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Abstract of the Dissertation

Constrained Functional Linear Model for Multi-loci Genetic Mapping

by

Jiayu Huang

Doctor of Philosophy

in

Applied Mathematics and Statistics

(Concentration - Statistics)

Stony Brook University

2016

In genome-wide association studies (GWAS), the efficient incorporation

of linkage disequilibria (LD) among dense-typed linked genetic variants into

analysis to improve the association power is critical yet challenging prob-

lem. Functional linear models (FLM), which impose a smoothing struc-

ture on the coefficients of correlated covariates, are advantageous in genetic

mapping of multiple variants with high LD. Here we propose a novel con-

strained FLM (cFLM) framework to perform simultaneous association tests

on a block of linked SNPs with various traits, including continuous, binary

and zero-inflated count phenotypes. The new cFLM applies a set of inequal-

ity constraints on the FLM to ensure model identifiability under different
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genetic codings. The method is implemented via B-splines, with an aug-

mented Lagrangian algorithm is employed for parameter estimation. For

hypotheses testing, a test statistic that accounts for the model constraints

has been derived, following a mixture of chi-square distributions. Simulation

results show that cFLM is effective in identifying causal loci and gene clus-

ters compared to several competing methods based on single markers and

SKAT-C. We applied the proposed method to analyze the COGEND data

and a large-scale GWAS data on dental caries risk.
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Chapter 1 Background

1.1 Genetics Background

DNA is a nucleic acid that contains information on the development and

functioning of almost all known living organisms except for certain viruses.

The DNA segments carrying such genetic information are called genes. DNA

consists of two chains of subunits twisted around one another forming a

double strand helix. The subunits of each strand are nucleotides, each of

which may be one of the four bases, which are adenine (A), thymine(T),

guanine(G) and cytosine(C). Typically, A pairs with T and G pairs with

C. Inside the nucleus of a living cell, genes are arranged in a linear order

along the chromosomes, consituting the entire genome. Particularly, a human

genome consists of 23 pairs of chromosomes, i.e., 46 chromatics.

A single-nucleotide polymorphism (SNP) is a DNA sequence vari-

ation occurring when a single nucleotide A, T, C or G at a specific position in

the genome differs between members of a biological species. Figure 1 showed

an example of SNPs. As we can see, in the first SNP, nucleotide C in chro-

mosome a was replaced by nucleotide T in the same place of chromosome c.

Positions with such properties are called C/T polymorphism. In this case,

we say that this SNP has two alleles. SNPs occur normally throughout the

genome, with a frequency of about one in every 300 nucleotides. For human

genome in a size of three billion bases, there are roughly 10 million SNPs,
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acting as biological markers to help locate true genetic variants that are as-

sociated with a phenotype of interest. When SNPs occur within a gene or in

a regulatory region, they may play a more direct role by affecting the gene’s

function. By extracting SNPs from the same chromosome, a combination of

bases from nearby regions can be constructed, which is called a haplotype

(See Figure 1).

Figure 1: Illustration of SNPs and haplotypes in human genome. Cited from
http://hapmap.ncbi.nlm.nih.gov/ (2013).

In general, almost all the common SNPs have only two alleles, so most

studies usually focus on the information provided by such biallelic SNPs.

For example, assume that one SNP locus has A/C alleles. The genotypes for

this locus can be AA, AC and CC. AA and CC are called homozygous, and

AC heterozygous. When under random mating, both allele and genotype

frequencies of a nature population would remain constant from generation

to generation. This phenomenon is called the Hardy-Weinberg Equilibrium
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(HWE). In the case of a single locus of two alleles, A and a, with frequencies

given by P (A) = p, P (a) = 1− p, respectively, their genotype frequencies at

each generation are:

P (AA) = p2, P (Aa) = 2p(1− p), P (aa) = (1− p)2

These theoretical frequencies provide information about a baseline against

changes that could be analysed.

Linkage disequilibrium (LD) is another important genetic phenomenon

arising from the co-inheritance of alleles at nearby loci on the same chromo-

some. It suggests the non-random association of alleles at two or more loci.

The degree of LD depends on the difference between observed and expected

haplotype frequencies. If one locus has alleles A and a with frequencies pA

and pa, pA + pa = 1, and a second has alleles B and b with frequencies pB

and pb, pB + pb = 1. The haplotypes for two loci can be AB, aB, Ab or ab,

and the frequencies of each combination are expressed in terms of haplotype

frequencies, i.e. pAB for haplotype AB, paB for aB, pAb for Ab, pab for ab.

If the two SNPs are unlinked, the expected haplotype frequencies are the

product of the constituent allele frequencies. For example, the AB haplotype

should have frequency pAB = pApB. The deviation of the observed haplo-

type frequency from the expected is the coefficient of linkage disequilibrium,

denoted by:

D = pAB − pApB.
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Table 1: Relationship between haplotype frequencies, allele frequencies and
coefficient of linkage disequilibrium D.

A a Total
B pAB = pApB +D paB = papB −D pB
b pAb = pApb −D pab = papb +D pb

Total pA pa 1

Here, D 6= 0 implies linkage disequilibrium. Table 1 illustrates the rela-

tionship between the haplotype frequencies and the allele frequencies with

D.

Sometimes D can be difficult to interpret because its range depends on

allele frequency and it is not symmetrical about zero. Therefore, it is usually

rescaled to be within a range from 0 to 1. One of the standardized measures

is

D′ =
D

Dmax

, where Dmax =











max(−pApB,−papb), D < 0;

min(pApb, papB), D > 0.

Another standardized measure is given by the correlation coefficient between

pairs of loci, denoted as

r =
D√

pApBpapb
.

Over a series of generations, in an unstructured population, we can as-

sume that only strong correlations between SNP markers closely linked to

each other will remain. LD decays exponentially over time due to recombi-

nation. If at some time we observe linkage disequilibrium between two loci,
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it may disappear in the future. However, the stronger the link between the

two loci, the smaller it will be, the rate of convergence of D to zero.

A large number of studies have shown that smaller distance between

SNPs suggests stronger correlation (Kawakami et al., 2014; Talas et al., 2012).

That is, linkage disequilibrium usually decays over distance. Figure 2

depicts the relationship between LD (r2) and genetic distance between SNP

loci pairs using a simulated data set. We can see that the value of r2 de-

creases when the genetic distance increases. Figure 3 shows how the LD

between causal SNP and nearby markers are employed in linkage disequi-

librium mapping. Markers must be mapped at a density compatible to the

distances in which LD extends in the population (Rafalski 2002). The decay

of LD with genetic distance over the genome is specified by a smooth curve

with peaks at the trait loci. We could see that the steeper the decay is, the

higher density of markers is required to locate the correct causal SNP.

1.2 Genome-wide Association Studies

Recent advances in technology have facilitated the development of asso-

ciation studies using a highly dense map of genetic markers. Nowadays, up

to a million SNPs can be genotyped along the whole genome for thousands of

sampled subjects. To investigate how genetic variants, like SNPs, may con-

tribute to certain phenotypes including diseases, the Genome-Wide Associa-

tion Studies (GWAS) have been developed and seen huge progress in last few

years. The basic idea of GWAS is to screen and test the associations of a large

5



Figure 2: Relationship between linkage disequilibrium (r2) and genetic dis-
tance between SNP loci pairs

Figure 3: Influence of density of markers on the true causal variant detection,
the steeper the decay of LD is, the higher the density of markers is required.
The graph is cited from Wu (2008).
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number of SNPs at the genome level to a given disease using high-throughput

genotyping technologies. Nearly 12 million unique SNPs have been assigned

SNP IDs, i.e. the rs number, in the National Center for Biotechnology Infor-

mations dbSNP database (http://www.ncbi.nlm.nih.gov/SNP/) with a sum-

mary of allele frequencies.

GWAS does require to genotype SNPs with sufficient density to capture a

large proportion of the common variants and the causative gene, with regard

to the decay of LD. On the other hand, considerable number of unrelated

individuals should also be included in order to gain adequate power to detect

genetic variants of modest effects.

Typically, GWAS has 4 steps:

1. Selection of large number of individuals with certain phenotypic traits.

2. DNA genotyping and quality control of assays and data, check for geno-

typing errors.

3. Statistical tests for association between the SNPs and the phenotypic

traits, usually based on single markers.

4. Replication of identified associations in an independent population sam-

ple and examination of functionality of identified SNPs and their sur-

rounding regions.

Figure 4B displays the LD pattern of the associations in the CHRNA5

gene region identified by a GWAS on nicotine dependence. The LD measure
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Figure 4: Associations in the CHRNA7 Gene Region Identified by a Genome-
wide Association Study of COGEND (The Collaborative Genetic Study of
Nicotine Dependence) (2011). A, The − log10 P values for association with
smoking behavior in CHRNA5 gene cluster are plotted for each SNP geno-
typed in the region. B, Pairwise linkage disequilibrium estimates (measured
as r2) between SNPs in CHRNA5 gene cluster are plotted for the region.
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was given by the pairwise allelic squared correlations r2, which are plotted

in the form of a heat map. Higher r2 values are indicated by darker shading.

Notice that the whole chromosomal region can be roughly divided into several

contiguous DNA segments, or blocks. Since such bunches of SNPs present

high LD correlations inside the blocks, we may also call these blocks the

linkage disequilibrium blocks (abbreviated as LD blocks).

Typical GWAS analyses mainly utilize linear regressions with SNP geno-

types applied SNP by SNP, i.e. hundreds or thousands of linear regression

models are fitted. When SNPs are tested one by one, it is easy to assign a p-

value to a SNP by conducting a likelihood ratio test. If we ignore non-genetic

predictors such as age, sex and diet, then the only relevant parameters are

the intercept µ and the slope β of the SNP. The parameters can be estimated

by OLS or MLE. The null hypothesis β = 0 can be tested by permutation

tests, or likelihood ratio test methods. The test statistic is asymptotically

distributed as a χ2-distribution with 1 degree of freedom. Importantly, the

p-values must be corrected for multiple testing, either by a Bonferroni cor-

rection or some version of a FDR correction. Figure 4A shows the log 10

p-values for association of CHRNA5 gene cluster with phenotypic trait in

GWAS. We can see that such scatter plots can identify suspected SNPs over

a chromosomal region by analysing the p-values of the coefficients fitted by

univariate linear models.

However, traditional GWAS ignores the functional genetic effects from

the surrounding markers while assessing one particular SNP. Additionally,

9



Table 2: A sample GWAS data set

Sub- Marker Response
ject M1 M2 · · · Mp y
1 2 2 · · · 0 1
2 2 1 · · · 1 0
3 2 0 · · · 2 0
4 1 2 · · · 2 1
5 1 1 · · · 0 0
6 1 0 · · · 1 0
7 0 2 · · · 1 1
8 0 1 · · · 2 0
9 0 0 · · · 0 1

while there are more than 10 million SNPs in the human genome, the dens-

est SNP platform can only genotype about 1 million of them. In some cases,

if we are lucky, the causal SNPs may be already included in the genotyped

SNPs. Nevertheless, in most situations, we might not be that lucky since a

large number of SNPs are still not included by the current biological tech-

nology. In this case, by using LD, we can make use of the information

provided by the adjacent SNPs that are highly correlated to a causal SNP.

In fact, the traditional SNP by SNP single marker association test (smAT)

method is inadequate to detect the accurate functionality of causal SNPs

and is rather time-consuming. Nowadays, more and more multi-loci genetic

mapping methods in GWAS help improve identifying associations with many

strongly correlated SNPs in a wide chromosomal region among the SNPs, due

in part to LD. This renders it intuitive to discover some suspected gene blocks

(or LD blocks) that may be associated with the phenotypic trait.
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1.3 Existing Methods in Multi-loci Association Studies

Association tests based on multiple linked SNPs are believed to be more

powerful than single SNP-based tests. Since SNPs are locally connected due

to linkage disequilibrium, they have natural grouping structure and form so-

called linkage disequilibrium (LD) blocks in contiguous genomic regions, as

shown in Figure 4B . By incorporating this correlation structure, inferences

about the underlying causal variants become possible and flexible. Partial

information about unsampled causal SNPs can be jointly represented by

neighboring sampled markers, which could possibly increase the likelihood of

capturing unobserved genetic effects. Integrating a block of SNPs simultane-

ously into the model also enables multi-loci genetic mapping which relaxes the

isolated assumptions of individual marker tests. Several multi-SNP methods

have been proposed, such as entropy-base methods (Cui et al., 2008), ker-

nel machine methods (SKAT, SKAT-C) (Ionita-Laza et al., 2013), and two-

marker LD mapping (Yang et al., 2014). In addition, some variable selection

models, such as LASSO (Wu et al., 2009) and smoothed minimax concave

penalized regression (SMCP) (Liu et al., 2011), were developed for identi-

fying a core subset of potential causal variants. While these methods are

useful, most of them overlooked marker ordering information in their physi-

cal positions. Meanwhile, even though SKAT and SMCP consider pairwise

LD in their models, the rich information on block-wide correlation structure

is still not well recognized.
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1.3.1 Basic Linear Regression Models

Let yi be the phenotypic trait for subject i, α0 be the intercept term,

zi,α the vectors of covariates and their corresponding coefficients, xij the

jth predictor variable, i.e. the genotype coding of the jth SNP for subject i

and βj its corresponding regression coefficient. When the response y is quan-

titative, under the framework of multiple linear regressions, the relationship

with predictor variables x1, . . . , xp and covariates z is model in the way in

the way as

yi = α0 +α′zi + β1xi1 + β2xi2 + . . .+ βpxip + ǫi (1.1)

where ǫi is the error term for the ith subject. We could interpret the βjs as

the genetic effect of the jth marker SNP. The problem was then formulated

as a variable selection problem by choosing the significant effects according

to their p-values.

On the other hand, the generalized linear models can be used to apply

analyses when yi is not quantitative. Using a simple link function g the model

is then usually formulated as

g(µ(yi)) = α0 +α′zi + β1xi1 + β2xi2 + . . .+ βpxip (1.2)

By running the forward, backward or stepwise model selections, we could

find a subset of predictor variables linking the corresponding genetic effects

12



to the phenotypic responses.

Although the basic linear models provide statisticians an interpretable

solution in GWAS, some novel developments in biotechnology may make the

situations more complex than ever before. Since millions of SNPs can be

typed on samples involving thousands of individuals nowadays, the sheer

scale of data creates new problems in data analysis. In fact, with hundreds

of thousands of predictors, the standard methods of multiple regression break

down. These methods involve matrix inversion or the solution of linear equa-

tions for a huge number of p predictors. Since these operations scale as p3, it

comes as nosurprise that geneticists have chosen for univariate linear regres-

sion based on single marker. Besides, some simulation studies have shown

that under certain circumstances, basic linear models can not well control

the type I error well and usually have little power.

1.3.2 Penalized Regression Models

Some penalized regression methods have been proposed to solve the

issues raised by basic linear models in the recent years. We will review two of

them in this section. The LASSO approach performs well in high-dimension

cases where p is large, and the smooth minimax concave penalty approach

offers a more biologically meaningful view in the GWAS analysis.

LASSO Penalized Regression

Wu et al. (2009) proposed the lasso penalized logistic regression for case-

control GWAS studies. The motivation of their work is as follows. In lin-
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ear regression, imposition of a lasso penalty renders continuous model selec-

tion straightforward. Lasso penalized regression is particularly advantageous

when the number of predictors far exceeds the number of observations. The

method evaluates the performance of LASSO penalized logistic regression in

case-control disease gene mapping with a large number of SNPs predictors.

The strength of the lasso penalty can be tuned to select a predetermined

number of the most relevant SNPs and other predictors. For a given value of

the tuning constant, the penalized likelihood is quickly maximized by cyclic

coordinate ascent. Once the most potent marginal predictors are identified,

their two-way and higher order interactions can also be examined by lasso

penalized logistic regression.

The lasso penalty is an effective device for continuous model selection, es-

pecially in problems where the number of predictors p far exceeds the number

of observations n. The parameter vector θ = (µ, β1, . . . , βp)
T is usually esti-

mated by maximizing the log-likelihood in ℓ1-regression one replaces squares

by absolute values. Lasso penalized regression is implemented by maximizing

the modified objective function

L(θ) = L(θ)− λ

p
∑

j=1

|βj|. (1.3)

Note that the intercept is ignored in the lasso penalty λ
∑p

j=1 |βj|. The

tuning constant λ controls the strength of the penalty, which shrinks each βj

toward the origin and enforces sparse solutions.
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However, the LASSO approach does have some major issues. First, it

doesn’t have a reliable asymptotic calculation of the overall group-wise p-

value. Generally permutation test will be employed to assess significance

of association in group/block level. (James et al., 2009) Second, it tends to

overselect unimportant variables. Therefore, direct application of the LASSO

to GWAS tends to generate findings with high false positive rates. Another

limitation of the LASSO is that, if there is a group of variables among which

the pairwise correlations are high, then the LASSO tends to select only one

variable from the group and does not care which one is selected.

Smooth Minimax Concave Penalized Regression

In the above cases, the loss function of penalized methods did not deal

with the linkage disequilibrium information among a group of SNPs. This

would undermine the accuracy of results and cause potential loss of power.

Liu et al.(2011) adapted the following penalty to include the possible LD

information among nearby SNPs.

λ2

2

p−1
∑

j=1

ζj(|βj| − |βj+1|)2.

where the weight ζj is a measure of LD between SNP j and SNP (j + 1).

This penalty encourages |βj| and |βj+1| to be similar to an extent inversely

proportional to the LD strength between the two corresponding SNPs. Ad-

jacent SNPs in weak LD are allowed to have larger difference in their |β|s

than if they are in stronger LD. The effect of this penalty is to encourage
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smoothness in |β|s for SNPs in strong LD. By using this penalty, we expect a

better delineation of the association pattern in LD blocks that harbor disease

variants while reducing randomness in |β|s in LD blocks that do not.

On the other hand, the minimax concave penalty (MCP) is used for the

purpose of SNP selection. Zhang et al. (2010) proposed a flexible criterion

that attenuates the effect of shrinkage in LASSO regression that leads to

bias. The MCP is denoted by

ρ(t;λ1, γ) = λ1

∫ |t|

0

(1− x/(γλ1))+dx,

where λ1 is a penalty parameter and γ is a regularization parameter that

controls the concavity of ρ. Assume the unpenalized log-likelihood is defined

by L(θ), the Smooth Minimax Concave Penalized regression (SMCP) in a

working model can be expressed as maximizing the criterion

L(θ) = L(θ)−
p

∑

j=1

ρ(|βj|;λ1, γ)−
λ2

2

p−1
∑

j=1

ζj(|βj| − |βj+1|)2 (1.4)

The authors derived a coordinate descent algorithm for computing the so-

lution to L(θ). This algorithm optimizes a target function with respect to

one parameter at a time, iteratively cycling through all parameters until

convergence is reached.

The SMCP penalized regression is suitable for multi-loci mapping in a

dense set of SNPs by incorporating the LD information. However, it only
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considers the lag-one correlation of neighboring SNPs instead of considering

the higher level group-wise linkage disequilibrium in a SNP block. On the

other hand, although SMCP is capable of dealing with a large number of

SNPs simutaneously, it only yields single SNP-based p-values instead of an

overall p-value at the block or gene set level. Since our proposed methods

aim to perform probabilistic significance analyses at the block level, it is not

reasonable to compare the power of SMCP and our method in this study.

1.3.3 Sequence Kernel Association Test

The sequence kernel association test (SKAT) is another multi-loci ge-

netic mapping method proposed by Wu et al. (2011) and Ionita-Laza et al.

(2013). It is a SNP set (e.g., a gene or a LD block) level test for associa-

tion between a set of genetic variants and binary or quantitative phenotypes.

SKAT aggregates individual score test statistics of SNPs in a SNP set and

efficiently computes SNP-set level p-values, while adjusting for covariates,

such as principal components to account for population stratification. For

dichotomous outcomes, based on (1.2), we have the following logistic regres-

sion model.

g(µ(yi)) = log
p(yi = 1)

p(yi = 0)
= α0 +α′zi + β′Xi

To test the overall effect of a SNP set, the null hypothesis is H0 : βj = 0

for all j = 1, . . . , p. Nonetheless, the standard likelihood ratio test approach
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is usually underpowered to detect causal genetic variant. The SKAT method

tries to use a variance component method to enhance the power. Assume

that each βj follows an unknown distribution with mean zero and variance

wjτ , where τ is a variance component and wj is a pre-specified weight for

SNP j. The following variance-component score test statistic in the mixed

effect model is used:

Q = (y − µ̂)′K(y − µ̂) (1.5)

where K = XWX ′ , µ̂ is the predicted mean of y under H0, that is µ̂ =

logit−1(α̂0 +Zα̂) for binary traits. Here W = diag(w1, . . . , wp) contains the

weights of the p genetic variants. In fact, K is an n × n matrix with the

(i, i′)-th element equal to K(Xi, Xi′) =
∑p

j=1 wjXijXi′j. The operator K(·, ·)

is a kernel function, and K(Xi, Xi′) measures the genetic similarity between

subjects i and i′ in the region via the p markers. This form of K(·, ·) is

called the weighted linear kernel function. Epistatic effects can be modeled

by using other kernel functions. The power of the SKAT depends on choices

of weights wj. Decreasing the weight of noncausal variants and increasing the

weight of causal variants can produce improved power. Because in practice

we do not know which variants are causal, wj = Beta(MAFj; a1, a2) which

is a beta function is usually used. Under H0, the score statistic Q follows a

mixture of χ2 distributions, i.e. the χ̄2 distribution where the weights can be

calculated by the Davies Algorithm (Ionita-Laza et al., 2013).

The SKAT method is computationally efficient, and the exploration of
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local correlation structure does consider the effect of linkage disequilibrium

in a SNP set. Incorporating flexible weights in the mixed model also help

greatly in boosting power. However, the SKAT method still does not consider

the alignment of SNPs and does not use LD information to a higher order

other than pairwise correlation. In a multi-loci genetic mapping framework,

the SKAT-C method for combined common and rare variants (Ionita-Laza

et al., 2013) is applicable for power comparison with our proposed method.
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Chapter 2 Constrained Functional Linear Models

With Simple Link Functions

2.1 Generalized Functional Linear Model

2.1.1 Motivation and model formulation

As mentioned in the first chapter, regression-based methods for associ-

ation studies try to extract the causal SNP by studying the relationship be-

tween a phenotypic trait and the genotypes of a large number of SNPs. Our

goal is to build up a regression model that could explain the phenotypic trait

with the SNP marker genotypes gathered from the sample. Association tests

based on multiple linked SNPs are believed to be more powerful than single

SNP-based tests. By incorporating the LD correlation structure, inferences

about the underlying causal variants become more plausible and flexible.

Partial information about unsampled causal SNPs can be jointly represented

by neighboring sampled markers, which could potentially increase the like-

lihood of capturing unobserved genetic effects. Integrating a block of SNPs

simultaneously into the model also enables multi-loci genetic mapping which

relaxes the isolated assumptions of individual marker tests. However, most

of the existing multi-marker regression methods overlooked the alignment of

marker physical positions. Even though some of these methods (SKAT and

SMCP) considered pairwise LD in their models, the rich information about

block-wide correlation structure is still under utilized.
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In the presence of high degree of LD, we could use a smooth coefficient

function over the markers to simulate the SNP effects. Imposing the structure

of smooth coefficient function has two prominent advantages. On one hand,

the smoothing structure could incorporate the spatial information for SNP

markers. The spatial distance here may mean the physical genomic distance,

or it could be the biological distance that is related to LD between markers.

On the other hand, the strong correlation of SNP genotypes in a LD block

can be well addressed. Adjacent SNPs, or SNPs in high LD, are expected

to show similar effects under this structure. This result corresponds to the

nature of genetic effects.

Functional linear models (FLM) serve as a good solution to the above-

mentioned problems. Unlike conventional methods that discard a large amount

of information due to lack of model complexity, FLM preserves the intrinsic

correlation structure and spatial information in the data. In essence, FLM

can model genetic effects from a functional prospective, and explicitly take

into account the effect that neighboring correlated SNPs in LD would show

similar genetic effects. That is, regression coefficients of the genetic markers

can be structured as a smooth continuum over their contiguous positions

(Ramsay, 2006). When multiple causal variants exist in one LD block, the

peaks/valleys of the fitted coefficient function would indicate the potential

loci of causal variants. Additionally, the smooth coefficient function can be

expanded in terms of spline bases, which allows for substantial dimension

reduction in parameter estimation (Cardot et al., 2003). Both functional
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principal component analysis (FPCA) and beta-smooth only approaches can

be applied to construct the FLM (Fan et al., 2013; Luo et al., 2012). Since

beta-smooth only is more straightforward, it will be used for the construc-

tion of FLM hereafter. By treating cumulative genetic effect as a continuous

function over marker positions rather than discrete realizations, the FLM

utilized block-wide LD information more efficiently and is expected to show

higher power in association analysis.

Suppose n subjects are sampled, each characterized by a block of p linked

SNP markers. Let mj be the spatial location of SNP marker j, j = 1, . . . , p,

assuming 0 ≤ m1 < · · · < mp ≤ M . SNP location can be measured by the

distance of a SNP from the starting position of a block. Denote Xi(mj) as

the SNP genotype at marker position mj for subject i. The genotype of a

SNP is coded as 0, 1, or 2 according to the number of copies of a reference

allele. The genetic effect is denoted by β(m), a smooth coefficient function

over all marker positions m. The value of the smooth coefficient function at

marker position mj is denoted by β(mj). Let zi = (zi1, . . . , ziq)
⊤ stand for

the q×1 vector of covariates for subject i, and α = (α1, . . . , αq)
⊤ be the q×1

vector of covariate coefficients. The global-featured effect is included as the

intercept, denoted by α0. For the ith subject, let yi denote the phenotypic

response. If the response is quantitative, an i.i.d. normal error term ǫi with

mean zero and variance σ2
ǫ is imposed in the model. The functional linear
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model (FLM) can be formulated as

yi = α0 +

q
∑

u=1

ziuαu +

p
∑

j=1

Xi(mj)β(mj) + ǫi, ǫi ∼ N(0, σ2
ǫ ). (2.1)

Functional linear models for association analysis with quantitative traits

have been substantially studied in Luo et al. (2012) and Fan et al. (2013).

Alternatively, if the phenotypic response has an error distribution other than

a normal distribution, we use a link function g(·) to model the mean µ(yi) =

E(yi|xi, zi) of the response. In this case, the generalized functional linear

model (GFLM) is formulated as

g(µ(yi)) = α0 +

q
∑

u=1

ziuαu +

p
∑

j=1

Xi(mj)β(mj). (2.2)

2.1.2 B-spline Basis

Many nonparametric smoothing methods can be applied to estimate the

coefficient function β(m), including the kernel-local smoothing and B-spline

smoothing. B-spline is well suited for our model. It constitutes an appealing

choice for the basis function in estimating the smooth coefficient function.

A B-spline is the maximally differentiable interpolative basis function that

has compact support. They can be evaluated in a numerically stable and

efficient way by the de Boor algorithm (De Boor, 1978). The application of

B-splines has several advantages. For example, they have limited parameter

covariance and built-in smoothness and continuity. What’s more, they are
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embedded in popular statistical softwares such as R and SPlus, which may

be very convenient for practical use. It is defined as follows.

Let ξ0 = a and ξk+1 = b. Define new knots τ1, . . . , τM such that

τ1 ≤ τ2 ≤ . . . ≤ τM ≤ ξ0,

τj+M = ξj for j = 1, . . . , k, and

ξk+1 ≤ τk+M+1 ≤ . . . ≤ τk+2M .

The choice of extra knots is arbitrary; usually one takes τ1 = . . . = τM = ξ0

and ξk+1 = τk+M+1 = . . . = τk+2M . We define the basis functions recursively

as follows. First we define

Bi,1 =















1 if τi ≤ x < τi+1,

0 otherwise.

for i = 1, . . . , k + 2M − 1. Next, for m ≤ M , we define

Bi,m =
x− τi

τi+m−1 − τi
Bi,m−1 +

τi+m − x

τi+m − τi+1

Bi+1,m−1

for i = 1, . . . , k + 2M − m. It is understood that if the denominator is 0,

then the function is defined to be 0.

The functions {Bi,4, i = 1, . . . , k + 4} are a basis for the set of natural
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cubic splines. They are called the B-spline basis functions of degree 3. In

general, for a B-spline of degree d with M − 1 interior knots, (M + d) basis

functions are needed to span the linear space formed by additional constraints

at the endpoints, thus the dimension of the linear space formed by natural

cubic B-spline function is (M + d − 2) = (M + 1). To describe a curve,

another important issue for B-spline is the location of knots, since different

locations of knots yield different shapes of the spline functions. Usually the

knots are placed uniformly over the interval for its simplicity. An alternative

way is to place the knots unevenly for its flexibility.

The advantage of the B-spline basis function is that they have compact

support which makes it possible to speed up calculations. See James and

Hastie (2001) and Wasserman (2006) for details. Figure 5 shows the cubic

B-spline basis using nine equally spaced knots on (0, 1).

2.1.3 Estimation

By the virtue that linear combinations of B-splines produce smooth

curves, it is convenient to represent β(m) in terms of B-spline basis. We

can express β(m) as

β(m) =
d

∑

r=1

γrBr(m) = B(m)γ, (2.3)

where d ≥ 1, γd×1 = (γ1, . . . , γd)
⊤ are real-valued coefficients, and B(m) =

(B1(m), . . . , Bd(m)) is the matrix of values for B-spline basis functions. Then
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Figure 5: B-spline basis of df=3 with nine equally spaced knots on (0, 1).

the formulation of GFLM using B-spline basis is:

g(µ(yi)) = α0 +

q
∑

u=1

ziuαu +

p
∑

j=1

Xi(mj)β(mj)

= α0 +

q
∑

u=1

ziuαu +

p
∑

j=1

Xi(mj)(
d

∑

r=1

Br(mj)γr)

= α0 +

q
∑

u=1

ziuαu +
d

∑

r=1

γr(

p
∑

j=1

Xi(mj)Br(mj))

(2.4)

Let yn×1 = (y1, . . . , yn)
⊤, Zn×q = (z1, . . . , zn)

⊤

Xn×p =













X1(m1) · · · X1(mp)

...
...

...

Xn(m1) · · · Xn(mp)













,Bp×d =













B1(m1) · · · Bd(m1)

...
...

...

B1(mp) · · · Bd(mp)













.
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Using the matrix notations given, the GFLM can be reformulated as

g(µ(y)) = α0 +Zα+XBγ =

(

1 Z XB

)(

α0 α γ

)⊤

. (2.5)

Suppose the response vector yn×1 has independent entries from a distri-

bution in exponential family with density f(y;β). By substituting β with

Bγ, the dimensionality of parameter estimation changes from (p+ q + 1) to

(d+ q + 1), where usually d ≪ p. Suppose the loglikelihood function can be

expressed as

L(α0,α,γ) =
n

∑

i=1

log f(yi;α0,α,γ) (2.6)

The maximum likelihood estimators (MLE) for parameters can be computed

by maximizing the loglikelihood function

(α̂0, α̂, γ̂) = arg max
α0,α,γ

L(α0,α,γ;y). (2.7)

which can be solved by the iteratively reweighted least squares algorithm.

2.1.4 Hypothesis Test

Since we are modeling a block of SNPs simultaneously in GFLM, the

hypothesis test of association between genetic variants and phenotypic trait
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will be made at the block level.

H0 : β(mj) = 0, for all j = 1, . . . , p.

Ha : Not H0.
(2.8)

As mentioned above, we have attained dimension reduction by changing the

estimator of interest from the p-dimensional β(mj), j = 1, . . . , p to the d-

dimensional γd×1. The null hypothesis is equivalent to

H0 : γr = 0, for all r = 1, . . . , d.

Ha : Not H0.
(2.9)

The likelihood ratio test (LRT) will be applied to draw inference about

whether a block of SNPs may be associated with the phenotypic trait. The

LRT statistic can be calculated as the deviance between the null model and

the saturated model, both adjusted for covariates. Under H0, the LRT statis-

tic asymptotically follows a χ2
d distribution (Chi-square distribution with df

= d).

2.1.5 Smoothing Penalty

Sometimes in functional linear models we hope to control the smooth-

ness of β(m) so that the correct association can be addressed. The benefits

of using smoothing splines with B-spline basis to fit the coefficient function

is discussed by Marx and Eilers (1999). For practical application, estimating

method may vary with regard to the type of response or other issues. If the
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phenotypic trait is a categorical variable, we should use the penalized likeli-

hood for estimation. We can use the integration of second degree derivative

of the fitted function as smooth penalty.

We continue to use the matrix notations given in the previous part. For

categorical responses, the generalisation of the FLM is

g(µ(y)) =

(

1 Z XB

)(

α0 α γ

)⊤

= Uγ∗.

Traditional approach attempts to maximize L in equation (2.6), while

subject to the requirement of smoothness. Let Ω be the d× d matrix whose

(i, j)th element is Ωij =
∫

{|Bi(m)|′′T |Bj(m)|′′}dm. For notational conve-

nience, we also denote

Θ(1+q+d)×(1+q+d) =







0(1+q)×(1+q) 0(1+q)×d

0d×(1+q) Ωd×d







The penalized log-likelihood now maximizes

Lpen = L(α0,α,γ ,y)− 1

2
λγ⊤Ωγ⊤

= L(γ∗,y)− 1

2
λγ∗⊤Θγ∗⊤

(2.10)

The factor 1
2
is a small trick to get rid of a factor 2 that appears when

differentiating the penalty. Maximization of the penalized log-likelihood in

(2.10) can be done through scoring algorithm. Upon convergence we obtain
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the maximum likelihood (ML) estimates. The preceding variance formulas

are only asymptotically correct if λ is chosen a priori. Then the estimators

can be computed instantly.

• Selection of smoothing parameter

For practical implementation of smoothing splines, one has to select an

adequate smoothing parameter λ and the basis functions. It can be seen from

equation (2.10) that too large a λ gives an excessive penalty for the roughness

of β(m), thus resulting in an oversmoothed estimator β̂(m). Conversely, too

small a λ results in an undersmoothed β̂(m).

In practice, the smoothing parameters can be selected by cross-validation

method. We use a form of cross-validation in which single subjects are deleted

one at a time. Smoothing in the current context could have a number of

different objectives, especially when β(m) has more than one component.

Denote by λ the smoothing parameter of any linear estimator of this section.

We consider averaged log-likelihood as the metric to measure our objective.

If we perform a 10-fold cross validation, let y(iF ) be test observations that are

in the ith fold of subjects, y(−iF ) be all other leaved out 9 folds of subjects.

Let ˆL(−iF )(λ,γ∗,y(−iF )) be the maximized penalized log-likelihood using the

leaved out subjects with smoothing parameter λ. The cross-validation aver-

age loss metric is defined as

CV (λ) =
1

10

10
∑

iF=1

ˆL(−iF )(λ,γ∗,y(iF )) (2.11)
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Then our cross-validation smoothing parameter, λCV is the maxmizer of

CV (λ). For smoothing splines estimator, the cross-validation smoothing

parameters consist of λCV . Intuitively, the extra number of smoothing pa-

rameters in smoothing splines can be used to allow for possibly different

smoothness of the nonparametric components.

In our simulation studies, we skipped the Functional Linear Model with

smoothing penalty since previous studies have shown that they have very

similar empirical power. On the other hand, we have noticed that even with

smoothing penalty, the fitted coefficient function is still hard to interpret due

to fluctuating wiggles and incapability of identifying zero-effect regions. In

this case, we only focus on the Generalized Functional Linear Model feature-

ing the same estimation problem, similar empirical power but much lighter

computational burden.

2.2 Constrained Functional Linear Model

2.2.1 Motivation and Model Formulation

One critical problem with FLM is that the fitted coefficient functions

are noisy and hard to interpret. They usually fluctuate dramatically due to

several possible reasons: (1) Strong LD among nearby SNPs causes multi-

collinearity, which leads to erratic changes in the signs of adjacent functional

coefficients; (2) The FLM is rarely capable of producing estimates that are

exactly zero over regions with no apparent relationship, thus generating un-
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natural wiggles in the fitted genetic function; (3) Population-specific phe-

nomena such as mutation, genetic drift, population structure, and variations

in allele frequencies result that the LD does not exactly decay with dis-

tance. Excessive local fluctuation may be relieved by adding a smoothness

penalty in the model or controlling the number of spline bases. However,

these methods are still not able to identify the null regions in which the co-

efficient function should be zero and may suffer from loss of predictive power

due to oversmoothing.

As mentioned in previous section, the fitted coefficient function in FLM

usually fluctuates dramatically. The fluctuation makes it difficult to ex-

plain the functional patterns and distinguish where a causal SNP is located.

To ease this situation, an interpretable constrained functional linear model

(cFLM) is proposed on the basis of FLM. We separate the genetic effect into

two sign-specific coefficient functions and impose an equality constraint to

promote spatial sparsity. The cFLM is formulated as follows:

g(µ(yi)) = α0 +

q
∑

u=1

ziuαu +

p
∑

j=1

Xi(mj)β
+(mj) +

p
∑

j=1

Xi(mj)β
−(mj)

subject to β+(mj) ≥ 0, β−(mj) ≤ 0, β+(mj) · β−(mj) = 0 for all j

(2.12)

where β+(m), β−(m) are smooth coefficient functions.
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2.2.2 Estimation

We express β+(m), β−(m) in terms of B-spline basesB+
1×d1

(m),B−
1×d2

(m)

and the new coefficient vectors γ+
d1×1,γ

−
d2×1, respectively:

β+(m) = B+(m)γ+, β−(m) = B−(m)γ−, (2.13)

In matrix notation, the constrained Functional Linear Model (cFLM) is for-

mulated as:

g(µ(y)) = α0 +Zα+XB+γ+ +XB−γ−

=

(

(1 Z) XB+ XB−

)(

γ0 γ+ γ−

)⊤

= Uγ∗ = η∗

subject to B+γ+ ≥ 0,B−γ− ≤ 0, (B+γ+) ◦ (B−γ−) = 0

(2.14)

The revised loglikelihood function for cFLM is

L(γ0,γ
+,γ−) =

n
∑

i=1

log f(yi;γ0,γ
+,γ−) (2.15)

In order to obtain the MLEs for parameters, the following nonlinear opti-

mization problem with inequality/equality constraints need to be solved:

maximize L(γ0,γ
+,γ−)

subject to B+γ+ ≥ 0,B−γ− ≤ 0, (B+γ+) ◦ (B−γ−) = 0

(2.16)
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The Augmented Lagrangian Algorithm (ALA) (Birgin and Mart́ınez,

2008) will be applied to this constrained maximization problem. Denote

h(γ∗) = 0 as the I-dimensional equality constraints, g(γ∗) ≤ 0 as the J-

dimensional inequality constraints, let the augmented lagrangian be

Lρ(γ
∗,λ,µ) = −L(γ∗) +

ρ

2
{

I
∑

i=1

[hi(γ
∗) +

λi

ρ
]2 +

J
∑

j=1

[max(0, gi(γ
∗) +

µi

ρ
)]2},

(2.17)

where λ ∈ R
I ,µ ∈ R

J
+ and ρ > 0. Let λmin < λmax, µmax > 0, ξ > 1, 0 < τ <

1. Let {ǫk} be a sequence of nonnegative numbers such that limk→∞ ǫk = 0.

Let λ1
i ∈ [λmin, λmax], i = 1, . . . , I, µ1

j ∈ [0, µmax], j = 1, . . . , J and ρ1 > 0. Let

γ∗0 ∈ Ω be an arbitrary initial point. Initialize k → 1.

Augmented Lagrangian Algorithm

Step 1. Find the approximate minimizer γ∗(k) of Lρk(γ
∗, λ(k), µ(k)) subject

to γ∗ ∈ Ω, satisfying

‖PΩ(γ
∗(k) −▽Lρk(γ

∗(k), λ(k), µ(k)))− γ∗(k)‖∞ ≤ ǫk,

where PΩ is the Euclidean projection onto Ω.

Step 2. Define V
(k)
i = max{gi(γ∗(k)),−µ

(k)
i

ρk
}, i = 1, . . . , p. If k = 1 or

max{‖h(γ∗(k))‖∞, ‖V k‖∞} ≤ τ max{‖h(γ∗(k−1))‖∞, ‖V (k−1)‖∞},

define ρk+1 = ρk. Otherwise, define ρk+1 = ξρk

Step 3. Compute λ
(k+1)
i ∈ [λmin, λmax], i = 1, . . . , I and µ

(k+1)
j ∈ [0, µmax], j =
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1, . . . , J . Set k + 1 → k and go to Step 1. In practice, the first-order safe-

guarded estimates of Lagrange multipliers will be used:

λ
(k+1)
i = min{max{λmin, λ

(k)
i + ρkhi(γ

∗(k+1))}, λmax}

for i = 1, . . . , I, µ
(k+1)
j = min{max{0, µ(k+1)

j + ρkgi(γ
∗(k+1))}, µmax} for j =

1, . . . , J .

2.2.3 Hypothesis Test

Similar to what has been done for FLM, we perform the likelihood ratio

test to investigate the overall genetic effects represented by a block of SNPs

in contiguous genomic regions. However, the null and alternative hypotheses

in equation (2.8) are upon revision with regard to the new parameter space

and imposed constraints.

H0 : γ+
d1×1 = 0 and γ−

d2×1 = 0.

Ha : B+γ+ ≥ 0,B−γ− ≤ 0, (B+γ+) ◦ (B−γ−) = 0
(2.18)

The LRT statistic is the deviance between the null model G0 and the sat-

urated modelG1, both adjusted for covariates. The alternativeK-dimensional

parameter space Ω to test against is defined by the inequality and equality

constraints B+γ+ ≥ 0,B−γ− ≤ 0, (B+γ+) ◦ (B−γ−) = 0. Since we

constrained that the Hadamard product of sign-specific coefficient functions

is 0, for each non-negative estimate of basis coefficient in the positive part,
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at least one basis coefficient in the negative part would be constrained to

zero. Therefore, the dimension of the alternative parameter space should be

K = max(d1, d2). According to Shapiro (1985) and Liu (2007), it has been

shown in nonlinear optimization that Ω can be approximated at the null

estimate by a polyhedral convex cone defined by the gradient vectors of the

constraint functions. If the unconstrained true parameter value is an interior

point of Ω, the test statistic has an asymptotic χ2
K distribution under H0.

Otherwise when the unconstrained parameter estimate does not fall in the

admissible parameter space, the test statistic is defined by the projection of

the unconstrained estimate on the k-dimensional boundary of Ω according to

the Hessian Matrix I(γ∗). In this case, it has an asymptotic χ2
k distribution

under H0 (k = 0, . . . , K − 1).

Under general cases, the LRT statistic asymptotically follows a mixture

of chi-square distributions with mixing probabilities wj such that
∑K

j=0 wj =

1, denoted as

χ̄2 = G0 −G1 = −2(l0 − l1)
d−→

K
∑

j=0

wjχ
2
j . (2.19)

The p-value of the χ̄2 test statistic is defined as

P (χ̄2 ≥ c2) =
K
∑

j=0

wjP (χ2
j ≥ c2) =

max(d1,d2)
∑

j=0

wjP (χ2
j ≥ c2). (2.20)

The mixing probabilities can be calculated using Monte Carlo Tech-
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niques (Wolak, 1989). The algorithm is as follows: (1) Take 1,000 draws

from a multivariate normal distribution with mean zero and covariance ma-

trix equaling to the Hessian matrix I(γ∗); (2) For each draw compute and

count the number of sign-agree elements of the vectors that fall in the k-

dimensional boundaries (k = 0, . . . , K) of the admissible parameter space.

In this case wj is computed as the proportion of the 1,000 draws that has

exactly k non-zero coefficients projected on the alternative parameter space.

Monte Carlo technique is easy to implement and able to circumvent compli-

cated numerical integrations. However, the resulting mixing probabilities are

not exact.

2.3 Simulation Studies

2.3.1 General Strategies

To study the finite sample performance of the proposed cFLM, we car-

ried out various sets of simulation under different sampling schemes. For

the genotypic file, we first simulated random LD blocks with varying struc-

tures. Then we borrowed the LD structures from existing datasets to mimic

real gene analyses. For the phenotypic file, we simulated binary outcomes

conditional on causal genotypes under the logistic model:

logit(µ(yi)) = log
p(yi = 1)

1− p(yi = 1)
= α0 +X⊤

i βcausal (2.21)
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We considered simulation scenarios where α0 = 0.2 and sample size ranging

from 500 to 2,000 to mimic the characteristics of realistic data.

To investigate whether cFLM can control type I error, βcausal was set to

zero under the null hypothesis. Each scenario was replicated 10,000 times in

order to observe the type I error rates under small genome-wide thresholds

(nominal α = 0.05, 0.01, 0.005 and 0.001).

For empirical power evaluation, we examined two different settings. First

we assumed only one causal SNP was located in the LD block, having varying

regression coefficient βcausal. Then we considered another crucial setting when

two causal loci with reversed sign effects were both found in the LD block.

This mimics the scenario when both deleterious and protective SNPs were in

a genomic region. The two causal loci chosen were weakly correlated (r2 <

0.01). The corresponding regression coefficients were set to (βcausal1, βcausal2)

where βcausal1 = −βcausal2. In this case we can check if the proposed test can

deal with sign-heterogeneous genetic effects. Our model assumeed that the

LD structure was mainly contributing to the power gain, hence the causal

SNPs would be removed before the first set of analyses. For comparison

purpose, we also checked scenarios where causal SNPs were kept so that we

can see if the model can handle such settings. We ran 1,000 replicates for each

scenario. Table 3 is the summary of parameter settings in the simulations.

A p-value smaller than 0.05 would be declared significant.

In terms of functional parameters, the order of B-spline basis was set

to 4 (degree = 3) to construct cubic curves with desired smoothing proper-
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Table 3: Parameter settings for power evaluation with binary outcomes

Scenario Outcome Block structure Causal SNP # of

genotyped Causal SNPs

SC1 Binary random No 1

SC2 Binary random No 2

SC3 Binary random Yes 1

SC4 Binary random Yes 2

SC5 Binary CHRNA7 No 1

SC6 Binary CHRNA7 No 2

SC7 Binary CHRNA7 Yes 1

SC8 Binary CHRNA7 Yes 2

ties. Knots were placed evenly in the position domain. The number of spline

bases would be determined by the number of SNPs (p) in a LD block. Data-

adaptive choices for the number or the placement of knots can be made via

cross-validation, however for simplicity we shall not provide further discus-

sions here. Empirically, we suggest using the maximum of 4 and the integer

part of p/6 as the number of bases so that it is possible to capture clustering

genetic effects in the fitted function. Sensitivity analyses using a broad range

of parameters were performed to make sure our results are valid.

We compared the empirical power of our proposed model with three ex-

isting methods: single marker association test (smAT), SKAT for the com-

bined effect of rare and common variants (SKAT-C), and functional linear
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model (FLM). P-values for smAT were adjusted by minP Bonferroni correc-

tion. P-values for SKAT-C and FLM were calculated by combined sum test

and F test.

2.3.2 Simulation using random LD blocks

The first set of simulation used randomly generated LD blocks. To make

our method comparable to the other methods, SNP arrays were produced

following the strategy introduced in Wu et al. (2009). The genotypes of a

SNP array were generated based on a random p-dimensional multivariate

normal matrix ζn×p with mean 0 and covariance Σp×p. Assuming that SNPs

have equal allele frequencies, the following rule would be applied to generate

the genotype of the jth SNP for ith subject.(Let z0.25 be the third quartile

of standard normal distribution.)

Xij =































0, if ζij < −z0.25.

1, if −z0.25 ≤ ζij < z0.25.

2, if ζij ≥ z0.25.

(2.22)

The correlation matrix will be defined as follows. For each block, 10% of

the SNPs were selected as “tag SNPs”. They were highly correlated with each

other (Corr(Xj1, Xj2) = 0.8), moderately correalted with 30% of other SNPs

(Corr(Xj1, Xj2) = 0.5), and weakly correlated with the remaining 60% SNPs

(Corr(Xj1, Xj2) = 0.2). The 90% “non-tag” SNPs are correlated according
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to their physical location (Corr(Xj1, Xj2) = 0.7|j1−j2|). In this case, we would

not violate the assumptions that SNPs are physically adjacent and linked.

Also, the LD block structures varies among different randomly generated

arrays.

For type I error simulation, we used p = 25 SNPs in a group and

d1 = d2 = 4 as the number of spline bases. We can see from Table 4

that cFLM maintained the type I error under this random sampling scheme.

The quantile-quantile (Q-Q) plots of the observed p-values against expected

p-values in log10 scale are presented in Figure 6.

Table 4: Type I error simulation using cFLM for binary outcomes based on
random LD blocks

nominal α N=500 N=1000 N=1500 N=2000

0.05 0.0500 0.0473 0.0466 0.0482

0.01 0.0109 0.0076 0.0099 0.0082

0.005 0.0054 0.0045 0.0046 0.0033

0.001 0.0010 0.0009 0.0011 0.0006
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Figure 6: Type I error simulation using cFLM for binary outcomes based on
random LD blocks, Q-Q plots of p-values.
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Evaluation of empirical power was based on settings when regression

coefficient βcausal = 0.1, 0.2, 0.3, 0.4, 0.5, respectively. For power calculation

with single causal locus, we used the same settings as that in type I error

simulation. When causal SNPs were not genotyped, we can see from SC1

(Figure 7) that the cFLM outperform other methods. In the second scenario

when two causal loci had revere-sign effect, we included more SNPs in a block

so that it would be possible to locate two weakly-correlated markers within

the region. In this case, each block contained p = 36 SNPs and d1 = d2 = 6

was applied as the number of spline bases, which is similar to the setting

for later simulation using CHRNA7 gene. From SC2 (Figure 8), we can

see that cFLM consistently demonstrates greater power than other methods.

When causal SNPs were genotyped in SC3 and SC4, smAT showed better

empirical power as expected (Figure 9, Figure 10). However, cFLM had very

similar power as smAT in most cases. This set of analyses demonstrates the

robustness of the proposed cFLM under circumstances whenever causal loci

were genotyped or not.
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Figure 7: Power simulation for binary outcomes based on random LD blocks:
single causal locus, causal SNP not genotyped, SC1.
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Figure 8: Power simulation for binary outcomes based on random LD blocks:
two reverse-sign causal loci, causal SNPs not genotyped, SC2.

45



Figure 9: Power simulation for binary outcomes based on random LD blocks:
single causal locus, causal SNP genotyped, SC3.
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Figure 10: Power simulation for binary outcomes based on random LD blocks:
two reverse-sign causal loci, causal SNPs genotyped, SC4.
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2.3.3 Simulation using the CHRNA7 gene (15q13.3)

To make the genotypic files more realistic, the second set of simulation

used the SNP array of the CHRNA7 gene obtained from COGEND (The

Collaborative Genetic Study of Nicotine Dependence) data. A total of 2,022

individuals were included in this study. The CHRNA7 gene is located at

chromosome 15, with a length of about 126 kb. A total of 39 SNPs were

genotyped. We used d1 = d2 = 6 as the number of bases.

Results for type I error simulation are shown in Table 5. The cFLM

well maintained the nominal type I error with various thresholds (0.05, 0.01,

0.005, 0.001). The Q-Q plots of the observed p-values against expected p-

values in log10 scale are available in Figure 11.

Table 5: Type I error simulation using cFLM for binary outcomes based on
CHRNA7 gene

nominal α N=500 N=1000 N=1500 N=2000

0.05 0.0508 0.0512 0.0493 0.0506

0.01 0.0100 0.0099 0.0102 0.0093

0.005 0.0056 0.0053 0.0048 0.0046

0.001 0.0011 0.0009 0.0011 0.0007

We used the same strategy for power calculation as that in the previous

simulation with random LD blocks. The power graphs are shown in Figure

13 and 14. For the single causal locus case, the proposed cFLM method has

greater power when effect size is relatively large (βcausal ≥ 0.3). When the

effect size is small (βcausal ≤ 0.2), all methods are comparable. For the two

48



Figure 11: Type I error simulation using cFLM for binary outcomes based
on CHRNA7 gene, Q-Q plots of p-values
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causal loci case, the cFLM shows advantageous performance when the effect

size is large. The smAT is also powerful in this case since the CHRNA7 gene

has some very-highly correlated SNPs (r2 > 0.9) that resemble the existence

of causal SNPs in the block.

The association patterns of a sample simulation based on the CHRNA

gene cluster are presented in Figure 12. For smAT, a modified manhattan

plot of the -log10(p-values) by the sign of the fitted coefficients is used. For

all other methods, the coefficient estimates are plotted. The causal loci is

highlighted with dashed lines (left in red for positive effect, right in blue for

negative effect). Compare to smAT and FLM, the cFLM fitted coefficient

function is interpretable and able to identify the causal loci.

Figure 12: Illustration of fitted genetic mapping patterns using different
models.
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Figure 13: Power simulation for binary outcomes based on the CHRNA7
gene: single causal locus, causal SNP not genotyped, SC5.

51



Figure 14: Power simulation for binary outcomes based on the CHRNA7
gene: two reverse-sign causal loci, causal SNPs not genotyped, SC6.
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Figure 15: Power simulation for binary outcomes based on the CHRNA7
gene: single causal locus, causal SNP genotyped, SC7.
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Figure 16: Power simulation for binary outcomes based on the CHRNA7
gene: two reverse-sign causal loci, causal SNPs genotyped, SC8.
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2.4 Empirical Studies - COGEND

According to the World Health Statistics Report 2013, cigarette smoking

is the single biggest cause of preventable mortality worldwide, causing more

than 5 million deaths per year and accounting for one in 10 adult deaths.

Nicotine dependence, the primary psychoactive component in tobacco, pro-

foundly impacts people’s ability to cease tobacco smoking. The etiology

of nicotine dependence is found to be multifactorial, such as environmental

factors related to cultural perceptions and peer smoking. However, com-

pelling evidence from twin studies suggests that genetic factors also have a

substantial impact on smoking behaviors. It is essential to identify genetic

components that are associated with nicotine dependence, so that the de-

velopment of corresponding treatments could be promoted to further reduce

smoking related morbidity and mortality.

The Collaborative Genetic Study of Nicotine Dependence (COGEND)

is a nationwide project aiming to detect the genetic mechanisms and envi-

ronmental features of nicotine dependence. In our part of study on CHRN

candidate genes, a total of 216 SNPs were genotyped for 2,022 individuals

(1,114 cases and 908 controls). In the phenotypic file, all cases and con-

trols were current or former smokers who reported smoking more than 100

cigarettes lifetime. When recruiting new subjects, rates of current nicotine

dependence were defined by the Fagerstrom Test for Nicotine Dependence

(FTND). Subjects having FTND ≥ 4 were classified as nicotine dependent
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(case). Subjects having lifetime FNTD = 0 or 1 were classified as control.

The original genotypic file was divided into 12 LD blocks according to their

physical locations and LD structure, all of which consist of one or more con-

tiguous gene regions. Since functional models are not well-suited for LD

blocks having small number of SNPs, 4 small blocks with fewer than 7 SNPs

were excluded for analyses. We applied our proposed method cFLM, along

with smAT, SKAT-C and FLM to analyze the final dataset which consists of

191 SNPs in 8 LD blocks. Age, gender and race were included as covariates.

Table 6 summarizes the results. Assuming there are 20,000 genes per

genome, the gene-based Bonferroni threshold for genome-wide significance

is p < 0.05/20000 = 2.5 × 10−6. Since LD blocks usually contain one or

more genes, such a significance level is suitable for block-based multiple tests

adjustment. Among all 8 candidate LD blocks, none of them reached genome-

wide Bonferroni significance as the sample size is limited. The CHRNA5

cluster in chromosome 15 demonstrates a rather small p-value (cFLM: p =

5.25 × 10−6) and is suggestively associated with nicotine dependence. The

“CHRNB3 + CHRNA6” gene cluster (cFLM: p = 8.67× 10−4) may also be

considered for potential association with the phenotypic trait. For these two

blocks, p-values calculated by cFLM are much smaller than those calculated

by other methods. It is also worth mentioning that both gene clusters have

been shown to be associated with nicotine dependence in previous studies

(Saccone et al., 2009; Culverhouse et al., 2014). Other candidate LD blocks

are not significantly associated with the phenotypic trait in this cohort.
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Figure 17: Linkage disequilibrium heat map for candidate LD blocks (gene
regions) in COGEND.
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Chapter 3 Constrained Functional Linear Models for

Zero-inflated Count Traits

3.1 Zero-inflated Count Responses

3.1.1 Distribution of Count Response

Apart from quantitative and binary phenotypic traits, another type of

data often observed in real experiments is count data where the phenotypic

trait of interest is measured in counts. For example, sylleptic branches on the

main stem in interspecific poplar hybrids (Ma et al., 2008), and the number

of cholesterol gallstones formed in mice (Wittenburg et al., 2003) are typical

examples of phenotypes measured in counts.

A natural way to analyze regular count data is to fit a Poisson regression

distribution to the count response. The probability mass function (PMF) of

the Poisson distribution is:

fPois(k|λ) =
exp(−λ)λk

k!
. (3.1)

The most important feature of the Poisson distribution is that it has equal

mean and variance:

MeanPois(k) = VarPois(k) = λ.
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The log link is usually used to model the Poisson distribution parameter λ,

say,

log(λi) = xiβ.

However, since the Poisson distribution has the restriction that variance

has to be equal to the mean, the problem of overdispersion will happen when

the actual variance is greater than the actual mean in real count responses.

In the case of highly right-skewed response, the problem is more prominent.

If dispersion occurs, ignoring it will result in biased parameter estimates,

which may lead to incorrect conclusions and inferences The most common

alternative to Poisson distribution is the negative binomial (NB) Distribu-

tion. The negative binomial distribution is a generalized Poisson distribution

by introducing a dispersion parameter. From another perspective, it is a con-

tinuous mixture of Poisson distributions where the mixing distribution of the

Poisson rate follows a gamma process:

fNB(k;φ, µ) =

∫ ∞

0

fPois(λ)(k) · fGamma(φ,φ
µ
)(λ)dλ

=

∫ ∞

0

λk

k!
e−λ · λφ−1 e−λφ/µ

(µ
φ
)φΓ(φ)

dλ

=
φφµ−φ

k!Γ(φ)

∫ ∞

0

λφ+k−1e−λ/( µ

φ+µ
)

=
φφµ−φ

k!Γ(φ)
(

µ

φ+ µ
)φ+kΓ(φ+ k)

=
Γ(φ+ k)

k!Γ(φ)
(

µ

φ+ µ
)k(

φ

φ+ µ
)φ,

(3.2)
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where µ > 0, φ > 0, k = 0, 1, 2, . . .. Note that the mean and variance of the

negative binomial distribution is derived as:

MeanNB(k) = µ,

VarNB(k) = µ(
φ+ µ

φ
) = µ+

µ2

φ
> µ. (3.3)

Therefore, the variance in the negative binomial distribution is always greater

than the mean. In this case the problem of overdispersion can be well ad-

dressed. The dispersion parameter φ is introduced to measure the dispersion

of a count process, which is often treated as a nuisance parameter. The

log link is also commonly used to model the mean µ in negative binomial

regression, i.e,

log(µi) = xiβ. (3.4)

The dispersion parameter φ is usually treated as a nuisance parameter in

estimation.

For both the Poisson and the negative binomial models, we can use a

simple link function to model the phenotypic trait. By employing methods

discussed in the previous chapter, we can perform functional linear regression

analyses in GWAS for count traits, i.e. FLM-Poisson and FLM-NB model

can be fitted when the count traits obey such distributions.
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3.1.2 Distribution of Zero-inflated Count Response

In several cases, count data often have excessive number of zero outcomes

than are expected in Poisson or negative binomial distribution. For example,

in healthcare setting a large proportion of zeroes in psychiatric outpatient

service utilization is reported within a year. Dental caries, which happen

rarely among the population, often distributed differently from a Poisson or

NB distribution. Such zero-inflation phenomenon is a special type of overdis-

persion. If traditional Poisson or Negative Binomial models were fitted, it is

probably incapable of detecting the underlying and unobserved zero-inflated

effect and leads to loss of power in detecting such genetic causal variants.

Therefore, specific zero-inflated models should be developed to handle zero-

inflated data.

To better illustrate the mechanism of zero-inflated count process, we

take the number of dental caries as an example. Assume that an unobserved

factor, denoted by the latent variable L, caused the “risk” of occurrence of

caries to move randomly between two states. A subject is in the “risk-free”

state (L = 1) if he/she inherently does not have the latent risk of having

any caries. On the other hand, a subject is in the “risky” state (L = 0) if

he/she carries the latent factor that caused dental caries inherently. In the

language of probability, the latent variable L follows a Bernoulli distribution.

Conditionally, dental caries are not likely to occur in the “risk-free” state,

thus the conditional probability of having 0 caries in this sate is 1. On the
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other hand, in the “risky” state caries occur conditionally according to a

count process, which, still brings the possibility of carrying zero defect. Let

Y denote the number of dental caries. The probabilistic distribution of Y is:

L ∼ Bernoulli(p);

P (Y = 0|L = 1) = 1;

P (Y = k|L = 0) ∼ Count Process, k = 0, 1, . . .

(3.5)

A commonly used model is the zero-inflated Poisson (ZIP) regression,

which mixes a distribution that degenerates at zero with a Poisson distri-

bution, by allowing the incorporation of explanatory variables in both the

point-mass distribution at zero and the Poisson distribution.

As an alternative to the ZIP model, zero-inflated negative binomial

(ZINB) model is beneficial from the nature of NB distribution if the count

data continue to suggest additional overdispersion. The ZINB model is ob-

tained by mixing a distribution degenerate at zero with a NB distribution.

Using the same notations above, assume that in the “risky” state, the out-

come follows a negative binomial (NB) distribution. The probabilistic distri-

bution of Y is:

L ∼ Bernoulli(p);

P (Y = 0|L = 1) = 1;

P (Y = k|L = 0) ∼ NB(µ, φ), k = 0, 1, . . .

(3.6)

where p is the probability of Z = 1 in the Bernoulli distribution, µ and φ are
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the mean and dispersion parameter of the NB distribution, respectively. In

a ZINB regression model, let yi denote the observation of number of caries

for subject i, i = 1, . . . , n. Then,

yi ∼











0, with probability pi;

NB(µi, φ), with probability 1− pi.
(3.7)

We can see that the zeroes may come from two sources: the conditionally

deterministic distribution and the conditional NB distribution. Thus, the

occurrence of dental caries yi is:

yi =











0, with probability pi + (1− pi)(
φ

φ+µi
)φ;

k, with probability (1− pi)
Γ(φ+k)
k!Γ(φ)

( φ
φ+µi

)φ( µi

φ+µi
)k, k = 1, 2, . . .

(3.8)

The expectation-maximization (EM) algorithm is a convenient way to

estimate the parameters in mixture models like the ZINB model. To quantify

the expected conditional log likelihood we have the following calculations:

P (L = 1|y, p(t), µ(t), φ(t)) =











0, y > 0;

p(t)

p(t)+(1−p(t))( φ(t)

φ(t)+µ(t)
)φ

(t);
, y = 0.

P (L = 0|y, p(t), µ(t), φ(t)) =















1, y > 0;

(1−p(t))( φ(t)

φ(t)+µ(t)
)φ

(t)

p(t)+(1−p(t))( φ(t)

φ(t)+µ(t)
)φ

(t)
;
, y = 0.

The conditional mean of L given the current estimate of parameters p(t)
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and µ(t) is:

L(t) = EL|y,p(t),µ(t),φ(t)(L) =











0, y > 0.

p(t)

p(t)+(1−p(t))( φt

φ(t)+µ(t)
)φ

(t)
;
, y = 0;

(3.9)

which corresponds to the expected conditional log-likelihood that does not

need to be calculated. The M-step in the EM Algorithm only requires terms

depending on p when we maximize for p, or only terms depending on µ andφ

if we maximize for µ and φ, as these two parts are additive as shown below:

EL|y,p(t),µ(t),φ(t) [L(p, µ, φ|y,L)]

=
n

∑

i=1

1
∑

l=0

P (Li = l|yi, p(t), µ(t), φ(t))L(p, µ, φ|yi, Li)

=(
n

∑

i=1

L
(t)
i log(p) + (1− L

(t)
i ) log(1− p))

+ (
n

∑

i=1

(1− L
(t)
i ) log

Γ(φ+ yi)

yi!Γ(φ)
(

φ

φ+ µ
)φ(

µ

φ+ µ
)yi).

(3.10)

EM Algorithm

E-step For subject i, i = 1, . . . , n, estimate Li by its conditional mean

L
(t)
i = EL|yi,p(t),µ(t),φt(Li) =











0, yi > 0;

p(t)

p(t)+(1−p(t))( φt

φ(t)+µ(t)
)φ

(t) , yi = 0.
(3.11)

M-step
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• Find p(t+1) by maximizing

LBer(p|y, L(t)) =
n

∑

i=1

L
(t)
l,i log(p) + (1− L

(t)
l,i )log(1− p). (3.12)

• Find µ(t+1), φ(t+1)i by maximizing

LNB(µ, φ|y, L(t)) =
n

∑

i=1

(1− L
(t)
l,i )log

Γ(φ+ yi)

yi!Γ(φ)
(

φ

φ+ µ
)φ(

µ

φ+ µ
)yi .

(3.13)

The maximization can be performed by the Newton-Raphson Algorithm for

the two distributions simultaneously.

In regression setting, the Bernoulli probabilities and the negative bino-

mial means can be modeled by their canonical links, i.e. the logit and the log

functions. Without strong assumption about genetic components and covari-

ates that may impact the response for these two distributions, the same sets

of genetic components and covariates are entered into both Bernoulli model

and NB model simultaneously. Using the same notations as in the previous

section, the link functions are denoted by:

logit(pi) = log(
pi

1− pi
) = αBer

0 +

q
∑

u=1

ziuα
Ber
u +

p
∑

j=1

Xi(mj)β
Ber(mj), (3.14)

and

log(µi) = αNB
0 +

q
∑

u=1

ziuα
NB
u +

p
∑

j=1

Xi(mj)β
NB(mj).

For whole genome screening purpose, we can set p = 1 to perform univariate
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analyses. For multi-loci mapping purpose, we set the genotypes in a LD

block as input explanatory variables.

3.2 Functional Linear Model with Zero-inflated Nega-

tive Binomial Responses

3.2.1 Model Formulation

Similar to that in GFLM, we substitute the unstructured coefficients in

the ZINB model with the functional coefficients being represented by a linear

combination of B-Splines, as follows:

βBer(m) =

dBer
∑

r=1

γrBr(m) = BBer(m)γBer,

βNB(m) =

dNB
∑

r=1

γrBr(m) = BNB(m)γNB. (3.15)

That is, Equation (3.15) features the functional coefficients for both the

Bernoulli and NB models. Using the same notation as in the above, the

FLM-ZINB model is reformulated as:

logit(p) =

(

1 Z X

)(

αBer
0 αBer BBerγBer

dBer×1

)⊤

=

(

1 Z XBBer

)(

αBer
0 αBer γBer

dBer×1

)⊤

= UBerγBer∗,

and
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log(µ) =

(

1 Z X

)(

αNB
0 αNB BNBγNB

dNB×1

)⊤

=

(

1 Z XBNB

)(

αNB
0 αNB γNB

dNB×1

)⊤

= UNBγNB∗.

(3.16)

3.2.2 Estimation and EM Algorithm

After substituting p and µ in Equation (3.10) by Model (3.16), we can

perform parameter estimation using the EM Algorithm to maximize the log-

likelihood of the FLM-ZINB as mentioned above. The general implementa-

tion is as follows.

EM Algorithm Implementation

1. Let
ˆ

L
(t)
i = p(t)

p
(t)
i +(1−p

(t)
i )( φt

φ(t)+µ
(t)
i

)φ
(t) I(y = 0)

2. • Perform logistic regression of
ˆ

L
(t)
i on UBer to estimate γ

(t+1)
Ber∗ .

• Perform weighted negative binomial regression of y on UNB with

weights 1− ˆ
L
(t)
i to obtain estimate γ

(t+1)
NB∗ .

3. Let p(t+1) =
exp(UBerγ

(t+1)
Ber∗

)

1+exp(UBerγ
(t+1)
Ber∗

)
and µ(t+1) = exp(UNBγ

(t+1)
NB∗ ), iterate back

to step 1.

The Newton-Raphson Algorithm can be employed for maximization of the

two distributions simultaneously.
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3.2.3 Hypothesis Test

For hypothesis testing, since we model a block of SNPs simultaneously,

the test of association between genetic variants and phenotypic trait will be

made at the block level. In the meantime, we have two sets of parameters,

one for the latent Bernoulli model and one for the negative binomial model,

respectively. The hypothesis test should consider the overall effect of both

the Bernoulli and the NB models. That is, we consider the likelihood test on

testing whether any of the coefficients in the two parameters sets is non-zero.

On the other hand, we attained dimension reduction by changing the estima-

tor of interest from the 2p-dimensional βBer(mj) and βNB(mj), j = 1, . . . , p

to the dBer + dNB-dimensional γBer
dBer×1 and γNB

dNB×1 by applying the func-

tional coefficients implemented via the B-spline bases. The null hypothesis

is equivalent to

H0 : γBer
r = 0,γNB

r = 0, for all r.

Ha : Not H0.
(3.17)

The likelihood ratio test (LRT) will be applied to draw inference about

whether a block of SNPs may be associated with the phenotypic trait. Under

H0, the LRT statistic asymptotically follows a χ2
dBer+dNB

distribution (Chi-

square distribution with df = dBer + dNB):

χ2 = G0 −G1 = −2(l0 − l1)
d−→ χ2

dBer+dNB
. (3.18)
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3.3 Constrained Functional Linear Model with Zero-

inflated Negative Binomial response

3.3.1 Model Formulation

Similar to cFLM, we express βBer+(m), βBer−(m), βNB+(m), βNB−(m)

in terms of B-spline basesBBer+
1×dBer1(m),BBer−

1×dBer2(m),BNB+
1×dNB1

(m),BNB−
1×dNB2

(m)

and the new coefficient vectors γBer+
dBer1×1,γ

Ber−
dBer2×1,γ

NB+
dNB1×1,γ

NB−
dNB2×1, respec-

tively:

βBer+(m) = BBer+(m)γBer+, βBer−(m) = BBer−(m)γBer−

βNB+(m) = BNB+(m)γNB+, βNB−(m) = BNB−(m)γNB−

(3.19)

The ZINB model with constrained functional coefficients (cFLM-ZINB)

applies the complimentarity constraints on both the latent Bernoulli model

and the NB model, respectively. Based on Equation (3.16), the formulation

of cFLM is as follows:

logit(p) =

(

1 Z XBBer+ XBBer−

)(

αBer
0 αBer γBer+ γBer−

)⊤

=

(

(1 Z) XBBer+ XBBer−

)(

γBer
0 γBer+ γBer−

)⊤

= UBerγBer∗

subject to BBer+γBer+ ≥ 0,BBer−γBer− ≤ 0,

(BBer+γBer+) ◦ (BBer−γBer−) = 0,
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and

log(µ) =

(

1 Z XBNB+ XBNB−

)(

αNB
0 αNB γNB+ γNB−

)⊤

=

(

(1 Z) XBNB+ XBNB−

)(

γNB
0 γNB+ γNB−

)⊤

= UNBγNB∗

subject to BNB+γNB+ ≥ 0,BNB−γNB− ≤ 0,

(BNB+γNB+) ◦ (BNB−γNB−) = 0.

(3.20)

The fitted coefficients (γBer+,γBer−) and (γNB+,γNB−) represent genetic

effect found associated with the latent Bernoulli model and the negative

binomial model, respectively.

3.3.2 Estimation

As to parameter estimation, although the EM algorithm derived in the

previous sections are still applicable to be extended to the cFLM-ZINB by

adding the complimentarity constraints in the estimation process. However,

since the complimentarity constraints are nonlinear constraints and the max-

imization process is a nonlinear constrained optimization problem, the speed

for performing two sets of nonlinear constrained optimization in EM algo-

rithm is not time-efficient. In this case, we found it more sensible to directly

maximize the log-likelihood of cFLM-ZINB model because it only requires

one set of nonlinear optimization. The log-likelihood function for the cFLM-
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ZINB model is

LcFLM-ZINB =
n

∑

i=1

log f(yi;γ
Ber∗,γNB∗)

= log
n
∏

i=0

{(pi + (1− pi)(
φ

φ+ µi

)φ)I(yi = 0)

+ ((1− pi)
Γ(φ+ yi)

yi!Γ(φ)
(

φ

φ+ µi

)φ(
µi

φ+ µi

)yi)I(yi > 0)}

= log
∏

i:yi=0

(
exp(UBer

i γBer∗)

1 + exp(UBer
i γBer∗)

+
1

1 + exp(UBer
i γBer∗)

(
φ

φ+ exp(UNB
i γNB∗)

)φ)

+ log
∏

i:yi>0

(
1

1 + exp(UBer
i γBer∗)

Γ(φ+ yi)

yi!Γ(φ)

φφ exp(UNB
i γNB∗yi)

(φ+ exp(UNB
i γNB∗))φ+yi

)

subject to BBer+γBer+ ≥ 0,BBer−γBer− ≤ 0, (BBer+γBer+) ◦ (BBer−γBer−) = 0

BNB+γNB+ ≥ 0,BNB−γNB− ≤ 0, (BNB+γNB+) ◦ (BNB−γNB−) = 0.

(3.21)

In order to obtain the MLEs for parameters, the following nonlinear

constrained optimization problem with linear/nonlinear constraints need to

be solved:

maximize LcFLM-ZINB

subject to BBer+γBer+ ≥ 0,BBer−γBer− ≤ 0, (BBer+γBer+) ◦ (BBer−γBer−) = 0

BNB+γNB+ ≥ 0,BNB−γNB− ≤ 0, (BNB+γNB+) ◦ (BNB−γNB−) = 0.

(3.22)

The Augmented Lagrangian Algorithm (ALA) will be applied to this con-
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strained maximization problem, as illustrated in the previous chapter.

3.3.3 Hypothesis Test

Similar to what has been done for the FLM, we perform likelihood ratio

test to investigate the overall genetic effects represented by a block of SNPs in

contiguous genomic regions. However, the null and alternative hypotheses in

(3.23) are upon revision with regard to the new parameter space and imposed

constraints:

H0 : γBer+
dBer1×1 = 0 and γBer−

dBer2×1 = 0,γNB+
dNB1×1 = 0 and γNB−

dBer2×1 = 0.

Ha : BBer+γBer+ ≥ 0,BBer−γBer− ≤ 0, (BBer+γBer+) ◦ (BBer−γBer−) = 0

BNB+γNB+ ≥ 0,BNB−γNB− ≤ 0, (BNB+γNB+) ◦ (BNB−γNB−) = 0.

(3.23)

In the cFLM-ZINB model, the parameter estimation consists of two

independent sets of constraints. Therefore, the hypothesis test is constructed

with regard to the latent Bernoulli and NB models, respectively. A mixture

of chi-square distribution (chi-bar square test) is performed for each part.

The overall LRT statistic therefore follows a mixture of the mixtures of chi-

square distribution, which is slightly different from the that proposed in the

previous chapter. To simplify our setting, we set the number of B-spline

bases in positive and negative genetic effect coefficient function to be the

same, i.e. dBer1 = dBer2 = dBer and dNB1 = dNB2 = dNB.

The likelihood ratio test statistic asymptotically follows a mixture of the

mixtures of chi-square distributions with mixing probabilities wBer
j and wNB

k
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such that
∑dBer

j=0 wBer
j = 1 and

∑dNB

k=0 w
NB
k = 1, denoted as:

χ̄2
ZINB = G0 −G1 = −2(l0 − l1)

d−→
dBer
∑

j=0

wBer
j χ2

j +

dNB
∑

k=0

wNB
k χ2

k. (3.24)

The p-value of the χ̄2 test statistic is defined as

P (χ̄2
ZINB ≥ c2) =

∑

j,k

(wBer
j wNB

k )P (χ2
j+k ≥ c2). (3.25)

The mixing probabilities can be calculated using Monte Carlo Tech-

niques. The algorithm is similar to that described in the previous chapter.
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3.4 Simulation Studies

3.4.1 Parameter Settings

We used similar simulation approaches similar to those introduced in

the previous chapter. However, since two sets of parameters representing

genetic effects affecting the latent Bernoulli and NB models need to be es-

timated, respectively, we also compared our proposed models’ performances

with traditional count data model. Therefore, in addition to smAT-ZINB,

FLM-ZINB, cFLM-ZINB, we calculated the power for the FLM-NB model,

in order to demonstrate that the zero-inflated model is superior for being

able to model count outcomes with excessive zeroes.

For the genotypic file, similarly we simulated both random LD blocks

and the CHRNA7 gene structures to mimic the real gene analyses. For the

phenotypic file, we simulated ZINB outcomes conditional on causal genotypes

based on the following model:

logit(pi) = log
pi

1− pi
= αBer

0 +X⊤

i βBer
causal

log(µi) = αNB
0 +X⊤

i βNB
causal.

(3.26)

The outcomes were simulated following the latent mixture model as discussed

in the previous sections.

Sample size was set to range from 500 to 2,000. βcausal was set to zero

under the null hypothesis in type I error simulation. Since the computational
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burden for ZINB model is much higher than that for binary outcome model,

we reduced the replicates to 1,000 times for each scenario. The type I error

rates were investigated under small genome-wide thresholds (nominal α =

0.05, 0.01 and 0.005).

For assessment of empirical power, we also used similar settings as in

the previous chapter. However, we examined two general scenarios where

the effects happen in either the latent Bernoulli or the negative binomial

models. Then, for each general scenario, we first set that only one causal

SNP was located in the LD block, having varying regression coefficient βBer
causal

or βNB
causal. Then we considered set two causal loci with reversed sign effects in

the LD block. The two causal loci chosen were weakly correlated (r2 < 0.01).

The corresponding regression coefficients were set to (βBer
causal1, β

Ber
causal2), or

(βNB
causal1, β

NB
causal2) where βcausal1 = −βcausal2.

We ran pivotal analyses to determine the suitable setting of intercept for

ZINB outcome simulation. By looking at Table 7, we found that only when

αBer
0 = 0.0 and αNB

0 = 1.0 the model had correct estimates of regression

parameters. This phenomenon is probably triggered by the setting that the

latent zero-inflated Bernoulli distribution should not interfere with the NB

process when it’s already adequately right skewed. Based on the pivotal

analyses, the intercepts were always set to αBer
0 = 0.0 and αNB

0 = 1.0 in any

subsequent simulations.
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Table 8: Parameter settings for power evaluation with ZINB outcomes

Scenario Outcome Block structure Genetic effect # of

process Causal SNPs

SC9 ZINB random Bernoulli 1

SC10 ZINB random Bernoulli 2

SC11 ZINB random NB 1

SC12 ZINB random NB 2

SC13 ZINB CHRNA7 Bernoulli 1

SC14 ZINB CHRNA7 Bernoulli 2

SC15 ZINB CHRNA7 NB 1

SC16 ZINB CHRNA7 NB 2

Since our main purpose was to check if the LD structure modeled by

smooth functions would be able to contribute to the gain of empirical power,

we only examined scenarios when causal SNPs were removed in order to avoid

overburdening our computation resources. We ran 100 replicates for each

scenario. A p-value smaller than 0.05 would be used to declare significant.

Table 8 summarizes the parameter settings in different simulation scenarios.

In terms of functional parameters, we used the same strategies described

in the previous chapter. For convenience, we set the number of spline bases

the same in both the latent Bernoulli model and the negative binomial model.
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3.4.2 Simulation using Random LD Blocks

The generation of genotypic file used the same parameter settings as in

the simulation with binary outcomes, which tried to mimic the decay of LD in

a idealized LD block. Both type I error and empirical power were investigated

under such settings. Results in table 9 and Figure 18 demonstrate that the

proposed cFLM-ZINB model can maintain the type I error under the random

sampling scheme for genetic files.

Table 9: Type I error simulation using cFLM for ZINB outcomes based on
random LD blocks.

nominal α N=500 N=1000 N=1500 N=2000

0.05 0.055 0.046 0.051 0.040

0.01 0.009 0.009 0.012 0.007

0.005 0.003 0.007 0.008 0.004

Evaluation of empirical power was based on settings where regression

coefficients ranged from 0.1 to 0.5 and sample size ranged from 500 to 2,000.

Under the first setting when the genetic effect was set to occur in the latent

Bernoulli model, we can observe the apparent failure of using a negative bi-

nomial (NB) regression model, by looking at the significantly lower power

when using the FLM-NB model in SC9 and SC10 (Figure 19 and 20). When

the genetic effect was set to occur in the NB model under SC11 and SC12

(Figure 21 and 22), the FLM-NB model is still underpowered but not as sig-

nificantly as that in SC9 and SC10. While using ZINB models, smAT-ZINB,

FLM-ZINB and cFLM-ZINB demonstrated similar powers, which were all
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superior to the FLM-NB regression model. The cFLM-ZINB model gener-

ally had the greatest power among these ZINB models, under both scenarios

when one causal locus or two causal loci were set in the LD block.

Figure 18: Type I error simulation using cFLM for ZINB outcomes based on
random LD blocks, Q-Q plots of p-values.
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Figure 19: Power simulation for ZINB outcomes based on random LD blocks:
single causal locus, effect in latent Bernoulli distribution, SC9.
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Figure 20: Power simulation for ZINB outcomes based on random LD blocks:
two causal loci, effect in latent Bernoulli distribution, SC10.
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Figure 21: Power simulation for ZINB outcomes based on random LD blocks:
single causal locus, effect in NB distribution, SC11.
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Figure 22: Power simulation for ZINB outcomes based on random LD blocks:
two causal loci, effect in NB distribution, SC12.
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3.4.3 Simulation using the CHRNA7 gene (15q13.3)

The entry of genotypic file in this set of simulations used information

from the CHRNA7 gene. Table 10 and Figure 23 show that the proposed

cFLM-ZINB can control type I error for simulations in this setting.

Table 10: Type I error simulation using cFLM-ZINB for ZINB outcomes
based on the CHRNA7 gene.

nominal α N=500 N=1000 N=1500 N=2000

0.05 0.037 0.046 0.045 0.042

0.01 0.011 0.011 0.006 0.008

0.005 0.005 0.007 0.002 0.006

Under the first scenario setting when the genetic effect was set to occur

in the latent Bernoulli model, same as simulation using random LD blocks,

we can observe significant failure of negative binomial regression models when

the FLM-NB model simulations were run in SC13 and SC14 (Figure 24 and

25). This fortifies our assumption that the usnig a simple NB distribution will

lead to loss of power when modeling genetic effects affecting excess zero in

zero-inflated count process. While using ZINB models, similar performances

were observed for smAT-ZINB, FLM-ZINB and cFLM-ZINB in SC13 - SC16

(Figure 24, 25, 26 and 27). The figures demonstrate that the ZINB models

are more advantageous than the NB regression model. Generally, the cFLM-

ZINB model had the best performance among these ZINB models under

scenarios when one causal locus and two causal loci were entered into the LD

block.
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Figure 23: Type I error simulation using cFLM-ZINB for ZINB outcomes
based on the CHRNA7, Q-Q plots of p-values.
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Figure 24: Power simulation for ZINB outcomes based on the CHRNA7 gene:
single causal locus, effect in latent Bernoulli distribution, SC13.
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Figure 25: Power simulation for ZINB outcomes based on the CHRNA7 gene:
two causal loci, effect in latent Bernoulli distribution, SC14.
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Figure 26: Power simulation for ZINB outcomes based on the CHRNA7 gene:
single causal locus, effect in NB distribution, SC15.
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Figure 27: Power simulation for ZINB outcomes based on the CHRNA7 gene:
two causal loci, effect in NB distribution, SC16.
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3.5 Empirical Studies - Dental Caries

More than 40% children and adolescents, and 90% adults in the US

are being affected by dental caries, more commonly known as tooth decay.

Even though overall caries prevalence has declined over the last few decades,

mean caries rates in children ages 2-11 has increased dramatically over the

past few years. Multiple factors are considered to contribute to the risk of

having dental caries, such as some environmental factors and social behaviors

(Ditmyer et al., 2011). Evidence has shown that some individuals are more

susceptible to caries while some others are more resistant, almost irrelevant

to the environmental risk factors they are exposed to, suggesting that genetic

factors may play crucial roles in the risk of having caries (Bretz et al., 2006).

According to several previous studies, the heritability of dental caries were

evaluated to be as high as 60%.

To better understand the genetic mechanisms of the risk of dental caries,

a GWAS study has been conducted as part of the Gene Environment Associa-

tion Studies initiative (deposited in dbGaP Study Accession: phs000095.v2.p1)

(Yang et al., 2014; Wang et al., 2013). 4,020 individuals were genotyped with

a large panel of SNPs (610,000) and examined with multiple outcomes. Our

study focused on traits related to caries in permanent teeth. Two indexes,

D1MFT and D1MFS which quantifies the total permanent tooth/surface

caries with white spots, were included in the analyses. Since the outcomes

of interests were both count traits with excess zeroes (Table 11, Figure 28),
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the proposed methods, zero-inflated negative binomial model (smAT-ZINB

for single-marker tests) and its application with functional coefficient (FLM-

ZINB and cFLM-ZINB), were applied to the data set. The final analytic

sample consists of 1,480 individuals with complete permanent teeth pheno-

typic data. Age, gender and total number of teeth/surfaces were included as

covariates in the analyses.

Table 12 and Table 13 summarize the significant findings. The Man-

hattan plots for GWAS scans using ZINB model are presented in Figure 30

and Fig. 31. For genome-wide univariate screening purpose, the threshold

of p < 1 × 10−7 was used to declare significance. Same as in COGEND

study, the LD block-based Bonferroni threshold for genome-wide significance

is p < 2.5× 10−6. Several SNPs were identified significantly associated with

D1MFT and D1MFS in genome-wide scan, of which rs7990965 in chromo-

some 13 and rs1058595 in chromosome 10 demonstrate consistent significance

for both traits. In LD block based association tests, gene PKDCC in chromo-

some 2 is significantly associated with both traits while the intergenic region

between DCN and BTG1 in chromosome 12 is associated with D1MFS. The

fitted coefficient functions using cFLM-ZINB model for traits D1MFT and

D1MFS based on gene PKDCC are presented in Figure 29. The coefficient

patterns are consistent for both traits. It is worth mentioning that gene

PKDCC was discovered to be associated with craniofacial morphogenesis in

previous dental studies (Melvin et al., 2013).
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Table 11: P-values for Kolmogorov-Smirnov (KS) test between distribution
of traits and fitted densities of different count models

Trait: D1MFT
Poisson ZIP Negative Binomial ZINB
<2.2e-16 <2.2e-16 1.65e-05 0.4914

Trait: D1MFS
Poisson ZIP Negative Binomial ZINB
<2.2e-16 <2.2e-16 <2.2e-16 0.9116

Figure 28: Histograms and fitted densities for traits D1MFT and D1MFS.
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Table 12: Significant findings for dental caries GWAS scanning using single-
marker association tests based on ZINB model

Trait: D1MFT
SNP ID CHR Gene MAF p-value
rs7990965 13 - 0.033 1.02e-12
rs1058595 10 PHYH 0.063 2.52e-09
rs12344120 9 - 0.029 4.79e-08
rs4694666 4 MTHFD2L 0.135 5.48e-08
rs17078140 3 LIMD1 0.029 5.77e-08
rs9893536 17 USP32 0.091 8.80e-08
rs7334525 13 RFC3 0.093 9.52e-08

Trait: D1MFS
SNP ID CHR Gene MAF p-value
rs7990965 13 - 0.033 2.40e-10
rs1058595 10 PHYH 0.063 3.29e-09
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Table 13: Significant findings for dental caries association tests based on LD
blocks (gene clusters) using ZINB model

Trait: D1MFT
LD block CHR Length # of p-value
(Genes) (kb) SNPs cFLM FLM smAT
PKDCC 2 70 18 8.41e-07 8.06e-05 4.17e-05

Trait: D1MFS
LD block CHR Length # of p-value
(Genes) (kb) SNPs cFLM FLM smAT
Intergenic between
DCN and BTG1

12 70 21 6.07e-07 5.92e-06 4.41e-03

PKDCC 2 70 18 1.38e-06 1.59e-04 7.73e-06

Figure 29: Fitted coefficient functions using cFLM-ZINB model for traits
D1MFT and D1MFS based on the PKDCC gene.
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Chapter 4 Discussion

Association analyses with multiple linked SNPs are expected to be more

advantageous than those single-marker tests, because they can account for

linkage disequilibrium and composite effects of multiple SNPs. Due to the

possible high correlation among contiguous SNP markers, LD blocks consist-

ing of one or more gene regions are formed along the genome. Joint analyses

of multiple SNPs on such LD blocks may promote inference about unknown

causal variants, since a causal variant is usually in linkage with multiple

neighboring SNPs, all of which carrying partial information about the corre-

sponding phenotypic traits. Besides, taking into account the alignment order

of SNP markers is crucial because linkage disequilibrium between genetic loci

should decline with distance biologically. While the functional linear model

is able to incorporate all the aforementioned genetic information into a com-

plex model design, its estimated coefficient function is usually noisy and hard

to interpret, reducing lack of causal loci identifiability and power of the test.

Improvements to existing methods are of great interest in order to better

detect significant genetic variants.

In this dissertation, we proposed a novel constrained functional linear

model (cFLM) for flexible and interpretable multi-loci mapping in LD blocks.

Our model is built upon the functional linear model (FLM) and is able to

accommodate different types of outcomes (normal, binary, ZINB, etc). We

reconstruct the FLM by imposing constraints to specify sign-specific effect
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and encourage spatial sparsity in the estimated coefficient function. Test of

association significance is grounded on the likelihood ratio test statistic fol-

lowing a null weighted mixture of chi-square distribution. Simulation studies

were carried out under both random and real gene sampling schemes. We

also examined scenarios when (1) only one risk locus was linked to the LD

block, and (2) both risk and protective loci were linked to the block. Results

show that the proposed tests could well control the type I error. Compared

to the competing methods, cFLM generally demonstrated better power when

effect size is moderate and large, and comparable performance when effect

size is small. Results are similar for all four combinations of simulation set-

tings, suggesting that our method is robust and consistent. We applied the

proposed model to a real dataset of nicotine dependence study. The geno-

typic file includes candidate blocks of CHRN gene clusters where SNPs have

high within-block correlation. The observed p-values for two suggestive LD

blocks calculated by the cFLM model were much smaller than those com-

puted by other methods. We also applied the proposed ZINB model with

(constrained) functional coefficients to a GWAS of dental caries risk. Several

SNPs and LD blocks were detected to be associated with the zero-inflated

count traits. Since our model will be more powerful when sample size in-

creases, more significant findings can be expected in larger scale studies that

will quickly become the new norm.

The proposed methods can be applied to large-scale genome-wide scan-

ning of LD blocks. One concern about the genome-wide application is how
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to group SNPs into LD blocks. Luckily several softwares such as PLINK

(Purcell et al., 2007) and LDExplorer (2013) have embedded functions to de-

fine LD blocks for genomic data. Another concern is about small LD blocks

which are not suitable for functional analysis. It may be sensible to com-

bine them with adjacent blocks since nearby blocks are also in linkage. On

the other hand, with the advent of next generation sequencing techniques,

SNPs can be genotyped much more densely so that this issue will be vastly

eased. Prospectively, in order to discover the core subset of causal genes,

further group selection among multiple candidate blocks is of great impor-

tance. Penalization methods such as group LASSO (Yuan and Lin, 2006)

may be directly applicable to our model. Alternatively, machine learning

methods such as Neural Network and Random Forest (Botta et al., 2014) are

also worth exploring. Finally in practice, if subpopulations exist in the geno-

typic sample, stratification can be easily adjusted in our model by including

principal components of population variation as additional covariates (Price

et al., 2006).
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Chapter 5 Future Extensions

In this dissertation, the generalized functional linear models (FLM),

constrained functional linear models (cFLM) and their extension to model

zero-inflated negative binomial (ZINB) outcomes were proposed for multi-

loci genetic mapping in genetic regions called linkage disequilibrium blocks

(LD blocks) where SNPs are physically close and highly correlated. In order

to obtain a more flexible and comprehensive analyses in GWAS, the proposed

methods can be extended in the following directions in the future.

(1) Gene-Environment Interaction. In this study, we did not consider

any gene-environment interaction effects in the model, while such features

are well known to be crucial in association studies. To incorporate the gene-

environment interaction effect in the functional linear model framework, we

can consider the following model:

g(µ(yi)) = α0+

q
∑

u=1

ziuαu+

p
∑

j=1

Xi(mj)β(mj)+
∑

j,u

ziuXi(mj)f(mj, u), (5.1)

where f(·, ·) is the two-dimension smooth parameter surface that represents

the interaction effect between covariate and genes. This type of varying coef-

ficient functional linear model was primarily discussed in Wu et al. (2010) and

it is similar to spatial correlation problems. However, much more details need

to be discussed on the parameter estimation, hypothesis tests and additional

constraints imposition. Extension to incorporating the gene-environment ef-
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fect will greatly enhance the flexibility of our methods.

(2) Genome-wide Block Selection. In order to tect the core subset of

causal LD blocks, it is important to develop group selection methods among

large number of candidate blocks based on our method. One of the well

known methods, the group LASSO (Yuan and Lin, 2006) can be applied to

the proposed models. For example, assume K total groups were included

in the model and βk = (βk1, . . . , βkpk) is the regression coefficient vector of

group k, the sparse group LASSO penalty is formulated as follows.

λ
K
∑

k=1

‖βk‖2 (5.2)

where λ is a tuning parameter. The penalty is a mixture of L1 and L2

regularization methods. It encourages sparsity in coefficients among different

groups. That is, groups not selected by group LASSO has all SNP level

coefficients equal to zero. This extension will be well suited for large-scale

GWAS where many candidate gene regions may be found.

(3) Epistasis Study. It is widely acknowledged that genes form a network

tend to function simultaneously. Currently, our proposed methods do not

consider block-block (gene-gene) interaction effects. It will be interesting to

see how the functional modeling framework can incorporate such epistasis

effects.
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