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Abstract of the Dissertation
Wave gradiometry and its link with Helmholtz equation solutions applied to USArray
by
Yuanyuan Liu

Doctor of Philosophy

in
Geosciences
Stony Brook University

2016

Wave gradiometry is an array processing technique using the shape of seismic wave-
fields captured by dense seismic arrays to estimate fundamental wave propagation char-
acteristics |Langston|, 2007alb; |Liang and Langston, 2009]. We first explore a compati-
bility relation that links the spatial gradients to displacements and velocity seismograms
through two unknown coefficients: A and B. We show that the A-coefficient corresponds
to the gradient of logarithmic amplitude and the B-coefficient corresponds approximately
to the local wave slowness. These coefficients are solved through iterative, damped least-
squares inversions to provide estimates of four gradiometry products: dynamic phase
velocity, back-azimuth, radiation pattern and geometrical spreading. Furthermore, Liu
and Holt| [2015] have advanced the technique by estimating the spatial gradients in a
continuous field and combining wave gradiometry with Helmholtz equation solutions to

obtain structural phase velocity. Compared with the dynamic phase velocity obtained in
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traditional methods, the structural phase velocity is independent of specific geometry of
wavefields or source properties and thus it’s more appropriate for surface wave tomogra-
phy studies [Wielandt, 1993 |Friederich et all, [1995; |Lin and Ritzwoller 2011a; |Jin and
Gaherty, 2015; |Liu and Holt, 2015].

The A and B-coefficients are then interpolated to explore a second compatibility
relation through the Helmholtz equation solutions. For most wavefields passing through
the eastern U.S., we show that the A vectors are generally orthogonal to the B vectors.
Where they are not completely orthogonal, there is a strong positive correlation between
V - B and changes in geometrical spreading, which can be further linked with areas of
strong energy focusing and defocusing. We provide Rayleigh wave isotropic structural
phase velocities for 15 period bands between 20 s and 150 s, by stacking and averaging
results from 37 earthquakes. We observe a velocity change for 20 s - 30 s Rayleigh waves,
along the approximate boundary of the early Paleozoic continental margin. The most
prominent features in the eastern U.S. are two low velocity anomalies, one centered over
the central Appalachians (referred to as the Central Appalachian Anomaly, CAA) where
Eocene basaltic volcanism occurred [Schmandt and Lin),[2014} |Pollitz and Mooneyl, 2016],
and the other within the northeastern U.S. (referred to as the Northeast Anomaly, NEA),
possibly associated with the Great Meteor Hotspot track |[Faton and Frederiksen), [2007;
Villemaire et al., 2012].

We continue to apply wave gradiometry to six earthquakes centered in Gulf of Cal-
ifornia with similar source locations, focal mechanisms, depths and magnitudes. These

separate events occurred over a time frame such that their wavefields were captured by
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the entire USArray Transportable Array. This analysis gives us an opportunity to inves-
tigate the characteristics of a wavefield, generated by a relatively consistent source, that
propagates across the entire contiguous United States. We then apply wave gradiometry
methods to synthetic waveforms obtained from two crust and upper mantle models of
the U.S., a relatively smoothed model USyy, and an updated U.S. model USys based on
adjoint tomography. Given the correlations of gradiometry parameters from real records
and synthetic data, and the similarity of source mechanisms for these six events, we com-
bine gradiometry parameters for all events. This combined solution shows the wavefield
characteristics from a single source, which defines the patterns of A and B vector fields
and their spatial derivatives throughout the contiguous U.S. We show that the A vectors
generally point along the steepest amplitude gradient towards amplitude highs, and they
are generally orthogonal to the B vectors. These fields demonstrate the links between
energy focusing/defocusing and amplitude variations. We are able to show that gradiom-
etry parameters are sensitive to the underlying structures along with subtle variations in
source radiation patterns. We thus argue these parameters can be used for determining
viable structural models in the future. Furthermore, gradiometry parameters embedded
in the transport equation, obtained from the imaginary part of the Helmholtz equation
solutions, yields estimates of local amplification factors, which can potentially provide
new constraints on the variations of elastic velocities and densities.

We finally combine wave gradiometry and Helmholtz equation solutions to process
wavefields from 696 earthquakes between 2006 and 2014, with magnitudes larger than

5.0 and focal depths shallower than 50 km, recorded by 1,739 USArray TA stations.



After stacking, averaging, and smoothing Rayleigh wave structural phase velocities from
all events, we obtain isotropic velocities and variances across the contiguous U.S. for
the period range of 20 s - 150 s. The structural phase velocities generally increase with
period from 3.2 + 0.1 km/s (20 s) to 4.5 £ 0.2 km/s (150 s) and are consistent with the
theoretical dispersion curves [Dahlen and Tromp| |1998]. Furthermore, we have identified
several regions with potentially new constraints. For instance, we observe a belt of lower
velocities along the Great Plains and Superior Uplands (SU) for the longest periods of
120 s - 150 s. The strong anomalies within the Central Appalachian Anomaly (CAA)
and Northeast Anomaly (NEA) persist for the periods of 40 s - 150 s [Schmandt and Lin,
2014; |Porter et all [2016]. We observe a semi-continuous band of lower phase velocities
between South Georgia Rift (SGR) and NEA for the longest periods of 140 s - 150 s.
These patterns may be signatures in the lower lithosphere left by the Central Atlantic
Magmatic Province (CAMP) [Heffner et al., 2012; |Pollitz and Mooney, [2016], or due
to hotspot interaction with the thermal-chemical lithosphere [Chu et al) 2013|. The
gradiometry parameters and products are archived for future studies to better constrain
viable 3-D structural models.

In order to better understand the tectonic evolution in the North American continent,
Porter et al. [2016] utilized seismic data recorded by USArray TA stations to build three-
dimensional shear velocity models for the continental United States. The Rayleigh wave
structural phase velocities are estimated using ambient noise tomography at short periods
(8 s - 40 s) and wave gradiometry at longer periods (20 s - 150 s), which allows for a

sensitivity to a broader depth range within the crust and upper mantle (6 - 200 km).

vi



The high-resolution model provides us key information about orogenic and postorogenic
events on the evolution of the lithosphere beneath those velocity anomaly regions |Porter
et al),|2016]. The lower and higher velocity regions in the western, central and eastern
U.S. are all consistent with major geological provinces. The most prominent feature is
the contrast in crustal and upper mantle structure between the relatively slow western
and relatively fast eastern U.S. for all depths we investigated, similar to our Rayleigh

wave structural phase velocity plots |Liu and Holt, 2015).
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Chapter 1

Wave Gradiometry and its Link with

Helmholtz Equation Solution

1.1 Introduction

Embedded within the North American continental lithosphere is the history of continental
growth, with many ancient terranes that have accreted since the Archean, including the
Superior, Wyoming, Yavapai and Mazatzal Provinces, along with major structures asso-
ciated with the Grenville and Appalachian orogenies |Whitmeyer and Karlstrom|, 2007].
Furthermore, the continental interior contains several ancient rift structures [Liang and
Langston), 2008]. Studies coming out of USArray have already revealed many exciting
details about the crust and upper mantle beneath western and central North Amer-
ica |Brudzinski and Allen, [2007; [Lin et al., 2008; |Sigloch et all 2008; |Yang and Ritz-
woller], 2008} | West et al., 2009; Cao and Levander},[2010; |Schmandt and Humphreys), 2010;

Yuan and Romanowiczl 2010; |[Levander et al., 2011; |Obrebsk: et al., 2011; |Schmandt and

=



Chapter 1. Wave Gradiometry and its Link with Helmholtz Equation Solution

[Humphreys|, 2011} [Shen et al., 2013alb; [Evanzia et all, 2014} [Langston and Horton), 2014}

\Pollitz and Mooney|, 2014; |Porritt et al.,2014]. The lithosphere within these regions shows

major lateral heterogeneity, with a complex upper mantle structure profoundly influenced

by the history of subduction. Details for the eastern U.S., are beginning to emerge

\dick et al.,2014; |Lin et al) 2014} |Schmandt and Lin, 2014} |Jin and Gaherty), 2015]. One

major question identified within the EarthScope Science Plan is whether seismic studies

can reveal if these major terrane boundaries, and province interiors, have a crust/mantle

signature |Williams et al., 2010]. Secondly, what can the resolved structures tell us about

continental accretion processes? Does the central and eastern U.S. lithosphere show sim-
ilar heterogeneity as the western U.S.7 Resolving lithosphere heterogeneity not only has
implications for improving our understanding about the evolution of the continent, it also
provides information that improves our understanding of the present-day dynamics of the
North American lithosphere. That is, resolving structure provides constraints for temper-
ature and possibly composition, which in turn provides constraints for density, internal

body forces, and rheological heterogeneity. This information feeds into dynamic models

(e.g. [Ghosh and Holt, 2012;|Ghosh et al.,|2013]) of intraplate stress and strain, necessary

for understanding intraplate earthquakes, an important goal of EarthScope Science Plan

[Liang and Langston, 2008; | Williams et al., 2010].

We now have an important opportunity to apply the wave gradiometry technique to
the wavefields sampled by dense USArray TA stations. This observational approach, in-
volving quantification of the shape of wavefield, is the next important step in seismology

that, when combined with theory, has the potential to lead to new important discoveries



1.2. Methodology

regarding structural complexity and wavefield propagation characteristics. This work in-
volves further development and use of wave gradiometry. We have implemented several
new adaptations, including treatment of continuous displacement gradient fields within
subarrays and a solution method for the Helmholtz equation. We show that gradiometry
parameters can be used to investigate an approximation to the Helmholtz equation solu-
tion | Wielandt, |1993], as well as providing insight into the transport equation |Cerveny,
2005]. The gradiometry method is applied to multiple events recorded by USArray and
reveals a rich field of information for each event, including significant effects of focus-
ing and defocusing of energy, along with associated variations in geometrical spreading,
radiation pattern and back-azimuth.

Gradiometry results for 55 s Rayleigh wave are described for four events. We also
provide isotropic phase velocity maps in the eastern U.S. for 15 periods between 20 s to
150 s, by stacking and averaging results from 37 earthquakes. However, a detailed and
comprehensive analysis of how spatial variations of gradiometry parameters are linked
with 3-D structure modeling, including azimuthal anisotropy effects, are reserved for

future analysis.

1.2 Methodology

Most traditional techniques in seismology, such as traveltime tomography, receiver func-
tion and shear wave splitting, apply some averaging methods, which treat each seismic

station as an isolated observation |Liang and Langston, 2009]. This may smooth out or
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ignore wavefield amplitude differences that reflect real structure or complexity. The wave
gradiometry method, however, is designed to take advantage of the spatial variations
of wave amplitudes sampled by the dense array, and resolve structure and propagation
effects that cannot be derived strictly from the averaging methods [Langston, [2007a].

In a Cartesian coordinate system, the solution to the wave equation can be written

as:

u(t, z,y) = G(x,y) f(t — pe(x — 20) — py(y — 0)) (1.1)

where u represents the displacement field, G represents the wave amplitude variation
across space, f represents the phase variation as a function of time, ¢, and location
(x — xo, y — Yo), p» and p, are components of the horizontal slowness in the = and y
directions, respectively. Though equation is a compatibility relation for a single
dominant phase, we refer to the fact that |Langston|[2007a] showed that simultaneously
arriving waves with the same frequency content generally do not provide a problem with
the gradiometry treatment/approximation, so long as the amplitude of one of the two
arrivals is small (at the noise level). Differentiating equation gives us a set of
equations, which link the spatial gradients to important wavefield propagation parameters

[Langston, {2006} 2007a,blc; [Liang and Langston, [2009):

ou ou
%—A:c'U—FBx'E (1.2)
ou ou



1.2. Methodology

where:
_0G(z,y) 1 _0G(x,y) 1
=T Gy T oy G (14)
_ Ops _ Opy
By = —|p. + or (13 - 550)] B, = - [py + By (y — yo)] (1~5)

Integrating B, and B, over the interval [z, ] gives the slowness in the z and y directions:

1 /I 1 v
Pz = — Bdx py=——""" [ B,dy 1.6
T =20 Jy ! Y=o Jy (1.6)

When x — xy and y — yo, the limit of equation (1.6 can be solved as:

pz(70) = —Ba(20) py(Y0) = —By(wo) (1.7)

In general, the displacements, the spatial gradients and the time derivatives (velocity) of
displacement field, measured at a single seismic station, can be used through equations
and to iteratively solve for the A and B-coefficients (discussed later in section
2.2). Then the following relations may be used through equations and to find
phase velocity v, back-azimuth 6, radiation pattern Ay(#), and geometrical spreading

A,(0) [Liang and Langston, 2009

v=(B2+ B2 (1.8)
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B
_ 1 Da
0 = tan (By) (1.9)
Ap(0) = %é =r(A;cosf — A, sinb) (1.10)
A.(0) = %—Gé = A,sinf + A, cosf (1.11)
r

where r is the epicentral distance for the master station. There is a sign difference for
A,.(0) between equation and equation (7) in|Liang and Langston| [2009]. We believe
that the sign in |Liang and Langston| [2009] is a typo, as the correct expression is given
by equation (10) in |Langston| [2007b].

Liang and Langston, [2009] applied wave gradiometry to USArray data in the western
U.S. They assumed that the wavefield parameters are constant across a given subarray,
which is of order 200 - 400 km in dimension. In our work, we assume that the spatial
gradients, and associated wave parameters, within a subarray define a spatially variable
and continuous field. Being spatially continuous, we solve for the local values of wave
parameters at each master station (zo, yo), and thus B, and B, represent the local wave
slowness at position (zg, yo). It is thus important to have a station spacing capable of
resolving spatial gradients in the vicinity of the master station. With the 70 km station
spacing in USArray configuration, we are able to apply the wave gradiometry technique

to the wavefields sampled by dense USArray TA stations (Figure . We will show
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FIGURE 1.1: (a) Snapshot of the horizontal wavefields propagating
through USArray TA Stations at 2600 s after the original time, from 2011
March 11 Great Tohoku-Oki earthquake. Red vector is observed horizon-
tal displacement (with 95% confidence error ellipse) and the black vector
is the model field predicted by the bi-cubic spline interpolation (described
later). The contours show the spatial gradients of displacement field. The
black arrow indicates the approximate wave propagation direction. (b)
Contoured dilatational component of the strain field (spatial gradients)
associated with Rayleigh wave. Principal axes of horizontal strain are also
shown (bold = compressional; open = extensional).

later that this station spacing is capable of resolving significant wavefront curvature for

periods longer than 20 s, caused by focusing/defocusing of energy.

1.2.1 Reducing Velocity Method

The supporting stations are found within 200 km radius of the master station, which

is less than three wavelengths of the shortest period (20 s) to prevent the phase delay

between two stations from exceeding the period of observation [Jin and Gaherty, [2015].
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The reducing velocity method, as introduced by |Langston| [2007b], is applied to each sub-
array, which may effectively decrease the phase move-out and spatial gradients variations
between the master station and its supporting stations |Liang and Langston) 2009].

The waveforms of supporting stations within a subarray are shifted relative to the
master station, based on the distance and the mean velocity between the master station
and its supporting stations. After applying the time shift, any spatial gradients of the
displacement field in equations and are associated with normalized gradients
of amplitude ([f—coefﬁcients) and perturbations to the slowness estimate (E—coefﬁcients)
[Liang and Langston) 2009]. Initially, we assume a uniform phase velocity across the
subarray (3.8 km/s for periods shorter than 50 s and 4.0 km/s for periods longer than
60 s). The perturbation in slowness is estimated to define a new reducing velocity. With
updated velocity estimates at all stations, the wavefields are shifted again, followed by new
estimates of the spatial gradients and then new least-squares inversion for the coefficients.

This process is repeated until convergence is achieved (usually 4 iterations, Figure .

1.2.2 Determining Spatial Gradient Tensor Field

Wave gradiometry equations and requires estimation of the spatial gradients
of displacement wavefield. We interpolate the displacement field to return continuous
estimates of the gradient tensor field within the subarray. The technique is a modification
of methods used to analyze GPS data (e.g. [Holt et al., 2000a.b; |Beavan and Haines,
2001; |Holt and Shcherbenkol,[2013]). The displacement gradient tensor field is determined

on a regular grid, with grid area spacing of 0.25° x 0.25°. Regularization of the solution
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FIGURE 1.2: (a) Bandpass filtered waveforms recorded by USArray TA
station D28A and its supporting stations from 2011 October 23, earth-
quake near Turkey. The dominant phase is Rayleigh wave. (b) Stack of
shifted waveforms for the subarray in (a), after applying reducing veloc-
ity method, followed by least-squares inversion for slowness perturbation.
The bottom panel is the final alignment after 4 iterations. The similarities
are significant, but it is the spatial amplitude variations that carry wave-
field characteristics along with the structural information across the space
[Liang and Langston, 2009].
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on this grid consists of obtaining the sharpest estimate of displacement gradient tensor
field possible that can be supported by the displacement data (shifted wavefields within
the subarray). The smoothing of the solution is controlled through optimization of the

following functional in a formal least-squares inversion of the displacement field:

X =D @) Virmlew) + 33 (i — u) Vi iy — u) (1.12)

cells ij,kl knots 1,j

where V; iy is a weighting matrix for model strains, V; ; is the variance-covariance of dis-

%s are the predicted and observed

placement field, é;; is the model strain, and 4, and uy
displacements at a given time, respectively. The fitting algorithm that minimizes equa-
tion (|1.12)) is equivalent to a finite element method that satisfies force balance equations
(spherical earth). The solution provides a best fit (in least-squares sense) to the displace-
ment field, while the model second invariant of the strain tensor field is minimized. The
methodology solves the weak formulation of the linear problem, where the basis functions
for the displacements are higher order elements involving the Bessel form of bi-cubic spline
interpolation on a generally curvilinear grid of quadrilateral sub-domains (0.25° x 0.25°
grid) [De Boor), [1987; |Beavan and Haines, 2001]. The final model predicts a continuous
displacement gradient tensor field, with a posteriori model variance-covariance matrices
[Haines and Holt, 1993; |Beavan and Haines| 2001] for ‘g—g and g—”;, which can be used
to determine wave gradiometry parameter uncertainties |Aster et al., 2011]. Finer grid

spacing can be adapted to problems supported by dense station spacing. Furthermore,

we have tested different grid spacings for the USArray TA stations configuration and

10
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FIGURE 1.3: Observed spatial gradients of displacement field (black

crosses) obtained from bi-cubic spline interpolation and the predicted spa-

tial gradients (grey circles) using resolved A and B-coefficients in equations

(1.2) and , for 55 s Rayleigh wave recorded at TA stations: 149A,
250A, 655A and 959A.

found that this chosen spacing is adequate for providing a good match to the time series,
along with stable displacement gradient estimates. For each event we analyzed, there are
around 600 - 800 time series of straingrams (2 for each station) that are used to provide
full gradiometry parameter estimates for the region covered. Figure [I.3]shows the typical
match of the predicted and observed straingrams, where the predicted straingrams are
determined using gradiometry coefficients (discussed in section 2.3 below).

The weighting matrix Vj;;, has an influence on the smoothing of model parameter
estimates for interpolated displacements and inferred model displacement gradients. The

weighting matrix is isotropic, which involves the assumption that the elastic medium has

11
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a linear relation between stress and strain. The diagonal elements, controlled by a single
adjustable parameter, have an influence on how close the displacement field is fit by the
model. It is important not to over-fit the displacements, which can cause strain artifacts
in the presence of significant noise. Thus, the size of the isotropic value is adjusted until a
reduced chi-squared misfit between predicted and observed displacements reaches 1. This
reduced chi-squared misfit depends on the size of the uncertainties in the displacement
seismograms, which are unknown. After experimenting with a range of 0.1% - 10% of
the maximum magnitude of displacement field for the displacement uncertainties, we
assume that the displacements have an uncertainty of 0.5%. Higher assumed uncertainty
in displacement yields a smoother solution. We have found with benchmarking tests
(discussed in section 2.6) that we are able to best resolve phase velocity variations if we
obtain a close match to displacement fields in the USArray data and that a choice of 0.5%
works best for this. Such a low assumed error in displacement reflects the high quality of

USArray data [Liang and Langston, [2009; [Lin et al., 2014; |Porritt et all 2014].

1.2.3 Solving for A and B-coefficients

Note that A and B-coefficients define a continuous field, just as the spatial gradients of
displacement field define a continuous field. From equations ((1.2)) and (|1.3]), we first set

up the inversion problem in the time domain:

Gm =d (1.13)
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1.2. Methodology

where G is the matrix for displacements and the time derivatives of the displacement
fields, m contains the model coefficients A and B that we wish to solve for, and d contains
the spatial gradients of displacement fields. The typical analysis time window is 200 s
and the sampling is 2 s. Thus, the following system of equations can be applied to solve

for A, Ay, By and B, at each seismic station, using an iterative, damped least-squares

inversion.
ou ou ou du
Ulty ot It1 oz lt1 Ulty ot It1 8_y|t1
A, A,
X = : : : X = : (1.14)
B, B,
e 2] B |l 2 2|
tio1  H¢ Itio1 oz 1t101 tio1  H¢ Itio1 By 1101

Examination of the fit to hundreds of straingrams like those in Figure suggests that
the assumptions in the first compatibility relation in equations and are effective
in matching the spatial gradients of the wavefield for each master station.

Singular value decomposition (SVD) shows that the model eigenvector associated with
the largest singular value points entirely in the A-coefficient direction. The other model
eigenvector points entirely in the B-coefficient direction, and its singular value is generally
15 times smaller than the one associated with the A-coefficients. Therefore, in general
the slowness (E—Coefﬁcients) will be more sensitive to errors in the spatial gradients. We
have found that the variances for spatial gradients are close to constant for any given time
step. Thus we assume that the data covariance: cov|d] = ¢? - I, where ¢? is the formal

estimate for the variance of the spatial gradients and I is the identity matrix. Then the
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Chapter 1. Wave Gradiometry and its Link with Helmholtz Equation Solution

following simplified equation is used to determine the model covariance matrix:

covim] =0V, - (A7%)- V] (1.15)

where V,, is the matrix containing model eigenvectors and A is a diagonal matrix con-

taining the model eigenvalues.

1.2.4 Solving for Structural Parameters

The phase velocity determined in conventional ray-based surface wave tomographic tech-

niques, like the beam forming [Birtill and Whiteway, [1965] and two-station methods

[Knopoff et all 1966; |Meier et al) 2004], is actually the local velocity of an individual

wavefield based on the assumption of one dominate phase. This dynamic phase velocity,

depends not only on the underlying medium, but also on the local geometry of the wave-

field [Wielandtl, 1993} |Friederich et all, 1995 |Pollitz and Snokel 2010]. |Wielandt| [1993]

points out that the dynamic phase velocity cannot be directly attributed to the structure

and cannot be used as an input for tomographic structure inversion. Neglecting this fact

can systematically bias the structure interpretation |Yang and Forsyth), 2006 Lin et al.l

2009; |Pollitz and Snoke, [2010]. The phase velocity in the Helmholtz equation is defined

as the structural phase velocity, which is independent of specific geometry of the wavefield

or source properties |Wielandt], 1993} |Friederich et al. [1995; |Lin and Ritzwoller), [2011a)].

Numerous theoretical and numerical studies [Friederich et al., [2000; |Bodin and Maupin,

2008; |Lin and Ritzwoller, 2011aj; |Jin and Gaherty, 2015] have shown that, in most cases,
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1.2. Methodology

the dynamic phase velocity can differ substantially from the structural phase velocity for
a single event. |Wielandt| [1993] showed that the solutions to the Helmholtz equation yield
a local relationship: the deviation of the structural phase velocity from dynamic phase
velocity depends on the first and second derivatives of logarithmic amplitude. |Lin and
Ritzwoller| [2011a] and |Jin and Gaherty| [2015] both showed that surface wave tomog-
raphy can be improved by using amplitude measurements to construct a geographically
localized correction via the Helmholtz equation, which accounts for the finite frequency
effects accurately, and this correction should at least be used at periods longer than 50 s
for USArray TA stations |Lin and Ritzwoller, 2011a].

Lin et al.| [2009] and Lin and Ritzwoller| [2011a] addressed the solutions to the 2-D

eikonal equation and the Helmholtz equation, respectively:

1

JagE VT y) (1.16)
S i) (L.17
c(z,y)? ’ G(z,y)w? '

where 7 is the phase traveltime, G is the wave amplitude at location (z,y), the same
as defined in equation , and w is the angular frequency. Note that the Helmholtz
equation is a second compatibility relation that we investigate, where the first compati-
bility relation involves equations , and . The Helmholtz equation governs
the propagation of most classical wavefields in homogeneous, isotropic media |Wielandt,

1993]. |Lin and Ritzwoller| [2011a] referred to ¢’ as the apparent velocity (or dynamic
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Chapter 1. Wave Gradiometry and its Link with Helmholtz Equation Solution

velocity) and ¢ as the corrected velocity (or structural velocity). The difference between
equations and is described by the Laplacian of the amplitude field normal-
ized by the amplitude and square of the angular frequency. This amplitude Laplacian
term [Lin and Ritzwoller, 2011a), permits a correct structural interpretation of surface
waves in laterally homogeneous parts of the medium |Wielandt|, 1993] .

Here we show that the gradiometry coefficients that we have solved for, can be used
to approximate solutions for the Helmholtz equation for structural phase velocity. From
equation , we know that the A-coefficient corresponds to the gradient of logarithmic

amplitude:

o

—VhG=— (1.18)

thus:

VG, VGG (VG)? VG

. s
A+ V- A (G) o G

(1.19)

We have compared our phase velocity results with two separate results ([Lin and Ritz-
woller, 2011a; |Jin and Gaherty|, 2015]) that used the same data sets (2009 Kuril Islands
earthquake and 2007 Easter Island earthquake) and found a remarkable correspondence
(discussed in section 2.5). The phase velocities determined from wave gradiometry B-
coefficients through equation (|1.8)) are almost identical to the dynamic phase velocities
determined from the gradients of phase traveltime used in the Helmholtz tomography
[Lin and Ritzwoller, 2011a]. Thus, we have determined empirically that use of equations

(1.2) and (1.3) (the first compatibility relation) provides very similar estimates of wave
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1.2. Methodology

slowness to other studies that use gradient of phase traveltime methods |Lin and Ritz-
woller), 2011a] and multi-channel cross-correlation methods |Jin and Gaherty, [2015]. In
our investigation of the second compatibility relation in the Helmholtz equation solution
, we make the assumption (based on this similarity with two other studies) that

the B-coefficient can be approximated as the local gradient of phase traveltime:
. 1 B
|Bl= [pl~ | 51= V7] (1.20)

But to be clear, we always relate the B-coefficient to the local ray parameter as part
of its original definition in equations , and . Furthermore, we have
found a close match between V - B (obtained from the 2009 Kuril Islands event) and the
focusing/defocusing correction term in |Lin et al|[2012] (discussed in section 2.5). This
further substantiates our assumption that V - B can be approximated as the Laplacian
of phase traveltime:

V. B~ V37 (1.21)

Combining equations ((1.17)), (L.19)) and ((1.20)), the structural phase velocity is deter-

mined by subtracting the amplitude correction term |Lin and Ritzwoller),2011a], involving

/T, V- A and w, from the dynamic phase velocity:

1

L A2 A

= (1.22)

In order to find V-/T, we interpolate the A-coefficient vector field using the bi-cubic splines
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Chapter 1. Wave Gradiometry and its Link with Helmholtz Equation Solution

|[Beavan and Haines, 2001], which is the same method used to obtain spatial gradients
from the displacement field. |Wielandt| [1993] argued that the amplitude correction term
provides real constraints on the structural wavenumber. |Lin and Ritzwoller| [2011a] make
these corrections to their estimates of gradient of phase traveltime measurements, and
Jin and Gaherty| [2015] also makes similar corrections to their estimates of local phase
velocity. We have found a close match between our corrections compared to theirs for
the same data sets (discussed in sections 2.5). However, before applying equation
to our gradiometry parameters, we assume that the acoustic Helmholtz equation remains
approximately valid for elastic surface waves when the structure is slightly or smoothly
inhomogeneous compared to the heterogeneity of the wavefield |Wielandt), [1993]. This
is also born out by our gradiometry parameter results (see results in section 3.0 and
summary in section 3.5).

We then address the transport equation |Cerveny, |2005] from the imaginary part of

the solution to the 2-D Helmholtz equation:

VG (z,y)

2- VT(ZE,y) : W

— V21 (z,y) =0 (1.23)

Substituting equations (1.18]), (1.20) and (1.21]) into (1.23)) gives us:

2.B-A-V-B=0 (1.24)

The first and second terms in the above equation are defined as “apparent amplitude
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1.2. Methodology

decay” and “focusing/defocusing correction term”, respectively |Lin et al. 2012]. We
observe generally positive correlations between these two terms (Figure , in accord
with the relation in equation (|1.24). Furthermore, Lin et al. [2012] have used these terms
to constrain local amplification factors in the western U.S. regions, which can be used to
constrain density variations.

An inspection of gradiometry parameters for 2013 October 12, earthquake near Crete,
shows an interesting pattern in relation to regional amplitude variations. The A-coefficients
in Figure , obtained from least-squares inversion of equations and , show
patterns that are in accord with spatial variations of amplitudes in Figure [L.5b, which
makes sense because the A-coefficients represent the gradient of logarithmic amplitude.
These vectors point towards amplitude highs and away from amplitude lows. Note that
the A-coefficient vector fields in Figure do not result from taking derivatives of the
static maximum amplitudes plotted in Figure [[.5b. Instead these estimates arise from
inversion of spatial gradients of displacement field for all time steps at each individual sta-
tion. The correlation described above, however, provides confirmation that our method
for estimating the coefficients from the spatial derivatives of the wavefield is robust.

The Laplacian of logarithmic amplitude (V-ff, contoured in Figure ), is used in the
approximate solution to the Helmholtz equation ([1.22f). The B-coefficients (vector field
in Figure ) point opposite to the wave propagation direction (E = —p). Note that
this vector field shows systematic bending in places, reflecting focusing and defocusing of
energy. Furthermore, V - B (contoured in Figure ) can be further used in solutions to

the Helmholtz equation for laterally varying media in both velocity and density (described
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FIGURE 1.4: The correlation between the apparent amplitude decay
(2- A - B) and the focusing/defocusing correction term (V - B) in the
transport equation for 55 s Rayleigh wave, where each red dot de-
notes the result at a station. The blue line is the best fitting straight line.
(a) 2013 October 25, earthquake near Honshu (M, = 7.3) (b) 2014 Febru-
ary 2, earthquake near Kermadec Island (M, = 6.6) (c) 2014 March 16,
earthquake near Chile (M,, = 6.7) (d) 2014 May 24, earthquake in Aegean
Sea (M, = 6.9).
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FIGURE 1.5: The vectors in (a) and (c) represent the A-coefficients (gradients of logarithmic
amplitude) and the B-coefficients field (horizontal slowness), respectively, for 74 s Rayleigh wave
from 2013 October 12 earthquake near Crete. The contours correspond to V - A (Laplacian
of logarithmic amplitude) and V - B, which are separated by intervals of 25 x 10~%km =2 and
0.5x107 352 /km?, respectively. Note that the A-coefficient vectors generally point along steepest
gradient towards amplitude highs and away from amplitude lows, and the B-coefficient vectors
point opposite to wave propagation direction, which show systematic deflection of energy. The
arrow indicates the approximate ray path.(b) The peak amplitude perturbation for Rayleigh
wave phase. The stations are shown as triangles. (d) Dynamic and structural phase velocity
differences, calculated from amplitude correction terms in equation .
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Chapter 1. Wave Gradiometry and its Link with Helmholtz Equation Solution

below). We will show later that V-B have a strong correlation with changes in geometrical
spreading. The amplitude correction term that depends on the A-coefficients and V - A
in Figure [I.5h, can result in a velocity difference between dynamic and structural phase
velocity as high as 0.4km/s (Figure [L.5[).

The blue areas in Figure shows locations where the amplitudes have maximum
relative values. In such areas, A=0and V- A < 0, and the amplitude correction term
yields a structural phase velocity less than dynamic phase velocity (red areas in Figure
). In the red areas of Figure , where the amplitudes have minimum relative values,
we have A =0 and V- A > 0, and the amplitude correction term yields a structural phase
velocity greater than dynamic phase velocity (blue areas in Figure[1.5{) [Wieland, [1993].

Figure[1.6|shows the probability density functions, mean value and standard deviation
for dynamic and structural phase velocity results at two TA stations. The distribution
of structural phase velocities are generally more concentrated than the dynamic phase
velocities, which may reflect the reduction of local wavefield geometry effects and random
noise bias |Lin and Ritzwoller), 2011a).

If both the phase velocity and the density are variable in a medium, the equivalent
solutions to the Helmholtz equation for the acoustic case in such medium are:

A24V.A— A -V(np)

w?

1 -
= 13-

5= (1.25)

2-B-A—V-B=B-V(lnp) (1.26)
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FIGURE 1.6: Percentage density function for 55 s Rayleigh wave dynamic

and structural phase velocity at TA stations O56A (a) and P52A (b). The

mean velocity and standard deviation are also shown. The dashed lines
indicate Gaussian fitting curves.
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This enables us to estimate the density by integrating in the direction of wave propagation
[ Wielandt, 1993]. Thus in the future the gradiometry coefficients and the divergence
of these coefficients (Figures [L.5h, [L.5k) can be used to obtain constraints on density

variations when considering the acoustic case.

1.2.5 Benchmarking

We have experimented with two events: 2009 April 7, earthquake near Kuril Islands
and 2007 February 14, earthquake near Easter Island, for 60 s Rayleigh wave. The
close match between V - B (contoured in Figure , ) and the focusing/defocusing
maps in |[Lin et al| [2012] supports the approximate relation in equations and
(1.21). The patterns in amplitude Laplacian terms we obtain for both events (Figure
1.7p and [1.8p) are also quite similar to results from [Lin and Ritzwoller| [2011a] and [Jin
and Gaherty [2015], and we thus share similar amplitude correction terms. Both the
dynamic and structural phase velocity maps (Figure [L.7¢, and [1.8, [1.8d) obtained
using wave gradiometry parameters show very close consistencies with the results from
Lin and Ritzwoller| [2011a] and |Jin and Gaherty [2015] for the same data sets, which
they obtain using different methods (Helmholtz tomography and multi-channel cross-
correlation method). Small differences (less than 10%) can be attributed to the possible
differences in estimation of spatial derivatives of the amplitude field.

The least-squares inversion requires a starting model. To find out how the starting
velocity influences our final result, we have applied another two starting phase velocities

(3.8 km/s and 4.2 km/s) to 60 s Rayleigh waves for Kuril Islands event. After four
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iterations, both the dynamic and structural velocity maps (Figure are nearly identical
to the ones starting with 4.0 km/s (Figure[L.7c, [1.7d). This confirms that the final solution
for gradiometry parameters is not sensitive to the starting velocity guess.

For periods less than 40 s, there is a possibility of spatial aliasing of the wavefield
because there are fewer than two stations covering the wavelength dimension. We have
experimented with different starting velocities (3.4 km/s, 3.6 km/s and 3.8 km/s) for 20
s period Rayleigh waves and found only slight sensitivity for velocity results to starting
model guess. However, for periods less than 40 s we do see that the gradients of logarith-
mic amplitude estimates (ﬁ-coefﬁcients) are generally not as smooth as for longer period
results, although similar trend distributions are still observed for these shorter periods
(discussed in section 2.6). Spatial variations in amplitudes must be more than twice the
station spacing (140 km) in order to be smoothly resolved. We will show later that our
isotropic velocity results for short periods 20 - 40 s agree well with results from |Jin and

Gaherty| [2015].

1.2.6 Data Processing

We select teleseismic earthquakes with M, larger than 6.0 and focal depth shallower
than 50 km from IRIS Data Management Center. Earthquakes with significant-sized
aftershocks that followed within less than one hour of the main shock are not analyzed to
avoid Rayleigh phase interferences. Only vertical component seismograms are analyzed,

because they are not contaminated by Love wave or higher mode Rayleigh waves, and
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FIGURE 1.7: (a) B-coefficient vector fields, along with contoured V - B
for 60 s Rayleigh wave from 2009 April 7, earthquake near Kuril Islands
(M,, = 6.8). Contours are separated by intervals of 0.2 x 107352 /km?.(b)
Amplitude Laplacian term in equation , calculated from A-coefficient
field and its first derivative. Contours are separated by intervals of 2 X
107352 /km?. (c)(d) Dynamic (apparent) and structural (corrected) phase
velocity maps. Contours are separated by intervals of 0.1 km/s.
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earthquake near Easter Island (M, = 5.7).
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the noise levels are typically lower than horizontal components |Friederich et al.l [1995;
Yang and Forsyth), 2006].

The broadband seismograms for each event are processed with the following pro-
cedures: [1] discard waveforms with the largest displacements more than 2 standard
deviations beyond the mean values; [2] remove instrumental response, wave trends and
means; apply narrow bandpass filters to the displacement waveforms for 15 passbands
with center periods ranging from 20 s to 150 s; [3] examine the waveforms and make sure
the Rayleigh phase is clean and strong; [4] upload data to XSEDE parallel computing
center |Towns et al., 2014]; [5] generate 200 s time window for analysis based on Rayleigh
phase arrival time ; [6] remove subarrays with less than 5 supporting stations and apply
reducing velocity method to shift waveforms within each subarray; [7] obtain the dis-
placements, the spatial gradients and the time derivatives of displacement field, [8] invert
for A and B-coefficients using least-squares inversion; [9] use the iterated velocity as a
new reducing velocity and repeat processes from steps [6] to [8] until the velocity differ-
ences between the two successive loops are smaller than 0.01 km/s |Liang and Langston,
2009]; [10] interpolate the A and B-coefficient fields to estimate the amplitude correction
and focusing/defocusing terms, respectively; [11] calculate the structural phase veloc-
ity, back-azimuth, radiation pattern, and geometrical spreading; [12] estimate structural
phase velocity standard deviation from formal error estimates of spatial gradients of dis-
placement field and B-coefficients [Aster et al), 2011]; [13] stack structural phase velocity

results from all events for isotropic phase velocity maps.
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FiGURE 1.10: Earthquakes and USArray TA stations distribution map.
The red dots mark the earthquake locations and the blue triangles indicate
the USArray TA Stations.

1.3 Gradiometry Results

Seismic records from 37 earthquakes are processed for around 450 USArray TA stations
in the eastern U.S. (Figure , partial list in Table . The wave gradiometry method
is only applied to Rayleigh waves here, but it can also be applied to Love waves, or even
body waves |Liang and Langston) 2009; |Sun and Helmberger, 2011} |Jin and Gaherty,
2015].

The results of wave gradiometry parameters for four events are presented in Figure
and . Vector fields and contours in Figure represent the A-coefficients
(gradient of logarithmic amplitude) and V - A (Laplacian of logarithmic amplitude),
respectively. The A-coefficients are associated with amplitude variations across space
(geometrical spreading and radiation pattern), which can provide information related to

focusing and defocusing of energy |Dahlen and Tromp, 1998; |Liang and Langston) [2009).
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TABLE 1.1: Partial seismic events used in this project.

Time Lat Lon  Depth Mag Location Stations
2013/04/20 30.31  102.89  14.0 6.6 Sichuan 346
2013/07/15 -60.86 -25.07  11.0 7.3  Sandwich 331
2013/09/24  26.97 65.52 15.0 7.7  Pakistan 357
2013/10/12  35.51 23.25 40.0 6.6 Crete 363
2013/10/25 -13.71 166.51  35.0 7.3 Honshu 353
2013/10/31 23.59 12144  10.0 6.6 Taiwan 365
2013/11/16  -60.26  -47.06 9.9 6.8 Scotia 362
2013/11/17  -60.27 -46.40  10.0 7.7 Scotia 350
2013/11/25 -53.95 -55.00 11.8 7.0  Falkland 358
2014/02/02 -32.91 -177.88 44.3 6.6 Kermadec 328
2014/02/12  37.16  144.66  12.4 6.8 Xizang 369
2014/05/24  40.29 25.39 6.4 6.9 Aegean 370
2014/07/04  -6.23  152.81  20.0 6.5 Britain 267
2014/08/24 -122.31  38.22 11.3 6.0 Napa 234
2014/09/04 -173.26 -21.40  11.8 6.0 Tonga 246

The vector fields and contours in Figure represent the B-coefficients (local wave
slowness) and V-B , respectively. From transport equation , when V- B is relatively
small, A and B-coefficient vectors must be orthogonal to each other [Wielandt, [1993]. We
indeed find that the A-coefficients (Figure are in general perpendicular to the B-
coefficients (Figure , except in regions with large values of V - B , Where we argue
that wavefields are either focusing or defocusing. A-coefficient vectors diverge (positive
values of Laplacian of logarithmic amplitude) from regions of low relative amplitude
and converge toward regions of higher relative amplitude (negative values of Laplacian
of logarithmic amplitude in Figure . The large variations of the Aand V- 4 are
attributed to high amplitude change across space, since they involve the derivatives of
logarithmic amplitudes.

We also show the A and B-coefficient fields for 20 s Rayleigh waves obtained from two
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FIGURE 1.11: Vector fields are associated with A-coefficients and contours
show V - A for 55 s Rayleigh wave from (a) 2013 October 25, earthquake
near Honshu (b) 2014 February 2, earthquake near Kermadec Island (c)
2014 March 16, earthquake near Chile (d) 2014 May 24, earthquake in
Aegean Sea. The large black arrows show approximate ray paths.
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events we analyzed earlier (Figure . Both vector fields show characteristics similar
to 55 s period energy, though not as smooth as the latter. Namely, the A-coefficients
are generally orthogonal to the B-coefficients. The Laplacian of logarithmic amplitudes
(V- /Y) show trends roughly parallel to the direction of energy propagation and peak
values of the Laplacian correspond to amplitude minima and maxima (Figure ,
1.13f). Peak values of Laplacian of logarithimic amplitude also show regions where major
focusing and defocusing of energy occurs (coincident with deflections of B-coefficient in
Figure , ) These spatial variations in peak-to-peak amplitude are apparently
captured by USArray TA stations spacing (70 km) for 20 s energy. The reason for
this is that the length scales of peak-to-peak amplitude variations (measured orthogonal
to propagation direction) are generally captured by more than four TA stations. The
systematic deflection of B-coefficient is constrained over distances of only one station
spacing along a trend line connecting central New Jersey to eastern Kentucky (Figure
1.13(d), and this deflection is consistent with a closely adjacent ridge along the same trend
where there are major amplitude lows.

Similar to |Liang and Langston| [2009], we show four wave propagation parameters:
phase velocity, radiation pattern, geometrical spreading and back-azimuth variation for
the same events. These events show a range of source azimuths, but represent typical
behaviors observed for most events. We have advanced the gradiometry method to ex-

plore approximate solutions to the Helmholtz equation, which provide estimates of the

structural phase velocity. Estimates of structural phase velocities differ substantially for

some regions, obtained from different events (Figure [1.14h, [1.15k, [L.16p, [1.17k), which is
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commonly observed with surface wave analysis |Liang and Langston, 2009; Lin and Ritz-
woller, 2011a]. The heterogeneous structure along the ray path may introduce strong
phase velocity discrepancies for earthquakes coming from different azimuths [Lin and
Schmandtl [2014]. However, the azimuthal variation in phase velocities obtained here can
provide constraints for azimuthal anisotropy within this region. Furthermore, the pres-
ence of anisotropy can produce complexity in the wavefield |Park and Yul, 1993; | Yang
and Forsythl, 2006; |Lin and Schmandt, 2014], and wave gradiometry methods may hold

promise for yielding insight into these effects.

1.3.1 October 25, 2013 M,=7.3 Honshu Event

The Honshu event of October 25, 2013 involves a back-azimuth from the northwest. The
radiation patterns in Figure [1.14b show a distribution of ridges that run roughly parallel
to the ray path direction. This can be understood by examining Figure [I.1Th, which
shows gradients of logarithmic amplitude (X—Coeﬁcients) that are in general orthogonal
to propagation direction. Where the A-coefficient vectors show components that are not
orthogonal to the propagation direction, one expects to observe a non-zero value of geo-
metrical spreading, and by transport equation (|1.24]) we expect to see non-zero values for
V - B for these regions. Indeed we observe a very close positive correlation between the
geometrical spreading in Figure and V- B in Figure . Positive values of V - B
highlight regions where the vectors show some divergence, corresponding to curvature of
the wavefront. However, because the B-coefficients point opposite to the direction of wave

propagation, positive values for V - B represent regions where the energy is converging
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FIGURE 1.13: (a,c) Vector fields are associated with A-coefficients and

contours show V - A for 20 s Rayleigh wave from 2013 October 25, earth-

quake near Honshu and 2014 February 2, earthquake near Kermadec Is-

land, respectively. (b,d) Vector fields are associated with B-coefficients
and contours show V - B for the same events in (a,c).
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or focusing and negative values represent regions where the energy is defocusing (Figure
1.12p). It is known that heterogeneous structure results in off great circle arrivals [Fvern-
den,, |1954]. The back-azimuth variation (—30° to 30°) in Figure can be compared
with B-coefficient vectors in Figure to show whether energy is arriving clockwise or
anti-clockwise to the expected great circle path |Liang and Langston, 2009; |Foster et al.,
2013]. In general, the geometrical spreading (Figure ) and V - B (Figure ) are
both anti-correlated with the Laplacian of logarithmic amplitude (Figure|l.11j) for most
regions. Within regions of energy focusing (i.e., the positive northwest trending band
in the U.S. Northeast and Canada (Figure , ), we observe negative values for
Laplacian of logarithmic amplitude (Figure ), which corresponds to areas of ampli-
tude highs. Within regions of energy defocusing, we generally observe positive values for

Laplacian of logarithmic amplitude.

1.3.2 February 2, 2014 M,=6.6 Kermadec Island Event

The event of February 2, 2014 from Kermadec Island has a back-azimuth from the south-
west. The Laplacian of logarithmic amplitude (Figure [l.12p) and the radiation pattern
(Figure [1.15b) both show strong banding with trends that are primarily parallel to prop-
agation direction, which suggests that amplitude variations are dominantly orthogonal
to propagation direction. The geometrical spreading (Figure MC) again shows a strong
correlation with V - B (Figure ), and they are both anti-correlated with the Lapla-
cian of logarithmic amplitude (Figure [1.11p). For example, there is a strong positive

band of Laplacian of logarithmic amplitude extending from eastern Tennessee, trending
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northeast up into Maryland and southern New Jersey. Examination of Figures and
shows that there is a strong defocusing of energy (negative values for geometrical
spreading (Figure MC) and V - B (Figure ) along this band). Note that path
directions are also directed clockwise (Figure )) of expected great circle directions
along this band. This deflection of energy clockwise, the negative values for geometrical
spreading and V - B , the positive values for Laplacian of logarithmic amplitude, and the

amplitude lows, are all consistent with defocusing along this trend.

1.3.3 March 16, 2014 M,=7.0 Chile Event

The March 16, 2014 Chile earthquake has a back-azimuth from the southeast and again
shows similar banding patterns for Laplacian of logarithmic amplitude (Figure m:) and
the radiation pattern (Figure ) that suggest strong gradients in amplitude orthogonal
to propagation direction. In north and northwest of New Jersey regions, V-Bis extremely
low (Figure [1.12k), where the geometrical spreading is negative (Figure [L.16f), and the
Laplacian of logarithmic amplitude is strongly positive (Figure m), which suggests a

strong defocusing of energy.

1.3.4 May 24, 2014 M,=6.9 Aegean Sea Event

The event of May 24, 2014 in Aegean Sea shows a back-azimuth of energy from the north-
east. This event may present the most compelling correlation of geometrical spreading
(Figure M) with V- B (Figure ), covering the region from West Virginia to north-

ern New York. Negative values for V - B indicates a strong defocusing of energy along
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this belt, where there are strong positive values for Laplacian of logarithmic amplitude

in Figure|l.11d, or amplitude minima.

1.3.5 Summary from Gradiometry Analysis of Individual Events

In summary, gradiometry parameters provide a rich field of information for each event.
A consistent pattern observed to date involves amplitude variations that are primarily
in directions orthogonal to wavefield propagation direction. The remarkable correlation
between geometrical spreading and V - B , predicted by transport equation , sug-
gests a self-consistent link between the A and B-coefficients that yield information on
characteristics of the wavefield, such as where focusing and defocusing of energy is occur-
ring, and how it is linked with azimuth of arriving energy and amplitude variations. The
apparent satisfaction of equation provided by these several examples of observed
wavefields suggests that these measured Rayleigh wave parameters are generally in accord
with the second compatibility relation in the Helmholtz equation (see also Figure .
The positive correlation between V - B and geometrical spreading also suggests that V - B
may be robust enough to use in future work to provide constraints for density variations

[Lin et al., 2012].

1.4 Isotropic Phase Velocity Results

Surface wave azimuthal anisotropy has been observed in the crust [Lin and Schmandt,
2014] and upper mantle [Beghein et al.,2010;|Lin and Ritzwoller,|2011a] across the United

States. We expect the stacking of results from multiple events is able to reduce the effect
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FiGUuRE 1.14: Wave propagation parameters for 55 s Rayleigh wave,
estimated from the 2013 October 25, earthquake near Honshu.
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FiGURE 1.15: Wave propagation parameters for 55 s Rayleigh wave,
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FiGURE 1.16: Wave propagation parameters for 55 s Rayleigh wave,
estimated from the 2014 March 16, earthquake near Chile.
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FIGURE 1.17: Wave propagation parameters for 55 s Rayleigh wave, esti-
mated from the 2014 May 24, earthquake in Aegean Sea.

43



Chapter 1. Wave Gradiometry and its Link with Helmholtz Equation Solution

of azimuthal anisotropy [Liang and Langston, [2009; |Foster et al., 2013]. The isotropic

phase velocity results for 12 period bands are shown in Figure [1.18| [1.19| and [1.20 The

phase velocity generally increases with period from 3.5 km/s to 4.5 km/s and is consistent
with the theoretical dispersion curve [Dahlen and Tromp| 1998]. The formal standard
error of phase velocity for any given event is less than 1%. However, the dispersion of
data from multiple azimuths yields a variation in phase velocity with standard errors
of around 3%. The dynamic and structural phase velocity differences decrease from 0.4
km /s for individual events to 0.1 - 0.2 km/s for isotropic results. However, we do observe
that these differences increase with period, especially for periods longer than 50 s, which
may account for finite frequency effects. |Lin and Ritzwoller| [2011a] also draw similar
conclusions from observations in the western U.S.

Results for 20 s, 24 s, 28 s and 31 s periods show a clear transition from higher to lower
velocity along the easternmost boundary of the Appalachian topography, corresponding
approximately to the location of the early Paleozoic continental margin boundary |Cook
and Oliver), [1981]. We also observe two distinct low-velocity zone anomalies for 37 s, 40
s, 44 s and 49 s periods: one centered along the Virginia - West Virginia state boundary,
and the other one located in Vermont, New Hampshire and easternmost New York. The
anomalies persist within both regions for longer periods out to 112 s, but they are weaker
for these longer periods. The anomaly in Virginia/west Virginia border region may be
associated, in part, with the thicker crust beneath the Appalachians [Parker et al. [2013],
but the presence for the longer periods may suggest a persistence of this anomaly within

the upper mantle. These low velocity zones are consistent with surface wave tomography
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results from |Jin and Gaherty [2015], and P and S wave velocity models at depths of 60 -
300 km obtained by |Schmandt and Lin|[2014]. |Liang and Langston|[2008] observed the 15
s Rayleigh wave low group velocity anomalies around the center part of the Appalachian
Mountains. A 3-D S-velocity model of upper mantle beneath U.S., NA04, [van der Lee
and Frederiksen|,2005] also revealed the northern anomaly feature even prior to the arrival
of USArray to the northeastern U.S. |Faton and Frederiksen| [2007] and |Villemaire et al.
[2012] claim this anomaly coincides with the inferred track of Great Meteor hotspot,
which extends from northern Hudson bay to the northeast U.S. coast, and continues
southeast as a chain of seamounts in the Atlantic ocean |[Duncan| (1984]. |Schmandt and
Lin| [2014] pointed out that the passive margin region has experienced Eocene basaltic
volcanism at 48 Ma |[Mazza et al. 2014], and the center of the low velocity anomaly we
observe beneath the border of Virginia - West Virginia corresponds to the location of
this volcanism. We discard several bad stations located around southern Alabama and

Northern Kentucky, which are the least-well resolved regions due to edge effects.

1.5 Discussion and Conclusions

We use a modified wave gradiometry method to process 37 events recorded by around
450 USArray TA stations in the eastern U.S. Compared to traditional ray-based tomo-
graphic techniques, the advantage of wave gradiometry is that the spatial variations of
wave amplitudes across the whole array are taken into account, which further provides
an approximate solution to the Helmholtz equation. Consequently, the effects from lo-
cal geometry of the wavefield and phase interferences are greatly decreased |Wielandt,
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1993]. The gradiometry results for any given event provide insight into the link between
variations in geometrical spreading, back-azimuth variations, focusing and defocusing of
energy, radiation patterns, and amplitude variations.

In the wave gradiometry method we first obtain the displacements and the time
derivatives of displacement field, then calculate the spatial gradients of displacement
field through bi-cubic spline interpolation, for the shifted waveforms within a subar-
ray. We then solve for the A and B-coefficients iteratively, using damped least-squares
inversion with smoothing, which enables us to estimate phase velocity, changes in ge-
ometrical spreading, radiation pattern, and back-azimuth variations. It turns out that
the A-coefficient corresponds to the gradient of logarithmic amplitude and the inverse of
B-coefficient provides an approximation to the dynamic phase velocity. Thus we interpo-
late A and B-coefficient vectors using the same bi-cubic spline method, to obtain V - /_f,
corresponding to the Laplacian of logarithmic amplitude, and V - B , corresponding to an
approximation to the Laplacian of phase traveltime. The ff—coefﬁcients, along with V- /Y,
enable us to calculate the amplitude correction term for structural phase velocity.

Finally, we stack Rayleigh wave structural phase velocity results from 37 earthquakes
for 15 passbands with center periods ranging from 20 s to 150 s to get isotropic phase
velocity maps, which show an interesting contrast between the the Piedmont and Coastal
Plain regions and the interior Appalachian chain. This velocity contrast is observed close
to the boundary of the early Paleozoic continental margin location |Cook and Oliver,
1981] and is present for periods 20 s - 31 s. We also observe two prominent low velocity

zones for periods 37 s - 49 s: one in the central Appalachians, centered along the Virginia
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- West Virginia boarder region, and the other in the northeast located in Vermont, New
Hampshire and easternmost New York. The anomalies persist for the longer periods
out to 112 s, but are not as strong. The central Appalachian anomaly is located in the
region of Eocene basaltic volcanism [Mazza et all [2014; |Schmandt and Lin), 2014] and
the northeast low velocity anomaly is thought to correspond to the meteor hotspot track
|Eaton and Frederiksen, |2007; |Villemaire et al., 2012].

In general, geometrical spreading and V - B are strongly correlated, but these two are
anti-correlated with Laplacian of logarithmic amplitude or V - A. The angle difference
between the energy propagation direction and the expected great circle path can be as
large as £30° (back-azimuth variations). The links between radiation pattern, geometri-
cal spreading and structural phase velocity represents areas of energy focusing/defocusing
that still require exploration. We find that the gradiometry parameter distributions are
unique for any given event and associated ray path. A complete structural interpretation
for the diverse distributions of gradiometry parameters obtained from 37 events, with
15 period bands for each event, is beyond the scope of this paper. However, one future
application, involving solutions to the wave equation for full 3-D structure |Tape et al.,
2009; | Zhu et al., [2015], may be to model such spatial variations in radiation, geometrical
spreading, back-azimuth, and structural phase velocity for any given event. That is, a
match between synthetic and observed gradiometry parameters has the potential to rig-
orously ensure a viable structural interpretation by providing a broader set of wavefield
observables. The azimuthal anisotropy can also be explored by studying the phase veloc-
ity maps obtained from individual earthquakes. Moreover, /Y, B , V- Aand V- B can be
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used to infer density information along the ray path.

We have investigated two separate compatibility relations: one in the wave equation
solution (|1.1)) and the other in the Helmholtz equation solution , and have shown
that each relation can provide useful information on the characteristics of the wavefield.
The assumptions embedded in equation involve a single dominant phase [Langston,
2007a), and the slowness for this phase can be recovered using the gradiometry method.
The Helmholtz equation results in an amplitude correction term that can be substantial if
the amplitude variations are large. The question arises as to the link between the slowness
embedded in the gradiometry B-coefficient and the structural phase velocity arising from
the Helmholtz treatment. The slowness defined in equation is not necessarily equal
to the gradient of phase traveltime embedded in equation (|1.17), unless this gradient
precisely defines the local ray slowness for a single phase. In general, this is unlikely
to be true due to finite frequency, multi-pathing, and scattering effects. However, we
find that the slowness field obtained using gradiometry assumptions generally provides
excellent agreement with results obtained using gradient of phase traveltime methods |Lin
and Ritzwoller, 2011a]. This empirical result has led us to make the approximation that
the B-coefficient is approximately equal to the gradient of phase traveltime, and thus it is
valid to explore the amplitude correction term embedded in Helmholtz treatment. Both
Wielandt| [1993] and |Lin and Ritzwoller| [2011a] have shown that there are substantial
amplitude correction terms where there is strong wavefront curvature.

It important to keep in mind that both equations and involve approx-

imations of the real wavefield, yet employing both provide important insights into the
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nature of that wavefield. We have shown that the gradiometry method can provide re-
alistic estimates of the slowness of the local wavefield along with estimates of amplitude
correction terms. Our results show a strong link between amplitude variations and the
focusing/defocusing of energy (reflected in V- B ) associated with the wavefront curvature,
which we are able to resolve over length scales about twice the station spacing. We argue
that in the presence of wavefront curvature it is valid to investigate the second compati-
bility relation in the Helmholtz equation in order to explore the effects of the amplitude
correction terms. These corrections may be justified due to the strong local curvature of
the wavefront [Friederich et all|1995]. We find that only where there is strong curvature
of the wavefront are there significant amplitude correction terms, providing significant
differences between dynamic and structural phase velocity. In regions where wave gra-
diometry shows no curvature, we find little to no amplitude correction and dynamic phase
velocity equals structural phase velocity. One great value of gradiometry, therefore, is
to show where the wavefield has complexity. Further work is needed to better under-
stand the link between gradiometry parameters obtained from assumptions in equation
, the amplitude correction terms associated with the separate Helmholtz treatment
in equation , and the effects of true structural complexity on the inferred results.
Again, the investigation with full 3-D synthetics associated with structural complexity

will be necessary to fully explore this link.
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Chapter 2

Analysis of Six Events in Gulf of

California

2.1 Introduction

The USArray has yielded numerous detailed studies of the crust and upper mantle struc-
ture in the western U.S. [Burdick et al., 2008; |Sigloch et al., 2008; |Liang and Langston,
2009; \Schmandt and Humphreys, 2010; |Pollitz and Snoke,, 2010; |Porritt et al., [2014] and
in the Central and Eastern U.S. [Shen et al., 2013b} |Schmandt and Lin| 2014; |Liu and
Holt, |2015; |Pollitz and Mooney, 2016]. The USArray has also enabled the developments
and applications of new methods that utilize the spatial derivatives of wavefield param-
eters (amplitudes, phase travel times), such as wave gradiometry, Eikonal tomography,
and Helmholtz equation solution methods |Liang and Langston, [2009; |Lin et al.l |2009;
Pollitz and Snoke, 2010; |Lin and Ritzwoller, 2011b.a; [Lin et al., 2012; |Liv and Holt,
2015; | Jin and Gaherty, 2015; |Porter et all |2016|. |Liu and Holt| [2015] showed that wave
gradiometry parameters provide insights into the relationship between amplitude varia-
tions and the focusing and defocusing of wavefield energy. They observed large variations

in wavefield behavior for different events, depending upon event location. |Liu and Holt
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Chapter 2. Analysis of Six Events in Gulf of California

[2015] also argued that wave gradiometry parameters may provide additional constraints
for crust and upper mantle structure with 3-D forward and inversion methods. A signif-
icant and related question is how amplitude variations and the focusing and defocusing
of energy are linked with Earth structure and how they are related to source processes?

The configuration of the USArray determines that the variations of the wave gradiom-
etry parameters for any given earthquake are only captured over relatively short spatial
scales, limiting the ability to study both the continuities and variations of wavefield char-
acteristics across the continent. Therefore, in this study we use six earthquakes located
in the Gulf of California that have similar locations, depths, magnitudes and focal mech-
anisms. These events are selected such that the entire USArray configuration captured
energy from one or more of these earthquakes. Applications of wave gradiometry meth-
ods to wavefields emitted from similar sources, provides us the opportunity to investigate
the spatial coherence and characteristics of the wavefield attributes from a relatively
consistent radiation source across the contiguous U.S. We want to address the following
questions: do the gradiometry parameters reflect coherent patterns for changes in geo-
metrical spreading, radiation pattern, and propagation directions? Are the variations of
amplitudes correlated with the patterns of energy focusing and defocusing? Do the gra-
diometry patterns vary from event to event and are they dependent on event magnitude?
How well do gradiometry parameters derived from synthetic seismograms based on 3-D
Earth model agree with observed gradiometry parameters? Are gradiometry estimates
sensitive to the input lithosphere structure?

We first briefly review the wave gradiometry theory. The reader is referred to |Liu
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2.2. Wave Gradiometry Methodology

and Holt| [2015] for further details. We then apply wave gradiometry to 60 s Rayleigh
wave wavefields that originated from six earthquakes in the Gulf of California. The
resolved gradiometry parameters /_f, B , V- A and V - B show the attributes of the wave-
field, with the assumption that the wavefield is dominated by a single phase [Langston,
2007ayblic; |Liu and Holt, 2015]. The gradiometry parameters provide details on the lo-
cal curvature of the wavefield, the focusing and defocusing of energy and its relation to
amplitude variations. We investigate the details of these variations across the contigu-
ous U.S. These new constraints can potentially improve our understanding of the actual
wavefields and the viable structural interpretations from sources to receivers. The wave
gradiometry method is then applied to synthetic waveforms from two different models,
USqo, a relatively smoothed model with 3-D mantle model S362ANT |Kustowski et al.,
2008] in combination with crustal model Crust2.0 |Bassin, [2000], and USsy, an updated
Earth model constructed based on adjoint tomography. We show that the gradiometry
parameters are sensitive to the Earth structure and focal mechanism. Given these obser-
vations we argue t