure 2,
the orientation of the ellipse is double the argument of µ. The dilatation of f is
defined as the ratio between the major axis and the minor axis of the infinitesimal
ellipse. The maximal dilatation of f is given either by:

kf = ||µf ||∞, (2)

or by

K(f) =
1 + ||µ||∞
1− ||µ||∞

. (3)

A homeomorphism with dilatation less than or equal to K is called a K-
quasiconformal mapping.

The inverse problem of obtaining a quasiconformal map from a Beltrami co-
efficient is addressed by the mapping theorem (see Theorem 8 in Chapter 1).

6

(a)Original surface (b) Conformal (c) Conformal (d) Qc mapping (e) Qc mapping
mapping mapping

Figure 1: Conformal and quasiconformal mappings from a human face surface to
the planar disk.

Figure 2: Beltrami coefficient.

1.3 Teichmüller theory

After defining a Riemann surface as in Definition 2, one can talk about confor-
mal and quasiconformal maps between Riemann surfaces. Thus diffeomorphisms
between closed, compact, genus g Riemann surfaces are quasiconformal homeo-
morphisms.

Two Riemann surfaces R and S are conformally equivalent if they can be
mapped biholomorphically onto each other. In general, given two surfaces of the
same topology, or even two diffeomorphic surfaces, there may not exist a biholo-
morphic map between them.

Let R be a Riemann surface, and consider all Riemann surfaces in the same
quasiconformal class as R, i.e., surfaces that can be mapped to R via a quasiconfor-
mal homeomorphism. If R is closed and compact, this is just the space of Riemann
surfaces with the same topology as R. Quotienting this space by the equivalence

7

relation of biholomorphism gives us the moduli space of R, M(R). For the sim-
plest of Riemann surfaces too,M(R) is a finite dimensional complex variety and
not a manifold.

1.3.1 Teichmüller space

The study of moduli spaces has attracted the interest of mathematicians for decades,
and this study can be made simpler by introducing a "cover" of the moduli space—
the Teichmüller space.

Consider a fixed Riemann surface R, and two quasiconformal maps f1 and f2

from R to Riemann surfaces R1 and R2, respectively. f1 and f2 will be considered
equivalent if there is a biholomorphism φ fromR1 toR2 such that φ◦f1 is homotopic
to f2 via a homotopy ht consisting of quasiconformal maps. The set of equivalence
classes so formed, denoted as T (R), is called the Teichmüller space of R. One can
thus view it as the set of equivalence classes of "marked" Riemann surfaces under
the biholomorphism relation, where a "marking" refers to a choice of generators
of the first fundamental group on a Riemann surface. The Teichmüller equivalence
class of f , denoted as [f], is the set of all quasiconformal maps equivalent to f .

1.3.2 Extremal quasiconformal maps

Given a quasiconformal map f between Riemann surfaces R and S, one can define
its dilatation Kz(f) at a point z (as in Section 1.2.1) by

Kz(f) =
1 + |µf (z)|
1− |µf (z)| ,

since this definition is independent of the chart z lies in. One then defines
K(f) to be the essential supremum of Kz(f) over all z ∈ R. K(f) is called the
maximal dilatation of f , and describes the deviation of f from being conformal.

Consider the Teichmüller equivalence class [f] of a given quasiconformal map
f . As a result of properties of quasiconformal maps, there exists f ∗ ∈ [f] such
that K(f ∗) is minimum among all quasiconformal maps in this class. This f ∗,
which in a sense is the "best" way to map R to S—every other quasiconformal
map must stretch angles at some point by more than K(f ∗), is called an extremal

8

quasiconformal map.

Teichmüller’s metric: Given two equivalence classes f and g (or equivalently,
two points in T (R)), the distance between them is defined as 1

2
logK∗, where K∗

is the minimal dilatation of a quasiconformal map in the same class as f ◦g−1. This
metric on the Teichmüller space is called Teichmüller’s metric.

If R is compact and of genus g ≥ 2, Teichmüller proved that T (R) is a com-
plete metric space of real dimension 6g − 6. It turns out that in the cases relevant
for applications, namely Riemann surfaces of finite analytic type, the extremal qua-
siconformal maps have a special characterization, which is closely related to the
space of holomorphic quadratic differentials on R. This space is also used to put a
complex structure on T (R) via the Bers embedding, which can be found in [35].

1.3.3 Quadratic differentials

(a)φ1 (b)R1 (c) φ2 (d) R2

Figure 3: Holomorphic quadratic differential bases on a pentagon.

Definition 3. [Holomorphic quadratic differential] A holomorphic quadratic dif-
ferential on a Riemann surface R is an assignment of a function φi(zi) on each
chart zi such that if zj is another local coordinate, then φi(zi) = φj(zj)(

dzj
dzi

)
2
.

We will denote the space of such differentials on R as A(R). By the Riemann-
Roch theorem, the complex dimension of this vector space for a genus g closed
compact surface with n punctures is 3g − 3 + n.

The Riemann surfaces of primary importance to us are the punctured Riemann
sphere and the unit disk. For the unit disk, there is only one chart z, and therefore

9

(a) (b) (c) (d)

Figure 4: Holomorphic quadratic differentials on a pentagon. (a) and (b) show
[0.2(φ′1)2 + 0.8(φ′2)2]dz2, (c) and (d) show [−0.2(φ′1)2 + 1.2(φ′2)2]dz2.

Figure 5: Holomorphic quadratic differential bases on a hexagon.

any function holomorphic in the interior of the disk can be viewed as a quadratic
differential (the transition condition is vacuous). For R = Ĉ \ {0, 1,∞, z1, ...zn−3}
(the Riemann sphere with n punctures),

φi(z) =
zk(zk − 1)

z(z − 1)(z − zk)
, 1 ≤ k ≤ n− 3, (4)

form a basis of (n− 3) dimensional complex vector space A(R).
Another vector space of importance to us is the space of polygon differentials.

Let P be a polygon in the plane, normalized so that 0, 1 and∞ are three vertices

10

Figure 6: Holomorphic quadratic differentials on a hexagon.

of P . Suppose φk : P → Dk is the conformal mapping, where Dk is a planar
rectangle, such that φk maps {0, 1,∞, zk} to the four corners of the rectangle Dk.
Then

{(φ′1)2dz2, (φ′2)2dz2, · · · , (φ′n−3)2dz2}

form the bases of A(R). As shown in Figure 3, the Riemann surface R is a pen-
tagon with vertices {z1, z2, z3, z4, z5}, φ1 maps R to planar rectangles R1, such
that {z1, z2, z3, z4} are mapped to four corners. The checkerboard texture on R1 is
pulled back to R and shown in (a). Similarly, φ2 maps {z1, z2, z3, z5} to a rectangle
R2. Then {(φ′1)2dz2, (φ′2)2dz2} form the bases of all holomorphic quadratic dif-
ferentials on the pentagon. Figure 4 shows the linear combinations of these bases.
Figures 5 and 6 show the bases and certain linear combinations of the bases on a
hexagon, respectively.

An excellent book for studying Quadratic differentials in further detail is [113].

11

1.3.4 Teichmüller maps and relation to holomorphic quadratic
differentials

When T (R) is finite dimensional, one can show that every equivalence class has an
extremal quasiconformal map f whose Beltrami coefficient has the form

µf = k
|φ|
φ
,

where φ is a holomorphic quadratic differential satisfying
∫ ∫

R
|φ| = 1, and

0 ≤ k < 1. Such Beltrami coefficient are said to be in Teichmüller form, and the
solutions to their Beltrami equations are called Teichmüller maps.

In the sequel we only deal with Riemann surfaces R for which T (R) is finite
dimensional. This includes all Riemann surfaces which are either compact or a
compact Riemann surface minus a finite set of points.

1.4 Problems considered

In this section we describe briefly and informally the problems that are considered
in this work. A formal description of the problems and proposed solutions consti-
tutes the remaining four chapters.

1.4.1 Computing Teichmüller maps

Extremal quasiconformal maps are objects which are important to both mathemati-
cians and computer scientists due to the following reasons:

1. The study of moduli space becomes easier by introducing the Teichmüller
space. Some of the long-standing open problems in conformal geometry and
geometric function theory can be rephrased in terms of extremal quasiconfor-
mal maps.

2. All surfaces (two-manifolds) we see in daily life can be regarded as Riemann
surfaces, since they are Riemannian manifolds. The fields of computer vision
and computer graphics aim to register such surfaces and provide a one-to-one
correspondence between them. The correspondence is usually required to

12

have some "nice" properties; for starters, it is usually demanded to be bijec-
tive (homeomorphism) and sometimes, conformal. When it is impossible for
the domain to be mapped to the target conformally, extremal quasiconformal
maps come into play. Further, they are very flexible, and allow for boundary
values to be prescribed.

Our general problem of interest is computing Teichmüller maps between
closed, compact Riemann surfaces. With the advancements in 3D technology, one
can get very accurate scans of surfaces in day-to-day life. These surfaces have a
natural metric on them—the induced metric from R3. Using this metric, they can
be regarded as Riemann surfaces.

Given a pair of surfaces, one can then either choose a marking on each surface
(see Section 1.3.1), or choose a starting quasiconformal homeomorphism from one
surface to the other. The objective is to compute the Teichmüller map which sends
the marking on the first surface to a marking homotopic to the marking on the
second surface, or a Teichmüller map homotopic to the starting quasiconformal
homeomorphism, respectively. Surfaces are represented as triangulated meshes,
and by "computing" the Teichmüller map we ask to get the image of a dense sample
of points on the domain under the Teichmüller map.

In this thesis, we will relax our Riemann surfaces to be simple planar domains.

Computing Teichmüller maps between planar domains Let P and Q be two
n-polygons1 in the plane. The Riemann mapping theorem (see Theorem 1) implies
that P can be mapped to Q conformally. This map, which is a-priori defined on the
interior of the polygon, can be extended continuously to the boundary. Generally,
this boundary extension will not map the vertices of one polygon to the vertices of
the other. If the vertices of the two polygons are ordered and one only considers
homeomorphisms which map the vertices of P to those of Q in an order preserving
way, in the generic case some angle distortion is inevitable.

Let {vi}ni=1 and {v′
i}ni=1 be an ordering of the vertices of P andQ, respectively.

1We allow for∞ to be a vertex of the polygon.

13

The problem we study can now be stated simply as find

arg min
f
||µf ||∞,

where f is a quasiconformal homeomorphism from P to Q such that f(vi) = v
′
i.

kf = ||µf ||∞ is also referred to as the dilatation of f .
From classical theory, f is known to be unique. While several characterizations

of f exist, there does not exist an explicit construction of the extremal map, even in
the classical continuous setting.

Consider the following problem next:
Given {z1, ...zn−3, zn−2 = 0, zn−1 = 1, zn = ∞}, zi ∈ C,

{w1, ...wn−3, wn−2 = 0, wn−1 = 1, wn = ∞}, wi ∈ C, and h : Ĉ → Ĉ such
that h(zi) = wi, find f : Ĉ→ Ĉ satisfying:

1. f is a quasiconformal homeomorphism of Ĉ to itself.

2. f is isotopic to h relative to the points {0, 1,∞, z1, ..zn−3}, i.e. f(zi) = wi.

3. µf , the Beltrami coefficient of f , satisfies ||µf ||∞ ≤ ||µg||∞ for all g satisfy-
ing (1) and (2) above.

Note that in the above problem we require h as input, as otherwise there is
no unique extremal map (uniqueness is guaranteed as long as one stays within the
homotopy class). The first problem (referred to henceforth as the polygon map-
ping problem) can be reduced to this problem (referred to as the punctured sphere
extremal map problem).

In Chapter 2 we address the issue of computing Teichmüller maps between
polygons or between punctured spheres. We present an iterative procedure in the
continuous setting first. We prove that this procedure converges to the unique ex-
tremal map. We then discretize our procedure and give all the necessary details. We
end with some discussions on the complexity and the approximation guarantee of
our method.

14

1.4.2 Exploration of path-space using sensor network geometry

Consider a sensor network distributed densely in a planar domain (possibly with
holes). A single path from source to destination may give limited throughput due to
bandwidth constraints, hop length, wireless interference or other transmission fail-
ures. If there is a lot of data to be delivered, it is natural to consider using multiple
disjoint paths such that different data segments can be simultaneously delivered to
the destination. With multi-path routing one obtains higher throughput and lower
delay. Such multi-path routing can also be used to enhance data security. For ex-
ample, sensor data can be encoded such that different codewords are sent along
different paths. Therefore a single compromised node stays on at most one path
and with its captured data segments it is unlikely to reconstruct the original data.
Multiple disjoint paths also provide one with a resilient routing scheme, which is
immune to node or link failures.

Both multi-path routing and resilient routing are challenging problems for a
general graph setting, especially if each node cannot afford to have the global
knowledge. In this work we use a geometric approach to allow efficient exploration
of the path space with very little overhead. We are motivated by the recent develop-
ment on regulating sensor network geometry using conformal mapping [101, 102],
in which any sensor network can be embedded to be circular (and any possible hole
is made circular as well), and greedy routing guarantees delivery. In this work we
explore the freedom of a Möbius transformation inherent to this conformal map-
ping. By applying a Möbius transformation we can get an alternative embedding
with the same property such that greedy routing generates a different path. We
present distributed algorithms using local information and limited global informa-
tion (the positions and sizes of the holes) to generate disjoint multi-paths for a given
source destination pair or switch to a different path ‘on the fly’ when transmission
failure is encountered. The overhead of applying a Möbius transformation simply
boils down to four parameters that could be carried by a packet or determined when
needed at the source. Demonstrated by simulation results, this method compares
favorably in terms of performance and cost metrics with centralized solutions of
using flow algorithms or random walk based decentralized solutions in generating
alternative paths.

15

1.4.3 Traffic analysis and source-location privacy under ran-
dom walks

Random walk on a graph is a Markov chain and thus is "memoryless" as the next
node to visit depends only on the current node and not on the sequence of events
that preceded it. With these properties, random walk and its many variations have
been used in network routing to "randomize" the traffic pattern and hide the location
of the data sources.

In this work we show a myth in common understanding of the memoryless
property of a random walk applied for protecting source location privacy in a wire-
less sensor network. In particular, if one monitors only the network boundary and
records the first boundary node hit by a random walk, this distribution can be re-
lated to the location of the source node. For the scenario of a single data source, a
very simple algorithm which says the simple integration along the network bound-
ary would reveal the location of the source. We also develop a generic algorithm
to reconstruct the source locations for various sources that have simple descriptions
(e.g., multiple source locations, sources on a line segment, sources in a disk). This
represents a new type of traffic analysis attack for invading sensor data location
privacy and essentially re-opens the problem for further examination.

1.4.4 Topology dependent space filling curves for sensor net-
works and applications

We consider a sensor network that densely covers a planar domain, possibly with
multiple holes in the network. In this work we develop algorithms to linearize
the network, i.e., covering the sensor network by a single path. By enforcing a
linear order on the sensor nodes one can carry serial logical definitions and serial
operations on both the sensor nodes and the sensor data. Some applications include
serial data fusion, motion planning of data mules and sensor node indexing.

In this work we propose an algorithm to construct a "space filling" curve for a
sensor network with holes. Mathematically, for a given multi-hole domain R, we
generate a path P that is provably aperiodic (i.e., any point is covered at most a
constant number of times) and dense (i.e., any point of R is arbitrarily close to P).

16

In a discrete setting as in a sensor network, the path visits the nodes with progressive
density, which can adapt to the budget of the path length. Given a higher budget, the
path covers the network with higher density. With a lower budget the path becomes
proportionally sparser. We show how this density-adaptive space filling curve can
be useful for applications such as serial data fusion, motion planning for data mules,
sensor node indexing, and double ruling type in-network data storage and retrieval.
We show by simulation results the superior performance of using our algorithm
versus standard space filling curves and random walks.

1.5 Layout and References

This thesis is organized as follows. In Chapter 2 we will present our proposed
solution to the problem of computing Teichmüller maps. Our main focus will be on
planar domains, namely polygons or punctured Riemann spheres, i.e., on attacking
Problem 1.4.1.

In Chapter 3 we will outline the work of [46], where we propose a method
to compute multiple disjoint paths in a sensor network lying in a domain with or
without holes. This constitutes our proposed solution to Problem 1.4.2. The author
of this thesis is a co-author of [46], and has permission from all the other co-authors
to include any part of the material in [46].

In Chapter 4 (based on [109]) we address the fallacy behind the belief that ran-
dom routing brings with itself source privacy. We use the concept of harmonic mea-
sure to analyze traffic from random routing, and show how an intelligent adversary
can detect the location of the source, or even multiple sources, pretty accurately.
The author of this thesis is a co-author of [109], and has permission from all the
other co-authors to include any part of the material in [109].

In Chapter 5 we show how to obtain "dense" curves in any sensor network
deployed in a domain with or without holes. Our technique first uses a conformal
map called the slit map to transform the domain into an appropriate space. This
space then become a "table" for billiards—the billiards curve is the proposed dense
curve. The author of this thesis is a co-author of [10], and has permission from all
the other co-authors to include any part of the material in [10].

17

Chapter 2

Computing Teichmüller Maps

2.1 Introduction

Surface registration refers to the process of finding an optimal one-to-one corre-
spondence between surfaces. It plays a fundamental role in many fields such as
computer vision, computer graphics and medical imaging. In computer vision
[133], it has been applied to deformable surface matching and tracking, shape anal-
ysis; in medical imaging [124], registration is always needed for statistical shape
analysis [132], morphometry and processing of signals on brain surfaces (e.g., de-
noising or filtering). In computer graphics, surface registration is needed for texture
mapping [70], which maps the surface onto planar domains, and pulls back the tex-
ture images onto the surface to improve the visualization. Developing an effective
algorithm for registration is therefore very important.

Surface registration has the following important requirements:

1. Existence: The mapping should exist with mild topological constraints.

2. Uniqueness: The mapping should be unique under specific boundary condi-
tions or topological constraints.

3. Bijective: The mapping needs to be bijective, and in general, differentiable.

4. Least Distortion: The mapping should preserve the surface geometric struc-
tures and reduce the distortions as much as possible.

18

The results of this work help propose a novel surface registration method based
on extremal quasiconformal mapping.

A conformal mapping between surfaces preserves angles. In general, given
two Riemann Surfaces, there does not exist a conformal map between them, i.e., all
mappings between them will induce angle distortions. If the angle distortions are
bounded, then the mapping is called quasiconformal. Conformal and quasiconfor-
mal mappings have been vastly applied in computer graphics.

In mathematics, the study of conformal equivalence class of surfaces (moduli
spaces) has a long and rich history with major contributions by Teichmüller [117],
[118], Ahlfors [2], Grötzch [39], Hamilton, Krushkal, Reich [94] and Strebel [113],
and is currently an active area of research. The welding procedure (arising from
considering the Riemann maps from the interior and exterior of a closed curve) was
used in [107] to get a numerical procedure for obtaining "fingerprints" of a closed
curve.

Among all the quasiconformal mappings from a marked surface to another, the
one with minimal angle distortion is called the extremal quasiconformal mapping.
In most of the cases, an extremal quasiconformal mapping exists and is unique, and
it can be represented as

conformal ◦ affine ◦ conformal.

While extremal maps have long been studied in the field of pure mathematics,
their explicit construction has not gained particular attention. Extremal quasicon-
formal maps between two planar disks with Dirichlet boundary conditions were
recently explored in [125] for purposes of surface parametrization. However, the
energy functional they minimize is non-convex and highly non-linear, and because
of this there is no guarantee on how far the solution is from the extremal one. Our
method on the other hand, uses clues from an explicit construction in the continu-
ous setting to obtain a discrete approximation. At the heart of our discrete algorithm
we solve a convex optimization program, which does not pose the aforementioned
difficulties.

This work is intended to be an introduction to this rich subject from a compu-
tational perspective, and we certainly feel that a lot of computationally challenging

19

open problems lie hidden.

2.2 Problem statements

In this section we first describe the extremal quasiconformal map problem between
planar domains. We then enlist some properties of the extremal map, and end with
different techniques on how to represent such maps.

Let P andQ be two n-polygons1 in the plane. A fundamental result in complex
analysis, the Riemann mapping theorem (see Theorem 1 in Chapter 1), states that
any simply connected domain can be mapped bijectively in an angle preserving
way (conformally) to the open unit disk. This implies that P can be mapped to Q
conformally. This map, which is a-priori defined on the interior of the polygon, can
be extended continuously to the boundary. Generally, this boundary extension will
not map the vertices of one polygon to the vertices of the other.

If the vertices of the two polygons are ordered and one only considers homeo-
morphisms which map the vertices of P to those of Q in an order-preserving way,
in the generic case some angle distortion is inevitable. The problem we consider is
to find the map in this family that minimizes the maximum angle distortion (over
all points in the base domain).

The quantification of angle distortion is best represented when we view the
homeomorphism as a homeomorphism f(z) between domains in the complex plane
C instead of R2, via a Beltrami coefficient. Intuitively, if one considers the unit
circle in the tangent space at a point, the differential of the map (which is a linear
transformation on this tangent space) maps this circle to an ellipse. The Beltrami
coefficient µf is related to the eccentricity of this ellipse. For details, please see
Section 1.1 in Chapter 1.

1We allow for∞ to be a vertex of the polygon.

20

2.2.1 Polygon mapping

Let {vi}ni=1 and {v′
i}ni=1 be an ordering of the vertices of P and Q, respectively. The

problem we study can now be stated as computing

arg min
f
||µf ||∞

where f is a quasiconformal homeomorphism from P to Q such that f(vi) = v
′
i.

kf = ||µf ||∞ is also referred to as the dilatation of f .
We will make precise what we mean by computing or representing such an f .

Different definitions can be given to handle different applications, and we explore
them in Section 2.2.5.

Since the polygons are conformally equivalent to the disk, each of the polygons
can be conformally mapped to the unit disk D. Assume that zi and wi are the
images (under a conformal map) of the vertices of P and Q, respectively. The
above problem then translates to:

Problem 4. [Polygon mapping problem] Given {z1, ...zn, w1, ...wn} ∈ ∂D, find
f : D→ D satisfying:

1. f is a quasiconformal homeomorphism of D to itself.

2. f(zi) = wi, i ∈ {1, ...n}

3. µf (the Beltrami coefficient of f) satisfies ||µf ||∞ ≤ ||µg||∞ for all g satisfy-
ing (1) and (2) above.

Such an f will be called an extremal map between the polygons P and Q.
From classical theory, f is known to be unique (see Section 2.2.4).

2.2.2 Punctured sphere mapping

There are several generalizations of Problem 4. We consider one in which the points
are placed anywhere in the plane. Let Ĉ denote the Riemann sphere (the complex
plane C union the point at infinity).

21

Problem 5. [Punctured sphere problem] Given {z1, ...zn−3, zn−2 = 0, zn−1 =

1, zn = ∞}, {w1, ...wn−3, wn−2 = 0, wn−1 = 1, wn = ∞}, and h : Ĉ → Ĉ
such that h(zi) = wi, find f : Ĉ→ Ĉ satisfying:

1. f is a quasiconformal homeomorphism of Ĉ to itself.

2. f is isotopic to h relative to the points {0, 1,∞, z1, ..zn−3}, i.e. f(zi) = wi.

3. µf , the Beltrami coefficient of f , satisfies ||µf ||∞ ≤ ||µg||∞ for all g satisfying
(1) and (2) above.

Note that in the above version we require h as input, as otherwise there is
no unique extremal map (uniqueness is guaranteed as long as one stays within the
homotopy class). See Section 2.2.4 for details. We will prove later (Section 2.3.1)
that the polygon mapping problem can be reduced to the punctured sphere problem.

2.2.3 Discrete polygon mapping

From a computational geometry viewpoint, one could define a completely discrete
analogue of the polygon mapping problem (Problem 4). Given two triangles T1 and
T2, there always exists an affine mapping σ : T1 → T2 . Such a map can be written
in the form σ(z) = az + bz̄, and the Beltrami coefficient of σ equals b/a.

Given a mapping from a triangulated polygon P to another polygon Q such
that the image of the triangulation of P is a triangulation of Q, its discrete Beltrami
differential can be defined piecewise on every triangle.

Problem 6. [Discrete polygon mapping]

• Input: An ordered list of vertices {vi, v′
i}ni=1 of two n-polygons P and Q, and

an initial triangulation T of a set ofm points {si}mi=1 contained in the interior
of P .

• Output: {f(sj)}mj=1, where f satisfies

1. f(vi) = v
′
i,

2. f(T) is a triangulation of Q with the same combinatorics as T ,

22

3. max
t∈T
|µf (t)| ≤ max

t∈T
|µg(t)| for any g satisfying (1) and (2) above (here

µf (t) is the Beltrami coefficient of the affine mapping between the tri-
angles t and f(t), and |.| denotes its magnitude),

if such an f exists.

When considering Problem 6, existence and uniqueness of f are non-trivial
concerns. Although we do not attack Problem 6, one can see that it is close in spirit
to the polygon mapping problem.

2.2.4 Teichmüller mapping

Let f be the extremal map for the polygon mapping problem. From the classical
theory of quasiconformal mappings ([3, 35, 117]), it is known that f is unique.
Moreover, f is of Teichmüller form. This means that f determines a pair of holo-
morphic quadratic differentials (see Section 1.3.3 in Chapter 1) φ and ψ on D.
φ(z)dz2 (resp. ψ(z)dz2) is real along ∂D \ {z1, ...zn} (resp. ∂D \ {w1, ...wn})
and has at most simple poles at the zis (resp. wis). The trajectories of φ and ψ parti-
tion the disk into finitely many horizontal stripsRj andR′

j . They are mapped by the
integrals Φ(z) =

∫ √
φ(z)dz and Ψ(z) =

∫ √
ψ(z)dz onto Euclidean horizontal

rectangles

Φ Ψ

f

f̃

R0 R1

Φ(R0) Ψ(R1)

Figure 7: Teichmüller map between two pentagons.

Φ(Rj) = {(x, y) ∈ R2 : 0 < x < aj, 0 < y < bj}

23

Ψ(R
′

j) = {(x, y) ∈ R2 : 0 < x < a
′

j, 0 < y < b
′

j}

and the extremal mapping f satisfies

Ψ ◦ f ◦ Φ−1(x+ iy) = Kx+ iy

where
K =

1 + ||µf ||∞
1− ||µf ||∞

This also means that

µf = k(
φ̄

|φ|), (5)

where k = K−1
K+1

. Figure 7 demonstrates a Teichmüller map between two pentagons.
A similar statement holds for the punctured sphere extremal map problem. We refer
reader to [35].

From now on we use the terms extremal quasiconformal map and Teichmüller
map interchangeably, as the Beltrami coefficients of the solutions to Problems 4 and
5 are of Teichmüller form (Equation 5).

2.2.5 Representing the Teichmüller map

There are two ways to to represent the solutions to Problems 4 and 5.

Computing the values of the function at a dense set of points: One could place
a setM of m points inside the base polygon P (resp. the base punctured sphere)
and compute f(z) for z ∈M, where f is the Teichmüller map to the target polygon
Q (resp. the target punctured sphere). Although the values of f at points inM do
not uniquely characterize f , this technique suffices for all the intended applications
as long as the setM can be generated to any desired resolution.

Representing the Beltrami coefficient of the extremal map: A basis for the
space of holomorphic quadratic differential on a polygon or on a punctured sphere
can be written down explicitly (see Section 1.3.3 in Chapter 1), e.g, for R = Ĉ \

24

{0, 1,∞, z1, ...zn−3} (the Riemann sphere with n punctures),

φi(z) =
zk(zk − 1)

z(z − 1)(z − zk)
k ∈ {1, 2, ...n− 3} (6)

form a basis of (n−3) dimensional complex vector space of holomorphic quadratic
differentials.

Let f be a solution to either Problem 4 or Problem 5. By Equation 5, µf =

k(φ̄
|φ|), where φ can now be written in terms of the given basis as φ =

∑n−3
i=1 λiφi.

Since µf uniquely characterizes f up to a Möbius transformation, the set of
parameters {k, λ1, · · · , λn−3} completely determines the extremal map. Therefore,
once a basis for the space of holomorphic quadratic differentials has been agreed
upon, these n− 2 parameters can be used for representing f .

Our method: We adopt the first method to represent an extremal map. We explain
how we generate points inside the polygon to ε accuracy in Section 2.5.1. Note
that although the second approach is a more compact way of representing f , for
applications one will need to compute f by solving the Beltrami equation for µf ,
and all known methods use a discretization of the domain (see Section 2.5.2 for
details).

2.3 Preliminaries

2.3.1 Relation between polygon mapping and punctured sphere
mapping

We claim that an algorithm for Problem 5 can be used to give a solution to Prob-
lem 4. We will start with the data for a polygon mapping problem and convert it to
a data for the punctured sphere problem.

Given polygons P and Q, and an ordering of their vertices vi and v′
i, let h0 be

any quasiconformal homeomorphism mapping P to Q, such that h0(vi) = v
′
i. Note

that the disk and the upper half plane H are conformally equivalent. By conformally
mapping P and Q to H (denote the maps by πP and πQ), we get a quasiconformal
self-homeomorphism hu of H, satisfying hu(zi) = wi, where zi and wi are images

25

(under πP and πQ) of vi and v′
i, respectively. Furthermore hu can be normalized to

fix 0, 1 and∞.
Let H denote the lower half plane, and define a quasiconformal self-

homeomorphism h` of H by h`(z) = hu(z̄). Now hu and h` agree on R, and can
be pieced together to get a quasiconformal self-homeomorphism h of Ĉ satisfying
h(zi) = wi. Note that h fixes 0, 1 and∞.

Theorem 7. Let f be the solution to Problem 5 when it is fed the input data
{zi, wi, h} as above. Then:

1. µf (z) = µf (z̄).

2. Let fu denote the restriction of f to H. Then (πQ)−1 ◦ fu ◦ πP is the solution
to Problem 4 with data P and Q.

Proof. We first prove that for all z ∈ C, f(z) = f(z̄). Define another homeomor-
phism g as g(z) = f(z̄). It is straightforward to check that g is a self homeomor-
phism of Ĉ and satisfies g(zi) = wi.

Now ||µf ||∞ = ||µg||∞. By uniqueness of the extremal quasiconformal map-
ping, f is unique, and so must satisfy f = g everywhere. Thus f(z) = f(z̄), which
implies µf (z) = µf (z̄).

To prove the second assertion, let f ∗ denote the solution to Problem 4 with
data P and Q. Using the above construction, we get a self-homeomorphism h∗ of
Ĉ which satisfies the same properties as h and f . Uniqueness of f now implies that
f = h∗.

From now on, we will focus mainly on solving Problem 5. Our construction
will need certain ingredients from the classical theory, which we outline next.

2.3.2 Ingredients of the proof

We start with a theorem which explains the dependence of a Beltrami coefficient to
the solution of its Beltrami equation.

26

Mapping Theorem [[35], Theorem 1, Page 10] Let µ(z) be a measurable
complex-valued function defined on a domain Ω for which ||µ||∞ = k < 1. Con-
sider the Beltrami equation,

fz̄(z) = µ(z)fz(z). (7)

Theorem 8. Equation 7 gives a one to one correspondence between the set of qua-
siconformal homeomorphisms of Ĉ that fix the points 0, 1 and ∞ and the set of
measurable complex-valued functions µ on Ĉ for which ||µ||∞ < 1. Furthermore,
the normalized solution fµ of Equation 7 depends holomorphically on µ and for
any r > 0 there exists δ > 0 and C(r) > 0 such that

|f tµ(z)− z − tV (z)| ≤ C(r)t2 for |z| < r and |t| < δ, (8)

where
V (z) = −z(z − 1)

π

∫ ∫

C

µ(ζ)dξdη

ζ(ζ − 1)(ζ − z)
, (9)

and ζ = ξ + iη.

Composition of Quasiconformal Maps Let µ, σ and τ be the Beltrami coeffi-
cients of quasiconformal maps fµ, fσ and f τ with f τ = fσ ◦ (fµ)−1. Then

τ =

(
σ − µ
1− µ̄σ

1

θ

)
◦ (fµ)−1, (10)

where p = ∂
∂z
fµ(z) and θ = p̄

p
. In particular, if fσ is the identity, that is, if

σ = 0, then

τ = −
(
µ
p

p̄

)
◦ (fµ)−1.

Equivalence relations on
Beltrami coefficients Let R = Ĉ \ {0, 1,∞, z1, · · · , zn−3} denote the n times
punctured sphere. Denote by B(R) the space of all Beltrami differentials on R, i.e.
all complex valued measurable functions on R.
Global equivalence

This relation is defined only on Beltrami differentials of norm less than 1, i.e.
those that belong to the unit ball

27

B1(R) = {µ ∈ B(R) : ||µ||∞ < 1}

Given two such differentials µ and υ, denote the solution to their respective
normalized2 Beltrami equations as fµ : R → R0 and fυ : R → R1. Both R0 and
R1 are punctured spheres.

Definition 9. [Global equivalence] The differentials µ and υ are called globally
equivalent (denoted as µ ∼g υ) if:

• fµ(zi) = fυ(zi) ∀i.

• The identity map from R0 to R1 is homotopic to fυ ◦ (fµ)−1 via a homotopy
consisting of quasiconformal homeomorphisms.

Thus, the punctured sphere extremal map problem can be restated as: Given
µ ∈ B1(R), find υ ∼g µ, such that ||υ||∞ is the least in this global equivalence
class.
Infinitesimal Equivalence

This relation is defined on all of B(R).

Definition 10. [Infinitesimal equivalence] Two Beltrami differentials µ and υ are
infinitesimally equivalent (written µ ∼i υ) if

∫

R

µφ =

∫

R

υφ

for all φ ∈ A(R), with ||φ||(:=
∫
R
|φ|) = 1.

Note that on any Riemann surface, the above pairing between a Beltrami differ-
ential and a quadratic differential gives a density, hence the integral is well defined.
In our case, we have an explicit basis for A(R) (see Equation 4 in Chapter 1) and
so this is equivalent to

∫

R

µφi =

∫

R

υφi ∀i ∈ {1, 2...n− 3}

2fixing the points 0,1 and∞. Hence the freedom of Möbius tranformation is accounted for.

28

This equivalence will play a key role in our algorithm. Infinitesimal equiva-
lence tells us when two Beltrami differentials are the same tangent direction in the
Teichmüller space.

Definition 11. [Infinitesimally extremal] A beltrami differential υ is called infinites-
imally extremal if ||υ||∞ ≤ ||µ||∞ for all µ ∼i υ.

Definition 12. [Trivial Beltrami differential] A beltrami differential υ is called triv-
ial if it is globally equivalent to 0.

Definition 13. [Infinitesimally trivial Beltrami differential] A beltrami differential
υ is called infinitesimally trivial if it is infinitesimally equivalent to 0.

The following lemma relates infinitesimally trivial Beltrami coeffcients to
globally trivial ones.

Lemma 14. [Variational lemma][[35], Theorem 6, Page 140] µ is an infinitesi-
mally trivial Beltrami differential if, and only if, there exists a curve σt of trivial
Beltrami differentials for which σt(z) = tµz +O(t2) uniformly in z.

Teichmüller contraction The principle of Teichmüller contraction states that
given a Beltrami coefficient µ, its distance to the globally extremal µ∗ is of the
same order as its distance to the infinitesimally extremal υ. For a full statement and
proof of the principle, see [35], Theorem 10, page 103.

We will restate the part of the principle relevant to us. Let k0 = ||µ∗||∞ be the
dilatation of the extremal Beltrami coefficient in the same global class as µ, and let
υ be the infinitesimally extremal Beltrami coefficient in the infinitesimal class of µ.
Fix 0 < k1 < 1. Then

||µ||∞ − k0

4
≤ 2

(1− k1)2
(||µ||∞ − ||υ||∞) ≤ 2

(1− k1)4
(||µ||∞ − k0). (11)

Hamilton-Krushkal, Reich-Strebel condition

Theorem 15. [Hamilton-Krushkal, Reich-Strebel necessary-and-sufficient condi-
tion for extremality] A quasiconformal map f has minimal dilatation in its Teich-
müller class if and only if its Beltrami coefficient µ is extremal in its infinitesimal
class.

29

2.4 Continuous construction

In this section we describe the basic idea behind our algorithm. We will focus on
the punctured sphere problem for now and later describe the analogous procedure
for the polygon mapping problem.

2.4.1 Summary of the construction

Our continuous construction Ac can be described as follows. At step i, Given a
starting map hi : R→ S where R and S are n times punctured Riemann sphere, let
υi denote the infinitesimally extremal Beltrami coefficient in the infinitesimal class
of µi := µhi . Observe that µi − υi is infinitesimally trivial (see Definition 13).

1. Use Section 2.4.2 to construct a quasiconformal self-homeomorphism gi of
R such that

µg = t(µi − υi) +O(t2),

for some t > 0 and such that µg is trivial (see Definition 12).

2. Using Section 2.4.3, form hi+1 = hi ◦ (gi)
−1 such that hi+1 has smaller

dilatation than hi.

3. Reiterate with hi+1 as the starting map.

We now expand on Steps 1 and 2 above.

2.4.2 Constructing self homeomorphisms gi
Given a starting map hi, we show how to construct the self homeomorphism gi of
R used in our construction. We will reduce notation by suppressing the i, keeping
in mind that this is the ith step of the procedure. Thus µh and µg will denote
the Beltrami differentials of hi and gi, respectively. Also, υh is the infinitesimally
extremal Beltrami differential in the infinitesimal class of µh.

Let α = µh − υh. Now α is infinitesimally trivial, and essentially we want to
construct the curve of trivial Beltrami differentials µg(t) = tα + O(t2), described
in Lemma 14.

30

Let t > 0 be small enough and let f tα be the normalized solution to the Bel-
trami equation for tα. We observe next that f tα moves the points zi only by a
distance O(t2).

Theorem 16. Let r = max
1≤i≤n−3

|zi|, and let f tα be as above. Then there exists a

constant Cr depending only on r, and a constant δ > 0 such that for all i,

|f tα(zi)− zi| ≤ Crt
2, ∀t < δ. (12)

Proof. By Equation 4 in Chapter 1,

φi(ζ) =
zk(zk − 1)

ζ(ζ − 1)(ζ − zk)

for 1 ≤ i ≤ n − 3 is a basis for the space of quadratic differentials on R. Let
ζ = ξ + iη. Infinitesimal equivalence of tα now implies that

∫ ∫

C

tαdξdη

ζ(ζ − 1)(ζ − zk)
= 0 (13)

Now we use the mapping theorem (Theorem 8 in Section 2.3.2). In the notation of
the theorem, V (zi) = 0 by Equation 13. Existence of δ, Cr and Equation 12 now
follow from the statement of the mapping theorem.

Denote f tα(zi) by z′
i. We will first construct another homeomorphism fv from

Ĉ to itself which satisfies fv(z
′
i) = zi. We then define the required self homeomor-

phism gi = fv ◦ f tα. The construction of fv will be via a vector field method.

Construction of fv by vector field method: Let {D1, · · · , Dn−3} denote disjoint
open disks centered at zi. Choosing the radius of each disk to be d/2, where d =

max
1≤i,j≤n−3

|zi− zj| ensures disjointness. We will fix these disks once and for all, and

assume they are of equal radius r.

A single disk: We first construct a self homeomorphism f iv of Ĉ which is the
identity outside Di, and maps z′

i to zi. Now zi ∈ R, and by a rotation we can

31

assume that z′
i is real and greater than zi. Consider the vector field

X(z) = p(z)(z
′

i − zi)
∂

∂x
,

where p(z) is a C∞ function identically zero outsideDi, and identically 1 inside the
disk of radius r/2 around zi, denoted as D′

i. Let γ be the one parameter family of
diffeomorphisms associated with this vector field. We denote the time parameter by
s and note that the diffeomorphism γ1 sends z′

i to zi. We denote this diffeomorphism
γ at s = 1 by f iv.

Now define fv = fn−3
v ◦ fn−2

v · · · ◦ f 1
v .

Getting gi by composing f tα and fv: Define gi = fv ◦ f tα. In the following
proof, we will simplify notation: Vt will denote the vector field diffeomorphism,
and st will denote the solution to the Beltrami equation for tα.

Theorem 17. Let µg be the Beltrami coefficient of gi. Then

1. µg is globally equivalent to 0.

2. µg = tα +O(t2)

Proof. First, note that since f tα(zi) = z
′
i and fv(z

′
i) = zi, gi is a self quasiconformal

homeomorphism of Ĉ which fixes zi point-wise. Hence µg is globally equivalent to
0.

In what follows, we wish to prove that µg(t) = tα + O(t2) i.e., we want to
prove that µ′

g(t = 0) = α. Recall that gt(z, z̄) = (Vt ◦ st)(t, z, z̄) where V (w, w̄) is
the diffeomorphism induced by the vector field method and st is the solution of the
Beltrami equation ∂z̄(st) = tα∂z(st).

The Beltrami coefficient of gt is µg(z) which is

µgt(z, z̄) =
∂z̄(Vt ◦ st)
∂z(Vt ◦ st)

=
∂zVt∂z̄st + ∂z̄Vt∂z̄ s̄t
∂zVt∂zst + ∂z̄Vt∂z s̄t

32

To find µ′
g(0) we note that

∂z̄(s0) = 0

∂z̄(s̄0) = ∂z(s0) = 1

∂z̄(V0) = 0

∂z̄(V̄0) = ∂z(V0) = 1

Hence

µ
′

g(0) = (∂z̄(st))
′
(t = 0) + (∂z̄(Vt))

′
(t = 0)

= µ
′

st(0) + (∂z̄(Vt))
′
(t = 0)

= α + (∂z̄(Vt))
′
(t = 0)

We claim that (∂z̄(Vt))
′
(t = 0) = 0. Indeed, Vt(z, z̄) = γ(s = 1, t, z, z̄) where

dγ

ds
= X(γ, t)

where the vector field X(z, z̄, t) =
∑

i ρ(z, z̄)(z̃i(t) − zi). Recall that (z̃i)
′
(t =

0) = 0, z̃i(0) = zi, γ(z, z̄, t = 0) = z, and X(z, z̄, t = 0) = 0. Hence,

d(∂z̄γ)
′
(t = 0)

ds
= (∂z̄X(γ, γ̄, t))

′
(t = 0)

= (∂zX∂z̄γ + ∂z̄X∂z̄γ̄)
′
(0)

= (∂z̄X)
′
(0)

=
∑

i

(ρz̄(γ, γ̄)(z̃i(t)− zi))
′
(0)

= 0

This means that (∂z̄γ)
′
(t = 0) at s = 1 (which is what we want) is the same as

(∂z̄γ)
′
(t = 0) at s = 0 wherein it is 0.

Note that we did not prescribe how to choose the t involved in the above con-
struction, which needs to be chosen while implementing the algorithm. We will
discuss this in Section 2.4.4.

33

2.4.3 The reduction lemma

Define hi+1 = hi ◦ (gi)
−1. The next lemma guarantees that if t was chosen appro-

priately, then hi+1 has smaller dilatation than hi .
The proof is similar to that of the Hamilton-Krushkal, Reich-Strebel necessary-

and-sufficient condition for extremality (see Theorem 15 in Section 2.3), published
in a sequence of papers. We refer the reader to [35] for a combined proof of this
celebrated result, which is the one we adapt.

For the purposes of this lemma and to reduce notation, let h be any quasicon-
formal homeomorphism between R and S which is a valid input to Problem 5, and
µh denote its Beltrami differential.

Lemma 18. Let υh be the infinitesimally extremal Beltrami differential in the in-
finitesimal class of µh. Let µg(t) be a curve of Beltrami differentials with the fol-
lowing properties:

1. µg(t) is trivial.

2. µg(t) = t(µh − υh) +O(t2).

Then ∃ δ > 0 such that ∀t < δ, the map ht = h ◦ (gt)
−1 has smaller dilatation

than h

Proof. Note that by the formula for composition of quasiconformal maps (Equa-
tion 10 in Section 2.3),

µht(gt(z)) =
µh − µg(t)
1− µg(t)µh

1

θt
, (14)

where θt = pt/pt and pt = ∂gt
∂z

. Equation 14 implies

|µht ◦ gt|2 =
|µh|2 − 2Re(µhµg(t)) + |µg(t)|2
1− 2Re(µhµg(t)) + |µg(t)µh|2

(15)

Using the fact that

||µg(t)− t(µh − υh)||∞ = O(t2)

and differentiating Equation 15 with respect to t once and putting t = 0, we get that

34

|µht ◦ gt| = |µh| − t
1− |µh|2
|µh|

Re(|µh|2 − µhυh) +O(t2) (16)

Let k0 = ||υh||∞ < k = ||µh||∞. Define

S1 = {z ∈ R : |µh(z)| ≤ (k + k0)/2}

and
S2 = {z ∈ R : (k + k0)/2 < |µh(z)| ≤ k}

Clearly, S1 ∪ S2 = R. Since in S1 the starting value of this curve at t = 0 is
|µ|, which is certainly less than k, 14 implies there exists δ1 > 0 and c1 > 0 such
that for 0 < t < δ1,

|µht ◦ gt(z)| ≤ k − c1t for z ∈ S1 (17)

For z in S2 the coefficient of t in 16 is bounded below by

1− k2

k

[(
k + k0

2

)2

− k0k

]
=

1− k2

k

(
k − k0

2

)2

> 0

Therefore, 16 implies there exists δ2 > 0 and c2 > 0 such that for 0 < t < δ2,

|µht ◦ gt(z)| ≤ k − c2t for z ∈ S2 (18)

Putting together 17 and 18, we find that ||µht ||∞ < k for sufficiently small
t > 0, proving the lemma.

To the best of the author’s knowledge, the above lemma is the first result that
describes, given a starting map, how to get a map with a smaller dilatation.

2.4.4 Choosing a good value of t

In what follows, we denote hN (the quasiconformal map after N iterations of the
algorithm) by h for convenience. In fact, we drop the subscriptN altogether. Recall

35

from Section 2.4.1 that from µh, we construct a new quadratic differential νh that is
infinitesimally extremal.

We then construct g, which is a self homeomorphism of the base punctured
sphere R. There exists a constant C such that the Beltrami coefficient µg of g
satisfies |µg − αt| ≤ Ct2 when t < δ.

Notice that C and δ could potentially depend on N .
Our aim will be to find an “optimal" t that is small enough so that everything

in Theorem 18 happens, yet is large enough so that the dilatation reduces a lot in
the N + 1 step, i.e., for hN+1 = h ◦ g−1

t .
In what follows, k < 1 is the dilatation of h and k0 = ||ν||∞ ≤ k.

Theorem 19. [Decrease in one step] The supremum of |µhN+1
◦ gt(z)| over all z is

less than k − d ,where

d = min

(
k − k0

4
,
(k − k0)2t(1− k2)

8

)
, (19)

whenever

t ≤ min(1, δ,
ε

4
,

√
ε√

2C
,
(k − k0)2(1− k2)

1− k2 + C
), (20)

where ε ≤ min(1
2
, k−k0

8
).

Proof. : As in the proof of Lemma 18, let S1 be the region where |µh| ≤ k+k0
2

and
S2 be such that k+k0

2
≤ |µh| < k. For now, assume t < δ.

On S1, if t < min(1, δ, ε
4
,
√
ε√

2C
),

|µhN+1
◦ gt(z)| =

|µh − µg|
|1− µhµ̄g|

≤ |µh − t(µh − νh)|
|1− µhµ̄g|

+
Ct2

|1− µhµ̄g|

≤ 1

1− ε

(
k + k0

2
+ 2t+ Ct2

)

≤ 1

1− ε

(
k + k0

2
+ ε

)

where the last inequality follows by requiring |µhµ̄g| < 2t+Ct2 < ε, which is true

36

for the assumed value of t. Notice that |muh|, |νh| are less than 1.
Therefore, on S1,

k − |µhN+1|| ≥
k − k0 − 2ε(1 + k)

2(1− ε)

>
k − k0

4

if ε ≤ k−k0
8

.
On S2,

|µh − µg|
|1− µhµ̄g|

≤ |µh − t(µh − νh)|
|1− µhµ̄g|

+
Ct2

|1− µhµ̄g|

≤ |µh − t(µh − νh)|
|1− µht(µ̄h − ν̄h)| − |µh|Ct2

+
Ct2

|1− µhµ̄g|

Now,

k − |µhN+1
| ≥ |µhN | − |µhN+1

|

≥ |µh|(|1− µht(µ̄h − ν̄h)| − |µh|Ct2)− |µh − t(µh − νh)|
|1− µht(µ̄h − ν̄h)| − |µh|Ct2

− Ct2

1− ε

≥ A−B
|1− µht(µ̄h − ν̄h)| − |µh|Ct2

− Ct2

1− ε (21)

where A = |µh|(|1 − µht(µ̄h − ν̄h)|) and B = |µh|Ct2 − |µh − t(µh − νh)|.
Using

A−B =
A2 −B2

A+B

A+B < 4

A2 −B2 = (1− |µh|2)(2<(tµh(µ̄h − ν̄h))− t2|µh|2|µh − νh|2(1 + |µh|2))

≥ (1− |µh|2)(t(k − k0)2 − t2|µh|2|µh − νh|2(1 + |µh|2)) (22)

37

Using Equation 22 in Equation 21 and the fact that ε < 1/2 we see that

k − |µhN+1
| ≥ 1− k2

4
(t(k − k0)2 − 8t2)− 2Ct2

≥ (k − k0)2t(1− k2)

8
(23)

with the last equation holding if t < (k−k0)2(1−k2)
1−k2+C

, concluding the proof.

Thus, a good value of t can be obtained from Equation 20.

2.4.5 Convergence of the continuous construction

In this section we will prove that the sequence of homeomorphisms hi obtained
in the above procedure Ac (see Section 2.4.1) converges to the unique extremal
quasiconformal map.

Theorem 20. The above procedureAc converges to the unique extremal map which
is the solution to the punctured sphere problem, i.e. the sequence of q.c.h. hi

converge in the sup-norm to the extremal map.

Proof. Let µi denote the Beltrami differential of hi. Note that all the hi fix 0, 1 and
∞. The sequence xn = ||µn||∞ is monotonically decreasing by Lemma 18. It is
bounded below trivially by 0, and above by ||µ0||∞, the dilatation of the starting
map h0. Thus, x = limn→∞ xn exists. The sequence xn is cauchy, implying that
the maps hn ◦ (hm)−1 converge in the sup-norm to the identity map (this argument
can be found in [3]). This implies that the sequence hi converges in the sup-norm
to a q.c.h. f . Let µx be the Beltrami differential of f , and x be its L∞ norm.

Let f ∗ be the solution to the punctured sphere problem (Problem 5), and denote
by µ∗ its Beltrami coefficient. We claim that ||µ∗||∞ = limn→∞ xn.

Assume the contrary; i.e., that x does not equal ||µ∗||∞. Let υx be the infinitesi-
mally extremal Beltrami coefficient in the same class as µx. If υx 6= µx, then α 6= 0,
and the self-homeomorphism g obtained in the next step of the construction is not
the identity map. Composing f by g−1 would give another map whose dilatation is
strictly less than x (by Lemma 18), which contradicts the definition of x.

38

Thus we get that υx = µx, and by the Hamilton-Krushkal, Reich-Strebel con-
dition (see Theorem 15), µx is the Beltrami coefficient of the unique extremal map.
Thus f = f ∗.

We will discuss the convergence issue more in Section 2.6.

2.4.6 Polygon mapping problem

We showed in Theorem 7 how to reduce the polygon mapping problem to the punc-
tured sphere problem. However, the above procedure can also be directly imple-
mented on polygons, once we have the appropriate basis for the space of quadratic
differentials. We give a simple well-known description of this basis first.

Holomorphic quadratic differentials on polygons Suppose P is a polygon with
vertices {z0, z1, · · · , zn−1}. For each 2 < k < n, there exists a unique conformal
map φk, which maps P to a rectangle R = [0, 1]× [0, h], and maps z0, z1, z2, zk to
the four vertices of R. Then {(φ′k)2dz2} form the basis of holomorphic quadratic
differentials on P .

All the above proofs can be modified analogously for the polygon mapping
problem with minimal effort.

2.5 Discretization

In this section we will describe how to discretize the continuous construction pre-
sented in Section 2.4. We start with the well-known methods of conformally map-
ping a polygon to the disk.

Conformal Mapping There are two places where we need to compute a confor-
mal map. One is when we map the polygons to the disk, and another when we want
to compute the basis of polygon differentials by mapping the disk to a rectangle
(described in Section 2.4.6).

One can use the Schwarz-Christoffel mapping directly for the rectangle, and
the linear time conformal mapping algorithm in [14] or the discrete Ricci flow
method [47], which work for both scenarios.

39

2.5.1 Finding points inside polygon

Assume ε > 0 is given (this will be the "resolution" of the mesh). Here we show
how to generate a set of points P = {p1, · · · , pm} inside the polygon, and a trian-
gulation T of P such that

1. The maximum edge length of an edge in the triangulation T is less than ε.

2. There exists a constant θ such that all angles in the triangulation T are greater
than θ.

We use the Delaunay refinement algorithm [98] for generating P . We start
by adding points as in [98], where points are added at either the circumcenter of
triangles, or at mid-points of edges. This ensures that the angles obtained in the
Delaunay triangulation at every step are bounded below by θ. The claimed value of
θ is around 20 ([98]).

Let us assume we have a triangulation which satisfies the angle bound condi-
tion, but not the edge length condition. Consider an edge e of length greater than
ε, and the two triangles which share this edge. We again use the same criteria for
adding points as in [98]. The new point is either added to the circumcenter of one
of these triangles, or it is the mid-point of e. In both cases, the new edge length is
decreased. We continue this procedure until we have a set ofm points which satisfy
the edge length condition.

2.5.2 Solving the Beltrami equation

Once the triangulation of the set of points inside the polygons has been computed,
we show how to solve the Beltrami equation for a piecewise constant Beltrami
differential.

Various methods have been proposed in literature ([23], [32]) for solving the
Beltrami equation. In our experiments we solve it using the auxiliary metric method
with Ricci flow [131]. The key idea is to define an auxiliary metric ds2 = |dz +

µdz̄|2, and then compute the Ricci flow under the auxiliary metric. This solves the
Beltrami equation efficiently. Another method is based on Beltrami holomorphic
flow [74].

40

Notice that solving a Beltrami equation is similar to solving an elliptic PDE.
From error analysis of discrete solutions of elliptic PDEs, it is known that if all
edges are length O(ε), then there exist methods such that the error is O(ε2).

2.5.3 The starting map between polygons

Here we show how to get a candidate starting map between the polygons involved
in Problem 4. Let P and Q be the two polygons, with vertices {zk} and {wk} re-
spectively. Compute a conformal map φ0 which maps P to a rectangleR0, such that
{z0, z1, z2, z3} are mapped to the corners of the rectangle. Construct φ1 similarly
for the polygon Q. Choose the center c0 of the rectangle R0 and connect c0 to all
the images φ0(zk). This induces a triangulation of the rectangle R0. Triangulate
the rectangle R1 in the same way. Then map the corresponding triangles, using the
defined ordering on the vertices, using linear maps. Pulling back these linear maps
by φ0 and φ1 provides us with the starting map between the polygons P and Q.

2.5.4 The minimization program

An important step in our algorithm is to obtain the infinitesimally extremal Beltrami
coefficient in a given class. In other words, we want to discretize the program:

Program 21.

min ||ν||∞

subject to :

∫

R

νφi =

∫

R

µφi ∀i ∈ {1, 2...n− 3}

Here φi is a basis element of the space of holomorphic quadratic differentials
on the punctured sphere R (Equation 4), µ is the Beltrami coefficient of the starting
map h, and ν is any measurable Beltrami differential on R.

Program 21 is an L∞ norm minimization subject to certain constraints. In
general, norm is a convex function and so it is reasonable that methods from convex
optimization should work.

We will solve the above program when ν ranges over all piecewise constant
Beltrami differentials, where by a piece we mean a triangle of the triangulation

41

obtained in Section 2.5.1.

Discretization of Program 21 Let {νi}Ti=1, where T is the number of triangles
in the triangulation, be a basis of piecewise constant Beltrami differentials. We
write ν =

∑
λiνi, and represent ν as a vector λ = (λ1, λ2, · · · , λT). Each λk is a

complex number; separating into real and imaginary parts we get λk = λrk + iλik.
Let the analogous vector for µ be λ′ . For any φ ∈ A(R), we have

∫
µφ =

∫
(
T∑

i=1

λ
′

iνi)φ =
T∑

i=1

(λ
′

i

∫
νiφ). (24)

Equation 24 demands a discretization of the pairing between a quadratic dif-
ferential and a piecewise constant Beltrami differential.

Discretization of the pairing between φ and νi: There is an analytic formula for
the holomorphic quadratic differential φ (Equation 4) and so φ can be computed
on the vertices of the triangulation. Let [vi, vj, vk] represent a triangle with three
vertices vi, vj and vk. Define

∫

R

µφ ≈
∑

[vi,vj ,vk]∈R

1

3
(φ(vi) + φ(vj) + φ(vk))µijkAijk ,

where Aijk the area of the face. However, since φ has simple poles at the boundary,
one needs to be careful on triangles around a pole. We will assume that for the pur-
poses of discretization of the integral, a pole is a vertex of the triangulation. Notice
that the integral of φ over the triangles neighboring a pole can be computed explic-
itly, as we can fix these triangles once and for all. Multiplying by the corresponding
value of ν on each triangle gives the integral over these triangles exactly. One could
also use a Gaussian quadrature rule over triangles specialized for functions with a
single pole, or use a high-degree quadrature rule within these triangles.

Denote by
∑

R µφ the discrete integral as defined above. We then have

Lemma 22. Let ε be the maximum length of an edge in the triangulation. Then

|
∫

R

µφ−
∑

R

µφ| = O(ε)

42

for all piecewise constant µ and all quadratic differentials φ.

Proof. The derivatives of φ in the complement of the triangles around a pole are
bounded, and by standard Taylor series analysis, the error in this area is O(ε). The
integral is evaluated exactly over the triangles having the pole as a vertex, and so
the error is 0 there.

Now we describe how to discretize Program 21.
Let d = n − 3 denote the dimension of A(R). Define a d × T matrix A

as ((aij)) =
∫
νjφi, where φi is a basis element. Then the above constraint can

be written as Aλ = b, where b = Aλ
′ . Using the above separation into real and

imaginary parts for the matrix A = Ar + iAi and b = br + ibi, this is equivalent to

Definition 23 (Constraints).

Arλr − Aiλi = br (25)

Aiλr + Arλi = bi (26)

We introduce another variable z ∈ R+, making the number of variables (2T +

1). Let the vector of unknowns be β = (λr1, · · · , λrT , λi1, · · · , λiT , z).

Program 24.

min z

subject to : Constraints 25 and 26,

and λ2
rj + λ2

ij − z ≤ 0 ∀1 ≤ j ≤ T

The last constraint uses the fact that the solution ν∗ to Program 21 is of Te-
ichmüller form, and thus |ν∗(z)| is independent of z. The absolute value of the
piecewise constant Beltrami differential ν on triangle j is exactly λ2

rj + λ2
ij , and the

last constraint implies that in the program, z is minimized in parallel with λ2
rj +λ2

ij .
We note that in practice, λ2

rj + λ2
ij will not be exactly the same as λ2

rk + λ2
ik for

different triangles i and j.

43

Quadratically constrained quadratic program with positive semi-definite ma-
trices: The objective function of Program 24 is linear in the unknown variables.
Constraints 25 and 26 are also linear. The last set of constraints can be written as

βtPjβ − z ≤ 0, (27)

where Pj is a (2T + 1) matrix of zeroes with its (j, j)th and (T + j, T + j)th entry
being 1. Pj has all but two eigenvalues as 0, and two eigenvalues are 1, implying
that it is positive semi-definite.

Although solving a quadratically constrained quadratic program in general is
NP-Hard, positive semi-definite instances of it are polynomial time solvable. Nu-
merical solvers for these programs have been vastly studied, and efficient imple-
mentations exist. We refer the reader to Page 42 of [87] for a complete reference.

2.5.5 Discretization of the vector field method

The idea of deforming a map via a vector field has been used in the computer
graphics and vision community before and is fairly straightforward. We do not
elaborate more and refer the reader to the LDDMM method available online [1].

2.5.6 Choosing t during the algorithm

Theorem 19 gave a "good" value of t which ensures a substantial decrease in di-
latation at every step. However, in order to use Equation 20 in the statement of
Theorem 19, we need to find C such that |µg−αt| ≤ Ct2 when t < δ. Assume that
δ = 1/2. We choose a small ` > 0 and discretize the interval [0, 1/2] by placing the
points pi = i`, 0 ≤ i ≤ 1/2`.

Given pi, form the Beltrami differential αi = pi(µh − νh), and obtain the self
homeomorphism gi using Section 2.4.2. Compute the Beltrami coefficient of gi,
denoted as µig. Then compute |µig − pi(µh − νh)| and take the maximum over all
points in the interior of the punctured sphere/polygon. Denote this maximum by xi.

Define C = max
0≤i≤1/2`

xi/p
2
i . Now use Equation 20 to choose a value of t, and

use it in steps 1 and 2 of the method summarized in Section 2.4.1.

44

2.6 Future work: complexity and approximation

Recall that in Theorem 20 in Section 2.4.5, we showed that the continuous con-
struction converges to the unique extremal map. We now discuss the number of
iterations, and the convergence of the discretized approach.

For the discrete implementation, at every iteration we solve a positive semi-
definite quadratically constrained quadratic program. To the best of our knowledge,
most of the methods are a variant of Karmarkar’s algorithm [53], which runs in
polynomial time. Thus, if our number of iterations were polynomial, our entire
method would be polynomial time.

In both problems , the decrease of the dilatation at every iteration is governed
by Theorem 19. If the C involved in Theorem 19 can be bounded independent of
N—the current iteration (a scenario we feel is very likely), then using the principle
of Teichmüller contraction, the decrease in one step can be seen to be O(k − k∗)4,
where k is the dilatation of hi (the map at iteration i), and k∗ is the dilatation of the
extremal map.

If the discrete procedure converges, it terminates by producing a piecewise
constant Beltrami coefficient which is a "fixed point" of Program 24. The space
of piecewise constant Beltrami coefficients is dense in the space of all measurable
(L∞) Beltrami differentials, and one can expect that this fixed point is close to the
Beltrami differential of the extremal map. Exact error analysis will then help us
figure out the constant involved (if any) in our algorithm.

45

Chapter 3

Exploring Path Space Using Sensor
Network Geometry

3.1 Introduction

Scalable routing on a sensor network has been an active research topic for the past
ten years. The major challenge comes from the fundamental resource limitation of
sensor nodes, in terms of storage size and communication bandwidth. The solution
that requires a node to acquire the entire network topology does not scale well. In
the past few years there have been a number of innovative proposals on scalable
routing schemes where each node only keeps local information and a routing path
can be discovered by iteratively applying greedy routing decisions. Such work has
mainly focused on issues such as guaranteed delivery and low path stretch, and has
been relatively successful in that regard.

In this work we move on and focus on more advanced communication primi-
tives, in particular, routing schemes that exploit the existence of multiple paths in a
sensor network. Between a source and a destination there can be multiple different
paths. A single path from source to destination may give limited throughput due to
bandwidth constraints, hop length, wireless interference or other transmission fail-
ures. If there is a lot of data to be delivered, it is natural to consider using multiple
disjoint paths1 such that different data segments can be simultaneously delivered to

1In this work we focus on node disjoint paths as wireless communication is by nature broadcast.

46

the destination. With multipath routing one obtains higher throughput and lower de-
lay. Such multipath routing can also be used to enhance data security. For example,
sensor data can be encoded such that different codewords are sent along different
paths. Therefore a single compromised node stays on at most one path and with its
captured data segments it is unlikely to reconstruct the original data.

Exploring the space of routing paths between two nodes is also helpful for fast
recovery from link or node failures. In a large wireless network, there are network
changes of different scales. At the node level, wireless links have high link quality
variation. Nodes may fail. Interference with other nodes could also be unpre-
dictable, e.g., as in the hidden terminal problem. At a large scale, communication
links in a region can be temporarily disabled by jamming attacks, either imposed
by malicious parties [128], or as a result of co-located multiple benign wireless
networks interfering with each other. For example, experiments have shown that
802.15.4 sensor network interferes with existing WiFi network resulting in 54%
packet loss [81]. In case of a transmission failure, it would be good to quickly dis-
cover an alternative path to the destination. A single isolated link failure can pos-
sibly be bypassed by local random detouring attempts. A large scale node or link
failure, in particular one with strong spatial correlations and a geometric pattern,
would need some non-trivial exploration of the path space – by making possibly
a big detour from the planned path. See Figure 8 for an example. To allow such
robustness and quick response to network conditions, routing schemes that find a
single path are not enough and it is important to understand the ‘space’ of paths and
efficiently navigate within this space.

Finding multiple routings in a network is a challenging problem for a large
scale network, in particular if a node does not have the entire topology. On the
theoretical side, one can run a flow algorithm to find a maximum number of node
disjoint paths between source and destination. But the flow algorithm requires cen-
tralized knowledge and also has a high computational cost of O(n3) if the network
size is n. Even if one can afford to pre-compute multiple routing paths, storing these
paths at the sensor nodes will be, storage-wise, too overwhelming, which makes the
centralized algorithms scale poorly with the size of the network. In literatures on

Two paths that share the same intermediate nodes may experience inter-path interference where the
common node is the bottleneck.

47

γ3

γ1

γ2s

t

t′

Figure 1. Consider some part of the network experiencing heavy
inference (or jamming attacks), shown as the dark colored circles.
Links inside these ‘failure’ regions have much higher loss rate. A
route that hits a small failure region might be able to get around by
performing some random walks in the neighborhood, as in the case
of path γ1. A route that hits a large failure region has difficulty
recovering from it – as simple random walk is likely to wander
around for a long time, as shown by the path γ2. In this case a path
that makes big de-tours would perform much better, as shown by
the path γ3.

to quickly discover an alternative path to the destination. A single
isolated link failure can possibly be bypassed by local random de-
touring attempts. A large scale node or link failure, in particular
one with strong spatial correlations and a geometric pattern, would
need some non-trivial exploration of the path space – by making
possibly a big de-tour from the planned path. See Figure 1 for an
example. To allow such robustness and quick response to network
conditions, routing schemes that find a single path are not enough
and it is important to understand the ‘space’ of paths and efficiently
navigate within this space.

Finding multiple routings in a network is a challenging problem
for a large scale network, in particular if a node does not have the
entire topology. On the theoretical side, one can run a flow algo-
rithm to find a maximum number of node disjoint paths between
source and destination. But the flow algorithm requires centralized
knowledge and also has a high computational cost of O(n3) if the
network size is n. Even if one can afford to pre-compute multi-
ple routing paths, storing these paths at the sensor nodes will be,
storage-wise, too overwhelming, which makes the centralized al-
gorithms scale poorly with the size of the network. In literatures
on mobile ad hoc networks, there have been a number of heuristic
proposals to find multiple paths but the theoretical understanding
of these schemes rarely exists. If one wants to use multiple paths
to recover from en-route node or link failure, there is not much
understanding (globally) on where the second path is going to be.

Our Approach. In this paper we approach the problem from a
geometric angle. Since nodes are typically densely deployed in a
geometric domain, the network topology is not like a general graph.
We explore different embeddings of the network such that by con-
trolling a constant number of parameters we can quickly switch
between different network embeddings such that greedy routing in
such embeddings generates different routing paths. Thus one can
easily come up with multiple node disjoint paths, or even switch to
an alternative path in the middle of a routing process, by sponta-
neously changing to a different embedding.

We are motivated by our recent development of conformal map-
ping of a sensor network [44, 45]. We first compute an embedding
of a sensor network such that all the holes are deformed to be circu-
lar. We name this embedding to be a circular domain. On a circu-
lar domain, greedy routing that always delivers the message to the
node closer to the destination using the new coordinates guarantees
message delivery. However, the embedding as a circular domain is
not unique, and all such embeddings differ by Möbius transforma-
tions, which maps a complex plane to itself and can be represented

by

f(z) =
az + b
cz + d

,

where z is a complex variable and a, b, c, d are four complex num-
bers satisfying ad−bc = 1. A Möbius transformation always maps
circles to circles. Thus applying a Möbius transformation on a cir-
cular domain essentially ‘re-arranges’ the positions and the sizes of
the circular holes and the new embedding remains to be a circular
domain. Therefore there are actually infinitely many circular do-
mains on each of which greedy routing guarantees delivery. The
previous work as in [44, 45] only considered one such circular do-
main by fixing one hole to be at the center of the network. In this
paper we investigate all possible circular domain embeddings and
the applications to multipath routing in a sensor network.

The main difficulty for efficient and scalable routing in a sen-
sor network is due to lack of the global knowledge. Embedding
the network as a circular domain makes that difficulty go away in
some sense. Our routing scheme avoids the requirement for the
global network topology, while the geometric information we need
— the locations and shapes of the holes and the boundary – are typ-
ically of a constant size and usually remain stable. With a circular
domain one can predict where the path is (subject to the assumption
that the sensor nodes are sufficient dense so that the continuous path
is a good approximation of the discrete path by greedy routing) and
by applying a Möbius transformation we know what a path we will
get and how different it is from the previous one. Since a Möbius
transformation only uses four parameters, we can attach the cur-
rent Möbius transformation at the packet such that by applying the
Möbius transformation a node can compute its coordinates under
the transformation on the spot to generate the greedy path under
the new embedding. In case of a link failure on the current greedy
path, a node can generate a new Möbius transformation and switch
to a different path immediately. The new Möbius transformation is
simply attached to the packet.

Using a circular domain representation gives us the following
advantages that will be proved in the continuous case and evaluated
by simulations for the discrete network setting:

• By using different Möbius transformations one generates mul-
tiple paths to the destination that are disjoint except at the
source and the destination. We present algorithms for net-
works with or without holes.

• In case of node failures, we present an algorithm that identi-
fies a different path to the destination. The second path takes
a big circular arc type of de-tour that is likely to jump over
correlated failure regions.

In the following we first quickly review prior work on multi-
path routing. We present the theoretical proofs of our method and
present simulation results afterwards.

2. RELATED WORK
In this section we quickly review prior work on three relevant

topics: multipath routing both in theory and in practice; some of
them focus on how to recover from node or link failures; and pre-
vious greedy routing schemes.

Multipath routing. Multipath routing has been investigated ex-
tensively in computer networking in order to improve routing ro-
bustness [4, 9], achieve better load balancing [11, 50, 54], reduce
network congestion, reduce end-to-end delay [57] and increase net-
work throughput [18,52]. Between a pair of source and destination,

Figure 8: Consider some part of the network experiencing heavy inference (or jam-
ming attacks), shown as the dark colored circles. Links inside these ‘failure’ regions
have much higher loss rate. A route that hits a small failure region might be able to
get around by performing some random walks in the neighborhood, as in the case
of path γ1. A route that hits a large failure region has difficulty recovering from it –
as simple random walk is likely to wander around for a long time, as shown by the
path γ2. In this case a path that makes big de-tours would perform much better, as
shown by the path γ3.

mobile ad hoc networks, there have been a number of heuristic proposals to find
multiple paths but the theoretical understanding of these schemes rarely exists. If
one wants to use multiple paths to recover from en-route node or link failure, there
is not much understanding (globally) on where the second path is going to be.

Our Approach In this work we approach the problem from a geometric angle.
Since nodes are typically densely deployed in a geometric domain, the network
topology is not like a general graph. We explore different embeddings of the net-
work such that by controlling a constant number of parameters we can quickly
switch between different network embeddings such that greedy routing in such em-
beddings generates different routing paths. Thus one can easily come up with mul-
tiple node disjoint paths, or even switch to an alternative path in the middle of a
routing process, by spontaneously changing to a different embedding.

We are motivated by the recent development of conformal mapping of a sensor
network [101, 102]. We first compute an embedding of a sensor network such that
all the holes are deformed to be circular. We name this embedding to be a circular
domain. On a circular domain, greedy routing that always delivers the message to

48

the node closer to the destination using the new coordinates guarantees message
delivery. However, the embedding as a circular domain is not unique, and all such
embeddings differ by Möbius transformations, which maps a complex plane to itself
and can be represented by

f(z) =
az + b

cz + d
,

where z is a complex variable and a, b, c, d are four complex numbers satisfying
ad − bc = 1 (see Section 1.1.1 in Chapter 1 for details). A Möbius transformation
always maps circles to circles. Thus applying a Möbius transformation on a circular
domain essentially ‘re-arranges’ the positions and the sizes of the circular holes and
the new embedding remains to be a circular domain. Therefore there are actually
infinitely many circular domains on each of which greedy routing guarantees deliv-
ery. The previous work as in [101, 102] only considered one such circular domain
by fixing one hole to be at the center of the network. In this work we investigate all
possible circular domain embeddings and the applications to multipath routing in a
sensor network.

The main difficulty for efficient and scalable routing in a sensor network is
due to lack of the global knowledge. Embedding the network as a circular domain
makes that difficulty go away in some sense. Our routing scheme avoids the require-
ment for the global network topology, while the geometric information we need —
the locations and shapes of the holes and the boundary – are typically of a constant
size and usually remain stable. With a circular domain one can predict where the
path is (subject to the assumption that the sensor nodes are sufficient dense so that
the continuous path is a good approximation of the discrete path by greedy routing)
and by applying a Möbius transformation we know the kind of path we will get
and how different it is from the previous one. Since a Möbius transformation only
uses four parameters, we can attach the parameters of the current Möbius transfor-
mation at the packet such that by applying the Möbius transformation a node can
compute its coordinates under the transformation on the spot to generate the greedy
path under the new embedding. In case of a link failure on the current greedy path,
a node can generate a new Möbius transformation and switch to a different path
immediately. The new Möbius transformation is simply attached to the packet.

Using a circular domain representation gives us the following advantages that

49

will be proved in the continuous case and evaluated by simulations for the discrete
network setting:

• By using different Möbius transformations one generates multiple paths to
the destination that are disjoint except at the source and the destination. We
present algorithms for networks with or without holes.

• In case of node failures, we present an algorithm that identifies a different
path to the destination. The second path takes a big circular arc type of de-
tour that is likely to jump over correlated failure regions.

In the following we first review prior work on multipath routing. We present
the theoretical proofs of our method and present simulation results afterwards.

3.2 Related work

In this section we briefly review prior work on three relevant topics: multipath
routing both in theory and in practice; some of them focus on how to recover from
node or link failures; and previous greedy routing schemes.

Multipath routing. Multipath routing has been investigated extensively in com-
puter networking in order to improve routing robustness [11, 24], achieve better
load balancing [26, 114, 130], reduce network congestion, reduce end-to-end de-
lay [136] and increase network throughput [44, 123]. Between a pair of source and
destination, multipath routing looks for multiple paths that are sufficiently different
from each other such that node or link failures will not destroy all of them. One
formulation is to look for k node disjoint or edge disjoint paths, which can be com-
puted by flow algorithm [22]. But this is a centralized algorithm and would require
the knowledge of the entire network [43]. Distributed algorithms only exist for spe-
cial case of k = 2. In [90] two colored trees were constructed for routing such that
the paths in the two trees are link or node disjoint. Relaxation of the node/edge
disjointness of the multiple paths leads to the approach of braided multipath [33] in
which the multiple paths are only partially disjoint.

In a mobile ad hoc network, multipath routing has also been developed to en-
hance the performance of on-demand routing protocols such as AODV [5,18,60,76,

50

93] or DSR [71,82,105] as the network topology undergoes constant changes. Prior
work in this direction uses extensive message exchange or flooding to discover alter-
native paths to bypass a broken link. A major problem of these schemes is that they
suffer from high recovery delay from node or link failures, which severely affects
the performance of end-to-end QoS measurements in the transport or application
layer.

Fast recovery from failures. Recently there have been a number of interesting
works that study the problem of fast recovery from link or node failures, even for
a centralized situation. When a link or node fails, the goal is to quickly discover
an alternative path with nearly no delay, such that the current traffic is not inter-
rupted. For the intra-domain routing protocols on the Internet, the recent IP fast
re-routing (IPFRR) schemes (Loop-free alternate (LFA) [8], O2 [95,96,104], DIV-
R [92], MARA [84] and protection routing [59]) aim to ensure fast re-covergence
when node failures are detected. In general this family of work would like to find
an alternative next hop when the intended next hop is not reachable. Depending
on the detailed implementations, the design often suffers from one or more of the
following problems: having possible transient loops, the requirement for a lower
bound on node degree, computational intractability (e.g., verifying whether a graph
has a protection routing or not turns out to be NP-hard [59]).

Our work is motivated by routing with multiple metrics as introduced in the
path splicing idea [80], which is proposed for increasing routing reliability on the
Internet. Given a weighted graph, one perturbs the weights of the edges and com-
putes a shortest path tree on each node. These multiple shortest path trees are used
in combination to generate a routing path in case of in-transit link failures. Traffic
in the network can freely switch between different shortest path trees, which results
in a large number of routing paths (these paths are the braided multi-paths). The
overhead of switching between different trees is done by just changing a few bits
in the packet header. This supports fast recovery from link or node failure and en-
sures low end-to-end delay. However, this is mainly for inter-domain routing on
the Internet. The computation of the multiple shortest path trees is too costly for a
large scale sensor network. For sensor network setting we need to have a low cost
method to generate multiple metrics with great flexibility and path diversity.

51

Greedy routing. Our technique uses greedy routing on different network embed-
dings, or different metric spaces. Each of the embeddings has the property that all
the holes are circular – thus delivering the message towards the neighbor closest
to the destination can always get to the destination2 [101]. In the past few years
various greedy routing schemes have been proposed by using a proper embedding
of the graphs [6,28,38,57,64,86,91,101,102,134]. Most of these works only focus
on finding a single route to the destination [6, 28, 38, 57, 64, 86, 91, 101, 102]. In
this work, we are dealing with a more sophisticated situation–multipath routing in
a vulnerable sensor network. Zeng et al. [134] considered embedding the sensor
network in the hyperbolic covering space such that a network is mapped to multiple
copies glued to each other properly; greedy routing to the image of the destination
in different copies will lead to homotopy different paths (i.e., these paths get around
the network holes in different ways). In some sense this is also a type of multipath
routing except that the multiple paths are required to be homotopy different and are
not necessarily node disjoint. For the same homotopy type only one path is gener-
ated by the greedy algorithm. In our work, even for the same path homotopy type
we want to get multiple node disjoint paths. We also handle dynamically appear-
ing ‘holes’ or link failure regions, while the previous work in [134] assumes all the
holes are given and the embedding is computed with respect to that.

For greedy routing using virtual coordinates, typically a location service is
available to translate node ID to the virtual coordinates. We assume the same set-
ting.

3.3 Algorithms

Our routing algorithm tries to find various embeddings, or mappings from the orig-
inal sensor network to a circle domain, in which all holes are of a circular shape
and greedy routing can guarantee delivery. Such mappings are conformal (angle
preserving) and computed by Ricci flow. Then Möbius transformations could help
us to find more embeddings, or controllable multiple metrics.

We first review the previous work [101] of deforming a sensor network shape

2This is subject to a small caveat that in certain cases routing on an ‘edge’ might be needed.

52

to make all boundaries circular in section 3.3.1. Then we describe Möbius transfor-
mations applied on such a circular domain. The algorithms for generating multiple
node disjoint paths and for loop-free fast recovery from node failure are presented
in section 3.3.2 and section 3.3.3 respectively.

3.3.1 Embedding into circular domains with Ricci flow

Conformal Mapping. In the continuous setting for Riemannian surfaces, let
(S1, g1) and (S2, g2) be two surfaces with Riemannian metrics g1, g2. A mapping
φ : S1 → S2 is called a conformal mapping, if the intersection angle of any two
curves is preserved.

A planar domain D of connectivity m is called a circular domain, if all its
m boundaries are circles. It is known from conformal geometry that any genus
zero multiply connected planar domain can be mapped to a circular domain by
conformal mappings. Such a mapping is not unique: all such mappings differ by
Möbius transformations [25, 89].

To compute the conformal mapping from a surface to a circular domain, one
can use Ricci flow as introduced in [48,101]. In the case of sensor network setting,
we will use the discrete version, which represents a domain by a discrete triangu-
lation. We first give some references on how to obtain such a triangulation from a
sensor network setting and then move on to the algorithm description of the discrete
Ricci flow.

Sensor Network Triangulation. To apply discrete Ricci flow we require a tri-
angulation of a planar domain. There have been quite a number of prior results
on extracting a triangulation from the sensor network communication graph. We
quickly go through such results. Karp et al. [54], Bose et al. [16], Gao et al. [34],
and Li et al. [66] proposed distributed, localized methods to extract a planar graph
from a unit disk graph. Such a planar graph can be considered as a triangulation
of the planar domain where non-triangular faces are considered as network holes.
Sarkar et al. [101] extended the algorithm in [34] for the case of a quasi-unit disk
graph and also showed that sufficiently big holes are indeed captured as real holes
in the triangulation. Funke et al. [31] worked on the case when node locations are
not available and proposed a triangulation method for a quasi-unit disk graph.

53

For a general case when no unit disk graph or quasi-unit disk graph assump-
tions are available, the algorithms in Cross Link Detection Protocol proposed by
Kim et al. [55, 56] produce a planar graph. Zhang et al. [135] proposed to use
matching to eliminate crossing edges and produce a planar graph. This algorithm
also does not require node locations.

In fact, to run Ricci flow algorithm and find the circular domain embedding,
one does not require the triangulation to be a subgraph of the communication graph.
The triangulation can be a virtual graph of the underlying domain as long as the
sensor nodes jointly maintain it. In other words, each wireless node takes in charge
of a group of virtual vertices of the triangulation and carries out the computation
for these virtual nodes. The position of a wireless node can be made identical
to any node it is in charge. This idea of ‘virtualization’ allows the method to be
extended to a general setting when the wireless node is relatively powerful and the
distribution is sparse (as a natural consequence since fewer nodes can sufficiently
monitor the domain). Therefore the triangulation can be any proper triangulation
of the underlying geometric domain, for example by standard meshing techniques
such as Delaunay refinement methods [98, 108]. In the following discussion we
assume that a proper triangulation is obtained and we focus on the embedding of
the network from now on.

Discrete Ricci Flow. In the following we explain Ricci flow in the discrete setting
for a triangulation of a domain with m holes. The triangulation is denoted by Σ

with vertex set V , edge set E and face set F .
In the discrete setting we define a Riemannian metric by using the edge lengths

on Σ:
l : E → R+,

such that for a triangle face fijk with vertices vi, vj, vk, the edge lengths satisfy the
triangle inequality:

lij + ljk > lki, ∀i, j, k.

The lengths of the edges of the triangulation determine the corner angles of the
triangles. For a triangle fijk with edge lengths {lij, ljk, lki}, and the angles opposite
to these edges {θijk , θjki , θkij } respectively, we have the following equations by cosine

54

i

j k

φij

φjk

φkiγi

γj

γk

θi

θj θk

ljk

lki
lij

Figure 9: The circle packing metric.

law:
l2ij = l2jk + l2ki − 2ljklki cos θijk . (28)

Now we can define the discrete Gaussian curvature at a vertex vi as the angle deficit:

Ki =

{
2π −∑fijk∈F θ

jk
i , vi is an interior vertex;

π −∑fijk∈F θ
jk
i , vi is at boundary.

(29)

where θjki represents the corner angle at vertex vi in the triangle fijk. In other words,
the curvature at a vertex v is the difference of 2π or π and the total corner angles at
v, for an interior vertex or a vertex on a hole boundary respectively. The curvature is
0 when it is locally flat (for interior vertices) or locally a straight line (for boundary
vertices).

Ricci flow uses the circle packing metric in the discrete case, proposed by
[111, 119], to approximate the conformal deformation of metrics. See Figure 9.
Each vertex vi has a circle with radius γi. On each edge eij , φij is defined as
the intersection angle of the two circles at vi and vj . The pair of vertex radii and
intersection angles at the edges on a mesh Σ, (Γ,Φ), is called a circle packing
metric of Σ. Two circle packing metrics (Γ1,Φ1) and (Γ2,Φ2) on Σ are conformal
equivalent, if Φ1 ≡ Φ2. Therefore, a conformal deformation of a circle packing
metric only modifies the vertex radii γi’s and maintains the intersection angles φij’s
to be constant.

For a given mesh, the circle packing metric (Γ,Φ) and the edge lengths can be

55

converted to each other by cosine law as below:

l2ij = γ2
i + γ2

j + 2γiγj cosφij. (30)

Thus, given a circle packing metric, we can calculate the edge lengths of the trian-
gulation Σ and then the embedding in the plane realizing the given curvatures.

Let ui = log γi for each vertex. The discrete Ricci flow is defined as the
following differential equation:

dui(t)

dt
= (K̄i −Ki), (31)

where Ki is the current curvature at vertex i and K̄i is the target curvature at i.
Define an energy function

f(u) =

∫ u

u0

n∑

i=1

(K̄i −Ki)dui, (32)

as the Ricci energy, where u0 is an arbitrary initial metric. It has been proved by
Chow and Luo [20] that the discrete Ricci flow will converge to a unique minimum
of the Ricci energy. The convergence rate of the discrete Ricci flow using Equation
31 is shown to be exponentially fast, i.e.,

|K̄i −Ki(t)| < c1e
−c2t, (33)

where c1, c2 are two positive constants.
The Ricci flow algorithm is naturally an iterative algorithm with all vertices

adjusting local metrics and local curvatures. All the radii at the vertices are initial-
ized to be 1/2. That is, the circles at adjacent vertices of Σ are kept to be tangent
to each other. We set the target curvature to be 0 at all interior vertices. That is, the
network should be embedded to be flat in the domain. We set the target curvature
at a boundary vertex to be −2π/k, if the boundary of the hole has a total number
of k vertices. That is, the boundary circle should be perfectly circular. We apply
the Ricci flow algorithm by changing the circle packing metric, ui, by δ(K̄i −Ki),
where δ is a constant parameter as the step size. The algorithm stops when the

56

current curvature is within an error bound of ε from the target curvature.
Since the curvature error decreases exponentially fast, the number of steps in

the Ricci flow algorithm is in O(log(1/ε)
δ

), where δ is the step size in the Ricci flow
algorithm. The total number of messages is thus in O(n log(1/ε)

δ
), if the algorithm is

running on a network of n vertices.
In the sequel, Möbius transformations will be the main tool we use. Please see

1.1.1 in Chapter 1 for details.

3.3.2 Multipath Routing

In this section we describe how to generate multiple paths from a given source node
s to a given target node t. We will give different embeddings of the domain in
such a way that the route used by greedy routing in one embedding is likely to be
different from the one used by greedy routing in any other embedding, and these
routes are ‘well spaced’, a notion we will make precise soon. The algorithm we
will present generates paths that are provable to be disjoint in the continuous case.
In the discrete setting, we evaluate the performance by simulations.

We first present the algorithm for a network without holes. Then we discuss
how to find disjoint paths in a network with holes.

3.3.2.1 Network Without Holes

Without loss of generality we can assume that the outer boundary is a circle, and that
the coordinates of source s are (−d/2, 0) while those of destination t are (d/2, 0),
so that the line segment joining s to t is horizontal and of length d. This can easily
be achieved by a rotation and translation. We denote the domain by D.

Consider a continuous domain D we can easily generate many disjoint paths
by essentially applying a different Möbius transformation each time. The greedy
path under a Möbius transformation turns out to be a circular arc connecting s and
t in the original domain D. See Figure 10. In the discrete case when the domain
D is represented by a triangulation, the routing paths are found by using greedy
routing in different embeddings, after proper Möbius transformations. We remark
that potentially one can design greedy routing to follow any curve, i.e., as in the
idea of routing along a curve [83]. But in general routing on a curve does not have

57

Since the curvature error decreases exponentially fast, the num-
ber of steps in the Ricci flow algorithm is in O(log(1/ε)δ), where δ
is the step size in the Ricci flow algorithm. The total number of
messages is thus in O(n log(1/ε)

δ), if the algorithm is running on a
network of n vertices.

3.2 Möbius Transformations
Möbius transformations are rational functions defined on the com-

plex plane C. The general form of a Möbius transformation is

f(z) =
az + b
cz + d

.

Here a, b, c, d ∈ C and satisfy ad − bc #= 0. If c #= 0 we can ex-
tend this mapping to the Riemann Sphere (or the extended complex
plane, i.e., with a point of infinity) Ĉ = C ∪ {∞} by specifying
f(−d/c) = ∞ and f(∞) = a/c. In the case when c = 0, we
specify f(∞) = ∞.

Here are the important properties of Möbius transformations:

1. Möbius transformations are all the bijective holomorphic (dif-
ferentiable in the complex sense) mappings from Ĉ to it-
self. This also implies that they are conformal, or angle-
preserving.

2. Möbius transformations carry circles and lines (which can
be regarded as circles passing through ∞, point of infinity) to
circles and lines. Thus, giving a circular domain, any Möbius
transformation will map it to another circular domain.

3. To every Möbius transformation one can associate a matrix

Mf =

[
a b
c d

]
.

Any other matrix which is a (nonzero) scalar multiple of this
matrix represents the same Möbius transformation. Compo-
sition of two Möbius transformations is equivalent to matrix
multiplication, i.e., Mf◦g = Mf ·Mg .

4. Given distinct z1, z2, z3 ∈ Ĉ and distinct w1, w2, w3 ∈ Ĉ,
there is a unique Möbius transformation f satisfying f(zi) =
wi , i = 1, 2, 3. In other words, as there are unique cir-
cles C1 and C2, defined by z1, z2, z3 and w1, w2, w3 respec-
tively, the transformation f maps the circle C1 to C2 and
is unique. Determining f explicitly is equivalent to finding
determinants of four 3× 3 matrices.

It should be noted that there is a natural way to identify the real
plane R2 with the complex plane C, so for our purposes we can
assume that nodes are in the complex plane.

3.3 Multipath Routing
In this section we describe how to generate multiple paths from

a given source node s to a given target node t. We will give dif-
ferent embeddings of the domain in such a way that the route used
by greedy routing in one embedding is likely to be different from
the one used by greedy routing in any other embedding, and these
routes are ‘well spaced’, a notion we will make precise soon. The
algorithm we will present generates paths that are provable to be
disjoint in the continuous case. In the discrete setting, we evaluate
the performance by simulations.

We first present the algorithm for a network without holes. Then
we discuss how to find disjoint paths in a network with holes.

−1 = fj(s)

1 = fj(t)

0

0

f−1
j+1([−1, 1])

f−1
j ([−1, 1])

fj fj+1−d
2

d
2 −1 = fj+1(s)

0
1 = fj+1(t)

Figure 3. The multiple paths on the domain D (in the middle) are
the greedy paths under transformations fj . The figure shows two
transformations fj and fj+1 respectively.

θfθi t

γ1

γ2

s

Figure 4. For two curves γ1 and γ2 from s to t, the initial di-
rectional spread is shown as θi and the final directional spread is
shown as θf .

3.3.1 Network Without Holes
Without loss of generality we can assume that the outer boundary

is a circle, and that the coordinates of source s are (−d/2, 0) while
those of destination t are (d/2, 0), so that the line segment joining
s to t is horizontal and of length d. This can easily be achieved by
a rotation and translation. We denote the domain by D.

Consider a continuous domain D we can easily generate many
disjoint paths – by essentially applying a different Möbius transfor-
mation each time. The greedy path under a Möbius transformation
turns out to be a circular arc connecting s and t in the original do-
main D. See Figure 3. In the discrete case when the domain D
is represented by a triangulation, the routing paths are found by
using greedy routing in different embeddings, after proper Möbius
transformations. We remark that potentially one can design greedy
routing to follow any curve, i.e., as in the idea of routing along a
curve [33]. But in general routing on a curve does not have any
guarantee on the delivery. In our case, as we actually perform
greedy routing in another circular domain after a proper Möbius
transformation, this immediately shows a proof that such a route is
guaranteed to reach the destination.

In a continuous domain D, obviously all such circular arcs are
disjoint except at source and destination. In the discrete case the
greedy paths are guided by the circular arcs but can definitely de-
viate from them due to discrete node distribution. Since typically
sensor networks have upper bounded density, a major constraint on
the number of node disjoint paths between s and t is due to the
degree at s and t. A reasonable heuristic to minimize overlaps of
multiple paths is to design paths that are evenly spread out at s and
t. We use this heuristic to design our paths in the discrete setting.

Given two curves γ1 and γ2 joining s to t, we can define ini-
tial and final directional spread between γ1 and γ2 to be the angle
between the tangent vectors of γ1 and γ2 at s and t respectively.
We denote these by di(γ1, γ2) and df (γ1, γ2) respectively. See
Figure 4 for an example. In the following we use Möbius transfor-
mations to generate circular arcs connecting s and t such that their
directional spread at source and destination are as evenly spread as
possible.

For a given k ≥ 1, let θ = π
2k and define θj = π

2 (1 − j−1
k) for

1 ≤ j ≤ 2k+1. Also, let αj = d/2 tan θj/2 for 1 ≤ j ≤ 2k+1.
We next define a Möbius transformation fj(z) for 1 ≤ j ≤

2k + 1 by

fj(z) =
zd− idαj

z(−2iαj) + d2/2
.

Figure 10: The multiple paths on the domain D (in the middle) are the greedy
paths under transformations fj . The figure shows two transformations fj and fj+1

respectively.

any guarantee on the delivery. In our case, as we actually perform greedy routing
in another circular domain after a proper Möbius transformation, this immediately
implies that such a route is guaranteed to reach the destination.

In a continuous domain D, all such circular arcs are disjoint except at source
and destination. In the discrete case the greedy paths are guided by the circular
arcs but can definitely deviate from them due to discrete node distribution. Since
typically sensor networks have upper bounded density, a major constraint on the
number of node disjoint paths between s and t is due to the degree at s and t. A
reasonable heuristic to minimize overlaps of multiple paths is to design paths that
are evenly spread out at s and t. We use this heuristic to design our paths in the
discrete setting.

Given two curves γ1 and γ2 joining s to t, we can define initial and final di-
rectional spread between γ1 and γ2 to be the angle between the tangent vectors
of γ1 and γ2 at s and t respectively. We denote these by di(γ1, γ2) and df (γ1, γ2)

respectively. See Figure 11 for an example. In the following we use Möbius trans-
formations to generate circular arcs connecting s and t such that their directional
spreads at source and destination are as even as possible.

For a given k ≥ 1, let θ = π
2k

and define θj = π
2
(1− j−1

k
) for 1 ≤ j ≤ 2k + 1.

Also, let αj = d/2 tan(θj/2) for 1 ≤ j ≤ 2k + 1.
We next define a Möbius transformation fj(z) for 1 ≤ j ≤ 2k + 1 by

fj(z) =
zd− idαj

z(−2iαj) + d2/2
. (34)

Theorem 25. fj has the following properties:

58

Since the curvature error decreases exponentially fast, the num-
ber of steps in the Ricci flow algorithm is in O(log(1/ε)δ), where δ
is the step size in the Ricci flow algorithm. The total number of
messages is thus in O(n log(1/ε)

δ), if the algorithm is running on a
network of n vertices.

3.2 Möbius Transformations
Möbius transformations are rational functions defined on the com-

plex plane C. The general form of a Möbius transformation is

f(z) =
az + b
cz + d

.

Here a, b, c, d ∈ C and satisfy ad − bc #= 0. If c #= 0 we can ex-
tend this mapping to the Riemann Sphere (or the extended complex
plane, i.e., with a point of infinity) Ĉ = C ∪ {∞} by specifying
f(−d/c) = ∞ and f(∞) = a/c. In the case when c = 0, we
specify f(∞) = ∞.

Here are the important properties of Möbius transformations:

1. Möbius transformations are all the bijective holomorphic (dif-
ferentiable in the complex sense) mappings from Ĉ to it-
self. This also implies that they are conformal, or angle-
preserving.

2. Möbius transformations carry circles and lines (which can
be regarded as circles passing through ∞, point of infinity) to
circles and lines. Thus, giving a circular domain, any Möbius
transformation will map it to another circular domain.

3. To every Möbius transformation one can associate a matrix

Mf =

[
a b
c d

]
.

Any other matrix which is a (nonzero) scalar multiple of this
matrix represents the same Möbius transformation. Compo-
sition of two Möbius transformations is equivalent to matrix
multiplication, i.e., Mf◦g = Mf ·Mg .

4. Given distinct z1, z2, z3 ∈ Ĉ and distinct w1, w2, w3 ∈ Ĉ,
there is a unique Möbius transformation f satisfying f(zi) =
wi , i = 1, 2, 3. In other words, as there are unique cir-
cles C1 and C2, defined by z1, z2, z3 and w1, w2, w3 respec-
tively, the transformation f maps the circle C1 to C2 and
is unique. Determining f explicitly is equivalent to finding
determinants of four 3× 3 matrices.

It should be noted that there is a natural way to identify the real
plane R2 with the complex plane C, so for our purposes we can
assume that nodes are in the complex plane.

3.3 Multipath Routing
In this section we describe how to generate multiple paths from

a given source node s to a given target node t. We will give dif-
ferent embeddings of the domain in such a way that the route used
by greedy routing in one embedding is likely to be different from
the one used by greedy routing in any other embedding, and these
routes are ‘well spaced’, a notion we will make precise soon. The
algorithm we will present generates paths that are provable to be
disjoint in the continuous case. In the discrete setting, we evaluate
the performance by simulations.

We first present the algorithm for a network without holes. Then
we discuss how to find disjoint paths in a network with holes.

−1 = fj(s)

1 = fj(t)

0

0

f−1
j+1([−1, 1])

f−1
j ([−1, 1])

fj fj+1−d
2

d
2 −1 = fj+1(s)

0
1 = fj+1(t)

Figure 3. The multiple paths on the domain D (in the middle) are
the greedy paths under transformations fj . The figure shows two
transformations fj and fj+1 respectively.

θfθi t

γ1

γ2

s

Figure 4. For two curves γ1 and γ2 from s to t, the initial di-
rectional spread is shown as θi and the final directional spread is
shown as θf .

3.3.1 Network Without Holes
Without loss of generality we can assume that the outer boundary

is a circle, and that the coordinates of source s are (−d/2, 0) while
those of destination t are (d/2, 0), so that the line segment joining
s to t is horizontal and of length d. This can easily be achieved by
a rotation and translation. We denote the domain by D.

Consider a continuous domain D we can easily generate many
disjoint paths – by essentially applying a different Möbius transfor-
mation each time. The greedy path under a Möbius transformation
turns out to be a circular arc connecting s and t in the original do-
main D. See Figure 3. In the discrete case when the domain D
is represented by a triangulation, the routing paths are found by
using greedy routing in different embeddings, after proper Möbius
transformations. We remark that potentially one can design greedy
routing to follow any curve, i.e., as in the idea of routing along a
curve [33]. But in general routing on a curve does not have any
guarantee on the delivery. In our case, as we actually perform
greedy routing in another circular domain after a proper Möbius
transformation, this immediately shows a proof that such a route is
guaranteed to reach the destination.

In a continuous domain D, obviously all such circular arcs are
disjoint except at source and destination. In the discrete case the
greedy paths are guided by the circular arcs but can definitely de-
viate from them due to discrete node distribution. Since typically
sensor networks have upper bounded density, a major constraint on
the number of node disjoint paths between s and t is due to the
degree at s and t. A reasonable heuristic to minimize overlaps of
multiple paths is to design paths that are evenly spread out at s and
t. We use this heuristic to design our paths in the discrete setting.

Given two curves γ1 and γ2 joining s to t, we can define ini-
tial and final directional spread between γ1 and γ2 to be the angle
between the tangent vectors of γ1 and γ2 at s and t respectively.
We denote these by di(γ1, γ2) and df (γ1, γ2) respectively. See
Figure 4 for an example. In the following we use Möbius transfor-
mations to generate circular arcs connecting s and t such that their
directional spread at source and destination are as evenly spread as
possible.

For a given k ≥ 1, let θ = π
2k and define θj = π

2 (1 − j−1
k) for

1 ≤ j ≤ 2k+1. Also, let αj = d/2 tan θj/2 for 1 ≤ j ≤ 2k+1.
We next define a Möbius transformation fj(z) for 1 ≤ j ≤

2k + 1 by

fj(z) =
zd− idαj

z(−2iαj) + d2/2
.

Figure 11: For two curves γ1 and γ2 from s to t, the initial directional spread is
shown as θi and the final directional spread is shown as θf .

1. fj(s) = −1, ∀1 ≤ j ≤ 2k + 1.

2. fj(t) = 1, ∀1 ≤ j ≤ 2k + 1.

3. Let γj = f−1
j ([−1, 1]). Then γj is a curve joining s to t. Moreover, it is the

arc of the unique circle passing through s and t, such that the tangent vectors
at s and t both make an angle of θj with the x-axis.

4. di(γj, γj+1) = df (γj, γj+1) = θ, ∀1 ≤ j ≤ 2k + 1.

Proof. (1) and (2) are proved by calculating fj(s) and fj(t) according to Equa-
tion 34.

To prove (3) we use the property that Möbius transformations map circles to
circles. Note that the point (0, αj) is represented by the complex number z = iαj .
One can check that fj(iαj) = 0. Since −1, 0 and 1 lie on a line, it means that s,
(0, αj) and t lie on a circle. Therefore f−1

j ([−1, 1]) is an arc of the circle passing
through these three points. One has to now verify that the tangent to this (unique)
circle at s and t makes an angle of θj with the horizontal axis.

(4) follows from (3) and the fact that θj−1 − θj = θ.

What the above calculations mean is that if we define a new embedding of the
domain D by mapping a point z ∈ D to fj(z) ∈ fj(D), then the source maps to
−1 and the target maps to 1. In this new embedding, the shortest path from source
to target is simply the straight line from −1 to 1. Following this path for some j is
equivalent to following the arc of the unique circle passing through s and t whose
tangents at s and t make an angle of θj with the horizontal axis. Any two such
arcs have an initial and final directional spread of at least θ = π

2k
. Hence we have

59

generated 2k + 1 node disjoint θ spread paths from s to t. See Figure 10 for an
example.

All such paths lie in the circle with the line segment st as its diameter. We can
also consider the case θj = π

2
(1 + j−1

k
) to get 2k− 2 more node disjoint paths, with

an angle spread of θ, getting 4k − 1 in total. For example if k = 3, we can get a
total of 11 paths, such that the directional difference is at least π

6
.

We remark that the above results hold only for source s and target t pairs for
which the circle with line segment st as diameter, denoted asCst, is contained inside
the domain (i.e., in the interior of the outer circle C). When this is not the case, the
paths will ‘hit’ the outer boundary circle. Such paths will merge as they follow
along the outer boundary and are hence not disjoint. However, this is actually a
case that will be handled by the algorithm in the following section as the outer
boundary is also a topological hole.

The above analysis is done in the continuous setting. We will present the
multiple path routing results in a discrete setting by simulations.

3.3.2.2 Network with holes

Consider a circular domain D with k holes (including the outer hole, which can
be regarded as a circle centered at∞). In this case, finding disjoint paths is more
complicated. This is precisely because if two paths both hit the same hole, they
will start to follow the boundary of the hole and converge. This will create a long
shared sub-path on that boundary. Therefore we would need to find paths such
that either (i) they do not hit the same hole, or, (ii) when two paths hit the same
hole, they hit the top and bottom of the circular hole respectively so they follow the
upper boundary and lower boundary and do not converge. Take a look at Figure 12.
For each hole Ci in the domain, we take three circular arcs through s and t, the
one that is tangent to Ci internally (i.e., including Ci); the one that goes through
the center of Ci; and the one that is tangent to Ci externally (i.e., excluding Ci).
These three paths are denoted as γ+

i , γi, γ−i , respectively. Now, any two circular
arcs through s and t that fall in between γi and γ+

i (or γi and γ−i) will definitely
merge on the boundary of Ci. Thus we can only allow one path selected within
each angular range bounded by [γ+

i , γi], and [γi, γ
−
i]. In the following we present

an algorithm that finds a maximum number of hole touching paths satisfying the

60

Theorem 3.1. fj has the following properties:

1. fj(s) = −1, ∀1 ≤ j ≤ 2k + 1.

2. fj(t) = 1, ∀1 ≤ j ≤ 2k + 1.

3. Let γj = f−1
j ([−1, 1]). Then γj is a curve joining s to t.

Moreover, it is the arc of the unique circle passing through s
and t, such that the tangent vectors at s and t both make an
angle of θj with the x-axis.

4. di(γj , γj+1) = df (γj , γj+1) = θ, ∀1 ≤ j ≤ 2k + 1.

PROOF. (1) and (2) are trivial.
To prove (3) we use the property that Möbius transformations

map circles to circles. Note that the point (0,αj) is represented by
the complex number z = iαj . One can check that fj(iαj) = 0.
Since −1, 0 and 1 lie on a line, it means that s, (0,αj) and t lie
on a circle. Therefore f−1

j ([−1, 1]) is an arc of the circle passing
through these three points. One has to now verify that the tangent
to this (unique) circle at s and t makes an angle of θj with the
horizontal axis.

(4) follows from (3) and the fact that θj−1 − θj = θ. !

What the above calculations mean is that if we define a new em-
bedding of the domain D by mapping a point z ∈ D to fj(z) ∈
fj(D), then the source maps to −1 and the target maps to 1. In this
new embedding, the shortest path from source to target is simply
the straight line from −1 to 1. Following this path for some j is
equivalent to following the arc of the unique circle passing through
s and t whose tangents at s and t make an angle of θj with the hor-
izontal axis. Any two such arcs have an initial and final directional
spread of at least θ = π

2k . Hence we have generated 2k + 1 node
disjoint θ spread paths from s to t. See Figure 3 for an example.

All such paths lie in the circle with the line segment st as its
diameter. We can also consider the case θj = π

2 (1 + j−1
k) to get

2k− 2 more node disjoint paths, with an angle spread of θ, getting
4k − 1 in total. For example if k = 3, we can get a total of 11
paths, such that the directional difference is at least π

6 .
We remark that the above results hold only for source s and tar-

get t pairs for which the circle with line segment st as diameter,
denoted as Cst, is contained inside the domain (i.e., in the interior
of the outer circle C). When this is not the case, the paths will
‘hit’ the outer boundary circle. Such paths will merge as they fol-
low along the outer boundary and are hence not disjoint. However,
this is actually a case that will be handled by the algorithm in the
following section as the outer boundary is also a topological hole.

The above analysis is done in the continuous setting. We will
present the multiple path routing results in a discrete setting by
simulations.

3.3.2 Network With Holes
Consider a circular domain D with k holes (including the outer

hole, which can be regarded as a circle centered at ∞). In this
case, finding disjoint paths is more complicated. This is precisely
because if two paths both hit the same hole, they will start to follow
the boundary of the hole and converge. This will create a long
shared sub-path on that boundary. Therefore we would need to find
paths such that either (i) they do not hit the same hole, or, (ii) when
two paths hit the same hole, they hit the top and bottom of the
circular hole respectively so they follow the upper boundary and
lower boundary and do not converge. Take a look at Figure 5. For
each hole Ci in the domain, we take three circular arcs through s
and t, the one that is tangent to Ci internally (i.e., including Ci); the
one that goes through the center of Ci; and the one that is tangent to

t

s
s

θ+i
θ−i
θi

θi

θ+i

θ−i
γ−
i

γi

Ci γ+
i

Figure 5. For a pair of source and destination, each hole Ci will
produce two intervals θ+i and θ−i such that any two paths falling in
the same interval will hit the hole and share some segments of the
boundary. Thus any set of disjoint paths can only select one path
inside each interval.

Ci externally (i.e., excluding Ci). These three paths are denoted as
γ+
i , γi, γ−

i , respectively. Now, any two circular arcs through s and
t that fall in between γi and γ+

i (or γi and γ−
i) will definitely merge

on the boundary of Ci. Thus we can only allow one path selected
within each angular range bounded by [γ+

i , γi], and [γi, γ
−
i]. In the

following we present an algorithm that finds a maximum number
of hole touching paths satisfying the above constraints.

Given a source s and a destination t, we can first assume without
loss of generality that the x coordinate of t is larger than that of s
and that there does not exist a circle which passes through s and
t which is tangent to more than one of the holes. For a hole Ci

with center ci, there are three arcs of relevance: γi, γ+
i and γ−

i , as
defined earlier. Let θi,θ+i and θ−i denote the angles that the initial
tangent vectors to γi, γ+

i and γ−
i make with the horizontal axis.

Note that the convention is that all of them are contained in the
interval [−π,π].

Now we define the following angular intervals {Ti}2mi=1, two for
each of the m holes: T2h−1 = [θ−i , θi] and T2h = [θi, θ

+
i] (1 ≤

h ≤ m). For the outer hole, arc γi is simply the straight line joining
s to t; while arcs γ+

i and γ−
i are contained in circles that pass

through s and t and are tangent to the outer boundary at the top and
bottom.

Now any two circular arcs joining s to t, both of whose initial
directions lie in the same interval T2h−1 or T2h, will both traverse
either the upper or the lower boundary of the hole Ci, and hence
cannot be disjoint. We want to find the maximum number of arcs,
all of which pass through s and t, and touch at least one hole.

Since all the Ti’s lie in [−π,π], we can think of them as subsets
of the unit circle S1. We can angularly sort the endpoints, to ob-
tain a sequence s1, s2, ..., s4k where each si is an endpoint of Tj

for some j. If some interval [si, si+1] is not contained in any Tj ,
we are free to use it as there are no constraints associated to such
an interval. Assume that we have collapsed all the [si, si+1] that
are not contained in any Tj , and now we are left with a sequence
s1, s2, ..., sl.

Now we want to find a maximum number of intervals such that
any two intervals cannot be part of the same Ti for any i. That is,
each interval in the solution can be used to generate one circular arc
and all such circular arcs do not intersect with each other except at
s or t.

The above problem has an optimal solution using a greedy al-
gorithm that we now describe. Each interval Ai = [si, si+1] now
is contained in (covered by) some Tj’s. We obtain a solution Qi

as follows. Qi starts with a seed interval Ai. Move clockwise on
the circle until the first interval [sj1 , sj1+1] which is not covered
by any Tj that covers Ai. When this happens, include Aj1 in the
solution Qi and proceed greedily until we cannot include any more

Figure 12: For a pair of source and destination, each hole Ci will produce two
intervals θ+

i and θ−i such that any two paths falling in the same interval will hit the
hole and share some segments of the boundary. Thus any set of disjoint paths can
only select one path inside each interval.

above constraints.
Given a source s and a destination t, we can first assume without loss of gener-

ality that the x coordinate of t is larger than that of s and that there does not exist a
circle which passes through s and t which is tangent to more than one of the holes.
For a hole Ci with center ci, there are three arcs of relevance: γi, γ+

i and γ−i , as
defined earlier. Let θi,θ+

i and θ−i denote the angles that the initial tangent vectors to
γi, γ+

i and γ−i make with the horizontal axis. Note that the convention is that all of
them are contained in the interval [−π, π].

Now we define the following angular intervals {Ti}2m
i=1, two for each of the m

holes: T2h−1 = [θ−i , θi] and T2h = [θi, θ
+
i] (1 ≤ h ≤ m). For the outer hole, arc

γi is simply the straight line joining s to t; while arcs γ+
i and γ−i are contained in

circles that pass through s and t and are tangent to the outer boundary at the top and
bottom.

Now any two circular arcs joining s to t, both of whose initial directions lie
in the same interval T2h−1 or T2h, will both traverse either the upper or the lower
boundary of the hole Ci, and hence cannot be disjoint. We want to find the max-
imum number of arcs, all of which pass through s and t, and touch at least one
hole.

Since all the Ti’s lie in [−π, π], we can think of them as subsets of the unit
circle S1. We can angularly sort the endpoints, to obtain a sequence s1, s2, ..., s4k

61

where each si is an endpoint of Tj for some j. If some interval [si, si+1] is not
contained in any Tj , we are free to use it as there are no constraints associated
to such an interval. Assume that we have collapsed all the [si, si+1] that are not
contained in any Tj , and now we are left with a sequence s1, s2, ..., sl.

Now we want to find a maximum number of intervals such that any two inter-
vals cannot be part of the same Ti for any i. That is, each interval in the solution
can be used to generate one circular arc and all such circular arcs do not intersect
with each other except at s or t.

The above problem has an optimal solution using a greedy algorithm that we
now describe. Each interval Ai = [si, si+1] now is contained in (covered by) some
Tj’s. We obtain a solution Qi as follows. Qi starts with a seed interval Ai. Move
clockwise on the circle until the first interval [sj1 , sj1+1] which is not covered by any
Tj that covers Ai. When this happens, include Aj1 in the solution Qi and proceed
greedily until we cannot include any more intervals to Qi.

After this process, we have l solutions Q1, Q2, ..., Ql. We choose the one with
a maximum number of intervals. The next theorem asserts that this solution is
optimal.

Theorem 26. The number of intervals in the solution chosen above, i.e., the best
amongst the {Qi}li=1, is equal to the number of intervals chosen in the optimal
solution.

Proof. Pick any interval that the optimal solution chose, say Aj1 . Consider what
the greedy algorithm performed in Qj1 . Let the next interval chosen by the greedy
algorithm be Gj2 while the one chosen by the optimal be Oj2 . Assume they are
different (if they are the same the argument proceeds). If there does not exist j
such that Gj2 and Oj2 are both contained in Tj , then adding the interval Gj2 to
the optimal solution increases the number of intervals in the optimal, which is a
contradiction. So assume Tj contains both Gj2 and Oj2 . Therefore by the end of Tj
we have not done any worse than the optimal, as both have added one interval each.
The argument now proceeds in a similar fashion. Gj3 and Oj3 would both have to
be contained in some Tj again, by the end of which we are again no worse than the
optimal and so forth. Inductively we can show that our solution is no worse than
the optimal and thus must be optimal.

62

Using this greedy method we can thus find a maximum number of node disjoint
paths in the domain all of which pass through a hole. We can use results of the
previous section to generate node disjoint θ spread paths in the intervals [si, si+1]

which were not covered by any Tj . Thus putting together, we can find a maximum
number of disjoint paths that do touch some hole and depending on the spread we
can find disjoint paths that do not touch any hole using previous results.

To summarize, our multipath algorithm will generate k disjoint paths in a net-
work with and without holes by applying different Möbius transformations, with
provable results for the continuous case. When the nodes have high density, the
greedy paths in the discrete case will better approximate the circular arcs. When
the node density drops, the multiple paths may overlap in the middle. We eval-
uate in the simulation section the dependency of the performance on the network
density.

3.3.3 Recovery From Failure

In this section we describe how to deal with en-route node failures or link fail-
ures. Recall that our embedding produces a circular domain that guarantees deliv-
ery when links are assumed to be reliable. When a link may fail, greedy routing no
longer guarantees delivery. For example, a node may discover that all the neigh-
bors that are closer to the destination are not reachable. In this case we aim to find
an alternative path. The freedom of applying Möbius transformations on a circular
domain provides great flexibility for this task.

Assume s is the source node that wants to transmit a package to t (s, t ∈ D).
Let the degree of s be ν. Furthermore, assume that s has sorted its neighbors in
increasing order of their distances from t such that

||p1t|| ≤ ... ≤ ||pkt|| ≤ ||st|| ≤ ||pk+1t|| ≤ ... ≤ ||pνt||.

||uv|| is the Euclidean distance between u, v. If the link between s and any of
the {pi}ki=1 is functional, s routes the message to that neighbor just as in greedy
routing. Assume that the only links available to s are those in {pi}νi=k+1. Then s
picks a functional link from this set, say the link to p = pk+1. Now the idea is to
find a Möbius transformation such that in the new embedding, p is closer to t than s,

63

so that greedy routing would then continue by using p as the next hop. The details
are presented below.

As soon as node s finds that greedy routing can no longer continue, it does the
following:

1. It finds the coordinates of a neighbor p. Assume that s knows the coordinates
of p and the destination t.

2. s finds a Möbius transformation that maps s to −1, p to 0 and t to 1. The
explicit formula for f is

f(z) =
z(s− t) + p(t− s)

z(2p− (t+ s))− p(t+ s) + 2st
.

3. s then sends the packet to p along with the information about this Möbius
transformation. p calculates new coordinates for all of its neighbors and for
t.

4. Greedy routing then continues (since now f(p) is clearly closer to f(t) than
f(s)), until we get stuck at another node. When this happens, we repeat the
entire process, i.e., find another Möbius transformation and compose it with
the previous one.

As will be shown later in the simulation section, our failure recovery mecha-
nism is compared with random walk – simply pick a random ‘live’ link until greedy
routing can be performed again. Basically our scheme makes big jumps and chooses
a vastly different alternative path while random walk can only make local adjust-
ments. This benefit of using long de-tours is significant for failures that exhibit
spatial patterns.

3.4 Simulations

In the experiments, we perform greedy routing with Möbius transformations to
achieve multipath routing and link failure recovery. Our simulations are performed
on unit disk graph topologies potentially with holes inside, and the following are
our key observations:

64

Multipath routing: By using Ricci flow with different Möbius transformations,
we can generate a substantial fraction of node disjoint paths. With reasonable
sensor density (average degree around 20), the average number of disjoint
paths we find using our algorithm is consistently more than 70% of the input
parameter m (the desired number of disjoint paths). We can consistently find
two node disjoint paths even in very sparse networks. We also observed that
when the network is sparse, the bottleneck for finding node disjoint paths is
often near the source and destinations.

Recovering route from link failures: Under a spatial failure model in which the
nodes in a geometric failure region have a much higher failure rate, our
method of using greedy routing on the virtual coordinates in a circular do-
main with Möbius transformations as the recovery scheme performs consis-
tently better than all other methods (on virtual or original coordinates, using
random walk as the recovery scheme). The advantage of using Möbius trans-
formations rather than random walk as a recovery scheme diminishes when
the failure pattern is no longer spatially correlated.

3.4.1 Multipath routing

After we generate the sensor network G = (V,E), we randomly choose two ver-
tices s and t from V as the source and the destination. We then calculate the maxi-
mum number of node-disjoint paths between s and t, called the vertex connectivity
κ(s, t), as a reference for comparison, using the centralized maximum flow algo-
rithm [22]. To test our multipath routing algorithm, we generate m (no larger than
κ(s, t)) paths from the source to the destination, and count how many of them are
node-disjoint. We also try different m parameters to further observe the perfor-
mance of the algorithm.

Figure 13 shows the proposed routing scheme on a sensor network with 1000

vertices and 10006 links. We first apply Ricci flow to embed the network into a
circular domain where each node is given a virtual coordinate. We use our multipath
routing algorithm to seek m1 = 3, and m2 = 5 paths from s (in yellow) to t

(in red) respectively (in this graph κ(s, t) = 6). Those paths are not necessarily
node-disjoint, and all the shared nodes/edges are marked in purple in the figure.

65

Figure 13: Multipath Routing Algorithm. Left column: original network; middle
column: network applying Ricci flow; right column: network applying Ricci flow
and a Möbius transformation (zoomed in). First row: m = 3; second row: m = 5.

κ(s, t) m Disjoint paths generated approximation factor

6
3 2

66.7%
5 4

8
3 3

62.5%5 4
7 5

11
5 4

72.7%9 7
11 8

Table 1: Results of different sources and destinations in a uniformly distributed
network with average edge links 20.

We also show the paths on the original network, and a different circular domain
obtained by a Möbius transformation as well. In each of the three embeddings,
the paths with the same color and number are identical. We can see that in different
circular domains, the greedy paths, or the straight lines from s to t are also different,

66

which demonstrates that Möbius transformations together with greedy routing give
us flexibility in choosing multiple paths.

More results are shown in Table 1. From the table we can see two facts. First,
as a distributed algorithm, the Möbius transformation method gives us a good ap-
proximation of the number of node-disjoint paths in a dense graph. Second, the
number of disjoint paths we can get is usually smaller than m, or equivalently,
some paths we generate share common nodes or edges. This is due to the discrete
nature of graphs. From s, we can only send packets to its neighbors, which is a
restriction in choosing the first few hops of the transmission; the hops near t suffer
from the similar problem. But in the middle segments, the paths generally follow
the shape of a circle arc connecting s and t, which is desired. When the network
becomes denser, the situation becomes more similar to that of the continuous case.

To further explore the differences between the discrete and continuous settings,
we also simulate under different graphs. In graphs with different densities (with
uniform sensor distribution), we randomly pick 10 pairs of sources and destinations,
give the different inputs m as 3, 5 and 7, and calculate the average numbers of
disjoint output paths we get. The results are shown in Table 2. From the table,
we observe that the algorithm performs better in a denser graph with more links.
This is reasonable since the gap between the discrete and continuous settings is
smaller with a denser sensor distribution. Moreover, when the input m is smaller,
the algorithm gives better approximation. This is simply because given a smaller
input, the arcs span further away with each other (this result does not conflict with
Table 1 where κ(s, t) is known). We also notice that when m exceeds the average
node degree, the percentage drops drastically, where the input – the number of
disjoint paths we are trying to find – often exceeds the optimal value.

When the sensor distribution is non-uniform, the bottleneck of the performance
lies in the sparse regions, especially when those regions cover the neighborhood of
the source or the destination.

Figure 14 shows the result of a network region with holes. Some paths go
along the inner boundary, but the heavy load along the boundaries is avoided.

67

Nodes
Average

Input m Average output paths
mlink number

1000 20.00
3 83.3%
5 79.0%
7 71.4%

600 12.02
3 76.7%
5 64.0%
7 51.4%

400 5.62
3 63.3%
5 46.0%
7 35.7%

Table 2: Results of graphs with different sensor densities.

3.4.2 Routing with link failures

In sensor networks, links are likely to fail, especially in an adversarial environment.
Since greedy routing requires that for each step, there exists one link leading to a
node closer to the destination, the performance of greedy routing will drop quickly
when a link failure happens. What is more, link failures often have a property of
spatial locality, which means that a group of nearby links are likely to fail at the
same time. Therefore, when greedy routing hits this region, the message may ‘get
trapped in the mud’. We use the freedom of Möbius transformations to recover
from this situation.

Based on the above observations, we adopt the setting of clustered random
link failures. We first test a simple setting in which there is a region with arbitrary
size and shape. All the links within this region have a link failure rate p, while all
the links outside the region or crossing the boundary of the region will not fail. A
message following greedy routing in the circular domain may not have guaranteed
delivery as the link to the next hop can suddenly fail. Our strategy is to adopt
a different Möbius transformation. We compare it with another simple strategy
that recovers from failure by performing a random walk. Although random walk
is simple, it is time-consuming for the routing path to jump out of a large link
failure region, due to its locality and randomness. In our following experiment,
we will compare greedy routing with Möbius transformations with other greedy

68

Figure 14: Multipath Routing Algorithm in a region with holes. Up: original net-
work; Bottom: network applying Ricci flow. Here κ(s, t) = 9.

routing techniques, in terms of routing delivery rate and routing path length. The
experiment network size is 1000 nodes with a varying number of links. The link
failure region is a rectangle lying in the network.

In the experiments, we compared the following methods:

1. Greedy routing on the original coordinates: Simple greedy routing on the
original coordinates, which fails to route to the destination easily due to link

69

failures. We call this method Greedy in short.

2. Greedy routing on the virtual coordinates: Greedily route to the destina-
tion using coordinates computed by Ricci Flow. We call this method Ricci in
short.

3. Greedy routing on the original coordinates with random walk: Route
based on the original coordinate set and perform random walk to recover
from failure. We call this method Gree-dyRnd in short.

4. Greedy routing on the virtual coordinates with random walk: Greedily
route using virtual coordinates and perform random walk to recover from link
failures. We call this method RicciRnd in short.

5. Greedy routing with Möbius transformations: Our method performs
greedy routing based on the virtual coordinates in a circular domain. If the
route gets stuck in the middle due to link failures, it performs a Möbius trans-
formation to get a new path towards the destination. We call this method
Möbius in short.

Various parameters will affect the success rate of routing. In our experiment,
we focus on the average degree of the network, the link failure rate and the TTL
(time-to-live) of the packet. If the connectivity of networks becomes better as the
average degree increases, routing will be easier for all methods. Obviously a higher
link failure rate will make all methods suffer. We also include a TTL with each
packet to stop a packet from roaming aimlessly in the network, in particular in the
random walk method.

Routing result and analysis. In Figure 15, 16 and 17, we show the message deliv-
ery rates by varying the network density, the TTL and the link failure rate respec-
tively. In all settings, we can see our method has a significantly higher delivery rate
than the other methods, which shows that by using a new Möbius transformation,
we can effectively find an appropriate path which leads the route out of the fail-
ure region. In general the performance of different methods, in decreasing order,
follows the trend of

Möbius > RicciRnd > Ricci� GreedyRnd ' Greedy

70

Figure 15: Routing delivery rate versus average degree (TTL = 500; link failure rate
= 0.8). Möbius is our method. Greedy and Ricci are greedy routings on the original
and Ricci flow coordinates respectively. GreedyRand and RicciRand are greedy
routings on the original and Ricci flow coordinates with random walk respectively.

Figure 16: Routing delivery rate versus TTL (time-to-live) of packets (Avg. Degree
= 10; link failure rate = 0.8).

Greedy routing using the original coordinates nearly does not work, no matter
whether it is augmented with random walk or not.

Figure 15 shows the performance of all methods on networks of different node
average degrees. The performance of all methods deteriorates when the network
becomes sparse. Still, the Möbius method performs best. Note that in all cases

71

Figure 17: Routing delivery rate versus link failure rate (Avg.Degree = 10; TTL =
500).

Figure 18: Distribution of routing path lengthes (Avg.Degree = 10; TTL = 500; link
failure rate = 0.8).

we must first make sure that the network is connected and has a triangulation for
computing the virtual embedding as a circular domain.

Figure 16 shows the importance to choose an appropriate TTL. As TTL grows,
the delivery rate of our routing method grows rapidly and then stays close to 1, while
the other methods do not exhibit a growing trend with TTL. This shows that the
Möbius transformation scheme does recover from link failures and makes progress
towards the destination, while the other methods still get stuck in the middle. Fig-
ure 18 shows the distribution of path length under different methods. Indeed our
method gradually delivers more messages when TTL is increased.

72

p1 p2 Möbius Ricci RicciRand Greedy GreedyRand
0.3 0.0 0.962 0.573 0.779 0.021 0.028
0.6 0.0 0.912 0.402 0.651 0.014 0.016
0.6 0.3 0.738 0.207 0.472 0.003 0.009
0.9 0.0 0.823 0.271 0.511 0.008 0.013
0.9 0.3 0.632 0.148 0.335 0.002 0.006
0.9 0.6 0.472 0.037 0.193 0.001 0.004
0.6 0.6 0.587 0.094 0.263 0.002 0.004
0.3 0.3 0.802 0.254 0.513 0.007 0.011
0.3 0.6 0.591 0.119 0.285 0.002 0.005
0.3 0.9 0.224 0.017 0.104 0.001 0.002
0.6 0.9 0.152 0.011 0.063 0.001 0.002

Table 3: Comparison of different p1 and p2 settings.

Another potential factor affecting the routing performance is the distribution
of link failure rates. We test the situation where links lying inside and outside the
failure regions have failure rates p1 and p2, respectively. We evaluate the perfor-
mance by varying the difference between p1 and p2. From the simulation results
shown in Table 3, we can see that our method consistently outperforms the other
methods in different settings. When p1 and p2 are getting close, RicciRnd starts
to catch up. In these experiments we also vary the shape and positions of failure
regions. While the exact values may vary, the trend is clear: our method makes
progress towards the destination despite the existence of high link failure rate, and
is unlikely to get stuck in the middle; making long detours is generally better than
taking local random walks.

3.5 Conclusion

In this chapter we presented a method that uses circular domain embeddings and
Möbius transformations to switch between them for multipath routing and improv-
ing routing resilience. This shows the power of a geometric transformation that
regulates a network shape—difficult routing problems due to lack of global knowl-
edge can benefit significantly from such transformations. We expect to extend the

73

intuition to more problems on distributed network setting in the future.
Our multipath routing algorithm in the discrete case uses a heuristic method

that maximizes the angular spread of the paths at source and destination. It would
be a very interesting problem to exploit the freedom of using such routing scheme
to improve network throughput, or optimize energy usage, etc.

We would also like to mention that this work borrows heavily intuitions that
arise from the continuous domain. Our provable results are in the continuous case
and the performance of the algorithm in the discrete case is only evaluated by sim-
ulations. The problem of devising a theory addressing the gap between the contin-
uous space and a discrete graph is open. It would be an interesting and challenging
problem to come up with a suitable discrete model and derive minimum density
bound. We leave this for future work.

74

Chapter 4

Traffic Analysis and Source-Location
Privacy Under Random Walks

4.1 Introduction

Given a graph and a starting vertex, choose a neighbor of the current node at random
and move to this neighbor and continue in this fashion. This sequence of nodes is
called a random walk on the graph. A random walk is a Markov chain such that the
next node to visit only depends on the current node and is independent of the history.
This is often termed as the "memoryless" property of a random walk, which makes
it useful for many applications in computer networking. Of particular interest to
this work is the application of random walk in wireless sensor network routing for
preserving source location privacy.

Source-location privacy Wireless sensor networks find many useful civilian and
military applications. In many settings one would like to protect the privacy of sen-
sor data, defined in the general sense that sensor data and its contextual information
are observable by only those who are supposed to observe it [51]. Providing privacy
in wireless sensor network is challenging for a number of reasons. Besides that the
sensor nodes are low cost devices with limited computation and storage capacities,
the fact that the sensor nodes use wireless medium make it susceptible to attacks

75

such as eavesdropping and traffic analysis. In the literature, privacy threats in sen-
sor networks are classified as content-oriented privacy threats (i.e., the leaking of
packet content to adversaries), that can be addressed by security and encryption
mechanisms, and contextual privacy issues (i.e., the leaking of context information
related to the measurement and transmission of the sensor data), of which location
of the data source is a major piece of information to be protected. In particular,
an adversary may be able to compromise private information of source locations
without the ability of decrypting the transmitted data—by simply monitoring and
analyzing the traffic pattern in the air.

A classical model formed for protecting the source location privacy is the
“Panda Hunter Game” [51]. In the game, a large number of panda detecting sensors
are placed in a habitat to detect panda presence. Pandas here are analogs of generic
assets to be monitored by a sensor network. When a panda is observed, the nearby
sensor node will report such detection data periodically to the sink through multi-
hop routing methods. The data package could be encrypted such that the adversary
cannot decipher the content of the message and cannot derive the location of panda
right away. However, an adversary, in this case, the hunter, can monitor the traffic
in the network and by timing analysis trace back the routing path to the origin of the
message, i.e., the location of the data source. Clearly, simple routing schemes such
as shortest path routing cannot provide data source privacy against traffic analysis
attacks.

Many schemes proposed in the literature for preserving source location privacy
use a common idea of introducing randomness in packet routing. The objective
is to make the traffic pattern look random and uncertain, and then counteract the
adversarial traffic analysis attacks. Many of them use random walk or variations
of random walks as a major component in the design. Phantom routing [51], for
example, first uses random walk in the network until the node is reasonably far
from the source node and then uses (probabilistic) flooding method to deliver it to
the source. Although a short random walk may still have the current node correlated
with the origin, a long random walk will stop at a location that is independent of
the packet original. It is known that if the random walk is longer than the mixing
time, the random walk converges to its limiting distribution called the stationary
distribution [73]. This is equivalent to selecting a node in the network randomly

76

(from the stationary distribution) and thus packet analysis afterwards will only trace
back to this random location, unrelated to the true data source.

Traffic analysis on random walk In this chapter we show that it is a myth in
common understanding that random walk automatically brings with it source loca-
tion privacy. In other words, we present a technique which allows certain traffic
analysis to infer the source location even for random walks that are as long as they
want. Therefore our message is that random walk should be used carefully in pro-
tecting source location privacy.

4.2 Overview

Network Model and Attack Model We assume in this work a wireless sen-
sor network deployed in a planar domain R of interest for monitoring interesting
events. The event locations are of great importance for both the network owners and
the adversary. When an event is detected, the nearby sensor node becomes the data
source and sends the report periodically to a data sink (e.g., a base station or a mo-
bile sink) in the network. We assume that the message is delivered by using random
walk, in which the next node to visit is uniformly chosen from all neighbors of the
current node. The random walk is sufficiently long to ensure that the message will
be delivered to the data sink with high probability. A data source will generate data
packets periodically and the delivery of these packets is completely independent of
each other, i.e., they follow different random walk paths. The specific capabilities
of the adversary are summarized below.

• Monitoring traffic on network boundary. We assume that the adversary can
only monitor network traffic along the network outer boundary. This is a
reasonable assumption in many settings when the domain of interest has re-
stricted access to anyone but the network owner. It is also a realistic model
of many military applications. The adversary places monitoring stations to
monitor network traffic along the network outer boundary. Each monitor-
ing station listens to the traffic in the neighborhood of a sensor node and
record the signals delivered to/from the sensor node. We assume that the po-
sitions of the monitoring stations, or equivalently the network boundary, are

77

known. The monitoring stations are also assumed to be perfectly synchro-
nized. The traffic data from the monitoring stations is collected and delivered
to an offline base station for further analysis. We remark that the assumption
puts more restriction on the adversary’s power than the Panda Hunter model,
in which the adversary can be anywhere inside the network and can move
around as fast as possible.

• Packets are encrypted. We assume that the packets in the network are en-
crypted using symmetric encryption between the data source and the data
sink and that the adversary does not have the key to decipher the content of
the message. Similar to the Panda Hunter problem, the data source issues
data packets periodically. We assume that the content of these data messages
are different, i.e., with different time stamps. The monitoring stations can
compare the messages received by different boundary nodes and conclude
whether two messages received by two boundary nodes are the same or not.
We assume that the chained encryption scheme used in onion routing is not
feasible for sensor network, for two reasons. First the chained encryption re-
quires that the source knows the entire path taken by the message, which is
not the case for random walk. Second, chained encryption and decryption for
each relay node is too heavy for resource constrained sensor nodes.

• Non-malicious. The adversary does not interfere with the normal functioning
of the sensor networks. Otherwise it will be detected by intrusion detection
schemes. The adversary does not compromise any node and does not generate
or alter traffic in the network.

• Informed. We use the standard philosophy in security [120] that the adversary
is aware of the routing methods used by the system, in our case, the random
walk scheme.

• Centralized and powerful. The monitoring stations gather traffic received
from the network boundary and then deliver all the data to an offline central
station for processing. We assume the adversary has abundant computing
resources and can perform complicated analysis.

78

Traffic analysis of random walk: We first consider a special case when the net-
work is in a domain of disk shape and sensors are uniformly distributed inside the
disk. In this case the random walk can be considered as a discrete approximation
of the continuous Brownian motion inside a disk. For each message issued by the
data source, through comparing the messages gathered by the monitoring stations
at the network boundary we can conclude the node on the boundary that received
the message for the first time. Now, since the data source generates multiple data
packets, we monitor the position of the first hit on the boundary by different data
packets. This constitutes a ‘first hit’ distribution (also called the exit distribution)
ω′x on the boundary where x is the source location. If the data source is at the center
o of the disk, by symmetry the distribution ω′x is a uniform distribution. When the
data source is not at the center of the disk, the distribution has a single peak at the
boundary intersected by the ray ox, and the closer the source to the boundary, the
higher the peak is. See Figure 19 for an example. Therefore by monitoring the
traffic pattern on the network boundary only, we obtain an observation of the first
hit distribution px, through examining which we can infer the source location.

multiple data packets, we monitor the position of the first hit
on the boundary by different data packets. This constitutes a
‘first hit’ distribution (also called the exit distribution) ω′

x on
the boundary where x is the source location. If the data source
is at the center o of the disk, by symmetry the distribution ω′

x

is a uniform distribution. When the data source is not at the
center of the disk, the distribution has a single peak at the
boundary intersected by the ray ox, and the closer the source
to the boundary, the higher the peak is. See Figure 1 for an
example. Therefore by monitoring the traffic pattern on the
network boundary only, we obtain an observation of the first
hit distribution px, through examining which we can infer the
source location.

ω′
o

2πy

ω′
x

oxy
0 2π

0

Fig. 1. The first hit distribution ω′
x and ω′

o for random walk inside a unit
disk starting at x and o respectively.

In general the network may not be of a disk shape thus
the first hit distribution could have a complicated correlation
with the source location. For a bounded domain R in the
plane, the probability that a Brownian motion started inside
a point z ∈ R hits a portion of the boundary is termed the
harmonic measure [9] ωz . The first hit distribution observed
from the traffic pattern ω′

z is a Monte Carlo approximation
of ωz . On simply connected planar domains, there is a close
connection between harmonic measure and the theory of
conformal maps. A conformal map is a continuous one-to-one
map that preserves angles. It is known that Brownian motions
are conformal invariant [11]. What this means is that under a
conformal map, f : R → R′, the probability for a Brownian
motion starting from x ∈ R and exiting from an interval
I[a, b] on the boundary ∂R is the same as the probability of
a Brownian motion starting from f(x) ∈ R′ and exiting from
an interval I[f(a), f(b)] on the boundary ∂R′. See Figure 2
for an example. Now, since any simple planar domain can be
mapped to a canonical shape of a unit disk by a conformal
mapping, one can obtain the harmonic measure for any simply
connected domain. In particular, take the example in Figure 1,
we can apply a Mobius transformation f from a disk to a disk
such that the point x is now mapped to the center of the disk.
Therefore the distribution ωx can be immediately computed
through f .

The discussion above suggests that the exit distribution
observed by the adversary along the sensor network boundary
can be used to infer the source locations. In this paper
we present two traffic analysis algorithms. The first one is
for recovery of a single data source, simply by integrating
the position and the harmonic measure along the domain

f
R

R′
f(a)

f(b) f(x)
x

a

b

Fig. 2. Brownian motions are invariant under a conformal mapping f .

boundary, i.e.,
∫
z∈∂R zdωx(z). To understand this, take a look

at Figure 1. If the source is at o and we integrate the position
by the harmonic measure ωo (which is uniform) along the unit
circle, by symmetry this integration gives us the center of the
disk. If the source is at x, the integration of the position by
ωx must lie on the line segment oy – again by axial symmetry
of ωx with respect to oy. In fact, this integration would give
precisely the position of x. And this is true not only for the
case of a unit disk but for any planar domain. Since the first
hit distribution observed from the traffic pattern, ω′

x, would
be a good approximation to the harmonic measure ωx. By
using

∫
z∈∂R zdω′

x(z) we will get a very close approximation
to x, as long as we have enough samples to be statistically
meaningful.

The second algorithm is a general method using maxi-
mum likelihood estimation, when the data sources can be
represented using low complexity. A number of representative
scenarios include multiple data sources, data sources uniformly
distributed on a line segment, as in the case of target tracking
applications, or data sources uniformly inside a small disk or
square, as in the case when an event triggers multiple sensors
to report to the sink. The results and the algorithms can be
extended to a non-simple planar domain as well as a general
non-planar terrain.

We presented an extensive list of simulation results for
different network shape and different data source models as
mentioned above. In particular, we presented the tradeoff
between the number of messages issued by the data source
vs the accuracy of our prediction of the source location.

Last we want to remark that we do not mean to claim
that previous source location privacy preserving schemes using
random walks are inadequate, but rather raise an alarm that
their effectiveness should be reconsidered carefully given the
potential attack illustrated in this paper. At the end of the paper
we discuss variations of basic random walks and suggest ideas
to defeat this particular traffic analysis attack.

IV. THEORY

In this section we first summarize the main results from the
elegant theory of Brownian motions and conformal maps. We
then provide the background on random walks in the discrete
setting, and state our results.

A. Harmonic Meausure and Brownian Motion
Conformal Maps: Let C = {z : z = x+iy; x, y ∈ R} denote
the complex plane.

Figure 19: The first hit distribution ω′x and ω′o for random walk inside a unit disk
starting at x and o respectively.

In general the network may not be of a disk shape and so the first hit distribu-
tion could have a complicated correlation with the source location. For a bounded
domain R in the plane, the probability that a Brownian motion started inside a
point z ∈ R hits a portion of the boundary is termed the harmonic measure [49],
which we denote by ωz. The first hit distribution observed from the traffic pattern
ω′z is a Monte Carlo approximation of ωz. On simply connected planar domains,
there is a close connection between harmonic measure and the theory of conformal

79

maps. A conformal map is a continuous one-to-one map that preserves angles. It
is known that Brownian motions are conformally invariant [62]. What this means
is that under a conformal map, f : R → R′ , the probability for a Brownian mo-
tion starting from x ∈ R and exiting from an interval I[a, b] on the boundary ∂R
is the same as the probability of a Brownian motion starting from f(x) ∈ R′ and
exiting from an interval I[f(a), f(b)] on the boundary ∂R′ . See Figure 20 for an
example. Now, since any simple planar domain can be mapped to a canonical shape
of a unit disk by a conformal mapping, one can obtain the harmonic measure for
any simply connected domain. In particular, take the example in Figure 19, we can
apply a Möbius transformation f from a disk to a disk such that the point x is now
mapped to the center of the disk. Therefore the distribution ωx can be immediately
computed through f .

multiple data packets, we monitor the position of the first hit
on the boundary by different data packets. This constitutes a
‘first hit’ distribution (also called the exit distribution) ω′

x on
the boundary where x is the source location. If the data source
is at the center o of the disk, by symmetry the distribution ω′

x

is a uniform distribution. When the data source is not at the
center of the disk, the distribution has a single peak at the
boundary intersected by the ray ox, and the closer the source
to the boundary, the higher the peak is. See Figure 1 for an
example. Therefore by monitoring the traffic pattern on the
network boundary only, we obtain an observation of the first
hit distribution px, through examining which we can infer the
source location.

ω′
o

2πy

ω′
x

oxy
0 2π

0

Fig. 1. The first hit distribution ω′
x and ω′

o for random walk inside a unit
disk starting at x and o respectively.

In general the network may not be of a disk shape thus
the first hit distribution could have a complicated correlation
with the source location. For a bounded domain R in the
plane, the probability that a Brownian motion started inside
a point z ∈ R hits a portion of the boundary is termed the
harmonic measure [9] ωz . The first hit distribution observed
from the traffic pattern ω′

z is a Monte Carlo approximation
of ωz . On simply connected planar domains, there is a close
connection between harmonic measure and the theory of
conformal maps. A conformal map is a continuous one-to-one
map that preserves angles. It is known that Brownian motions
are conformal invariant [11]. What this means is that under a
conformal map, f : R → R′, the probability for a Brownian
motion starting from x ∈ R and exiting from an interval
I[a, b] on the boundary ∂R is the same as the probability of
a Brownian motion starting from f(x) ∈ R′ and exiting from
an interval I[f(a), f(b)] on the boundary ∂R′. See Figure 2
for an example. Now, since any simple planar domain can be
mapped to a canonical shape of a unit disk by a conformal
mapping, one can obtain the harmonic measure for any simply
connected domain. In particular, take the example in Figure 1,
we can apply a Mobius transformation f from a disk to a disk
such that the point x is now mapped to the center of the disk.
Therefore the distribution ωx can be immediately computed
through f .

The discussion above suggests that the exit distribution
observed by the adversary along the sensor network boundary
can be used to infer the source locations. In this paper
we present two traffic analysis algorithms. The first one is
for recovery of a single data source, simply by integrating
the position and the harmonic measure along the domain

f
R

R′
f(a)

f(b) f(x)
x

a

b

Fig. 2. Brownian motions are invariant under a conformal mapping f .

boundary, i.e.,
∫
z∈∂R zdωx(z). To understand this, take a look

at Figure 1. If the source is at o and we integrate the position
by the harmonic measure ωo (which is uniform) along the unit
circle, by symmetry this integration gives us the center of the
disk. If the source is at x, the integration of the position by
ωx must lie on the line segment oy – again by axial symmetry
of ωx with respect to oy. In fact, this integration would give
precisely the position of x. And this is true not only for the
case of a unit disk but for any planar domain. Since the first
hit distribution observed from the traffic pattern, ω′

x, would
be a good approximation to the harmonic measure ωx. By
using

∫
z∈∂R zdω′

x(z) we will get a very close approximation
to x, as long as we have enough samples to be statistically
meaningful.

The second algorithm is a general method using maxi-
mum likelihood estimation, when the data sources can be
represented using low complexity. A number of representative
scenarios include multiple data sources, data sources uniformly
distributed on a line segment, as in the case of target tracking
applications, or data sources uniformly inside a small disk or
square, as in the case when an event triggers multiple sensors
to report to the sink. The results and the algorithms can be
extended to a non-simple planar domain as well as a general
non-planar terrain.

We presented an extensive list of simulation results for
different network shape and different data source models as
mentioned above. In particular, we presented the tradeoff
between the number of messages issued by the data source
vs the accuracy of our prediction of the source location.

Last we want to remark that we do not mean to claim
that previous source location privacy preserving schemes using
random walks are inadequate, but rather raise an alarm that
their effectiveness should be reconsidered carefully given the
potential attack illustrated in this paper. At the end of the paper
we discuss variations of basic random walks and suggest ideas
to defeat this particular traffic analysis attack.

IV. THEORY

In this section we first summarize the main results from the
elegant theory of Brownian motions and conformal maps. We
then provide the background on random walks in the discrete
setting, and state our results.

A. Harmonic Meausure and Brownian Motion
Conformal Maps: Let C = {z : z = x+iy; x, y ∈ R} denote
the complex plane.

Figure 20: The probability for a Brownian motion starting from x ∈ R and exiting
from an interval I[a, b] on the boundary ∂R is the same as the probability of a
Brownian motion starting from f(x) ∈ R′ and exiting from an interval I[f(a), f(b)]
on the boundary ∂R′.

The discussion above suggests that the exit distribution observed by the adver-
sary along the sensor network boundary can be used to infer the source locations.
In this work we present two such traffic analysis algorithms.

The first algorithm we present is for the recovery of a single data source. It
is very simple, and works by integrating the position and the harmonic measure
along the domain boundary, i.e., by calculating

∫
z∈∂R zdωx(z). To understand this,

take a look at Figure 19. If the source is at o and we integrate the position by the
harmonic measure ωo (which is uniform) along the unit circle, by symmetry this
integration gives us the center of the disk. If the source is at x, the integration of

80

the position by ωx must lie on the line segment oy – again by axial symmetry of
ωx with respect to oy. In fact, this integration would give precisely the position of
x. And this is true not only for the case of a unit disk but for any planar domain.
Since the first hit distribution observed from the traffic pattern, ω′x, would be a good
approximation to the harmonic measure ωx, by using

∫
z∈∂R zdω

′
x(z) we will get a

very close approximation to x, as long as we have enough samples to be statistically
meaningful.

The second algorithm is a general method using maximum likelihood estima-
tion and it can be used for a general case when the data sources can be represented
using low complexity. A number of representative scenarios include multiple data
sources, data sources uniformly distributed on a line segment, as in the case of tar-
get tracking applications, or data sources distributed uniformly inside a small disk
or square, as in the case when an event triggers multiple sensors to report to the
sink. The results and the algorithms can be extended to a non-simple planar domain
as well as a general non-planar terrain.

We present an extensive list of simulations for different network shape and
different data source models as mentioned above. In particular, we presented the
tradeoff between the number of messages issued by the data source vs the accuracy
of our prediction of the source location.

Last we want to remark that we do not mean to claim that previous source
location privacy preserving schemes using random walks are inadequate, but rather
raise an alarm that their effectiveness should be reconsidered carefully given the po-
tential attack illustrated in this work. At the end of this work we discuss variations
of basic random walks and suggest ideas to defeat this particular traffic analysis
attack.

4.3 Theory

In this section we first summarize the main results from the elegant theory of Brow-
nian motions and conformal maps. We then provide the background on random
walks in the discrete setting, and state our results.

81

4.3.1 Continuous theory

Definition 27 (Harmonic function). A harmonic function f on a domain D ⊂ R2

is a twice continuously differentiable real valued function such that ∂
2f
∂x2

+ ∂2f
∂y2

= 0.

Here are two useful properties of harmonic functions:

• Let f(z) = f1(z) + if2(z) be holomorphic (see Section 1.1 in Chapter 1 for
details). Then f1 and f2 are harmonic.

• Mean-value property: Let u be harmonic on the unit disk D. Then,

u(0) =

∫

∂D
u(eiθ)

dθ

2π
.

Let D denote the unit disk centered at the origin in C. The group of Möbius
transformations is the set of all conformal maps from D to itself. It is well-known
that any such map is of the form f(z) = eiθ z−z0

1−z̄0z for some θ ∈ (0, 2π) and some
z0 ∈ D.

Definition 28 (Harmonic Measure). [13] [37] Let Ω be a simply connected domain.
For any subset X of the boundary of Ω(X ⊂ ∂Ω), the harmonic measure of X with
respect to z is defined as ω(X,Ω, z) = 1

2π
|f−1(X)|.

Here |.| denotes the Euclidean length of an arc on the unit circle. Note that any
two conformal maps sending O to z only differ by a rotation, so this definition does
not depend on the f chosen. Using harmonic measure, one can extend the mean-
value property to arbitrary domains. If u is a harmonic function on an arbitrary
simply connected domain Ω, z0 ∈ Ω is a base point and fz0 is a conformal map
such that f(0) = z0, then u ◦ f is harmonic on the disk, so that

u(z0) = (u ◦ f)(0) =

∫

S1

u(f(eiθ))
dθ

2π
=

∫

∂Ω

u(z)dωz0 , (35)

where dωz0 is the harmonic measure with respect to z0.
The harmonic measure ω(X,Ω, z) is related to a Brownian Motion started in

the domain Ω from the point z. A one-dimensional Brownian MotionWt intuitively
is a scaling limit of the random walk. We define Brownian Motion next.

82

Definition 29 (Brownian motion). A Brownian motion Wt is a stochastic process
indexed by time t > 0, which has the following properties :

1. W0 = x; here x ∈ R is the starting point.

2. The process has independent increments, i.e. for any two disjoint intervals
[s1, t1] and [s2, t2], where si, ti > 0, the increment in one interval Wt1 −Ws1

is independent of the increment in the other Wt2 −Ws2 .

3. Wt+h −Wt is Normally distributed with mean 0 and variance h.

4. Almost surely, the function t −→ Wt is continuous.

The case W0 = 0 is called Standard Brownian Motion. A two-dimensional
Brownian motion is a pair Bt = (W 1

t ,W
2
t) of two independent one-dimensional

Brownian Motions.

Harmonic measure, Brownian motion and conformal invariance An impor-
tant property of the Brownian motion is that it is invariant under conformal changes,
i.e. the image of a Brownian motion under a conformal map is again a Brownian
motion in the image of the domain [63]. The Brownian Motion can be viewed as
the limit, as t −→ 0 , of a walk which starts at 0, chooses a direction randomly,
goes a distance t in that direction, and continues this way at every point. The angle
changes are preserved under conformal maps, therefore one should expect that the
law of the trajectory should be invariant.

Clearly, the same is true for harmonic measure. In other words,

ω(X,Ω, z) = ω(f(X), f(Ω), f(z)), (36)

for any X ⊂ ∂Ω and f conformal.

4.3.2 Discrete theory

Here we summarize the related discrete theories of random walks on graphs.
Suppose G is a planar graph, embedded on the plane. Let V =

{v1, v2, · · · , vn} be the vertex set, (xk, yk) be the 2D position of vertex vk and

83

E = {e1, e2, · · · , em} be the edge set. For simplicity, we assume each face of
G is a triangle.

vi vj

vk

vl

ok

ol

�k

�l

vi v1

v2

v0

o1

o0

v3

v4

v5

v6

o2o3

o4

o5
o6

(a) (b)

Figure 21: Edge weight and vertex position—(a) shows the edge weight. (b) shows
that the vertex position function is harmonic.

The following edge weight definition is motivated by the relationship of ran-
dom walk and resistance of the triangulation as in an electrical network.

Definition 30 (Cotangent Edge Weight). [17, 27] Suppose edge [vi, vj] is adjacent
to two faces [vi, vj, vk] and [vj, vi, vl], then the weight on edge is given by wij =
1
2
(cot θk + cot θl).

This edge weight determines the transition probability for a random walk on
graph.

Definition 31 (Random Walk on Graph). X(t) is a random walk on the graph G
defined as follows: if at time t the walk is at vertex vi, then the probability of vj
being the next vertex is given by

Prob{X(t+ 1) = vj|X(t) = vi} =
wij∑
k wik

.

When we choose a uniform sampling and all the triangles are equilateral trian-
gles, all the edge weights are close to 1. In this case the above definition becomes
the same as the random walk with uniform distribution on all neighbors. In our
simulations we choose G to be a Delaunay triangulation on a nice set of samples
insideR.

Definition 32 (Discrete Harmonic Measure). Suppose G is a planar graph with
triangular faces. If the random walk X(t) starts from a vertex vi and exits at vk ∈

84

∂G, then the discrete harmonic measure is defined as the probability

ωk(vi) = Prob{X ∼ vk|X(0) = vi}.

Here X ∼ p means that the random walk X exits the boundary ∂G via the
point p.

Definition 33 (Discrete Laplace Operator). Let f : V → R be a function defined on
the vertices of the graph G. The discrete Laplace operator is defined as ∆f(vi) =∑

j wij(f(vj)− f(vi)).

Definition 34 (Discrete Harmonic Function). Let f : V → R be a function and
∆ be the discrete Laplace operator. If ∆f = 0 for all vertices, then f is called a
discrete harmonic function.

Using the above definitions, it is easy to show that discrete harmonic measures
ωj : V → R, ∀vj ∈ ∂G are harmonic functions, and hence the expected position
function is harmonic. Figure 21 shows the vertex position function is also harmonic.
Like smooth case, discrete harmonic functions have mean-value property, which
states the value at each vertex is the average of the values in the neighborhood. The
mean-value property implies maximal modulus principle, which says the max and
min values of a harmonic function must be on the boundary of the graph.

Definition 35 (Discrete Dirichlet Problem). Suppose f : V → R is a function
defined on the graph, f is harmonic, and with boundary condition f |∂G = g,

{
∆f(vi) = 0 ∀vi 6∈ ∂G
f(vj) = g(vj) ∀vj ∈ ∂G.

(37)

From the maximum modulus principle, we get the uniqueness of the solution
to the discrete Dirichlet problem. The solution to the Dirichlet problem can be
explicitly given using harmonic measure.

Theorem 36 (Harmonic Measure Boundary Integration). Suppose f : V → R is the
solution to the Dirichlet problem (Equation 37). Then f(vi) =

∑
vj∈∂G g(vj)ωj(vi).

85

Suppose a vertex v0 at (x0, y0) sends messages routed by random walks. Fig-
ure 21 (b) shows the position function is harmonic. According to theorem 36,
(x0, y0) =

∑
vk∈∂G(xk, yk)ωk(v0).. This is a linear time algorithm, given the har-

monic measure
ωk(v0) = Prob{X ∼ vk|X(0) = v0}.

In our applications, we estimate the harmonic measure simply by the ratio
between the number of messages received at vk and the total number of messages.

The above definitions and theorems do not require the graph to be planar. In
fact, these concepts can be defined on triangular meshes in R3. But the 3D vertex
position is not harmonic. Similar to smooth case, one can apply conformal map-
ping [101] [41] to flatten the 3D triangulation and use the same method to estimate
the source position on the 2D image. Because the Laplace matrix is solely deter-
mined by the connectivity of the graph and the corner angles, roughly speaking,
discrete conformal mapping preserves angles, and therefore preserves harmonic
measures. The harmonic measure can be estimated using the random walks on
the 3D mesh, and applied for boundary integration to estimate the source location
on the 2D image plane.

4.4 Traffic analysis on random walks

4.4.1 Settings

We assume that a sensor network W is deployed densely in a geometric domain
R. Packet routing in the sensor network is done by random walk on the network.
Suppose that a data source at x generatedN data messages, we record for each mes-
sage the boundary node that receives this message for the first time. This frequency
count can be normalized as a distribution ω′x on the sensor network boundary. The
input to the traffic analysis algorithm for the adversary is the exit distribution ω′x, to-
gether with the geometry of the sensor network boundaryR. The adversary has no
knowledge of the sensor network in the interior of R and would like to reconstruct
the position x.

To reconstruct the source location, we assume that the sensor network is dense

86

and thus the random walk is a good approximation of Brownian motion in the con-
tinuous domainR. Therefore, for each point x ∈ R, define by ωx the exit distribu-
tion of Brownian motion starting from x. We will compare ω′x to ωx to reconstruct
the position of the source. Notice that in this setting there are two relaxations: 1)
the distribution ω′x is obtained through random walk on the (unknown) graph W ;
2) the distribution ω′x is obtained through a Monte Carlo method, i.e., based on the
frequency count of N random walk samples. Thus our prediction of the source lo-
cation could be a bit off from the true source location. But if random walks on the
real sensor network are good approximations of the Brownian motion inR, and that
the number of samples, N , is not too small, the error in the prediction is expected
to be small. This is indeed confirmed by simulations in the next section.

We will present two algorithms. The first algorithm provides a closed-form
solution by simply integrating along the domain boundary R. It works for a single
source on a topological disk domain or topological disk with multiple holes. The
second algorithm is based on maximum likelihood method. Basically by comparing
ω′ and ω (the exit distribution of Brownian motion), we find the source location y
such that ω′x and ωy are the most similar. This is a generic framework for finding
the locations of multiple data sources or any sources that can be represented in a
compact way.

4.4.2 ALG1: Integration along domain boundary

Recall that if u is a harmonic function on the domain Ω, then its value at any point
in the interior can be recovered by its values on the boundary, as long as one knows
the harmonic measure of the boundary, i.e. u(z0) =

∫
∂Ω
u(z)dωz0 where dωz0 is

the harmonic measure with respect to z0. Clearly, the identity function u(z) = z is
holomorphic (i.e., is differentiable in z), the real part and imaginary part are both
harmonic. Hence we get z0 =

∫
∂Ω
zdωz0 .

For the case of a single source at position z0, our construction algorithm is
to simply multiply the coordinates of the location of a point p ∈ ∂R with its har-
monic measure and add the resultants over the entire boundary. This algorithm is
a linear running time algorithm with complexity dependent only on the length of
the boundary ∂R. The algorithm applies for all planar domains, including multiply

87

connected ones.

Calculating harmonic measure Now we show how to efficiently compute
ω(X,R, z), i.e., for any point z and any subset X of the boundary of R, the prob-
ability that a random walk started from z will first exit the boundary from X . We
first handle the (highly symmetric) case where the domain is the disk D; X then is
a subset of the unit circle and the starting point is the origin.

Computing ω(X,D, 0) : This is the probability that a random walk started
from the origin in the disk exits the disk from the set X on the boundary. Clearly,
this is uniform (by symmetry), and hence ω(X,D, 0) = |X|

2π
. In other words this

probability is just the normalized Euclidean arc-length of X .
ω(X,D, z0) : To compute the harmonic measure for an arbitrary point z0 ∈ D,

recall that the (conformal) Möbius transformation

g(z) =
z − z0

1− z̄0z

maps the unit disk to itself and sends the point z0 to the origin. Now, we use the
property that the harmonic measure is preserved under conformal maps to obtain

ω(X,D, z0) = ω(g(X),D, g(z0)) = ω(g(X),D, 0) =
|g(X)|

2π
.

Computing ω(X,R, z0) for arbitrary R: Here we will describe how to find
the harmonic measure for an arbitrary planar domain R. The first method only
works for simply connected domains (domains with no holes) while the second
works for both simply and multiply connected domains.

Method 1: Using the Riemann mapping This method uses the conformal invari-
ance we described in Section 36. As above, let R be a simply connected domain,
with boundary Γ a Jordan curve. In almost all practical applications, one approx-
imates R by a polygon, and Γ by a polygonal chain. The first step is to compute
the Riemann mapping from D to R. For accomplishing this task, various methods
have been proposed [101] [41].

So let us assume we have computed the Riemann mapping f : D −→ R.
Notice that f−1 : R −→ D is also conformal and once again, conformal invariance

88

implies that ω(X,R, z0) = ω(f−1(X),D, f−1(z0)) and we have shown how to
compute ω(X,D, z) for arbitrary X ⊂ ∂D and z ∈ D previously.

Method 2: Symm’s method This method does not require one to explicitly com-
pute the Riemann Mapping from D to R, and holds for multi-holed domain. We
refer the reader to [13] for a short summary of this method.

Recall from 35 that for any holomorphic function u on R, we have the prop-
erty u(z0) =

∫
∂R u(z)dωz0 . We can discretize the boundary of R into n intervals

{Pj}nj=1, assume that the harmonic measure is constant in each interval and look at
the discrete counterpart to the above equation:

u(z0) =
∑

j

∫

Pj

u(z)dωz0 =
∑

j

ωz0(Pj)

|Pj|

∫

Pj

u(z)dz

Now if we choose n independent harmonic functions {ui}ni=1, we get a system
of n equations in n unknowns and we can solve to find ωz0(Pj).

4.4.3 ALG2: Maximum likelihood method

To apply a maximum likelihood approach (MLE), we first need the exit distribu-
tion/harmonic measure of a Brownian motion starting at a point z ∈ R, which can
be computed using methods in the section above. We then explain the application
of MLE for different settings.

Let f(.|θ) denote a family of distributions parameterized by θ. If one observes
an i.i.d. sample x1, x2, ...xn from one of the distributions in this family, the Max-
imum Likelihood method is a way to estimate the true parameter θ0 such that this
sample is most likely to come from f(.|θ0).

Since the observations are assumed to be identically and independently dis-
tributed, the joint density function is

f(x1, x2, ...xn|θ) = f(x1|θ)f(x2|θ)...f(xn|θ)

One then forms the Likelihood Function

`(θ|x1, x2, ...xn) = Πn
i=1f(xi|θ)

89

The maximum likelihood estimate (MLE) θ̂ is defined to be the value of θ which
maximizes the likelihood function, given the observed values xi, i.e.

θ̂ = arg max
θ

`(θ|x1, x2, ...xn)

For simplicity, the log-likelihood function ˆ̀ = log ` is also used, since log is a
monotonic transformation.

From now on, fz := f(x|z) will denote the density function for the harmonic
measure. Denote by Xz the exit position (the first hit position) of a random walk
starting at z. It is a random variable distributed with density fz; P(Xz ∈ A) =∫
A
fz(x)dx for all A ⊂ ∂Ω.

• Single source. Suppose that x1x2, ...xN are the first hit positions on the
boundary for the N messages sent by an unknown source z0 ∈ R respec-
tively. We know f(x|z) from the previous section; one can now form the
likelihood function and maximize.

• k sources, k is known. This boils down to the single source problem for each
of the sources. Assume that the adversary cannot distinguish the data packets
from different sources. Let the unknown source locations be z1, ...zk. Then
what we observe is the random variable

Y = Xz1 +Xz2 + ...Xzk

Given the zi, the density of Y can be computed. Again one can form the
likelihood function and maximize, now with respect to the vector of zi. We
also allow short-lived fake messages which are sent to a randomly selected
neighbor by the relay node after a real message is relayed. Our traffic analysis
is not affected if the fake messages are discarded and not relayed any further.

• Source moving on a line. Assuming that we have a mobile data source
moving on a line. The source sends packets periodically after distance ε. We
are interested in estimating the initial position z0 and the direction θ in which
the source is travelling. Let zi = z0 + iεeiθ. Notice here we just need to
estimate 3 real parameters, and so we could expect to get good estimates with
just a lot fewer data packets per source zi.

90

4.5 Simulations

We conducted extensive simulation tests to examine the performance of our algo-
rithm to find the source location, as well as how its accuracy for recovering the
source-location is affected by different parameters.

The simulations were done under different settings, namely a unit disk, a pla-
nar non-disk domain, a planar domain with holes and a non-planar domain. Also for
each type of domain, we conducted simulations using both a triangle mesh (TM)
and a unit disk graph (UDG). In TM model, we calculated the transition proba-
bility for each node d by it’s neighbors in the triangulations; for UDG model, we
calculated the transition probability for d by it’s neighbors in the unit disk graph.
We scaled all planar domains inside a 2 × 2 bounding box, and scaled non planar
domains inside a 2 × 2 × 2 bounding box. We use the term Error to measure
the distance between the true source location and the location predicted by our al-
gorithm. Errorave and Errormax represent the average and maximum value of
Error, where the unit is the same as used in the re-scaling mentioned above.. In
the following, Ndomain represents the number of nodes inside domain R, Nmsg rep-
resents the number of messages issued at each source node.

Unit disk domain Figure 22 right and Figure 23 right show the relationship be-
tween Nmsg with Errorave and Errormax under TM disk model and UDG disk
model, respectively. This is obtained by fixing Ndomain=1K, and then randomly
choosing n = 100 sources inside the R and issuing Nmsg random walks from each
of these chosen sources. We then calculated Errorave and Errormax.

We also examine how the location of source (the distance r from disk center)
affects Errorave. We uniformly sampled 0 < r < 1 to get {r1, r2, ...rm}. For each
ri we randomly chose ni = 100 points whose distance to the center rni

satisfies
ri− ε < rni

< ri− ε. In the simulations, we use ε = 0.05 and Nmsg = 1000 times.
Then we use our method to predict the source location according to the boundary
message distribution. Based on the real source location and the one calculated by
our method, we computed Errorave for each ri. Figure 22 left and Figure 23 left
show the relationship between ri and Errorave under the TM model and UDG
model, respectively. We can see that Errorave decreases as the distance from the

91

center increases.

Figure 22: Left: Distance from center vs. Errorave under TM model. Right: Nmsg

vs. Errorave/Errormax under TM model.

Figure 23: Left: Distance from center vs. Errorave under UDG model. Right:
Nmsg vs. Errorave/Errormax under UDG model.

Planar non-disk Domains We simulated similar scenarios on an irregular do-
main. We evaluated howNmsg affectsErrorave andErrormax by fixingNdomain =

1000. The results are shown in Figure 24. We can see that Errorave and Errormax
decreased while we increased Nmsg. We obtained Errorave around 0.04 and 0.08

under TM model and UDG model, respectively, when 100 walks were issued.

Planar Domain with Holes Using the same setup as above, we evaluated how
Nmsg affects Errorave and Errormax for a planar domain with holes. For a planar
domain with holes, as long as we can monitor the inside hole boundaries as well, we
can just treat them as the same as outer boundary in the calculation. The results are
shown in figure 25. We obtained Errorave around 0.04 and 0.07 under TM model
and UDG model for 100 messages.

92

Figure 24: Nmsg vs. Errorave/Errormax. Left:TM model. Right:UDG model.

Figure 25: Nmsg vs. Errorave/Errormax. Left:TM model. Right:UDG model.

Non-planar Domain For a general non-planar domain, we first mapped it to the
unit disk using conformal mapping method in [41]. Since Brownian motion is in-
variant under conformal mappings, we used the same method to calculate source
location in the parameter domain, and then mapped it back to the original surface.
The simulation results are in Figure 26. We obtained Errorave around 0.08 and
0.09 under TM model and UDG model for 100 messages.

Figure 26: Nmsg vs. Errorave/Errormax. Left:TM Model. Right:UDG Model.

93

Visualization of Exit Distribution Following we show the exit distribution along
the domain boundary. We took the non-uniform planar domain, set an arbitrary
source and visualizes the exit distribution (Figure 27 left) using small disks along
the boundary with area proportional to the number of first hits. We also show
the distribution on the parameter domain, which is obtained by conformally map-
ping the original domain to a unit disk (Figure 27 right). The distribution on the
parameter domain gives strong evidence that conformal mapping preserves Brow-
nian motion. Namely the Brownian motion starting from source s on surface M is
equivalent to the Brownian motion start from φ(s) on surface M̄ , if φ : M → M̄ is
a conformal mapping from M to M̄ .

Figure 27: First Hit Distribution. Left: Original domain. Right: Parameter domain.

Network Density Versus Average Error To examine how much the network
density Ndomain affects the average distance error Errorave, we fix Nmsg, the num-
ber of messages. We then vary Ndomain and observe Errorave. The results are
shown in Figure 28.

Figure 28: Ndomain vs. Errorave. Left:TM model. Right:UDG model.

94

Multiple Sources We uniformly discretized the unit square domain into a N ×
N grid (N=20 in our experiment), and assumed the possible location of a source
is on the center of a grid. For 2 sources case, there are N4/2 pairs of possible
source location combinations. For each possible pair (si, sj), we issued Nmsg =

2000 random walks from sj and sj and stored a set of first hit distributions {Φij ,
0 < i, j < N}. We then randomly picked source-pairs (s1, s2) to issue N̄msg

random walks and obtained a first hit distribution Φtest. By comparing Φtest with
Φij we got a p-value which stands for the probability that Φtest and Φij are the
same distribution. The i, j which gave the maximum p-value directly points out
the location of si and sj . In this experiment, we varied Nmsg and obtained a set of
Errorave, shown in Figure 29. We can see that Errorave decreased as we increased
N̄msg.

Figure 29: Nmsg vs. Errorave for two sources.

4.6 Related work

Routing that preserves source anonymity has been a topic of study for a number of
years. For routing on the Internet, one would like to hide the sender’s identity, as
phrased in anonymous routing. The most popular schemes are Chaum’s mixes [19]
and onion routing [115, 116]. In Chaum’s scheme, the idea is to send the message
in an encrypted manner to a central server called the anonymizer, which removes
the source identity and then sends the message to the receiver. Thus one cannot
differentiate the sources of the messages delivered by anonymizer. Onion routing
uses encryption on source routing, such that the source identifies the entire routing
path to the destination and encrypt the messages in layers in the order of the nodes

95

along the path. Each relay node decrypts the message using its own private key,
which reveals the next hop and sends the message. In this way each node on the
path is only aware of the immediate upstream and downstream node and is not
aware of the entire path, in particular the source identity. Both schemes cannot
be applied in sensor network setting since we cannot afford a central server, and
public key encryption is too heavy for sensor nodes. In addition, encryption based
security schemes only protect the content of the messages but cannot deal with
traffic analysis attacks.

Existing schemes for preserving source location privacy is summarized in a
recent survey [65]. Among them, random walk is a commonly used component.
Phantom routing [51,85] first uses random walk to arrive at a node that is reasonably
far away from the source and then use probabilistic flooding to deliver the message
to the destination. Followup schemes such as in [67, 75, 127] use biased random
walk in order to get farther away from the data source, or introduce fake data sources
to further confuse the traffic pattern [51, 78]. In the next section we examine some
of these variations and discuss the performance of the traffic analysis attack for
these cases.

4.7 Discussions

Length of random walks Our traffic analysis scheme uses the exit distribution of
random walks on the network boundary. This means that the random walks should
be long enough so that they hit the network boundary with good probability before
they stop. We argue that this is true as the random walks should be long enough to
deliver the message to the data sink. If the data sink is at an unknown location in
the network, the random walk should be long enough so that it visits every node in
the network. This is termed as the cover time, defined as the expected number of
steps for a random walk to cover all the nodes in the network [73]. For a 2D grid of
n nodes the cover time is roughly in the order of Ω(n2).

To estimate the probability that a random walk of length h hits the network
boundary, we again consider a 2D grid of n nodes. Suppose Xi is the displace-
ment vector of the i-th step of the random walk. Xi is uniformly chosen from
{(1, 0), (−1, 0), (0, 1), (0,−1)}. The position of random walk after i steps starting

96

from the center of the grid is simply Pi = X1 +X2 + · · ·+Xi. By the central limit
theorem, Pi is a Gaussian distribution with mean (0, 0) and variance h/2I, where I
is a 2 × 2 identity matrix. Thus the probability that Pi is outside a disk of radius r
from the center is estimated as e−r2/h. Choose h to be O(n2) and r to be

√
n, the

probability above is 1 − 1/n. This means that the random walk of length O(n2)

has a high probability to hit the network boundary at least once. This means that
for a random walk to deliver the message to the sink, it must hit the boundary with
high probability. This assures that the traffic analysis along the boundary could be
performed.

Directed or biased random walk In a standard random walk, the next node to
visit is chosen uniformly randomly from all neighbors. This is the discrete analog
of Brownian motion which is isotropic. The first variation to it is to define a non-
uniform probability distribution on neighbors. In Phantom routing and a number
of follow-up papers, a biased random walk is often adopted in which the neighbor
that is farther away from the data source is chosen with higher probability, in or-
der to quickly get to the regions far away from the data source. For example, in
sector-based directed random walk [51], a random walk from the west will be sent
to a node to the east, chosen uniformly randomly. In hop-based directed random
walk [51, 75], a random walk chooses the next hop uniformly randomly among
only the nodes closer to the sink.

If the transition probability is non-uniform but determined (as in the two
cases mentioned above), the harmonic measure as defined by the random walk will
change. If the transition probability is known to the adversary, we can still calcu-
late the harmonic measure under this change. Using the same idea presented in this
work one can still infer the source location. Therefore to make a biased random
walk to be a countermeasure of the traffic analysis, we need to make the transition
probability to be unknown to the adversary. One idea is to vary this transition proba-
bility randomly and periodically. However, in this case one should be careful about
the transition probability configuration to make sure that the random walk is still
ergodic1 – otherwise there is no guarantee that the random walk covers the entire

1A random walk is ergodic when there is a unique stationary distribution. This requires the graph
(implied by the edges with non-zero transitional probability) to be connected and non-bipartite.

97

network and eventually delivers the message to the data sink.

98

Chapter 5

Topology Dependent Space Filling
Curves

5.1 Introduction

We consider a sensor network that densely covers a planar domain, possibly with
multiple network holes. In this chapter we develop algorithms to linearize the net-
work, i.e., ‘covering’ the sensor network by a single path. By enforcing a linear
order of the sensor nodes one can carry serial logical definitions and serial oper-
ations on both the sensor nodes and the sensor data. We list a number of such
applications in the following.

Serial data fusion When a signal is spread over an area larger than the coverage
range of a single sensor, we will need to use multiple sensors to collaboratively
detect the distributed signal. One type of data fusion mechanisms, called serial
fusion [15,122], combines sensor observations in a linear fashion to derive hypoth-
esis. A state is maintained and passed on from sensor to sensor along a serial path,
incorporating new observation at each step. This is in contrast with parallel fusion
mechanism in which sensors independently process their data and pass the output
to a centralized fusion center. There are pros and cons for serial fusion versus par-
allel fusion respectively. One particular advantage of serial fusion is that the fusion
process can be stopped as long as there is enough evidence to support or reject the

99

hypothesis, while in parallel fusion all data will be sent to the fusion center nev-
ertheless. The implementation of the serial data fusion in a distributed network
requires a path that visits all the nodes in a linear order [88].

Motion planning of data mules Collecting data from sensor networks to a static
data sink often suffers from communication bottleneck near the sink. One way to
address this is to use a mobile sink, or called a data mule, implemented by a mobile
device touring around the network to collect data through direct communication
with a sensor in close proximity. Besides collecting sensor data, a data mule can
also be helpful for sensor network maintenance such as battery recharge, beacon-
based localization [9,58], etc. A data mule moves along a path. Planning the motion
of a data mule requires a path that visits the nodes in the network with minimum
duplicate visits. When there are multiple data mules in the network, a flexible set of
paths that can be used by the data mules with minimum coordination and minimum
interference (e.g duplicate visits by different mules) will be handy.

Sensor node indexing Another application of representing a sensor network by a
linear order is for indexing sensor nodes or sensor data [61]. A number of indexing
schemes for multi-dimensional input first take a space filling curve to ‘linearize’ the
input and then apply standard 1D indexing mechanisms.

Before we present our ideas, we first review previous work of linearizing a two
dimensional continuous domain or a discrete two dimensional network.

5.1.1 Related work

Space filling curves In the continuous setting, various space filling curves have
been defined for a square region [100].A space filling curve in mathematical analy-
sis refers to a curve whose range contains the entire 2-dimensional unit square (or
more generally an N -dimensional hypercube). Space filling curves were initially
discovered by Giuseppe Peano and are also called Peano curves. These curves are
often recursively constructed. See Figure 30 for an instance of the Hilbert curve.
The basic recursive structure is to replace a line segment by a zigzag pattern. In a re-
cursive step, each segment is replaced by a scaled and rotated version of this pattern.

100

Figure 30: The Hilbert curve (source: Wikipedia).

The larger number of recursions used, the denser the curve becomes. Mathemat-
ically every point of the unit square is on the curve, given an infinite number of
recursions. For a discrete set of points it suffices to take a sufficiently high num-
ber of recursions to generate a linear order of the points. Space filling curves in
this narrow definition only apply to 2-dimensional (or N -dimensional) unit squares
(hyper-cubes). When the domain is irregular and/or has holes the space filling curve
will be chopped into many disconnected pieces. Very little work is known about ex-
tending the space filling curves to other shapes. The only work known is a heuristic
algorithm [50] with a modified Hilbert curve for an ellipse.

Hamiltonian paths In a discrete setting such as a graph, a natural analog of a
space filling curve is a Hamiltonian cycle or a Hamiltonian path, i.e., a cycle or
a path that visits each vertex once and only once. Only a subset of graphs has a
Hamiltonian path and determining whether a Hamiltonian path or a Hamiltonian
cycle exists in a given graph (whether directed or undirected) is NP-complete, even
in restricted families such as planar graphs [36].

Traveling salesman tour When a metric is defined between any two nodes, the
traveling salesman problem (TSP) asks for the shortest tour that visits each node
once and only once. In our setting the distance between two nodes can be either

101

the graph distance or the Euclidean distance. The latter becomes the Euclidean
TSP. Both the metric TSP and the special case of Euclidean TSP are NP-complete.
For the metric TSP, the heuristic of using the Euler tour on the minimum spanning
tree gives a two-approximation. With some additional tricks, the Christofides algo-
rithm [21] gives a 3/2 approximation. For the Euclidean TSP, polynomial approx-
imation schemes (PTAS) are known [7, 79] to find a (1 + ε) approximate solution
for any ε > 0. Such algorithms are mostly of theoretical interest. When multi-
ple tours are allowed (e.g., multiple data mules), the problem of minimizing the
total travel distance collectively done by all tours becomes the multiple traveling
salesman problem (mTSP), which is also NP-complete and does not have any effi-
cient approximation algorithms [12]. Existing solutions for mule planning are all
heuristic schemes [45, 52, 69, 106, 121].

Random walk A practically appealing solution for visiting nodes in a network is
by random walk. The downside is that we encounter the coupon collector problem.
Initially a random walk visits a new node with high probability. After a random
walk has visited a large fraction of nodes, it is highly likely that the next random
node encountered has been visited before. Thus it takes a long time to aimlessly
walk in the network and hope to find the last few unvisited nodes. Theoretically,
for a random walk to cover a grid-like network, the number of steps is quadratic in
the size of the network [73]. For a random walk of linear number of steps, there
are a lot of duplicate visits as well as a large number of nodes unvisited at all. In
the case of multiple random walks, since there is little coordination between the
random walks, they may visit the same nodes and duplicate their efforts.

A major problem with all the above constructions is that the curve found does
not have adaptive density. A space filling curve has a fixed density, determined
by the threshold of the recursion. Hamiltonian paths and TSP will generate fixed
length paths. In sensor network applications such as serial fusion and data mule
planning, the length of a path may be restricted by travel budget or required fusion
delay. If we start with a high density curve, we spend a lot of time visiting nodes
in one region of the network before we ever get information from another region.
Instead, we may want to adopt a visiting scheme such that we quickly tour around
the network coarsely, get a rough idea of the sensor data and gradually refine the

102

density when more travel budget is available or a higher delay is allowed. Our
construction is one of this type.

5.1.2 Our contribution

In this work, we propose a scheme to generate a curve that (i) densely covers any
geometric domain, possibly with holes; (ii) have a coverage density proportional to
its length. To understand the main idea, we first consider a torus. See Figure 31.
We cut a torus open with two cuts a, b, and flatten it as a square in the plane with
the top edge identified as the bottom edge and the left edge identified as the right
edge.

We will consider the universal covering space by packing an infinite number
of translated copies of the torus to cover the entire two dimensional plane, with the
origin at the bottom left corner of one such copy. Now take a straight line ` with
a slope k being an irrational number. Mapping back to the original torus, the line
becomes a curve that spirals around the torus for infinitely long and never repeats
itself. Figure 31 (ii) shows a part of the curve on the torus. We prove that the
curve has no self-intersections and the curve is dense, i.e., any point p of the torus
is arbitrarily close to the curve.

With the basic construction for a torus, we will generalize it to any planar
domain with holes. Specifically, for a simple domain with no holes, we will first
map it one-to-one to a unit square, and then flip the square along the top edge and
the right edge to get four copies, creating a torus. Then we find the dense curve on
the torus. Since any point in the original domain is mapped to four copies on the
torus, the curve we find will visit any point for at most four times. The property of
being dense still holds. For a domain with holes, we will first double cover it, i.e.,
creating two copies of the network, the upstairs copy and the downstairs copy. The
two copies are glued to each other along the hole boundaries to create a multi-torus,
each hole being a handle. In the same way we choose one handle to flatten the torus,
and the rest of the handles are mapped to very narrow ‘slits’. A line with irrational
slope in the covering space, when hitting a slit, bounces back. We show that the
curve will visit each point of the original domain at most twice and is provably
dense.

103

Fig. 1: The Hilbert curve (source: Wikipedia).

cycle or a Hamiltonian path, i.e., a cycle or a path that visits

each vertex once and only once. Only a subset of graphs has

a Hamiltonian path and determining whether a Hamiltonian

path or a Hamiltonian cycle exists in a given graph (whether

directed or undirected) is NP-complete, even in restricted

families such as planar graphs [7].

Traveling salesman tour. When a metric is defined between

any two nodes, the traveling salesman problem (TSP) asks for

the shortest tour that visits each node once and only once. In

our setting the distance between two nodes can be either the

graph distance or the Euclidean distance. The latter becomes

the Euclidean TSP. Both the metric TSP and the special case

of Euclidean TSP are NP-complete. For the metric TSP, the

heuristic of using the Euler tour on the minimum spanning

tree gives a two-approximation. With some additional tricks,

the Christofides algorithm [6] gives a 3/2 approximation.

For the Euclidean TSP, polynomial approximation schemes

(PTAS) are known [2], [19] to find a (1 + ε) approximate
solution for any ε > 0. Such algorithms are mostly of

theoretical interest. When multiple tours are allowed (e.g.,

multiple data mules), the problem of minimizing the total

travel distance collectively done by all tours becomes the

multiple traveling salesman problem (mTSP), which is also

NP-complete and does not have any efficient approximation

algorithms [4]. Existing solutions for mule planning are all

heuristic schemes [9], [12], [16], [25], [28].

Random walk. A practically appealing solution for visiting

nodes in a network is by random walk. The downside is that

we encounter the coupon collector problem. Initially a random

walk visits a new node with high probability. After a random

walk has visited a large fraction of nodes, it is highly likely

that the next random node encountered has been visited before.

Thus it takes a long time to aimlessly walk in the network and

hope to find the last few unvisited nodes. Theoretically for a

random walk to cover a grid-like network, the number of steps

is quadratic in the size of the network [18]. For a random walk

of linear number of steps, there are a lot of duplicate visits as

well as a large number of nodes unvisited at all. In the case

of multiple random walks, since there is little coordination

between the random walks, they may visit the same nodes

and duplicate their efforts.

A major problem with all the above constructions is that the

curve found does not have adaptive density. A space filling

curve has a fixed density, determined by the threshold of

a

b

a a

b

! : y = kxb

(i) (ii)

Fig. 2: (i) A torus cut open along two curves a, b. (ii) The flattened
torus. The line ! : y = kx is shown on the flattened torus (the top
and bottom edges are the cut b, the left and right edges are the cut
a). Since the top edge and bottom edge are actually the same, the
line will go through the torus as shown by the parallel lines. It will
not intersect itself and can be shown to be arbitrarily close to any
point on the torus.

the recursion. Hamiltonian paths and TSP will generate fixed

length paths. In sensor network applications such as serial

fusion and data mule planning, the length of a path may be

restricted by travel budget or required fusion delay. If we start

with a high density curve, we spend a lot of time visiting nodes

in one region of the network before we ever get information

from another region. Instead, we may want to adopt a visiting

scheme such that we quickly tour around the network coarsely,

get a rough idea of the sensor data and gradually refine the

density when more travel budget is available or a higher delay

is allowed. Our construction is one of this type.

B. Our Contribution

In this paper, we propose a scheme to generate a curve

that (i) densely covers any geometric domain with possibly

holes; (ii) have a coverage density proportional to its length.

To understand the main idea, we first consider a torus. See

Figure 2. We cut a torus open with two cuts a, b, and flatten
it as a square in the plane with the top edge identified as the

bottom edge and the left edge identified as the right edge.

We will consider the universal covering space by packing

an infinite number of translated copies of the torus to cover

the entire two dimensional plane, with the origin at the bottom

left corner of one such copy. Now take a straight line " with
a slope k being an irrational number. Mapping back to the
original torus, the line becomes a curve that spirals around

the torus for infinitely long and never repeats itself. Figure 2

(ii) shows a part of the curve on the torus. We could prove

that the curve has no self-intersections and the curve is dense,

i.e., any point p of the torus is arbitrarily close to the curve.
With the basic construction for a torus, we will generalize

it to any planar domain with holes. Specifically, for a simple

domain with no holes, we will first map it one-to-one to a

unit square, and then flip the square along the top edge and

the right edge to get four copies, creating a torus. Then we find

the dense curve on the torus. Since any point in the original

domain is mapped to four copies on the torus, the curve we

find will visit any point for at most four times. The property

of being dense still holds. For a domain with holes, we will

first double cover it, i.e., creating two copies of the network,

the upstairs copy and the downstairs copy. The two copies are

Figure 31: (i) A torus cut open along two curves a, b. (ii) The flattened torus. The
line ` : y = kx is shown on the flattened torus (the top and bottom edges are the
cut b, the left and right edges are the cut a). Since the top edge and bottom edge are
actually the same, the line will go through the torus as shown by the parallel lines.
It will not intersect itself and can be shown to be arbitrarily close to any point on
the torus.

The mapping of a general two dimensional domain to a multi-torus is handled
by conformal map. Computing a conformal map for deforming the shape of a sen-
sor network has been done by using Ricci flow to change the network curvature,
in a number of prior works [46, 101, 102, 134]. We remark that the tools we use
in this work are different. Our current method is based on holomorphic differen-
tials from Riemann surface theory [40]. Imagine an electric field on a surface; the
equipotential lines are orthogonal to the electric field lines everywhere. The pair
of electric field lines and the equipotential lines form the holomorphic 1-form. All
holomorphic 1-forms on a surface form a group, which is isomorphic to the first
homology group of the surface. We select a special holomorphic 1-form, such that
the integration of the 1-form gives a special conformal map. Assume the network
is a planar domain with multiple holes, then the conformal map transforms the do-
main to an annulus with concentric circular slits. Two boundaries are mapped to
the inner and outer circles, the other boundaries are mapped to the slits. This type
of maps can not be carried out by Ricci flow method, because Ricci flow requires
the target curvature to be given a-priori. But in this scenario, neither the position
nor the radii of circular slits are known at the beginning. On the other hand, Ricci
flow is a non-linear method in nature; whereas holomorphic differential method is

104

a linear one, which is computationally more efficient.
The conformal map is computed for a given network field at the network ini-

tialization phase. The computation can be carried with only the network geometric
domain Ω, if the sensors are densely deployed inside Ω. With the map computed
the dense curve can be found and followed locally by simply specifying an irra-
tional slope. This leads to naturally decentralized computations and planning in the
network that can benefit data storage and data mule collection.

In the following we first present the theory of finding a dense curve in a con-
tinuous domain. The algorithmic details follow. We present simulation results and
comparisons with space filling curves and random walks at the last.

5.2 Theoretical foundation

In this section, we will present the theoretical foundation, including rigorous proofs
and computational methodology, of our dense curve computation. We show how
to find a dense curve for a continuous planar domain with a canonical shape un-
der different topologies, including topological quadrilaterals (i.e., simple domain
without hole), topological annulus (i.e., with one hole), and topological annuli (i.e.,
with multiple holes). In the next section we present the algorithm to deform any
planar domain to be one of the canonical shapes so that we can apply the dense
curve computation.

5.2.1 Dense curve for simply connected domains and the annu-
lus

Denote by S a planar domain. If S has one hole, we double cover it creating two
copies, one top copy S and one bottom copy −S. We glue the two copies along the
corresponding boundaries to form a topological torus.

If S is simply connected, we first map it to a square and denote by v0, v1, v2, v3

the four corners on the outer boundary. Now take four copies of the domain, essen-
tially first reflect along the top edge v0v1 and then reflect the two copies along the
right edge v1v2. This will make it a torus. See Figure 32. For both cases, we need
to design a dense curve on a torus.

105

glued to each other along the hole boundaries to create a multi-

torus, each hole being a handle. In the same way we choose

one handle to flatten the torus, and the rest of the handles

are mapped to very narrow ‘slits’. A line with irrational slope

in the covering space, when hitting a slit, bounces back. We

could show that the curve will visit each point of the original

domain at most twice and is provably dense.

The mapping of a general two dimensional domain to

a multi-torus is handled by conformal map. Computing a

conformal map for deforming the shape of a sensor network

has been done by using Ricci flow to change the network

curvature, in a number of prior work [10], [22], [23], [32].

We remark that the tools we use in this paper is different.

Our current method is based on holomorphic differentials

from Riemann surface theory [8]. Imagine an electric field

on a surface, then the equipotential lines are orthogonal to

the electric field lines everywhere, the pair of electric field

lines and the equipotential lines form the holomorphic 1-form.

All holomorphic 1-forms on a surface form a group, which is

isomorphic to the first homology group of the surface. We

select a special holomorphic 1-form, such that the integration

of the 1-form gives a special conformal map. Assume the

network is a planar domain with multiple holes, then the

conformal map transforms the domain to an annulus with

concentric circular slits. Two boundaries are mapped to the

inner and outer circles, the other boundaries are mapped to

the slits. This type of maps can not be carried out by Ricci

flow method, because Ricci flow requires the target curvature

given a priori. But in this scenario, neither the position nor

the radii of circular slits are known at the beginning. On

the other hand, Ricci flow is a non-linear method in nature;

whereas holomorphic differential method is a linear one, which

is computationally more efficient.

The conformal map is computed for a given network field

at the network initialization phase. The computation can be

carried with only the network geometric domain Omega, if
the sensors are densely deployed inside Ω. With the map
computed the dense curve can be found and followed locally

by simply specifying an irrational slope. This leads to naturally

decentralized computations and planning in the network that

can benefit data storage and data mule collection.

In the following we first present the theory of finding a

dense curve in a continuous domain. The algorithmic details

follow. We present simulation results and comparisons with

space filling curves and random walks at the last.

II. THEORETICAL FOUNDATION

In this section, we will present the theoretical foundation,

including rigorous proof and computational methodology, of

our dense curve computation. We show how to find a dense

curve for a continuous planar domain with a canonical shape

under different topologies, including topological quadrilaterals

(i.e., simple domain without hole), topological annulus (i.e.,

with one hole), and topological annuli (i.e., with multiple

holes). In the next section we will show the detailed algorithm

v0
v1

v2v3

S

Fig. 3: Reflect twice to create a torus with four copies of a square.

!0

"0

"1

!0 !1 !4

!2 !3 !7

!5 !6 !9

(a) square mapping (b) universal covering space

Fig. 4: Conformal mapping for a topological torus.

to deform any planar domain to be one of the canonical shapes

so that we can apply the dense curve computation.

A. Dense Curve For Annulus and Simply Connected Domains

Denote by S a planar domain. If S has one hole, we

double cover it – creating two copies, one upstairs copy S
and one downstairs copy −S and glue the two copies along

the corresponding boundaries to form a torus.

If S is simply connected, we first map it to a square and

denote by v0, v1, v2, v3 the four corners on the outer boundary.
And now take four copies of the domain, essentially first reflect

along the top edge v0v1 and then reflect the two copies along
the right edge v1v2. This will make it a torus. See Figure 3.
For both cases, we need to design a dense curve on a torus.

A torus T 2 can be conformally and periodically mapped

onto the plane, namely, the torus can be treated as

T 2 = R
2/Γ,

where Γ is the lattice formed by

Γ := {me1 + ne2|m,n ∈ Z},

e1 and e2 are linearly independent translations. By an affine
transformation as shown in Figure 4, we can deform the lattice

to be the regular integer lattice, namely, e1 = (1, 0) and e2 =
(0, 1).
We define a dense curve on a 2D domain T 2 as an infinitely

long straight line in its universal covering space R2, with

irrational slope. It is continuous and non self-intersecting,

and uniformly distributed, as demonstrated by the following

theorem.

Figure 32: Reflect twice to create a torus with four copies of a square.

D0

w0

w1

D0 D1 D4

D2 D3 D7

D5 D6 D9

(a) square mapping (b) universal covering space

Figure 33: Conformal mapping for a topological torus.

A torus T 2 can be conformally and periodically mapped onto the plane,
namely, the torus can be treated as

T 2 = R2/Γ,

where Γ is the lattice formed by

Γ := {me1 + ne2|m,n ∈ Z},

e1 and e2 are linearly independent translations. By an affine transformation as
shown in Figure 33, we can deform the lattice to be the regular integer lattice,
namely, e1 = (1, 0) and e2 = (0, 1).

106

γ0

γ1

γ2

γ3

γ0

γ1

γ2γ3

τ1

τ2

τ3

γ0

γ1

γ2

γ3
τ1 τ1

τ2 τ3

(a) (b) (c)

Figure 34: Multiply connected domain.

We define a dense curve on a 2D domain T 2 as an infinitely long straight line in
its universal covering space R2, with irrational slope. It is continuous and non self-
intersecting, and uniformly distributed, as demonstrated by the following theorem.

Theorem 37 (Weyl’s equidistribution theorem [110, 126]). Let x be a irrational
number. For n ∈ N, consider the sequence 〈nx〉, where 〈nx〉 represents the frac-
tional part of nx. Then

• 〈nx〉 is dense in [0, 1].

• 〈nx〉 is equidistributed in [0, v], i.e., N ,

lim
N→∞

#{n < N |〈nx〉 ∈ (c, c+ ε)}
N

= ε.

The following result is a well known corollary of the equidistribution theorem.

Theorem 38 (Dense Curve On a Torus). Suppose T 2 = R2/Γ, where Γ is the
canonical integer lattice Γ = {(m,n)|m,n ∈ Z}. Let γ be a straight line with
irrational slope on R2, π : R2 → T 2 is the projection, then π(γ) is dense and
equidistributed on T 2.

5.2.2 Dense curve for a multiply connected domain

A relatively similar idea can be applied for multiply connected domains. As shown
in Figure 34, the input network in (a) is a planar domain with n + 1 boundary
components {γ0, γ1, · · · , γn}, where γ0 is the exterior boundary component. The

107

domain is then conformally mapped to an annulus with concentric slits in (b), such
that γ0 is mapped to the outer circle, γ1 is mapped to the inner circle, γk, 1 < k ≤ n,
are mapped to concentric circular arcs. The shortest path(s) from γk, k > 1 to γ0

are denoted as τk. By taking the complex logarithm, the annulus in (b) is mapped
to a rectangle with horizontal slits, as shown in (c). Note that, the annulus is cut
along τ1, therefore the left and right vertical boundaries of the rectangle are both τ1.
Denote by the rectangular domain as D′.

The heights, left end x-coordinates and the lengths of the slits (denoted as
hi, si, and li), respectively) are conformal invariants of the sensor network domain.
In other words these are the “fingerprints” of the domain [4]. There can only be two
cases here:

1. All of hi, si and li are rational.

2. At least one of hi, si and li is irrational.

O
θ

D

H

Figure 35: Tiling of H by copies of D and the curve γθ

The curve we construct is a simple "billiards" path (starting from the lower left
corner of the rectangle) in the rectangular domain D′. We take a curve by starting
from the bottom left corner of D′ with an irrational slope. When the path hits a
slit, top or bottom boundary of D′, it is bounced back. The two vertical sides of the
rectangle are identified and the curve continues at the point from the same height
on the left vertical side when it exited the right vertical side from. See Figure 35 for
details.

Using techniques from complex dynamics, we now show that:

108

1. In Case 1, a billiards path with irrational slope is dense and ergodic.

2. In Case 2, the set of initial directions (from (0, π
2
)) which ensure density of

the resulting billiards path is measure 1. This means that if we pick a direction
randomly, the resulting curve will be dense with probability 1.

5.2.3 Billiards curve in the multiply connected domain

S2

S1

S4

Sn

D

Figure 36: The slit domain D

The dense curve we construct for applications in a sensor network domain with
holes is simply a “billiards" path in the transformed slit domain D (see Figure 36).
The proof for the rectangular domain is identical to square domain case, which we
adopt for simplicity.

Billiards in polygons is a rich and well researched field with many interesting
open problems (for an excellent survey, see [42]). Most of the techniques involve
the theory of Riemann surfaces, especially Teichmüller theory. In this section, we
explain the construction of our curve and use these theories to derive properties of
the curve.

Notation: Let I denote the unit square [0, 1] × [0, 1]. Let H denote the infinite
strip R × [0, 1]. Let Si, 1 ≤ i ≤ n denote the horizontal slits; Si ⊂ I ∀i. Each
slit Si is defined by a triple (hi, si, li) where hi is the y-coordinate, si is the starting

109

x-coordinate, and li is the length (li < 1 − xi) of the slit. With the above notation,
D = I \ {S1 ∪ · · · ∪ Sn}. We consider a tiling of H by copies of D as shown in
Figure 35. Similarly, call Ĥ the domain we get by taking copies of a reflection of
D (denoted D̂) along the x-axis.

Curve construction: We construct a curve γθ,x in the following way. Shoot a ray
from x ∈ D which makes an angle θ with the positive x-axis. The ray then gets
reflected at the following boundaries :

1. The line L1 = R× {1}

2. The line L0 = R× {0} (the x-axis)

3. Any copy of the slit Si, which we denote by Ci,t. By definition, Ci,t is a slit
of type (hi, si + t, li), where t ∈ Z.

Let π : H −→ I be the natural projection map. Let Γθ,x = π(γθ,x).For such a
curve with initial direction θ , one can also define a flow Fθ : H −→ H which
intuitively takes a point z ∈ H to the corresponding point on γθ,z after one unit of
time (assuming unit speed parametrization of γθ,z). Such a flow is called ergodic
if the only invariant sets are (Lebesgue) measure 0 or 1. Let O denote the origin.
We are mainly interested in properties of Γθ,O (which is the curve we use for our
purposes) and ergodicity of Fθ. For the sake of brevity, we set Γθ := Γθ,O and
γθ := γθ,O

Having defined our curve, we now define two objects which will be used in the
proof of density of the billiards curve.

Quadratic differentials and flat metric: Let R be a Riemann surface (see Sec-
tion 1.1.2 in Chapter 1 for details). For the definition of quadratic differentials,
see Definition 3 in Chapter 1. It is well known ([113], [35]) that every quadratic
differential on R provides “flat" coordinates—coordinates in which the metric of
the underlying surface is flat (euclidean) everywhere except at finitely many points
(corresponding to zeroes of the differential), which are also called cone singulari-
ties.

110

This metric is locally given by |φ(z)| 12 |dz|. On the complement of these sin-
gularities, the coordinate charts z = (x, y) are such that the change of coordinates
on the intersection of two charts are of the form z −→ z + c or z −→ −z + c.
In other words, the transition functions are translations and reflections in the origin
composed with translations. Also, any such flat structure corresponds to a unique
quadratic differential.

Furthermore, every quadratic differential naturally defines a pair of trajecto-
ries. A horizontal trajectory is a curve for which φ(z)dz2 > 0 and a vertical trajec-
tory is a curve for which φ(z)dz2 < 0

Saddle connections: For a more detailed account of saddle connections, see [77].
Let P be the set of the endpoints of all the slits (including copies of the original

slits). Hence

P = {x ∈ H : x = (si + αli + t, hi); 1 ≤ i ≤ n;α ∈ {0, 1}; t ∈ Z}.

Let x, y ∈ R2 and L(x, y) denote the (closed) line segment joining point x to
point y.

Definition 39 (Saddle connections). The set of Saddle connections S is the set of
all possible line segments between endpoints of two distinct slits in H . Formally,

S = {L(x, y) : x, y ∈ P ;x 6= y}.

Note that in our case, S is countable. With this, we have all the building blocks
for stating our theorems. In the following, Q denotes the field of rational numbers.

Lemma 40. Let hi, si, li ∈ Q. Further, let θ be such that tan(θ) is irrational. Then
@` ∈ S such that ` ⊂ γθ.

Proof. By hypothesis, (si + t + αli, hi) ∈ Q×Q for all t ∈ Z and all α ∈ {0, 1}.
Since all the endpoints of the slits are at rational coordinates, it is clear that all
saddle connections have rational slopes. γθ has lines of only two slopes, tan(θ) and
− tan(θ), both of which are irrational. Therefore, γθ cannot contain any segment
from S.

111

Theorem 41. Let hi, si, li ∈ Q and θ be such that tan(θ) is irrational. Then :

1. Γθ is dense in D.

2. The flow Fθ is ergodic.

3. Let x ∈ D; then Γθ passes through x at most twice.

Proof. The curve γθ has lines of two slopes, tan(θ) and − tan(θ). The curve on
the copy in H contains only the line segments of slope tan(θ) and once any such
segment is reflected, it continues in Ĥ appropriately, as a line with slope again
tan(θ) (Figure 37).

Consider the genus n + 1 surface obtained by identifying a boundary of D to
its corresponding reflected boundary in D̄. In this way, we obtain a “flat surface",
which has a euclidean (flat) metric everywhere except at finitely many cone sin-
gularities which occur at the end points of the glued boundaries. The charts are
naturally defined from (the embedding of) D. Let φ be the quadratic differential
associated with this flat structure. With the above construction, we now get a con-
tinuous curve V on the flat surface.

Consider the "rotated" quadratic differential eiθφ. One can see that V is a
vertical trajectory of this differential. Now, we use a theorem from [77] which
informally says that on a flat surface R, a trajectory of any quadratic differential
which does not contain any saddle connection is dense. Furthermore, ergodicity of
such directions was proved in [99]. Along with Lemma 40, these prove (i) and (ii).
To prove (iii), assume the contrary. If there is a point x which Γθ passed through at
least three times, then one of the directions θ or (π − θ) must be repeated, which
would mean that Γθ is periodic; contradicting (i).

In fact, using the above construction and [77], [99], one can also prove that

Theorem 42. Let hi, si, li ∈ R. Then the set of directions θ for which Γθ is dense
and ergodic is (Lebesgue) measure 1 in the set (0, 2π).

We end this section with some remarks:

1. In the rational case, we can find exactly the direction we need to obtain a
dense curve.

112

O
θ

H

̂
H

D

̂D

O

Figure 37: Decomposing γθ into two curves; one in H and one in Ĥ

2. In the irrational case, picking any direction uniformly at random, with prob-
ability 1 we get a dense curve.

3. Ergodicity here implies that the curve we get is uniformly dense in the domain
D. This means that on the average, our curve will go through any two distinct
equi-radii disks (contained in D) with almost same frequency. However, this
does not imply uniform density in the original domain, since the conformal
map we use in the next section does not preserve areas.

5.2.4 Comparison with space filling curves

A space filling curve will be ‘filling up’ the square, i.e., every point of the square
is on the curve. A space-filling curve must be everywhere self-intersecting in the
technical sense that the curve is not injective1. Intuitively, a non self-intersecting

1An injective function is a function that preserves distinctness: it never maps distinct elements
of its domain to the same element.

113

curve can never fill up the square as the two have different topologies.
In our case, we generate a continuous curve which is non self-intersecting on a

torus. It does not go through all the points but it is arbitrarily close to all points —
any point p is within distance ε of the curve, for ε > 0 to be arbitrarily small. For
a simple domain, since we use four copies to create a torus, our dense curve will
visit each point of the original domain at most four times. For a domain with holes,
we use two copies to create a torus or a multi-torus. Thus a dense curve in our
construction will visit each point of the original domain at most twice. This ensures
that the dense curve in the applications will eventually visit the entire network and
does not visit any particular node too often.

5.3 Algorithms for discrete conformal mapping

In this section we go through the computational tools to deform an input domain to
the canonical shape of a torus or a multi-torus on which we define a dense curve.
Our method is based on conformal geometry. The following theorem lays down the
theoretic foundation for our method:

Theorem 43 (Ahlfors [4] - Slit Map). Suppose Ω is a planar domain with multi-
ple boundary components ∂Ω = {γ0, γ1, · · · , γn}, then there exists a conformal
map φ : Ω → D, where D is a unit planar annulus with concentric circular
slits, such that φ(γ0) and φ(γ1) are the outer and inner circles of the annulus, and
{φ(γk)}, k > 1, are concentric circular slits. Such a conformal map φ is unique
up to a rotation.

The discrete algorithms for computing conformal mappings for arbitrary 2D
domain are explained in details below. The pipeline is as follows: 1) Compute
cohomology basis; 2) Compute harmonic 1-form basis; 3) Compute holomorphic
1-form basis; and 4) Compute the slit map.

Discrete exterior calculus Similar to all prior work [46, 101, 102, 134], the net-
work is represented as a discrete triangular mesh M = (V,E, F), with the vertex
set V , the edge set E and the face set F . An oriented edge is denoted as [vi, vj], an

114

oriented faces is [vi, vj, vk]. The boundary operator is defined on the boundary of a
simplex as:

∂[vi, vj] = vj − vi,
∂[vi, vj, vk] = [vi, vj] + [vj, vk] + [vk, vi].

A 0-form is a function defined on the vertex set f : V → R. A 1-form is a linear
function defined on the edge set ω : E → R. A 2-form is a linear function defined
on the face set τ : E → R. The discrete exterior differential operator is defined as

dω(σ) := ω(∂σ).

If ω is a closed form, then dω = 0.
Let [vi, vj] is an interior edge, with two adjacent faces [vi, vj, vk] and [vj, vi, vl].

Then the edge weight is defined as

wij := cot θkij + cot θlji,

where θkij is the corner angle at vertex vk in the face [vi, vj, vk]. If [vi, vj] is a
boundary edge, adjacent to [vi, vj, vk] only, then

wij := cot θkij.

The discrete co-differential operator is defined as follows. Let ω be a one-form,
then δω is a 0-form,

δω(vi) =
∑

[vi,vj]∈E

wijω([vi, vj]).

If f : V → R is a harmonic function, then

∆f(vi) = δdf(vi) =
∑

[vi,vj]

wij(f(vj)− f(vi)) = 0, ∀vi ∈ V.

Step 1: Compute cohomology basis. Suppose the boundary components of the
mesh are ∂M = γ0−γ1−γ2 · · · γn, where γ0 is the exterior boundary. Compute the
shortest path from γk to γ0, denoted as ηk as shown in figure 38. Slice the mesh M
along ηk to get a meshMk, the path ηk onM corresponds to two boundary segments

115

η+
k and η−k on Mk. Define a function fk : Mk → R,

fk(vi) =





+1 vi ∈ η+
k

−1 vi ∈ η−k
0 vi 6∈ η+

k ∪ η−k

Assume e ∈ η+
k ∪ η−k , then dfk(e) = 0. Therefore, the exact 1-form dfk on Mk in

fact is a closed 1-form on the original mesh M . Let ρk := dfk on M , then

{ρ1, ρ2, · · · , ρn}

form a basis for the cohomology group H1(M,R).

Step 2: Compute harmonic 1-form basis. Given a closed 1-form ρk, we can find
a function gk : M → R, such that

δ(ρk + dgk)(vi) =
∑

[vi,vj]

wij{ρk([vi, vj]) + (g(vj)− g(vi))} = 0,

for all vertex vi in M . Then ωk := ρk + dgk is a harmonic 1-form. Then
{ω1, ω2, · · · , ωn} form the basis for the harmonic 1-form basis.

Similarly, we compute n harmonic functions fk : V → R, with Dirichlet
boundary condition, such that





∆fk(vi) = 0 ∀vi
fk(vi) = 1 vi ∈ ηk
fk(vi) = 0 vi ∈ ∂M − ηk

Then let ωn+k := dfk, then {ωn+k}, k = 1, 2, · · · , n are exact harmonic 1-forms.

Step 3: Holomorphic 1-form basis. For each harmonic 1-form ωi, we compute
its conjugate harmonic 1-form ∗ωk.

∗ωi =
2n∑

j=1

λijωj

116

Figure 38: Exact harmonic 1-forms {ω4, ω5, ω6}.

Figure 39: Holomorphic 1-forms basis {τ1, τ2, τ3}.

The unknowns {λij} can be computed by solving the following linear equation
system: ∫

M

ωi ∧ ∗ωj =
2n∑

k=1

λjk

∫

M

ωi ∧ ωk.

The wedge products can be computed as follows. Let [vi, vj, vk] be a triangle face,
ei = [vj, vk], ej = [vk, vi] and ek = [vi, vj]. Then by direct computation, we get

∫

[vi,vj ,vk]

ω1 ∧ ω2 =
1

2

∣∣∣∣∣∣∣

ω1(ei) ω1(ej) ω1(ek)

ω2(ei) ω2(ej) ω2(ek)

1 1 1

∣∣∣∣∣∣∣

and ∫
[vi,vj ,vk]

ω1 ∧ ∗ω2 = 1
2
[ω1(ei)ω2(ei) cot θijk+

ω1(ej)ω2(ej) cot θjki + ω1(ek)ω2(ek) cot θkij]

Let τk := ωk + ∗ωk
√
−1, Then {τ1, τ2, · · · , τn} form the basis for the holomorphic

1-form group. Figure 39 shows the basis for holomorphic 1-forms.

117

0

1

2

3
γ0

γ1

γ2
γ3

(a) a 3-hole domain (b) circular slit mapping

0

1

2
3�−1

�2�3
�+1

0

1

2
3

(c) horizontal slit mapping (d) cylinder mapping

Figure 40: Conformal mapping from the domain to the annulus, γ0 is mapped to
the outer circle, γ1 is mapped to the inner circle.

Step 4: Slit conformal mapping. We then search for a special holomorphic 1-
form τ =

∑
k xkτk, such that

Img(

∫

γ0

τ) =
∑

k

xkImg(

∫

γ0

τk) = 2π.

and ∫

γi

τ =
∑

k

xkImg(

∫

γi

τk) = 0, i = 2, 3, · · · , n.

This implies
∫
γ1
τ = −2π. Then the mapping is given by

φ(z) = exp{
∫ z

z0

τ}.

where the integration path is arbitrarily chosen.

Now we summarize the computation and communication steps involved in the
pipeline.

• Step 1: Compute cohomology basis. In this step we will find shortest paths
connecting the interior holes to the outer boundary. This can be done by a

118

single flooding starting from the nodes at the inner hole boundaries simulta-
neously.

• Step 2: Compute harmonic 1-form basis. In this step we compute n harmonic
functions, where n is the number of holes. This uses the Dirichlet boundary
condition and an iterative gossip-style algorithm, similar to the distributed
algorithm used in [68].

• Step 3: Compute holomorphic 1-form basis. This involves completely local
operations. Each node will solve a linear system only on its neighbors.

• Step 4: Slit conformal mapping. This involves only one round of flooding,
starting from the outer boundary inward. The nodes compute their virtual
coordinates.

The algorithm solves sparse linear systems. Therefore the holomorphic differ-
ential method is more efficient compared to the non-linear curvature flow methods.
The algorithm handles domains with two or more holes. For other cases the algo-
rithm is similar.

Simply connected domain. If the input network is a simply connected domain,
we select four corner vertices on the boundary {v0, v1, v2, v3} sorted counter-clock-
wisely. Then we glue two copies of the network along the boundary segments be-
tween v0, v1 and the boundary segments between v2, v3. The result is a topological
annulus. The algorithm above can also handle this case and will map the doubled
network to an annulus. By taking the complex logarithm, the original network is
mapped to a planar rectangle, such that the four corners are mapped to the corners
of the rectangle.

Doubly connected domain. If the input network is a doubly connected domain,
the conformal mapping gives a canonical annulus. By taking the complex loga-
rithm, it is flattened to a periodic rectangle. Glue one copy along one boundary, the
resulting domain is a topological torus.

119

5.4 Simulations

5.4.1 Dense curve discretization

The aperiodic dense curve is identified as a continuous line in the universal cov-
ering space. To apply it to sensor networks, the curve needs to be mapped to a
discrete path. There are various strategies for curve discretization. In our setting
we suppose there is a sensor network G deployed on a continuous sensor domain
R. We compute the dense curve on R and expand the width of the curve to get a
belt region B. The discrete path starts at an arbitrary node s ∈ B. For a node u on
the path, we compute its next hop from the set of neighbors C(u) falling inside the
belt B, i.e.,

C(u) = {u|u ∈ N(u) and u ∈ R},

which is based on a closeness measurement. This will generate a discrete path.

5.4.2 Comparison with various network covering approaches

We compare our method with a number of other approaches that generate a linear
ordering of the sensor nodes, specifically, the space filling curves, Eulerian cycles
and random walks. For space filling curve, we use the Moore curve which covers
a square densely. See Figure 41 for an example. Starting from a corner, a space
filling curve first visits nodes nearby exhibiting strong locality. It also does not
handle network holes and may be disconnected into multiple pieces. An Eulerian
cycle gives a cycle on the network nodes in which one node may appear multiple
times. We build a minimum spanning tree of the network, duplicate all the edges
to generate an Eulerian cycle. Compared to the aperiodic dense curve, Eulerian
cycle also has spatial locality. For random walk, the next hop of the path is chosen
uniformly randomly from the neighbors of the current node.

Since Moore curve only exists on a square, in our comparison the networks
are deployed on square regions without holes. The sensor nodes are uniformly
randomly deployed within the network region, the transmission pattern follows the
unit disk graph (UDG) model. In the experiments the networks have 5, 000 nodes
with average degrees to be 7, we uniformly randomly generated 10 networks to
average out the randomness.

120

Figure 41: The Moore curve (source: Wikipedia).

Figure 42 shows the network coverage percentage as the paths move forward.
The x axis is the length of the path in the number of hops, the y coordinate is the
percentage of nodes covered by the path. It is obvious that aperiodic dense curves,
Eulerian cycles and Moore curves are much better than random walk in terms of
coverage, which is not surprising because these are well-guided curves, while a
random walk is aimless. Since Moore curve is designed to cover the unit square
case, the coverage grows linearly at a fast pace. However, the problem for Moore
curve to be used in practice is that: it needs to choose a resolution before the curve
starts. If the resolution is not appropriately selected, Moore curve may miss some
nodes when it comes back to the starting point. Any continuation will not discover
new nodes, as shown in the later part of the curve in Figure 42. The Eulerian cycle
can eventually cover all nodes by definition. Compared to all the other methods, our
approach has a clear advantage at the beginning of the path. Our dense curve sets
out to explore the entire domain in a coarse manner; network coverage is improved
continuously when the path is longer.

Figure 43 shows the average shortest distance from the set of unvisited nodes to
the set of visited nodes, this average shortest distance criteria measures the locality
property of the paths. If the path visits most of nearby nodes before moving to
nodes faraway, the average shortest distance can still remain relatively high even
though the path visits more nodes. Compared to other methods, the average shortest
distance of the aperiodic dense curve drops sharply, which means that the aperiodic
dense curve visits the network in a more global way than other methods.

To conclude, the aperiodic dense curve, Moore curve and Eulerian cycle cover

121

0 500 1000 1500 2000 2500 3000 3500 4000 4500
Path Length

0.0

0.2

0.4

0.6

0.8

1.0

Co
ve

ra
ge

 P
er
ce

nt
ag

e

Node Coverage Percentage
Dense Curve
Moore Curve
Eulerian Cycle
Random Walk

Figure 42: Comparison of network coverage

0 100 200 300 400 500 600 700 800
Number of Visited Nodes

0

100

200

300

400

500

600

700

800

Av
er
ag
e
Sh
or
te
st
 D
is
ta
nc
e

Avg Distance from Unvisited Nodes to Visited Nodes
Dense Curve
Moore Curve
Eulerian Cycle
Random Walk

Figure 43: Comparison of average shortest distance from unvisited nodes to visited
nodes

the network much faster than random walk. Compared to the Moore curve and Eu-
lerian cycle, the aperiodic dense curve is able to quickly sample the whole network,
which gives a good representation of the network in the early stage.

5.4.3 Covering network with holes

Sensor networks may have obstacles inside, which lead to holes in the sensor do-
main. Normal space filling curves like Moore curve would fail under such cases,
because those curves only cover the unit square, and would become disconnected

122

pieces. By performing conformal mapping to map the holes to slits, the aperiodic
dense curve can be used to cover the whole sensor domain. Figure 44 shows a 2-
hole network with its conformal mapping to circular slits and cylinder. Figure 45
shows the aperiodic dense curve on the network.

Figure 44: Conformal mapping for a network with holes.

5.5 Dense curve applications

Multiple paths and data mule coordination To gather network data, one could
use multiple data mules simultaneously to speed up the process. To coordinate
and collaborate with each other, the data mules may need to communicate during
the data collection, which can be expensive or even infeasible. By using aperiodic
dense curve we can reduce such coordination efforts. Each aperiodic dense curve
would be able to cover the whole network in a particular pattern, and the visiting
pattern is predefined by the slope and starting position. By deliberately assigning
slopes and starting positions to multiple aperiodic dense curves, the data mules can
collectively cover the whole network such that the overlap between different paths
is small. Figure 46(ii) shows two dense curves starting from different boundary
nodes O1, O2 with different slopes.

Double ruling Besides the applications for data mule planning and data fusion,
we can also make use of the dense curve for in-network storage and retrieval. One
scheme for storing sensor data in the network, called double rulings, stores the
sensor data along a storage curve and retrieves data along a retrieval curve. Data
is retrieved when the retrieval curve intersects the storage curve. Previous double

123

Figure 45: A dense curve on the network in Figure 44.

rulings schemes are only designed for networks of a regular shape, e.g., the hori-
zontal/vertical lines [72, 112, 129], or proper circles (great circles through a stereo-
graphic mapping) [103]. When the network has holes, these curve are fragmented
by the presence of holes. Alternative repairing schemes must be used to reconnect
them.

A pair of non-parallel aperiodic dense curves give two trajectories on the net-
work that intersect with each other. Those two trajectories form a lattice on the
network, which is very suitable for double ruling. In particular, for storage curves,
we simply use the line ` : y = kx with slope k. For the retrieval curves, we use
the line `∗ : y = −x/k, i.e., the line perpendicular to ` in the universal covering
space. Figure 46(i) shows the double ruling result from two consumers A,B to get
the data from the producer trajectory.

(i) double ruling. (ii) multiple paths.

Figure 46: Dense curve applications.

124

Bibliography

[1] http://cis.jhu.edu/software/lddmm-volume/tutorial.php.

[2] L. Ahlfors. Lectures on Quasiconformal Mappings. Van Nostrand Reinhold,
New York, 1966.

[3] L. Ahlfors. Lectures on quasiconformal mappings, volume 38 of Univer-
sity Lecture Series. American Mathematical Society, Providence, RI, second
edition, 2006. With supplemental chapters cy C.J.Earle, I.Kra, M.Shishikura
and J.H.Hubbard.

[4] L. V. Ahlfors. Complex Analysis. McGraw-Hill, New York, 1966.

[5] G. Alandjani and E. Johnson. Fuzzy routing in ad hoc networks. In Pro-
ceedings of the 2003 IEEE International on Performance, Computing, and
Communications, pages 525 – 530, april 2003.

[6] P. Angelini, F. Frati, and L. Grilli. An algorithm to construct greedy drawings
of triangulations. In Proc. of the 16th International Symposium on Graph
Drawing, pages 26–37, 2008.

[7] S. Arora. Polynomial time approximation schemes for euclidean traveling
salesman and other geometric problems. J. ACM, 45:753–782, September
1998.

[8] A. Atlas and A. Zinin. Basic specification for IP fast reroute: Loop-free
alternates. IETF RFC 5286, September 2008.

[9] J. M. Bahi, A. Makhoul, and A. Mostefaoui. Localization and coverage for
high density sensor networks. Comput. Commun., 31(4):770–781, 2008.

125

[10] X. Ban, M. Goswami, W. Zeng, J. Gao, and X. Gu. Exploration of path
space using sensor network geometry. In Proc. of the 32nd Annual IEEE
Conference on Computer Communications (INFOCOM’13), April 2013.

[11] A. Banerjea. Simulation study of the capacity effects of dispersity routing
for fault tolerant realtime channels. In SIGCOMM ’96: Conference proceed-
ings on Applications, technologies, architectures, and protocols for computer
communications, pages 194–205, New York, NY, USA, 1996. ACM.

[12] T. Bektas. The multiple traveling salesman problem: an overview of formu-
lations and solution procedures. Omega, 34:209–219, June 2006.

[13] C. Bishop. The riemann mapping theorem.
http://www.math.sunysb.edu/ bishop/classes/math401.F09/t.pdf.

[14] C. Bishop. Conformal mapping in linear time. Discrete and Comput. Geom-
etry, 44(2):330–428, 2010.

[15] R. Blum, S. Kassam, and H. Poor. Distributed detection with multiple sensors
ii. advanced topics. Proceedings of the IEEE, 85(1):64 –79, jan 1997.

[16] P. Bose, P. Morin, I. Stojmenovic, and J. Urrutia. Routing with guaran-
teed delivery in ad hoc wireless networks. Wireless Networks, 7(6):609–616,
2001.

[17] S. C. Brenner and L. R. Scott. The Mathematical Theory of Finite Element
Methods. Springer, 2002.

[18] J. Cai and W. Wu. Degraded link-disjoint multipath routing in ad hoc net-
works. In ISWPC’09: Proceedings of the 4th international conference on
Wireless pervasive computing, pages 149–153, Piscataway, NJ, USA, 2009.
IEEE Press.

[19] D. L. Chaum. Untraceable electronic mail, return addresses, and digital
pseudonyms. Commun. ACM, 24(2):84–90, 1981.

[20] B. Chow and F. Luo. Combinatorial ricci flows on surfaces. Journal Differ-
ential Geometry, 63(1):97–129, 2003.

126

[21] N. Christofides. Worst-case analysis of a new heuristic for the traveling sales-
man problem. In J. F. Traub, editor, Sympos. on New Directions and Recent
Results in Algorithms and Complexity, page 441, New York, NY, 1976. Aca-
demic Press.

[22] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms.
MIT Press, 1994.

[23] P. Daripa. A fast algorithm to solve the beltrami equation with applications
to quasiconformal mappings. Journal of Computational Physics, 106(2):355
– 365, 1993.

[24] S. De, C. Qiao, and H. Wu. Meshed multipath routing with selective for-
warding: an efficient strategy in wireless sensor networks. Comput. Netw.,
43(4):481–497, 2003.

[25] T. K. Delillo, A. R. Elcrat, and J. A. Pfaltzgraff. Schwarz-christoffel mapping
of multiply connected domains. Journal d’Analyse Mathématique, 94(1):17–
47, 2004.

[26] P. Djukic and S. Valaee. Reliable packet transmissions in multipath routed
wireless networks. IEEE Transactions on Mobile Computing, 5(5):548–559,
2006.

[27] P. G. Doyle and J. L. Snell. Random Walks and Electric Networks. The
Mathematical Association of America, 1984.

[28] D. Eppstein and M. T. Goodrich. Succinct greedy graph drawing in the
hyperbolic plane. In Proc. of the 16th International Symposium on Graph
Drawing, pages 14–25, 2008.

[29] H. M. Farkas and I. Kra. Riemann Surfaces. Springer, 2004.

[30] O. Forster. Lectures on Riemann Surfaces. Springer-Verlag, 1981.

127

[31] S. Funke and N. Milosavljević. Network sketching or: “how much geometry
hides in connectivity? - part II”. In SODA ’07: Proceedings of the eigh-
teenth annual ACM-SIAM symposium on Discrete algorithms, pages 958–
967, 2007.

[32] D. Gaidashev and D. Khmelev. On numerical algorithms for the solution of a
beltrami equation. SIAM Journal on Numerical Analysis, 46(5):2238–2253,
2008.

[33] D. Ganesan, R. Govindan, S. Shenker, and D. Estrin. Highly-resilient,
energy-efficient multipath routing in wireless sensor networks. SIGMOBILE
Mob. Comput. Commun. Rev., 5(4):11–25, 2001.

[34] J. Gao, L. J. Guibas, J. Hershberger, L. Zhang, and A. Zhu. Geometric
spanners for routing in mobile networks. IEEE Journal on Selected Areas
in Communications Special issue on Wireless Ad Hoc Networks, 23(1):174–
185, 2005.

[35] F. Gardiner and N. Lakic. Quasiconformal Teichmüler theory. American
Mathematical Society, 1999.

[36] M. R. Garey and D. S. Johnson. Computers and Intractability; A Guide to the
Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA,
1990.

[37] J. Garnett and D. Marshall. Harmonc Measure. Cambridge University Press,
2005.

[38] M. T. Goodrich and D. Strash. Succinct greedy geometric routing in r2.
Technical report on arXiv:0812.3893, 2008.

[39] H. Grötzsch. Ueber die verzerrung bei nichtkonformen schlichten abbildun-
gen mehrfach zusammenhngender bereiche. Leipz. Ber., 82:69–80, 1930.

[40] X. Gu and S. Yau. Computational conformal geometry. Advanced lectures
in mathematics. International Press, 2008.

128

[41] X. Gu and S.-T. Yau. Global conformal parameterization. In L. Kobbelt,
P. Schröder, and H. Hoppe, editors, Symposium on Geometry Processing,
volume 43 of ACM International Conference Proceeding Series, pages 127–
137. Eurographics Association, 2003.

[42] E. Gutkin. Billiards in polygons: survey of recent results. J. Stat. Phys.,
83:7–26, 1996.

[43] K. Ishida, Y. Kakuda, and T. Kikuno. A routing protocol for finding two
node-disjoint paths in computer networks. In ICNP ’95: Proceedings of the
1995 International Conference on Network Protocols, page 340, Washing-
ton, DC, USA, 1995. IEEE Computer Society.

[44] F. Javadi and A. Jamalipour. Multi-path routing for a cognitive wireless mesh
network. In RWS’09: Proceedings of the 4th international conference on
Radio and wireless symposium, pages 223–226, Piscataway, NJ, USA, 2009.
IEEE Press.

[45] D. Jea, A. A. Somasundara, and M. B. Srivastava. Multiple controlled mobile
elements (data mules) for data collection in sensor networks. In IEEE Inter-
national Conference on Distributed Computing in Sensor System (DCOSS),
pages 244–257, 2005.

[46] R. Jiang, X. Ban, M. Goswami, W. Zeng, J. Gao, and X. D. Gu. Exploration
of path space using sensor network geometry. In Proc. of the 10th Interna-
tional Symposium on Information Processing in Sensor Networks (IPSN’11),
pages 49–60, April 2011.

[47] M. Jin, J. Kim, F. Luo, and X. Gu. Discrete surface Ricci flow. IEEE Trans-
actions on Visualization and Computer Graphics, 14(5):1030–1043, 2008.

[48] M. Jin, J. Kim, F. Luo, and X. Gu. Discrete surface ricci flow. IEEE Trans-
action on Visualization and computer Graphics, 14(5):1030–1043, 2008.

[49] S. Kakutani. On brownian motion in n-space. Proc. Imp. Acad. Tokyo,
20(9):648–652, 1944.

129

[50] M. Kamat, A. Ismail, and S. Olariu. Modified hilbert space-filling curve for
ellipsoidal coverage in wireless ad hoc sensor networks. In Signal Processing
and Communications, 2007. ICSPC 2007. IEEE International Conference
on, pages 1407 –1410, nov. 2007.

[51] P. Kamat, Y. Zhang, W. Trappe, and C. Ozturk. Enhancing source-location
privacy in sensor network routing. In Proceedings of the 25th IEEE Inter-
national Conference on Distributed Computing Systems, ICDCS ’05, pages
599–608, 2005.

[52] A. Kansal, M. Rahimi, W. J. Kaiser, M. B. Srivastava, G. J. Pottie, and D. Es-
trin. Controlled mobility for sustainable wireless networks. In IEEE Sensor
and Ad Hoc Communications and Networks (SECON’04), 2004.

[53] N. Karmarkar. A new polynomial-time algorithm for linear programming.
pages 302–311, 1984.

[54] B. Karp and H. Kung. GPSR: Greedy perimeter stateless routing for wireless
networks. In Proc. of the ACM/IEEE International Conference on Mobile
Computing and Networking (MobiCom), pages 243–254, 2000.

[55] Y.-J. Kim, R. Govindan, B. Karp, and S. Shenker. Geographic routing made
practical. In Proceedings of the Second USENIX/ACM Symposium on Net-
worked System Design and Implementation (NSDI 2005), May 2005.

[56] Y.-J. Kim, R. Govindan, B. Karp, and S. Shenker. On the pitfalls of geo-
graphic face routing. In DIALM-POMC ’05: Proceedings of the 2005 joint
workshop on Foundations of mobile computing, pages 34–43, 2005.

[57] R. Kleinberg. Geographic routing using hyperbolic space. In Proceedings of
the 26th Conference of the IEEE Communications Society (INFOCOM’07),
pages 1902–1909, 2007.

[58] D. Koutsonikolas, S. Das, and Y. Hu. Path planning of mobile landmarks for
localization inwireless sensor networks. In Distributed Computing Systems
Workshops, 2006. ICDCS Workshops 2006. 26th IEEE International Confer-
ence on, page 86, july 2006.

130

[59] K.-W. Kwong, L. Gao, R. Guerin, and Z.-L. Zhang. On the feasibility and
efficacy of protection routing in IP networks. In INFOCOM’10, March 2010.

[60] W. K. Lai, S.-Y. Hsiao, and Y.-C. Lin. Adaptive backup routing for ad-hoc
networks. Comput. Commun., 30(2):453–464, 2007.

[61] J. K. Lawder and P. J. H. King. Using space-filling curves for multi-
dimensional indexing. In Proceedings of the 17th British National Conferenc
on Databases: Advances in Databases, BNCOD 17, pages 20–35, London,
UK, 2000. Springer-Verlag.

[62] G. Lawler. Conformally Invariant Processes in the Plane. Amer Mathemat-
ical Society, 2005.

[63] G. F. Lawler. Conformally invariant processes in the plane. Mathematical
Surveys and Monographs, 114(2), 2008.

[64] T. Leighton and A. Moitra. Some results on greedy embeddings in metric
spaces. In Proc. of the 49th IEEE Annual Symposium on Foundations of
Computer Science, pages 337–346, October 2008.

[65] N. Li, N. Zhang, S. K. Das, and B. Thuraisingham. Privacy preservation in
wireless sensor networks: A state-of-the-art survey. Ad Hoc Netw., 7:1501–
1514, November 2009.

[66] X.-Y. Li, G. Calinescu, and P.-J. Wan. Distributed construction of planar
spanner and routing for ad hoc networks. In IEEE INFOCOM, pages 1268 –
1277, 2002.

[67] Y. Li and J. Ren. Preserving source-location privacy in wireless sensor net-
works. In Proceedings of the 6th Annual IEEE communications society
conference on Sensor, Mesh and Ad Hoc Communications and Networks,
SECON’09, pages 493–501, 2009.

[68] H. Lin, M. Lu, N. Milosavljević, J. Gao, and L. Guibas. Composable infor-
mation gradients in wireless sensor networks. In Proc. of the International
Conference on Information Processing in Sensor Networks (IPSN’08), pages
121–132, April 2008.

131

[69] W. Lindner and S. Madden. Data management issues in periodically discon-
nected sensor networks. In Proceedings of Workshop on Sensor Networks at
Informatik, 2004.

[70] Y. Lipman, V. G. Kim, and T. A. Funkhouser. Simple formulas for qua-
siconformal plane deformations. ACM Trans. Graph., 31(5):124:1–124:13,
2012.

[71] C. Liu, M. Yarvis, W. S. Conner, and X. Guo. Guaranteed on-demand dis-
covery of node-disjoint paths in ad hoc networks. Comput. Commun., 30(14-
15):2917–2930, 2007.

[72] X. Liu, Q. Huang, and Y. Zhang. Combs, needles, haystacks: balancing
push and pull for discovery in large-scale sensor networks. In SenSys ’04:
Proceedings of the 2nd international conference on Embedded networked
sensor systems, pages 122–133, 2004.

[73] L. Lovasz. Random walks on graphs: A survey. Bolyai Soc. Math. Stud.,
2:353–397, 1996.

[74] L. M. Lui, T. W. Wong, W. Zeng, X. Gu, P. M. Thompson, T. F. Chan, and
S. Yau. Optimization of surface registrations using Beltrami holomorphic
flow. Journal of Scientific Computing, 50(3):557–585, 2012.

[75] X. Luo, X. Ji, and M. Park. Location privacy against traffic analysis attacks in
wireless sensor networks. In 2010 International Conference on Information
Science and Applications, pages 1–6. Ieee, February 2010.

[76] M. K. Marina and S. R. Das. Ad hoc on-demand multipath distance vector
routing. SIGMOBILE Mob. Comput. Commun. Rev., 6(3):92–93, 2002.

[77] T. S. Masur H. Rational billiards and flat structures. Hasselblatt B., Katok,
A. (eds.) Handbook of Dynamical Systems, 1A:1015–1089, 2002.

[78] K. Mehta, D. Liu, and M. Wright. Protecting location privacy in sensor net-
works against a global eavesdropper. IEEE Trans. Mob. Comput., 11(2):320–
336, 2012.

132

[79] J. S. B. Mitchell. Guillotine subdivisions approximate polygonal subdivi-
sions: A simple polynomial-time approximation scheme for geometric tsp,
k-mst, and related problems. SIAM J. Comput., 28:1298–1309, March 1999.

[80] M. Motiwala, M. Elmore, N. Feamster, and S. Vempala. Path splicing. SIG-
COMM Comput. Commun. Rev., 38(4):27–38, 2008.

[81] R. Musaloiu-E. and A. Terzis. Minimising the effect of wifi interference
in 802.15.4 wireless sensor networks. International Journal of Sensor Net-
works, 3(1):43–54, 2008.

[82] A. Nasipuri and S. Das. Demand multipath routing for mobile ad hoc net-
works. In Proceedings of the 8 th Annual IEEE Internation Conference on
Computer Communications and Networks (ICCCN), pages 64–70, October
1999.

[83] B. Nath and D. Niculescu. Routing on a curve. SIGCOMM Comput. Com-
mun. Rev., 33(1):155–160, 2003.

[84] Y. Ohara, S. Imahori, and R. V. Meter. Mara: Maximum alternative routing
algorithm. In Proc. IEEE INFOCOM, 2009.

[85] C. Ozturk, Y. Zhang, and W. Trappe. Source-location privacy in energy-
constrained sensor network routing. In Proceedings of the 2nd ACM work-
shop on Security of ad hoc and sensor networks, SASN ’04, pages 88–93,
2004.

[86] C. H. Papadimitriou and D. Ratajczak. On a conjecture related to geometric
routing. Theor. Comput. Sci., 344(1):3–14, 2005.

[87] P. Pardalos and M. Resende. Handbook of applied optimization, volume 1.
Oxford University Press New York, 2002.

[88] S. Patil and S. R. Das. Serial data fusion using space-filling curves in wireless
sensor networks. In Proceedings of IEEE International Conference on Sen-
sor and Ad Hoc Communications and Networks (SECON’04), pages 182–
190, 2004.

133

[89] P.Henrici. Applied and Computational Complex Analysis, volume 3. Wiley,
New York, 1986.

[90] S. Ramasubramanian, H. Krishnamoorthy, and M. Krunz. Disjoint multipath
routing using colored trees. Comput. Netw., 51(8):2163–2180, 2007.

[91] A. Rao, C. Papadimitriou, S. Shenker, and I. Stoica. Geographic routing
without location information. In Proceedings of the 9th annual international
conference on Mobile computing and networking, pages 96–108, 2003.

[92] S. Ray, R. Guérin, K.-W. Kwong, and R. Sofia. Always acyclic distributed
path computation. IEEE/ACM Transactions on Networking, 2009.

[93] L. Reddeppa Reddy and S. V. Raghavan. Smort: Scalable multipath on-
demand routing for mobile ad hoc networks. Ad Hoc Netw., 5(2):162–188,
2007.

[94] E. Reich. Extremal quasiconformal mappings of the disk. Handbook of
Complex Analysis, 1:75–136, 2002.

[95] C. Reichert, Y. Glickmann, and T. Magedanz. Two routing algorithms for
failure protection in IP networks. In Proc. ISCC, 2005.

[96] C. Reichert and T. Magedanz. Topology requirements for resilient IP net-
works. In Proc. 12th GI/ITG Conf. on Meas., Mod. and Eval. of Comp. and
Comm. Sys, 2004.

[97] W. Rudin. Real and complex analysis. Mathematics series. McGraw-Hill,
1987.

[98] J. Ruppert and R. Seidel. A Delaunay refinement algorithm for quality 2-
dimensional mesh generation. J. Algorithms, 18:548–585, 1995.

[99] J. S. S. Kerckhoff, H. Masur. Ergodicity of billiard flows and quadratic dif-
ferentials. Ann. of Math., 124:293–311, 1986.

[100] H. Sagan. Space-Filling Curves. Springer-Verlag, New York, 1994.

134

[101] R. Sarkar, X. Yin, J. Gao, F. Luo, and X. D. Gu. Greedy routing with guaran-
teed delivery using ricci flows. In Proc. of the 8th International Symposium
on Information Processing in Sensor Networks (IPSN’09), pages 97–108,
April 2009.

[102] R. Sarkar, W. Zeng, J. Gao, and X. D. Gu. Covering space for in-network
sensor data storage. In Proc. of the 9th International Symposium on Informa-
tion Processing in Sensor Networks (IPSN’10), pages 232–243, April 2010.

[103] R. Sarkar, X. Zhu, and J. Gao. Double rulings for information brokerage
in sensor networks. In Proc. of the ACM/IEEE International Conference on
Mobile Computing and Networking (MobiCom), pages 286–297, September
2006.

[104] G. Schollmeier, J. Charzinski, A. Kirstädter, C. Reichert, K. Schrodi,
Y. Glickman, and C. Winkler. Improving the resilience in IP networks. In
Proc. HPSR, 2003.

[105] C. Sengul and R. Kravets. Bypass routing: An on-demand local recovery
protocol for ad hoc networks. Ad Hoc Netw., 4(3):380–397, 2006.

[106] R. Shah, S. Roy, S. Jain, and W. Brunette. Data MULEs: Modeling a three-
tier architecture for sparse sensor networks. In IEEE SNPA Workshop, May
2003.

[107] E. Sharon and D. Mumford. 2 d-shape analysis using conformal mapping.
International Journal of Computer Vision, 70:55–75, October 2006.

[108] J. Shewchuk. Delaunay refinement algorithms for triangular mesh genera-
tion. Computational Geometry: Theory and Applications, 22(1–3):86–95,
2002.

[109] R. Shi, M. Goswami, J. Gao, and X. Gu. Is random walk truly memoryless-
traffic analysis and source location privacy under random walks. In Proc.
of the 32nd Annual IEEE Conference on Computer Communications (INFO-
COM’13), April 2013.

135

[110] E. Stein and R. Shakarchi. Fourier Analysis: An Introduction. Number v.
10 in Princeton Lectures in Analysis, Volume 1. Princeton University Press,
2009.

[111] K. Stephenson. Introduction To Circle Packing. Cambridge University Press,
2005.

[112] I. Stojmenovic. A routing strategy and quorum based location update scheme
for ad hoc wireless networks. Technical Report TR-99-09, SITE, University
of Ottawa, September, 1999.

[113] K. Strebel. Quadratic differentials, volume 5. Springer, 1984.

[114] H. Suzuki and F. Tobagi. Fast bandwidth reservation scheme with multi-link
and multi-path routing in atm networks. In Eleventh Annual Joint Conference
of the IEEE Computer and Communications Societies, pages 2233 –2240
vol.3, may 1992.

[115] P. F. Syverson, D. M. Goldschlag, and M. G. Reed. Anonymous connections
and onion routing. IEEE Journal on Selected Areas in Communications,
16(4):482–494, 1997.

[116] P. F. Syverson, M. G. Reed, and D. M. Goldschlag. Onion routing access
configurations. In DISCEX 2000: Proceedings of DARPA Information Sur-
vivability Conference and Exposition, pages 34–40, January 2000.

[117] O. Teichmüller. Extremale quasikonforme abbildungen und quadratische dif-
ferentiale. Preuss. Akad. Math.-Nat., 1, 1940.

[118] O. Teichmüller. Bestimmung der extremalen quasikonformen abbildungen
bei geschlossenen orientierten riemannschen flchen. Preuss. Akad. Math.-
Nat., 4, 1943.

[119] W. P. Thurston. Geometry and Topology of Three-Manifolds. Princeton lec-
ture notes, 1976.

[120] W. Trappe and L. C. Washington. Introduction to Cryptography with Coding
Theory. Prentice Hall, 2002.

136

[121] Z. Vincze and R. Vida. Multi-hop wireless sensor networks with mobile
sink. In CoNEXT’05: Proceedings of the 2005 ACM conference on Emerging
network experiment and technology, pages 302–303, New York, NY, USA,
2005. ACM Press.

[122] R. Viswanathan and P. Varshney. Distributed detection with multiple sensors
i. fundamentals. Proceedings of the IEEE, 85(1):54 –63, jan 1997.

[123] H. Q. Vo, Y. Y. Yoon, and C. S. Hong. Multi-path routing protocol using
cross-layer congestion-awareness in wireless mesh network. In ICUIMC
’08: Proceedings of the 2nd international conference on Ubiquitous infor-
mation management and communication, pages 486–490, New York, NY,
USA, 2008. ACM.

[124] Y. Wang, J. Shi, X. Yin, X. Gu, T. F. Chan, S.-T. Yau, A. W. Toga, and P. M.
Thompson. Brain surface conformal parameterization with the Ricci flow.
IEEE Transactions on Medical Imaging, 31(2):251–264, 2012.

[125] O. Weber, A. Myles, and D. Zorin. Computing extremal quasiconformal
maps. Comp. Graph. Forum, 31(5):1679–1689, 2012.

[126] H. Weyl. Über die Gleichverteilung von Zahlen mod Eins. Math. Ann.,
77:313–352, 1916.

[127] Y. Xi, L. Schwiebert, and W. Shi. Preserving source location privacy in
monitoring-based wireless sensor networks. Proceedings 20th IEEE IPDPS,
06:1–8, 2006.

[128] W. Xu, K. Ma, W. Trappe, and Y. Zhang. Jamming sensor networks: attack
and defense strategies. Network, IEEE, 20(3):41–47, May-June 2006.

[129] F. Ye, H. Luo, J. Cheng, S. Lu, and L. Zhang. A two-tier data dissemination
model for large-scale wireless sensor networks. In MobiCom ’02: Proceed-
ings of the 8th annual international conference on Mobile computing and
networking, pages 148–159, 2002.

[130] D. Zappala. Alternate path routing for multicast. IEEE/ACM Trans. Netw.,
12(1):30–43, 2004.

137

[131] W. Zeng, L. M. Lui, F. Luo, T. Chan, S.-T. Yau, and X. Gu. Computing
quasiconformal maps using an auxiliary metric with discrete curvature flow.
Numeriche Mathematica, 121(4):671–703, 2012.

[132] W. Zeng, J. Marino, K. Gurijala, X. Gu, and A. Kaufman. Supine and prone
colon registration using quasi-conformal mapping. IEEE Transactions on
Visualization and Computer Graphics), 16(6):1348–1357, 2010.

[133] W. Zeng, D. Samaras, and X. D. Gu. Ricci flow for 3D shape analysis. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 32(4):662–677,
2010.

[134] W. Zeng, R. Sarkar, F. Luo, X. D. Gu, and J. Gao. Resilient routing for
sensor networks using hyperbolic embedding of universal covering space. In
Proc. of the 29th Annual IEEE Conference on Computer Communications
(INFOCOM’10), pages 1694–1702, March 2010.

[135] F. Zhang, A. Jiang, and J. Chen. Robust planarization of unlocalized wireless
sensor networks. In Proc. of INFOCOM 2008, pages 798–806, 2008.

[136] Z. Zhou and J.-H. Cui. Energy efficient multi-path communication for time-
critical applications in underwater sensor networks. In MobiHoc ’08: Pro-
ceedings of the 9th ACM international symposium on Mobile ad hoc net-
working and computing, pages 221–230, New York, NY, USA, 2008. ACM.

138

