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Abstract of the Thesis

Beyond FIT2D

by

Melissa Sims

Master of Science
in

Geosciences
Stony Brook University

Synchrotron x-ray diffraction is used to investigate mineral structures.
Accurate analysis of the results is limited by intensity errors caused by the ex-
perimental setup, sample, and detector. These include high intensity spikes,
dead pixels, beam stop shadow, single crystal spots, and poor powder statis-
tics, and they all contribute to the background uncertainty within powder
diffraction datasets. The errors must be either quantified or removed. Due
to the intrinsically low peak-to-background ratios of measured intensities in
experiments at non-ambient conditions, the intensity errors are usually over-
estimated in subsequent Rietveld refinement; leading to unrealistically low
uncertainties in the refined structural parameters. FIT2D, the commonly
used tool for synchrotron x-ray diffraction data processing, does not have
methodology to solve some of these problems, and masking data is ordinarily
manual and tedious. Our program automatically masks and addresses the
data analysis problems by examining intensity uncertainties. In the program,
data is sorted by two-theta value into bins during the integration process.
The contents of individual bins are then statistically analyzed. The data
is assumed to be Poisson distributed, and intensity values outside a user-
specified interval of the standard deviation are rejected. The data is then
normalized to account for variance in the number of pixels contributing to
a particular measurement. The final software modules will be collected in
a code repository and used for the data acquisition and analysis software
package at the X-ray Powder Diffraction (XPD) beamline at NSLS-II.
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Figure 1: Rendered image of a 2-d round detector, with the intensities of
individual pixels represented by height. The figure is from Hinrichsen [10]
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Chapter 1 - Introduction

1 Introduction

1.1 Synchrotron Powder Diffraction Data

Synchrotron x-ray powder diffraction experiments at extreme conditions
have intrinsically low peak to background ratios because of the nature of the
experimentation. Specific components are required to achieve the conditions
necessary for a successful experiment and produce useful data. These com-
ponents create problematic data statistics. The sample, diamond anvil cell,
sample holder and the X-ray source can all contribute to the low signal to
noise ratio. In these experiments, an x-ray beam is diffracted through a pow-
der sample, consisting of hundreds of crystallites with random orientations,
contained by a sample holder. The diffracted beam is then captured by a 2-d
detector. In a normal single crystal sample, diffraction occurs where a set of
crystal planes have the correct spacing to fulfill the condition for diffraction,
Bragg’s Law (Equation 1).

nλ = 2dsinΘ (1)

where n is a value, lambda (λ) is the wavelength of the light, d is the spacing
between planes and theta (θ) is the angle of the diffracted light. In powder
diffraction experiments, few crystallites diffract at any given angle because
diffraction occurs only where planes in the crystallites are correctly aligned.
The problem is exacerbated because the sample sizes are minute. While the
peak to background ratio would benefit from larger samples, size is limited
due to the experimental setup. Also, sample thickness contributes to sample
adsorption.

For high pressure diamond anvil cell experiments, intensity counts can be
as low as a few tens or hundreds of counts. For powder diffraction data from a
one-dimensional tube type detector, up to 10 percent errors may be possible
because of low intensities for experiments with short observing times. The
experimental setup utilizes diamond anvil cells to create high pressure con-
ditions for experimentation. When the beam passes through the diamonds,
some adsorption occurs. Diffraction from the diamonds also creates single
intense bright reflections. These reflections can dominate the diffraction pat-
tern and combined with the low peak-to-background ratio create a pattern
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that does not follow common crystallographic distributions.
Diffraction experiments using synchrotron radiation have several advan-

tages. The source is capable of a pulsed time structure, allows the user to
select the wavelength and has high polarization. It also has a very colli-
mated, high brightness beam with a small spot size that allows for better
resolution. The beam intensity is many orders of magnitude higher than
X-rays produced in conventional X-ray tube sources, which is advantageous
for weakly scattering crystals. Synchrotron intensities can reduce the error
to around 3 percent. However, synchrotron data is generally captured on a
two dimensional detector, and so has very different statistics compared to
one-dimensional powder data and single crystal data. Each angle for powder
diffraction datasets is measured by multiple pixels. Therefore, data must be
integrated to produce a single value for each angle. This is advantageous
because multiple measurements allow for more accurate intensity measure-
ment. Better statistical analysis of datasets can be produced, provided the
number of pixels contributing to a particular measurement is accounted for
[4].

1.2 Structural Refinement

X-ray powder diffraction is applied in order to produce data for determi-
nation and refinement of the atomic structure of crystalline materials. There
are several available methods. Different procedures may be followed depend-
ing on the purpose of the experiment. Some of these procedures are seen in
Figure 2.

Structure determination consists of finding a periodic atomic arrange-
ment that would produce intensities that fit the intensities of the experi-
mental diffraction pattern. In powder diffraction, many factors affect peak
intensities, which include the structure factor, multiplicities, lorentz factor,
polarization factor, temperature factor, absorption by the sample, preferred
orientation and extinction coefficients. Equation 2 is the calculation inten-
sity at a particular step. The Icalc is the calculated intensity at a step, s is
scale factor, hkl are Miller indices, L is the multiplicity, Lorentz, and polar-
ization factor. F is the structure factor, ϕ is the reflection profile funtion, P
is the preferred orientation, A is absorption factor. Iback is the background
function. The diffraction pattern is deconstructed in terms of these effects.

Icalc = s
∑

Lk|Fk|2ϕ(2θi − θk)PA+ Iback (2)
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Figure 2: A figure modified from David [5] describing different methods of
data collection and analysis to determine structural information from diffrac-
tion data. The method used for this paper is outlined using black arrows.
The ideal methods to follow are sample dependent.
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Figure 3: During the process of passing through a sample, an incident
beam is diffracted. In addition to useful diffracted x-rays and the unaffected
transmitted beam, electrons and other radiation forms are produced. These
include heat, florescent x-rays, and incoherent scattered x-rays, and electrons.
Some of these forms contribute to the noise present in the image due to
capture by detectors. This figure is adapted from Henry [9].

The most important effect for structural determination is the structure
factor, which defines how the atomic structure affects an incident beam. It
is defined as Equation 3.

F (hkl) =
∑
i=1

fi[cos2π(hxi + kyi + lzi) + isin2π(hxi + kyi + lzi)] (3)

In this formulation, F is the amplitude of the beam scattered by all atoms in
the unit cell. h, k, and l are Miller indices. x, y, and z are the fractional coor-
dinates for a particular atom. See Young [18] for further details. Individual
intensities result from the diffraction and interference of the beam with dif-
ferent individual and planes of atoms. In powder diffraction measurements,
individual intensities consist of the superimposition of reflections that have
the same d-spacing. The multiplicity, the number of symmetry equivalent
reflections contributing to an intensity, must also be accounted for in order
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to model the pattern. In addition, several thermal properties can have an
effect. Temperature vibrations, accounted for by the Debye-Waller factor,
cause changes in the unit cell which increase background scattering and de-
crease diffraction intensities. The structure itself can produce extinction,
which reduces or eliminates intensities due to destructive interference within
crystals.

Initially, the pattern must be indexed in order to find the unit cell. The
unit cell is refined using the LeBail method. It is a whole pattern profile
fitting method used to extract intensities (Ihkl) suitable for determination of
the atomic structure of a crystalline material and for refinement of the unit
cell from powder diffraction data. In general, the extraction of intensities
from powder diffraction is complicated by overlapping diffraction peaks with
similar d-spacings. Knowledge of the unit cell and the approximate space
group of the sample are required to successfully utilize the Le Bail method.
The algorithm refines the unit cell, the profile parameters, and the peak in-
tensities to match the measured powder diffraction pattern. The structural
factor and its associated structural parameters are not considered in this
type of analysis. It can be used to find phase transitions in high pressure
and temperature experiments. It is generally used to provide a quick method
to refine the unit cell, which allows better experimental planning. Le Bail
analysis gives a more reliable estimate for the intensities of allowed reflec-
tions. Le Bail analysis fits parameters using a steepest descent minimization
process, least squares analysis. This is an iterative process. The parameters
being fitted include unit-cell parameters, the instrumental zero error, peak
width parameters, and peak shape parameters. First, the Le Bail method
defines an arbitrary starting value for the intensities (Iobs). This value is or-
dinarily set to one, but other values may be used. While peak positions are
constrained by the unit cell parameters, intensities are unconstrained. To
calculate intensities Equation 4 is used.

Iobs(a) =
∑ (yi(obs)× yi(a))

yi(calc)
(4)

In Equation 4, yi(obs) is an observed profile point, yi(a) is a profile point on
a particular peak, and yi(calc) is the calculated peak profile point. A single
intensity value may contain more than one peak. Other peaks may be cal-
culated using the same formula. The final intensity for a peak is calculated
as yi(calc) = yi(1) + yi(2). The summation is carried out over all contribut-
ing profile points. The summation is known as profile intensity partitioning,
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and it works over any number of peaks. Le Bail technique works especially
well with overlapping intensities since in this method the intensity is allotted
based on the multiplicity of the intensities that contribute to a particular
peak. The calculated values are biased due to the choice of starting val-
ues. The process continues by setting the new calculated structure factor to
the observed structure factor value. The process is then repeated with the
new structure factor estimate. The unit cell, background, peak widths, peak
shape, and resolution function are refined. This improves these parameters.
The structure factor is then reset to the new structure factor value. The
Rietveld refinement process follows.

Rietveld refinement fits the whole pattern by refining a structural model.
The atomic positions, disorder or mixing between atomic sites, lattice pa-
rameters, profile parameters such as peak shape, and background parameters
are fitted. Like LeBail and Pawley methods, it is a pattern decomposition
technique. A plausible background is generally added as a function to the
calculated result. During Rietveld analysis, first all intensities are assigned
to particular Bragg reflections. Individual intensities are the sum of the con-
tributions of many reflections. So, the diffraction pattern may be considered
a collection of individual peak profiles, which consist of a height, peak posi-
tion, and breadth. Each peak also has a tail, which tapers off away from the
peak centroid. The integrated peak area is proportional to the square of the
structure factor. Determining a peak shape requires care, since the profile
contains contributions from the instrument and from the sample. Many func-
tions have been used to find the reflection profile, for more detail see Young
[18]. The structure refinement that follows is a separate process. According
to Young [18], ordinary modeling for scattering patterns can be accomplished
by deconvolving instrumental effects and the background contribution result-
ing from incoherent scattering, air scattering, and thermal diffuse scattering
from the pattern. A background function is added to reduce errors in the
model. It may be phenomenological or based on more sophisticated refin-
able models for actual features. The phenomenological model can consist of
operator supplied linear interpolation based on data points selected by the
user. This would be produce a high order polynomial. The background may
be removed through Fourier filtering or direct modeling with a sine series.
However, it is usually simply fitted as a parameter of the model. Amorphous
scattering from the sample container can be encompassed in the background
function. However, background functions can fail to encompass some crys-
talline scattering components, such as thermal diffuse scattering. They would
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appear in the form of broad oscillations on the Bragg pattern. Poor crys-
tallization in samples and separate phases that appear in the sample also
cannot be calculated as a background function [18].

Rietveld analysis uses least squares analysis to find a best fit to intensities
at each step by minimizing the residuals. The Residual can be quantified as:

Rp =

∑
|(yi(obs)− yi(calc))|∑

yi(obs)
(5)

where yi(obs) is the observed gross intensity at ith step. yi(calc) is the cal-
culated gross intensity at the ith step. There are other meaningful residual
calculations. Figure 4 contains a summary.
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Figure 4: A table of the equations for different methods of calculating the
residuals. Each calculation has a different meaning and bias. Ik(obs) and
Ik(calc) are the observed and calculated intensities, respectively. wi is the
weighting scheme. R-Bragg and R-structure factor are biased in favor of the
model, and the numerator of R-weighted pattern contains the actual residual
being reduced. The square root of the reduced chi-squared function is also
known as the goodness of fit. The table is from Young [18].

Least squares minimization produces a set of normal equations that in-
clude intensity derivatives based on adjustable parameters. The set of equa-
tions can be solved by inverting the matrix of normal equations. This is an
iterative procedure consisting of applying small shifts to starting parameters,
because the solution is non-linear. The initial model must be close to the
correct solution, since otherwise solutions that are local minima instead of
the global one may be found. Local minima may be eliminated by combining
data from different sources, such as x-ray and neutron, by using multiple
least squares algorithms, or by applying an established best practice refine-
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ment strategy. To judge the accuracy of the fit, residuals may be used. The
most direct one is the Rwp, the function in which the numerator actually
contains the residual being minimized. This is seen in the equation for Rwp

in Figure 4. Rb is the Bragg residual and is based on intensities predicted
only from the Bragg reflections from the model. The R-expected, or Re,
(Equation 6) is based on the ideal weighted sum of squared residuals, so it
defines a limit for the fit due to variance of individual measurement’s under-
lying populations. In this case, O is the number of bins in the interval used
and P is the number of parameters that are being fitted.

Re =

[
(O − P )2∑
wiy(obs)2

]1/2

(6)

The goodness of fit function is another measure of the success of the
fit. Young [18] calculates goodness of fit as Rwp/Re. This is equivalent to
Equation 7. In Equation 7, O is the number of bins in the interval used and
P is the number of parameters that are being fitted. An ideal goodness of
fit is between 1.0 and 1.5. The higher value may indicate false minima, a
poor model, preferred orientation problems, or sample recrystallization. The
lower value indicates a model with too many parameters than is reasonable
based on data quality.

GoF =

[∑
wi((Ii(obs)− Ii(calc))2

O − P

]2

(7)

1.3 Error Estimation

Rietveld analysis requires the input of intensity error information from
datasets to calculate an accurate weighting scheme, which is important in or-
der calculate residuals and later the goodness of fit reported by most authors.
Since intensity uncertainties increase the minimum parameter uncertainties,
some uncertainty must be removed or at minimum determined and errors
must be quantified. After finding a goodness of fit value, some authors mul-
tiply it by the estimated standard deviation (E.S.D) [2]. The E.S.D. of a
particular parameter estimate is a measure of the irreducible minimum un-
certainty in the values of the parameters for an accurate model [18]. The
multiplication is executed in order to artificially correct an assumed over-
weighting of all data points, by adding an additional weighting scheme at

9



the end. However, the assumption is only an approximation and the mul-
tiplication is not statistically meaningful. Model inaccuracies can have a
correlation with model parameters. Additionally estimated model parame-
ter errors can also have a systemic bias based on the particular model used.
In spite of these problems, they are a reasonable estimate of the true value
[18].

The method by which errors are calculated has altered over the years for
synchrotron powder diffraction. Hammersleys method [8] is used in FIT2D;
the most commonly used program for data pre-processing. Hammersley [8]
calculates the standard deviation of an averaged intensity from the variation
in values that produced that intensity. Hammersley uses the weighted average
variance, Equation 8.

σ2
i =

∑N
j=1wij(Ij −Oi)

2∑N
j=1wij

× N

N − 1
(8)

where N is the sum of the weights. The N /(N - 1) term accounts for the
fact that the mean is derived from data. The standard deviation is calculated
from Equation 8; the difference between the weighted average from individual
pixel values squared and the overall weighted average squared [8] (Equation
9).

σ2
i =

(∑N
j=1wij(I

2
j )∑N

j=1wij

−O2
i

)
× N

N − 1
(9)

Hammersley points out that measurements are assumed to be indepen-
dent, and that this is untrue. The width of the point spread function for two
dimensional detectors creates a correlation in adjacent pixel values which
would cause underestimation of the standard deviation. This problem is
limited for narrow peaks.

To solve the problem of determining correct error statistics, it became
important to find the statistical distribution of the data. Most approaches are
general and phenomenological because factors contributing to the noise in a
pattern are complex and specific to the sample and experimental conditions.
For powder diffraction data, Rietveld analysis programs generally assume
counting (Poisson) statistics. According to Chall [4], the data is Poisson-
distributed, since repeated measurement of the same diffraction angle by
different pixels yield a Possion distribution. For this distribution, Chall [4]
indicates that the probability finding a particular intensity is:
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p(I) =
ĪI

I!
e−Ī (10)

where Ī is the mean intensity and the standard deviation is σ =
√
Ī. The

mean intensity may be calculated as the arithmetic mean:

Īarith =

∑N
j=1 Ii

N
(11)

The standard deviation of the mean intensity of the Poisson distribution is:

σI = ∆Ī =
√
Ī/N. (12)

Vogel [17], whose analysis focuses on texture, suggests that the intensity error
should be calculated based on the variations in distribution of a particular
population instead of the variation of the mean. The equation for variance
is Equation 13:

σ2 =

∑N
i=1(Ii − Ī)2

N
(13)

Since there are more pixels in higher two-theta bins the standard deviation in
these bins is lower. For intensities higher than around 20 counts, a Gaussian
measurement could be used to approximate the data. The probability for
finding a particular intensity for a Gaussian distribution is shown in Equation
14.

p(I) =
1

Ī
√

2π
e−

(I−Ī)2

2Ī (14)

The standard deviation of the Gaussian can be used as a measurement of
uncertainty, if a single measurement is performed [4], as it would be for
experiments using a one-dimensional detector. For a case with a single mea-
surement, the average intensity is undetermined. In this case, the measured
intensity is used to find error. The 68% confidence interval for the Gaussian
distribution is one times the standard deviation.

x± = µ± 1× σ (15)

So, with a confidence of 68% the mean value is within the calculated error of
the measurement. In Chall [4], Gaussian and Poisson distributions are com-
pared by fitting them to data. Gaussian error estimation can approximate
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data effectively [4], but a random chosen intensity on a particular Debye-
Scherrer ring would probably fail to reveal diffraction peaks in data. This is
seen in Figure 5.

Figure 5: A figure from Chall [4] demonstrating
the difference between the average pixel value for a
particular bin and the spread of the data. The scatter
was calculated to on the order of I1/2. Chall uses this
figure to demonstrate that the second peak is within
the order of magnitude of the error and therefore could
not be considered observed for some estimates of the
error.

Chall does find that aver-
aging the bin intensity values
can reveal peaks [4]. How-
ever, the standard deviation
was not found to be an ap-
propriate measure of the er-
ror since it discounts the
number of pixels used in the
measurement. For multiple
measurements, the number
of pixels must be accounted
for. For the goodness of fit,
Equation 7, the ideal value
is 1.0 to 1.5 [18] The cor-
rect weighting scheme for wi

for the residuals, in the R-
weighted pattern equation,
is wi= l/a2 , where a is
the 67% confidence interval.

Only with weight,

a =
σ√
N

(16)

are these values produced.
Chall experiments using different weighting schemes to determine their ef-

fect on the goodness of fit. Correct weights, wi = N2
i /σ

2 = 1/a2, unit weights
wi=1, the default weights by most software wi=1/Ii, and the equivalent from
Chall [4] calculated from Equation 17:

σ2 =

∑N
i=1(Ī − Ii)2

(N − 1)
(17)

as wi=1/σ
2
i . This results in Figure 6, which uses the same data from the

previous figure.
Wrong weights result in incorrect goodness of fit values. Correct values

produce realistic goodness of fit values. For their dataset, the goodness of fit,

12



based on the calculated standard deviation of a Poisson distributed dataset,
indicates the data does not have a Poisson distribution. Chall suggests the
distribution may be corrected by removing diamond diffraction peaks, which
cause a deviation from unimodal intensity distribution [4]. Chall also men-
tions that some authors multiply the estimated standard deviation by the
goodness of fit. When the goodness of fit is greater than one, as it is for cor-
rect weights, this is not problematic and is usually conservative [4]. When
overly large errors are found due to incorrect weighting statistics, the un-
derestimated standard deviation reduces the goodness of fit to unrealistic
values.

Figure 6: A figure from Chall [4] comparing the effect
of different weighting schemes on the goodness of fit.

Some care should be
taken in order to determine
the effect of the dataset used
on the statistics, since this
may affect the distribution
of the dataset. An ideal
dataset is required. Powder
diffraction experiments usu-
ally do not have the proper-
ties to realize an ideal pat-
tern. This pattern would
be generated by a large
number of uniformly sized
and randomly oriented crys-
tals, which produce an ideal
normal intensity distribution
[11]. Since this is not or-
dinarily true, normally dis-
tributed intensities must be
extracted from data. For our

purposes, an ideal image for processing is necessary to account for, un-
derstand, and eventually correct for systemic biases. Hammersley [8] sug-
gests using data from the National Institute of Standards and Technology
(NIST). They produce reference 674a and other reference calibration stan-
dards for powder diffraction, detector calibration, and other calibration pur-
poses. Hammersley [8] suggests that very small amounts of powders and
very small X-ray beams may produce datasets with different characteristics.
Hinrichsen [11] uses a high quality calibration image of LaB6. This data is
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shown in Figure 7 for a 0.02 degree bin. However, datasets with real samples
may not be appropriate since an aziumuthal intensity deviation occurs due to
sample absorption. Correcting the data for polarization produces a uniform
azimuthal intensity distribution.

Figure 7: A figure from Hinrichsen [12] comparing
a Gaussian distribution to a Poisson distribution for a
0.02 degree bin. Hinrichsen suggests that the normal
distribution is a better fit to the data. Unfortunately
the distributions are labeled in color and are indis-
cernible on a black and white text. The finding is in
contrast to the selections of previous authors.

For high pressure data,
the distribution seems to
indicate a power law may
be appropriate because there
are a large number of low in-
tensity pixels and very few
high intensity pixels. The
high intensities complicate
analysis because they have
an unpredictable effect on
average 2-theta bin values
after integration. Even if
experimental effects are re-
moved, the data usually does
not produce an easily rec-
ognizable intensity distribu-
tion solely as a result of the
samples low intensities. For
ideal data, a normal distri-
bution is unconvincing [11].

See Figure 7. The power law Hinrichsen advocates is the Pareto distribu-
tion, which originally was utilized to describe wealth in societies.

PPareto(x) =

{
0 forx < b

aba/xa+1 forx ≥ b
(18)

The probability for finding a particular value x in a Pareto distribution is
shown in Equation 18. It describes well the main peak of the normal distri-
bution as well as the largest and weakest intensities.

In order to correct some of the problems intrinsic to the sample in the
datasets, some processing is done in the structural analysis programs. Ac-
cording to David [5], there is no substitution for good normally distributed
data. According to Hinrichsen [12], the difference between the integrals of
the ideal Normal dataset and the Normal-Pareto distribution can be used
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Figure 8: A plot from Hinrichsen [12] of the number of pixels versus an intensity value
in which the fit of Normal-Pareto, Log Normal and Normal distributions are compared for
a sample of SnSO4 at 16 GPa. The author concludes the normal Pareto has the best fit
[?]

to estimate the normal fraction of the distribution. Since the low intensity
slopes are equal, the difference can be used to calculate the portion of high
intensity data that must be filtered, using the approximation that the high
intensity slope of normally distributes data is infinite [11]. This allows the
extraction of normally distributed data.

1.4 FIT2D

FIT2D [8] is a commonly used program for data pre-processing of x-ray
powder diffraction data. It has several limitations. The program does not
have methodology to provide error estimates, which are required by Rietveld
refinement programs. In the absence of error estimates, Rietveld programs
assume counting statistics are sufficient. FIT2D does contain methodology
for manual masking of high intensity spikes due to diffraction from the di-
amonds. It allows removal of small regions and polygons to remove larger
areas. However, the processes is manual, tedious, and somewhat subjective.
There is no methodology to remove individual dead pixels. With the goals
of producing more accurate uncertainties to better intensity analysis and to
automatic mask bad data, another program is necessary.

15



Chapter 2 - Methods

2 Methods

2.1 Experimental Methodology

2.1.1 Components

High pressure diamond anvil cell experiments simulate the hydrostatic-
ity, temperature uniformity, thermodynamic and chemical conditions from
the Earth’s interior [3]. They can be used to study structural, chemical, and
physical properties of materials and phase transitions at these conditions.
For our purposes, the diamond anvil cell, sample, detector, and synchtrotron
X-ray beam are the most important elements of the setup. Details of the
equipment and setup are useful, since the experiment produces artifacts in
the diffraction profile that should be removed. Synchtrotron facilities allow
measurements under the high pressure and temperature experimental condi-
tions.

Figure 9: A photograph of the setup with an area
detector shown. Indicated in yellow is the path of the
x-ray beam and the Debye-Scherrer cone that would
be resultant if a sample was in position.

The diamond anvil cell
(DAC) consists of two di-
amond anvils and a gas-
ket. The gasket has a
pre-drilled hole in the cen-
ter, which is used as a
pressure chamber. The
chamber contains a pres-
sure transmitting medium,
which transfers quasihydro-
static high pressures to the
sample uniformly. By do-
ing so, the medium elim-
inates shear pressures on
the sample due to the dia-
monds and creates quasihy-
drostatic conditions in the
gasket. The gasket sup-
ports the diamonds and re-
duces diamond breakage due
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to very high shear forces. At very high pressures, gasket thicknesses are lim-
ited to less than 50 micrometers. Gaskets can be made of many materials.
Steel is conventionally used for room temperature experiments, however it is
inadequate for high temperature conditions due to its tendency to creep at
those conditions. Rhenium or tungsten can also be used and are advanta-
geous due to their high melting temperatures. The gasket thickness depends
on a variety of factors, such as the diamond anvil cell size, pressure medium
and desired pressure range. The diamond anvils are used to create the high
pressure conditions by amplifying pressure exerted on the base to a much
smaller area at the tip of the anvil. Diamonds are used because of their
hardness, range of transparency, thermal conductivity and limited thermal
expansivity. Their transparency allows a range of wavelengths to be used for
investigation. Their hardness increased the pressure extremes attainable [1].

2.1.2 Experimental Details

For synchrotron experiments, there are two techniques; angle-dispersive
and energy-dispersive. A continuous energy spectrum is used in energy-
dispersive technique, which offers fast data acquisition. Angle-dispersive
technique involves a single wavelength. It provides more accurate intensi-
ties for structural refinement and has higher spatial resolution than energy-
dispersive. We utilize angle-dispersive technique. During the experiment,
an x-ray beam from a source is diffracted through a sample contained in a
DAC. The diffracted photons, in the shape of Debye-Scherrer cones, are then
captured by a flat two-dimensional detector as rings. See Figures 9 and
13. The incident beam is prevented from reaching the detector by a beam
stop. The data is recorded as greyscale, 16-bit, *.tiff images. First, a dark
image is taken without the sample or beam present in order to record and
later remove any electronic noise that may be present. Subsequently, actual
measurements are taken with the beam and sample present. Examples of
real data are shown in Figures 10 and 11.
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Figure 10: A raw powder diffraction data image collected on an area detector.
The image has be scaled, in order to display high intensity peaks and spikes

Figure 11: An example of a texturized data image. Texture is one of the
problems that may be present in a dataset.
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2.1.3 Sources of Error

The distribution of diffraction peaks is altered by artifacts in the data
created by the experiment. The sample itself, the diamonds, and the gasket
can cause problems. The small sample and beam size yield poor powder
statistics. The sample can produce other signal besides data relevant for our
purposes. There can be a preferred orientation problem, which can be some-
what mediated by finely grinding the sample to a particle size of less than
a few microns. The sample contains crystallites that may not be in ideal
diffraction positions. Weak peaks that do not conform to common crystal-
lographic distributions would be the result. The problem can be somewhat
alleviated by rotating the sample. However, the rotation angle possible in
diamond anvil cells is small. Large crystallites within the sample can create
high intensity single crystal spots. The gasket generates secondary excita-
tions and powder lines that are mostly highly textured [16]. A smaller beam
size would reduce gasket diffraction, but also reduces the volume diffract-
ing [16]. From the diamonds, single crystal peaks can create problematic
multimode distributions [11].

There are also artifacts related to the setup. One extremely noticeable
feature is due to the shadow from the beam stop. It creates a band of lower
intensities across the diffraction image. The detector can have calibration
errors, spatial distortions and a nonlinear response to detected intensity [8].
Some problems with the setup can be corrected through data processing. The
experimental geometry must be calibrated for the position of the beam center
on the detector and the non-orthogonality of the detector with the sample.
There is a polarization effect due to the polarized nature of the synchrotron
beam and the effect of the sample. The beam also produces a substantial
background due to air scattering, which is highest near the beam center and
decreases with distance. The sample also produces Compton scattering, as
photons interact with electrons in the sample.

2.2 Data Reduction Software

The purpose of the project is to create software to calculate meaningful
error estimates and to provide automatic masking capabilities. In order to
accomplish this, specific operations must be performed on the data, first to
correct for systemic problems and later for actual data processing purposes.
The order of processing is shown in Figure 12.
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Figure 12: The order of operations involved in image processing is shown in
the flow chart. Some procedures may be optional and not included in the
current software version.

2.2.1 Read in Data and Background Correction

The first step is to read in the data. Our data consists 16 bit greyscale
*.tiff images. Python’s Image Library and NumPy are used for this process.
The individual pixels of each image are added to a data array containing the
intensity values for the whole image. Each pixel intensity is saved at the
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same two-dimensional (x, y) location in the array as the pixel in the image.
Python array locations begin numbering at zero. In order to combine a set
of images, pixel values at the same location in each image are added to the
current summation of the pixel counts for that location within in an array.
This process is completed for dark images and data images, separately. The
dark image array is then subtracted from the data array. There is a loss in
resolution due to pixellation, compared to other types of detectors.

2.2.2 Geometry Calculation and Correction

Figure 13: A diagram showing the orientation for
the geometry calculation. The variables and angles
used in the geometry calculation and correction from
Equation 18 are indicated. The figure is from Vogel
[16].

Next, the geometry must
be calculated and any de-
viation corrected for using
equations from Hammers-ley
[8] and Vogel [16]. A map
of corrected two-theta val-
ues for each pixel location
is created and matched to
the map of data intensities.
This correction consists of
a deconvolution involving a
series of rotations that is
applied to data. A right
handed coordinate system is
used.

The center point is con-
sidered to be the location
where the incident beam in-
tercepts the detector. For
an ideal case, the Debye-
Scherrer cone is perpendicu-
lar to the detector, and the
intersection of the two is a
ring. The Debye-Scherrer
cone width is 2θ for a dis-
tance (d) from the sample to

the detector. Details of the geometry are shown in Figure 13.

x2
i + y2

i = ((d− zc)tan2θ)2 (19)
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However in powder diffraction experiments, there is generally deviation from
the ideal geometry, so a rotation is applied in order to correct for the distor-
tion. If the cone is tilted by an angle φ, a rotation of - φ is applied to achieve
a flat orientation. Including a correction for the rotation, the scattering angle
for an individual pixel is calculated as:

2θ = arctan

[
((x− x0)cosβ + (y − y0)sinβ)2cos2ϕ

(d+ ((x− x0)cosβ)(y − y0)sinβ)sinϕ)2

+
(−(x− x0)sinβ + (y − y0)cosβ)2

(d+ ((x− x0)cosβ)(y − y0)sinβ)sinϕ)2

]1/2 (20)

See Hammersley [8] for more details. There is an alternative method to calcu-
late a geometry correction. This method is detailed in Rajiv [15]. Distorted
Debye-Scherrer rings are automatically found and when bisected appear as
a peak in intensity. Their eccentricity is calculated automatically using a
Hough transformation. The geometry correction is based on the determined
eccentricity. A quick method to utilize this technique was not found by this
project.

2.2.3 Polarization Correction

The next step is the polarization correction. The synchrotron beam is
polarized, and the sample can act as a polarizer due to dichroism. The effect
on intensity varies based on the difference in polarization angle of the source
and sample. The effect on intensities can be corrected based on distance from
the beam center. The equation to calculate polarization is Equation 21.

Pi =
(1− Acos2(2θ))

1 + A
(21)

where A is A=(1-f)/(1+f). f is the polarization rate perpendicular to the
scattering plane. In this orientation, unpolarized intensities would have a f
of zero, and synchrotron plane polarized light would have an f of one. The
polarization information is generally provided in the dataset. See Figure 14
for the effect of the polarization correction on individual intensities.
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Figure 14: A diagram showing the effect of the polarization correction on the data.

2.2.4 Integration

Next, the data is integrated in order to determine a mean and to allow
masking. Integration consists of collecting two theta values between two
bounds into a user-specified number of bins. The number of bins is of minor
importance, since all data is overbinned [4]. For increasing numbers of bins,
the goodness of fit decreases and approaches 1.2; this is considered to be
a good value [18]. At binning scales less than the width of an individual
reflection, so that the reflections are resolved, the goodness of fit values do
not change [4]. Increasing the number of bins is countered by better pre-
cision in determining intensity. Below peak resolution, the model becomes
inapplicable and goodness of fit increases [4].
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Figure 15: A diagram showing the change in goodness of fit values with increasing bin
size. The goodness of fit is the formulation from Equation 7. From Chall [4].

2.2.5 Bin Analysis and Automatic Masking

Several forms of analysis can be performed on individual bins. To pro-
duce a diffraction plot, an average intensity must be found for each bin. The
method for calculating average is the same for all distributions. Several dis-
tributions are used to analyze the data. See Equation 12 and the square root
of Equation 17 to calculate the standard deviation of the two distributions.
The standard deviation (σ) can be utilized as uncertainty, which is employed
to calculate error estimates [4]. See the introduction for a more detailed
discussion of intensity distribution. Peaks are measured with increasing ac-
curacy for increasing numbers of contributing pixels. These bins are located
at higher two-theta values. The two-theta bin number, average intensity,
and standard deviation are saved to a new array. The next step is automatic
masking.

Masking consists of removing undesirable populations of pixels. This in-
cludes intensities due to diamond peaks, dead pixels with a value of zero
and pixels with the maximum intensity due to errors. These pixels produce
an abnormal distribution, so the data does not follow any common crystal-
lographic distribution. Removing them can be accomplished several ways.
Depending on the assumed distribution, pixels within a user-specified number
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Figure 16: A plot of the fit of the Normal-Pareto distribution compared to
the Normal distribution for an idealized data set. The high intensity tail
produces the peaks that require filtering. The low intensity tail of both
distributions is nearly equivalent. From Hinrichsen [12].

(n) of sigmas around the mean may be kept. This is calculated as Equation
22. The value is added to and subtracted from the mean to produce a cutoff,
and pixels with intensities greater and less than the cutoff are eliminated.

Icutoff = Ī ± n× σ (22)

For a Gaussian distribution, different numbers of sigma retained correspond
to difference confidence intervals. n values of 1 and 1.96 correspond to a 68%
and 95% level, respectively, of confidence that the true mean lies within the
intervals for an unknown distribution.

There are alternative methods. Hinrichsen suggests using a fractile filter.
Fractile filters can be used for any distribution. Pixels with intensity values
from zero up to a defined fraction of the data or pixels with the maximum
value down to a specified fraction can be eliminated from a single bin. The
equation to determine the cutoff is:

Iobs ≥
Imax − Imin

100
× (100− Frachi) (23)
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Iobs ≤
Imax − Imin

100
× (Fraclow) (24)

The method is effective since it removes outliers and retains a normal data
distribution [12]. While the filter can be used for other distributions, such as
Gaussian, the fraction to be filtered becomes somewhat arbitrary for those
functions. The Normal-Pareto function is suggested to fit the observed data
best [11]. Ideally, our data should have a normal (Gaussian) distribution.
The difference between the Normal-Pareto distribution and the Normal dis-
tribution is calculated as:∫

PN(x)dx =

∫
PNP (x)dx = 1− Frachi (25)

Figure 17: An image of the BeyondFIT2D
user interface

The difference between the
two fractions is the frac-
tion that requires filtering.
A comparison of the fit is
shown in Figure 16. The up-
per tail of the data contains
high intensity pixels to be re-
moved. This is true for the
case that the intensity slope
is infinite and the low inten-
sity slopes are equal [12].

2.2.6 Output

The output may be in the
form of an image or as a pow-
der diffraction profile, a two-
theta versus intensity plot.
The data should be suitable
as input into any Rietveld re-
finement program.
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Chapter 3 - Results and Discussion

3 Results and Discussion

3.1 Data Import

Data is imported as uint-16 greyscale format, which produces intensity
values in a range from 0-65535. The pixels of the final image are normalized
at some point during the summation process of individual images. This is
observable due to a difference between the distribution of the population of
normalized summed data and data that has not been normalized. To conform
to the same methods as FIT2D, so that comparisons may be made, we also
follow this process. In Figures 18, 19, 20 histograms of the images containing
data (with the X-ray beam on), background (without the X-ray beam), and
the final image are shown. These histograms are for data that has not been
normalized.

Figure 18: A histogram of the final image, consisting of data with background
subtracted.
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Figure 19: A summation histogram of the final data image, consisting of data
with no background.

Figure 20: A summation histogram of the final background image, consisting
of background images only.
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3.2 Data Integration

In order to test the validity of the geometric correction, our integrated
pattern should be compared to the pattern produced by FIT2D. FIT2D’s
previous decades of successful usage make it a reasonable standard. This
process proved to be problematic and so that figure is not shown here. Sim-
ply calculating the 2θ location of any pixel location appears to be insufficient
to reproduce FIT2D data. The calculation of the maximum 2θ value agreed
for results from Beyond and from Mablab [14]. The value was within a rea-
sonable amount of values suggested by FIT2D during processing. However,
the integrated pattern does not match. While a programming error is pos-
sible, the possibility of FIT2D employing an additional correction is implied
by other authors [16]. It has been suggested to be a partial transformation
based on the eccentricities of individual rings cross-correlated with the calcu-
lated geometry [16]. Some variance in the pattern is caused by to differences
in the method of calculating bin intervals. Once the data is integrated, the
mean was calculated for individual bins. The value of the mean compared to
all values for the bin is shown in Figure 21. The spread of the dataset can
be calculated as the variance. For all subsequent relevant data, the bin for
the third red data point in Figure 21 is used for calculations. It is located
at the bin with a midpoint 22.83 degrees. For Figure 21, these three bins
were selected because their average was within 0.02 counts of the average for
the same bin in FIT2D integrated data.
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Figure 21: The average values of bins located at 2θ values of 22.79, 22.81, and
22.83. The variance of the dataset compared the final 2θ values is evident.

Rietveld analysis of powder diffraction patterns can be improved by the
use of correct estimates of uncertainties in the integrated pattern. Other-
wise, unrealistic goodness of fit values are produced. The correct estimate
of uncertainty is dependent on the probability distribution used to model
the data. In this section, Poisson and Gaussian distributions are fit to the
dataset, and chi-squared values for each are determined. This was accom-
plished by calculating variables for the probability distribution function for
each distribution for the 22.83 degree bin. The fitted function was used to
calculate expected values for the statistical distribution. The chi-squared
value for the expected and actual data were found in order to determine the
plausibility of each distribution. A chi-squared value of 3.988 was found for
the Gaussian distribution at a significance level of 0.05. Unreasonable Pois-
son values were found, with a chi square of 36.10. However, this may be due
to problems with the Poisson fit. Since the Poisson distribution is discrete,
care must be taken in calculating average values for each pixel, in the steps
prior to integration.
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Figure 22: The distribution of the 2θ bins 22.83 (left) and 22.79 (right). The
left bin is used for all subsequent data analysis, due to the small difference
between its average and the FIT2D integrated bin value.

Figure 23: The histogram of the 22.83 bin is fit to the Gaussian distribution.
The calculated fit is used to produce an expected pattern (red line). The chi-
squared goodness of fit was found to be 3.988.

31



Figure 24: The histogram of the 22.83 bin is fit to the Poisson distribution.
The calculated fit is used to produce an expected pattern (red line). The
chi-squared goodness of fit was found to be 36.10.

These observations and the high overall averages suggest the Gaussian model
could be used.

3.3 Automatic Masking

After an average intensity has been determined, automatic masking is
executed. Two options have been introduced. Masking can be accomplished
by designing a fractile filter to calculate the fraction of the total data requiring
masking from the upper and lower ends of the distribution. The alternative
is to retain only pixels with intensities within a certain level of uncertainty
(standard deviations) around the mean. In Figure 25, the effect of integrating
data and calculating averages while retaining only intensity values that are
within 150 standard deviations around the mean for a Poisson distribution
is compared to retaining only data that is within a 68% confidence level
or one standard deviation for the Gaussian that the mean lies within that
region. An integrated dataset without masking is also presented for reference.
Removing a number of high intensity pixels results in a lower measurement
for the average value of a bin. Outliers from diamond diffraction or single
crystal spots from the sample would be likely culprits for high intensity pixels.
For this dataset, the elimination may be too severe and remove pixels that are
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important for analysis, due to the low signal to noise ratio of the data. The
retained interval should be selected with care. Due to the Poisson distribution
retaining more peaks than the Gaussian, Poisson masking was used in Figure
26.

Figure 25: A plot of the integrated pattern for values with a 150 standard
deviation Poisson mask, a 1 standard deviation Gaussian mask, and the un-
masked pattern. The blue triangles are the original unmasked pattern. The
red triangles the recalculated average after the Poisson mask has been ap-
plied. The green triangles are the recalculated averages after the Gaussian
mask have been applied. The mask applied appears to possibly be too exten-
sive. A large portion of peaks that may be real data appear to be masked.
This may be remedied through use of higher sigma values.

Each type of mask removes different amounts of pixels from each bin.
The total number of pixels eliminated by the differences in calculation of
the masks varies. For a Poisson distribution, the mask was calculated for
one, two, and four sigmas. The images of the masks are shown in Figure
26. Retained pixels are a single white value, while masked pixels are black.
The sigma value varies for each bin. When utilizing a Poisson distribution,
the standard deviation remains small. The quantity of data this eliminates
should be noted.
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Fraction of Pixels Eliminated Using Varying Sigma Values
10 50 100 1000

Poisson Distribution 0.8504 0.6148 0.3836 0.0006
1 1.64 1.96

Gaussian Distribution 0.2092 0.0594 0.0311

Figure 26: The images consist of the pixels retained after a 1, 2, and 4 stan-
dard deviation Poisson mask has been applied. Dark pixels are masked data.
White pixels are pixels that contain information. There are no greyscale
intermediate values in the image; all pixels are either black or white.
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Chapter 4 - Conclusions

4 Conclusions

The geometry correction creates problematic data. Systematically alter-
ing the contents of bins results in distributions that are altered. The calcu-
lated chi-square should indicate that at low counting intervals the Poisson
distribution is appropriate and the Gaussian is appropriate at higher values
[4]. The net effect of the incorrect geometric transformation is to create
mostly lower intensities than the expected dataset. This shifts the shape
of the distribution and can alter chi-square values and possibly the choice
of distribution, the standard deviation, mean, retained pixels in masks, and
the effectiveness of filtering mechanisms. The net effect is to generally lower
average intensities, and it cannot be minimized at this time. All bins contain
some pixels with a different bin assignation due to the geometric correction.
Though pixels with lower intensity two-theta values may have less correction,
they also contain fewer pixels and therefore are more strongly affected. The
converse of this situation is true at high two-theta values. The bin values
used for analysis were chosen due to an average intensity that is within 0.02
of the FIT2D data. However, the bin choice may not be ideal since the bin
probably does not contain a peak.

Our results suggest the distribution to be Gaussian. According to pre-
vious authors, the Poisson distribution is more appropriate for lower mean
values and the Gaussian distribution is more appropriate for higher mean
values [11]. This distribution produces reasonable goodness of fit values in
the experiments by Chall [4]. The usage of automatic masking can eliminate
the need for manual masking and produce a standardized methodology. The
mask was successful at removing outliers from the pattern. The removed
pixels had a significant effect on the mean. Calculating Gaussian uncertain-
ties should provide a better estimate of uncertainty since the uncertainty has
a somewhat logical basis. The Gaussian distribution also suggests natural
values for filtering pixels based on the variance of the population.
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Chapter 5 - Outlook

5 Outlook

5.1 Geometry Correction

The geometric correction of FIT2D is currently unknown to this project.
Scripts, known as macros, created for FIT2D have been used to extract the
geometric correction for this program. Open source software such as PYFAI
may also offer an alternative. Post geometry correction, ideally we would
examine the effect of the new uncertainty calculation on structural determi-
nation goodness of fit values and the effect of masking on the uncertainties.

5.2 Normal-Pareto

The Normal-Pareto distribution suggested by Hinrichsen, may provide
a better alternative than the distributions examined in the project. This
distribution may work especially well since tails for the distribution do not
have to be symmetric. It is appropriate for skewed datasets.

5.3 Fractile Filters

Outliers may also be eliminated through the use of fractile filters, also
suggested by Hinrichsen. They suggest an upper and lower fraction of the
data to be eliminated. This may be more effective, provided the high fraction
of the data does not contain information resultant from the sample. Unlike
other methods, values are not retained based on proximity to the mean. The
method also suggests that separating the uncertainty measurement procedure
and elimination of poor data points may be worthwhile.
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Chapter 6 - Code

6 BeyondFIT2D Code

import Tkinter, tkFileDialog

import os, fnmatch

from tkSimpleDialog import *

from PIL import Image

import numpy

import math

numpy.set_printoptions(threshold=’nan’)

global directoryname, diffimg0, file

global arrayfinallight, arrayfinaldark

global originalpic, thetamap, arrayfinal

global sortedpic_index, keepit_pix, keepit_inten

def directoryfinder():

global diffimg0, originalpic

diffimg0 = tkFileDialog.askopenfilename()

originalpic=diffimg0

global directoryname

directoryname=os.path.dirname(unicode(diffimg0))

def image2array(im):

newArr = numpy.array(im.getdata(),numpy.uint16)

newArr2 = numpy.reshape(newArr,im.size)

return newArr2

def addimage(): #subcommand

global directoryname, diffimg0, arrayfinallight, arrayfinaldark

blank = numpy.zeros(4194304, dtype=numpy.int32)

blank.shape = (2048, 2048)

arrayfinallight= numpy.array(blank,numpy.int32)

arrayfinaldark=numpy.array(blank,numpy.int32)
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counter=1

for file in os.listdir(directoryname):

if fnmatch.fnmatch(file, ’*.tif’):

if counter%2==0:

im2=Image.open(unicode(os.path.join(directoryname, file)))

array0 = image2array(im2)

arrayz=array0.astype(numpy.int32)

arrayfinallight = arrayz + arrayfinallight

counter = counter + 1

else:

im2=Image.open(unicode(os.path.join(directoryname, file)))

array0 = image2array(im2)

arrayz=array0.astype(numpy.int32)

arrayfinaldark = arrayz + arrayfinaldark

counter = counter + 1

print counter

numpy.savetxt(’light.txt’, arrayfinallight)

print ’data done!’

numpy.savetxt(’dark.txt’, arrayfinaldark)

print ’darks done!’

def finalimg():

global arrayfinallight, keepit_pix, keepit_inten

global arrayfinaldark, diffimg0, originalpic, arrayfinal

arrayfinal = arrayfinallight - arrayfinaldark

numpy.savetxt(’final.txt’, arrayfinal)

print ’darks subtracted’

# im3 = Image.new(’L’, (2048, 2048))

# im3.putdata(arrayfinal)

# im3.save("newimage.tiff")

def twotheta():

global thetamap

thetamap = numpy.zeros(4194304, dtype=float)

thetamap.shape = (2048, 2048)

S2DD2 = float(Entry.get(S2DD))*math.pow(10, (-3))

S2DD3 = float(Entry.get(hpixel))*math.pow(10, (-6))

#S2DDx = S2DD2/S2DD3
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XPCoorx=float(Entry.get(XPCoor))*S2DD3

YPCoorx=float(Entry.get(YPCoor))*S2DD3

phi=float(Entry.get(DetTilt))*math.pi/180

beta=float(Entry.get(RotAng))*math.pi/180

for y in range(2048):

for x in range(2048):

x1=x*S2DD3

y1=y*S2DD3

a=(x1-XPCoorx)*math.cos(beta)

b =(y1-YPCoorx)*math.sin(beta)

c= math.pow((a+b), 2)

d=math.pow(math.cos(phi), 2)

first_term=c*d

e=-1*(x1-XPCoorx)*math.sin(beta)

f=(y1-YPCoorx)*math.cos(beta)

second_term=math.pow((e+f), 2)

h=(x1-XPCoorx)*math.cos(beta)

i=(y1-YPCoorx)*math.sin(beta)

j=(h+i)*math.sin(phi)+S2DD2

bottom_term=math.pow(j,2)

k=(first_term + second_term)/ bottom_term

l=math.sqrt(k)

thetamap[x][y] = math.atan(l)

# numpy.savetxt(’map_ctr.txt’, thetamap)

def combine(): #kind of redundant

global thetamap, arrayfinal, sortedtheta

global sortedinten, sortedpic_index

sorted_index = thetamap.argsort(axis=None)

pic_index=numpy.arange(4194304)

sortedpic_index=pic_index[sorted_index]

sortedtheta=thetamap.flatten()[sorted_index]

sortedinten=arrayfinal.flatten()[sorted_index]

sortedfinal=numpy.dstack((sortedtheta,sortedinten))

#numpy.savetxt("file_array.txt", sortedfinal)

#print sortedfinal

def depolarizer():
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global sortedtheta, sortedinten

correction_array= numpy.zeros(4194304, dtype=float)

factor1=float(Entry.get(factor))

A=(1-factor1)/(1+factor1)

counter=0

while counter < 4194304:

correction_array[counter]=((1+A*math.pow

((math.cos(sortedtheta[counter])),2))/(1+A))

global sortedinten

sortedinten[counter]=sortedinten[counter]/correction_array[counter]

counter= counter+1

def eliminate(bin_intensity_array, sigma, mapped_pic_index1):

global sigmanum, keepit_pix, keepit_inten

midpoint1=numpy.median(bin_intensity_array)

lower_bound= float(midpoint1 - 0.5*sigmanum*sigma)

upper_bound= float(midpoint1 + 0.5*sigmanum*sigma)

locale=numpy.where((bin_intensity_array>=lower_bound)

& ( bin_intensity_array<=upper_bound))

keepit_pix.extend(mapped_pic_index1[locale])

keepit_inten.extend(bin_intensity_array[locale])

# print bin_intensity_array[locale]

def freq_occurance(k, sigma1, midpoint1, mapped_pic_index1):

frequency=[]

intensities=k

last=int(numpy.size(k)-1) # upper bound

sorted_bin=sorted(k)

n=sorted_bin[0]# lower bound

o=sorted_bin[last] # upper bound

#print ’upper and lower intensity bounds:’, n, o

bin_intensity_array = []

total = int(round(o-n))

counter2=1 # TO COUNT THRU THE WHOLE INTERVAL;

while counter2 < total:

intensity_value = float ((round(n)-2)+counter2)

lower_bound= float(intensity_value - .5)

upper_bound= float(intensity_value + .5)
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locale=numpy.where(( intensities>=lower_bound)

& ( intensities<=upper_bound))

mini_bin= intensities[locale]

bin_size = numpy.size(locale)

frequency.append(bin_size)

bin_intensity_array.append(intensity_value)

counter2 = counter2 + 1

freq_vs_inten= numpy.dstack((bin_intensity_array, frequency))

frequency_statistics=eliminate(k, sigma1, mapped_pic_index1)

#print ’frequency vs intensity:’, freq_vs_inten

def bin_averaging():

global sortedtheta, keepit_pix, keepit_inten, sortedinten

global lower_bound, sortedpic_index

global upper_bound, sigmanum, trash, keepit

keepit_pix=[]

keepit_inten=[]

trash=[]

sigmanum1 = (Entry.get(sigmanum))

sigmanum=float(sigmanum1)

delta = float(Entry.get(delta_input))

delta2theta= float(delta)

halfdelta=float(delta2theta/2)

counter=1

counter_total= int(numpy.amax(sortedtheta)/delta)+1

locale=[]

bin_avg=[]

arrayindex=[]

while counter < counter_total:

print counter

midpoint = float (delta2theta*counter)

lower_bound= float(midpoint - halfdelta)

upper_bound= float(midpoint + halfdelta)

locale=numpy.where((sortedtheta>=lower_bound)

& (sortedtheta<=upper_bound))

mapped_pic_index=sortedpic_index[locale]

mapped_bin=sortedinten[locale]

mapped_theta=sortedtheta[locale]
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bin_sum=float(numpy.sum(mapped_bin))

bin_size = float (numpy.size(locale))

if bin_size ==0:

counter = counter+1

bin_average= float(bin_sum/1)

sigma=math.sqrt(bin_average)

#print ’empty bin’, midpoint

else:

bin_average= float(bin_sum/bin_size)

sigma=math.sqrt(bin_average/bin_size)

freq_occurance(mapped_bin, sigma, midpoint, mapped_pic_index)

arrayindex.append(midpoint)

bin_avg.append(bin_average)

counter = counter + 1

def maskmaker(): # zero is black white is one

global keepit_pix, keepit_inten

mask=numpy.zeros((4194304), dtype=int)

mask[keepit_pix]= 1 #good intensity location

#print ’mask’, mask

mask_data=numpy.resize(mask,(2048,2048))#double check indexing

numpy.savetxt(’mask.txt’, mask_data)

root = Tkinter.Tk()

root.wm_title("Boolean_Mask")

Button(root, text=’Select Any File in the Directory’,

command=directoryfinder).grid(row=2, column=0, columnspan=1)

Button(root, text=’Add Data Images and Add Dark Images’,

command=addimage).grid(row=6, column=0, columnspan=2)

Button(root, text=’Subtract Dark from Data Images’,

command=finalimg).grid(row=10, column=0, columnspan=2)

l1 = Tkinter.Label(root,
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text="Length of Square Pixels in microns")

hpixel = Tkinter.Entry(root)

l1.grid(row=20, column=0)

hpixel.grid(row=20, column=1)

l3 = Tkinter.Label(root, text="Sample to Detector Distance in mm")

S2DD = Tkinter.Entry(root)

l3.grid(row=24, column=0)

S2DD.grid(row=24, column=1)

l4 = Tkinter.Label(root, text="Wavelength in Angstroms")

wavelength = Tkinter.Entry(root)

l4.grid(row=26, column=0)

wavelength.grid(row=26, column=1)

l6 = Tkinter.Label(root, text="X-Pixel Coordinate of Direct Beam")

XPCoor = Tkinter.Entry(root)

l6.grid(row=30, column=0)

XPCoor.grid(row=30, column=1)

l7 = Tkinter.Label(root, text="Y-Pixel Coordinate of Direct Beam")

YPCoor = Tkinter.Entry(root)

l7.grid(row=32, column=0)

YPCoor.grid(row=32, column=1)

l8 = Tkinter.Label(root,

text="Rotation Angle of Tilting Plane in Degrees")

RotAng = Tkinter.Entry(root)

l8.grid(row=34, column=0)

RotAng.grid(row=34, column=1)

l9 = Tkinter.Label(root,

text="Angle of Detector Tilt in Plane in Degrees")

DetTilt = Tkinter.Entry(root)

l9.grid(row=36, column=0)

DetTilt.grid(row=36, column=1)

Button(root, text=’Create 2-theta Plot’,
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command=twotheta).grid(row=40, column=0, columnspan=2)

Button(root, text=’Match 2-theta to Intensities’,

command=combine).grid(row=44, column=0, columnspan=2)

l10 = Tkinter.Label(root, text="Give Polarization factor f ")

factor = Tkinter.Entry(root)

l10.grid(row=46, column=0)

factor.grid(row=46, column=1)

Button(root, text=’Correct for Polarization’,

command=depolarizer).grid(row=48, column=0, columnspan=2)

l11 = Tkinter.Label(root, text="Give Bin width in degrees")

delta_input = Tkinter.Entry(root)

l11.grid(row=52, column=0)

delta_input.grid(row=52, column=1)

l12 = Tkinter.Label(root, text="Number of Sigmas")

sigmanum = Tkinter.Entry(root)

l12.grid(row=54, column=0)

sigmanum.grid(row=54, column=1)

Button(root, text=’Find Binned Averages and Do Statistics’,

command=bin_averaging).grid(row=56, column=0, columnspan=2)

Button(root, text=’Make Mask’, command=maskmaker).grid(

row=58, column=0, columnspan=2)

root.mainloop()
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