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Abstract of the Dissertation 

Structure-Based Drug Design Targeting HIVgp41 

by 

Lingling Jiang  

Doctor of Philosophy 

in 

Applied Mathematics and Statistics 

(Computational Biology) 

Stony Brook University 

2015 

 

This dissertation presents method development and application of computational procedures 
for structure-based drug design, with a particular focus on the clinical relevant drug target 
HIVgp41. 

Chapter 1 introduces the main computational techniques used in this study, including atomic-
level molecular dynamics simulations, free energy calculations, and molecular docking. The 
importance of targeting HIVgp41, a viral envelope protein involved in viral entry and membrane 
fusion, is also discussed.  In particular, the only FDA approved gp41 inhibitor, a peptide called 
T20, suffers from side effects, expense, and is subject to drug resistance.  Thus, improved 
understanding of the binding mechanisms of T20 is of great interest, which provides the 
motivation for the computational work in this dissertation.  

Chapter 2 describes a newly implemented DOCK scoring function termed pharmacophore 
matching similarity (FMS) score.  By matching pharmacophore features in references, such as 
those in known peptide inhibitors of gp41, FMS score can help guide docking of small molecules 
to yield hits with desired properties.  This new DOCK method, when used alone (FMS) and in 
combination with the standard single grid energy score (FMS+SGE), is validated via pose 
reproduction, crossdocking and enrichment studies with desirable outcomes using large 
molecular docking testsets.   

Chapter 3 presents additional in-depth analyses of the FMS case studies for enrichment, as 
well as post-processing of virtual screening results targeting both the gp41 hydrophobic and 
inner pockets.   

Chapter 4 presents preliminary applications of FMS score for de novo design using small 
(focused) fragment libraries generated for 50 small molecule test cases as well as peptide test 
cases targeting the two gp41 pockets.   
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Chapter 5 reports molecular dynamics simulation and free energy calculation results for T20 in 
complex with gp41 (T20-gp41) to help characterize the biological effects of a series of primary 
and secondary mutations.  Per-residue energetic analyses and structural characterization of end-
point simulations were employed to identify key residues at the T20-gp41 binding interface.  
Importantly, good agreement with experimental activity trends was observed for a series of T20 
analogs with three gp41 variants, using a thermodynamic integration protocol, which further 
supports the atomistic model.   

Chapter 6 summarizes the work presented in the dissertation in terms of scientific impact, 
challenges, and future studies to further aid structure-based drug design targeting HIVgp41.   
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Chapter 1. Introduction 

This Chapter introduces a protein-peptide complex system of interest, HIVgp41-T20, which can 

provide valuable insights in blocking the membrane fusion of an important drug target HIV.  The 

primary computational techniques used in this study include atomic-level molecular dynamics 

simulations and molecular docking. 

 

1.1 Therapeutic Drug Target for HIV-1 Fusion: HIVgp41 

Human immunodeficiency virus (HIV), which causes the life-threatening disease called 

acquired immune deficiency syndrome (AIDS), has resulted in nearly 30 million deaths since the 

first HIV infection was diagnosed in 1981.1  Great efforts have been made to prevent further 

spread of viral infection and thereby control viral load in patients with the condition.  However, 

drug resistance arising from clinical treatment and the existing side effects of many current 

therapeutic strategies all call for continued development of next generation more potent drugs to 

fight the global epidemic.2-5  Work presented in this dissertation applies atomic level 

computational modeling to help reach this important goal. 

Like most viruses in the Retroviridae family, HIV has to invade into a host cell to 

complete viral replication. Targeting different steps of HIV host invasion, the current anti-HIV 

inhibitors can fall into five major categories: fusion and entry inhibitors, nucleotide reverse 

transcriptase inhibitors, non-nucleotide reverse transcriptase inhibitors, protease inhibitors and 

integrase inhibitors which target several stages in the viral life cycle at the same time.  In 

addition, “cocktail” therapy employing combinations of antiretroviral from these categories are 
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designed to block HIV replications. Table 1-1 lists HIV medicines approved by the U.S Food 

and Drug Administration (FDA).6-8  In this study, we are targeting the process of HIV fusion.   

 

Table 1-1. List of HIV inhibitors targeting various steps in viral life cycle.#    
Category/Target Drug (Generic Name) 
Fusion Inhibitor enfuvirtide (T20) 
Entry Inhibitor maraviroc 
Nucleoside Reverse 
Transcriptase Inhibitor 

abacavir, didanosine, emtricitabine, lamivudine, stavudine, tenofovir 
disoproxil, zidovudine 

Non-Nucleoside Reverse 
Transcriptase Inhibitor 

delavirdine, efavirenz, etravirine, nevirapine, rilpivirine 

Protease Inhibitor 
atazanavir, darunavir, fosamprenavir, indinavir, nelfinavir, ritonavir, 
saquinavir, tipranavir 

Integrase Inhibitor dolutegravir, elvitegravir, raltegravir 
Pharmacokinetic Enhancer cobicistat 

Combination Medicines 

abacavir and lamivudine; abacavir, dolutegravir, and lamivudine; 
abacavir, lamivudine, and zidovudine; efavirenz, emtricitabine, and 
tenofovir disoproxil fumarate; elvitegravir, cobicistat, emtricitabine, and 
tenofovir disoproxil fumarate; emtricitabine, rilpivirine, and tenofovir 
disoproxil fumarate; emtricitabine and tenofovir disoproxil fumarate; 
lamivudine and zidovudine; lopinavir and ritonavir 

#Data from AIDSinfo FDA-Approved HIB Medicines Fact Sheet, accessed May 15th , 2015 
 

Prior work has resulted in a model of HIV fusion and entry that can be arranged as four 

distinct steps as shown in Figure 1-1.9-11 Firstly, when HIV approaches a target cell, its envelope 

glycoprotein gp120 will recognize CD4 receptors together with chemokine co-receptors such as 

CCR5 and/or CXCR4, bringing the virus near the host cell (Figure 1-1, top left panel).  Then 

gp120 will go through conformation changes that allows the N-terminal heptad repeat region (N-

HR) of gp41 to expose itself and insert into the host cell while the gp41 C-terminal heptad repeat 

region (C-HR) is still attached to the viral membrane (the prehairpin stage, Figure 1-1, top right 

panel).  In the next step, gp41 will undergo a series of conformational changes that lead to the 

binding of three C-HR helices to N-HR helices, forming a six-helical coiled-coil hairpin termed 



 

 

3 
 

 

the six helix bundle (Figure 1-1, bottom left panel).  This process will bring the viral and native 

cell membranes in close proximity to each other and the two membranes will eventually merge 

and complete viral fusion (post fusion, Figure 1-1, bottom right panel).  Importantly, in the 

prehairpin step, both N-HR and C-HR regions of gp41 are exposed to solvent and can interact 

with a variety of substrates and several inhibitors (both peptides and small molecules) has been 

shown to inhibit viral energy and reduce HIV infections.11,12  The first FDA approved fusion 

inhibitor called enfuvirtide (T20) discussed more in Chapter 5 was originally designed by Jiang 

et al13 to bind to the N-HR in the prehairpin stage in competition with the native viral C-HR.  A 

new inner pocket in the interface within the N-HR helical coil has also been recently identified 

by Allen et al14 in the Rizzo lab, which is also described in Chapter 5.   

 

 

Figure 1-1. HIV fusion can be categorized as four stages: (1) Native pre-entry stage when no interactions 
between the virus and the host cell are observed, (2) pre-hairpin stage, (3) membrane fusion, and (4) post 
fusion.  Figure adapted from Hughson et al.11 
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While clinical use of the peptide drug T20 is reported to successfully reduce viral loads in 

infected patients, the therapy also leads to resistant mutations in both the virus NHR and CHR 

sections.15  As shown in Figure 1-2a, T20 is directly derived from the native C-HR of gp41.  

Thus, any primary resistant mutations that arise and affect T20 will also reduce the affinity 

between the native C-HR and the mutated N-HR helices.  Interestingly, in order to restore fusion 

activity related to the coiled-coil hairpin formation, secondary mutations occurring in the C-HR 

of the “virus” have also been clinically observed.  From a drug design standpoint, a greater 

understanding of the energetic effects of the primary and secondary mutation pair would be 

important.  Figure 1-2a shows a schematic representation of T20 and C34 (another peptide 

inhibitor binding to a highly-reserved hydrophobic pocket in HIVgp41, used later to perform 

reference-based small molecule inhibitor design in Chapter 2 , 3 and 4) in alignment to the N-

HR, C-HR, transmembrane domain (TM), and fusion peptide (FP) of HIVgp41.  

It is important to note that the present HIVgp41-T20 studies employ a computational 

model of the complex as the crystallographic binding pose of T20 is difficult to obtain as the 

binding site of T20 is close to the membrane-associated regions of N-HR.  And solving the 

conformation of the membrane-embedded regions in a protein and model their interaction with 

the lipid bilayers are known to be quite challenging for crystallographers.  Based on sequence 

alignment to known crystal structures (PDB code 1IF3 and 1ENV) of gp41 N-HR bound to other 

peptide inhibitors, a computational model of T20-bound gp41 N-HR complex structure built and 

reported by McGillick et al16 with the FP region modeled as α-helices.17  The amino acid 

sequence of T20 and three N-HR helices in the model are shown in Figure 1-2b.  In the work 

presented in Chapter 5, a series of HIVgp41-T20 complex analogs have been constructed using 

the McGillick model by computationally mutating residue 138 (gp41 sequencing) on T20 and 
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amino acid groups corresponding to residue 38 and 43 (gp41 sequencing) on all three N-HR 

helices, as visualized in Figure 1-2b.  These modified complex analogs structures are used for 

molecular dynamics calculations.   

 

 

Figure 1-2. Modeling the binding of T20 to gp41 NHR. (a) Schematic representation of positional 
relationship of T20, C34, FP, N-HR, C-HR and TM. (b) Linear sequences of T20, C34 and N-HR helices 
and visualization of T20 primary (red arrow) and secondary (orange and blue arrow) mutation sites.  
Charged residues are indicated by “+” and “-“ signs.   

 

In terms of available activities data for the HIVgp41-T20 systems, Izumi et al18 has 

experimentally evaluated the activity (EC50) of a related series of 19 peptides based T20 mutants 

in which serine at residue 138 is replaced by all other natural amino acids except cysteine (Table 

1-2), which represents the “secondary mutations”.  The effects of two primary mutations V38A 
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and N43D relative to the wild-type receptor were also quantified.  The changes in binding 

affinity due to structural variability can provide insight in the structure-activity relationship in 

the HIVgp41-T20 system to model HIV fusion.  In this case, relative binding affinities rather 

than absolute binding affinities are of primary interest.  In Chapter 5, computational binding 

energies for a subset of the complexes listed in Table 1-2 have been evaluated computationally 

for comparison to experimental activities and structural and energetic analyses to characterize the 

origins of T20 affinity and effects of mutations.   

 

Table 1-2. Experimental activities of HIVgp41-T20 complex analogs.  
 Primary Mutations 

Secondary 
Mutations 

HIV WT HIV V38A HIV N43D 
EC50  
(nM) 

EC50  
(nM) 

EC50 
(nM) 

T20S138S   2.4 ± 0.6   23 ± 8.2   49 ± 10 
T20S138A   0.6 ± 0.1  3.6 ± 1.7   3.5 ± 0.9 
T20S138D 210 ± 94 >1000 >1000 
T20S138E 283 ± 80 >1000 >1000 
T20S138F   9.4 ± 2.6 203 ± 89   393 ± 119 
T20S138G   1.3 ± 0.5    65 ± 8.8 141 ± 26 
T20S138H 210 ± 85 >1000 >1000 
T20S138I   0.5 ± 0.1 4.9 ± 2   2.9 ± 0.8 
T20S138K   708 ± 145 >1000 >1000 
T20S138L   0.7 ± 0.1 13 ± 6   2.9 ± 0.7 
T20S138M   0.7 ± 0.2   4.4 ± 0.1   1.7 ± 0.5 
T20S138N 19 ± 4 >1000 >1000 
T20S138P   446 ± 167 >1000 >1000 
T20S138Q   34 ± 11 >1000 >1000 
T20S138R   362 ± 114 >1000 >1000 
T20S138T   0.9 ± 0.2  39 ± 8.5 161 ± 35 
T20S138V   0.4 ± 0.2 31 ± 14    22 ± 3.5 
T20S138W   29 ± 14 >1000 >1000 
T20S138Y 25 ± 9  516 ± 223 >1000 

 

 



 

 

7 
 

 

The ultimate goal of this dissertation is to design new generations of small molecule 

fusion inhibitors targeting HIVgp41 with development and applications of new computational 

structure-based drug design methods including molecular dynamics simulations, molecular 

docking (including de novo design) and pharmacophore-based similarity matching to known 

peptide inhibitors.  The rest of this Chapter outlines the computational tools employed in the 

research with emphasis on molecular dynamics and molecular docking.   

 

1.2 Computational Structure-Based Drug Design 

Continuous advancements in modern drug design techniques are critical to combat drug 

resistance arising from already established therapeutic strategies as well as new emerging 

diseases.  Figure 1-3 outlines a general framework for employing a computational drug design 

pipeline that includes target identification, molecular recognition, lead refinement, clinical trial 

and FDA approval.  Importantly, computational molecular modeling methods can be used to 

determine the interactions between a ligand (often a small molecule) and the binding pocket in 

an identified target (often a protein).19-21  For example, molecular docking with applications to 

virtual screening is a commonly used method to select initial hits, as an alternative to traditional 

experimental high throughput screening (HTS), to help speed up the initial steps in the drug 

design process which can reduce total cost.  Alternatively, de novo design employing target-

ligand interaction profiles can generate drug leads “from scratch”.   

Leads selected from virtual screening or constructed from de novo design will ultimately 

be investigated and future refined to optimized properties.  For example, atomic-level molecular 

dynamics simulations and free energy calculations can be performed to estimate the strength of 

noncovalent binding and assess the binding stability.  Computational methods can also be used in 
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lead refinement by predicting the pharmacokinetic and pharmacodynamic properties of the hits 

including ADME profiles and toxicity.19,22,23  In general, only a few molecules are selected for 

extensive lead refinement and even fewer molecules can pass through the several stages of 

clinical trials and eventually FDA approval.  Reducing the cost is especially important as the 

entire drug design process can take up to 15 years and cost up to 1 billion dollars.24  Successful 

examples in which computational methods were employed in the design of new drugs against 

various target systems include chronic myelogenous leukemia (Imatinib),25 liver cancer 

(Thymitaq),26 influenza (oseltamivir and zanamivir),27-29 and HIV protease (Viracept and 

Aluviran).30-33   

 

 

Figure 1-3. Flow chart of computational structure-based drug design.  Computational techniques used are 
highlighted in blue boxes.   
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As illustrated in Figure 1-4, the goal of the molecular recognition step in drug design is to 

predict ligands with favorable interactions to a given target.  Prior knowledge of both the 

receptor and available active ligands can be used to energetically and structurally predict the 

affinity of an arbitrary candidate ligand.  For receptor-based molecular recognition, common 

methods like molecular mechanics-based energy calculations (discussed in more details later) 

allow physics-based predictions that are comparable to experimental results.  The validated 

computational protocols can then provide more detailed insights into the binding profiles of the 

ligands, techniques such as energy component analyses based on electrostatic and van der Waals 

interactions or water-mediated hydrogen bonding.34  For ligand-based molecular recognition, the 

similarities between known active molecules and candidate molecules can be quantified to guide 

reference-based drug design.  It is hypothesized that drug activity is a function of molecular 

structure.35,36  Thus similar molecules can potentially yield similar activities in binding.  

Pharmacophore modeling can potentially be used for ligand-based recognition.  In this study, we 

will further discuss the use of a pharmacophore-based similarity metric in molecular docking in 

Chapter 2, Chapter 3 and Chapter 4.   
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Figure 1-4. Molecular recognition: identification of ligand with favorable binding affinity to the target 
receptor.   
 

As shown in Figure 1-3, virtual screening and de novo design are two important tools in 

molecular recognition.  Virtual screening is a process of rapidly testing large database of 

commercially available small molecules in silico for biological activities.  Typically, virtual 

screenings are done using molecular docking programs with an efficient scoring function to 

sample ligand binding poses and rank-order the different poses of various molecules in the 

compound database.37  The UCSF ZINC38,39 database is one commonly used freely available 

compound resources for virtual screening.  It provides about 22.7 million purchasable 

compounds as of November 2014 (http://zinc.docking.org/browse/subsets, accessed March 

2015).  In addition, Accelrys ACD40 is a commercially available resource for over 7 million 

unique chemicals with 3D structure information. By rank-ordering sampled poses of molecules 

from these large compound databases, top-scored molecules can be selected for further 

inspection and filtered.  Typically a selected subset of promising leads will be purchased and 

experimentally tested for initial activity.  An alternative way of searching the chemical space for 

drug leads is to design drug-like molecule “from scratch” via de novo design, a technique that 
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uses fragment libraries and construction algorithms.  Both “outside-and-in” and “inside-and-out” 

strategies can be used to either (1) probe the binding site to allocate favorable spots for different 

fragment binding and then link all fragments together to design a complete compound; or (2) 

seed the de novo growth with one component fragment and grow it by adding new fragments to 

fit the binding site energetically and geometrically.41  The resulting compounds can then be 

synthesized and experimentally tested for biological activity.  This study included drug design 

application employing both virtual screen and de novo design in Chapter 3.   

 

1.3 Classical Molecular Mechanics 

All-atom molecular mechanics (MM) method is employed in this study to model 

molecular systems.  A molecule is modeled as a set of atoms with specific topology defined by 

bonds.  Each atom is also considered a particle with assigned radius, point charge and atom type.  

A set of parameters are defined in a certain force field for different atom types to evaluate the 

potential energy of a molecule as shown in Figure 1-5a.42  The potential energy E is function of 

the atomic coordinates, and consists of both the bonded and non-bonded terms as illustrated in 

Figure 1-5b.  The bonded terms compute the sum of bond length (Figure 1-5b (1)), bond angle 

(Figure 1-5b (2)) and torsion angle terms ((Figure 1-5b (3))).  The nonbonded terms describe 

longer-range interactions between atoms that not directly connected by a specific bond and 

compute both the electrostatics (Figure 1-5b (4)) and van der Waals (Figure 1-5b (5)) 

interactions. The functional form of the total potential energy used with the Assisted Model 

Building and Energy Refinement (AMBER) force field described in Chapter 5 is as follows.43,44 
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Here, the bond length and bond angle terms are described by Harmonic functions where 

energetic penalties are assigned to values (ri, θj) that deviate from the corresponding equilibrium 

values (r0, θ0).  And a sinusoidal function is used to describe the torsion term where n is the 

multiplicity parameter and ϒ is the phase factor.  For the nonbonded terms, rij are the distance 

between atom i and j;  Aij and Bij are the van der Waals parameters defined by the well depth and 

radii of the two atoms; qi is the charge of atom i.  In AMBER, 1-4 interactions are usually used 

for both VDW and electrostatic terms to better match experimental measurements.  For atoms in 

the same molecule, only those at least three bonds away are included in the through-space 

interactions calculation.  
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Figure 1-5. Molecular mechanics energy function terms: (1) bond length, (2) bond angle, (3) torsion 
angle, (4) VDW and (5) electrostatics. 

 

To calculate the potential energy of a biological system with the potential energy 

function, the coordinates of the molecules are needed.  In general, accurate initial starting 

structures are essential for molecular modeling studies, especially if the goal is to model protein-

ligand interactions.  Experimental methods including X-ray crystallography, nuclear magnetic 

resonance (NMR) and electron microscopy (EM) are commonly used to determine initial 

coordinates of the systems (usually proteins in bound or apo states).  The Protein Data Bank 

(PDB),45 which includes a total number of 95,375 X-ray crystal structures, 10862 NMR 

structures and 753 EM structures as of March 2015, is an expanding important resource for 

accessing experimental structures of proteins and other biomolecules.   
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1.4 Molecular Dynamics and Free Energy Calculations 

Molecular Dynamics. Molecular dynamics (MD) is a method to simulate the motions of 

a biological system.46  Derived from the potential energy of interaction within the molecular 

system, we can calculate the forces of particles in the molecules and mimic the dynamics of the 

system.  As shown in Figure 1-6, the classical Newtonian equations of motion are employed for 

atomic-level MD simulations.  Starting from an initial conformation (X(t0)), initial velocities are 

assigned for all atoms of the molecule at time step t0.  And the forces on the atoms F are 

calculated by taking the first derivatives of the potential energy E with respect to atomic 

coordinates X.  Next, the acceleration a of each atom is computed using Newton’s Law as a=F/m 

where m is the atomic mass. With a pre-determined time step ∆t, the atomic coordinates for the 

next time step t1 = t0+ ∆t is updated via X
t� = ∬ 67 89�.  The velocities of all atoms are also 

updated at each time step with intervals of dynamical relaxation to avoid “hotspot” in the system.  

Iterations of these calculations will update the three dimensional coordinates of a molecular 

system as a function of time. The performance and motions of a molecular dynamics (MD) 

simulation depends on the force field used in the molecular mechanics model.  The physics-

based MD simulations can potentially mimic the motions in the protein-ligand systems and 

provide energetic and structural insights of the system of interest.   
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Figure 1-6. Molecular dynamics: updating 3D coordinates of atoms in the molecular system 

 

There are many software packages for performing molecular dynamics simulation such 

as AMBER,47-49 CHARMM,50 GROMOS,51 GROMACS,52,53  and NAMD.54  Parallel computing 

tools including Message Passing Interface (MPI) and GPU CUDA are usually employed to run 

the simulations in parallel and yield higher simulation speed.  In this study, molecular dynamics 

simulations are performed in AMBER with both MPI and CUDA. 55,56  

 

Free energy calculations. In order to estimate the relative binding free energies 

associated with conformational or compositional changes of a molecular system, such as the 

mutational effects in HIVgp41-T20 system introduced above, a variety of computational 

procedures based on a series of conformations sampled with methods such as MD simulations 

has been devised.57  While in theory independent sampling of the two endstate-configurations 

associated with the mutation of interest can be performed to yield relative binding affinity.  In 
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practice, MD simulations on the nanosecond timescale with the current computational power 

might not be sufficient for accurate evaluations.  One key method, termed thermodynamics 

integration (TI),58 is a procedure to simulate nonphysical transformations between endstate 

configurations and evaluate energy differences of two similar molecular systems such as shown 

in Figure 1-7.  By gradually transforming with small intermediate steps, such ensemble sampling 

techniques will converge more quickly for reasonable energetic measurements.57  Here, ligand 

ligA is alchemically transformed to ligB in a series of coupled simulations with a transformation 

parameter λ varying from 0 to 1.  For each intermediate λ window (in the dashed box in Figure 

1-7a), the dynamics of the coupled system is determined by potential energy and force calculated 

as weighted average of the two endstate systems (physical systems corresponding to ligA and 

ligB).  The closer λ is to 0, the more similar the mixed system is to the endstate system defined by 

λ=0, and vice versus. As virtually illustrated in Figure 1-7a, through the transparence of the 

ligand: the ligand in blue denotes ligA when λ=0 and the ligand in red denotes ligB when λ=1.  

Typically, linear mixing energy functions can be used.  In AMBER11,47 a soft-core potential 

function is employed to address singularity problems for TI simulations close to the endstate 

when λ=0 and λ=1.  Detailed discussion will be provided in Chapter 5.  

The value of the derivative of potential energy differences V with respect to λ (dV/dλ) is 

evaluated for each snapshot in the TI simulation at each.  The ensemble averaged dV/dλ value 

for each λ window between 0 and 1 is plot as a function of λ as shown in Figure 1-7b by 

connecting disjoint (λ, dV/dλ) points to approximate the continuous dV/dλ function.  The value 

of dV/dλ curve at λ=0 and λ=1 are usually not directed calculated using the TI method but 

instead estimated by extending the curve based on function values near the edges (dashed section 

of the curve in Figure 1-7b). The signed area under the dV/dλ curve between λ=0 and λ=1 is 
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reported as the total transformation energy.  In principle, alchemical transformation using TI, if 

done in a well-controlled and converged way with a reasonable partition for the intermediate 

states, can yield a relatively accurate energy.  The coupled simulations can gradually sample in 

the energy landscape between the two physical states and also implicitly include the entropy 

term.  In general, the two physical states being simulated are made to be similar to each other to 

obtain well-behaved molecular dynamics simulations and improve the accuracy and convergence 

of the energy measurements. 

 

 

Figure 1-7. Evaluating transformation energy using thermodynamic integration method. (a) Coupled 
systems in different λ windows. (b) Theoretic dV/dλ curve for transformation energy evaluation. 
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In this study, we are particularly interested in computing the relative binding energy 

between two ligands to the same receptor.  Thermodynamic integration molecular dynamics 

(TIMD) simulations are performed for calculating transformation energies from one ligand to 

another in both the bound and the unbound states.  The relative binding energy can then be 

derived from the transformation energies as shown in Figure 1-8.  The relative binding energy 

between ligand A and ligand B ∆Gbind,B- ∆Gbind,A is equivalent to the difference in transformation 

energy of ligand A to ligand B in the binding site and in the solvent alone ∆Gtrans,com- ∆Gtrans,lig. 

 

 

Figure 1-8. Thermodynamic cycle for relative binding energy calculation between two ligands LigA and 
LigB with a receptor (Rec) to form a complex (Com). The cycle depicted equates the experimental relative 
binding energy with the difference in transforming one of the two ligands to another in the bound and 
unbound state using TI.  

 

For each individual TI transformation, the combining energy function (mixing function) 

V to evaluate the potential energy of the coupled systems can be linear, polynomial, or any other 

reasonable form.  It is found that linear mixing function for thermodynamic integration method 
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can cause the endpoint singularity problem58 when the repulsive Lennard Jones term results in a 

large potential fluctuation as a result of clashing between solvent molecules and a disappearing 

atom in the solute.  Thus we employed the soft-core potential mixing function implemented in 

AMBER since version AMBER11 to address this problem.58  It allows the van der Waals term 

(Eq. 1-2, 1-3) and electrostatic term (Eq. 1-4, 1-5) being evaluated at the same time in one 

transformation step. 

:;<	,����>>��	���,?�@ = 4B
1 − C� D +
)EFGHIJKL MN0O − +EFGHIJKL MNP                                                       (1-2) 

:;Q,�>>��	���,?�@ = 4BC D +
)E
+RF�GHIJKL MN0O − +E
+RF�GHIJKL MNP                                                          (1-3) 

:;<,����>>��	���,���S = 
1 − C� TJTKUVW<XYFG	JKO                                                                               (1-4) 

:;Q,�>>��	���,���S = C TJTKUVW<XY
+RF�G	JKO                                                                                       (1-5) 

 

1.5 Molecular Docking 

Fundamentally different from molecular dynamics, molecular docking is a 

conformational search method to predict individual snapshots of ligand binding poses.  It has 

been historically described as a lock-and-key problem (Emil Fischer, 1894) in molecular 

recognition.  Docking programs such as DOCK,59-61 Surflex,62 FlexX,63 AutoDOCK,64,65 Glide,66 
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FRED,67 ICM,68 and GOLD69 are widely used to reproduce crystallographic binding poses and 

perform virtual screening to identify ligands with favorable binding poses to a specific target.  

 

 

Figure 1-9. (a) DOCK anchor-and-grow algorithm. (b) Docking to grid. 
 

Specifically for DOCK, it is designed to accomplish two major tasks: sampling and 

scoring. An on-the-fly algorithm termed anchor-and-grow was introduced in DOCK4.0 to 

sample ligand conformations in the binding site of a rigid receptor.  As shown in Figure 1-9a, 

DOCK explores the ligand binding conformational space by first disassembles the small 

molecule ligand into rigid segments based on rotatable bonds.  An anchor (as highlighted in the 

red box) is selected and then the rest of the fragments in the ligand will be added back at the 

connection points where the rotatable bonds were broken up previously.  The growth processes 

are done layer by layer from the initial anchor.  At each layer, the torsion angles of each added 

segment will be sampled.  The set of partially grown molecules with varies conformations will 

be minimized, clustered and rank-ordered for pruning.  To speed up the energy calculations 
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during sampling, a receptor grid (shown as blue grid lines) can be pre-generated with atom 

probes (Figure 1-9b), which is particularly useful in virtual screening when millions of ligands 

are docked into the same receptor. 70   

Scoring in DOCK is performed using different scoring functions to guide sampling and 

rank-ordering of ligand poses.  Table 1-3 listed some of the more commonly used scoring 

functions currently available in DOCK.  One category of scoring functions is force field-based 

scores such as grid energy score.  The interaction energy of the ligand is evaluated on the pre-

computed receptor grid and used to guide ligand growth by prioritize partially grown molecules 

in terms of geometric and chemical fitting to the binding pocket as well as rank-order complete 

ligand poses at the end of the docking event.  With DOCK6.5, Balius et al introduced a per-

residue energy decomposition method (footprint) to evaluate similarity of docked ligand pose to 

a reference active pose.71,72  The footpint-based metric was shown to boost docking reproduction 

success rate and has been applied to select lead molecules in virtual screening.72  In this study, 

we have implemented a new pharmacophore-based similarity metric as a DOCK scoring 

function. Further definition and application of the method are described in Chapter 2 and 3.   

 

Table 1-3. Commonly used scoring functions in DOCK  
Scoring Function Definition Version 
contact score73 Summation of heavy atom contact DOCK3.0 
grid energy score70 Non-bonded MM FF terms calculated on the grid DOCK3.0 
continuous energy score Non-bonded MM FF terms calculated in Cartesian space DOCK3.0 
Zou GB/SA score74-76 Fast algorithm for ligand binding affinity calculations DOCK5 
Hawkins GB/SA score77,78 MM-GBSA energy  DOCK6.0 
AMBER score79 MM-GBSA energy calculated with AMBER force field DOCK6.0 
footprint similarity score71 Similarity of per-residue decomposition to a reference  DOCK6.5 
multigrid FPS score80 Footprint similarity measured in multiple grids DOCK6.6 
SASA score The percentage exposure of a ligand DOCK6.6 
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1.6 Research Projects 

This dissertation describes several research projects in both method development of 

structure-based drug design and application to potential clinical targets including HIVgp41 

employing prior biochemical information of the target systems. Chapter 2 describes the 

implementation of a pharmacophore-based scoring function termed Pharmacophore Matching 

Similarity (FMS) in DOCK6 with validation using pose reproduction, crossdocking and 

enrichment study.  Applications of FMS score in virtual screening and de novo design targeting 

the HIVgp41 hydrophobic and inner pocket are reported in Chapter 3 and Chapter 4.  Chapter 5 

reports the relative free energy calculation results in HIVgp41-T20 complex systems using 

thermodynamic integration method as well as per-residue energetic and structural analyses to 

characterize the binding profile of peptide fusion inhibitor T20.  Chapter 6 discusses the 

scientific impact of this study, challenges encountered in each project, and future directions are 

presented. Appendix A documents the protocol, sample runs and parameter definitions 

associated with FMS code to be released in the next release of DOCK (DOCK6.8).  Appendix B 

documents the procedure of generating pharmacophore models for visual inspection in Chimera.  

Appendix C documents an initial system preparation procedure using CHARMM-GUI lipid 

builder81 and MD simulation protocols of membrane-bounded systems using pmemd.cuda in 

AMBER14.   
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Chapter 2. Pharmacophore-Based Similarity Scoring Method for 

DOCK 

This Chapter has been published as Jiang, L.; Rizzo, R. C. Pharmacophore-Based Similarity 

Scoring for DOCK. J. Phys. Chem. B, 2015, 119(3), 1083-1102. Copyright © 2014 American 

Chemical Society.  DOI: 10.1021/jp506555w  PMID: 25229837 

 

Author contributions. LJ and RCR designed research; LJ performed research, analyzed data, and 

wrote initial draft; LJ and RCR wrote the paper. 

 

Abstract 

Pharmacophore modeling incorporates geometric and chemical features of known 

inhibitors and/or targeted binding sites to rationally identify and design new drug leads.  In this 

study, we have encoded a three-dimensional pharmacophore matching similarity (FMS) scoring 

function into the structure-based design program DOCK.  Validation and characterization of the 

method are presented through pose reproduction, crossdocking, and enrichment studies.  When 

used alone, FMS scoring dramatically improves pose reproduction success to 93.5% (~20% 

increase) and reduces sampling failures to 3.7% (~6% drop) compared to the standard energy 

score (SGE) across 1043 protein-ligand complexes.  The combined FMS+SGE function further 

improves success to 98.3%.  Crossdocking experiments using FMS and FMS+SGE scoring, for 

six diverse protein families, similarly showed improvements in success, provided proper 

pharmacophore references are employed.  For enrichment, incorporating pharmacophores during 

sampling and scoring, in most cases, also yield improved outcomes when docking and rank-
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ordering libraries of known actives and decoys to 15 systems.  Retrospective analyses of virtual 

screenings to three clinical drug targets (EGFR, IGF-1R, and HIVgp41) using x-ray structures of 

known inhibitors as pharmacophore references are also reported, including a customized FMS 

scoring protocol to bias on selected regions in the reference.  Overall, the results and 

fundamental insights gained from this study should benefit the docking community in general, 

particularly researchers using the new FMS method to guide computational drug discovery with 

DOCK. 

2.1 Introduction 

Many docking and virtual screening programs, such as DOCK,60,82 employ 

intermolecular interaction energy functions that contain non-bonded van der Waals and 

electrostatic terms to rank-order (i.e. score) small molecule binding geometries (poses) generated 

in the context of a defined protein binding site.  Other physically reasonable scoring terms such 

as intermolecular hydrogen-bonding, ligand desolvation, numbers of ligand rotatable bonds, 

buried surface area, among others, have also been explored.83  In all cases, the objective is to 

enrich for ligands with good geometric and chemical compatibility with the target so that 

promising drug-like leads can be identified.19-21  Recently, Balius et al71,80 reported a new DOCK 

scoring method termed footprint similarity score which can be used to identify compounds that 

match a specific molecular interaction energy pattern (i.e. footprint) based on a known reference 

ligand.  Encouraged by the recent successes72,84 from our laboratory, in which "footprints" were 

used to identify promising lead compounds, we have developed an analogous similarity-based 

scoring method for DOCK that employs "pharmacophores".  Both methods yield enhanced 

docking outcomes but do so in an orthogonal sense (energy vs. geometry).   
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Historically, the concept of a pharmacophore is generally attributed to Ehrilich,85,86 and 

has evolved to include the three dimensional spatial arrangements of key chemical features 

essential for compound affinity leading to a biological effect.87,88  A thorough summary of the 

development of pharmacophores and early works on modeling can be found in a recent 

publication by Güner et al.87  Reviews by Leach et al,89 Yang,90 and Sanders et al91 also discuss 

technological advances and challenges of using different pharmacophore methods in modern 

drug discovery.  In practice, pharmacophore features can be derived from known active 

ligand(s), a defined binding site geometry, or a combination of both.  Importantly, the abundance 

of atomic-resolution structures publically available in the protein data bank (PDB)45 can be used 

to derive pharmacophore models for compounds with verified experimental activity to help guide 

structure-based drug design.  A partial list of programs that incorporate pharmacophore modeling 

includes CATALYST,92 GASP,93 LigandScout,94 PHASE,95 GALAHAD,96 PhDOCK,97,98 and 

MOE,99 among others.  While such prior efforts are important tools and represent different 

approaches for modeling, the goal of the present work is to provide a pharmacophore method 

that can leverage DOCK's powerful anchor-and-grow sampling strategy while taking advantage 

of different combinations of scoring functions.   

The new DOCK pharmacophore scoring protocol termed Pharmacophore Matching 

Similarity (FMS) encodes useful chemical features including hydrogen bond acceptors/donors, 

hydrophobic groups, positively/negatively charged groups, and aromatic/non-aromatic rings.  

Initial pharmacophore types are generated based on atom type and chemical environment, 

defined by neighboring atoms in the same ligand molecule, and are processed to create a 

pharmacophore feature set (ph4 model) with coordinates and directionality as shown in Figure 2-

1 for three representative drug-like compounds.  Importantly, the amount of overlap (termed 
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FMS score) between a user-supplied reference ligand pharmacophore and candidate 

pharmacophores derived from docked compounds can be computed on-the-fly during docking 

(or rescoring) without the need for a separate pre-processing step.  This enables large virtual 

screening libraries to be sorted (i.e. rank-ordered) with the function in an efficient manner.   

 

 

Figure 2-1. 2D representations for three approved drugs (top) and corresponding DOCK pharmacophore 
(ph4) models (bottom).  Features include: (i) hydrogen bond acceptor in red, (ii) hydrogen bond donor in 
blue (iii) hydrophobic atom/group in cyan, (iv) aromatic ring center and direction in orange, (v) non-
aromatic ring center and direction in yellow, (vi) negatively charged group center in green, and (vii) 
positively charged group center in magenta.  Structures of nevirapine, erlotinib, and zanamivir from PDB 
codes 1VRT, 1M17, and 1A4G, respectively.   

 

Specific validation tests used in this work to evaluate the new scoring protocol include 

pose reproduction, crossdocking, and enrichment.  All FMS results are compared relative to 

using the standard DOCK single grid energy (SGE) approach, as well as a combined scoring 

function (FMS+SGE) consisting of both terms.  In pose reproduction, crystallographic ligand 

positions are used as a reference to test if a given method is capable of reproducing native-like 

poses (within 2 Å of the x-ray pose) using the large SB2012 validation database (update of 

SB2010)100 developed in our laboratory.  In crossdocking, select protein families from SB2012 
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(based on high sequence homology), are employed to evaluate docking accuracy across an NxN 

matrix when all ligands from a family are docked to each individual receptor.  In enrichment, 

active ligands and accompanying decoy compounds taken from the DUD-E101 database are 

docked to 15 different targets to assess the ability of the new scoring schemes to correctly rank-

order active ligands earlier than decoys.  Finally, retrospective analyses of three virtual screens to 

targets of pharmaceutical interest (EGFR, IGF-1R, and HIVgp41) are shown in which FMS-

based scoring (FMS and FMS+SGE) was used as a data-mining tool to identify compounds with 

high pharmacophore overlap to small molecules or peptide ligand sidechains.  Overall, the 

results of this comprehensive study suggest the new method will be a useful addition to the 

growing number of scoring and sampling methods available in DOCK.   

 

2.2 Theoretical Methods 

2.2.1 Pharmacophore Definitions. 

Pharmacophore modeling in this study uses a two-step protocol involving: (1) assignment 

of a pharmacophore type definition to each ligand atom, followed by (2) construction of 

pharmacophore points with pharmacophore labels based on the type definitions.  Inspired by 

chemical matching code previously developed for DOCK97,102 we employ a type definition 

model based on SYBYL103 atom types and environment (neighboring atoms).  The finite list of 

pharmacophore type definitions is stored in the ph4.defn parameter file (Table 2-1) and can be 

customized to include other pharmacophore types.  For clarity it is important to emphasize there 

is a distinction between pharmacophore type definitions (for the individually-typed atoms) and 

the pharmacophore label definitions (for the final constructed pharmacophore points) derived 

from the pharmacophore types.  In the atom environment definition list in Table 2-1, parenthesis 
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( ) specify “atoms that must be bonded to the parent atom” while square brackets [ ] specify 

“atoms that must not be bonded to parent atom”.104  The integer in the definition represents the 

number of atoms associated in the rule.  For example the syntax “N.pl3 ( 2 * ) [ H ]” specifies a 

trigonal planar nitrogen connected to at least two other atoms and not bound to any hydrogen 

atoms.  For this work, eight pharmacophore types are assigned to individual atoms as outlined in 

Table 2-1: (1) null or no assignment, (2) hydrophobic, (3) hydrogen bond donor, (4) hydrogen 

bond acceptor, (5) aromatic ring member, (6) hydrogen bond acceptor in an aromatic ring, (7) 

negatively charged species, and (8) positively charged species.  The resulting atom set is post-

processed to generate pharmacophore points with coordinates that specify the position of the 

pharmacophore point center and vectors indicating the direction of potential interactions. 

 

 

Table 2-1. Pharmacophore type definitions in DOCK.  
type namea environment definition b 
  
(1) null *  
  

 
(2) hydrophobic 

C. [ O. ] [ N. ] [ S. ] [ F ] [ P ] ( * ) 
C. ( N.pl3 ( 2 C. ) ) ( * ) 
N.pl3 ( 3 C. ) 

  

(3) donor 

H ( O. ) 
H ( N. ) 
H ( S. ) 
H ( F ) 

  

(4) acceptor 

O. ( * ) 
N.1 ( 1 * ) 
N.2 [ 3 * ] 
N.3 ( 3 * ) 
N.pl3 ( 2 * ) [ H ] 
S.2 [ O. ] [ N. ] 
S.3 ( 2 * ) 
F ( * ) 
Cl ( * ) 
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(5) aromatic 
C.ar 
N.ar 

  
(6) aroAcc N.ar [ H ] [ 3 * ] ( * ) 
  

(7) negative 

C. ( 2 O.co2 ) 
C.2 ( O.2 ) ( O.3 [ * ] ) 
P. ( 4 O. ) ( O.3 [ * ] ) 
S. ( 3 O. ) ( O.3 [ * ] ) 
S. ( 4 O. ) ( O.3 [ * ] ) 
F [ * ] 
Cl [ * ] 

  

(8) positive 

C.cat ( * ) 
N.4 ( * ) 
N.3 ( 4 * ) 
N.2 ( 3 * ) 
Zn [ * ] 
Mg [ * ] 
Ca [ * ] 
Mn [ * ] 
K  [ * ] 
Fe [ * ] 

aTypes defined in DOCK ph4.defn parameter file.  bEnvironments based on SYBYL atom types and 
atom connectivities.   

 

Aromatic and non-aromatic rings are identified by checking for closed loops formed by 

connected atoms.  The coordinate of the ring center, averaged over all ring member coordinates, 

is computed and saved as the pharmacophore point (Figure 2-2).  The average normal vector of 

the plane defined by adjacent ring center-to-vertex vectors (Figure 2-2, dashed blue lines) is 

calculated and saved as the direction vector of the pharmacophore point.  If the individual normal 

vectors (Figure 2-2, solid blue lines) of the ring are all within an angle cutoff θc to the average 

normal vector (Figure 2-2a, solid red lines), then the pharmacophore point is marked as an 

aromatic ring (Figure 2-2a).  Otherwise it is labeled as non-aromatic (Figure 2-2b).  In practice, 

θi is measured by directly computing the inner product of two vectors (xi) which is converted to 

degrees by the inverse function of cosine as arccos(xi) = θi.  Based on examining 
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crystallographic ligand coordinates containing aromatic and non-aromatics rings we use as a 

cutoff criteria arccos(0.99) ≈ 8.11 degrees to determine if a ring is planar.   

 

 
 

Figure 2-2. Pharmacophore feature assignment for rings: (a) aromatic (close to planar) and (b) non-
aromatic (not planar).  Ring center-to-vertex vectors shown as dashed blue lines, individual normal vector 
shown as solid blue lines, averaged normal vectors shown in solid red lines.  The angle between the blue 
and the red vectors are compared to a threshold to determine the planarity of the ring.   
 

Atoms with hydrophobic and positive/negative pharmacophore type definitions are saved 

individually as pharmacophore points inheriting the same type as their pharmacophore labels.  

For these cases, default direction vectors (which do not affect the score) are assigned to facilitate 

a common data structure.  For the hydrogen bond acceptor, the coordinate of the polar atom is 

saved as the pharmacophore point.  The average of vectors pointing from all neighbor atoms to 

the acceptor atom is saved as the direction vector, indicating the potential position of the 

coupling hydrogen bond donor, as indicated by red arrows in Table 2-2 which shows example 

pharmacophores derived for several small organic molecules.  The hydrogen bond donor uses the 

coordinate of the hydrogen atom as that of the pharmacophore point.  Similarly, the vector 

pointing from the donor hydrogen to the connecting polar atom is saved as a normalized 

direction vector, indicated as blue arrows in Table 2-2.  The combined set of all pharmacophore 

points is called the molecular pharmacophore (ph4) model which may include hydrophobic 

(PHO), hydrogen bond donor (HBD), hydrogen bond acceptor (HBA), aromatic ring (ARO), 



 

 

31 
 

 

non-aromatic ring (RNG), positively charged (POS) and negatively charged (NEG) features (see 

Table 2-2).  
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Table 2-2. Examples of pharmacophore features derived from small molecules.   

Name Labela 2Db 3Dc 

(a) ethanol 
PHO 
HBD 
HBA 

 

 

(b) toluene ARO 
PHO 

  

(c) methyl-
amine 

POS 
HBD  

 

(d) indane ARO 
RNG 

  

(e) propanoic 
acid 

PHO 
NEG 
HBA  

 

(f) methyl 
acetate 

PHO 
HBA  

 

aPHO in cyan; HBA (vertex and vector) in red; HBD vector in blue, hydrogen vertex in gray; ARO 
(vertex and vector) in orange; RNG (vertex and vector) in yellow; POS in magenta; NEG in green.  
Direction vectors are shown in arrows generated using Chimera105 bild files.  b2D pictures generated 
with ChemSketch.106  c3D molecules and pharmacophore visualization generated with Chimera.   

 

CH3 OH

CH3

CH3NH3
+

CH3 O

O
-

O
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To gauge how many pharmacophore features are present in typically sized compounds, 

Figure 2-3 plots histograms derived from 1043 molecules in their x-ray pose taken from the 

SB2012 testset used in this work to gauge pose reproduction and crossdocking accuracy.  As a 

reduced representation, the pharmacophore model derived for each molecule contains (on 

average) a much smaller number of pharmacophore points (16.0) relative to the total number of 

atoms (49.2) as shown in Figure 2-3b vs. 3-3a.  In terms of specific features, molecules in 

SB2012 contain on average of 1.9 aromatic rings, 0.9 non-aromatic rings, 2.6 hydrophobic 

groups, 3.6 hydrogen bond donors, and 4.6 hydrogen bond acceptors.  Values for the two latter 

features are indicative of the drug-like characteristics of many of the compounds in SB2012 for 

which ~80% have less than 5 hydrogen bond donors and ~58% have less than 10 hydrogen bond 

acceptors in rough agreement with Lipinski-like107 rules.  About 1/4 of the testset contains 

molecules with positively (199) or negatively (287) charged functionality.   

In principle, given the smaller feature space, use of pharmacophore models should yield 

faster run times than an all-atom based scoring function.  In terms of rescoring poses without 

sampling, timing tests indicate that under the current conditions, computing the pharmacophore 

matching similarity (FMS) score between two molecules is faster than computing the standard 

energy score by about 3.5 fold.  Comparing production times when using the FMS method to 

drive ligand sampling is less straightforward, due to the much larger numbers of poses generated 

when using FMS compared to SGE (discussed further below).  However, when normalized by 

the size of the final pose ensemble retained using FMS or SGE methods, time per pose with FMS 

is faster by about 1.5 fold.   
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Figure 2-3. Number of pharmacophore features computed by DOCK FMS scoring function using the 
SB2012 docking testset (N=1043 molecules).   

 

2.2.2 Pharmacophore Matching Similarity (FMS) Scoring Function. 

After computing the pharmacophore (ph4) model using the protocol described above for 

both the reference and candidate poses, molecular similarity between the two poses is evaluated 

by the degree of pharmacophore overlap, termed here pharmacophore matching similarity score 

(FMS score).  For each pharmacophore point *  with pharmacophore label a, Cartesian 

coordinate Z[ = �Z+, Z�, Z\	'  and direction vector ][ � �]+, ]�, ]\	'  in the reference 

pharmacophore, is compared to every pharmacophore point ,� in the candidate pharmacophore 

in three steps: (i) label check, (ii) distance check and (iii) direction check.  The pharmacophore 

label a is used to eliminate pharmacophore points in the candidate pharmacophore that have 

different labels.  The distance between * and the candidate pharmacophore point ,�, computed 
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as ̂ � = 	‖Z[ − àbbb[‖ = X∑ �Z� − �̀���\�d+ where ̀ abbb[ = e`+� , `�� , `\� f is the Cartesian coordinate of ,�, is 

compared to a distance cutoff r.  Only when ̂ � ≤ � will the corresponding pharmacophore point 

,� 	be further investigated.  A constant r value is assigned to all reference pharmacophore points 

as a default parameter, but for a ring (aromatic or non-aromatic) the radius of the ring is assigned 

as r.  The scalar projection of the normalized direction vector ][  onto that of	,� , 

habbbb[ = eh+� , h�� , h\� 	f  is calculated.  The condition that the vector projection ][ ∙ habbbb[ = ∑ ]�\�d+ ×
h�� 	≥ l implies the angle between the two direction vectors ][ and habbbb[ is within arccosl, which 

ensures that the two vectors are pointing in approximately the same direction.  A perfect vector 

overlap (when ][ = habbbb[) between two normalized direction vectors will be ][ ∙ habbbb[ = ‖][‖ = 1.  By 

default, a scalar projection cutoff of l = cos
45°� ≈ 0.7071 is used.  Note that for hydrophobic 

and charged feature labeled points,	][ ∙ habbbb[ ≥ l is always true as the same default value of (1,0,0) 

is assigned to both ][ and habbbb[.  For a ring, the absolute value of the scalar projection |][ ∙ habbbb[| is 

used to account for its orientation (i.e. vectors above and below the plane of the ring).  If all of 

the above criteria are met, then the two pharmacophore points * and ,� are deemed a match.   

In Figure 2-4, three ARO pharmacophore point pairs are shown to illustrate how the three 

criteria (label, distance, and direction) are used to identify matches in rings.  The first criterion 

(same label) is met by all three pairs as the pharmacophore points shown are all labeled as 

aromatic rings (ARO).  The first pair (Figure 2-4a) has both a small distance (^ ≤ �) and good 

directional agreement (|][ ∙ habbbb[| > l) and thus represents a well-matched case.  The second pair 

(Figure 2-4b), although the ring vectors are well aligned, is not matched due to the large distance 

between the pharmacophore centers.  For the third pair (Figure 2-4c), although the distance 
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between ring centers is small, this case is also not considered a match due to the large difference 

in ring vector orientation (|][ ∙ habbbb[| w l).   

 

 
 

Figure 2-4. Example pharmacophore matches for aromatic rings showing: (a) well matched case with 
same labels, small distance, and similar vector directions, (b) not matched case with same labels, large 
distance, and similar vector directions, and (c) not matched case with same labels, small distance, and 
different vector directions.   

 

All matched point pairs between the reference and candidate pharmacophore models are 

investigated by their geometric relationships to obtain a quantitative measurement of matching.  

The residual between two matched points is defined as xy� � z
^��� |][ ∙ habbbb[|⁄  which takes into 

account both the distance and overlap in direction.  After comparing pharmacophore point * with 

all candidate pharmacophore points ,� , the best matched point ,G  with the lowest matching 

residual xyG will be retained for the pharmacophore matching similarity (FMS) score calculation.  

If no match was found for *, then it will not contribute to the residual term of FMS score.  The 

residual term in combination with a match rate term defines the numerical value of the FMS 

score via eq 2-1.   



 

 

37 
 

 

 

|}~ = �� H1 − ��M + X∑ 
��K� �O	�K�Q � , $ > 0	 	�																																										, $ = 0    (2-1) 

 

Here, k is a constant parameter; n stands for the total number of matches (note that for 

each reference pose pharmacophore point, one match is counted at most); N is the number of 

pharmacophore points in the reference pharmacophore; xyKG  represents the best matching residual 

of a matched reference pharmacophore point *�.  Based on similarity measurements in graph 

theory,108,109 FMS score uses the match rate term � H1 − ��M  to prioritize poses with higher 

numbers of pharmacophore matches to the reference pose.  Poses with similar numbers of 

matches will be differentiated by their root mean square matching residuals X∑ 
��K� �O	�K�Q � .  Note 

that the total number of matches n needs to be larger than zero for eq 2-1 to give a reasonable 

value.  When no match is identified (n=0), an arbitrary large score X is assigned (X is set to be 

larger than the upper bound of FMS score value when n>0).  For any reference and candidate 

pair of molecules, FMS score ranges between 0 (perfect match) and X, which depend on choices 

for k, distance cutoff r, and scalar projection cutoff σ.  For pharmacophore-based docking, lower 

FMS scores are more desirable.  Figure 2-5 outlines schematically the overall process using 

DOCK.  
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Figure 2-5. Flow chart schematic outlining pharmacophore-based virtual screening in DOCK.   
 

To determine a default set of values for k, r, and σ in 2-1, we performed a series of 

rescoring tests using ligand geometries generated with the standard DOCK protocol, for 

comparison with crystallographic references, and pose reproduction success (defined in the next 

section) was determined.  Four values for k (1, 2, 5, 10), three values for r (0.5Å, 1.0Å, 1.5Å), 

and three values for σ (30°, 45°, 60°) were examined.  As a general rule, use of stricter matching 

criteria (shorter distance cutoff r, smaller angle cutoff σ) led to lower docking success rates.  In 

addition, the success rate increased as the matching rate term weight k was increased from 1 to 5, 

but remained relatively steady from k = 5 to 10.  Taking these results into consideration, the set 

comprising k = 5, r = 1Å, σ = 45°, and X = 20 yielded generally good pose reproduction success 

and had values which were roughly in-between the different ranges explored.  Although other 

combinations might also have been suitable, this set was ultimately employed for all subsequent 

FMS sampling and scoring experiments used in this work.   
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2.3 Validation Metrics and Computational Details 

2.3.1 Pose Reproduction Details. 

In order to approximate the accuracy of ligand poses predicted by a given protocol for 

unknown systems, pose reproduction control experiments are performed over a large number of 

crystallographic complex structures.  Ideally, the best-scored docked pose should agree with 

crystal pose.  Following our previous work,100 docking results are categorized as one of three 

outcomes: docking success (Success), scoring failures (Score Fail), and sampling failures 

(Sample Fail).  Over a large dataset the percentage of Success + Score Fail + Sample Fail = 

100%.  Docking success is defined when the RMSD between the best scored pose and native 

(crystal) pose is ≤ 2 Å.  A scoring failure is defined when a close-to-native pose is sampled but 

the best scored pose is > 2 Å from the native pose.  Finally, a sampling failure is defined if none 

of the sampled poses are within 2 Å of the native pose.   

Representative visual examples of the three outcomes are shown in Figure 2-6a.  For 

ligands of drug-like size, low RMSD values also typically correspond to good visual overlap 

between docked and reference ligand poses.  All statistics reported in this work make use of 

"symmetry corrected" RMSDs to account for chemically identical functionality (i.e. symmetric 

ring flips, carboxylate flips, etc), or completely symmetric molecules, adopting visually 

indistinguishable conformations as described in detail previously.110  The updated pose 

reproduction database termed SB2012 (an update of the SB2010 database),100 was used for all 

pose reproduction and crossdocking (defined below) experiments.  The set, derived from 

complexes in the protein databank (PDB), contains 1043 protein-ligand systems in ready to 

DOCK format and is freely available online at www.rizzolab.org.   
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Figure 2-6. Validation metrics used to evaluate DOCK scoring functions.  (a) Pose reproduction cases 
with different outcomes: Success (top, PDB code 3CPA), Score Fail (middle, PDB code 1V2W), and 
Sample Fail (bottom, PDB code 1GKC).  Crystal poses in orange, best scored poses in magenta, best 
RMSD pose in cyan.  (b) Representative crossdocking heatmap showing docking outcome as a function 
of docking all ligands (Lig1, Lig2, ... LigN) to all receptors (Rec1, Rec2, ... RecN), for an aligned group 
of proteins with nearly identical sequence homology.  (c) Hypothetical database enrichment results 
showing a partitioning of data based on FMS score ranking (0 to 6) for a group of ligands (left bottom, 
magenta curve) comprised of a known active ligand set (left middle, blue curve) and inactive decoy set 
(left top, red curve).  The vertical dashed line represents a hypothetical FMS score cutoff dividing the 
total group into (X) predicted positive and (Y) predicted negative sets which can be partitioned in to four 
quadrants (I-IV) defined respectively as true positives (TP, I), false positives (FP, II), true negatives (TN, 
III), and false negatives (FN, IV).  Also shown is an ROC curve, which for this example plots individual 
points which correspond to various FMS score cut-offs in the left panel. The coordinate of each point is 
determined by the false positive rate and true positive rate at that FMS score cut-off.   

 



 

 

41 
 

 

All DOCK experiments in this work employed well-defined receptor and ligand setup 

protocols, in conjunction with the flexible ligand sampling protocol termed FLX, as previously 

described.100  Briefly, in terms of receptor  setup, several accessory programs are used to 

compute a molecular surface (DMS),111 generate docking spheres to guide sampling 

(SPHGEN),112 and pre-compute the potential energy on a grid which speeds up the docking 

calculations (GRID).70  Key setup parameters include use of 6-9 Lennard-Jones and distance 

dependent dielectric (ε-4r), a 0.3Å resolution, and a grid box size extending 8Å in all directions 

based on the docking spheres (75 spheres max).  Key docking parameters include use of the on-

the-fly anchor-and-grow algorithm to orient and assemble ligands layer by layer, retaining a 

maximum of 5000 completely-grown conformers to be ranked by the primary scoring function, 

and saving a maximum of 100 conformers (after clustering to remove redundancy, RMSD <= 2 

Å).  Ligands were energy minimized at each stage of conformational search (500 iterations per 

cycle per anchor/step max) and those exceeding a total score cutoff of 100.0 were removed.   

The different functions employed in this work include: (1) single grid energy (SGE) score, (2) 

DOCK Cartesian energy (DCE) score which is equivalent to SGE but in Cartesian space, (3) 

pharmacophore matching similarity (FMS) score, and (4) the combination of the two termed 

FMS+SGE (or FMS+DCE) score.  For the combined function, the FMS score was weighted by 

10-fold so when summed together the FMS and SGE (or DCE) terms would be more equally 

balanced.  

 

2.3.2 Crossdocking Details. 

In addition to pose production experiments, crossdocking was employed in which highly 

homologous protein complexes, with nearly identical structure and sequence (termed here a 
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protein receptor family), are aligned into a common reference frame and each ligand is docked 

into each receptor as shown in Figure 2-6b.  Such families inherently contain variability due to 

different crystallization conditions, co-crystallization with different ligands, as well as receptor 

point mutations, among others.  Nevertheless, the hypothesis in crossdocking is that ligands 

should adopt similar binding geometries in highly homologous receptors, provided there are no 

large deformations in the binding site or incompatible mutations.  The results are expressed as an 

NxN heatmap (N = number of systems) with docking success plotted in blue, sampling failures 

plotted in red, and scoring failures are plotted in green (Figure 2-6b).  As before, a 2 Å RMSD 

cut-off is used to evaluate success.  The diagonal elements (Figure 2-6b, white dots) represent 

cognate protein-ligand pairs and thus represent experimental references.  Off-diagonal elements 

are "theoretical" protein-ligand pairs and the reference, in some instances, may be incompatible.  

To identify incompatible elements, we employ a clash matrix check,100 independent of the actual 

crossdocking experiment, in which all matrix complexes (representing cognate and theoretical 

references) are subject to a short restrained energy minimization.  If the minimized ligand pose 

moves >2 Å from the starting pose, or pose bears an unfavorable energy score ( >0 kcal/mol), the 

specific reference pair containing the clash is not included is crossdocking success evaluations 

(Figure 2-6b black squares).  All crossdocking studies employed the FLX docking protocol, and 

results are reported for both the diagonal and the entire matrix.   

 

2.3.3 Enrichment Details. 

A third method used to evaluate docking methods is enrichment (Figure 2-6c).  Databases 

such as the directory of useful decoys (DUD),113 and the newer enhanced version called DUD-

E,101 contain large sets of known active compounds (and property-matched decoys) which are 
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docked to a specific target and the results are rank-ordered.  Good enrichment is achieved when 

greater numbers of actives are ranked earlier in the list compared to the decoys.  For more in-

depth discussion on using DOCK to estimate enrichment interested readers should consult 

Brozell et al.114  Briefly, for this work, ranked results were visualized as receiver operating 

characteristic (ROC) curves which plots how the true positive rate (true positive/total positive) 

changes relative to the false positive rate (false positive/total negative).  Accompanying area 

under the curve (AUC) analysis was also performed and used to estimate fold enrichment values 

(FE=AUC/AUCrandom ), relative to random, at 0.1%, 1%, 10%, and 100% of the database 

examined.  For virtual screening, early enrichment is of particular importance, as typical 

applications will only focus on (i.e. purchase) small subsets of molecules ranked very early (i.e. 

0.1-1%) in the database.  In the theoretic example shown in Figure 2-6c, which employed FMS 

score to rank active and decoy ligands shown in the left panels, the ROC curve on the right 

represents a good enrichment case relative to random (Figure 2-6c magenta vs dashed line).  By 

specifying a specific score cut-off (Figure 2-6c left bottom panel, dashed line) the data can also 

be partitioned into two groups for which molecules with smaller scores (better overlap) are 

defined as predicted positives (X), and molecules with higher scores (worse overlap) defined as 

predicted negatives (Y).  If, as in the present example, the results are in fact known, this allows 

ligands in the active group to be classified as true positive (I) or false negative (IV), and ligands 

in the inactive (decoy) group classified as false positive (II) and true negative (III).  By varying 

the cut-off, the number of molecules in the four subsets I–IV will change accordingly.   

Enrichment studies employed the 15 DUD-E systems shown in Table 2-3.101  The 

receptor PDB files were already available in SB2012 (same PDB code as DUD-E) and the active 

and decoy ligands were downloaded from the DUD-E website and used as is.  It is important to 
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note that some ligands (active and decoys) for these systems contain multiple entries 

representing, for example, different tautomers or protonation states.  For all enrichment analyses, 

in the case of duplicate id codes, only the best-scored molecule was retained. For each system, 

the native cognate ligand in the original PDB file is used as the pharmacophore reference for 

FMS scoring.  As in the pose reproduction and crossdocking studies, the enrichment tests also 

employed the FLX docking protocol.  With this protocol, predicted ligand poses with 

accompanying scores were obtained for approximately all but 2% of the actives and decoys listed 

in Table 2-3.   

 

Table 2-3. Systems used for enrichment tests.   
PDB System #Activesa #Decoysa Description 

2HZI abl1 295 10885 tyrosine-protein kinase ABL 

1E66 aces 664 26373 acetylcholinesterase 

2VT4 adrb1 458 15958 beta-1 adrenergic receptor 

1L2S ampc 62 2902 beta-lactamase 

1BCD cah2 835 31710 carbonic anhydrase II 

1R9O cp2c9 183 7574 cytochrome P450 2C9 

2RGP egfr 832 35442 epidermal growth factor receptor erbB1 

1SJ0 esr1 627 20818 estrogen receptor alpha 

3CCW hmdh 299 8884 HMG-CoA reductase 

1UYG hs90a 125 4942 heat shock protein HSP 90-alpha 

2AA2 mcr 193 5240 mineralocorticoid receptor 

1KVO pa2ga 127 5216 phospholipase A2 group IIA 

2GTK pparg 723 25867 peroxisome proliferator-activated receptor gamma 

1NJS pur2 201 2725 GAR transformylase 

1C8K pygm 114 4045 muscle glycogen phosphorylase 
aSystems taken from DUD-E database. 101   
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2.4 Results and Discussions 

2.4.1 Pose Reproduction Results. 

Table 2-4 shows pose reproduction outcomes computed for the three DOCK protocols 

tested (SGE, FMS, FMS+SGE) in which a given function was used for both sampling and 

scoring (diagonal blocks in gray box) or when rescored using the other two scoring functions 

(off-diagonal blocks).  All experiments were performed under the same conditions except for the 

sampling and/or scoring method employed.  It is important to emphasize that use of an 

alternative function to re-rank an ensemble of poses generated by any given method (Table 2-4, 

off-diagonal blocks) will, in most cases, lead to a different group of top-scored results, but the 

number of sampling failures remains unchanged.  

 
Table 2-4. Pose reproduction results employing SGE, FMS, and FMS+SGE scoring functions.  

 samplinga 
scoring  Outcome SGE FMS FMS+SGE 

     

SGE 
Success 756 72.5% 610 58.5% 854 81.9% 
Score Fail 185 17.7% 394 37.8% 182 17.4% 
Sample Fail 102 9.8% 39 3.7% 7 0.7% 

        

FMS 
Success 860 82.5% 975 93.5% 1035 99.2% 
Score Fail 81 7.8% 29 2.8% 1 0.1% 
Sample Fail 102 9.8% 39 3.7% 7 0.7% 

        

FMS+SGE 
Success 876 84.0% 719 68.9% 1025 98.3% 
Score Fail 65 6.2% 285 27.3% 11 1.1% 
Sample Fail 102 9.8% 39 3.7% 7 0.7% 

        
aSGE sampling size = 89,083 poses, FMS sampling size = 337,674 poses, FMS+SGE sampling size = 
59,237 poses.    
 

In general, the diagonal results (Table 2-4, gray boxes) using the three different methods 

yield high percentages of success across the 1043 systems in SB2012 with the FLX ligand 
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protocol.  Importantly, the SGE success rate (72.5%) is consistent with earlier work from our 

laboratory,71 using a smaller dataset (68.5%, N=780), indicating good reproducibility of DOCK.  

Overall, the diagonal results in Table 2-4 reveal a clear trend in terms of outcome with success 

following SGE < FMS < FMS+SGE and sampling and scoring failures following SGE > FMS > 

FMS+SGE.  The very high success rates when using FMS (93.5%) or the combination 

FMS+SGE (98.3%) is significant and represents a 20-25% improvement over the standard 

DOCK method employing SGE (72.5%).  On one hand, such high success rates are expected 

given that for any system the x-ray reference ligand and docked ligand are the same molecule in 

terms of topology and thus have the exact same number of pharmacophore features.  In actual 

practice, for virtual screening, the number of features between a reference and candidate would 

change as each new ligand was docked.  Nevertheless, the good correspondence in these 

validation tests provides strong evidence the newly implemented DOCK pharmacophore 

labeling, modeling, and overlap routines are behaving as expected and yield robust results over a 

large pose reproduction testset.  Importantly, the FMS method is straightforward to use and only 

requires that the user input a reference molecule consisting of a single 3D conformation.  The 

processing of the candidate pose(s) to determine FMS scores is done automatically and on-the-

fly.  Ongoing work to allow a text-based pharmacophore reference to be used as a query will 

further simplify the procedure of customizing inputs for FMS score calculation. 

Systems with failures.  Of the three methods tested, the FMS+SGE protocol yields the 

lowest sampling (0.7%) and scoring (1.1%) failure rates on the diagonal.  In an attempt to 

understand what led to the small subset of failures (N=18), docked poses for the group were 

examined.  Out of the 7 sampling failures, one system did not complete growth, which, although 

infrequent, can happen using DOCK under some circumstances.  And for the remaining 6 
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sampling failures, 4 are relatively large molecules with up to 35 rotatable bonds, and thus 

extremely challenging for any docking protocol.  In terms of the 11 scoring failures, a 

noteworthy result (Figure 2-7) is that 7 out of the 11 systems (PDB code: 1XLZ, 6TMN, 2ITX, 

1O86, 1V2W, 1V2Q, 5TMN) actually show good correspondence both in terms of visual overlap 

as well as RMSD (2.07 - 2.34 Å).  Thus, these 7 can be classified as "near misses" for which 

only a part of the ligand geometry adopts a conformation different than the x-ray pose.  

Consistent with expectation, in all but two cases (7CPA, 6CPA), geometries corresponding to the 

best RMSD also have a lower FMS score. The fact that the FMS+SGE protocol correctly 

identifies a native-like pose in nearly all 1043 cases is notable.   

 

 

Figure 2-7. Eleven scoring failures derived from FMS+SGE guided docking showing overlaid poses, 
PDB code identifier.  RMSD in Å, and FMS scores in parentheses for the best FMS+SGE scored pose 
(first row, magenta) and the best FMS+SGE RMSD pose (second row, cyan) relative to the crystal pose in 
orange.   
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Rescoring.  In terms of the off-diagonal blocks (Table 2-4), rescoring the standard SGE 

results (72.5%) with FMS (82.5%) or FMS+SGE (84.0%) reveals a similar trend with SGE < 

FMS < FMS+SGE as in the diagonal experiments.  Here, as rescoring cannot "rescue" 

incorrectly sampled geometries, the maximum success rate attainable is a function of the poses 

originally sampled which for SGE is 90.2% (e.g. 100% - 9.8% sampling failures).  This specific 

experiment is important as the improvement in success when rescoring SGE-derived results with 

FMS or FMS+SGE (10-11%) suggests the current implementation is a viable way to post-

process docked poses and identify those compounds with good pharmacophore overlap to a 

reference.  This procedure would be a particularly useful tool to aid virtual screening as 

discussed further below.  Rescoring results for the group derived from FMS+SGE sampling 

shows similar results, with FMS (99.2%) yielding a significantly higher success rate than SGE 

(81.9%). 

The most dramatic changes in terms of pose reproduction involve using SGE (58.5%) or 

FMS+SGE (68.9%) to rescore the pose ensembles derived from FMS-only sampling (93.5%).  

These reduced success rates likely stem from the fact that the FMS score accounts only for 

overlap between pharmacophore features derived from the reference ligand structure and the 

receptor is "invisible" during sampling.  The end result is that poses generated using FMS alone 

may clash with the target protein when rescored in "energy space" despite high pharmacophore 

overlap.  However, as the pairing of energy and pharmacophore overlap (FMS+SGE) leads to 

relatively high success rates when rescored in SGE-space, as noted above, the combined function 

is likely to be preferred when a receptor structure is available.  Nonetheless, the 58% success rate 

obtained with SGE rescoring can be considered encouraging considering that ligand sampling 

with the anchor-and-grow algorithm was done in the absence of a receptor.  Thus, for ligand-
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only based design, the FMS protocol appears to be capable of enriching for energetically 

favorable poses by matching only to a reference pharmacophore.  The caveat of course is 

identifying suitable pharmacophores in the absence of crystallographic information.   

Ensemble properties.  A protocol designed to enrich for ligands with poses close to a 

native structure should, in theory, yield favorable scores using any reasonable scoring function. 

To examine in more detail how properties of molecules generated with one protocol may differ 

when rescored with another, histograms of the resultant SGE and FMS scores were plotted using 

each of the three different pose ensembles obtained with SGE, FMS, or FMS+SGE methods.  As 

expected, and consistent with the rescoring results in Table 2-4, use of the FMS function alone to 

derive poses does lead to overall less favorable DOCK energies (Figure 2-8 top, red) when 

rescored in SGE-space compared to FMS+SGE (Figure 2-8 top, green) or SGE (Figure 2-8 top, 

blue).  The large positive peak at 200 kcal/mol (Figure 2-8 top, red) represent those systems for 

which large positive energies were obtained due to geometric clashes occurring between ligand 

and protein.  However, an encouraging number of the poses derived from FMS sampling do 

yield favorable energies.  At first glance, the fact that the SGE and FMS+SGE energy histograms 

(Figure 2-8 top, blue and green) are nearly superimposable is somewhat surprising, especially 

considering the two ensembles yield substantially different success rates (SGE = 72.5% vs 

FMS+SGE = 98.3%).  However, given the underlying complexity of binding energy landscapes, 

ligand poses with distinctly different binding geometries may in fact yield similar energy scores 

(and vice versa), thus the observed SGE overlap in Figure 2-8 (top panel) is not unreasonable. 
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Figure 2-8. SGE (top) and FMS (bottom) score histograms using ensembles derived from SGE (blue), 
FMS (red), or FMS+SGE (green) driven sampling methods.   

 

As shown in Figure 2-8 (bottom), FMS score distributions show much greater separation, 

indicating greater sensitivity, in contrast to the SGE score distributions shown in Figure 2-8 

(top).  Here, SGE sampled poses yield a much wider almost uniformly-distributed range of FMS 

scores (Figure 8 bottom, blue) compared to FMS (Figure 2-8 bottom, red) or FMS+SGE (Figure 

2-8 bottom, green) sampled poses which have large peaks around 0.5, indicative of high 

pharmacophore overlap. Importantly, the FMS+SGE combination containing both geometric and 

energetic components to guide growth yields energy scores on par with standard SGE-guided 

docking poses (Figure 2-8 top, green vs. blue) and matches the pharmacophore models even 

better than FMS-only docking (Figure 2-8 bottom, green vs. red).   

Ensemble sizes.  An additional interesting observation from the results in Table 2-4 is the 

larger number of final docked poses obtained using FMS (337,674) compared to SGE (89,083) 
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or FMS+SGE (59,237).  The much larger ensemble generated with FMS corresponds to an 

increase in total docking time, which could be of concern, although when normalized by the 

number of poses kept, the FMS function is actually faster than SGE by about 1.5 fold.  The most 

likely explanation for the increased size involves reduced pruning.  Current experiments 

employed a standard DOCK input file specifying a maximum score cutoff of 100.0, larger than 

the upper bound of the FMS function [0, 20].  Thus, poses are not as vigorously pruned during 

growth compared to protocols that employ energy-based functions (themselves not bounded).  

The significantly larger ensemble from FMS-sampling also likely contributes to the reduction in 

docking success rate associated with SGE rescoring because of the greater number of alternative 

(decoy) poses associated with system.  Future studies to optimize the maximum score cutoff 

parameter would be worthwhile.   

 

2.4.2 Quadrant Partitioning using FMS Score. 

Although no score cutoffs were used to define success in the pose reproduction tests in 

Table 2-4, if both a RMSD cutoff and score cutoff are defined then the results can be classified 

in one of four different quadrants (see Figure 2-9b) defined as: (I) True Positive (TP), good score 

and low RMSD; (II) False Positive (FP), good score and high RMSD; (III) True Negative (TN), 

bad score and high RMSD; (IV) False Negative (FN), bad score and low RMSD.  To highlight 

properties of the new DOCK pharmacophore function, Figure 2-9 focuses on the results derived 

using only the FMS-guided sampling protocol discussed above (success = 93.5%, sampling 

failure = 3.7%, scoring failure = 2.8%).  Dashed green lines at RMSD=2 Å and FMS=2 delineate 

the four quadrants.  
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Figure 2-9. 2D histograms of FMS score and RMSD for (a) all poses (N=239,486) and (b) best scored 
poses (N=1,041) generated using FMS guided sampling of 1043 systems.  Poses without matches 
(FMS=20) not included in histograms.  Color reflects density (population).   

 

Figure 2-9a plots the large "all poses" set consisting of 239,486 ligand conformations 

with FMS<20 out of the total sampled space obtained with FMS sampling (337,674 poses).  

Here, the small separate cluster of points located in the TP region (lower left quadrant), which 

shows roughly linear correlation with RMSD, corresponds to mostly docking successes 

compared to the highly populated TN region (upper right quadrant) containing many thousands 

of points for which the correlation between RMSD and FMS begins to diverge as FMS values 

increase.  Unlike the standard SGE function, which typically shows little correlation with 

RMSD, the FMS method behaves more like RMSD given the geometric nature of the function.  

Importantly, the results in Figure 2-9a indicate that the FMS protocol is not only able to identify 

close-to-native ligand conformation with favorable scores (region I), but also correctly 

characterize poses that are geometrically different from the reference by assigning unfavorable 

scores (region III).   
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Figure 2-9b plots the "best poses" set consisting of 1041 ligand conformations (1 system 

failed to dock, 1 system with FMS=20 for the best score pose).   As in Figure 2-9a, poses in the 

TP region again show roughly linear correlation with RMSD.  In this case however, as only a 

single pose for each systems is retained, unlike the "all poses" case, the TN region is sparse.  

Ideally, a good function should maximize TP and minimize FP.  With the present RMSD (2.0 Å) 

and FMS (2) cutoffs, 949 points are classified as TP and 26 are classified as FN.  The remaining 

points (1042-975 = 67) are divided into 39 TN cases and 28 FP cases.  Overall, the 97.3% TP 

rate (949/975) and 41.8% FP rate (28/67) indicates good quadrant partitioning.  And, as 

expected, use of a smaller score cutoff will yield a reduction in TP but an improvement in FP.  

For example, use of an FMS cutoff = 1.5 yields TP rate = 91.4% and FP rate = 20.9%, and use of 

an FMS cutoff =1.0 yields TP rate = 78.1% and FP rate = 9.8%.  As a point of comparison, 

comparable analysis by Balius et al71 for a similar TP rate = 79.8% yielded a higher FP rate = 

46.2% using DOCK's footprint similarity method with a 0.6 score cutoff (based on normalized 

Euclidean distance) and 2 Å RMSD cutoff across 780 protein-ligand systems.  In practice, the 

optimal choice of a numerical value for score cutoff to employ in a study to yield compounds 

with the desired properties is system dependent.  For example, in typical virtual screening 

applications, FMS score between candidate compounds and a reference would be expected to be 

higher (i.e. less overlap) than under the present pose reduction tests which compare compounds 

with identical topologies but different conformations.   

False Positive (FP) cases with FMS. While FMS in general yields excellent quadrant 

partitioning, an examination of the results was undertaken to determine the underlying cause of 

FP and FN classifications.  Focusing on results from the "best poses" set (Figure 2-9b), Figure 2-

10 presents the ten out of twenty-eight FP results (RMSD > 2 Å, FMS <= 2) with the highest 
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RMSD.  Analogous to that observed with the FMS+SGE scoring failures (Figure 2-7), FP poses 

derived with FMS-sampling show, for the most part, remarkably high overlap except for one end 

of the molecule.  And in all ten cases, the poorly-overlapped groups contain rings, which are 

weighted heavier by the RMSD function than FMS.  System 1ODC is a particularly interesting 

case.  Here, the ligand pose is semi-symmetric and flipped by ca. 180◦ relative to the reference 

(magenta vs. orange) resulting in overlap between two rings on one end with three rings from the 

other.  Although the Hungarian algorithm used here in DOCK110 to compute symmetry-corrected 

RMSD effectively accounts for the swap of functionality having identical chemical properties, 

the resultant value of 3.41 Å is still classified as a failure, largely as a result of one ring on either 

end (8 atoms total) not being matched.   In contrast, the FMS score not only accounts for the 

symmetry but the good overlap between four out of six ring centers (and associated vector 

directions), which leads to a relatively low FMS score of 1.48.  Overall, visual examination of 

these ten worst FP cases reveals a significant amount of physically-reasonable matches and 

minimal mismatch and the classification of poses to this quadrant is, in most cases, 

understandable.   
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Figure 2-10. Ten out of twenty-eight FP poses derived from FMS-guided docking with the largest RMSD 
values.  Crystal poses in orange, best scored poses in magenta.  RMSD in Å, and FMS scores in 
parentheses. 

 

False Negative (FN) cases with FMS.  In terms of the FN examples (RMSD < 2 Å, FMS 

> 2), Figure 2-11 presents the ten out of twenty-six poses with the highest FMS scores.  

Immediately obvious compared to the FP examples, is that the molecules here contain fewer 

aromatic rings, for the most part are larger and more extended, and have a higher number of 

more loosely matched hydrogen-bonding functional groups (most polar atoms in the FP cases are 

either tightly matched or not matched at all).  This latter point is particularly important as 

relatively small changes in position of a hydrogen bonding functional group can lead to relatively 

large changes in FMS overlap but minor effects on RMSD which is computed using only heavy 

(non-hydrogen) atoms.  Although our standard preparation protocol for FMS scoring employs an 

energy minimization step to relax any hydrogen atoms added to the system, the positions adopted 
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as a result of ligand sampling during growth may result in the candidate and reference poses 

having different hydrogen directions.  This result highlights the need for care when preparing a 

molecule to be used as a "reference" for scoring candidate compounds.  Despite being a 

distinctly different type of function, a similar conclusion was reached by employing the DOCK 

footprint function.71  Despite this sensitivity, however, most of the FN cases have scores close to 

2 that could easily be rescued by a minor increase in FMS cutoff to 2.5.   

 

 

Figure 2-11. Ten out of twenty-six FN poses derived from FMS-guided docking with the largest FMS 
scores.  Crystal poses in orange, best scored poses in magenta.  RMSD in Å and FMS scores in 
parentheses. 

 

2.4.3 Crossdocking Results. 

In addition to pose reproduction, crossdocking experiments are a useful way to determine 

if different protocols can reproduce native-like poses when ligands are docked to highly 

homologous protein binding sites from different crystallographic structures (see Figure 2-6b).  
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Figure 2-12 displays outcomes across six protein families: carbonic anhydrase (CA, N=29), 

carboxypeptidase A (CPA, N=8), epidermal growth factor receptor (EGFR, N=15), thermolysin 

(THERM, N=26), HIV protease (HIVPR, N=60), and HIV reverse transcriptase (HIVRT, N=21).  

For comparison, both the diagonal (cognate protein-ligand pairs) and the entire matrix (all 

combinations) are shown.  As before, three docking protocols were tested (SGE, FMS, and 

FMS+SGE).  As shown in Figure 2-12a, this is a particularly challenging group of proteins with 

the standard SGE protocol yielding low diagonal successes (34.5-60.0%) for 5 out of 6 families.  

The exception is HIVRT for which the SGE success rate = 95.2%.  In contrast, use of FMS 

(71.7-100.0%) or FMS+SGE (75.0-100.0%) yields significant improvement for cognate 

receptor-ligand pairs.  Carbonic anhydrase is a particularly noteworthy example as the SGE 

diagonal success increases from only 34.5% to near 100.0% using the FMS or FMS+SGE 

functions.  Comparable enhancements in success for carbonic anhydrase were also reported by 

Balius et al71 when using the DOCK footprint similarity scoring function (82.8%) compared to 

SGE (31.0%).   
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Figure 2-12. Crossdocking outcomes averaged across the diagonal (left) or total matrix (right) for six 
protein families: carbonic anhydrase (CA), carboxy peptidase A (CPA), epidermal growth factor receptor 
(EGFR), thermolysin (THERM), HIV protease (HIVPR), and HIV reverse transcriptase (HIVRT) using 
SGE (top), FMS (middle), and FMS+SGE (bottom) protocols.  Success in blue, scoring failure in green, 
sampling failure in red.  

 

As expected, for more challenging crossdocking experiments, matrix success (Figure 2-

12b) using any of the scoring functions are in general significantly lower than their diagonal 

counterparts (Figure 2-12a).  As a baseline, use of SGE yields an averaged matrix success of 

36.0% compared to the diagonal at 54.6%.  In contrast to the diagonal results, interestingly, use 

of FMS alone for crossdocking shows improvement over SGE in only two cases (CA and CPA).  

However, in all cases, the combined FMS+SGE function always yields a better matrix success 

than does SGE.  Analogous to the diagonal results, the matrix outcomes (Figure 2-12b) similarly 

reveal carbonic anhydrase has the lowest overall matrix SGE success rate (17.8%) which 

increased the most among all systems tested when using FMS (48.8%) or FMS+SGE (52.1%).  
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Figure 2-13 compares the heatmaps for carbonic anhydrase, derived from three independent 

docking sets of size 29x29=841 combinations, using SGE, FMS, and FMS+SGE methods.  The 

maps visually highlight that SGE failures are primarily due to scoring (green squares), pinpoint 

which specific systems are involved, and indicate that FMS and FMS+SGE protocols 

significantly improve docking outcomes (more blue squares).   

Additionally visible in the FMS heatmap for carbonic anhydrase (Figure 2-13, middle), is 

the appearance of previously unseen sampling failures specifically localized to column 1BCD.  It 

is important to note that the RMSD calculations in both diagonal and off-diagonal experiments 

always involve compounds of the same topology.  However, for pharmacophore overlap 

calculations involving off-diagonal elements the pharmacophore reference and the candidate 

molecule being docked are usually of different topology.  In such cases, FMS-guided docking 

may drive sampling in a direction that will not necessarily agree with the RMSD reference.  

Calculation of the pharmacophore overlap between all aligned crystallographic references for 

carbonic anhydrase indeed shows 1BCD has the poorest reference FMS scores (between the 

pharmacophore reference and the RMSD reference) when averaged across all columns 

(FMS=5.15) or all rows (FMS=5.51) which is appreciably above the overall average (FMS=3.38) 

across all reference pairs.  Inspection further revealed that the ligand from 1BCD has only one 

rotatable bond and a molecular weight of 148.1 g/mol, which is markedly smaller than the 

average ligand in this family with 5.1 rotatable bonds and molecular weight of 339.7 g/mol.  

Thus, crossdocking of ligands to receptor 1BCD, using FMS alone, is not expected to be 

consistent with the 1BCD reference sampling space, which leads to the observed sampling 

failures.   
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Figure 2-13. Crossdocking heatmaps using SGE, FMS and FMS+SGE protocols for carbonic anhydrase 
(29x29=841 combinations).  

 

Additionally, more dramatic examples of this phenomenon manifest themselves in the 

heatmaps for thermolysin as shown in Figure 2-14.  Here, in contrast to carbonic anhydrase, 

crossdocking with SGE yields a higher overall success rate of 38.2% (Figure 2-14 left, blue) but 

with a higher percentage of sampling failures (29.1%, red).  And, while the combined function 

FMS+SGE yields the overall best docking success rate (51.0%) for this family, use of FMS alone 

actually increases sampling failures (47.5%) relative to SGE (Figure 2-14 left vs middle, red) 

which, as described below, likely involves poor reference pharmacophore overlap.  Close 

inspection of the crossdocking heatmaps reveals sub-matrices of size 4x4, defined here as group 

1 (1PE5, 1PE7, 1PE8, 2TMN) and group 2 (1KJO, 1KL6, 1KS7, 1KKK), for which FMS 

sampling relative to SGE: (i) maintains docking success and/or (ii) rescues previously 

unsuccessful docking outcomes involving systems within the same group, and (iii) introduces 

docking failures for systems from different groups.  To aid the discussion, Figure 2-15 shows a 
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heatmap of FMS scores (as opposed to docking outcomes), derived from the x-ray references, 

with diagonal and off-diagonal sub-matrix blocks for groups 1 and 2 outlined as black boxes.   

 

 

Figure 2-14. Crossdocking heatmaps using SGE, FMS and FMS+SGE protocols for thermolysin 
(26x26=676 combinations). 
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Figure 2-15. (a) FMS heatmap, using all crystallographic reference poses for thermolysin, with perfect 
overlap in dark blue (FMS=0) and poorest overlap (FMS>=8) in dark red.  Group 1 sub-matrix defined by 
systems 1PE5, 1PE7, 1PE8, and 2TMN.  Group 2 sub-matrix defined by systems 1KJO, 1KL6, 1KS7, and 
1KKK.  (b) Crystallographic reference overlays showing matched pharmacophore features for group 1 
(left, orange), group 2 (right, magenta), and group 1 vs. group2 (middle).   

 

The FMS scores computed between all reference pairs indicate perfect overlap on the 

diagonal (FMS=0, dark blue) but for the most part the majority of pairs have poor overlap 
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(FMS=3-8, green to dark red).  A striking exception are the cases defined by group 1 and 2 

(Figure 2-15, black boxes) which all have relatively good reference FMS scores within the same 

group (two blue sub-matrices near the diagonal) but poor FMS scores between different groups 

(two green to yellow sub-matrices on the off-diagonal).  This observation help explains why 

FMS-guided docking yields 100% success across the sub-matrices formed within the same group 

(Figure 2-14 middle), but when using group 1 systems as a reference to guide docking of ligands 

in group 2, no matrix success is reported and only 1 success is obtained for the opposite case 

(other symmetric block).  Structurally, the molecular cluster formed by ligands in group 1, 

occupies an extended space in the thermolysin binding pocket (Figure 2-15b left) and contain 

additional hydrophobic groups compared to group 2 (Figure 2-15b right).  Group 2 ligands 

cluster into a more slender volume anchored by an aromatic ring at one end and hydrogen bond 

acceptor on the other.  As a consequence, groups 1 and 2 share only a few (1-3) matched 

pharmacophore points (Figure 2-15b middle) which explains the poor FMS scores between off-

diagonal reference ligands in addition to the poor docking outcomes.  Interestingly, the addition 

of the energy term to the pharmacophore overlaps score (FMS+SGE score), using group 2 as a 

reference to dock group 1, yields 100% docking success.  In contrast, using group 1 as reference 

to dock group 2 yields 100% sampling failure (Figure 2-14, right panel).   

Finally, the overall poorest matrix success results using FMS (7.2%) or FMS+SGE 

(37.7%) docking is seen with HIVPR.  Although high ligand flexibility is expected to play a role 

in the large number of sampling failures seen in the FMS matrix (Figure 2-12b red) relative to 

other systems (31/60 of ligands have ≥ 15 rotatable bonds), the most likely cause is poor 

pharmacophore overlap between all pairwise combinations.  Consistent with the discussions 

above, out of the 3600 pairwise combinations in the HIVPR crossdocking reference FMS matrix 
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derived from crystallographic poses, only 220 pairs yielded reasonable pharmacophore overlap 

(FMS<=3).  In contrast, 2493 pairs have poor pharmacophore overlap (FMS>=4.5) which, 

interestingly in this case, is about the same as the number of sampling failures (2816).   

Overall, two key points have emerged from the current crossdocking studies: (1) FMS-guided 

success rates, particular for off-diagonal elements, are dependent on the similarity between the 

pharmacophore reference and the RMSD reference.  (2) The FMS+SGE protocol generally 

improves crossdocking performance, relative to SGE or FMS, by integrating known binding 

profiles into the standard DOCK energy score.   

 

2.4.4 Enrichment Results. 

Results for enrichment experiments, used to gauge how DOCK would perform in a 

virtual screening using SGE, FMS, or FMS+SGE protocols are shown in Figure 2-16 and Table 

2-5.  Receiver operating characteristic (ROC) curves and area under the curve (AUC) analyses 

were used to compute fold enrichment (FE= AUCcurve/AUCrandom) values for docking active and 

decoy ligands taken from the DUD-E database.101  For virtual screening applications, good early 

enrichment is considered to be critically important thus FE was also computed at 0.1%, 1%, and 

10% of the ranked database.  For the current tests, the overall shape of the ROC curves vary from 

essentially perfect enrichment (1NJS) to random enrichment (1C8K) with most systems 

exhibiting good overall enrichment but with a visible dependence on which of the three docking 

functions was used.  For the majority of systems, depending on which ROC region is examined, 

FMS (red curves) shows higher enrichment than SGE (blue curves), with FMS+SGE (green 

curves) being roughly in between (Figure 2-16).  Across different ranges of the database, based 

on numerical AUC values, use of FMS or FMS+SGE consistently yield higher FE rates relative 
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to SGE (Table 2-5).  For example, at 0.1% of the database, 11/15 FE values using FMS and 

11/15 FE values using FMS+SGE are enhanced relative to SGE (Table 2-5 column A).  

Similarly, at 1% of the database, 10/15 FE values using FMS and 13/15 FE values using 

FMS+SGE are enhanced relative to SGE (Table 2-5 column B).  Comparable results are obtained 

at 10% and 100% of the database.  

The fact that use of FMS+SGE yields generally lower enrichment outcomes than FMS is 

somewhat surprising given that FMS+SGE yielded higher success rates than FMS in pose 

reproduction experiments.  However, it is important to note that the role of the SGE term in 

FMS+SGE is fundamentally different for pose reproduction given that different molecular 

conformers, as opposed to the different chemical species for enrichment, are what is rank-

ordered.  The most likely contributing factor as to why FMS scoring yields enhanced enrichment 

involves the fact that use of a crystallographic reference captures elements of what is important 

for activity for at least one active ligand.  Because rank-ordering of "actives" using FMS scoring 

are biased towards the known binder, higher enrichments can be obtained.  With the addition of 

the SGE term, sampling and rank-ordering using FMS+SGE will change as a result of, for 

example MW bias, which leads to different enrichment results (less-favorable in most cases for 

the present tests).  Overall, the enrichment tests validate the ability of FMS and FMS+SGE 

protocols to enrich for true actives relative to SGE alone by prioritizing molecules with similar 

binding profiles as a known ligand.  This strongly suggests use of a pharmacophore reference to 

help guide virtual screening is a viable alternative to the standard DOCK protocol.   



 

 

66 
 

 

 

Figure 2-16. ROC enrichment curves for 15 DUD-E systems using SGE, FMS and FMS+SGE protocol.   
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Table 2-5. Fold enrichment (FE) results at different percentages of the database (DB) screened.   

  (A) 
FE @ 0.1% of DBb  

(B) 
FE @ 1% of DBb 

(C) 
FE @ 10% of DBb  

(D) 
FE @ 100% of DBb 

 Random 1.00 1.00 1.00 1.00 
Systema Maximum 2000.00 200.00 20.00 2.00 

1NJS 
SGE 0.00 111.36 19.05 1.99 
FMS 1009.65 184.26 19.88 2.00 
FMS+SGE 0.00 150.85 19.52 2.00 

1SJ0 
SGE 88.96 22.09 4.98 1.21 
FMS 804.91 114.91 15.39 1.90 
FMS+SGE 382.87 48.69 5.90 1.30 

3CCW 
SGE 80.74 31.49 7.20 1.43 
FMS 1167.99 144.49 15.46 1.77 
FMS+SGE 932.51 116.07 12.68 1.61 

2RGP 
SGE 218.33 41.28 6.76 1.40 
FMS 225.70 46.36 11.77 1.77 
FMS+SGE 517.05 67.51 9.90 1.59 

2VT4 
SGE 166.11 36.47 7.51 1.50 
FMS 223.36 65.93 10.45 1.73 
FMS+SGE 376.70 78.04 11.07 1.67 

2GTK 
SGE 53.17 22.27 7.21 1.59 
FMS 613.72 75.99 10.30 1.67 
FMS+SGE 319.87 60.89 10.75 1.69 

1BCD 
SGE 6.40 14.38 6.35 1.67 
FMS 147.94 25.25 5.43 1.65 
FMS+SGE 43.48 25.22 7.74 1.74 

1UYG  
SGE 0.00 3.56 0.65 0.92 
FMS 590.68 90.43 9.32 1.62 
FMS+SGE 75.01 35.68 7.90 1.25 

1L2S 
SGE 0.00 0.00 0.54 1.07 
FMS 264.83 55.17 7.82 1.61 
FMS+SGE 235.40 56.64 8.84 1.48 

2HZI 
SGE 86.92 23.91 5.03 1.40 
FMS 149.30 23.72 4.43 1.53 
FMS+SGE 103.28 28.80 5.51 1.50 

1KVO 
SGE 62.81 35.80 5.84 1.29 
FMS 39.26 6.16 4.04 1.53 
FMS+SGE 51.04 32.23 8.04 1.47 

1R9O  
SGE 31.34 4.59 1.53 1.07 
FMS 0.00 2.17 2.45 1.20 
FMS+SGE 15.67 5.33 1.63 1.07 

1E66 
SGE 247.06 52.18 8.20 1.37 
FMS 11.28 3.43 1.56 1.19 
FMS+SGE 508.10 70.25 8.99 1.43 

2AA2 
SGE 4.13 5.00 0.74 0.45 
FMS 190.19 26.71 3.32 1.17 
FMS+SGE 62.02 7.07 0.90 0.64 

1C8K 
SGE 0.00 0.00 0.63 0.98 
FMS 0.00 0.00 0.47 0.83 
FMS+SGE 0.00 0.00 0.82 1.00 

aPDB codes used with accompanying DUD-E libraries (actives + decoys).  bFE= AUCcurve/AUCrandom thus baseline 
random selection always yields a FE = 1.00.   
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As an additional point, in general, good enrichment should depend only on actives being 

ranked earlier than decoys without regards to there being "similarity" among groups of 

compounds.  However, use of the FMS function might be expected to yield higher early 

similarity, compared to the entire set of actives as a whole, provided the composition of active 

molecules in a given database does contain subsets with 2D similarity and a larger than average 

number of docked compounds yield good 3D overlap with the reference pharmacophore.  To 

explore this issue, among rank-ordered active compounds, we computed all possible pairwise 

Tanimoto coefficients115 using the DOCK fingerprinting method motivated by the MOLPRINT 

algorithm116,117 and plotted the data as heatmaps (Figure 2-17).   

While additional studies should be pursued, especially those employing more than one 

reference per system as was done in the current study, Figure 2-17 reveals that in a number of 

cases, active molecules do in fact appear to have higher similarity earlier in rank-ordered list 

when using FMS vs. SGE scoring (Figure 2-17 red/yellow vs. blue, top vs. bottom rows).  Rank-

ordering with FMS also shows a tendency to cluster similar molecules together.  Particularly 

interesting examples include 1SJO, 1UYG, and 1L2S for which SGE shows poor (random in 2 

cases) enrichment compared to FMS as gauged by the shape of the ROC curves in Figure 2-16.   
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Figure 2-17. Pairwise Tanimoto heatmap for 15 DUD-E systems using FMS (top) and SGE (bottom) 
protocol. The color scheme in the heatmap represents the magnitude of Tanimoto similarity and the x/y 
axis represents the rank-ordered list (FMS or SGE) of unique active molecules for each system. 
 

2.4.5 Case Studies Targeting EGFR, IGF-1R, and HIVgp41. 

To further gauge the utility of using FMS methods, we rescored virtual screening results 

for three systems being targeted in our laboratory: epidermal growth factor (EGFR),34,118 insulin-

like growth factor 1 receptor (IGF-1R), and human immunodeficiency virus glycoprotein 41 

(HIVgp41)72,119 and visually examined the number of pharmacophore matches for top-ranked 
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molecules under different conditions (Figure 2-18).  The FMS references employed for EGFR 

(erlotinib) and IGF-1R (isoquinolinedione analog) were based on known small molecule 

inhibitors, while the HIVgp41 reference was based on four key amino aid sidechains (WWDI) 

from a known peptide inhibitor.  The receptors and accompanying references were derived from 

crystallographic structures (PDB codes 1M17, 2ZM3, and 1AIK, respectively), and the 

molecules docked to each target were taken from the publically available ZINC39 collection of 

purchasable organic compounds.  For each screen, the top 100,000 ranked compounds obtained 

with the standard docking protocol (grid score with FLX protocol) were retained and then 

rescored and re-ranked using DOCK Cartesian energy (DCE, which is comparable to SGE but in 

Cartesian space), FMS, and FMS+DCE scoring protocols.   
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Figure 2-18. References (orange sticks, gray surface) used to rescore virtual screening results targeting 
(A) EGFR, (B) IGF-1R, (C) HIVgp41, and (D) HIVgp41 with Asp sidechain weighted 5 times.  Matched 
pharmacophore features include: PHO in cyan; HBA (vertex and vector) in red; HBD vector in blue, 
hydrogen vertex in grey; ARO (vertex and vector) in orange; POS in magenta; NEG in green (see 
Theoretical Methods for definitions).   

 

As shown in Figure 2-18, the number of pharmacophores matched for the top 25 ranked 

compounds is relatively small using DCE.  In sharp contrast, use of FMS or FMS+DCE show, 

for example, many more matched HBD (blue arrows), HBA (red arrows), ARO (orange arrows), 

and PHO (cyan spheres) features.  It is important to note that the plots in Figure 2-18 show how 



 

 

72 
 

 

many "matched" pharmacophores were obtained, relative to the reference, but candidate 

compounds can contain "unmatched features" that extend beyond the volume defined by the 

reference compound; the functional form of eq 2-1 does not necessarily penalize unmatched 

features relatively to the candidate.  This behavior could be changed, for example, by including a 

simply penalty term based on the number of unmatched groups in the candidate however this 

was not explored in great detail.  Other functional forms besides eq 2-1 could also be 

investigated.  In any event, the number of matched and unmatched features, including types, for 

each docked pose, is printed to the DOCK output, which can be useful to determine whether 

particular characteristics have been satisfied.   

As a specific example, an interesting result from the present analysis is a lack of matched 

pharmacophore features to the Asp carboxylate group in the HIVgp41 reference (Figure 2-18 

row C).  An examination of ranked poses higher up the FMS and FMS+DCE lists did indeed 

reveal compounds with overlap to the reference carboxylate but they were not ranked as well as 

compounds with multiple matches involving two Trp indole rings and a hydrophobic Ile (Figure 

2-18 row C).  Given the biological importance of the Asp group in this system, an effective small 

molecule mimic would reasonably be expected to contain a negatively charged or hydrogen 

bonding group at this position.120,121  A straightforward way to enforce this requirement was 

devised by using a modified HIVgp41 reference that simply included 5 copies of the Asp 

carboxylate which had the effect of weighting this feature more heavily as shown in Figure 2-18 

row D.  For this particular test, weighting the Asp more highly had the desired effect but at the 

expense of losing hydrophobic matches to Ile (Figure 2-18 FMS and FMS+DCE, row C vs D).  

As a general point, this example demonstrates the ease with which specific pharmacophore 

features can be emphasized over others using the current DOCK infrastructure.   
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Finally, in terms of additional ligand properties, Figure 2-19 plots results from the 

HIVgp41 screen for different groups of top-ranked molecules (N=500) each obtained by one of 

the ranking protocols.  Consistent with previous studies from our laboratory, use of DCE (or 

SGE) shows a bias towards larger molecules.  In contrast, compounds ranked by FMS score are 

smaller in size as demonstrated by ligands with lower molecular weights (Figure 2-19d) and 

fewer numbers of rotatable bonds (Figure 2-19e).  As anticipated, use of FMS+DCE yields 

molecular weights and numbers of rotatable bonds roughly in-between DCE and FMS.   For 

scoring, use of DCE results in more favorable DCE energies (Figure 2-19a blue vs. red or green), 

FMS results in more favorable FMS scores (Figure 2-19b red vs. blue or green), and FMS+DCE 

results in more favorable FMS+DCE scores (Figure 2-19c green vs. blue or red).  And, rescoring 

molecules obtained with one function with another function leads to the expected results.  For 

example, DCE score distributions for top ranked FMS+DCE molecules are in between that of 

DCE and FMS (Figure 2-19a green), FMS score distributions for top ranked FMS+DCE 

molecules are in between that of FMS and DCE (Figure 2-19b green), and FMS+DCE score 

distributions for top ranked FMS molecules are in between that of FMS+DCE and DCE (Figure 

2-19c red).  Importantly, use of the combined FMS+DCE function to rescore virtual screening 

results yield both favorable FMS scores and DOCK energies.  This suggests use of a reference to 

rescore screening results could also be a viable way to identify compounds that make known 

interaction patterns, with favorable interaction energies, while reducing molecular weight bias.   
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Figure 2-19. Histograms of rescoring results for the top 500 molecules selected from virtual screening 
targeting HIVgp41.   

 

2.5 Conclusion 

In conclusion, the primary goal of this study was to develop, implement, and thoroughly 

test a pharmacophore-based scoring function for the docking program DOCK.  The resulting 

method, termed pharmacophore matching similarity (FMS) score, was validated using 

experiments that help gauge accuracy relative to the standard DOCK single energy grid (SGE) 

protocol, and the combination score FMS+SGE.  Three groups of validation experiments were 

performed: (i) pose reproduction (Figures 3.7-11, Table 2-4), (ii) crossdocking (Figures 3.12-15), 

and (iii) enrichment (Figures 3.16, Table 2-5).  Importantly, in terms of pose reproduction, use of 

FMS (93.5%) or FMS+SGE (98.3%) functions yielded significantly higher success rates than the 

standard SGE (72.5%) method when evaluated using 1043 systems in the SB2012 testset.  The 
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nearly perfect success rate obtained with the combined FMS+SGE function, which biases 

sampling to match a reference while simultaneously including energetic constraints imposed by a 

binding site, is notable and strongly suggests the method will have applicability for structure-

based drug design provided a "suitable" reference can be identified.  Tests using FMS alone for 

pose reproduction showed relatively few ligand poses falling into false positive (FP) and false 

negative (FN) regions defined by quadrant partition using specific RMSD and FMS score cutoff 

criteria (Figure 2-9).  Interestingly, visual examination of the worst FP cases (Figure 2-10) 

revealed, in most instances, that the candidate and references poses were in fact well overlaid 

and that only one part of molecule was not well matched.  Unlike the standard DOCK energy 

function, the geometry-based FMS scores show reasonable correlation with RMSD.   

For crossdocking, while use of FMS scoring alone showed significant improvement with 

regards to systems on the diagonal (cognate protein-ligand pairs), the overall matrix success rate 

in 4 out of 6 cases was significantly lower than SGE.  Examination of the underlying reference 

structures showed that FMS docking success is highly dependent on how well the 

pharmacophore reference overlays with the RMSD reference (Figure 2-12~2-15).  Thus, while 

use of FMS scoring alone to drive sampling of a ligand using a reference without possibilities for 

good overlap yields poor results, such behavior makes physical sense.  More importantly, the 

results dramatically emphasize that the FMS function works best when the goal is identification 

of molecules that resemble the reference, as was the original intent.  As expected, use of the 

combined FMS+SGE function provides more of a balance and yields the highest crossdocking 

matrix success rates (Figure 2-12).   

In terms of enrichment, receiver operator characteristic (ROC), area under the curve 

(AUC), and fold enrichment (FE) analyses, in general, showed that FMS and FMS+SGE 
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functions yield better performance than SGE alone (and random selection) for both early and 

total enrichment (Figure 2-16 and Table 2-5) when evaluated over 15 systems taken from the 

DUD-E database.  For several systems FMS+SGE enrichment appears roughly in between that 

obtained using FMS or SGE alone (Figure 2-16).  Importantly, FE values computed very early in 

rank-ordered lists (0.1% and 1%) showed using FMS and FMS+SGE yielded 10-13 out of 15 FE 

values enhanced relative to the standard protocol SGE (Table 2-5 column A, B) despite the fact 

that only a "single" reference (cognate ligand) was used to guide sampling of compounds.  

Future studies should evaluate enrichment outcomes using multiple FMS references.   

In terms of virtual screening, rescoring results obtained from standard docking to three 

target of pharmaceutical interest (EGFR, IGF-1R, and HIVgp41) showed that the FMS and 

FMS+DCE (equivalent to FMS+SGE) methods yielded more compounds with greater numbers 

of pharmacophore matches when the top 25 compounds from each method were examined 

(Figure 2-18).  The example also demonstrated how FMS scoring could utilize small organic 

molecules or non-contiguous protein sidechains as references.  For gp41 in particular, 

examination of top poses revealed that none of the compounds matched an important Asp 

sidechain in the initial pharmacophore model.  A simple modification of the reference to include 

multiple copies of the Asp weighted this functionality more highly, and when rescored, yielded 

top-ranked compounds with the desired interaction.  Importantly, this result further establishes 

the importance of the FMS "reference" in addition to demonstrating how pharmacophores could 

be customized.    

Finally, the current results suggest several directions for future research including 

exploring other functional forms of the main FMS equation (eq 2-1), testing FMS score in 

combination with other scoring functions (i.e. footprint similar scoring), development of a 
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receptor-based122 as opposed to the current ligand-based method, and implementation of routines 

to address multiple pharmacophore references simultaneously.123 Ongoing work involves 

incorporation of FMS scoring into a de novo design version of DOCK, currently under 

development in our laboratory, to allow pharmacophore-guided de novo growth of new ligands 

from scratch having similar binding profiles as a known reference.   
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Chapter 3. FMS-guided Virtual Screen to HIVg41 

This Chapter provides additional analyses on application case studies employing 

pharmacophore-based scoring in database enrichment and virtual screening targeting HIVgp41. 

 

3.1 Introduction 

The ultimate goal of structure-based drug design is to obtain potent ligands with desirable 

interactions against a given target.  In this Chapter, we present detailed visual inspection of 

enrichment studies, which is an important indicator of the expected outcomes for the computer-

aided drug design approach virtual screening, and application studies of FMS-guided docking.  

Rescoring virtual screenings results with different DOCK scoring functions were performed 

targeting HIVgp41, to both the well-known hydrophobic binding pocket as well as a new NHR 

inner pocket recently identified by Allen et al.14   

As introduced in Chapter 1, the viral protein HIVgp41 is an attractive anti-HIV drug 

target.  To date, the only FDA approved HIV fusion inhibitor, T20, is a peptide-based drug.  

However, small molecule drugs targeting HIVgp41 are of great interest.  In addition to the 

known conserved hydrophobic pocket on the surface of the NHR trimer where the known 

peptide inhibitor C34 binds (Figure 2-18C,D, Figure 2-1a), our lab has recently identified an 

inner pocket found at the internal interface of the three NHR helices.14  Virtual screening to the 

inner pocket and experimental efforts to validate the mechanism of NHR trimer formation and 

confirm the target eligibility of this pocket are ongoing in collaboration with researchers Dr. 

Amy Jacobs (SUNY Buffalo) and Dr. Miriam Gochin (University of California, San Francisco).  
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Validation tests and application tests for small molecule inhibitor design can help to 

provide additional insight into the FMS scoring protocol and guide protocol refinement to aid 

future works.  By comparing the sampling sizes and hit properties in virtual screening, we can 

evaluate the effects of using different scoring functions such as single grid energy (SGE), 

pharmacophore matching similarity (FMS) and the combination FMS+SGE.  Our hypothesis is 

that FMS and FMS+SGE procedure can serve as robust scoring and sampling protocols for 

alternative virtual screening compound selection outcomes. 

 

3.2 Methods and Computational Details 

Structured-based drug design techniques and protocols. Previously in Chapter 2, 

enrichment studies were performed on 15 DUD-E systems using three different docking 

protocols (SGE, FMS and FMS+SGE).  And as was discussed, FMS and FMS+SGE can 

significantly enhance enrichment rates.  In this chapter, we provide more in-depth visual 

inspection of docked poses for top scored molecules in a subset of the enrichment systems.   
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Figure 3-1. Flow chart represents the standard Rizzo lab virtual screening protocol. Colored boxes 
represents the approximate size of the compound set studied in each step of virtual screening. 

 

Figure 3-1 illustrates the general procedure for virtual screening in this study.  In the 

Rizzo lab, virtual screening is performed via the following five steps: 1) prepare the target 

protein for docking and download a compound database for screening; 2) perform individual on-

the-fly docking for all molecules in the database using the DOCK single grid energy (SGE) score 

followed by restrained minimization using DOCK Cartesian energy (DCE) score to eliminate 

molecules with unfavorable affinity to the target; 3) cluster top DCE scored molecules according 

to molecular properties such as molecular weight, 2D fingerprint etc.; 4) rank-order clustered 

heads by different DOCK scoring functions; 5) select top hits from each rank-ordered list by 

visual inspection, and purchase samples for experimental testing.  Typically, the initial set for 

screening contains 0.5 to 1.5 million compounds (step 1).  The top 100,000 DCE scored 

molecules will be evaluated in step 2 through step 4.  Finally, about 1000 top scored molecules 

using different metric will be inspected in step 5 (Figure 3-1, right). 
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Using the virtual screening protocol in Figure 3-1 that has been previously shown by our 

group to yield promising hits for the known HIVgp41 hydrophobic pocket72 (Chapter 2), Allen et 

al recently performed a screen to a newly identified inner pocket on the gp41 NHR region using 

an IQLT peptide derived from one N helix as the pharmacophore reference.14  In this Chapter, 

we rescore these virtual screening results to both gp41 pocket using FMS-based methods.  Figure 

3-2b-c shows the two targets structurally. 

 

 

Figure 3-2. HIVgp41 inner-pocket for FMS-guided virtual screening. (a) Mechanism of blocking N-
helical trimer association via targeting inner pocket and blocking formation of the six helical bundle 
(6HB) via targeting the hydrophobic pocket. Figure adapted from work by Allen et al.120  (b) 
Visualization of the hydrophobic pocket (gray ribbon) and pharmacophore reference for de novo design 
(cyan line representation) and virtual screening (orange stick representation).  (c) Visualization of the 
inner pocket (gray ribbon) and the pharmacophore reference (orange stick representation). 
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3.3 Results and Discussion 

3.3.1 Enrichment Study Analyses on Four Representative Systems 

The top 50 molecules picked by the three DOCK scoring functions SGE, FMS and 

FMS+SGE from four DUD-E systems 3CCW, 2AA2, 1E66, 1C8K contain different numbers of 

actives and decoys, representing different stages of early enrichment rate. The enrichment data 

and molecular visualization of the top 50 hits are shown in Figure 3-3.  Note that molecules in 

DUD-E may contain multiple compounds with the same molecular ID, based on different 

protonation states or tautomer, but only the best scored candidate compound is retained for rank 

ordering and “hit” selection.  Overall, the binding poses of the top 50 molecules (carbon atoms in 

grey in Figure 3-3) picked by FMS score overlay more tightly to the reference molecules shown 

in orange. In contrast, molecular clusters formed by the top 50 molecules picked by SGE 

protocol tend to occupy additional volumes that are not filled with the crystal pose.   

For systems 3CCW and 2AA2, FMS score has the best overall and early enrichment 

performance in all stages as reported previously in Chapter 2 (Figure 2-16 and Table 2-5).  For 

system 3CCW, both FMS and FMS+SGE yields very promising results with 100% true actives 

for the top 50 molecules when only ~50% of the top SGE molecules are true actives.  And, the 

top FMS and FMS+SGE hits all have almost perfect overlap in terms of binding poses to the 

reference molecule (row 3CCW middle and right panel in Figure 3-3).  In the system 2AA2, top 

molecules selected by SGE and FMS+SGE both favors a extra pocket adjacent to where the 

reference molecule binds, as shown by the some molecular cluster to the top left of the crystal 

ligand in Figure 3-3 row 2AA2.  However, the top FMS molecules generate poses with ring 

structures tightly clustered around the center of the reference pose (the gray clouds in the center 

for row 2AA2 middle panel in Figure 3-3) with few occupancy to that top left region filled by 
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top SGE and FMS+SGE molecules.  The total molecular volume with high occupancy by top 

molecules for FMS+SGE protocol is in between that for SGE and FMS protocol.  For 1E66, 

although FMS protocol has the worst early enrichment (for 0.1%, 1% and 10% of database, 

Table 2-5) and has the least number of actives in the top 50 molecules, the top scored poses still 

yields the best overlap visually with the reference pose at the matched region (Figure 3-3, row 

1E66, middle panel) with unmatched segments scattered in all directions from the reference.  

Top SGE and FMS+SGE molecules cluster into a molecular volume that only intersects with the 

reference pose in a small percentage (Figure 3-3, row 1E66, left and right panel) when the 

unmatched segments tightly overlapped.  The only system where all three protocols fail to do 

better than random selection in terms of enrichment rate is 1C8K.  The top 50 molecules picked 

by SGE, FMS and FMS+SGE protocols are all decoys instead of actives.  Although the early 

enrichment rates are all poor, poses generated with FMS protocol and FMS+SGE protocol are 

still reasonably well overlapped with the reference pose, while only 2 of the top 50 SGE 

molecules are docked to the same pocket as the reference molecule.   

Overall, the in-depth conformational inspection of the enrichment study results again 

validates the reliability of FMS and FMS+SGE scoring protocol to enrich for true binders while 

competing with decoy compounds with similar physico-chemical properties.  These results 

further demonstrate the robustness of our pharmacophore-based scoring protocol and the utility 

to aid virtual screening. 
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Figure 3-3. Early enrichment represented by the predicted binding poses of top molecules selected by 
SGE, FMS and FMS+SGE. Reference ligand shown in orange stick model; molecular volume of the 
reference ligand shown in gray surface model; top 50 molecules in DOCK predicted conformations 
shown in gray line model. PDB codes for the four systems are 3CCW, 2AA2, 1E66 and 1C8K. 
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3.3.2 Rescoring Virtual Screening to HIVgp41 

HIVgp41 hydrophobic pocket.  As described in Chapter 2, ~0.5 million compounds 

previously screened to the HIVgp41 hydrophobic pocket by Holden et al72,119 were rescored 

using SGE, FMS and FMS+SGE scoring functions.  Here, visualizations of the top 100 

molecules from these rescoring tests along with their matched pharmacophore models to the 

reference ligand pose in the pocket are shown in Figure 3-4.  In general, the top molecule poses 

generated with FMS (carbon atoms colored in pink) are consistently more tightly clustered 

around the reference, which in this case is four (WWDI) isolated amino acid side chains (Figure 

3-4, top row).  Visualization of the actual matched pharmacophore points yield similar results 

with FMS yielding more matches compared to SGE (Figure 3-4, bottom row, middle panel vs. 

left panel).  The top SGE molecules (carbon atoms colored in cyan) fill not only the part of the 

binding site that has been occupied by the reference (central pocket) but also several adjacent 

pockets (Figure 3-4, top left panel).  Visually, the top SGE molecules are also larger than the 

other two groups of molecules.  The top 100 molecules picked by FMS+SGE are more medium-

sized compared to the top SGE or top FMS scored molecules with fewer occupancy outside of 

the central pocket and reasonably well matched pharmacophore models to the reference.  (Figure 

3-4, bottom row) 
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Figure 3-4. Representative results from FMS-guided virtual screening targeting the HIVgp41 
hydrophobic pocket (PDB ID: 1AIK). The Pharmacophore reference (orange) is the WWDI key residue 
side chains from C34.  Molecules shown in the top row; Matched pharmacophore models in the bottom 
row.   
 

HIVgp41 inner pocket. To gauge virtual screening rescoring outcomes for a different 

target system, SGE, FMS and FMS+SGE methods were used to rescore results generated by 

Allen et al14 from docking 1 million ligands to the HIVgp41 inner pocket introduced in Figure 3-

3.  Visualizations of the top 100 molecules with their matched pharmacophore models to the 

reference poses for the HIVgp41 inner pocket are shown in Figure 3-5.  Here, this binding pocket 

occupied by the reference peptide (IQLT) contains two hydrophobic residues and two polar 

residues with hydrogen bond acceptors and hydrogen bond donors.  In contrast to the previous 

example, no ring-containing residues were used for this reference.  Visually, top hits from all 

three methods occupy the full span of the binding pocket.  In addition to overlaps with reference 
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residues, top molecules picked by FMS and FMS+SGE have more occupancy on the left corner 

of the binding site as shown by the hydrophobic pharmacophore point clusters close to the Ile 

group (Figure 3-5, bottom middle and bottom right).  Compared to re-screening to the 

hydrophobic pocket (Figure 3-4), the results here are less dramatic. 

 

 

Figure 3-5. Representative results from FMS-guided virtual screening targeting the HIVgp41 inner 
pocket.  The pharmacophore reference (orange) is comprised of the IQLT key residues from one N helical 
peptide.  Molecules shown in the top row; Matched pharmacophore models in the bottom row.   

 

To further gauge the differences in top-scored hits selected by FMS and energy scores, 

molecular properties of the top 500 molecules picked by DCE (equivalent to SGE), FMS, and 

FMS+DCE targeting the gp41 inner pocket are shown in Figure 3-6.  Consistent with the 

analyses in Chapter 2 (Figure 2-19), use of DCE score yielded most favorable DCE results 

(Figure 3-6a, blue vs. red and green curves), use of FMS score yielded best pharmacophore 
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overlap (Figure 3-6b, red vs. blue and green curves) and use of FMS+DCE yielded overall 

lowest FMS+DCE scores which is as expected (Figure 3-6c, green vs. blue and red curves).  The 

best FMS scores for this inner pocket screen are around 5.0 (Figure 3-6b, red curve), compared 

to 4.2 (Figure 2-19, red curve) for the hydrophobic pocket.  This indicates the less overlap in this 

pocket may be related to the fact that the reference compound does not contain rings.  In 

addition, FMS again showed the least amount of bias on the size of the molecules (Figure 3-6d-e, 

red vs. blue and green curves).  Compared to the HIVgp41 hydrophobic pocket, top hits in the 

inner pocket are generally more flexible as the number of rotatable bonds peaks at around 10 in 

Figure 3-6e while hits in the hydrophobic pocket on average have around 8 rotatable bonds 

(Figure 2-19e). The molecular weights of hits for the two pockets, however, both are centered 

around 500 g/mol, which agrees well with known “drug-like” properties.22  This observation is 

likely to correspond to the binding profiles of the two binding pockets.  For instance, the native 

peptide inhibitor for the inner pocket consists of amino acids that are relatively smaller (IQLT), 

and the native substrate for the hydrophobic pocket (WWDI) consists of indole-containing 

residues that are much larger in size.   
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Figure 3-6. Histogram of (a) DCE score, (b) FMS score, (c) FMS+DCE score, (d) molecular weight, and 
(e) number of rotatable bonds for the top 500 scored molecules scored by DCE (blue), FMS (red), and 
FMS+DCE (green) from a virtual screen targeting the HIVgp41 inner pocket.14  
 

3.4 Conclusion 

In summary, in this Chapter we performed enrichment structural results analyses as well 

as virtual screening rescoring tests targeting the HIVgp41 hydrophobic and inner pockets.  

Judged by the ability of FMS to enrich for known actives, this method is likely to be an 

important tool to aid virtual screening.  

It is important to emphasize a new DOCK descriptor score that allows scoring of 

molecules with different DOCK scoring functions at the same time was employed in this 

Chapter.  Customized weight can be assigned to different components in the descriptor score.  

This is particularly useful in driving the sampling with a hybrid score in future screening.  

However, complexities can also arise when optimal weights on the individual score component 
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for the combinations are not employed.  Thus, it is recommended that the users also perform 

their own validation tests when deviating from the values used here. 
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Chapter 4. FMS-guided de novo Design to HIVg41 

This Chapter provides analyses on preliminary application case studies employing 

pharmacophore-based scoring for de novo design. 

 

4.1 Introduction 

In addition to standard ligand docking, which relies primarily on robust sampling and 

scoring routines to search conformational space, an alternative technique used computer-aided 

approaches for ligand discovery is termed de novo design as discussed below.  The de novo 

design of a novel molecule from scratch requires two principle tasks: (1) obtaining molecular 

“building blocks”, and (2) assembling the “building blocks” into physically reasonable molecules 

with desirable pharmacological properties in a timely manner.124  Compared to virtual screening, 

de novo design does not a priori limit the search space to a chosen compound database, which 

makes it a useful alternative tool to search over very large chemical sub-spaces which are 

estimated to contain approximately 1060 (<500 Da) molecules.125  In recent years, many de novo 

design drug design programs, such as LEGEND,126 LeapFrog,127 LEA3D,128 BOMB,129,130 and 

LigBuilder,131,132 have been developed.133  Ongoing development in the Rizzo lab lead by 

postdoctoral fellow Dr. William J. Allen134 aims to implement a robust de novo design 

algorithms into the docking program DOCK to leverage recent advancements in on-the-fly 

sampling and new scoring functions.  De novo DOCK version 2015-01-15134 (which included the 

FMS scoring function) has been used in this Chapter to perform FMS-guided de novo design for 

both method validation and case studies targeting HIVgp41. 
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Figure 4-1. Illustration of de novo design protocols: (a) Horizontal pruning and guided growth in de novo 
design. Figure generated by William J. Allen.134  (b) de novo growth of molecules by adding new 
segments from a user-defined fragment library instead of pre-defined fragments at all attachment points 
during the anchor-and-grow sampling processes. Anchor highlighted by the red box and the growing 
molecule at each layer shown in the grey boxes. 

 

The de novo design strategy implemented into DOCK constructs novel molecules from 

scratch using a modified version of the anchor-and-grow algorithm.  The procedure requires 

“building blocks” (i.e. fragments), which are obtained from common molecular segments 

generated from a set of existing and purchasable drug-like molecules.  The frequency of each 

fragment is saved for later reference.  Also, the atom environments on both sides of the 

“breaking point”, which corresponds to a rotatable bond identified by DOCK, are documented 

and saved as an “allowable bond library”.  In the assembly step of de novo growth, only bonds 

contained in the “allowable bond library” can be formed.  Importantly, this restriction helps to 

enforce physically reasonable molecules and increases the chemical feasibility of final hits 

generated by the algorithm.  Similar to the standard DOCK anchor-and-grow algorithm, de novo 
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growth employs an “inside-to-outside” strategy.  Starting from the placement of an anchor 

(highlighted by the red box in Figure 4-1b), for each attachment point on an anchor (layer 0), a 

series of fragments from the fragment library will be evaluated.  The compatible fragments 

satisfying the conditions defined in the “allowable bond library” after attachment will be added 

to the molecule and the new structure will be saved until the maximum number of constructs is 

achieved at any attachment point.  After adding the first layer of fragments, all new constructs 

are evaluated together.  If there are no attachment points (tagged by dummy atoms) in the 

construct, then the complete molecule is saved as final molecule for output.  Otherwise, it will be 

clustered and filtered (horizontal pruning, Figure 4-1a) by scoring functions and other metrics 

that define the molecular properties of the constructs.  The top scored (guided growth, Figure 4-

1a) clusterheads will then be used for growing the next layer.  By design, different DOCK 

scoring functions can be used for pruning at each step of de novo growth, as well as guide 

growth to optimize the final molecules for certain molecular properties such as similarity to a 

known reference molecule.  Importantly, de novo design is often considered to rely even more on 

accuracy of the scoring method used compared to virtual screening.131  In this study, we 

evaluated the robustness of FMS and FMS+SGE as the scoring and sampling protocols for de 

novo design.  Overall, the preliminary tests yielded promising results, indicating that FMS-

guided de novo design has the potential to construct small molecule ligands with similar binding 

profiles to the known references in an extended chemical space. 

 

4.2 Methods and Computational Details 

Focused library de novo tests. As a first battery of tests to validate the performance of 

new FMS-guided de novo DOCK protocols, we have run de novo reproduction tests for 50 
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SB2012 systems as listed in Table 4-1.  For each reproduction test case, we first generated a 

highly restricted “focused” fragment library by decomposing each crystallographic ligand into 

scaffolds (>2 attachment points), linkers (2 attachment points), and sidechains (1 attachment 

point) by breaking the rotatable bonds in each molecule and storing each non-redundant 

fragment.  The combined set of scaffolds, linkers, and sidechains are saved as “anchors”. The 

total number of fragments in the anchor file is shown in Table 4-1 (Column 3 and Column 6).  

Each segment in the anchor file is oriented in the binding site to obtain the initial set of roots 

(molecular construct with attachment points) for growth.  The maximum number of orientations 

for the current tests was set to 10000. For de novo sampling, a “graph” method was used to select 

new fragments.  Briefly, a fragment graph that includes the pair-wise Tanimoto and rank-ordered 

lists of similarity among all the input fragments are prepared in the beginning of the de novo 

procedure to optimize how fragments are chosen for each attaching event.  The maximum 

number of starting points to try in the fragment graph is set to 10 while the breath and depth of 

the graph are set to 5 and 2, respectively. If adding one fragment at a given attachment point 

favorably enhances the overall score, then the attaching event is accepted and fragments that 

similar to the current fragment will be chosen to generate more constructs at the same attachment 

point.  Otherwise, this fragment is kept based on a acceptance probability calculated using 

equation P= e(-∆E/kT).  Here, ∆E represents the difference in energy before and after adding the 

fragment; T is the annealing temperature initially set to 100 and gradually decreases in the 

growth procedure.  As a result, an unfavorable fragment is more likely to be kept earlier on in the 

growth step and less and less likely to be kept later on.  After adding fragments to generate a 

maximum number of 50 next layer partially grown molecules for each root construct, a 

molecular weight restraint of 1000 and a maximum number of 15 rotatable bonds will be used to 
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filter newly built constructs.  Then the subset of new layer molecules is pruned by Tanimoto 

(cutoff set to 1.0) and the Hungarian RMSD heuristic110 (unmatched number cutoff of 0 and 

matched region RMSD cutoff of 2.0 Å).  Next layer constructs that have no attachment points at 

this step will be written to file, while a maximum number of 50 (maximum root size) of the 

remaining partially-built molecules are returned to root for the next iteration of growth.  In this 

study, the maximum number of growth layers is set to 7.  As with standard flexible ligand 

docking, internal energy is used during ligand growth to avoid internal clashes with a repulsive-

only VDW potential with exponent 12.   
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Table 4-1. List of 50 systems for initial de novo validation from SB2012.100 
PDB # Fragment PDB # Fragment PDB # Fragment 
1ACM 6 1FH7 4 1O2Q 7 
1AID 6 1FHD 4 1O37 7 
1BIR 7 1G9V 8 1O5G 7 
1BJU 6 1H46 7 1PMN 8 
1BN4 8 1HAK  6 1Q95 6 
1BR5 5 1HDQ 7 1RDN 5 
1C8V 6 1IEP 8 1RGK 7 
1C9D 5 1JJE 5 1RGL 7 
1CPS 6 1JJT 4 1RKG 6 
1CW2 5 1JLA  5 1RNT 7 
1CX9 5 1JLG 8 1ROB 7 
1D09 6 1K3U 6 1RT2 5 
1D4P 7 1NFU 7 1S1T 8 
1DY4 7 1NFX 6 1T40 7 
1E6S 4 1NFY 7 1T46 8 
1E72 4 1O2H 7 1TZ8 4 
1EJN 7 1O2I 7   
 

 

Scoring functions used in the de novo reproduction tests presented in this Chapter include 

the following: (1) single grid energy (SGE) score, where 6-9 Lennard-Jones, distance dependent 

dielectric (ε=4r) and a grid box with 8.0 Å extension from all sphere points and 0.3 Å resolution 

are used; (2) Pharmacophore matching similarity (FMS) score; (3) FMS+SGE score, where the 

weight parameters for FMS and SGE are 10 and 1, respectively.  Additional combinations 

methods include (4) SGE+Tanimoto, where the weight parameters for SGE and Tanimoto are 1 

and -50; (5) FMS+Tanimoto, where the weight parameters for FMS and Tanimoto are 1 and -5; 

(6) FMS+SGE+Tanimoto, where the weight parameters for FMS, SGE, and Tanimoto are 10, 1 

and -100.   
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Specifically for the FMS-guided de novo tests, we merged the FMS scoring protocol with 

the development version of de novo DOCK (version 2015-01-15).134  The intention is to release 

the FMS and de novo functionality as DOCK6.8.  It should also be noted that in this study, 

scoring functions tested are used to guide vertical de novo growth only (See Figure 4-1a).  

Currently, horizontal pruning is performed with the repulsive internal energy, pairwise 

Hungarian RMSD110 and Tanimoto function among the partially grown molecules at each layer. 

 

Targeting HIVgp41. Similarly to the virtual screen that used peptide-based references to 

guide compound selection targeting the HIVgp41 hydrophobic pocket and the inner pocket in 

Chapter 3, here we performed FMS-guided de novo design to bias “from-scratch” ligand growth 

also guided by peptides.  The focused fragment libraries derived from the continuous peptides 

with key residues IQLT (inner pocket, Figure 3-2b) and WWDI (hydrophobic pocket, Figure 3-

2c) were retained at the interface. For the hydrophobic pocket, the peptide used as 

pharmacophore reference and for fragment library generation is obtained by keeping the residues 

from residue Trp117 (W, gp41 sequencing) to residue Ile124 (I, gp41 sequencing) while 

mutating intermediate residues to Alanine other than the four key amino acids (WWDI).  Note 

that this reference molecule is slightly different from what was used in the prior the virtual 

screening, which contains only the side chains of the four disjoint residues (WWDI).  

Construction of the inner pocket reference (IQLT) followed the same protocol. The focused 

fragment library generated for the hydrophobic pocket (1AIK-WWDI) includes 1 scaffold, 4 

linkers and 5 sidechains.  The focused fragment library generated for the inner pocket (1AIK-

IQLT) includes 1 scaffold, 4 linkers, and 6 sidechains.   
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4.3 Results and Discussions 

4.3.1 Focused library de novo runs: small molecule reference reproduction. 

The focused library de novo design tests on the 50 SB2012 systems can serve as 

validation for working protocol employing different scoring metrics including FMS.  For each 

system, a subset of novel molecules with various molecular fingerprints were generated.  These 

de novo output molecules were then evaluated using different DOCK scores as well as their 

molecular properties including Tanimoto and Hungarian score to the corresponding crystal 

ligand in SB2012.  Note that standard Hungarian RMSD can be directly derived from the 

Hungarian score for molecules with Tanimoto of 1.0 to the reference molecule because for two 

molecules with a Tanimoto of 1.0, the Hungarian score is equal to -5 + Hungarian RMSD value.  

Thus, if at least one molecule generated by given de novo DOCK has a Tanimoto of 1.0 to the 

crystal ligand, we identify this system as being successfully reproduced in terms of Tanimoto 

(Tanimoto reproduction) by the given de novo protocol.  In addition, if for at least one of the 

reproduced molecules, its binding pose predicted by de novo DOCK is within 2Å (Hungarian 

RMSD) to the crystal pose, then we identify this system as being successfully reproduced in 

terms of RMSD (RMSD reproduction) by the de novo protocol.  The objective in optimizing the 

protocols is to tune input parameters and setups to maximize the number of systems that 

reproduce both Tanimoto and RMSD values. 

Table 4-2 shows the total sampling sizes (column b) resulting from de novo design for all 

50 systems as well as the number of systems that are Tanimoto reproduced (column c1) by de 

novo DOCK using six scoring protocols: SGE, FMS, FMS+SGE, SGE+Tanimoto, 

FMS+Tanimoto, and FMS+SGE+Tanimoto. By relaxing the Tanimoto cutoff, we find increased 

Tanimoto reproduction rate, depending on what function is used, as shown by the increased 
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number of compounds going from column c2 (Tanimoto cutoff of 0.95), column c3 (Tanimoto 

cutoff of 0.8), column c4 (Tanimoto cutoff of 0.7) to column c5 (Tanimoto cutoff of 0.6).  In 

most cases, the current protocol can reproduce the original ligand to a Tanimoto of 1.0, 

especially if growth is driven using Tanimoto as a component of the scoring function (Table 4-2 

column c1, row SGE+Tanimoto: 45, FMS+Tanimoto: 47 and FMS+SGE+Tanimoto: 45).  And, 

if the Tanimoto cutoff is loosened to 0.6, most systems can be rebuilt for all six protocols 

(reproduction between 47 and 50 systems, Table 4-2, column c5).  In all cases, FMS-alone 

growth yielded the highest reproduction rate compared to SGE and FMS+SGE. For example, in 

column c1 in Table 4-2, the FMS protocol reproduced 45 systems while SGE reproduced 36 and 

FMS+SGE reproduced 37. When boosted by Tanimoto, FMS+Tanimoto protocol reproduced 47 

systems while SGE+Tanimoto and FMS+SGE+Tanimoto both reproduced 45.  Future studies 

however should examine if sample size is leading to differences in the Tanimoto being 

reproduced, through using consistently sized ensembles (i.e. top scoring compounds only).  

Additionally, the focused (small) libraries are “artificial” in the sense that to be of practical use, 

de novo design protocols must also behave well when using much larger generic libraries. These 

initial tests are meant only to be a first step in the overall validation procedure. 

Note that for one particular system 1AID, de novo DOCK using SGE, FMS+SGE, 

SGE+Tanimoto and FMS+SGE+Tanimoto protocols all terminated growth before layer 7 with 0 

output molecules.  Interestingly, FMS and FMS+Tanimoto were able to generated 59 molecules 

(up to layer 7) and 3 molecules (up to layer 4) for 1AID. Visual inspection showed that 1AID is 

relatively large molecule with few rotatable bonds (rotN=6, molecular weight = 453.1 g/mol). 

The focused fragment library for 1AID includes 4 large ring-containing fragments (molecular 

weight 86.2-112.6 g/mol) and two small fragment containing single heavy atoms (molecular 
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weight 15.0-17.0 g/mol).  It is likely that partially grown molecules for system 1AID already 

exceeded the maximum molecular weight limit during the de novo growth before layer 7, 

especially when driven by energetic scoring functions.  Thus only FMS and FMS+Tanimoto 

were able to complete de novo growth and reproduce the crystal ligand in terms of Tanimoto.  

This suggests that for some applications use of the FMS protocol without an accompany energy 

term (i.e. SGE) can be useful.   

Table 4-3 shows the number of RMSD reproduction cases out of the Tanimoto 

reproduced systems with Tanimoto cutoff of 1.0 and RMSD cutoff of 2Å (column d1), 2.5Å 

(column d2) and 3Å (column d3).  One obvious observation is the significant decrease in the 

number of RMSD reproduced cases for all six protocols.  This indicates that sufficient sampling 

in the de novo protocol to re-generate the 3D binding geometry (measured by RMSD) is a more 

challenging problem than reproducing the 2D fingerprint (measured by Tanimoto) alone.  

However, by relaxing the RMSD cutoff to 3Å (column d3), over 50% of the Tanimoto 

reproduced cases (Tanimoto =1.0) and nearly 50% of the total test systems (N=50) can be 

RMSD reproduced.   
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Table 4-2. Reproduction rate of de novo design by Tanimoto cutoff in 50 systems tested in SB2012. 

a. DOCK scoring protocol b. sample size 
c1. # Tanimoto 
reproduction 

(1.0) 

c2. # Tanimoto 
reproduction 

(0.95) 

c3. # Tanimoto 
reproduction 

(0.8) 

c4. # Tanimoto 
reproduction 

(0.7) 

c5. # Tanimoto 
reproduction 

(0.6) 

SGE 2500 36 36 45 45 47 

FMS 4595 45 45 48 49 50 

FMS+SGE 2752 37 38 43 44 48 

SGE+Tanimoto 3119 45 45 47 47 49 

FMS+Tanimoto 5430 47 48 48 48 49 

FMS+SGE+Tanimoto 3642 45 46 46 47 48 

de novo Tanimoto reproduction defined as creating molecules with Tanimoto=1.0 to reference molecule. 
 
Table 4-3. Reproduction rate of de novo design by Hungarian RMSD cutoff in 50 systems tested in SB2012. 

a. DOCK scoring protocol b. sample size 
c1. # Tanimoto 

reproduction (1.0) 
d1. # RMSD 

reproduction (2 Å) 
d2. # RMSD 

reproduction (2.5 Å) 
d3. # RMSD 

reproduction (3 Å) 

SGE 2500 36 14 19 23 

FMS 4595 45 10 15 23 

FMS+SGE 2752 37 17 22 23 

SGE+Tanimoto 3119 45 15 19 22 

FMS+Tanimoto 5430 47 13 21 24 

FMS+SGE+Tanimoto 3642 45 26 29 33 

All experiments in this table employ a Tanimoto cutoff of 1.0 and the listed Hungarian RMSD cutoff.
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4.3.2 Focused library de novo runs: DOCK outcomes and molecular properties 

Total ensemble properties. Histograms of SGE, FMS, and FMS+SGE, Tanimto and 

Hungarian (RMSD) scores for all de novo output molecules for the 50 SB2012 systems are shown 

Figure 4-2 to examine overall global trends.  As the current FMS protocol does not penalize clashes 

between a candidate ligand and the receptor, FMS and FMS+Tanimoto generated molecules yield 

mostly energetically unfavorable molecules (Figure 4-2a, red solid and red dashed lines) when 

evaluated in the contact of the receptor (i.e. SGE score).  The FMS+SGE guided de novo protocol 

yielded similar energy profiles to the SGE protocol (Figure 4-2a, green solid and green dashed lines 

vs. blue solid and blue dashed lines).  The FMS and FMS+Tanimoto protocol yielded the best 

pharmacophore overlap with the reference, with the FMS score peak around FMS=4.2 (Figure 4-2b, 

red solid and dashed lines) while SGE and SGE+Tanimoto yielded mostly molecules with little 

pharmacophore overlaps (Figure 4-2b, peak at FMS=8 blue solid and dashed lines).  The 

FMS+SGE and FMS+SGE+Tanimoto FMS histogram fell in between the SGE guided protocol and 

the FMS guided protocol.   
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Figure 4-2. Histogram of (a) SGE, (b) FMS, (c) FMS+SGE, (d) Tanimoto and (e) Hungarian Sore for all six 
de novo experiments on all 50 systems.  Tanimoto=1.0 stands for perfect Tanimoto overlap. Molecular 
properties and DOCK scores of ensembles generated with SGE (blue solid line), FMS (red solid line), 
FMS+SGE(green solid line), SGE+Tanimoto (blue dashed line), FMS+Tanimoto (red dashed line), and 
FMS+SGE+Tanimoto (green dashed line) 
 

 

Interestingly, by adding the Tanimoto term, FMS+SGE+Tanimoto yielded a notably 

enhanced FMS distribution (Figure 4-2b green dashed line) compared to FMS+SGE protocol 

(Figure 4-2b green solid line).  This result indicates that growth towards favorable Tanimoto space 

can in principle promote better pharmacophore overlap.  In Figure 4-2c, all protocols showed two 

separate peaks, one shifted to the left indicating good overall scores; another shifted to the right 

indicating bad overall scores.  The FMS+SGE guided protocols (green solid and dashed lines) 

contains more molecules in the left peak while the FMS guided protocols (red solid and dashed 

lines) contains mostly molecules in the right peak.  This is consistent with the energetic clashes of 

FMS-only ensembles observed in the SGE histogram in Figure 4-2a.  For FMS+SGE and SGE 



 

 

104 
 

 

guided protocols, the right peak (FMS+SGE>100) likely represents molecules with dominating bad 

FMS scores of 20 (with a score penalty contribution of 5×20=100 to FMS+SGE score), indicating 

no pharmacophore overlaps between the generated molecule and the crystal ligand pose.  The left 

shifted peaks contain molecules with both good pharmacophore overlap to the reference ligands and 

favorable energetic affinity to the target proteins.  Tanimoto histograms (Figure 4-2d) for all six 

protocols all peak at around 0.5, while those driven with Tanimoto (dashed lines) are slightly 

shifted towards an improved Tanimoto score.  Overall, the FMS and FMS+Tanimoto protocols 

generated the most ensembles with Tanimoto of 1.0 to the reference ligand (Figure 4-2d, peaks of 

red lines at Tanimoto=1.0).  This explains the high Tanimoto reproduction rate of the FMS guided 

protocol shown in Table 4-2.  Finally, Figure 4-2e showed the Hungarian score where a perfect 

overlap of two poses of the same molecule would yield a score of -5.  Very few molecules have 

perfect Hungarian scores in the total ensembles.   

 
Best-scored molecule properties.  Figure 4-3 shows the same results from Table 4-3 but 

when only the best-scored de novo grown molecule is retained instead of the entire ensemble across 

the 50 SB2012 test systems.  Notably, top-scored molecules (Figure 4-3) for all six protocols bear 

improved scores compared to the total ensembles (Figure 4-2).  For example, a new peak ranging 

from 1 to 3 in the FMS histogram (Figure 4-3, blue solid line) of the top scored molecules obtained 

using the SGE protocol indicate an increased population of compounds with good pharmacophore 

overlaps.  In fact, FMS score histograms for all six protocols showed significant improvement for 

the best-scored molecule sets (Figure 4-3b vs. 4-2b).  Best-scored poses also showed great 

improvement in terms of the Hungarian score with more diverse distributions shifted towards lower 

scores (Figure 4-3e vs. 4-2e).  Overall the FMS+SGE+Tanimoto ensemble (green dashed line) 
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contain the most closely overlapped molecules indicated by the largest peak near the perfect 

Hungarian score of -5 in Figure 4-3e.  This supports the RMSD reproduction results shown in Table 

4-3 that FMS+SGE+Tanimoto consistently yields the highest RMSD reproduction rates. 

 

 

Figure 4-3. Histogram of (a) SGE, (b) FMS, (c) FMS+SGE, (d) Tanimoto and (e) Hungarian Sore for all six 
de novo experiments on the best scored molecule for each of the 50 systems.  Molecular properties and 
DOCK scores of ensembles generated with SGE (blue solid line), FMS (red solid line), FMS+SGE(green 
solid line), SGE+Tanimoto (blue dashed line), FMS+Tanimoto (red dashed line), and FMS+SGE+Tanimoto 
(green dashed line). 
 

 

Representative structural analysis.  In Figure 4-4, six representative de novo generated 

molecules across five systems (PDB codes 1ACM, 1D4P, 1K3U, 1RNT and 1T46) from the 50 

SB2012 test cases using FMS+SGE+Tanimoto protocol are illustrated.  Systems 1ACM, 1D4P and 

1K3U are RMSD reproduced cases where the best (in terms of Tanimoto and RMSD) grown 

molecules (Figure 4-4 a-c) have a Tanimoto of 1.0 and Hungarian RMSD value within 2Å relative 
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to the crystal ligand.  The poses (carbon atoms shown in magenta) all visually overlap well with the 

crystal ligand (carbon atoms shown in cyan).  System 1RNT is a Tanimoto reproduced case but not 

RMSD reproduced.  Here, the molecule shown in Figure 4-4d is identical to the crystal ligand in 

term of 2D fingerprint (Tanimoto=1.0). However, the best Hungarian RMSD for the Tanimoto 

reproduced molecules is larger than 2 Å (RMSD=3.64 Å for the molecule shown).  Visually, this 

pose has reasonable FMS overlap (FMS=2.90) and good geometrical overlap with the reference 

except for the sulfate group to the right side of the pocket.  In contrast, for system 1T46, although 

the obtained Tanimoto value of 0.96 for the pose in Figure 4-4e is nearly identical to 1.0, it yielded 

a somewhat poor RMSD of 2.76 Å relative to the crystal ligand.  Figure 4-4f also shows an example 

in which the best Hungarian RMSD (0.88 Å) for 1T46 (for only the matched part of the molecule 

with Tanimoto<1.0) yielded a poor Tanimoto of 0.37.  Encouragingly, many molecules generated 

with a function combining the standard DOCK scores with FMS achieved energetic fits in the target 

pocket and had enhanced overlap to the reference.  Particularly, use of FMS+SGE+Tanimoto 

appeared to yield the most well behaved molecule sets in these very focused de novo validation 

tests.  It thus shows potential as a protocol to be used in de novo design although additional tests are 

needed. 
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Figure 4-4. Preliminary tests using de novo DOCK to 50 SB2012 targets with FMS-guided growth. Protein 
backbone is shown in tan ribbons; crystal reference molecule in cyan; de novo DOCK generated molecule in 
magenta. PDB IDs, Tanimoto and Hungarian RMSD values of the molecules (a)-(f) are provided. 
 

4.3.3 Focused de novo tests: HIVgp41 hydrophobic pocket  

The focused de novo protocol using SGE, FMS, FMS+SGE, SGE+Tanimoto, 

FMS+Tanimoto and FMS+SGE+Tanimoto score functions were also applied to the HIVgp41 

hydrophobic pocket and inner pocket target systems as a preliminary application test.  Here, the 

focused fragment libraries were generated from the native peptide inhibitors shown in Figure 3-2b 

(orange stick representation) and Figure 3-2c (cyan wire representation).  These peptide inhibitors 

were also used as pharmacophore reference for FMS guided growth.  The focused fragment library 

generated for the inner pocket (1AIK-IQLT) includes 11 fragments in total; the focused fragment 

library generated for the hydrophobic pocket (1AIK-WWDI) includes 10 fragments in total. 
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Compared to the virtual screening protocol used in the Rizzo lab as described in the study 

by Holden et al72 targeting HIVgp41, the sampling procedure and computational complexity in de 

novo design are quite different. Here, it generally takes about 2~7 seconds to sample one new 

molecule (i.e. generate a fully/partially grown molecule in one growth layer). Total sampling size, 

final hit (output fully grown molecules) ensemble size and run time (total time for each complete de 

novo experiment and average time for each sampling event) are reported in Table 4-5.  Note that for 

focused de novo design targeting the HIVgp41 hydrophobic pocket (1AIK-WWDI), the total time 

exceeded the wall clock time, which was set to 120 hours.  The experiment was terminated at 

growth layer 6. Thus the sampling size and run time are not shown.  Overall, the average run time 

for targeting the inner pocket (2~5 seconds) is much less than that for targeting the hydrophobic 

pocket (4~7 seconds).  And the sampling size for targeting the inner pocket is much larger except 

for the case using the FMS+Tanimoto scoring function.  On average, about 200~500 fully grown 

molecules were output after approximately 7~75 hours (except for FMS-guided de novo design to 

the hydrophobic pocket).  It is important to note that the sampling sizes and run time variability will 

depend on the properties of the fragments such as molecular size, number of attachment points, 

number of allowable bonds at each attachment point, and environment.  To address these 

challenges, evolutionary sampling procedures (i.e. genetic algorithm) and refined generic fragment 

libraries are also being tested in the Rizzo lab to help improve sampling and increase efficiency of 

the de novo protocol in DOCK.  
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Table 4-4. De novo design results for HIVgp41 hydrophobic and inner pocket.   

 SGE FMS 
FMS 
+SGE 

SGE 
+Tan 

FMS 
+Tan 

FMS+ 

SGE+Tan 

Sampling 
size 

1AIK-WWDI 14878 -- 14783 10107 17862 9159 

1AIK-IQLT 34204 89520 31561 39794 11862 13196 

Final hit 
size 

1AIK-WWDI 237 119 201 238 282 230 

1AIK-IQLT 229 231 214 323 484 501 

Run time 

(seconds) 

1AIK-WWDI 90696 -- 100572 51171 118691 60229 

1AIK-IQLT 107154 270788 145859 171379 25513 37302 

Run time 

(hours) 

1AIK-WWDI 25.19 -- 27.94 14.21 32.97 16.73 

1AIK-IQLT 29.77 75.22 40.52 47.61 7.09 10.36 

Avg. time 
(seconds) 

1AIK-WWDI 6.10 -- 6.80 5.06 6.64 6.58 

1AIK-IQLT 3.13 3.02 4.62 4.31 2.15 2.83 

1AIK-WWDI: hydrophobic pocket; 1AIK-IQLT: inner pocket. Average run time is calculated based on 
sampling size. 
 

Figure 4-5 shows four representative compounds targeting the HIVgp41 hydrophobic pocket 

designed by the de novo DOCK protocol guided with FMS+SGE (top row) and 

FMS+SGE+Tanimoto (bottom row) scoring functions.  All four molecules yield favorable binding 

energies ranging from -62 kcal/mol to -20 kcal/mol, which are comparable to top SGE scores 

obtained in a virtual screen to this pocket (peak at around -50 kcal/mol in Figure 2-19a, blue curve).  

Encouragingly, several of these representative molecules contain indole rings that overlap with the 

Trp117 position on the left side of the binding pocket (Figure 4-5) as well as a charged acid group 

positioned roughly near the Asp121 residue of the reference.  Particularly, the molecule on the top 

right also contains a secondary indole ring that overlaps with the Trp120.  While the synthetic 

feasibility of these molecules is yet to be determined, their binding poses are quite unique and not 

yet observed in the virtual screening results.  An unusual occurrence that needs more investigation 
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is the presences of compounds with multiple acid groups and large magnitudes of net charges 

(compound with net formal charge of -4 in Figure 4-5 top right and -5 in Figure 4-5 bottom right).  

As expected, these two negatively charged molecules yielded much more favorable energy scores 

(SGE=-62.33 ~-52.14 kcal/mol) compared to the two neutral molecules (Figure 4-5 top left and 

bottom left, SGE=-38.41~ -19.58 kcal/mol).  This is consistent with the fact that the crystal receptor 

carries a positive net formal charge of +6.  In practice, however, restraints in the total charges 

should be assigned in the de novo protocol to yield more drug-like molecules.  

 

 

Figure 4-5.  Representative results from de novo growth targeting the HIVgp41 hydrophobic pocket.  The 
pharmacophore reference is the extended peptide including WWDI key residue side chains (wire 
representation, Cα shown in orange). 



 

 

111 
 

 

 

Molecular properties and DOCK scores of all the de novo generated molecules targeting the 

HIVgp41 hydrophobic pocket using all six scoring functions are shown in Figure 4-6.  Molecules 

generated using the FMS-alone are in general smaller in size (Figure 4-6a-b, red solid lines).  

Interestingly, use of FMS+Tanimoto score instead of FMS alone seemed to yield the best FMS 

score results as shown in Figure 4-6f red solid and dashed lines.  However, as the ensemble size for 

each de novo tests could vary (Table 4-2 and 4-3, column b), it is likely that the enhanced peak for 

FMS+Tanimto is partially due to its larger sampling size (5430) compared to FMS alone (4595).  

Future studies should enforce a “common” ensemble size to facilitate comparisons.  In contrast to 

virtual screening when sampling of a single molecule is performed with energy score and the six 

scoring functions are used for rescoring only; in de novo design, the sampling is heavily influenced 

by the given scoring function.  Thus the enhancement in FMS score for FMS+Tanimoto protocol 

demonstrated the synergy of FMS and Tanimoto scores in de novo sampling.  
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Figure 4-6.  Histogram of (a) molecular weight, (b) number of rotatable bonds, (c) Tanimoto, (d) Hungarian 
Score, (e) SGE, (f) FMS and (g) FMS+SGE for de novo DOCK generated molecules targeting HIVgp41 
hydrophobic pockets.  Molecular properties and DOCK scores of ensembles generated with SGE (blue solid 
line), FMS (red solid line), FMS+SGE (green solid line), SGE+Tanimoto (blue dashed line), FMS+Tanimoto 
(red dashed line), and FMS+SGE+Tanimoto (green dashed line). 
 

Although some aspect of these de novo test results are encouraging (i.e. overlap to indole 

and acid groups in the reference), it is important to emphasis that the focused de novo test for 

reproducing the peptide reference in these computational experiments were not nearly as 

successfully as that for the small molecule test cases discussed earlier in the section (Table 4-2, 4-3 

and Figure 4-3).  Focusing on the Tanimoto histogram (Figure 4-6c) and the Hungarian score 

histogram (Figure 4-6d), none of the six protocols could regenerate the peptide in terms of 

Tanimoto (perfect Tanimoto score:1.0) or Hungarian score (perfect Hungarian score: -5, 

corresponding to Tanimoto =1.0 and RMSD = 0 Å).  One of the reasons for this result is the fact 

that rebuilding a peptide reference from fragments is a far more complicated problem.  Not only are 

the peptides much larger than the small molecules (< 500 g/mol in molecular weight, <7 rotatable 
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bonds) used in the initial test case, but the helical conformation of the peptide taken from the crystal 

structure is part of a much larger protein helix.  It may also be challenging to reproduce the exact 

2D fingerprint and 3D conformation of the peptide with the limited number of de novo growth steps 

(up to layer 7).  One potential modification to the current protocol would be to use the crystal pose 

of the fragments as the initial anchor placement instead of orienting the fragment from scratch 

before growth in layer 1.  Additional future refinement to both the fragment library and sampling 

protocols can be explored to improve the reproduction rate for peptide reference guided de novo 

design. 

 

4.3.4 Focused de novo tests: HIVgp41 inner pocket  

Figure 4-7 shows four representative hits targeting the alternative HIVgp41 inner pocket 

designed by the de novo protocol guided by FMS+SGE (bottom row) and FMS+SGE+Tanimoto 

(top row) scoring functions.  Interestingly, hits from these preliminary focused de novo design 

experiments occupied only about half of the binding pocket.  And, none of the hits contain ring 

structures as the crystal ligand used to generate the fragment library itself does not contain rings.  

Thus, the small sizes of the hits lead to less strong binding interaction energies between the ligands 

and binding site, which range from approximately -32 to -22 kcal/mol.   
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Figure 4-7.  Representative results from de novo growth targeting the HIVgp41 inner pocket.  
Pharmacophore reference is the extended peptide including IQLT key residue side chains (wire 
representation, Cα shown in orange). 
 

As before, figure 4-7 shows the histograms of molecular properties and DOCK scores of all 

the de novo generated molecules targeting the HIVgp41 inner pocket with the six different scoring 

functions.  The molecular sizes of the molecules designed in the inner pocket are significantly 

smaller compared to that of the hydrophobic pocket.  While the molecular weights are as large as 

400 g/mol and they peak at approximately 120 g/mol except for the FMS+Tanimoto and 

FMS+SGE+Tanimoto protocols (Figure 4-7a).  Note that the reference peptide for the hydrophobic 

pocket contains 36 rotatable bonds (as determined by molecular modeling program MOE) and has a 

molecular weight of 1028.2 g/mol; the reference peptide for the inner pocket, contains 39 rotatable 
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bond (as determined by MOE) and has a molecular weight of 856.9 g/mol.  Thus, the average 

molecular weight of each fragment in the focused fragment library for the inner pocket is much 

smaller.  Most hits contain less than 5 rotatable bonds.  This along with the visual inspection in 

Figure 4-7 suggests that more layers and more sampling needs to be added for the inner pocket with 

the focused de novo protocol to successfully reproduce molecules similar in size to the two 

reference peptides employed in these preliminary tests.   

 

 

Figure 4-8. Histogram of (a) molecular weight, (b) number of rotatable bonds, (c) Tanimoto, (d) Hungarian 
Score, (e) SGE, (f) FMS and (g) FMS+SGE for de novo DOCK generated molecules targeting HIVgp41 
inner pockets.  Molecular properties and DOCK scores of ensembles generated with SGE (blue solid line), 
FMS (red solid line), FMS+SGE (green solid line), SGE+Tanimoto (blue dashed line), FMS+Tanimoto (red 
dashed line), and FMS+SGE+Tanimoto (green dashed line). 
 

4.3.5 Future experiment: generic library de novo tests. 

While de novo DOCK should be capable of re-generating the crystal ligand given a very 

focused fragment library derived from the original molecule itself, the ultimate goal of de novo 
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design is to yield a diverse ensemble of novel molecules with desirable molecular properties and 

binding affinities to the target protein using a “generic” fragment library.  Table 4-5 shows a series 

of generic libraries, pre-computed by Dr. William J. Allen using a ZINC drug-like compound set 

(3_t90.both.mol2, with 205,792 molecules in total) currently being evaluated for different growth 

protocols.  Using a frequency (times the fragment is seen in the original database) cutoff of 1, 10, 

50, 100, 250, 500 and 1000, the number of fragments in these generic libraries can be, with 

additional studies, “tuned” so that a reasonable sized library (i.e 250~500 fragments) can be used to 

re-generate a known compound (i.e. Tanimoto >0.90) in a timely manner (i.e 1~2 days).  

 

Table 4-5. List of generic fragment libraries.   

Library Name 
Frequency 

cutoff 
# Scaffold # Linker # Sidechain 

Fraglib_1 1 1326 7295 21165 
Fraglib_2 10 101 673 1746 
Fraglib_3 50 26 213 520 
Fraglib_4 100 15 145 300 
Fraglib_5 250 11 76 143 
Fraglib_6 500 8 40 88 
Fraglib_7 1000 4 27 49 

Libraries generated by Dr. William J. Allen.   

 

4.4 Conclusion 

In summary, in this Chapter we performed preliminary de novo design tests targeting the 

HIVgp41 hydrophobic and inner pockets.  The focused de novo protocol has been validated by 

reproduction tests with 50 SB2012 systems.  In most cases, the small molecule ligands, with a very 

small fragment library, can be reproduced in terms of Tanimoto overlap.  And, reasonable structure 

overlap to the crystal poses of the ligands can be obtained.  FMS is shown to be an effective scoring 

function not only works well in virtual screening but also now compatible with de novo design.  
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The ability to reproduce known poses is essential for the validation of de novo design protocols and 

can significantly improve the potency and feasibility of de novo designed molecules.  Finally, when 

used in combination, synergies among FMS, SGE and Tanimoto scores can significantly improve 

the properties of the hits generated in de novo design. 

Future studies with FMS-guided de novo design should include: (1) an evolutionary strategy 

to speed up the de novo sampling procedure; (2) using optimized generic library generation to 

improve hit properties; (3) gradually increase the weight on the matching residual term for FMS for 

each de novo growth layer so that partially grown molecules with more numbers of matches are 

favored compared to molecules with fewer exact matches. 
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Chapter 5. Quantitative Characterization of T20 Variants Affinity 

and Mutational effects 

Chapter 5 reports molecular dynamics simulation and free energy calculation results using 

thermodynamic integration and molecular footprinting to study the interactions between HIV fusion 

protein gp41 and peptide inhibitor T20.   

 

Abstract 

A critical step in the HIV life cycle is viral fusion, involving the binding of three C-helices 

in HIVgp41 to three N-helices to form a six-helical bundle.12  Derived from the outer gp41 C-helix, 

the first FDA approved HIV fusion inhibitor T20 (enfuvirtide) competes with the native C-helices 

for binding to the viral protein N-helices12 and effectively blocks viral replication in clinical use.18  

However, resistance to T20 can arise from primary mutations in the gp41 N-helices and secondary 

mutations in the gp41 C-helices which reduce affinity for T20 while retaining viral infectivity.  This 

interesting observation underscores the importance of understanding the origins of the binding 

affinities and mutational effects in the HIVgp41-T20 complex system in order to design new fusion 

inhibitors that can overcome such drug resistance.  In this study, we have successfully predicted the 

effect of both favorable and unfavorable mutations compared to experiments using all-atom 

molecular simulations and relative free energy calculations employing the thermodynamic 

integration (TI) method.  In addition, several key interactions between specific residue pairs in T20 

with gp41 N-helices has been identified which can help explain the underlying energetic and 

structural effects of primary mutations and secondary mutations for 19 variants of T20 with 3 
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different gp41 N-helices analogs.  These computational results can be used to help guide design of 

potential peptide and small molecule HIV fusion inhibitors with improved binding profiles. 

 

5.1 Introduction 

As the world is entering the fourth decade of fighting the HIV/AIDS pandemic, the virus has 

been estimated to result in over 36 million deaths worldwide throughout the years.1,4,5  Due in large 

part to the increased clinical use of antiretroviral therapy developed starting in the 1990s and 

introduced worldwide since the early 2000s, provided they can afford it, HIV-infected patients can 

expect a reasonable life-span with proper treatment.2,5  A key challenge with treatment however is 

the development of drug resistant mutations that reduce drug potency.  In addition, with 2.5 million 

new infections observed worldwide in 2011,1 it is urgent for researchers to continue working 

towards more effective HIV treatment strategy with improved resistance profiles to prevent further 

spread of the epidemic.  Among the various clinical strategies to block the HIV life cycle, targeting 

membrane fusion via compounds that bind to the glycoprotein gp41, is of great 

interest.9,12,13,72,120,135,136  Gp41 plays an important role in facilitating the HIV fusion process 

through bringing the viral and host cell membranes close to each other.  The end result is that the 

two membranes fuse together, resulting in a pore pathway that allows the viral core to enter the host 

cell.  It is believed the early stages of this process include a pre-hairpin intermediate in which the 

three inner gp41 N-terminal helices (shown in purple helices/tubes in Figure 5-1) become inserted 

into the target cell membrane while the C-terminal helices (shown in red helices/tubes in Figure 5-

1) remain attached to the viral membrane.  Later the C helices will bend over and bind to the N 

helices and form a coiled-coil hairpin known as the six-helical bundle (6HB).137,138  Notably, at this 

pre-hairpin stage, the N helical surfaces are exposed and susceptible to fusion inhibitors that block 
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formation of the 6HB and prevent fusion.11,12  The first and for now the only FDA-approved HIV 

fusion inhibitor T20 has been designed with this strategy. 18,139,140  Derived from the outer C-helical 

sequence of the native virus, this 36 amino acid (residue 127 to residue 162, shown as orange tube 

in Figure 5-1b) peptide has shown clinical efficacy in controlling viral load although its use also 

results in drug resistance.  While it is believed that T20 binds to N-HR during the prehairpin stage 

of HIV fusion, currently, there is no complete T20-gp41 crystal structure available. However, a 

well-validated computational T20-gp41 complex model developed in the Rizzo lab as reported by 

McGillick et al,16 is available to help characterize T20 binding profiles.  Importantly the model is in 

good agreement with an experimental crystal structure subsequently reported by Buzon et al.141  

 

Figure 5-1.  (a) Preharipin stage in HIV fusion.12  The three N-helices (show in purple helices) formed a 
trimer inserted into target cell membrane while the three C-helices (show in red) are yet to bind.  (b) 
Illustration of positional alignment of T20 (orange tubes) to HIV CHR (red tubes).  
 

As a RNA virus, HIV has a tendency to mutate and can easily develop drug resistance.142  

For gp41, one important example is the development of T20-resistant mutations at positions V38A 

or N43D (gp41 sequencing) on the gp41 N-terminal region.  Considering the fact that the T20 
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sequence is identical to the native virus, for the mutated virus to confine function, a secondary 

mutation S138A is also observed on the C-terminal of gp41 that restores binding to the mutated N-

terminal.  Thus, T20 can be modified correspondingly to inhibit the mutated virus. Izumi et al18 has 

designed an experiment to approximate the change of binding affinity across a matrix of gp41 

recombinant systems formed by 19 T20-derived peptides (S138X in Table 5-1) and several gp41 N-

helical mutants.  Table 5-1 shows binding affinities estimated from the original experimental EC50 

data.  Importantly, different single-point mutation pairs show dramatic differences in binding 

affinity, which can be used to help provide biological clues as to the origins in T20-gp41 binding 

and fusion inhibition.  For example, the clinical observed primary mutation N43D reduces the 

binding affinity of T20 by almost 2 kcal/mol (-11.75 to -9.97 kcal/mol) relative to the wild-type 

receptor. And the secondary compensatory mutation S138A on T20 restores affinity to almost the 

wild-type level (-11.53 kcal/mol). 
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Table 5-1.  Binding energy of T20 targeting HIVgp41 calculated from experimental EC50 values 
obtained from Izumi et al.18   
Receptors  HIV-1 WT HIV-1 V38A HIV-1 N43D 
Ligands ∆Gbind (kcal/mol) ∆Gbind (kcal/mol) ∆Gbind (kcal/mol) 
T20S138S -11.75 -10.41 -9.97 
T20S138A -12.57 -11.51 -11.53 
T20S138D -9.10 >-8.18 >-8.18 
T20S138E -8.93 >-8.18 >-8.18 
T20S138F -10.94 -9.12 -8.73 
T20S138G -12.11 -9.80 -9.34 
T20S138H -9.10 >-8.18 >-8.18 
T20S138I -12.68 -11.33 -11.64 
T20S138K -8.38 >-8.18 >-8.18 
T20S138L -12.48 -10.75 -11.64 
T20S138M -12.48 -11.39 -11.96 
T20S138N -10.53 >-8.18 >-8.18 
T20S138P -8.66 >-8.18 >-8.18 
T20S138Q -10.18 >-8.18 >-8.18 
T20S138R -8.78 >-8.18 >-8.18 
T20S138T -12.33 -10.10 -9.26 
T20S138V -12.81 -10.24 -10.44 
T20S138W -10.28 >-8.18 >-8.18 
T20S138Y -10.36 -8.57 >-8.18 

Binding energies ∆Gbind are estimated using the equation ∆Gbind =RT*ln(EC50) in kcal/mol at 298.15K 
using experimentally evaluated EC50 values from Table 1-2 in Chapter 1.13  

 

In this chapter, we present a computational study to evaluate T20-gp41 binding affinities 

and determine the biological effects of T20-resistant primary mutations V38A and N43D as well as 

compensatory mutations on T20 analogs.  Our hypothesis is that, since the change of affinities 

among the mutants are derived from single-point mutations, there should be a subset of key residues 

in the binding pocket or close to the mutated regions that dominate changes in antiviral activity.  An 

examination of residues was performed using per-residue heatmaps based on molecular dynamics 

simulations of different T20-gp41 complex systems at each endstate.  Concurrently, atomic-level 

molecular dynamics simulations were performed using the thermodynamic integration (TI) method 
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in an effort to reproduce the clinical observations through direct comparison to the experimental 

binding data shown in Table 5-1.  The goal of this study is to use such information to help guide the 

development of new HIV fusion inhibitors, either peptides or small molecules, using 

complementary computational approaches such as pharmacophore modeling (discussed in Chapter 

2-4)137 and de novo design.  

 

5.2 Theoretical Methods and Computational Details 

5.2.1 Free Energy Calculations Using Thermodynamic Integration 

Thermodynamic integration (TI) methods calculate energy changes for nonphysical 

transformation processes (See Chapter 1, section 1.4 Molecular Dynamics and Free Energy 

Calculation).  By artificially simulating the transition from one ligand to the other in both the bound 

and unbound states, one can obtain the potential energy differences of the processes, which are 

defined as the relative free energy of binding.  Importantly, using thermodynamic cycles shown in 

Figure 1-8, the computed relative binding energy ∆∆Gbind obtained from differences in 

transformation energies can be directed compared to the differences in two absolute binding 

energies measured experimentally.  Sufficient sampling, with carefully chosen intermediate 

windows can, in principle, yield very accurate TI predictions provided that the two states are 

similar.  The transformation free energy between any two similar systems is computed as a coupled 

function of the endstate potential energies V0 and V1 with respect to a mixing parameter λ, which 

varies from 0 to 1 as introduced in Chapter 1, section 1.4.  The potential energy in each window is a 

weighted combination between that of the two endstate-systems.  A series of transition simulations 

for all λ windows will be performed.  The soft-core potential mixing function, as implemented in 
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AMBER11 (See Chapter 1) is used with the parameters α and β set to the default values in (α=0.5, 

β=12). 

 

5.2.2 Footprint Analysis: Energy Decomposition to Uncover Ligand Binding Profile 

In addition to the TI simulations, standard molecular dynamics simulations for each T20-

gp41 complex were also performed at the endstates.  The resulting dynamics as well as molecular 

footprint signatures were analyzed to provide insight into specific protein-ligand interactions.16,71,72  

For each complex system, a per-residue energy decomposition based on either the protein receptor 

or the peptide ligand yielded what is called a footprint, essentially an energy density string of 

residue numbers.  In this study, both van der Waals (VDW) and electrostatic (ES) footprints were 

computed which can be plotted as an interaction energy matrix (heatmap) in an attempt to identify 

key residues and energy components most important for T20 binding.  Besides MD, use of such 

energy signals can be an alternative way to identify hits in docking studies.71,80   

 

5.2.3 Model Construction and MD Simulation Protocol 

All-atom gp41-T20 structures were based on those developed by McGillick et al,16 which in 

turn were originally constructed based on a model reported by Caffery et al.143  Briefly, the 

molecule was constructed from PDB entry 1IF3 and PDB structure 1ENV by superimposing the 

common regions and matching 1ENV to the correct gp41 sequence.  The derived complex structure 

included the membrane-proximal and fusion peptide regions, which were modeled as α-helical.16  In 

the presented study, eighteen analogs of T20 (19 peptides in total) and three variants of the gp41 

receptor were constructed using the McGillick model as a starting point by manually mutating the 

T20 residue 138 to 18 different natural amino acids and the gp41 residue 38 from VAL to ALA, or 
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the gp41 residue 43 from ASN to ASP  using the program MOE.99  The initial conformations were 

optimized and tested via energy minimization and equilibration using sander in AMBER11.  The 

final model to be simulated using both the standard MD protocol and the TI protocol are shown in 

Figure 5-2.   

 

 

Figure 5-2.  (a) T20 interaction site with two primary mutations on the target peptide N43D (in cyan) and 
V38A (in red) and one secondary single-point mutations at residue 138 on CHR/T20 (letters a-e represent the 
residual position in the α-helical secondary structure, symbol +/- highlights the charged residues); (b). 
Rotated (by 90° ) view of the helical bundle formed by the gp41-T20 complex. (c) Corresponding wheel 
representation of CHR bound to NHR1, NHR2 and NHR3 (numbered 1-94 in NHRi, i=1,2,3 in gp41 
sequencing).138 
 

The coupled simulation for the thermodynamic integration MD simulation in AMBER11 

required a defined “soft-core mask” which includes the regions to be transformed.  The other atoms, 
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which are outside the mask, have to be identical in the two coupled systems through the whole 

simulation.  In order to meet this requirement, the initial structures of the solute were fit to the same 

scaffold (as shown in Figure 5-2a), and an identical solvent box was assigned.  For both the 

unbound and the bound states, the wild-type complex/ligand was solvated with TIP3P144 waters via 

tleap.  Then the solvent box was saved as a separate pdb file and later shifted to match the original 

gas phase complex/ligand variant models.  This way of assigning the water box enables all of the 

mutant systems to differ only in the mutated region.  The size of the water box for the complex 

systems (320 residues) was 59×58×173Å3 (13879 TIP3P waters) and for the ligand systems (38 

residues including capping groups on both ends) was 42×58×82Å3 (4774 TIP3P waters).  The 

resulting starting conformations were used for all the molecular dynamic simulations in this study. 

The systems were equilibrated with a periodic boundary in 9 steps including several 

minimization steps of 1000 cycles and short MD simulations (50ps each) before the production 

runs.  The Partial Mesh Ewald (PME)145 method is used for calculating the electrostatic energy in 

the periodic box.  Equilibration started with a minimization and a MD simulation step with 

positional restraints on all the heavy atoms in the solute (restraint weight 5.0 kcal∙mol-1∙Å-2), 

followed by three minimization runs with the same restraint mask, but the restraint weight 

decreased to 2.0, 0.1 and, finally, 0.05 kcal∙mol-1∙Å-2.  Then, two additional MD simulations were 

performed with reduced restraint weight 1.0 and 0.5 kcal∙mol-1∙Å-2, respectively.  The final two 

equilibration steps had relaxed restraint masks where only the back bone heavy atoms were 

included.  The restraint weights were set to 0.1 kcal∙mol-1∙Å-2.  Production runs were done after the 

equilibration with identical simulation protocol to the last equilibration runs for data collection.  

The reference conformation used for the restraints in each step was the last snapshot from the 
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previous step up to step 6.  For steps subsequent, the last frame of step 5 was always used as the 

restraint reference. 

All TI simulations were accomplished using sander module in AMBER11 with a 1fs time 

step.  Throughout the NPT (constant number of atoms, constant pressure, and constant temperature) 

MD simulation, the temperature of the systems was kept to 298.15K regulated by the Langevin 

dynamics method with collision frequency of 1ps-1.  System pressure was relaxed every 0.5ps.  

Default Lennard Jones and Coulombic parameters were used.  The MD trajectory snapshots were 

saved every 1ps for further data analyses.  Specifically for TIMD simulations, a soft-core mask was 

defined for the single mutation site at residue 138 on T20.  A total number of 19 λ windows (λ = 

0.05, 0.10,…,0.95) were simulated for each transformation.  Each of the data point on the dV/dλ 

plot represents results from nineteen 2ns-long TI runs with varying mixing parameter λ.   

For extended endpoint MD simulations, pmemd.cuda in AMBER14 was used with GPU 

acceleration.49,56  The longer 20ns endpoint simulations were done for six ligand-protein systems 

involved in clinical observed primary and secondary mutations (HIVWT-T20S138S, HIVWT-T20S138A, 

HIVV38A-T20S138S, HIVV38A-T20S138A, HIVN43D-T20S138S, HIVN43D-T20S138A). Longer endstate 

simulations help ensure improved convergence and accuracy in per-residue energetics.  Snapshots 

of the endpoint simulations for every 1ps are saved for the structural and energetic analyses. 

 

5.3 Results and Discussions 

5.3.1 Endpoint Simulation Behavior: RMSD 

To evaluate the behavior of the molecular models, stabilities of the endpoint systems for the 

bound states were gauged through monitoring RMSD vs. time.  While stability of the wild type 

complex HIVWT-T20S138S was investigated in the original study by McGillick et al,16 the different 
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mutants studied here have not yet been examined.  Figure 5-3 shows representative trajectories for 

six different systems (HIVWT-T20S138S, HIVWT-T20S138A, HIVV38A-T20S138S, HIVV38A-T20S138A, 

HIVN43D-T20S138S, HIVN43D-T20S138A, 20ns long each) with instantaneous results in blue and 

running averages (block size = 100ps) in black.  Here, the RMSD values are computed for Cα atoms 

in the complex structures with “fitting” to the initial constructed structure (the first frame of step 1 

in the standard MD simulations).  As expected, given the weak restraints employed, none of the 

restrained MD simulations showed significant backbone conformational deviations from the initial 

conformation with relatively low RMSD values (<1.2 Å).  Thus we hypothesize that the ensemble 

of conformations of the stable complexes can be used to help decipher the binding profiles of T20 

in terms of per-residue VDW and ES interaction patterns.  Detailed analyses on the average 

molecular footprint and heatmap of binding and the associated error estimation are discussed below.   

 



 

 

129 
 

 

 

Figure 5-3.  The RMSD plots of the six endpoint standard MD simulations of HIVgp41-T20 complex 
variants.  RMSD values in Å.  Time in picoseconds.  Raw data in blue, running average shown in black. 
 

5.3.2 TI Simulation Behavior: RMSD 

We also performed RMSD calculations using the TIMD trajectories to evaluate simulation 

stability.  Figure 5-4 illustrates the RMSD values of the mutating region (residue 138 on T20) in 

both the initial state A (T20S138S, first column) and the final state B (T20S138A, second column) as 

well as those for the common region (complex structures bound to HIVWT that are identical for both 

state A and B, third column) as a function of time step (in picosend).  For the mutating region, all 

heavy atoms are used for RMSD calculation; for the common region, Cα atoms are used.  All results 

are computed for complex coordinates “fitted” to the last frame of MD equilibration runs (step 9 in 

the TIMD protocol).  Representative windows of λ =0.05, 0.50 and 0.95 are plotted.   
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Figure 5-4.  Representative RMSD plots for TIMD simulations of mutating HIVWT-T20S138S to HIVWT-
T20S138A in (a) bound state and (b)unbound state.  RMSD values in Å.  Time in picosecond.   
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Again, in all cases, both the mutating region RMSD (<1 Å) and common region RMSD (< 2 

Å) values are very low, likely a function of the weak energetic restraints on the protein and peptide 

backbones.  This suggests the conformational differences between the two endstate T20 analogs in 

both the bound and unbound states are quite small, which is desirable for well-behaved TI 

simulations and transformation energy calculations.  Interestingly for the RMSD of the mutating 

regions (first and second columns), although most of the TI runs yield extremely low RMSD value 

for the single residue (close to 0 Å), simulation at λ =0.50 and 0.95 for both the bound and unbound 

states yielded a subset of trajectories with RMSD values of about 0.5 Å.  This suggests that across 

different λ windows, the TI simulations likely sampled slightly different orientations of residue 138, 

which could contribute to the energetic calculations in the non-physical paths of transformation.   

 

5.3.3 TI Simulation Behavior: dV/dλ 

Another procedure to evaluate TIMD protocols are to inspect distributions of dV/dλ across 

different λ windows.  Sufficient sampling across intermediate states, with a reasonable number of λ 

windows along the complete transformation path, should yield good overlap in terms of the dV/dλ 

values sampled for each pair of adjacent λ windows.  Figure 5-5 shows the histograms of dV/dλ 

values for each of the 19 λ windows (different colors represents different λ windows) of TIMD 

simulations of mutating T20S138S to T20S138A when bound to (Figure 5-5b) to HIVWT and in the 

unbound states.  Overall, histograms for adjacent λ windows are well overlapped, especially for 

windows closer to λ=0.50.  The total range of dV/dλ values of all 19 windows (-40~70 kcal/mol for 

bound state and -40~90 kcal/mol for unbound state) are continuously covered by all λ windows, 

suggesting that our choice of ∆λ of 0.05 is reasonable.   



 

 

132 
 

 

 

Figure 5-5.  The dV/dλ value histogram in all λ windows (λ =0.05, …, 0.50, …, and 0.95, distinguished by 
color) simulations for mutating HIVWT-T20S138S to HIVWT-T20S138A in  (a) bound state and (b) unbound state. 
 

In addition, the stability of TIMD runs are illustrated by the dV/dλ plots as a function of 

time steps (in picosecond) for all λ windows in the bound and unbound states of T20S138S to 

T20S138A mutations (Figure 5-6).  Corresponding to the good behavior in terms of RMSD fluctuation 

in Figure 5-4, all dV/dλ plots are consistently stable across all frames in the TIMD simulations.  

The gap in terms of dV/dλ values for adjacent λ windows are minimal for windows closer to λ=0.50 

and grow gradually as λ approaches the two physical endstate system when λ=0 and 1.   
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Figure 5-6.  The dV/dλ plots with respect to time for all λ windows (λ =0.05, …, 0.50, …, and 0.95, 
distinguished by color with identical color scheme as shown in Figure 5-5) simulations for mutating HIVWT-
T20S138S to HIVWT-T20S138A in  (a) bound state and (b) unbound state. 
 

5.3.4 TI Simulation Behavior: Null Transformation 

Comparison to experimental measurements is a common method to evaluate TI energy 

calculation accuracy.  However, experimental values may also have associated noises related to the 

theoretic true value.  A straightforward test to help validate a given TI protocol, which does not rely 

on the quality of experimental measurements, is the null transformation test where by 

transformation simulations are run to mutate a molecule to itself.  The transformation energy of 

such null-transformation runs should be equivalent to exactly zero.  And, relative binding energy 

derived from the difference between null transformation simulations in the bound and unbound 

states should also be zero.   

Ensemble averaged dV/dλ plots with respect to λ from four different TI null transformation 

simulations when T20S138S is mutated to itself when either bound to wild type receptor HIVWT 

(Figure 5-7, left panel) and in the unbound state (Figure 5-7, right panel) are shown in Figure 5-7 

and Table 5-2.  Here, run 1, run 2 and run 3 each consisted of 19 λ windows (∆λ=0.05) with 
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different random seeds.  To further evaluate convergence, run1 was expanded to include 39 

windows with a window size of 0.025, and denoted as run1b.  Similarly, results for one TI null 

transformation run (run1) for T20 S138S binding to HIVV38A and four TI null-transformation runs 

(run1, run1b, run2 and run3) for T20 S138S binding to HIVN43D are also reported in Table 5-2.  

 

 

Figure 5-7.  The dV/dλ curves with respect to λ for run 1 (red), run1b (green), run2 (cyan) and run3 
(magenta). Each point of the dV/dλ plot is derived from ensemble average of a 2ns long TI run.   
 

The dV/dλ curves from all four null transformation runs for T20 S138S binding to HIVWT 

overlap well with each other in most regions for both bound state simulations and unbound state 

simulations as shown in Figure 5-7.  The calculated transformation energies as well as relative 

binding energies for almost all null transformation runs in Table 5-2 are close to zero with the 

exception of run2 for HIVWT and run1 for HIVN43D.  Thus our TI protocol is generally robust and 
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can correct predict the theoretic transformation energy and relative binding energy of a null 

transformation in a large protein-peptide complex system with a relatively large transformation 

mask (a entire amino acid group).  Interestingly, for the two cases not close to zero, they are due to 

either the unbound transformation only (HIVWT) or the bound transformation only (HIVN43D ) as 

shown in Table 5-2.  Referring to the dV/dλ curve in Figure 5-7 (right panel) for HIVWT, the error 

in unbound transformation energy for HIVWT is primary due to the TI simulation at window λ = 

0.55 (gray circle in Figure 5-7, right panel) where the dV/dλ curve is most steep. Potential 

improvements to the current TI protocol include (1) performing multiple independent 

transformation runs and using the average value; (2) performing additional TI simulations with 

intermediate λ values near the λ windows corresponding to sharply angled regions in the initial 

dV/dλ curve with uniformly distributed λ windows.  For example, for HIVWT run2, TI simulations 

can be performed with λ = 0.525 and 0.575 which presumably could reduce the offset of calculated 

unbound state transformation energy as well as the final relative binding energy.  

 
Table 5-2.  Calculated relative binding energy and transformation energy for null transformations  
 Runtime  Run1 Run1b Run2 Run3 

HIV WT 
Bound transformation energy 0.16±0.15 0.22±0.15 0.43±0.14 0.18±0.14 
Unbound transformation energy 0.23±0.18 0.58±0.18 1.56±0.16 0.10±0.19 
Relative binding energy 0.08±0.24 0.80±0.23 1.99±0.21 0.29±0.23 

HIV V38A 
Bound transformation energy 0.03±0.15 -- -- -- 
Unbound transformation energy 0.23±0.18 -- -- -- 
Relative binding energy 0.26±0.24 -- -- -- 

HIV N43D 
Bound transformation energy 1.13±0.14 0.01±0.14 0.47±0.14 0.01±0.13 
Unbound transformation energy 0.23±0.18 0.35±0.18 0.63±0.19 0.18±0.17 
Relative binding energy 1.36±0.23 0.36±0.23 0.15±0.24 0.18±0.22 

Run 1b has 39 λ windows instead of 19 for run 1, run2 and run3. Run 2 and 3 have different 
random seeds from Run 1. Average energy and associated error (standard error of the mean) were 
reported in kcal/mol. 
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5.3.5 TI Relative Binding Energies: Correlation with Experimental Results 

Figure 5-8 and Table 5-3 show relative binding energies computed from the TIMD 

calculations for 24 systems and comparisons with the experimental measurements.18  The data in 

Table 5-3 reports the relative binding energies of the T20 analogs compared to that of wild type 

T20 (T20S138S) for binding to a given form of the receptor (HIVWT, HIVN43D and HIVV38A N-HR). 

Here, each of the computed relative binding energy value is derived from two sets of TI 

transformations (bound and unbound), each consisting of 19 λ windows that are 2ns long per 

window.  The experimental relative binding energies are computed via subtracting the T20S138S 

absolute binding energy from that of each T20S138X analog shown in Table 5-1.  For consistency, 

data for null-transformations reported in Table 5-3 were all obtained using only a single run (run1 

in Table 5-2).  Overall, 10 system with wild type receptor (green squares) and 7 each with the two 

mutated receptors (blue squared for HIVN43D and red squares for HIVV38A) were simulated.   

Despite potential issues with null transformation not being zero for N43D.  Remarkably, the 

computational results correctly reproduce the trend of affinity among the complex analogs with a 

correlation coefficient r2=0.66 (N=20).  Note that four of the data points labeled with stars in Figure 

5-8 (hollow squares) were not considered for the r2 calculation as the corresponding experimental 

data (see Table 5-2) were reported as approximate ranges (HIVN43D-T20S138K, HIVN43D-T20S138E, 

HIVV38A-T20S138K, and HIVV38A-T20S138E). 
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Figure 5-8.  Correlation of calculated relative binding energy (∆∆Gcalcd., y axis) compared to experimental 
data (∆∆Gexptl., x axis). Relative binding energy using TI method is calculated from mutating residue 138 on 
T20 when bound to the same receptor, averaging over the 2×19 2ns production run for each complex. 
 

It is also encouraging to find out with only a few exceptions, our calculations were able to 

correctly distinguish the favorable T20 mutations from the unfavorable ones.  As shown in Figure 

5-8, the data points to the top right of point (0,0) are unfavorable both experimentally and 

computationally while data points to the bottom left are favorable.  Only four data points fall into 

the region where the sign of the relative binding energy are not consistent (top left and bottom right 

from point (0,0)).  And, their experimental or calculated energies were very close to zero.  Although 

the correlation is reasonable, it is worth noting that the calculated results tend to over-predict the 

magnitude of the experimental results.  In particular, there is significant overestimation of the 

effects of the T20S138K mutation, although the experimental trend is in fact correct (see Table 5-3 for 

row T20S138K, ∆∆Gcalcd ranging from 12.32 to 18.90 kcal/mol).  Possible causes of this 
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overestimation are that the size of this mutation (Lys) is relatively large, which could lead to a 

decrease in favorable VDW energy as a result of unfavorable contacts compared to Ser, arising 

from our use of backbone restraints.  Another possibility is the change in net charge, which is likely 

to affect long-range electrostatic interactions, as our current simulation protocol does not mutate 

another residue to enforce a consistent total charge for the system.  An examination of the results 

shows that the other charged mutations S138E lead to a similar, although not as large, 

overestimation (∆∆Gcalcd  ranging from 6.39 to 9.13 kcal/mol).  Despite these discrepancies, overall 

the TI results yield reasonable agreement with experimental trends.  Thus, the model and simulation 

protocols used in this Chapter can be used to perform structural and per-residue energetic analyses 

to help understand why specific mutations lead to loss of affinity and to aid the design of new HIV 

fusion inhibitors using analogs binding energy calculations. 

 
Table 5-3.  Experimental vs. Calculated ∆∆Gbind for T20 analogs with HIVgp41  
Receptors  HIV WT HIV V38A HIV N43D 

Ligands    Exptl.         Calcd.    Exptl.         Calcd.    Exptl.        Calcd. 
T20S138S 0.00 0.08±0.24 0.00 0.26±0.24 0.00 1.36±0.23 
T20S138A -0.82 -1.88±0.19 -1.10 -1.75±0.19 -1.56 -1.96±0.19 
T20S138E 2.82 9.13±0.40 2.23 7.47±0.39 1.79 6.39±0.41 
T20S138G -0.36 1.05±0.22 0.62 2.26±0.21 0.63 -0.19±0.21 
T20S138K 3.37 18.90±0.38 2.23 18.17±0.38 1.79 12.32±0.38 
T20S138L -0.73 -0.70±0.27 -0.34 1.34±0.27 -1.67 -2.96±0.26 
T20S138P 3.09 3.71±0.25 2.23 -- 1.79 -- 
T20S138Q 1.57 0.68±0.30 2.23 -- 1.79 -- 
T20S138V -1.06 0.22±0.24 0.18 1.28±0.25 -0.47 -2.71±0.24 
T20S138W 1.47 4.73±0.35 2.23 -- 1.79 -- 
Calcd. ∆∆Gbind computed using TIMD results from mutating residue 138 on T20 when bound to the 
same receptor. Exptl. ∆∆Gbind computed via subtracting the binding energy of wild type T20 from that 
of the mutated T20 when bound to the same receptor. Energy unit in kcal/mol. 
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5.3.6 T20 Binding: Footprint Analyses of the Wild-Type System 

The 3-fold symmetry of gp41 presents challenges with respect to determine which amino 

acids interactions are most important for ligand binding in this system.  In an attempt to identify 

which residues are most important, per-residue energy decomposition of the VDW and ES 

interactions between the three different gp41 NHR helices (the receptor) and T20 (the ligand) were 

computed and plotted as both one-dimensional and two dimensional (termed molecular heatmap) 

molecular footprints.  The gp41 receptor residue numbers range from 1 to 94 (×3 chains) for each of 

the individual NHR monomers while the T20 ligand residue numbers range from 127 to 162.   

Key residues: VDW interactions.  In Figure 5-9, VDW energies are averaged across all 

frames (20,000 snapshots) of the 20ns long endstate MD simulations (frames saved every 1ps) of 

the wild type complex (HIVWT -T20 S138S), and the color scheme represents the magnitude of 

interactions (favorable ones in red squares, unfavorable ones in blue squares) provided they exceed 

a threshold of 2.0 kcal/mol (interactions < 2.0 kcal/mol in magnitude are shown in white squares).   

Of the three N-HR helices, NHR2 is not directly in contact with T20, thus the threshold 

VDW molecular footprint for NHR2-T20 contained all white squares (<2.0 kcal/mol) and the data 

is not shown.  In contrast, threshold VDW molecular heatmaps for NHR1 (Figure 5-9a) and NHR3 

(Figure 5-9b) show numerous favorable interactions (red squares), and the differences in relative 

position of T20 interacting with each NHR yielded different interaction patterns.  For the NHR1-

T20 interactions, 3 T20 residues Ile135, Gln142 and Leu149 (indicated by the horizontal arrows in 

Figure 5-9a) are the most significant in terms of the ligand footprint (VDW interactions 

decomposed by each ligand residue, top left panel, Figure 5-9a), and correspond to 3 out of 5 key 

residues Arg31, Val38 and Leu45 (indicated by vertical arrows in the heatmap, Figure 5-9a) near 
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the site of mutations (V38A, N43D) on the corresponding receptor footprint (VDW interactions 

decomposed on each receptor residue, bottom right panel, Figure 5-9b).   

For the 3 residues on T20, they are all 7 residues apart in terms of linear sequence, and thus 

adopt the same position corresponding to letter e denoted in Figure 5-2 in the α-helical T20 

secondary structure.  For the 3 residues on NHR1 (Figure 5-9a), they are exactly 7 residues apart, 

and also all adopt positions corresponding to letter e in the α-helix NHR.  These primary 

interactions involve the following residue pairs for the 3 key “e” residues on T20: (1) Ile135 consist 

of: Ile135-Leu45 (e), Ile135-Ile48 (a), Ile135-Glu49 (b), Ile135-Gln52 (e); (2) Gln142 consist of: 

Gln142-Val38 (e), Gln142-Gln41 (a), Gln142-Asn42 (b), Gln142- Leu45 (e); (3) Leu149 consist 

of: Leu149-Arg31 (e), Leu149-Leu34 (a), Leu149-Ser35 (b), Leu149-Val38 (e).  From the receptor 

point of view, for the 3 key “e” residues on NHR1, key residue pairs include: (1) for Arg31: Arg31-

Leu152 (a), Arg31-Asp153 (b), Arg31-Ala156 (e); (2) for Val38: Val38-Asn145 (a), Val38-Glu146 

(b), Val38-Leu149 (e); (3) for Leu45: Leu45-Ser138 (a), Leu45-Gln139 (b), Leu45-Gln142 (e).   

For the NH3-T20 interactions (Figure 5-9b), key residue pairs are emphasized using the 

square boxes instead of arrows in the molecular heatmap.  Here, the top edge of the box 

corresponds to T20 residues at position d; the bottom edge corresponds to T20 residues at position 

a; the left edge corresponds to NHR3 residues at position c and the right edge corresponds to NHR3 

residues at position g.  Most of interactions in this heatmap involve residues at these four positions.  

Specifically, T20 residues at position d (top) interact most strongly with NHR3 residues at position 

g (right), as shown by the red squares overlapping with the top right corner of the black boxes.  And 

T20 residues at position a (bottom) interact mostly with NHR3 residues at position c (left), showing 

by the red squares overlapping with the bottom left corner of the black boxes. 
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Figure 5-9.  (a) Key residues for VDW contact (heatmap for NHR1 WTS138S (>0.5kcal/mol)); (b) Key 
residues for VDW contact (heatmap for NHR3 WTS138S (>0.5kcal/mol)) 
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Interestingly, the analyses on binding interaction patterns shown in Figure 5-9 suggest a 

modified wheel representation for the T20-3NHR bundle is more applicable, as shown in Figure 5-

10b, with T20 rotated by 1 position counter-clockwise resulting in an alternative interaction pattern.  

Using the traditional model (Figure 5-10a), CHR residues at position a should be directly 

interacting with NHR1 residues at position e and those at position d should be making close contact 

with NHR3 residues at position g.  The CHR residues at positions e and b are more distal to either 

NHR1 or NHR3.  However, based on the energy footprints shown in Figure 5-9, T20 residues at 

position e and b also appear to be essential, especially for interactions with NHR1, suggesting the 

modified interaction wheel in Figure 5-10b.  Overall, use of molecular heatmaps, such as the ones 

shown in Figure 5-9, may be more effective than use of wheel representations (Figure 5-10a, b) if 

the goal is to more precisely identify residues pairs involving alpha-helical bundles.   

 

 

Figure 5-10.  (a) Original and (b) modified model of T20-3NHR based on VDW footprint and heatmap 
analyses. 
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Charged residues: electrostatics interactions. Compared to VDW interactions, ES 

interactions are more long-range and the three NHR ES heatmaps were in general very similar.  

Thus, to simplify the analysis, the ES energies across all three helices 

(3NHR=NHR1+NHR2+NHR3) were computed and shown in Figure 5-11.  As expected, inspection 

of the electrostatic T20 binding profile using the ES heatmap shows that charged residues (indicated 

in Figure 5-2a) contribute most to the electrostatics interactions profile. Large peaks in both the 

ligand and receptor footprints all correspond to these charged residues.  As simulated here, T20 has 

a net formal charge of -5 while the wild type gp41 NHR has a total net charge of +12 (+4 for each 

monomer).  Thus, all the negatively charged T20 residues, including Glu136 (f), Glu137 (g), 

Glu143 (f), Glu146 (b), Glu148 (d), Glu151 (g), Asp153 (b), where the letter in the bracket 

indicates the residue position in the wheel representation of the T20-3NHR bundle, will yield 

overall favorable per-residue electrostatic energy contributions.  Correspondingly, the positively 

charged T20 residues Lys144 (g) and Lys154(c) yielded unfavorable per-residue electrostatic 

energy.  Analogous observations are made from the receptor point of view in terms of negatively 

charged residues (Glu49 (b), Glu73 (e), Asp78 (c)) and positively charged residues (Arg31 (e), 

Arg46 (f), Lys63 (b), Arg68 (g), Arg74 (f), Lys77 (b)).  Note that the interactions involving residues 

Ala1 and Thr94 are due to the fact that the terminal residues on the receptor are left uncapped.   

Notably, none of the positive charges on T20 are located directly in the binding interface 

(only at position c and g) and thus avoid strong repulsive electrostatic interactions with the overall 

positively charged receptor.  Focusing on the Ala15-Leu57 region (on the receptor), corresponding 

to the interface with direct contact to T20 in terms of the VDW interaction heatmap in Figure 5-9, 

residues Arg31 (e), Arg46 (f) and Glu49 (b) yield the most significant per-residue ES interactions as 

shown in Figure 5-11.  In addition to the charged residues, polar residues at this interface also make 
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important contributions.  For example, favorable interactions (red squares) are observed for receptor 

residues Gly36 (c), Gln39 (f), Gln40 (g), Gln41 (a), Asn42 (b), Asn43 (e) with T20 residues Ser138 

(a), Gln139 (b), Gln141 (d), Gln142 (e).  And, unfavorable interactions are reported between 

Lys144 (g) on T20 and Gln41 (a) /Asn43 (c) on gp41.   

 

 

Figure 5-11.  Electrostatic (ES) interaction heatmap for T20 binding to 3NHR. 
 
 

5.3.7 Why S138A? 

As predicted both experimentally by Izumi et al18 and computationally in this study (Table 

5-3 and Figure 5-8), S138A mutation can restore binding caused by primary mutations in gp41 

NHR to approximately the wild type complex level. Ala is more hydrophobic and examination of 

the data in Table 5-3 shows other hydrophobic mutations (e.g. S138V) also usually enhance 
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binding.  According to the experimental data, the loss in binding affinity of T20 is ~1.34 kcal/mol 

for the gp41 V38A mutation, and ~1.78 kcal/mol for the gp41 N43D mutation (Table 5-1). The 

estimated experimental gains in binding energy of T20 with the gp41 S138A secondary mutation 

for these two primary mutants are 1.75 kcal/mol and 1.96 kcal/mol respectively.  It is thus of 

particular interest to identify the origins of affinity and the change in affinity between the mutating 

systems.  Here, we decomposed the total computational binding energy into individual residues to 

generate both the receptor gp41 (sum of all three helices, 3NHR) and T20 ligand footprints (Figure 

5-12 and 5-13).  The values of the associated standard error of the mean for each per-residue 

decomposition data point are plotted as the dashed curves. 

Primary (V38A) and Secondary Mutations. The footprints for the three systems involved in 

the V38A primary and S138A secondary mutations are shown in Figure 5-12.  An obvious loss of 

VDW affinity was observed at gp41 residues 38 and 52, both at position e on 3NHR, for the V38A 

primary mutation (blue to red curve, Figure 5-12a bottom).  Interestingly, the VDW footprint for 

the T20 ligand (Figure 5-12a top) showed the most significant changes were at residue 155 (d), 

which is directly interacting with gp41 residues Ala22 (c), Thr25 (f), Leu26 (g) and Gln29 (e), the 

latter being one turn apart from the primary mutation site at Val38 (e).  Here, the VDW interactions 

at Trp155 get less favorable due to primary mutation V38A (blue to red curve) and then improve as 

a result of the secondary mutation S138A (red to green curve).  In contrast, only minor changes are 

observed in the corresponding ES footprints (blue, red and green curves in Figure 5-12b).  This 

indicates that the hydrophobic V38A and S138A mutations have little direct effects on the 

electrostatic interactions in the complex system.  While more structural analysis is needed, loss and 

gain of physical contact at residue Trp155 could be a contributing factor in the V38A/S138A 

mutations.   
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Figure 5-12.  (a) VDW and (b) ES molecular footprint for V38A primary, and S138Asecondary mutations.  
Error bar for each data point plotted as the dashed curves. HIVWT-T20S138S in blue, HIVV38A-T20S138S in red, 
HIV V38A-T20S138A in green 
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Primary (N43D) and Secondary Mutations.  The footprints for the three systems involved 

in the N43D primary and S138A secondary mutations are shown in Figure 5-13.  Here, a loss (blue 

to red curve) of VDW affinity is observed again at residues 38 and 52 as well as 41.  In terms of the 

secondary mutation, only position 38 and 41 on the receptor show a restoration of affinity (red to 

green curve).  For the T20 ligand, at residue Gln142, the per-residue VDW interactions (Figure 5-

13a, top) become significantly less favorable due to the primary mutation N43D (blue to red curve) 

and then are restored as a result of secondary mutation S138A (red to green curve).  Interestingly, 

Gln142 is predicted to directly interact with residues Val38, Gln41 (with affinity changes in the 

receptor footprints) as well as Asn42 and Leu45, but not N43D, as shown in the VDW heatmap in 

Figure 5-9a.  Thus, loss and gain of physical contacts at residue Gln142, likely paired with residue 

V38A and Gln41, could be contributing factors in the N43D/S138A mutations.   

In sharp contrast to V38A, as shown in Figure 5-13b, the charged primary mutation N43D 

has significantly changed the magnitude of ES interactions for all charged residues, especially 

residue Glu136 and Glu137, on T20 (Figure 5-13b top).  Correspondingly, the mutation introduced 

a large unfavorable ES interaction at residue 43 (Figure 5-13b bottom, blue to red/green).  And, the 

small neutral secondary S138A mutation has only limited effects on the ES interactions, similar to 

what was observed in the V38A/S138A mutations case.  The fact that the large loss in ES energy is 

not restored by S138A, in terms of only the interaction energy examined here (despite the TI 

calculations yielding the correct experimental trends), emphasizes challenges with computationally 

pinpointing the biological effects of charged vs. neutral mutations.  Additional computational 

studies are warranted, more specifically, use of footprints that includes desolvation energy penalties 

should be examined.   
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Figure 5-13.  (a) VDW and (b) ES molecular footprint for N43D primary, and S138A secondary mutations.  
Error bar for each data point plotted as the dashed curves. HIVWT-T20S138S in blue, HIVN43D-T20S138S in red, 
HIV N43D-T20S138A in green. 
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5.4 Conclusion 

In summary, in Chapter 5, we reported a thermodynamic integration molecular dynamics 

protocol of a large complex system HIVgp41-T20 with a transformation mask set to an entire 

amino acid residue on the peptide ligand T20 to study both primary (V38A, N43D) and 

compensatory (S138X) mutations.  Our protocol is shown to have reasonable behavior in terms of 

simulation stability.  Relative binding energy calculations yielded good correlation with 

experimental measurements for a series of complex analogs with ligand variants (secondary 

mutations) binding to receptor variants (primary mutations).   

In addition, one-dimensional molecular footprints as well as two-dimensional footprints 

(heatmap) for the protein-peptide (gp41-T20) system are calculated for both the wild type and 

mutant complexes.  Preliminary discussions on the VDW and ES interactions between T20 and the 

gp41 N-HR leading to the computational evaluation of peptide binding and changes in affinity due 

to primary and secondary mutations are provided.  With the present results, the neutral mutation 

pair V38A/S138A was more easily interpretable than the charged mutation pair N43D/S138A in 

terms of the energetic effects of loss and gain of affinity.   

Future studies to yield more accurate relative binding energy estimates and characterization 

of the origins of affinity in the gp41-T20 system include: (1) multiple independent TI simulations to 

obtain more converged “average” energies; (2) additional λ windows in TIMD near the steepest 

regions of the initial dV/dλ curve as well as for λ close to 0 or 1; (3) construction of lipid-bound 

complex systems to enhance the robustness of the structure, better mimic the dynamics of the 

system (potentially with non-restrained simulation protocol for the new construct), and evaluate the 

role of lipids in T20 binding; (4) additional structural analyses at the per-residue level. 
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Chapter 6. Dissertation Summary: Scientific Impact, Challenge and 

Future Direction. 

Computer-aided structure-based drug design is a rising force in modern pharmaceutical industry.  

Advanced technology to resolve complicated drug target structures, as well as new and improved 

computational modeling methods can all contribute to the enhancement of the overall drug 

discovery pipeline.  Studies discussed in Chapters 2, 3, 4, and 5 provided a new perspective of 

molecular recognition; investigated the HIVgp41 NHR-CHR binding interface; and introduced 

novel protocols for molecular docking.  This Chapter summarizes the scientific impact of works in 

this dissertation and points out future directions of this study.  

 

6.1 Development and Application of FMS Docking Protocol 

6.1.1 Scientific Impact 

In Chapter 2, we introduced a new pharmacophore-based scoring function in the docking 

program DOCK.  This FMS scoring method encodes the geometric arrangement of key chemical 

features in a reference molecule (known ligand) to enrich for molecules with desirable binding 

profiles.  Importantly, as shown by validation test results, FMS score when used alone, and in 

combination with other scoring functions such as single grid energy (SGE) score, can in most cases 

improve docking performance compared to the standard force field based approach (e.g. SGE 

alone).  For pose reproduction, FMS and FMS+SGE scores yield close to 100% success rate (93.5% 

and 98.3%, respectively) compared to 72.5% success for SGE using the docking testset SB2012 

(N=1043), where success is defined as generating a close-to-native (RMSD<=2Å to crystal) pose in 

docking.  For crossdocking, FMS/FMS+SGE also yields promising results, given that the 
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pharmacophore and RMSD references overlap reasonably.  In general, for enrichment study, FMS 

shows the most favorable early and total enrichment followed by FMS+SGE.  Finally, in virtual 

screening, FMS score tends to select a unique set of top molecules different from SGE score.  

Additional computational experiments also show that with an engineered pharmacophore reference, 

which includes multiple copies of a certain functional group, FMS-guided docking can be 

customized to prioritize a hotspot for binding.  Overall, we have developed an alternative scoring 

protocol for the docking community, with the added possibility for use as a ligand-only (i.e. without 

use of a receptor) scoring tool.  The final FMS code is slated to be released in DOCK6.8. 

In Chapter 3 and 4, more applications of the FMS docking protocol have been implemented 

and closely investigated.  Detailed structure visualization of virtual screening further supported the 

robustness and utility of the FMS docking protocol.  Top molecules scored by various scoring 

functions including FMS score have been prioritized and, pending additional study, may be 

purchased for experimental testing by collaborating labs to identify new small molecule leads that 

inhibit HIV fusion.  Another important component of this study was merging the FMS scoring 

function into the de novo DOCK code under active development by Dr. William Joseph Allen and 

colleagues in the Rizzo lab.  As proof of principle, the merged code was used to guide novel ligand 

growth to match pharmacophores of reference in rebuilding tests using 50 diverse small molecule 

inhibitors and 2 peptides targeting either the hydrophobic or the inner pockets in HIVgp41.   

 

6.1.2 Challenge, Related Work and Future Direction 

To expand functionality, future implementation of new features of FMS scoring such as 

including matching to multiple references or use of a receptor-based reference should be explored.  

By matching pharmacophore features of multiple ligand references with known binding poses in the 
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same target site, FMS score can capture the hotspots that are statistically more likely to contribute 

to ligand binding and yield more potent leads.  And, extension to a receptor-based pharmacophore 

would enable identification of ligands that make mirror-image, favorable interactions with the target.  

A receptor-based FMS protocol could also be used in combination with a ligand-based FMS 

protocol to eliminate spatial clashes between docked ligands and the receptor (i.e. similar to 

excluded volume) while ensuring good ligand overlap.  Implementation of a text-based input format 

would also be worthwhile.  Also, the de novo FMS docking protocol should also be continuously 

updated to match ongoing developments of the de novo DOCK code.   

 

6.2 Computational Investigation of HIVgp41-T20 Binding 

6.2.1 Scientific Impact 

In Chapter 5, we employed overall and per-residue energetic analyses on a series of 

HIVgp41-T20 complex analogs with point mutations on the target protein as well as on the peptide 

ligand.  With thermodynamic integration simulations, we obtained good correlation with the 

experimentally determined relative free binding energies due to primary and secondary mutations.  

With molecular footprint and heatmap calculations, we identified per residue interaction patterns of 

T20 binding to HIVgp41 that suggest a modified wheel depiction may be a more appropriate 

description of alpha-helical bundles in the case of gp41.  Although our detailed structural analyses 

help provide a deeper understanding of the origins of T20 binding affinity, and the effects of a 

neutral primary and secondary mutation pair in the system, challenges associated with a charged 

mutation were also encountered.  Importantly, as one of the few TI case studies where reasonable 

correlations of free energy measurements are obtained when mutating an entire amino acid residue 

at once in terms of the mutation mask and VDW and ES terms simultaneously, this study can aid 



 

 

153 
 

 

the community in developing more straightforward and efficient alchemical simulation protocols.  

It is also worth noting that, the simulation behavior as well as free energy results of the constructed 

protein-peptide systems indicate the robustness of our computational model of the HIVgp41-T20 

complex. 

 

6.2.2 Challenge, Related Work and Future Direction 

While prior studies from the Rizzo lab have explored membrane-bound HIVgp41-T20 

simulations and the roles of membrane at the fusion peptide insertion interface of gp41, more 

extended simulations using a more rigorous model for relative binding energy calculations (i.e. TI 

vs. MM-GBSA) would be worthwhile.  Preliminary efforts have been made in constructing a 

membrane-bound gp41-T20 system using the online CHARM-GUI and simulating the structure 

with GPU-accelerated pmemd using AMBER14.49  The model makes use of a DOPC lipid bilayer 

prepared with the new Lipid14146 force field.  Works to adjust the insertion depth of the complex 

into the membrane bilayer, identify a reasonable solvent-to-solute ratio, and obtain a good 

simulation protocol including equilibration setups is ongoing.  Simulations with explicit lipid 

should further aid the study of dynamics of the system and in characterizing the nature of T20 

binding and drug resistance.  

In addition, the identification of which key residues contribute most to binding of T20 will 

be useful as references to guide small molecule lead discovery.  The Rizzo lab has already 

successfully screened for small molecule leads to match molecular footprints of key residues using 

peptide substrates to yield hits with experimental activities.  Similar strategies using the newly 

developed FMS scoring function as described in Chapter 2, 3 and 4 are envisioned to target the T20 

binding interface. 
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6.3 Summary 

As presented in this dissertation, although considerably challenges remain, atomic-level 

molecular docking, molecular dynamics simulations, free energy calculations, and molecular 

footprint studies have been employed to provide insight into protein-ligand binding for the drug 

target HIVgp41.  Of particular note is development of a new powerful yet easy-to-use 

pharmacophore-based docking method for the program DOCK which we believe will become an 

important tool of benefit to the community performing both virtual screening and de novo design 

projects.  
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Appendix A. FMS-guided DOCKing Protocol 

Dock input files for FMS and FMS+SGE guided standard molecular docking and de novo DOCK 

are provided below. This version of DOCK 6 that incorporates a new descriptor score to combine 

individual DOCK scores and FMS score will be released in DOCK6.8. 

 

For FMS-guided rescoring, the sample DOCK input file used is shown below. 

conformer_search_type                                     rigid 
use_internal_energy                                       no 
ligand_atom_file                                          ligand.mol2 
limit_max_ligands                                         no 
skip_molecule                                             no 
read_mol_solvation                                        no 
calculate_rmsd                                            no 
use_database_filter                                       no 
orient_ligand                                             no 
bump_filter                                               no 
score_molecules                                           yes 
contact_score_primary                                     no 
contact_score_secondary                                   no 
grid_score_primary                                        no 
grid_score_secondary                                      no 
multigrid_score_primary                                   no 
multigrid_score_secondary                                 no 
dock3.5_score_primary                                     no 
dock3.5_score_secondary                                   no 
continuous_score_primary                                  no 
continuous_score_secondary                                no 
footprint_similarity_score_primary                        no 
footprint_similarity_score_secondary                      no 
Ph4_primary                                               yes 
Ph4_secondary                                             no 
use_ph4_ref_mol2                                          yes 
Ph4_ref_mol2_filename                                     ph4_ref.mol2 
write_out_reference_ph4                                   no 
write_out_candidate_ph4                                   no 
write_out_matched_ph4                                     no 
ph4_compare_type                                          o 
ph4_full_match                                            yes 
descriptor_score_secondary                                no 
gbsa_zou_score_secondary                                  no 
gbsa_hawkins_score_secondary                              no 
SASA_descriptor_score_secondary                           no 
amber_score_secondary                                     no 
minimize_ligand                                           no 
atom_model                                                all 
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vdw_defn_file                                             vdw_AMBER_parm99.defn 
flex_defn_file                                            flex.defn 
flex_drive_file                                           flex_drive.tbl 
ph4_defn_file                                             ph4.defn 
ligand_outfile_prefix                                     FMS_output_re 
write_orientations                                        no 
num_scored_conformers                                     1 
rank_ligands                                              no 

 

For FMS+SGE-guided rescoring using descriptor score, the sample DOCK input file used is shown 

below. 

conformer_search_type                                     rigid 
use_internal_energy                                       no 
ligand_atom_file                                          ligand.mol2 
limit_max_ligands                                         no 
skip_molecule                                             no 
read_mol_solvation                                        no 
calculate_rmsd                                            no 
use_database_filter                                       no 
orient_ligand                                             no 
bump_filter                                               no 
score_molecules                                           yes 
contact_score_primary                                     no  
contact_score_secondary                                   no  
grid_score_primary                                        no  
grid_score_secondary                                      no  
multigrid_score_primary                                   no  
multigrid_score_secondary                                 no  
dock3.5_score_primary                                     no  
dock3.5_score_secondary                                   no  
continuous_score_primary                                  no  
continuous_score_secondary                                no  
footprint_similarity_score_primary                        no  
footprint_similarity_score_secondary                      no  
Ph4_secondary                                             no  
descriptor_score_primary                                  yes 
descriptor_score_secondary                                no  
descriptor_use_grid_score                                 yes 
descriptor_use_tanimoto                                   yes 
descriptor_use_pharmacophore_score                        yes 
descriptor_grid_score_rep_rad_scale                       1   
descriptor_grid_score_vdw_scale                           1   
descriptor_grid_score_es_scale                            1   
descriptor_grid_score_grid_prefix                         receptor 
descriptor_fingerprint_ref_filename                       tan_ref.mol2 
use_ph4_ref_mol2                                          yes 
Ph4_ref_mol2_filename                                     ph4_ref.mol2 
ph4_compare_type                                          o   
ph4_full_match                                            yes 
descriptor_weight_grid_score                              1   
descriptor_weight_fingerprint_tanimoto                    0   
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descriptor_weight_pharmacophore_tanimoto                  10  
gbsa_zou_score_secondary                                  no  
gbsa_hawkins_score_secondary                              no  
SASA_descriptor_score_secondary                           no  
amber_score_secondary                                     no 
minimize_ligand                                           no 
atom_model                                                all 
vdw_defn_file                                             vdw_AMBER_parm99.defn 
flex_defn_file                                            flex.defn 
flex_drive_file                                           flex_drive.tbl 
ph4_defn_file                                             ph4.defn 
ligand_outfile_prefix                                     FMS+SGE_output_re 
write_orientations                                        no 
num_scored_conformers                                     1 
rank_ligands                                              no 

 

For FMS-guided standard flexible ligand docking (FLX), the sample DOCK input file used is 

shown below. 

conformer_search_type                                     flex 
user_specified_anchor                                     no  
limit_max_anchors                                         no  
min_anchor_size                                           5   
pruning_use_clustering                                    yes 
pruning_max_orients                                       1000 
pruning_clustering_cutoff                                 100 
pruning_conformer_score_cutoff                            100.0 
use_clash_overlap                                         no  
write_growth_tree                                         no  
write_fragment_libraries                                  no  
use_internal_energy                                       yes 
internal_energy_rep_exp                                   12  
ligand_atom_file                                          ligand.mol2 
limit_max_ligands                                         no  
skip_molecule                                             no  
read_mol_solvation                                        no  
calculate_rmsd                                            yes 
use_rmsd_reference_mol                                    no  
use_database_filter                                       no  
orient_ligand                                             yes 
automated_matching                                        yes 
receptor_site_file                                        spheres.sph 
max_orientations                                          1000 
critical_points                                           no  
chemical_matching                                         no  
use_ligand_spheres                                        no  
bump_filter                                               no  
score_molecules                                           yes 
contact_score_primary                                     no  
contact_score_secondary                                   no  
grid_score_primary                                        no  
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grid_score_secondary                                      no  
dock3.5_score_primary                                     no  
dock3.5_score_secondary                                   no  
continuous_score_primary                                  no  
continuous_score_secondary                                no  
footprint_similarity_score_primary                        no  
footprint_similarity_score_secondary                      no  
Ph4_primary                                               yes 
Ph4_secondary                                             no  
use_ph4_ref_mol2                                          yes 
Ph4_ref_mol2_filename                                     ph4_ref.mol2 
ph4_compare_type                                          o   
descriptor_score_secondary                                no 
gbsa_zou_score_secondary                                  no 
gbsa_hawkins_score_secondary                              no 
amber_score_secondary                                     no 
minimize_ligand                                           yes 
minimize_anchor                                           yes 
minimize_flexible_growth                                  yes 
use_advanced_simplex_parameters                           no 
simplex_max_cycles                                        1 
simplex_score_converge                                    0.1 
simplex_cycle_converge                                    1.0 
simplex_trans_step                                        1.0 
simplex_rot_step                                          0.1 
simplex_tors_step                                         10.0 
simplex_anchor_max_iterations                             500 
simplex_grow_max_iterations                               500 
simplex_grow_tors_premin_iterations                       0 
simplex_random_seed                                       0 
simplex_restraint_min                                     no 
atom_model                                                all 
vdw_defn_file                                             vdw_AMBER_parm99.defn 
flex_defn_file                                            flex.defn 
flex_drive_file                                           flex_drive.tbl 
ph4_defn_file                                             ph4.defn 
ligand_outfile_prefix                                     
flex.dock2grid.orient.FMS 
write_orientations                                        no 
num_scored_conformers                                     5000 
write_conformations                                       no 
cluster_conformations                                     yes 
cluster_rmsd_threshold                                    2.0 
rank_ligands                                              no 

 

For FMS+SGE-guided standard flexible ligand docking (FLX), the sample DOCK input file used is 

shown below. 

conformer_search_type                                     flex 
user_specified_anchor                                     no  
limit_max_anchors                                         no  
min_anchor_size                                           5   
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pruning_use_clustering                                    yes 
pruning_max_orients                                       1000 
pruning_clustering_cutoff                                 100 
pruning_conformer_score_cutoff                            100.0 
use_clash_overlap                                         no  
write_growth_tree                                         no  
write_fragment_libraries                                  no  
use_internal_energy                                       yes 
internal_energy_rep_exp                                   12  
ligand_atom_file                                          ligand.mol2 
limit_max_ligands                                         no  
skip_molecule                                             no  
read_mol_solvation                                        no  
calculate_rmsd                                            yes 
use_rmsd_reference_mol                                    no  
use_database_filter                                       no  
orient_ligand                                             yes 
automated_matching                                        yes 
receptor_site_file                                        spheres.sph 
max_orientations                                          1000 
critical_points                                           no  
chemical_matching                                         no  
use_ligand_spheres                                        no  
bump_filter                                               no  
score_molecules                                           yes 
contact_score_primary                                     no  
contact_score_secondary                                   no  
grid_score_primary                                        no  
grid_score_secondary                                      no  
dock3.5_score_primary                                     no  
dock3.5_score_secondary                                   no  
continuous_score_primary                                  no  
continuous_score_secondary                                no  
footprint_similarity_score_primary                        no 
footprint_similarity_score_secondary                      no  
Ph4_primary                                               no  
Ph4_secondary                                             no  
descriptor_score_primary                                  yes 
descriptor_score_secondary                                no  
descriptor_use_grid_score                                 yes 
descriptor_use_tanimoto                                   no 
descriptor_use_pharmacophore_score                        yes 
descriptor_grid_score_rep_rad_scale                       1 
descriptor_grid_score_vdw_scale                           1 
descriptor_grid_score_es_scale                            1 
descriptor_grid_score_grid_prefix                         receptor 
use_ph4_ref_mol2                                          yes 
Ph4_ref_mol2_filename                                     ph4_ref.mol2 
ph4_compare_type                                          o 
ph4_full_match                                            yes 
descriptor_weight_grid_score                              1 
descriptor_weight_pharmacophore_tanimoto                  10 
gbsa_zou_score_secondary                                  no 
gbsa_hawkins_score_secondary                              no 
amber_score_secondary                                     no 
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minimize_ligand                                           yes 
minimize_anchor                                           yes 
minimize_flexible_growth                                  yes 
use_advanced_simplex_parameters                           no 
simplex_max_cycles                                        1 
simplex_score_converge                                    0.1 
simplex_cycle_converge                                    1.0 
simplex_trans_step                                        1.0 
simplex_rot_step                                          0.1 
simplex_tors_step                                         10.0 
simplex_anchor_max_iterations                             500 
simplex_grow_max_iterations                               500 
simplex_grow_tors_premin_iterations                       0 
simplex_random_seed                                       0 
simplex_restraint_min                                     no 
atom_model                                                all 
vdw_defn_file                                             vdw_AMBER_parm99.defn 
flex_defn_file                                            flex.defn 
flex_drive_file                                           flex_drive.tbl 
ph4_defn_file                                             ph4.defn 
ligand_outfile_prefix                                     
flex.dock2grid.orient.FMS+SGE 
write_orientations                                        no 
num_scored_conformers                                     5000 
write_conformations                                       no 
cluster_conformations                                     yes 
cluster_rmsd_threshold                                    2.0 
rank_ligands                                              no 

 

For FMS-guided de novo growth, the sample DOCK input file used is shown below. 

conformer_search_type                                     denovo 
dn_fraglib_scaffold_file                                  fraglib_scaffold.mol2 
dn_fraglib_linker_file                                    fraglib_linker.mol2 
dn_fraglib_sidechain_file                                 fraglib_sidechain.mol2 
dn_fraglib_rigid_file                                     fraglib_rigid.mol2 
dn_user_specified_anchor                                  yes 
dn_fraglib_anchor_file                                    fraglib_anchor.mol2 
dn_use_torenv_table                                       yes 
dn_torenv_table                                           fraglib_torenv.dat 
dn_sampling_method                                        graph 
dn_graph_starting_points                                  10  
dn_graph_breadth                                          5   
dn_graph_depth                                            2   
dn_graph_temperature                                      100 
dn_constraint_mol_wt                                      1000 
dn_constraint_rot_bon                                     15  
dn_tanimoto_cutoff                                        1   
dn_heur_unmatched_num                                     0   
dn_heur_matched_rmsd                                      2.0 
dn_max_grow_layers                                        7   
dn_max_current_aps                                        7   
dn_max_root_size                                          50  
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dn_max_layer_size                                         50  
dn_write_checkpoints                                      yes 
dn_output_prefix                                          FMS_denovo.final 
use_internal_energy                                       yes 
internal_energy_rep_exp                                   12  
use_database_filter                                       no  
orient_ligand                                             yes 
automated_matching                                        yes 
receptor_site_file                                        spheres.sph 
max_orientations                                          10000 
critical_points                                           no  
chemical_matching                                         no  
use_ligand_spheres                                        no  
bump_filter                                               no  
score_molecules                                           yes 
contact_score_primary                                     no  
contact_score_secondary                                   no  
grid_score_primary                                        no  
grid_score_secondary                                      no  
multigrid_score_primary                                   no  
multigrid_score_secondary                                 no  
dock3.5_score_primary                                     no  
dock3.5_score_secondary                                   no 
continuous_score_primary                                  no 
continuous_score_secondary                                no 
footprint_similarity_score_primary                        no 
footprint_similarity_score_secondary                      no 
Ph4_primary                                               yes 
Ph4_secondary                                             no 
use_ph4_ref_mol2                                          yes 
Ph4_ref_mol2_filename                                     ph4_ref.mol2 
ph4_compare_type                                          o 
ph4_full_match                                            yes 
descriptor_score_secondary                                no 
gbsa_zou_score_secondary                                  no 
gbsa_hawkins_score_secondary                              no 
SASA_descriptor_score_secondary                           no 
amber_score_secondary                                     no 
minimize_ligand                                           yes 
minimize_anchor                                           yes 
minimize_flexible_growth                                  yes 
use_advanced_simplex_parameters                           no 
simplex_max_cycles                                        1 
simplex_score_converge                                    0.1 
simplex_cycle_converge                                    1.0 
simplex_trans_step                                        1.0 
simplex_rot_step                                          0.1 
simplex_tors_step                                         10.0 
simplex_anchor_max_iterations                             500 
simplex_grow_max_iterations                               500 
simplex_grow_tors_premin_iterations                       0 
simplex_random_seed                                       0 
simplex_restraint_min                                     no 
atom_model                                                all 
vdw_defn_file                                             vdw.defn 
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flex_defn_file                                            flex.defn 
flex_drive_file                                           flex_drive.tbl 
ph4_defn_file                                             ph4.defn 

 

For FMS+SGE-guided de novo growth, the sample DOCK input file used is shown below. 

conformer_search_type                                     denovo 
dn_fraglib_scaffold_file                                  fraglib_scaffold.mol2 
dn_fraglib_linker_file                                    fraglib_linker.mol2 
dn_fraglib_sidechain_file                                 fraglib_sidechain.mol2 
dn_fraglib_rigid_file                                     fraglib_rigid.mol2 
dn_user_specified_anchor                                  yes 
dn_fraglib_anchor_file                                    fraglib_anchor.mol2 
dn_use_torenv_table                                       yes 
dn_torenv_table                                           fraglib_torenv.dat 
dn_sampling_method                                        graph 
dn_graph_starting_points                                  10  
dn_graph_breadth                                          5   
dn_graph_depth                                            2   
dn_graph_temperature                                      100 
dn_constraint_mol_wt                                      1000 
dn_constraint_rot_bon                                     15  
dn_tanimoto_cutoff                                        1   
dn_heur_unmatched_num                                     0   
dn_heur_matched_rmsd                                      2.0 
dn_max_grow_layers                                        7   
dn_max_current_aps                                        7   
dn_max_root_size                                          50  
dn_max_layer_size                                         50  
dn_write_checkpoints                                      yes 
dn_output_prefix                                          FMS+SGE_denovo.final 
use_internal_energy                                       yes 
internal_energy_rep_exp                                   12  
use_database_filter                                       no  
orient_ligand                                             yes 
automated_matching                                        yes 
receptor_site_file                                        spheres.sph 
max_orientations                                          10000 
critical_points                                           no  
chemical_matching                                         no  
use_ligand_spheres                                        no  
bump_filter                                               no  
score_molecules                                           yes 
contact_score_primary                                     no  
contact_score_secondary                                   no  
grid_score_primary                                        no  
grid_score_secondary                                      no  
multigrid_score_primary                                   no  
multigrid_score_secondary                                 no  
dock3.5_score_primary                                     no 
dock3.5_score_secondary                                   no 
continuous_score_primary                                  no 
continuous_score_secondary                                no 
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footprint_similarity_score_primary                        no 
footprint_similarity_score_secondary                      no 
Ph4_primary                                               no 
Ph4_secondary                                             no 
descriptor_score_primary                                  yes 
descriptor_score_secondary                                no 
descriptor_use_grid_score                                 yes 
descriptor_use_pharmacophore_score                        yes 
descriptor_use_tanimoto                                   no 
descriptor_use_hungarian                                  no 
descriptor_grid_score_rep_rad_scale                       1 
descriptor_grid_score_vdw_scale                           1 
descriptor_grid_score_es_scale                            1 
descriptor_grid_score_grid_prefix                         receptor 
use_ph4_ref_mol2                                          yes 
Ph4_ref_mol2_filename                                     ph4_ref.mol2 
ph4_compare_type                                          o 
ph4_full_match                                            yes 
descriptor_weight_grid_score                              1 
descriptor_weight_pharmacophore_tanimoto                  1 
gbsa_zou_score_secondary                                  no 
gbsa_hawkins_score_secondary                              no 
SASA_descriptor_score_secondary                           no 
amber_score_secondary                                     no 
minimize_ligand                                           yes 
minimize_anchor                                           yes 
minimize_flexible_growth                                  yes 
use_advanced_simplex_parameters                           no 
simplex_max_cycles                                        1 
simplex_score_converge                                    0.1 
simplex_cycle_converge                                    1.0 
simplex_trans_step                                        1.0 
simplex_rot_step                                          0.1 
simplex_tors_step                                         10.0 
simplex_anchor_max_iterations                             500 
simplex_grow_max_iterations                               500 
simplex_grow_tors_premin_iterations                       0 
simplex_random_seed                                       0 
simplex_restraint_min                                     no 
atom_model                                                all 
vdw_defn_file                                             vdw.defn 
flex_defn_file                                            flex.defn 
flex_drive_file                                           flex_drive.tbl 
ph4_defn_file                                             ph4.defn 
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Appendix B. Visualization of Pharmacophore Models 

This section describes the general procedure to visualize pharmacophore models generated by the 

FMS protocol using Chimera bild files105 as introduced in Chapter 2.   

 

First, the following DOCK input parameters need to be set.  By default, the parameters 

“write_out_reference_ph4”, “write_out_candidate_ph4” and “write_out_matched_ph4” are set to 

“no” and no output pharmacophore mol2 file will be generated.   

write_out_reference_ph4                                   yes 
reference_ph4_out_filename                                ref_ph4.mol2 
write_out_candidate_ph4                                   yes 
candidate_ph4_out_filename                                cad_ph4.mol2 
write_out_matched_ph4                                     yes 
matched_ph4_out_filename                                  mat_ph4.mol2 

 

In the pharmacophore output mol2 files “ref_ph4.mol2”, “cad_ph4.mol2” and 

“mat_ph4.mol2”, each pharmacophore point is represented by a set of atoms (Table B-1, column c).  

Note for HBD, HBA, ARO and RNG labeled pharmacophore points, more than one atom is used 

because both the center of the point (denoted by the first atom in the list) and the directionality 

(derived from all the atoms in the list) need to be recorded.  The output pharmacophore mol2 file 

will then be converted to a bild file using a python script mol2bild.py (to be released in DOCK6.8).  

The bild file contains the directional vectors derived for all the pharmacophore points with 

directionality (HBD, HBA, ARO, RNG) in the original mol2 file.  Different colors are used to 

represent different pharmacophore labels as shown in Table B-1 column d.  The directional vectors 

are modeled as 3D arrow geometric objects in the molecular modeling software Chimera, each 

consists of a cylinder (from the start point to an intermediary point) and a cone (from the 
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intermediary point to the end point) representing the arrowhead.  As an example, a 3D arrow for a 

ring pharmacophore feature is written as follows in the bild file. 

 

.color orange 

.arrow    0.64  -17.12  -10.61    0.99  -17.69   -9.86 0.01 0.04 0.75 

.color orange 

.arrow    0.64  -17.12  -10.61    0.30  -16.55  -11.36 0.01 0.04 0.75 

.color orange 

.arrow   -0.04  -15.65   -9.18    0.30  -16.22   -8.43 0.01 0.04 0.75 

.color orange 

.arrow   -0.04  -15.65   -9.18   -0.39  -15.09   -9.93 0.01 0.04 0.75 

.color orange 

.arrow   -0.22  -16.30   -4.16   -0.73  -16.46   -3.32 0.01 0.04 0.75 

.color orange 

.arrow   -0.22  -16.30   -4.16    0.29  -16.15   -5.01 0.01 0.04 0.75 

.color orange 

.arrow   -1.30  -14.47   -4.50   -1.81  -14.62   -3.65 0.01 0.04 0.75 

.color orange 

.arrow   -1.30  -14.47   -4.50   -0.79  -14.33   -5.35 0.01 0.04 0.75 

.color red 

.arrow   -7.12  -15.42   -2.60   -7.25  -14.95   -1.73 0.01 0.04 0.75 

.color red 

.arrow   -7.11  -15.54   -4.81   -7.24  -15.16   -5.73 0.01 0.04 0.75 

.color blue 

.arrow    2.65  -16.61  -11.14    1.71  -16.86  -10.90 0.01 0.04 0.75 

.color blue 

.arrow    1.53  -15.84  - 3.04    0.72  -16.07   -3.57 0.01 0.04 0.75 

 

Here, each Chimera object is defined by two lines. The first line defines the color of the 

Chimera object (e.g. “.color orange”).  The second line defines the type of the geometric object 

(“.arrow”), the start and end point of the arrow ( (x1, y1, z1)= (0.64, -17.12, -10.61) and (x2, y2, 

z2)= (0.99, -17.69, -9.86) in the first object in the above example, arrow pointing from (x1, y1, z1) 

to (x2, y2, z2) ), as well as the size of the arrow (radius of the cylinder r1= 0.01, the radius of the 

base of the cone r2=0.04, and the ratio of the length of cylinder to that of the complete arrow 

rho=0.75).  For the most recent description, please consult the Chimera website 

(http://www.cgl.ucsf.edu/chimera/). 
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Table B-1.  Pharmacophore feature represented in ph4.mol2 and ph4.bild.   

a. Label b. definition c. mol2 d. bild 

PHO Hydrophobic C - 

HBD Hydrogen bond donor HD, N blue 

HBA Hydrogen bond acceptor O, HA red 

ARO Aromatic ring S, H1, H2 orange 

RNG Non-aromatic ring P, H3, H4 yellow 

POS Positively charged Na - 

NEG Negatively charged Cl - 

 

The complete bild files include all the directional vectors derived from the pharmacophore 

mol2 files.  Both the pharmacophore mol2 and bild files will be opened in Chimera for visualization 

of the pharmacophore model, as shown in Figure 2-1, Table 2-1 and Figure 2-18 in Chapter 2.   
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Appendix C. Lipid-Bound HIVgp41-T20 Complex Simulations  

This section outlines the DOPC lipid-bound HIVgp41-T20 complex (as visualized in Figure C-1) 

construction steps using the CHARMM-GUI lipid builder81 and simulation protocols using 

pmemd.cuda in AMBER14 on GPU-accelerated machines.  The peptide ligand (red helix in Figure 

C-1) and protein (magenta helices in Figure C-1) structures are obtained as described in Chapter 5.   

 

First, the gas phase protein-ligand complex structure is uploaded to the CHARMM-GUI 

lipid builder to generate the lipid bilayer.  “Heterogeneous Lipid” system with “Rectangular” box 

type is chosen.  The length of Z axis for the solvent box is determined by assigning the “water 

thickness”, which is defined as the minimum water height on top and bottom of the complex 

system, to “17.5”.  In order to obtain a reasonable conformation with the fusion peptide region 

correctly embedded in between the lipid bilayer, several values of the NHR insertion depth were 

tested and a final value of -75.5 Å was selected.  To achieve similar lipid density in the upper and 

lower lipid layers, the “number of lipid components” is set to 80 for the upper leaflet and 74 for the 

lower leaflet.  No ions are added for the initial test.  The solvated lipid-bound system is pre-

equilibrated briefly in the CHARMM-GUI platform and final structure is downloaded.  

The solvent box along with the lipid bilayer from the resulting structure was saved as a 

separate pdb file and later shifted to match the original gas phase complex variant models using 

molecular modeling software Chimera.  Also, the CHARMM-GUI PDB format structure is 

converted into AMBER compatible format using a python script charmmlipid2amber.py provided 

in AMBERTools14.  Another bash script vmd_box_dims.sh is used to estimate the periodic box 

dimensions by measuring the range of water molecules’ coordinates.  The size of the water box for 
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the complex system (320 residues) is set to 80×80×1190Å3 (24399 TIP3P waters, 154 DOPC lipids) 

for MD simulations in AMBER14.  Force field ff99SB is employed for proteins, Lipid14 for lipids 

and TIP3P for explicit waters.  The resulting starting conformations were used for 200ns-long 

molecular dynamic simulations.  The 9-step equilibration and minimization protocols are identical 

to that described in Chapter 5.  20 production runs (10ns each) of MD simulations were performed 

with restraint weight of 0.5 kcal∙mol-1∙Å-2 on TM region (residues 82-94 on NHR1, residues 176-

188 on NHR2, and residues 270-282 on NHR3, here the residue numbers are from the actual 

complex file) heavy atoms.  The average simulation time is about 19ns/day per GPU card.  Future 

tests and studies can be done to further refine the lipid-bound structure and optimize the molecular 

dynamics simulation protocols for better initial setup and equilibration of the solvated complex 

system.  Energetic and structural analyses specifically on the lipids can uncover the role of lipids in 

the mechanism of T20 binding.   

 

 
Figure C-1. Membrane-bounded HIVgp41-T20 complex prepared with CHARMM-GUI and AMBER14. 
 


