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Abstract of the Thesis 

Crystal Structure Prediction of Compounds in Al-O System: AlO2 and Al4O7 

by 

Yue Liu 

Master of Science 

in 

Geosciences 

Stony Brook University 

2013 

 

USPEX is the foremost Evolutionary Algorithm which calculates crystal structure through 

genetic algorithm. And it is using ab initio determination to contribute powerful searching in 

crystal structure prediction. This method enables crystal structure prediction at arbitrary P-T 

conditions, given just the chemical composition of the material. USPEX is interfaced with DFT 

or classic codes, such as VASP, SIESTA, GULP and so on. USPEX can also be used to search 

for materials with desired physical properties. There are already significant discoveries found by 

using USPEX. For instance, it has been found the 40-atom cell of MgSiO3 post-perovskite for 

this fixed composition system. And for variable composition, like Mg-O system, the previous 

work showed that new oxides MgO2 and Mg3O2 could become stable at high pressure. 

In the crust, oxygen and aluminum have the first and third highest abundance among all 

elements, respectively. Also aluminum is the most abundant metal element, which takes 7.57% 

of the total mass of crust. Until now, there are more than 270 kinds of minerals were found 

containing aluminum. Aluminum is a good conductor of electricity and heat, while alumina is an 

insulator. But alumina is suitable for abrasive materials and cutting tools. Activated alumina 

could also be used as catalysts, adsorbents, dehydrating agent and a catalyst carrier. Accordingly, 

Al-O system is important and prospective for scientists to explore for further oxides and their 

properties. 

Materials under pressure often exhibit exotic physical and chemical behaviors. In particular, 

extremely new stable compounds could appear. For Al-O system, we use the variable 

composition searching by USPEX and have found two extraordinary compounds Al4O7 and AlO2 
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are thermodynamically stable. Al4O7 is stable under the pressures between 330-443 GPa and 

AlO2 becomes stable from 322 GPa. Detailed chemical bonding analysis shows Al4O7 has one 

peroxide ion [O–O]
 2−

 in each lattice. And in AlO2, there are two peroxide bonds with different 

directions per lattice. As a result, under high pressure, the new state of aluminum oxides is 

generated with both oxygen and peroxide ions.  And these two new Al-O compounds become 

stable because the formation of peroxide anions [O–O]
 2-

.  

Our calculations of structure optimization and phonon spectrum also indicate the AlO2 and Al4O7 

are stable under certain pressure. The band structures of these two aluminum oxides suggest they 

are both insulators. According the calculation of density of states, as we expected, most valence 

electrons are on oxygen atoms and rather than on Al. Also oxide and peroxide ions have different 

effects on the generation of conduction band.  
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Chapter 1 

Calculation Methods Introduction  

Novel materials design and discovery is everlasting subject in materials research. Recently, 

computer simulation has gradually become the main research method besides theoretical and 

experimental studies, due to the great development of fundamental theories and computers. It 

could not only provide explanations but also give directions for experiments and accordingly 

decrease the expense on blind experiments. In addition, computer simulation could explore the 

unknown areas by simulating the extreme conditions which experiments are unaffordable. 

Computational material science has developed into a cross subject based on condensed matter 

physics, quantum chemistry, material sciences, electronic structure calculation and computer 

science 
[1]

. To design novel functional materials with various properties according to the needs of 

practical application has become real from just a dream. 

1.1 Materials Design 

Materials design means to predict composition, structure and properties of new materials through 

theories and computational calculation. In short, its purpose is to design new materials with 

specific properties. It is a cross-disciplinary subject which has a rapid development recently. It is 

related to condensed matter physics, theoretical chemistry, materials science, engineering 

mechanics and computer algorithms, and other related disciplines. 

From a broad view, the material design can be divided into three levels depends on the spatial 

scale of research object 
[2]

. First, the micro-level design is around 1nm of magnitude. And it is 

also an atomic and electronic level. Second is the continuous model level and its magnitude is 
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1μm. This kind of materials can be treated as continuum, and don’t need to consider for how 

individual atom or molecule would act. Then the last level is engineering design. The scale 

corresponds to macroscopic materials, and the design of material processing and performances of 

bulk materials. 

 

Figure 1. 1: Spatial and time scales of materials design and the calculation methods 
[3] 

The spatial scales and timescales of several levels we discuss above and their corresponding 

theoretical methods are shown in Figure 1.1. The output result from the previous level in spatial 

scale can be calculated as the input of next level. Also there are different methods for different 

levels. From atomic-scale to nano-scale, the first-principles method (ab initio method), a number 

of semi-empirical methods and atomistic simulation methods could be applied. From nano-scale 

to mesoscopic, there are finite element method, molecular dynamics, defect dynamics, and 

Monte Carlo simulation to calculate. And for scales from mesoscopic to macroscopic, FEM and 

Continuum theory are more suitable. Sometimes, the applicable methods for different scales 

could overlap. 
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My thesis is mainly related to the microscopic realm of solid quantum mechanics. We will focus 

on the calculation method based on the first-principles calculations. First-principles calculation 

only needs to input the atomic number, atomic positions and some basic physical constants.  It is 

a conclusion from mandatory rules or from deduction, compared with experimental parameters 

which are a large number of orderly data. These data can be derived from the first principles 

(also called theoretical statistics) and can also be derived from experiments (also called 

experimental statistics). However, for some certain problem, first-principles and empirical 

parameters don’t have obvious boundary, so the boundary must be specifically defined: If some 

principles or data are derived from first-principles, but during the deduction process there are 

some assumptions are added (these assumptions must be persuasive), then these principles or 

data is called "semi-empirical." Here we will focus on several first-principles calculations, 

includes Hartree-Fock method, Density functional theory (DFT), GW method 
[4]

, etc. 

1.2 Hartree-Fock Method: ab initio Calculations 

Currently, most physicists consider the concepts of first-principles calculations and ab initio 

calculations are similar to each other. But the theoretical chemists may not agree because in the 

history of quantum chemistry, "ab initio" has a specific meaning, and also known as the Hartree-

Fock method 
[5]

. Hartree-Fock method is an approach based on three basic assumptions to solve 

the electronic Schrödinger equation. These three approximations are as follow: 1) non-relativistic 

approximation, which is considered the electron mass equals to its static mass, namely me 

(electron mass) = me.0 (static mass). And the speed of light approaches infinity that is to solve the 

non-relativistic Schrödinger equation rather than relativistic Dirac equation. 2) Born-

Oppenheimer approximation, which separately processes the nuclear movement and electrons 
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movement. Since the mass of nucleus is generally about 10
3
 to 10

5
 times larger than the mass of 

electron, the movement of nucleus nearly a thousand times slower than the movement of electron 

in molecules. Therefore, to study electron movement, nucleus can be approximately considered 

as still. The Schrödinger equation of this certain system can be decomposed into the equation of 

describing electron motions and the equation of describing the nuclear motion states. 3) Orbital 

approximation (also known as single-electron approximation), that is to treat the movement of 

electrons in system as it is effected by the average potential field of other electrons. Thereby 

simplify the multi-particle Schrödinger equation into the form the single-electron equation and 

the total wavefunction is a Slater determinant formed by one-electron orbitals. 

Hartree-Fock method is based on the three basic approximations above to solve the Schrödinger 

equation. It firstly treated the wave function of a single determinant function, which is formed by 

molecular orbitals, as the system. According to the total energy, we can get the single-particle 

functions from variation of the orbitals which is called Hartree-Fock equation. This Hartree-Fock 

equation is still a complex partial differential equation that is quite difficult to solve. Usually, we 

need to use the basic functions to expend this equation, and the most commonly used basic 

functions are Slater or Gaussian function. When basis set is large enough, the solution of 

expanded equation is approximated to the Hartree-Fock equation. In applications, however, the 

accuracy of Hartree-Fock method may not be high enough, so various corrections are necessary, 

such as the relativistic effect correction, nuclear and electronic motion coupling correction and 

correction of electron motions correlation. 

 

 



 

5 
 

1.3 Density Functional Theory 

The basis of density functional theory is that all ground-state properties are functions of the 

electron density in system. This theory came from a famous article in 1964 written by P. 

Hohenberg and W. Kohn 
[6]

. After decades of development, the first-principles which based on 

density functional theory has become the most popular method  in physics, chemistry and 

materials sciences, and has been widely used in systems like atomic, molecular, nano-structures 

(including clusters, surfaces and interfaces) and strongly correlated electrons. It has developed 

into a complete branch and continues to develop. W. Kohn has also been awarded the 1998 

Nobel Prize in Chemistry because of his contributions. In this section, I will briefly introduce 

and review of the basic theory from a beginner's perspective. 

1.3.1 Hohenberg-Kohn theorem 

After adiabatic approximation, in the multi-particle system of non-relativistic form, the kinetic 

energy of the nucleus of Schrödinger equation becomes zero and the potential function of 

interaction between nucleus turns into a constant. So now what need to be solved is the 

Schrödinger equation which contains only electron kinetic energy, the potential of electrons in 

nucleus and the electron - electron interaction potential. And its Hamiltonian could be written as: 

                                                                                           (1.1) 

Although equation (1.1) has been simplified, it is still very difficult to be solved exactly. The key 

is the electron - electron interaction term (the third term of formula 1.1) which is a two-particle 

operator. There are many methods that can be used to further simplify this equation. One of the 

 
2 2

2 1
=-

22
i iext

i i i je i j

H h e
V r

m r r

  


  
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most important methods is Hartree-Fock (HF) method, because it can accurately describe the 

atoms and molecules, and this method is widely used in quantum chemistry. 

For the study of the periodic system, density functional theory is more efficient. This theory is 

established on the basis of two fundamental theorems 
[8]

 that are proved by Hohenberg and 

Kohn. 

Theorem I: external potential can be determined by the ground state electron density ρ(r) 

plus an irrelevant constant. 

Inference I: It can be seen from equation (1.1), when  is determined, in addition to a 

constant, the Hamiltonian of the system is completely determined. So are all states wave function 

(including the ground state and excited state). It can also be expressed as: all properties of the 

system are uniquely determined by the electron density functional ρ(r) of ground state, which can 

be writing as below (1.2): 

       (1.2) 

The first term in the above equation is a density functional which is independent from an external 

field. 

Theorem II: When the total number of electrons is constant, the ground state energy of the 

system is the minimum energy functional of charge density ρ(r), and the corresponding charge 

density ρ(r) is the ground state charge density of this system. 

Inference II: When the number of particles is constant, we can get the energy of ground 

state of the system through the energy functional variation of the density function ρ(r). And the 

ρ(r) is the charge density of ground state. 

 iextV r

 iextV r

     ext extE T V V T V r V r dr             

 GE 



 

7 
 

Based on the formula (1.2), which equals to Theorem I, the multi-electron system energy 

functional can be rewritten into the formula below (1.3): 

   
   

     
'1

'
2 '

xc ext

r r
E T drdr E r V r dr

r r

 
      

 
                  

(1.3) 

In formula (1.3), the first term is the kinetic energy, and the second term is the Coulomb 

interaction between the particles. The third one  represents all the interactions that are not 

included in the previous two terms, also this reflects the complexity of interactions. Also, the 

third term represents the quantum effects of the particle-particle interaction, which mainly 

consists exchange and correlation interaction. They are both the functionals of density ρ(r), but 

are still unknown. 

1.3.2 Kohn-Sham equation 

According to Hohenberg-Kohn theorem, we can write the following variational equation: 

      
 

 

 
 

   

 

'
' 0

'

xcT r E rr
dr r v r dr

r r r r

   


 

           
  

 
                          (1.4) 

Then add the prerequisite
  0dr r  , we can get Euler-Lagrange equation as following: 

 

 
 

   

 

'
'

'

xc

ext

T r E rr
V r dr

r r r r

   


 

         


                         

         (1.5) 

Lagrange multiplier μ is a chemical potential. So, in fact, (1.5) defines a formula of a particle in 

an effective potential field. And the effective potential could simply be defined as:  

   
   

 

'
'

'

xc

eff ext

E rr
V r V r dr

r r r

 



    


                                    (1.6) 

 xcE 
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Accordingly, you can turn the problem of a multi-particle Schrödinger equation into solving the 

Euler-Lagrange equations, which only relevant to charge density ρ(r). But in the actual 

calculations, we still do not know the kinetic energy term T[ρ(r)]  To solve this problem, in 

1965, Kohn and Sham proposed an assumption: sthe kinetic energy functional T[ρ(r)] can be 

described by a known functional Ts[ρ(r)] of non-interacting particles. It also has the same 

density function with the interaction system, and attributes the part that cannot be converted 

between T[ρ(r)] and Ts[ρ(r)] into the complex items  xcE  . In addition, with wave function 

 
i

r  of N particles, scientists construct the single-particle density function to draw the single-

particle image 
[7]

: 

   
   

2

1

N

i

i

r r 



                                                            

(1.7) 

Then we can obtain the specific form of kinetic energy functional:  

      * 2

1

N

s i i

i

T dr r r  


 
                                         

(1.8) 

Now, the variation for ρ can be instead by the variational for  
i

r , and Ei replaces the Lagrange 

multiplier, so there is: 

   

 

*

1

1

0

N

i i i

i

i

E r E dr r

r

   




        
  

 

                                 

  (1.9) 

Thus, we can get the result: 

      2

KS i i iV r r E r      
                                             (1.10) 

And  
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   

 
 2

0

'
'

'

xc

KS H xc ext i ext

E rr
H T V V V dr V r

r r r

 



          
                       (1.13) 

And 

 
   

   

 

'
'

'

xc

KS ext

E rr
V r V r dr

r r r

 




                                               (1.11) 

And (1.10) can also be written as: 

   KS i i iH r E r                                                             (1.12) 

In this way, we can get the single-particle wave function  
i

r  which is similar to Hartree-Fock 

equation. The combination of equations (1.7), (1.10) and (1.13) are called Kohn-Sham equations. 

We can solve equation (1.10) to get  
i

r , and then construct the density function of ground state 

according to formula (1.7). From Hohenberg-Kohn theorems, density function of particle 

numbers precisely determines the energy of ground state of system, wave function and so on. 

From equation (1.13), the Hartree potential, exchange-correlation potential and external potential 

Vext are all density functionals. And density is also dependent on  
i

r  from the Kohn-Sham 

equation. On the other hand, the establishment of Kohn-Sham equations relies on VH, Vxc and 

Vext, which is a self-consistent process. Usually, we need to firstly presume a density function 

 
0

r  to construct HKS1, and then solve the eigenvalue problem in order to get a series of wave 

functions  
i

r  and form a new density function  
1

r . Under normal circumstances,  
0

r and

 
1

r have some differences. This can construct a new HKS2 from  
1

r , and then form  
2

r . 

Repeating this process, density function will converge to  
f

r . The HKSf constructed by  
f

r  

could also generate density function  
f

r . At this point, we can believe that  
f

r  is the 
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density function of ground state of system. The physical expectations obtained from intrinsic 

wave function of HKSf are the physical properties of ground state in system. 

1.3.3 Exchange - correlation interaction functional 

1)    LDA and GGA 

Exchange - correlation interaction functional includes all the complexities of many-body 

interactions, but the specific format is still unknown. Kohn and Shem have proposed the Local 

Density Approximation (LDA), also called Local Spin Density Approximation (LSDA) in a 

broad way. Under this kind of approximation, at each point in space, the integrations of exchange 

- correlation energy density of the homogeneous electron gas with same density is exchange - 

correlation energy. 

                                     
      3 hom , .LSDA

xc xcE d rn r n r n r                        
   (1.14)  

 rn


and  rn
 respectively represent for spin up and spin down electrons density, but in a non-

spin system, it can be simply defined as:       / 2r r n rn n
 

   

The widely used method is through the homogeneous electron gas which is obtained by fitting 

Monte-Carlo method and the parameterization of PZ functional which is calculated by Perdew 

and Zunger 
[8]

. 

Exchange energy:   0.9164 /
s sx r r    

Correlation energy:  
   0.2846 / 1 1.0529 0.3334 1

0.0960 0.0622ln 0.0232 0.0040 ln ( 1)

s s s

sc

s s s s s

r r r
r

r r r r r


   
 

    
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And rs is the Weigner-Seitz radius. In the three-dimensional homogeneous electron gas model, it 

could be written as: 

 

1

33
1.919 / ,

4
s Fr k



 
  
 

  
1

2 33Fk                                           (1.15)  

For the core electron, rs is usually less than 1, and for valence electron, it is normally between 1 

and 6. 

Although L(S)DA was a great success, but there are still some shortcomings, such as the 

exchange energy has been underestimated for about 10% and the correlation energy is 

overestimated by 2 to 3 times. Under normal circumstances, the exchange energy should be 

about 10 times bigger than correlation energy, so exchange-correlation energy under local 

density approximation is still underestimated. Based on L(S)DA, there is a development of the 

generalized gradient approximation (GGA). After GGA approximation, the exchange-correlation 

energy is the functional of electrons density and its gradient. Currently, the most widely used 

GGA functionals are PW91 
[9]

 and PBE 
[10]

. 

2) Hybrid functional 

Hybrid functional is dependent on the combination of Hartree-Fock functional and other 

functionals (such as LDA or GGA). This is the most accurate functional until now.  As in the 

famous quantum chemistry software Gaussian, B3LYP functional is widely used. 

1.3.4 Pseudopotential 

Since the smoothing function can be more easily expanded into a plane wave, replacing the 

Coulomb interaction of electrons between the nucleus and inner core with an effective ionization 
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potential. This can greatly reduce a plane wave basis set size and the complexity of calculation. 

Core electron atoms hardly participate in bonding, and properties of molecules and solids are 

mainly decided by the valence electrons, so the pseudopotential obtained from the atomic 

calculation can be used in calculation of other molecules or solids. The theoretical information 

about pseudopotential can be found in the reference 
[1]

. The empirical pseudopotential can be 

obtained from fitting the experimental data, and there are two basic models are the "empty core" 

model 
[11]

 and square-well model 
[12]

. Empirical pseudopotential used to play an important role in 

the history of electronic structure calculations. Through fitting calculation, pseudopotentials are 

generated from the atomic properties. These pseudopotetials are belonging to "ab initio" 

category. We are going to introduce several types of "ab initio" pseudopotentials which have 

great impacts on the accurate calculation of modern electronic structure. 

1) norm-conserving pseudopotential 

In general, the pseudo-potential is smoother than real potential, so it’s better to use the plane 

wave as basis function. During electronic structure calculation, when seeking electronic density 

of states resulting from wave function, it needs the effective single-electron potential. This 

single-electron potential should be consistent with real potential in housing area (r > rc). To 

define norm-conserving pseudopotential, there are several norm-conserving conditions to comply 

[13]
: 

a. The eigenvalues of valence electron with pseudopotential method should be the same with all-

electron method. 

b. Pseudopotential and all-electron potential should be consistent outside of a cutoff radius. 
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c. The logarithmic derivative of wave function of pseudopotential and all-electron potential 

should be equal outside of a cutoff radius. 

d. The charge density integration of pseudopotential and all-electron potential must equal to each 

other. This is the most fundamental rule, and also known as norm-conservation condition, 

namely (1.17) 

   
2 2

c cr r ps r r tdr r dr r                                        (1.17) 

e. Outside of a cutoff radius, the first derivative with respect to energy of logarithmic derivative 

of each pseudo-wavefunction is identical to its corresponding all-electron wavefunction. 

2) Ultrasoft pseudopotential 

The goal of pseudopotential method is to make pseudo wavefunction to be "smooth" and 

accurate. As we discuss before, in the plane-wave calculation, the valence wavefunctions are 

expanded by Fourier transform into a series of plane waves. The time-consuming of this 

calculation are proportionally increasing with the growing number of Fourier coefficients. The 

smoother pseudo wavefunction means the less Fourier expansion required within an accurate 

calculation. Norm-conserving pseudopotential is more accurate but not smooth.  

Blöchl 
[14]

 and Vanderbilt 
[15]

 proposed the concept of ultra-soft pseudopotential. According to the 

definition from Vanderbilt, ultrasoft pseudopotential wavefunction is no longer following the 

Norm-conserving pseudopotential. It is defined by Augmentation Charge (additional charge) to 

achieve the Generalised Norm-conserving condition. Basically, ultra-soft pseudopotential is used 

to fill the position left because of the electron cloud which is too localized to be eliminated. And 

it makes the scattering behavior around reference state energy remains scattering properties, 

which means rate of change is consistent. 
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However, according to the experiences of actual operation, coincidence degree of logarithmic 

derivative graph of ultra-soft pseudopotentials is not as good as of norm-conserving 

pseudopotentials. For instance, "generalized completely separable nonlocal pseudopotential" 

proposed by Blöchl, with the technology of using more than one reference eigenstates on one 

angular momentum, could fix the error of the scattering properties due  to not comply with 

Norm-conserving condition. In addition, the additional charge, which is used to maintain the 

number of valence electrons in pseudo core, will cause the overlap operators appear in the 

formula for expected value. This will also cause the Kohn-Sham equation eventually becomes a 

generalized eigenvalue problem, rather than the general eigenvalue problem. 

2

local

1
- + + - 0
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ˆ
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 


                                            (1.18) 

Ultrasoft pseudopotential not only guarantees the accuracy, but also generates a smoother 

pseudo-wave function which can greatly reduce the cutoff energy to reach convergence. Thus it 

can improve the computational efficiency and becomes the most widely used pseudopotential in 

ab initio calculations. 

3) PAW method 

Blöchl 
[16]

, Kresse and Joubert 
[17]

 re-clarified the orthogonal plane wave (OPW) method to adapt 

to the modern algorithms which is to calculate energy, power and stress, in order to develop a 

new kind of pseudo-potential method, called the projector augmented wave (PAW) method. 

Just like ultra-soft pseudopotential, PAW method also introduces local functionals for projection 

and auxiliary, and expressed the wave function as a superposition of a smooth function and core 

function. This method can effectively be used to solve the generalized eigenvalue problem. The 

first advantage of projected augmented wave method is to effectively improve the shape of 
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potential function. PAW method could also maintain every all-electron function and greatly 

improve the calculation accuracy of First Principle in magnetic materials, alkali and alkaline 

earth metals, 3d transition elements, lanthanides and actinides and rare earth elements. As VASP 

provides PAW pseudopotentials of almost all elements, it’s very convenient for users. The 

developer of VASP claims, PAW method can provide the same calculation accuracy as all-

electronic methods (such as FLAPW method), while with higher computational efficiency, 

which makes it better for large systems. 

1.3.5 The algorithm of electronic structure calculations 

At present, there are three methods to solve the problem of isolated particles at electronic state, 

respectively as follow: 1) the plane wave and grid method; 2) linear combination of atomic 

orbitals (LCAO); 3) atomium method. These three methods are fundamentally the same. If used 

them properly and tested convergence carefully, each method can satisfy the problems on 

electronic structure calculations, and they can all develop into a complete set of frame for more 

accurate calculation. Of course, each method has its advantages and disadvantages. Usually each 

method is more suitable for one certain problem which can give specific information for this 

problem. If the user cannot understand these methods clearly, there might be some mistakes to 

overlook or cause unreasonable results. 

1.3.6 The limitations of density functional theory 

After decades of development, DFT makes a more convenient method for material design, so 

that it has important applications in physics, chemistry, materials, even the biological fields.  
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But there are still some limitations in DFT, such as 1) the famous “energy band problem”, the 

energy bands of semiconductors and insulators calculated by DFT are usually lower than the 

actual value. The possible solutions are applying more accurate hybrid functional, or LDA+U 

method, quasi-particle approximation (GW) method, or a self-acting correction (SIC) and so on 

to increase the correlated energy band gap. 2) overbinding problem: the lattice constant value of 

equilibrium structure obtained through the L(S)DA method is usually less than the true value, 

while the bulk modulus and binding energy are too high. The calculation results with the GGA 

method may be much better, but for some heavy elements, the values of the optimized lattice 

constant from GGA method are usually larger than the true values. 3) Poor description of 

strongly correlated systems .It usually underestimated the exchange splitting of d band and f 

band. Some transition metal compounds, actually Mott insulator or charge-transfer insulators, are 

often calculated to be be metal. The solution of this problem is the same as the first one. 4)  DFT 

method is not accurate for vdW interaction system. Although LDA is not included in vdW 

interaction, due to LDA has the overestimated binding energy and there is over-binding effect, 

the calculated results from the methods considering vdW interaction are closer to the true value. 

For example, the recent studies of carbon nanotubes, nanobelts and other systems are made by 

DFT-LDA method. Since the error is too large, GGA method completely does not apply to these 

systems. 

After all, one of the most important topics in DFT is how to take into account of vdW interaction 

in exchange-correlation effects and implemented on the algorithm. 

To overcome these limitations, scientists has extended DFT, such as applying  LDA+U method 

to study strongly correlated systems, using time-dependent density functional theory (TDDFT 
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[18]
) to calculate the excited state properties, using GW method 

[4]
 to calculate the energy band, 

using Car-Parrinello method to simulate dynamic properties of  system, etc.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

18 
 

Chapter 2 

Evolutionary Algorithm of Crystal Structure Prediction: USPEX 

Crystal structure prediction (CSP) is to find the most stable arrangement of atoms given only the 

chemical composition. The two main problems we were facing are searching for the efficient 

exploration of the multidimensional energy landscape and ranking the correct calculation of 

relative energy 
[19]

. To search for the global minimum, we need two levels of optimization: global 

optimization and local optimization. In this chapter, I will introduce the evolutionary algorithm 

USPEX. 

2.1 Background and Development 

As the stable structure corresponds to the global minimum of the free energy surface, crystal 

structure prediction is mathematically a global optimization problem.  

Recent developments provide some efficient methods to solve the searching problem, such as in 

1992, the random sampling was proposed by Freeman and Catlow. Also, there are methods like 

simulated annealing (Deem and Newsam 1989; Pannetier et al. 1990; Boisen et al. 1994; Schön 

and Jansen 1996), molecular dynamics and metadynamics (Martoňák et al. 2003, 2005, 2006), 

data mining (Curtarolo et al. 2003) and minima hopping (Gödecker 2004). All of them rely on 

local optimization methods. And these methods start searching in a good region of configuration 

space so that efforts are not wasted on sampling poor regions. However, each of these methods 

may have some defects. For data mining, it is to compare the free energies of numbers of 

candidate structures and could indicate a list of likely ones efficiently. But it has problem when 

predicting a stable but totally unknown structure 
[20]

.
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On the other hand, the others just locate and find the best structures by a “self-improving” 

method, such as evolutionary algorithms. This kind of simulations only requires the information 

about the chemical composition and previous studies of structure prediction have laid the 

foundation for them. The evolutionary algorithm USPEX (Universal Structure Predictor: 

Evolutionary Xtallography) has been developed to overcome the drawbacks of the preceding 

algorithms, and provide a new pattern with ab initio methods to predict crystal structures which 

contain up to 30-40 atoms in the unit cell. 

2.2 Global Optimization 

2.2.1 Complexity of the Problem and Energy landscape 

Global optimization is the main problem for Crystal Structure Prediction. It is important to 

explore the energy landscape firstly. The number of possible distinct structures on the landscape 

can be evaluated as: 

3

=
i i

NV
C

nN

   
   

  
                                                             (2.1) 

where N is the total number of atoms in the unit cell of volume V, δ is a relevant discretization 

parameter (for instance, 1 Å) and ni is the number of atoms of i-th type in the unit cell. Also for 

small systems (N ≈ 10-20), C is astronomically large (roughly 10
N
 if one uses δ=1Å and typical 

atomic volume of 10Å
3
) 

[19]
. 

To understand more clearly, we can consider the dimensionality of the energy landscape as: 

d=3N+3                                                                 (2.2) 
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3N-3 degrees of freedom are the atomic positions, and the six dimensions left are defined as 

lattice parameters. With an increasing dimensionality, the random search will be very difficult to 

find the ground state, because of the inverse relationships between order and energy and between 

the dimensionality and diversity of crystal structures
 [19]

. Especially for some high-dimensional 

problems, using this kind of search method to find a stable structure is absolutely exhaustive.  

The global optimization problem can be greatly simplified if the structure is relaxed. During 

relaxation (local optimization), structures are brought to the nearest local energy minima and all 

these local minima could form as a reduce energy landscape, which is much more efficient to 

fine a new structure. The intrinsic dimensionality of this reduced energy landscape can be 

reduced as: 

* 3 3d N                                                             (2.3) 

where   is the (noninteger) number of correlated dimensions. From this formula, we can see the 

d* depends both on system size and on intrinsic chemistry of system. We found 2d*=10.9 (d=39) 

for Au8Pd4, and the dimensionality of Mg16O16 drops dramatically from 99 to 11.6. Accordingly, 

the complexity for energy landscape is:   

 * *=expC d
                                                         

 (2.4) 

with β < R, d* < d, and C*«C, implying that local optimization could increase the  efficiency of 

global optimization method, even for simple random sampling. All the current global 

optimization methods assume the landscape should have an overall “funnel” shape to be 

optimized. For instance in Figure 2.1a, usually the original response surface is huge and “noisy” 

(such as contains very large energy variations or with high barriers). The global minimum is 

surrounded with many very good local minima. Local optimization reduces this surface to local 
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minima points and the reduced surface has a simple overall shape, which is necessary to be 

optimized 
[21]

. Figure 2.1b is a 2-D representation of the energy landscape of Au8Pd4 system 

using this method
 [22]

. The surface has the same meaning as the dashed line in Figure 2.1a.  

 

Figure 2. 1: (a) 1D scheme showing the full energy landscape (solid line) and reduced landscape 

(dashed line joining local minima); (b) 2D projection of the reduced energy landscape, showing 

clustering of low-energy structures in one region. 

2.2.2 Methodology of evolutionary algorithm 

The evolutionary algorithm USPEX (Universal Structure Predictor: Evolutionary Xtallography), 

includes local optimization and treats structural variables as physical numbers. It starts a 

calculation of new candidate structure from a set of parent structures, which is called population. 

Then the structures are evolved mainly by operators -- heredity, mutation and permutation. The 

fitness of structures is the relevant thermodynamic potential derived from ab initio 

determination. The powerful searching of this method is invariant with the system and a self-

improved learning process. 

Figure 2.2 is a conclusion diagram about how USPEX works for Crystal Structure Prediction: 

Firstly, the initialization of the first generation, that is, new candidate structures that tested 

against three constraints are randomly generated. Then, we apply a local optimization of the 

fittest structures by ab initio total energy calculation of the population. The selection of the best 
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structures from the current generation as parents is created by applying variation operators. And 

the worst structures of a population are discarded. At last, evaluate the quality for each new 

structure of the population and repeat the last two steps in a loop until the target structure is 

achieved. 

 

Figure 2. 2: Illustration of the evolutionary algorithm for crystal structure prediction 

The above algorithm has been implemented in the USPEX code 
[ 23 ]

. For Crystal Structure 

Prediction firstly, it is to search for the structure with the lowest enthalpy. And local optimization 

creates chemically reasonable local environments for the atoms.   

2.2.3 Variation operators 

The evolutionary algorithm generates offspring structures through selection of the low-energy 

structures to become parents of the new generation, survival of the fittest structures, and applying 

variation operators. This is another success of USPEX, in general, the choice of variation 

operators in Figure 2.3. Heredity is the core part of the evolutionary algorithm, which creates off-

spring by combing coherent slabs and weighting the lattice vectors matrices averagely from two 

or more parents. Mutation operators use a single parent to produce one offspring structure that 
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has random deformation applied to the unit cell shape. Softmode mutation displaces the atoms 

along the softest mode eigenvectors, or a random linear combination of softest eigenvectors 
[24]

; 

permutation operator swaps chemical identity in chemically different atoms. There are also some 

special coordinate mutations which are displacements of the atoms.  

 

Figure 2. 3: Variation operators: a. Heredity (crossover); b. Lattice mutation; c. Permutation; d. 

Softmode mutation 
[24]

 

2.3 Applications of USPEX 

So far, the USPEX method has been successfully applied to different kinds of systems, such as 

molecular crystals, variable compositions, surfaces and clusters. And the results from these 

applications are efficient and quite encouraging. To predict very large and complex crystal 

structures, this method has made many progresses.  

For example, one of the successful tests is for a Lennard-Jones crystal with 128 atoms in the 

supercell with variable composition structure search, which has correctly identified hcp structure 

as the ground state within 3 generations (each consisting of only 10 structures)
 [20,25]

. This 

application for variable composition system illustrated how to deal with a complex energy 
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landscape consisting of compositional and structural coordinates. And it is no longer just one 

dimensional to optimize, but a two dimensional convex hull representation (as in Figure 2.4). 

Another illustration of how USPEX works is also the largest test and the longest run for a 

chemically complex system. It’s the prediction of the correct ground-state structure of post-

perovskite using a relatively large 80-atom supercell and an empirical potential describing 

interatomic interaction within a partially ionic model 
[ 26]

. With 80 atoms per cell, the post-

perovskite structure was relaxed during about 3200 local optimizations. This is the typical 

example of USPEX for a fixed composition system. 

 

Figure 2. 4: Using USPEX simulation for the variable-composition of the AxBy binary Lennard-

Jones system. Solid circles represent for stable compositions, open circles denote marginally 

unstable compositions (A8B7, A12B11, A6B7 and A3B4). Gray square fixed-composition results for 

AB2 stoichiometry. The lower panel shows some of the stable structures
 [25]

. 
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Figure 2. 5: An example of a test on the prediction of the crystal structure of MgSiO3 with 80 

atoms in the super cell. The lower panel shows that the global-minimum structure was found 

with 3200 structural relaxations. Taken from Ref 
[26]

. 
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Chapter 3 

The Prediction of Stable Compounds in the Al-O System 

3.1 Introduction and background 

In the crust, oxygen and aluminum have the first and third highest abundance among all 

elements, respectively. Also aluminum is the most abundant metal element, which constitutes up 

to 7.57% by mass. Until now, there are more than 1000 mineral species known to contain 

aluminum. Aluminum is a good conductor of electricity and heat, while alumina is an insulator. 

But alumina is suitable for abrasive materials and cutting tools. Activated alumina could also be 

used as catalyst, adsorbent, dehydrating agent and a catalyst carrier. Alumina is an important 

ceramic material and a major chemical component of the Earth. The knowledge of other 

thermodynamically stable compounds in the aluminum oxide system is consequently important 

to better understand physics and chemistry of the Earth and planetary interiors. Accordingly, 

aluminum oxides interest scientists in earth and material sciences for theoretical and 

experimental studies.   

The most common aluminum oxide is alumina, which is an important ceramic material and a 

major chemical component of the Earth. Under high pressure, alumina is used as an optical 

window material in shock-wave experiments and is incorporated into mantle minerals and 

significantly affects their physical properties
 [27,28]

. Concluded from previous studies, there are 

several phase transitions have been theoretical predict and experimental confirmed. R  c 

corundum phase transforms to the Pbcn Rh2O3(II) structure at about 100 GPa and high 

temperature 
[29,30]

. And above 130 GPa, the Pbcn Rh2O3(II)-type alumina adopts the Cmcm 

CaIrO3-type Al2O3 (post-perovskite structure) 
[31,32]

. In 2007, Umemoto K and  Wentzcovitch 
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KM predict  a phase transition  in alumina  at  about 370 GPa  and  room temperature, from  the  

CalrO3-type  polymorph to another  with  the  U2S3-type structure 
[33]

.   

Among various AlxOy species, the simplest polyatomic representatives are Al2O and AlO2. In 

experimental studies, scientists already have discovered evidences for AlO2. For instance, 

peroxide oxide was shown to form by an interfacial reaction in the presence of a kinetic 

constraint during diffusion-bonding of Pt and α-Al2O3. Raman spectroscopy on AlO2 has 

provided strong evidence for its presence 
[ 34 ]

. It formed after heating for 24 hours in the 

temperature range of 1200 to 1400℃, but not at or below 1100℃. 

During previous work, for instance, in the Na-Cl system under high pressure, Oganov et al. have 

already predicted some novel stable compounds of unusual stoichiometries (Na3Cl, Na3Cl2, 

NaCl3 and NaCl7) which have been confirmed by the experiments 
[35]

. If this unusual situation 

could also exist in the Al-O system, this will have significant implications in physics and 

material sciences. And we have explored this possibility and found two thermodynamically 

stable compounds in this system with very interesting crystal structures and unusual chemical 

bonds. These compounds also exhibit some distinct properties that I will introduce in Section 

3.4. 

3.2 Methods 

To predict new stable structures in the fixed chemical composition Al-O system, we used the 

evolutionary algorithm USPEX to search for the structure with the lowest enthalpy at pressures 

range from 0 to 500 GPa and temperature at 0 K. During the initialization, USPEX operates with 

populations of structures and select the parent structures from them. Then offspring structures are 

generated through variation operators by ab initio total energy calculation of the population. 

Stable compositions are determined using the convex hull construction, also called local 
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optimization: verify a compound is thermodynamically stable according to its enthalpy of 

forming by any other compounds is negative. Our prediction was using ab initio structure 

relaxations based on density functional theory (DFT) within the Perdew-Burke-Ernzerhof (PBE) 

generalized gradient approximation (GGA) 
[ 36 ]

, as implemented in the VASP code 
[ 37 ]

.For 

structural relaxation, all-electron projector-augmented wave (PAW) method 
[38]

 and plane wave 

basis set are used in our calculation. All structures were relaxed at constant pressure and 0 K. 

The energetically worst structures were discarded and a new generation was created by 20% 

randomly from space group, 40% produced by heredity and 40% from the remaining structures 

through softmutation and transmutation of atoms. Such calculations provide an excellent 

description of the new structures (AlO2, Al4O7) and their energetics. Then we calculated phonon 

frequencies throughout the Brillouin zone using the finite displacement approach as implemented 

in the Phonopy code 
[39]

. And together with the computed results from energy of band structure 

and density of states of these two new compounds, we can make sure that the obtained structures 

are dynamically stable. 

3.3 Thermodynamically stable aluminum oxides Al4O7 and AlO2 

For the Al-O system, we searches for stable structures in the unit cell with maximum 20 atoms at 

pressures in the range of 0-500 GPa. These searches yielded α-Al2O3 as a stable oxide under all 

pressures, but more surprisingly, there are two new compounds predicted to be stable under 

higher pressures. To confirm and to obtain the most accurate results, we then focused on 

structure optimization for these new compounds. We found two of them, AlO2 and Al4O7, are 

thermodynamically stable and performed further study about their different properties. 

3.3.1 Phase diagram of the Al2O3-O system 
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As in the Al2O3-O phase diagram, there are several results from the USPEX calculation. First of 

all, Al2O3 is predicted to undergo a phase transition induced by pressures from Cmcm to Pnma. 

Cmcm CaIrO3-type Alumina is stable until Al2O3 eventually adopts the Pnma structure above 

394 GPa. In Figure 3.2, we compare the Pnma-Al2O3 with U2S3-type Al2O3 structures, which 

also is a Pnma structure under high pressure from the Ref 
[40]

, and calculate their formation 

enthalpy. Accordingly, we found the same stable structure as U2S3-type Al2O3. 

In addition, Al4O7 begins to show competitive enthalpy of formation at pressures above 300 GPa. 

Until the pressure increases to 500 GPa, we find AlO2 becomes thermodynamically stable.  And 

this new compound AlO2 has a monoclinic structure with the space group P21/c. For more 

accurate results, using local optimization to compare the formation enthalpies of each 

compounds, we found C2-Al4O7 is stable from 330 to 443 GPa. And AlO2 starts to become 

stable near 322 GPa with space group P21/c. For AlO2, at 500 GPa, the enthalpy of formation 

becomes impressively negative, -0.115 eV/atom, from Al2O3 and O2. 

 

Figure 3. 1: Phase diagram of Al2O3 -O system. Al2O3 has a phase transition from Cmcm-space 

group at 394 GPa. From 330 to 443 GPa, C2-Al4O7 becomes stable. And AlO2 starts to become 

stable with P21/c space group upon 322 GPa. 
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Figure 3. 2：Crystal structures of Pmna-Al2O3 (left) and U2S3 type-Al2O3 (right). Grey (Blue in 

figure b) and red spheres denote aluminum and oxygen, respectively.   

                 

Figure 3. 3: Convex hull for the Al-O and Al2O3-O system at high pressures; for oxygen, we used 

the previous structure predicted from Ref 
[41]

. From the Al2O3-O convex hull, AlO2 is stable at 

both 400 and 500 GPa and Al4O7 is stable at 400 GPa, which correspond to the results from the 

phase diagram. 

3.3.2 Structures of stable compounds: Al4O7 and AlO2 

These two compounds both contain O
2-

 and [O-O]
2-

 anions. The peroxide ion is composed of two 

oxygen atoms that are linked by a single bond. In Figure 3.4a, there are one [O-O]
2-

 anion in the 

Al4O7 with C2 structure and the bonding length is 1.43Å. And as shown in Figure 3.4b, this 

structure of Al4O7 can be seen as a packing of O atoms and aluminum ion layers. According to 

Pnma-Al2O3 
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the bonding situation, the chemical formula can also be written as [Al4O5(O-O)] for better 

understanding the chemical composition. 

Also, above 322 GPa, there is AlO2 with space group P21/c and 6 Al-O coordination number, 

which is stable as [Al4O4(O-O)2]. As seen from the formula and Figure 3.5, AlO2 has three 

peroxide ions and three oxide ions per lattice. The [O-O]
2- 

bond length is 1.38Å. Each Al
3+

 is 

coordinated with three [O-O]
2-

 anions. The O-O bond distance in oxide O
2−

 is 1.33 Å and is 1.21 

Å in O2 molecule. And 0 GPa, the bond length is 1.49 Å in O2
2−

. 

All the lattice constants and atomic positions of these two structures are concluded in Table 3.1 

and 3.2. 

                  

Figure 3. 4: Structure of Al4O7. (a) The [O-O]
2-

 bond length is 1.43Å; (b) the aluminum atoms 

are forming layers and coordinated with oxide and peroxide ions. 
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Figure 3. 5: Structure of AlO2. (a) The bond length of peroxide ion is 1.38 Å; (b) Each Al atom is 

coordinated with three [O-O]
2-

 anions.  

 

Elements Structures Lattice Constants (Å) Atomic Positions 

Al C2 

=4.59820 

=9.66989 

=5.09398 

4c (0.270023,0.000090,0.521555) 

2a (0.000000,0.258021,0.000000) 

2a (0.500000,0.285882,0.000000) 

O C2 

2a (0.000000,0.439930,0.000000) 

4c (0.262381,0.129869,0.911020) 

4c (0.253380,0.313967,0.504568) 

2b (0.500000,0.132414,0.500000) 

2a (0.500000,0.456751,0.000000) 

Table 3. 1: Lattice constants and atomic positions of Al4O7 with C2 structure. 

Elements Structures Lattice Constants (Å) Atomic Positions 

Al P21/c =4.66484 

=2.30360 

=4.72564 

2a (0.221669,0.275015,0.631539) 

O P21/c 

2a (0.133908,0.758225,0.876831) 

2a (0.501572,0.183121,0.384900) 

Table 3. 2: Lattice constants and atomic positions of AlO2 with P21/c structure. 
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3.4 Some material properties of the two new compounds 

The band structure for these compounds was calculated, to produce accurate band gaps for 

comparing their electronic properties. Al4O7 has a narrow band gap with 2.57 eV energy at 400 

GPa, which is an insulator. AlO2 is also an insulator with band gap energy (3.01 eV) at 400 GPa, 

as in Figure 3.6. Also, unlike the band structure of Al2O3, both Al4O7 and AlO2 have the low 

conduction band between high conduction band and valence band. According to the electron 

structure calculation, we can get these low conduction bands are generated because of the 

peroxide ions, as in Figure 3.6c. This conclusion can also get from calculation results of the 

density of states as below. 

Phonon calculations in Figure 3.7 for Al4O7 and AlO2 at 400 GPa show that no imaginary 

phonon frequencies exist throughout the Brillouin zone, suggesting that these structures are 

dynamically stable. For the Al4O7 C2 phase, there is very tiny imaginary frequency near гpoint. 

To find the “real” ground state, we can use powerful metadynamic method in USPEX for the 

structure searching. 

In Figure 3.8a, O1 is the oxygen atom from peroxide bond and O2 is the normal oxygen atom 

from oxide ion. There is not any density of states for Al under Fermi Energy and non-negligible 

d-contribution, so all valence electrons are on O atoms rather than on Al. This is evidence of 

significantly ionic bonding which is the transfer of electrons from Al to O.  

Accordingly, oxide ions and peroxide bonds are played different roles to form energy band. For 

AlO2, under -20 ev, there are two peaks of O1_s orbital, which form σ and σ* orbitals. And 

O1_p and O2_p orbitals occupy the range from -20 to 0 ev, which suggests that HOMO (highest 

occupied molecular orbital) is on the peroxide bond. The LOMO (lowest occupied molecular 

orbital) is around peroxide bonds, which corresponds to the σ* orbital, because of the O1_p 
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occupied the range among 2.81 to 5.08 eV. As a result, we can get the conclusion that peroxide 

ions cause the generation of low conduction band that is shown in band structure (Figure 3.6a). 

In addition, Al4O7 has two peroxides bonds, O2 and O3, and five types of oxygen atoms but very 

similar results of density of states as AlO2. 

    

 

 

Figure 3. 6: Band structure of AlO2 (a), Al4O7 (b) and Al2O3 (c) at 400 GPa.  

(b) AlO2 

(a) Al4O7 

(c) Al2O3 
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Figure 3. 7: Phonon calculation for AlO2 (left) and Al4O7 (right) at 400 GPa. 

       

Figure 3. 8: (a) Density of states for AlO2: O1 is atom from peroxide ions and O2 is atom from 

oxide ions; (b) Density of states for Al4O7: O1 and O2 are atoms from two respective peroxide 

ions, and O3, O4, O5 are atoms from three oxide ions. 

 

 

 

 

 

 

 

(b) Al4O7 (a) AlO2 

AlO2 Al4O7 
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4. Conclusions 

In summary, according to the systematic search for the stable compounds in the Al-O system at 

pressures up to 500 GPa, we found that two more compounds (AlO2 and Al4O7) become 

thermodynamically and dynamically stable above 322 GPa and in the range from 330 to 443 

GPa, respectively. Our analysis reveals that in these two insulating compounds AlO2 and Al4O7 

exhibit significant ionic character. Both of them are stabilized by the formation of the peroxide 

[O-O]
2−

 anion and contain by both peroxide and oxide ions. For better understanding properties 

about these two new aluminum compounds, we calculate density of states in this system to 

describe the number of states per interval of energy at each energy level that are available to be 

occupied by electrons. As we expected, most valence electrons are on O atoms and rather than on 

Al. And oxide and peroxide ions have different effects on forming conduction band. 
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