
 

   
SSStttooonnnyyy   BBBrrrooooookkk   UUUnnniiivvveeerrrsssiiitttyyy   

 
 
 

 
 
 
 

   
   
   
   
   

The official electronic file of this thesis or dissertation is maintained by the University 
Libraries on behalf of The Graduate School at Stony Brook University. 

   
   

©©©   AAAllllll    RRRiiiggghhhtttsss   RRReeessseeerrrvvveeeddd   bbbyyy   AAAuuuttthhhooorrr...    



Analysis of Three Geometric

Optimization Problems: Local Greedy

Routing in Triangulations, Touring

Sequences of Polygons, and Hitting

Sets of Segments

A Dissertation Presented

by

Kan Huang

to

The Graduate School

in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

in

Applied Mathematics & Statistics

Stony Brook University

August 2015



Stony Brook University

The Graduate School

Kan Huang

We, the dissertation committee for the above candidate for the Doctor of
Philosophy degree, hereby recommend acceptance of this dissertation.

Joseph S. B. Mitchell – Dissertation Advisor
Professor, Department of Applied Mathematics and Statistics

Esther M. Arkin – Chairperson of Defense
Professor, Department of Applied Mathmatics and Statistics

Jiaqiao Hu
Associate Professor, Department of Applied Mathmatics and Statistics

Jie Gao
Associate Professor, Department of Computer Science

This dissertation is accepted by the Graduate School.

Charles Taber
Dean of the Graduate School

ii



Contents

List of Figures v

List of Tables viii

Acknowledgements ix

1 Local Routing in Triangulation 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem Definition and Algorithm . . . . . . . . . . . . . . . . 3
1.3 When Optimal Path is a Segment . . . . . . . . . . . . . . . . 4

1.3.1 Modification: Replace b segments . . . . . . . . . . . . 5
1.4 Proof of the General Case . . . . . . . . . . . . . . . . . . . . 10

1.4.1 Bound Outward Spiral Case . . . . . . . . . . . . . . . 10
1.4.2 Growing Spiral . . . . . . . . . . . . . . . . . . . . . . 10
1.4.3 Shrinking Spiral . . . . . . . . . . . . . . . . . . . . . . 15
1.4.4 Combined Spiral . . . . . . . . . . . . . . . . . . . . . 16

1.5 Lower Bound for all On-line Algorithms . . . . . . . . . . . . 18

2 Variations of Greedy Routing 21
2.1 Routing in a Tetrahedron Sequence(3D Version) . . . . . . . . 21
2.2 Apply to a Simple Polygon Sequence . . . . . . . . . . . . . . 22

2.2.1 Outline of Proof . . . . . . . . . . . . . . . . . . . . . . 23
2.2.2 Cutting an Hour-glass . . . . . . . . . . . . . . . . . . 24

2.3 Dual-direction Routing . . . . . . . . . . . . . . . . . . . . . . 27
2.4 Parallel Routing . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 Applications 32
3.1 Routing Scheme of Sensor Networks . . . . . . . . . . . . . . . 32

3.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 32
3.1.2 Bounded Stretch Homotopic Routing . . . . . . . . . . 36

iii



3.1.3 Simulations . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2 Routing In Fat Triangulations . . . . . . . . . . . . . . . . . . 48
3.3 Greedy Routing In Perfect Triangulations . . . . . . . . . . . 50

4 Touring Polygons 56
4.1 Touring Disjoint Non-convex Polygons . . . . . . . . . . . . . 56
4.2 Deeply Touring . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2.1 Problem Definition . . . . . . . . . . . . . . . . . . . . 60

5 Geometric Hitting Set for Segments of Few Orientations 62
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.2 Hitting Segments . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.3 Hitting Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.3.1 Hardness of Hitting Lines of 3 Slopes in 2D . . . . . . 66
5.3.2 Analysis of the Greedy Hitting Set Algorithm for Lines

of 3 Slopes in 2D . . . . . . . . . . . . . . . . . . . . . 66
5.3.3 Axis-Parallel Lines in 3D . . . . . . . . . . . . . . . . . 66

5.4 Hitting Rays and Lines . . . . . . . . . . . . . . . . . . . . . . 67
5.5 Hitting Lines and Segments . . . . . . . . . . . . . . . . . . . 67

5.5.1 Hardness . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.5.2 Approximation . . . . . . . . . . . . . . . . . . . . . . 69

5.6 Hitting Pairs of Segments . . . . . . . . . . . . . . . . . . . . 71
5.7 Hitting Triangle-Free Sets of Segments . . . . . . . . . . . . . 83

Bibliography 85

iv



List of Figures

1.1 The optimal path and the greedy path of a triangulation con-
necting s and t . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 An example of greedy path achieving a stretch factor arbitrarily
close to π + 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Transform the first segment of the greedy path. . . . . . . . . 7
1.4 Handle the l-edge . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 In the middle of the path . . . . . . . . . . . . . . . . . . . . . 9
1.6 Examples of spirals . . . . . . . . . . . . . . . . . . . . . . . . 10
1.7 The blue path is a growing spiral Q(from s to t). The green

path is SA(Q). The whole figure is SSP (Q). . . . . . . . . . . 11
1.8 From s to t, path Q turns over 2π. If t is s, Q becomes the

boundary of a convex polygon. . . . . . . . . . . . . . . . . . . 13
1.9 steps to transform a growing spiral case to a SSP . . . . . . . 14

1.10
_

sb1 is centered at q1.
_
c1v1 with center q1 intersects the extension

of q1q2 at s1.
_

s1b2 is centered at q2.
_
c2v2 whose center is q2

intersects the extension of q2q3 at s2. . . . . . . . . . . . . . . 15
1.11 Only the optimal path is showed. . . . . . . . . . . . . . . . . 17
1.12 The blue path is Q and the red one is P . The arc centered at

qk with radius vkqk intersects two rays of qkqk−1 and qkqk+1, at
s′ and t′ respectively. . . . . . . . . . . . . . . . . . . . . . . 17

1.13 Establishing a generalized lower bound. . . . . . . . . . . . . . 18
1.14 Going to m is the best choice for the worst sitution, if the robot

is at s1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1 From s, the greedy path will reach p along the short edges of the
yellow triangle faces, which are on the same plane orthogonal
to line to. Then the path goes to next plane orthogonal to line
to along circular curve pq. The right figure shows what optimal
path and greedy path look like at last. . . . . . . . . . . . . . 22

2.2 Routing in a fat triangle sequence. The blue path is the optimal
one; the red path is the greedy one. ∠sq1v1 = θ ≤ α. . . . . . 23

v



2.3 Optimal path and its one-sided greedy path . . . . . . . . . . 23
2.4 Cut of an hour-glass . . . . . . . . . . . . . . . . . . . . . . . 24
2.5 how to cut Type 1 and Type 2 . . . . . . . . . . . . . . . . . . 25
2.6 how to cut Type 3 . . . . . . . . . . . . . . . . . . . . . . . . 26
2.7 bounding the path that one robot goes along until it meets

another robot. . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.8 The blue polygon is the region that could be passed when rout-

ing from e1 to en. It could be seen as a traffic flow from e1 to
en under greedy routing. The flow will congest to v. . . . . . . 29

2.9 ck−1, ck, ck+1 are pivot vertices. In (a), |qick ≥ pick| so |Pi,j| can
be bounded by |Qi,j|. In (b), |qick < pick| so |Pi,j| is bounded
by |Qi−1,j|. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1 In a network of 3 holes (shaded), paths α, β, γ have distinct
homotopy types; γ and δ are homotopy equivalent. . . . . . . 33

3.2 A triangulated region and routing paths inside. The shaded part
is a hole with no wireless nodes while the rest of the domain is
densely covered by sensors (not shown in the figure). The red
path shows the shortest path from point s to point t, while the
blue path is created by following our greedy routing strategy.
The dashed path is a shortest path with a different homotopy
type. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 A triangulated polygon. Dual graph shown with blue edges.
Cut edges are shown in dashed lines. Red and green curves
show paths of different homotopy types. The solid edges in the
dual constitute the tree T . . . . . . . . . . . . . . . . . . . . . 38

3.4 The tree T is shown in solid blue inside the Poincare disk. The
red and green paths from Figure 3.3 are shown as red and green
paths to different images of d. Together they represent a loop. 40

3.5 The rectangular domain with 8713 nodes distributed on a per-
turbed grid. Comparing a shortest path (blue), the GLIDER
path (red), the hyperbolic routing path (brown), and our greedy
route (green). The starting point is circled by red, the end point
is circled by black. . . . . . . . . . . . . . . . . . . . . . . . . 44

3.6 Histogram of stretch factors of paths over the shortest path
algorithm produced by our algorithm, GLIDER, and hyperbolic
routing. Our algorithm has a typical stretch less than 1.5, and
is always less than 3, while GLIDER and hyperbolic routing
have some paths of length more than 3 times the shortest path
length. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

vi



3.7 A load comparison between paths produced by hyperbolic rout-
ing, our algorithm and GLIDER. The load is captured by run-
ning three algorithms on 10000 random source and destination
pairs. Only nodes with load above 200 are shown here. . . . . 46

3.8 Six different domains and the shortest path (blue) and the path
(green) obtained using our algorithm, the starting point is cir-
cled by red, the end point is circled by black. . . . . . . . . . . 47

3.9 pivots of a triangle sleeve and its partition according to the pivots 48
3.10 Case analysis of routing in equilateral triangle sequences . . . 52
3.11 spiral cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.1 Left: 2-way splitter gadget. Right: 3-way splitter gadget . . . 57
4.2 beam adjuster . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.3 bit filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.4 a shuffle component and connection . . . . . . . . . . . . . . . 59
4.5 two bundles passing through a shuffle component and a half-

reverse component . . . . . . . . . . . . . . . . . . . . . . . . 59
4.6 half-reverse gadget and connection . . . . . . . . . . . . . . . 60

5.1 A set of horizontal unit segments and vertical lines that repre-
sents the 3SAT instance I = (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4) ∧
(x1∨x2∨x4). For better visibility, collinear segments are slightly
shifted vertically, with red and green points indicating overlap-
ping segments. Truth assignments for a variable correspond to
the set of green or red points, respectively. Literals occuring
in clauses are indicated by magenta circles; these are the only
places where a point can stab three segments or lines at once. 68

5.2 variable gadget . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.3 clause gadget . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.4 an example of variable loop . . . . . . . . . . . . . . . . . . . 77
5.5 The insertion of the orange detour changes the color of v from

red to blue. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.6 In this augmenting path, the size of a matching is increased by

replacing the blue circles with red crosses. . . . . . . . . . . . 79
5.7 Swapping l2 and l3 makes both of them more useful. . . . . . . 79
5.8 The backtracking sequence is lh1, lh′1, e1, l3, e2, l4. . . . . . . . 82

vii



List of Tables

3.1 Stretch in different networks of Figure 3.8 . . . . . . . . . . . 48

4.1 C means all polygons are convex; C means any polygon could
be nonconvex. D means all polygons are disjoint; D means that
some polygons could overlap. The NP-hardness of red problems
is not known. . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

viii



Acknowledgements

I’d like to thank my advisor, Joseph S. B. Mitchell, who is supportive and
considerate anywhere and anytime. He teaches me not only how to solve
problems, but how to treat people, love research and balance life and work.
He indeed sets up a perfect model for my future life.

I also appreciate the help from my co-authors and people who give in-
valuable suggestions to my research: Chien-Chun Ni, Rik Sarkar, Jie Gao,
Francisc Bungiu,Michael Hemmer, John Hershberger, Alexander Kröller, Gui
Citovsky, Sándor P. Fekete, Ojas Parekh, Cynthia A. Phillips, Mark Daniel
Rintoul, Mayank Goswami, Michael Biro.

At last I’d like to thank my parents, Weibing Huang and Rongzhen Li, for
their unconditional support and love.

ix



Chapter 1

Local Routing in Triangulation

1.1 Introduction

The path planning problem in an initially unknown environment has received
a lot attention from the communities of computational geometry, robotics and
on-line algorithms. Given an on-line problem P , the cost of solving an instance
i of this problem optimally is opt(i). If for any instance i ∈ P , an on-line
strategy σ gives a solution whose cost, σ(i) is not great than c× opt(i), where
c is a certain constant factor, then the strategy σ is said to be a c-competitive
solution of P . And we define the competitive ratio of strategy σ by

ρσ = sup
i∈P

σ(i)

opt(i)

In path planning problems, the cost is the length of path between the
starting point and the destination or the time of travel.

Considering an on-line problem P , there are three essential questions we
need to answer in sequence. First, does a competitive strategy exist? If yes,
what’s the competitive ratio of this strategy gives? Finally, what is the smallest
ratio ρ that can be achieved. That ratio is defined as the competitive complexity
of problem P .

On-line navigation problems have various models. There are four main
aspects in a model:

1. Target

• Is it known initially?

• Is it a point, an infinite line, level in a layered graph etc?

2. Environment

1



• Is the searching space a graph, several rays, a polygon, etc?

• What kind of obstacles does it have?

3. Robot (conventionally, we call the moving agent robot.)

• The representation of a robot, a point, a polygon or others?

• A single robot or a group?

• What senses does it have, unbounded or bounded vision, touch,
position?

4. Metric (in the paper, the L2-metric is applied if no metric is specifically
declared.)

The competitive complexities of several problems have been known. Icking
et al. [1] show that the competitive complexity of streets walking problem is√

2. López-ortiz and Schuierer [2] show that if the location of target is known,
the competitive complexity for searching in generalized streets in L1-metrics
is 9.

Some competitive strategies for several problems have been found, but the
complexities of those problems are unknown. [3] provides a lower bound of 9
for the competitive ratio of searching in a star-shaped polygon and propose
an algorithm with a ratio, 11.52. It also present a strategy with a competitive
ratio of 28.85 and give a lower bound of

√
82 for the decision problem of

whether the searching space is star-shaped or not.
Furthermore, there are more problems that have no constant factor com-

petitive strategy. For such a problem P , to evaluate the performance of a
strategy, σ, it’s common to define a competitive ratio function, ρσ(n), where
n = d2(s, t) here denotes the Euclidean distance between s and t and ρσ(n) is
defined by

ρσ(n) = sup
p∈P ;s,t:d2(s,t)=n

dσ(s, t; p)

d(s, t; p)

where d(s, t; p) and dσ(s, t, p) are the length of the shortest path and the length
of the s− t path produced by strategy σ in p respectively. [4, 5] show that if
the target is an infinite vertical lime (”wall”), at distance n from s, and the
obstacles are aligned rectangles, then ρ(n) = Θ(

√
n). [6] proposes a strategy

named CBUG for the searching problem of a robot with size D and provides
a quadratic relation between d(s, t; p) and dσ(s, t, p).

2



1.2 Problem Definition and Algorithm

Given a sequence of triangles as 41,42, · · · ,4n, where 4i and 4i+1 share
a common edge. Without loss of generality we assume that the source s is a
vertex of 41 and the destination t is a vertex of 4n. We would like to deliver
a message from s to t inside the sequence of triangles. But we do not have
information about the entire list of triangles. Instead, the message is delivered
with only local information — when the message stays inside 4i it knows the
coordinates of the next triangle 4i+1 but nothing beyond that. We wish to
have an algorithm that uses the limited information to find a path that is at
most constant factor longer than the shortest possible.

Definition 1.2.1 (Greedy Routing Algorithm). For a message at point
p inside 4i towards destination t,

1. It is routed along the shortest path towards the next triangle 4i+1 in
the sequence S.

2. If4i is the last triangle in S, then it is routed along the shortest possible
path from p to t.

Such a path is shown in blue in Figure 1.1.
In the Euclidean plane, the shortest path between two points is the straight

line, while that from a point to triangle is simply the straight line from the
given point to the nearest point of the triangle. The greedy path from s to t
therefore consists of such a sequence of segments through the triangles of S
(shown in blue in Figure 1.1). We will prove the following theorem

Theorem 1.2.2. Given a non-repeating sequence S of triangles, the greedy
routing algorithm finds a path of length at most ρ times the length of the
shortest path following the same sequence S, where ρ is a constant independent
of the input.

A non-repeating sequence means that no triangle appears more than once in
S. Thus the shortest path never visits the same triangle again, and therefore
does not self intersect. The theorem implies that while the algorithm operates
greedily with very local information, it still produces good quality paths, not
much longer than the shortest possible in its category.

We first introduce the terminology used in this chapter. Let us represent
the greedy path and the shortest path between two points by Qs,t. We use P
and Q for short sometimes for conciseness. Any two successive triangles 4i

and 4i+1 in sequence S share a common edge, let us call it ei, and the straight
line containing it li. The intersection of P with ei is denoted by vi, while the

3



intersection of Q with ei is given by qi. The segment between these two points
is given by ri = qivi.

Some segments of P , such as v1v2 intersects the corresponding edge (here
e2) at an interior point, and at a right angle. We refer to such orthogonal
segments as o−segments. Other segments, such as v3v4 intersect at a boundary
of the edge, we refer to these as boundary segments or b−segments.

For points u and v on a path P , we will use Pu,v to represent the part of
P in between these two points, and |Pu,v| to represent its length. For general
points x and y, |xy| will represent the Euclidean distance between these two
points. For vertices vi and vj on P , we will use Pi,j to denote the path between
them.

These two paths may intersect each-other at points other than at s and t,
but we need to only consider regions between intersections. To see why this
is true suppose that the paths intersect at an intermediate point w. In this
case, if |Ps,w| ≤ ρ|Qs,w| and |Pw,t| ≤ ρ|Qw,t|, then by simply adding we have
|Ps,t| ≤ ρ|Qs,t|. Thus we only need to prove the ρ stretch for each segment of
P,Q between consecutive intersections.

If the line segment connecting s, t is inside the sequence of triangles, Qs,t is
straight and its length equals |st|. Otherwise, Qs,t makes turns in the middle.
We can divide the path Qs,t into subpaths where all the turns are in the same
direction. More formally, a spiral is a directed simple path where every turn
is in the same direction, clockwise or counter clockwise.

Lemma 1.2.3. If v and v′ are successive intersections of P and Q, then Qv,v′ :
the shortest path between these two intersections, is a spiral.

This lemma means that to estimate the stretch between intersections, which
is our goal, we can assume that the shortest path segment is a spiral.

Before giving the proof of general cases, let’s first look at a special case
when the shortest path is a line segment(the simplest spiral). It will provide
insights of the problem.

1.3 When Optimal Path is a Segment

In this section we prove the following theorem

Theorem 1.3.1. For the simple case when the shortest path connecting s, t
is a straight line segment, ρ is π + 1 and the bound is tight.

We have already known that the only case needs to prove is the one when
the greedy path is on “one-side”, i.e., it does not intersect the shortest path
st except at s and t.

4



s q1 q2 q3 q4 t

v1
v2 v3

v4
41

42

43

44

Q

P

Figure 1.1: The optimal path and the greedy path of a triangulation connecting
s and t

We first show an example in which the stretch of the greedy path can be
arbitrarily close to π + 1. See Figure 1.2. A semicircle with diameter se is
sliced into small sectors. Every triangle covers a sector and they have common
vertex o. t is in the last sector. The dashed line is the greedy path. In the
extreme case, i.e., the sectors are arbitrarily slim and t is arbitrarily close to
o, then the greedy path will be arbitrarily close to

_
se and eo, approaching a

stretch factor of π + 1.
Next we are going to prove that π+1 is an upper bound of the path stretch.

1.3.1 Modification: Replace b segments

We will modify the greedy path P to a different path P ′, which is easier
to analyze. This new path P ′ is necessarily longer than the original path,
therefore an upper bound on its length is an upper bound on the length of
P . Let us start with P ′ = P and modify through the following steps. For
each b-segment vi−1vi, we take vi−1ui as the perpendicular line from vi−1 to
li. Then we replace vi−1vi by an o-segment (vi−1ui) and a segment uivi. This
replacement is shown in Figure 1.3. The segment uivi is tangential to the edge
ei and we call it an l-segment.

After all such replacements, P ′ has no b-segments, and only has o and l
segments. Applying triangle inequality at each place shows |P ′| ≥ |P |. For

5



s o t e

Figure 1.2: An example of greedy path achieving a stretch factor arbitrarily
close to π + 1.

simplicity, let us refer to P ′ as P in the rest of the section. Note that vi is now
the point where the greedy path leaves the edge ei.

It is important to observe that the greedy path only depends on the current
position and the subsequent triangles. Thus if we change the triangles to the
left side of a diagonal ei but make sure that the greedy path still goes through
the same entrance point vi on ei, the path to the right side of ei will not be
affected. Now given a triangle sequence and the (modified) greedy path, we
could transform it from left to right. All o-edges will be repalced by arcs; and
all l-edges will be eventually eliminated. We will show that each transformation
can only increase the stretch of the greedy path. The details will be discussed
below.

Step 1: Transform the first segment on the greedy path to an arc

As explained earlier, the first segment on the transformed greedy path is always
an o-edge. Suppose that this segment ends at point v1 on the first diagonal e1

(or an extension of e1), see Fig. 1.3. The intersection of e1 with st is o1. Take
the arc centered at o1 with radius |so1| that intersects e1 (or the extension of

e1) at d. We replace the greedy path segment sv1, by an arc
_

sd followed by

an l-edge dv1. Obviously |
_

sd | + |dv1| > |sv1|. After this transformation new
path starts with an arc.

6



s t

d

v1

o1

e1

Figure 1.3: Transform the first segment of the greedy path.

s o t

a

b

s′

Figure 1.4: Handle the l-edge

7



Step 2: Transform the greedy path starting with an arc

We will continue to transform the greedy path, during which the worst case
stretch is not made smaller. For an l-edge we will remove it. For an o-edge it
will be merged into a new arc. The following discussion provides the details.

Case 1: remove an l-edge Take the first l-edge, ab, on diagonal ei as in
Figure 1.4. The greedy path to the left of the diagonal ei is an arc.

What we want to do is to proportional shrink all the triangles to the left of
the diagonal ei, towards o. This will move the source along the line segment

st to a new source s′ and move the arc
_
sa as the arc

_

s′b. Suppose that the
greedy path after ei is Pb,t. Notice that the operation before ei will not affect
Pb,t as long as the entrance to 4i+1 is at b. We will prove below that if the
path after the operation has a worst case stretch of π+1 then the orignal path
also has a bounded stretch of π + 1.

Lemma 1.3.2. If |
_

s′b | + |Pb,t| ≤ (π + 1)|s′t|, then | _
sa | + |ab| + |Pb,t| ≤

(π + 1)|st|.

Proof: Let p = |s′o|/|so|, so p < 1. Then p| _sa | = |
_

s′b |.

| _sa |+ |ab|+ |Pb,t| = p| _sa |+ (1− p)| _sa |+ |ab|+ |Pb,t|

= |
_

s′b |+ |Pb,t|+ (1− p)| _sa |+ |ab|
≤ (π + 1)|s′t|+ (1− p)| _sa |+ (1− p)|ao|
≤ (π + 1)|s′t|+ (1− p)(π + 1)|so|
= (π + 1)|s′t|+ (π + 1)|ss′|
= (π + 1)|st|

(1.1)

�

Case 2: handle an o-edge. Now assume that the greedy path starts with
an arc

_
se arriving at a diagonal ei. The next step of Ps,t is an o-edge eb, in the

following triangle with b on diagonal ei+1. Suppose the diagonal ei and ei+1

intersect st at o and o′ respectively. Clearly o′ is to the right of o. Thus the
disk centered at o′ with radius |so′| completely includes the disk centered at o
with radius |so|. We take the point d on ei+1 (or extension of ei+1) such that

sd is an arc with center at o′. Now we replace the path
_
se and eb by the arc

_

sd with an l-edge db. This operation will only make the path longer by the
following proof.

8



b

s o o′

e

d

t

f
g

ei+1

ei

Figure 1.5: In the middle of the path

Lemma 1.3.3. | _se |+ |eb| ≤ |
_

sd |+ |db|.

Proof: See Figure 1.5. We take a line ` through e, parallel to ei+1. Take f on

` such that fd is perpendicular to ei+1 at d. ` intersects
_

sd at g. By triangle
inequality, we have

| _se | ≤ | _sg |+ |ge| ≤ | _sg |+ |db|
|eb| ≤ |

_

gd |

}
⇒ | _se |+ |eb| ≤ |

_

sd |+ |db|

�

Step 3: Find the last segment

According to the discussion above we can transform the original greedy path
to an arc whose center o stays on st until it hits a point vn on the last diagonal
en. This part of the path has length at most π|so| ≤ π|st|. Further we know
that |vnt| ≤ |st|, as s is the furthest point to t among all points on the circle
centered at o with radius |so|. Thus the total length is at most (π + 1)|st|.

Unitl now we have finished the proof of Theorem 1.3.1.

9



s

t

t

s

s

t

Figure 1.6: Examples of spirals

1.4 Proof of the General Case

Recall that in the general case both the shortest path Q in the sequence of
triangles and the greedy, online path P are non-self intersecting polygonal
curves. They are both directed, going from the source s to destination t.

Before we proceed to the proof, we first give some definitions.

Definition 1.4.1. A spiral is growing(outward) if for every segment, qiqi+1,
on it, the preceding path before qi is on the same side of the extension line
of qiqi+1. A spiral is shrinking(inward) if and only if when its source and
destination are switched, it is outward.

Figure 1.6 gives three spirals, which are outward, inward and general re-
spectively.

A spiral that is neither outward nor inward can be cut into one outward
spiral and one inward spiral.

Therefore we can focus on the cases where the optimal path is a spiral and
without loss of generality, we assume all spirals mentioned afterwards turn
clockwise.

1.4.1 Bound Outward Spiral Case

The idea of modification that we used before is still valid here. The only
difference is that in an outward spiral case, we transform the greedy path to
a spiral arc not a circular arc.

1.4.2 Growing Spiral

Given a growing spiral Q = {s, q1, q2, . . . , qm−1, t}, we first introduce three def-
initions: spiral arc, spiral sector, spiral sector plus. To avoid being redundant,
we also use q0(qm) to represent s(t).

10



Definition 1.4.2. The spiral arc of Q consists of m − 1 arcs; centered at
qi with radius |Qs,qi |, ith arc Ci spans the extensions of qiqi−1 and qi+1qi,
i = 1, 2, . . . ,m− 1. We denote it by SA(Q).

Definition 1.4.3. The spiral sector of Q is the region enclosed by Q, its spiral
arc and the line of qm−1t. If Q and its spiral arc doesn’t intersect except at
s, we say the spiral arc and the spiral sector are simple. We denote the spiral
sector of Q by SS(Q).

Definition 1.4.4. The spiral sector plus of Q is the union of SS(Q) and a
circular sector which is centered at t with a radius of |Q|; the circular sector
attaches SS(Q) along the line of qm−1t. If that sector and SS(Q) are disjoint
and SS(Q) is simple, we say the spiral sector plus is simple. We denote the
spiral sector plus of Q by SSP (Q).

t

v1 v2

v3

v4

v5

q1

q2

q3

q4

s
q5

s′
1 2

3

Figure 1.7: The blue path is a growing spiral Q(from s to t). The green path
is SA(Q). The whole figure is SSP (Q).

Figure 1.7 illustrates the definitions above. Given a simple growing path
Q and a simple spiral sector plus SSP (Q), it’s easy to see that SSP (Q)
represents a specail case of our problem, in which the optimal path is Q and
the left part of the boundary of SSP (Q) is the greedy path P . We now prove
the following lemma:

Lemma 1.4.5. In a simple spiral sector plus of a growing spiral Q, |P | ≤
(2.8π + 2)|Q|

11



Proof: Intuitively, the extra cost of the greedy path incurs at turns. The
shortest path Q makes a sharp turn at qi, while the greedy path P has to
travel a longer distance along the outside of the turn.

Figure 1.7 shows two types of possibilities for such sectors. At the outer
points of the spiral, the wedges defined by the sectors do not intersect the
shortest path Q; we say they are of type RN2. At the inner points of a spiral,
two rays of the resulting wedges intersect one or more outer layers of Q; we call
these of type RN1, and denote by ai and bi the nearest intersections of Q with
the two rays. If ξi = Qai,bi is part of the shortest path between these points,

then it can be shown that over the RN1 type wedges:
∑
RN1

|ri|βi+1 ≤
∑
RN1

ξi.

The right side is no more than |Q|. In Figure 1.7, sector 1 is type RN1; sector
3 is type RN2. Sector 2 is a little special, because a ray of it intersects Q and
the other doesn’t. For that case, we can cut this sectors into two by adding
an infinitesimal edge at q2. As Figure 1.7 shows, sector 2 is cut by the line
joining t and q2;we use s′ to denote the intersection of q2t and

_
v1v2. Therefore

it won’t lose generality to assume there are only two types of sectors.
While for RN2 type sectors, the last angle θi is at most π, which means the

part of P in the last sector(the red path in Figure 1.7) is at most (π + 1)|Q|.
The analysis of the left RN2 type sectors actually goes to a special simple
spiral sector. Take Figure 1.7 as an example. The left RN2 type sectors are
Ps′,v5 , which can be regarded as the spiral arc of a spiral, s′q2 plus Qq2,t. We
denote the spiral arc of the left RN2 type sectors by P ′. Let the correspondent
growing spiral be Q′ = {s, q1, q2, . . . , qm−1, t}. We know that Q′ turns through
at most 2π and the first two vertices and the last vertex of which are colinear.

We will prove that |P ′| is at most 1.8π times |Q′|. We can put Q′ into a
bounding box such that s, q1 and t are on an edge of that box as Figure 1.8
shows. We denote |qj−1qj| by lj. We also denote the angle Q′ turns over at qj
by θj. Then we have

|P ′| =
m∑
i=1

θi

i∑
j=1

lj =
m∑
j=1

lj

m∑
i=j

θi

|Q′| =
m∑
i=1

li

|P ′|
|Q′| =

m∑
j=1

(
m∑
i=j

θi)
lj∑m
k=1 lk

From the above equations, we know that even s and t are not necessarily the
same, |P

′|
|Q′| will increase if we extend s to t. Since what we are interested in is

12



an upper bound of |P
′|

|Q′| , we only have to consider the case where s and t are

the same. See Figure 1.8. Let qi be any rightmost point of Q′. We know

|Q′qi,t| ≥ |sqi| ≥
|sb|+ |bqi|√

2
≥ |Q

′
s,qi
|√

2

Since the angle Q′qi,t turns over is at most 3π
2

, we have

|P ′|
|Q′| ≤

2π|Q′s,qi |+ 3π
2
|Q′qi,t|

|Q′s,qi |+ |Q′qi,t|
= π

2 + 3
2
x

1 + x

where x =
|Q′qi,t|
|Q′s,qi |

≥
√

2
2

.

It’s easy to see that |P
′|

|Q′| is at most 5−
√

2
2
π(≈ 1.8π).

Adding up three parts of P , we prove the lemma. �

st

qi

a b

cd

q1

Figure 1.8: From s to t, path Q turns over 2π. If t is s, Q becomes the
boundary of a convex polygon.

Let c be 2.8π + 2. The following lemma shows that the spiral sectors are
the “worst” cases in growing spirals.

Lemma 1.4.6. For any growing spiral case with n triangles, |P | ≤ c|Q|

Proof: We use induction on m, which means triangle sequence before diagonal
qn−mvn−m is a simple SSP.

The base case, when m = 0, is just Lemma 1.4.5. Now we assume the
portion before diagonal qkvk is a simple SSP, i.e. m = n − k. As Figure 1.9

shows, first we replace Pk−1,k+1 by
_

vk−1b and bvk+1. It’s easy to show that the
new path is longer than P . We call it P̄ . Then we scale down all the triangles
to the left of the diagonal qk+1vk+1, towards qk+1 until b matches vk+1. It’s

13



easy to be shown that the shrinked SSP is fully contained in the green region,
i.e. it will not overlap triangles 4i, i = k + 2, . . . , n. We call the greedy path
obtained after scaling P̃ .

Let |qk+1vk+1|
|qk+1b|

be α. We have

|P̃s′,vk+1
| = α|P̄s,b|

|Qs′,qk+1
| = α|Qs,qk+1

|
|bvk+1| = (1− α)|qk+1b|

By the induction hypothesis, we have

|P̃ | = |P̃s′,vk+1
|+ |Pvk+1,t| ≤ c|Qs′,t| (1.2)

Then we bound the original greedy path by

|P | ≤ |P̄ | = α|P̄s,b|+ (1− α)|P̄s,b|+ (1− α)|qk+1b|+ |Pvk+1,t|
≤ c|Qs′,t|+ (1− α)(|P̄s,b|+ |qk+1b|)
≤ c(|Qs′,qk+1

|+ |Qqk+1,t|) + c(1− α)|Qs,qk+1
|

= c|Q| (1.3)

When m = n− k, the statement is true. Therefore the lemma is proved. �

s

t

vk

qk+1

v′k

s

t

qk+1
qk

v′k

bb

s

t

b

qk+1

vk+1 vk+1

s′

qk

vk+1

qk

Figure 1.9: steps to transform a growing spiral case to a SSP

14



1.4.3 Shrinking Spiral

The induction above doesn’t work for shrinking spiral cases, because scaling
down preceding triangles may cause conflict with the following triangles, i.e.
non-repeating property doesn’t hold. As a result we adopt a charging scheme
to measure how much every portion of Q “contributes” to |P |.

s

u1

u2

v2

q2s1

b1

b2

s2
v1

q1

q3

c1

c2

Figure 1.10:
_

sb1 is centered at q1.
_
c1v1 with center q1 intersects the extension

of q1q2 at s1.
_

s1b2 is centered at q2.
_
c2v2 whose center is q2 intersects the

extension of q2q3 at s2.

See Fig 1.10. The red path is Q(after replacing b-segments). Let ∠b1q1s
and ∠s1q1c1 be θ1 and α1 respectively. We use θi and αi analogously. Then
we have

|su1|+ |u1v1| ≤ |
_

sb1 |+ |b1v1| = (1 + θ1)|sc1|+ α1|c1q1|+ |
_
s1v1 |

We charge (1 + θ1)|sc1| to sc1. Nothing will be charged to sc1 afterwards,
i.e. sc1 has no contribution to |P | after the first triangle. Left two terms are
relevant to c1q1. We charge α1|c1q1| to c1q1 and leave the last term to the next
step.

During the second step, we have

| _
s1v1 |+ |v1a2|+ |a2v2| ≤ |

_

s1b2 |+ |b2v2|
= (1 + θ2)|s1c2|+ α2|c2q2|+ |

_
s2v2 |

= (1 + θ2)(|c1q1|+ |q1c2|) + α2|c2q2|+ |
_
s2v2 | (1.4)

Similarly, we charge (1 + θ2)|c1q1|, (1 + θ2)|q1c2| and α2|c2q2| to c1q1, q1c2

15



and c2q2 respectively. At the moment, c1q1 stop contributing and it’s charged
by 1+α1+θ2 times its length. q1c2’s total contribution is 1+θ2 times its length,
which all happens in Step 2. c2q2 contributes α2|c2q2| during Step 2 and it will
continue to contribute. We can keep doing this. In the perspective of this
charge scheme, some portion of a growing spiral may contribute arbitrarily
huge, which is an easy observation from a SSP . Fortunately, in a shrinking
spiral case, it can’t happen because of the following crucial observation:

For any point p on the optimal path Qs,t, Qs,p has stopped contributing
before qivi if |qivi| ≤ |Qp,qi |

δ denotes a portion of qlql+1. Suppose it contributes until vkqk, we can claim
that its contribution is |δ| times 1 + γδ which is at most (1 +

∑k−1
i=l+1 αi + θk),

where the second term is the sum of angles that Ql,k turns through and the
third term is ∠qk−1qkvk. We denote the second term by Ak−1

l+1 .

We proceed to prove a lemma that gives an upper bound of γδ.

Lemma 1.4.7. For any portion δ on sq1, γδ ≤ 3π.

Other portion can be proved in the same way.

Proof: Suppose δ doesn’t stop contribution after vkqk and Ak−1
1 + θk > 3π.

That implies the extension of vkqk will intersect Qq1,t at some point p. See
Figure 1.11. Hence we have

|vkqk| ≤ |qkp| < |Qp,t| < |Qq1,t|

which means δ has stopped contribution before vkqk.
�

With this charge scheme, we prove the following lemma:

Lemma 1.4.8. For a shrinking spiral, |P | ≤ (3π + 1)|Q|

1.4.4 Combined Spiral

Now We are going to discuss the last case: combined spirals. In this case the
optimal path is growing first then shrinking. See Fig.1.12. Qs,qk is a growing

spiral, whose greedy path is a concatenation of Ps,vk ,
_

vkt
′ and t′qk. Qs′,t is a

shrinking spiral, whose greedy path is
_

s′vk followed by Pvk,t.
Before bounding |P |, we proceed to prove a lemma.

Lemma 1.4.9. |vk+1qk+1| ≤ |vkok|+ |okqk+1|, for k = 2, · · · , n.

16



s

t

q1 q2

qk−1
qk

p

vk

Figure 1.11: Only the optimal path is showed.

s
t

qks′

vk

qk+1

t′

qk−1

Figure 1.12: The blue path is Q and the red one is P . The arc centered
at qk with radius vkqk intersects two rays of qkqk−1 and qkqk+1, at s′ and t′

respectively.

17



s

tl tr
m

φ

Figure 1.13: Establishing a generalized lower bound.

Proof: See the first part of Figure 1.9. We have |vk+1qk+1| ≤ |bqk+1| = |vkqk|+
|qkqk+1|

�

By Lemma 1.4.9, it’s easy to see |vkqk| ≤ |Qs,qk |. We denote ∠s′qkvk,
∠vkqkt′ and |vkqk| by θ1, θ2 and r respectively. We have

|Ps,vk |+ (θ2 + 1)r ≤ (2.8π + 2)|Qs,qk |
|Pvk,t|+ θ1r ≤ (3π + 1)(r + |Qqk,t|)

θ1 + θ2 ≥ π

Therefore we obtain

|P | = |Ps,vk |+ |Pvk,t| ≤ (2.8π + 2)|Qs,qk |+ (3π + 1)|Qqk,t|+ (3π − θ1 − θ2)r

≤ (4.8π + 2)|Qs,qk |+ (3π + 1)|Qqk,t|
≤ (4.8π + 2)|Q| (1.5)

Here is the final theorem we get:

Theorem 1.4.10. The length of the greedy path is at most (4.8π + 2) times
the length of the shortest path.

1.5 Lower Bound for all On-line Algorithms

First we prove that the lower bound for all on-line algorithms when t is not
known is

√
2.

Lemma 1.5.1. No on-line algorithm can guarantee a competitive ratio smaller
than

√
2 if the destination t is not known initially.

The proof is from [1].

18



s1
t

p1

q1

p2

q2s2

o

m

Figure 1.14: Going to m is the best choice for the worst sitution, if the robot
is at s1.

Proof: We take an isosceles triangle with an angle φ at vertex s; the first
segment is tltr; see Fig. 1.13. The target becomes visible only when the line
segment tltr is reached. If this happens to the left of the midpoint m, the
target may be to the right, and vice versa. In any case the path length is at
least the distance from s to m plus a half of tltr. We obtain the ratio by simple
trigonometry

ρ ≥ cos
φ

2
+ sin

φ

2
=

√
1 + sinφ

When φ = π
2
, we have the well-known lower bound of

√
2 stemming from a

rectangular isosceles triangle.
�

We can have the following theorem.

Theorem 1.5.2. No on-line algorithm can guarantee a competitive ratio smaller
than

√
2 even the destination t is known initially.

Proof: See Figure 1.14. First five triangles are s1p1q1, p1q1o, oq1s2, os2p2 and
s2p2q2; 4sipiqi is an isosceles right triangle whose hypotenuse has a length of
2−

i
2 . The start is s1. s1p1tq1 is a square; t is the destination. According to

Lemma 1.5.1, going to m, the middle point of p1 and q1 is the best decision

19



when the robot is at s1. We have

|Ps1s2| = s1m+mq1 + ε1 (1.6)

|Qs1s2| = s1q1 + ε2 (1.7)

where Ps1s2 is the path given by any algorithm between s1 and diagonal os2;
Qs1s2 is the optimal path between s1 and diagonal os2; ε1, ε2 → 0 when p2s2

and o are moving to p1q1 and q1 respectively.
We can also find that if 4oq1s2 shrinks to point q1, three vertex of 4s2p2q2

and t constitute another rectangle; at the same time, any path should leave
diagonal os2 from s2, which means it is as same as the original problem, where
the only difference is that the distance between the start and target is short-
ened by a scale of

√
2. We can do this things iteratively and the robot can be

arbitrarily close to t. In this example, it’s easy to see that no on-line strategy
can give a competitive ratio less than

√
2. �

20



Chapter 2

Variations of Greedy Routing

2.1 Routing in a Tetrahedron Sequence(3D Ver-

sion)

Our algorithm is easy to generalized to higher dimensions. Given a tetrahedron
sequence, we just route the message to the closest point on the face that’s
shared by the next tetrahedron. However, unlike triangle sequence on a plane,
greedy routing in a tetrahedron won’t give a competitive path. Figure 2.1 is
an example. But this scheme still works if the tetrahedrons are ’fat’.

Definition 2.1.1. A triangle is α-fat if its inner angles are all at least α. A
triangle sequence is α-fat if every triangle in it is α-fat. A tetrahedron is α-fat
if its faces are α-fat.

Theorem 2.1.2. To any sequence of n α-fat triangles in Euclidean Space, the
greedy routing algorithm is cot(α

2
)-competitive.

Proof: By induction. Simple for n = 1. Suppose it is true for n = k: in a
sequence of k α-fat triangles, |Ps,t| ≤ cot(α

2
)|Qs,t|. See Figure 2.2. We have

|sv1|
|sq1| − |v1q1|

=
sin(θ)

1− cos(θ)
= cot(

θ

2
) ≤ cot(

α

2
) (2.1)

According to the assumption, we know |Pv1,t| ≤ cot(α
2
)|Qv1,t|. Therefore:

cot(
α

2
)|Qs,t| = cot(

α

2
)(|sq1|+ |Qq1,t|) (2.2)

= cot(
α

2
)(|sq1| − |v1q1|) + cot(

α

2
)(|v1q1|+ |Qq1,t|) (2.3)

≥|sv1|+ cot(
α

2
)|Qv1,t| ≥ |sv1|+ |Pv1,t| = |Ps,t| (2.4)

21



Figure 2.1: From s, the greedy path will reach p along the short edges of the
yellow triangle faces, which are on the same plane orthogonal to line to. Then
the path goes to next plane orthogonal to line to along circular curve pq. The
right figure shows what optimal path and greedy path look like at last.

�

The following theorem is an analog of Theorem 2.1.2 in Euclidean space.

Theorem 2.1.3. To any sequence of n α-fat tetrahedron, the greedy routing
algorithm is cot(α

2
)-competitive.

The proof is analogy to that of Theorem 2.1.2.

2.2 Apply to a Simple Polygon Sequence

In the section we discuss the application of different routing scheme to a simple-
connected sequence of simple polygons.

A simple-connected sequence of simple polygons means in the sequence two
ajacent polygons share only one edge and the inner of two simple polygons are
disjoint. For brevity, we refer to simple-conneted sequence of simple polygons
as polygon sequence in the following content.

We will prove the following theorem:

22



θ

s
t

v1

q1

α

Figure 2.2: Routing in a fat tri-
angle sequence. The blue path is
the optimal one; the red path is the
greedy one. ∠sq1v1 = θ ≤ α.

v1

q1

v2

q2

a

e1

e2

Figure 2.3: Optimal path and its
one-sided greedy path

Theorem 2.2.1. If a greedy algorithm is c-competitive for online routing
problem in a non-repeating sequence of triangles, then it’s also c-competitive
for online routing problem in a simple connected sequence of simple polygons.

2.2.1 Outline of Proof

Analogy to a triangle sequence, the lemma below indicates that we only need
to consider the case that the greedy path is one-sided to the optimal path.

Lemma 1. If the greedy path Ps,t intersects the optimal path Qs,t at m, then
there are two ordered polygon sequences, {S1

i } and {S2
i }, such that Ps,m and

Qs,m are the greedy and optimal solutions for {S1
i } respectively, and Pm,t and

Qm,t are the greedy and optimal solutions for {P 2
i } respectively.

From now on we will only consider the one-sided case.
See Fig. 2.3. The optimal path enters the polygon at q1 and exits at q2.

The greedy path enters at v1 and exits at v2. We know that the greedy path
is the geodesic curve between v1 and v2; additionally, the optimal path is the
geodesic curve between q1 and q2. We also find the angle between diagonal e2

and the last segment of the greedy path (in this example, it’s ∠av2q2) is at
least π

2
.

The follow lemma describes the shape of the polygon between the optimal
path and the greedy path.

Lemma 2. If the greedy path and optimal path doesn’t intersect in the poly-
gon, then both pathes are spirals with different spiral directions.

In another way to say, the boundary of the polygon between the optimal path
and the greedy path consists of four parts: one entrance edge, one exit edge,

23



v1

v2

q1

q2

a
b

c

d

Figure 2.4: Cut of an hour-glass

two concave curves. We call it hour-glass polygon or hour-glass instead. We
refer to those two edges as the heads of an hour-glass.

2.2.2 Cutting an Hour-glass

We will cut the hour-glass into triangles, then apply the greedy algorithm
to those triangles to get a new greedy path, Ptri. The new greedy path will
coincide with the original one. At the same time, the optimal path is still in
the hour-glass, which means the optimal path will stay the same too. Finally
from the competitiveness of greedy algorithm in a triangle sequence, we attain
the competitiveness of greedy algorithm in a polygon sequence. Just remind
that we will cut the hour-glass not triangulate it, because we may add new
vertices on its boundary.

Fig. 2.4 is an hour-glass. The boundary between v1 and v2 is the greedy
path. Each vertice between v1 and v2 has two normals correspondent to the
edges it is incident to. Those normals will not intersect with each other in
the hour-glass because all vertices are reflex. We can always do this because
∠av2q2 is at least π

2
. There are three different kinds of polygons in the division

of an hour-glass. The first two are showed in Fig.2.6.

• Type 1 is a fox-shape polygon. We cut it along the unique triangulation

24



Figure 2.5: how to cut Type 1 and Type 2

it has.

• Type 2 is an hour-glass whose heads are parallel and parts between them
are an edge perpendicular to heads and a piece-wise linearly concave
curve.

When the norm intersects v1q1, things become a little complicated. See
bcq1db in Fig.2.4 as an example.

Let the first normal that intersects the optimal path is bd. The hour-glass
after bd consists of first two types of polygons. Now we consider the part
before bd. There are two different cases.

1. The normal before bd still has b as an end.
See Fig. 2.6(a). From o1 to d along the optimal path, find the first
vertex that is visible to b. Let it be qk and connect it to b. The polygon
is divided into two parts by qkb: one is type 1; the other is enclosed by
v1q1 and two concave curves; the angle between those concave curves,
∠ebqk, is greater than π

2
.

2. The normal before bd does not have b as an end.
See Fig. 2.6(b). Let ec be the normal right before bd. From o1 to d along
the optimal path, find the first vertex, qk, that is visible to e. Connect
eqk. The polygon is divided into two parts by eqk. For the part after
eqk, it’s easy to prove that the optimal curve qkd is visible to e. The left

25



v1

b

d

q1

c

qk

e

v1

b

d

q1

qk

e

c

f

f

g

p

q

(a) (b)

Figure 2.6: how to cut Type 3

26



part is enclosed by v1o1 and two concave curves; the angle between those
concave curves, ∠feqk, is greater than π

2
.

The last question is how to triangulate the polygon that is bounded by a
segment and two concave curve. The answer is every triangulation will work.
See Fig. 2.6(a). When the greedy path arrives at f , the next triangle will have
one or two vertices from curve o1d. If it has two, like 4fpq, then the greedy
path will stay at f . If it has one, like 4fgq, then the greedy path will go to
g, because ∠fgq > ∠ebqk > π

2
.

2.3 Dual-direction Routing

When it comes to robot searching problem, it’s a natural idea to use two robots
that start routing at s and t simultaneously to reduce the searching time, i.e.,
one robot goes to the last polygon from point s in the first polygon; the other
goes to the first polygon from point t in the last polygon with the same speed;
when they find the other is in the same polygon, we will go directly to each
other along the shortest path between them.

The following theorem implies that dual-direction routing will cut down
the searching time to a half in the worst case, which observes the intuition.

Theorem 3. Dual-direction greedy algorithm gives each robot a path which
is at most 1

2
σPs,t, where ρ is the competitive ratio.

Proof: See Figure 2.7. Let the robots at s and t be Rs and Rt respectively.
W.l.o.g, we assume that Rs arrives at vm when Rt reaches vt on a diagonal
et. At that moment, they know they are in the same polygon, so they will go
along the shortest path between vm and vt to meet. es is the last diagonal that
Rs passes through. qs and qt denote the optimal path’s intersections with es
and et respectively.

From the idea of cutting an hour-glass, we can find a point qe on Qqs,qt

such that the connotation of Ps,vm and vmqm is the greedy path correspondent
to Qs,qm as the optimal path.

Therefore We have

|Ps,vm|+ |vmqm| ≤ ρ|Qs,qm|
|Pt,qt|+ |vtqt| ≤ ρ|Qt,qt |

|Qvm,vt | ≤ |vmqm|+ |Qqm,qt|+ |qtvt| (2.5)

Sum them up, then we have

|Ps,vm|+ |Pt,qt |+ |Qvm,vt | ≤ ρ|Qs,qm|+ |Qqm,qt|+ ρ|Qqt,t| ≤ ρ|Qs,t| (2.6)

27



s

t

es

et

qs

vs

vt

qt

vm

qm

Figure 2.7: bounding the path that one robot goes along until it meets another
robot.

Because |Ps,vm| = |Pt,qt |, the distance one robot goes is

1

2
(|Ps,vm|+ |Pt,qt |+ |Qvm,vt |) ≤

1

2
ρ|Ps,t| (2.7)

�

2.4 Parallel Routing

The problem of greedy routing is that the flow of traffic will converge through
every triangle. The worst result is all traffic will congest to a vertex, when
routing from a shorter edge of an obtuse triangle to another shorter edge.
See Figure 2.8 as an illustration. Congestion will deteriorate the performance
of the network, like load balance, resilience and speed. An observation of
Figure 2.8 suggests that we can control congestion by spreading the flow to
the white region that is not used by greedy routing.

We have seen that α-fatness simplifies the proof of competitiveness of
greedy routing a lot. In this section we will see that if the triangle sequence is
α-fat, parallel routing will give competitive heuristic paths and avoid conges-
tion. All triangles the following proofs are α-fat if there is no declaration. We
know α ≤ π

3
. If α = π

3
, all triangles are equilateral and it’s easier to analyze.

Therefore we always assume 0 < α < π
3
.

2.4.1 Algorithm

Definition 2.4.1 (Parallel Routing). For a message at point p inside 4i

towards destination t,

28



v

e1

en

Figure 2.8: The blue polygon is the region that could be passed when routing
from e1 to en. It could be seen as a traffic flow from e1 to en under greedy
routing. The flow will congest to v.

1. If t is not in 4i, it is routed towards the exit edge along the direction
parallel to the left edge of triangle 4i+1 in the sequence S.

2. If4i is the last triangle in S, then it is routed along the shortest possible
path from p to t.

When the p is s, the exit edge is known but the entrance edge is not given.
Pick any one of those two edges as the entrance and the other one gives the
routing direction.

Theorem 2.4.2. Given a sequence S of α-fat triangles, the parallel routing
algorithm finds a path of length at most ρ times the length of the shortest
path following the same sequence S, where ρ is a constant independent of the
input.

We follow the most notation of chapter 1. We call the path given by parallel
routing is the parallel path. The parallel path from s to t is represented by Ps,t.
The shortest path is Qs,t. For a triangle sequence S, vertices incident to the
entrance edge and exit edge of the same triangle are called pivot vertex. The
polygonal path between s and t, passing through pivot vertices orderly is called
the prime path of S.

29



We preceed to bound the length of each portion of parallel path between
two consecutive segments of the prime path by the optimal path.

(a)

pi

qi

qj

pj

ck

ck−1 ck+1

pi

qi qj

pj

ck

ck−1 ck+1

qi−1

(b)

Figure 2.9: ck−1, ck, ck+1 are pivot vertices. In (a), |qick ≥ pick| so |Pi,j| can
be bounded by |Qi,j|. In (b), |qick < pick| so |Pi,j| is bounded by |Qi−1,j|.

See Figure 2.9. Let |pick| and ∠ck−1ckck+1 be l and θ respectively. We
denote the length of Pi,j by F (l, θ). By α-fatness, we can prove the following
lemma.

Lemma 2.4.3. F (l, θ) ≤ l (2 cosα)k−1
2 cosα−1

, where k = d θ
α
e.

Now we bound the length of pick by considering two cases.

Case 1: |qick| ≥ |pick|. See (a) of Figure 2.9 for an example. If θ ≤ π
2
,

|Qi,j| ≥ |qick| sin θ ≥ |qick| sinα (2.8)

If θ > π
2
, |Qi,j| ≥ |qick|. Therefore,

|pick| ≤ |qick| ≤
|Qi,j|
sinα

(2.9)

Case 2: |qick| < |pick|. Similarly, we have

|pick| ≤ |ck−1ck| ≤
|Qi,j|
sinα

+
|Qi−1,i|
sinα

=
|Qi−1,j|
sinα

(2.10)

Therefore we can finish the proof of Theorem 2.4.2.

30



Proof: Since θ ≤ 2π,

|Ps,t| =
∑
|Pi,j| ≤

∑
|pick|

(2 cosα)k − 1

2 cosα− 1

≤
∑ |Qi−1,j|

sinα

(2 cosα)k − 1

2 cosα− 1
≤

∑ |Qi−1,j|
sinα

(2 cosα)k
∗ − 1

2 cosα− 1

≤ 2[(2 cosα)k
∗ − 1]

(2 cosα− 1) sinα

∑
|Qi,j| = ρ|Qs,t| (2.11)

where k∗ = d2π/αe, ρ = 2[(2 cosα)k
∗−1]

(2 cosα−1) sinα
. �

31



Chapter 3

Applications

3.1 Routing Scheme of Sensor Networks

The first application of local routing in a triangulation is the problem of routing
in a wireless sensor network deployed in a complex geometric domain Σ with
holes. This is a common situation for large-scale sensor networks, as the shape
of the sensor deployment region (due to obstacles, terrain variation and other
deployment forbidding factors) necessarily comes to play with the network
design and management.

3.1.1 Introduction

The goal is to find short paths of a specific homotopy type, i.e., paths that go
around holes in some specific ordering. In the example of Figure 3.1, there
are many different ways to “thread” a route from s to t in the network with
three holes. Observe that paths α, β, γ are all different in a global sense, in
that, e.g., one can’t deform α to β without “lifting” it “over” some hole. In
contrast, paths γ and δ are only different in a local sense; one can deform γ
to δ continuously through local changes, keeping δ within the domain. This
difference is characterized by the homotopy type of a path. Two paths in a
domain are homotopy equivalent if one path can be continuously deformed to
the other, while staying within the domain.

For paths in a network, differences in homotopy types are differences at
a global scale, and are crucial factors in adapting to large dynamic obstruc-
tions – such as fires or floods that gradually destroy sensors in a region. The
obvious method of using shortest paths globally, and making local detours to
get around faults is not a good strategy in such cases. The phenomenon will
continue to destroy local detours, causing loss of messages, forcing repeated

32



detours and eventually blocking all local paths, requiring reconstruction of
large parts of routing table. Knowing the topology of the network, and using
homotopy types, we can effortlessly switch to a completely different type of
path when we notice persistent disturbances in a region.

Figure 3.1: In a network of 3 holes (shaded), paths α, β, γ have distinct
homotopy types; γ and δ are homotopy equivalent.

In Figure 3.1, a regional failure connecting the upper two holes may destroy
both γ and δ, while paths α and β remain available. Despite the importance of
homotopic routing in terms of improving load balancing and routing resilience,
it is only very recently that homotopic routing has been explicitly addressed [7].
In Zeng et al. [7], greedy routing in a virtual coordinate space finds paths of
different homotopy types. However, the algorithm has no theoretical guarantee
on the path stretch, i.e., there is no bound on the path length in comparison
with the length of a shortest path of the same homotopy type.

We [8] introduce a routing framework with a modest state per node that
guarantees constant worst-case stretch for any given homotopy type. This is
the first work that achieves a provable bound.

We assume that the sensor nodes are densely deployed in a geometric do-
main (e.g., campus map, floor plan) that is represented by a polygon (possibly
with holes) Σ. While the network may have a huge number of nodes, the
domain in which the nodes are deployed is often of a much smaller complexity.
Let us denote by n the number of sensor nodes and k the number of vertices
of Σ. In practice, k � n. Instead of building a structure on the network
topology, we take the geometric domain in which the network is embedded
and use a structure on Σ to encode the path homotopy type. Notice that this
approximation gives us a number of benefits. The complexity of Σ is much
smaller. Further, a structure operating on Σ is relatively stable, while network

33



links can be volatile. As is common in geographical routing, we assume that
nodes know their own geographical location through GPS or other localization
schemes.

Our method operates on a two-level structure. On the top level, we use
a coarse triangulation of the geometric domain to encode the network shape
and to compute the path homotopy type. On the bottom level, we show that
a simple, greedy geographic routing scheme within a sequence of triangles,
which together with the top-level gives a constant (bounded) worst-case stretch
compared to the shortest path of the same homotopy type.

We decompose Σ into triangles using certain diagonals connecting vertices
of the polygon Σ. The dual graph of the triangulation is a planar graph D. If Σ
has h holes, we cut the domain along h diagonals (cut edges) that interconnect
the holes, thereby obtaining a simply connected domain whose corresponding
dual graph is a tree T . For a particular homotopy type, the shortest path stays
inside a sequence of triangles S = {41,42, · · · ,4m} in the triangulation,
whose dual is a simple path in T . Since the simple path connecting two nodes
in a tree is unique, any existing method of routing on a tree, such as hyperbolic
embedding [9] or compact routing labels [10], can be used to find S using a
greedy algorithm on the tree T . Thus, the top-level greedy algorithm simply
reveals the triangles of S, one at a time, which contains a shortest path of the
required homotopy type. Our bottom-level algorithm will then realize a path
within S, whose length is at most a constant times the shortest path inside
S, i.e., the shortest path of the requested homotopy type. We remark that
triangulation of Σ and the tree T can be computed at the network initialization
phase. The corners of each triangle are pre-loaded at the sensor nodes that
are inside the triangle, along with the corners of the (at most 3) triangles that
are adjacent to it. This way, finding the “global path” in T is done at runtime
in the network using local, greedy information.

To summarize, both the top-level and bottom-level routing algorithms are
of a greedy nature. The top level computes a sequence of geometric triangles
that the homotopic routing path should visit; the bottom level uses a greedy
algorithm in the sensor network to find a network routing path realizing the
requested homotopy type. The top level uses virtual coordinates for finding the
homotopy type; the bottom level uses the nodes’ true geographical coordinates
to realize one such path. After the initial preprocessing, each node only stores
the Euclidean coordinates of the corners of the triangle containing it and the
adjacent triangles (for bottom-level routing), the virtual coordinates of its own
and adjacent triangles (for top-level routing), and the h cut edges of the dual
graph (for specifying the path homotopy types). The storage requirement
for each node is of size O(h), where h is the number of holes in Σ, and is

34



independent of the network size or the complexity of the geometric domain Σ.
The preprocessing involves computing a triangulation of Σ and the top-level
embedding (e.g., by [9]) or computation of routing labels (e.g., by [10]), whose
complexity is roughly linear in the complexity, k, of the geometric domain Σ
and independent of the number, n, of sensor nodes, which can potentially be
much larger.

Related Work. Our scheme is in the family of geometric routing schemes [11]
that use the nodes’ coordinates to guide a message to the destination. In
particular, the simplest geographical greedy routing [12] delivers the message
to the neighbor whose distance to the destination is the smallest. One well
known limitation of this approach is that a message can get stuck at a node that
does not have any neighbor closer to the destination; this often happens when
the domain Σ is not convex. To resolve this issue, a number of schemes (such as
GLIDER [13]) first decompose the network into pieces such that simple greedy
routing can be carried out inside each piece and the adjacency of the pieces
are extracted and propagated to the network on top of which global routing
is performed. In some papers (e.g., [14, 15]), the sensor network domain is
partitioned into convex or nearly convex pieces, and, again, a similar routing
scheme is designed by first finding the sequence of pieces to visit and then
using a local, greedy algorithm to deliver the message to the next piece in
the sequence. However, none of these prior local routing schemes guarantees
bounded stretch (compared to the shortest path through the same sequence
of cells). Further, none of the global routing schemes explicitly considers path
homotopies.

In the geometric setting, computing the shortest homotopic path inside a
polygon Σ, when we have global knowledge of Σ, can be done in almost linear
time. A simple polygon with k edges can be triangulated in O(k) time [16, 17].
A polygon with k vertices and h holes can be triangulated in O(k+h log1+ε h)
time [18], or in O(k log∗ k + h log k) expected time [19]. Given a triangulated
polygon, computing the shortest path with a given homotopy type can be
done in time linear in the number of times the path crosses a diagonal of the
triangulation [20]. All of the above schemes assume full knowledge of the entire
triangulation Σ and compute only a geometric path; they do not route within
a sensor network deployed inside Σ.

There has been a number of related papers about online navigation for
robot motion planning, which uses models similar to our bottom-level rout-
ing algorithm. In one of the most investigated models [21], we are given a
planar straight line graph H with n vertices, whose edges are weighted by
their Euclidean lengths, the source s and destination t are vertices of H, and
a packet can only move on edges of H. A packet only knows s, t, N(v) (the

35



set of neighbors of v), and the location of the packet. Various studies have
been done under this model [21–25]. It has been established that deterministic
oblivious (i.e., “memoryless”) algorithms can be found for triangulations, but
no algorithm has constant competitive ratio. For triangulations that have the
“diamond property”, a constant competitive algorithm exists if the algorithm
can use O(1)-memory within the packet being routed [24]. In particular, if the
triangulation has exactly two ears (as does a sequence of triangles), there is a
simple algorithm with competitive ratio 9. This setting is different from ours.
In our setting, the triangulation is coarser than the network resolution. The
routing path does not need to follow the edges of the triangulation; it can pass
through interiors of triangles, potentially allowing the path to be significantly
shorter.

The problem of robot motion planning and online navigation has also been
considered in a geometric domain with obstacles under various models of the
robots’ vision; refer to the survey [26]. A tactile robot learns the boundary of
an obstacle only when it encounters it and then moves along it [27]. A vision-
based robot only learns the obstacles when it can see them. For tactile robots
in an environment with square obstacles, constant competitive ratios can be
achieved; when the obstacles can have unbounded aspect ratio, no constant
competitive algorithm exists [28, 29]. If the domain is a special simple polygon
called a “street”, in which s, t split the polygon boundary into two chains such
that any point on one chain is visible to some point on the other chain, then
online algorithms exist in which a robot with a vision sensor can search for the
destination t with a constant competitive ratio [30]. Additional results can be
obtained for star-shaped polygons, etc.; refer to [31]. Note that a sequence of
triangles, as in our setting, is a street. Note, though, that in our model the
“vision” of the robot (message) is restricted to the current containing triangle.

3.1.2 Bounded Stretch Homotopic Routing

We assume a dense collection of sensor nodes deployed inside a given polygonal
domain Σ with h ≥ 0 holes. The number of vertices of Σ is k. The number
of sensors inside Σ is n. Typically, h � k � n. Our objective is to prepare
the sensor nodes with minimal information such that one can easily answer
the query of homotopic routing using local greedy algorithms. We start by
explaining how to define path homotopy in the query.

Path Homotopy

First we triangulate the polygon Σ, i.e., adding diagonals (edges connecting
visible vertices of Σ) to decompose Σ into triangles. Note that no Steiner

36



points are added. An example is shown in Figure 3.2.

Figure 3.2: A triangulated region and routing paths inside. The shaded part
is a hole with no wireless nodes while the rest of the domain is densely covered
by sensors (not shown in the figure). The red path shows the shortest path
from point s to point t, while the blue path is created by following our greedy
routing strategy. The dashed path is a shortest path with a different homotopy
type.

Any path from a source s to a destination t must go through a sequence
of triangles. We say a path follows a sequence S, if it visits the triangles in
the order S. The homotopy type of a path is captured by S. Figure 3.2 shows
(in solid red and dashed red) the shortest geometric paths from s to t of two
different homotopy types.

To define a path of a certain homotopy type, we work with the dual graph
(D) of the triangulation, in which each triangle is represented by a vertex,
and vertices corresponding to adjacent triangles are connected by edges. See
Figure 3.3 for an example.

A path in a domain with holes can go around holes in different ways; e.g.,
consider the red and green paths connecting z and d in Figure 3.3. To charac-
terize these differences formally, we introduce cut edges to the triangulation,
which are diagonals (or edges in the dual graph) that connect holes to the
outer boundary (possibly via other holes). The cut edges are chosen one per
hole arbitrarily . Removing the cut edges makes Σ a simple polygon and makes

37



Figure 3.3: A triangulated polygon. Dual graph shown with blue edges. Cut
edges are shown in dashed lines. Red and green curves show paths of different
homotopy types. The solid edges in the dual constitute the tree T .

the dual graph D a tree, denoted by T . In Figure 3.3 the cut edges (shown
dashed) are ab and cd in the dual; they cross corresponding triangulation edges
(also shown dashed).

This demarcation of cut edges suffices to distinguish paths of different
homotopy types. Any two paths that cross the same sequence of cut edges are
of the same homotopy type. Note that we are interested only in some basic
homotopy types. In general, a path may go around a hole many times, but
such paths are not of practical interest in network applications. Therefore we
are only interested in the homotopy types in which the shortest path only visits
each triangle once. This means that the path winds around a hole at most
once, i.e., any cut appears at most once in the type description. Thus, the
length of a description for a practical path is O(h), where h is the number of
holes of Σ. The homotopy type definition is only with respect to the geometric
domain Σ and is independent of the sensor network within Σ.

Our goal is, for a given homotopy type (sequence of cut edges), to find a
path of that type in the sensor network, from the source to the destination,
by using a local greedy decision rule. Our routing protocol follows a two-level
structure, and adopts greedy decisions to make progress at each level:

1. Top level: Determines the sequence S of triangles that the shortest
path with the specified homotopy type goes through.

2. Bottom level: Routes the message in the sensor network, following the
sequence of triangles S.

The top-level procedure is concerned with finding the sequence of triangles
that the shortest path of the given homotopy type should follow. Our hope
of achieving short stretch paths rests on the bottom-level procedure, which
must be designed with care. We will first describe our algorithm and prove its

38



performance in the geometric case of a continuous Euclidean metric, and then
consider its adaptation to a discrete network setting in Section 3.1.2.

Greedy Routing at the Bottom Level

In this subsubsection we design and analyze the performance of the bottom-
level protocol for greedy routing in a sequence of triangles S = 41,42, · · · .

Definition 3.1.1 (Bottom-Level Greedy Routing). For a message at
point p, inside 4i and destined for t,

1. It is routed along the shortest path to (any point in) the next triangle
4i+1 in the sequence S.

2. If4i is the last triangle in S, then it is routed along the shortest possible
path from p to t.

Such a path is shown in blue in Figure 3.2.
Theorem 1.2.2 makes sure that the above algorithm yields a competitive

path at the bottom level.

Greedy Routing at the Top Level

At the top level, we have a tree T , dual to the triangulation of Σ after cut edges
are removed. Routing at this level deals with finding a sequence of triangles
that contains the shortest path of the specified homotopy type. Routing in a
tree using a greedy algorithm can be done in various ways. We describe two
such methods below and show how to add homotopy types on top of it.

Homotopic routing by hyperbolic embedding. To support greedy rout-
ing in the tree T , we can embed T in the hyperbolic plane using the method
of Kleinberg [9]. Here we explain how to augment it for routing of a given
homotopy type.

To support routing of a given homotopy type, we need to attach copies of
the tree along cut edges such that routes through cut edges can be found in
a greedy manner. Each cut edge connects two vertices of T that are always
leaves. We can attach a copy of T to the open end of each duplicate cut edge.
The continuity that was lost in removing the cut edges to create T is now
restored.

For example, the edge ab in Figure 3.3 maps to two different leaves b and
a. Let us attach a copy of T by connecting edge ab at a and b, respectively, to
maintain continuity of the original D. That is, a and b are now neighbors once

39



Figure 3.4: The tree T is shown in solid blue inside the Poincare disk. The red
and green paths from Figure 3.3 are shown as red and green paths to different
images of d. Together they represent a loop.

again, while maintaining all other neighbor relations. However, this creates a
new set of cut leaves with discontinuity where we need to attach copies of T for
continuity. This can be carried out indefinitely to get a tree T with infinitely
number of copies of T . This tree T is the Universal Covering Space of the
graph D. Each node of T maps to many copies in the universal covering space
T . Paths of different types are obtained by simply routing to different images
of the destination in T . In particular, the shortest path for a given homotopy
type maps to a simple path in the T connecting the source to the proper
image of the destination. This simple path can be found by using a greedy
routing algorithm using a embedding of T in hyperbolic virtual coordinates,
as explained below.

The universal covering space of any graph is a tree [32], and an infinite tree
of bounded degree has a greedy, (1+ε)-distortion embedding in the hyperbolic
plane that can be computed by a distributed algorithm [9, 33]. Figure 3.4
shows an example of the embedding in the Poincare disk.

To perform the top-level routing, we need to identify this suitable image
of the destination corresponding to the given homotopy type. Recall that a
homotopy type is determined by the sequence in which a path crosses cut
edges. For example, the red path above crosses the cut edge cd in direction
−→
cd . We define a corresponding transformation in the hyperbolic plane: the
transformation gcd maps the cd edge at the bottom right to the cd edge at

40



the top right. Then the two destinations d and gcd(d) corresponds to different
homotopy types shown by the green and red paths.

A path to gcd(d) must cross the cut edge cd in direction
−→
cd , and thus is

equivalent to that homotopy type. Transformations such as gcd form a group
called the group of deck transformations. The generators of this group can be
composed together: gabgcd(w) = gab(gcd(w)). Therefore, a homotopy type can
be represented by a sequence of generators, g = g1g2g3 . . . , which represents
crossing the corresponding cut edges in the given order and directions. Thus,
for our purposes, given a homotopy type g and a final destination d, we will
select as our destination g(d) and route to it by greedy routing in the hyperbolic
metric. Each generator is an isometry of the hyperbolic plane and can be
written as a Möbius transformation: z → eiθ z−z0

1−z̄0z , with only two parameters:
a complex number z0 and an angle θ. A composition g can be written in the
same form, and therefore needs only two parameters as well.

An analogous method of universal covering spaces used in [7] embeds the
entire network in the hyperbolic plane using an expansive Ricci Flow compu-
tation. In contrast, we need to embed only a coarse tree.

Routing with compact labels of T . An alternative method of finding
routing paths in D is to use compact routing labels for the finite tree T . In a
tree of size m – for example, as described in [10] – this method assigns label
ζ(p) of size O(logm) to each node p. Given a destination label t, the source
s can find a neighbor p that is closer to t by merely comparing ζ(p) and ζ(t).
Using ζ, we can perform homotopic routing as follows. Suppose ab, cd, . . . is
the sequence of cut edges for the type. We route from s to a using ζ, route
from a to b locally, and route from b to c using ζ again, and so on.

Implementation in a Sensor Network

In this section we describe the implementation issues in a sensor network. This
includes preprocessing to prepare the necessary information for both top-level
and bottom-level routing algorithms. We also elaborate on how to implement
the bottom-level routing in a network setting.

Preprocessing. We assume that the polygon Σ (e.g., a map of the deploy-
ment domain) in which the network is deployed is already known before the
deployment/initialization of the network. The triangulation of Σ is done us-
ing a centralized algorithm offline by the network owner/operator. A polygon
with k vertices and h holes can be triangulated in O(k + h log1+ε h) time [18],
or in O(k log∗ k + h log k) expected time [19]. h cut edges are selected to cut
the holes open. We also prepare the coordinates for top-level routing in the
tree T (and the universal covering space T ) obtained from the triangulation

41



after the removal of the cut edges in a centralized manner. The running time
is dependent on k, h, the complexity of Σ instead of the size of the sensor
network.

Information about the triangles as well as the coordinates of nodes of T
are then disseminated to the network using a network-wide broadcast such
that each sensor node only stores the following information: 1) the Euclidean
coordinates of the triangle containing itself and the (at most 3) adjacent tri-
angles; 2) the virtual coordinates of the triangle for top-level routing and that
of (at most 3) adjacent triangles; and 3) the cut edges for issuing homotopic
routing. With such information each node is able to perform top-level greedy
routing given a specified homotopy type using only local information. The
storage requirement for each node is O(h). The message size in the broadcast
procedure is O(k), the size of Σ. Notice that this procedure is only done once
for the entire network lifetime.

To specify a destination, we need to specify the triangle containing it and
its Euclidean coordinates. The former is for top-level routing and the later
is for bottom-level routing when the message gets to the final triangle. Such
information for the destination can be obtained through standard location
services.

Bottom-level routing in a sensor network. To perform bottom-level
routing, we implement the greedy strategy, described in the continuous setting
in Section 3.1.2. There are two cases. In the first case, the destination is not
in the current triangle 4. The top-level routing suggests the next triangle
4′ to be visited. We find a path in the network to the geometric diagonal
shared by 4 and 4′. We simply use geographical greedy routing towards
the diagonal, i.e., forwarding the message to the neighbor whose Euclidean
distance is closest to the next triangle. Since we assumed that sensors are
densely deployed, geographical greedy routing inside a triangle-shape domain
should have high delivery rate. In the rare situation that the message gets
stuck, for example due to small and temporary routing holes, we simply flood
it inside the triangle4. In the second case, the destination is inside the current
triangle 4; again, simple geographical greedy routing is employed and, in rare
situations, flooding is used when a message gets stuck.

3.1.3 Simulations

In this section, we implemented our algorithm and run simulations to investi-
gate the observed stretch factor and load balancing. Here, we are especially
interested in evaluating the quality of the bottom-level routing of our algo-
rithm; notice that the top-level simply produces the unique sequence of tri-

42



angles to be used at the bottom-level. We compare to three network routing
algorithms within a sequence of geometric triangles: shortest path (SP) rout-
ing, the landmark-based greedy routing algorithm GLIDER used in [13], and
the greedy algorithm using hyperbolic virtual coordinates in [7].

GLIDER: A landmark-based 2-level routing method. GLIDER [13]
starts by selecting some nodes as landmarks. Then, these landmarks flood the
network such that every node in the network can identify its nearest landmark.
Nodes with the same nearest landmark are said to be in the same Voronoi cell.
Each node is informed of the dual graph of the Voronoi decomposition and
thus knows the path in the dual to any cell. When a message needs to move
from cell A to cell B to cell C, the message moves along a shortest path toward
the landmark of B, until it enters B. At that point, it switches to a shortest
path toward the landmark of C, etc.

Hyperbolic routing using Ricci flow. The hyperbolic routing algorithm
in [7] applies hyperbolic Ricci flow to compute an embedding of the network in
the hyperbolic space. For any given domain, a triangulation is extracted from
the connectivity graph. If there are holes (represented by non-triangular faces),
they are cut open so that the network becomes simply connected. Then, the
network is embedded, using hyperbolic Ricci flow, as a convex polygon in the
hyperbolic plane. Similarly, the universal covering space is embedded so that
homotopic routing is supported. We remark that our method uses a very coarse
triangulation on the top level, rather than embedding the entire network. In
addition, our method guarantees bounded stretch, while hyperbolic routing
has no worst case guarantee.

Setting. While both the GLIDER scheme and our algorithm utilize net-
work decompositions, the decompositions are different in nature. Thus, for
consistent comparison, we slightly modify the GLIDER scheme to utilize the
partition of the given triangulation (instead of the Voronoi partition), treating
the triangles as cells, and setting the landmark of a triangle to be the node
nearest to the centroid of that triangle. Further, all paths in comparison have
the same homotopy type.

The simulation results reported in here are for unit-disk graphs. The results
for quasi-unit-disk graphs and other relaxations of radio models are similar
(and thus omitted from this extended abstract). The nodes are distributed as
a perturbed grid.

Our main observations from the simulations are:

• Our greedy routing method almost always finds routes with a stretch of
at most 3, which is much better than the theoretical bounds, GLIDER
and hyperbolic routing. Its performance is consistent and is not sensitive
to the actual triangulation of Σ used.

43



• Our algorithm distributes traffic load more evenly than the GLIDER
2-level routing method and causes fewer hotspots.

• Although there is no theoretical guarantee on the stretch for the GLIDER
algorithm and the hyperbolic routing scheme, the paths they generate
have stretch typically no more than 5 in all of the examples we have
tested. This is in agreement with results reported in [13] and [7].

Path Length

We first consider a network of 8713 sensors deployed in a rectangle with three
concave holes. The average degree is 23. We first triangulate this region as
shown in Figure 3.5. We then take random sequences of triangles from this net-
work, select random source and destination from them, execute routing using
different methods and measure the stretch and node loads. Each experiment
is repeated 10, 000 times.

Figure 3.5: The rectangular domain with 8713 nodes distributed on a per-
turbed grid. Comparing a shortest path (blue), the GLIDER path (red), the
hyperbolic routing path (brown), and our greedy route (green). The starting
point is circled by red, the end point is circled by black.

44



Figure 3.6 demonstrates the distribution of the stretch of our algorithm,
GLIDER, and hyperbolic routing over the shortest path algorithm. Of the
three algorithms, 90% of the paths have stretch factor below 1.5, which is
far better than the theoretical bound. Moreover, in this experiment our al-
gorithm produces no stretch greater than 3, which outperforms the other two
algorithms.

Our Algorithm, Avg=1.336

GLIDER, Avg=1.308

Hyperbolic Routing, Avg=1.28

#
P

a
th

 (
lo

g
)

1

10

100

1000

#
P

a
th

 (
lo

g
)

1

10

100

1000

#
P

a
th

 (
lo

g
)

1

10

100

1000

Stretch Factor

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5

Figure 3.6: Histogram of stretch factors of paths over the shortest path al-
gorithm produced by our algorithm, GLIDER, and hyperbolic routing. Our
algorithm has a typical stretch less than 1.5, and is always less than 3, while
GLIDER and hyperbolic routing have some paths of length more than 3 times
the shortest path length.

Load Balancing

Geographical routing using face routing to get around holes is known to have
a tendency to congregate near hole boundaries, creating traffic hotspots that
slow down routing and drain sensor batteries. It has been shown that both
GLIDER and hyperbolic routing improved load balancing in this aspect [7, 13],
since both of them take long de-tours around holes.

We show the load distribution as a histogram in Figure 3.7 for different
algorithms by running them on 10000 random source and destination pairs.
All three algorithms perform reasonably well in this respect. Our algorithm
is slightly better than GLIDER and slightly worse than hyperbolic routing.
This is because by allowing paths longer than shortest paths, and not using
face routing that explicitly traverses boundaries, our methods can distribute
the load away from hole boundaries and hence ease the maximum load.

45



Hyperbolic Routing

Our Algorithm

GLIDER

#
N

o
d

e

0

50

#
N

o
d

e

0

50

#
N

o
d

e

0

50

Loads

0 200 400 600 800 1000 1200 1400 1600

Figure 3.7: A load comparison between paths produced by hyperbolic routing,
our algorithm and GLIDER. The load is captured by running three algorithms
on 10000 random source and destination pairs. Only nodes with load above
200 are shown here.

Various Domain

We tested the performance of our algorithm in the six different domains shown
in Figure 3.8. In Figure 3.8a, we tested the fan shape, in which it is expected
that our algorithm performs close to the worst case stretch bound – our route
approximately follows a semi-circle, resulting in a stretch factor of about π/2.
In Figure 3.8c, because of the nature of the spiral shape, all algorithm performs
the same. We also tested various domains with obstacles, in Figure 3.8d, a
concave hole is present within the domain. The equivalent states are as in
Figure 3.8b, Figure 3.8e, and Figure 3.8f. All of the obstacles within the
domain are treated as part of the triangulation.

We chose 10, 000 random routing paths within each network. Table 3.1
shows that the average stretch of the greedy routing method is always less
than 1.5, irrespective of the network geometry.

Dependency on Triangulation

To check the dependence of the quality of results on the nature of triangula-
tions, we repeated the experiment for different triangulations with randomly
distributed interior vertices in a rectangle domain as Figure 3.8e. For each
experiment, we randomly place 20 additional vertices for triangulation, and
found that the standard deviation of the stretch of our method and GLIDER
are both small, about 0.013 and 0.018, respectively. This implies that the per-

46



(a) Fan shape domain, 3965 nodes, avg
degree 13 (b) Polygon domain with 1 hole, 2588

nodes, avg degree 6

(c) Spiral shape domain, 2227 nodes, avg
degree 6

(d) Rectangular domain with 1 hole,
2403 nodes, avg degree 6

(e) Rectangular domain with 5 holes,
1883 nodes, avg degree 6

(f) Rectangular domain with 7 holes,
5432 nodes, avg degree 7

Figure 3.8: Six different domains and the shortest path (blue) and the path
(green) obtained using our algorithm, the starting point is circled by red, the
end point is circled by black.

47



Networks Stretch
Fan shape domain 1.412191984

Spiral shape domain 1.271866423
Polygon domain with 1 hole 1.338248974

Rectangular domain with 1 hole 1.328246153
Rectangular domain with 5 holes 1.313282006
Rectangular domain with 7 holes 1.319227400

Table 3.1: Stretch in different networks of Figure 3.8

formances of these methods are largely independent from the triangulation.

3.2 Routing In Fat Triangulations

Definition 3.2.1. Given a path P which threads a triangle sleeve S, a vertex
v of a triangle T is the pivot of T with respect to P if two edge incident to p
in T is crossed by P . Triangles of S are in the same (pivot) group if they have
the same pivot.

Figure 3.9 shows a triangle sleeve with two pivots.

p1

a

b

p2

Figure 3.9: pivots of a triangle sleeve and its partition according to the pivots

Definition 3.2.2. Let T be a triangulation of a planar region R, with vertex
set V . T is (ρ, α)-fat, if it satisfies the following properties:

48



• the ratio rmax/rmin of the longest to the shortest edge in T is bounded
by some positive ρ.

• All angles in T have size at least α.

Theorem 3.2.3. Consider a (ρ, α)-fat triangulation T of a planar region R,
with vertex set V , and maximum and mininum edge lengths rmax and rmin.
Let s, g be points in R that the triangles 4s,4t in T that contain s and
g do not share a vertex, i.e. there are at least two pivot groups. Let ab
be a shortest polygonal path joining two points s and t in R . Let PT (s, t)
be a T -greedy path between s and t. Then PT (s, t) ≤ c|st| + 2rmax, for

c = 2ρ/min
{

sin(α
2

)

b 2π
α
c ,

1
2(b 2π

α
c−1)

}
.

Proof: Assume st threads 41, . . . ,4l′ between 4s and 4t. Let l donetes
number of triangles between4s and4t in the triangle sleeve given by PT (s, t);
by assumption, l′ ≥ l ≥ 1.

We first show a lower bound of |st|. With the angle bisectors incident to
pivots, we divide l′ triangles into 2l′ triangles whose minimum angle is at least
α
2
. The following analysis is to the new triangle sleeve. An edge is the bisector

of a pivot group if there are same number of triangles on both sides.
Look at Figure 3.9. p1 and p2 are consecutive pivot points. Let a(b) be

the intersection of st and the bisector of the pivot group on the left(right) side
of p1p2. Let x(y) be the number of triangle between p1a(p2b) and p1p2. We
charge the length of ab equally to the x+y triangles. The following function is
a lower bound of length will be charged to each triangle, where m is min{x, y}:

fα(m) =


sin(mα

2
)

m+b 2π
α
c−1
· rmin, 1 ≤ m ≤ π

α

1
m+b 2π

α
c−1
· rmin, π

α
< m ≤ b2π

α
− 1c

(3.1)

It’s easy to prove that the minimum of fα(m) is rmin·min
{

sin(α
2

)

b 2π
α
c ,

1
2(b 2π

α
c−1)

}
.

Let it be c0. Since the first half triangles in the first pivot group and the second
half triangles in the last pivot group don’t belong to any pivot switch, they
may not be charged by any length. The number of these triangles is u+v(≤ l′).
Therefore we have

|st| ≥ (2l′ − u− v)c0 ≥ l′c0 (3.2)

On the other hand, it’s straightforward to see that |PT (s, t)| ≤ 2(l+2)rmax.
Comparing it and the lower bound of |st| yields the theorem.

�

49



3.3 Greedy Routing In Perfect Triangulations

Definition 3.3.1. A triangulation is perfect if all triangles it has are equilat-
eral, i.e. it’s (1, π

3
)-fat.

We will show the stretch of greedy routing in perfect triangulations. Similarly
to the previous section, we denote an optimal path and greedy path between
two points a and b by ab and ãb respectively. The following two observations
will simplify our case analysis:

1. Look at Figure 3.10(2). t is the intersection of st′ and a2b2. We have:

|s̃t′|
|st′| ≤

|sp1|+ |p1p2|+ |p2t|+ |tt′|
|st|+ |tt′| <

|sp1|+ |p1p2|+ |p2t|
|st| (3.3)

which means we only have to consider the case when the destination t is
on the last exit edge.

2. If the interior of st interests that of s̃t at a point p, the greater stretch of
the subpathes before and after p is not smaller than the original stretch.
That’s to say one can assume that st and s̃t intersect only at s and t.

We now proceed to analyze the stretches of different cases.

1. Stick cases: in this case, each pivot group has one triangle; the sleeve
looks like a stick.

(a) two triangles. Look at Figure 3.10(1). It’s easy to see the stretch
is at most

√
2.

(b) three triangles.

Case 1: t is on p2b2. Look at Figure 3.10(2). We can scale all
triangles such that s is on the boundary of the first triangle. This
special case will be discussed in the case of four triangles.

Case 2: t is on a2p2. Look at Figure 3.10(3). c is on the line of a2b2

such that sc ⊥ a2c. Since |s̃t| ≤ |sc| + |ct|, it’s straightforward to
get an upper bound

√
2 of stretch.

(c) four triangles.

Case 1: t is on p3b2. In Figure 3.10(4), c is the intersection of the
extensions of sp1 and tp3. We have |s̃t| ≤ |sc|+ |ct| ≤

√
2|st|.

Case 2: t is on a2p3. In Figure 3.10(5), c is the intersection of a2b3

and the extension of sp1; s′ is on sp1. It’s an easy observation that

50



to achieve a bigger stretch, ∠stb3 is at most π
2
. s′ is on sp1. When

|ss′| → 0, we have

|s̃t| − |s̃′t|
|st| − |s′t| =

1

cos∠ts′c
≤ 2√

3
(3.4)

Therefore we can assume s is at p1 without decreasing the stretch
if it’s greater than

√
2. Let |tc|, |cp3| and |a1b1| be x, y and 2

respectively. We have

|s̃t|
|st| =

3 +
√

3x+ (1 +
√

3)y√
9 + 3x2

, where y ≤ 3(1− x)

4
(3.5)

It’s easy to show when x = 0 and y = 0.75, the biggest possible
stretch 1.69 is achieved. Case 1 of three triangles is also closed.

(d) five or more triangles. We only discuss the cases of five triangles
and the proof for more triangles is similar.

Case 1: t is on a3p4. ∠sa3b4 is smaller than π
2
, which indicates the

interiors of s̃t and st are not disjoint. Due to observation 2, we
don’t have to consider this case.

Case 2: t is on p4b3, ∠sta3 is greater than π
2
, which means the

maximum stretch is achieved when t is at b3. Look at Figure 3.10(6).
Let |ss′| and ∠s′sp1 be ∆ and θ. We have

|piqi| = 21−i|ss′| sin θ (3.6)

|s̃t| − |s̃′t| = sp1 − s′q1 +
|p1q1|+ |p4q4|√

3
+ |p4q4| (3.7)

= ∆(cos θ +
9 +
√

3

8
√

3
sin θ) ≤

√
2∆ (3.8)

It indicates that we can assume s is at c. Therefore it’s reduced to
the case of four triangles. This method will be wildly used in the
following discussion.

(e) infinite stick. If a stick has k triangles, |st| is in [k − 2, k + 1]; |s̃t|
is in [2(k−4)√

3
, 2(k−4)√

3
+ 4]. Therefore the stretch is 2√

3
asymptotically.

2. Spiral cases: in these cases, one pivot vertex might have multiple(at
most four) triangles; since we assume the optimal path only intersects
the greedy path at two ends, the sleeve looks like a spiral. We call a

51



s

t′t

p1

p2

s

t

a1 a2

b1 b2 b3

s

p1

a1 a2

b1 b2

t

s

t

a1

b1

a2 a3

b2

p1

p2

p3

b3

s

t
a1

b1

a2 a3

b2

p1

p2

p3

b3

s

t

a1

b1

a2 a3

b2

p1

p2

p3

p4

b3

(1) (2) (3)

(4) (5)

(6)

a1 a2

b1 b2 b3

p1

p2

cc

c

s′

s′
q1

q2

q3

q4

c

Figure 3.10: Case analysis of routing in equilateral triangle sequences

52



pivot that has k(> 1) triangles a k-turn.

In Figure 3.11, s′ is on st and {s′, q1, q2, . . . } is the greedy path starting
from s′. We use ∆ and θ to denote |ss′| and ∠s′sp1. Comparing the
lengths of st and s′t, we find the difference comprises of two parts: the
first part is |ss′| cos θ; the second is proportional to |p1q1|, whose coef-
ficient will determine the stretch. Let the maximum possible coefficient
of triangle spirals with k turns be Ck. We proceed to explain the rela-
tionship between Ck+1 and Ck by discussing sleeves with different first
turns.

• 2-turn: look at Figure 3.11(1). The first turn vi is a 2−turn; 4i

is the first triangle in the group of vi. Let di be |piqi|; we know
di = 21−id1. Let the coefficient be cik+1. Since i ≥ 2, we have

cik+1 ≤
1√
3

(d1 + 2di − di+2) + Ckdi+2

d1

(3.9)

≤ 5
√

3

8
+
Ck
8

(3.10)

• 3-turn: in Figure 3.11(2), the first turn is a 3-turn. With a similar
analysis of the case before, we have

cik+1 ≤
1√
3

(d1 + 2di + 2di+1 − di+3) + Ckdi+3

d1

(3.11)

≤ 13
√

3

16
+
Ck
16

(3.12)

• 4-turn: It’s a straightforward observation that a 4-turn should be
the last turn of a sequence and C1 is achieved by a sequence having
a 4-turn. If there are an odd number of triangle(s) between 41

and 4i, we can assume the number is 1 as Figure 3.11(3) shows;
otherwise s̃t will cross st, which case we don’t have to consider.
Hence we know

codd1 =

1√
3

(−d1 + 2di + 2di+1 + di+2) + di+2

d1

=
1−
√

3

16
(3.13)

If there are an even number of triangle(s) between 41 and 4i, we

53



s′

s

(2)

s

p1

q1

piqi

qi+1
pi+1

qi+2 pi+2

p1

q1

piqi

vi qi+1 pi+1

qi+2
pi+2

s

p1

s′
q1

piqi

(1)

vi
qi+1 pi+1

s′

Figure 3.11: spiral cases

54



have

ci1 =

1√
3

(d1 + 2di + 2di+1 + di+2) + di+2

d1

≤ 7
√

3 + 1

8
≈ 1.766

(3.14)

To sum up, we know

Ck+1 ≤ max

{
5
√

3

8
+
Ck
8
,
13
√

3

16
+
Ck
16

}
, k > 0 (3.15)

C1 = 1.766 (3.16)

It’s easy to prove that max {Ck|k > 0} is C1. We finally get

|s̃t| − |s̃′t|
|ss′| ≤ cos θ + C1 sin θ ≤

√
1 + C2

1 = 2.03 (3.17)

The discussion above finishes the proof of the following theorem.

Theorem 3.3.2. Given a perfect triangle sleeve, i.e. a triangle sequence of
equilateral triangles, the stretch of the greedy algorithm is at most 2.03, and
this bound is tight.

55



Chapter 4

Touring Polygons

Travelling Salesman Problem(TSP) may be the most famous travelling prob-
lem in computational geometry. Even in Euclidean plane the problem is quite
hard. One difficulity comes from the order of points to visit is not given. Dror
et al. [34] first studyed the touring a sequence of polygons problem(TPP),
in which the order of polygons is given. They gives a polynomial optimal
algorithm to find the shortest path that tours the polygons in the given or-
der, when the polygons are disjoint and convex. They also shows that when
the polygons are non-convex and nesting, the problem is NP-hard. One open
problem in their paper is whether the problem is NP-hard when the polygons
are non-convex but disjoint.

In this chapter, we give a positive answer to this open problem. 1

4.1 Touring Disjoint Non-convex Polygons

For completeness we describe the hardness proof from [34] below: given an
instance of 3-SAT with n variables v1, . . . , vn and m clauses Ci = (li1∨li2∨li3),
one constructs polygons, (P1, . . . , PO(n+m)), along with point s and t such that
by solving the TPP on this instance, one can determine if the 3-SAT formula
∧iCi has a satisfying truth assignment. They construct four kinds of gadgets:

• 2-way path splitters that double the number of shortest path classes

• 3-way path splitters that triple the number of shortest path classes, keep-
ing their ordering

1[35] and us independently found the hardness proof. In their proof, they asks whether
there is proof without exponentially growing gadgets, which is just what we have in our
proof.

56



• path shufflers that perform a perfect shuffle of the input path classes

• literal filters that that “select” paths that have a particular bit equal to
0 or 1

They use n 2-way splitters to create 2n distinct path classes that form a
“bundle” of parallel paths, of which each path class encodes a truth assignment
for the n variables. Then the parallel paths will go through a sequence of
clause filters, each consisting of three literal filters sandwiched between two
3-way splitters, to filter out those path classes whose corresponding variable
assignments fail to satisfy each clause. The literal filter has the property that
only those path classes that have a particular bit set to 0 or 1 are able to pass
through the filter without having a detour.

We adopt the same idea and use their 2-way splitter gadgets and 3-way
splitter gadgets. Look at Figure 4.1.

Figure 4.1: Left: 2-way splitter gadget. Right: 3-way splitter gadget

To avoid nesting polygons, we redesign the path shuffler, the literal filter.
The new path shuffler consists three parts: a bundle separater, a shuffle

component and a half-reverse component. Recall that 2n rays will go through
a 3-way splitter and one will have three copies of them before shuffling. In
each copy, the first(second) half of rays encode truth assignments in which
one specific variable is true(false). First we adjust the distance between two
bundles in one copy by a bundle separater. Figure 4.2 shows how it works.
It’s easy to connect three copies of bundle separaters such that two bundles in
a copy of 2n rays are separated by one bundle separater.

Figure 4.4 is a shuffle component and three copies of it are connected by
red segments. Figure 4.5a shows more details. The blue and green rectangles
denote two bundles. Let d be the distance between two rays in a bundle. l5
denotes the distance between P3 and the symmetric axis of the gadget. The

57



P1

P2

P3

Figure 4.2: beam adjuster

P1

P2 P3

P4

Figure 4.3: bit filter

gadget has following properties(other trivial distance relations are not listed
here): (1)l1 − l2 = d

2
; (2) l3 > 2l4; (3)l5 = d

4
.

A shuffle component doesn’t do a perfect shuffle. That’s why we need a
half-reverse component before it. Figure 4.5b shows a half-reverse component,
which has the following properties: (1) l2 = 2l4 < l3; (2) l1 > l2.

Refer to Figure 4.5b for more details. The blue bundle directly reflects back
and the order doesn’t change; while the green bundle reflects twice and the or-
der is reversed. Assuming there are 23 rays(0, 1, 2, . . . , 7), after passing through
a half-reverse component, the order of rays becomes (0, 1, 2, 3, 7, 6, 5, 4). The
order of the rays will be (0, 4, 1, 5, 2, 6, 3, 7) after touring through a shuffle
component. With this permutation, the rays whose third bit is 1 are all in the
first half.

Recall that the property of the literal filter is that only those path classes
that have a particular bit set to 0 or 1 are able to pass through the filter
without having a detour, force the path to be longer than the others. One
bundle will be forced to detour like the blue ray in Figure 4.3; the left five
bundle won’t have to detour like the green ray.

4.2 Deeply Touring

In this section we will introduce deeply touring a sequence of polygons prob-
lem(DTPP). In TPP the objective is to find the path as short as possible,
which means the visitor may touch a polygon then leave immediately. How-
ever, under some circumstances, we need the visitor to stay in polygons for
specfic time, that’s what ’deeply’ means. For example, a data-gethering robot
can collect data from servers within a range via wireless connection. It takes
time to transfer data. Therefore the robot has to stay within a region defined
by the server long enough to finish the data transferation.

58



P1

P3

P2
P4

shuffle component

P1

P2

P3

Figure 4.4: a shuffle component and connection

shuffle gadget

P1

P2

P3

l1 l2

l3

l4

l5

(a) shuffle component

l1

l2

l3

l4

(b) half-reverse component

Figure 4.5: two bundles passing through a shuffle component and a half-reverse
component

59



half-reverse gadget

P1

P2

P3

P4

Figure 4.6: half-reverse gadget and connection

4.2.1 Problem Definition

Given a sequence of polygons (P1, P2, . . . , Pn), a set of numbers (T1, T2, . . . , Tn)
and two points, s and t, find a tour such that one can start from s, visit those
polygons in the order given and stay in polygon Pi for Ti time, at last arrive
t as fast as possible. One can treat s and t as degenerate polygons. In the
following formats, we denote them by P0 and Pn+1.

Let ai be the point where the route enters Pi and bi be the point where it
leaves Pi. The optimization problem becomes:

minimize
n∑
i=0

(xi + yi)

subject to xi = |biai+1| i = 1, ..., n
yi = max {|aibi|, Ti} i = 1, ..., n

We have several straightforward observations:

• In L1 metric, the problem can be solved optimally by Linear Program-
ming as long as all polygons are convex(don’t have to be disjoint).

• If all polygons are convex, LP solution above in L1 ia a
√

2-approximation
for L2 metric.

• Since
n∑
i=1

Ti and the solution of optimal algorithms like [34] are two lower

bounds of the solution of DTPP. That means any optimal algorithm for
TPP yields a 2-approximation algorithm for DTPP and that algorithm
is to follow the path of TPP and stay as long as what’s required.

60



L2 metric C,D C,D C,D C,D
TPP knlog(n/k) knlog(n/k) n4/ε2 n4/ε2

DTPP n4/ε2 n5/ε2 n4/ε2 n5/ε2

Table 4.1: C means all polygons are convex; C means any polygon could be
nonconvex. D means all polygons are disjoint; D means that some polygons
could overlap. The NP-hardness of red problems is not known.

We still don’t know when the polygons are disjoint and convex, the DTPP
problem is NP-hard or not. However, known techniques to obtain an ap-
proximately shortest path amony obstacles in thress dimensions(e.g. [36–39]),
which work for TPP still work for DTPP. Table 4.1 shows the collection of
complexity results.

61



Chapter 5

Geometric Hitting Set for
Segments of Few Orientations

5.1 Introduction

[This chapter is based on the paper “Geometric Hitting Set for Segments of
Few Orientations,” by Sándor P. Fekete, Kan Huang, Joseph S. B. Mitchell,
Ojas Parekh, and Cynthia Phillips; submitted, 2015.]

The set cover problem is fundamental in combinatorial optimization. The
problem is known to be NP-hard and to have an O(log n)-approximation algo-
rithm, which is, in general, best possible (unless P = NP , [40]). Equivalently,
set cover can be cast as a hitting set problem, in which we are given a set S of
objects and we desire a smallest cardinality set, H, of points such that every
object in S contains at least one point of H. Numerous special instances of
set cover/hitting set have been studied. Our focus in this paper is on geo-
metric instances that arise in covering (hitting) sets of (possibly overlapping)
line segments using the fewest points (“hit points”). A closely related prob-
lem is the “Guarding a Set of Segments” (GSS) problem [41–44], in which
the segments are allowed to cross arbitrarily, but do not overlap. Since this
problem is strongly NP-complete [42] in general, our focus is on special cases,
primarily that in which the segments come from a small number of orienta-
tions (e.g., horizontal, vertical). We provide a variety of hardness results and
approximation algorithms.

Besides being a fundamental geometric instance of set cover, our problem
arises in the following scenario: Consider a set of paths/trajectories that lie
along a road network (e.g., a Manhattan network of axis-parallel roads). Each
path corresponds to a route of a potential customer; in the Manhattan case,
the paths are (possibly overlapping) horizontal/vertical segments. Our goal is

62



to place the fewest vendors (“hit points”) to meet all customer paths.

Our results. We give complexity and approximation results for several prob-
lems all in the family of geometric hitting set problems on inputs S of line
“segments” of special classes, mostly of fixed orientations. The segments are
allowed to overlap arbitrarily. We consider various cases of “segments” that
may be bounded (line segments), semi-infinite (rays), or unbounded in both
directions (lines). Our main results are:

(1) Hitting lines of 3 slopes in the plane is NP-hard. (Hitting lines of
2 slopes is easy to solve optimally.) Naively, one obtains a 3-approximation
for hitting lines of 3 slopes (since one can trivially hit (parallel) lines of one
slope optimally). The standard analysis of the greedy algorithm gives an
approximation factor of H(3) = 1 + (1/2) + (1/3) = (11/6). We prove that
the greedy algorithm in this special case gives an approximation factor of 7/5.

(2) Hitting vertical lines and horizontal (leftwards/rightwards) rays is poly-
nomially solvable.

(3) Hitting vertical lines and horizontal (even unit-length) segments is NP-
hard. A consequence of our proof is that hitting horizontal and vertical unit-
length segments is also NP-hard.

(4) Hitting vertical lines and horizontal segments has a (5/3)-approximation
algorithm. (This problem has a straightforward 2-approximation.)

(5) Hitting pairs of horizontal/vertical segments has a 4-approximation.
Hitting pairs having one vertical line and one horizontal segment has a (10/3)-
approximation. These results are based on LP-rounding. More generally,
hitting sets of k segments from r orientations has a (k · r)-approximation
algorithm.

(6) We give a fast (linear-time) combinatorial 3-approximation algorithm
for hitting triangle-free (girth at least 4) sets of segments. A 3-approximation
was recently obtained by [44] using linear programming (LP) methods. Our
result (Theorem 5.7.1) appears as Section 7 in the Appendix, due to lack of
space.

Related Work. There is a wealth of related work on geometric set cover
and hitting set problems; we do not attempt here to give an exhaustive survey.
The point line cover (PLC) problem (see [45, 46]) asks for a smallest set of
lines to cover a given set of points; it is equivalent, via point-line duality, to
the hitting problem for a set of lines. The PLC (and thus the hitting problem
for lines) was shown to be NP-hard [47]; in fact, it is APX-hard [48] and Max-
SNP Hard [49]. The problem has an O(logOPT )-approximation (e.g., greedy
– see [50]); in fact, the greedy algorithm for PLC has worst-case performance

63



ratio Ω(log n) [51].
Hassin and Megiddo [52] considered instances of geometric hitting set prob-

lems for hitting objects with the fewest lines having a small number of dis-
tinct slopes. They observed that, even for covering with axis-parallel lines,
the greedy algorithm has an approximation ratio that grows logarithmically.
They gave approximations for the problem of hitting horizontal/vertical seg-
ments with the fewest axis-parallel lines (and, more generally, with lines of a
few slopes). Gaur and Bhattacharya [53] consider covering points with axis-
parallel lines in d-dimensions; they give a (d − 1)-approximation based on
rounding the corresponding linear program (LP) formulation. Many other
stabbing problems (find a small set of lines that stab a given set of objects)
have been studied; see, e.g., [50, 54–58].

A recent paper [44] gives a 3-approximation for hitting sets of segments that
are “triangle-free”. Brimkov et al. [41–43] have studied the hitting set problem
on line segments, including various special cases; they refer to the problem as
“Guarding a Set of Segments”, or GSS. The GSS problem is a special case of
the “art gallery problem” in which one is to place a small number of “guards”
(e.g., points) so that every point within a geometric domain is “seen” by at
least one guard [59, 60]. Brimkov et al. [61] provide experimental results, for
three heuristics, including two variants of “greedy”, on the GSS, showing that
in practice the algorithms perform well and are often optimal or very close to
optimal. (They prove, however, that, in theory, the methods do not provide
worst-case constant-factor approximation bounds.) For the special case that
the segments are “almost tree (1)” (a connected graph is an almost tree (k)
if each biconnected component has at most k edges not in a spanning tree of
the component), a (2− ε)-approximation is known [43].

An important distinction between the GSS and the problems we study
here is that the set S of segments we allow includes overlapping (or partially
overlapping) segments (rays, and lines), while, in the GSS, we assume that
each line segment is maximal in the input set of line segments (the union
of two distinct input segments is not a segment). In particular, a special
case of our problem is that of interval stabbing on a line: Given a set of
segments (intervals), arbitrarily overlapping on a line, find a smallest hitting
set of points that hit all segments. (A simple sweep along the line solves the
problem optimally.)

If the objects we are trying to hit are such that there is no point that lies
within three or more objects, then the hitting set problem is readily solved as
an edge cover problem in the intersection graph of the objects. In particular,
if no three segments pass through a common point, the problem can be solved
optimally in polynomial time. (This implies that in an arrangement of “ran-

64



dom” segments, the GSS problem is almost surely polynomially solvable; see
[43].)

Related to our problem of hitting horizontal and vertical segments is the
geometric hitting set problem for axis-aligned rectangles. Aronov, Ezra, and
Sharir [62] provide an O(log logOPT )-approximation for hitting set for axis-
aligned rectangles (as well as axis-aligned boxes in 3D), by proving a bound
of O(ε−1 log log(ε−1)) on the ε-net size of the corresponding range space. The
connection between hitting sets and ε-nets [63–66] implies a c-approximation
for hitting set if one can compute an ε-net of size c/ε; recent major ad-
vances [67, 68] on lower bounds on ε-nets imply that associated range spaces
(rectangles and points, lines and points, points and rectangles) have ε-nets of
size superliner in 1/ε. Remarkably, improved approximation algorithms, with
factor (1+ε) (i.e., PTASs), for certain geometric hitting set and set cover prob-
lems are possible with simple local search, as shown by Mustafa and Ray [69];
for example, they obtain a local search PTAS for computing a smallest sub-
set, of a given set of disks, that cover a given set of points. (Hochbaum and
Maas [70] used a grid shifting method to obtain a much earlier PTAS for the
minimum unit disk cover problem when disks can be placed anywhere in the
plane, not restricted to a discrete input set.)

5.2 Hitting Segments

First, consider the case in which S is a set of line segments in the plane.
If all segments are horizontal, then we can compute an optimal hitting set

easily: we compute a hitting set for the segments (intervals) along each of the
horizontal lines determined by the input.

If the segments are of two different orientations (slopes), then the problem
becomes significantly harder. Without loss of generality, we can assume the
segments of two slopes are horizontal and vertical.

We first state that even if the axis-parallel segments are all of the same
length, the problem is hard. As it turns out, this result is a consequence of an
even stronger result, Theorem 5.5.1, which we establish in Section 5.5.

Corollary 5.2.1. Deciding if there exists a set of k points in the plane that
hit a given set S of unit-length axis-parallel segments is NP-complete.

We get an immediate 2-approximation algorithm by solving optimally each
of the two orientations, and using the union of the hitting points for both.
(This generalizes to approximating hitting sets for segments of k orientations,
yielding a k-approximation.)

65



5.3 Hitting Lines

We now consider the case in which S is a set of n lines in the plane. It is known
that greedy gives an O(logOPT ) approximation factor; any approximation
factor better than logarithmic would be quite interesting. (See [46, 51].)

If the lines are all axis-parallel (horizontal or vertical), then the problem
is easily solved in polynomial time. This holds also in the case that the lines
are of any two orientations; by an affine transformation, any two orientations
is equivalent to horizontal and vertical.

5.3.1 Hardness of Hitting Lines of 3 Slopes in 2D

If there are more than two orientations, then we prove that the hitting set
problem is NP-hard. Consider the problem in the dual formulation: (3-Slope-
Line-Cover, 3SLC) Find a minimum-cardinality set of non-vertical lines to
cover a set P of points (duals to the set S of lines), which are known to lie on
three vertical lines.

If a line ` covers i points, we say that ` is an i-line. Let P` denote the set
of points of P that are covered by line `. If P`1 ∩ P`2 = ∅, then we say that
lines `1 and `2 are independent. A set L of lines is independent if the lines are
pairwise independent; i.e., `i ∈ L and `j ∈ L are independent for every `i 6= `j.

Theorem 5.3.1. The problem 3SLC is NP-complete.

The proof can be found in the Appendix.

5.3.2 Analysis of the Greedy Hitting Set Algorithm for
Lines of 3 Slopes in 2D

The greedy algorithm is well known to yield a logarithmic factor approximation
for general instances of hitting set (or set cover); more precisely, if no point
lies in more than k sets, the greedy algorithm yields an approximation factor
of H(k) =

∑k
i=1(1/i), the kth harmonic number [71]. In the case of hitting

sets for which no point lies in more than 3 of the sets (as is the case for lines of
3 slopes), the greedy algorithm has approximation factor H(3) = 11/6. In the
Appendix, we show that the geometric structure of the hitting set problem for
lines of 3 slopes yields a better (7/5) approximation factor.

5.3.3 Axis-Parallel Lines in 3D

For three-dimensional space, we state another hardness result; the proof is in
the Appendix.

66



Theorem 5.3.2. Hitting set for axis-parallel lines in 3D is NP-complete.

5.4 Hitting Rays and Lines

It is apparent that hitting rays is “harder” than hitting lines, since any in-
stance of hitting lines has a corresponding equivalent instance as a hitting
rays problem (just place the apices of the rays far enough away that they are
effectively lines),

Unlike the case with lines, though, there can be many different rays that
are collinear. Collinear rays can be divided into two groups according to their
orientations; within a group, one ray is contained in the others of the group,
so we need to keep only it for the purpose of solving the hitting set problem.

We now show that the special case in which the rays come from two ori-
entations (say, horizontal and vertical), and in one of those orientations (say,
vertical) the rays are effectively lines (i.e., all apices of the vertical rays are
above or below all horizontal rays), the results problem (abbreviated HRVL)
is exactly solvable in polynomial time. The proof is rather involved; it appears
in the Appendix:

Theorem 5.4.1. The hitting set problem for vertical lines and horizontal rays
can be solved in polynomial time.

5.5 Hitting Lines and Segments

5.5.1 Hardness

Theorem 5.5.1. Hitting set for horizontal unit segments and vertical lines is
NP-complete.

Proof: The reduction is from 3SAT. See Figure 5.1.
Each variable is represented by a collinear connected sets of horizontal

unit segments; these are connected by two vertical lines and additional sets
of collinear unit segments into loops of even cardinality, producing a set of N
horizontal unit segments and vertical lines, which we call variable components.
Each clause is represented by a vertical line that intersects appropriate pairs
of variable segments (if that variable occurs in a clause) or just single segments
(in case a variable does not occur in a clause). Setting appropriate parities
for the literals in a clause is achieved by appropriate horizontal shifting of the
segments, as shown in the figure.

67



Figure 5.1: A set of horizontal unit segments and vertical lines that represents
the 3SAT instance I = (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x4). For
better visibility, collinear segments are slightly shifted vertically, with red and
green points indicating overlapping segments. Truth assignments for a variable
correspond to the set of green or red points, respectively. Literals occuring in
clauses are indicated by magenta circles; these are the only places where a
point can stab three segments or lines at once.

68



This results in a construction in which the only place where three of the
elements (segments or lines) can be stabbed involves a vertical line representing
a clause; this correspond to literals occuring in the repective clauses. (These
are indicated by magenta circles in the figure.) Thus, there is no point that
stabs more than two of the variable components at once. Therefore, stabbing
all N of them requires at least N/2 points. Clearly, N/2 of them suffice only
if no two of them stab the same variable component; therefore, we must either
pick all “green” or all “red” points for each variable. It follows that any such
feasible set of N/2 points that stab all variable components induces a truth
assignment, and vice versa. We get an overall stabbing set if and only if the
points also stab the vertical clause lines, corresponding to a satisfying truth
assignment. � �

After appropriate vertical scaling, we can replace the vertical lines by ver-
tical unit segments, so we immediately get Corollary 5.2.1 from Section 5.2.

5.5.2 Approximation

We give an improved approximation for hitting vertical lines and horizontal
segments. We start by looking at the lower bounds: v = |V | is the number of
vertical lines (it is a lower bound). Let h be the lower bound on hitting hori-
zontal segments only. We can compute h exactly; it is the minimum number
of hit points for the horizontal segments (computed on each horizontal line).
At any stage of the algorithm, we let h and v be the current values of the lower
bounds that come from the sets H and V .

In stage 1, we place two kinds of points:
(a) We place maximally productive points on vertical lines that reduce h

(and v) by one. Let k1 ≥ 0 be the number of points placed in this stage. Doing
so reduced h and v each by k1. As vertical lines are hit, we remove them from
V . Similarly, as horizontal segments are hit, we remove them from H.

(b) Look for pairs (if any) of points, on the same horizontal line and on
two vertical lines (from among the current set V ), that succeed in decreasing
h by one. Let k2 ≥ 0 be the number of points placed. Therefore the lower
bound h decreased by k2/2, and v decreased by k2.

In stage 2, we now have a set of vertical lines V and horizontal segments H
such that no single point at the intersection of a vertical line and a horizontal
segment (or segments) reduces h, and no pair of points on two (adjacent)
distinct vertical lines succeeds in reducing h.

Lemma 5.5.2. For such sets V and H, an optimal hitting set has size at least
v + h, where v = |V | and h is the minimum number of points to hit H.

69



Proof: The hit points we place on V (one per line) might conceivably decrease
h. We claim that this cannot happen. Assume to the contrary that it happens.
Let {q1, q2, . . . , qK} be a minimum set such that each of them is on a line of V
and h is decreased by 1 after placing the set.

Since we have found productive points and pairs of points in stage 1, K
should be at least 3. Then consider the hit point q2 on the middle among the
3 vertical lines, ordered left to right. The segments of H that are not hit by p
are either completely left or right of p; let Hl and Hr be the corresponding sets.
Since points on left and right sides of q2 won’t affect each other, if adding q1

decrease H, that means q1 and q2 is a productive pair, which should be found
in step (2); otherwise this means that the point q1 is unnecessary, contradicting
the minimality of K. �

Theorem 5.5.3. There is a polynomial-time 5/3-approximation algorithm for
geometric hitting set for a set of vertical lines and horizontal segments.

Proof: The total number of points selected by our algorithm is k1 + k2 from
the first stage and h − k1 − k2/2 + v − k1 − k2 for the second stage. By the
above lemma we have that the latter is lower bound on the cost of an optimal
solution:

h− k1 − k2/2 + v − k1 − k2 ≤ OPT, (5.1)

and we also have that h ≤ OPT and v ≤ OPT . We proceed with two cases.

(i) k1 + k2 ≤ 2/3 · OPT : In this case we select at most 2/3 · OPT points
in Stages 1, and we use (5.1) to bound the number of points selected
in Stage 2. We conclude that our algorithm selects at most 5/3 · OPT
points.

(ii) k1+k2 > 2/3·OPT : The total number of points selected by our algorithm
is h− k1 − k2/2 + v ≤ 2 ·OPT − (k1 + k2/2). We have that k1 + k2/2 ≥
k1/2 + k2/2 > 1/3 · OPT , hence we obtain a 5/3-approximation in this
case as well.

�

In fact, the approximation applies even in the case that the vertical lines
are replaced with downwards rays.

Theorem 5.5.4. There is a polynomial-time 5/3-approximation algorithm for
geometric hitting set for a set of vertical (downward) rays and horizontal seg-
ments.

70



Proof: The 3-stage approximation algorithm described above works for this
case as well. The key observation here is among any set of collinear down-
ward rays, we may remove all but the one with the lowest apex from the
instance. Therefore after Stage 1 and Stage 2, the hitting points we place on
the rays not yet hit will not decrease h. The argument is analogous to that in
Lemma 5.5.2. �

5.6 Hitting Pairs of Segments

We consider now the hitting set problem for inputs that are unions of two
segments, one horizontal and one vertical. The two segments might meet to
form an “L” shape, a “+”, or a “T” shape, or they may be disjoint. This
hitting set problem is easily seen to be NP-hard, since it generalizes the case
of horizontal and vertical segments. We give approximation results.

Theorem 5.6.1. For objects that are unions of a horizontal and a vertical
segment, the hitting set problem has a polynomial-time 4-approximation.

Proof: Suppose we have l unions of segments as described above, and let P
be the set of points serving as our hitters. We assume that |P | is polynomial in
l by preprocessing the instance, if necessary, so that we only consider points at
endpoints and crossings of segments. For each such union i, we let Si be the set
of points covering the union, while Hi and Vi are the sets of points covering the
horizontal segment and vertical segment respectively. We employ the standard
set cover linear program (LP) relaxation specialized to our problem:

min
∑
p∈P

xp∑
p∈Hi

xp +
∑
q∈Vi

xq ≥ 1, ∀ 1 ≤ i ≤ l (5.2)

0 ≤ xp ≤ 1, ∀ p ∈ P.

We use an optimal LP solution, x∗, to construct a new instance of the
problem in which each union contains either a vertical segment or a horizontal
segment, but not both. This new instance is easier to approximate but no
longer provides a lower bound on the original optimum value, OPT ; however,
we show that it provides a bound that is within a constant factor of OPT .

For each union of segments i, we set

S ′i =

{
Hi, if

∑
p∈Hi x

∗
p ≥ 1/2

Vi, otherwise.
(5.3)

71



Now each S ′i corresponds to either a horizontal or vertical segment. Let H ′ =
{i | S ′i represents a horizontal segment}, and let V ′ = {1, . . . , l} \ H ′. Our
algorithm is as follows:

1. Solve the LP, and let x∗ be an optimal solution.

2. Construct S ′i for each union of segments i as described above.

3. Solve the hitting set problems for all the horizontal segments, H ′, and
all the vertical segments, V ′, independently. Return the union of the
points, X selected by optimal solutions to each instance.

This algorithm returns a feasible solution since it selects some point in
S ′i ⊆ Si for each union of segments. The first two steps run in polynomial time.
Hitting segments of a single orientation is solvable in polynomial time; in fact
the corresponding set cover LP relaxation in this case has the consecutive ones
property and is totally unimodular, hence the optimum LP value equals the
optimum integer solution value.

To see that it is a 4-approximation, let y∗p = min{2x∗p, 1} for all p. By (5.2)
and (5.3) we see that the fractional vector y∗ is feasible for the LP instance
defined by the segments corresponding to the S ′i. Now we modify the latter LP
instance by taking each point p and replacing the variable xp with variables xp,h
and xp,v, where xp,h appears only in horizontal segment constraints where xp
formerly appeared, and xp,v appears only in such vertical segment constraints.
The resulting LP decouples the horizontal and vertical segments and captures
precisely the problem from Step 3 of the algorithm. Since this LP is totally
unimodular, we have that the number of chosen points, |X|, is at most the
cost of any feasible fractional solution. In particular we see that the fractional
vector z∗ with z∗p,h = z∗p,v = y∗p is feasible for the decoupled LP, and so:

|X| ≤
∑
q

z∗q = 2
∑
p

y∗p. (5.4)

To obtain our desired result we note that
∑

p y
∗
p ≤ 2

∑
p x
∗
p by the definition

of y∗, yielding |X| ≤ 4
∑

p x
∗
p ≤ 4 ·OPT by (5.4). � �

The above idea naturally extends to and yields a 4-approximation for the
weighted version of the problem as well. Another extension is to unions con-
sisting of at most k segments drawn from r orientations, for which the approach
yields a (k · r)-approximation.

The LP-rounding technique in the proof above was introduced by Carr et
al. [72] to obtain a 2.1-approximation for the weighted edge-dominating set
problem. A similar idea was introduced independently by Gaur et al. [56] to

72



obtain a 2-approximation for stabbing axis-aligned rectangles with horizon-
tal and vertical lines. By using the approach above in conjunction with our
approximation algorithm for Theorem 5.5.3, we obtain an improved approxi-
mation factor in the case that the vertical segments are lines. Before describing
this result, we need a slightly stronger version of Theorem 5.5.3:

Lemma 5.6.2. There is a polynomial-time 5/3-approximation algorithm for
hitting a set of vertical lines and horizontal segments that always returns a
solution of cost within 5/3 that of an optimal solution to the natural set cover
LP relaxation.

Proof: Given an instance of geometric hitting set over vertical lines and hor-
izontal segments, let LP ∗ be the optimum value achieved by the natural set
cover LP relaxation. We show that the algorithm used to establish Theo-
rem 5.5.3 satisfies stronger versions of the bounds used in the proof of Theo-
rem 5.5.3:

h ≤ LP ∗, v ≤ LP ∗, and h− k1 − k2/2 + v − k1 − k2 ≤ LP ∗.

Since the vertical lines are disjoint, by summing the corresponding LP con-
straints, we see that

∑
p xp ≥ v for any feasible x. Taking x to be an optimal

solution, x∗, we have that LP ∗ =
∑

p x
∗
p ≥ v. As noted before, the natural set

cover LP relaxation is totally unimodular in the case of hitting only horizontal
segments. Thus by dropping the constraints corresponding to the lines from
the LP, we may conclude that LP ∗ ≥ h.

For the final bound, we need to show that for the type of instance obtained
by our 5/3-approximation in Stage 3, LP ∗ is equal to OPT ′, the optimum size
of a hitting set. Lemma 5.5.2 shows that for such instances, OPT ′ = v′ + h′,
where v′ and h′ are the individual vertical and horizontal lower bounds for the
instance.

Consider a collection of collinear horizontal segments from a Stage-3 in-
stance, and remove all points that lie on some vertical lie along with all the
horizontal segments hit by such points. The proof of Lemma 5.5.2 shows that
such a deletion does not increase the optimal number of points required to
hit such an instance. Hence, appealing to the integrality of such LP instances
when dropping the vertical line constraints, we have that

∑
p∈P ′\P ′V

xp ≥ h′,

where P ′ is the set of points of a Stage 3 instance, and P ′V is the set of points
that line on some vertical line. Considering only the vertical line constraints,
as above, gives us

∑
p∈P ′V

xp ≥ v′. Together, these inequalities yield the desired

bound,
∑

p∈P ′ xp ≥ h′ + v′.

73



We may substitute these bounds in the proof of Theorem 5.5.3 to conclude
that our algorithm selects at most 5/3 · LP ∗ points instead of 5/3 · OPT
points. �

Theorem 5.6.3. For objects that are unions of a horizontal segment and a
vertical line, the hitting set problem has a polynomial-time 10/3-approximation.

Proof: Our algorithm is essentially the same as the 4-approximation of The-
orem 5.6.1, with a different last step:

1. Solve the LP, and let x∗ be an optimal solution.

2. Construct S ′i for each union i of a horizontal segment and a vertical line.

3. Now each S ′i is either a horizontal segment or a vertical line, and we find
a feasible solution X for this instance using our 5/3-approximation.

We construct y∗ just as in the proof of our 4-approximation; however, now
we observe that y∗ is feasible for the set cover LP relaxation for the instance
defined by the S ′i. This is just an instance of hitting horizontal segments and
vertical lines, and so:

|X| ≤ 5/3 · LP ∗ ≤ 5/3 ·
∑
p

y∗p.

Since
∑

p y
∗
p ≤ 2

∑
p x
∗
p as before, we have that |X| ≤ 10/3·∑p x

∗
p ≤ 10/3·OPT

as desired. �

74



Appendix

Details for Section 3: Proof of Theorem 5.3.1

Proof: Our reduction is from 3-SAT. The input points P are distributed on three vertical
lines, denoted l1, l2 and l3 from left to right. In Figure 5.2 we show a variable gadget:
points in the first two columns can be hit by two sets of independent lines, red or blue; these
represent the “True” or “False” setting of the variable u.

We can add the variable gadgets one by one onto the three columns so that all 3-lines
are within variable gadgets. After that we use the following clause gadget to link variables.
Figure 5.3 is a gadget represents ū∪ v∪ w̄. The idea is we pick the location of c[i] such that
the addition of c[i] and the intersections of c[i]u[i], c[i]v̄[i] and c[i]w[i] doesn’t create new
3-lines except the green lines.

Let n and m denote the numbers of variables and clauses. Each variable gadget has
2m points on l3. If the 3-SAT formula is satisfiable, the size of a maximum independent set
of 3-lines in the variable and clause gadgets is mn + m, and there are 2n points on l2 and
mn−m points on l3 not covered. The last step is garbage collection: we put mn+m points
on l1 under the condition that no new 3-line is created.

Thus, the 3-SAT formula is satisfiable if and only if the corresponding C3L can be
covered by 2nm + 2m non-vertical lines(nm + m 3-lines and nm + m 2-lines). �

ū[3]

a[3] b[3]

u[2]

b[2]

a[2]

a[1]

a[4]

b[1]

b[4]

ū[1]

u[1]

ū[4]

u[4]

u[3]

ū[2]

l1 l2 l3

Figure 5.2: variable gadget

u[i]

v̄[i]

w[i]

c[i]

l1 l2 l3

Figure 5.3: clause gadget

Details for Section 3: Analysis of the Greedy Hitting Set
Algorithm for Lines of 3 Slopes in 2D

Let the numbers of lines of three orientations in a plane are x, y and z. WLOG we assume
x ≥ y ≥ z.

75



If there is no 3-intersection, we know about OPT2, the cardinality of an optimal solution

1. If x ≥ y + z, OPT2(x, y, z) = x.

2. If x < y + z, OPT2(x, y, z) = dx+y+z
2 e = x + dy+z−x

2 e.

Statement 2 is true, because we can always pair up lines(all except one leftover) in the
following way: pair two lines from two biggest groups currently; if three orientations have
the same number of lines, pick from any two groups. After one pairring, one can show that
the inequation that the cadinality of the biggest group is less than the sum of other groups
still holds. Therefore the rightness can be proved by mathematical induction.

We propose a greedy algorithm: first pick 3-intersections(in any order) and remove the
lines hit; then solve the problem without 3-intersections optimally.

Theorem 5.6.4. The greedy algorithm yeilds a 7
5 -approximation.

Proof: Let I be a maximum independent set of 3-intersections. Let K = |I| be the cardi-
nality of I. Let the set of 3-intersections given by greedy be J3. We denote |J3| by G. We
know that 3G ≥ K ≥ G.

The optimal solution is

OPT = K + OPT2(x−K, y −K, z −K) (5.5)

The greedy solution is

GRE = G + OPT2(x−G, y −G, z −G) (5.6)

First consider a special case: x = K, which means x = y = z = K. Thus OPT = K
and GRE = K + dK−G2 e.

1. K = 3l, where l is an integer.

GRE

OPT
≤ 1 + d3l − l

2
e/3l =

4

3
(5.7)

2. K = 3l + 1

GRE

OPT
≤ 1 + d3l + 1− (l + 1)

2
e/(3l + 1) <

4

3
(5.8)

3. K = 3l + 2.

GRE

OPT
≤ 1 + d3l + 2− (l + 1)

2
e/(3l + 2) ≤ 7

5
(5.9)

In the following discussion, we assume that x ≥ K + 1.

1. If x−G ≥ y −G + z −G, we have x−K ≥ y −K + z −K. Thus

OPT = K + x−K = x

GRE = G + x−G = x

76



2. If y + z −K ≤ x < y + z −G,

OPT = x

GRE = x + dy + z − x−G

2
e

GRE

OPT
= 1 + dy + z − x−G

2
e/x ≤ 1 + dK −G

2
e/(K + 1) ≤ 4

3

The detailed analysis is similar to the case K = x.

3. If x < y + z −K,

OPT = x + dy + z − x−K

2
e ≥ K + 1 + 1 = K + 2

GRE −OPT ≤ y + z − x−G

2
+ 1− y + z − x−K

2
≤ 1 +

K

3
GRE

OPT
= 1 +

GRE −OPT

OPT
≤ 1 +

1 + K/3

K + 2

• when K = 1, OPT = GRE

• when K = 2, 3, 4, GRE −OPT = 1. We have

GRE

OPT
≤ 1 +

1

4
= 1.25 (5.10)

• when K ≥ 5,

GRE

OPT
≤ 1 +

8

21
≈ 1.381

�

Details for Section 3: Axis-Parallel Lines in 3D

x

y z

C1

C2

Figure 5.4: an example of variable
loop

v v

Figure 5.5: The insertion of the or-
ange detour changes the color of v
from red to blue.

Proof: We give a reduction of 3SAT. Let a d-line be a line parallel to d-axis. Let an ab-
plane be a plane parallel to the plane spanned by a-axis and b-axis. A clause is represented

77



by a z-line. A variable is represented by a loop of axis-parallel lines with the following
properties:

1. No four edges of a loop are coplanar.

2. There are an even number of edges in each loop.

3. Lines from two different loops won’t intersect.

4. A loop intersects a clause z-line iff the variable represented by that loop is in the clause
represented by the z-line. The intersection actually is a literal in the corresponding
clause.

5. There are two optimal hitting sets for a loop, odd vertices and even vertices. All
positive literals should be in the same hitting set. So do the negative literals.

Figure 5.4 shows a part of an instance in which clause C1 has x1 and C2 has x1.
In 3D space, it’s not hard to take detours to avoid any unwanted intersection. The

number of vertices on a loop can be adjusted by inserting a tiny detour as Figure 5.5 shows.
At the end we argue that all clause z-lines can be hit for free by the optimal hitting sets of
variable loops iff there ia a satisfying truth assignment for the corresponding 3SAT instance.

�

Details for Section 5: Hitting Rays and Lines

Here, we give the proof of Theorem 5.4.1.
We refer to a horizontal ray to the left (resp., right) as an l-ray (resp. r-ray). Similarly,

we speak of a horizontal (resp., vertical) line as an h-line (resp., v-line). If two collinear rays
are disjoint, we shift one ray slightly, so that no two disjoint rays are collinear.

If a line only contains a ray, we add a ray to pair with it. For example, an h-line l has an
r-ray. We put an l-ray on l such that the vertex of the ray is on the right of all v-lines. This
additional ray won’t change the optimal solution. We call the intersection of two h-rays a
segment of them.

Let H and V denotes the numbers of segments and v-lines. We know that V points
should be placed on V v-lines. Those points can help to hit segments. There are two ways
to ’hit’ a segment:

• place a point on the segment. In this case, we call the corresponding line a 3-hitter.
We say the segment is 3-hit by the line.

• hit two extensions of the segment, which needs two points. In this case, we call the
left(right) line l-hitter(r-hitter). We say the segment is dual-hit by those two lines.

Let v1 and v2 be the numbers of segments hit by the V points in first and second ways.
Then the number of points to be placed is H + V − v1 − v2. Now the problem becomes
to put a point on each lines to ’hit’ segments as many as possible. From a case of HRVL,
We construct a graph: each v-line and each segments are nodes; there is an edge between
two node iff the v-line and segment they represent intersect. We know this is a bipartite
graph and the maximum matching problem in a bipartite graph is polynomial solvable.
A matching in the graph represents a set of intersections in the corresponding HRVL. The
following lemma shows that in some sense, it is better to adopt the first way to hit segments.
This is consistant with the intuition.

78



Lemma 5.6.5. There is a maximum matching between lines and segments that can be
augmented to be an optimal solution of HRVL.

Proof: We prove this by contradiction. Let v∗1 be the biggest v1 that an minimum hitting
set can achieve. We assume v∗1 is less than m, which is the cardinality of the maximum
matching between v-lines and segments. Thus there is an augmenting path.

An augmenting path in graph G matches to a sequence of alternate segments and v-
lines in HRVL. In Figure 5.6 the green path is an example of an augmenting path. Because
of the optimality of the current solution, any augmenting path cannot improve it. It is
easy to prove that the following two things should both happen, because otherwise after
augmenting, the sum of v1 and v2 will stay the same, but v∗1 would be increased by 1:

• e1 is dual-hit by other lines;

• ln is helping to dual-hit another segment,

where the augmenting path is {e1, l1, e2, l2, . . . , en, ln}.
Without loss of generality, we assume the intersection of e1 and l1 is on the left of ln.

1. If ln is the l-hitter of et, then the l-hitter of e1 can take its job. One can do the
augmenting and assign the l-hitter of e1 to l-hit et. Therefore the solution is optimal
and v∗1 increases.

2. If ln is an r-hitter and the r-hitter of e1 is on the right of ln, then that r-hitter can
take the job of ln.

3. If ln is an r-hitter and the lr, the r-hitter of e1, is on the left of ln, we know that
lr will intersect et, where 1 ≤ t ≤ n because, we assume ln is on the right of the
intersection of e1 and l1. lr leads us to a ’better’ augmenting path, {e1, l1, . . . , et, lr}.
Adopting the new augmenting path, we keep the hitting set optimal and increase v∗1
by 1.

�

l1 l2

l3

e1

e2

e3

l4

Figure 5.6: In this augmenting
path, the size of a matching is in-
creased by replacing the blue circles
with red crosses.

l1 l2 l3 l4

Figure 5.7: Swapping l2 and l3
makes both of them more useful.

79



Lemma 5.6.6. Given an optimal solution S, there is an optimal solution S ′ that has the
same set of 3-hitters as S and its l-hitters are all on the left side of its r-hitters.

Proof: In Figure 5.7 two segments are dual-hit by two pairs of v-lines; the blue lines are
l-hitter and the red lines are r-hitter. When we pair l1 to l3 and pair l2 to l4, two segments
are still dual-hit, because this swap makes the l-hitter more left and r-hitter more right. �

Having this lemma, we can easily find a sweeping algorithm for the case which has no
3-intersections.

Data: disjoint segments and n v-lines(l0, l1, . . . , ln−1)
Result: maximum matching between segments and dual hitters
k ← bn/2c, i← 0, j ← k;
while i < k and j < n do

if there is a segment on the right of li then
e← the leftmost segment that’s on the right of li;
while j < n and lj is on the left of e do

j ← j + 1
end
if j < n then

match e to li and lj ;
remove them;

else
exit;

end

else
exit;

end
i← i + 1;

end

Algorithm 1: Sweeping algorithm for HRVL without 3-intersections
For HRVL with 3-intersections, we propose the Algorithm below. The idea of this

algorithm is to maximize the number of 3-intersections and meanwhile ’balance’ the lines
left as much as possible. In the algorithm, we test the vitality of a line: a line is vital
means if the line is not hit by a 3-intersection, one has no chance to maximize the number
of 3-intersections of that HRVL instance.

Let S be the solution given by Algorithm 2 and S′ be an optimal solution with maximum
set of 3-hitters. We know that S and S′ have the same number of 3-hitters. Let D and D′

denote the v-lines left behind in S and S′ respectively. We order lines in D and D′ from

left to right. Let k be b |D|2 c. Hence there are at most k pairs of dual-hitters in S and S′.
Let lhi(lh

′
i) be the ith line of D(D′).

Given a solution P and a line l, we use E(l, P ) to denote the number of segments that
are on the left side of l and not hit by 3-hitters in P . It’s easy to see that a line having
more segments on its right side has a bigger chance to be an l-hitter. Another way to say it
is as an l-hitter, lhi is at least as capable as lh′i.

E(lhi, S) ≤ E(lh′i, S
′), i = 1, 2, .., k (5.11)

We split the proof of the statement above into two lemmas.

Lemma 5.6.7. lhi cannot be on the right side of lh′i, i = 1, 2, .., k

80



H ← [0, 0] //H counts 2-hitters at left and right sides;
I3 ← {} //I stores 3-intersections of the solution;
SD←0; //SD stands for sweep direction. 0 is from left to right; 1 is
reverse;
step A: if there is any 3-intersection left then

sweep along the direction indicated by SD;
if the event is a line then

step B: remove the line;
H[SD]++;
toggle SD;

else
the event is a segment e1;
if e1 crosses some line(s) then

l← the line hit e1 and is closest along SD;
else

remove e1;
go to step A;
if l is vital then

//For example, if SD is 0, look at the right endpoints of
segments crossed by l. pick the nearest one to l;
e2 ← the segment crosses l and has the closest endpoint
along SD from l;
put the intersection of e2 and l into I3;
go to step A;

else
go to step B;

end

end

end

else
The left problem can be solved optimally as an edge cover problem;

end
Algorithm 2: Bidirectional Sweeping algorithm for HRVL with 3-
intersections

81



Proof: We prove it by induction.
Because of the vitality test, we have an important observation: in S if a 3-hitter is on

the left side of an l-hitter, the segment hit by the 3-hitter will not intersect that l-hitter,
When i = 1, we assume that lh1 is on the right side of lh′1. It means in S lh′1 is a 3-hitter.

Suppose e1 is the correspending segment hit by lh′1 in S. We know in S′ lh′1 doesn’t hit
e1(since it’s not a 3-hitter in S′, so e1 must be hit by a 3-hitter in S′, say l3. Again in S, l3
hits e2, which means in S′, e2 should be hit by another line which is l4. Because of the first
observation, the backtracking process totally happens on the left side of lh1. It will stop
eventually, because there are only finite number of lines on the lh1’s left and contradiction
is found.

Now we assume k is the smallest integer such that lhk is on the right side of lh′k. We again
start backtracking from lhk and we know the process can only end at lhj(j <) or a contradic-
tion exists as the base case. Let the backtracking sequence be lhk, lh

′
k, e1, l3, e2, l4, . . . , lhj .

Since lh′j is on the right side of lhj or lhj itself, lh′j will intersect some el in the backtracking
sequence. That means we find an augment path by which we can increase the number of
3-hitters in S′ by 1. The contradiction is found. �

Let N(l) be the number of segments on the left of line l. An immediate result from this
lemma is

E(lhi, S
′) ≤ E(lh′i, S

′) (5.12)

lh′
1 lh1

e1

l3

e2

l4

Figure 5.8: The backtracking sequence is lh1, lh′1, e1, l3, e2, l4.

Given a solution P and a line l, We use C(l, P ) to denote the number of segments that
are on the left side of l and have been 3-hit in P . The following lemma is to say S leaves
the segments which are easier to dual-hit for 2-hitters.

Lemma 5.6.8. C(lhi, S) ≥ C(lhi, S
′), i = 1, 2, .., k

Proof: We have already known that in S, all segments hit by 3-hitters on the left side of lhi

are also on the left side of lhi. If C(lhi, S) < C(lhi, S
′), then we replace the part of S that

is on the left side of lhi by the corresponding part of S′. What we get is a solution which
has more 3-hitters than S, which contradicts to the assumption that S has the maximum
set of 3-hitters.

�

82



Therefore we obtain

E(lhi, S) = N(lhi)− C(lhi, S) ≤ N(lhi)− C(lhi, S
′) = E(lhi, S

′) ≤ E(lh′i, S
′) (5.13)

.

5.7 Hitting Triangle-Free Sets of Segments

Consider the arrangement graph, G = (V,E), induced by the set S of n input segments.
Assume that G is triangle-free.

Define the following clipping/shortening process:

(i) Pick a vertex v ∈ V of degree at most 3 (it will necessarily be a segment endpoint);
such a vertex must exist, by the triangle-free property.

(ii) Remove the vertex v, and shrink the incident segments with endpoint v to the next
adjacent vertex. (In particular, if v is a T-junction, where two of the edges incident to
v lie on a common segment, then only the one segment with endpoint at v is shrunk,
leaving the other two edges connected.)

(iii) When shortening a segment s results in segment s becoming a single point (vertex),
u, establish a hitting point at u and remove all segments that pass through u.

Invariants at any stage of the process:

(1) There is at most one remaining subsegment of an input segment (i.e., the portion of an
original segment s that remains is connected);

(2) All segments that have been removed are hit by the hitting points that have been
established;

(3) Any hitting set of the remaining segments, together with the established hitting points
already found, forms a hitting set for the original set of input segments;

(4) The graph G remains triangle-free.

Claim 4. The number of hitting points established by the algorithm is at most 3 times the
number, |H|, of points in any hitting set H for S.

Proof: Place tokens on the vertices H and consider running the clipping/shortening process
on G, with the following actions on the tokens:

When there is a token on the vertex v that is about to be clipped, replace the token
with at most 3 clones of it, one on each of the segments that meet at v, allowing each clone
to slide along with the endpoint of a clipped segment s as the segment is shrunk, leaving the
clone at a new vertex u, the new endpoint of segment s. (There might also be a token at
u already; we allow two or more tokens/clones to accumulate at a vertex.) We never clone
a clone; if a clone associated with a segment s exists at a vertex v that is being clipped, it
remains on segment s, and slides along it as it shrinks. Thus, associated with each point of
H there is either a single token or up to 3 clones of the token (but not both).

This ensures that the tokens/clones continue to hit all segments, at all stages of the
clipping/shortening process. (Here, we are using the degree-3 property, which allows us to
make sure that two edges incident on v that lie on the same segment s are not cut apart

83



at v in our process; thus, a point of H that lies on s continues to hit the shrunk version of
segment s. If we had split s at v, with no point of H at v, then no clones are generated
at v, and the point(s) of H on segment s may no longer be a valid hitting set for the new
arrangement after splitting s at v.) In particular, when a segment shrinks to a point u, there
is at least one token/clone present there. Thus, the number of hitting points established by
our algorithm is at most 3|H|, for any hitting set H of S. �

Theorem 5.7.1. The algorithm yields a 3-approximation and runs in time O(m), where
m is the number of edges in the original (planar) arrangement graph G.

Proof: Immediate, since we only have to maintain the graph G in a standard planar network
data structure (e.g., the Doubly Connected Edge List (DCEL)) that allows us to know vertex
degrees and perform elementary operations in constant time. �

84



Bibliography

[1] C Icking, R Klein, E Langetepe, S Schuierer, and I Semrau. An opti-
mal competitive strategy for walking in streets. SIAM JOURNAL ON
COMPUTING, 33(2):462–486, 2004. ISSN 0097-5397. doi: {10.1137/
S0097539702419352}.

[2] Alejandro López-Ortiz and Sven Schuierer. Lower bounds for streets and
generalized streets. International Journal of Computational Geometry
and Applications, 11(4), 2001.

[3] Alejandro López-Ortiz and Sven Schuierer. Searching and on-line recog-
nition of star-shaped polygons. Inf. Comput., 185(1):66–88, August
2003. ISSN 0890-5401. doi: 10.1016/S0890-5401(03)00081-6. URL
http://dx.doi.org/10.1016/S0890-5401(03)00081-6.

[4] Avrim Blum, Prabhakar Raghavan, and Baruch Schieber. Navigating in
unfamiliar geometric terrain. In Proceedings of the twenty-third annual
ACM symposium on Theory of computing, STOC ’91, pages 494–504,
New York, NY, USA, 1991. ACM. ISBN 0-89791-397-3. doi: 10.1145/
103418.103419. URL http://doi.acm.org/10.1145/103418.103419.

[5] Peter Eades, Xuemin Lin, and Nicholas C. Wormald. Performance guar-
antees for motion planning with temporal uncertainty. Australian Com-
puter Journal, 25(1):21–28, 1993. URL http://dblp.uni-trier.de/db/

journals/acj/acj25.html#EadesLW93.

[6] Y. Gabriely and E. Rimon. Cbug: A quadratically competitive mobile
robot navigation algorithm. Robotics, IEEE Transactions on, 24(6):1451
–1457, dec. 2008. ISSN 1552-3098. doi: 10.1109/TRO.2008.2006237.

[7] Wei Zeng, Rik Sarkar, Feng Luo, Xianfeng David Gu, and Jie Gao. Re-
silient routing for sensor networks using hyperbolic embedding of universal
covering space. In Proc. of the 29th Annual IEEE Conference on Com-
puter Communications (INFOCOM’10), pages 1694–1702, March 2010.

85

http://dx.doi.org/10.1016/S0890-5401(03)00081-6
http://doi.acm.org/10.1145/103418.103419
http://dblp.uni-trier.de/db/journals/acj/acj25.html#EadesLW93
http://dblp.uni-trier.de/db/journals/acj/acj25.html#EadesLW93


[8] Kan Huang, Chien-Chun Ni, Rjk Sarkar, Jie Gao, and Joseph SB Mitchell.
Bounded stretch geographic homotopic routing in sensor networks. In
INFOCOM, 2014 Proceedings IEEE, pages 979–987. IEEE, 2014.

[9] Robert Kleinberg. Geographic routing using hyperbolic space. In Proceed-
ings of the 26th Conference of the IEEE Communications Society (INFO-
COM’07), pages 1902–1909, 2007.

[10] James Newsome and Dawn Song. GEM: graph embedding for routing and
data-centric storage in sensor networks without geographic information.
In SenSys ’03: Proceedings of the 1st international conference on Embed-
ded networked sensor systems, pages 76–88, 2003. ISBN 1-58113-707-9.

[11] Jie Gao and Leonidas Guibas. Geometric algorithms for sensor networks.
Philosophical Transactions of the Royal Society A: Mathematical, Physical
and Engineering Sciences, 370(1958):27–51, 2012. doi: 10.1098/rsta.2011.
0215. URL http://rsta.royalsocietypublishing.org/content/370/

1958/27.abstract.

[12] B. Karp and H. Kung. GPSR: Greedy perimeter stateless routing for
wireless networks. In Proc. of the ACM/IEEE International Conference
on Mobile Computing and Networking (MobiCom), pages 243–254, 2000.

[13] Qing Fang, Jie Gao, Leonidas Guibas, Vin de Silva, and Li Zhang.
GLIDER: Gradient landmark-based distributed routing for sensor net-
works. In Proc. of the 24th Conference of the IEEE Communication So-
ciety (INFOCOM), volume 1, pages 339–350, March 2005.

[14] Guang Tan, Marin Bertier, and Anne-Marie Kermarrec. Convex partition
of sensor networks and its use in virtual coordinate geographic routing.
In INFOCOM, pages 1746–1754, 2009.

[15] Xianjin Zhu, Rik Sarkar, and Jie Gao. Segmenting a sensor field: Algo-
rithms and applications in network design. ACM Trans. Sen. Netw., 5(2):
12:1–12:32, April 2009. ISSN 1550-4859. doi: 10.1145/1498915.1498918.
URL http://doi.acm.org/10.1145/1498915.1498918.

[16] Nancy M. Amato, Michael T. Goodrich, and Edgar A. Ramos. A random-
ized algorithm for triangulating a simple polygon in linear time. Discrete
Comput. Geom., pages 245–265, 2001.

[17] Bernard Chazelle. Triangulating a simple polygon in linear time. Discrete
Comput. Geom., 6(5):485–524, August 1991. ISSN 0179-5376. doi: 10.
1007/BF02574703. URL http://dx.doi.org/10.1007/BF02574703.

86

http://rsta.royalsocietypublishing.org/content/370/1958/27.abstract
http://rsta.royalsocietypublishing.org/content/370/1958/27.abstract
http://doi.acm.org/10.1145/1498915.1498918
http://dx.doi.org/10.1007/BF02574703


[18] R. Bar-Yehuda and Bernard Chazelle. Triangulating disjoint Jordan
chains. Internat. J. Comput. Geom. Appl., 4(4):475–481, 1994.

[19] Raimund Seidel. A simple and fast incremental randomized algorithm
for computing trapezoidal decompositions and for triangulating poly-
gons. Comput. Geom. Theory Appl., 1(1):51–64, July 1991. ISSN 0925-
7721. doi: 10.1016/S0925-7721(99)00042-5. URL http://dx.doi.org/

10.1016/S0925-7721(99)00042-5.

[20] John Hershberger and Jack Snoeyink. Computing minimum length paths
of a given homotopy class. Comput. Geom. Theory Appl., 4(2):63–97,
June 1994. ISSN 0925-7721. doi: 10.1016/0925-7721(94)90010-8. URL
http://dx.doi.org/10.1016/0925-7721(94)90010-8.

[21] Prosenjit Bose and Pat Morin. Online routing in triangulations. In Pro-
ceedings of the 10th International Symposium on Algorithms and Compu-
tation (ISAAC ’99), pages 113–122, 1999.

[22] Evangelos Kranakis, Harvinder Singh, and Jorge Urrutia. Compass rout-
ing on geometric networks. In Proc. 11th Canadian Conference on Com-
putational Geometry, pages 51–54, 1999.

[23] Prosenjit Bose and Pat Morin. Online routing in triangulations. SIAM
J. Comput., 33(4):937–951, 2004.

[24] Prosenjit Bose and Pat Morin. Competitive online routing in geometric
graphs. Theor. Comput. Sci., 324(2-3):273–288, 2004.

[25] Prosenjit Bose, Andrej Brodnik, Svante Carlsson, Erik D. Demaine,
Rudolf Fleischer, Alejandro López-Ortiz, Pat Morin, and J. Ian Munro.
Online routing in convex subdivisions. Int. J. Comput. Geometry Appl.,
12(4):283–296, 2002.

[26] Joseph S.B. Mitchell. Geometric shortest paths and network optimization.
In Handbook of Computational Geometry, pages 633–701. Elsevier Science
Publishers B.V. North-Holland, 1998.

[27] Vladimir J. Lumelsky and Alexander A. Stepanov. Path-planning strate-
gies for a point mobile automaton moving amidst unknown obstacles of
arbitrary shape. Algorithmica, 2:403–430, 1987.

[28] Peter Eades, Xuemin Lin, and Nicholas C. Wormald. Performance guar-
antees for motion planning with temporal uncertainty. Australian Com-
puter Journal, 25(1):21–28, 1993. URL http://dblp.uni-trier.de/db/

journals/acj/acj25.html#EadesLW93.

87

http://dx.doi.org/10.1016/S0925-7721(99)00042-5
http://dx.doi.org/10.1016/S0925-7721(99)00042-5
http://dx.doi.org/10.1016/0925-7721(94)90010-8
http://dblp.uni-trier.de/db/journals/acj/acj25.html#EadesLW93
http://dblp.uni-trier.de/db/journals/acj/acj25.html#EadesLW93


[29] Christos H. Papadimitriou and Mihalis Yannakakis. Shortest paths with-
out a map. Theor. Comput. Sci., 84(1):127–150, July 1991. ISSN 0304-
3975. doi: 10.1016/0304-3975(91)90263-2. URL http://dx.doi.org/

10.1016/0304-3975(91)90263-2.

[30] Rolf Klein. Walking an unknown street with bounded detour. In Proceed-
ings of the 32nd annual symposium on Foundations of computer science,
SFCS ’91, pages 304–313, Washington, DC, USA, 1991. IEEE Computer
Society. ISBN 0-8186-2445-0. doi: 10.1109/SFCS.1991.185383. URL
http://dx.doi.org/10.1109/SFCS.1991.185383.

[31] Piotr Berman. On-line searching and navigation. In Online Algorithms,
pages 232–241, 1996.

[32] Allen Hatcher. Algebraic Topology. Cambridge University Press, Novem-
ber 2001.

[33] Rik Sarkar. Low distortion delaunay embedding of trees in hyperbolic
plane. In Proceedings of the 19th international conference on Graph Draw-
ing, GD’11, pages 355–366, 2011.

[34] Moshe Dror, Alon Efrat, Anna Lubiw, and Joseph S. B. Mitchell. Touring
a Sequence of Polygons. In Proceedings of the Thirty-fifth Annual ACM
Symposium on Theory of Computing, STOC ’03, pages 473–482, New
York, NY, USA, 2003. ACM. ISBN 1-58113-674-9. doi: 10.1145/780542.
780612. URL http://doi.acm.org/10.1145/780542.780612.

[35] Arash Ahadi, Amirhossein Mozafari, and Alireza Zarei. Touring a se-
quence of disjoint polygons: Complexity and extension. Theoretical Com-
puter Science, 556:45–54, 2014.

[36] Joonsoo Choi, Juergen Sellen, and Chee-Keng Yap. Approximate Eu-
clidean Shortest Paths in 3-Space. International Journal of Computa-
tional Geometry & Applications, 07(04):271–295, August 1997. ISSN
0218-1959. doi: 10.1142/S0218195997000181. URL http://www.

worldscientific.com/doi/abs/10.1142/S0218195997000181.

[37] Kenneth L. Clarkson. Approximation Algorithms for Shortest Path Mo-
tion Planning (Extended Abstract). In In Proc. 19th Annu. ACM Sympos.
Theory Comput, pages 56–65, 1987.

[38] Jürgen Sellen, Joonsoo Choi, and Chee-Keng Yap. Precision-Sensitive
Euclidean Shortest Path in 3-Space. In 11TH ACM SYMP. ON COMP.
GEOM, pages 350–359, 1995.

88

http://dx.doi.org/10.1016/0304-3975(91)90263-2
http://dx.doi.org/10.1016/0304-3975(91)90263-2
http://dx.doi.org/10.1109/SFCS.1991.185383
http://doi.acm.org/10.1145/780542.780612
http://www.worldscientific.com/doi/abs/10.1142/S0218195997000181
http://www.worldscientific.com/doi/abs/10.1142/S0218195997000181


[39] Tetsuo Asano, David Kirkpatrick, and Chee Yap. Pseudo Approximation
Algorithms with Applications to Optimal Motion Planning. Discrete &
Computational Geometry, 31(1):139–171, November 2003. ISSN 0179-
5376, 1432-0444. doi: 10.1007/s00454-003-2952-3. URL http://link.

springer.com/article/10.1007/s00454-003-2952-3.

[40] Ran Raz and Shmuel Safra. A sub-constant error-probability low-degree
test, and a sub-constant error-probability PCP characterization of NP.
In Proceedings of the twenty-ninth annual ACM symposium on Theory of
computing, pages 475–484. ACM, 1997.

[41] Valentin E Brimkov, Andrew Leach, Jimmy Wu, and Michael Mas-
troianni. Approximation algorithms for a geometric set cover problem.
Discrete Applied Mathematics, 160(7):1039–1052, 2012.

[42] Valentin E Brimkov, Andrew Leach, Michael Mastroianni, and Jimmy
Wu. Guarding a set of line segments in the plane. Theoretical Computer
Science, 412(15):1313–1324, 2011.

[43] Valentin E Brimkov. Approximability issues of guarding a set of segments.
International Journal of Computer Mathematics, 90(8):1653–1667, 2013.

[44] Anup Joshi and NS Narayanaswamy. Approximation algorithms for hit-
ting triangle-free sets of line segments. In Algorithm Theory–SWAT 2014,
pages 357–367. Springer, 2014.

[45] Apichat Heednacram. The NP-hardness of covering points with lines,
paths and tours and their tractability with FPT-algorithms. Griffith Uni-
versity, 2010.

[46] Stefan Kratsch, Geevarghese Philip, and Saurabh Ray. Point line cover:
the easy kernel is essentially tight. In Proceedings of the Twenty-Fifth An-
nual ACM-SIAM Symposium on Discrete Algorithms, pages 1596–1606.
SIAM, 2014.

[47] Nimrod Megiddo and Arie Tamir. On the complexity of locating linear
facilities in the plane. Operations research letters, 1(5):194–197, 1982.

[48] Björn Brodén, Mikael Hammar, and Bengt J. Nilsson. Guarding lines
and 2-link polygons is apx-hard. In Proceedings of the 13th Canadian
Conference on Computational Geometry, University of Waterloo, On-
tario, Canada, August 13-15, 2001, pages 45–48, 2001. URL http:

//www.cccg.ca/proceedings/2001/mikael-2351.ps.gz.

89

http://link.springer.com/article/10.1007/s00454-003-2952-3
http://link.springer.com/article/10.1007/s00454-003-2952-3
http://www.cccg.ca/proceedings/2001/mikael-2351.ps.gz
http://www.cccg.ca/proceedings/2001/mikael-2351.ps.gz


[49] VS Anil Kumar, Sunil Arya, and Hariharan Ramesh. Hardness of set
cover with intersection 1. In Automata, Languages and Programming,
pages 624–635. Springer, 2000.

[50] Sofia Kovaleva and Frits CR Spieksma. Approximation algorithms for
rectangle stabbing and interval stabbing problems. SIAM Journal on
Discrete Mathematics, 20(3):748–768, 2006.

[51] Adrian Dumitrescu and Minghui Jiang. On the approximability of cover-
ing points by lines and related problems. arXiv preprint arXiv:1312.2549,
2013.

[52] Refael Hassin and Nimrod Megiddo. Approximation algorithms for hitting
objects with straight lines. Discrete Applied Mathematics, 30(1):29–42,
1991.

[53] Daya Ram Gaur and Binay Bhattacharya. Covering points by axis parallel
lines. In Proc. 23rd European Workshop on Computational Geometry,
pages 42–45. Citeseer, 2007.

[54] Michael Dom, Michael R Fellows, and Frances A Rosamond. Parame-
terized complexity of stabbing rectangles and squares in the plane. In
WALCOM: Algorithms and Computation, pages 298–309. Springer, 2009.

[55] Guy Even, Retsef Levi, Dror Rawitz, Baruch Schieber, Shimon Moni
Shahar, and Maxim Sviridenko. Algorithms for capacitated rectangle
stabbing and lot sizing with joint set-up costs. ACM Transactions on
Algorithms (TALG), 4(3):34, 2008.

[56] Daya Ram Gaur, Toshihide Ibaraki, and Ramesh Krishnamurti. Constant
ratio approximation algorithms for the rectangle stabbing problem and
the rectilinear partitioning problem. In Algorithms-ESA 2000, pages 211–
219. Springer, 2000.

[57] Panos Giannopoulos, Christian Knauer, Günter Rote, and Daniel Werner.
Fixed-parameter tractability and lower bounds for stabbing problems.
Computational Geometry, 46(7):839–860, 2013.

[58] Stefan Langerman and Pat Morin. Covering things with things. Discrete
& Computational Geometry, 33(4):717–729, 2005.

[59] J. O’Rourke. Art Gallery Theorems and Algorithms. The International
Series of Monographs on Computer Science. Oxford University Press, New
York, NY, 1987.

90



[60] Jorge Urrutia et al. Art gallery and illumination problems. Handbook of
computational geometry, 1(1):973–1027, 2000.

[61] Valentin E Brimkov, Andrew Leach, Michael Mastroianni, and Jimmy
Wu. Experimental study on approximation algorithms for guarding sets of
line segments. In Advances in Visual Computing, pages 592–601. Springer,
2010.

[62] Boris Aronov, Esther Ezra, and Micha Sharir. Small-size ε-nets for axis-
parallel rectangles and boxes. SIAM Journal on Computing, 39(7):3248–
3282, 2010.

[63] H. Brönnimann and M. T. Goodrich. Almost optimal set covers in finite
VC-dimension. Discrete Comput. Geom., 14:263–279, 1995.

[64] Kenneth L Clarkson. Algorithms for polytope covering and approxima-
tion. In Algorithms and Data Structures, pages 246–252. Springer, 1993.

[65] Kenneth L. Clarkson and Kasturi Varadarajan. Improved approximation
algorithms for geometric set cover. Discrete & Computational Geometry,
37(1):43–58, 2007.

[66] Guy Even, Dror Rawitz, and Shimon Moni Shahar. Hitting sets when
the vc-dimension is small. Information Processing Letters, 95(2):358–362,
2005.

[67] Noga Alon. A non-linear lower bound for planar epsilon-nets. Discrete &
Computational Geometry, 47(2):235–244, 2012.

[68] János Pach and Gábor Tardos. Tight lower bounds for the size of epsilon-
nets. Journal of the American Mathematical Society, 26(3):645–658, 2013.

[69] Nabil H Mustafa and Saurabh Ray. Improved results on geometric hitting
set problems. Discrete & Computational Geometry, 44(4):883–895, 2010.

[70] D. S. Hochbaum and W. Maas. Approximation schemes for covering and
packing problems in image processing and VLSI. J. ACM, 32:130–136,
1985.

[71] Vasek Chvatal. A greedy heuristic for the set-covering problem. Mathe-
matics of operations research, 4(3):233–235, 1979.

[72] Robert D. Carr, Toshihiro Fujito, Goran Konjevod, and Ojas Parekh.
A 2 1/10-approximation algorithm for a generalization of the weighted
edge-dominating set problem. In Algorithms-ESA 2000, pages 132–142.
Springer, 2000.

91


	List of Figures
	List of Tables
	Acknowledgements
	Local Routing in Triangulation
	Introduction
	Problem Definition and Algorithm
	When Optimal Path is a Segment
	Modification: Replace b segments

	Proof of the General Case
	Bound Outward Spiral Case
	Growing Spiral
	Shrinking Spiral
	Combined Spiral

	Lower Bound for all On-line Algorithms

	Variations of Greedy Routing
	Routing in a Tetrahedron Sequence(3D Version)
	Apply to a Simple Polygon Sequence
	Outline of Proof
	Cutting an Hour-glass

	Dual-direction Routing
	Parallel Routing
	Algorithm


	Applications
	Routing Scheme of Sensor Networks
	Introduction
	Bounded Stretch Homotopic Routing
	Simulations

	Routing In Fat Triangulations
	Greedy Routing In Perfect Triangulations

	Touring Polygons
	Touring Disjoint Non-convex Polygons
	Deeply Touring
	Problem Definition


	Geometric Hitting Set for Segments of Few Orientations
	Introduction
	Hitting Segments
	Hitting Lines
	Hardness of Hitting Lines of 3 Slopes in 2D
	Analysis of the Greedy Hitting Set Algorithm for Lines of 3 Slopes in 2D
	Axis-Parallel Lines in 3D

	Hitting Rays and Lines
	Hitting Lines and Segments
	Hardness
	Approximation

	Hitting Pairs of Segments
	Hitting Triangle-Free Sets of Segments

	Bibliography

