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Abstract of the Dissertation

A Novel Methodology for Stochastic
Formulation of Short Term Cloud Cover

Forecasts

by

Ya-Ting Huang

Doctor of Philosophy

in

Applied Mathematics and Statistics

Stony Brook University

2015

Following the chaos theory proposed by Lorenz, probabilistic approaches

have been widely used in numerical weather prediction research. This paper

introduces an innate methodology to measure the uncertainty of stochastic

cloud boundary forecast. A stochastic partial differential equation is inserted

into a numerical weather prediction model, and backtested to validate the

probabilistic results of the model. This methodology can be applied to a vari-

ety of topics in numerical weather prediction research.

The proposed method is applied to the short term forecast of cloud cover.

A two parameter model based on physical principles of wind velocity disper-
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sion and surface evaporation rate drives the stochastic model. They are used

to couple a stochastic partial differential equation with a standard weather

model (WRF) and satellite data to yield a probabilistic prediction of cloud

cover. Results show good predictive capability of the model in forecasting

cloud boundary for one half hour, with a gradual loss of predictive power over

the following hour.

Key Words: numerical weather prediction, probabilistic model, front

tracking, Fokker-Planck equation.
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Chapter 1

Introduction

Numerical weather predictions are inherently statistical, in view of the

large number of detailed physical phenomena incompletely modeled in simu-

lations. In spite of this fact, prediction methods are primarily deterministic,

with an overlay of statistics in the form of a limited ensemble of predicted sce-

narios. The purpose of this paper is to introduce a more intrinsically stochastic

methodology. Because of the possible wider interest in the methodology devel-

oped here, we formulate some of our results in a generality which goes beyond

the present context. Our work has the following components:

1. a probabilistic forecasting model with a physical basis,

2. parameter estimation based on observational data,

3. insertion of stochastic equations into a standard weather model (WRF),

4. backtesting to validate the predictions of the probabilities generated.

This program is far too ambitious to carry out in general, and we study

a limited context in which the program can be completed. This context, short

term prediction of cloud cover, is itself of practical interest in its relation

1



(among other possible applications) to solar energy generation and the utiliza-

tion of standby generators, which have a range of start up times. We consider

only the question of cloud cover as recorded in satellite images, and do not

address the relation of cloud cover to radiation received by a solar panel.

Beyond the prediction applications addressed here, the methodology de-

veloped may have value in assessing NWP cloud cover subgrid models. Our

calibration of the wind turbulence modeled diffusion constant could be of in-

terest to the study of atmospheric chemistry, which also requires a turbulent

related diffusion constant, [12].

Optimizing the photovoltaic system has been a popular topic, with many

approaches developed to improve the accuracy of forecast related to solar power

generation. The methodology we introduce in this paper improves upon the

cloud cover forecasts of prior work in both numerics and statistics in regard

to points 1-4 above. As an important factor in power production, the forecast

of cloud cover is directly forecasted in our study. We assimilate the observed

data (the satellite images) and the numerical weather forecast data to increase

the accuracy of the prediction.

[33] use regression analysis to parameterize the related humidity, precipi-

tation and three level cloud cover coming from a Numerical Weather Prediction

(NWP) model.The authors observe the grid point value (GPV) of irradiance

from five weather stations and they correlate the hourly averaged radiance

to the weather variables with a correlation coefficient of 0.9. [9] use support

vector machines (SVM) to classify and categorize the forecast power produc-

tion. These authors use NWP model data, temperature, relative humidity,
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and three-level cloud cover level, to provide hourly forecasts of the insolation

averaged over a approximately 6x7 km2 grid cells. The forecasts are compared

to the measurement of power production from solar power plants. The annual

root mean square error has been reduced by nearly half through their use of

SVM. Errors are given as 10% of peak power production. In contrast to their

studies, we forecast five minute cloud cover, we predict probabilities of cloud

cover on a 1x1 km2 grid, and we implement the prediction as a stochastic

Fokker-Planck equation into NWP.

Probabilistic approaches have been proposed in cloud screening, see [27],

[13], where the cloud cover detection was improved by use of a Bayesian

scheme, using prior numerical weather information, including sea surface tem-

perature level, as the prior information. The authors detect but do not pre-

dict the cloud cover. [36] introduced the Fokker-Planck equation to simulate

hydrological models, including the cloud cover field. This paper solves the

Fokker-Planck equation to model the transport process to diffuse the cloud

boundary concentration rather than the probability diffusion as we consider.

Our diffusion of probabilities, rather than the diffusion of the cloud bound-

aries, appears to be a more satisfactory physics model for cloud boundaries,

which are certainly sharp (discontinuous) on a 1 km2 grid scale.

Ensemble based statistical predictions, known as the Monte Carlo (MC)

method, [8], are slow to converge, so that a generous 10% error in the prediction

would require an unrealistically large number of 100 scenarios. Moreover,

the generation of the ensemble has to represent the trproportional to aue

probabilities of unknowns in the simulations. For uncertain initial conditions,
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there seems to be no statistically tested method to achieve this goal. For

uncertainties in the parameters defining the simulation model, the problem is

deeper, in that the uncertainties may not translate into testable probabilities

for the observations. In place of such MC methods, we base our work on a

partial differential equation (the Fokker-Plank equation) for the evolution of

probabilities.
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Chapter 2

Numerical Models

2.1 Model Input Definition

2.1.1 The Satellite Images

For observation data, we use satellite images provided by College of Du-

Page Weather Lab. The images are from the Geostationary Operational En-

vironmental Satellite system (GOES), operated by the United States National

Environmental Satellite, Data, and Information Services (NESDIS). The satel-

lite image dataset covers the North America with different resolutions. Here

we use the finest grid offered, 1 km resolution, see Fig. 2.1 We analyze images

for Long Island, with an update frequency of 15 minutes.

To meet satellite image processing needs, Laboratoire d’Optique Atmo-

spherique (LOA) built an efficient and intuitive image analysis and display sys-

tem, named Satellite Process Handling Images uNder XWindow. (SPHINX),

see [11] [23].

Msphinx has been instrumental in serving as both a daily image process-
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ing tool at LOA, and research tool at various weather research communities.

In this thesis, we use the Sphinx as a pre-processing tool to detect the cloud

boundaries from the raw satellite images.

By the color-filling function in Msphinx, we choose the display level care-

fully to have the best effect. The display level here is mainly decided by the

brightness level, but not limited to this. The algorithm in the color filling

function first recognizes the geographical condition of the image, then based

on the brightness level, the cloud area is identified. To automate the image

process without the graphic interface, we define a macro module of Msphinx

to serve as the pre-processing tool.

With this visual analysis tool, we the identify the brightness level of each

pixel, which is then matched to a color with pixels which is recognized as cloud

by its brightness level. If the level of brightness exceeds a certain level, which

is relatively decided by the overall brightness, then the pixel will be filled red

(RGB code [254, 0, 0]) and identified as cloud. By contouring the boundary

of the color mask, we can generate a cloud boundary level set function for

initialization.

2.1.2 Meteorological Data

WRF accepts various types of different gridded data; the input we use

here is real-time data set and reanalysis from National Centers for Environ-

mental Prediction (NCEP). NCEP receives data sets from Numerical Weather

Prediction (NWP) models in real-time and then updates the gridded data set,

which represents the state of the atmosphere, and incorporating observations.
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Figure 2.1: The domain of satellite images with 1 km resolution provided by

Geostationary Operational Environmental Satellite system (GOES).

The models include the Global Forecast System(GFS), the ETA models, and

the Rapid Update Cycle (RUC) models. The data sets are stored in GRIB

format, and they contain gridded model output. We use the output of this

model as the WRF input. The output contains analysis fields and forecast

hours for multiple parameters and levels. The domain of our input covers

North America. Table 1 provides detailed information of the gridded data.

The dataset comes from the Continental United States (CONUS), 12 km res-

olution, gridded data, which is developed by North American Mesoscale Fore-

cast System (NAM), supported by National Operational Model Archive and

Distribution System (NOMADS). The NAM data contains dozens of different

weather parameters and its domain covers the whole north America. To match

the meteorological domain with the computational domain chosen, the WRF
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Figure 2.2: Satellite images are taken at 12pm UTC June, 9th, 2015, with the

center point located at 40◦48’00.0”N 73◦18’00.0”W. Shown is 745X548 pixels,

each 1 km2. Raw satellite image provided by the Geostationary Operational

Environmental Satellite system (GOES).

Preprocessing System (WPS) serves to define the model domains and inter-

polate the geographical data to the computational grids. The computational

domain is centered at 40◦48’00.0”N 73◦18’00.0”W, with domain size 745x548

km2

2.2 WRF

The Weather Research and Forecasting Model (WRF) is a mesoscale

numerical weather prediction system [34], which features multiple dynamical

cores, a 3-dimensional variational (3DVAR) data assimilation system, and a
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software architecture allowing for computational parallelism and system ex-

tensibility. It provides a flexible and efficient model which is designed to serve

both operational forecasting and atmospheric research needs. By its advances

in physics, numerics, and data assimilation, WRF allows researchers to con-

duct simulations with either real data (real.exe) or idealized configurations,

and it is suitable for a broad spectrum of applications across scales ranging

from meters to thousands of kilometers, from local to global simulations. Its

spectrum of physics and dynamics options reflects the experience and input

of the broad scientific community. The WRF-Var variational data assimila-

tion system accepts a host of observation types in pursuit of optimal initial

conditions, while its WRF- Chem model provides the capability of air chem-

istry modeling. The WRF effort has been collaborative among the National

Center for Atmospheric Research’s (NCAR) Mesoscale and Micro-scale Me-

teorology (MMM) Division, the National Oceanic and Atmospheric Admin-

istration’s (NOAA) National Centers for Environmental Prediction (NCEP)

and Earth System Research Laboratory (ESRL), the Department of Defense’s

Air ForceWeather Agency (AFWA) and Naval Research Laboratory (NRL),

the Center for Analysis and Prediction of Storms (CAPS) at the University

of Oklahoma, and the Federal Aviation Administration (FAA), with the par-

ticipation of university scientists. Nowadays WRF broadly serves real-time

NWP, data assimilation development and studies, parameterized-physics re-

search, regional climate simulations, air quality modeling, atmosphere-ocean

coupling, and idealized simulations [35] [40].
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2.2.1 WPS

The WRF Preprocessing System (WPS) is a set of three programs. Ge-

ogrid, Metgrid, and Ungrid, see Fig. 2.4. The collective roles for these pro-

grams are to prepare intermediate files to the real program for real-data sim-

ulations. Each of the programs performs one stage of the preparation:

The first one, Geogrid, specifies the simulation domains, and interpolates

various terrestrial data sets to the model grids. The simulation domain is de-

fined using information in the input file of the WPS. There are three choices

of map projections provided in WPS: polar stereographic, Lambert-conformal,

and Mercator. In this study, we choose the Lambert-conformal in our predic-

tion as in Fig. 2.5 . By default, and in addition to computing latitude and

longitudes for every grid point, Geogrid will interpolate soil categories, land

use category, terrain height, annual mean deep soil temperature, monthly vege-

tation fraction, monthly albedo, maximum snow albedo, and slope category to

the model grids. Output from Geogrid is written in the WRF I/O API format,

and thus, by selecting the NetCDF I/O format, Geogrid can be made to write

its output in NetCDF for easy visualization using external software packages.

The Geogrid module is performed only once when the computational domain

is chosen.

Second, the Ungrib program decodes the external analysis and forecast

data from the GRIB format into intermediate formats to WRF. The GRIB

formats contain time-varying meteorological fields. They are typically from

another regional or global model, such as NCEP’s NAM or GFS models. It

supports both GRIB1 and GRIB2 formats, also native and hybrid grid data.
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Ungrib writes intermediate data files in three user-selectable formats, which is

not limited to be used by WRF [3].

Third, the Metgrid horizontally interpolates the intermediate-format me-

teorological data from Ungrid in multi simulation domain by the Geogrid pro-

gram and it also interpolates meteorological fields to WRF eta levels. Unlike

Geogrid, Metgrid is performed in the initialization step. Output from Metgrid

is written in the WRF I/O API format, and thus, by selecting the NetCDF

I/O format, Metgrid can be made to write its output in NetCDF for easy

visualization using external software packages, including the new version of

RIP4.

2.2.2 ARW driver

The ARW (Advance Research WRF) model is a fully compressible, non-

hydrostatic model (with a hydrostatic option). It is built up by the ARW

dynamics solver together with other compatible components in the WRF sys-

tem as in Fig. 2.7. The vertical coordinate is a terrain-following hydrostatic

pressure coordinate, which we will introduce later. The grid staggering is the

Arakawa C-grid, and the model uses higher-order numerics, which includes

the Runge-Kutta 2nd- and 3rd-order time integration schemes, and 2nd- to

6th-order advection schemes in both horizontal and vertical directions. It uses

a time-split small step for acoustic and gravity-wave modes, and the dynamics

conserves scalar variables [28] [37].
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Vertical Coordinate and Variables

The ARW equations are formulated using a terrain-following hydrostatic

pressure vertical coordinate denoted by η and defined as

η = (ph − pht)/µ (2.1)

where

µ = phs − pht (2.2)

ph is the hydrostatic component of the pressure, and phs and pht denotes values

along the surface and top boundaries. The coordinate definition, proposed by

Laprise (1992) [21], is the traditional η coordinate used in many hydrostatic

atmospheric models. The range of p is from 1 at the surface to 0 at the upper

boundary of the model domain, as in Fig. 2.6. This vertical coordinate is also

called a mass vertical coordinate. The computational domain we use in this

study consists of 74x46 horizontal grid cells, of 10 km resolution, with 27 mass

vertical coordinates.

2.3 FronTier

2.3.1 Front Tracking Method

In compressible fluid dynamics, many applications need to simulate fluid

flows with sharp fronts. These problems can be handled by solving the govern-

ing equations in integral form. Numerically, it can be solved by conservative

finite difference schemes. However, these conservative scheme can be low order
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when a sharp interface occurs. For instance, The first order Godunov method

could result in excessive numerical diffusion and destroy the sharpness of the

front. Consider to this difficulty, van Leer [22] and Colella conceived the

second- order scheme of the Godunov method. The extension generates sharp

discontinuities without overshoots and oscillations. In the Godunov method,

Riemann problems are still the building blocks in resolving the jumps at cell

boundaries, yet characteristic information is provided to maintain the high

order of accuracy. However, in the extended scheme, the shock is spread over

several meshes. The physics may be inaccurately represented by this extended

scheme. The difficulty is in applying finite difference across a discontinuity,

while most schemes deal with smooth regions of flow well. Richtmyer and

Morton [31] proposed a scheme in 1967 which addresses the problem, called

the front tracking method. The outline of the Front tracking method is as

follows:

Initialize the geometry of the interface and physical states on the fix grid and

front points.

Propagate points on the discontinuity, giving both the updated states and the

new location of the tracked front. The jumps in the state variables across the

fronts are handled based on the Rankine-Hugoniot equations, combined with

the differential equations in characteristic form.

Regular grid points away from the discontinuities are updated using a finite

difference scheme. No differences are allowed across a tracked wave.

Points which locate nearby fronts are updated through interpolation of states

both on the front and neighboring interior states.
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Points with neighbors lying on the opposite side of the front, are updated by

computing an artificial neighbor lying on the discontinuity. This point is sim-

ply the intersection of the grid line with the front, and its states are computed

by interpolation of the nearby front states. This artificial point is then used

in a modified form of the difference equations which account for variable mesh

spacing.

The front tracking method were first implement by James Glimm and his

group [10] numerically by 1985. Since then the front tracking technique has

been broadly used in different research fields, such as shock refractions, shock

accelerated interface mixing, and the motion of saturation fronts in porous

medium.

2.3.2 Front Tracking Interface (FTI)

Another important component of this the numerical model is the Front

Tracking code FronTier, whose role is to move the cloud boundary dynamically,

see [1] and [2]. We use the Application Programming Interface (API) of Fron-

Tier called Front Tracking Interface (FTI) from [17] and [16] (http://www.ams.sunysb.edu/fti),

to access the passive tracking method and the interface data structure in Fron-

Tier. FTI provides an interface to connect WRF and FronTier. The cloud

boundary level set function for initialization from satellite data and the cloud

velocity field for every time step from WRF are assigned to FTI as client

routines. With these client routines, FTI initializes and propagates the cloud

boundaries. For this purpose, we set the average wind velocity within the η

level from 5 to 10 out of 27 total η levels [26].
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Table 2.1: The physical schemes applied in the WRF simulation. The schemes

include microphysics (mp physics), longwave radiation (ra lw physics), short-

wave physics (ra sw physics), surface input source, and planetary boundary

layer (bl pbl physics), and the cloud effects (iCloud).

mp physics WSM 3-class scheme

ra lw physics RRTM scheme

ra sw physics MM5 shortwave (Dudhia)

surface input source SI/gridgen

bl pbl physics YSU PBL scheme

iCloud 1 (turn on the cloud effect)
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Figure 2.3: The processed satellite image with the Fig. 2.2. by Msphix, a

satellite image processing and analysis library. By the satellite-image specific

algorithm, the library recognizes the geographical terrain on the image, and

then calculates the brightness level of each pixel. If the level of brightness

exceeds a certain level, which is relatively decided by the overall brightness,

then the pixel will be filled red (RGB code [254, 0, 0]) and identified as cloud.

As a result, the raw satellite image will be masked with a red cover. The cloud

cover boundary is the boundary of the red color mask.
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Figure 2.4: The program procedure of WRF preprocess system (WPS). It

serves to analyze and interpolate the external meteorological data to formats

WRF can interpret. It is a set of three programs to prepare the data for

real-data simulations.
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Figure 2.5: The grid domain using Lambert-conformal projection in WRF
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Figure 2.6: The traditional η coordinate used in atmospheric models, also

called mass vertical coordinate.
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Figure 2.7: The main components in WRF System. The ARW solver is chosen

in our simulation.
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Chapter 3

Probabilistic Forecasting Model

3.1 Program Flow

In this study, we combine several programs to build our stochastic forecast

model, including Msphinx, WRF and FronTier. To connect each program as

module and to automate huge amount of data downloading/processing, we

write high-level drivers in shell scripts and python scripts to control the whole

program flow. The program flow is shown in Fig. 3.1. We also use crontab to

automate the daily routine of downloading/ preprocessing the data.

3.2 The Error Probability Function

We build a probabilistic model for forecasting based on two types of

errors, those proportional to the distance from the predicted cloud boundaries

and those independent of this distance, each with a distinct physical basis.

Wind speed errors introduce position error in the predicted cloud boundary,

with the probability of error proportional to the distance from the boundary.
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The appearance of new cloud boundaries associated with new clouds, on the

other hand, is an error source independent of the distance to the predicted

cloud boundary. In principle, there should also be an error source associated

with new cloud boundaries coming from newly formed holes in the cloud cover,

but these do not seem to play a significant role in the data we analyze. The

error probability function, on which an error probability is based, is the result

of the correlation of a prediction to a subsequent observation.

To build the probability model, we use satellite images from time 0 and t,

the first for model initialization and the second for model validation and error

modeling. FTI initializes both images as an FT interface. Both define the

observed cloud boundaries. FTI propagates the time 0 FT interface for t time

steps by the wind velocity field generated from WRF to obtain the predicted

cloud boundaries. Then we call an FTI routine in each grid cell to identify it

as sun or cloud. This is done for both the predicted domain and the observed

domain. In each case, we assign components (sun = 0, cloud = 1) to each grid

block.

We identify the occurrence of an error if at a specific time period and

grid block base the predicted and observed components do not agree. Cut

cells, these cut by an FT interface, are for simplicity assigned to have half

area as sun and half as cloud. We next define the error area, Error Area(d, d+

∆d, t), as the error in which an error occurs, while lying within a distance

[d, d+∆d] of the predicted cloud boundary. Similarly we define the total area,

Total Area(d, d+ ∆d, t), also associated with the distance interval [d, d+ ∆d]

to the boundary. The cumulative areas defined above result not only from a
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sum over space but also over multiple time events. Later, we will sort this

integral according to values of physical parameters, to establish correlation to

the error. Using these definitions, we define an error probability function

err = f(d| t) =

∑
(Error Area(d, d+ ∆d, t))∑
(Total Area(d, d+ ∆d, t))

, (3.1)

where d represents the distance to the boundary. The distance d is given a

sign, positive for locations within predicted sun and negative within locations

of predicted cloud. ∆d = 1 pixels (1 km) represents the bin size of the dis-

tance interval, and t represents the given forecast period, i.e, the time elapsed

between the initializing data and the predicted data. The sums run over grid

cells and multiple prediction events.

The data assimilation improves the cloud cover prediction [20]. The cloud

fraction (CLDFRA) variable in WRF is indirectly calculated by temperature,

relative humidity and other related variables [5]. Assimilated satellite data

improved the prediction (reduce the probability of error). In prediction mode,

we determine a WRF-error probability for cloud cover, as a function of the

signed distance to the WRF-FTI predicted cloud boundary. See Fig. 3.2. In

this function, we use 1 km resolution prediction while using 5 km resolution

for probability assessment.
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Figure 3.1: The program flow. We combine several programs to build our

stochastic forecast model, including Msphinx, WRF and FronTier. Two types

of data are needed for initialization. Observed one from satellite images and

the meteorological data from NCEP. Then we run the preprocessing system

WPS in WRF to build the computational domain we need. Next, FronTier is

called to initialize the FT-Interface. Every time step in the forecast period, the

velocity will generate from WRF to propagate the FT-Interface from FronTier.

We build the error probability function for every forecast period to obtain the

variance of diffusion. The next stage of our model is advancing the probability

by Fokker-Planck equation. Using the diffusion rate and the source term, we

develop the probability map to observe the evolution of probability.
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Figure 3.2: A plot of the error probability ratio (error area/ total area) vs.

the signed distance (km) of 30 minutes forecast period. The green solid line

represents the error probability function built based on the data assimilated

forecast model; the blue dotted line represents the error probability function

built with the cloud fraction result from NWP model. The variable of cloud

fraction in WRF is calculated by other variables.
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Chapter 4

Parameter Estimation

4.1 The Two Parameter Probability Error Model

4.1.1 Non-Linear Least Squares Method

The non-linear least squares method is used to fit a set of m observations

with a n parameters model, using non-linear regression. The basis of the

method is the use of successive iterations of linear regressions to refine the

fitting parameters [25]. Consider observations x with a sample size of m, and

a model function y = f(x, β). β is a vector of size n. In the non-linear least

squares method, we minimize the sum of the residuals,

S =
m∑
i=1

r2i , (4.1)

where

ri = yi − f(xi, β) (4.2)
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where ri is the residual of the ith out of m observations. Then we solve for the

fitting parameter vector by the Gauss-Newton algorithm. We use a python

module in Scipy called Statsmodel [32] to solve the non-linear curve fitting

for us. Statsmodel provides classes and functions for the estimation of various

different statistical models, statistical tests, and statistical data exploration.

The results are tested against other existing statistical packages to ensure the

correctness of the fitting.

4.1.2 Curve-Fitting

We observe that the distribution of error in prediction is a combination

from two different sources, which can be observed from Fig. 7.1. As a result,

a probabilistic model is built based on two physical principles: (a) the error

in the wind speed, and (b) the spontaneous appearance of cloud boundaries.

We fit (3.1) to the model distribution

f(x|C,D) =
1

2
e−

x2

2D + C ·H(x). (4.3)

Here the signed distance x to the cloud boundary is positive in a region of pre-

dicted sun and negative in a region of predicted cloud. From the distribution

(4.3) fit to observed data, the propagation error is parameterized as a sum

of proportional to a normal distribution with a variance D, plus a formation
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error with proportional to a Heaviside function,

C ·H(x) =


0, x < 0,

C, x > 0.

(4.4)

A non-linear least squares regression analysis fits these two error probability

function parameters.

The variance D grows approximately linearly with time, and from this

fact, we define the diffusion rate D = D/t, where t = 1 minute, the smallest

time interval considered here. Note that D is a numerical approximation to

∂D/∂t and the average of those time periods. We find a relationship between

the diffusion rate D with the average wind velocity. The horizontal wind

velocity ~U is extracted and averaged spatially from the wind velocity field of

WRF. We collect those time period with similar mean wind velocity into bins,

and then apply the curve-fitting method to every bin in order to obtain the

diffusion rate D under different wind velocity condition. In this way, we obtain

a series of diffusion rates related to wind velocity.

A similar analysis relates the constant C to the surface evaporation rate

(SFCVP) extracted from WRF. Now the probabilistic model is fully developed

with two parameters, proportional to a normal distribution with the variance

D and a step function C ·H(x).
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Chapter 5

Fokker-Planck Equation Implementation

5.1 Fokker-Planck Equation

The Fokker-Planck equation, also known as the Kolmogorov forward

equation, is named after Adriaan Fokker and Max Planck. The Fokker-Planck

equation is a partial differential equation which describes the evolution of a

probability density function, [39] [7], due to transport, diffusion, and as pre-

sented here the spontaneous generation of probabilities [15].

Consider an Ito process driven by the standard Wiener process Wt. It

can be described as a stochastic differential equation

dXt = ~Udt+
√
D(Xt, t)dWt (5.1)

where ~U represents the drift, and the diffusion rate D(Xt, t). From (5.1), the

evolution of the probability density p(x, t) of the random variable Xt can be

derived,

∂

∂t
p(x, t) +

∂

∂x

[
~Up(x, t)

]
=

∂2

∂x2

[
D(x, t)

2
· p(x, t)

]
. (5.2)
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5.2 Stochastic Cloud Cover Forecast

∂p(x, t)

∂t
+∇ · ~Up(x, t) =

1

2

N∑
i=1

N∑
j=1

∂2

∂xi ∂xj

[
D

2
· p(x, t)

]
+ C ·H(x) , (5.3)

where N = 2 and D as the diffusion rate, to model the dynamic evolution of

the probability density.

In (5.3), p(x, t) is the probability of cloud existence at a given time and

location. The left hand side displays the dynamic change in the probability

density and the advection term. The wind velocity ~U governs the advection

term, which describes cloud boundary dynamics as driven by the wind. The

right hand side displays two terms: the probabilistic diffusion and the source

term. The diffusion rate D governs the growth of the error through time. C is

determined by a parameterized physical factor, the surface evaporation rate,

from WRF.

To solve the Fokker-Planck equation, we discretize the equation using

the finite-volume method [18] [19] in space and a temporal upwind scheme to

reduce the spatial oscillations, [29], [24] . We initialize the domain by assigning

two components 0 and 1, to represent sun and cloud respectively. We then

solve the Fokker-Planck equation with the WRF choice of 1 minute time steps,

to create a probability map. On the map, each cell is assigned with a value

which represents the probability of cloud cover presence at each given time

step.
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Chapter 6

Backtesting

6.1 Model Validation

To validate our dynamic probability model, we access mismatches be-

tween the observed probability and predictions. In the probabilistic model,

every grid cell on the domain is assigned a probability of cloud existence.

We collect data points within common probability intervals in bins of prob-

ability events. For points inside each bin, we calculate the observed prob-

ability. The model generated probability and observed probability are plot-

ted against each other in Fig 7.8. A point (x, y) on the plot corresponds to

model generated probability (y-coordinate) against the observed probability

(x-coordinate). The 45-degree line represents the perfect fit of these two prob-

abilities.
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6.2 The Statistical Tests

As model validation, we compare the finite sample from the observation

dataset with the model-generated probability. First, we form a null hypothesis

that the observed probability is equal to the model-generated probability,

H0 : pobserved = pmodel . (6.1)

A statistical error in the sample mean is generated by the finite size of the

observation data. The finite sample mean deviates from the true (infinite

sample) mean by a χ2 distribution. We investigate the sampling error to

differentiate the statistical error due to the finite sample size from the error

caused by the model itself. We classify our events into 10 probability intervals.

Then the null hypothesis for each bin [pi, pi+1] can be rewritten as


H0 : p = (pi + pi+1)/2

H1 : p 6= (pi + pi+1)/2

(6.2)

To test the hypothesis, we conduct the χ2 test and calculate the non-rejection

intervals with the 95% confidence level for each probability interval. We draw

the non-rejection interval as error bars on the probability plot. The model

error can be distinguished from the error due to finite size statistical data

analysis accordingly.

From the result in Fig. 7.9, we define the model error as the difference of
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predicted probability and observed probability in each bin.

err = probpredicted − probobserved (6.3)

In this case, we form another null hypothesis that the error rate of our

probability model is lower then 0.2,

H0 : err < 0.2 (6.4)

The region of rejection is on only one side of the the sampling distribution.

We use the one-tailed test to examine the null hypothesis.

6.3 The χ2 Test

To test the fraction of exceptions for the probabilistic model, a recom-

mended technique in backtesting is the χ2 Test. To conduct this test, we define

the violation process I as the prediction of


0, if the cloud cover component is equal to 1

1, if the cloud cover component is equal to 0

(6.5)

The failure rate can be defined as x/n, where n is the number of trials. Thus

the violation x follows a binomial probability distribution

f(x) =

(
n

x

)
px(1− p)n−x (6.6)
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where the number of violations, x, the total number of observations, n, and

1 − p equals to the confidence level. To check the observed mean violation

rates, we apply a χ2 test. χ2 defines the statistics of an observed (sample)

mean as defined by a finite sample drawn from an infinite source of sample. It

is a measure of the finite size effect on the sample mean.

To calculate the degree of freedom of χ2 distribution, we apply the formula

of the degree of freedom (DF),

DF = (r − 1) ∗ (c− 1) (6.7)

where r is the number of categories, and c is the number of levels of categorical

variables. Since we have both observed and predicted events, as well as binary

states for both events, we can calculate our degree of freedom as

(2− 1) ∗ (2− 1) = 1. (6.8)

With the large size of observations, the binomial distribution can be well-

approximated by the normal distribution. Thus we have

z =
x− np

(np(1− p))1/2
≈ N(0, 1) (6.9)

where np is the mean, and (np(1 − p))1/2 is the standard deviation. In this

case, the model will be rejected if

x /∈ [np− z · [np(1− p)]1/2, np+ z · [np(1− p)]1/2] (6.10)
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Chapter 7

Numerical Results

7.1 Probabilistic Forecasting Model

With the observation from satellite images and the meteorological initial-

ization data for WRF, we show the predicted and observed cloud boundaries

for prediction periods of 15, 30, 45, and 60 minutes in Fig 7.1. The predicted

cloud boundaries track the observed ones well in the 30 minutes forecast pe-

riod. However, the predictive power of the cloud boundary model is decreasing

with time. To better analyze the error, we build the error probability function

as in Fig. 7.2 to establish the relationship between error and the distance to

boundaries.

7.2 Parameter Estimation

We apply the curve fitting analysis to all 15, 30, 45 and 60 minutes

forecast periods, with the standard deviation of 7.51, 12.89, 18.57 and 20.99

km respectively. We observe that the variance grows approximately linearly
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in time. The results of fitting the error probability function to the model

distribution are shown in Fig. 7.2. The error probability functions in four dif-

ferent forecast periods basically retain the same shape which is consist with

the sum of proportional to a normal distribution and proportional to a Heav-

iside function as designed. However, the peak error value is increasing when

the forecast period becomes longer. The highest value, which occurs near the

cloud boundary, lies in the middle of the error probability function.

To examine the goodness of fit of the two-parameter model and the ob-

served data as given by the probability from the error probability function, a

quantile-quantile plot (Q-Q plot) is presented. The Q-Q plot compares two

probability distributions graphically, with the two sets of quantiles plotted

against each other. If two distributions agree after linear transformation, the

points in the Q-Q plot will show a straight line. In Fig. 7.3, we observe that

the model distribution successfully models the errors, not only in the center

part dominated by the proportional to normal distribution, but also in the

tails of the distribution.

We apply a second degree polynomial to describe the relationship between

the constant C and surface evaporation rate. The goodness of fit to the data

is assessed from covariance matrix of the parameters, with the diagonal used

to calculate the variance. We similarly analyze the relationship between D

and wind speed. The upper and lower curves with a 95% confidence level are

plotted in Fig 7.5.
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7.3 Stochastic Cloud Cover Forecast

With the parameters ~U , D, and C, we solve Fokker-Planck equation

numerically to build the probability map as shown in Fig. 7.6 and Fig. 7.7.

The white area represents cloud, and the blue area is open sky. At time step

0, as shown in the upper-left, the map is initialized with sharp boundaries.

Over time, the boundaries become fuzzier due to the effects of diffusion. At

the cloud edge, the blue gradually grows faint with time, which means that the

uncertainty is increasing along cloud boundaries. While we lose the forecast

power near the boundary, we retain a strong forecast power further from the

boundaries.

7.4 Backtesting

Fig. 7.8 shows the comparison of observed and the model-generated prob-

ability, with the sampling error caused by estimating the model by a finite

number of observations. While the Q-Q plots show the goodness of the model

fit, the probability plots in Fig. 7.8 show the predictive power of the proba-

bilistic model. The plots show good predictive capability beyond 30 minutes,

and reasonable prediction results up to one hour. The predictive power starts

to decrease first in the sunny region. As expected, the null hypothesis is re-

jected. This means that the model is not perfect and that the observed errors

in prediction, while small, are model limitations more than statistical and data

analysis limitations. With this knowledge, we assess the size of the model re-

lated errors, to conclude that the model gives good accuracy for up to 30
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minutes and probably useful accuracy for an hour.
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Figure 7.1: These plots are generated from the same date and same location as

in Fig. 2.3. They show the comparison between observation (red dotted curves)

and forecast (black solid curves) after 15, 30, 45, and 60 minutes (upper-left,

upper-right, lower-left, lower-right). (Color figures available online and in

[14]) In these plots we can recognize two different kinds of error as a mismatch

between observed and predicted cloud boundaries due to a) cloud propagation

error. b) the appearance of new cloud boundaries (i.e., the dotted circle in the

upper-right corner of the 15 minutes plot) due to the formation of new clouds.
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Figure 7.2: A plot of the error probability (error area/ total area) vs. the signed

distance (km) to the predicted cloud boundaries and a two parameter fit of the

probabilistic distribution of observed data for 15, 30, 45, and 60 minutes period

(upper-left, upper-right, lower-left, lower-right). Positive distances represent

predicted sun while negative distances represent the predicted clouds. The

solid line is the observed error probability function; the dotted line is the model

distribution from the proportional to a normal distribution and a step function.

Note the asymmetry of the plots, with the deviation from the proportional to

normal distribution occurring in the sunny (positive) portion of the data only.
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Figure 7.3: The Q-Q plots represent the goodness of fit of the model to data.

We show the comparisons between the observed error probability function and

the fitting distribution for periods of 15, 30, 45, and 60 minutes (upper-left,

upper-right, lower-left, lower-right). The straight line represents an ideal good-

ness of fit line. The dots are the quantile distribution of the datasets. In all

plots, the data fits the model distribution well, except for some outliners. We

conclude that the two parameter model fits observed data over a 1 hour period.
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Figure 7.4: The diffusion rate D (km2/min) plotted vs. the average wind

velocity (knot); To find the relationship, we obtain the observed variables for

each time step. We then sort the numerical results for the cloud boundary

by their level into bins. We conduct a regression analysis on the numerical

cloud boundary results in each bin. As a result, we can obtain the estimated

parameters. The solid line plots the observed relationship between the numer-

ical results and the fitting parameters. A polynomial regression fit yields the

dotted line. To investigate the polynomial fit quality, the covariance matrix of

the fitting parameters is calculated. Using the diagonal of the covariance ma-

trix, the variance is calculated to draw the upper curve and lower curve with

95% confidence level as the dash-dot line. In this figure, we can observe that

the fitted curve does not exceed the tolerance interval with a 95% confidence

level.
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Figure 7.5: The RHS constant error term from the H(x) vs. surface evapora-

tion rate (kg/m2 per minute); To find the relationship, we obtain the observed

variables for each time step. We then sort the numerical results for the cloud

boundary by their level into bins. We conduct a regression analysis on the

numerical cloud boundary results in each bin. As a result, we can obtain the

estimated parameters. The solid line plots the observed relationship between

the numerical results and the fitting parameters. A polynomial regression fit

yields the dotted line. To investigate the polynomial fit quality, the covariance

matrix of the fitting parameters is calculated. Using the diagonal of the co-

variance matrix, the variance is calculated to draw the upper curve and lower

curve with 95% confidence level as the dash-dot line. In this figure, we can

observe that the fitted curve does not exceed the tolerance interval with a 95%

confidence level.
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Figure 7.6: Propagation of the probability map. Initialization, and after 15,

30, 60, 120, and 180 minutes (upper-left, upper-right, mid-left, mid-right,

lower-left, lower-right). The initial probability map is generated from the

satellite image from the same date, location, and resolution as in Fig. 2.3.

The average wind velocity is 15.28 knots.
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Figure 7.7: Propagation of the probability map. Initialization, and after 15,

30, 60, 120, and 180 minutes (upper-left, upper-right, mid-left, mid-right,

lower-left, lower-right). The initial probability map is generated from the

satellite image from at 12pm UTC March, 11th, 2015, with the center point

located at 40◦48’00.0”N 73◦18’00.0”W. The average wind velocity is 26.23

knots. Compared to Fig. 7.6, the cloud boundaries are becoming blurred more

rapidly, indicating a lose of model predictive power due to the higher wind

velocity and turbulence.
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Figure 7.8: We plot the observed probabilities (y-axis) vs. the model gener-

ated probabilities (x-axis) for 15, 30, 45, and 60 minutes periods (upper-left,

upper-right, lower-left, lower-right). The error bars show the statistical error

of the observational finite sample. The observed probability for 15 minutes

and 30 minutes fits well, while the 45 minutes and 1 hour forecast show some

loss of the predictive power of the model.
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Figure 7.9: We plot the model error as y-axis vs. the model generated probabil-

ities as x-axis for a 15, 30, 45, and 60 minutes period (upper-left, upper-right,

lower-left, lower-right). The observed probability for 15 minutes and 30 min-

utes fits well, while the 45 minutes and 1 hour forecast show some loss of the

predictive power of the model.
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Chapter 8

Conclusions

We have developed a probabilistic methodology for weather forecasting.

The key steps are a) A physics based probabilistic model. b) Parameter estima-

tion. c) A stochastic equation for insertion into numerical weather prediction

(NWP) models. d) Backtesting.

While the methodology appears to be applicable for broader contexts, the

key feature of the short term cloud forecast problem chosen that allows the

analysis to move forward is the availability of sufficient data. The methodol-

ogy has been tested for the short term cloud cover forecast problem. The key

data used are a) satellite image data and b) WRF meteorological data, includ-

ing initialization protocols. The physics based model for the generation and

motion of probabilities is based on two processes: velocity dispersion (small

scale turbulence) in the wind field and surface evaporation phenomena for the

generation of new cloud boundaries. We build a two parameter probability

model for prediction based on the physics model, one parameter depending

on the distance to the cloud boundaries and the other independent of this
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distance.

As our third step, we insert the probability propagation model as a

Fokker-Planck equation into WRF. The implementation is an independent

module, which can be coupled not only with WRF but also with other numer-

ical weather models. The module also serves as a stand alone post-processing

tool. It generates probabilistic results based on the deterministic variables

from WRF. In the fourth part of this study, we validate the prediction of the

probabilities generated. Overall, we get good accuracy for 30 minutes and

probably useful accuracies for 1 hour and more. The model has a tendency to

overestimate the probability of cloud in a sunny region.
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