

SSStttooonnnyyy BBBrrrooooookkk UUUnnniiivvveeerrrsssiiitttyyy

The official electronic file of this thesis or dissertation is maintained by the University
Libraries on behalf of The Graduate School at Stony Brook University.

©©© AAAllllll RRRiiiggghhhtttsss RRReeessseeerrrvvveeeddd bbbyyy AAAuuuttthhhooorrr...

ALGORITHMS AND STRUCTURES FOR COVARIANCE

ESTIMATES WITH APPLICATION TO FINANCE

A Dissertation Presented

by

Tengjie Jia

to

The Graduate School

in Partial Ful�llment of the Requirements for the Degree of

Doctor of Philosophy

in

Applied Mathematics & Statistics

Quantitative Finance

Stony Brook University

December 2013

Stony Brook University

The Graduate School

Tengjie Jia

We, the dissertation committee for the above candidate for the Doctor of

Philosophy degree, hereby recommend acceptance of this dissertation.

Andrew P. Mullhaupt �Dissertation Advisor

Research Professor

Dept. of Applied Mathematics and Statistics, SUNY Stony Brook

Svetlozar Rachev �Chair person of Defense

Frey Family Foundation Chair of Quantitative Finance

Dept. of Applied Mathematics and Statistics, SUNY Stony Brook

Evangelos Coutsias �Committee Member

Professor

Dept. of Applied Mathematics and Statistics, SUNY Stony Brook

Young Shin Aaron Kim �External Committee Member

Assistant Professor

College of Business, SUNY Stony Brook

This dissertation is accepted by the Graduate School

Charles Taber

Interim Dean of the Graduate School

ii

Abstract of the Dissertation

ALGORITHMS AND STRUCTURES FOR COVARIANCE

ESTIMATES WITH APPLICATION TO FINANCE

by

Tengjie Jia

Doctor of Philosophy

in

Applied Mathematics and Statistics

Quantitative Finance

Stony Brook University

2013

Factor analysis is an important statistical tool used to describe variability among

observed, correlated variables in terms of a potentially lower number of unobserved

variables which are called factors. Maximum likelihood estimation (MLE) has been

popular for �tting factor analysis. Among variety of iterative methods that can be

used to perform MLE, the EM algorithm is probably one of the most stable in terms

of monotonely increasing the likelihood and the easiest to implement. However, in

the real world, the rate of convergence of EM could be painfully slow in factor model

estimation.

In this dissertation, we study two popular problems in algorithms and structures

for covariance estimates. The �rst problem is factor analysis and mixture of factor

analyzers models estimation by using the �-EM algorithm. In the �-EM algorithm

we replace the logarithm by �-logarithm. Logarithms have important roles besides

the derivation of the log-EM algorithm. The Kullback-Leibler divergence and Fisher

iii

information matrix all bring about the logarithm. For �-logarithm with di¤erent

values of � we actually have other important information measurements such as

the Hellinger distance and weighted square distance besides the Kullback-Leibler

divergence. After calculation we get two non-tractable update equations in �-EM.

In order to get tractable update equations as we have in log-EM, we need to do

two more things. One of them is iteration index shifting and the other one is

series expansion. These two steps are necessary for practical reasons. In addition,

we apply the �-EM algorithm to actual �nancial data. The speed of convergence is

much faster than traditional log-EM algorithm and you could choose di¤erent values

of � to achieve the best rate of convergence.

The second problem is covariance estimation by using matrix fraction repre-

sentations. There is a vast literature that suggests factor models for dealing with

covariance estimation. One of the important reason is that we can interpret the

statistical factors by actual �nancial indicators. Here, we consider using matrix

fraction representations. One of the many reasons that this would be a better idea

than factor model is that the inverse of a factor model no longer have the same

factor structure. But fraction representations don�t have this problem. Another

reason is that factor model is not a convex set. But band fraction representation

is a convex set. More importantly we can show that factor model is a special case

of band fraction representation. That means if the covariance matrices have factor

structure we still use band fraction representation. It had been expected that band

fraction representation would be better than factor model. We show the foresight

is true.

The main contribution of the thesis:

� We apply the �-EM algorithm to do factor model and mixture of factor model

estimation. In the �-EM algorithm we replace the logarithm by �-logarithm.

We get non-causal (implicit) update equations through a lot of calculation.

� We use shift of index and series expansion to get causal (explicit) update equa-

iv

tions of �-EM algorithm for both factor model and mixture of factor models.

We show that log-EM is a special case of the �-EM algorithm. We compare

the convergence speed of the log-EM algorithm and the �-EM algorithm in

terms of both log-likelihood and the Hellinger distance.

� We compute gradients of the �-log-likelihood function of factor model. We ap-

ply conjugate gradient acceleration to the �-EM algorithm. Empirical results

are given.

� We consider a new structure which is band fraction representation for covari-

ance estimates. We show that band fraction representation includes factor

model as a special case. We show that for factor model with d factors and

band fraction with d + 1 bandwidth, the Hellinger distance between sample

covariance and band fraction representation is much smaller than it between

sample covariance and factor model. This is also true in terms of log-likelihood.

v

Contents

1 Introduction 1

2 Models Description and Estimation Methods Review 7

2.1 Factor Model . 7

2.2 Mixture of Factor Models . 8

2.3 Maximum Likelihood estimators . 8

2.4 Log-EM Algorithm . 10

2.5 �-EM Algorithm . 11

2.6 Conjugate Gradient Method . 12

2.7 Band Fraction Representation (Model) 14

2.8 Semiseparable Factorization (Method) 15

3 Factor Model Estimation By Using The �-EM Algorithm 18

3.1 Non-Causal Update Equations . 18

3.2 Causal update equations . 22

3.2.1 Causal approximation . 23

3.2.2 Series Expansion . 24

3.3 Empirical Results . 26

3.3.1 Factor analysis from complete observations 26

3.3.2 Factor analysis on �nancial data 29

3.4 Concluding Remarks . 34

4 The �-EM Algorithm for Mixture of Factor Models 36

4.1 Non-Causal Update Equations . 36

4.2 Causal update equations . 41

4.2.1 Causal approximation . 42

4.2.2 Series Expansion . 43

4.3 Comparison of single and multiple � 45

vi

4.4 Empirical Results . 46

4.4.1 Mixture of factor models on arti�cial data (k = 2) 46

4.4.2 Mixture of factor models on �nancial data (k = 3) 50

4.5 Concluding Remarks . 52

5 Conjugate Gradient Acceleration of the �-EM Algorithm 54

5.1 Model Description . 54

5.2 Empirical Results . 56

5.2.1 Accelerated �-EM on arti�cial data 56

5.2.2 Accelerated �-EM on �nancial data 59

5.3 Concluding Remarks . 61

6 Band Fraction Representation 63

6.1 Semiseparability rank 2 and bandwidth 2 63

6.2 Semiseparability rank 3 and bandwidth 3 65

6.3 Semiseparability rank d and bandwidth d 67

6.4 Empirical Results . 69

6.4.1 Arti�cial data . 69

6.4.2 Low dimension data . 71

6.4.3 High dimension �nancial data 74

6.4.4 Portfolio Selection . 78

6.5 Concluding Remarks . 80

A Appendix: Conditional distribution of factors 97

B Appendix: Update equation of factor analysis 100

B.1 Non-Causal . 100

B.2 Causal . 103

C Appendix: Hellinger distance between two Gaussian 105

vii

D Appendix: Update equation of mixture of factor analyzers 106

D.1 multiple � . 106

D.1.1 Non-Causal . 106

D.1.2 Causal . 111

D.2 single � . 114

D.2.1 Non-Causal . 114

D.2.2 Causal . 115

E Appendix: Gradient of �-log-likelihood function 119

viii

List of Tables

1 Speedup Ratio For Factor Model Estimation(p=9, d=4) 28

2 Speedup Ratio For Factor Model Estimation(p=471, d=20) 30

3 Speedup Ratio For Factor Model Estimation(p=100, d=10) 33

4 Speedup Ratio For Factor Model Estimation(p=100, d=20) 48

5 Speedup Ratio For Factor Model Estimation(p=200, d=30) 49

6 Speedup Ratio For Factor Model Estimation(p=50, d=20) 51

7 Speedup Ratio For Factor Model Estimation(p=100, d=20) 52

8 Speedup Ratio Comparison(p=100, d=20) 57

9 Speedup Ratio Comparison(p=100, d=20) 58

10 Speedup Ratio Comparison(p=100, d=20) 60

11 Speedup Ratio Comparison(p=100, d=20) 61

12 Hellinger distance comparison . 70

13 Log-likelihood Comparison (p=400) 77

14 Hellinger distance Comparison (p=400) 78

ix

List of Figures

1 Convergence speed for various alpha 27

2 Hellinger distance for various alpha 28

3 Convergence speed for various alpha 30

4 Convergence speed for various alpha 31

5 Convergence speed for various r . 32

6 Convergence speed for various alpha 33

7 Convergence speed for various alpha 48

8 Convergence speed for various alpha 49

9 Convergence speed for various alpha 50

10 Convergence speed for various alpha 51

11 Convergence Speed Comparison . 57

12 Convergence speed comparison . 58

13 Convergence speed comparison . 59

14 Convergence speed comparison . 60

15 Log-likelihood comparison between factor model and band fraction

representation . 71

16 Hellinger distance comparison between factor model and band frac-

tion representation . 73

17 Log-likelihood comparison between two models and sample covariance 74

18 Hellinger distance comparison between two models and sample co-

variance . 75

19 Hellinger distance between factor model and band fraction represen-

tation . 76

20 Log-likelihood comparison of various alpha 76

21 Hellinger distance comparison of various alpha 77

22 Portfolio returns comparison between two models and sample covariance 79

23 Hellinger distance comparison . 79

x

Acknowledgements

In the period of my doctoral study, I have received considerable help and support

from numerous people.

I need to �rst thank Prof. Ann Tucker who was a visiting associate professor at

AMS department and the executive director of Stony Brook�s Quantitative Finance

program in the early stage. As the main contributor in working towards the o¢ cial

startup of the SBQF program, she brought us fresh knowledge about quantitative

�nance from her industry experience. She also provided us a fabulous platform as

in the QF program to learn about the mysterious "Wall Street". I was very lucky

to be one of the few students at the start of QF program. Prof. Ann Tucker was

very much kind and friendly to every student and we missed her so much when she

left the department.

Prof. Andrew P. Mullhaupt, my academic advisor, who had over twenty years

experience in high-frequency trading. Undoubtedly provided me tremendous guid-

ance on how to conduct research, how to apply research to the �nancial world. He

brought us not only inspiring lectures and insightful ideas but also an insider vision

to the state-of-the-art science and technology in quantitative �nance. Back to the

summer of 2010, after my �rst research on Trade and Quote database and prof. Ann

Tucker�s interim guidance, I became a PhD student of Prof. Mullhaupt. He was

always generous and kind in sharing his opinions and providing his guidance not

only limited to quantitative research. I am thankful to all his help in answering my

questions and I feel very much fortunate that I had the opportunity to learn from

such a great professor.

Prof. Svetlozar Rachev, our program director, o¤ered me huge guidance on how

to conduct research and how to present research to the academic world. He was

always available and patient for any discussion not only limited to academic research

and he was a beloved professor by all students at our QF program. He also brought

xi

his wide and strong research nexus and provided us numerous opportunities to study

the latest and most challenging topics in quantitative �nance. Besides research, Prof.

Rachev provided us enormous opportunities to work on patents which helped us put

the knowledge of the book into practice. I have also learned a lot from him about

academic writing skills and experience, which will bene�t me for a life-long time.

I also want to thank Prof. Robert Frey for his enormous e¤ort in starting

such a wonderful program which attracts so many prominent professors, and his

friendliness and patience in communicating with us on line. Other professors, such

as Prof. Haipeng Xing who provided useful comments in my preliminary exam. I�d

like to express my appreciation to many colleagues including (but not limited to) Xu

Dong, Barret Shao, Xiao Yu, Riyu Yu, with whom I had chance to work together

and discuss about problems and ideas during my research. I�d also like to thank

Michael Tiano who o¤ered me many useful comments about my thesis and helped

me a lot in editing my thesis.

Since the last year of my PhD study, I have been working as a quantitative re-

searcher at Meadowood Capital Management. In addition to the academic research

on campus, this industry experience has provided me a much deeper understanding

about practical quantitative trading. I am grateful to this great opportunity and

I want to express my special thanks to our CEO Paul Cargiulo and COO David

Spring. In the meanwhile, I am thankful to the bene�cial discussions with my

colleagues Lorne Applebaum and Ilya Presman.

Last but most, I would like to thank the support from my family members during

all my study life, without whom I would not success in any accomplishments.

xii

Vita, Publications and/or Fields of Study

I was born in Shijiazhuang, Hebei, P.R. China in 1986. I received my B.S in

Applied Mathematics at Donghua University in 2009. My research interests include

mathematical models in �nance.

I was admitted to the master program in Applied Mathematics and Statistics

at Stony Brook University in 2009. After one half year of study I jointed to the

PhD program. My concentration is quantitative �nance and my academic advisor

is Professor Andrew P. Mullhaupt. My research topics in PhD include Trade and

Quote data analysis, matrix fraction representation, �-EM algorithm, factor model

estimation, covariance shrinkage and quadratic programming. The related research

work include three working papers:

1. Tengjie Jia, Andrew P. Mullhaupt. Band fraction representation estimation

of covariance estimation. Working paper. (2013)

2. Tengjie Jia, Andrew P. Mullhaupt, Lorne Applebaum, Xu Dong. Factor

model estimation by using the �-EM algorithm. Working paper. (2013)

3. Tengjie Jia, Andrew P. Mullhaupt. Intraday �nancial data dependency.

Working paper. (2013)

I am currently working as an quantitative researcher at Meadowood Captial

Management, New York, NY

xiii

1 Introduction

In this section, we do a literature review about previous work in factor model estima-

tion, mixture of factor models estimation, �-EM algorithm, conjugate gradient and

rank-structured matrices such as semiseparable matrix. At the end of this section,

we give the organization of the following sections of the thesis.

Factor analysis is a statistical method used to describe variability among ob-

served, correlated variables in terms of a potentially lower number of unobserved

variables called factors. Factor analysis searches for such joint variations in response

to unobserved latent variables. The observed variables are modeled as linear combi-

nations of the potential factors, plus �error�terms. Factor models have been widely

used to construct portfolios with certain characteristics, such as risk, because they

have many useful properties that sample covariance matrices don�t have. One ad-

vantage of a factor model is the reduction of number of variables, by combining two

or more variables into a single factor. Another advantage is the identi�cation of

groups of inter-related variables, to see how they are related to each other.

In statistics, a mixture model is a probabilistic model for representing the pres-

ence of subpopulations within an overall population. Mixture models don�t require

that the observed data-set should identify the sub-population to which an individual

observation belongs. Formally a mixture model corresponds to the mixture distri-

bution which represents the probability distribution of observations in the overall

population. Mixture of factor analysis (MFA) models are widely used in clustering

and dimensionality reduction. These are two of the fundamental problems in un-

supervised learning. The reason is that MFA models can perform clustering and

dimensionality reduction simultaneously. MFA looks for directions that have max-

imal interesting correlations within each cluster. In model based clustering the

data are assumed to come from a �nite mixture model. For quantitative data each

mixture component is usually modeled as a multivariate Gaussian distribution.

The expecatation-maximization (EM) algorithm is a well known iterative method

1

for �nding maximum likelihood estimates of parameters in statistical models, where

the model depends on unobserved latent variables. Typically these models involve

latent variables in addition to unknown parameters and known data observations.

That is, either there are missing values among the data, or the model can be formu-

lated more simply by assuming the existence of additional unobserved data points.

The EM algorithm has been suggested for �tting factor and mixture of factor mod-

els. The EM iteration alternates between performing an expectation (E) step, which

creates a function for the expectation of the log-likelihood evaluated using the cur-

rent estimate for the parameters, and a maximization (M) step, which computes

parameters maximizing the expected log-likelihood found on the E step. These

parameter-estimates are then used to determine the distribution of the latent vari-

ables in the next E step.

A. P. Dempster, N. M. Laird and D. B. Rubin presented both the general theory

of EM algorithms and a general approach to iterative computation of maximum-

likelihood estimates in 1977 [38]. D. B. Rubin and D. T. Thayer applied log-EM

algorithm for maximum likelihood factor model analysis in 1982 [107]. After that,

a number of methods have been proposed to accelerate the sometimes slow conver-

gence of the EM algorithm, such as those utilizing conjugate gradient and modi�ed

Newton�Raphson techniques. Xiaoli Meng and D. B. Rubin introduced a class of

generalized EM algorithms which they call the ECM algorithm in 1993 [88]. Ex-

pectation conditional maximization (ECM) replaces each M step with a sequence

of conditional maximization (CM) steps in which each parameter is maximized in-

dividually, conditionally on the other parameters remaining �xed. Chuanhai Liu

and Donald B. Rubin introduced a simple extension of EM and ECM with faster

covergence in 1994 [72], which they call the ECME algorithm. They applied ECEM

algorithm for maximum likelihood estimation of factor analysis in 1998 [74]. This

idea is further extended in the generalized expectation maximization (GEM) algo-

rithm, in which one only seeks an increase in the objective function for both the E

2

step and M step under the alternative description. The Q-function used in the EM

algorithm is based on the log-likelihood. Thus in this thesis we call it the log-EM

algorithm.

The EM algorithm has also been widely used for �tting the MFA models. It is

easy to implement and converges stably since its M-step is in closed form. Zoubin

Ghahramani and Geo¤rey E. Hinton showed how to use the log-EM algorithm for

both single factor analysis and mixture of factor analyzers in 1996 [51]. Later, G.

J. McLachlan, D. Peel and R.W. Bean used a mixture of factor analysers to model

high-dimensional data [85] and �tted the model by using the alternating expectation-

conditional maximization (AECM) algorithm. After that, G. J. McLachlan, R.W.

Bean and L. Ben-Tovim Jones extended the mixture of factor analysers in order

to incorporate the multivariate t-distribution [86]. However, missing data of MFA

models contains indicator factors and also latent factors. Because of so much missing

data, the convergence of the EM algorithm for MFA can be painfully slow due to

the fact that the rate of convergence of EM is determined by the portion of missing

information in complete data [38]. In order to deal with the missing data, Jian-Hua

Zhao and Philip L. H. Yu proposed a fast expectation conditional maximization

(ECM) algorithm for maximum-likelihood (ML) estimation of mixture of factor

analysers (MFA) [129]. The convergence of ECM is substantially faster than EM

and AECM regardless of whether they are assessed by CPU time or number of

iterations. To further reduce the amount of missing data, Jangsun Baek, G. J.

McLachlan, and Lloyd K. Flack proposed the use of common component-factor

loadings which considerably reduces the number of parameters. They applied this

new method to the clustering and visualization of high-dimensional data in 2010 [3].

The �-EM algorithm was introduced by Yasuo Matsuyama [78], [79], [80], [81],

who also proved the covergence speed of the �-EM algorithm is faster than the

log-EM algorithm as long as the incomplete data comes from an exponential family.

Logarithms have important roles besides simplifying the likelihood maximization.

3

In information measures, logarithmic is correspond to the Kullback-Leibler diver-

gence which is a key for realizing the maximization transfer in the EM algorithm

[38]. The �-EM algorithm is derived by the maximization transfer which uses more

general surrogate functions than log-EM. The use of the log-likelihood ratio can be

generalized to that of the �-log-likelihood ratio. The log-EM corresponds to the spe-

cial case of � = �1. Yasuo Matsuyama also applied �-EM to clustering. His results

showed that it is better than the log-EM algorithm in terms of both the number

of iterations and the total computation time. In 2010 and 2011 Yasuo Matsuyama

applied �-EM algorithm to hidden Markov model estimation [82], [83]. It had been

expected that the �-EM for factor model estimation would exist. On one hand, the

complete data of factor model comes from an exponential family, so theoretically

�-EM can be applied to factor analysis. On the other hand, the convergence speed

of log-EM for factor models can be slow when the problem is not well conditioned.

For applications such as high frequency trading, problems may be ill condition and

require fast computation. Since the log-EM is a subclass of the �-EM, the �-EM

can only do better than the log-EM. In practice there are several hurdles when it

cares to implement the �-EM for factor model. In this thesis, we present a way to

use �-EM for factor model estimation.

The conjugate gradient method is an algorithm for the numerical solution of

particular systems of linear equations, namely those whose matrix is symmetric and

positive-de�nite. Because covariance structure analyses can usually require opti-

mization of functions with a large numbers of parameters, they often lead to expen-

sive computer runs. Algorithms which are computational e¢ cient and don�t require

a large amount of memory are welcomed for such analyses. The conjugate gradient

method is a commonly used method for EM acceleration. Mortaza Jamshidian and

Robert I. Jennrich showed that the conjugate gradient method can ful�ll both of

those requirements for factor analysis [60]. Later, Mortaza Jamshidian and Robert

I. Jennrich showed that the EM step can be viewed as a generalized gradient, mak-

4

ing it natural to apply generalized conjugate gradient methods in an attempt to

accelerate the EM algorithm. They considered its application to several problems,

such as estimation of a covariance matrix from incomplete multivariate normal data,

con�rmatory factor analysis and repeated measures analysis [59]. Ruslan Salakhut-

dinov, Sam Roweis and Zoubin Ghahramani presented a close relationship between

EM algorithm and direct optimization approaches such as gradient-based meth-

ods for parameter learning [109]. After that, Ruslan Salakhutdinov, Sam Roweis

and Zoubin Ghahramani presented an Expectation-Conjugate-Gradient (ECG) al-

gorithm for maximum likelihood estimation in latent variable models, and showed

that it can outperform EM in terms of convergence in certain cases [110].

Many rank-structured matrices have been widely used in developing new fast

matrix algorithms. Andrew P. Mullhaupt and Kurt Riedel introduced low grade

matrices, their fraction representations, and consecutive sub-block product repre-

sentations in 2002 [92]. They applied their results to signal processing using banded

matrix fraction representations of triangular input normal pairs in 2001 [93]. Other

various e¢ cient representations for rank structured matrices have been proposed,

and e¢ cient and accurate algorithms have been developed using these representa-

tions. In particular, semiseparable matrices are very useful. S. Chandrasekaran,

P. Dewilde, M. Gu, T. Pals, X. Sun, A. J. van der Veen, and D. White general-

ized the hierarchically semiseparable (HSS) representations and propose some fast

algorithms for HSS matrices in 2005 [18]. Those algorithms are useful for problems

where o¤-diagonal blocks have small numerical ranks. S. Delvaux and M. Van Barel

they investigated some matrix structures that are preserved by Schur complemen-

tation in 2006 [34]. After that, they introduced a given-weight representation for

rank-structured matrices where the rank structure is de�ned by certain submatrices

starting from the bottom left or upper right corner of the matrix [35]. There are

several e¢ cient algorithms that have been developed for approximating a symmetric

matrix A by a symmetric semiseparable matrix, accurate to a constant multiple of

5

any given tolerance � > 0 [12], [53]. Fast backward stable algorithms have also been

constructed to approximate A with an SPD semiseparable matrix [119]. Ming Gu,

Xiaoye S. Li and Panayot S. Vassilevski solved the problem of constructing semi-

separable SPD matrices to approximate a given dense SPD matrix A for a given

tolerance � > 0 which is very large [55].

The rest of this dissertation is structured as follows. Section 2 reviews factor

model, mixture of factor models and usual model estimation methods, such as EM

and its conjugate gradient acceleration method. The �-EM algorithm is also pre-

sented. Section 3 shows how to use the �-EM algorithm in factor model estimation

and this is new in the literature. Comparison between the log-EM and the �-EM

are presented through real �nancial data. Section 4 focuses on mixture of factor

analysers. Section 5 introduces conjugate gradient acceleration method to the �-

EM algorithm. Section 6 presents a new structure for covariance estimates which is

better than factor model under the Hellinger distance.

6

2 Models Description and Estimation Methods Review

2.1 Factor Model

Given a set of p observable random variables, x1; x2; : : : ; xp with means, �1; �2; : : : ; �p,

a factor model consists of an (unobserved) factor loading matrix �p�d and d (un-

observed) factor-scores z1; z2; : : : ; zd for each observation. We require d < p:We

have:

xi � �i = �i;1z1 + �i;2z2 + � � �+ �i;dzd + ui , 1 � i � p

where ui are independently distributed error terms with zero mean and �nite vari-

ance, which may not be the same for all i. Let X be the p � n data matrix with

zero mean and Z be the d � n unobserved factor-score matrix corresponding to n

observations.

In matrix terms the generative model is given by:

X = �Z + U

We also will impose the following assumptions on Z and U .

1. Z and U are independent.

2. E[Z] = 0 and Cov[Z] = I (to make sure that the factors are uncorrelated)

3. E[U] = 0 and Cov[U] = Diag(�1; �2; : : : ; �n)
def
= �

Suppose Cov[X] = � and we have Cov[X] = Cov[�Z + U], so we can get

� = �+��0. Estimation of the factor model means that given observed data X we

need to estimate � and �:

Note that for any orthogonal matrix Q if we set �� = �Q and Z� = Q0Z, the

criteria for being factors and factor loadings still holds. Hence a set of factors and

factor loadings is identical only up to orthogonal transformations.

7

2.2 Mixture of Factor Models

Assume now that the data are from a mixture of k factor models indexed by wj ; j =

1; : : : ; k. The distribution of the observation xi can be modeled as:

xi � �(j)i = �
(j)
i;1z

(j)
1 + �

(j)
i;2z

(j)
2 + � � �+ �(j)i;dz

(j)
d + u

(j)
i with prob. �j(j = 1; : : : ; k)

where u(j)i are independently distributed error terms with zero mean and �nite

variance, which may not be the same for all i and j.

The generative model now obeys the following mixture distribution:

P (x) =
mP
j=1

R
P (xjz; wj)P (zjwj)P (wj)dz

We have the same assumptions as in regular factor analysis, the factors z are all

assumed to be N(0; 1). We have:

P (xjz; wj) = N(�jz;�j)

and the jth component-covariance matrix �j has the form

�j = �j + �j�
0
j (j = 1; : : : ; k)

where �j is p � d matrix of factor loadings and �j is p � p diagonal matrix along

with the mixing proportion �j(j = 1; : : : ; k):

The parameters of this model are {�j ;�j ; �j}kj=1 where �j = P (wj = 1). The

latent variables in this model are the factors Z and the mixture indicator variable

wj , where wj = 1 when the data point was generated by wj . So for mixture of factor

models we need to estimate {�j ;�j ; �j}kj=1.

2.3 Maximum Likelihood estimators

Maximum-likelihood estimation (MLE) is a method of estimating the parameters

of a statistical model. When applied to a data set and given a statistical model,

maximum-likelihood estimation provides estimates for the model�s parameters. In-

tuitively, it �nds the parameter point for which the observed sample is most likely

8

to appear. Suppose X = (X1; : : : ; Xn) is an i.i.d. sample from a distribution with

pdf or pmf f(x; �), the likelihood function is de�ned as:

L(�jX) =
nQ
i=1
f(xi; �)

In practice, it is often more convenient to work on the log-likelihood:

l(�jX) = logL(�jX) =
nP
i=1
log f(xi; �)

Then, the maximum likelihood estimate is obtained as:

b� = argmax
�2�

l(�jX)

As the sample size increases to in�nity, sequences of maximum-likelihood esti-

mators have these properties:

� Consistency: the sequence of MLEs converges in probability to the value being

estimated. b�MLE
p! �0

� Asymptotic normality: as the sample size increases, the distribution of the

MLE tends to the Gaussian distribution with mean � and covariance matrix

equal to the inverse of the Fisher information matrix.

p
n(�0MLE � �0)

d! N(0; I(�)�1)

� Functional invariance: if b� is the MLE of �, then for any function g(�), the
MLE of g(�) is g(b�). For example, the MLE parameters of the log-normal
distribution are the same as those of the normal distribution �tted to the

logarithm of the data.

� E¢ ciency: it achieves the Cramér�Rao lower bound when the sample size tends

to in�nity. This means that no consistent estimator has lower asymptotic mean

squared error than the MLE (or other estimators attaining this bound).

9

2.4 Log-EM Algorithm

The EM algorithm ([38], [107]) is a very popular and widely applicable algorithm for

the computation of maximum likelihood estimation. Given a statistical model con-

sisting of observed data X, unobserved latent data Z and unknown parameters �, �,

along with log-likelihood function, the maximum likelihood estimate of the unknown

parameters is determined by the marginal likelihood of the observed data. Then the

incomplete data log-likelihood is L(X;�;�) = log
nQ
i
p(xij�;�). On the other hand,

the complete data log-likelihood is LC(X;Z;�;�) = log
nQ
i
pC(xi; zij�;�). The log-

EM algorithm seeks to �nd the maximization of the marginal likelihood by itera-

tively applying the following two steps: (The subscripts of �0;�0 mean the current

estimates and the subscripts of �1;�1 mean the next estimates)

� Expectation step (E step): Calculate the expected value of the log likelihood

function, with respect to the conditional distribution of z given x under the

current estimate of the parameters �0;�0

Q(�1;�1j�0;�0) = EZjX;�0;�0 [LC(X;Z;�;�)]

� Maximization step (M step): Find the parameter that maximizes this quantity:

�1;�1 = arg max
�1;�1

Q(�1;�1j�0;�0)

Given �0, �0 and xi, i means the ith observation, the expected value of the

factors zi can be computed and this computation is in fact necessary for log-EM

algorithm. For the distribution of the observed variable p(xi) we have E[xi] =

0 and Cov[X] = � = �0 + �0�
0
0. For the distribution of the complete data

p(xi; zi) , let yi =

24 xi
zi

35 and Y =

24 X
Z

35, we have E[yi] = 0 and Cov[Y] =24 �0 + �0�00 �0

�0 I

35. For the distribution p(zijxi) we have p(zijxi) = p(xi;zi)
p(xi)

. Since

10

we know the distribution of p(xi) and p(xi; zi), we will have E[zijxi] = �xi and

V ar[zijxi] = C where (see appendix A for proof):

�0 = �00(�0 + �0�
0
0)
�1

C0 = I � �00(�0 + �0�00)�1�0

2.5 �-EM Algorithm

Yasuo Matsuyama devised the �-EM algorithm ([78],[79],[80],[81]), which generalizes

the EM-algorithm, with application to some model estimation. In this thesis, we

adapt the �-EM algorithm to estimation of factor models.

The �-logarithm function is de�ned as follows [81]:

L(�)(r)
def
=

2

1 + �

�
r
1+�
2 � 1

�
(1)

where r 2 (0;1). L(�)(r) is strictly concave for � < 1, a straight line r�1 for � = 1

and strictly convex for � > 1. Especially when � = �1 we have L(�1) = log(r).

The �-EM algorithm maximizes the �-logarithm of the likelihood ratio, which in

the special case � = �1 corresponds to ordinary maximum likelihood.

Let PI(Xj�;�) be the probability density for the observed(incomplete) data X

parameterized by � and �. Let PC(X;Zj�;�) be the probability density for the

complete data. Then the incomplete data �-log-likelihood ratio is:

L
(�)
X (�1;�1j�0;�0) =

2

1 + �

"�
PI(Xj�1;�1)
PI(Xj�0;�0)

� 1+�
2

� 1
#

On the other hand, the complete data �-log-likelihood ratio is :

L
(�)
X;Z(�1;�1j�0;�0) =

2

1 + �

"�
PC(X;Zj�1;�1)
PC(X;Zj�0;�0)

� 1+�
2

� 1
#

by taking the conditional expectation in terms of PZjX;�0;�0 we can get

Q
(�)
X;ZjX(�1;�1j�0;�0) = E

h
L
(�)
X;Z(�1;�1j�0;�0)

i

11

by computing the �-divergence between PZjX;�0;�0(ZjX;�0;�0) and PZjX;�1;�1(ZjX;�1;�1)

we have the following basic equality for the �-EM algorithm [78], [79], [80], [81].

L
(�)
X (�1;�1j�0;�0) = Q(�)X;ZjX(�1;�1j�0;�0)+

1� �
2

�
P (Xj�1;�1)
P (Xj�0;�0)

� 1+�
2

D(�)(�1;�1jj�0;�0)

(2)

Therefore, the �-log likelihood ratio of the observed data can be expressed by

using the Q-function of the �-log likelihood ratio and the �-divergence. The �-

divergence is an information measure. When � = �1, it is the Kullback-Leibler

divergence. When � = 0, it is the well known the Hellinger distance. Equation (2) is

the core of the �-EM algorithm. The second term on right-hand side is nonnegative

for � < 1, this also ensures positivity of the �-information matrix. So the algorithm

to increase L(�)X (�1;�1j�0;�0) is obtained by increasing the Q(�)X;ZjX(�1;�1j�0;�0)

function with respect to the argument �1 and �1.

Obtaining the Q(�)X;ZjX(�1;�1j�0;�0) function is a generalized E step. Its max-

imization is a generalized M step. This pair of steps is called the �-EM algorithm

which contains the log-EM algorithm as its subclass. Thus, the �-EM algorithm by

Yasuo Matsuyama is an exact generalization of the log-EM algorithm. The �-EM

shows faster convergence than the log-EM algorithm by choosing an appropriate �.

For possible choices of �, we already have � < 1, and on the other hand the �-EM

requires � > �1 for the exponential family.

2.6 Conjugate Gradient Method

The conjugate gradient method is an iterative method. The EM algorithm is de-

signed to �nd a parameter vector � that maximizes a likelihood function L(�); � 2 �:

For a speci�c application, a function Q(�0; �) is identi�ed. It may be viewed as a

local approximation to logL(�0) in a neighborhood of �. Let �0 be the value that

maximizes Q(�0; �) then the step �0�� is called an EM step. If �0 is an interior point

of �, then

�0 � � = �(Q(2)(�0; �0))�1g(�) + o(� � �0) (3)

12

where g(�) is the gradient of logL(�) at � and Q(2)(�0; �0) is the Hessian of Q(�0; �)

viewed as a function of �0 and evaluated at (�0; �) = (�0; �0). Typically Q(2)(�0; �0)

is negative de�nite. Thus using (3) the EM step �0 � � is a generalized gradient of

logL(�): Each step begins with an EM step. First, its direction is modi�ed and then

its length is optimized. In addition to the EM steps, we must compute gradients

g(�) of the logL(�): In order to �nd the optimal length, we need to do a line search

[59]. This is the most complicated part.

Given �0; let g0 = rf(�0); and d0 = �g0; set k = 0; the generalized conjugate

gradient algorithm proceeds as follows [59]:

1 �k; the value of � that maximizes f(�k + �kdk)

2 �k+1 = �k + �kdk and gk+1 = rf(�k+1)

3 �k = hgk+1; gk+1 � gki=hdk; gk+1 � gki

4 dk+1 = �gk+1 + �kdk

Here, h�; �i is the inner product. The best know formulas for �k are called the

Fletcher-Reeves (FR), Polak-Ribiere (PR) and Hestense-Stiefel (HS) formulas and

are given by

�FRk = kgk+1k2 = kgkk2

�PRk = hgk+1; gk+1 � gki= kgkk2

�HSk = hgk+1; gk+1 � gki=hdk; gk+1 � gki

The numerical performance of the FR method is somewhat erratic and it is sometime

as e¢ cient as the PR and HS methods, but it is often much slower. The PR and

HS methods appear to perform very similarly in practice, and are to be preferred

over the FR method.

13

2.7 Band Fraction Representation (Model)

Factor models are popular models for structured covariance estimates, but they are

not the only ones. In the literature we have Toeplitz, band-Toeplitz, Circulant,

Semiseparable matrices ([20], [29], [18], [17], [55]) which are also structured covari-

ances. In this thesis, we study semiseparable matrices which contain factor models

as a special case (proof is in the following section). We then apply band fraction

representations ([93], [18]) to covariance matrices estimation.

Theorem 1 (Mullhaupt, Riedel 2002). Suppose L is a lower triangular matrix with

lowgrade � d � 1. For any " > 0, there exists M and N which are also lower

triangular matrix with bandwidth � d: s.t.

L�M�1N

 < ":

Let�s assume � is the covariance matrix that we get from some given data X:

Since � is a positive de�nite matrix, we can apply Cholesky decomposition which

is a decomposition of positive de�nite matrix into the product of a lower triangular

matrix and its transpose:

� = LLT (4)

where L is a lower triangular matrix with real and positive diagonal entries. Every

positive de�nite matrix has a unique Cholesky decomposition.

Then we get � = LLT � (M�1N)(M�1N)T ; so the covariance matrix � can be

approximate by M and N . This is the band fraction representation of covariance

matrix. In order to get this representation we need to estimate M and N . Note

that for any nonsingular matrix X we will have the equivalent transform:

ML = N , (XM)L = XN

NL�1 = M , (XN)L�1 = XM

There are some reasons that we think band fraction is better than factor model.

For covariance matrix �; there are two important properties that factor models don�t

preserve but band fraction representations do. First, ��1, the inverse of covariance

14

matrix �; is still symmetric, positive de�nite and could be a covariance matrix.

But the inverse of a factor model is no longer a factor model. When we use the

covariance matrix we are always concerned with its inverse. From the Woodbury

formula we have:

(� + ��0)�1 = ��1 � ��1�(Id + �0��1�)�1�0��1

= �1 � �1�01

we will notice that there is a sign change in the inverse of the factor model. Mean-

while band fraction representation doesn�t have this problem, (M�1N)�1 = N�1M ,

it is still a band fraction representation. Second, � is in a convex set. Sup-

pose 0 < t < 1, let�s consider a convex combination of �1 and �2: We have

t�1 + (1 � t)�2 = �3 and we can always �nd �3 from the same set contains �1

and �2. Now, let�s consider a convex combination of two factor models �1;�1

and �2;�2. Even though t�1 + (1 � t)�2 preserves positivity and diagonality,

but t�1 + (1 � t)�2 does not preserve rank. If �1 and �2 don�t have the same

span then you can�t �nd �3 from the set that �1 and �2 are in. However, band

fraction representation doesn�t have this problem either. Let�s consider a convex

combination of two band fraction representations M1; N1 and M2; N2. Then we get

t(M1; N1) + (1 � t)(M2; N2) = (M3; N3) which preserves triangularity, bandwidth

and nonsingularity. We can �nd M3; N3 from the same set contains M1; N1 and

M2; N2. Therefore the set of parameters (M;N) with d-bandwidth for Cholesky

factors is a convex set, and that means optimizing a convex function over this set is

a �nice�problem.

2.8 Semiseparable Factorization (Method)

A matrix S is called a lower-(upper-) semiseparable matrix of semiseparability rank

d if all submatrices which can be taken out of the lower(upper) triangular part of

the matrix S have rank � d: Semiseparable matrix has a classical representation.

15

Classical The symmetric semiseparable matrix is represented with two vectors u =

[u1; u2; : : : ; un]
T and v = [v1; v2; : : : ; vn]T : For example a 5� 5 matrix has the

following from:

lower triangular(u � vT) =

26666666664

u1v1

u2v1 u2v2

u3v1 u3v2 u3v3

u4v1 u4v2 u4v3 u4v4

u5v1 u5v2 u5v3 u5v4 u5v5

37777777775
Given a factor model � = � + ��T where � is p � p and � is p � d. ��T is

actually a classical representation of a semiseparable matrix with semiseparability

rank d: One important property of semiseparable matrix is that any diagonal matrix

plus a semiseparable matrix is still a semiseparability, but the semiseparability rank

will increase by 1: So factor model is actually a semiseparable matrix with semisep-

arability rank d+1, where d is the number of factors. But not all the semiseparable

matrices can be represented by the classical representation which means that fac-

tor model can�t represent all the semiseparable matrices. That�s part of the reason

why we use band fraction representation instead of factor model. We will prove in

the following section that any semiseparable matrices can be represented by band

fraction representation.

To begin the semiseparable factorization procedure, we �rst recall the following

standard block Cholesky factorization procedure. For k = 1; 2; : : : ; n

1 Cholesky factorize RTk;kRk;k = Ak;k

2 Compute Rk;k+1:n = R
�T
k;kAk;k+1:n

3 Schur complement Ak+1:n;k+1:n = Ak+1:n;k+1:n �RTk;k+1:nRk;k+1:n

16

The output of this procedure is the upper triangular matrix

R =

26666664
R1;1 R1;2 � � � R1;n

R2;2 � � � R2;n
. . .

...

Rn;n

37777775 such that A = RTR

Ming Gu et al. [55] modi�ed the above procedure in order to �nd an approximate

Cholesky factorization satisfying

STS = A+ o(
q
kAk2�) and S

TSZ = AZ

where

Z =

0BBB@
Z1
...

Zn

1CCCA
and S is an upper triangular semiseparable matrix with semiseparability rank 1 of

the form:

S =

26666664
D1 S1;2 � � � S1;n

D2 � � � S2;n
. . .

...

Dn

37777775
with the Dk�s being upper triangular and Sk;t = UkWk+1 � � �Wt�1V Tt :

The method above is an e¢ cient and backward stable algorithm for constructing

SPD semiseparable matrices that approximate a given dense SPD matrix A with a

guaranteed a priori given tolerance � > 0:We generalized that procedure to be able

to get S with di¤erent semiseparability rank from 1 to d. With Sd we can �nd M

and N with bandwidth d. We prove it in section 6.

17

3 Factor Model Estimation By Using The �-EM Algo-

rithm

We apply the �-EM algorithm to factor model estimation. The �-EM includes the

traditional log-EM as a special case. For estimation of other models, it has been

shown that the convergence speed of the �-EM algorithm is much faster than log-

EM algorithm, we investigate this for factor models and mixture of factor models.

The �-EM algorithm also allows us to choose di¤erent �s to achieve the fastest

convergence speed and more accurate factor model estimation for di¤erent problems.

In practice the update equations from the �-EM algorithm are not tractable so we

apply causal approximation and series expansion to those update equations to get

practical update equations. With these update equations we can show that the �-

EM algorithm can save us in total computation time. Empirical results from real

�nancial data are given.

3.1 Non-Causal Update Equations

Here, by non-causal we mean that given the current estimations we can not use

the update equations to get the next estimations directly. The non-causal update

equations are the most accurate equations you can get after applying the �-EM

algorithm for factor model estimation. In order to be able to use the �-EM we use

a causal approximation of non-causal update equations.

For factor model, we have

PC(X;Zj�0;�0) =
NQ
i=1
Pc(xi; zi;j�0;�0) =

NQ
i=1
P (xijzi;�0;�0) � P (zi)

18

so the Q(�)X;ZjX(�1;�1j�0;�0) function is:

Q
(�)
X;ZjX(�1;�1j�0;�0) = EP (ZjX;�0;�0)[L

(�)
X;Z(�1;�1j�0;�0)] (5)

= EP (ZjX;�0;�0)

"
2

1 + �

�
PC(X;Zj�1;�1)
PC(X;Zj�0;�0)

� 1+�
2

� 1
#

=
2

1 + �

0@ NQ
i=1
EP (zijxi;�0;�0)

24�Pc(xi; zij�1;�1)
Pc(xi; zij�0;�0)

� 1+�
2

35� 1
1A

=
2

1 + �

�
S
(�)
ZjX;�0;�0 � 1

�
where

S
(�)
ZjX;�0;�0 =

NQ
i=1
W
(�)
i

W
(�)
i = E

�
P

1+�
2

i

�
Pi =

Pc(xi; zij�1;�1)
Pc(xi; zij�0;�0)

E[�] = EP (zjx;�0;�0)[�]

After the E-step we need to do the M-step. The update equations can be obtained

by di¤erentiating Q(�)X;ZjX(�1;�1j�0;�0) with respect to the update parameters �1
and �1 and setting di¤erentiation to zero solve for maximization. For �1 we have

@Q(�)

@�1
= 0) @S(�)

@�1
= 0 (6)

@S(�)

@�1
=

NP
j=1

@W
(�)
j

@�1

NQ
i=1;i6=j

W
(�)
i =

NP
j=1

@W
(�)
j

@�1

S(�)

W
(�)
j

=
NP
j=1

@W
(�)
j

@�1

W
(�)
j

S(�)

S(�) 6= 0)
NP
i=1

@W
(�)
i

@�1

W
(�)
i

= 0)
NP
j=1

@E

"
P
1+�
2

#
@�1

E
h
P

1+�
2

i = NP
j=1

E

�
@P

1+�
2

@�1

�
E
h
P

1+�
2

i = 0

and likewise for �1 we have

@Q(�)

@��11
= 0) @S(�)

@��11
= 0)

NP
j=1

@E

"
P
1+�
2

#
@��11

E
h
P

1+�
2

i = NP
j=1

E

�
@P

1+�
2

@��11

�
E
h
P

1+�
2

i = 0 (7)

19

In order to solve equations (6) and (7) we need to calculate E
�
P

1+�
2

�
, E
�
@P

1+�
2

@�1

�
and E

�
@P

1+�
2

@��11

�
. By the de�nition of expectation:

E

�
P

1+�
2

�
=

R
P (zijxi;�0;�0)

�
Pc(xi; zij�1;�1)
Pc(xi; zij�0;�0)

� 1+�
2

dzi (8)

E

"
@P

1+�
2

@�1

#
=

1 + �

2
E
h
P

1+�
2 �

�
��11 xiz

0
i � ��11 �1ziz0i

�i
(9)

E

"
@P

1+�
2

@��11

#
=
1 + �

2
E

�
P

1+�
2 � 1

2

�
�1 � xix0i + xiz0i�01 + �1zix0i � �1ziz0i�01

��
(10)

After calculating the expectations, we have the update equations (see Appendix B

for details):

�1 =
NP
i=1
xiE[z

0
i]

�
NP
i=1
E[ziz

0
i]

��1
(11)

�1 = diag

�
1

n

�
NP
i=1
xix

0
i �

NP
i=1
xiE[z

0
i]�

0
1

��
(12)

However, the expectation here is w.r.t. a new distribution:

E[zi] = �W 0xi) E[z0i] = x
0
iW�

E[ziz
0
i] = V ar[zi] + E[zi]E[zi]

0 = �+�W 0xix
0
iW�

��1 =
1 + �

2
�01�

�1
1 �1 �

1 + �

2
�00�

�1
0 �0 + C

�1

W =
1 + �

2
��11 �1 �

1 + �

2
��10 �0 + �

0C�1

if we assume the sample covariance is Cxx =
NP
j=1

xix
0
i

N , we get:

�1 = CxxW�
�
�+ �W 0CxxW�

��1 (13)

�1 = diag(Cxx�CxxW��
0
1) (14)

and we notice that we have �1 and �1 on both right and left hand sides of these

update equations. It is hard to put either �1 or �1 on one side of the equations

20

and this is what we mean by non-causal. So we can�t use these update equations

directly.

For general case �1 < � < 1, the update equations:

�1 = F (�1;�1;�0;�0) (15)

�1 = G(�1;�1;�0;�0) (16)

are non-causal but they illustrate two important things. First, we can iteratively

update �1 and �1 through (15) and (16) until �1 and �1 converge and we call it one

major iteration. This major iteration is the iterations we count in the log-EM. Then

replace �0;�0 with �1;�1, do the same thing for the next major iteration �2;�2. In

practice, the convergence speed is much faster than the log-EM for the same major

iteration. Second, each major iteration here contains many minor iterations which

will take a large amount of time. Using this updating method, in practice, the �-EM

algorithm can�t save us in total computation time. Therefore, on one hand we know

that �-EM is better than log-EM in convergence speed, on the other hand we need

e¤ective update equations otherwise we can�t use the �-EM in practice.

Let�s consider two special cases �rst:

Case 1. � = �1:

��1 = C�1

W = �0C�1

then we have W� = �0 = (�0 + �0�00)
�1�0. Assume that

�0 = (�0 + �0�
0
0)
�1�0

�0 = Id � �00(�0 + �0�00)�1�0

we get

�1 = Cxx�0(�0 + �
0
0Cxx�0)

�1 = f(�0;�0) (17)

�1 = diag(Cxx�Cxx�0�
0
1) = g(�1;�0;�0) (18)

21

these update equations are the same as Rubin and Thayer [107]. This shows

that the log-EM algorithm is a special case of the �-EM algorithm.

Case 2. � = 1:

�1 = Cxx�1(�1 + �
0
1Cxx�1)

�1 = f(�1;�1) (19)

�1 = diag(Cxx�Cxx�1�
0
1) = g(�1;�1) (20)

where

�1 = (�1 + �1�
0
1)
�1�1

�1 = Id � �01(�1 + �1�01)�1�1

here we have two equations and two unknown parameters �1 and �1 but it is

impossible to solve for �1 and �1 directly. Because if we assume �1 and �1

are the optimal solutions, we have

Cxx = �1 + �1�
0
1 (21)

If we substitute (21) back to (19) and (20), we get:

�1 = �1

�1 = diag(�1) = �1

Since we can not solve (19) and (20), we can iteratively update �1 and �1

through (19) and (20) until �1 and �1 don�t change. In practice this method takes

exactly the same computation time as when � = �1 because they have identical f

and g. In order to have a practical solution we need to solve the non-causality.

3.2 Causal update equations

In order to solve the non-causality, we need to know why we have non-causality

in the �rst place. The reason is the expectations, equation (8), (9) and (10). We

22

need to calculate the three expectations E
�
P

1+�
2

�
, E

�
@P

1+�
2

@�1

�
and E

�
@P

1+�
2

@��11

�
in

a causal way. These three expectations have integral of the form:

R
P (zijxi;�0;�0)

�
Pc(xi; zij�1;�1)
Pc(xi; zij�0;�0)

� 1+�
2

dzi (22)

in common and we need to calculate (22) without using �1 and �1.

3.2.1 Causal approximation

We have

P (zijxi;�0;�0)
�
Pc(xi; zij�1;�1)
Pc(xi; zij�0;�0)

� 1+�
2

� P (zijxi;�1;�1)
�
Pc(xi; zij�1;�1)
Pc(xi; zij�0;�0)

�� 1��
2

� P (zijxi;�0;�0)
�
Pc(xi; zij�0;�0)
Pc(xi; zij��1;��1)

�� 1��
2

(23)

around the region of P (xij�1;�1) = P (xij�0;�0) + o(1) and the last term is the

causal approximation w.r.t. the iteration index shift or shift of time [82], [83]. We

can use the relationship:

1 + �

2
= �1� �

2
) � = �+ 2 (24)

and because we have � 2 (�1; 1), then we also have � 2 (1; 3).

Within the �rst few iterations � = � + 2 is not always a good approximation.

For example, when � = 1, P1=P0 � P0=P�1 is not a good approximation in the

�rst a few iterations. This bad approximation will cause us numerical problems in

practice. Another example is when � = 0, (P1=P0)
1=2 � (P0=P�1)

1=2 is a better

approximation during the �rst a few iterations since P1=P0 and P0=P�1 are greater

than 1. So for choice of � close to 1, we can choose � starting at 2 and approaching

�+ 2 as iteration increases. We will see this is sometimes necessary in practice.

Now, we can approximately calculate (22) without knowing �1;�1: However, this

requires a power computation of a likelihood ratio. This is computational expensive

and becomes intractability as time increases. So another approximation is necessary

in view of computational complexity.

23

3.2.2 Series Expansion

A Taylor expansion can simplify this without discarding merit of the �-log likelihood

ratio.

P (zijxi;�0;�0)
�
Pc(xi; zij�0;�0)
Pc(xi; zij��1;��1)

�� 1��
2

= P (zijxi;��1;��1)
�
Pc(xi; zij�0;�0)
Pc(xi; zij��1;��1)

� 1+�
2

(25)

Let�s assume that f(x) = x
1+�
2 , according to Taylor expansion we have f(x) =

f(r) + f
0
(r)
1! (x� r) + o(1) For our case x =

Pc(xi;zij�0;�0)
Pc(xi;zij��1;��1) and assume r = 1, so we

get [82], [83]:�
Pc(xi; zij�0;�0)
Pc(xi; zij��1;��1)

� 1+�
2

� 1� �
2

+
1 + �

2

Pc(xi; zij�0;�0)
Pc(xi; zij��1;��1)

(26)

now we substitute the right hand side of equation (23) with equation (25) and (26)

then we get:

P (zijxi;�0;�0)
�
Pc(xi; zij�1;�1)
Pc(xi; zij�0;�0)

� 1+�
2

� 1� �
2

P (zijxi;��1;��1)+
1 + �

2
P (zijxi;�0;�0)

So, now we can calculate the expectations in a causal way without using �1 and

�1. We get the update equations:

�1 =

1��
2

NP
j=1

xiE�1[z0i] +
1+�
2

NP
j=1

xiE0[z
0
i]

!

1��
2

NP
j=1

E�1[ziz0i] +
1+�
2

NP
j=1

E0[ziz0i]

! (27)

�1 = diag

Cxx�Cxx

1� �
2

NP
j=1

xiE�1[z
0
i] +

1 + �

2

NP
j=1

xiE0[z
0
i]

!
�01

!
(28)

where

E�1[zi] = ��1xi and E�1[ziz
0
i] = C

�1
�1 + ��1xix

0
i�
0
�1

E0[zi] = �0xi and E0[ziz
0
i] = C

�1
0 + �0xix

0
i�
0
0

24

with

��1 = �0�1(��1 + ��1�
0
�1)

�1

C�1 = I � �0�1(��1 + ��1�0�1)�1��1

�0 = �00(�0 + �0�
0
0)
�1

C0 = I � �00(�0 + �0�00)�1�0

For the �rst a few iterations r = 1 is not a very accurate estimation. We should

choose r close to 1, so that:�
Pc(xi; zij�0;�0)
Pc(xi; zij��1;��1)

� 1+�
2

� 1� �
2

r
1+�
2 +

1 + �

2
r
1+�
2
�1 Pc(xi; zij�0;�0)
Pc(xi; zij��1;��1)

and

P (zijxi;�0;�0)
�
Pc(xi; zij�1;�1)
Pc(xi; zij�0;�0)

� 1+�
2

� 1� �
2

r
1+�
2 P (zijxi;��1;��1)+

1 + �

2
r
1+�
2
�1P (zijxi;�0;�0)

So the update equations are:

�1 =

1��
2 r

1+�
2

NP
j=1

xiE�1[z0i] +
1+�
2 r

1+�
2
�1

NP
j=1

xiE0[z
0
i]

!

1��
2 r

1+�
2

NP
j=1

E�1[ziz0i] +
1+�
2 r

1+�
2
�1

NP
j=1

E0[ziz0i]

! (29)

�1 = diag

Cxx�Cxx

1� �
2

r
1+�
2

NP
j=1

xiE�1[z
0
i] +

1 + �

2
r
1+�
2
�1

NP
j=1

xiE0[z
0
i]

!
�01

!
(30)

Now we get two causal update equations. We are able to use these to do factor

model estimation. At the kth iteration to obtain �k and �k, we use �k�1;�k�1

and �k�2;�k�2 on the right-hand sides of (27) and (28). We need to calculate E[z]

and E[zz0] of the previous state and the state prior to that. It seems like �-EM

needs to do more calculation in each update but in practice we can save E[z] and

E[zz0] of the previous state for the next iteration, so we don�t need to recalculate

it. For example, for �1 and �1 we need to calculate E�1[z0i] and E0[z
0
i], when we

25

calculate �2 and �2 we can reuse E0[z0i] and we only need to calculate E1[z
0
i]. We

only compute E[z] and E[zz0] once for each state. This is exactly the same with

log-EM. Thus, the total computation time per iteration of �-EM and log-EM are

almost the same. We will see the numerical results in the following section.

3.3 Empirical Results

3.3.1 Factor analysis from complete observations

Here, we applied both the log-EM and the �-EM to the same data used in Rubin

and Thayer (1982) [107] with p = 9 and d = 4.

Cxx =

266666666666666666666664

1:0 0:554 0:227 0:189 0:461 0:506 0:408 0:280 0:241

0:554 1:0 0:296 0:219 0:479 0:530 0:425 0:311 0:311

0:227 0:296 1:0 0:769 0:237 0:243 0:304 0:718 0:730

0:189 0:219 0:769 1:0 0:212 0:226 0:291 0:681 0:661

0:461 0:479 0:237 0:212 1:0 0:520 0:514 0:313 0:245

0:506 0:530 0:243 0:226 0:520 1:0 0:473 0:348 0:290

0:408 0:425 0:304 0:291 0:514 0:473 1:0 0:374 0:306

0:280 0:311 0:718 0:681 0:313 0:348 0:374 1:0 0:672

0:241 0:311 0:730 0:661 0:245 0:290 0:306 0:672 1:0

377777777777777777777775
To do the 1st iteration to obtain �2 and �2, we require previous two estimates

which are �0;�0 and �1;�1. For ��1 and ��1, we can use a random guess as:

��1 = diag(Cxx)

V r = rand(p; d)

V�1 = V r �
q
kCxxkF = kV kF

where p = 9, d = 4 and then for �0;�0 and �1;�1 we can do the log-EM by using

(17) and (18) with ��1 and ��1. With �0;�0 and �1;�1 we can apply the �-EM

now. Figure 1 illustrates the di¤erent convergence curves of �-EM with di¤erent

values of �. Remember that when � = �1, it is log-EM.

26

0 5 10 15 20 25 30 35 40 45 50
­9.9

­9.8

­9.7

­9.6

­9.5

­9.4

­9.3

­9.2

­9.1

­9

­8.9

Iterations

L
o

g
­L

ik
e

lih
o

o
d

alpha = 0.0, *

alpha = ­1.0, o

Figure 1: Convergence speed for various alpha

The log-likelihood on the y-axis is calculated by

LL = log det((� + ��0)�1Cxx)� trace((� + ��0)�1Cxx) (31)

so for the optimal results we have Cxx = � + ��0 then LL = �p where p is the

dimensionality of the problem. Whether you can reach the optimal results depends

on the condition of the problem. Factor analysis can be only as good as the data

allows.

Table 1 shows a speedup comparison. The second column shows that �-EM (the

case of � = 0) is 30/15=2.00 times faster than log-EM (the case of � = �1) for the

same convergence. The third and fourth columns show a more practical comparison

based upon CPU time. We use t to denote the total time per iteration. The �-EM

algorithm didn�t require more CPU time per iteration. So we can see that �-EM is

much faster than log-EM by a total CPU-time speedup ratio of 30t/15t=2.00.

27

Table 1: Speedup Ratio For Factor Model Estimation(p=9, d=4)

� Iterations Time per Iteration Total CPU-Time Speedup Ratio

-1.00 30 1t 30t 1.00

0 15 1t 15t 2.00

Besides the log-likelihood, we can compare the Hellinger distance for di¤erent

values of �. The de�nition of the Hellinger distance is H2 = 1=2
R �p

P0 �
p
P1
�2
dx

where P0 and P1 are probability density functions. In our case P0 � N(0; Cxx) and

P1 � N(0;�+ ��0) then we have (see Appendix C for details) :

H2 = 1=2
R �p

P0 �
p
P1

�2
dx = 1�

R p
P0
p
P1dx

= 1� det
��
C�1xx +

�
�+ ��0

��1�
=2
�� 1

2
det(Cxx)

� 1
4 det(� + ��0)�

1
4

= 1� det
��
Cxx +

�
�+ ��0

��
=2
�� 1

2 det(Cxx)
1
4 det(� + ��0)

1
4

Figure 2 illustrates the decreasing speed in the Hellinger distance as the number of

iteration increases for various �.

0 5 10 15 20 25 30 35 40 45 50
0

0.02

0.04

0.06

0.08

0.1

0.12

Iterations

H
e

lli
n

g
e

r
D

is
ta

n
ce

alpha = 0.0, *

alpha = ­1.0, o

Figure 2: Hellinger distance for various alpha

From [94] we know that the Hellinger distance is actually bounded by the Infor-

28

mation distance.

H (�0;�1) �
1p
8
I (�0;�1)

Especially for su¢ ciently small I (�0;�1), we have:

Kp
8
I (�0;�1) � H (�0;�1)

where 0 < K < 1. This shows that the upper bound of the Hellinger distance is the

best possible. So if we can get the the sample covariance and factor model close in

the Hellinger distance, it also implies that they are close in Information distance.

3.3.2 Factor analysis on �nancial data

Here, we download daily close prices of each member of S&P500 from Jan-03-2007

to May-31-2013 from Yahoo. Then we select members which have prices since Jan-

03-2007 and got 471 members. We calculate the sample covariance C �rst, then

with the sample covariance we can calculate the factor model using both log-EM

and �-EM. In order to do the 1st iteration to obtain �1 and �1, it requires previous

two states which are �0;�0 and ��1;��1. For ��1 and ��1, we use a random guess

method with d = 20 and then we use log-EM for �0 and �0. after we got �0;�0 and

��1;��1 we can apply �-EM. Figure 3 illustrates the di¤erent convergence curves

of �-EM for di¤erent values of �. Remember that when � = �1, this is log-EM.

29

0 5 10 15 20 25 30
­645

­640

­635

­630

­625

­620

­615

­610

­605

Iterations

L
o
g
­L

ik
e
lih

o
o
d

alpha = 1.0 , +

alpha = 0.5 , .

alpha = 0.0 , *

alpha = ­1.0 , o

Figure 3: Convergence speed for various alpha

Table 2 also shows a speedup comparison. The second column shows that the

�-EM (the case of � = 1) is 30/10=3.00 times faster than the log-EM (the case of

� = �1). The third and fourth columns show a more practical comparison based

upon CPU time. We use t to denote the total time per iteration. Again, the �-EM

takes the same CPU time as the log-EM per iteration. We can see that the �-EM

is still faster than the log-EM by a CPU-time ratio of 30t/10t=3.00.

Table 2: Speedup Ratio For Factor Model Estimation(p=471, d=20)

� Iterations Time per Iteration Total CPU-Time Speedup Ratio

-1.00 30 1t 30t 1.00

0 16 1t 16t 1.875

+0.5 12 1t 12t 2.50

+1.00 10 1t 10t 3.00

We can see that during the �rst few iterations � = 1 is not the fastest. It was

mentioned in Section 3.2.1 that � = �+ 2 is not always a good approximation. We

should let � increases to 1 as the iterations increase. For example we can choose

30

� = 0; 0:25; 0:5 for the �rst three iterations and � = 1 from the fourth iteration.

Figure 4 illustrates the di¤erent convergence curves of �-EM for di¤erent values of

�.

1 2 3 4 5 6 7 8 9
­645

­640

­635

­630

­625

­620

­615

­610

Iterations

L
o
g
­L

ik
e
lih

o
o
d

alpha increases to 1.0 , +

alpha equals to 1.0 , +

Figure 4: Convergence speed for various alpha

In addition, it was mentioned in Section 3.2.2 that r = 1 is not always a good

approximation. For r 6= 1 in series expansion, we can choose r = 1�0:1^k at the kth

iteration. It is more appropriate than using r = 1 at all iterations. So as iterations

increase the value of r gets closer to 1. Figure 5 illustrates the di¤erent convergence

curves of �-EM with the same � but di¤erent values of r in series expansion.

31

1 2 3 4 5 6 7 8 9
­645

­640

­635

­630

­625

­620

­615

­610

Iterations

L
o
g
­L

ik
e
lih

o
o
d

alpha = 1.0; r increases to 1.0 , +
alpha = 1.0; r equals to 1.0 , +

Figure 5: Convergence speed for various r

We can see that they are almost the same, but if you amplify the �rst few

iterations we notice that r = 1� 0:1^k is an improvement compared to r = 1. The

improvement is not large.

Here we consider a smaller p. We just pick the �rst 100 members out of 471

members of S&P500. For the number of factors we choose d = 10, all other parts

remain the same. Figure 6 also illustrates the di¤erent convergence curves of the

�-EM in previous section with di¤erent � values. Remember that when � = �1, it

is the log-EM.

32

0 5 10 15 20 25 30
­114

­113

­112

­111

­110

­109

­108

­107

Iterations

L
o
g
­L

ik
e
lih

o
o
d

alpha = 0.0, *

alpha = ­1.0, o

Figure 6: Convergence speed for various alpha

Table 3 also shows a speedup comparison. The second column shows that the

�-EM (the case of � = 0) is 30/16=1.875 times faster than the log-EM (the case

of � = �1) for the same convergence. The third and fourth columns show a more

practical comparison based upon CPU time. We use t to denote the total time per

iteration. CPU time per iteration is the same for �-EM and log-EM. So we can see

that �-EM is much faster than log-EM by a total CPU-time ratio of 30t/16t=1.875.

Table 3: Speedup Ratio For Factor Model Estimation(p=100, d=10)

� Iterations Time per Iteration Total CPU-Time Speedup Ratio

-1.00 30 1t 30t 1.00

0 16 1t 16t 1.875

Therefore, for small dimension problems or large dimension problems the �-EM

algorithm will not require more CPU time per iteration than the log-EM algorithm.

So as long as the number iterations of the �-EM algorithm is smaller than the log-

EM algorithm for the same accuracy, the �-EM algorithm will save us the total

computation time. That�s we should choose the �-EM algorithm over the log-EM

33

algorithm.

3.4 Concluding Remarks

In this section, we applied the �-EM algorithm to factor model estimation. Through

calculation we found it is hard to get causal update equations directly. Instead

we get two non-causal update equations. From those non-causal update equations

we learned that �-EM has faster convergence speed than log-EM but each major

iteration for �-EM takes large amounts of time. We can�t use the �-EM algorithm in

practice without solving the non-causality. This is why we did causal approximation

and series expansion in order to get the approximate causal update equations. By

choosing the proper values of �, we showed that the �-EM algorithm converges

much faster than the log-EM algorithm in factor model estimation and also gives

more accurate estimates. In CPU-time, as long as we save some results from the

previous updates for the next updates, the �-EM algorithm doesn�t require more

CPU time than the log-EM algorithm. However more importantly, the speedup in

convergence is signi�cant, so the �-EM can save us the total computation time for

the same accuracy.

In order to make the �-EM algorithm work in practice, causal approximation

and series expansion played very important roles. In causal approximation, there are

actually many choices about how � increases to 1. Which choice is better usually

related to what problem you have. In series expansion, there are actually many

other choices of a, such as a = 1 � 0:1^(0:9 + k=10) for kth iteration, which works

better than a = 1 � 0:1^k in the �rst few iterations. But the improvement is not

signi�cant in factor model estimation. Also, there must be other methods to solve

the non-causality, such as moving all the future states on one side of the original

update equations (13) and (14). That would be the most accurate method but it is

also harder than the approximation method. Thus, further exploration of practical

issues pertaining to the �-EM family is needed.

34

For the �-EM algorithm we used, we focus our attention on the convex divergence

(1) because of its general capacity on convex optimization. We would like to consider

other types of surrogate functions.

35

4 The �-EM Algorithm for Mixture of Factor Models

We apply the �-EM algorithm to mixture of factor Models. This method utilizes

the �-logarithm as a surrogate function for the traditional logarithm to process the

likelihood ratio. Since existing or traditional mixture of factor models are the out-

come of log-EM, it had been excepted that �-EM for mixture of factor models would

exist. In this section, we show that this foresight is true by using methods of the

iteration index shift and likelihood ratio expansion. The new method is theoretically

based on the �-EM algorithm, all of its properties are inherited. Empirical results

from arti�cial data show that the �-EM algorithm can save us in total computation

time.

4.1 Non-Causal Update Equations

For mixture of factor models, we have :

Pc =
NQ
i=1

KQ
j=1

f�jPc(xi; zij�j ;�j)gwj

so the surrogate function Q(�)X;Z;W jX(�1;�1j�0;�0) is :

Q
(�)
X;Z;W jX(�1;�1j�0;�0) = EP (Z;W jX;�0;�0)[L

(�)
X;Z;W (�1;�1j�0;�0)]

= EP (Z;W jX;�0;�0)

"
2

1 + �

�
PC(X;Z;W j�1;�1)
PC(X;Z;W j�0;�0)

� 1+�
2

� 1
#

=
2

1 + �

0@ NQ
i=1
EP (zijxi;�0;�0)

24 KQ
j=1

8<:
�
�1jPc(xi; zij�1j ;�1j)
�0jPc(xi; zij�0j ;�0j)

� 1+�
2

9=;
wj35� 1

1A
=

2

1 + �

�
S
(�)
ZjX;�0;�0 � 1

�
(32)

36

where

S
(�)
Z;W jX;�0;�0 =

NQ
i=1
W
(�)
i

W
(�)
i =

KP
j=1

hij

�
�1j
�0j

� 1+�
2

E

�
P

1+�
2

�
Pi =

Pc(xi; zij�1;�1)
Pc(xi; zij�0;�0)

E[�] = EP (zjx;w;�0;�0)[�]

and

�0j = P (wj) =
R
P (wj jxi)P (xi)dx

hij = E[wj jxi] = P (wj jxi) =
P (wj ; xi)

P (xi)

=
�0jN(xi;�0j�

0
0j +�0j)

KP
j=1

�0jN(xi;�0j�00j +�0j)

After the E-step we need to do the M-step. The update equations for �j and

�j can be obtained by di¤erentiating Q
(�)
X;Z;W jX(�1;�1j�0;�0) with respect to the

update parameters �1j and �1j and setting di¤erentiation to zero solve for maxi-

mization. For �1j we have:

@Q(�)

@�1j
= 0) @S(�)

@�1j
= 0

@S(�)

@�1j
=

NP
i=1

@W
(�)
i

@�1j

NQ
t=1;t6=i

W
(�)
i =

NP
i=1

@W
(�)
i

@�1j

S(�)

W
(�)
i

=
NP
i=1

@W
(�)
i

@�1j

W
(�)
i

S(�)

S(�) 6= 0)
NP
i=1

@W
(�)
i

@�1j

W
(�)
i

= 0)
NP
i=1

@
KP
j=1

hij

�
�1j
�0j

� 1+�
2
E

"
P
1+�
2

#
@�1j

KP
j=1

hij

�
�1j
�0j

� 1+�
2
E
h
P

1+�
2

i = NP
i=1

hij

�
�1j
�0j

� 1+�
2
E

�
@P

1+�
2

@�1j

�
KP
j=1

hij

�
�1j
�0j

� 1+�
2
E
h
P

1+�
2

i = 0
(33)

37

and for �1j we have

@Q(�)

@��11j
= 0) @S(�)

@��11j
= 0)

NP
i=1

@
KP
j=1

hij

�
�1j
�0j

� 1+�
2
E

"
P
1+�
2

#
@��11j

KP
j=1

hij

�
�1j
�0j

� 1+�
2
E
h
P

1+�
2

i = NP
i=1

hij

�
�1j
�0j

� 1+�
2
E

�
@P

1+�
2

@��11j

�
KP
j=1

hij

�
�1j
�0j

� 1+�
2
E
h
P

1+�
2

i = 0
(34)

In order to solve equations (33) and (34) we need to calculate E
�
P

1+�
2

�
, E
�
@P

1+�
2

@�1j

�
and E

�
@P

1+�
2

@��11j

�
. By the de�nition of expectation:

E

�
P

1+�
2

�
=

R
P (zijxi;�0;�0)

�
Pc(xi; zij�1;�1)
Pc(xi; zij�0;�0)

� 1+�
2

dzi (35)

E

"
@P

1+�
2

@�1j

#
=

1 + �

2
E
h
P

1+�
2 �

�
��11j xiz

0
i � ��11j �1jziz

0
i

�i
(36)

E

"
@P

1+�
2

@��11j

#
=
1 + �

2
E

�
P

1+�
2 � 1

2

�
�1j � xix0i + xiz0i�01j + �1jzix0i � �1jziz0i�01j

��
(37)

The update equations for �j can be obtained by di¤erentiating the following

equation w.r.t. �1j and setting the derivative to zero.

L = Q(�) + �

KP
j=1

�1j � 1
!

We get

@L

@�1j
=

@Q(�)

@�1j
+ � = 0 (38)

@L

@�
=

KP
j=1

�1j � 1 = 0 (39)

After computing those expectations (35), (36), (37) and solving equations (38),

38

(39), we have the update equations (see Appendix D for details) :

�1j =
1

N

NP
i=1
h0ij (40)

�1j =
NP
j=1

h0ijxiE[z
0
i]

NP
j=1

h0ijE[ziz
0
i]

!�1
(41)

�1j =

�
NP
i=1
h0ijxix

0
i �

NP
i=1
h0ijxiE[z

0
i]�

0
1

��
NP
i=1
h0ij

��1
(42)

and the expectation here is w.r.t. a new distribution:

E[zi] = �jW
0
jxi) E[z0i] = x

0
iWj�j

E[ziz
0
i] = V ar[zi] + E[zi]E[zi]

0 = �j +�jW
0
jxix

0
iWj�j

��1j =
1 + �

2
�01j�

�1
1j �1j �

1 + �

2
�00j�

�1
0j �0j + C

�1
j

Wj =
1 + �

2
��11j �1j �

1 + �

2
��10j �0j + �

0
jC

�1
j

h0ij =
hij

�
�1j
�0j

� 1+�
2
bj

KP
j=1

hij

�
�1j
�0j

� 1+�
2
bj

bj =

j�1j j�

1
2

j�0j j�
1
2

! 1+�
2

jCj j�
1
2 j�j j

1
2 e�

1
2
x0i�

0
jC

�1
j �jxie

1
2
x0iWj�jW

0
jxie�

1
2
1+�
2
x0i(�

�1
1j ��

�1
0j)xi

We notice that in the update equation for �1j , we have �1j on both sides. We

have the same problem for �1j and �1j . It is hard to put either �1j , �1j and �1j

on one side of the equations. This is what we mean by non-causal. So we can�t use

these update equations directly.

For general case �1 < � < 1, let�s consider the update equations in a general

way:

�1j = P (�1j ;�1j ;�0j ;�0j ; �0j) (43)

�1j = F (�1j ;�1j ;�0j ;�0j ; �0j) (44)

�1j = G(�1j ;�1j ;�0j ;�0j ; �0j) (45)

They are non-causal but they illustrate two important things. First, we can iter-

atively update �1j , �1j and �1j through (43), (44) and (45) until �1j , �1 and �1

39

converge. We call this one major iteration which is the iterations we count in the

log-EM. Then replace �1j , �0j and �0j with �1j , �1 and �1 do the same thing for

the next major iteration �2j , �2j and �2j . In practice, the convergence speed is

much faster log-EM for the same major iteration. Second, each major iteration here

contains many minor iterations which will take large amounts of time. Using this

updating method the �-EM can�t save us in total computation time in practice.

Therefore, on one hand we know that �-EM is better than log-EM in convergence

speed, on the other hand we need e¤ective update equations otherwise we can�t use

the �-EM algorithm in practice.

Let�s consider two special cases �rst:

Case 1. � = �1:

��1j = C�1j

Wj = �0jC
�1
j

so bj = 1 and h0ij = hij then the update equations are:

�1j =
1

N

NP
i=1
hij = p(�0j ;�0j ;�0j) (46)

�1j =
NP
j=1

hijxiE[z
0
i]

NP
j=1

hijE[ziz
0
i]

!�1
= f(�0j ;�0j ;�0j) (47)

�1j =

�
NP
i=1
hijxix

0
i �

NP
i=1
hijxiE[z

0
i]�

0
1

��
NP
i=1
hij

��1
= g(�0j ;�1j ;�0j ;�0j)(48)

these update equations are the same as Ghahramani and Hinton [51]. We also

proved that the log-EM algorithm is a special case of the �-EM algorithm.

Case 2. � = 1:

h0ij =
�1jN(xi;�0j�

0
0j +�0j)bj

KP
j=1

�1jN(xi;�0j�00j +�0j)bj

40

According to Sylvester�s determinant theorem we have

��Id + �00j��10 �0j�� = ���(��10j �0j�00j + Ip)���
then

h0ij =
�1jN(xi;�1j�

0
1j +�1j)

KP
j=1

�1jN(xi;�1j�01j +�1j)

so the update equations are:

�1j =
1

N

NP
i=1
h0ij = p(�1j ;�1j ;�1j) (49)

�1j =
NP
j=1

h0ijxiE[z
0
i]

NP
j=1

h0ijE[ziz
0
i]

!�1
= f(�1j ;�1j ;�1j) (50)

�1j =

�
NP
i=1
hijxix

0
i �

NP
i=1
hijxiE[z

0
i]�

0
1

��
NP
i=1
hij

��1
= g(�1j ;�1j ;�1j) (51)

Since we can�t solve these update equations, we can iteratively update (49), (50)

and (51) until �1j , �1j and �1j don�t change. In practice this method takes exactly

the same computation time as when � = �1 because they have identical p, f and

g. In order to have a practical solution we need to solve the non-causality.

4.2 Causal update equations

As in the non-mixture case, the reason for non-causality is the expectations, equation

(35), (36), (37) and the update equation for �1j . We need to calculate the three

expectations E
�
P

1+�
2

�
, E

�
@P

1+�
2

@�1j

�
and E

�
@P

1+�
2

@��11j

�
in a causal way and also �1j .

These three expectations have the form:

R
P (zijxi;�0j ;�0j)

�
Pc(xi; zij�1j ;�1j)
Pc(xi; zij�0j ;�0j)

� 1+�
2

dzi (52)

in common and we need to calculate (52) without using �1j and �1j . We also need

to calculate �1j without using �1j :

41

4.2.1 Causal approximation

We have

P (zijxi;�0j ;�0j)
�
Pc(xi; zij�1j ;�1j)
Pc(xi; zij�0j ;�0j)

� 1+�
2

� P (zijxi;�1j ;�1j)
�
Pc(xi; zij�1j ;�1j)
Pc(xi; zij�0j ;�0j)

�� 1��
2

� P (zijxi;�0j ;�0j)
�
Pc(xi; zij�0j ;�0j)
Pc(xi; zij��1j ;��1j)

�� 1��
2

(53)

around the region of P (xij�1j ;�1j) = P (xij�0j ;�0j) + o(1). The last term is the

causal approximation w.r.t. the iteration index shift or shift of time [82], [83]. We

can use the relationship:

1 + �

2
= �1� �

2
) � = �+ 2 (54)

and because we have � 2 (�1; 1), then we also have � 2 (1; 3).

Within the �rst a few iterations � = �+ 2 is not always a good approximation.

For example, when � = 1, P1=P0 � P0=P�1 is not a good approximation in the

�rst a few iterations. This bad approximation will cause us numerical problems in

practice. Another example is when � = 0, (P1=P0)
1=2 � (P0=P�1)

1=2 is a better

approximation during the �rst a few iterations since P1=P0 and P0=P�1 are greater

than 1. So for choices of � close to or equal to 1, we can choose � starting from 2.

So that it gets close to �+2 as the iteration increases. We will see this is sometimes

necessary in practice.

For �1j , we do the same thing:

�0j

�
�1j
�0j

� 1+�
2

= �1j

�
�1j
�0j

� 1+�
2
�1

� �0j

�
�0j
��1j

�� 1��
2

(55)

Now, we can approximately calculate (52) without knowing �1j ;�1j ;�1j : This re-

quires a power computation of a likelihood ratio. This is computational expensive

and becomes intractable as time increases. However another approximation is nec-

essary in view of computational complexity.

42

4.2.2 Series Expansion

A Taylor expansion can simplify this without discarding merit of the �-log likelihood

ratio.

P (zijxi;�0j ;�0j)
�
Pc(xi; zij�0j ;�0j)
Pc(xi; zij��1j ;��1j)

�� 1��
2

= P (zijxi;��1j ;��1j)
�
Pc(xi; zij�0j ;�0j)
Pc(xi; zij��1j ;��1j)

� 1+�
2

(56)

Let�s assume that f(x) = x
1+�
2 , according to the Taylor expansion we have f(x) =

f(r) + f
0
(r)
1! (x � r) + o(1). For our case x =

Pc(xi;zij�0;�0)
Pc(xi;zij��1;��1) . Assume r = 1, so we

get: �
Pc(xi; zij�0j ;�0j)
Pc(xi; zij��1j ;��1j)

� 1+�
2

� 1� �
2

+
1 + �

2

Pc(xi; zij�0j ;�0j)
Pc(xi; zij��1j ;��1j)

(57)

now we substitute the right hand side of equation (53) with equation (56) and (57)

and we get:

P (zijxi;�0j ;�0j)
�
Pc(xi; zij�1j ;�1j)
Pc(xi; zij�0j ;�0j)

� 1+�
2

� 1� �
2

P (zijxi;��1j ;��1j)+
1 + �

2
P (zijxi;�0j ;�0j)

Again, we do the same thing for �1j , we get:

�0j

�
�0j
��1j

�� 1��
2

= ��1j

�
�0j
��1j

� 1+�
2

� 1� �
2

��1j +
1 + �

2
�0j (58)

Now we substitute the right hand side of equation (55) with equation (58) and

we get:

�0j

�
�1j
�0j

� 1+�
2

� 1� �
2

��1j +
1 + �

2
�0j

for h0ij we also get:

h0ij �
N0j

�
1��
2 ��1j +

1+�
2 �0j

�
KP
j=1

N0j

�
1��
2 ��1j +

1+�
2 �0j

�

43

So, now we can calculate the expectations in a causal way without using �1j and

�1j . Also, we can update �1j in a causal way. The causal update equations are:

�1j =
1

N

NP
i=1
h0ij =

1

N

NP
i=1

N0j

�
1��
2 ��1j +

1+�
2 �0j

�
KP
j=1

N0j

�
1��
2 ��1j +

1+�
2 �0j

� (59)

�1j =

1��
2

NP
i=1
h0ijxiE�1[z

0
i] +

1+�
2

NP
i=1
h0ijxiE0[z

0
i]

1��
2

NP
i=1
h0ijE�1[ziz

0
i] +

1+�
2

NP
i=1
h0ijE0[ziz

0
i]

(60)

�1j =
1

NP
i=1
h0ij

diag

�
NP
i=1
h0ijxix

0
i �
�
1� �
2

NP
i=1
h0ijxiE�1[z

0
i] +

1 + �

2

NP
i=1
h0ijxiE0[z

0
i]

�
�01j

�

(61)

where

E�1[z
0
i] = ��1jxi and E�1[ziz

0
i] = C

�1
�1j + ��1jxix

0
i�
0
�1j

E0[zi] = �0jxi and E0j [ziz
0
i] = C

�1
0j + �0jxix

0
i�
0
0j

with

��1j = �0�1j(��1j + ��1j�
0
�1j)

�1

C�1j = I � �0�1j(��1j + ��1j�0�1j)�1��1j

�0j = �00j(�0j + �0j�
0
0j)

�1

C0j = I � �00j(�0j + �0j�00j)�1�0j

Now we get three causal update equations and we are able to estimate the

mixture of factor models. Therefore, at the kth iteration to obtain �kj , �kj and

�kj , we use �k�1j ;�k�1j ;�k�1j and �k�2j ;�k�2j ;�k�2j on the right-hand sides of

(59), (60) and (61). Compare with the non-causal or log-EM update equations we

need to calculate the E[z] and E[zz0] of the previous state and state prior to that. It

seems that the �-EM algorithm needs to do more calculations in each update but in

44

practice we can save E[z] and E[zz0] of the previous state for the next iteration, so

we don�t need to recalculate it. For example, for �1j and �1j we need to calculate

E�1j [z0i] and E0j [z
0
i], when we calculate �2j and �2j we can reuse E0j [z

0
i] and we

only need to calculate E1j [z0i]. We only compute E[z] and E[zz
0] once for each state,

this is exactly the same as the log-EM algorithm. Thus, the total computation time

per iteration of the �-EM algorithm and the log-EM algorithm are almost the same.

We will see the numerical results in the following section.

4.3 Comparison of single and multiple �

If we assume that we have the same idiosyncratic risk then the derivative equation

for � is:

@Q�

@��11
= 0) @S(�)

@��11
= 0)

NP
j=1

@
KP
j=1

hij

�
�1j
�0j

� 1+�
2
E

"
P
1+�
2

#
@��11

KP
j=1

hij

�
�1j
�0j

� 1+�
2
E
h
P

1+�
2

i = NP
j=1

KP
j=1

hij

�
�1j
�0j

� 1+�
2
E

�
@P

1+�
2

@��11

�
KP
j=1

hij

�
�1j
�0j

� 1+�
2
E
h
P

1+�
2

i = 0

and the derivative of the expectation is:

@E

�
P

1+�
2

�
@��11

=
1 + �

2
E

�
P

1+�
2 �

�
1

2
�1 �

1

2
xix

0
i +

1

2
xiz

0
i�
0
1j +

1

2
�1jzix

0
i �

1

2
�1jziz

0
i�
0
1j

��
The non-causal update equation for � is:

�1 =
1

N
diag

NP
i=1
xix

0
i �

NP
i=1

KP
j=1

h0ijxiE[z
0
i]�

0
1j

!
Again, let�s consider two special cases:

Case 1. � = �1:

�j;1 =
1

N

NP
i=1
hij

�1j =
NP
i=1
h0ijxix

0
i�0j

�
NP
i=1
h0ij
�
�0j + �

0
0jxix

0
i�0j
���1

�1 = diag(Cxx�
NP
i=1

KP
j=1

h0ijxix
0
i�0j�

0
1j)

45

where

hij =
�0jN(xi;�0j�

0
0j +�0)

KP
j=1

�0jN(xi;�0j�00j +�0)

These update equations are the same as Ghahramani and Hinton [51]. We also

proved that the log-EM algorithm is a special case of the �-EM algorithm.

Case 2. � = 1:

�j;1 =
1

N

NP
i=1
h0ij

�1j =
NP
i=1
h0ijxix

0
i�1j

�
NP
i=1
h0ij
�
�1j + �

0
1jxix

0
i�1j
���1

�1 = diag(Cxx�
NP
i=1

KP
j=1

h0ijxix
0
i�1j�

0
1j)

where

h0ij =
�1jN(xi;�1j�

0
1j +�1)

KP
j=1

�1jN(xi;�1j�01j +�1)

Again, in practice � = �1 and � = 1 are the same, we need causal update

equations.

After causal approximation and series expansion, the causal update equations

for �1 is:

�1 =
1

N
diag

NP
i=1
xix

0
i �

1� �
2

NP
i=1

KP
j=1

h0ijxiE�1[z
0
i] +

1 + �

2

NP
i=1

KP
j=1

h0ijxiE0[z
0
i]

!
�01j

!

4.4 Empirical Results

4.4.1 Mixture of factor models on arti�cial data (k = 2)

Here, �rst we create two factor structured matrices D + B1 � B01 and D + B2 � B02
with random entries. D is p� p and B1; B2 are p� d. The elements of D are expo-

nentially distributed idiosyncratic variances and B1; B2 have Gaussian distributed

factor loads. We choose p = 100 and d = 20 then generate 5000 samples with each

46

covariance D + B1 � B01 and D + B2 � B02. After that we get our 10000 samples.

We calculate sample covariance C �rst, then with the sample covariance we can

estimate mixture of factor analysers by both the log-EM algorithm and the �-EM

algorithm.

In order to do the 1st iteration to obtain �21; �22;�21;�22 and �2, we require

the previous two estimates which are �01; �02;�01;�02;�0 and �11; �12;�11;�12;�1.

For �01;�02 and �0, we can use a random guess:

�0 = diag(Cxx)

�r1 = rand(p; d) and �r1 = rand(1; 2)

�r2 = rand(p; d) and �r2 = rand(1; 2)

�01 = �r1 �
q
kCxxkF = k�r1kF

�02 = �r2 �
q
kCxxkF = k�r2kF

�01 = �r1=sum(�r1)

�02 = �r2=sum(�r2)

where p = 100, d = 20. Then for �11; �12;�11;�12 and �1 we can do the log-EM by

using (46), (47) and (48) with �01; �02;�01;�02 and �0: With �01; �02;�01;�02;�0

and �11; �12;�11;�12;�1 we can apply the �-EM algorithm. Figure 7 illustrates the

di¤erent convergence curves of �-EM with di¤erent values of �. Remember that

when � = �1, this is log-EM.

47

0 5 10 15 20 25 30 35 40 45 50
­1.766

­1.764

­1.762

­1.76

­1.758

­1.756

­1.754

­1.752

­1.75

­1.748 x 106

Iterations

L
o

g
­L

ik
e

lih
o

o
d

alpha = 0.0, *
alpha = ­1.0, o

Figure 7: Convergence speed for various alpha

Table 4 shows a speedup comparison. The second column shows that �-EM (the

case of � = 0) is 45/25=1.80 times faster than log-EM (the case of � = �1) for the

same convergence. The third and fourth columns show a more practical comparison

based upon CPU time. We use t to denote the total time per iteration. The �-EM

algorithm didn�t require more CPU time per iteration. So we can see that the �-EM

algorithm is much faster than the log-EM algorithm by a total CPU-time ratio of

45t/25t=1.80.

Table 4: Speedup Ratio For Factor Model Estimation(p=100, d=20)

� Iterations Time per Iteration Total CPU-Time Speedup Ratio

-1.00 45 1t 45t 1.00

0 25 1t 25t 1.80

Now let�s consider a higher dimension problem. Let p = 200, d = 30 and we use

the same method to generate our samples. This time we generate 10000 samples

with each covariance D + B1 � B01 and D + B2 � B02. After that we get our 20000

samples. We calculate sample covariance C �rst, then with the sample covariance

we can estimate mixture of factor analysers by both the log-EM algorithm and the

48

�-EM algorithm. Figure 8 illustrates the di¤erent convergence curves of the �-EM

algorithm with di¤erent values of �. Remember that when � = �1, this is log-EM.

0 5 10 15 20 25 30 35 40 45 50
­6.99

­6.98

­6.97

­6.96

­6.95

­6.94

­6.93

­6.92 x 106

Iterations

L
o

g
­L

ik
e

lih
o

o
d

alpha = 0.0, *
alpha = ­1.0, o

Figure 8: Convergence speed for various alpha

Table 5 shows a speedup comparison. The second column shows that �-EM (the

case of � = 0) is 45/25=1.80 times faster than log-EM (the case of � = �1) for the

same convergence. The third and fourth columns show a more practical comparison

based upon CPU time. We use t to denote the total time per iteration. The �-EM

algorithm didn�t require more CPU time per iteration. So we can see that the �-EM

algorithm is much faster than the log-EM algorithm by a total CPU-time ratio of

45t/25t=1.80.

Table 5: Speedup Ratio For Factor Model Estimation(p=200, d=30)

� Iterations Time per Iteration Total CPU-Time Speedup Ratio

-1.00 45 1t 45t 1.00

0 25 1t 25t 1.80

Therefore, for small dimension problems or large dimension problems the �-EM

algorithm will not require more CPU time per iteration than the log-EM algorithm.

So as long as the number iterations of the �-EM algorithm is smaller than the log-

49

EM for the same accuracy, the �-EM algorithm will save us the total computation

time. That�s why we should choose the �-EM algorithm over the log-EM algorithm.

4.4.2 Mixture of factor models on �nancial data (k = 3)

Here, �rst we create three factor structured matrices D + B1 � B01; D + B2 � B02
and D + B3 � B03: We choose p = 50, d = 20 and generate 2500 samples for each

factor model. After that we get our 7500 samples. We calculate sample covariance

C �rst, then with the sample covariance we can estimate mixture of factor models

using both the log-EM algorithm and the �-EM algorithm. To do the 1st iteration

to obtain f�2g3j=1 ; f�2g
3
j=1 and �2, we require previous two estimates which are

f�1g3j=1 ; f�1g
3
j=1 ;�1 and f�0g

3
j=1 ; f�0g

3
j=1 ;�0. For f�0g

3
j=1 ; f�0g

3
j=1 and �0, we

can use a random guess as we described previously. Figure 9 illustrates the di¤erent

convergence curves of the �-EM algorithm with di¤erent values of �. Remember

that when � = �1, this is log-EM.

0 5 10 15 20 25 30 35 40 45 50
­6.68

­6.67

­6.66

­6.65

­6.64

­6.63

­6.62

­6.61 x 105

Iterations

L
o

g
­L

ik
e

lih
o

o
d

alpha = 0.0, *
alpha = ­1.0, o

Figure 9: Convergence speed for various alpha

Table 6 shows a speedup comparison. The second column shows that �-EM (the

case of � = 0) is 45/25=1.80 times faster than log-EM (the case of � = �1) for the

same convergence. The third and fourth columns show a more practical comparison

based upon CPU time. We use t to denote the total time per iteration. The �-EM

50

algorithm didn�t require more CPU time per iteration. So we can see that the �-EM

algorithm is much faster than the log-EM algorithm by a total CPU-time ratio of

45t/25t=1.80.

Table 6: Speedup Ratio For Factor Model Estimation(p=50, d=20)

� Iterations Time per Iteration Total CPU-Time Speedup Ratio

-1.00 45 1t 45t 1.00

0 25 1t 25t 1.80

We also consider a higher dimension problem. Let p = 100, d = 20 and we use

the same method to generate our samples. This time we generate 5000 samples with

each covariance D+B1�B01; D+B2�B02 and D+B3�B03. After that we get our 15000

samples. We calculate sample covariance C �rst, then with the sample covariance

we can estimate mixture of factor models using both the log-EM algorithm and the

�-EM algorithm. Figure 10 illustrates the di¤erent convergence curves of the �-EM

algorithm with di¤erent values of �. Remember that when � = �1, this is log-EM.

0 5 10 15 20 25 30 35 40 45 50
­2.65

­2.645

­2.64

­2.635

­2.63

­2.625 x 106

Iterations

L
o

g
­L

ik
e

lih
o

o
d

alpha = 0.0, *
alpha = ­1.0, o

Figure 10: Convergence speed for various alpha

Table 7 shows a speedup comparison. The second column shows that �-EM (the

case of � = 0) is 45/25=1.80 times faster than log-EM (the case of � = �1) for the

51

same convergence. The third and fourth columns show a more practical comparison

based upon CPU time. We use t to denote the total time per iteration. The �-EM

algorithm didn�t require more CPU time per iteration. So we can see that the �-EM

algorithm is much faster than the log-EM algorithm by a total CPU-time ratio of

45t/25t=1.80.

Table 7: Speedup Ratio For Factor Model Estimation(p=100, d=20)

� Iterations Time per Iteration Total CPU-Time Speedup Ratio

-1.00 45 1t 45t 1.00

0 25 1t 25t 1.80

Therefore, for k = 2 or k = 3 the �-EM algorithm will not require more CPU

time per iteration than the log-EM algorithm. No matter how large dimension of

the problem and how many mixtures, the �-EM algorithm is constantly faster than

the log-EM algorithm for the same accuracy. So we can choose proper value for �

to save us the total computation time when estimates mixture of factor models.

4.5 Concluding Remarks

In this section, we have proposed an �-EM algorithm for �tting mixture of factor

models. Unlike the existing log-EM, we use �-logarithm instead of just logarithm.

We show that the log-EM algorithm is a special case of the �-EM algorithm. Even

after causal approximation and series expansion when � = 1 which means � = �1

we still �nd that the log-EM is a special case of the �-EM. By choosing proper �, we

showed that the �-EM algorithm converges much faster than the log-EM algorithm

in mixture of factor models estimation, and also gives more accurate estimates. In

CPU-time, as long as we save the results from the previous updates, the �-EM

algorithm doesn�t require more CPU time than the log-EM algorithm. However

more importantly, the speedup in convergence is signi�cant, so the �-EM algorithm

can save us the total computation time for the same accuracy.

52

For problems of di¤erent dimensions and di¤erent numbers of mixtures, the �-

EM algorithm always appears to be faster and better than the log-EM algorithm.

There are no dimension constrains or number of mixtures constrains. Besides causal

approximation and series expansion, there must be other methods to solve the non-

causality, such as moving all the future states on one side of the original update

equations (43), (44) and (45). That would be the most accurate method but it is

also harder than the approximation method. Thus, further exploration of practical

issues pertaining to the �-EM family is needed.

For the �-EM algorithm we used, we focus our attention on the convex divergence

(1) because of its general capacity on convex optimization. We would like to consider

other types of surrogate functions.

53

5 Conjugate Gradient Acceleration of the �-EM Algo-

rithm

We apply conjugate gradient method to the �-EM algorithm. Since it has been

shown that conjugate gradient method can be used to accelerate the log-EM al-

gorithm, it had been expected that conjugate gradient acceleration of the �-EM

algorithm would exist. In this section, it is shown that this is true. The key is that

the �-EM step can be viewed (approximately at least) as a generalized gradient,

making it natural to apply generalized conjugate gradient methods in an attempt to

speed up the �-EM algorithm. The proposed method is relatively simple to imple-

ment and can handle problems with a large number of parameters. To demonstrate

the e¤ectiveness of the proposed acceleration method, we consider its application to

both arti�cial data and �nancial data.

5.1 Model Description

We consider the factor analysis model

x = �z + u

where x is a vector of observed values, � is a p�dmatrix of factor loadings, and z and

u are independent normally distributed random vectors with mean 0 and covariance

matrices 	 and �. By assumption � is diagonal. Following common practice and

for simplicity, we have assumed that the mean of x is 0. The covariance matrix of

x is

� = �+ �	�T

We allow priori restrictions that �x arbitrary elements of � and � at speci�ed

values. Following Rubin and Thayer [107], we allow 	 to be set equal to the identity

or be totally free.

54

The �-logarithm function is de�ned as follows [81]:

L(�)(r)
def
=

2

1 + �

�
r
1+�
2 � 1

�
and if r = r(�) 2 (0;1) is twice di¤erentiable with respect to �, the following

equalities hold
@L(�)(r)

@�
= r

1+�
2
@ log r

@�
(62)

Given N independent observations xi, let Cxx =
NP
j=1

xix
0
i

N . Given Cxx, the �-log-

likelihood of (;�;�) is

f(�) =
2

1 + �

0@� NQ
i=1
(2�)�p=2 j�j�1=2 exp

�
�1
2
xTi �xi

�� 1+�
2

� 1

1A
=

2

1 + �

0@�(2�)�pN=2 j�j�N=2 exp��1
2

NP
i=1
xTi �xi

�� 1+�
2

� 1

1A
=

2

1 + �

 �
(2�)�pN=2 j�j�N=2 exp

�
�N
2
trS��1

�� 1+�
2

� 1
!

=
2

1 + �

�
(L)

1+�
2 � 1

�
where we de�ne

L = (2�)�pN=2 j�j�N=2 exp
�
�N
2
trS��1

�
l = logL = �N

2

�
p log 2� + log j�j+ trS��1

�
From equality (62), we have

@f

@�
= L

1+�
2
@ logL

@�
= L

1+�
2
@l

@�

The derivatives of f are given by (see Appendix E for details) :

@f

@�
= L

1+�
2 N��1(S � �)��1��

@f

@�
= L

1+�
2
N

2
diag[��1(S � �)��1]

@f

@	
= L

1+�
2 �T��1(S � �)��1�

55

If there are n free parameters in �;	 and �, then f is de�ned on Rn. We

consider metrics on Rn which are de�ned by a positive de�nite matrix W via the

inner product

h�1; �2i = �01W�2 (63)

The gradient of f in the metric de�ned by (63) is

rf(�) = g(�) =W�1s(�)

where

s(�) =

�
@f

@�
;
@f

@�
;
@f

@	

�
It is natural to call s(�) the raw gradient of f(�) at �. It is twice the negative of

the Fisher-score vector. Let e� be the modi�ed �-EM update of �k and let

gk = �(e� � �k)
dk = �gk

Choosing � to minimize f(�k+adk) gives an optimized version of the modi�ed �-EM

algorithm.

5.2 Empirical Results

In the following, we do some comparisons between accelerated �-EM and ordinary

�-EM with both arti�cial data and real �nancial data.

5.2.1 Accelerated �-EM on arti�cial data

First we create a factor structured matrix D+B�B0 with random entries. D is p�p

and B1; B2 are p� d. The elements of D are exponentially distributed idiosyncratic

variances and B1; B2 have Gaussian distributed factor loads. We choose p = 100

and d = 20 then generate 5000 samples with covariance D + B � B0. After that we

calculate sample covariance C �rst, then with the sample covariance we can estimate

factor model by both �-EM algorithm and accelerated �-EM algorithm. Figure 11

56

shows that the convergence speed of accelerated �-EM is faster than �-EM in terms

of the log-likelihood.

5 10 15 20 25 30 35 40 45 50
­100.75

­100.7

­100.65

­100.6

­100.55

­100.5

Iterations

Lo
g­

Li
ke

lih
oo

d Accelerated alpha­EM
Normal alpha­EM

Figure 11: Convergence Speed Comparison

Table 8 shows a speedup comparison. The second column shows that accelerated

�-EM (the case of � = 0) is 50/25=2.0 times faster than ordinary �-EM (the case

of � = 0) for the same convergence. The third and fourth columns show a more

practical comparison based upon CPU time. We use t to denote the total time

per iteration. The accelerated �-EM algorithm requires 50% more CPU time per

iteration. So we can see that the accelerated �-EM algorithm is faster than the

ordinary �-EM algorithm by a total CPU-time ratio of 50t/37.5t=1.33.

Table 8: Speedup Ratio Comparison(p=100, d=20)

� = 0 Iterations Time per Iteration Total CPU-Time Speedup Ratio

Ordinary �-EM 50 1t 50t 1.00

Accelerated �-EM 25 1.5t 37.5t 1.33

Figure 12 illustrates the di¤erent rates at which the Hellinger distance decreases

in the accelerated �-EM algorithm and ordinary �-EM algorithm. We can see that in

terms of the Hellinger distance, accelerated �-EM still preforms better than ordinary

57

�-EM.

5 10 15 20 25 30 35 40 45 50
0.06

0.065

0.07

0.075

0.08

0.085

Iterations

H
el

lin
ge

r D
is

ta
nc

e

Accelerated alpha­EM
Normal alpha­EM

Figure 12: Convergence speed comparison

Table 9 shows a speedup comparison. The second column shows that the ac-

celerated �-EM algorithm (the case of � = 0) is 50/22=2.3 times faster than the

ordinary �-EM algorithm (the case of � = 0) for the same convergence. The third

and fourth columns show a more practical comparison based upon CPU time. We

use t to denote the total time per iteration. The accelerated �-EM algorithm re-

quires 50% more CPU time per iteration. So we can see that the accelerated �-EM

algorithm is faster than the ordinary �-EM algorithm by a total CPU-time ratio of

50t/33t=1.5.

Table 9: Speedup Ratio Comparison(p=100, d=20)

� = 0 Iterations Time per Iteration Total CPU-Time Speedup Ratio

�-EM 50 1t 50t 1.00

Accelerated �-EM 22 1.5t 33t 1.5

In the accelerated �-EM algorithm we need to do a line search. In that line

search we need to calculate gradients of �-log-likelihood function. This requires

extra time. This extra time can be dominant in total CPU-time when the dimension

58

of the problem gets large.

5.2.2 Accelerated �-EM on �nancial data

Here, we download daily close prices of each member of S&P500 from Jan-01-2001

to Aug-31-2013 from Yahoo. Then we select members which have prices since Jan-

01-2001 and we got 426 members. Let�s randomly choose 100 members from 426

members. After we get 100 members we calculate the sample covariance C, then

we use the sample covariance to calculate the factor model with 20 factors by the

accelerated �-EM algorithm and the ordinary �-EM algorithm. Figure 13 shows

that the convergence speed of accelerated �-EM is faster than ordinary �-EM in

terms of log-likelihood.

5 10 15 20 25 30 35 40 45 50
­102.7

­102.6

­102.5

­102.4

­102.3

­102.2

­102.1

­102

­101.9

Iterations

Lo
g­

Li
ke

lih
oo

d Accelerated alpha­EM
Normal alpha­EM

Figure 13: Convergence speed comparison

Table 10 shows a speedup comparison. The second column shows that the ac-

celerated �-EM algorithm (the case of � = 0) is 49/23=2.1 times faster than the

ordinary �-EM algorithm (the case of � = 0) for the same convergence. The third

and fourth columns show a more practical comparison based upon CPU time. We

use t to denote the total time per iteration. The accelerated �-EM algorithm re-

quires 50% more CPU time per iteration. So we can see that the accelerated �-EM

59

algorithm is faster than the ordinary �-EM algorithm by a total CPU-time ratio of

49t/34.5t=1.42.

Table 10: Speedup Ratio Comparison(p=100, d=20)

� = 0 Iterations Time per Iteration Total CPU-Time Speedup Ratio

�-EM 49 1t 49t 1.00

Accelerated �-EM 23 1.5t 34.5t 1.42

Figure 14 illustrates di¤erent decreasing speed in the Hellinger distance of accel-

erated �-EM and ordinary �-EM. We can see that in terms of the Hellinger distance,

accelerated �-EM still preforms better than ordinary �-EM.

5 10 15 20 25 30 35 40 45 50
0.21

0.22

0.23

0.24

0.25

0.26

0.27

0.28

0.29

Iterations

H
el

lin
ge

r D
is

ta
nc

e

Accelerated alpha­EM
Normal alpha­EM

Figure 14: Convergence speed comparison

Table 11 shows a speedup comparison. The second column shows that the ac-

celerated �-EM algorithm (the case of � = 0) is 49/21=2.3 times faster than the

ordinary �-EM algorithm (the case of � = 0) for the same convergence. The third

and fourth columns show a more practical comparison based upon CPU time. We

use t to denote the total time per iteration. The accelerated �-EM algorithm re-

quires 50% more CPU time per iteration. So we can see that the accelerated �-EM

algorithm is faster than the ordinary �-EM algorithm by a total CPU-time ratio of

60

49t/31.5t=1.55.

Table 11: Speedup Ratio Comparison(p=100, d=20)

� = 0 Iterations Time per Iteration Total CPU-Time Speedup Ratio

�-EM 49 1t 49t 1.00

Accelerated �-EM 21 1.5t 31.5t 1.55

Again, the extra CPU time of the accelerated �-EM varies at di¤erent dimen-

sions.

5.3 Concluding Remarks

In this section, we apply conjugate gradient acceleration to the �-EM algorithm.

The �-EM often works well and what we have done here is to attempt to extend

the range of its applicability without sacri�cing too much of the simplicity it usually

enjoys. We compute gradients of �-log-likelihood of (;�;�). We show that the

�-EM algorithm can also be accelerated by conjugate gradient method.

The accelerated �-EM algorithm requires extra CPU-time to compute the best

step size in each iteration. We need to calculate a common piece, ��1(S � �)��1,

in the gradient of the �-log-likelihood function where � is the factor model and S

is the sample covariance. The extra CPU-time varies at di¤erent admissions of S.

In order to calculate the inverse of �, we apply the Woodbury inverse lemma to it.

Instead of computing the inverse of a p � p problem, we only need to compute a

d� d problem.

We do empirical studies with both arti�cial data and �nancial data. We know

that the accelerated �-EM algorithm requires more CPU time than the ordinary �-

EM algorithm. However more importantly, when the speedup in convergence is more

signi�cant, the accelerated �-EM algorithm can still save us the total computation

time for the same accuracy. We compare the covergence speed of the accelerated

�-EM algorithm and the ordinary �-EM algorithm in terms of both log-likelihood

61

and the Hellinger distance. The accelerated �-EM is about 40% faster for 100

dimensional problems.

62

6 Band Fraction Representation

We present band fraction representations as a new structure for covariance estimates.

We believe that this new band fraction representation performs better than the well

known and widely used factor model under the Hellinger distance. One of the

important reasons that factor models are so popular is that factor model is easy to

interpret and can be directly connected to �nancial sectors. We introduce a band

fraction representation of covariance matrices, in practice this new structure is closer

to covariance matrices than factor model under the Hellinger distance. Because,

intuitively factor model is a special case of band fraction representation which we

can use for any factor model. But there is no easy interpretation of the band fraction

similar to that of the factor model. Empirical results from real �nancial data are

given. In order to make it clear we consider simple cases �rst and use the same

procedure for complex cases by induction.

6.1 Semiseparability rank 2 and bandwidth 2

Let�s start from a simple case �rst. Suppose S is a 6� 6 lower triangular semisepa-

rable matrix of semiseparability rank 2. According to the above theory we can �nd

63

M and N with bandwidth d = 2;s.t. S =M�1N or MS = N:26666666666664

M1;1

M2;1 M2;2

M3;2 M3;3

M4;3 M4;4

M5;4 M5;5

M6;5 M6;6

37777777777775

26666666666664

S1;1

S2;1 S2;2

S3;1 S3;2 S3;3

S4;1 S4;2 S4;3 S4;4

S5;1 S5;2 S5;3 S5;4 S5;5

S6;1 S6;2 S6;3 S6;4 S6;5 S6;6

37777777777775

=

26666666666664

N1;1

N2;1 N2;2

N3;2 N3;3

N4;3 N4;4

N5;4 N5;5

N6;5 N6;6

37777777777775
In order to solve it, let�s start from the bottom. We can get26666666664

S5;1 S6;1

S5;2 S6;2

S5;3 S6;3

S5;4 S6;4

S5;5 S6;5

37777777775
24 M6;5

M6;6

35 =

26666666664

0

0

0

0

N6;5

37777777775
and because S has semiseparability rank 2 then we have unique solution ofM6;5;M6;6

for nonzero N6;5 (We can set N6;5 = 1). We repeat this procedure until the 3rd row,

because solving the �rst two rows is trivial.24 M1;1

M2;1 M2;2

3524 S1;1
S2;1 S2;2

35 =
24 N1;1
N2;1 N2;2

35

64

6.2 Semiseparability rank 3 and bandwidth 3

Now, let�s upgrade the problem to semiseparability rank 3 and bandwidth d = 3:26666666666664

M1;1

M2;1 M2;2

M3;1 M3;2 M3;3

M4;2 M4;3 M4;4

M5;3 M5;4 M5;5

M6;4 M6;5 M6;6

37777777777775

26666666666664

S1;1

S2;1 S2;2

S3;1 S3;2 S3;3

S4;1 S4;2 S4;3 S4;4

S5;1 S5;2 S5;3 S5;4 S5;5

S6;1 S6;2 S6;3 S6;4 S6;5 S6;6

37777777777775

=

26666666666664

N1;1

N2;1 N2;2

N3;1 N3;2 N3;3

N4;2 N4;3 N4;4

N5;3 N5;4 N5;5

N6;4 N6;5 N6;6

37777777777775
We also start from the bottom. We can get26666666664

S4;1 S5;1 S6;1

S4;2 S5;2 S6;2

S4;3 S5;3 S6;3

S4;4 S5;4 S6;4

0 S5;5 S6;5

37777777775

26664
M6;4

M6;5

M6;6

37775 =

26666666664

0

0

0

N6;4

N6;5

37777777775
and because S has semiseparability rank 3, then rank(S4:6;1:3) = 2. Then we can

set M6;6 = 1 and solve M6;4 and M6;5 with the �rst three rows.26664
S4;1 S5;1

S4;2 S5;2

S4;3 S5;3

37775
24 M6;4

M6;5

35 =
26664
�S6;1
�S6;2
�S6;3

37775

65

Because we can �nd a combination of S4;1:3 and S5;1:3 to represent �S6;1:3. Then

we can compute N6;4 and N6;5 by

24 S4;4 S5;4 S6;4

0 S5;5 S6;5

35
26664
M6;4

M6;5

M6;6

37775 =
24 N6;4
N6;5

35
We repeat this procedure until the 4th row, and we set M4;4 = 1 then we have:26664
S2;1 S3;1 S4;1

S2;2 S3;2 S4;2

0 S3;3 S4;3

37775
26664
M4;2

M4;3

M4;4

37775 =
26664

0

N4;2

N4;3

37775)
24 S2;1 S3;1

S2;2 S3;2

3524 M4;2

M4;3

35 =
24 �S4;1
�S4;2 +N4;2

35
We can set a random value to N4;2, in order to solve for M4;3 and M4;3. Then we

can compute N4;3 by

h
0 S3;3 S4;3

i26664
M4;2

M4;3

M4;4

37775 = h N4;3 i

After that it is trivial to solve the �rst three rows.26664
M1;1

M2;1 M2;2

M3;1 M3;2 M3;3

37775
26664
S1;1

S2;1 S2;2

S3;1 S3;2 S3;3

37775 =
26664
N1;1

N2;1 N2;2

N3;1 N3;2 N3;3

37775
Note that this procedure is di¤erent from what we have for semiseparability rank

and bandwidth 2, but this procedure can be applied when semiseparability rank and

bandwidth are 2.

66

6.3 Semiseparability rank d and bandwidth d

Now, let�s consider a general case that S is n � n lower triangular semiseparable

matrix of semiseparability rank d. We want to �nd M and N with bandwidth d:266666666666664

M1;1

...
. . .

Md;1 � � � Md;d

0 Md+1;2 � � � Md+1;d+1

...
...

...
...

. . .

0 � � � 0 Mn;n�d+1 � � � Mn;n

377777777777775

266666666666664

S1;1
...

. . .

Sd;1 � � � Sd;d

Sd+1;1 � � � � � � Sd+1;d+1
...

...
...

...
. . .

Sn;1 � � � � � � � � � � � � Sn;n

377777777777775

=

266666666666664

N1;1
...

. . .

Nd;1 � � � Nd;d

0 Nd+1;2 � � � Nd+1;d+1
...

...
...

...
. . .

0 � � � 0 Nn;n�d+1 � � � Nn;n

377777777777775
Again, we start from the bottom and get:266666666666664

Sn�d+1;1 � � � Sn;1
...

...
...

Sn�d+1;n�d � � � Sn;n�d

Sn�d+1;n�d+1 � � � Sn;n�d+1
...

...
...

0 � � � Sn;n�1

377777777777775

26664
Mn;n�d+1

...

Mn;n

37775 =

266666666666664

0
...

0

Nn;n�d+1
...

Nn:n�1

377777777777775
Since S has semiseparability rank d, then rank(Sn�d+1:n;1:n�d) = d� 1, we can set

Mn;n = 1 and solve Mn;n�d+1; : : : ;Mn;n�1 with the �rst n� d rows.26664
Sn�d+1;1 � � � Sn�1;1

...
...

...

Sn�d+1;n�d � � � Sn�1;n�d

37775
26664
Mn;n�d+1

...

Mn;n�1

37775 =
26664

�Sn;1
...

�Sn;n�d

37775
67

Because we can �nd a combination of Sn�d;1:n�d; : : : ; Sn�1;1:n�d to represent�Sn;1:n�d.

Then we can compute Nn;n�d+1; : : : Nn:n�1 by:26664
Sn�d+1;n�d+1 � � � Sn;n�d+1

...
...

...

0 � � � Sn;n�1

37775
26664
Mn;n�d+1

...

Mn;n

37775 =
26664
Nn;n�d+1

...

Nn:n�1

37775
We can repeat the same procedure until the d+ 1th row, we get:26666664

S2;1 S3;1 � � � Sd+1;1

S2;2 S3;2 � � � Sd+1;2
...

...
...

...

0 � � � Sd;d Sd+1;d

37777775

26666664
Md+1;2

Md+1;3

...

Md+1;d+1

37777775 =
26666664

0

Nd+1;2
...

Nd+1;d+1

37777775
and we set Md+1;d+1 = 1 then the �rst two rows would be:

24 S2;1 S3;1 � � � Sd;1

S2;2 S3;2 � � � Sd;2

35
26666664
Md+1;2

Md+1;3

...

Md+1;d

37777775 =
24 �Sd+1;1
�Sd+1;2 +Nd+1;2

35

For d+1th row we can solveMd+1;2; : : : ;Md+1;d by setting a random value to Nd+1;2.

Then we can compute Nd+1;3; : : : ; Nd+1;d by

26664
0 S3;3 � � � Sd+1;3
...

...
...

...

0 � � � Sd;d Sd+1;d

37775
26666664

Md+1;2

Md+1;3

...

Md+1;d+1

37777775 =
26664
Nd+1;3
...

Nd+1;d

37775
After that it is trivial to solve the �rst d rows.26664

M1;1

...
. . .

Md;1 � � � Md;d

37775
26664
S1;1
...

. . .

Sd;1 � � � Sd;d

37775 =
26664
N1;1
...

. . .

Nd;1 � � � Nd;d

37775
So when d >= n, we can always set N to be identity matrix and M will be the

inverse of S.

68

6.4 Empirical Results

In the following, we do some comparisons between factor models and band fraction

representations with both arti�cial data and real �nancial data.

6.4.1 Arti�cial data

Let�s assume that the covariance matrix has a factor structure C = D + V � V 0

where D is p � p and V is p � d:Then we �t a band fraction representation. Now

the covariance matrix is a diagonal matrix plus a semiseparable matrix and the

semiseparability rank is d + 1. According to the method we have above we can

�nd M and N with bandwidth d + 1. So even if the market is a factor structure

we can use band fraction representation. But the factor model can�t estimate band

fraction representation. We �t factor model with d factors and we �nd the Hellinger

distance between factor model and band fraction representation with bandwidth

d+ 1 is large. We will show empirical results later.

Now, let�s consider a special case that C is a p� p matrix:

1 1=2

. . .

1 1=2

1=2 1

. . .

1=2 1

We can �t both the factor model and band fraction representation. In a factor

model a permutation won�t change the results but a permutation can help in the

band fraction representation. According to Cuthill�McKee algorithm which is an

algorithm to permute a sparse matrix that has a symmetric sparsity pattern into a

69

band matrix form with a small bandwidth, we will get Cp:

1 1=2

1=2 1

.

.

1 1=2

1=2 1

For CP , we can �nd a very good band fraction representation with only bandwidth

2. Because the semiseparability rank of C is ceil(p=2) and it is 1 of CP . For example,

suppose p = 100 we chose d = 20 for factor model. Table 12 shows the Hellinger

distance between factor model/band Fraction and C=CP :

Table 12: Hellinger distance comparison

Hellinger distance d = 20 d = 1

Factor Model and C 0.6956 0.8567

Factor Model and CP 0.6956 0.8567

Band Fraction and C 0.6956 0.8567

Band Fraction and CP 0 0

70

6.4.2 Low dimension data

Here, we apply both the factor model and the band fraction representation to the

same data used in Rubin and Thayer 1982 [107].

Cxx =

266666666666666666666664

1:0 0:554 0:227 0:189 0:461 0:506 0:408 0:280 0:241

0:554 1:0 0:296 0:219 0:479 0:530 0:425 0:311 0:311

0:227 0:296 1:0 0:769 0:237 0:243 0:304 0:718 0:730

0:189 0:219 0:769 1:0 0:212 0:226 0:291 0:681 0:661

0:461 0:479 0:237 0:212 1:0 0:520 0:514 0:313 0:245

0:506 0:530 0:243 0:226 0:520 1:0 0:473 0:348 0:290

0:408 0:425 0:304 0:291 0:514 0:473 1:0 0:374 0:306

0:280 0:311 0:718 0:681 0:313 0:348 0:374 1:0 0:672

0:241 0:311 0:730 0:661 0:245 0:290 0:306 0:672 1:0

377777777777777777777775
In order to do a fair comparison, we choose d = 2 as the number of factors and d+1 as

the bandwidth of M and N . Figure 15 shows that the band fraction representation

is much closer to the sample covariance matrix in terms of the log-likelihood.

0 5 10 15 20 25 30 35 40 45 50
­12

­11.5

­11

­10.5

­10

­9.5

­9

Iterations

L
o

g
­L

ik
e

lih
o

o
d

Band fraction, *

Factor model, o

Figure 15: Log-likelihood comparison between factor model and band fraction rep-

resentation

71

The log-likelihood on the y-axis is calculated by

LL = log det((� + ��0)�1Cxx)� trace((� + ��0)�1Cxx)

so for the optimal results we have Cxx = � + ��0 then LL = �p where p

is the dimensionality of the problem. Whether you can reach the optimal results

depends on the condition of the problem. Factor analysis can be only as good as the

data allows. Note that the log-likelihood value of factor model after 50 iterations is

-9.0712 and the log-likelihood value of band fraction representation is -9.0249.

Besides the log-likelihood, we can also compare the Hellinger distance between

factor model and sample covariance, and the band fraction representation and sam-

ple covariance. The Hellinger distance is the same under coordinate change. In our

case P0 � N(0; Cxx) and P1 � N(0;�+ ��0) then we have:

H2(Cxx;�+ ��
0) = H2(I; Cxx�1=2(� + ��0)Cxx�1=2)

= H2(I;�)

where

� = Cxx�1=2(� + ��0)Cxx�1=2

We have

H2(�; I) =
1

2

R �p
��

p
I
�2
dx

= 1�
������1=2 +��1=22

�����
�1=2

assume that

�k = eig(�
1=2) = sqrt(eig(�)) where k = 1; : : : n

then we get (see Appendix C for details)

H2(�; I) = 1�
nQ
k=1

��1k + �k

2

!�1=2

= 1�
nQ
k=1

s
2�k

1 + �2k

72

Figure 16 illustrates that band fraction representation is closer to the sample

covariance matrix in terms of the Hellinger distance. Although it looks like they

are close we only did 50 iterations, the di¤erence between factor model and band

fraction representation is big enough that EM algorithm won�t change that much

after 50 iterations.

0 5 10 15 20 25 30 35 40 45 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Iterations

H
e

lli
n

g
e

r
d

is
ta

n
ce

Band fraction, *

Factor model, o

Figure 16: Hellinger distance comparison between factor model and band fraction

representation

Note that the log-likelihood value of factor model after 50 iterations is 0.0086

and the log-likelihood value of band fraction representation is 0.0031. From [94] we

know that the Hellinger distance is actually bounded by the Information distance.

H (�0;�1) �
1p
8
I (�0;�1)

Especially for su¢ ciently small I (�0;�1), we have:

Kp
8
I (�0;�1) � H (�0;�1)

where 0 < K < 1. This shows that the upper bound of the Hellinger distance is the

best possible. So if we can get the the sample covariance and factor model close in

the Hellinger distance, it also implies that they are close in Information distance.

73

6.4.3 High dimension �nancial data

Here, we download daily close prices of each member of S&P500 from Jan-01-2001

to Aug-31-2013 from Yahoo. Then we select members which have prices since Jan-

01-2001 and we got 426 members. Let�s randomly choose 400 members from 426

members. After we get 400 members we calculate the sample covariance C �rst,

then with the sample covariance we can calculate the factor model with 100 factors

by the EM algorithm and band fraction representation with bandwidth 101 by the

semiseparable approximate factorization. Note that we do 50 iterations in the EM

algorithm. Figure 17 shows that band fraction representation is closer to the sample

covariance matrix in terms of the log-likelihood.

0 5 10 15 20 25 30 35 40 45 50
­540

­520

­500

­480

­460

­440

­420

­400

Iterations

L
o

g
­L

ik
e

lih
o

o
d Band fraction, *

Factor model, o

Figure 17: Log-likelihood comparison between two models and sample covariance

Figure 18 illustrates that band fraction representation is more close to the sample

covariance matrix in terms of the Hellinger distance. We can see the factor model

is not even close to band fraction representation in terms of both log-likelihood and

the Hellinger distance. Although we only did 50 iterations in the EM algorithm, it

is enough to show that factor model can�t reach band fraction representation. The

higher the dimension of the problem, the bigger the di¤erence between factor model

74

and band fraction representations.

0 5 10 15 20 25 30 35 40 45 50
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Iterations

H
e

lli
n

g
e

r
d

is
ta

n
ce

Band fraction, *
Factor model, o

Figure 18: Hellinger distance comparison between two models and sample covariance

We also �t factor model with d factors for band fraction representation CB =

(MnN)(MnN)T with d+1 bandwidthM and N which we estimate from C. Figure

19 shows that if the market is really a band fraction representation we shouldn�t

use factor models to estimate it, because the Hellinger distance is not close to zero.

On the contrary, if the market is really a factor model we can use band fraction

representation.

75

0 5 10 15 20 25 30 35 40 45 50
0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Iterations

H
e

lli
n

g
e

r
d

is
ta

n
ce

Figure 19: Hellinger distance between factor model and band fraction representation

Instead of comparing one d we choose several ds to compare. Figure 20 illus-

trates the di¤erent log-likelihood values of various d for both factor model and band

fraction representation. Note that we do 50 iterations in the EM algorithm.

50 75 100 125 150 175 200 225 250 275 300 325 350
­440

­435

­430

­425

­420

­415

­410

­405

­400

­395

d

L
o

g
­L

ik
e

lih
o

o
d

Band fraction, *
Factor model, o

Figure 20: Log-likelihood comparison of various alpha

TABLE 13 shows the values of Figure 5. We can see that when d is greater

than 200 the log-likelihood value of band fraction representation is -400. Because

76

the largest semiseparability rank of the Cholesky factor of the covariance matrix is

ceil(p/2). When d � ceil(p=2), then the semiseparable approximate factorization

would be really close to the Cholesky factorization. That�s why with the band

fraction representation we get really close to the covariance matrix when d � 200.

Note that ceil(n) means the smallest integer that is greater than or equals to n.

Table 13: Log-likelihood Comparison (p=400)

Log-likelihood d = 50 100 150 200 250 300 350

Factor Model -436.3 -421.0 -412.8 -407.8 -404.7 -403.4 -402.7

Band Fraction -433.8 -409.9 -401.3 -400 -400 -400 -400

Figure 21 illustrates the di¤erent Hellinger distance of various d for both factor

model and band fraction representation. Note that we do 50 iterations in the EM

algorithm.

50 75 100 125 150 175 200 225 250 275 300 325 350
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

d

H
e

lli
n

g
e

r
d

is
ta

n
ce

Band fraction, *
Factor model, o

Figure 21: Hellinger distance comparison of various alpha

TABLE 14 shows the values of Figure 6. We can see that when d is greater than

200 the Hellinger distance between band fraction representation and covariance is

0. Because d � p=2.

77

Table 14: Hellinger distance Comparison (p=400)

Hellinger distance d = 50 100 150 200 250 300 350

Factor Model 0.991 0.937 0.808 0.616 0.407 0.252 0.170

Band Fraction 0.974 0.683 0.149 0.00 0.00 0.00 0.00

Therefore, whenever it�s small dimensional problems (p = 9) or large dimen-

sional problems (p = 400), the band fraction representation is always better than

the factor model in terms of both log-likelihood and the Hellinger distance. That�s

why we believe that the band fraction representation is a better structure for co-

variance matrices than factor models.

6.4.4 Portfolio Selection

Here, we do a comparison between factor models and band fraction representations

in portfolio optimization. We use the same 400 members we get from the previous

section and we choose d = 250. We consider a simple portfolio optimization problem

with no transaction costs and boundaries:

min
w

1

2
wT�w � fTw) wopt = �

�1fT

We do a 250 days back test from Aug-31-2012 to Aug-31-2013. First we calcu-

late covariance matrices and their corresponding factor models �F = �+��T and

band fraction representations �B = (M�1N)(M�1N)T . Second, suppose we know

tomorrow�s returns and use those to compute the optimal weights. Then with the

optimal weights we can compute the daily returns. We assume that sample covari-

ance is the true covariance then compare factor model with d = 100 factors and

band fraction with d+ 1 band width. Figure 22 illustrates that if we keep all other

parts the same except covariance estimation then the band fraction representation

is better than factor models.

78

0 50 100 150 200 250
0

1

2

3

4

5

6

7 x 104

days

P
o

rt
fo

lio
 r

e
tu

rn
s

Covariance
Band fraction
Factor model

Figure 22: Portfolio returns comparison between two models and sample covariance

The total money we make with band fraction representation and factor model

are 58493 and 54711 respectively. So band fraction representation makes 6.91%

more than factor model in 250 days. Figure 23 illustrates that the band fraction

representation is consistently better than the factor model.

0 50 100 150 200 250
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

days

H
e

lli
n

g
e

r
d

is
ta

n
ce

Band fraction, *
Factor model, o

Figure 23: Hellinger distance comparison

79

6.5 Concluding Remarks

In this section, we introduced a new structure: band fraction representations for

covariance matrix estimates. The band fraction representation has many good prop-

erties, such as the inverse of a band fraction representation is still a band fraction

representation and the band fraction representations are in a convex set. Factor

models are probably the most popular structure for covariance matrix estimates,

but they don�t have the above properties. More importantly, covariance matrices

have those properties.

We compare band fraction representations and factor models in many ways,

such as low dimension problems and high dimension problems with real �nancial

data, and portfolio optimization. We use both log-likelihood and the Hellinger

distance. Likelihood functions play a key role in statistical inference, especially

methods of estimating a parameter from a set of statistics. Meanwhile the Hellinger

distance is used to quantify the similarity between two probability distributions.

Unlike the Frobenius Norm, the Hellinger distance is a¢ ne invariant. We have more

con�dence that two probability distributions are close when the Hellinger distance

between them is small. In this section, we assume that all the data is from normal

distributions. Because band fraction representations are consistently better than

factor models, we show that in portfolio optimization if we set all other parts the

same except covariance estimates then portfolio optimization using band fraction

representations is better than using factor models. Factor models may over estimate

the risk which will prevent you from getting more returns. That�s what we �nd out

through our experiments.

In band fraction representations when you choose d � ceil(p=2) where d is the

bandwidth and p is the dimension of the problem, the Hellinger distance between

band fraction representation and covariance matrix is close to zero. But this is not

true for factor models. In factor models you need to choose d closes to p, in order

to make the Hellinger distance between factor model and covariance matrix close to

80

zero.

The good thing about factor models is that they are easy to interpret and can be

directly connected to �nancial sectors directly. People like to use �nancial sectors

to estimate the stock market and each individual stock in the market. We like

statistical factors better than �nancial sectors, in that case we believe that band

fraction representation maybe a better choice. But we couldn�t �nd a �nancial

interpretation for those o¤-diagonal items. It would better if we could �nd some

"factor loadings" in band fraction representation.

81

References

[1] Anderson, T. W. "Statistical inference for covariance matrices with linear

structure." Multivariate Analysis, II (Proc. Second Internat. Sympos., Dayton,

Ohio, 1968). 1969.

[2] Anderson, T. W. "Asymptotically e¢ cient estimation of covariance matrices

with linear structure." The Annals of Statistics 1.1 (1973): 135-141.

[3] Baek, Jangsun, Geo¤rey J. McLachlan, and Lloyd K. Flack. "Mixtures of

factor analyzers with common factor loadings: Applications to the clustering

and visualization of high-dimensional data." Pattern Analysis and Machine

Intelligence, IEEE Transactions on 32.7 (2010): 1298-1309.

[4] Bai, Jushan, and Shuzhong Shi. "Estimating high dimensional covariance ma-

trices and its applications." (2011).

[5] Barnard, John, Robert McCulloch, and Xiao-Li Meng. "Modeling covariance

matrices in terms of standard deviations and correlations, with application to

shrinkage." Statistica Sinica 10.4 (2000): 1281-1312.

[6] Beran, Rudolf. "Minimum Hellinger distance estimates for parametric mod-

els." The Annals of Statistics 5.3 (1977): 445-463.

[7] Bickel, Peter J., and Elizaveta Levina. "Regularized estimation of large co-

variance matrices." The Annals of Statistics (2008): 199-227.

[8] Bickel, Peter J., and Elizaveta Levina. "Covariance regularization by thresh-

olding." The Annals of Statistics 36.6 (2008): 2577-2604.

[9] Bickel, Peter J., and Yulia R. Gel. "Banded regularization of autocovariance

matrices in application to parameter estimation and forecasting of time series."

Journal of the Royal Statistical Society: Series B (Statistical Methodology)

73.5 (2011): 711-728.

82

[10] Bilmes, Je¤ A. "Factored sparse inverse covariance matrices." Acoustics,

Speech, and Signal Processing, 2000. ICASSP�00. Proceedings. 2000 IEEE

International Conference on. Vol. 2. IEEE, 2000.

[11] Boik, Robert J. "Spectral models for covariance matrices." Biometrika 89.1

(2002): 159-182.

[12] Boudreaux-Bartels, G., and T. Parks. "Time-varying �ltering and signal es-

timation using Wigner distribution synthesis techniques." Acoustics, Speech

and Signal Processing, IEEE Transactions on 34.3 (1986): 442-451.

[13] Burg, John Parker, David G. Luenberger, and Daniel L. Wenger. "Estimation

of structured covariance matrices." Proceedings of the IEEE 70.9 (1982): 963-

974.

[14] Cai, T. Tony, Cun-Hui Zhang, and Harrison H. Zhou. "Optimal rates of conver-

gence for covariance matrix estimation." The Annals of Statistics 38.4 (2010):

2118-2144.

[15] Chandrasekaran, Shiv, and Ming Gu. "Fast and stable algorithms for banded

plus semiseparable systems of linear equations." SIAM Journal on Matrix

Analysis and Applications 25.2 (2003): 373-384.

[16] Chandrasekaran, S., and M. Gu. "A divide-and-conquer algorithm for the

eigendecomposition of symmetric block-diagonal plus semiseparable matrices."

Numerische Mathematik 96.4 (2004): 723-731.

[17] Chandrasekaran, S., M. Gu, and W. Lyons. A fast and stable adaptive solver

for hierarchically semi-separable representations. Technical Report UCSB

Math 2004-20, UC Santa Barbara, 2004.

[18] Chandrasekaran, Shiv, et al. "Some fast algorithms for sequentially semisep-

arable representations." SIAM Journal on Matrix Analysis and Applications

27.2 (2005): 341-364.

83

[19] Chandrasekaran, Shiv, Ming Gu, and T. Pals. "A fast ULV decomposition

solver for hierarchically semiseparable representations." SIAM Journal on Ma-

trix Analysis and Applications 28.3 (2006): 603-622.

[20] Chandrasekaran, Shiv, et al. "A superfast algorithm for Toeplitz systems of

linear equations." SIAM Journal on Matrix Analysis and Applications 29.4

(2007): 1247-1266.

[21] Chang, Changgee, and Ruey S. Tsay. "Estimation of covariance matrix via

the sparse Cholesky factor with lasso." Journal of Statistical Planning and

Inference 140.12 (2010): 3858-3873.

[22] Chaudhuri, Sanjay, Mathias Drton, and Thomas S. Richardson. "Estimation

of a covariance matrix with zeros." Biometrika 94.1 (2007): 199-216.

[23] Chen, Yilun, Ami Wiesel, and Alfred O. Hero. "Shrinkage estimation of high

dimensional covariance matrices." Acoustics, Speech and Signal Processing,

2009. ICASSP 2009. IEEE International Conference on. IEEE, 2009.

[24] Chen, Yilun, et al. "Shrinkage algorithms for MMSE covariance estimation."

Signal Processing, IEEE Transactions on 58.10 (2010): 5016-5029.

[25] Chen, Yilun, Ami Wiesel, and Alfred O. Hero. "Robust shrinkage estimation of

high-dimensional covariance matrices." Signal Processing, IEEE Transactions

on 59.9 (2011): 4097-4107.

[26] Chen, Yilun. Regularized Estimation of High-dimensional Covariance Matri-

ces. Diss. Hebrew University of Jerusalem, 2011.

[27] Chen, Yilun, Ami Wiesel, and Alfred O. Hero. "Robust shrinkage estimation of

high-dimensional covariance matrices." Signal Processing, IEEE Transactions

on 59.9 (2011): 4097-4107.

84

[28] Chiu, Tom YM, Tom Leonard, and Kam-Wah Tsui. "The matrix-logarithmic

covariance model." Journal of the American Statistical Association 91.433

(1996): 198-210.

[29] Christensen, Lars PB. "An EM-algorithm for band-toeplitz covariance matrix

estimation." Acoustics, Speech and Signal Processing, 2007. ICASSP 2007.

IEEE International Conference on. Vol. 3. IEEE, 2007.

[30] Chu, Moody T., Robert E. Funderlic, and Robert J. Plemmons. "Structured

low rank approximation." Linear algebra and its applications 366 (2003): 157-

172.

[31] Curran, Patrick J., Stephen G. West, and John F. Finch. "The robustness of

test statistics to nonnormality and speci�cation error in con�rmatory factor

analysis." Psychological methods 1.1 (1996): 16.

[32] Daniels, Michael J., and Robert E. Kass. "Shrinkage estimators for covariance

matrices." Biometrics 57.4 (2001): 1173-1184.

[33] Daniels, M. J., and M. Pourahmadi. "Modeling covariance matrices via partial

autocorrelations." Journal of multivariate analysis 100.10 (2009): 2352-2363.

[34] Delvaux, Steven, and Marc Van Barel. "Structures preserved by Schur com-

plementation." SIAM journal on matrix analysis and applications 28.1 (2006):

229-252.

[35] Delvaux, Steven, and Marc Van Barel. "A Givens-weight representation for

rank structured matrices." SIAM Journal on Matrix Analysis and Applications

29.4 (2007): 1147-1170.

[36] Dembo, A. "The relation between maximum likelihood estimation of struc-

tured covariance matrices and periodograms." Acoustics, Speech and Signal

Processing, IEEE Transactions on 34.6 (1986): 1661-1662.

85

[37] Dembo, Amir, Colin L. Mallows, and Lawrence A. Shepp. "Embedding non-

negative de�nite Toeplitz matrices in nonnegative de�nite circulant matrices,

with application to covariance estimation." Information Theory, IEEE Trans-

actions on 35.6 (1989): 1206-1212.

[38] Dempster, Arthur P., Nan M. Laird, and Donald B. Rubin. "Maximum like-

lihood from incomplete data via the EM algorithm." Journal of the Royal

Statistical Society. Series B (Methodological) (1977): 1-38.

[39] Deng, Xinwei, and Ming Yuan. "Large Gaussian covariance matrix estimation

with Markov structures." Journal of Computational and Graphical Statistics

18.3 (2009).

[40] Dey, Dipak K., and C. Srinivasan. "Estimation of a covariance matrix under

Stein�s loss." The Annals of Statistics (1985): 1581-1591.

[41] Eckart, Carl, and Gale Young. "The approximation of one matrix by another

of lower rank." Psychometrika 1.3 (1936): 211-218.

[42] Eidelman, Y., and I. Gohberg. "Fast inversion algorithms for diagonal plus

semiseparable matrices." Integral Equations and Operator Theory 27.2 (1997):

165-183.

[43] Fama, Eugene F., and Kenneth R. French. "Common risk factors in the returns

on stocks and bonds." Journal of �nancial economics 33.1 (1993): 3-56.

[44] Fan, Jianqing, Yingying Fan, and Jinchi Lv. "High dimensional covariance

matrix estimation using a factor model." Journal of Econometrics 147.1 (2008):

186-197.

[45] Fasino, Dario, Nicola Mastronardi, and Marc Van Barel. "Fast and stable

algorithms for reducing diagonal plus semiseparable matrices to tridiagonal

and bidiagonal form." Contemporary Mathematics 323 (2003): 105-118.

86

[46] Firth, David. "Bias reduction of maximum likelihood estimates." Biometrika

80.1 (1993): 27-38.

[47] Forni, Mario, et al. "The generalized dynamic-factor model: Identi�cation and

estimation." Review of Economics and statistics 82.4 (2000): 540-554.

[48] Frieze, Alan, Ravi Kannan, and Santosh Vempala. "Fast Monte-Carlo algo-

rithms for �nding low-rank approximations." Journal of the ACM (JACM)

51.6 (2004): 1025-1041.

[49] Friedman, Jerome, Trevor Hastie, and Robert Tibshirani. "Sparse inverse co-

variance estimation with the graphical lasso." Biostatistics 9.3 (2008): 432-

441.

[50] Furrer, Reinhard, and Thomas Bengtsson. "Estimation of high-dimensional

prior and posterior covariance matrices in Kalman �lter variants." Journal of

Multivariate Analysis 98.2 (2007): 227-255.

[51] Ghahramani, Zoubin, and Geo¤rey E. Hinton. The EM algorithm for mixtures

of factor analyzers. Vol. 60. Technical Report CRG-TR-96-1, University of

Toronto, 1996.

[52] Gilbert, Jean Charles, and Jorge Nocedal. "Global convergence properties of

conjugate gradient methods for optimization." SIAM Journal on Optimization

2.1 (1992): 21-42.

[53] Gohberg, I., T. Kailath, and I. Koltracht. "Linear complexity algorithms for

semiseparable matrices." Integral Equations and Operator Theory 8.6 (1985):

780-804.

[54] Gray, R. M. (2006). Toeplitz and circulant matrices: A review. Now Pub.

[55] Gu, Ming, Xiaoye S. Li, and Panayot S. Vassilevski. "Direction-preserving and

Schur-monotonic semiseparable approximations of symmetric positive de�nite

87

matrices." SIAM Journal on Matrix Analysis and Applications 31.5 (2010):

2650-2664.

[56] Ha¤, L. R. "Empirical Bayes estimation of the multivariate normal covariance

matrix." The Annals of Statistics 8.3 (1980): 586-597.

[57] Ho¤, Peter D., and Xiaoyue Niu. "A covariance regression model." arXiv

preprint arXiv:1102.5721 (2011).

[58] Huang, Jianhua Z., et al. "Covariance matrix selection and estimation via

penalised normal likelihood." Biometrika 93.1 (2006): 85-98.

[59] Jamshidian, Mortaza, and Robert I. Jennrich. "Conjugate gradient accelera-

tion of the EM algorithm." Journal of the American Statistical Association

88.421 (1993): 221-228.

[60] Jamshidian, Mortaza, and Robert I. Jennrich. "Conjugate gradient methods

in con�rmatory factor analysis." Computational statistics & data analysis 17.3

(1994): 247-263.

[61] Jamshidian, Mortaza, and Robert I. Jennrich. "Acceleration of the EM Al-

gorithm by using Quasi-Newton Methods." Journal of the Royal Statistical

Society: Series B (Statistical Methodology) 59.3 (1997): 569-587.

[62] Jansson, Magnus, and Bjorn Ottersten. "Structured covariance matrix esti-

mation: a parametric approach." Acoustics, Speech, and Signal Processing,

2000. ICASSP�00. Proceedings. 2000 IEEE International Conference on. Vol.

5. IEEE, 2000.

[63] Jones, Christopher S. "Extracting factors from heteroskedastic asset returns."

Journal of Financial economics 62.2 (2001): 293-325.

[64] Jöreskog, Karl G. "A general approach to con�rmatory maximum likelihood

factor analysis." Psychometrika 34.2 (1969): 183-202.

88

[65] Karlis, Dimitris. "An EM type algorithm for maximum likelihood estimation

of the normal�inverse Gaussian distribution." Statistics & probability letters

57.1 (2002): 43-52.

[66] Kaufman, Cari G., Mark J. Schervish, and Douglas W. Nychka. "Covariance

tapering for likelihood-based estimation in large spatial data sets." Journal of

the American Statistical Association 103.484 (2008).

[67] Lam, Cli¤ord, and Jianqing Fan. "Sparsistency and rates of convergence in

large covariance matrix estimation." Annals of statistics 37.6B (2009): 4254.

[68] Lawley, Derrick N. "The estimation of factor loadings by the method of max-

imum likelihood." Proceedings of the Royal Society of Edinburgh 60.2 (1940):

64-82.

[69] Ledoit, Olivier, and Michael Wolf. "Improved estimation of the covariance

matrix of stock returns with an application to portfolio selection." Journal of

Empirical Finance 10.5 (2003): 603-621.

[70] Ledoit, Olivier, and Michael Wolf. "A well-conditioned estimator for large-

dimensional covariance matrices." Journal of multivariate analysis 88.2 (2004):

365-411.

[71] Ledoit, Olivier, and Michael Wolf. "Nonlinear shrinkage estimation of large-

dimensional covariance matrices." The Annals of Statistics 40.2 (2012): 1024-

1060.

[72] Liu, Chuanhai, and Donald B. Rubin. "The ECME algorithm: a simple ex-

tension of EM and ECM with faster monotone convergence." Biometrika 81.4

(1994): 633-648.

[73] Liu, Chuanhai, and Donald B. Rubin. "ML estimation of the t distribution

using EM and its extensions, ECM and ECME." Statistica Sinica 5.1 (1995):

19-39.

89

[74] Liu, Chuanhai, and Donald B. Rubin. "Maximum likelihood estimation of fac-

tor analysis using the ECME algorithm with complete and incomplete data."

Statistica Sinica 8.3 (1998): 729-747.

[75] Markovsky, Ivan. "Structured low-rank approximation and its applications."

Automatica 44.4 (2008): 891-909.

[76] Maronna, Ricardo Antonio. "Robust M-estimators of multivariate location

and scatter." The annals of statistics (1976): 51-67.

[77] Mastronardi, Nicola, Shivkumar Chandrasekaran, and Sabine Van Hu¤el.

"Fast and stable two-way algorithm for diagonal plus semi-separable systems

of linear equations." Numerical linear algebra with applications 8.1 (2001):

7-12.

[78] Matsuyama, Yasuo. "Non-logarithmic information measures, �-weighted EM

algorithms and speedup of learning." Information Theory, 1998. Proceedings.

1998 IEEE International Symposium on. IEEE, 1998.

[79] Matsuyama, Yasuo. "The �-EM algorithm and its basic properties." Systems

and Computers in Japan 31.11 (2000): 12-23.

[80] Matsuyama, Yasuo., et al. "�-EM algorithm and -ICA learning based upon

extended logarithmic information measures." Neural Networks, 2000. IJCNN

2000, Proceedings of the IEEE-INNS-ENNS International Joint Conference

on. Vol. 3. IEEE, 2000.

[81] Matsuyama, Yasuo. "The �-EM algorithm: Surrogate likelihood maximiza-

tion using -logarithmic information measures." Information Theory, IEEE

Transactions on 49.3 (2003): 692-706.

[82] Matsuyama, Yasuo, and Ryunosuke Hayashi. "Alpha-EM gives fast hidden

Markov model estimation: Derivation and evaluation of alpha-HMM." Neural

Networks (IJCNN), The 2010 International Joint Conference on. IEEE, 2010.

90

[83] Matsuyama, Yasuo. "Hidden Markov model estimation based on alpha-EM

algorithm: Discrete and continuous alpha-HMMs." Neural Networks (IJCNN),

The 2011 International Joint Conference on. IEEE, 2011.

[84] Matsuyama, Yasuo, Ryunosuke Hayashi, and Ryota Yokote. "Fast estima-

tion of Hidden Markov Models via alpha-EM algorithm." Statistical Signal

Processing Workshop (SSP), 2011 IEEE. IEEE, 2011.

[85] McLachlan, Geo¤rey J., David Peel, and R. W. Bean. "Modelling high-

dimensional data by mixtures of factor analyzers." Computational Statistics

& Data Analysis 41.3 (2003): 379-388.

[86] McLachlan, Geo¤rey J., R. W. Bean, and L. Ben-Tovim Jones. "Extension

of the mixture of factor analyzers model to incorporate the multivariate t-

distribution." Computational Statistics & Data Analysis 51.11 (2007): 5327-

5338.

[87] McMurry, Timothy L., and Dimitris N. Politis. "Banded and tapered estimates

for autocovariance matrices and the linear process bootstrap." Journal of Time

Series Analysis 31.6 (2010): 471-482.

[88] Meng, Xiao-Li, and Donald B. Rubin. "Maximum likelihood estimation via

the ECM algorithm: A general framework." Biometrika 80.2 (1993): 267-278.

[89] Meng, X-L., and David Van Dyk. "Fast EM-type implementations for mixed

e¤ects models." Journal of the Royal Statistical Society: Series B (Statistical

Methodology) 60.3 (1998): 559-578.

[90] Miller, Michael I., and Donald L. Snyder. "The role of likelihood and entropy in

incomplete-data problems: applications to estimating point-process intensities

and Toeplitz constrained covariances." Proceedings of the IEEE 75.7 (1987):

892-907.

91

[91] Mullhaupt, Andrew P., and Kurt S. Riedel. "Fast adaptive identi�cation of sta-

ble innovation �lters." Signal Processing, IEEE Transactions on 45.10 (1997):

2616-2619.

[92] Mullhaupt, Andrew P., and Kurt S. Riedel. "Low grade matrices and matrix

fraction representations." Linear algebra and its applications 342.1 (2002):

187-201.

[93] Mullhaupt, Andrew P., and Kurt S. Riedel. "Banded matrix fraction repre-

sentation of triangular input normal pairs." Automatic Control, IEEE Trans-

actions on 46.12 (2001): 2018-2022.

[94] Mullhaupt, Andrew P. Personal communication.

[95] Newey, Whitney K., and Kenneth D. West. "A simple, positive semi-de�nite,

heteroskedasticity and autocorrelationconsistent covariance matrix." (1986).

[96] Nguyen, A. "On the uniqueness of the maximum-likeliwood estimate of struc-

tured covariance matrices." Acoustics, Speech and Signal Processing, IEEE

Transactions on 32.6 (1984): 1249-1251.

[97] Patra, Rohit Kumar, Abhijit Mandal, and Ayanendranath Basu. "Minimum

Hellinger distance estimation with inlier modi�cation." Sankhyā: The Indian

Journal of Statistics, Series B (2008-) (2008): 310-322.

[98] Pourahmadi, Mohsen. "Maximum likelihood estimation of generalised linear

models for multivariate normal covariance matrix." Biometrika 87.2 (2000):

425-435.

[99] Pourahmadi, Mohsen. "Cholesky decompositions and estimation of a covari-

ance matrix: orthogonality of variance�correlation parameters." Biometrika

94.4 (2007): 1006-1013.

92

[100] Pourahmadi, Mohsen. "Simultaneous modeling of covariance matrices: GLM,

Bayesian and nonparametric perspective." Correlated Data Modelling 2004

(2007): 41-64.

[101] Pourahmadi, Mohsen. "Covariance estimation: The GLM and regularization

perspectives." Statistical Science 26.3 (2011): 369-387.

[102] Rajaratnam, Bala, Hélene Massam, and Carlos M. Carvalho. "Flexible covari-

ance estimation in graphical Gaussian models." The Annals of Statistics 36.6

(2008): 2818-2849.

[103] Rothman, Adam J., et al. "Sparse permutation invariant covariance estima-

tion." Electronic Journal of Statistics 2 (2008): 494-515.

[104] Rothman, Adam J., Elizaveta Levina, and Ji Zhu. "Generalized thresholding

of large covariance matrices." Journal of the American Statistical Association

104.485 (2009): 177-186.

[105] Rothman, Adam J., Elizaveta Levina, and Ji Zhu. "A new approach to

Cholesky-based covariance regularization in high dimensions." Biometrika 97.3

(2010): 539-550.

[106] Roweis, Sam. "EM algorithms for PCA and SPCA." Advances in neural in-

formation processing systems (1998): 626-632.

[107] Rubin, Donald B., and Dorothy T. Thayer. "EM algorithms for ML factor

analysis." Psychometrika 47.1 (1982): 69-76.

[108] Rubin, Donald B., and Ted H. Szatrowski. "Finding maximum likelihood es-

timates of patterned covariance matrices by the EM algorithm." Biometrika

69.3 (1982): 657-660.

[109] Salakhutdinov, Ruslan, Sam Roweis, and Zoubin Ghahramani. "Relationship

between gradient and EM steps in latent variable models." (2004): 261.

93

[110] Salakhutdinov, Ruslan, Sam Roweis, and Zoubin Ghahramani. "Optimization

with EM and expectation-conjugate-gradient." ICML. 2003.

[111] Simpson, Douglas G. "Minimum Hellinger distance estimation for the analysis

of count data." Journal of the American statistical Association 82.399 (1987):

802-807.

[112] Tamura, Roy N., and Dennis D. Boos. "Minimum Hellinger distance esti-

mation for multivariate location and covariance." Journal of the American

Statistical Association 81.393 (1986): 223-229.

[113] Turmon, Michael J., and Michael I. Miller. "Maximum-likelihood estimation of

complex sinusoids and Toeplitz covariances." Signal Processing, IEEE Trans-

actions on 42.5 (1994): 1074-1086.

[114] Tyler, David E. "A distribution-free $ M $-estimator of multivariate scatter."

The Annals of Statistics 15.1 (1987): 234-251.

[115] Ueda, Naonori, et al. "SMEM algorithm for mixture models." Neural compu-

tation 12.9 (2000): 2109-2128.

[116] Van Camp, Ellen, Nicola Mastronardi, and Marc Van Barel. "Two fast al-

gorithms for solving diagonal-plus-semiseparable linear systems." Journal of

Computational and Applied Mathematics 164 (2004): 731-747.

[117] Vandebril, Raf, Marc Van Barel, and Nicola Mastronardi. Matrix computa-

tions and semiseparable matrices: linear systems. Vol. 1. JHU Press, 2007.

[118] Vandebril, Raf, Marc Van Barel, and Nicola Mastronardi. Matrix computa-

tions and semiseparable matrices: eigenvalue and singular value methods. Vol.

2. JHU Press, 2008.

94

[119] van der Veen, A. J. "Approximate inversion of a large semiseparable positive

matrix." Proc. 17th Int. Symp. on Mathematical Theory of Networks and

Systems (MTNS-04), Brussels (BE). 2004.

[120] Williams, Douglas B., and Don H. Johnson. "Robust estimation of structured

covariance matrices." Signal Processing, IEEE Transactions on 41.9 (1993):

2891-2906.

[121] Wirfalt, P., and Magnus Jansson. "On Toeplitz and Kronecker structured co-

variance matrix estimation." Sensor Array and Multichannel Signal Processing

Workshop (SAM), 2010 IEEE. IEEE, 2010.

[122] Witten, Daniela M., and Robert Tibshirani. "Covariance-regularized regres-

sion and classi�cation for high dimensional problems." Journal of the Royal

Statistical Society: Series B (Statistical Methodology) 71.3 (2009): 615-636.

[123] Wu, Wei Biao, and Mohsen Pourahmadi. "Banding sample autocovariance

matrices of stationary processes." Statistica Sinica 19.4 (2009): 1755.

[124] Wu, Wei Biao, Yinxiao Huang, and Wei Zheng. "Covariances estimation for

long-memory processes." Advances in Applied Probability 42.1 (2010): 137-

157.

[125] Wu, Wei Biao, and Han Xiao. "Covariance Matrix Estimation in Time Se-

ries." Handbook of Statistics, Vol. 30: Time Series Analysis: Methods and

Applications (2012): 187-209.

[126] Yang, Ruoyong, and James O. Berger. "Estimation of a covariance matrix

using the reference prior." The Annals of Statistics (1994): 1195-1211.

[127] Yuan, Ming, and Yi Lin. "Model selection and estimation in the Gaussian

graphical model." Biometrika 94.1 (2007): 19-35.

95

[128] Zhao, J-H., L. H. Philip, and Qibao Jiang. "ML estimation for factor analysis:

EM or non-EM?." Statistics and computing 18.2 (2008): 109-123.

[129] Zhao, Jian-Hua, and Philip LH Yu. "Fast ML estimation for the mixture of

factor analyzers via an ECM algorithm." Neural Networks, IEEE Transactions

on 19.11 (2008): 1956-1961.

96

A Appendix: Conditional distribution of factors

For the distribution of the observed data p(x)

E[X] = 0

Cov(X) = � = �+ ��T

For the complete data distribution p(x; z)

Y =

24 X
Z

35
E[Y] = E

24 X
Z

35 = 0

Cov(Y) = E[Y Y T] = E

2424 X
Z

35h XT ZT
i35

= E

24 XXT XZT

ZXT ZZT

35 =
24 �+ ��T �

�T I

35 = �
Also, since

� =

24 �+ ��T �

�T I

35 =
24 �11 �12

�21 �22

35
we have (Partitioned Matrix Inversion Theorem)

��1 =

24 ��1;11 ��1;12

��1;21 ��1;22

35
=

24 (�11 ��12��122 �21)�1 ��111 �12(�21�
�1
11 �12 ��22)�1

(�21�
�1
11 �12 ��22)�1�21�

�1
11 (�22 ��21��111 �12)�1

35
For the complete data distribution p(zjx)

97

p(zjx) =
p(x; z)

p(x)
=
(2�)�(p+d)=2 j�j�1=2 exp

�
�1
2y
T��1y

�
(2�)�p=2 j�j�1=2 exp

�
�1
2x
T��1x

�
= (blah) exp

�
�1
2
(yT��1y � xT��1x)

�
= (blah) exp

�
�1
2
�

�
where we de�ne

� = yT��1y � xT��1x

=
h
xT zT

i
��1

24 x
z

35� xT��1x
= xT��1;11x+ xT��1;12z + zT��1;21x+ zT��1;22z � xT��1x

= xT
�
��1;11 � ��1

�
x+ 2xT��1;12z + zT��1;22z

Consider the term

�
��1;11 � ��1

�
= (�11 ��12��122 �21)��

�1
11

= ��111 +�
�1
11 �12(�22 ��21�

�1
11 �12)�21�

�1
11 ��

�1
11

= ��111 �12(�22 ��21�
�1
11 �12)�21�

�1
11

= �T��1;22�

where we de�ne

� = �21�
�1
11

= �T (� + ��T)�1

So

� = xT�T��1;22�x+ 2xT��1;12z + zT��1;22z

= (z � �x)T��1;22(z � �x) + 2xT (�T��1;22 +��1;12)z

98

and

�T��1;22 +��1;12 = ��111 �12(�22 ��21�
�1
11 �12)

�1 +��111 �12(�21�
�1
11 �12 ��22)�1

= 0

Hence

� = (z � �x)T��1;22(z � �x)

Therefore

p(zjx) = (blah) exp
�
�1
2
(z � �x)T��1;22(z � �x)

�
from which we can deduce

E[zjx] = �x

Cov(zjx) = (��1;22)�1

and (Matrix Inversion Theorem)

[Cov(zjx)]�1 = ��1;22

= (�22 ��21��111 �12)�1

= ��122 ��
�1
22 �21(��11 +�12�

�1
22 �21)

�1�12�
�1
22

= I � �T (��� ��T + ��T)�1�

= I + �T��1�

Then we have

E[zzT jx] = Cov(zjx) + E[zjx]E[zjx]T

= (I + �T��1�)�1 + �xxT�T

= I � �T (� + ��T)�1� + �xxT�T

= I � �� + �xxT�T

99

B Appendix: Update equation of factor analysis

B.1 Non-Causal

From equation (6) we have

)
NP
j=1

1+�
2

R
P

1+�
2 �

�
��11 xiz

0
i � ��11 �1ziz0i

�
� p(zi)dziR

P
1+�
2 � p(zi)dzi

= 0

)
NP
j=1

1+�
2 � blah �

R
e�

1
2
(zi��A0)0��1(zi��A0) �

�
��11 xiz

0
i � ��11 �1ziz0i

�
dzi

blah �
R
e�

1
2
(zi��A0)0��1(zi��A0)dzi

= 0

)
NP
j=1

��11 xiE[z
0
i]� ��11 �1E[ziz0i] = 0

) �1 =
NP
j=1

xiE[z
0
i]

NP
j=1

E[ziz
0
i]

!�1
where

E[zi] = �A0) E[z0i] = A�

E[ziz
0
i] = V ar[zi] + E[zi]E[zi]

0 = �+�A0A�

Then

�1 =
NP
j=1

xiA�

NP
j=1

�+ �A0A�

!�1
=

NP
j=1

xix
0
iW�

NP
j=1

�+ �W 0xix
0
iW�

!�1
Cxx =

NP
j=1

xix
0
i

N

�1 = CxxW�
�
�+ �W 0CxxW�

��1

100

From equation (7) we have

)
NP
j=1

1
2
1+�
2

R
P

1+�
2 � (�1 � xix0i + xiz0i�01 + �1zix0i � �1ziz0i�01) � p(zi)dziR

P
1+�
2 � p(zi)dzi

= 0

)
NP
j=1

blah �
R
e�

1
2
(zi��A0)0��1(zi��A0) � (�1 � xix0i + xiz0i�01 + �1zix0i � �1ziz0i�01) dzi

blah �
R
e�

1
2
(zi��A0)0��1(zi��A0)dzi

= 0

)
NP
j=1

�1 � xix0i + xiE[z0i]�01 + �1E[zi]x0i � �1E[ziz0i]�01 = 0

)
NP
j=1

�1 �
NP
j=1

xix
0
i +

NP
j=1

xiE[z
0
i]�

0
1 +

NP
j=1

�1E[zi]x
0
i � �1

NP
j=1

E[ziz
0
i]�

0
1 = 0

we know that

�1 =
NP
j=1

xiE[z
0
i]

NP
j=1

E[ziz
0
i]

!�1

�01 =

NP
j=1

E[ziz
0
i]

!�1
NP
j=1

E[zi]x
0
i

so we get

)
NP
j=1

�1 �
NP
j=1

xix
0
i +

NP
j=1

xiE[z
0
i]�

0
1 +

NP
j=1

�1E[zi]x
0
i � �1

NP
j=1

E[ziz
0
i]

NP
j=1

E[ziz
0
i]

!�1
NP
j=1

E[zi]x
0
i = 0

)
NP
j=1

�1 �
NP
j=1

xix
0
i +

NP
j=1

xiE[z
0
i]�

0
1 +

NP
j=1

�1E[zi]x
0
i � �1

NP
j=1

E[zi]x
0
i = 0

)
NP
j=1

�1 �
NP
j=1

xix
0
i +

NP
j=1

xiE[z
0
i]�

0
1 = 0

) �1 = diag(Cxx�CxxW��
0
1)

When �1 < � < 1

��1 =
1 + �

2
�01�

�1
1 �1 �

1 + �

2
�00�

�1
0 �0 + C

�1

A =
1 + �

2
x0i�

�1
1 �1 �

1 + �

2
x0i�

�1
0 �0 + x

0
i�
0C�1 = x0iW

W =
1 + �

2
��11 �1 �

1 + �

2
��10 �0 + �

0C�1

101

and

� = �00(�0 + �0�
0
0)
�1

C = I � �00(�0 + �0�00)�1�0

then

�0C�1 = (�0 + �0�
0
0)
�1�1 � (I + �00��10 �0)

= (�0 + �0�
0
0)
�1�1 � (��10 �0�

�1
0 �0 + �

0
0�

�1
0 �0)

= (�0 + �0�
0
0)
�1�1 � (��10 �0 + �00) � �

�1
0 �0

= (�0 + �0�
0
0)
�1(�0 + �0�

0
0) � ��10 �0

= ��10 �0

so we get

��1 = I +
1 + �

2
�01�

�1
1 �1 +

1� �
2

�00�
�1
0 �0

W =
1 + �

2
��11 �1 +

1� �
2

��10 �0

Set

��1 =

24 1+�
2 �

�1
1

1��
2 �

�1
0

35 , � =

24 2
1+��1

2
1���0

35 , � =
�
�1
�0

�
we have

W =

�
In
In

�0
��1�

� = Id �
�
Id + �

0��1�
��1

�0��1�

W� =

�
In
In

�0
��1�

�
Id �

�
Id + �

0��1�
��1

�0��1�
�

=

�
In
In

�0
��1��

�
In
In

�0
��1�

�
Id + �

0��1�
��1

�0��1�

=

�
In
In

�0 �
��1 � ��1�

�
Id + �

0��1�
��1

�0��1
�
�

=

�
In
In

�0 �
�+ ��0

��1
�

102

If we assume

� =

�
In
In

�0 �
�+ ��0

��1
�

� = Id � �0(� + ��0)�1�

we get

�1 = Cxx�
�
�+ �0Cxx�

��1
�1 = diag(Cxx�Cxx��

0
1)

B.2 Causal

From equation (6) we have

)
NP
i=1

1+�
2

R
P

1+�
2 �

�
��11 xiz

0
i � ��11 �1ziz0i

�
� p(zi)dziR

P
1+�
2 � p(zi)dzi

= 0

)
NP
i=1

R �1��
2 P (zijxi;��1;��1) +

1+�
2 P (zijxi;�0;�0)

� �
��11 xiz

0
i � ��11 �1ziz0i

�
dziR 1��

2 P (zijxi;��1;��1) +
1+�
2 P (zijxi;�0;�0)dzi

= 0

)
NP
i=1

1� �
2

xiE�1[z
0
i]�

1� �
2

�1E�1[ziz
0
i] +

1 + �

2
xiE0[z

0
i]�

1 + �

2
�1E0[ziz

0
i] = 0

)
NP
i=1

1� �
2

xiE�1[z
0
i] +

1 + �

2
xiE0[z

0
i]�

�
1� �
2

�1E�1[ziz
0
i] +

1 + �

2
�1E0[ziz

0
i]

�
= 0

)
NP
i=1

1� �
2

xiE�1[z
0
i] +

1 + �

2
xiE0[z

0
i]� �1

�
1� �
2

E�1[ziz
0
i] +

1 + �

2
E0[ziz

0
i]

�
= 0

)
NP
i=1

1� �
2

xiE�1[z
0
i] +

1 + �

2
xiE0[z

0
i] = �1

NP
i=1

1� �
2

E�1[ziz
0
i] +

1 + �

2
E0[ziz

0
i]

so the update equation for �1 is

�1 =

1��
2

NP
j=1

xiE�1[z0i] +
1+�
2

NP
j=1

xiE0[z
0
i]

!

1��
2

NP
j=1

E�1[ziz0i] +
1+�
2

NP
j=1

E0[ziz0i]

!

From equation (7) we have

103

)
NP
j=1

1
2
1+�
2

R
P

1+�
2 � (�1 � xix0i + xiz0i�01 + �1zix0i � �1ziz0i�01) � p(zi)dziR

P
1+�
2 � p(zi)dzi

= 0

)
NP
j=1

R 1��
2 P (zijxi;��1;��1) (�1 � xix

0
i + xiz

0
i�
0
1 + �1zix

0
i � �1ziz0i�01) dziR 1��

2 P (zijxi;��1;��1) +
1+�
2 P (zijxi;�0;�0)dzi

+

R 1+�
2 P (zijxi;�0;�0) (�1 � xix

0
i + xiz

0
i�
0
1 + �1zix

0
i � �1ziz0i�01) dziR 1��

2 P (zijxi;��1;��1) +
1+�
2 P (zijxi;�0;�0)dzi

= 0

)
NP
j=1

�1 � xix0i +
1� �
2

xiE�1[z
0
i]�

0
1 +

1 + �

2
xiE0[z

0
i]�

0
1 +

1� �
2

�1E�1[zi]x
0
i

+
1 + �

2
�1E0[zi]x

0
i �
�
1� �
2

�1E�1[ziz
0
i] +

1 + �

2
�1E0[ziz

0
i]

�
�01 = 0

)
NP
j=1

�1 �
NP
j=1

xix
0
i +

1� �
2

NP
j=1

xiE�1[z
0
i]�

0
1 +

1 + �

2

NP
j=1

xiE0[z
0
i]�

0
1 +

1� �
2

�1
NP
j=1

E�1[zi]x
0
i

+
1 + �

2
�1

NP
j=1

E0[zi]x
0
i � �1

1� �
2

NP
j=1

E�1[ziz
0
i] +

1 + �

2

NP
j=1

E0[ziz
0
i]

!
�01 = 0

)
NP
j=1

�1 �
NP
j=1

xix
0
i +

1� �
2

NP
j=1

xiE�1[z
0
i]�

0
1 +

1 + �

2

NP
j=1

xiE0[z
0
i]�

0
1 = 0

so the update equation for �1 is

�1 =
1

N
diag

NP
j=1

xix
0
i �

1� �
2

NP
j=1

xiE�1[z
0
i] +

1 + �

2

NP
j=1

xiE0[z
0
i]

!
�01

!

�1 = diag

Cxx�

1

N

1� �
2

NP
j=1

xiE�1[z
0
i] +

1 + �

2

NP
j=1

xiE0[z
0
i]

!
�01

!

104

C Appendix: Hellinger distance between two Gaussian

Proof 1.

H2(P;Q) =
1

2

R �p
P �

p
Q
�2
dx = 1�

Rp
P
p
Qdx

= 1�
R 1

(2�)d=2 jP j1=4 jQj1=4
exp

�
xT
�
P�1 +Q�1

�
x

4

!
dx

= 1�

�����P�1+Q�12

��1����1=2
jP j1=4 jQj1=4

R 1

(2�)d=2
�����P�1+Q�12

��1����1=2
exp

�
xT
�
P�1 +Q�1

�
x

4

!
dx

= 1�

�����P�1+Q�12

��1����1=2
jP j1=4 jQj1=4

= 1�

����P�1+Q�12

�����1=2
jP j1=4 jQj1=4

= 1�
�����P +Q2PQ

������1=2 jP j�1=4 jQj�1=4
= 1�

����P +Q2
�����1=2 jP j1=4 jQj1=4

Proof 2.

H2(C; I) =
1

2

R �p
C �

p
I
�2
dx

= 1�
Rp

C
p
Idx

= 1�
����C + I2

�����1=2 jCj1=4 jIj1=4
= 1�

����C + I2
�����1=2 ���C�1=2����1=2

= 1�
�����C1=2 + C�1=22

�����
�1=2

assume

�k = eig(C
1=2) = sqrt(eig(C)) where k = 1; : : : n

105

then we have

H2(C; I) = 1�
nQ
k=1

��1k + �k

2

!�1=2

= 1�
nQ
k=1

�
1 + �2k
2�k

��1=2
= 1�

nQ
k=1

�
2�k

1 + �2k

�1=2
= 1�

nQ
k=1

s
2�k

1 + �2k

D Appendix: Update equation of mixture of factor an-

alyzers

D.1 multiple �

D.1.1 Non-Causal

From equation (33) we have

106

)
NP
i=1

1+�
2 hij

�
�1j
�0j

� 1+�
2 R

P
1+�
2

�
��11j xiz

0
i � ��11j �1jziz0i

�
p(zi)dzi

KP
j=1

hij

�
�1j
�0j

� 1+�
2 R

P
1+�
2 p(zi)dzi

= 0

)
NP
i=1

1+�
2 hij

�
�1j
�0j

� 1+�
2
bj(2�)

� d
2 j�j j�

1
2

R
e�

1
2
(zi��jA0j)0�

�1
j (zi��jA0j)

�
��11j xiz

0
i � ��11j �1jziz0i

�
dzi

KP
j=1

hij

�
�1j
�0j

� 1+�
2
bj(2�)

� d
2 j�j j�

1
2

R
e�

1
2
(zi��jA0j)0�

�1
j (zi��jA0j)dzi

= 0

)
NP
i=1

1+�
2 hij

�
�1j
�0j

� 1+�
2
bj(�

�1
1 xiE[z

0
i]� ��11 �1E[ziz0i])

KP
j=1

hij

�
�1j
�0j

� 1+�
2
bj

= 0

)
NP
i=1

hij

�
�1j
�0j

� 1+�
2
bj(xiE[z

0
i]� �1E[ziz0i])

KP
j=1

hij

�
�1j
�0j

� 1+�
2
bj

= 0

)
NP
i=1
h0ij(xiE[z

0
i]� �1jE[ziz0i]) = 0

assume

h0ij =
hij

�
�j;1
�j;0

� 1+�
2
bj

KP
j=1

hij

�
�j;1
�j;0

� 1+�
2
bj

1 =
KP
j=1

h0ij

so the update equation for �1j is

�1j =
NP
j=1

h0ijxiE[z
0
i]

NP
j=1

h0ijE[ziz
0
i]

!�1
From equation (34) we have

107

)
NP
i=1

1
2
1+�
2 hij

�
�1j
�0j

� 1+�
2 R

P
1+�
2 �

�
�1j � xix0i + xiz0i�01j + �1jzix0i � �1jziz0i�01j

�
� p(zi)dzi

KP
j=1

hij

�
�1j
�0j

� 1+�
2 R

P
1+�
2 � p(zi)dzi

)
NP
i=1

hij

�
�1j
�0j

� 1+�
2
bj

�
�1j � xix0i + xiE[z0i]�01j + �1jE[zi]x0i � �1jE[ziz0i]�01j

�
KP
j=1

hij

�
�1j
�0j

� 1+�
2
bj

= 0

)
NP
i=1
h0ij(�1j � xix0i + xiE[z0i]�01j + �1jE[zi]x0i � �1jE[ziz0i]�01j) = 0

)
NP
i=1
h0ij�1j �

NP
i=1
h0ijxix

0
i +

NP
i=1
h0ijxiE[z

0
i]�

0
1j +

NP
i=1
h0ij�1jE[zi]x

0
i �

NP
i=1
h0ij�1jE[ziz

0
i]�

0
1j = 0

we know

�1j =
NP
i=1
h0ijxiE[z

0
i]

�
NP
i=1
h0ijE[ziz

0
i]

��1
�01j =

�
NP
i=1
h0ijE[ziz

0
i]

��1 NP
i=1
h0ijE[zi]x

0
i

so we get

)
NP
i=1
h0ij�1j �

NP
i=1
h0ijxix

0
i +

NP
i=1
h0ijxiE[z

0
i]�

0
1j +

NP
i=1
h0ij�1jE[zi]x

0
i �

NP
i=1
�1jh

0
ijE[zi]x

0
i = 0

)
NP
i=1
h0ij�1j �

NP
i=1
h0ijxix

0
i +

NP
i=1
h0ijxiE[z

0
i]�

0
1 = 0

) �1j
NP
i=1
h0ij =

NP
i=1
h0ijxix

0
i �

NP
i=1
h0ijxiE[z

0
i]�

0
1

and the update equation for �1j is

�1j =

�
NP
i=1
h0ijxix

0
i �

NP
i=1
h0ijxiE[z

0
i]�

0
1

��
NP
i=1
h0ij

��1
From equation (38) and (39) we have

@Q(�)

@�1j
=
@S(�)

@�1j
=

NP
i=1

@W
(�)
i

@�1j

W
(�)
i

S(�)

108

where
@W

(�)
i

@�1j
= hij

�
�1j
�0j

� 1+�
2

E

�
P

1+�
2

�
��11j

then

@Q(�)

@�1j
+ � = 0)

NP
i=1

hij

�
�1j
�0j

� 1+�
2
E

�
P

1+�
2

�
��11j

W
(�)
i

S(�) + � = 0

)
NP
i=1
h0ij�

�1
1j S

(�) + � = 0

) �1j = �

NP
i=1
h0ijS

(�)

�

We know that
KP
j=1

�1j = 1, then

KP
j=1

�

NP
i=1
h0ijS

(�)

�
= 1) � = �NS(�)

so the update equation for �1j is

�1j =
1

N

NP
i=1
h0ij

When �1 < � < 1

bj =

j�1j j�

1
2

j�0j j�
1
2

! 1+�
2

jCj j�
1
2 j�j j

1
2 e�

1
2
x0i�

0
jC

�1
j �jxie

1
2
Aj�jA

0
je�

1
2
1+�
2
x0i(�

�1
1j ��

�1
0j)xi

h0ij =
hij

�
�1j
�0j

� 1+�
2
bj

KP
j=1

hij

�
�1j
�0j

� 1+�
2
bj

=

�jN(xi;�0j�
0
0j+�0j)

KP
j=1

�jN(xi;�0j�00j+�0j)

�
�1j
�0j

� 1+�
2
bj

KP
j=1

�jN(xi;�0j�00j+�0j)
KP
j=1

�jN(xi;�0j�00j+�0j)

�
�1j
�0j

� 1+�
2
bj

=
�jN(xi;�0j�

0
0j +�0)

�
�1j
�0j

� 1+�
2
bj

KP
j=1

�jN(xi;�0j�00j +�0)
�
�1j
�0j

� 1+�
2
bj

109

where

N(xi;�0j�
0
0j +�0j) = (2�)

� p
2

���0j�00j +�0j��� 1
2 e�

1
2
x0i(�0j�00j+�0j)

�1
xi

In order to calculate N(xi;�0j�00j +�0j) � bj we �nd that

jCj j�
1
2 =

����Id + �00j��10 �0j��1���� 1
2
=
��Id + �00j��10 �0j�� 12���0j�00j +�0��� 1

2 =
���0(��10 �0j�00j + I)��� 1

2 = j�0j�
1
2
��(��10 �0j�00j + I)��� 1

2

According to Sylvester�s determinant theorem

��Id + �00j��10 �0j�� = ��(��10 �0j�00j + Ip)��
we get

jCj j�
1
2
���0j�00j +�0��� 1

2 = j�0j�
1
2

Also we �nd that

�0jC
�1
j �j =

�
�0j�

0
0j +�0

��1
�0j

�
Id + �

0
0j�

�1
0 �0j

�
�00j

�
�0j�

0
0j +�0

��1
=

��
�0j�

0
0j +�0

��1
�0j +

�
�0j�

0
0j +�0

��1
�0j�

0
0j�

�1
0 �0j

�
�00j

�
�0j�

0
0j +�0

��1
=

��
�0j�

0
0j +�0

��1
+
�
�0j�

0
0j +�0

��1
�0j�

0
0j�

�1
0

�
�0j�

0
0j

�
�0j�

0
0j +�0

��1
=

��
�0j�

0
0j +�0

��1 �
I + �0j�

0
0j�

�1
0

��
�0j�

0
0j

�
�0j�

0
0j +�0

��1
=

���
�0j�

0
0j�

�1
0 + I

�
�0
��1 �

I + �0j�
0
0j�

�1
0

��
�0j�

0
0j

�
�0j�

0
0j +�0

��1
= ��10 �0j�

0
0j

�
�0j�

0
0j +�0

��1
so

�0jC
�1
j �j +

�
�0j�

0
0j +�0

��1
= ��10 �0j�

0
0j

�
�0j�

0
0j +�0

��1
+��10 �0

�
�0j�

0
0j +�0

��1
= ��10

�
�0j�

0
0j

�
�0j�

0
0j +�0

��1
+�0

�
�0j�

0
0j +�0

��1�
= ��10

110

Therefore

N(xi;�0j�
0
0j+�0j)�bj =

j�1j j�

1
2

j�0j j�
1
2

! 1+�
2

e�
1
2
1+�
2
x0i(�

�1
1j ��

�1
0j)xiN(xi;�0j)j�j j

1
2 e

1
2
Aj�jA

0
j

and

h0ij =

�j;0

�
�1j
�0j

� 1+�
2

�
j�1j j�

1
2

j�0j j�
1
2

� 1+�
2

e�
1
2
1+�
2
x0i(�

�1
1j ��

�1
0j)xiN(xi;�0j)j�j j

1
2 e

1
2
Aj�jA

0
j

KP
j=1

�j;0

�
�1j
�0j

� 1+�
2

�
j�1j j�

1
2

j�0j j�
1
2

� 1+�
2

e�
1
2
1+�
2
x0i(�

�1
1j ��

�1
0j)xiN(xi;�0j)j�j j

1
2 e

1
2
Aj�jA0j

D.1.2 Causal

From equation (33) we have

)
NP
i=1

1+�
2 hij

�
�j;1
�j;0

� 1+�
2 R

P
1+�
2 �

�
��11 xiz

0
i � ��11 �1ziz0i

�
� p(zi)dzi

KP
j=1

hij

�
�j;1
�j;0

� 1+�
2 R

P
1+�
2 � p(zi)dzi

= 0

)
NP
i=1

hij

�
�j;1
�j;0

� 1+�
2 R 1��

2 P (zijxi;��1j ;��1j
�
��11 xiz

0
i � ��11 �1ziz0i

�
dzi

KP
j=1

hij

�
�j;1
�j;0

� 1+�
2 R 1��

2 P (zijxi;��1j ;��1j) +
1+�
2 P (zijxi;�0j ;�0j)dzi

+
hij

�
�j;1
�j;0

� 1+�
2 R 1+�

2 P (zijxi;�0j ;�0j)
�
��11 xiz

0
i � ��11 �1ziz0i

�
dzi

KP
j=1

hij

�
�j;1
�j;0

� 1+�
2 R 1��

2 P (zijxi;��1j ;��1j) +
1+�
2 P (zijxi;�0j ;�0j)dzi

= 0

)
NP
i=1

hij

�
�j;1
�j;0

� 1+�
2
�
1��
2 xiE�1[z

0
i]�

1��
2 �1E�1[ziz

0
i] +

1+�
2 xiE0[z

0
i]�

1+�
2 �1E0[ziz

0
i]
�

KP
j=1

hij

�
�j;1
�j;0

� 1+�
2

= 0

we assume

h0ij =
hij

�
�j;1
�j;0

� 1+�
2

KP
j=1

hij

�
�j;1
�j;0

� 1+�
2

and we get

111

)
NP
i=1
h0ij

�
1� �
2

xiE�1[z
0
i]�

1� �
2

�1E�1[ziz
0
i] +

1 + �

2
xiE0[z

0
i]�

1 + �

2
�1jE0[ziz

0
i]

�
= 0

so the update equation for �1j is

�1j =

1��
2

NP
i=1
h0ijxiE�1[z

0
i] +

1+�
2

NP
i=1
h0ijxiE0[z

0
i]

1��
2

NP
i=1
h0ijE�1[ziz

0
i] +

1+�
2

NP
i=1
h0ijE0[ziz

0
i]

From equation (34) we have

)
NP
i=1

1
2
1+�
2 hij

�
�j;1
�j;0

� 1+�
2 R

P
1+�
2 �

�
�1j � xix0i + xiz0i�01j + �1jzix0i � �1jziz0i�01j

�
� p(zi)dzi

KP
j=1

hij

�
�j;1
�j;0

� 1+�
2 R

P
1+�
2 � p(zi)dzi

= 0

)
NP
i=1

hij

�
�j;1
�j;0

� 1+�
2 R 1��

2 P (zijxi;��1j ;��1j)
�
�1 � xix0i + xiz0i�01j + �1jzix0i � �1jziz0i�01j

�
dzi

KP
j=1

hij

�
�j;1
�j;0

� 1+�
2 R 1��

2 P (zijxi;��1j ;��1j) +
1+�
2 P (zijxi;�0j ;�0j)dzi

+

R 1+�
2 P (zijxi;�0j ;�0j)

�
�1 � xix0i + xiz0i�01j + �1jzix0i � �1jziz0i�01j

�
dzi

KP
j=1

hij

�
�j;1
�j;0

� 1+�
2 R 1��

2 P (zijxi;��1j ;��1j) +
1+�
2 P (zijxi;�0j ;�0j)dzi

= 0

)
NP
i=1

hij

�
�j;1
�j;0

� 1+�
2
�
�1j � xix0i +

1��
2 xiE�1[z

0
i]�

0
1j +

1��
2 �1jE�1[zi]x

0
i �

1��
2 �1jE�1[ziz

0
i]�

0
1j

�
KP
j=1

hij

�
�j;1
�j;0

� 1+�
2

+
hij

�
�j;1
�j;0

� 1+�
2
�
1+�
2 xiE0[z

0
i]�

0
1j +

1+�
2 �1jE0[zi]x

0
i �

1+�
2 �1jE0[ziz

0
i]�

0
1j

�
KP
j=1

hij

�
�j;1
�j;0

� 1+�
2

= 0

we assume

h0ij =
hij

�
�j;1
�j;0

� 1+�
2

KP
j=1

hij

�
�j;1
�j;0

� 1+�
2

112

and we get

)
NP
i=1
h0ij

�
�1j � xix0i +

1� �
2

xiE�1[z
0
i]�

0
1j +

1 + �

2
xiE0[z

0
i]�

0
1j +

1� �
2

�1jE�1[zi]x
0
i

�
+h0ij

�
1 + �

2
�1jE0[zi]x

0
i �

1� �
2

�1jE�1[ziz
0
i]�

0
1j �

1 + �

2
�1jE0[ziz

0
i]�

0
1j

�
= 0

)
NP
i=1
h0ij�1j �

NP
i=1
h0ijxix

0
i

+
1� �
2

NP
i=1
h0ijxiE�1[z

0
i]�

0
1j +

1 + �

2

NP
i=1
h0ijxiE0[z

0
i]�

0
1j +

1� �
2

NP
i=1
h0ij�1jE�1[zi]x

0
i

+
1 + �

2

NP
i=1
h0ij�1jE0[zi]x

0
i �

1� �
2

NP
i=1
h0ij�1jE�1[ziz

0
i]�

0
1j �

1 + �

2

NP
i=1
h0ij�1jE0[ziz

0
i]�

0
1j = 0

)
NP
i=1
h0ij�1j �

NP
i=1
h0ijxix

0
i+

1� �
2

NP
i=1
h0ijxiE�1[z

0
i]�

0
1j +

1 + �

2

NP
i=1
h0ijxiE0[z

0
i]�

0
1j = 0

so the update equation for �1j is

�1j =
1

NP
i=1
h0ij

diag

�
NP
i=1
h0ijxix

0
i �
�
1� �
2

NP
i=1
h0ijxiE�1[z

0
i]�

0
1j +

1 + �

2

NP
i=1
h0ijxiE0[z

0
i]�

0
1j

��

For �0j
�
�1j
�0j

� 1+�
2
we have

�0j

�
�1j
�0j

� 1+�
2

= �0j

�
�1j
�0j

� 1+�
2

= �0j
�1j
�0j

�
�1j
�0j

� 1+�
2
�1

= �1j

�
�1j
�0j

�� 1��
2

� �0j

�
�0j
��1j

�� 1��
2

113

then

�0j

�
�0j
��1j

�� 1��
2

= �0j

�
�0j
��1j

��1� �0j
��1j

�1� 1��
2

= ��1j

�
�0j
��1j

� 1+�
2

� ��1j

�
1 +

1 + �

2

�
�0j
��1j

� 1
��

= ��1j

�
1� �
2

+
1 + �

2

�0j
��1j

�
=

1� �
2

��1j +
1 + �

2
�0j

So we have

�0j

�
�1j
�0j

� 1+�
2

� 1� �
2

��1j +
1 + �

2
�0j

and

h0ij =
N0j�0j

�
�1j
�0j

� 1+�
2

KP
j=1

N0j�0j

�
�1j
�0j

� 1+�
2

�
N0j

�
1��
2 ��1j +

1+�
2 �0j

�
KP
j=1

N0j

�
1��
2 ��1j +

1+�
2 �0j

�
D.2 single �

D.2.1 Non-Causal

From equation (34) we have

114

)
NP
i=1

1
2
1+�
2

KP
j=1

hij

�
�1j
�0j

� 1+�
2 R

P
1+�
2 �

�
�1 � xix0i + xiz0i�01j + �1jzix0i � �1jziz0i�01j

�
� p(zi)dzi

KP
j=1

hij

�
�1j
�0j

� 1+�
2 R

P
1+�
2 � p(zi)dzi

= 0

)
NP
i=1

KP
j=1

hij

�
�1j
�0j

� 1+�
2
b0j

�
�1 � xix0i + xiE[z0i]�01j + �1jE[zi]x0i � �1jE[ziz0i]�01j

�
KP
j=1

hij

�
�1j
�0j

� 1+�
2
b0j

= 0

)
NP
i=1

KP
j=1

h0ij(�1 � xix0i + xiE[z0i]�01j + �1jE[zi]x0i � �1jE[ziz0i]�01j) = 0

)
NP
i=1

KP
j=1

h0ij�1 �
NP
i=1

KP
j=1

h0ijxix
0
i +

NP
i=1

KP
j=1

h0ijxiE[z
0
i]�

0
1j

+
NP
i=1

KP
j=1

h0ij�1jE[zi]x
0
i �

NP
i=1

KP
j=1

h0ij�1jE[ziz
0
i]�

0
1j

we know

�1j =
NP
i=1
h0ijxiE[z

0
i]

�
NP
i=1
h0ijE[ziz

0
i]

��1
�01j =

�
NP
i=1
h0ijE[ziz

0
i]

��1 NP
i=1
h0ijE[zi]x

0
i

so we get

)
NP
i=1

KP
j=1

h0ij�1 �
NP
i=1

KP
j=1

h0ijxix
0
i +

NP
i=1

KP
j=1

h0ijxiE[z
0
i]�

0
1j = 0

and the update equation for �1 is

�1 =
1

N
diag

NP
i=1
xix

0
i �

NP
i=1

KP
j=1

h0ijxiE[z
0
i]�

0
1j

!

D.2.2 Causal

From equation (34) we have q

)
NP
i=1

1
2
1+�
2

KP
j=1

hij

�
�j;1
�j;0

� 1+�
2 R

P
1+�
2 �

�
�1 � xix0i + xiz0i�01j + �1jzix0i � �1jziz0i�01j

�
� p(zi)dzi

KP
j=1

hij

�
�j;1
�j;0

� 1+�
2 R

P
1+�
2 � p(zi)dzi

= 0

115

)
NP
i=1

KP
j=1

hij

�
�j;1
�j;0

� 1+�
2 R 1��

2 P (zijxi;��1j ;��1)
�
�1 � xix0i + xiz0i�01j + �1jzix0i � �1jziz0i�01j

�
dzi

KP
j=1

hij

�
�j;1
�j;0

� 1+�
2 R 1��

2 P (zijxi;��1j ;��1j) +
1+�
2 P (zijxi;�0j ;�0j)dzi

+

R 1+�
2 P (zijxi;�0j ;�0)

�
�1 � xix0i + xiz0i�01j + �1jzix0i � �1jziz0i�01j

�
dzi

KP
j=1

hij

�
�j;1
�j;0

� 1+�
2 R 1��

2 P (zijxi;��1j ;��1j) +
1+�
2 P (zijxi;�0j ;�0j)dzi

= 0

)
NP
i=1

KP
j=1

hij

�
�j;1
�j;0

� 1+�
2
�
�1 � xix0i +

1��
2 xiE�1[z

0
i]�

0
1j +

1��
2 �1jE�1[zi]x

0
i �

1��
2 �1jE�1[ziz

0
i]�

0
1j

�
KP
j=1

hij

�
�j;1
�j;0

� 1+�
2

+

KP
j=1

hij

�
�j;1
�j;0

� 1+�
2
�
1+�
2 xiE0[z

0
i]�

0
1j +

1+�
2 �1jE0[zi]x

0
i �

1+�
2 �1jE0[ziz

0
i]�

0
1j

�
KP
j=1

hij

�
�j;1
�j;0

� 1+�
2

= 0

)
NP
i=1

KP
j=1

h0ij

�
�1 � xix0i +

1� �
2

xiE�1[z
0
i]�

0
1j +

1� �
2

�1jE�1[zi]x
0
i �

1� �
2

�1jE�1[ziz
0
i]�

0
1j

�
+

KP
j=1

h0ij

�
1 + �

2
xiE0[z

0
i]�

0
1j +

1 + �

2
�1jE0[zi]x

0
i �

1 + �

2
�1jE0[ziz

0
i]�

0
1j

�
= 0

)
NP
i=1

KP
j=1

h0ij�1 �
NP
i=1

KP
j=1

h0ijxix
0
i +

1� �
2

NP
i=1

KP
j=1

h0ijxiE�1[z
0
i]�

0
1j +

1 + �

2

NP
i=1

KP
j=1

h0ijxiE0[z
0
i]�

0
1j

+
1� �
2

NP
i=1

KP
j=1

h0ij�1jE�1[zi]x
0
i +

1 + �

2

NP
i=1

KP
j=1

h0ij�1jE0[zi]x
0
i

�1� �
2

NP
i=1

KP
j=1

h0ij�1jE�1[ziz
0
i]�

0
1j �

1 + �

2

NP
i=1

KP
j=1

h0ij�1jE0[ziz
0
i]�

0
1j = 0

) N�1 �
NP
i=1
xix

0
i +

1� �
2

NP
i=1

KP
j=1

h0ijxiE�1[z
0
i]�

0
1j +

1 + �

2

NP
i=1

KP
j=1

h0ijxiE0[z
0
i]�

0
1j

+
1� �
2

NP
i=1

KP
j=1

h0ij�1jE�1[zi]x
0
i +

1 + �

2

NP
i=1

KP
j=1

h0ij�1jE0[zi]x
0
i

�1� �
2

NP
i=1

KP
j=1

h0ij�1jE�1[ziz
0
i]�

0
1j �

1 + �

2

NP
i=1

KP
j=1

h0ij�1jE0[ziz
0
i]�

0
1j = 0

116

) N�1 �
NP
i=1
xix

0
i +

1� �
2

NP
i=1

KP
j=1

h0ijxiE�1[z
0
i]�

0
1j +

1 + �

2

NP
i=1

KP
j=1

h0ijxiE0[z
0
i]�

0
1j = 0

so the update equation for �1 is

�1 =
1

N
diag

NP
i=1
xix

0
i �

1� �
2

NP
i=1

KP
j=1

h0ijxiE�1[z
0
i]�

0
1j +

1 + �

2

NP
i=1

KP
j=1

h0ijxiE0[z
0
i]�

0
1j

!!

When � = 1(� = �1) the update euqations are

�1j =

�
NP
i=1
h0ijxiE0[z

0
i]

��
NP
i=1
h0ijE0[ziz

0
i]

��1
�1 =

1

N
diag

NP
i=1
xix

0
i �

NP
i=1

KP
j=1

h0ijxiE0[z
0
i]

!
�01j

!

where

h0ij =
�0jN0j
KP
j=1

�0jN0j

We have E0[z0i] = x
0
i�0j and E0[ziz

0
i] = C

�1
0j + �0jxix

0
i�
0
0j then

�1j =

�
NP
i=1
h0ijxix

0
i�0j

��
NP
i=1
h0ij

�
C�10j + �0jxix

0
i�
0
0j

���1
�1 =

1

N
diag

NP
i=1
xix

0
i �

NP
i=1

KP
j=1

h0ijxix
0
i�0j�

0
1j

!

where

C�10j = Id � �00j(�0j + �0j�00j)�1�0j

�0j = �00j(�0j + �0j�
0
0j)

�1

117

therefore

�1j =

�
NP
i=1
h0ijxix

0
i�
0
0j

��
NP
i=1
h0ij
�
Id � �0j�0j + �0jxix0i�00j

���1

=

NP
i=1
h0ijxix

0
i�
0
0j

NP
i=1
h0ij
�
Id � �0j�0j + �0jxix0i�00j

�

=

NP
i=1
h0ijxix

0
i�
0
0j

NP
i=1
h0ijId �

NP
i=1
h0ij�0j�0j +

NP
i=1
h0ij�0jxix

0
i�
0
0j

=

NP
i=1
h0ijxix

0
i�
0
0j

Id
NP
i=1
h0ij � �0j�0j

NP
i=1
h0ij +

NP
i=1
h0ij�0jxix

0
i�
0
0j

=

NP
i=1
h0ijxix

0
i�
0
0j

�
NP
i=1
h0ij

��1
Id � �0j�0j +

NP
i=1
h0ij�0jxix

0
i�
0
0j

�
NP
i=1
h0ij

��1

=

NP
i=1
h0ijxix

0
i

�
NP
i=1
h0ij

��1
�00j

Id � �0j�0j + �0j
NP
i=1
h0ijxix

0
i

�
NP
i=1
h0ij

��1
�00j

�1 =
1

N
diag

NP
i=1
xix

0
i �

NP
i=1

KP
j=1

h0ijxix
0
i�0j�

0
1j

!

= diag

C � 1

N

NP
i=1

KP
j=1

h0ijxix
0
i�0j�

0
1j

!

= diag

C � 1

N

KP
j=1

NP
i=1
h0ijxix

0
i�0j�

0
1j

!

= diag

0BBB@C � KP
j=1

NP
i=1
h0ijxix

0
i

N
�0j�

0
1j

1CCCA
The above update equations are the same with Ghahramani and Hinton [51].

118

E Appendix: Gradient of �-log-likelihood function

The derivatives of f are given by

@f

@�
= L

1+�
2
@l

@�

where

l = �N
2

�
p log 2� + log j�j+ trS��1

�
and

� = �+ �	�T

For �

@l

@�
= �N

2

�
@ log j�j
@�

+
@trS��1

@�

�
= �N

2

�
@ log j�j
@�

@�

@�
+
@trS��1

@�

@�

@�

�
= �N

2

�
2��1�	� 2��1S��1�	

�
= N(��1S��1�	� ��1�)

= N(��1S��1 � ��1)�	

= N��1(S � �)��1�	

For �

@l

@�
= �N

2

�
@ log j�j
@�

+
@trS��1

@�

�
= �N

2

�
@ log j�j
@�

@�

@�
+
@trS��1

@�

@�

@�

�
= �N

2

�
��1 � ��1S��1

�
=

N

2
diag[��1(S � �)��1]

119

For 	

@l

@	
= �N

2

�
@ log j�j
@	

+
@trS��1

@	

�
= �N

2

�
@ log j�j
@�

@�

@	
+
@trS��1

@�

@�

@	

�
= �N

2

�
�T��1�� �T��1S��1�

�
=

N

2
�T��1(S � �)��1�

120

	Introduction
	Models Description and Estimation Methods Review
	Factor Model
	Mixture of Factor Models
	Maximum Likelihood estimators
	Log-EM Algorithm
	0=x"010B-EM Algorithm
	Conjugate Gradient Method
	Band Fraction Representation (Model)
	Semiseparable Factorization (Method)
	Factor Model Estimation By Using The 0=x"010B-EM Algorithm
	Non-Causal Update Equations
	Causal update equations
	Causal approximation
	Series Expansion

	Empirical Results
	Factor analysis from complete observations
	Factor analysis on financial data

	Concluding Remarks

	The 0=x"010B-EM Algorithm for Mixture of Factor Models
	Non-Causal Update Equations
	Causal update equations
	Causal approximation
	Series Expansion
	Comparison of single and multiple
	Empirical Results
	Mixture of factor models on artificial data (k = 2)
	Mixture of factor models on financial data (k = 3)

	Concluding Remarks

	Conjugate Gradient Acceleration of the 0=x"010B-EM Algorithm
	Model Description
	Empirical Results
	Accelerated 0=x"010B-EM on artificial data
	Accelerated 0=x"010B-EM on financial data

	Concluding Remarks

	Band Fraction Representation
	Semiseparability rank 2 and bandwidth 2
	Semiseparability rank 3 and bandwidth 3
	Semiseparability rank d and bandwidth d
	Empirical Results
	Artificial data
	Low dimension data
	High dimension financial data
	Portfolio Selection

	Concluding Remarks

	Appendix: Conditional distribution of factors
	Appendix: Update equation of factor analysis
	Non-Causal
	Causal
	Appendix: Hellinger distance between two Gaussian
	Appendix: Update equation of mixture of factor analyzers
	multiple
	Non-Causal
	Causal

	single
	Non-Causal
	Causal
	Appendix: Gradient of 0=x"010B-log-likelihood function

