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Abstract of the Dissertation 

Source process and physical mechanism of global large 

deep-focus earthquakes 

by 

Yu Chen 

Doctor of Philosophy 

in 
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Stony Brook University 

2015 

 

We develop a multiple source inversion method that treats a large earthquake as a 

combination of double couple sub-events, and resolves spatio-temporal distribution and 

focal mechanisms of the sub-events, based on waveform modeling of P, pP, SH and sSH 

wave data. We study source processes of 26 large deep-focus earthquakes with Mw > 7.0 

and depth > 400 km from 1994 to 2013. They are classified into three categories based on 

spatial distribution and focal mechanisms of the inferred sub-events: 1) category one, 

with non-planar distribution of the sub-events and focal mechanisms inconsistent with a 
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single fault plane, represented by the 1994 Bolivia earthquake and the 2013 Okhotsk 

earthquake; 2) category two, with planar distribution but focal mechanisms inconsistent 

with the plane, including eighteen earthquakes; and 3) category three, with planar 

distribution and focal mechanisms consistent with the plane, including six earthquakes. 

We discuss possible physical mechanisms for earthquakes in each category in the context 

of plane rupture, transformational faulting and shear thermal instability. The weak 

initiation sub-events are studied for 6 of those earthquakes, with at least one-order 

smaller seismic moment. These initiation sub-events exhibit great variability of focal 

mechanisms as the major sub-events, and the stress drops of the sub-events can be fit in 

the range between 2.5 MPa and 70 MPa, however, the initiation sub-events and the major 

sub-events do not seem fundamentally distinguishable, implying that the earthquakes are 

a combination of sub-events with various magnitudes. We suggest that the inferred 

source processes of all the analyzed earthquakes can be best interpreted by a cascading 

failure of shear thermal instabilities in pre-existing weak zones, with the perturbation of 

stress generated by a shear instability triggering another and the orientations of the pre-

existing weak zones control the focal mechanisms of pre-existing weak zones. The 

proposed mechanism can also explain the observed great variability of focal mechanisms 

and super-shear rupture of deep-focus earthquakes in the previous studies. 
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Chapter 1 General Introduction 

1.1. What are deep earthquakes? 

 Deep earthquakes were first discovered in the 1920s through determining S-P 

differential time (Wadati, 1928), and defined as the earthquakes occurring deeper than 60 

km (Wadati, 1929). Deep earthquakes were then classified into two groups, intermediate-

focus (60 - 350 km) and deep-focus (350 - 700 km) earthquakes (the allocated depths 

may vary in different literature), based on the global bimodal distribution of earthquake 

focal depths (Fig. 1-1a). The earthquake rate decreases exponentially between 60 and 300 

km, increases beneath 450 km, reaches a maximum at ~600 km, and ceases abruptly at 

~700 km. 

 Intermediate-focus earthquakes are usually associated with the plate boundaries 

and active volcanism (red dots in Fig. 1-1b). Most of the intermediate-focus earthquakes 

are distributed along mid-ocean ridges and subduction zones, whereas deep-focus 

earthquakes are more concentrated in subduction zones (blue dots in Fig. 1-1b). About 

two third of deep-focus seismicity occurs within the Tonga-Kermadec Slab, while most 

of the other classes of earthquakes are located within Java, Philippine, Mariana, Japan, 

Kuril, Central American and South American Slabs. The slabs listed above are currently 

active. A small portion of deep-focus earthquakes may be linked to ancient slabs (e.g. the 

earthquakes beneath Spain-Morocco region).   
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Fig. 1-1. (a) Depth distribution of deep earthquake occurrence (figure modified from Green, 

2007). (b) Geographic distribution of intermediate- (red dots) and deep-focus (blue dots) 

earthquakes (ISC EHB database from 1994 to 2008). 
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1.2. Physical mechanisms proposed for deep earthquakes 

 Earthquakes below 60 km are unexpected, where the pressure would strongly 

inhibit brittle failure and the temperature would result in ductile deformation (Scholz, 

2002). It suggests that deep earthquakes cannot be explained by the same mechanism as 

shallow earthquakes. However, double couple radiation patterns from deep earthquakes 

exhibit that deep earthquakes are in fact not fundamentally different from shallow 

earthquakes. 

 The origin of deep earthquakes remains enigmatic. A wide variety of physical 

models have been invoked to explain the unexpected occurrence of deep earthquakes. We 

summarize the models as three major categories, dehydration embrittlement (Jung et al., 

2004; Meade and Jeanloz, 1991; Raleigh and Paterson, 1965), transformational faulting 

(Green and Burnley, 1989; Green and Houston, 1995; Kirby, 1987), and shear thermal 

instability (Hobbs and Ord, 1988b; Karato et al., 2001; Kelemen and Hirth, 2007; Ogawa, 

1987). These mechanisms may cause or trigger deep earthquakes. A combination of 

different physical mechanisms is also proposed to explain deep-focus earthquakes (Green, 

2007; Meng et al., 2014; Zhan et al., 2014a). 

 Laboratory experiments and detailed calculations of the pressures and 

temperatures in subduction zones indicate that, deep earthquakes may be triggered by 

embrittlement accompanying dehydration of serpentine when it reaches critical 

conditions, in the hydrated part of the lithosphere that sinks into the upper mantle (Meade 

and Jeanloz, 1991; Raleigh and Paterson, 1965). Raleigh and Paterson (1965) performed 

high-temperature and high-pressure experiments on the Cabramurra serpentinite and 
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observed a brittle type of failure at 600 and 650°C, where ductility might normally be 

expected (Fig. 1-2). Meade and Jeanloz (1991) detected acoustic emission during 

dehydration of serpentinite in experiments for pressures up to 9 GPa (Meade and Jeanloz, 

1991). The recent experimental observation further suggested that dehydration 

embrittlement is a viable mechanism to nucleate intermediate-focus earthquakes 

independent of depth, not restricted to conditions where the total volume change of 

reaction is positive or negative (Jung et al., 2004). Seismological observations of double 

seismic zones of intermediate-focus earthquakes are potentially explained as the result of 

dehydration include antigorite and chlorite in hydrous peridotite (Brudzinski et al., 2007; 

Peacock, 2001). However, it is unclear if the water content below the 400 km depth can 

support this mechanism (Green et al., 2010).  

Transformational faulting mechanism hypothesizes that a meta-stable olivine 

wedge can exist in cold slabs, and the phase transformation can lead to catastrophic 

earthquake failure (Green and Houston, 1995; Kirby et al., 1996). Numerical simulations 

show that the olivine to spinel transformation should be kinetically hindered in old and 

cold slabs descending into the transition zone (Fig. 1-3a), and seismological evidences 

also suggests that the meta-stable wedges may exist in some specific slabs (Iidaka and 

Suetsugu, 1992; Wiens et al., 1993). Laboratory deformation experiments show that 

under meta-stable conditions, some minerals partially transform to a high-pressure denser 

phase by localization of transformation and strain into thin shear zones (Kirby et al., 

1996). Anti-crack theory is further proposed that, the meta-stable olivine transforms to 

the spinel structure and filled in the lens-like cracks under the compressive stress (Fig. 1-

3c), analog to the crack open by tensile stress in shallow depth (Fig. 1-3b). During rapid 
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anti-cracks grow, sufficient heat is released by the exothermic reaction to raise the local 

temperature and causes the reaction rate to increase; and the positive feedback between 

reaction rate and temperature incites a thermal runaway that causes the fault to grow 

catastrophically (Fig. 1-3d) (Green and Burnley, 1989; Green and Houston, 1995). 

 

 

Fig. 1-2. Stress-strain curves at various temperature and 3.5 kbar confining pressure for 

Cabramurra serpentinite (Raleigh and Paterson, 1965).  

  



6 
 

 

Fig. 1-3. (a) Thermal model of cold subducting slab showing isotherms and phase relations for 

mantle olivine. Stipple region within the 1000 K isotherm represents a wedge containing meta-

stable olivine that is potentially present due to thermal inhibition of reactions. (b) A small planar 

flaw in a solid (dotted line) is pulled open by a remote tensile stress, yielding a lens-shape void 

with tensile stress concentration at its tip. (c) A small lenticular void (dotted) in a solid is pushed 

close by a remote compressive stress, yielding a compressive stress concentration at its tip. 

Growth of a denser phase with the geometry produces a similar stress pattern. (d) 

Transformation-triggered faulting with “process zone” of anti-cracks. (Green and Houston, 1995) 

(a) 

(b) 

(c) 

(d) 
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 Shear thermal instability suggests that rapid deformation can be achieved when a 

stress or temperature perturbation promotes a positive feedback between shear heating 

and temperature-dependent rheology (Fig. 1-4) (Hobbs and Ord, 1988b; Kelemen and 

Hirth, 2007; Ogawa, 1987). Shear thermal instability can occur in a viscous medium with 

a uniform rheological property, which depends strongly on the stress in the slabs, but 

does not depend on the detail of the creep law (Ogawa, 1987). The instability may also 

occur in a pre-existing zone of different rheological properties with a lower threshold of 

strain rate (Ogawa, 1987). The pre-existing weak zone is known to exist within the 

subducted slab, due to either past faulting before subduction (Jiao et al., 2000; Silver et 

al., 1995) or existence of preexisting fine-grained shear zones (Kelemen and Hirth, 2007). 

Kelemen and Hirth (2007) further suggested that a quasi-periodic series of a fine-grained, 

viscous olivine shear zone in a course-grained elastic half space, can produce a quasi-

periodic series of shear instabilities, with initial temperatures from 600-800˚C (coinciding 

with the environment of intermediate-focus earthquakes). Such feedback within a system 

is naturally influenced by perturbation of stress. 

 In this study, we are going to concentrate on deep-focus earthquakes. Therefore, 

we will focus on the discussion of transformational faulting and shear thermal instability 

in the following sections. 
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Fig. 1-4. (a) Illustration of shear instability model. (b) Changes in the stress and the temperature 

when shear instability occurs. 

 

(a) 

(b) 
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1.3. Seismological studies 

 Since the transition zone was first discovered, it is natural to relate deep-focus 

earthquake to phase transformation at the depth range of ~350 km to ~700 km. An 

isotropic implosive component has long been sought as a manifestation of the volumetric 

change associated with phase transformation in the slab (e.g. Frohlich, 2006). However, 

systematical analysis of deep-focus earthquakes shows that no significant isotropic 

component exists. A sudden implosive phase change can thus be ruled out as the primary 

physical mechanism for deep earthquakes (Kawakatsu, 1991).  

 CLVD (Compensated linear vector dipole) has also been investigated for deep 

earthquakes. CLVD component can be interpreted in three ways, including volume 

preserving phase transformation, fluid filled tensile cracks, and the sum of suitable 

double couple (Frohlich, 2006). Significant CLVD components were observed for 

intermediate- and deep-focus earthquakes (Kuge and Kawakatsu, 1993), and the CLVD 

components are explained by source irregularities (i.e. summation of double couples) 

(Kuge and Kawakatsu, 1990; Kuge and Kawakatsu, 1992; Kuge and Lay, 1994). 

 Whether deep earthquakes fault in new-generated fault or pre-existing weak zone 

provides additional constraint on the physical mechanisms. Jiao et al. (2000) studied the 

statistical distribution of fault plane orientations in Tonga subduction zone by using fault 

plane solutions, and found that an asymmetric fault system persists in the slab down to 

450 km, which is consistent with those of outer rise earthquakes in the oceanic plate prior 

to subduction. They suggested that the intermediate-focus earthquakes (defined above as 

450 km) are caused by the reactivation of pre-existing fault zones created in the oceanic 
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plate down to this depth, while deep-focus events may be owing to new-generated 

faulting or pre-existing weak zones, probably suggesting a change of mechanism or loss 

of slab integrity. Rupture directivity was also analyzed to determine fault plane 

orientations of deep earthquakes occurring in the Tonga-Kermadec subduction zone 

(Myhill and Warren, 2012; Warren et al., 2007; Warren et al., 2008). Intermediate-focus 

(100 km – 300 km) earthquakes prefer sub-horizontal fault plane, consistent with a 

downdip compressional stress, suggesting a new-generated fault system. However, both 

sub-horizontal and sub-vertical fault planes are detected for deep-focus earthquakes, 

corresponding to a complex rupture system with either a reactivated or newly generated 

fault system (Warren et al., 2007). 

 Rupture velocity is an important source parameter, which is mostly from 0.2 to 

1.2 times of the S wave velocity in the source region (e.g., Frohlich, 2006). Previous 

studies also suggested that rupture velocity depend on slab temperature. Earthquakes 

within a warmer slab may be related to a lower rupture propagating velocity (Tibi et al., 

2003a; Wiens, 2001). Super-shear rupture was also reported for an Mw 6.7 aftershock of 

the Okhotsk earthquake (Zhan et al., 2014b).  

 Aftershock distributions are also utilized to determine the fault geometry and 

extension (Tibi et al., 2001; Wiens, 1998; Wiens et al., 1994). An extensive aftershock 

sequence was observed after the 1994 Mw 7.7 Tonga deep-focus earthquake. Most of the 

well located aftershocks were concentrated along a steeply dipping plane consistent with 

sub-vertical fault plane of focal mechanism of the main-shock and three large aftershocks. 

The aftershocks define a 50 x 65 km fault plane extending across the entire width of the 
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meta-stable olivine wedge, probably excluding the physical mechanism of 

transformational faulting (Wiens et al., 1994). 

 Studies of source processes of large deep-focus earthquakes provided significant 

insights on deep-focus earthquake mechanisms. A number of large deep earthquakes, 

especially the 1994 Mw 8.2 Bolivia and 2013 Mw 8.3 Okhotsk deep earthquakes, have 

also been studied by multiple source inversion (Chen et al., 2014; Silver et al., 1995; 

Zhan et al., 2014a) and finite fault inversion (Antolik et al., 1996, 1999; Estabrook, 1999; 

Wei et al., 2013; Ye et al., 2013). The source processes of these two largest ever-recorded 

deep earthquakes provided particularly important insights on the physical mechanisms. 

Both the Bolivia earthquake (Silver et al., 1995; Zhan et al., 2014a) and the Okhotsk 

earthquake (Wei et al., 2013; Ye et al., 2013) were determined to have a large source 

region that totally cut out of the assumed meta-stable olivine zone, seemingly excluding 

the transformation faulting as a possible mechanism. The source parameters of the 

Bolivia earthquake suggest a high stress drop and a low seismic efficiency. The amount 

of non-radiated energy was sufficient to have melted a layer as thick as 31 centimeters. 

(Kanamori et al., 1998). 
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1.4. Objectives 

 The past studies have provided important constraints on the physics of deep-focus 

earthquakes. However, several issues remain to be resolved. 1. Do deep-focus 

earthquakes rupture in a fault plane? 2. Do deep-focus earthquakes behave the same 

between hot and cold subducted slabs? 3. How do deep earthquakes initiate? 4. Is there a 

unified mechanism to explain all the seismic results?  

In this study, we develop a multiple source inversion method based on modeling 

direct and near-surface reflected waveforms presented in Chapter 2. We investigate the 

source process of the 24 May 2013 Mw 8.3 Okhotsk earthquake as an example in Chapter 

3. We further study the major sub-events of 26 global large deep-focus earthquakes with 

Mw > 7.0 and depth > 400 km, and suggest cascading failure of shear instability in pre-

existing weak zones in Chapter 4. We study source process and stress drop of the weak 

initiation sub-events of 7 earthquakes in Chapter 5.  
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Chapter 2 Methodology 

2.1. Multiple source inversion method 

We apply a multiple point source inversion procedure to infer the source 

processes based on waveform fitting of direct phases P/SH and near-surface reflected 

phases pP/sSH (Chen et al., 2014). The method treats a large earthquake as a combination 

of multiple double couple point sources (sub-events) separated in space and time, and 

resolves the spatio-temporal separation and focal mechanism of each sub-event by 

modeling the seismic data. Each sub-event is represented by nine parameters: seismic 

moment, seismic duration (the width of the source time function represented by a half 

sine function), strike, dip and slip for focal mechanism, dt for time separation of origin 

time from the initiation time, and de, dn and dz for distance separations from the 

initiation point in east-, north- and vertical-direction, respectively. Seismic Green’s 

functions are computed by the Generalized Ray Theory method (Helmberg, 1968), based 

on the velocity and attenuation structures of PREM (Preliminary Reference Earth Model, 

downloaded from IRIS EMC-PREM) (Dziewonski and Anderson, 1981). The seismic 

response of each sub-event is obtained by convolving the Green’s function with source 

time function (Ji et al., 2002).  

The number of sub-events (N) relies on manual inspection. Typically, one needs 

to visually examine the move-outs of energy packets in the seismic waveforms to 

determine an initial guess of the sub-event number, locations and depths. The 9×N (N, 

number of sub-events) model parameters are searched by the simulated heat annealing 
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algorithm for the best-fitting solution that generate the least root-mean-square residual 

(L2 norm) between the seismic data and synthetic waveforms (Chen et al., 2014). In 

Chapter 5, we define the objective function as L2 norm plus correlative function for pP 

waves to better capture the arrival times of the initiation sub-events, because the 

amplitudes of the pP synthetics cannot match the data quite well in some specific 

azimuths. 

 We align broadband P phases by the first arrival onsets, which can be clearly 

identified and picked in the high-pass filtered data above 1Hz. SH, pP and sSH phases are 

aligned iteratively in the inversion process: we first pick them based on IASP91 model 

(Kennett and Engdahl, 1991) and perform a preliminary inversion with P wave heavily 

weighted over other phases. The alignments of pP, S and sS phases are adjusted based on 

the best match between synthetics and the data during the inversions, until no further 

adjustment observed from the previous inversion. The final inversion weights each phase 

equally.   

2.2. Importance for depth constraint by including the near-surface reflected waves 

Most of previous studies inverted the source process using P waves only, which 

would have poor resolution in determining depth distribution of the seismic energy 

release during the earthquake, as the inferred depth of energy release trade-offs with the 

inferred occurring time of the energy release (Fig. 2-1). Combining pP wave with P wave 

data into the seismic inversion would place a tight constraint on the depth of seismic 

energy release, as pP waves take off from the opposite hemisphere of the source from the 

P waves (Fig. 2-1a).  
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We illustrate the necessity of combining P and pP waves to resolve the depth of 

propagating seismic energy release, using the following synthetic examples of a source 

consisting of two sub-events. We generate synthetics of sub-event 1 and a delayed sub-

event 2 (black stars in Fig. 2-1b) at a group of hypothetical stations at different azimuths. 

We also generate synthetics for another sub-event 2 (red star in Fig. 2-1b) with a greater 

source depth and a delayed occurring time. These two sub-event 2s produce synthetics 

that exhibit only slight time offsets for P waves at various epicenter distances (Fig. 2-1c). 

These travel time differences are not resolvable in the real data inversion. However, the 

deeper sub-event 2 (red star in Fig. 2-1b) generates travel time delays of pP wave up to 3 

s (red traces in Fig. 2-1d) in comparison with the shallower sub-event 2 (black star in Fig. 

2-1b), since the deeper source has a longer path for pP wave. The above example 

indicates that combining direct waves and near-surface reflected waves is critical for 

resolving source distribution in depth. 

 

Fig. 2-1 (a) Ray paths for P (green path) and pP (blue path) waves from earthquake source (star) 

to a seismic station (triangle). (b) Sub-event 1 (black star), sub-event 2s (red and black star) and 

stations (red triangles) used for synthetics calculations (sub-event 2 in red is located 20 km deeper, 

but with a 1.5 s later occurring time than sub-event 2 in black). (c) P synthetics generated using a 

source that consists of sub-event 1 and sub-event 2 in black in (b) (black traces) and a source that 

consists of sub-event 1 and sub-event 2 in red in (b) (red traces). The pulses of two sub-events are 

labeled accordingly with their numbers. (d) Same as (c), except for pP synthetics. 
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2.3. Resolution tests 

2.3.1. Resolvability of sub-events 

 We perform a model resolution test with a synthetic earthquake. We use our 

expected source model of the 2013 Mw 8.3 Okhotsk earthquake (Table 2-1) and the 

station distribution (Figs. 2-2a, 2-2b) for the 2013 Mw 8.3 Okhotsk earthquake. Noise is 

added to the synthetics, taken from the observed noise before the earthquake and 

normalized to 5% maximum amplitude of the synthetic waveforms similar to the noise 

level in the seismic data. The inverted model is presented in Table 2-2 and the waveform 

fitting is showed in Fig. S2-1. In the test, the starting parameters are estimated based on 

the directivity analysis as in Chapter 3, and their searching ranges are as follow: strike, 

dip and slip are within ±30°, dt within ±3 s, and de, dn, dz within ±30 km from the test 

model. The bounds for source duration and moment are 50% deviated from the test 

model. 

The inversion results show that the inversion procedure can recover the focal 

mechanisms and locations of sub-events 1-4 (Tables 2-1, 2-2). The uncertainty is ±2° for 

each focal parameter, ±0.5 s for dt and ±4 km for location. The procedure also recovers 

the total moment to be 3.53×1028 dyn-cm, 5% lower than 3.71×1028 dyn-cm of the test 

model. The obtained moments for the individual sub-event trade-off each other because 

the energy of those sub-events overlaps in time at most of the stations. Our inversion 

results further indicate that the focal mechanism of the first initiation sub-event (sub-

event 0) has a larger error, as its energy is at least one-order of magnitude smaller than 

the others. 
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Fig. 2-2 and pP waves and (b) SH and sSH waves. Blue triangles represent seismic stations, 

labeled with station name and seismic phase used. Red rectangle is the studied area with the 

seismic result presented in Fig. 3-4. Red beach balls describe GCMT focal mechanism of the 

mainshock (c) Ray. (a, b) Location of the 24 May 2013 earthquake (red dots) and seismic 

coverage of (a) P paths for direct phases P/SH (black path) and near-surface reflected phases 

pP/sSH (red path) from earthquake source (star) to a seismic station (triangle) at an epicentral 

distance of 80˚. 
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Table 2-1. Source parameters of inverted six sub-events of 24 May 2013 Earthquake 

Sub-

event 

dt   

(s) 

dn 

(km) 

de 

(km) 

dz 

(km) 

duration 

(s) 

moment 

(dyn-cm) 

strike 

(°) 

dip 

(°) 

slip 

(°) 

0 0 0 0 0 3 3.0E+26 8.9 87.7 278.0 

1a 1.7 4.3 4.6 1.1 12.0 6.8E+27 13.7 85.2 278.1 

1b 7.8 -6.2 8.5 0.1 12.0 6.6E+27 23.3 86.6 263.6 

2 12.0 -44.9 15.7 16.7 9.0 7.4E+27 4.0 76.3 282.3 

3 16.2 -21.8 10.1 4.2 11.8 8.2E+27 17.6 85.4 256.4 

4 22.5 -57.8 15.4 35.4 12.0 7.9E+27 -5.7 69.5 272.4 

 

Table 2-2. Source parameters of the inversion of the synthetic model (Table 2-1) 

Sub-

event 

dt   

(s) 

dn 

(km) 

de 

(km) 

dz 

(km) 

duration 

(s) 

moment 

(dyn-cm) 

strike 

(°) 

dip 

(°) 

slip 

(°) 

0 0 0 0 0 2.8 2.1E+26 -2.1 88.1 283.8 

1a 1.8 4.3 1.7 1.4 12.0 6.5E+27 13.2 86.0 278.5 

1b 8.0 -5.4 6.1 -0.4 11.2 5.9E+27 23.2 84.8 263.0 

2 11.9 -44.6 16.9 15.9 8.9 7.4E+27 4.6 77.4 283.0 

3 16.1 -20.0 8.9 4.9 12.0 8.0E+27 17.5 85.0 254.4 

4 22.7 -58.0 19.1 37.2 11.3 7.3E+27 -6.5 69.6 272.3 
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2.3.2. Effectiveness of the iterative procedure of picking pP, SH and sSH arrival 

times  

 We perform a test on the effectiveness of the iterative procedure of picking arrival 

time of pP, SH and sSH phases under the situation of large initial match of phase arrival 

time, variation of waveform shape due to large attenuation variation, interference of an 

additional phase generated by possible multi-path effects of wave propagation due to 

complex seismic structures, and noise. We test on the synthetics for the best-fitting model 

of E19 as an example (Table 2-3). To simulate the effects of lateral change of velocity 

structure and attenuation, for the synthetics of the best-fitting model, we shift pP, S and 

sS waves randomly within 5 s, convolve the effect of attenuation for attenuation values 

perturbed randomly with 0.5 – 2 times of PREM values, superimpose an additional phase 

with a 50% amplitude of the initial synthetics 2 s after the arrival time of the main phase 

for 3 pP (SCZ, RPN, PAF) and 2 sSH (MIDW, SCZ) waveforms, and add random noise 

with 10% of the amplitude of the initial synthetics (black dash traces in Fig. S2-2). We 

apply the same procedure of multiple source inversion on the altered synthetics and 

iteratively picking of pP, SH and sSH waves during inversions. The arrival time of each 

seismogram is not further adjusted after five iterative inversions. The inverted model 

produces synthetic seismograms (black traces in Fig. S2-2) that align well with the 

original unaltered synthetics (red traces in Fig. S2-2), indicating the effectiveness of the 

iterative procedure in aligning the pP, SH and sSH phases. 
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Table 2-3. Source parameters of inferred sub-events of E19 in Chapter 4 

Sub-

event 

dt   

(s) 

dn 

(km) 

de 

(km) 

dz 

(km) 

duration 

(s) 

Mw 

strike 

(°) 

dip 

(°) 

slip 

(°) 

1 2.9 2.9 9.8 -2.8 3.4 7.0 46.1 71.6 261.9 

2 6.0 12.1 12.8 -5.0 3.6 6.8 50.7 78.8 257.8 

3 7.6 19.9 20.7 -28.8 5.8 6.9 78.1 59.9 200.4 

 

2.3.3. Improved constraint on the focal mechanisms of sub-events by combining pP, 

SH and sSH phases 

In the teleseismic distances, P waves take off in the lower hemisphere of the 

source region. Incorporating pP, SH and sSH observations would also improve the 

resolution of the focal mechanism inversion of the sub-events. We show such 

improvement in an example using the synthetics of the best-fitting model of E19 in 

Chapter 4 (Table 2-3) in the presence of noise, and waveform distortion. We invert focal 

parameters for the cases of using 1) P waves only, 2) P and pP waves, 3) P + pP + SH 

waves and 4) P, pP, SH and sSH waves. The uncertainties of focal parameter estimate are 

10°, 6°, 5° and 5°, for cases from 1 to 4 respectively, indicating the improvement of the 

focal mechanism solution when constraints from additional phases are added.  

2.3.4. Little trade-off between sub-event focal mechanism and location 

We test trade-offs between sub-event focal mechanism and location using the 

synthetics of the best-fitting model of E19 in Chapter 4 (Table 2-3). We compel the first 

sub-event away (moving north) from its best-fitting location and invert the other 
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parameters. When the distance of sub-event 1 is moved away from its best-fitting location 

by 5 km, the misfit of the synthetic data and synthetics of the testing source model 

becomes unacceptable (> 0.25%) (Fig. 2-3), and the waveform misfits appear around 

stations in the azimuths of 0° and 180° (Fig. S2-3). Within this maximum allowable 

difference of location (5 km), the difference of the inverted focal parameters and the best 

fitting model is ±1° (Table 2-3). We thus conclude that trade-offs are minor between 

focal mechanism and location of the sub-events in our inversions. 

 

Fig. 2-3. The misfits (RMS) of amplitudes between the synthetics predicted by the best-

fitting model, and the synthetics predicted by the inferred model with sub-event 1 moved 

0 – 10 km away from it best-fitting location. 
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2.3.6. Effects of high frequency content 

 In this study, we use the data band-passed between 0.01 and 4 Hz. Data in such 

frequency band would allow excellent reading of P wave onsets. However, we should 

point out our model features are mainly constrained by the seismic energy in the lower 

frequency band. Take E20 in Chapter 4 as example, the event has the largest high-

frequency energy among others and the seismograms look ‘noisy’ at the second portion 

of the seismogram which cannot be modeled well (Fig. S4-19), as we mention in E20 of 

the SI. But such high frequency energy did not affect the inversion results. We show the 

comparisons of the data and the synthetics of the best-fitting model, low-passed filtered 

to 0.5 Hz. Note that the energy associated with all the sub-events is clearly visible in the 

lower frequency data and synthetics (Fig. S2-4). We conclude that the high-frequency 

energy of the seismic data did not produce artifacts in our inversion results. 
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Chapter 3 A Cascading failure of the 2013 Great Okhotsk earthquake 

3.1. Abstract 

On May 24 2013, the largest ever-recorded deep earthquake occurred beneath Sea 

of Okhotsk. A multiple source inversion procedure is applied to constrain source process 

of this earthquake, based on waveform modeling of both direct P and SH waves and near-

surface reflected pP and sSH waves. Our results indicate that the earthquake consists of 

six major sub-events separated in space and time, encompassing a horizontal dimension 

of ~60 km along ~N160°E and a downward depth extension of ~35 km. The geographic 

distribution and focal mechanisms of the inferred sub-events and fore/aftershock 

locations do not fit into plane rupture. We suggest that the earthquake can be best 

explained by a cascading failure of shear instability within pre-existing weak zones in the 

region, with the perturbation of stress generated by a shear instability triggering another. 

3.2. Introduction 

 The occurrence of deep-focus earthquakes remains enigmatic, because the 

pressure in the upper mantle would strongly inhibit brittle failure and the temperature 

would result in ductile deformation (Scholz, 2002). Three physical mechanisms have 

been put forward, including dehydration embrittlement (Jung et al., 2004; Meade and 

Jeanloz, 1991), shear thermal instability (Green, 2007; Hobbs and Ord, 1988a; Kanamori 

et al., 1998; Kelemen and Hirth, 2007; Meade and Jeanloz, 1989; Ogawa, 1987) and 

transformational faulting (Green and Houston, 1995; Kirby, 1987; Kirby et al., 1996; 

Wiens et al., 1993).  
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Studies of the source processes and aftershock distributions of major deep 

earthquakes provided important constraints on the deep earthquake mechanisms. For 

example, seismic studies of the 1994 Mw 8.2 Bolivia earthquake, the largest deep 

earthquake before the occurrence of 2013 Mw 8.3 Okhotsk earthquake, suggested a large 

near-horizontal fault plane with its lateral extension exceeding the width of the 

metastable olivine (Antolik et al., 1996; Silver et al., 1995; Zhan et al., 2014a). The study 

of seismic efficiency of that earthquake also proposed possible melting during the 

earthquake (Kanamori et al., 1998). The aftershock sequence of the 1994 Mw 7.6 Tonga 

deep earthquake suggested rupture propagating in a direction normal to the expected 

metastable olivine wedge and over a distance too large to fit within the expected 

dimensions of the wedge (Wiens et al., 1994). On the other hand, some studies have 

suggested seismological evidence for the existence of metastable olivine wedge (Wiens et 

al., 1993). And, the observations of a broad peak in seismicity between 300 and 530 km 

(Estabrook, 2004) and major deep-focus earthquake moment releasing in the slab core 

(Antolik et al., 1999) suggested that the transformational faulting may play an important 

role in cold slab. 

The 24 May 2013 deep earthquake occurred beneath Sea of Okhotsk, with a moment 

magnitude of MW = 8.3 in the Global Centroid Moment Tensor (GCMT) solution and a 

hypocenter depth of 598 km reported by the United States Geological Survey (USGS). 

The earthquake is also reported to have a near-horizontal rupture with a great dimension 

(Wei et al., 2013; Zhan et al., 2014a), low stress drop and a heterogeneous rupture with 

pre-existing weak zone (Ye et al., 2013). However, only direct P wave observations have 

been used in these studies to constrain the rupture process of this earthquake. In this study, 
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we constrain the source process of this earthquake based on waveform modeling of direct 

P and SH waves and near-surface reflected pP and sSH waves. Using all these types of 

seismic waves allows the source process of this earthquake better constrained, especially 

the depth extent of seismic energy propagation. In fact, our results would show that the 

earthquake rupture does not fit into a single plane. We present seismic data in section 3.3, 

directivity analysis of seismic waves in section 3.4, multiple source inversion in section 

3.5, fore/aftershocks relocation in section 3.6, model resolution tests in section 3.7 and 

our preferred physical mechanism in section 3.8. 

3.3. Seismic data 

 The earthquake is well recorded by the Global Seismographic Network (GSN). A 

total of 33 broadband compressional wave (P), 17 near-surface reflected compressional 

wave (pP), 24 transversally polarized shear wave (SH) and 19 near-surface reflected 

transversally polarized shear wave (sSH) observations recorded at tele-seismic distances 

between 30° and 90° are selected (Figs. 2-2a, 2-2b, and ray paths in Fig. 2-2c). The 

selected data constitute good azimuthal coverage. As we will show, the combination of 

direct P and SH waves with the near-surface reflected pP and sSH waves (Fig. 2-2c) 

places tight constraints on the depth extent of seismic energy propagation. The 

displacement seismograms are deconvolved with their respective instrument responses 

and bandpass filtered between 0.01 and 4 Hz. 

 We align broadband P phases by the first arrival onsets, which can be clearly 

identified and picked in the data high-pass filtered above 1 Hz. pP, S and sS phases are 

aligned iteratively in the inversion process: we first pick them based on IASP91 model 
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(Kennett and Engdahl, 1991) and perform a preliminary inversion with P wave heavily 

weighted over other phases. The alignments of pP, SH and sSH phases are adjusted based 

on the best match between synthetics and data during the inversions. 

3.4. Seismic source directivity 

 The propagation of seismic energy can be inferred from the seismic data, with the 

lateral direction and distance from the observed azimuthal waveform variation of P waves 

(Fig. 3-1), and the vertical extension and distance from jointly modeling the P and pP 

waves (Fig. 3-2). Using a plane wave approximation, the duration of the P or pP wave 

pulse observed at a station can be represented as: 

𝑇(𝐴𝑧, ∆) = 𝑇𝑟 − 𝛿𝐿 ∙ cos(𝜃 − 𝐴𝑧) ∙ 𝑃( ∆) − 𝛿𝐻 ∙ √
1

𝑣2 − 𝑝2(∆)                      (3-1) 

where, Az and ∆ represent the azimuth and epicenter distance relative to the station, v the 

P-wave velocity in the source region, 𝑇𝑟 rupture duration. 𝛿𝐿 and 𝛿𝐻 the horizontal and 

depth offsets of the rupture, 𝜃 the horizontal direction of the rupture, and p the horizontal 

slowness of P or pP wave. 

 The earthquake begins with a small amplitude phase with a duration of about 5 s, 

followed by strong moment release lasting 30 s. The observed P wave waveforms exhibit 

a strong azimuthal variation with four groups of major energy pulses during the strong 

moment release, discernible with different move-outs (time windows labeled 1 to 4, Fig. 

3-1a). The azimuthal variation of the P wave data indicates that the seismic energy 

propagates along ~N160°E (the azimuth with the shortest duration of the P wave 
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waveforms, Fig. 3-1a). The directivity can also be clearly seen from data pairs at different 

azimuths. We select three pairs of P wave data observed at similar epicentral distances 

but at opposite direction from the source (Fig. 3-1b). The first pair of P observations are 

from stations COR and CHTO roughly normal to the N160°E direction; both 

observations exhibit similar arrival times for all major pulses (top pair, Fig. 3-1b). The 

second pair are from stations FUNA and GRFO roughly parallel to N160°E. The arrival 

time differences of each group of energy almost reach the maximum in these opposite 

azimuths (middle pair, Fig. 3-1b). The third pair are from stations POHA and AAK 

oblique to the N160°E direction but roughly perpendicular to the strikes of GCMT nodal 

planes (13° or 191°). Each of the major groups of energy arrives earlier at station POHA 

(bottom pair, Fig. 3-1b). The azimuthal variations of the P wave data clearly indicate a 

lateral propagation of seismic energy along an azimuth of ~160°. It is also clear that the 

third group of energy exhibits a smaller move-out with respect to those of the second and 

fourth groups of energy, indicating that the third group of energy propagates backward to 

the opposite direction (Fig. 3-1a). 
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Fig. 3-1. (a) Observed vertical P displacement seismograms as a function of azimuth. 

Black lines divide the seismograms into four major energy pulses (labeled 1-4) and an 

initiation phase (labeled 0). Seismograms are aligned along the arrival onsets (t = 0 s), 

hand-picked from their high-frequency counterparts. (b) Overlays of P displacement 

seismograms observed at three station pairs in roughly opposite azimuths: (1) COR 

(Az=64°) vs CHTO (Az=250°); (2) FUNA (az=151°) vs GRFO (az=335°); (3) POHA 

(az=111°) vs AAK (az=290°). Seismic records are labeled with station name along with 

azimuth (Az) and epicentral distance (Δ). Energy pulses are marked in accordance with 

those in Fig. 3-1a. For display purpose, the polarities of some records have been flipped. 

 

 The pP waveforms exhibit similar azimuthal variation as the P waveforms (Fig. 3-

2a), corroborating the inferred lateral propagation direction of various groups of energy 

based on the observed P waveforms. However, major groups of energy are delayed in pP 

waveforms than in P waveforms, and the duration of pP waveforms is about 7-8 s longer 

(Fig. 3-2a). We show five example pairs of P and pP seismograms observed at stations 

KBL, HKT, CCM, WCI and SSPA, to further illustrate this feature (Fig. 3-2b). Two 

reference times are marked in Fig. 3-2b, corresponding to the peaks of the second and 

fourth energy pulses in Fig. 3-1a. The second and fourth pulses exhibit 3-4 s and 7-8 s 

delays in pP waveforms than in P waveforms, respectively. The positive delays of 
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different groups of energy observed in the pP waveforms than in P waveforms indicate 

the propagating of energy goes deeper, as a deeper source would make seismic energy 

arrive later in pP than in P. A 3-4 s delay of the second pulse and a 7-8 s delay of the 

fourth pulse in pP waveforms correspond to that the sources of the second and fourth 

pulses are about 15 - 20 km and 35 - 40 km deeper than the earthquake initiation point, 

respectively.  

 

 

Fig. 3-2. (a) Comparison of observed P (black) and pP (red) displacement seismograms 

as a function of azimuth. The black and red lines indicate the ending time of P and pP 

data, respectively. (b) Overlays of P (black) and pP (red) displacements observed at five 

stations: KBL, HKT, CCM, WCI and SSPA. Seismic records are labeled with station 

name along with azimuth (Az) and epicentral distance (Δ). The black and red lines mark 

the maximal of the second and fourth groups of energy labeled in Fig. 3-1a. For display 

purpose, the polarities of some records have been flipped. 
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3.5. Multiple source inversion 

 Because the multiple source inversion is non-linear, we adopt a two-step inversion 

procedure. We first perform the inversion with four sub-events that correspond to groups 

of major energy in the observed seismograms. We then refine the data fitting with a six 

sub-event inversion and narrow down the search parameter ranges based on the four sub-

event inversion results. In the first four sub-event inversion, the search focal parameters 

are ±30° from the CMT vertical plane (13°/79°/270°). The searching ranges for other 

parameters are ± 3 s for dt, ± 30 km for dx, dy, dz, and ± 50% for source durations and 

moments. In the second step of six-event inversion, we add sub-event 0 for the weak 

initiation onset and split sub-event 1 into two for better fitting directivity of the first main 

pulse (Fig. 3-1a). The search ranges for the parameters of the six sub-events are ±30° for 

focal parameters, ±2 s for dt, ±20 km for dx, dy, dz, and ± 50% for source durations and 

moments.   

 The inversion results in excellent waveform fitting between synthetics and 

seismic data for P, pP, SH and sSH waves (Figs. 3-3, S3-1). The inverted best-fitting six 

sub-events are showed in Table 2-1 and Fig. 3-4. The inverted source region has a 

horizontal extension of 64 km and a depth extension of 35 km. Sub-events 2-4 propagate 

downward along an azimuth of 155°-165°, while sub-events 1a and 1b exhibit bilateral 

propagation to northeast and southwest, respectively (Fig. 3-4). Sub-event 2 has a 

duration of 9 s and a peak moment rate at 16.5 s (origin time of the sub-event from the 

initiation plus half duration of the sub-event). And it is located about 45 km S160°E and 

17 km down from the epicenter. Sub-event 3 has a duration of 12 s and a peak moment 

rate at 22 s, and it is located between sub-events 1 and 3, 24 km S155°E and 4 km deeper 
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from the epicenter. Sub-event 4 is 58 km S165°E and 35 km deeper from the epicenter, 

with a duration of 12 s and a peak moment rate at 28.5 s. The focal parameters of sub-

events 1-4 deviate about 20° from the GCMT solution. The focal mechanism of sub-

event 0 is not well resolved, due to its moment release being at least one-order of 

magnitude smaller than other sub-events. The summation of the focal mechanisms of the 

inferred sub-events yields an overall focal mechanism of 10/80/270 (strike/dip/slip), 

similar to that reported for the mainshock in the GCMT solution (13/79/270). The 

predicted total moment is 3.7x1028 dyn·cm, slightly lower than 4.1x1028 dyn·cm in the 

GCMT solution.  
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Fig. 3-3. Selected seismograms (black traces) comparing with synthetics (red traces) predicted 

based on the inverted six sub-event model (Table 2-1) in four quadrants for, P phase (vertical 

displacement), pP phase (vertical displacement), SH phase (tangential displacement) and sSH 

phase (tangential displacement). Seismic records are labeled with station name along with 

azimuth (Az), epicentral distance (Δ), and the maximum amplitude (Amp) of the data. The unit of 

the amplitude is 10-6 m. The whole waveform fitting of all used stations is shown in Fig. S3-1. 
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Fig. 3-4. (a) Locations of sub-events (red points), aftershocks (purple triangles) and background 

seismicity (green triangle), along with slab depth contours (black traces, labeled with slab depth). 

Black beach ball describes GCMT focal mechanism of the mainshock. Red beach balls represent 

inverted focal mechanisms of the sub-events, labeled with sub-event depth and the occurring 

sequence number as defined in Fig. 3-1a. Sub-events are connected by blue arrows following the 

sequence of their occurring times. Green ellipses represent the 95% confidence levels of the 

relocated fore/aftershocks. Sub-events, aftershocks and background seismicity are labeled with 

depth, depth uncertainty and sequence number in Tables 2-1, 2-2. Slab depth contours are from 

the USGS Slab 1.0 model (Hayes et al., 2012). (b) Three dimensional spatial distribution and 

focal mechanisms of inverted sub-events (red beach balls) labeled with sequence of their 

occurring times, along with the focal planes (gray planes) in the GCMT solution. Purple and 

green spheres represent the fore/aftershocks in (a).  
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3.6. Relationship with aftershocks and background seismicity 

 We use a relocation method (Wen, 2006) to determine the locations of the 

aftershocks and background seismicity relative to the mainshock. The method uses the 

arrival time difference of a particular seismic phase between a waveform doublet, defined 

as a pair of seismic events occurring at different times but in close location. Because the 

events occur very close in location, the relative travel times are sensitive primarily to the 

relative change of event location. 

 We use the differential travel times of P and pP waves recorded at the GSN 

stations at the distance ranges less than 45˚ for relocation. The seismic stations constitute 

good azimuthal coverage between 220° and 60°, but only one station PET is available in 

other azimuths. A weight is assigned to keep balance with the azimuthal coverage. We 

are also able to pick pP phase for events 1, 7 and B1. The depths of these events are 

relocated using P and pP travel times with respect to those of the mainshock. Each of the 

aftershock relocations has at least eight station pairs with four-quadrant coverage. 

 The MW 8.3 mainshock is used as the master event, with its location fixed to that 

reported in the USGS catalog. The search region for the relative locations of the 

aftershocks is 3˚ (latitude) × 3˚ (longitude) × 200 km (depth) centered in the mainshock 

location. The search grid intervals are 0.05˚ in latitude, 0.05˚ in latitude and 2 km in 

depth. The best-fitting location and origin time significantly reduce the root-mean-square 

(RMS) travel time residual (Figs. 3-5a, 3-5b).  
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We relocate eight fore/aftershocks with MW>4.0 based on the Preliminary 

Determination of Epicenters (PDE) Bulletin by USGS (Table 3-1 and Fig. 3-5). The 

aftershock locations further support the inference that the May 24, 2013 Okhotsk 

earthquake is not a rupture on a single fault plane. The scattered aftershocks do not fall 

into the same region of the sub-events or fit into a possible plane. Neither is the one only 

small earthquake occurring in the region before the mainshock (Fig. 3-4). 

Table 3-1. Locations of aftershocks and background seismicity. 

ID Date Time Mb No.  

Before relocation After relocation 

Lon 

(°E) 

Lat 

(°N) 

Depth 

(km) 

Lon 

(°E) 

Lat 

(°N) 

Depth 

(km) 

1 5/24/2013 07:32:04 4.3 9 153.56 54.95 602 153.55 54.95 613* 

2 5/24/2013 12:35:00 4.1 8 153.17 54.53 606 153.20 54.60 606 

3 5/24/2013 14:33:24 4.1 8 153.50 54.11 625 153.50 54.15 626 

4 5/26/2013 12:40:59 4.1 8 153.14 54.81 599 153.15 54.80 608 

5 5/28/2013 08:58:39 4.4 15 153.40 54.24 627 153.35 54.25 624 

6 6/5/2013 23:29:44 4.0 8 153.35 54.27 621 153.40 54.25 626 

7 6/11/2013 10:56:38 4.8 15 152.99 54.14 642 152.95 54.20 645* 

B1 5/24/2000 15:42:57 4.4 18 153.42 54.55 572 153.90 54.35 644* 

Note: ID is sequence number of aftershocks and background seismicity. No. is the 

number of stations used in relocation. The depth with * is relocated using pP phase. 
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Fig. 3-5. (a) Measured difference in absolute arrival time (circles and squares) of the P phases 

(with respect to their mean) between the mainshock and one aftershock 201305241456, plotted 

centered at the location of each station, along with the great circle paths (green traces) from the 

mainshock (star) to the stations (labeled with station name in Fig. 3-5b). (b) Same as Fig. 3-5a, 

except that travel time residuals between the two events are corrected using the best-fitting 

relative location (Table 3-1). 

 

3.7. Resolution tests 

3.7.1. Single-plane Rupture Model Test  

 The spatial distribution of the inverted sub-events indicates that the energy release 

of this event does not follow a particular plane of rupture. We perform further inversion 

tests to check if the fitting of seismic data can be compromised with rupture along a 

particular plane. We perform tests for possible plane rupture of the earthquake for three 

possible planes: the CMT sub-horizontal plane, the CMT sub-vertical plane and a plane 

that best connects the inferred sub-event locations (Table 2-1) from the multiple-source 

inversion. 
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Fig. 3-6. (a) Three dimensional spatial distribution of focal mechanisms of the best-fitting model 

(red beach balls) and the inverted model of compelling the sub-events on the GCMT sub-

horizontal plane (blue beach balls) labeled with sequence of their occuring time, along with the 

focal planes (gray planes) in the GCMT solution. (b) Selected seismograms (black traces) 

comparing with synthetics (red traces) predicted by the best-fitting source model (Table 2-1, red 

beach balls in Fig. 3-6a) and synthetics (blue traces) predicted by the best-fitting source model 

(Table S3-1, blue beach balls in Fig. 3-6a) on the GCMT sub-horizontal plane. Arrows point to 

the misfits of the blue traces. The waveform fitting of all used stations is shown in Fig. S3-2. 

 

 Our first test is to adopt the CMT sub-horizontal focal plane. The locations and 

focal mechanisms of sub-events are inverted in a plane with a strike of 191.0˚ and a dip 

of 11.2˚, corresponding to the CMT sub-horizontal plane (Fig. 3-6a, Table S3-1). The 

most notable misfits are time differences of major groups of energy between synthetics 

and the data in P, pP and sS phases marked with black arrows in Figs. 3-6b and S3-2. In 

the direction of inferred lateral rupture propagation, the sub-horizontal plane rupture 

would require the rupture to be up-going, rather than down-going as required from the 

comparison of P and pP data (Fig. 3-2). It should be pointed out that it is crucial to 

combine both P and pP observations in the inversion of source process. The direct tele-



38 
 

seismic P or SH observations have poor resolution in resolving the depth of the 

propagating energy, as the depth has strong trade-offs with origin time.  

 

Fig. 3-7. (a) Three dimensional spatial distribution of focal mechanisms of the best-fitting model 

(red beach balls) and the inverted model of compelling the sub-events on the sub-horizontal plane 

(blue beach balls) based on the constaints of P wave only, labeled with sequence of their occuring 

time, along with the focal planes (gray planes) in the GCMT solution. (b) Selected seismograms 

(black traces) comparing with synthetics (red traces) predicted by the best-fitting source model 

(Table 2-1, red beach balls in Fig. 3-7a) and synthetics (blue traces) predicted by the best-fitting 

source model (Table S3-2, blue beach balls in Fig. 3-7a) on the GCMT sub-horizontal plane 

based on P wave data only. Arrows point to the misfits of the blue traces. The waveform fitting of 

all used stations is shown in Fig. S3-3. 

 

 We perform the same test, but using the P waves only. In this inversion, sub-

events 1-3 propagate up-going along southeast and sub-event 4 propagates to 

south/southwest in horizontal direction (Fig. 3-7a, Table S3-2). The inverted model 

predicts P synthetics that fit the data equally well as the best fitting model in the main 

text (Figs. 3-7b, S3-3a). However, the pP waveforms predicted by this model misfit the 

data at all the stations, with all groups of energy arriving much earlier in synthetics than 

in the data (Figs. 3-7b, S3-3b). Same is also true for sS waveforms at stations RAR, RAO, 
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UGM, EIL, KIEV and GRFO (Fig. S3-3d). This is due to the fact that the sub-events are 

prescribed to move shallower on the CMT sub-horizontal plane.  

 The second test is to confine the seismic energy on the CMT vertical plane. The 

synthetics of such inversion results (Table S3-3 and Fig. 3-8a) cannot match the 

observations in both arrival times and radiation patterns of major energy groups. The 

mismatches are due to the fact that the assumed vertical plane of rupture prescribes the 

seismic source to move in a way that the predicted energy associated with the second and 

fourth pulses would not fit the azimuthal dependence of their arrival times and 

amplitudes in the P and pP observations. The seismic source for the second and fourth 

pulses are required to move east and deeper, while the CMT vertical inversion places the 

energy north and shallower resulting in the synthetic misfits to the observations. The 

most obvious misfits are revealed at stations around 90˚ and 270˚. The major groups of 

energy arrive earlier in the observed P waveforms than in the synthetics at stations POHA, 

KIP, JOHN and RAR, and later at stations ENH, CHTO, LSA, KBL, MAKZ, AAK and 

BRVK (Figs. 3-8b, S3-4a). The mismatch of arrival times is also evident in the S 

waveforms at stations PFO, COR and WAKE, and the sS waveforms at stations EIL, 

KIEV, and GRFO (Fig. S3-4c). The misfits of radiation pattern are evident in P 

waveform at station PMG (Fig. S3-4d) and in sS waveforms at stations ANMO and TUC 

(Figs. 3-8b, S3-4). 
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Fig. 3-8. (a) Three dimensional spatial distribution of focal mechanisms of the best-fitting model 

(red beach balls) and the inverted model compelling the sub-events on the GCMT sub-vertical 

plane (blue beach balls), labeled with sequence of their occuring time, along with the focal planes 

(gray planes) in the GCMT solution. (b) Selected seismograms (black traces) comparing with 

synthetics (red traces) predicted by the best-fitting source model (Table 2-1, red beach balls in Fig. 

3-8a) and synthetics (blue traces) predicted by the best-fitting source model (Table S3-3, blue 

beach balls in Fig. 3-8a) on the GCMT sub-vertical plane. The waveform fitting of all used 

stations is shown in Fig. S3-4. 

 

 Our third test is to adopt a plane that best fits the spatial distribution of the sub-

events from the multiple-source inversion. The plane has a strike of 350° and a dip of 65°. 

While the predicted arrival times of major groups of the energy fit the observations 

reasonably well, the predicted amplitudes do not fit the data (Table S3-4, Fig. 3-9a). This 

is due to the fact that such a plane would prescribe focal mechanisms that would not fit 

the azimuthal variations of seismic amplitudes in the data (Figs. 3-9b, S3-5). These 

inversion tests indicate that the fitting of the seismic data cannot be compromised with 

rupture on a plane.  
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Fig. 3-9. (a) Three dimensional spatial distribution of focal mechanisms of the best-fitting model 

(red beach balls) and the inverted model compelling the sub-events on the plane that best 

connects the best-fitting model (blue beach balls), labeled with sequence of their occuring time, 

along with the focal planes (gray planes) in the GCMT solution. (b) Selected seismograms (black 

traces) comparing with synthetics (red traces) predicted by the best-fitting source model (Table 2-

1, red beach balls in Fig. 3-9a) and synthetics (blue traces) predicted by the best-fitting source 

model (Table S3-4, blue beach balls in Fig. 3-9a) on a plane that best connects the inferred sub-

events in Table 2-1. The waveform fitting of all used stations is shown in Fig. S3-5. 

 

3.7.2. Effects of Attenuation 

 Earth’s attenuation would result in broadening of wave shapes and apparent 

“delay” of the peaks of seismic energy (Fig. 3-10a). However, the different durations 

observed between pP and P waveforms (Fig. 3-2a) are not caused by the effect of 

attenuation. We test various attenuation models by changing path-integrated attenuation 

t* value from 0.5 to 2 times of PREM values for pP synthetics. The misfits do not vary 

much with t* values ranging from 0.6 to 1.7 times of PREM values (Fig. 3-10b). When t* 
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reaches 1.8 times of PREM values, misfits start to increase rapidly (Fig. 3-10b). With this 

attenuation structure, the apparent “delay” of the peaks of individual pulses of pP waves 

is at most 1.5 s (Fig. 3-10a), which is significantly smaller than 7-8 s observed in the P 

and pP data (Fig. 3-2). More importantly, the predicted time differences between the 

peaks of different sub-event energy, which are used to infer the depth separations 

between the sub-events, differ at most by 0.2 s between different attenuation models. (Fig. 

3-10a). Therefore, the depth extension among sub-events 1-4 is little affected by 

attenuation. We conclude that the observed time difference between P and pP wave 

energy is caused by the depth extension of seismic source. 
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Fig. 3-10. (a) Synthetics (red traces) of pP waves attenuated by t* = 1.45 based on the PREM 

model and synthetics (blue traces) of pP waves attenuated by t* = 2.61 (1.8 times of PREM 

values) predicted by the best-fitting source model (Table 2-1). The red and blue lines mark the 

peaks of sub-events 2 and 4. (b) The misfits (RMS) of amplitudes between the data and synthetics 

predicted based on the best fitting model by varing t* of pP phase from 0.5 to 2.0 times of the 

PREM values. 
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3.7.3. Three dimensional effect of slab structure 

 It is well known that a sharp structure of a subducted slab may have profound 

effects on wave propagation (Chen et al., 2007). In some specific slab geometry, the 

sharp feature of the slab structure may exhibit multi-path effects, producing an additional 

pulse at some azimuths. The extent of such effects would likely vary from slab to slab. 

However, if such effect exists, the additional pulse in the propagational effects could be 

mistaken as a sub-event or contaminate our results during the inversion. For the seismic 

data used in the present study, the three-dimensional (3D) propagational effects due to the 

slab structure are minor. This is demonstrated in a near-by aftershock data recorded at 

these stations (Fig. 3-11a). The P waves of the aftershock exhibit a simple pulse with a 

duration of 2 s in four quadrants (Fig. 3-11b). No obvious additional pulses are observed 

within the range of time separation between the inverted sub-events for the mainshock 

(Fig. 3-11b). Same waveform characteristics are observed for the pP waves as well, 

although their main phases exhibit a longer duration, which may be due to either stronger 

attenuation or down-dip rupture directivity. We thus conclude that the 3D slab effect is 

minor in our data and does not affect our inversion result of the Okhotsk earthquake. 
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Fig. 3-11. (a) Location and focal mechanisms (red beach balls) of the mainshock and a near-by 

aftershock. The depth contours labeled with slab depth are from the USGS Slab 1.0 model. (b) 

Observed vertical P (black traces) and pP (red traces) displacement seismograms of the 

aftershock as a function of azimuth. 

 

3.7.4. Horizontal Extension of the Energy Propagation 

 The spatial distribution of the source process in this study represents the centroid 

location of each sub-event. Therefore, the horizontal extension of 64 km in this study is 

roughly consistent with the previous study (Ye et al., 2013), and smaller than 100 km 

reported by the others (Wei et al., 2013; Zhan et al., 2014a). The discrepancy arises from 

the fact that different types of data used between the studies. The result of the previous 

study is inferred from waveform fitting of P wave data only, while our result is obtained 

based on waveform fitting of both P and S wave data. While a lateral extent larger than 

100 km would still produce reasonably good fit to the P wave data, it would generate an S 

wave energy move-out different from the observed data. We present an example of 

synthetic test to illustrate the effect, by compelling the parameter ‘dn’ of sub-event 4 to 

be larger than 90 km south to the earthquake initiation point (Fig. 3-12a, Table S3-5). 
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While the observed P waveforms can still be reasonably fit by the model (Figs. 3-12b, 

S3-6a), significant misfits are apparent in S waves at stations SFJD, IVI, CLF, KBS and 

DAG (Figs. 3-12b, S3-6c). The seismic energy generated by sub-event 4 exhibits a very 

different move-out from the data (Figs. 3-12b, S3-6c). And some misfits are exhibited in 

pP and sS as well (Figs. S3-6b, S3-6d). 

 

Fig. 3-12. (a) Three dimensional spatial distribution of focal mechanisms of the best-fitting model 

(red beach balls) and the inverted model compelling sub-event 4 to 90 km south to the initiation 

of the earthquake (blue beach balls), labeled with sequence of their occuring time, along with the 

focal planes (gray planes) in the GCMT solution. (b) Selected seismograms (black traces) 

comparing with synthetics (red traces) predicted by the best-fitting source model (Table 2-1, red 

beach balls in Fig. 3-12a) and synthetics (blue traces) predicted by the best-fitting source model 

(Table S3-5, blue beach balls in Fig. 3-12a) by compeling sub-event 4 to 90 km south to the 

initiation of the earthquake. Arrows point to the misfits of the blue traces. The waveform fitting 

of all used stations is shown in Fig. S3-6. 
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3.8. Possible interpretations 

 The inferred source process does not prefer phase transformational faulting. The 

transformational faulting events would occur in the interface of the meta-stable olivine-

spinel wedge, so the orientation of the wedge would follow the sub-event locations as in 

Fig. 3-4a. It is unlikely that the meta-stable wedge would possess that kind of geometry. 

 It is interesting to note that the inferred sub-events could be classified into two 

groups with similar focal mechanisms, with sub-events 0, 1a, 1b, 3 forming one and sub-

events 2 and 4 the other. The spatio-temporal distribution of the sub-events could be 

explained with rupture on two planes approximately orthogonal to each other with one 

sub-horizontal plane hosting the rupture of sub-events 0, 1a, 1b and 3 and one sub-

vertical plane hosting the rupture of sub-events 2 and 4 (Fig. 3-13). In this scenario, the 

earthquake is initiated on the sub-horizontal plane with a rupture velocity of 2 km/s and a 

lateral dimension of 27 km. At 12 seconds during the sub-horizontal rupture, a downward 

rupture is triggered on a near sub-vertical plane 24 km southeast of the sub-horizontal 

rupture, with a rupture velocity of 2 km/s. It is also interesting to note that such rupture 

process would resemble that of the April 11 2012 great earthquake in the Indian ocean 

(Meng et al., 2012; Yue et al., 2012), and may represent reactivation at depth of such a 

pre-existing type of fault system observed in oceanic lithosphere before subduction. 

However, none of the aftershock locations fits into these two possible rupture planes (Fig. 

3-4a), making this two-plane rupture explanation unlikely.    

 The source process and fore/aftershocks distribution indicates that the earthquake 

is a combination of smaller earthquakes occurring in close space and time. The close 
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proximity and timing of the sub-events suggest a cascading failure of the region during 

this earthquake, with some triggering mechanisms between the sub-events. The likely 

triggering forces are the static or dynamic stress generated by the preceding sub-event(s) 

(Hill, 2008; Tibi et al., 2003b). 

 

Fig. 3-13. A two-plane rupture model (green planes) that could accommodate the locations and 

focal mechanisms of the inferred sub-events (red beach balls labeled with sequence of their 

occurring times). Two GCMT fault planes are presented as blue planes. 

 

  The inferred source process of the Okhotsk earthquake is more consistent with a 

cascading failure of shear thermal instabilities in the region. Shear thermal instability is a 

failure due to positive feedback between viscous heating and temperature-dependent 

rheology (Hobbs and Ord, 1988b; Kelemen and Hirth, 2007). Such feedback system is 
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naturally influenced by perturbation of stress, providing a mechanism for a cascading 

failure in a region. While a pre-existing zone of weak rheology is not a requirement for 

shear thermal instability to occur, it would prescribe the instability to occur along its 

orientation. Such weak zones are known to exist within the subducted slab, due to either 

past faulting before subduction (Silver et al., 1995) or existence of pre-existing fine-

grained shear zones (Kelemen and Hirth, 2007). The focal mechanisms of the sub-events 

thus could reflect the orientations of the pre-existing weak zones. In short, the Okhotsk 

earthquake can be best explained by a cascading series of failures in a region of pre-

existing weak zones, with the perturbation of stress generated by a shear instability 

triggering another and the orientations of the pre-existing weak zones controlling the 

focal mechanisms of these instabilities.  

 

3.9. Conclusion 

 We investigate the source process of the 24 May 2013 Mw 8.3 Okhotsk deep 

earthquake based on waveform modeling of P, pP, SH and sSH wave data. The seismic 

source directivity analyses and multiple-source inversion results suggest that the 

earthquake can be modeled by six sub-events, with a horizontal extension of 64 km and a 

depth extension of 35 km. The model resolutions are ±2° for each focal parameter, ±0.5 s 

for dt and ±4 km for location. Synthetics tests further indicate that the seismic data cannot 

be explained by rupture on a single plane. The spatial distribution of the fore/aftershocks 

also does not fit into a plane or two planes with the inferred sub-events. These results 

suggest that the earthquake is a combination of smaller earthquakes close in time and 
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space. We suggest that the earthquake can be best explained by a cascading failure of 

shear instability within pre-existing weak zones in the region, with the perturbation of 

stress generated by a shear instability triggering another. 
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Chapter 4 Source process and physical mechanism of the major sub-

events of global large deep-focus earthquakes 

4.1. Abstract  

 We apply a multiple source inversion method to systematically study the source 

processes of 25 large deep-focus (depth > 400 km) earthquakes with Mw > 7.0 from 1994 

to 2012, based on waveform modeling of P, pP, SH and sSH wave data. The earthquakes 

are classified into three categories based on spatial distributions and focal mechanisms of 

the inferred sub-events: 1) category one, with non-planar distribution and variable focal 

mechanisms of sub-events, represented by the 1994 Mw 8.2 Bolivia earthquake and the 

2013 Mw 8.3 Okhotsk earthquake; 2) category two, with planar distribution but focal 

mechanisms inconsistent with the plane, including eighteen earthquakes; and 3) category 

three, with planar distribution and focal mechanisms consistent with the plane, including 

six earthquakes. We discuss possible physical mechanisms for earthquakes in each 

category in the context of plane rupture, transformational faulting and shear thermal 

instability. We suggest that the inferred source processes of large deep-focus earthquakes 

can be best interpreted by cascading failure of shear thermal instabilities in pre-existing 

weak zones, with the perturbation of stress generated by a shear instability triggering 

another and focal mechanisms of the sub-events controlled by orientations of the pre-

existing weak zones. The proposed mechanism can also explain the observed great 

variability of focal mechanisms, the presence of large values of CLVD (Compensated 

Linear Vector Dipole) and the super-shear rupture of deep-focus earthquakes in the 

previous studies. In addition, our studies suggest existence of relationships of seismic 
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moment ~ (source duration)3 and moment ~ (source dimension)3 in large deep-focus 

earthquakes. 

4.2. Introduction  

 Physics of deep-focus earthquakes remains enigmatic, since deep-focus 

earthquakes occur at the depth below 400 km where the pressure would strongly inhibit 

brittle failure and the temperature would result in ductile deformation (Scholz, 2002). 

Various models have been proposed to explain the unexpected occurrence of deep-focus 

earthquakes, including dehydration embrittlement, transformational faulting and shear 

thermal instability. Dehydration embrittlement suggests that deep earthquakes may be 

triggered by embrittlement accompanying dehydration of hydrous minerals (such as 

serpentine) (Jung et al., 2004; Meade and Jeanloz, 1991), although it is unclear if the 

water content below the 400 km depth can support this mechanism. Transformational 

faulting mechanism hypothesizes that a meta-stable olivine wedge exists in the mantle 

transition zone and the phase transformation can lead to catastrophic earthquake failure 

(Green, 2007; Green and Burnley, 1989; Green and Houston, 1995; Kirby, 1987; Wiens 

et al., 1993) And, shear thermal instability suggests that rapid deformation can be 

achieved (especially, in pre-existing rheological weak zones), when a stress or 

temperature perturbation promotes a positive feedback between shear heating and 

temperature-dependent rheology (Hobbs and Ord, 1988b; Karato et al., 2001; Kelemen 

and Hirth, 2007; Ogawa, 1987).  

 Studies of source processes of large deep-focus earthquakes provided important 

constraints on deep-focus earthquake mechanisms. During the past 20 years, various 

methods have been applied to study source processes of deep-focus earthquakes. Rupture 
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directivity is analyzed to determine fault plane orientations of deep-focus earthquakes 

occurring in the Tonga-Kermadec subduction zone (Warren et al., 2007). Both sub-

horizontal and sub-vertical fault planes are detected, corresponding to a complex rupture 

system with either a reactivated or new generated fault system (Warren et al., 2007). 

Super-shear rupture was also reported for an Mw 6.7 aftershock of the Okhotsk 

earthquake (Zhan et al., 2014b). A number of large deep earthquakes, especially the 1994 

Mw 8.2 Bolivia and 2013 Mw 8.3 Okhotsk deep earthquakes, have also been studied by 

multiple source inversion (Chen et al., 2014; Silver et al., 1995; Zhan et al., 2014a) and 

finite fault inversion (Antolik et al., 1996, 1999; Estabrook, 1999; Wei et al., 2013; Ye et 

al., 2013). The source processes of these two largest ever-recorded deep earthquakes 

provided particularly important insights on the physical mechanisms of deep earthquakes. 

Both the Bolivia earthquake (Silver et al., 1995; Zhan et al., 2014a) and the Okhotsk 

earthquake (Wei et al., 2013; Ye et al., 2013) were determined to have a large source 

region that totally cuts out of the assumed meta-stable olivine zone, seemingly excluding 

the transformation faulting as a possible mechanism. In a recent study, we showed that 

the Okhotsk earthquake consists of six sub-events that cannot spatially be fit into plane 

rupture and have variable focal mechanisms; we further suggested that the source process 

can be best explained by a cascading failure of shear thermal instabilities distributed at 

different depths, with one shear instability triggering another (Chen et al., 2014).  

 Though the past studies have provided important constraints on deep earthquake 

physics, several issues remain to be resolved. 1. Do deep-focus earthquakes rupture in a 

single fault plane? 2. Do deep-focus earthquakes behave the same between hot and cold 

subducted slabs? 3. Is there a unified mechanism to explain all the seismic results? In this 
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study, we perform a systematical study of source processes of the global large deep-focus 

earthquakes with a moment magnitude greater than 7 and depth larger than 400 km, 

based on waveform modeling of direct P and SH waves and near-surface reflected pP and 

sSH waves through multiple source inversion. Combining the direct and near-surface 

reflected phases places a tight constraint on the depth distribution of the seismic energy 

release during these earthquakes (Chen et al., 2014). The multiple source inversion also 

makes no a prior assumption on the focal mechanism of the sub-events in waveform 

modeling. In the following sections, we present event information and seismic data in 

section 4.3, multiple source inversion method in section 4.4, multiple source inversion 

results in section 4.5, a unified physical mechanism of shear thermal instability for 

explaining the seismic results in section 4.6, and implications to the observed focal 

mechanism variation of deep earthquakes and super-shear rupture in section 4.7. 

4.3. Seismic data 

We search the events with Mw > 7.0 and depth > 400 km from 1994 to 2012. 

There are a total of 28 earthquakes matching the criterion (Fig. 4-1 and Table S4-0). The 

studied events are well recorded by the Global Seismographic Network (GSN). The data 

consist of broadband compressional waves (P), near-surface reflected compressional 

waves (pP), transversally polarized shear waves (SH) and near-surface reflected 

transversally polarized shear waves (sSH) recorded at tele-seismic distances between 30° 

and 90°. The selected data constitute good azimuthal coverage for all the events (Figs. 

S4-1a – S4-25a). As we will mention later, the combination of direct P and SH waves 

with the near-surface reflected pP and sSH waves places a tight constraint on depth extent 

of seismic source. The displacement seismograms are deconvolved with their respective 
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instrument responses and bandpass filtered between 0.01 and 4 Hz. Our source models 

are constrained mostly by the seismic energy in a lower frequency band, but the use of 

the high-frequency data provides better arrival time reading of the P wave onsets while 

producing little artifacts in the inversions (supplementary information). 

 

Fig. 4-1. Distribution of the global large deep-focus earthquakes (Mw > 7 and depth > 400 km) 

from 1994 to 2012, and their GCMT focal mechanisms, labeled with event numbers in Table S4-

0. The earthquakes labeled with green, blue and red represent the earthquakes in categories one to 

three as classified in Section 4.5. The events labeled with red numbers are the example events 

presented in the main text. Three earthquakes with black beach balls are not studied (see text for 

the reasons). 

4.4. Source processes of global large deep-focus earthquakes 

We apply our multiple source inversion procedure to study the source processes 

of 28 deep-focus earthquakes. The observed waveforms of 25 of those earthquakes can be 

modeled reasonably well, using one to eight sub-events (green, blue, and red beach balls 

in Fig. 4-1). Three earthquakes (E26, E27 and E28, black beach ball in Fig. 4-1) are 

excluded in the present study. The seismic waves of event E27 are mixed with that of 
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event E24 which occurred 24 minutes earlier, while E26 and E28 generated too complex 

waveform to be modeled by our method.  

We align broadband P phases by the first arrival onsets, which can be clearly 

identified and picked in the high-pass filtered data above 1Hz. SH, pP and sSH phases are 

aligned iteratively in the inversion process: we first pick them based on IASP91 model 

(Kennett and Engdahl, 1991) and perform a preliminary inversion with P wave heavily 

weighted over other phases. The alignments of pP, SH and sSH phases are adjusted based 

on the best match between synthetics and the data during the inversions, until no further 

adjustment is observed from the previous inversion. The final inversion weights each 

phase equally. Synthetics tests indicate that such procedure of phase alignment is 

effective even in the presence of noise, large initial misalignment and waveform 

distortions due to attenuation or multi-path effects (supplementary information). 

For each event, we also test whether the seismic data can be compromised with 

rupture in a single fault plane. We test three planar models: the two GCMT (Global 

Centroid Moment Tensor) fault planes and the plane that best geographically connects the 

inverted best-fitting sub-events in the multiple source inversion. Obviously, the best-

fitting sub-event models of the multiple source inversion would always fit the data better 

than any planar models, but we test if the better data fitting is significant. We define that 

the earthquake can be modeled by a single fault plane if the misfit difference between the 

best planar model and the best-fitting sub-event model is less than 5%, a threshold above 

which better waveform fitting can be visually noticeable at stations around the nodal 

planes. The synthetics (blue traces) of the best planar models are presented in Figs. S4-1 
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– S4-25, along with the synthetics (red traces) predicted by the best-fitting sub-event 

models.  

The inversion results of the 26 earthquakes can be divided into three categories 

based on the focal mechanisms and spatial distributions of the inferred sub-events: 1) 

category one, with non-planar spatial distribution and variable focal mechanisms of the 

sub-events, represented by the Bolivia earthquake (E2, green beach ball in Fig. 4-1) and 

the 2013 Mw 8.3 Okhotsk deep earthquake (Chen et al., 2014), 2) category two, with 

planar distribution but focal mechanisms of the sub-events inconsistent with the best-

fitting plane, including eighteen earthquakes (blue beach balls in Fig. 4-1), and 3) 

category three, with planar distribution and focal mechanisms of sub-events consistent 

with the plane, including six earthquakes (red beach balls in Fig. 4-1). Earthquakes in 

categories one and two have greater moment magnitudes, longer source durations and 

larger source regions. We discuss the main features of the source process in each of the 

three categories, using an earthquake in each category as example. The detailed results of 

all the earthquakes are presented in the supplementary information with descriptions, 

tables of the best-fitting sub-event models (Tables S4-1 – S4-25) and the waveform 

fitting comparisons between the synthetics predicted by the best-fitting sub-event models 

(red traces) and the best planar models (blue traces) (Figs. S4-1 – S4-25). So are the 

results of our previous study of the 2013 Mw 8.3 Okhotsk earthquake (Chen et al., 2014), 

in Table S4-26 and Fig. S4-26.  

4.4.1. Category 1: Non-planar spatial distribution of sub-events (Bolivia and 

Okhotsk) 
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The two largest ever recorded 2013 Okhotsk earthquake (Chen et al., 2014) and 

1994 Bolivia earthquake exhibit large depth extensions of the sub-events. The sub-events 

of these two earthquakes are not distributed in a plane and exhibit variable focal 

mechanisms. We have reported the results related to the Okhotsk earthquake in our 

previous study (Chen et al., 2014). The Okhotsk earthquake consists of six sub-events 

with a horizontal extension of 64 km and a vertical extension of 35 km (Fig. S4-26). The 

geographic distribution and focal mechanisms of the inferred sub-events and 

fore/aftershocks locations do not fit into plane rupture (Chen et al., 2014). We focus on 

discussing the results of the Bolivia earthquake here. 

The Bolivia earthquake has been well studied (Antolik et al., 1996; Goes and 

Ritsema, 1995; Silver et al., 1995; Zhan et al., 2014a). All the previous studies have 

suggested that the Bolivia earthquake ruptured on the GCMT sub-horizontal plane (Silver 

et al., 1995; Zhan et al., 2014a). Seismic data used in those studies included mostly P 

waves, with exceptions of Goes and Ritsema (1995) where both P and pP waves were 

used at the stations around the azimuth of 310˚, and Antolik et al (1996) where three pP 

observations were used. In this study, we revisit the issue by joint inversion of the P and 

pP waves recorded globally. We find that the seismic P and pP waves of the Bolivia 

earthquake exhibit a vertical extension during the earthquake, inconsistent with rupture 

on the GCMT sub-horizontal plane (Fig. 4-2).  

The earthquake begins with an ~10 s weak initiation phase, followed by strong 

moment release lasting ~35 s. As the present study deals with major source process of 

deep-focus earthquake, the initiation phase is ignored and ignorance of such phase does 
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not affect the seismic results presented here (supplementary information). The observed P 

waveforms exhibit strong azimuthal variations with five major seismic pulses during the 

strong moment release, discernible with different move-outs (peak times labeled 1 to 5 in 

black, Fig. 4-2a). The pP waveforms exhibit similar azimuthal variation as the P 

waveforms (peak times label with 1 to 5 in red, Fig. 4-2a). However, pulses of sub-events 

4 and 5 are delayed in pP waveforms than in P waveforms, and the duration of pP 

waveforms is about 7-8 s longer (Fig. 4-2a). We show five example pairs of P and pP 

seismograms observed at stations TAM, SUR, SPA, RAR and COR, to further illustrate 

this feature (Fig. 4-2b). The first two pulses present almost the same arrival times in P 

and pP waveforms, corresponding to the same source depths. The fourth and fifth pulses 

exhibit 3-4 s and 7-8 s delays in pP waveforms than in P waveforms, corresponding to 

event sources that are 15-20 km and 35-40 km deeper than the earthquake initiation point. 

In the inversion, we adopt two sub-events 3a and 3b to better fit the observed 

waveform features in the time window labeled between 3 and 4 in Fig. 4-2. The Bolivia 

earthquake can be modeled by 6 sub-events (Figs. 4-3, Table S4-2), with a total duration 

of 44 s. The source has a horizontal extension of 44 km and a vertical extension of 38 km. 

The inverted fault plane orientations of the sub-events are less than 10˚ different from the 

GCMT solution (Table S4-2). In comparison, the source of the Okhotsk earthquake has a 

duration of 28.5 s, a horizontal extension of 64 km and a vertical extension of 35 km 

(Chen et al., 2014). The sub-event durations of both earthquakes are about 10 s. We 

perform the planar tests for the Bolivia earthquake by compelling the sub-events on three 

planar rupture models. The sub-horizontal plane is determined to be the best planar model. 

However, the sub-horizontal plane model predicts synthetics arrival times that match the 
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data in the early part of the seismograms (associated with sub-events 1, 2 3a and 3b), but 

not in the later portion of the seismograms (associated with the last two sub-events) (Fig. 

4-3c). For example, in comparison with the observations (black traces), the last sub-event 

in the best planar model (synthetics in blue traces) predicts later P waves at stations TAM 

and HRV, but earlier pP waves at stations PAB, RAR and COR (Fig. 4-3c). Synthetics 

waveform amplitudes of the model also misfit the early portion of the seismograms 

associated with the first sub-event (e.g., the P wave at station RAR, Fig. 4-3c). The 

GCMT sub-vertical plane model generates late P and pP arrival times around the azimuth 

of 0° and early arrival times around the azimuth of 180°. And, while the plane that best 

connects the spatial distribution of the inferred sub-events (with a strike of 281° and a dip 

of 45°) can predict correct arrival times for most of the sub-events except at the time 

window that is associated with sub-event 3a and 3b, it generates synthetics that do not fit 

the azimuthal variation of seismic amplitudes in the data. These modeling results suggest 

that the Bolivia earthquake, like the Okhotsk earthquake, is a combination of sub-events 

that are distributed at different depths and out of a plane, and have variable focal 

mechanisms.  

Although the horizontal distribution of the sub-events in our study is quite similar 

to those previous studies using P waves (e.g., Silver, et al., 1995, Zhan et al., 2014a), our 

results indicate that the sub-events 4 and 5 are 18 and 39 km deeper, and the spatial 

distribution of the sub-events is inconsistent with rupture on the GCMT sub-horizontal 

plane. This difference in the seismic results lies on that only the P waves were used in 

those studies (Silver et al., 1995; Zhan et al., 2014a), and P waves alone do not have 

source depth resolution (Fig. 2-1). We discuss the discrepancies between our results and 
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those of the two previous studies using P and pP wave observations below. In the study 

of Antolik et al. (1996), they used three pP wave observations and only tested two plane 

models from the GCMT solution. Their best fitting plane model (the GCMT sub-

horizontal plane) predicted earlier pP wave than the data recorded at station ALE (Figure 

4 in Antolik et al., 1996), which implies inaccuracy in the inferred source depths. In the 

study of Goes and Ritsema (1995), they concluded that similar durations were observed 

between the stacked P and pP waveforms around the azimuth of 310°. However, we 

should note that the first sub-event is weak in the azimuth range between 310˚ and 70˚ 

(Fig. 4-2a), which would mislead the comparison of the durations of P and pP waves. At 

other azimuths, the observed pP waveforms clearly exhibit longer durations than P 

waveforms (Fig. 4-2).  
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Fig. 4-2. (a) Comparison of observed P (black traces) and pP (red traces) displacement 

seismograms as a function of azimuth. The black and red lines indicate the peak times of the sub-

events for P and pP, respectively. (b) Overlays of P and pP displacements observed at five 

example stations: COR, RAR, SPA, SUR and PAB. The black and red lines mark the maximal of 

the first, second, fourth and fifth sub-events labeled in (a). For the display purpose, the polarities 

of some records have been flipped. 
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Fig. 4-3 (a) Locations of the best-fitting sub-events (red points), the best planar model (blue 

points, the inferred sub-events compelled to the sub-horizontal plane), and the initiated location 

(black star) of the 1994 Bolivia earthquake (E2), along with slab depth contours (black traces, 

labeled with slab depths). Black beach ball describes GCMT solution of the event. Red and blue 

beach balls represent inferred focal mechanisms of the sub-events of the best-fitting model and 

the best planar model, labeled with the sub-event peak times/moment magnitudes/depths. (b) 

Three-dimensional spatial distribution and focal mechanisms of inferred sub-events of the best-

fitting model (red beach balls) and the best planar model (blue beach balls) labeled with their 

occurring sequence. (c) Selected observed seismograms in Fig. S4-2 (black traces) comparing 
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with synthetics (red traces) predicted by the best-fitting source model and synthetics (blue traces) 

predicted by the best planar model. The red and blue lines label the peak times of the sub-events 

predicted by the best-fitting model and the best planar model. 

 

4.4.2. Category 2: Planar spatial distribution of sub-events, but with focal 

mechanisms inconsistent with the plane (18 events) 

The geographic distribution of the inferred sub-events of category two 

earthquakes (E1, E3, E5, E8, E9, E11, E12, E13, E15, E16, E17, E19, E20, E21, E22, 

E23, E24 and E25) can fit into a plane, but the focal mechanisms of the sub-events are 

inconsistent with the plane orientations. Most of the fault plane orientations of the sub-

events deviate less than 20° from the fault plane orientations of the GCMT solutions, but 

some up to 50° (e.g., E1, Table S4-1). Synthetics of the best planar model exhibit large 

amplitude misfits to the seismic data (and even different polarities) at some stations (Fig. 

4-4c). The hypocenter depths of this group of earthquakes range from 425 to 675 km, 

their moment magnitudes between 7.0 and 7.9, total source durations from 8 to 26 s, and 

the maximum distances among the sub-events between 15 and 70 km. The typical sub-

event durations of these earthquakes are between 2 and 8 s. 

We present the results of event E19 beneath Tonga region as example. This event 

consists of three sub-events, with inverted focal mechanisms (strike/dip/rake) of 

46/71/262, 51/79/258 and 78/60/200 (Fig. 4-4a, Table S4-19). The best-fitting sub-events 

of the earthquake are distributed around the GCMT sub-vertical fault plane (Fig. 4-4, 

Table S4-19). The first two sub-events are roughly consistent with 49/76/252 of the 

GCMT solution, but the third one is ~30° different from the GCMT sub-vertical fault 

plane. We compare the best-fitting sub-event model (red traces) and the best planar 
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model (blue traces) that compels the sub-events distributed on the GCMT sub-vertical 

plane (Figs. 4-4, S4-19). The blue traces can fit the early part of the data (corresponding 

to the prediction of the first two sub-events) at most of the stations, but significantly 

misfit the later portion of the data that corresponds to the pulse associated with the third 

inferred sub-event. The azimuthal distribution of the later portion of the seismograms 

would require a source that has a quite different radiation pattern from the early sub-

events and from the GCMT solution (Fig. 4-4c).  
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Fig. 4-4. Similar as Fig. 4-3, except for event E19, with the best planar model being the GCMT 

sub-vertical plane. (c) Selected comparisons between data (black traces) and synthetics based on 

the best-fitting sub-event model (red traces) and the best planar model (blue traces) in Fig. S4-19. 

4.4.3 Category 3: Planar spatial distribution and focal mechanisms of sub-events 

consistent with the plane (6 events) 

The spatial distribution of the inferred sub-events of the category three 

earthquakes (E4, E6, E7, E10, E14, and E18) fits into one plane and the focal 

mechanisms of the inferred sub-events are consistent with the best-fitting plane. Naturally, 

synthetics of the best planar model can fit the data as well as that of the best-fitting sub-

event model. The hypocenter depths of this group of earthquakes range from 495 km to 

610 km, and their moment magnitudes between 7.0 and 7.4. The extent of the lateral 

distribution of these events varies from 7 to 25 km, and the total durations of the 

earthquakes in this category from 4 to 14 s. The typical sub-event durations of these 

earthquakes are between 2 and 4 s. 

We present the results of event E6 beneath Tonga region as example. The 

earthquake can be modeled by four sub-events with a horizontal extension of 25 km 

(Table S4-6, Fig. 4-5a). The first three sub-events are distributed on both the GCMT fault 

planes (along the interface of the two planes) with focal mechanisms consistent with the 

GCMT solution (Fig. 4-5b). The fourth sub-event is weak and its location is not well 

constrained. In the test of planar models, both GCMT fault planes could model the data 

reasonably well, with the sub-vertical plane slightly better (Figs. 4-5c, S4-6). Previous 

studies also reached different conclusions on the best-fitting plane, between the sub-

vertical plane (Warren et al., 2007) and the sub-horizontal plane (Antolik et al., 1999).  
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Fig. 4-5. Similar as Fig. 4-3, except for event E6, with the best planar model being the GCMT 

sub-vertical plane. (c) Selected comparisons between data (black traces) and synthetics based on 

the best-fitting sub-event model (red traces) and the best planar model (blue traces) in Fig. S4-6. 
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4.5. Physical mechanism of deep-focus earthquakes 

4.5.1. Possible physical mechanisms for earthquakes in each category 

The 2013 Okhotsk earthquake and the 1994 Bolivia earthquake in category one 

consist of sub-events with non-planar distribution. Our previous study indicated that the 

geographic distribution and focal mechanisms of the inferred sub-events of the Okhotsk 

earthquake and its fore/aftershocks locations do not fit into plane rupture (Chen et al., 

2014). The source geometry of the event does not prefer phase transformational faulting, 

since it is not consistent with the meta-stable olivine wedge (Chen et al., 2014; Meng et 

al., 2014). Previous studies suggested that the Bolivia earthquake ruptured on the GCMT 

sub-horizontal plane and the inferred lateral dimension of the Bolivia event was larger 

than the hypothesized meta-stable olivine wedge, making the phase transformation 

faulting unlikely for the event (Silver et al., 1995). Our seismic results are inconsistent 

with a plane rupture, either on the GCMT sub-horizontal plane or on the plane that best 

connects the sub-event locations. The spatial distribution of the sub-events of the Bolivia 

earthquake is inconsistent with the likely slab geometry in the region (Fig. 4-3a) and the 

lateral extent of the source distribution of the event is estimated to be 50 km (maximum 

separation distance between the sub-events plus the rupture length of sub-events with 10 

s duration and half of local shear wave velocity), exceeding the 10-20 km thick meta-

stable olivine wedge estimated based on theoretical estimation of the temperature 

condition within South American slabs (Silver et al., 1995). The best-fitting sub-event 

model can be best explained by a cascading failure of shear instabilities with focal 

mechanisms similar as the GCMT solution. 
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 Eighteen earthquakes in category two consist of sub-events with planar (the 

GCMT fault planes) distribution, but with focal mechanisms inconsistent with the plane. 

Those earthquakes cannot be interpreted as rupture in a fault plane. Spatial distributions 

of the sub-events of some of these earthquakes are also inconsistent with the geometry of 

the assumed meta-stable olivine wedge. For example, the spatial distribution of the 

inferred sub-events of E8 has a horizontal extension of ~50 km with an ~10˚ dip to the 

east, while the slab geometry is ~70˚ dip to the west (Fig. S4-8); and the spatial 

distribution of the inferred sub-events of E15 possess a horizontal dimension of ~70 km 

along ~N340˚W and a vertical extension of ~40 km with ~80˚ dipping to the east, while 

the slab geometry ~60˚ dips to the west along approximately the north direction. We 

suggest that the source processes of the earthquakes in this category cannot be explained 

by transformational faulting, similar to the inference based on the aftershock distribution 

of the 1994 Tonga earthquake (E1), which suggested the aftershock distribution totally 

cut out of the possible meta-stable olivine wedge (McGuire et al., 1997; Wiens et al., 

1994). We suggest that the source processes of this category of earthquakes can also be 

best explained by a cascading failure of shear instability, same as category one. It is just 

that the shear thermal instabilities during this category of the earthquakes are aligned 

approximately along a plane, while those of the 2013 Okhotsk and 1994 Bolivia 

earthquakes are not. 

 Six earthquakes in category three (Tables S4-0, S4-4, S4-6, S4-7, S4-10, S4-14 

and S4-18) consist of sub-events with planar distribution and focal mechanisms 

consistent with the plane. These events have relatively smaller magnitudes, source 

geometry and fewer sub-events. The inferred source processes of these earthquakes can 
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be interpreted in many ways: rupture in a fault plane, transformational faulting or 

cascading failure in close space and time (as for the earthquakes in the first and second 

categories). It is interesting to note that the source processes still exhibit complex spatial 

and temporal relationship: two earthquakes (E4, E7) exhibit unilateral propagations 

(Tables S4-4, S4-7), two earthquakes (E10, E18) bilateral source processes (Tables S4-10, 

S4-18), one earthquake (E14) exhibit a backward propagation (Table S4-14) and one 

earthquake (E6) exhibits a backward-and-forward source process (Fig. 4-5a, Table S4-6). 

4.5.2 Cascading failure of shear thermal instabilities as a unified physical 

mechanism for large deep-focus earthquakes.  

While multiple mechanisms exist to explain the inferred source processes of some 

groups of deep-focus earthquakes, the seismic results of all large deep-focus earthquakes 

can be explained by a unified physical mechanism of cascading failure of shear thermal 

instabilities occurring within pre-existing weak zones. Shear thermal instability is a 

failure due to positive feedback between viscous heating and temperature dependent 

rheology (Kelemen and Hirth, 2007). Such feedback system is naturally influenced by 

perturbation of stress. An earthquake would generate static or dynamic stress change in 

the region, may trigger a cascading failure of shear instability in close space and time 

(Hill, 2008; Tibi et al., 2003b). Shear thermal instability can occur in a viscous medium 

with a uniform rheological property (Ogawa, 1987) or a pre-existing zone of different 

rheological properties (Kelemen and Hirth, 2007) which is known to exist within the 

subducted slab, due to either past faulting before subduction (Silver et al., 1995) or 

existence of preexisting fine-grained shear zones (Kelemen and Hirth, 2007). The focal 
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mechanism of a shear instability that occurs in a uniform viscous medium would be 

controlled by the state of the medium before failure and the triggering force, while the 

focal mechanism of a shear instability that occurs in a medium with pre-existing weak 

zones would be controlled by the orientations of the pre-existing weak zones, as the pre-

existing weak zones would prescribe the instability to occur in the weak zones. We 

suggest that the inferred source processes of these earthquakes are consistent with shear 

thermal instabilities in the pre-existing weak zones for the following reasons: 1) focal 

mechanism changes during the many large deep-focus earthquakes (the 2013 Okhotsk 

earthquake in category one and the earthquakes in category two). We argue that the 

triggering force for a single large earthquake unlikely trigger instabilities with various 

principle stress axes in a homogeneous viscous medium, but may do so in the pre-

existing weak zones with various orientations; 2) it appears that the focal mechanisms of 

the sub-events are related to the locations of the sub-events, regardless of their hosting 

large-events. For example, the inferred sub-events of E9 beneath the Kuril-Izu-Bonin 

subducted slab exhibit two types of focal mechanisms, with one type (the second sub-

event) similar to the focal mechanisms of the inferred sub-events of E11 (Fig. 4-6e). The 

second sub-event of E9 is 10 km south of E11 and 5 km to the north of the first sub-event 

of E9. There appears existent of location control of focal mechanism between south and 

north regions of the source region of E9. Location control of focal mechanism of the sub-

events regardless of the hosting large earthquakes favors shear thermal instabilities in the 

medium with pre-existing weak zones over those in a homogeneous medium. In short, the 

inferred results of our studied events can be best explained by a cascading of shear 

thermal instabilities in pre-existing weak zones, with the perturbation of stress generated 
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by a shear instability triggering another and the orientations of the pre-existing weak 

zones controlling the focal mechanisms of these instabilities.  

In the context of shear instability in pre-existing weak zones as the physical 

mechanism of deep-focus earthquakes, we suggest that caution is needed to relate the 

focal mechanism of deep-focus earthquakes to the stress state in the subducted slabs. The 

observed great variability of focal mechanisms of small and large deep-focus earthquakes 

may just reflect existence of pre-existing weak zones with various orientations and may 

not necessarily be related to the ambient stress in the region of the earthquake sources. 

4.6. Discussion 

Evaluating the uniqueness of our multiple-CMT solutions is difficult, given the 

non-linear nature of our inversion approach, and we cannot exclude the possibility that 

other solutions exist that may fit that data equally well.  In addition, we have chosen point 

sources to explain various energy packets, which may have been resulted from finite 

rupture. However, it is nonetheless useful to provide a set of solutions computed in a 

uniform way that fit the main features seen in the direct and depth phases for a large 

number of deep earthquakes. Base on the seismic result, we suggest that our results can 

be explained by a unified mechanism of cascading failure of shear thermal instabilities in 

pre-existing weak zones.  

The mechanism of cascading failure of shear thermal instabilities can also explain 

previously noted features of some deep earthquakes: including great variability of focal 

mechanism in small distances, large CLVD (Compensated Linear Vector Dipole) 
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component of the inferred moment tensor, and super-shear rupture. It also provides new 

insights as well. 

Previous studies suggested that focal mechanisms of deep-focus earthquakes 

exhibit great variability in different slabs or in one slab (e.g. Frohlich, 2006; Myhill, 

2013).  Yu and Wen (2012) also reported that the focal mechanisms of the deep-focus 

earthquakes can vary significantly within a small distance. It is further noted in this study 

that focal mechanism also varies significantly during the occurrence of most large 

earthquakes, as manifested in the source processes of the events in categories one and 

two. In addition, focal mechanism also varies significantly between large earthquakes in a 

small distance. We illustrate this feature with the results of earthquake pairs that occurred 

in a close distance but with complex sub-event focal mechanisms (Fig. 4-6). We 

determine the relative location of the initiation points of these earthquake pairs based on 

differential onset times and a master relocation program (Wen, 2006). E25 is 20 km west 

to and 20 km deeper than E12 in the Tonga-Kermadec subducted slab (Fig. 4-6f). E12 

occurred within normal faults, while E25 is dominated by strike-slip faulting (Tables S4-

12, S4-25). E23 is 15 km west to and 20 km shallow than E22 in Sumatra-Java-Philippine 

subducted slab (Fig. 4-6b). The two earthquakes occurred with slightly different focal 

mechanisms (Tables S4-23, S4-22). Cascading failure of shear thermal instabilities in 

pre-existing weak zones would explain these observed features well. In the context of this 

mechanism, the strong variability of the observed focal mechanism reflects complex 

orientations of the pre-existing weak zones. 
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The great variability of focal mechanisms during large deep earthquakes can also 

be the reason of the existence of CLVD component in the GCMT moment tensor 

solutions of these earthquakes. Kuge and Kawakatsu (1990) reported that the CLVD 

component of a deep earthquake can be interpreted by the summation of two different 

double couple sub-events. Later studies further suggested that the CLVD components of 

shallow and deep earthquakes can be explained by source irregularities (Kuge and 

Kawakatsu, 1990; Kuge and Kawakatsu, 1992, 1993; Kuge and Lay, 1994). We compare 

the GCMT CLVDs and the CLVDs in the summed solution over the inferred focal 

mechanisms of the sub-events (Fig. 4-7a). CLVDs are similarly present in the summed 

solution for the events with large GCMT CLVDS, although CLVDs from the summed 

solutions are general smaller. The differences possibly lie on the different ways to 

represent the earthquake source and different frequency contents of the data used between 

the studies. Such comparison suggests that GCMT CLVDs may just reflect the variability 

of focal mechanisms during a large deep-focus earthquake. 

Previous studies also suggested that source behavior and physical mechanisms 

may depend on slab temperature (Wiens, 2001; Wiens and Gilbert, 1996; Wiens and 

McGuire, 1995; Zhan et al., 2014a). Earthquakes within a warmer slab may be related to 

a lower rupture propagating velocity and some earthquakes may experience super-shear 

rupture. However, we find that the source propagating velocities are not correlative with 

slab temperature with super-shear rupture pervasive during many large earthquakes 

(Tables S4-1 – S4-26). For each inferred sub-event, we define its source propagating 

velocity as the ratio between distance separation of the sub-event from the earthquake 

initiation point, and the time difference between the peak time of the inferred sub-event 
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and the earthquake initiation time. The source propagating velocities are mostly from 0.2 

to 1.2 times of the S wave velocity in the source region, consistent with the previous 

studies (e.g., Frohlich, 2006). The inferred propagating velocity higher than S wave 

velocity corroborates well with the finding of super-shear rupture in a deep earthquake 

(Zhan et al., 2014b). Our results further indicate that high propagating velocity is 

widespread during the occurrence of large deep-focus earthquakes and occurs in various 

subduction zones. Propagation velocity is also heterogeneous during an earthquake and 

between the earthquakes in a particular region (Fig. 4-6). For example, beneath the South 

American subduction where slabs are warm, the 1994 Bolivia earthquake has propagating 

velocities of 0.9 – 1.6 km/s (Fig. 4-6a, Table S4-2), while event E15 occurring in the 

similar region in 2003 has propagating velocities from 1.8 to 5.6 km/s (Fig. 4-6a, Table 

S4-15).  Beneath the Tonga-Kermadec subduction where slabs are cold, event E6 has 

propagating velocities between 1.1 and 3.0 km/s (Fig. 4-6c, Table S4-6), but event E19 

has propagating velocities varying from 3.1 to 5.4 km/s (Fig. 4-6c, Table S4-19). We 

argue that this observed variability of propagating velocity of the sub-events and super-

shear rupture do not require additional physical mechanisms for deep earthquakes, as the 

static or dynamic stress generated by the preceding sub-event(s) could trigger sub-events 

with various time delays (starting from 0 s by static stress triggering). In fact, some of the 

high source propagating velocity is not consistent with super-shear rupture when focal 

mechanism variation is considered. For example, the third sub-event of E19 has a source 

propagating velocity of 5.4 km/s, higher than S wave velocity (Table S4-19). However, 

its fault plane orientation is ~30° different from those of the first and second sub-events 

(Fig. 4-4, Table S4-19), making it unlikely a super-shear rupture on a fault plane.  
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We investigate the relationships of seismic moment with source duration and 

source dimension for these deep earthquakes (Figs. 4-7b and 4-7c). We define seismic 

moment (M) as the summed moments of the sub-events, source duration as peak time of 

the last sub-event from the initiation time plus its half duration, and source dimension as 

maximum distance separation among the sub-events. Source durations increase with 

seismic moments, roughly described by a relationship of M ~ duration3 (Fig. 4-7b). The 

relationship is consistent with that of the previous studies (Figure 6.3 in Frohlich, 2006). 

Source dimensions and seismic moments can also be roughly described by a relationship 

of M ~ dimension3 (Fig. 4-7c).  
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Fig. 4-6. Locations (points) and focal mechanisms (beach balls) of the inferred sub-events of the 

25 deep earthquakes (labeled with event IDs as in Table S4-0 and inferred source propagating 

velocity ranges in parentheses) in four subducted slabs and two doublet-event areas, including (a) 

South American, (b) Sumatra-Java-Philippine, (c) Tonga-Kermadec, (d) Kuril-Izu-Bonin, (e) E9 

and E11, and (f) E12 and E25, along with slab depth contours (black traces, labeled with slab 

depth). Sub-events are color coded with their hosting large earthquakes and labeled by the 

occurring sequence in the earthquake.   
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Fig. 4-7. (a) Comparison between GCMT CLVDs and CLVDs in the summed solution of the 

inferred focal mechanisms of the sub-events. (b-c) Relationships between seismic moment and (b) 

source duration and (c) source dimension. Circles represent the analyzed earthquakes (E1 – E25) 

and the Okhotsk earthquake (Table S4-0). 

4.7. Conclusion 

We apply a multiple source inversion method to study the source processes of 25 

deep-focus earthquakes from 1994 to 2012, with Mw > 7.0 and depth > 400 km, based on 

waveform modeling of P, SH, pP and sSH waves. The multiple source inversion method 

treats a large earthquake as a combination of smaller sub-events in space and time, and 

resolves the spatio-temporal separation and focal mechanism of each sub-event, based on 
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waveform modeling of seismic data. We show two aspects of the scientific approach are 

of particular importance in resolving the source process of a large deep earthquake: 1) 

combining the direct and near-surface reflected phases as seismic constraints, which is 

needed to resolve the depth distribution of the sub-events during a large earthquake, and 

2) adopting the multiple source inversion, which makes no a prior assumption on the 

focal mechanism of the sub-events in waveform modeling and is capable of resolving the 

focal mechanism change during the earthquake.  

All the studied deep-focus earthquakes can be modeled using one to eight sub-

events. We classify these earthquakes into three categories based on the focal 

mechanisms and spatial distributions of the inferred sub-events: 1) category one, with 

non-planar spatial distribution and variable focal mechanisms of sub-events, represented 

by the Bolivia earthquake and the 2013 Mw 8.3 Okhotsk deep earthquake, 2) category 

two, with planar distribution but fault mechanisms of the sub-events inconsistent with the 

best-fitting plane, including eighteen earthquakes, and 3) category three, with planar 

distribution and focal mechanisms of sub-events consistent with the plane, including six 

earthquakes.  

We discuss possible physical mechanisms for earthquakes in each category, 

including transformational faulting, shear instability in a homogeneous medium and shear 

instability in pre-existing weak zone. We suggest that the inferred results of all the 

studied events can be best explained by a cascading failure of shear thermal instabilities 

in pre-existing weak zones, with the perturbation of stress generated by a shear instability 

triggering another and the orientations of the pre-existing weak zones controlling the 
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focal mechanisms of these instabilities. The proposed mechanism can also explain the 

observed great variability of focal mechanisms, large values of CLVD component and 

super-shear rupture of deep-focus earthquakes in the previous studies. We further suggest 

that caution is needed to relate the focal mechanism of deep-focus earthquakes to the 

stress state in the subducted slabs, as the observed great variability of focal mechanisms 

of small and large deep-focus earthquakes may just reflect existence of pre-existing weak 

zones with various orientations and may not necessarily be related to the ambient stress in 

the region of the earthquake sources. The relationships between seismic moment and 

source duration and dimension in large deep earthquakes can be roughly described as 

seismic moment ~ (source duration)3 and moment ~ (source dimension)3. 
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Chapter 5 Source process and physical mechanism of the initiated sub-

events of global large deep-focus earthquakes 

5.1. Abstract 

We systematically study source process of 26 large deep-focus earthquakes with 

Mw > 7.0 and depth > 400 km, and classify them into three categories based on the 

presence of the initiation phases: 1) category one, with the weak initiation phases clear 

observed in most of the azimuths and their spatial distribution and focal mechanisms can 

be inferred (six earthquakes); 2) category two, with the weak initiation phases observable 

in some azimuths, but the azimuth range is not broad enough to infer reliable focal 

mechanisms and distribution of the phases (seven earthquakes); and 3) category three, 

without observable weak initiation phases. We model the source processes of the 6 

earthquakes with clear weak initiation phases, with direct waves and near-surface 

reflected waves. The initiation sub-events exhibit complex source processes with variable 

fault plane orientations, as the major sub-events observed in our previous studies. The 

result suggests a relationship of M ~ (source dimension)3. The stress drops of the 

initiation sub-events are not fundamentally different from those of the major sub-events. 

The stress drops of all the sub-events are variable between 2.5 MPa and 70 MPa (assume 

half shear wave velocity of the depth to be rupture velocity in bilateral faulting). We 

suggest that these deep-focus earthquakes are cascading failure of sub-events with 

different magnitudes. The initiation process is different from the shallow earthquakes, 

indicating that shear instability may be the potential physical mechanisms of these 

earthquakes. 
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5.2. Introduction  

 Occurrence of deep-focus earthquakes is unexpected under the temperature and 

pressure below the depth of 400 km (Scholz, 2002). Various models have been proposed 

to explain the occurrence of deep-focus earthquakes. Currently, two mechanisms are 

widely accepted, including transformational faulting (Green and Burnley, 1989; Green 

and Houston, 1995; Kirby, 1987; Wiens et al., 1993) and shear thermal instability (Hobbs 

and Ord, 1988b; Karato et al., 2001; Kelemen and Hirth, 2007; Ogawa, 1987). Shear 

instability accompanying transformational faulting is also proposed for deep-focus 

earthquakes (Green, 2007). Seismological studies provide important constraints on deep-

focus earthquakes. The depth distribution of deep-focus earthquakes is consistent with the 

depth of olivine phase transformation in the mantle transition zone, naturally suggesting 

transformational faulting as a candidate (Estabrook, 2004). The possible existence of 

meta-stable olivine wedge in cold slabs is also supportive to transformational faulting 

(Iidaka and Suetsugu, 1992). However, the source geometry of the large deep-focus 

earthquakes are proposed to be inconsistent with the geometry of the meta-stable olivine 

wedge (Chen and Wen, 2015; Chen et al., 2014; Meng et al., 2014; Silver et al., 1995; 

Wiens et al., 1994), excluding transformation faulting as the mechanism. The low 

seismicity efficiency and high stress drop suggested that shear instability is the 

mechanisms of the 1994 Bolivia earthquake. In addition, the recent studies also suggested 

that different mechanisms may evolve in large deep-focus earthquakes simultaneously 

(Meng et al., 2014; Zhan et al., 2014a). 

 Previous studies mostly focus on the major energy release of deep-focus 

earthquakes, the initiation phases with one-order magnitude smaller were only reported 
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during the 1994 Mw 8.2 Bolivia earthquake (Silver et al., 1995; Zhan et al., 2014a). 

Systematical investigation of the weak initiation phases potentially provides new insights 

on the mechanisms of global large deep-focus earthquakes. Comparison of the initiation 

phases and the major energy packets is helpful to understand the nucleation of deep-focus 

earthquakes. Previous studies of shallow earthquakes suggested that, many large 

subduction zone earthquakes begin with a “whimper” and grows rapidly into a 

devastating megathrust event (Chu et al., 2011). The size and mechanism of the 

beginning of an earthquake have direct relevance to the physics of earthquake nucleation 

(Ellsworth and Beroza, 1995). It is also useful to compare the initiation phases of deep-

focus earthquake with those of shallow earthquakes. 

The main objective of this study is to systematically investigate the size, focal 

mechanism and relative stress drop of global large deep-focus earthquakes. In the 

following sections, we present seismic data and observed weak initiation phases in 

section 5.3, spatio-temporal distribution and focal mechanisms of the initiation phases of 

the studied earthquakes in section 5.4, stress drops of the sub-events in section 5.5, and 

discussion and conclusion in section 5.6. 

5.3. Seismic data and observed initiation phases 

We re-visit 26 earthquakes with Mw > 7.0 and depth > 400 km from 1994 to 2013 

(Fig. 1a and Table S0), whose major energy releases are studied in our previous studies 

(Chen and Wen, 2015; Chen et al., 2014). In this study, we further examine the weak 

initiation phases at the beginning of some analyzed earthquakes, whose moments are 

usually one-order smaller than those of the major energy packets.  
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The 26 events are classified into three categories based on the presence of the 

observed initiation phases and if their focal mechanisms are inferable: 1) category one, 

with clear weak initiation phases in most of the azimuth ranges (Fig. 5-1b), whose spatial 

distribution and focal mechanisms can be inferred (six earthquakes, blue beach balls in 

Fig. 5-1a); 2) category two, with the weak initiation phases observable in some azimuths 

(Fig. 5-1c) but the azimuth range is not broad enough to infer a reliable focal mechanisms 

and distribution of the initiation sub-events (seven earthquakes, green beach balls in Fig. 

5-1a); and 3) category three, without observable weak initiation phases (thirteen 

earthquakes, red beach balls in Fig. 5-1a). The earthquakes have quite impulsive onsets 

(Fig. 5-1d). In the following sections, we study the properties of the weak initiation 

phases of the earthquakes in category one. 

The studied events are well recorded by the Global Seismographic Network (GSN) 

(Figs. S5-1a – S5-6a). The data consist of broadband compressional waves (P), near-

surface reflected compressional waves (pP), and transversally polarized shear waves (SH) 

recorded at teleseismic distances between 30° and 90°. The displacement seismograms 

are deconvolved with their respective instrument responses and bandpass filtered between 

0.01 and 4 Hz. We selected the data with high signal-to-noise ratio (SNR) between the 

weak initiation phases and the data before the phase arrivals. The adopted P and SH wave 

data are with a good SNR > 5. The near-surface reflected waves are noisy, perhaps due to 

the coda of the direct waves. We used pP with a SNR > 2 (mostly > 3). Although SNR > 

2 is somewhat low, we use correlation coefficients to capture the major features of the pP 

waves, since arrival times of the near-surface reflected wave are critical to determine the 

depths of the sub-events (Chen and Wen, 2015).  
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Fig. 5-1. (a) Distribution of the global large deep-focus earthquakes (Mw > 7 and depth > 400 km) 

from 1994 to 2013, and their GCMT focal mechanisms, labeled with event numbers in Table S4-

0. The earthquakes labeled with blue, green and red represent the earthquakes in categories one to 

three. The events labeled with red numbers are the example events whose seismograms presented 

in (b), (c) and (d). (b), (c) and (d) Selected observed seismograms normalized by the maximum 

amplitudes of the seismograms (black traces) comparing with those normalized by the maximum 

amplitudes of the initiation phases (dash traces), for the earthquakes E8, E10 and E1, respectively. 
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5.4. Multiple source inversion 

We apply a multiple point source inversion procedure to infer the source 

processes based on waveform fitting of direct and near-surface reflected waves (Chen et 

al., 2014). The method treats a large earthquake as a combination of multiple double 

couple point sources (sub-events) separated in space and time, and resolves the spatio-

temporal separation and focal mechanism of each sub-event by modeling the seismic data. 

Seismic Green’s functions are computed by the Generalized Ray Theory method 

(Helmberg, 1968), based on the velocity and attenuation structures of PREM 

(Preliminary Reference Earth Model, downloaded from IRIS EMC-PREM) (Dziewonski 

and Anderson, 1981). The seismic response of each sub-event is obtained by convolving 

the Green’s function with source time function (half sine function) (Ji et al., 2002). The 

model parameters are searched by the simulated heat annealing algorithm for the best-

fitting solution. We obtained the least misfit (root-mean-square) between the seismic data 

and the synthetics data for P, SH and sSH phases, while we apply both L2 norm and 

correlation coefficient for the pP phases to better resolve the arrival times of each sub-

events, since the imperfect fitting of the weak initiation amplitudes.   

 Broadband P waves are aligned by the first-arrival onsets, which can be clearly 

identified and picked in the data high-pass filtered above 1 Hz. SH and pP phases are 

aligned iteratively in the inversion process: we first pick them based on PREM model 

(Dziewonski and Anderson, 1981) and perform a preliminary inversion with P wave 

heavily weighted over other phases. The alignments of pP and SH phases are adjusted 
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based on the best match between synthetics and the data during the inversions, until no 

further adjustment observed from the previous inversion (Chen and Wen, 2015). 

 4, 5, 3, 2, 2 and 2 weak initiation sub-events are modeled before the major energy 

releases of the earthquakes E2, E8, E14, E16, E20 and E23, respectively (Table S5-1 – 

S5-6). We inferred the source processes of the initiation sub-events (green beach balls in 

Figs. S1b – S6b), and the major sub-events (red beach balls in Figs. S1b – S6b). The sub-

events can be modeled by double couple point sources reasonably well. No significance 

of non-double-couple components has been found. The best fitting sub-event models of 

the earthquakes are presented in supplementary information (Table S5-1 – S5-6, Figs. S5-

1b – S5-6b).  

The inversion results show source processes with varying focal mechanisms and 

complex spatio-temporal distribution during these earthquakes (Table S5-1 – S5-6, Figs. 

S1b – S6b). The focal mechanisms of most the sub-events deviates within 30º from the 

GCMT solution. The sub-events propagate in variable directions, sometimes with 

backward and forward propagation. The 1994 Mw 8.2 Bolivia earthquake (E2) can be 

modeled by four initiation and five major sub-events distinguishable in the whole source 

process (Fig. 5-2b). The previous studies suggested that the earthquake begins with ~10s 

initiation with weak sub-events, followed by strong moment release lasting ~35 s (Chen 

and Wen, 2015; Silver et al., 1995; Zhan et al., 2014a). Our preferred source process 

exhibits a horizontal extension of 44 km and a vertical extension of 38 km, with non-

planar distribution of the sub-event and their focal mechanism inconsistent with a single 

fault plane (Chen and Wen, 2015). The source process indicates an overall propagation to 
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the northeast but with variable directions for each sub-event (Table S5-1). Sub-event I1 is 

close to the initiation point, and sub-events I2, I3 and I4 are to the east of sub-event I1. 

Sub-events S1 and S2 are close to sub-event I4, but sub-event S3 is to the northwest of 

sub-events S1 and S2. Sub-events S4 and S5 are to the further northeast. The focal 

mechanisms of all the sub-events are variable within 10° from the GCMT solution. The 

initiation sub-events have moments in the order of 1026 dyne·cm, while the major sub-

events have those in the order of 1027 dyne·cm. 

 

Fig. 5-2 (a) Locations of the major sub-events (red points) and the initiation sub-events 

(green points) of the best fitting model, and the initiated location (black star) of the 1994 

Bolivia earthquake (E2), along with slab depth contours (black traces, labeled with slab 

depths). Black beach ball describes GCMT solution of the event. Red and green beach 

balls represent inferred focal mechanisms of the major sub-events and the initiation sub-

events of the best-fitting model, labeled with the sub-event peak time/moment 

magnitude/depth. (b) Selected observed seismograms normalized by the maximum 

amplitudes of the major sub-events and the initiation sub-events in Fig. S5-1 (black traces) 

comparing with synthetics (red traces) predicted by the inferred major sub-events and 

synthetics (green traces) predicted by the inferred initiation sub-events. The red and green 

lines label the peak times of the sub-events predicted by the major sub-events and the 

initiation sub-events of the best-fitting model in Fig. S1. Amps represent the maximum 

amplitudes of the whole seismograms. 
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 Another example is the 20 Aug 1998 Mw 7.0 earthquake beneath Bonin Islands 

region (Table S4-0). The earthquake has a duration of 29 s, relatively longer than those of 

the other deep-focus earthquakes with similar moment magnitudes (Chen and Wen, 

submitted).  The earthquake has a complex spatio-temporal distribution of the sub-events. 

Sub-event I1 is close to the initiation point; sub-event I2 is ~5 km to the northeast of the 

initiation point; sub-events I3, I4 and I5 propagate back and sub-event I5 is close to the 

initiation point and sub-event I1. It is interesting to note that sub-events I1 and I5 may be 

close to each other within 3 km, but with different focal mechanisms. Sub-events S1, S2, 

S3 and S4 distribute around the initiation point in various directions. The focal 

mechanisms of all the sub-events deviate within 15º from the GCMT solution. The 

initiation sub-events have moments in the order of 1024 dyne·cm, while the major sub-

events with moments in the order of 1025 dyne·cm. 

 

Fig. 5-3. Similar as Fig. 5-2, except for event E8. (c) Selected waveform comparisons in Fig. S5-2. 
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5.5. Moment-duration relationship and static stress drops 

Stress drop is a fundamental scaling parameter of the earthquakes, relating to the 

dynamic characteristics of rupture, slip, velocity and acceleration (Scholz, 2002). It is of 

great importance to estimate the relative stress drops, in order to understand the 

difference between the initiation and the major process of large deep-focus earthquakes.  

If we assume that each sub-event faults in a circular patch, we adopt a relationship 

M0=(16/7)·Δσ·a3 (Eshelby, 1957). M0 is seismic moment, Δσ is stress drop, and a is the 

radius of a circular patch. Previous studies suggested that the average rupture velocity for 

deep earthquake is about 0.6 times shear wave velocity (Frohlich, 2006; Vallee, 2013). 

We adopt a decelerating model for a circular fault (Boatwright, 1980). The radius a is 

equal to 𝑣 ∙ 𝑡 ∙ (
𝑣−1

𝑣
)

1

2
, where v is the rupture velocity roughly equal to 3 km/s at the depth, 

and t is the duration of the sub-event.  

We plot a figure with moment-dimension relationship (Fig. 5-4). The moments 

are the summed inferred seismic moments of the sub-events, and the dimensions are the 

inferred radii of the sub-events. It is evident that source dimensions increase with seismic 

moments, described by a relationship of M ~ dimension3, consistent with previous studies 

(e.g., Frohlich, 2006), indicating that stress drop is approximately constant and 

independent of the sub-event magnitude. 

We find that the stress drops of the sub-events are variable within the range 

between 2.5 MPa and 70 MPa. No fundamental difference of the stress drops are 

observed between the initiation and the major sub-events. The stress drops of the sub-
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events of the Bolivia earthquake (circles in Fig. 5-4) are roughly consistent with the stress 

drop of 15 MPa (dash line in Fig. 5-4).  We also observe that the initiation sub-events of 

the Bolivia earthquake have similar dimensions and moments as the major sub-events of 

the other earthquakes (Fig. 5-4). The stress drops of the initiation sub-events of 

earthquake E8 (red inverted triangles in Fig. 5-4) are much lower than those of the major 

sub-events (black inverted triangles in Fig. 5-4), while the stress drops of the initiation 

sub-events of earthquake E16 (red squares in Fig. 5-4) are much higher than those of the 

major sub-events (black squares in Fig. 5-4).  
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Fig. 5-4. Relationships between seismic moment and source duration of the best-fitting initiation 

and major sub-events of the earthquakes. Circles, inverted triangles, triangles, squares, stars and 

crosses represent the initiation sub-events (red) and the major sub-events (black) of earthquakes 

E2, E8, E14, E16, E20 and E23, respectively. 
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5.6. Discussion 

The previous studies suggested that focal mechanisms of deep-focus earthquakes 

exhibit great variability in a close distance (Myhill, 2013; Yu and Wen, 2012). The great 

variability may be owing to orientation of the pre-existing weak zones (Chen and Wen, 

submitted) or great heterogeneity within the slab (Myhill, 2013). There is great variability 

among the focal mechanisms of the sub-events during the analyzed earthquakes. For 

example, the nine sub-events of earthquake E8 can be divided into three groups with 

similar focal mechanisms. Sub-events I1 and S4 can be classified into one group, sub-

event I2, I3 and I4 into one group, and sub-event I5, S2, S3 and S4 into another group. 

The focal mechanisms deviate up to 30º from the GCMT solution. For example, the 

major sub-events of earthquake E14 are normal faulting (red beach balls in Fig. S5-3), 

while its initiation sub-events are combination of normal fault and strike-slip fault (green 

beach balls in Fig. S5-3). The great variability of focal mechanisms may be best 

explained by shear instabilities occurring on the pre-existing faulting (Chen and Wen, 

2015). 

The moment-dimension relationship is generally consistent with the previous 

studies (e.g. Frohlich, 2006, Vallee, 2013). The stress drops and strain rates are not 

fundamentally different between the initiation and major sub-events. The initiation sub-

events of the great Bolivia earthquakes have the similar seismic moments and durations 

as the major sub-events of the other smaller earthquakes (E8, E14, E16, E20 and E23). 

Furthermore, the initiation sub-events of earthquakes E8, E14, E16, E20 and E23 can still 

be fit within the range between 2.5 MPa and 70 MPa. The relationship indicates that the 
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initiation sub-events are not fundamentally different from the major sub-events, only with 

different magnitudes. The initiation process may be different from the shallow 

earthquakes (Scholz, 2002). The large deep-focus earthquakes can be best explained by a 

cascading failure of the sub-events with different magnitudes. 

Six earthquakes are with clear weak initiation sub-events, seven earthquakes are 

with weak initiation sub-events observed in some azimuths, and thirteen earthquakes with 

impulsive onsets. First of all, the distribution of the three categories is not correlated with 

the subducted slabs or geographical locations. For example, E22 and E23 occurred 20 km 

apart, with E22 in category three and E23 in category one. No evidence shows that they 

are different types of earthquakes. One possible explanation is that the initiation sub-

events are not necessary for deep-focus earthquakes and deep-focus earthquakes consist 

of smaller sub-events with different magnitudes, with a triggering relationship. 

In addition, the spatio-temporal distribution of each earthquake (Table S5-1 – S5-

6) is inconsistent with a unified source propagating velocity, which may also imply a 

triggering relationship. Overall, we suggest that the inferred results of our studied events 

can be best explained by a cascading of shear thermal instabilities in pre-existing weak 

zones, with the perturbation of stress generated by a shear instability triggering another 

and the orientations of the pre-existing weak zones controlling the focal mechanisms of 

these instabilities. 
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5.7. Conclusion 

We investigate 26 deep-focus earthquakes from 1994 to 2013, with Mw > 7.0 and 

depth > 400 km. The earthquakes are classified into three categories in the presence of 

initiation phases: 1) category one, with clear initiation phases in most of the azimuth 

ranges, whose spatial distribution and focal mechanisms can be inferred, 2) category two, 

with the initiation phases observable in some azimuths but the azimuth range is not good 

enough to infer a reliable results, and 3) category three, without any observable initiation 

phases.  

We apply our multiple source inversion method to study the source initiation 

processes of the six earthquakes (E2, E8, E14, E16, E20 and E23) in category one, based 

on waveform modeling of P, SH and pP waves. The initiation phases of the 6 studied 

deep-focus earthquakes can be modeled using two to five double couple point sources. 

The inferred sub-event models exhibit great complexity, with a complex spatio-temporal 

distribution and deviation of focal mechanisms up to 30º from the GCMT solutions. 

We study the moment-duration relationship of all the sub-events of the analyzed 

earthquakes. All the sub-events can be fit within a range between 2.5 MPa and 70 MPa. 

The initiation sub-events are not fundamentally distinguishable from the major sub-

events. The relationship suggests that the earthquakes consist of smaller sub-events with 

various magnitudes. 

We further discuss that no correlation has been found between the earthquakes in 

different categories and geographical locations. We suggest that the inferred results of all 
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the studied events can be best explained by a cascading failure of shear thermal 

instabilities in pre-existing weak zones, with the perturbation of stress generated by a 

shear instability triggering another and the orientations of the pre-existing weak zones 

controlling the focal mechanisms of these instabilities.  
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Fig. S2-1. Synthetics (black traces) of the test model (Table 2-1) comparing with synthetics (red traces)
predicted based on the inverted six subevent model (Table 2-2) based on fitting the synthetics of the
test model for, (a) P phase (vertical displacement), (b) pP phase (vertical displacement), (c) SH phase
(tangential displacement), and (d) sSH phase (tangential displacement).
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Figs. S2-2. (a) – (d) Synthetic seismograms in presence of noise, large initial misalignments and 
waveform distortions (black dash traces) comparing with synthetics (red traces) predicted by the 
best-fitting source model and synthetic seismograms aligned by iterative inversion procedure 
(black traces), for (a) P waves, (b) pP waves, (c) SH waves and (d) sSH waves. 
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Figs. S2-3. (a) The misfits (RMS) of amplitudes between the synthetics predicted by the best-
fitting model, and the synthetics predicted by the inferred model with sub-event 1 moved 0 – 10 
km away from it best-fitting location. (b) – (e) Synthetics (black traces) preditected by the best-
fitting model comparing with synthetics (red traces) predicted by the inferred modeled with 
sub-event 1 moved 5 km away from its best-fitting location, for (b) P waves, (c) pP waves, (d) 
SH waves and (e) sSH waves. 
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Figs. S2-4. (a) – (d) Observed seismograms low-passed filtered to 0.5 Hz (black traces) comparing 
with synthetics low-passed filtered to 0.5 Hz (red traces) predicted by the best-fitting source model, 
for (a) P waves, (b) pP waves, (c) SH waves and (d) sSH waves. The red lines label the peak times 
of the sub-events predicted by the best-fitting model.



 

Supplementary tables and figures for Chapter 3 
 

Table S3-1. Source parameters of inverted six sub-events on the GCMT 
sub-horizontal plane 

Sub-event 
dt   

(s) 

dn 

(km) 

de 

(km) 

dz 

(km) 

duration 

(s) 

moment 

(dyn-cm) 

strike 

(°) 

dip 

(°) 

slip 

(°) 

0 0 0 0 0 3.0 3.0E+26 191.0 11.2 264.7 

1a 1.5 3.9 4.6 -0.7 11.8 6.7E+27 191.0 11.2 268.3 

1b 7.0 -13.4 6.6 -1.8 12.0 6.4E+27 191.0 11.2 260.7 

2 11.6 -32.0 2.3 -1.6 9.0 7.0E+27 191.0 11.2 270.1 

3 16.0 -29.2 10.8 -3.1 12.0 9.7E+27 191.0 11.2 270.0 

4 23.0 -51.5 -11.4 0.3 12.0 5.7E+27 191.0 11.2 277.0 

 

Table S3-2. Source parameters of inverted six sub-events on the GCMT 
sub-horizontal plane based on P wave data only 

Sub-event 
dt   

(s) 

dn 

(km) 

de 

(km) 

dz 

(km) 

duration 

(s) 

moment 

(dyn-cm) 

strike 

(°) 

dip 

(°) 

slip 

(°) 

0 0 0 0 0 3.2 2.5E+26 191.0 11.2 300.2 

1a 1.8 4.4 1.8 -0.2 12.0 6.1E+27 191.0 11.2 274.5 

1b 7.1 -14.2 8.9 -2.2 10.0 4.5E+27 191.0 11.2 261.3 

2 10.8 -32.5 14.1 -3.9 9.0 9.1E+27 191.0 11.2 269.9 

3 16.2 -21.9 8.9 -2.5 12.0 1.0E+28 191.0 11.2 271.7 

4 22.1 -55.0 -4.2 1.2 12.0 6.3E+27 191.0 11.2 272.2 

 



 

Table S3-3. Source parameters of inverted six sub-events on the GCMT sub-vertical 
plane 

Sub-event 
dt   

(s) 

dn 

(km) 

de 

(km) 

dz 

(km) 

duration 

(s) 

moment 

(dyn-cm) 

strike 

(°) 

dip 

(°) 

slip 

(°) 

0 0 0 0 0 3.2 3.0E+26 13.5 78.8 285.1 

1a 1.5 4.6 1.2 0.8 12.0 7.0E+27 13.5 78.8 277.3 

1b 7.5 1.8 -0.2 -3.2 12.0 6.2E+27 13.5 78.8 280.4 

2 11.5 -41.2 -7.0 12.8 9.0 7.2E+27 13.5 78.8 269.2 

3 15.8 -20.8 -3.9 4.6 12.0 8.6E+27 13.5 78.8 268.2 

4 22.8 -50.6 -5.6 30.4 12.0 7.0E+27 13.5 78.8 268.3 

 

Table S3-4. Source parameters of inverted six sub-events on a plane that best connects 
the inverted sub-events (Table 1) in the main text 

Sub-event 
dt   

(s) 

dn 

(km) 

de 

(km) 

dz 

(km) 

duration 

(s) 

moment 

(dyn-cm) 

strike 

(°) 

dip 

(°) 

slip 

(°) 

0 0 0 0 0 3 2.9E+26 -12.0 65.0 290.6 

1a 1.7 3.1 1.7 4.9 11.4 7.0E+27 -12.0 65.0 294.1 

1b 7.0 -10.3 4.3 4.4 11.8 6.6E+27 -12.0 65.0 300.1 

2 11.9 -40.1 15.7 15.1 8.8 8.8E+27 -12.0 65.0 287.7 

3 15.7 -27.6 9.7 8.1 12.0 9.2E+27 -12.0 65.0 287.9 

4 22.8 -53.4 28.1 35.1 12.0 8.5E+27 -12.0 65.0 276.4 

 

 
 



 

Table S3-5. Source parameters of inverted six sub-events when compeling the 
subevent 4 to 90 km south to the initiation of the earthquake 
 

Sub-event 
dt   

(s) 

dn 

(km) 

de 

(km) 

dz 

(km) 

duration 

(s) 

moment 

(dyn-cm) 

strike 

(°) 

dip 

(°) 

slip 

(°) 

0 0 0 0 0 2.5 3.0E+26 17.6 88.0 285.8 

1a 1.7 4.2 4.7 1.8 11.8 6.7E+27 12.2 85.9 281.2 

1b 7.5 -4.6 9.5 -4.6 11.9 6.4E+27 22.7 86.8 265.0 

2 12.0 -44.4 16.5 13.4 8.9 7.9E+27 4.7 78.2 281.0 

3 16.6 -25.6 14.6 1.5 12.0 8.7E+27 18.4 85.9 261.7 

4 22.5 -90.8 11.2 27.9 12.0 6.8E+27 -7.8 69.5 268.8 
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Fig. S3-1. Observed seismograms (black traces) comparing with synthetics (red traces) predicted based on the 
inverted six subevent model in the main text (Table 2-1) for, (a) P phase (vertical displacement), (b) pP phase 
(vertical displacement), (c) SH phase (tangential displacement), and (d) sSH phase (tangential displacement).
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Fig. S3-2. Observed seismograms (black traces) comparing with synthetics (red traces) predicted by the
best-fitting source model in the main text (Table 2 - 1) and synthetics (blue traces) predicted by the best-
fitting source model (Table S3-1) on the CMT sub-horizontal plane for, (a) P phase (vertical displacement),
(b) pP phase (vertical displacement), (c) SH phase (tangential displacement), and (d) sSH phase (tangential
displacement).
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Fig. S3-3. Observed seismograms (black traces) comparing with synthetics (red traces) predicted by 
thebest-fitting source model in the main text (Table 2 - 1) and synthetics (blue traces) predicted by the 
best-fitting source model (Table S3-2) on the CMT sub-horizontal plane based on P wave data only 
for, (a) P phase (vertical displacement), (b) pP phase (vertical displacement), (c) SH phase (tangential 
displacement), and (d) sSH phase (tangential displacement).
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Fig. S3-4. Observed seismograms (black traces) comparing with synthetics (red traces) predicted by the
best-fitting source model in the main text (Table 2 - 1) and synthetics (blue traces) predicted by the best-
fitting source model (Table S3-3) on the CMT sub-vertical plane for, (a) P phase (vertical displacement),
(b) pP phase (vertical displacement), (c) SH phase (tangential displacement), and (d) sSH phase
(tangential displacement).
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Fig. S3-5. Observed seismograms (black traces) comparing with synthetics (red traces) predicted by the
best-fitting source model in the main text (Table 2 - 1) and synthetics (blue traces) predicted by the best-
fitting source model (Table S3-4) on a plane that best connects the inferred subevents in Table 2 - 1,
for, (a) P phase (vertical displacement), (b) pP phase (vertical displacement), (c) SH phase (tangential
displacement), and (d) sSH phase (tangential displacement).
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Fig. S3-6. Observed seismograms (black traces) comparing with synthetics (red traces) predicted by the
best-fitting source model in the main text (Table 2 - 1) and synthetics (blue traces) predicted by the best
-fitting source model (Table S3-5) by compeling the subevent 4 to 90 km south to the initiation of the
earthquake for, (a) P phase (vertical displacement), (b) pP phase (vertical displacement), (c) SH phase
(tangential displacement), and (d) sSH phase (tangential displacement).



Supplementary Information for Chapter 4 

Multiple source inversion results 

We investigate 26 deep-focus earthquakes with Mw > 7.0 and depth > 400 km, based on 

waveform modeling of P, pP, SH, sSH wave data. The information of each analyzed 

earthquake is presented in Table S4-0, including the date, time, epicenter, moment 

magnitude and the GCMT fault planes. The event epicenters by 2008 are corrected based 

on ISC EHB catalog. The events E11, E23 and E25 are relocated relative to E9, E22 and 

E12, respectively. Each earthquake process is delineated with a description, a table of the 

best-fitting model, a figure of comparison between the best-fitting sub-event model and 

the best planar model, and waveform comparisons among the seismic data (black traces) 

and the synthetics predicted by the best-fitting model (red traces) and the best planar 

model (blue traces) for P, pP, SH ans sSH wave data. 

Figure caption 

Because Figs. S4-1 – S4-26 have similar figure captions, we present an example figure 

caption for all the events E1 – E26. Figs. S4-2b, S4-6b and S4-19b are presented as Figs. 

4-4b, 4-5b and 4-6b, respectively, in the main text. 

Figs. S4-1 – S4-26 (a) Location and the GCMT focal mechanism of the earthquake (red 

beach ball) and used seismic stations (blue triangles), labeled with station names. The 

green traces are the ray paths from the earthquake and seismic stations. (b) Locations of 

the best-fitting sub-event model (red points) and the best planar model (blue points), and 

the initiated location (black star) of the earthquake (E1 – E26), along with slab depth 

contours (black traces, labelled with slab depths). Black beach ball describes GCMT 

focal mechanism of the event. Red and blue beach balls represent inferred focal 

mechanisms of the sub-events of the best-fitting model and the best planar model, labeled 

with the sub-event peak times and depths. (c) – (f) Observed seismograms (black traces) 

comparing with synthetics (red traces) predicted by the best-fitting source model and 

synthetics (blue traces) predicted by the best planar model, for (c) P waves, (d) pP waves, 



(e) SH waves and (f) sSH waves. The red and blue lines label the peak times of the sub-

events predicted by the best-fitting model and the best planar model. 

 

Table S4-0. Analyzed global major deep-focus earthquakes 

ID Date  Time 
Lat 

(˚) 

Lon 

(˚) 

Depth 

(km) 
MW 

Low-angle 

Plane 

High-angle 

Plane 

E1 1994/03/09 23:28:08 -17.95 -178.37 562 7.6 250/27/330 7/77/246 

E2 1994/06/09 00:33:17 -13.86 -67.51 631 8.2 302/10/300 92/81/265 

E3 1994/07/21 18:36:32 42.32 132.87 471 7.3 64/34/178 155/89/56 

E4 1995/08/23 07:06:04 18.80 145.32 595 7.0 136/42/242 351/53/293 

E5 1996/06/17 11:22:19 -7.14 122.51 587 7.8 225/50/229 98/54/308 

E6 1996/08/05 22:38:23 -20.79 -178.22 550 7.4 213/20/261 43/70/273 

E7 1998/03/29 19:48:17 -17.73 -178.91 543 7.1 359/53/156 104/71/40 

E8 1998/08/20 06:40:56 28.97 139.40 425 7.0 83/27/198 337/82/296 

E9 1999/04/08 13:10:34 43.61 130.39 566 7.1 81/25/160 189/82/67 

E10 2000/04/23 09:27:24 -28.32 -62.93 610 7.0 290/5/210 171/88/274 

E11# 2002/06/28 17:19:31 43.75 130.57 564 7.3 27/13/105 192/77/86 

E12 2002/08/19 11:01:02 -21.73 -179.36 580 7.6 149/22/219 22/76/288 

E13 2002/08/19 11:08:25 -23.93 178.55 675 7.7 50/3/83 237/87/90 

E14 2002/11/17 04:53:49 47.97 146.40 459 7.3 316/9/30 197/86/98 

E15 2003/06/20 06:19:39 -7.65 -71.67 553 7.0 353/47/295 139/49/246 

E16 2004/07/15 04:27:14 -17.76 -178.70 560 7.1 345/44/137 109/62/55 

E17 2004/07/25 14:35:19 -2.53 103.93 581 7.3 108/45/231 337/56/303 

E18 2005/02/05 12:23:20 5.29 123.38 536 7.1 158/14/246 3/77/276 

E19 2006/01/02 22:13:41 -19.96 -178.09 593 7.2 281/22/320 49/76/253 

E20 2008/07/05 02:12:04 53.95 152.92 632 7.7 143/48/226 18/58/308 

E21 2008/11/24 09:02:58 54.23 154.31 490 7.3 276/19/331 34/81/254 

E22 2010/07/23 22:08:11 6.72 123.41 607 7.3 263/19/329 22/80/254 

E23# 2010/07/23 22:51:12 6.56 123.53 587 7.6 233/18/322 359/79/255 

E24 2011/01/01 09:56:58 -26.79 -63.09 577 7.0 360/20/296 152/72/261 

E25# 2011/09/15 19:31:04 -21.53 -179.30 604 7.3 312/38/353 48/85/232 

E26* 2009/11/09 10:44:54 -17.24 178.34 591 7.3 172/42/33 56/68/127 

E27* 2010/07/23 23:15:10 6.78 123.26 641 7.4 254/22/308 34/73/256 

E28* 2012/08/14 02:59:38 49.80 145.06 582 7.7 27/33/59 243/63/108 

#s label the events relocated based on the adjacent events.  

*s label the discarded events in the catalog.  



E1. The 09 Mar 1994 Mw 7.6 earthquake 

Earthquake E1 occurred 562 km beneath Fiji islands region (Table S4-0), which is 

well known as a deep earthquake with numerous aftershocks (Wiens et al., 1994). The 

aftershock locations (Wiens et al., 1994) and the mainshock directivity (Warren et al., 

2007) suggested that the earthquake ruptured on the GCMT sub-vertical fault plane. We 

infer source process of the earthquake using 19 P, 13 pP, 14 S and 11 sS (Fig. S4-1a). 

The major energy of the earthquake can be modeled by three sub-events reasonably well 

(Table S4-1, Fig. S4-1b – S4-1f). We compare synthetics predicted by the best-fitting 

sub-event model (red traces) and the best planar model (blue traces) that compels the sub-

events distributed on the GCMT sub-vertical plane. The sub-event arrival times of the 

best-fitting model and the best planar model is similar (Figs. S4-1c – S4-1f), representing 

that they propagate around the sub-vertical plane. However, radiation pattern of 

synthetics predicted by the best planar model do not fit that of seismic data. Focal 

mechanisms of the sub-events can be modeled by plane rupture. 

 

Table S4-1. Source parameters of inferred sub-events of E1 

Sub-

event 

dt   

(s) 

dn 

(km) 

de 

(km) 

dz 

(km) 

duration 

(s) 

Mw 

strike 

(°) 

dip 

(°) 

slip 

(°) 

1 2.4 1.7 3.0 1.0 4.0 7.3 27.4 70.2 258.4 

2 6.0 21.2 3.1 -4.3 6.0 7.4 -4.5 77.0 246.4 

3 9.2 10.0 12.3 -12.8 7.8 7.3 -18.1 91.6 230.8 

 

 

  



TATO

UNM

YAK

MAJO

ERM

NWAO

XAN

PMG

GUMO

PFO

TAU

PMSA

CHTO

COR

MA2

SPA

YSS PET

TUC

CTAO

ANMO

(a)

−179˚00' −178˚30' −178˚00' −177˚30'

−18˚30'

−18˚00'

−17˚30'

−17˚00'

600 km 500 km

GCMT

2.4 s/7.3/563 km

6.0 s/7.4/557 km

9.2 s/7.3/549 km

2.4 s/7.3/564 km

6.0 s/7.3/560 km

10.4 s/7.2/552 km

(b)

(c)

(Fig. S4-1)

P P

0 10 20 30

sec

COR
P 4736

79

PFO
P 5248

78

ANMO
P 4051

86

TUC
P 6752

81

UNM
P 6668

86

TAU
P 204222

38

NWAO
P 191241

59

0 10 20 30

sec

CTAO
P 191260

33

PMG
P 266279

34

CHTO
P 97290

89

TATO
P 204304

72

XAN
P 154307

86

GUMO
P 220308

47

MAJO
P 124323

68

0 10 20 30

sec

ERM
P 150330

69

YSS
P 142333

73

YAK
P 74338

89

MA2
P 94344

81

PET
P 92345

73



(d)

(f)

pP pP

0 10 20 30

sec

COR
pP 14336

79

PFO
pP 15148

78

ANMO
pP 14351

86

TUC
pP 17052

81

UNM
pP 14368

86

0 10 20 30

sec

PMSA
pP 73156

83

SPA
pP 46180

72

CHTO
pP 58290

89

TATO
pP 127304

72

GUMO
pP 191308

47

0 10 20 30

sec

MAJO
pP 68323

68

ERM
pP 61330

69

YSS
pP 52333

73

(f)

S S

0 10 20 30

sec

COR
S 40936

79

PFO
S 33948

78

ANMO
S 38951

86

PMSA
S 557156

83

CHTO
S 206290

89

0 10 20 30

sec

TATO
S 240304

72

XAN
S 290307

86

GUMO
S 389308

47

MAJO
S 153323

68

ERM
S 282330

69

0 10 20 30

sec

YSS
S 274333

73

YAK
S 212338

89

MA2
S 277344

81

PET
S 302345

73

sS sS

0 10 20 30

sec

COR
sS 23936

79

PMSA
sS 227156

83

NWAO
sS 344241

59

TATO
sS 335304

72

0 10 20 30

sec

XAN
sS 424307

86

GUMO
sS 418308

47

MAJO
sS 531323

68

YSS
sS 541333

73

0 10 20 30

sec

YAK
sS 477338

89

MA2
sS 718344

81

PET
sS 769345

73



E2. The 09 Jun 1994 Mw 8.2 earthquake 

 Earthquake E2 occurred 631 km beneath Northern Bolivia (Table S4-0). We infer 

the source process using 15 P, 8 pP, 13 S and 9 sS (Fig. S4-2a). Five sub-events (Table 

S4-2, Fig. 4-3a) are used to model the main energy after a 10 s initiation (Zhan et al., 

2014). The best-fitting plane fits the data reasonably well, while the best planar model 

(the GCMT sub-horizontal model) does not predict the arrival times of the last two sub-

events (Figs. S4-2c – S4-2f). The detail analysis is presented in the main text. 

 

Table S4-2. Source parameters of inferred sub-events of E2 

Sub-

event 

dt    

(s) 

dn 

(km) 

de 

(km) 

dz 

(km) 

duration 

(s) 

Mw 

strike 

(°) 

dip 

(°) 

slip 

(°) 

1 15.4 2.6 20.4 8.9 7.6 7.7 297.1 14.5 288.3 

2 19.2 5.6 25.5 5.0 8.0 7.8 293.4 7.3 286.1 

3 24.6 15.4 14.5 5.1 10.0 7.8 312.2 11.2 308.7 

4 30.8 21.7 22.6 18.0 12.0 7.9 313.4 8.4 311.0 

5 38.4 20.2 41.2 39.0 10.0 7.8 311.6 10.0 305.9 

 

 

 

 

 

  



(c)

(Fig. S4-2)
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E3. The 21 Jul 1994 Mw 7.3 earthquake 

 Earthquake E3 occurred 471 km beneath Sea of Japan (Table S4-0). We infer the 

source process using 26 P, 20 pP, 18 S and 20 sS data which constitute good azimuth 

coverage (Fig. S4-3a). Two energy pulses were observed in the first order (Antolik et al., 

1999). However, four sub-events can be observed when looked into detail (ADK and 

OBN, Fig. S4-3c). The strong directivity of the two major pulses also require four sub-

events (Table S4-3) to model the data (narrower at AFI and broader at AAK, Fig. S4-3c). 

The inferred sub-events propagate to the southeast and downward, consistent with the 

previous finite fault inversion result (Antolik et al., 1999). The sub-events propagate 

close to the nodal axis of the GCMT sub-horizontal and sub-vertical fault planes (Fig. S4-

3b), consistent with the previous directivity analysis (Warren and Silver, 2006). However, 

synthetics (blue traces) predicted by the best planar model can fit the radiation patterns of 

the seismic data (black traces, Figs. S4-3c-S4-3f), especially the P wave data in the 

azimuth of 322˚ to 335˚ (Fig. S4-3c).  

Table S4-3. Source parameters of inferred sub-events of E3 

Sub-

event 

dt   

(s) 

dn 

(km) 

de 

(km) 

dz 

(km) 

duration 

(s) 

Mw 

strike 

(°) 

dip 

(°) 

slip 

(°) 

1 1.1 -0.5 0.5 0.0 2.0 6.8 61.9 53.6 196.0 

2 2.3 -2.7 4.4 2.2 2.0 6.8 68.7 39.9 177.5 

3 5.0 -5.1 5.8 8.1 3.0 6.8 70.7 30.0 178.5 

4 6.6 -18.3 10.1 10 4.0 7.0 70.7 30.9 174.8 
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E4. The 23 Aug 1995 Mw 7.0 earthquake 

 Earthquake E4 occurred 595 km beneath Mariana Islands (Table S4-0). We 

inferred the source process by fitting 20 P, 13 pP, 21 S and 9 sS data (Fig. S4-4a). The 

seismic energy can be modeled by two sub-events propagating to the southwest with a 

duration of 5.5 s and the second sub-event is 11 km from the initiation point (Fig. S4-4b, 

Table S4-4). Synthetics predicted by the best planar (135˚/42˚/242˚, low-angle plane) fit 

the seismic data as well as synthetics predicted by the best-fitting model (Fig. S4-4c – S4-

4f). The result of plane rupture on the GCMT low-angle plane is consistent with the 

previous directivity analysis (Myhill, 2012) and finite fault inversion (Antolik, 1999).  

 

Table S4-4. Source parameters of inferred sub-events of E4 

Sub-

event 

dt   

(s) 

dn 

(km) 

de 

(km) 

dz 

(km) 

duration 

(s) 

Mw 

strike 

(°) 

dip 

(°) 

slip 

(°) 

1 1.5 -1.4 -2.0 0.0 2.2 6.6 149.0 43.7 255.4 

2 4.0 -3.6 -6.5 7.8 3.0 6.9 132.8 43.9 235.2 
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E5. The 17 Jun 1996 Mw 7.8 earthquake 

 Earthquake E5 occurred 587 km beneath Flores Sea (Table S4-0). We infer the 

source process using 24 P, 12 pP, 21 S and 10 sS with good azimuth coverage (Fig. S4-

5a). The seismic data exhibit great complexity and the seismic energy are sometimes with 

different polarities (Fig. S4-5c). The complex waveforms are owing to the variability of 

fault orientation, and the sensitivity of the seismograms which take off near the nodal 

planes. The seismic energy can be modeled by five sub-events, propagating to the east 

and downward, with a large horizontal extension of 70 km (Table S4-5, Fig. S4-5b). The 

arrival times of the best-fitting model and best planar model are roughly the same for the 

first four sub-events, while the fifth sub-event has a little depth difference between the 

two models. The best-fitting model match the radiation pattern much better, especially for 

the SH and sSH waves (Figs. S4-5c – S4-5f). 

 

Table S4-5. Source parameters of inferred sub-events of E5 

Sub-

event 

dt   (s) 

dn 

(km) 

de 

(km) 

dz 

(km) 

duration 

(s) 

Mw 

strike 

(°) 

dip 

(°) 

slip 

(°) 

1 3.7 -3.6 -4.0 0.4 6.0 7.1 90.9 54.1 319.2 

2 7.9 -23.3 8.5 9.8 4.0 7.4 78.9 43.4 317.2 

3 10.3 -15.3 15.5 7.8 4.0 7.5 103.8 54.2 316.2 

4 15.0 -0.9 49.7 5.3 7.2 7.5 110.6 59.3 316.3 

5 20.9 -12.1 63.1 25.5 6.4 7.4 81.5 52.3 305.5 
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(Fig. S4-5)
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E6. The 05 Aug 1996 Mw 7.4 earthquake 

 Earthquake E6 occurred 550 km beneath Fiji Islands Region (Table S4-0). We 

infer the source process using 29 P, 16 pP, 20 S and 10 sS constitute good azimuth 

coverage (Fig. S4-6a). The comparison of waveform fitting is showed in Figs. S4-6c – 

S4-6f. The analysis is presented in the main text. 

 

Table S4-6. Source parameters of inferred sub-events of E6 

Sub-

event 

dt   

(s) 

dn 

(km) 

de 

(km) 

dz 

(km) 

duration 

(s) 

Mw 

strike 

(°) 

dip 

(°) 

slip 

(°) 

1 2.0 -3.3 4.5 -2.0 2.0 6.8 196.6 22.7 242.6 

2 4.2 7.2 3.2 -5.0 3.0 7.1 197.3 22.3 246.5 

3 6.4 1.7 1.7 -6.9 4.0 7.0 220.4 15.3 268.4 

4 9.6 18.2 2.9 2.3 3.8 6.7 194.6 12.4 237.1 
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E7. The 29 Mar 1998 Mw 7.1 earthquake 

 Earthquake E7 occurred 543 km beneath Fiji Islands region (Table S4-0). The 

seismograms constitute good azimuthal coverage with 26 P, 10 pP, 24 S and 16 sS wave 

data (Fig. S4-7a). The earthquake has one major sub-event only, which is 8 km away 

from the initiation point (Fig. S4-7b). The inferred source parameter is consistent with the 

GCMT solution (Table S4-7).  The previous directivity analysis was not able to 

distinguish the fault planes (Warren et al., 2007). We suggest that the source region is too 

small to detect its directivity. The best-fitting model is able to model the seismic data 

reasonably well (Figs, S4-7c – S4-7f). We do not perform the plane tests, because one 

sub-event can be naturally fit into plane rupture. 

 

Table S4-7. Source parameters of inferred sub-events of E7 

Sub-

event 

dt   

(s) 

dn 

(km) 

de 

(km) 

dz 

(km) 

duration 

(s) 

Mw 

strike 

(°) 

dip 

(°) 

slip 

(°) 

1 2.8 -1.4 5.4 -4.4 3.0 7.1 101.9 72.0 41.6 
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E8. The 20 Aug 1998 Mw 7.0 earthquake 

 Earthquake E8 occurred 425 km beneath Bonin Islands region (Table S4-0). The 

seismograms constitute a good azimuthal coverage with 29 P, 22 pP, 34 S and 19 sS 

wave data (Fig. S4-8a). The earthquake is inferred by four major sub-events (Table S4-8, 

Fig. S4-8b). The first sub-event is southeast to the initiation point, the second and third 

sub-events are to the northeast of the initiation point, and the fourth is to the northwest 

(Fig. S4-8b). It is interesting to note that, this earthquake has a longer duration with well-

separated sub-events, comparing to most of the other analyzed earthquakes with Mw ~7.0. 

The sub-events propagated around the GCMT sub-horizontal fault plane, consistent with 

the previous analysis (Myhill and Warren, 2012). Synthetics predicted by the best planar 

model match the arrival times of energy pulses of the data as well as synthetics predicted 

by the best-fitting model, as well as the amplitude for most of the seismogram. However, 

the best-fitting model can fit much better at the stations near the nodal plane, for example, 

P waveforms at the stations SFJ, ALE, KEV and KBS. It is worth to mention that, the 

nodal plane data might be critical to resolve focal mechanisms of the deep earthquakes. 

 

Table S4-8. Source parameters of inferred sub-events of E8  

Sub-

event 

dt   

(s) 

dn 

(km) 

de 

(km) 

dz 

(km) 

duration 

(s) 

Mw 

strike 

(°) 

dip 

(°) 

slip 

(°) 

1 9.9 -7.3 6.3 -2.5 4.0 6.6 94.5 20.3 198.6 

2 14.1 8.7 12.7 -4.4 4.0 6.8 89.9 29.1 201.0 

3 17.2 27.0 12.4 -4.0 4.6 6.7 90.5 33.1 206.8 

4 23.8 24.5 -14.7 -8.1 5.0 6.5 56.4 14.0 158.9 
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E9. The 08 Apr 1999 Mw 7.1 earthquake 

 Earthquake E9 occurred 566 km beneath Sea of Japan (Table S4-0). The 

seismograms constitute good azimuthal coverage with 34 P, 23 pP, 30 S and 25 sS wave 

data (Fig. S4-9a). The seismic energy can be modeled by three sub-events (Table S4-9, 

Fig. S4-9b). The first sub-event is 5 km to the east of the initiation. The second sub-event 

is 7.0 km to the east, and the third sub-event is 11 km to the southeast (Fig. S4-9b). Focal 

mechanism of the second sub-event is different from that of the other two sub-events to 

the south (Fig. S4-9b). The GCMT sub-horizontal plane can predict the synthetics better 

than the sub-vertical one, but not as well as the best-fitting model (Figs. S4-9c – S4-9f), 

due to fault plane orientation change of the second sub-event (Table S4-9). 

 

Table S4-9. Source parameters of inferred sub-events of E9 

Sub-

event 

dt   

(s) 

dn 

(km) 

de 

(km) 

dz 

(km) 

duration 

(s) 

Mw 

strike 

(°) 

dip 

(°) 

slip 

(°) 

1 1.5 -0.4 4.5 0.1 2.0 6.8 90.6 32.4 167.1 

2 3.1 1.0 7.0 -3.1 2.4 6.9 98.3 9.7 191.9 

3 5.2 -9.1 7.0 4.1 2.0 6.6 84.3 44.4 151.3 
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E10. The 23 Apr 2000 Mw 7.0 earthquake 

 Earthquake E10 occurred 610 km beneath South America (Table S4-0). The 

seismograms constitute good azimuth coverage with 26 P, 20 pP, 24 S and 20 sS wave 

data (Fig. S4-10a). The earthquake has two sub-events located to the northeast and 

southeast of the initiation point (Fig. S4-10b). Synthetics predicted by the GCMT sub-

horizontal plane can fit the seismic data as well as the best-fitting sub-event model. These 

two sub-events are well separated. It is interesting to note that, the two sub-events are 

with consistent source propagating velocities of ~3.4 km/s from the initiation point. 

 

Table S4-10. Source parameters of inferred sub-events of E10 

Sub-

event 

dt   

(s) 

dn 

(km) 

de 

(km) 

dz 

(km) 

duration 

(s) 

Mw 

strike 

(°) 

dip 

(°) 

slip 

(°) 

1 2.3 4.8 5.9 -0.9 2.4 6.8 289.9 0.2 210.3 

2 5.5 -14.1 13.1 0.0 3.0 6.6 309.9 12.8 219.2 
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E11. The 28 Jun 2002 Mw 7.3 earthquake 

 Earthquake E11 occurred 564 km beneath Sea of Japan (Table S4-0). We model 

the earthquake by four sub-events (Table S4-11), with good azimuth coverage of 35 P, 27 

pP, 28 S and 27 sS wave data (Fig. S4-11a). The inferred sub-events propagate to the 

west like a rectangle distribution (Fig. S4-11b). The sub-events are close to the GCMT 

sub-horizontal plane, but radiation pattern of the third sub-event cannot be modeled on 

the planar model (Fig. S4-11c – S4-11f), due to different fault plane orientation (Table 

S4-11). 

 

 

Table S4-11. Source parameters of inferred sub-events of E11 

Sub-

event 

dt   

(s) 

dn 

(km) 

de 

(km) 

dz 

(km) 

duration 

(s) 

Mw 

strike 

(°) 

dip 

(°) 

slip 

(°) 

1 2.7 0.0 -9.5 -1.6 4.6 6.9 26.0 2.9 118.2 

2 6.6 -5.2 -11.0 3.6 3.0 6.9 46.5 10.9 123.8 

3 8.8 0.1 -24.8 0.4 2.2 6.9 46.6 20.6 125.9 

4 10.6 5.1 -22.7 2.3 4.0 6.7 46.7 8.3 117.4 
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E12. The 19 Aug 2002 Mw 7.6 earthquake 

 Earthquake E12 occurred 580 km beneath Tonga region (Table S4-0). The 

seismograms constitute good azimuth coverage with 36 P, 23 pP, 26 S and 27 sS wave 

data (Fig. S4-12a). The seismic energy can be modeled by four sub-events (Table S4-12, 

Fig. S4-12b). The first sub-event is about 5 km to the northeast of and 5 km below the 

initiation point. The following three sub-events are about 20 km to 30 km below the 

initiation point. The sub-events are close to the GCMT sub-vertical plane, roughly 

consistent with the previous directivity analysis (Warren et al., 2007). The seismograms 

exhibit great complexity with different polarities. The focal mechanisms cannot be 

modeled on the planar model, especially the P waves (Fig. S4-12c – S4-12f). 

 

Table S4-12. Source parameters of inferred sub-events of E12 

Sub-

event 

dt   

(s) 

dn 

(km) 

de 

(km) 

dz 

(km) 

duration 

(s) 

Mw 

strike 

(°) 

dip 

(°) 

slip 

(°) 

1 1.9 4.5 2.2 4.5 2.2 7.0 32.1 86.8 289.0 

2 7.5 13.6 7.2 25.3 2.8 7.4 15.7 71.9 302.3 

3 10.1 -0.9 2.0 25.5 5.0 7.3 35.2 74.8 272.1 

4 14.2 1.7 -7.6 26.7 4.0 7.1 32.1 92.3 277.4 
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E13. The 19 Aug 2002 Mw 7.7 earthquake 

 Earthquake E13 occurred 675 km beneath Tonga region (Table S4-0), which is 

one of the deepest earthquakes. It occurred ~7 minutes after the E12. The seismograms 

constitute good azimuth coverage with 32 P, 19 pP, 26 S and 16 sS wave data (Fig. S4-

13a). The seismic energy can be modeled by three sub-events (Table S4-13, Fig. S4-13b). 

The first sub-event occurred ~5km to the northwest of the initiation, the second 32 km to 

the southeast and the third 20 km to the south. The planar model prefers the sub-

horizontal plane, consistent with the previous directivity analysis (Warren et al., 2007). 

However, synthetics predicted by the sub-horizontal plane cannot model radiation pattern 

of the seismic data (Fig. S4-13c – S4-13f). 

 

Table S4-13. Source parameters of inferred sub-events of E13 

Sub-

event 

dt   

(s) 

dn 

(km) 

de 

(km) 

dz 

(km) 

duration 

(s) 

Mw 

strike 

(°) 

dip 

(°) 

slip 

(°) 

1 4.1 3.1 -4.7 0.0 6.0 7.4 56.4 2.1 69.7 

2 5.9 -28.0 15.0 -5.7 5.8 7.5 67.2 -5.4 111.6 

3 9.3 -20.7 -3.7 17.1 3.6 7.3 45.5 3.9 84.3 
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E14. The 17 Nov 2002 Mw 7.3 earthquake 

 Earthquake E14 occurred 459 km beneath Sea of Okhotsk (Table S4-0). The 

seismograms constitute good azimuth coverage with 33 P, 27 pP, 30 S and 25 sS 

waveforms (Fig. S4-14a). The seismic energy can be modeled by two major sub-events 

after a ~6 s weak initiation (Table S4-14, Fig. S4-14b). The first sub-event is 16 km to the 

south of the initiation point, but the second is 10 km to the southeast. The sub-events can 

be inferred on both the GCMT sub-horizontal plane model and the best-fitting sub-event 

model (Fig. S4-14c – S4-14f).  

 

Table S4-14. Source parameters of inferred sub-events of E14 

Sub-

event 

dt   

(s) 

dn 

(km) 

de 

(km) 

dz 

(km) 

duration 

(s) 

Mw 

strike 

(°) 

dip 

(°) 

slip 

(°) 

1 7.9 -15.9 1.6 -0.6 3.0 7.0 314.2 6.5 27.7 

2 10.1 -8.5 5.3 3.1 3.0 7.0 326.0 9.6 40.8 
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E15. The 20 Jun 2003 Mw 7.0 earthquake 

 Earthquake E15 occurred 553 km beneath South America (Table S4-0). The 

seismograms constitute good azimuth coverage with 32 P, 27 pP, 20 S and 8 sS wave 

data (Fig. S4-15a). The seismic energy can be modeled by five major sub-events with a 

horizontal extension of ~70 km and a vertical extension of 30 km (Table S4-15, Fig. S4-

15b). The earthquake has a huge source extension, but a short duration of 12 s and a 

moment magnitude of 7.0. The average propagating velocity of the source process is ~5.4 

km/s, close to the S wave velocity at this depth. The five pulses are separated enough in 

the azimuth of 180˚ and merge in the azimuth of 0˚ (Figs. S4-15c – S4-15f). The planar 

model (blue traces) can model the P and pP data (Figs. S4-15c, S4-15d) almost as well as 

the best-fitting model (red traces), but have great misfit to radiation patterns of the S and 

sS waves (Figs. S4-15e and S4-15f). Although the sub-events have different fault plane 

orientations, but still propagate close to the higher angle plane.  

 

Table S4-15. Source parameters of inferred sub-events of E15 

Sub-

event 

dt   

(s) 

dn 

(km) 

de 

(km) 

dz 

(km) 

duration 

(s) 

Mw 

strike 

(°) 

dip 

(°) 

slip 

(°) 

1 1.9 2.1 -1.3 2.4 3.6 6.6 128.7 48.0 247.6 

2 4.3 9.6 -1.4 0.3 4.0 6.6 157.6 41.0 249.2 

3 6.9 29.0 -4.7 -15.7 3.8 6.6 134.0 47.5 241.7 

4 9.5 45.6 -7.5 -25.5 4.0 6.6 115.9 56.6 240.5 

5 11.3 54.8 -12.3 -29.9 2.8 6.4 156.4 48.4 264.2 
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E16. The 15 Jul 2004 Mw 7.1 earthquake 

 Earthquake E16 occurred 560 km beneath Tonga region (Table S4-0). The 

seismograms constitute good azimuth coverage with 34 P, 20 pP, 24 S and 16 sS wave 

data (Fig. S4-16a). The seismic energy can be modeled three sub-events after ~6 s 

initiation (Table S4-16). The sub-events propagated to the northwest along the 

intersection of the two GCMT fault planes (Fig. S4-16b). Previous study cannot 

distinguish the fault plane by directivity (Warren et al., 2007). The planar model cannot 

model the varying radiation pattern of the seismic data (Fig. S4-16c – S4-16f).   

 

Table S4-16. Source parameters of inferred sub-events of E16  

Sub-

event 

dt   

(s) 

dn 

(km) 

de 

(km) 

dz 

(km) 

duration 

(s) 

Mw 

strike 

(°) 

dip 

(°) 

slip 

(°) 

1 7.3 6.5 -4.6 4.8 2.2 6.9 342.9 33.9 126.1 

2 9.3 13.2 -10.8 1.3 2.4 6.8 345.2 50.7 138.2 

3 12.0 16.9 -25.3 5.8 2.4 6.5 329.4 66.0 125.7 
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E17. The 25 Jul 2004 Mw 7.3 earthquake 

 Earthquake E17 occurred 581 km beneath Java Sea (Table S4-0). The 

seismograms constitute good azimuth coverage with 35 P, 16 pP, 27 S and 18 sS wave 

data (Fig. S4-17a). The seismic energy can be modeled by four sub-events (Table S4-17, 

Fig. S4-17b), however, the fourth sub-event cannot be well resolved, since it can be 

clearly observed between the azimuth of 100˚ and 180˚ in P wave data only (Fig. S4-17c). 

The first three sub-events propagated to the south, the second and the third is to the 

southeast, and the fourth is geographically between the first and second but with a greater 

depth. Radiation patterns of the seismic data cannot be modeled on a plane. 

 

Table S4-17. Source parameters of inferred sub-events of E17  

Sub-

event 

dt   

(s) 

dn 

(km) 

de 

(km) 

dz 

(km) 

duration 

(s) 

Mw 

strike 

(°) 

dip 

(°) 

slip 

(°) 

1 1.7 -8.2 -0.4 3.9 3.0 6.8 329.4 55.7 293.7 

2 5.2 -20.5 19.2 14.1 2.0 6.7 317.9 49.1 304.0 

3 7.9 -18.3 26.8 18.7 3.0 7.1 342.3 60.3 304.6 

4 16.0 -15.2 8.9 35.7 3.0 6.4 388.5 91.3 253.7 
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E18. The 05 Feb 2005 Mw 7.1 earthquake 

 Earthquake E18 occurred 536 km beneath Philippine region (Table S4-0). The 

seismograms constitute good azimuth coverage with 31 P, 17 pP, 31 S and 18 sS wave 

data (Fig. S4-18a). The seismic energy can be modeled by three sub-events with a 

horizontal extension of 15 km (Fig. S4-18b). The strongest first sub-event is to the 

southeast, the second and third sub-event propagated to the northeast. Since the sub-

events are quite close to each other, they overlap each other and seem to be one pulse in S 

and sS data (Figs. S4-18c – S4-18f). The GCMT sub-horizontal plane models the seismic 

data as well as the best-fitting sub-event model.  

 

Table S4-18. Source parameters of inferred sub-events of E18 

Sub-

event 

dt   

(s) 

dn 

(km) 

de 

(km) 

dz 

(km) 

duration 

(s) 

Mw 

strike 

(°) 

dip 

(°) 

slip 

(°) 

1 4.2 -6.6 6.1 -1.7 3.8 6.9 163.2 14.8 252.3 

2 7.2 1.9 6.3 -0.2 3.8 6.7 159.1 13.8 245.4 

3 10.1 8.2 12.4 -3.4 3.0 6.5 162.1 14.3 247.9 
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E19. The 02 Jan 2006 Mw 7.2 earthquake 

 Earthquake E19 occurred 593 km beneath Tonga region (Table S4-0). We infer 

the source process using 32 P, 15 pP, 24 S and 15 sS (Fig. S4-19a). The best-fitting 

source model is presented in Table S4-19 and Fig. S4-19b, and the synthetics fitting 

comparison is in Figs. S4-19c – S4-19f. The analysis is presented in the main text.  

 

Table S4-19. Source parameters of inferred sub-events of E19 

Sub-

event 

dt   

(s) 

dn 

(km) 

de 

(km) 

dz 

(km) 

duration 

(s) 

Mw 

strike 

(°) 

dip 

(°) 

slip 

(°) 

1 2.9 2.9 9.8 -2.8 3.4 7.0 46.1 71.6 261.9 

2 6.0 12.1 12.8 -5.0 3.6 6.8 50.7 78.8 257.8 

3 7.6 19.9 20.7 -28.8 5.8 6.9 78.1 59.9 200.4 
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E20. The 05 Jul 2008 Mw 7.7 earthquake 

 Earthquake E20 occurred 632 km beneath Sea of Okhotsk (Table S4-0). The 

seismograms constitute good azimuth coverage with 36 P, 18 pP, 21 S and 19 sS wave 

data (Fig. S4-20a). The earthquake energy can be divided into two portions. The portion 

of the first ten seconds can be modeled by four sub-events, which can be modeled 

reasonably well, while the second portion with smaller amplitude is not perfectly 

modeled (Figs. S4-20c – S4-20f). The second portion is ignored by the GCMT solution. 

The first four sub-events occurred in a small extension of ~ 12 km. The first three sub-

events propagated to the north, and the fourth sub-event is to the south. The fifth sub-

event is 3.6 km to the east of and 7.8 km below the initiation point and the latter three 

sub-events propagate to further northeast at the depth range between 10 and 20 km (Table 

S4-20, Fig. S4-20b). Therefore, the first and second portion of data may occur in different 

depths. Moreover, the focal mechanisms do not prefer the planar model. It is also 

interesting to note that the ending sub-event is very close to the last sub-event of the 2013 

Mw 8.3 Okhotsk deep earthquake, with totally different focal mechanisms (Chen et al, 

2014).  

 

Table S4-20. Source parameters of inferred sub-events of E20 

Sub-

event 

dt   

(s) 

dn 

(km) 

de 

(km) 

dz 

(km) 

duration 

(s) 

Mw 

strike 

(°) 

dip 

(°) 

slip 

(°) 

1 1.8 1.6 1.5 0.0 3.0 6.9 145.8 53.8 230.0 

2 4.8 3.9 2.9 -3.0 3.0 7.2 147.7 50.7 236.6 

3 7.2 8.1 8.0 -4.0 4.0 7.3 145.4 50.0 227.9 

4 9.4 -9.9 -2.7 -3.2 4.0 7.2 163.7 40.1 236.6 

5 12.8 3.6 0.0 -7.8 4.0 7.0 135.5 53.5 200.2 

6 15.5 8.6 5.0 -10.8 4.0 6.9 155.0 31.7 198.1 

7 18.8 30.4 17.8 -14.0 6.0 7.0 115.7 57.1 208.0 

8 22.1 37.4 20.8 -16.0 6.0 7.0 140.5 41.7 197.2 
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E21. The 24 Nov 2008 Mw 7.3 earthquake 

 Earthquake E21 occurred 490 km beneath Sea of Okhotsk (Table S4-0). The 

seismograms constitute good azimuth coverage with 42 P, 30 pP, 32 S and 22 sS 

waveforms (Fig. S4-21a). The seismic energy can be modeled by four sub-events (Table 

S4-21, Fig. S4-21b). The first sub-event is 5 km to the southeast of the initiation point, 

the second and third sub-events propagated to the northeast and the fourth sub-event is to 

the south. The first three sub-events propagate around the sub-horizontal plane; and the 

fourth is 5 km from both the GCMT planes. Focal mechanisms of the sub-events cannot 

be model on a fault plane. (Figs. S4-21c – S4-21f).  

 

Table S4-21. Source parameters of inferred sub-events of E21 

Sub-

event 

dt   

(s) 

dn 

(km) 

de 

(km) 

dz 

(km) 

duration 

(s) 

Mw 

strike 

(°) 

dip 

(°) 

slip 

(°) 

1 1.8 -2.0 4.5 0.0 3.0 6.7 259.3 14.7 313.4 

2 9.6 15.2 1.5 3.5 7.0 7.1 270.5 22.7 323.3 

3 13.2 27.0 -6.3 -4.5 3.0 6.7 295.7 12.9 352.3 

4 13.3 -6.9 -4.9 -4.9 3.0 6.8 260.0 10.3 333.9 
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E22. The 23 Jul 2010 Mw 7.3 earthquake 

 Earthquake E22 occurred 607 km beneath Philippine region (Table S4-0). The 

seismograms constitute good azimuth coverage with 38 P, 27 pP, 30 S and 23 sS wave 

data (Fig. S4-22a). The Mw 7.3 earthquake has a long duration of 20 s and a large source 

extension of ~45 km (Table S4-22, Fig. S4-22b). The horizontal extension is generally 

consistent with the back-projection result (Zhang and Xu, 2012). The earthquake has two 

portions of energy. The first portion can be modeled by three sub-events aligning along 

the nodal axis (intersection of the GCMT fault planes), with similar focal mechanisms 

consistent with the GCMT sub-horizontal plane. The second portion can be model by two 

sub-events still close to the nodal axis, but with focal mechanisms inconsistent with the 

plane (Figs. S4-22c – S4-22f).  

 

Table S4-22. Source parameters of inferred sub-events of E22 

Sub-

event 

dt   

(s) 

dn 

(km) 

de 

(km) 

dz 

(km) 

duration 

(s) 

Mw 

strike 

(°) 

dip 

(°) 

slip 

(°) 

1 2.7 -1.2 4.2 1.7 3.4 6.8 246.8 14.9 305.1 

2 5.7 -11.4 2.3 -0.3 5.2 6.8 258.1 11.2 319.7 

3 8.6 -18.8 1.2 -3.4 4.8 6.8 258.5 20.1 324.3 

4 12.6 -31.8 -3.3 -17.0 6.0 6.9 242.9 21.8 317.1 

5 16.4 -41.5 -11.7 -18.0 7.4 6.8 243.8 16.6 316.0 
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E23. The 23 Jul 2010 Mw 7.6 earthquake 

 Earthquake E23 occurred 587 km beneath Philippine region (Table S4-0). The 

seismograms constitute good azimuth coverage with 38 P, 25 pP, 29 S and 18 sS wave 

data (Fig. S4-23a). The seismic energy can be modeled by four sub-events (Fig. S4-23b). 

The first two weak sub-events propagate to the southeast, and the latter two sub-events 

propagated to the northeast (Table S4-23). Overall, the earthquake possesses a small 

extension of ~ 20 km, comparing to most of the events with Mw > 7.5. The earthquake 

can be modeled on the GCMT sub-horizontal plane as well as the best-fitting model (Figs. 

S4-23c – S4-23f).  

 

Table S4-23. Source parameters of inferred sub-events of E23 

Sub-

event 

dt   

(s) 

dn 

(km) 

de 

(km) 

dz 

(km) 

duration 

(s) 

Mw 

strike 

(°) 

dip 

(°) 

slip 

(°) 

1 6.1 -7.3 7.4 -2.6 2.8 7.0 234.7 17.3 316.0 

2 8.6 -5.2 11.4 -2.8 2.4 6.9 251.0 22.1 342.2 

3 10.9 3.1 21.9 -8.6 5.0 7.3 241.1 23.6 325.2 

4 14.4 9.7 16.1 -0.1 7.0 7.3 204.5 7.4 311.2 
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E24. The 01 Jan 2011 Mw 7.0 earthquake 

 Earthquake E24 occurred 577 km beneath South America (Table S4-0). The 

seismograms constitute good azimuth coverage with 35 P, 23 pP, 28 S and 17 sS wave 

data (Fig. S4-24a). The seismic energy can be modeled by three sub-events (Table S4-24, 

Fig. S4-24b). The first and second sub-events are located very close to the initiation point. 

It is interesting to note that, they have slightly different radiation patterns, although in so 

a close distance. The third sub-event is ~30 km to the south, with a peak time of 7.7 s. 

The sub-events propagated around the GCMT sub-horizontal plane, but the planar model 

cannot fit the radiation pattern of the seismic data (Figs. S4-24c – S4-24f).  

 

Table S4-24. Source parameters of inferred sub-events of E24 

Sub-

event 

dt   

(s) 

dn 

(km) 

de 

(km) 

dz 

(km) 

duration 

(s) 

Mw 

strike 

(°) 

dip 

(°) 

slip 

(°) 

1 1.2 1.4 0.8 -0.6 2.0 6.6 368.9 24.9 299.6 

2 3.0 -1.4 0.0 0.4 2.4 6.8 371.4 30.1 315.4 

3 7.7 -26.4 -3.3 0.2 4.0 6.7 344.4 19.9 270.5 
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E25. The 15 Sep 2011 Mw 7.3 earthquake 

 Earthquake E25 occurred 604 km beneath Tonga region (Table S4-0). The 

seismograms constitute good azimuth coverage with 28 P, 22 pP, 30 S and 14 sS wave 

data (Fig. S4-25a). The seismic energy can be modeled by four sub-events (Table S4-25, 

Fig. S4-25b). The first sub-event is 2.5 km to the northeast of the initiation point, the 

latter sub-events propagated to the southwest. Arrival times of the first three sub-events 

are consistent with the sub-horizontal plane, while the fourth has a little depth difference 

(Fig. S4-25c). The planar model cannot model the radiation patterns of pP and SH waves 

(Figs. S4-25d, S4-25e).  

 

Table S4-25. Source parameters of inferred sub-events of E25 

Sub-

event 

dt   

(s) 

dn 

(km) 

de 

(km) 

dz 

(km) 

duration 

(s) 

Mw 

strike 

(°) 

dip 

(°) 

slip 

(°) 

1 3.0 1.8 1.9 0.0 3.2 6.8 39.9 89.6 230.9 

2 6.9 -4.4 -6.3 2.2 5.0 7.0 41.0 88.2 242.5 

3 9.9 -8.0 -9.6 -4.8 5.0 7.1 52.5 77.6 228.1 

4 12.7 -3.5 -25.5 -2.6 3.0 6.8 61.6 79.3 222.5 
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E26. The 24 May 2013 Mw 8.3 Okhotsk earthquake   

The earthquake occurred beneath Sea of Okhotsk, with moment magnitude of Mw 

8.3 in the GCMT solution and a hypocenter depth of 598 km reported by the USGS 

(United States Geological Survey).  The seismic source directivity analyses showed that 

the source front generally propagates along ~N160°E and ~35 km downward. The 

multiple source inversion results suggested that the earthquake could be modeled by six 

sub-events (Table S4-26). Sub-events 1a and 1b exhibit bilateral propagation to northeast 

and southeast. Sub-events 2 and 4 propagate downward along an azimuth of 155°-165°, 

while sub-event 3 occurs southeast to the initiation point but northwest to subevent 2 (Fig. 

S4-26a). The inverted source region has a horizontal extension of 64 km and a depth 

extension of 35 km (Fig. S4-26b). The best planar (sub-vertical plane) model cannot fit 

the seismic waveform as the best fitting sub-event model does. The most obvious misfits 

of the best planar model are present at stations around 90˚ and 270˚. The sub-events 

arrive earlier in the observed P waveforms than in the synthetics at stations POHA, KIP, 

JOHN and RAR, and later at stations ENH, CHTO, LSA, KBL, MAKZ, AAK and 

BRVK. The mismatch of arrival times is also evident in the S waveforms at stations PFO, 

COR and WAKE, and the sS waveforms at stations EIL, KIEV, and GRFO. The misfits 

of radiation pattern are evident in P waveform at station PMG and in sS waveforms at 

stations ANMO and TUC (Figs. 4-26c – 4-26f) (Chen et al., 2014). 

Table S4-26. Source parameters of inverted six subevents of 24 May 2013 Okhotsk Earthquake  

Sub-

event 

dt  (s) 
dn 

(km) 

de 

(km) 

dz 

(km) 

duration 

(s) 

Mw 
strike 

(°) 

dip  

(°) 

slip 

(°) 

0 0 0 0 0 3 7.0 8.9 87.7 278.0 

1a 1.7 4.3 4.6 1.1 12.0 7.9 13.7 85.2 278.1 

1b 7.8 -6.2 8.5 0.1 12.0 7.9 23.3 86.6 263.6 

2 12.0 -44.9 15.7 16.7 9.0 7.9 4.0 76.3 282.3 

3 16.2 -21.8 10.1 4.2 11.8 7.9 17.6 85.4 256.4 

4 22.5 -57.8 15.4 35.4 12.0 7.9 -5.7 69.5 272.4 
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Supplementary Tables and Figures for Chapter 5 

 

Table S5-1. Source parameters of inferred sub-events of E2 

Sub-event 
dt    

(s) 

dn 

(km) 

de 

(km) 

dz 

(km) 

duration 

(s) 
Mw 

strike 

(°) 

dip 

(°) 

slip 

(°) 

I1 3.0 0.5 1.7 0.0 3.0 6.9 299.3 16.8 286.5 
I2 6.1 0.9 13.2 -0.7 5.0 7.1 294.9 5.0 282.2 
I3 8.9 -1.1 15.3 -1.4 4.8 7.2 308.3 8.2 306.9 
I4 11.5 5.2 22.9 -2.1 4.0 7.1 299.3 5.1 291.4 
S1 15.4 2.6 20.4 8.9 7.6 7.7 297.1 14.5 288.3 
S2 19.2 5.6 25.5 5.0 8.0 7.8 293.4 7.3 286.1 
S3 24.6 15.4 14.5 5.1 10.0 7.8 312.2 11.2 308.7 
S4 30.8 21.7 22.6 18.0 12.0 7.9 313.4 8.4 311.0 
S5 38.4 20.2 41.2 39.0 10.0 7.8 311.6 10.0 305.9 

Note: the sub-events begin with ‘I’ are the initiation sub-events inferred in this study, 
while those begin with ‘S’ are the major sub-events inferred in our previous studies. 
 

Table S5-2. Source parameters of inferred sub-events of E8  

Sub-event 
dt   

(s) 

dn 

(km) 

de 

(km) 

dz 

(km) 

duration 

(s) 
Mw 

strike 

(°) 

dip 

(°) 

slip 

(°) 

I1 0.7 1.6 0.2 0.0 1.2 5.8 86.0 22.5 172.5 
I2 2.2 3.9 2.4 2.0 1.2 6.0 73.7 40.1 216.1 
I3 3.9 2.0 5.6 4.2 1.2 6.0 91.9 22.9 199.1 
I4 5.8 -0.1 5.4 1.5 1.2 5.9 86.8 22.0 200.2 
I5 7.2 -0.3 0.0 -1.9 1.2 6.1 76.3 34.9 216.5 
S1 9.9 -7.3 6.3 -2.5 4.0 6.6 94.5 20.3 198.6 
S2 14.1 8.7 12.7 -4.4 4.0 6.8 89.9 29.1 201.0 
S3 17.2 27.0 12.4 -4.0 4.6 6.7 90.5 33.1 206.8 
S4 23.8 24.5 -14.7 -8.1 5.0 6.5 56.4 14.0 158.9 

  



 

Table S5-3. Source parameters of inferred sub-events of E14 

Sub-event 
dt   

(s) 

dn 

(km) 

de 

(km) 

dz 

(km) 

duration 

(s) 
Mw 

strike 

(°) 

dip 

(°) 

slip 

(°) 

I1 1.4 0.0 0.0 0.0 2.4 6.1 306.7 38.8 12.8 
I2 3.3 4.0 3.0 0.0 1.6 6.l 293.6 38.8 9.1 
I3 5.6 -2.8 -13.2 0.0 1.6 6.3 311.1 28.6 3.3 
S1 7.9 -15.9 1.6 -0.6 3.0 7.0 314.2 6.5 27.7 
S2 10.1 -8.5 5.3 3.1 3.0 7.0 326.0 9.6 40.8 

 

Table S5-4. Source parameters of inferred sub-events of E16  

Sub-event 
dt   

(s) 

dn 

(km) 

de 

(km) 

dz 

(km) 

duration 

(s) 
Mw 

strike 

(°) 

dip 

(°) 

slip 

(°) 

I1 0.9 1.6 -2.0 0.0 1.4 5.7 254.7 30.0 12.4 
I2 3.5 -2.0 -2.8 0.0 1.6 6.1 375.0 44.6 146.2 
S1 7.3 6.5 -4.6 4.8 2.2 6.9 342.9 33.9 126.1 
S2 9.3 13.2 -10.8 1.3 2.4 6.8 345.2 50.7 138.2 
S3 12.0 16.9 -25.3 5.8 2.4 6.5 329.4 66.0 125.7 

 
  



 

Table S5-5. Source parameters of inferred sub-events of E20 

Sub-event 
dt   

(s) 

dn 

(km) 

de 

(km) 

dz 

(km) 

duration 

(s) 
Mw 

strike 

(°) 

dip 

(°) 

slip 

(°) 

I1 1.1 0.0 1.0 0.0 1.8 6.7 150.0 49.7 232.7 
I2 2.5 1.2 2.8 0.0 1.6 6.7 159.3 48.1 235.0 
S1 4.8 3.9 2.9 -3.0 3.0 7.2 147.7 50.7 236.6 
S2 7.2 8.1 8.0 -4.0 4.0 7.3 145.4 50.0 227.9 
S3 9.4 -9.9 -2.7 -3.2 4.0 7.2 163.7 40.1 236.6 
S4 12.8 3.6 0.0 -7.8 4.0 7.0 135.5 53.5 200.2 
S5 15.5 8.6 5.0 -10.8 4.0 6.9 155.0 31.7 198.1 
S6 18.8 30.4 17.8 -14.0 6.0 7.0 115.7 57.1 208.0 
S7 22.1 37.4 20.8 -16.0 6.0 7.0 140.5 41.7 197.2 

 

 

Table S5-6. Source parameters of inferred sub-events of E23 

Sub-event 
dt   

(s) 

dn 

(km) 

de 

(km) 

dz 

(km) 

duration 

(s) 
Mw 

strike 

(°) 

dip 

(°) 

slip 

(°) 

I1 1.9 0.7 -0.9 0.0 2.2 6.6 241.4 28.1 327.2 
I2 3.7 -3.0 6.0 0.0 2.8 6.6 236.9 19.8 322.8 
S1 6.1 -7.3 7.4 -2.6 2.8 7.0 234.7 17.3 316.0 
S2 8.6 -5.2 11.4 -2.8 2.4 6.9 251.0 22.1 342.2 
S3 10.9 3.1 21.9 -8.6 5.0 7.3 241.1 23.6 325.2 
S4 14.4 9.7 16.1 -0.1 7.0 7.3 204.5 7.4 311.2 

 
  



 

Supplementary Figures 

Because Figs. S5-1 – S5-6 have similar figure captions, we present an example figure 

caption for all the events. Figs. S5-1b and S5-2b are presented as Figs. 5-2b and 5-3b, 

respectively, in the main text. 

Figs. S5-1 – S5-6 (a) Location and the GCMT focal mechanism of the earthquake (red 

beach ball) and used seismic stations (blue triangles), labeled with station names. The 

green traces are the ray paths from the earthquake and seismic stations. (b) Locations 

of the best-fitting models of the major sub-events (red points) and the weak initiation 

sub-events (green points), and the initiated location (black star) of the earthquakes, 

along with slab depth contours (black traces, labelled with slab depths). Black beach 

ball describes GCMT focal mechanism of the event. Red and green beach balls 

represent inferred focal mechanisms of the major sub-events and the weak initiation 

sub-events of the best-fitting model, labeled with the sub-event peak times, moment 

magnitudes and depths. (c) – (e) Observed seismograms normalized by maximum 

amplitudes of the whole seismograms (black traces) and the initiation phases (dash 

traces) comparing with synthetics predicted by the best-fitting model of the major 

sub-events (red traces) and the initiation sub-events (green traces), for (c) P waves, (d) 

pP waves and (e) SH waves. The red and green lines label the peak times of the major 

sub-events and the initiation sub-events. 
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