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Abstract of the Dissertation 

Constrained Variational Analysis Integrating Vertical and Temporal Correlations 

 
by 

Jun Huang 

Doctor of Philosophy 

in 

Applied Math and Statistics 

Stony Brook University 

2012 

 

Understanding climate change is an increasingly urgent issue of our society. Existing global 

climate models are less accurate particularly in predicting severe weather and abrupt climate 

change, which will invariably cause dramatic losses in life and property. One of the four major 

impediments identified by the National Research Council is the rudimentary, stationary and often 

unrealistic statistical methods/models employed in climate modeling.  

 

We endeavor to improve the stochastic modeling of atmospheric data by incorporating the spatial 

and temporal correlations with observations in the constrained variational analysis modeling 

(referred to CVA model hereinafter) approach pioneered by Zhang and Lin (1997) and further 

developed by Zhang et al. (2001). Thus far, we have successfully incorporated some spatial 

correlations into our model, especially the correlations of state variables across different vertical 

levels. Furthermore, we have incorporated temporal correlations via an AR(1) time series model. 
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The newly enhanced constrained variational analysis model is a significant improvement over 

the traditional methods in its core idea of (1) enforcing physical consistency through variational 

constraints, (2) stochastic modeling of the random errors, and (3) utilizing heterogeneous data 

through multiple nesting. Our novel integration of statistical methods and physical principles has 

given birth to a modern and superior climate model featuring better uncertainty quantifications 

and more accurate predictions as demonstrated by our final results. 
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Chapter 1 

Introduction 

 

 

 
In the past twenty years, an unprecedented amount of atmospheric data has been collected from 

multiple measurement platforms at an increasing speed. There are, however, formidable 

challenges in using these data. First, the measurements from satellites and radars are highly 

heterogeneous in space, time, and resolution, and dependent on the specific design of instruments 

and the atmospheric variables they measure. Second, all data have more or less sampling errors 

that often render inconsistency to each other in quantifying the internal feedback processes of the 

climate system. Specifically in meteorology, global climate models, although overall following 

the universal physical conservations of energy, momentum, and mass, have many uncertainties 

in using parameterizations to describe sub-grid scale physical processes for example the phase 

change of water vapor that induces rainfall and fierce weather phenomena. These 

parameterizations bring larger uncertainties that are obstacles for the models to produce realistic 

climate simulations and projections.  

 

The consequence induced by such uncertainties is serious. Errors of hurricane track predictions 

with a few hundred kilometers and poor predictions of severe weather associated extratropical 

cyclone positions (McMurdie and Mass, 2004; Zhang et al., 2002) can result in dramatic loss of 

properties and lives. For climate modeling, large uncertainties currently exist in the projection of 

future climate change, especially abrupt changes (Dessler and Parson, 2006; Cox, 2005; Alley et 

al., 2003; Drummond and Wilkinson, 2006). Improvement in both severe weather forecasting 
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and climate modeling requires accurate analysis of atmospheric data. In a report entitled “Abrupt 

Climate Change: Inevitable Surprises”, the Committee on Abrupt Climate Change from the 

National Research Council pointed out that “The abrupt changes of the past are not fully 

explained yet, and climate models typically underestimate the size, speed, and extent of those 

changes. Hence, future abrupt changes cannot be predicted with confidence, and climate 

surprises are to be expected”. In order to better modeling the past and predicting the future, the 

Committee laid out four major recommendations with Number 4 being “Improve Statistical 

Approaches” – because rudimentary statistical methods with unrealistic assumptions have thus 

far failed to model the complicated and dynamic climate system adequately and correctly.   

 

The challenges call for a paradigm shift to significantly improve the utilization of statistical 

methods in climate modeling. The observed fields such as winds, water vapor, and mass have to 

be calibrated for physical coherence. Several different methods were used for this purpose: 

simple linear interpolation, optimum interpolation, and constraint variantional analysis (Zhang 

and Lin, 1997).  In this thesis, we endeavor to integrate novel statistical error modeling with 

physics-based constrained variational analysis (Zhang and Lin, 1997) of atmospheric data. 

 

Specifically, data from a sounding array will be used to calculate vertical velocity and advective 

tendencies for an atmospheric column. When measurements of surface pressure, sensible heat 

flux, latent heat flux, precipitation, wind stress, and radiative fluxes are available, the column-

integrated budgets of mass, heat, moisture and momentum provide a validation on the accuracies 

of the state variables. However, due to the inevitable uncertainties in atmospheric measurements, 

physical terms such as wind divergence and tendencies typically do not satisfy the budgets which 
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they should follow. What we want to do is to force the state variables to satisfy the budgets after 

minimum adjustments.  Previous studies (Zhang & Lin, 1997) reached this goal by using a 

constrained variational method under the non-correlated assumptions. In their study, they 

assumed that variables in the following cases are independent from each other: 1) if they are 

different control variables, 2) if they are same type of variable at different stations, levels or time 

steps. This assumption, though simple to implement, is not close to the reality, which is verified 

by our L-jung statistical test. 

 

To make the novel method more realistic, we have several updated models constructed based on 

Zhang and Lin (1997) by incorporating the model with the vertical correlations across different 

pressure levels or with the temporal correlations across different time steps.  Some problems 

have emerged with the new approach.  The first is how to estimate the error structures more 

accurately. The independence assumption in previous study is not accurate enough to reflect the 

truth. Thus, how to add the error correlations, especially the spatial and the temporal correlations 

to the model is the most critical question we have to solve first. We then wish to explore some 

better results from our new model compared with the original one, especially the impact of the 

new assumption on the important physical variables such as the vertical advection, apparent 

moisture sink and apparent heat source.  The results will be elaborated in Chapters 2, 3 and 4. 

 

The second serious problem, as mentioned above, is related to the algorithm design.  The original 

case adopted the fixed point iteration method that converges the results fast, because the 

weighting matrix is diagonal based on the independence assumption and it is simple enough to 
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make most of the iteration method convergent. However, the situation is quite different in our 

new case. With the vertical correlations being incorporated, the weighting matrix is no longer 

completely diagonal but block diagonal. The complexity of the matrix structure makes the 

original iteration method invalid. A new method needs to be explored to deal with this new 

condition by designing and testing numerous computing algorithms. 

 

The third problem is about how to estimate the weighting matrix in the cost function. With the 

truth unknown, we treat the results from the original case (Zhang & Lin, 1997) as the truth to 

calculate the errors. The weighting matrix intuitively is the covariance matrix of the errors. The 

problem then becomes how to construct the time series to estimate the covariance.   

 

The thesis has three objectives.  One is to extend the structure of the original case by adding 

correlations of different types. Both statistical tests and meteorological knowledge have 

confirmed the existence of spatial and temporal correlations in the balloon sounding data. Efforts 

have been devoted to improve the method by considering the correlations in the weighting 

matrix. The new case with the vertical correlations is described in Chapter 2 and the same case 

with the time series feature is described in Chapter 3. 

 

The second objective is to explore the improvements of the new results. This can be divided into 

two parts.  First is to find out the new properties in the new final analysis; the other is to dig into 

the impact of the new assumptions on the important physical quantities, such as the vertical 
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advection, apparent moisture sink, apparent heat source, and etc. This will be deliberated in 

“figures and results” parts in both Chapter 2 and Chapter 3. 

     

The third objective is to make the model as complete as possible by adding more physical 

constraints. Besides the column integrated budgets of mass, moisture and static energy, there are 

some more budgets to be balanced. Whether more constraints will be coherent with our new 

assumption and generate comparably better results is another issue worth considering. Chapter 4 

gave a detailed example on how to add to more constraints to the vertical correlated case. In that 

case, column integrated budgets of momentums as well as hydro-static balance will be applied.  

The inclusion of hydro-static balance gave us a meaningful result, compared to the original case.  

 

This thesis is organized as follows: Chapter 2 describes the constrained varitional analysis 

method with the vertical correlations integrated, including the budgets, method, alogirthm and 

final results. Similar procedure for the temporal correlated cases via AR(1) model is elaborated 

in Chapter 3. Chapter 4 gives an example on how more constraints will go along with our new 

assumption for the future exploration purpose. Chapter 5 contains the conclusion and future 

work. 
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Chapter 2 

Constrained Variational Analysis Integrating Vertical Correlations and 
Three Constraints 

 

 

 

2.1  The input variables and data sets 
 
Basic input measurements for a CVA model can be generally categorized into two groups: the 

first is what needs to be adjusted and its members are in x-p-t directions (where x represents the 

geographical location in horizontal direction, p for pressure that decreases monotonically in the 

vertical, and t for time) so that they are referred to as 3d-data hereafter; the second group is used 

to obtain the terms of constraints and its members are integrals in the p-direction so that they are 

referred to as 2d-data hereafter. 

 

Specifically the 3d-data set is a four dimensional array with a shape of 4×45×6×201, where the 

first dimension (4) represents the number of variables (they are temperature, relative humidity, 

southward and eastward components of wind); the second (45) is for pressure levels in the 

vertical; the third (6) for the weather stations and the last (201) for time steps. The temperature, 

dew-point temperature that can be used to derive relative humidity, and wind components are 

recorded by balloon-borne soundings at 45 pressure levels every three hours (one time step) 

during 19 January and 12 February, 2006. The six locations include one central station at the city 

of Darwin, Australia and five satellite stations (dark-blue pentagons in Figure 2.1). 
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The 3d-data set is recorded as shown in Figure 2.2. We use four vectors ,  ,  ,  u v q s    to denote the 

four variables at S stations and K levels (S = 6, and K = 45 in our design) as 

11 12 1 21( ) ( , ,... , ,... ,..., )T
ik K ik SKx x x x x x x x= = , where x can be any of the u, v, q, and s. Here u is the 

westerly wind; v is the northerly; q is the mixing ratio of water vapor, which is the mass of water 

vapor divided by that of total air in the same volume; and s is the dry static energy or potential 

temperature, a thermodynamic variable usually as a unique function of temperature.  

 

The 2d-data set includes all terms on the right-hand side of the constraints introduced in Part 2.2 

of Chapter 2. They are surface pressure, surface latent and sensible heat fluxes, wind stress, 

precipitation, net radiation at the surface and at the TOA, and the variability of column-

integrated total cloud water content. 

 

    
2.2  Basic budget equations 

Numerical models for climate simulation and projection are formed on the laws of conservations 

and geo-fluid physics. Mathematically, they are a set of continuous partial differential equations 

representing geo-physical dynamics and satisfying energy and mass conservations of wind 

velocity, temperature and water-vapor mixing ratio. These equations are discretized at definite 

grids in space and time before being solved by modern computers. At each grid the atmosphere 

is simplified as a single column that may include some or all the radio-sonde stations in Figure 

2.1, and thus the constrained variational analysis can be applied. Zhang et al. (2001) developed 

an example of such a single column. They used Xt to denote the atmospheric state variables 

(winds u and v, potential temperature s, and water vapor mixing ratio q) at time t at different 
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levels and stations.  The essence of constrained variational analysis is to minimize the cost 

function of a set of physical equations described below. 

 

1. Column-integrated budget of mass 

1 sdpV
g dt

∇ ⋅ = −


             (2.1)
 

where A represents mass-weighted vertical integral as 
0

z
A Adzρ= ∫ , ρ is air density, z is 

height, and ps is the pressure at surface. 
 
 
2. Column-integrated budget of water vapor 

l
s rec

q q
Vq E P

t t
∂ ∂

+ ∇ ⋅ = − −
∂ ∂



        (2.2)
 

where Es is the surface evaporation; Prec is the total precipitation (In meteorology, precipitation, 

also known as one of the classes of hydrometeors which are atmospheric water phenomena, is 

any product of the condensation of atmospheric and water vapor that falls under gravity. The 

main forms of precipitation include drizzle, rain, sleet, snow, graupel and hail); ql is the cloud 

liquid water content. The liquid water content (LWC) is a measure of the mass of water in cloud 

over a specified amount of dry air. It is typically measured as either mass per volume of air (g/m3) 

or mass ratio of air (g/kg). 

 

3. Column-integrated budget of static energy 

l
TOA SRF rec

s q
Vs R R LP SH L

t t
∂ ∂

+ ∇ ⋅ = − + + +
∂ ∂



       (2.3)
 

where RTOA is the net downward radiative flux at the TOA (radiative flux, or radiative flux 

density, is the amount of energy moving in the form of photons or other elementary particles at a 

certain distance from the source per unit of area per second measured in J·m–2·s–1); RSRF is the 
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net downward radiative flux at the surface; PREC is the total precipitation; SH is the sensible heat 

flux (the energy exchanged by a thermodynamic system that has as its sole effect a change of 

temperature); L is the latent heat of condensation; and ql is the cloud liquid water content.  

 

4. Column-integrated budget of momentum 

s

V
VV fk V

t
φ τ

∂
+ ∇ ⋅ + × + ∇ =

∂




  

       (2.4)
 

where τs is the surface wind stress ( the shear stress exerted by the wind on the surface of large 

bodies of water – such as oceans, seas, estuaries and lakes. It is the force component parallel to 

the surface, per unit area, as applied by the wind on the water surface); f is the Coriolis parameter 

representing the earth rotation; and k is the unit vector in vertical direction. 

 

The above four constraints are applied to each column in the vertical direction. 
 
 
5. Hydro-static balance equation 

( )
ln pd CR s

p
φφ∂

= − −
∂           (2.5) 
 
where φ is geopotential (the potential of the Earth’s gravity field; for convenience it is often 

defined as minus the potential energy per unit mass, so that the gravity vector is obtained as the 

gradient of this potential, without the minus); Rd is the gas constant for dry air as a constant of 

287.04 J/kg/K; and Cp is the heat capacity of dry air at constant pressure also as a constant of 

1005.7 J/kg/K. Theoretically, this constraint is satisfied at each pressure level over each station. 

The following set of equations introduces the computation of apparent moisture sink and heat 

source (referred to as Q2, and Q1 thereafter) based on the conservations of mass, moisture, 

statistic energy and momentum without any vertical integration. Note that they are not imposed 
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to the variational method in this thesis. The Q2 and Q1 are denoted in the budget equations for 

moisture and static energy.  

 
( ) ( )

( ) ( )

( ) ( )

2

1

0,

,

( ) ,

.

l

l

p

q qq q
vap onden pt p p t

s qs s
rad pt p p t

VV V
t p p

V

V q E C V q Q C L

V s Q L C E V s L Q C

V V fk V V V

∂
∂

′ ′∂ ∂∂ ∂
∂ ∂ ∂ ∂

′ ′∂ ∂∂ ∂
∂ ∂ ∂ ∂

′ ′∂∂ ∂
∂ ∂ ∂

+ ∇ ⋅ =

′ ′+ ⋅∇ + = − − ∇ ⋅ − − = − ⋅

′ ′+ ⋅∇ + = + − − ∇ ⋅ − + = ⋅

′ ′+ ⋅∇ + + × + ∇ = −∇ ⋅ −


 



 

 


    

ω

ω

ω

ω

ω

ω

ω φ

  

 

2.3  Model description 

Spatial correlations usually exist among all the four state variables, which have already been 

verified by the statistical Ljung box test for this dataset. Thus incorporation of the spatial 

correlations into the original uncorrelated model of Zhang and Lin (1997, referred to as original 

case hereafter) is a significant upgrade and more accurate. Given that the number in the vertical 

direction (45 levels) is much larger than that in the horizontal (6 stations), the vertical 

correlations are the main component of the spatial correlations and thus are first incorporated in 

the updated model. In this new model, we assume that 1) each state variable are correlated across 

all vertical levels at the same station and time step; 2) no correlation exists between different 

variables, or same variable at different stations, vertical levels and time steps. 

 

Using the notations introduced in Part 2.1, we use the following statistical model to depict the 

error structure:                                         

(2.8) 

(2.9) 

(2.7) 

(2.6) 



 

11 
 

1 11 1

2 22 2 ,  ,  where = ~ (0, ).

o
xi xii i

o
xi xii i

xi xi

o
xiK xiKiK iK

x x
x x

i

x x

∗

∗

∗

       
       
       ∀ = + Ν ∑       
                 





 
 

ε ε
ε ε

ε

ε ε

     (2.10) 

 

The analyzed products, x* are derived by minimizing the cost function 

1( ) ( , , , ) ( , , , )T
u v q s u v q sI t Qε ε ε ε ε ε ε ε−= , where                       ,      (2.11) 

which is weighted sum of square errors. Here x can be any of the u, v, q, and s. And Q is the 
covariance structure of errors. 

 

Based on equation (2.10), we have 

 

                                                                                                    ,    (2.12) 

 

 

  

where                                                                              

 

 

Since Q can be estimated from the data (Appendix A), it will be treated as known in the 
algorithm design.  

 

2.4  Algorithm description  
 

( )T o T
x x x∗= −  ε

cov( , ) 0 0 0
0 cov( , ) 0 0
0 0 cov( , ) 0
0 0 0 cov( , )

T
u u

T
v v

T
s s

T
q q

Q

ε ε
ε ε

ε ε
ε ε

 
 
 =  
  
 

 

 

 

 

1

2

0 0
0 0

cov( , ) .

0 0

x

xT
X X

xS KS KS

ε ε

×

Σ 
 Σ =
 
 Σ 
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We use the Lagrange multiplier method to derive the final analysis. Three constraints (Equations 

(2.1)-(2.3)) in Part 2.2 above are imposed in this case. 

The Lagrange function J is can be expressed as 

 3

1
( ) ( ) ( )l ll

J X I X A Xλ
=

= + ∑
  

.          (2.13) 

After taking partial derivatives to each variable, the variational (Lagrange) equations are 

                                        

 

 

We use Newton’s iteration method to derive the solutions. Figure 2.3 is the flow chart for the 

procedure which is divided into five steps as below: 

1) Treat  ' sλ  in the same position as X.  

   Let 1 2 3( , , , )TX X λ λ λ∗ =
  . Set 1.0 as the initial values for all ' sλ and the original 3d-data as initial 

conditions of all state variables.  The gradient can be calculated as: 

1 2 1

*( ) [ ( ), ( ), ( ), ( )]T
XX

J X J X J X J X J Xλ λ λ∗∇ = ∇ ∇ ∇ ∇



     .  

Note that the length of the gradient is (4*I*K+3). 

2) Calculate the 2nd order derivative matrix H in terms of X*: 

 

2

, ( , 1,..., (4 3)).ij
i j

JH i j IK
X X∗ ∗

∂
= = +

∂ ∂  

3) Calculate the perturbation of X*T, *TXδ


, from the linear system: 

(2.14) 
(2.15) 

(2.16) 

(2.17) 

(2.18) 

31
1

( ) ( ) ( ) 0

( ) ( ) 0.( 1,2,3)
l

o l lX Xl

l

J X Q X X A X

J X A X l

−
=

∇ = − + ∇ =

∇ = = =

∑ 

   

 

λ

λ



 

13 
 

( ).T
X

H X J Xδ ∗
∗ ∗× = −∇


 

Thus, 
*

1 *( )T
X

X H J Xδ ∗ −= − ∇
  

4) Update X* as: ( 1) ( )n nX X Xδ∗ + ∗ ∗= +
  

, where n is the loop index. 

5) Repeat steps 1)-4) with the updated values of X*. 

6) Loop continues until some preset conditions are satisfied. For example, we terminate the 

loops when the largest squared element of gradient is smaller than 151.5 10−× .             

   

2.5  Figures and results 

Final analyses of all state variables (refer to Figure 2.4 for station 1, others similar) after 

adjustments share the same pattern with the observations. All the residual plots (refer to Figure 

2.5 for station 1, others similar) are within an acceptable range.  However, the change varies in 

those figures: some are larger while some are smaller than that of the original case. 

 

We next compare the results related to the budgets. The meaning of each curve is shown in the 

legend. The original data without the constraints are not balanced, which is clear in Figures 2.6 

(a) and (c). The black line, as the summation of all the terms, does not overlaps the x axis for 

both moisture and heat budgets. This is caused by the inevitable instrumental errors that are 

included in the sounding data collected. Especially the wind velocities in the lower pressure 

levels are difficult to record accurately. After the variational method with constraints is applied, 

the black line is forced to be zero for both moisture and heat budgets, which is shown in plots (b) 

and (d). This is a significant improvement for our enough accurate data, because the column 

integrated budgets are zero in reality. After the constrained variational method is applied, even if 

(2.19) 

(2.20) 
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the truth can be never known due to systematic errors, we can have a much higher confidence to 

believe that the results are much closer to the true values than the one before the method. 

Additionally when precipitation is large, horizontal water vapor advection is known to be the 

dominant component of precipitation, and horizontal advection is a major part of energy 

transport for latent heat released from precipitation. This is in fact well demonstrated in plots (b) 

and (d), since the green line and the dotted line agree closely with each other in both plots.  This 

is another advantage of the constrained variational method.  

 

Figure 2.7 shows the correlation coefficients for adjustments between different vertical levels for 

state variables u, v, q and s. All four plots indicate that large correlations for the errors exit 

between different levels of all state variables, which confirm our original assumption.  Generally, 

the adjustment for all four variables at each pressure layer has a positive correlation with the 

adjacent levels. The correlations tend to be smaller when the two levels become farther, and 

finally becomes negative when the two levels are departed far enough.   

 

Figure 2.8 shows the difference of important physical variables between the our new model and 

the original case. This indeed gives us new information that is added in the results of vertical 

correlated case, as compared to the original case. Particularly the adjustment of the vertical 

advection for moisture and heat and Q1 and Q2 from the vertical correlated case is quite different 

from the uncorrlated case (Zhang and Lin, 1997). The incorporation of vertical correlation has 

apprent patterns for the values with different signs in the lower and higher levels, i.e., negative 

values in the lower level corresponding to positive values in the higher levels and vice versa. 

This change will be further demonstrated by correlation strctures in Figure 2.9.  
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Figures 2.9 shows the correlation structure of apparent moisture sink and heat source 

incorporated in our new model.  In Figures 2.9(c) and (d), Q2 and Q1 in lower levels (lower 

panels) compensates well to those in higher levels (upper panels).   

 

The correlation structure is similar for the vertical advection for both moisture and heat (Figures 

2.9(a) and (b)).  The results are interesting, because the vertical correlation, which is originally 

considered in 3d-data set in the case, is also significant in the error structures of physical 

variables, such as Q1 and Q2. Moreover, the structure of lower pressure level (around 600 hPa or 

below) compensates that of higher pressure levels (above 600 hPa). Such compensation promises 

balanced budgets of mass, moisture and static energy after vertical integration. 

 

We next show the improved results after the new adjustments in the vertical advection of 

moisture and energy, Q2, and Q1. Figures 2.10 (a) and (b) shows the vertical advection for the 

moisture sink and apparent heat before and after the constrained variational method incorporated 

with the vertical correlation, respectively. Two peaks occur around January 21~23 in (a), while 

only one shows up in (b) with another less strong signal for the vertical advection of moisture 

across the levels between 1000 and 200 hPa.  Given that precipitation is the main source for the 

vertical advection of moisture when the precipitation is of large amount, this result can be 

expected by noting that in Figure 2.6(b), the green curve, representing negative total 

precipitation, has only one peak around the same time as the peak vertical advection occurs.  The 

other peak in (a) may be generated by the uncertainties in the variational analysis, which does 
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not occur in truth. Therefore, the results in (b) show great improvement over those in (a) by 

comparing with the precipitations. Similar improvement occurs in Q2. For apparent moisture 

sink, the vertical advection is more dominant than the horizontal advection, and the structure of 

Q2 is much more coherent with the precipitation distribution after the variational adjustment 

(Figure 2.10 d) than before (Figure 2.10 c). 

 

Similar improvement is made from the viewpoint of energy. In Figure 2.11, because the vertical 

advection is dominant in Q1 when precipitation is of large amount, the pair of (a) and (c) or (b) 

and (d) has similar patterns except for the sign.  Besides, in the original 3d-data, the structure is 

not smooth and may contain large errors at upper levels where pressure is less than 200 hPa in 

(a) and (c). After new the adjustment by the incorporating vertical correlations in the constraint 

variational method, the errors are significantly reduced at those pressure levels, and the structure 

becomes rather smooth for the entire time period regardless of the pressure level. 

 

To summarize, the new constrained variational analysis method with vertical correlations shows 

significant improvement for calibrating the sounding data in (1) dramatically minimizes the 

systematic errors by reinforcing balanced budgets, (2) significantly improves the important 

physical quantities such as the vertical advections, apparent moisture sink, and apparent heat 

source by removing the errors especially in the high pressure levels. This method also confirms 

the significant vertical correlations in the state variables, as well as demonstrates a compensation 

function of high pressure levels to the low pressure levels.   
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Figure 2.1: The area map of Darwin, Australia. The six radiosonde (dark-blue pentagons) 
stations observe the 3d-data set for temperature, dew-point temperature (for mixing 
ratio of water vapor or relative humidity), and two components of wind velocity.  
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Figure 2.2: Schematic diagram for the structure of the 3d-data set, where there are a total 
of S stations horizontally and K-pressure levels vertically. At each station and every 
level, and every three hours, we observe the u, v, q, and s variables. The 
measurements in Darwin cover from 19 January to 12 February, 2006. In this study, 
we have S = 6, K = 45, and T = 201. 

 

 

K Pressure Levels 

u, v, s, q observed at 
each station and each 

level 

S Stations 



 

19 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3: Flow chart of the algorithm for the new vertically correlated case. 

 

 

 

 

 

 
Calculate the gradient:  
Treat lλ as concerned variables, just like X.  
Let 1 2 3( , , , )TX X λ λ λ∗ =

  .Then the gradient can be 
written as 

1 2 1

*( ) [ ( ), ( ), ( ), ( )]T
XX

J X J X J X J X J Xλ λ λ∗∇ = ∇ ∇ ∇ ∇



      
Note that the length of the gradient is (4IK+3). 

Calculate H in terms of updated X* (initial 
values are Xo):  

2

* *

( ) , ( , 1,..., (4 3)).ij
i j

J XH i j IK
X X

∗∂
= = +

∂ ∂



   

 
 

Update X* as:   
( 1) ( ) *.n nX X Xδ∗ + ∗= +

  

 
Loop goes on until some preset 
conditions are met. For example, we 
terminate the loops when the largest 
squared element of gradient is smaller 
than 1.5×10-15. 

Calculate the perturbation of X* 
* ( )T

X
H X J Xδ ∗

∗× = −∇ 

 

, then 

*
1 *( )T

X
X H J Xδ ∗ −= − ∇


 

Final analysis from the new approach 
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Figure 2.4: Final results for u, v, q and s from vertical correlated case at station 1, shown in 
(a)-(d), respectively. 
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(c) (d) 



 

21 
 

 

  

  

Figure 2.5: Adjustments of u, v, q and s from vertical correlated case station 1, shown in 
(a)-(d), respectively.  
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Figure 2.6: (a) and (b) for terms of column integrated moisture budgets before and after 
the vertical correlated variational method, respectively; (c) and (d) for terms of the 
column integrated heat budgets before and after vertical correlated variational 
method, respectively.  

 

 

 

 

0 5 10 15 20 25
-15

-10

-5

0

5

10

15

days

N/
m

2

Heat budget col_obs

 

 
heat rsd
-dsh/dt
radiation
L*precip
shf
-sdivuvh

0 5 10 15 20 25
-8

-6

-4

-2

0

2

4

6

8

days

N/
m

2

Heat budget col_3 iid

 

 
heat rsd
-dsh/dt
radiation
L*precip
shf
-sdivuvh

0 5 10 15 20 25
-8

-6

-4

-2

0

2

4

6

8

days

N/
m

2

Moisture budget col_3 vert

 

 
water_rsd
-dsr/dt
evapor
-precip
-dsrldt
-sdivuvr

0 5 10 15 20 25
-8

-6

-4

-2

0

2

4

6

days

N/
m

2

Moisture budget col_obs

 

 
water rsd
-dsr/dt
evapor
-precip
-dsrldt
-sdivuvr

(b) 

(d) (c) 

(a) 



 

23 
 

 

 

 

 

 

 

 

 

 

                         Correlation plots for the state variables u, v, q, s in the vertical correlated case 

 

 

 

 

 

Figure 2.7: The correlation structure of the adjustment for state variables u, v, q, and s, 
shown in (a)-(d), respectively. 
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Figure 2.8: Differenced vertical advection for moisture (a), Q2 (b), differenced vertical 
advection for heat (c)  and Q1 (d) between vertical correlated case and the original 
case(Zhang & Lin 1997). 
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Figure 2.9: Correlation structures of difference values of (a) vertical advection for 
moisture, (b) vertical advection for static energy, (c) Q2 and (d) Q1 between vertical 
correlated case and the original case. 
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Figure 2.10: Vertical advection for moisture of (a) original 3d-data versus (b) final results 
from new variational method; the apparent moisture sink of (c) original 3d-data 
versus (d) final results from new variational method. 
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Figure 2.11: Vertical advection for static energy of (a) original 3d-data versus (b) final 
results from new variational method; the apparent heat source of (c) original 3d-
data versus (d) final results from new variational method. 
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Chapter 3 

Constrained Variational Analysis Integrating Temporal Correlations 
and Three Constraints 

 

 

 

3.1  Model description 

The data used here are identical to those in the vertical correlated case of Part 2.1, Chapter 2. The 

physical budgets are also the same with a detailed description presented in Part 2.2 of Chapter 2, 

except for the notations for the time dimension are changed slightly.  

 

Let xo
t be the observed vector at time t and xt the predicted vector (the analysis) determined by 

physical systems L(x) = 0, where L represents the operators for the partial differential equation 

(PDE) mentioned in Chapter 2. Thus we have 

           Xt
T=(x1, x2, x3,…,xT).        (3.1) 

The vector et:=xt -xo
t represents the difference between the observed and true values. The 

current literature assumes that the components of vector xt are independent, based on which the 

xt can be estimated by minimizing the residual sum of its squares (RSS) 

   
1

1 0
( ) ( )( )

T
o T o

t t t j t j
t j

C x x j x x
∞

−
+ +

= =

= − Ω − ,  ∑∑     (3.2) 
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where Ω  is the weighting matrix related to the error structure. Since the seasonal components of 

xt and xo
t will be canceled out, the time series of xt can be transferred to et without any seasonal 

effect. Specifically, let et
rv,p,s represent the time series of state variables at pressure p and at the 

station s. Fitting an AR(1) model to yield 

 et = αrv,i,ket-1+εt,  with {εt}～N(0,σrv,i,k
2 ).           (3.3) 

The autocovariance function is 

                                                                        (3.4) 

which is derived as follows. 

Multiplying et and et-1 on both sides of (3.3), and then computing the covariance yield 

 
2

0 1γ αγ σ= +              (3.5) 

 1 0γ αγ=                (3.6) 

From (3.5) and (3.6) we have 

  

2

0 21
σγ

α
=

−             (3.7) 

Multiplying et-j on both sides of (3.3) and calculating its covariance, we have 

 1, 1, 2,... where j j jγ αγ −= =            (3.8) 

Finally from equation (3.7) and (3.8), we have (3.4).  

 

, , 2
, ,2

, ,

( , )
1

j
rv i k

j t t j rv i k
rv i k

Cov e e
α

γ σ
α+= =

−
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Hence the covariance structure of the observed data erv,i,k =(e1,…,eT) is expressed as 

 

                                                                                                                               (3.9) 

 

As , ,rv i kΩ is always a symmetric positive definite matrix, it can be decomposed as 

, ,rv i k TL LΩ = ⋅ using the Cholesky’s method, where L is a lower triangular matrix. Since L can be 

inversed easily, the inverse of , ,rv i kΩ can be expressed as 

 

                                                                                                                                      (3.10)    

 

                                                                                                                                                                         

We next show that the cost function in this case has the form similar to the equation (3.2) by 

using the maximum likelihood method. 

From (3.3), we have 

                    1 .t t te eα ε−− =            (3.11)                      

Since tε follows 2(0, )N σ , the likelihood function is 

                        
2

2
1

2 21
exp( ),i

T

i
M ε

πσ σ=
= −∏        (3.12) 

2 1
, , , , , ,

2 2
, , , ,, ,, , , ,

2
, ,

1 2
, , , ,

1
1

.
1

1

T
rv i k rv i k rv i k

T
rv i k rv i krv i krv i k rv i k

rv i k
T T
rv i k rv i k

α α α
α ασ α

α
α α

−

−

− −

 
 
 Ω =     −
  
 





   


 

, ,
2

, , , , , ,
2

, , , ,, , 1
2

, ,
2

, , , ,

, ,

1 0 0 0
1

0 1 01( ) .
0 0

1
0 0 0 1

rv i k

rv i k rv i k rv i k

rv i k rv i krv i k

rv i k

rv i k rv i k

rv i k T T

α
α α α

α α
σ

α α
α

−

×

− 
 − + − 
 − +

    Ω  =  
 
 + −
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After taking logarithm on both sides of equation (3.12), we have  

                              

2
2 1

2ln ln(2 )
2 2

T
iinM

ε
πσ

σ
== − − ∑

      (3.13) 

To maximize the likelihood function (3.12) is equivalent to minimize  

                              

2
1

2
11

1

1 0

   ( )

    = ( ) ( )( )

    = C, where 

T
ii

T
t ti

T
o T o

t t t j t j
t j

o
t t t

Q

e e

x x j x x

e x x

ε

α
=

−=

∞
−

+ +
= =

=

= −

− Ω −

= −

∑
∑

∑∑    

                  (3.14)  

This confirms the shape of cost function C is similar to equation (3.2).              

 

Our goal, similar to that in the vertical correlated case, is to force the atmospheric state variables 

to satisfy conservations of mass, moisture and energy through a variational technique while to 

make minimum adjustment to the original sounding data by using the cost function C.  We again 

use the Euler-Lagrange multiplier method. The Lagrangian function is 

                        1 1 2 2 3 3L C A A Aλ λ λ= + + + .       (3.15) 

The derivative of L needs to be taken for each controlled variable and λ  to find the optimal 

values that make all derivatives zero. As the budget functions are quadratic rather than linear, we 

have to select some iteration methods that make the process converge to the optimal values. 
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3.2  Algorithm description 

Newton’s iteration method is not suitable in this case. Because all the state variables are coupled 

vertically, horizontally and temporally, the inverse of a matrix with very large dimensions has to 

be calculated before updating the controlled variables at each step. This makes the convergence 

rather slow. To speed up the process, we adopt the algorithm of fixed point iteration. 

 

Let L = (A1t, A2t, A3t) be the three constraints at time step t, λ1t, λ2t, λ3t be the corresponding 

multipliers and Q be the derivative matrix of the constraints to vector Xt. The three constraints 

again are the column integrated budget of mass, moisture and static energy, as introduced in Part 

2.2 of Chapter 2. Given that all constraints at a specific time step are independent with the state 

variables at other time steps, the derivative matrix Q has the form of  

3111 21

1 1 1

322212
2 22

31 2

11 21 31

22 3212

1 2 3
3

0 0 0 0 00
0 0 00 0 0      

0 00 0 0 0 TT T

T T T

AA A
x x x

AAA
x xx

AA A
T T Tx x x T T

Q

λ λ λ

λ λλ

λ λ λ

∂∂ ∂
∂ ∂ ∂

∂∂∂
∂ ∂∂

∂∂ ∂
∂ ∂ ∂

×

 
 
 =  
 
 
 

  



 

   

   

   



 

     

 

1) The variational equations (Euler-Lagrange equations) for the analyzed variables Xt
T are 

1 1
22 ( ) 0,  or equivalenly, ,o ox x Q x x Q−Ω − + = = − ⋅Ω   

            (3.17) 

 where Ω  is calculated in equation (3.14). 

(3.16) 
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2) By substituting u, v, q, and s with formula (3.17), constraint Ait (u,v,q,s) = 0 (i = 1 , 2 , 3, t = 

1, .., T) becomes a function of 1 2 3, ,t t tλ λ λ .  The Taylor’s expansion is then applied to each Ait 

for the 1st order of λ


 around 0λ =
 

, where 11 21 3( , ,... ).T
Tλ λ λ λ=



 as 

0
( ) (0) 0.T

A
itA A

λ λ
λ λ∂

∂ =
= + =

 

  

         

3) The system (3.16) yields a linearized set of equations for λ


. We can numerically calculate 

the terms T
A

λ
∂

∂


 that can be used to solve λ


.  

4) The α  can be estimated from the updated value as 1 0α γ γ= , where iγ is the sample 

autocovariance function of the AR(1) model. 

 

Now the state variables can be updated with formula (3.17) and then the steps 1)-4) are repeated. 

This procedure continues recursively until some conditions are met. In this case, the condition is 

that the RSS becomes less than 101.5 10−× . Results show that the convergence has already 

occurred within eight cycles of iteration for the whole measurement period.   

 

3.3  Figures and results 

 

Similarly to the results of the vertical correlated case in Chapter 2, the final analysis here also 

shares the same pattern with the observations, as shown in Figure 3.2 (all the plots are given in 

the appendix). Moreover, all the residuals plots are within an acceptable range at the central 

(3.18) 
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station (Figure 3.3).  For different stations, the results vary. Some are larger than that of the 

original uncorrelated case (Zhang and Lin, 1997) and some are smaller. Overall, improvement is 

clear. 

 

If the α is set to zero, this CVA model is simplified to the original uncorrelated case (Zhang and 

Lin, 1997).  We have selected different α and run the variational analysis, and then plot the 

residuals according to different α . The figure show that, in terms of sum of squared residuals, 

the temporal AR(1) model is much better than the uncorrelated case. The residual reaches 

minimum when α  is around 0.69. Interestingly, the α is convergent to 0.69 even with more 

iterations. Therefore we can conclude that the weighted residual sum of square in the AR(1) 

model is much smaller than in the original case. We prove this conclusion mathematically below. 

 

Let function I( α ) be the cost function for the temporal correlated model. Note that all 

parameters except α , the coefficient of the AR(1) series model, are either given or can be 

estimated.  The adjusted value of cost function is thus related only toα . Let H be the cost 

function of the uncorrelated case (Zhang and Lin, 1997). When α = 0, the weighting matrix 

reduces to diagonal form that is for the uncorrelated case. Thus we have the following formula 

               H = I(0). 

Since in the temporal correlated case [0,1)α ∈  and {0} [0,1)∈ ,  we have 

              [0,1)(0) min ( ).H I Iα α∈= ≤  

(3.19) 

(3.20) 
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We next explain why the I does not reach minimum at 0α =  for the uncorrelated case. 

After taking the derivative of Lagrangian function L and setting it to zero, we get  

              
2 2 2
2 3 1 1 2 2 3 1( ) ( ) 0T T Te e e e e e e e eα − −+ + + − + + + =  .  

Thus  

                 

12
1 2
2

,
T

i ii
T

ii

e e
e

α −=
−

=

= ∑
∑    

which is obviously not zero but a value between 0 and 1. This also justifies why our new model 

with temporal correlations has great advantages over the uncorrelated one. 

 

The meaning of each line is shown in the legend. Similar to the vertical correlated case (refer to 

Chapter 2), the original measurements without the constraints are not balanced, as shown in 

Figures 3.3 (a) and (c), since the black line, which represents the total of all the budget terms, is 

not zero for both integrated moisture and water vapor budgets. The reason is anticipated due to 

the inevitable errors that exist in the original sounding data, especially the wind velocity at high 

levels (low pressures).  On the contrary, in Figures 3.3 (b) and (d), the black lines lie exactly on 

the x-axis, which means that the budgets preselected become balanced again in the temporal 

correlated case.  This balance suggests a high coherence with the theory that the column 

integrated balance should be zero.  Based on this balance, we can predict that the final results are 

much closer to truth than those before adjustment and the perturbation can be an estimate of the 

data errors during measurement.  In addition, it is known that when precipitation is large, the 

horizontal energy advection is a major component of the latent heat from precipitation, which is 

(3.21) 

(3.22) 
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clearly demonstrated in the plots (b) and (d), since the green and dotted lines are perfectly 

symmetric about the x-axis.  

  

Figure 3.6 shows the error structure of the state variables. Plots are similar for all the four 

variables. Values are large on the diagonal and its adjacent lines, which verify that the errors 

have a very strong autoregressive feature.  

 

We next show the auto-correlation error structure for physical variables, or the difference of 

vertical advection for moisture Q2 and heat Q1 of the AR(1) model compared to the uncorrelated 

case (Zhang and Lin, 1997). 

                                                                 

Plots above have shown the new information that the AR(1) model has added to the physical 

variables in terms of correlation structure compared to the structure from original model. Figure 

3.7 has clearly shown that the autoregressive feature occurs in the important physical terms, such 

as vertical advection for moisture and static energy, as well as the apparent moisture sink and 

heat source (Q2 and Q1, respectively), after using the AR(1) assumption in the original sounding 

data. 

 

Figure 3.8 shows both vertical advection of moisture and apparent moisture sink before and after 

the new CVA method incorporated with the AR(1) feature, respectively. Similar to the CVA 

model with vertical correlations model (refer to Chapter 2), the two peaks around January 21st 
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and 23rd , 2006 in (a) and (c) have also been adjusted to one peak by the new model, as is shown 

in (b) and (d), respectively.  This is due to the large precipitation during this period.  As is shown 

in Figure 3.5(a), the green line, which depicts the precipitation, has only one large peak during 

the same period from January 21st. Since precipitation should dominate the vertical advection for 

moisture when it is of large amount, the analysis from the model is much improved.  As the 

vertical advection of moisture is a much larger part of apparent moisture sink than the horizontal 

advection, the two peaks in (c) have also been adjusted to one peak in (d). Therefore, we 

conclude that the vertical advection for both moisture and Q2 has shown a significantly improved 

consistency with the precipitation figure after being adjusted by the new CVA method. 

 

For the static energy, the vertical advection is dominant when precipitation is large. This 

advection (Figures 3.9(a) and (c)) has a similar structure to the Q1 (Figures 3.9(b) and (d)), 

except for the different sign. Impacted by the only one strong peak of precipitation, the peak has 

been weakened after the CVA method around January 21st. And also, large errors at high levels 

for the two physical variables (pressure below 140 hPa, refer to Figures 3.9 (a) and (c)) have 

been removed by the method (refer to Figures 3.9(b) and (d)), which shows a very large 

advantage of the final analysis.  

 

The new constrained variational analysis method has successfully incorporated the temporal 

correlations among state variables via an AR(1) model.  It improves the sounding data in (1) 

successfully providing a method to estimate the temporal correlation of true values by finding the 

optimal α through a new numerical iteration method; (2) dramatically minimizing the RSS 
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during the search of an optimal α; (3) significantly improving the important physical quantities, 

such as the vertical advections, apparent moisture sink, apparent heat source etc. by removing the 

errors especially at high pressure levels. The autoregressive temporal relationship among these 

variables has also been verified. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

39 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Flow chart of the algorithm for the temporal correlated case. 

 

 

Calculate derivative matrix Q: 
Calculate the derivative of three budgets to 
the controlled variables for all T time steps 
and arrange them as a T*3T matrix Q. 

Calculate the updated equation:  
12 ( ) 0ox x Q−Ω − + = 

 
1
2

ox x Q= − ⋅Ω 

. 

Design a linear system to solve λ


:  
Substitute u, v, q, s of constraints 
Ait(u,v,q,s) = 0 (i=1,2,3, t= 1, .., T) with 
the updated equations. Linearize the 
constraints with Taylor’s expansion at 

0λ =
 

: 
0

( ) (0) 0.T
A

itA A
λ λ

λ λ∂
∂ =

= + =

 

  

 
 

Calculate the updated values for control 
variables, where n is the loop index:  

   
( 1) ( ) 1

2
n nx x Q+ = − ⋅Ω 

 
 

Update α . 
The coefficient α in the AR(1) model is updated 
as 1

0

γ
γα = , where iγ  are the sample 

autocovariance function calculated from the 
updated values ( 1)nx +  . Loop goes on until some 
preset conditions are met. For example, we 
terminate the loops when the largest squared 
element of gradient is smaller than 1.5×10-15. 

 
 

Calculate weighting matrix Ω . 
Calculate the weighting matrix Ω according to 
the time series model with coefficient 
α depicting the errors.  

Final analysis from the new approach 
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Figure 3.2: Final results for u, v, q and s from temporal correlated case with AR(1) feature 
at station 1, shown in (a)-(d), respectively. 

(a) (b) 

(c) (d) 
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Figure 3.3: Adjustments of u, v, q and s from temporal correlated case with AR(1) feature 
at station 1, shown in (a)-(d), respectively.  

               

           

(c) 

(a) (b) 

(d) 
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                Figure 3.4: Curve of the residual sum of squares RSS v.s α . 
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Figure 3.5: (a) and (b) for the terms of column integrated moisture budgets before and 
after temporal correlated variational method with AR(1) feature, respectively; (c) 
and (d) for terms of the column integrated heat budgets before and after temporal 
correlated variational method with AR(1) feature, respectively.  
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Figure 3.6: The autocorrelation structures for adjustments of u (a), v (b), q (c), and s (d) 
from temporal correlated constrained variational method with AR(1)  feature.  

(d) 
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Figure 3.7: The autocorrelation structures of differenced vertical advection for moisture 
(a), vertical advection for static energy (b), Q2 (c) and Q1 (d) between temporal 
correlated case and the original case (Zhang & Lin, 1997). 
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Figure 3.8: Vertical advection for moisture of (a) original 3d-data versus (b) final results 
from the new CVA method with AR(1) feature; the apparent moisture sink of (c) 
original 3d-data versus (d) final results from the new CVA method with AR(1) 
feature. 
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Figure 3.9: Vertical advection for static energy of (a) original 3d-data versus. (b) final 
results from the new CVA method with AR(1) feature; the apparent heat source of 
(c) original 3d-data versus (d) final results from the new CVA method with AR(1) 
feature. 
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Chapter 4 

Constrained Variational Analysis Integrating Vertical Correlations and 
More Physical Budgets (190 Budgets) 

 

 

 

4.1  Model description 
 

The data set used here is exactly the same as in the previous two cases (refer to Part 2.1, Chapter 

2 for detail). The three budgets incorporated for the previous two cases are the column integrated 

conservation of mass, moisture and static energy. To better adjust the sounding data, we add two 

more types of budgets, which are 1) the column integrated conservation of momentum in the x 

and y directions (refer to Eq. 2.4, Part 2.2 of Chapter 2); and 2) the hydro-static balance (refer to 

Eq. 2.5, Part 2.2 of Chapter 2). Note that the hydro-static balance is actually imposed on each of 

the 37 levels and 5 stations. Thus, 190 constraints have been adopted, including the five column 

integrated constraints. In this case, expect for vertical correlations, relationships between 

different stations, time steps or variables are neglected.  Notations are generally similar to the 

previous two cases described in Chapters 2 and 3, except that we will introduce one more 

controlled variable, the geo-potential φ , which was derived from gzφ = . Here 29.8 m/sg = , 

is gravitational acceleration; z is the geo-potential height.  
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We use five vectors ,  ,  ,  ,  u v q s φ


    to denote all the variables at S stations and K levels (S = 6, K = 45) as 

11 12 1 21( ) ( , ,... , ,... ,..., )T
ik K ik SKx x x x x x x x= = , where x can be any of the ,  ,  ,  ,  u v q s φ . With only 

vertical correlations considered, the statistical model of the error structure is: 

1 11 1

2 22 2 ,  ,  where = ~ (0, ).

o
xi xii i

o
xi xii i

xi xi

o
xiK xiKiK iK

x x
x x

i

x x

∗

∗

∗

       
       
       ∀ = + Ν ∑       
                 





 
 

ε ε
ε ε

ε

ε ε

 

Our goal is to find the final analysis x* by minimizing the cost function: 

1( ) ( , , , , ) ( , , , , )T
u v q s u v q sI t Qφ φε ε ε ε ε ε ε ε ε ε−=     

where                        and x can be any of the ,  ,  ,  ,  u v q s φ .   

The weighting matrix Q, which is the variance-covariance matrix of the errors, is 

 

                                                                                                                               , where 

 

 

 
 
 
 
 
 

4.2  Algorithm description 

( )T o T
x x xε ∗= −

0cov( , ) 0 0 0
00 cov( , ) 0 0

        
00 0 cov( , ) 0
00 0 0 cov( , )

        0                   0                   0                   0         cov( , )     

T
u u

T
v v

T
q q

T
s s

T

Q

φ φ

ε ε
ε ε

ε ε
ε ε

ε ε

 
 
 
 =
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0 0
0 0

cov( , ) .
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xT
X X

xS KS KS

ε ε

×

Σ 
 Σ =
 
 Σ 





 

   



(4.1) 

(4.2) 

(4.3) 
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The Lagrange multiplier method is a classic method to derive the optimal solution. The cost 

function Eq 4.1 is to be minimized with 190 constraints being imposed. 

 

Similar to the vertical correlated case with three budgets (refer to Chapter 2 for detail). The 

Lagrange function J is  

190

1
( ) ( ) ( )l ll

J X I X A Xλ
=

= + ∑
  

 

Making the gradient of J as zero to each variable yields:  

1901
1

( ) ( ) ( ) 0

( ) ( ) 0.( 1,2,...,190)
l

o l lX Xl

l

J X Q X X A X

J X A X lλ

λ−
=

∇ = − + ∇ =

∇ = = =

∑ 

   

 

 

The robust Newton’s interation memthod is adopted to search the final solution. For simplity, the 

whole algorithm is not expained again.  The only difference between the case here and the one in 

Chapter 2  is the number of state variables and constraints.  Please refer to Part 2.4 of Chapter 2 

for detail.  

 

4.3  Figures and preliminary results 
 
 

Figure 4.1 shows the final analysis of controlled variables u, v, q, s, φ  at station 1. Other stations 

are similar. Like the vertical correlated case, the pattern of the final results of u, v, q, s, φ  is quite 

similar to the original sounding data.   

 

(4.4) 

(4.5) 
(4.6) 
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Figure 4.2 depicts the adjustment for all the five state variables, u, v, q, s, and φ  at station 1 

(Other stations are similar). The patterns of all the five figures are reasonable. Errors are 

symmetric about the x-axis for all variables and within an acceptable range compared to the 

order of magnitude of the variables. 

 

One great advantage of the model is the improvement of the adjusted s. One problem of the 

original method (Zhang and Lin, 1997) is that, when including the momentum budgets (Eq. 2.4), 

the pattern of adjustment for s will be one sided, which means for each station, the adjustments 

for all levels and time steps are either greater  than zero or smaller than zero (Figures 4.3 (a) and 

(c)). The asymmetry of the adjustment about the x-axis indicates an ill pattern. How to reduce or 

even eliminate this phenomenon is an interesting topic. Since the Coriolis force term fk V×




 

and gradient φ∇  in the momentum budgets mainly shift the adjustment of s, adding more 

constraints to balance φ  and s can be a feasible way. One of the important budgets, the hydro-

static balance (Eq. 2.5, Chapter 2) is considered in this case. A detailed introduction to the 

budget is provided in Part 2.2, Chapter 2. Since it is not column integrated, the constraint is 

imposed on each layer and at each station.  Figures 4.3(b) and (d) show the adjustment of s after 

combining the hydro-static balance and the momentum budgets.  All adjustments are within an 

acceptable range and are symmetric about the x-axis, which makes the static energy s much more 

reasonable than in the original case.  Other constraints will be analyzed in the near future.  

 

 

 



 

52 
 

                  

              

 

Figure 4.1: Final results of u, v, q, s and 
φ for vertical correlated case with 
190 budgets at station 1, shown in 
(a)-(e), respectively.   

 

(a) (b) 

(c) (d) 

(e) 
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Figure 4.2: Time series plots of the 
adjustments for u, v, q, s 
and φ from vertical correlated 
case with 190 budgets at station 
1, shown in (a)-(e), respectively. 
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Figure 4.3: Comparison of the adjustment for s from the original uncorrelated case (Zhang 
& Lin, 1997) with five budgets (a, c) versus the new case with 190 budgets (hydro-
static balance incorporated) (b, d). 

 

 

(d) (c) 
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Chapter 5 

Conclusion and Future Work 

 

 

 

5.1  Conclusion 

The thesis has elaborated in detail two newly constructed constrained variational analysis models 

with spatial correlations and temporal correlations and introduced briefly a new model with both 

momentum and hydrostatic balance equations integrated, based on the original model developed 

by Zhang and Lin (1997).  From the extensive study, we can conclude that 

• Both the vertical correlated case (Chapter 2) and the AR(1) temporal case (Chapter 3) for 

the CVA model have successfully incorporated correlations to the original model, which 

makes the model more accurate. 

• For both new cases, the quantity and the adjustments for all controlled variables are 

reasonable. Meanwhile, error adjustments are confirmed to have the assumed type of 

correlations. That is, for the vertical correlated case, the vertical correlations have been 

verified in the final results and for the temporal correlated case with AR(1) feature, 

autoregressive feature have been confirmed in the final analysis. 

• For both vertical correlated and temporal correlated cases, the important physical 

variables in meteorology, such as the vertical advection for moisture and static energy as 

well as Q2 and Q1, have been found to have similar type of correlations to what is 

assumed for the original sounding data in each case. These physical variables calculated 
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from the vertical correlated case have been verified to have strong vertical correlations, 

while those with the AR(1) feature case have been verified to contain strong auto-

regressive feature. Also compared to the original sounding data, the four physical 

variables calculated from final analysis show considerably improvements, especially for 

the data at lower pressure levels (high altitude). 

•  The vertical correlated case with both momentum and hydro-static balance constraints 

(Chapter 4) has shown substantial improvements over both the original model and the 

vertical correlated case with only three budget constraints. Preliminary results have 

shown a much reasonable analysis over the original case with the momentum budgets. 

With the extra hydro-static balance incorporated, the ill phenomenon for static energy s in 

the original case has been reduced significantly. That is, the one sided adjustments of s in 

the original case have been replaced by the symmetric adjustments (about the x-axis) in 

the new case. 

 

5.2  Future Work 

The two new cases in the constrained variational analysis method for a single column have 

shown considerable improvements on the final analysis of important physical variables in 

meteorology in terms of the pattern of the variables structure and correlations. The first extension 

of current work is to apply the method to a larger area including more than one column. The 

hardest task for that is the algorithm design. Since the controlled variables of all columns will be 

coupled in the vertical correlated case, it will be unlikely to apply the Newton’s iteration method 
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to up to millions of variables. Therefore, to search an innovative algorithm to deal with that large 

matrix is the first thing challenge. 

A second extension is to include even more constraints for each case. Physical variables such as 

vertical advection (e.g. Figure 2.8(a)) should be zero in the clear sky when altitude is high 

enough.  However, errors are still found in the figures after the balances of mass, moisture and 

static energy are incorporated. Applying more budgets may make the final analysis more 

accurate. 

 

The third extension is to improve the statistical model for the error structure in the temporal 

correlated CVA method with AR(1) feature (Chapter 3).  The incorporation of the AR(1) model 

is only for a model extension purpose. How to depict the errors better merits more investigation. 

One possible way is to apply the potential ARMA(p,q) model subject to a parameter selection 

based on the standards of AIC and BIC. The weighting matrix associated should be small; 

otherwise, new algorithm will be needed if the error structure is of a bad pattern. 

 

The fourth extension is to upgrade the statistical model fundamentally by considering the scale 

and location factors. The statistical model can be modified by 0 1
ox x∗ = + +

 

 β β ε , with the same 

notations as in Chapter 2 and 0



β , 1



β  are two parameters that need to be estimated. In all three 

cases of this thesis, 0



β and 1



β  are regarded as 0 and 1 respectively, which might not be the truth. 

This actually be indicated by the one-sided error structure of static energy s of the original case 

(refer to Chapter 4). What’s more, it’s better that ox  also need randomizing via the EIV model 
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(Error In Variable, refer to Casella and Berger, 2001), as ox itself contains random factors when 

measured. 

 

The fifth is to improve the cost function in the vertical correlated case (Chapter 2). The form of 

the cost function in Chapter 2 is derived in two steps: 1) estimating weighting matrix Q; 2) 

deriving the cost function via the maximum likelihood method. However, the two steps should 

actually be done simultaneously. Note that the determinant of Q will be included in the cost 

function if the Q is estimated during the maximum likelihood process. Though the new way will 

be closer to the reality, the implementation will be much more complicated. A comparison of the 

two ways needs further exploring. 
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Appendix 

 

 

A. Estimate of Q 
 

As we consider only vertical correlation in this case, for each time step, we calculate the 

covariance from the combined time series across all five stations.  

 

Take variable X as an example. To calculate 'cov( , )xk xkε ε , where xkε  means the error terms of x 

at level k, we compute the covariance of the two time series X and Y as (Figure A.1): 

Xk
oT =(Xo

k11,…,Xo
k1T,Xo

k21,…,Xo
k31,…,Xo

kIT) 

Xk*T =(X*k11,…,X*k1T,X*k21,…,X*k31,…,X*kIT) 

where the superscript o represents the original sounding data and * means the results from 

original case (Zhang & Lin, 1997).  Let o
xk k kx xε ∗= − . xkε be the error time series of state variable 

x at the level k. The X, k, i, and t are the variable, level, station and time indices, respectively. By 

calculating the 'cov( , )xk xkε ε  numerically we can finally obtain the covariance matrix, or the 

weighting matrix Q. 
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Figure A.1: The long time series of X across all stations for pressure level k 

 

 

 

 

i:  station index 1-I;  k: level index 1-K;   t: time index 1-T 

 

Xk11          … … …                 Xk1T            Xk21                  … … …                     Xk31               … … …                   XkIT 
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