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Abstract of the Dissertation

Structure-Based Drug Design Targeting HIVgp41l
by
Lingling Jiang
Doctor of Philosophy
in
Applied Mathematics and Statistics
(Computational Biology)
Stony Brook University

2015

This dissertation presents method development aptication of computational procedures
for structure-based drug design, with a particdtarus on the clinical relevant drug target
HIVgp4l.

Chapter 1 introduces the main computational tealgsqused in this study, including atomic-
level molecular dynamics simulations, free energiculations, and molecular docking. The
importance of targeting HIVgp41, a viral envelopetpin involved in viral entry and membrane
fusion, is also discussed. In particular, the dfDA approved gp41l inhibitor, a peptide called
T20, suffers from side effects, expense, and igestulio drug resistance. Thus, improved
understanding of the binding mechanisms of T20 fisgreat interest, which provides the
motivation for the computational work in this digséion.

Chapter 2 describes a newly implemented DOCK sgofimction termed pharmacophore
matching similarity (FMS) score. By matching phaoophore features in references, such as
those in known peptide inhibitors of gp41, FMS scoan help guide docking of small molecules
to yield hits with desired properties. This new O method, when used alone (FMS) and in
combination with the standard single grid energgrec(FMS+SGE), is validated via pose
reproduction, crossdocking and enrichment studieth wlesirable outcomes using large
molecular docking testsets.

Chapter 3 presents additional in-depth analysethefFMS case studies for enrichment, as
well as post-processing of virtual screening rastdirgeting both the gp4l hydrophobic and
inner pockets.

Chapter 4 presents preliminary applications of F&8re forde novo design using small
(focused) fragment libraries generated for 50 smmallecule test cases as well as peptide test
cases targeting the two gp41 pockets.



Chapter 5 reports molecular dynamics simulationfeeel energy calculation results for T20 in
complex with gp41 (T20-gp41) to help characterize bbiological effects of a series of primary
and secondary mutations. Per-residue energetlgsasaand structural characterization of end-
point simulations were employed to identify keyidegs at the T20-gp41 binding interface.
Importantly, good agreement with experimental aistitrends was observed for a series of T20
analogs with three gp41l variants, using a thermanhya integration protocol, which further
supports the atomistic model.

Chapter 6 summarizes the work presented in theertigg®on in terms of scientific impact,
challenges, and future studies to further aid sineebased drug design targeting HIVgp41.
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Chapter 1. Introduction

This Chapter introduces a protein-peptide compiestesn of interest, HIVgp41-T20, which can
provide valuable insights in blocking the membré&rson of an important drug target HIV. The
primary computational techniques used in this studjude atomic-level molecular dynamics

simulations and molecular docking.

1.1 Therapeutic Drug Target for HIV-1 Fusion: HIVgp41

Human immunodeficiency virus (HIV), which causes ttie-threatening disease called
acquired immune deficiency syndrome (AIDS), hasilted in nearly 30 million deaths since the
first HIV infection was diagnosed in 1981.Great efforts have been made to prevent further
spread of viral infection and thereby control vil@hd in patients with the condition. However,
drug resistance arising from clinical treatment dhd existing side effects of many current
therapeutic strategies all call for continued depeient of next generation more potent drugs to
fight the global epidemi€®> Work presented in this dissertation applies atorgvel
computational modeling to help reach this importzodl.

Like most viruses in the Retroviridae family, HI\a$ to invade into a host cell to
complete viral replication. Targeting different gseof HIV host invasion, the current anti-HIV
inhibitors can fall into five major categories: ims and entry inhibitors, nucleotide reverse
transcriptase inhibitors, non-nucleotide reversmdcriptase inhibitors, protease inhibitors and
integrase inhibitors which target several stagesha viral life cycle at the same time. In

addition, “cocktail” therapy employing combination antiretroviral from these categories are



designed to block HIV replications. Table 1-1 list®/ medicines approved by the U.S Food

and Drug Administration (FDAJ? In this study, we are targeting the process af fdision.

Table 1-1.List of HIV inhibitors targeting various steps iital life cyclef#

Category/Target

Drug (Generic Name)

Fusion Inhibito

Entry Inhibitol
NucleosideReverse
Transcriptase Inhibitor
Non-Nucleoside Revers
Transcriptase Inhibitor

Protease Inhibitor

Integrase Inhibitc
Pharmacokinetic Enhant

Combination Medicines

enfuvirtide (T20

maravirot

abacavir, didanosine, emtricitabine, lamivudinaystline, tenofovi
disoproxil, zidovudine

delavirdine, efavirenz, etravirine, nevirapinepinirine

atazanavir, darunavir, fosamprenavir, indinavitfinavir, ritonavir,
saquinavir, tipranavir

dolutegravir, elvitegravir, raltegra

cobicista

abacavir and lamivudine; abacaxdolutegravir, and lamivudin
abacavir, lamivudine, and zidovudine; efavirenz{ramitabine, and
tenofovir disoproxil fumarate; elvitegravir, colsitat, emtricitabine, and
tenofovir disoproxil fumarate; emtricitabine, rigiine, and tenofovir
disoproxil fumarate; emtricitabine and tenofovisabroxil fumarate;
lamivudine and zidovudine; lopinavir and ritonavir

"Data from AIDSinfo FDAApproved HIB Medicines Fact Sheet, accessed M{" | 201¢

Prior work has resulted in a model of HIV fusiordaantry that can be arranged as four

distinct steps as shown in Figure 74.Firstly, when HIV approaches a target cell, itsedape

glycoprotein gp120 will recognize CD4 receptorsetihgr with chemokine co-receptors such as

CCRS5 and/or CXCR4, bringing the virus near the headk (Figure 1-1, top left panel). Then

gp120 will go through conformation changes thatvadl the N-terminal heptad repeat region (N-

HR) of gp41 to expose itself and insert into thetteell while the gp41 C-terminal heptad repeat

region (C-HR) is still attached to the viral memiegthe prehairpin stage, Figure 1-1, top right

panel). In the next step, gp41 will undergo aesenf conformational changes that lead to the

binding of three C-HR helices to N-HR helices, forgha six-helical coiled-coil hairpin termed
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the six helix bundle (Figure 1-1, bottom left pgneThis process will bring the viral and native
cell membranes in close proximity to each other tnedtwo membranes will eventually merge
and complete viral fusion (post fusion, Figure lbbitom right panel). Importantly, in the
prehairpin step, both N-HR and C-HR regions of gp#d exposed to solvent and can interact
with a variety of substrates and several inhibiftasth peptides and small molecules) has been
shown to inhibit viral energy and reduce HIV infeas!*? The first FDA approved fusion
inhibitor called enfuvirtide (T20) discussed moneGhapter 5 was originally designed by Jiang
et al*® to bind to the N-HR in the prehairpin stage in petition with the native viral C-HR. A
new inner pocket in the interface within the N-H&ital coil has also been recently identified

by Allen et al** in the Rizzo lab, which is also described in Chapt

Target cell membrane Target cell membrane

Pre-entry Prehairpin

R

% < gp41 T20 target site

Viral membrane / Viral membrane
Target cell membrane Target cell membrane
Membrane Post
Fusion Fusion
I —
*
Viral membrane Viral membrane

Figure 1-1.HIV fusion can be categorized as four stages: @tjVd pre-entry stage when no interactions
between the virus and the host cell are obser®dgré-hairpin stage, (3) membrane fusion, ang¢$}t
fusion. Figure adapted from Hughseiral.**



While clinical use of the peptide drug T20 is repdrto successfully reduce viral loads in
infected patients, the therapy also leads to madishutations in both the virus NHR and CHR
sections:> As shown in Figure 1-2a, T20 is directly deriiedm the native C-HR of gp41.
Thus, any primary resistant mutations that arisé affiect T20 will also reduce the affinity
between the native C-HR and the mutated N-HR helideterestingly, in order to restore fusion
activity related to the coiled-coil hairpin formati, secondary mutations occurring in the C-HR
of the "virus” have also been clinically observed#from a drug design standpoint, a greater
understanding of the energetic effects of the pnynand secondary mutation pair would be
important. Figure 1-2a shows a schematic repragentof T20 and C34 (another peptide
inhibitor binding to a highly-reserved hydropholgocket in HIVgp41, used later to perform
reference-based small molecule inhibitor desiglapter 2 , 3 and 4) in alignment to the N-
HR, C-HR, transmembrane domain (TM), and fusiortidegFP) of HIVgp41.

It is important to note that the present HIVgp410T&udies employ a computational
model of the complex as the crystallographic bigdaose of T20 is difficult to obtain as the
binding site of T20 is close to the membrane-asgedi regions of N-HR. And solving the
conformation of the membrane-embedded regionsprotein and model their interaction with
the lipid bilayers are known to be quite challemgfor crystallographers. Based on sequence
alignment to known crystal structures (PDB code31dRd 1ENV) of gp41 N-HR bound to other
peptide inhibitors, a computational model of T2Q#d gp41 N-HR complex structure built and
reported by McGillicket al*® with the FP region modeled ashelices!’ The amino acid
sequence of T20 and three N-HR helices in the madelshown in Figure 1-2b. In the work
presented in Chapter 5, a series of HIVgp41-T20pernanalogs have been constructed using

the McGillick model by computationally mutating ithise 138 (gp41 sequencing) on T20 and
4



amino acid groups corresponding to residue 38 @hdgp4l sequencing) on all three N-HR

helices, as visualized in Figure 1-2b. These nmedlifomplex analogs structures are used for

molecular dynamics calculations.

o I

117 C34 150

/T
(a) 127 T20 162
/]
T20 YTSLIHSLIEESQNQQEKNEQELLELDKWASLWNWE
-— -+ - - - -+
T204, 35x YTSLIHSLIEEXQNQQEKNEQELLELDKWASLWNWE (127-162)
c34 WMEWDREINNYTSLIHSLIEESQNQQEKNEQELL
C-HR .. WMEWDREINNYTSLIHSLIEESQNQQEKNEQELLELDKWASLWNWF ..
" ~ ;\snsx - - Direction of CHR
A VARY/AVa . .
(b) V38A9~}<\‘ \f\{‘[\po = ==> Direction of NHR
QA <€ N43D
N36 \_/,\ ; \/\/\\/ SGIVQQONNLLRAIEAQQHLLOLTVWGIKQLOARIL
N-HR T VQARQLLSGIVQQONNLLRATIEAQQHLLOLTVWGIKQLOARIL
+ + - + +

AVGIGALFLGFLGAAGSTMGAASMTLTVQARQOLLSGIVQOQONNLLRATEAQQOHLLOLTVWGIKQLOARIL

AVERYLKDQQLLGIWGCSGKLICT (1-94)
-+ +- +

Figure 1-2. Modeling the binding of T20 to gp41 NHR. (a) Schémaepresentation of positional
relationship of T20, C34, FP, N-HR, C-HR and TM). (imear sequences of T20, C34 and N-HR helices

and visualization of T20 primary (red arrow) anad¢a@eary (orange and blue arrow) mutation sites.
Charged residues are indicated by “+” and “-“ signs

In terms of available activities data for the HIMdpT20 systems, lzumit al'® has
experimentally evaluated the activity (&Cof a related series of 19 peptides based T20mtsita
in which serine at residue 138 is replaced by #léonatural amino acids except cysteine (Table

1-2), which represents the “secondary mutationBtie effects of two primary mutations V38A
5



and N43D relative to the wild-type receptor wersoabuantified. The changes in binding
affinity due to structural variability can providesight in the structure-activity relationship in
the HIVgp41-T20 system to model HIV fusion. Inghiase, relative binding affinities rather
than absolute binding affinities are of primaryemagst. In Chapter 5, computational binding
energies for a subset of the complexes listed bieTa-2 have been evaluated computationally
for comparison to experimental activities and sticed and energetic analyses to characterize the

origins of T20 affinity and effects of mutations.

Table 1-2. Experimental activities of HIVgp+T20 complex analo..
Primary Mutations

H IV WT H IV V38A H IV N43D
Secondary EC50 EC50 EC50
Mutations (nM) (nM) (nM)
T20s138s 2.410.€ 23 +8.2 49 + 1(
T20s138n 0.620.1 3.6+1.° 3.5+0.¢
T20s138p 210194 >100( >100(
T20s138e 283 18C >100( >100(
T20s138F 9.4412.¢€ 203 + 8¢ 393 + 11!
T20s138¢ 1.310.E 65 * 8.¢ 141 + 2¢
T20s138H 210185 >100( >100(
T20s138 0.520.1 4.9+7 2.9+0.¢
T20s138x 708 1 14& >100( >100(
T20s1350 0.710.1 13 ¢ 29+0.°
T20s138m 0.720.2 4.4 +0.; 1.7 + 0.
T20s1387 1914 >100( >100(
T20s138p 446 1167 >100( >100(
T20s1380 34411 >100( >100(
T20s138r 362+ 114 >100( >100(
T20s1387 0.910.2 39+8¢ 161 £ 3¢
T20s138v 0.410.2 31+ 1¢ 22 +3.t
T20s138w 2914 >100( >100(
T20s138v 2549 51€ + 22° >100(




The ultimate goal of this dissertation is to desiggw generations of small molecule
fusion inhibitors targeting HIVgp41 with developnteand applications of new computational
structure-based drug design methods including médecdynamics simulations, molecular
docking (includingde novo design) and pharmacophore-based similarity magchinknown
peptide inhibitors. The rest of this Chapter meti the computational tools employed in the

research with emphasis on molecular dynamics arldauiar docking.

1.2 Computational Structure-Based Drug Design

Continuous advancements in modern drug design icpobs are critical to combat drug
resistance arising from already established thetapestrategies as well as new emerging
diseases. Figure 1-3 outlines a general frameva@riemploying a computational drug design
pipeline that includes target identification, malke recognition, lead refinement, clinical trial
and FDA approval. Importantly, computational malec modeling methods can be used to
determine the interactions between a ligand (oftesmall molecule) and the binding pocket in
an identified target (often a proteiff)>* For example, molecular docking with applicatidas
virtual screening is a commonly used method tocséfitial hits, as an alternative to traditional
experimental high throughput screening (HTS), ttp lepeed up the initial steps in the drug
design process which can reduce total cost. Adteraly, de novo design employing target-
ligand interaction profiles can generate drug Ié&asn scratch”.

Leads selected from virtual screening or constcufriem de novo design will ultimately
be investigated and future refined to optimizedoprties. For example, atomic-level molecular
dynamics simulations and free energy calculatiars e performed to estimate the strength of

noncovalent binding and assess the binding stabi®omputational methods can also be used in
7



lead refinement by predicting the pharmacokinetid pharmacodynamic properties of the hits
including ADME profiles and toxicity??*?* In general, only a few molecules are selected for
extensive lead refinement and even fewer molecoés pass through the several stages of
clinical trials and eventually FDA approval. Rephgcthe cost is especially important as the
entire drug design process can take up to 15 yeatscost up to 1 billion dollafé. Successful
examples in which computational methods were engalap the design of new drugs against
various target systems include chronic myelogenteiskemia (Imatinibf® liver cancer
(Thymitag)?® influenza (oseltamivir and zanamivit)?® and HIV protease (Viracept and

Aluviran) 3933

Target
Identification

l Virtual Screening
Molecular
Recognition )
de novo Design
Molecular Dynamics
\ Free Energy Evaluation
|| Lead
Refinemen
al i’ ent ADME
Clinical Toxicity
Trial
FDA
Approval

Figure 1-3.Flow chart of computational structure-based drugjgte Computational techniques used are
highlighted in blue boxes.



As illustrated in Figure 1-4, the goal of the maikee recognition step in drug design is to
predict ligands with favorable interactions to aegi target. Prior knowledge of both the
receptor and available active ligands can be useehergetically and structurally predict the
affinity of an arbitrary candidate ligand. For eptor-based molecular recognition, common
methods like molecular mechanics-based energy ledilons (discussed in more details later)
allow physics-based predictions that are comparéblexperimental results. The validated
computational protocols can then provide more @=tansights into the binding profiles of the
ligands, techniques such as energy component asabased on electrostatic and van der Waals
interactions or water-mediated hydrogen bondfhdror ligand-based molecular recognition, the
similarities between known active molecules anddgdate molecules can be quantified to guide
reference-based drug design. It is hypothesizat drug activity is a function of molecular

structure®>3®

Thus similar molecules can potentially yield daniactivities in binding.
Pharmacophore modeling can potentially be usetigand-based recognition. In this study, we
will further discuss the use of a pharmacophoreetasmilarity metric in molecular docking in

Chapter 2, Chapter 3 and Chapter 4.



Receptor Ligand Complex

Figure 1-4. Molecular recognition: identification of ligand witfavorable binding affinity to the target
receptor.

As shown in Figure 1-3, virtual screening atenovo design are two important tools in
molecular recognition. Virtual screening is a @sx of rapidly testing large database of
commercially available small moleculés silico for biological activities. Typically, virtual
screenings are done using molecular docking progiremith an efficient scoring function to
sample ligand binding poses and rank-order theemifft poses of various molecules in the
compound databagé. The UCSF ZING*° database is one commonly used freely available
compound resources for virtual screening. It piesi about 22.7 million purchasable

compounds as of November 201#4ttg://zinc.docking.org/browse/subsetaccessed March

2015). In addition, Accelrys ACB is a commercially available resource for over Tliom
unique chemicals with 3D structure information. Byk-ordering sampled poses of molecules
from these large compound databases, top-score@dcoles can be selected for further
inspection and filtered. Typically a selected sibsf promising leads will be purchased and
experimentally tested for initial activity. An afhative way of searching the chemical space for

drug leads is to design drug-like molecule “fromasch” viade novo design, a technique that
10



uses fragment libraries and construction algorithBeth “outside-and-in” and “inside-and-out”
strategies can be used to either (1) probe thargrsite to allocate favorable spots for different
fragment binding and then link all fragments togetto design a complete compound; or (2)
seed thale novo growth with one component fragment and grow italgding new fragments to
fit the binding site energetically and geometrigdll The resulting compounds can then be
synthesized and experimentally tested for bioldgacivity. This study included drug design

application employing both virtual screen atahovo design in Chapter 3.

1.3 Classical Molecular Mechanics
All-atom molecular mechanics (MM) method is empldya this study to model

molecular systems. A molecule is modeled as afsatoms with specific topology defined by
bonds. Each atom is also considered a particle agsigned radius, point charge and atom type.
A set of parameters are defined in a certain féiedd for different atom types to evaluate the
potential energy of a molecule as shown in Figue®3® The potential energy E is function of
the atomic coordinates, and consists of both theléd and non-bonded terms as illustrated in
Figure 1-5b. The bonded terms compute the sunoofl bength (Figure 1-5b (1)), bond angle
(Figure 1-5b (2)) and torsion angle terms ((Figi¥gb (3))). The nonbonded terms describe
longer-range interactions between atoms that nectly connected by a specific bond and
compute both the electrostatics (Figure 1-5b (4)Y aan der Waals (Figure 1-5b (5))
interactions. The functional form of the total putel energy used with the Assisted Model

Building and Energy Refinement (AMBER) force figldscribed in Chapter 5 is as follofs™

11
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Here, the bond length and bond angle terms araideddoy Harmonic functions where
energetic penalties are assigned to valueg,) that deviate from the corresponding equilibrium
values (o, 6o). And a sinusoidal function is used to describe torsion term where n is the
multiplicity parameter and”is the phase factor. For the nonbonded teriare the distance
between atomandj; A; andB; are the van der Waals parameters defined by tHedegth and
radii of the two atomsg; is the charge of atom In AMBER, 1-4 interactions are usually used
for both VDW and electrostatic terms to better raggperimental measurements. For atoms in
the same molecule, only those at least three bemds/ are included in the through-space

interactions calculation.
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Figure 1-5. Molecular mechanics energy function terms: (1) btewyth, (2) bond angle, (3) torsion
angle, (4) VDW and (5) electrostatics.

To calculate the potential energy of a biologicgstem with the potential energy
function, the coordinates of the molecules are ededIn general, accurate initial starting
structures are essential for molecular modelindisti) especially if the goal is to model protein-
ligand interactions. Experimental methods inclgdiray crystallography, nuclear magnetic
resonance (NMR) and electron microscopy (EM) arenroonly used to determine initial
coordinates of the systems (usually proteins innldoar apo states). The Protein Data Bank
(PDB).*®* which includes a total number of 95,375 X-ray taysstructures, 10862 NMR
structures and 753 EM structures as of March 2@%n expanding important resource for

accessing experimental structures of proteins #mer tiomolecules.
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1.4 Molecular Dynamics and Free Energy Calculations

Molecular Dynamics. Molecular dynamics (MD) is a method to simulate thetions of
a biological systerf® Derived from the potential energy of interactiaithin the molecular
system, we can calculate the forces of particlatenmolecules and mimic the dynamics of the
system. As shown in Figure 1-6, the classical evein equations of motion are employed for
atomic-level MD simulations. Starting from an iaitconformation (X(f)), initial velocities are
assigned for all atoms of the molecule at time dgep And the forces on the atoms F are
calculated by taking the first derivatives of thetgmtial energyE with respect to atomic
coordinates X. Next, the accelerat@monf each atom is computed using Newton’s Lava=iE/m

wherem is the atomic mass. With a pre-determined timp Atethe atomic coordinates for the
next time stepit= to+ At is updated vi&(t) = ff%atZ. The velocities of all atoms are also

updated at each time step with intervals of dynahriglaxation to avoid “hotspot” in the system.
Iterations of these calculations will update thee¢hdimensional coordinates of a molecular
system as a function of time. The performance awotioms of a molecular dynamics (MD)

simulation depends on the force field used in th@egular mechanics model. The physics-
based MD simulations can potentially mimic the mo$ in the protein-ligand systems and

provide energetic and structural insights of th&tay of interest.
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Figure 1-6.Molecular dynamics: updating 3D coordinates of at@mthe molecular system

There are many software packages for performingeoubhr dynamics simulation such
as AMBER!"*° CHARMM,*®* GROMOS>* GROMACS?>*** and NAMD?>* Parallel computing
tools including Message Passing Interface (MPI) @ml CUDA are usually employed to run
the simulations in parallel and yield higher sintigla speed. In this study, molecular dynamics

simulations are performed in AMBER with both MPHaBUDA. >*°°

Free energy calculations. In order to estimate the relative binding free grex
associated with conformational or compositionalngfes of a molecular system, such as the
mutational effects in HIVgp41-T20 system introducadove, a variety of computational
procedures based on a series of conformations sdmyith methods such as MD simulations
has been devis€d. While in theory independent sampling of the twalstate-configurations

associated with the mutation of interest can béopmed to yield relative binding affinity. In
15



practice, MD simulations on the nanosecond timeseéath the current computational power
might not be sufficient for accurate evaluation®ne key method, termed thermodynamics
integration (TI)>® is a procedure to simulate nonphysical transfdonat between endstate
configurations and evaluate energy differencesvof gsimilar molecular systems such as shown
in Figure 1-7. By gradually transforming with sinatermediate steps, such ensemble sampling
techniques will converge more quickly for reasorabhergetic measurements.Here, ligand
liga is alchemically transformed to Hin a series of coupled simulations with a transtion
parametei varying from 0 to 1. For each intermediatevindow (in the dashed box in Figure
1-7a), the dynamics of the coupled system is detexainby potential energy and force calculated
as weighted average of the two endstate systenysi@ath systems corresponding toalignd
ligs). The closek is to 0, the more similar the mixed system i éndstate system defined by
A=0, and vice versus. As virtually illustrated ingliie 1-7a, through the transparence of the
ligand: the ligand in blue denotesdigvhenA=0 and the ligand in red denotesgligheni=1.
Typically, linear mixing energy functions can besds In AMBER11%’ a soft-core potential
function is employed to address singularity proldefor Tl simulations close to the endstate
whenA=0 andi=1. Detailed discussion will be provided in Chagie

The value of the derivative of potential energyediénces V with respect to(dV/d)) is
evaluated for each snapshot in the Tl simulatioraath. The ensemble averaged dwWdlue
for eachl window between 0 and 1 is plot as a functionradis shown in Figure 1-7b by
connecting disjointX, dV/d\) points to approximate the continuous dVfdnction. The value
of dV/dh curve ati=0 andA=1 are usually not directed calculated using themBthod but
instead estimated by extending the curve basedrmmtibn values near the edges (dashed section

of the curve in Figure 1-7b). The signed area urtderdV/d. curve between=0 andA=1 is
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reported as the total transformation energy. Inggple, alchemical transformation using T, if
done in a well-controlled and converged way witheasonable partition for the intermediate
states, can yield a relatively accurate energye ddupled simulations can gradually sample in
the energy landscape between the two physicalsstatd also implicitly include the entropy
term. In general, the two physical states beingukted are made to be similar to each other to
obtain well-behaved molecular dynamics simulatiang improve the accuracy and convergence

of the energy measurements.

! 1/dV
T\?—?& ——9 AGtrans,AﬁB = J‘O <H>ld/1

\4

! |
' |
! |
0 0.25 0.50 0.75

Figure 1-7. Evaluating transformation energy using thermodymamtegration method. (a) Coupled
systems in differerit windows. (b) Theoretic dVidcurve for transformation energy evaluation.
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In this study, we are particularly interested irmmpaiting the relative binding energy
between two ligands to the same receptor. Thermardyc integration molecular dynamics
(TIMD) simulations are performed for calculatingrisformation energies from one ligand to
another in both the bound and the unbound stafidse relative binding energy can then be
derived from the transformation energies as shawRigure 1-8. The relative binding energy
between ligand A and ligand BGuing 5= AGping.a IS €quivalent to the difference in transformation

energy of ligand A to ligand B in the binding séed in the solvent alon&Girans,com AGtrans,lig

AGbind A

}. Rec + Qﬂﬂmm) Lign, ——
ﬂAGtrans, lig ﬂ AGtrans, com

AG'bind,B

Ligg —

Comg

AAGbind = AGbind,B - AGbind, A= AGtrans, com "~ AG'trans, lig

Figure 1-8. Thermodynamic cycle for relative binding energycaédtion between two ligands Ligand
Ligg with a receptor (Rec) to form a complex (Com). Thele depicted equates the experimental relative
binding energy with the difference in transformioge of the two ligands to another in the bound and
unbound state using TI.

For each individual TI transformation, the combmienergy function (mixing function)
V to evaluate the potential energy of the couplestesns can be linear, polynomial, or any other

reasonable form. It is found that linear mixingdtion for thermodynamic integration method
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can cause the endpoint singularity probiemhen the repulsive Lennard Jones term results in a
large potential fluctuation as a result of clashiigween solvent molecules and a disappearing
atom in the solute. Thus we employed the soft-gatential mixing function implemented in
AMBER since version AMBER11 to address this probf&nit allows the van der Waals term
(Eq. 1-2, 1-3) and electrostatic term (Eq. 1-4,) IbBing evaluated at the same time in one

transformation step.

1 1
VVO disappearing,vdw — 4e(1—-2) 62 TG (1-2)
[a“(g) ] ar+("2)
1 1
VVl,appearing,vdw = 4el o612 i © (1-3)
[a(l—l)+(%) ] a(1-1+(-2)
VVO disappearing,elec = a-4 S L (1-4)
' ' 4TrEg ,ﬁ/1+rl-j2
qiq;j
Vvl,appearing,elec =1 . (1-5)

4nsoJﬁ(1—l) +732

1.5 Molecular Docking

Fundamentally different from molecular dynamics, lesalar docking is a
conformational search method to predict individsmhpshots of ligand binding poses. It has
been historically described as a lock-and-key mnwbl(Emil Fischer, 1894) in molecular

recognition. Docking programs such as DOCR® Surflex®? FlexX *® AutoDOCK ®*%° Glide
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FRED?®" ICM,®® and GOLD® are widely used to reproduce crystallographic inggoses and

perform virtual screening to identify ligands wfdvorable binding poses to a specific target.

Figure 1-9.(a) DOCK anchor-and-grow algorithm. (b) Docking to grid

Specifically for DOCK, it is designed to accomplisho major tasks: sampling and
scoring. An on-the-fly algorithm termed anchor-gwdw was introduced in DOCK4.0 to
sample ligand conformations in the binding siteaafgid receptor. As shown in Figure 1-9a,
DOCK explores the ligand binding conformational @pay first disassembles the small
molecule ligand into rigid segments based on rbtathonds. An anchor (as highlighted in the
red box) is selected and then the rest of the feagsnin the ligand will be added back at the
connection points where the rotatable bonds weskdor up previously. The growth processes
are done layer by layer from the initial anchort e&ch layer, the torsion angles of each added
segment will be sampled. The set of partially giawolecules with varies conformations will

be minimized, clustered and rank-ordered for prgninfo speed up the energy calculations
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during sampling, a receptor grid (shown as blue dgines) can be pre-generated with atom
probes (Figure 1-9b), which is particularly usafulvirtual screening when millions of ligands
are docked into the same recepftbr.

Scoring in DOCK is performed using different scgrifunctions to guide sampling and
rank-ordering of ligand poses. Table 1-3 listednsoof the more commonly used scoring
functions currently available in DOCK. One catggof scoring functions is force field-based
scores such as grid energy score. The interaetengy of the ligand is evaluated on the pre-
computed receptor grid and used to guide liganevtirdoy prioritize partially grown molecules
in terms of geometric and chemical fitting to theding pocket as well as rank-order complete
ligand poses at the end of the docking event. \WCKG6.5, Baliuset al introduced a per-
residue energy decomposition method (footpringualuate similarity of docked ligand pose to
a reference active po5ke’® The footpint-based metric was shown to boost ihgckeproduction
success rate and has been applied to select leledutes in virtual screenind. In this study,
we have implemented a new pharmacophore-basedasimilmetric as a DOCK scoring

function. Further definition and application of tmethod are described in Chapter 2 and 3.

Table 1-3. Commonly usedcoring functions in DOC

Scoring Function Definition Version
contact scor’ Summation of heavy atom cont DOCK3.C
grid energy scor Non-bonded MM FFtermscalculated on fe gric DOCK3.(
continuous energy scc Non-bonded MM FFtermscalculated in Cartesian spi DOCKS.(
Zou GB/SA scor’*® Fast algorithnfor ligand binding affinity calculatics DOCK5
Hawkins GB/SA scor’”®  MM-GBSA energy DOCK®6.(
AMBER scor¢’® MM-GBSA energy calculated with AMBER force fi  DOCK®6.(
footprint similarity scor’*  Similarity of pe-residue decomposition to a refere DOCK®6.£
multigrid FPS scor® Footprint similarity measured in multiple gr DOCKE®6.€
SASA scor The percentage expoe of a ligan DOCKG6.€
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1.6 Research Projects

This dissertation describes several research psojecboth method development of
structure-based drug design and application tonpi@leclinical targets including HIVgp4l
employing prior biochemical information of the tatgsystems. Chapter 2 describes the
implementation of a pharmacophore-based scoringtifum termed Pharmacophore Matching
Similarity (FMS) in DOCK6 with validation using pesreproduction, crossdocking and
enrichment study. Applications of FMS score intuat screening ande novo design targeting
the HIVgp41l hydrophobic and inner pocket are reggbih Chapter 3 and Chapter 4. Chapter 5
reports the relative free energy calculation resuit HIVgp41-T20 complex systems using
thermodynamic integration method as well as paedovesenergetic and structural analyses to
characterize the binding profile of peptide fusimibitor T20. Chapter 6 discusses the
scientific impact of this study, challenges enceved in each project, and future directions are
presented. Appendix A documents the protocol, sampins and parameter definitions
associated with FMS code to be released in theneéedise of DOCK (DOCK®6.8). Appendix B
documents the procedure of generating pharmacophodels for visual inspection in Chimera.
Appendix C documents an initial system preparatoocedure using CHARMM-GUI lipid
builde* and MD simulation protocols of membrane-boundestesyis usingomemd.cuda in

AMBER14.
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Chapter 2. Pharmacophore-Based Similarity Scoring Mthod for

DOCK

This Chapter has been publishedJeéng, L.; Rizzo, R. C. Pharmacophore-Based Similarity
Scoring for DOCK.J. Phys. Chem. B, 2015 119(3), 1083-1102. Copyright © 2014 American

Chemical Society. DOI: 10.1021/jp506555w PMID228837

Author contributions. LJ and RCR designed resedtdiperformed research, analyzed data, and

wrote initial draft; LJ and RCR wrote the paper.

Abstract
Pharmacophore modeling incorporates geometric dmeinical features of known

inhibitors and/or targeted binding sites to ratibnalentify and design new drug leads. In this
study, we have encoded a three-dimensional phaihace matching similarity (FMS) scoring
function into the structure-based design progranCBO Validation and characterization of the
method are presented through pose reproductiossa@ocking, and enrichment studies. When
used alone, FMS scoring dramatically improves pagoduction success to 93.5% (~20%
increase) and reduces sampling failures to 3.7%%(€6op) compared to the standard energy
score (SGE) across 1043 protein-ligand complexdse combined FMS+SGE function further
improves success to 98.3%. Crossdocking expersngihg FMS and FMS+SGE scoring, for
six diverse protein families, similarly showed iropements in success, provided proper
pharmacophore references are employed. For eneichhimcorporating pharmacophores during

sampling and scoring, in most cases, also yieldrongdl outcomes when docking and rank-
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ordering libraries of known actives and decoys3cs§stems. Retrospective analyses of virtual
screenings to three clinical drug targets (EGFRE-IKR, and HIVgp41) using x-ray structures of
known inhibitors as pharmacophore references a@ r@ported, including a customized FMS
scoring protocol to bias on selected regions in tegerence. Overall, the results and
fundamental insights gained from this study shdaddefit the docking community in general,
particularly researchers using the new FMS metboguide computational drug discovery with
DOCK.
2.1 Introduction

Many docking and virtual screening programs, such ROCK®®? employ
intermolecular interaction energy functions thatntein non-bonded van der Waals and
electrostatic terms to rank-order (i.e. score) smalecule binding geometries (poses) generated
in the context of a defined protein binding sit@ther physically reasonable scoring terms such
as intermolecular hydrogen-bonding, ligand desawatnumbers of ligand rotatable bonds,
buried surface area, among others, have also bge#ared® In all cases, the objective is to
enrich for ligands with good geometric and chemicampatibility with the target so that

promising drug-like leads can be identifiéd’ Recently, Baliust al"*°

reported a new DOCK
scoring method termefbotprint similarity score which can be used to identify compounds that
match a specific molecular interaction energy patfee. footprint) based on a known reference
ligand. Encouraged by the recent succéé&éfom our laboratory, in which "footprints” were
used to identify promising lead compounds, we hdeeeloped an analogossmilarity-based

scoring method for DOCK that employs "pharmacopsibre Both methods yield enhanced

docking outcomes but do so in an orthogonal sesrsergy vs. geometry).
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Historically, the concept of a pharmacophore isegally attributed to Ehrilic>2® and
has evolved to include the three dimensional spati@ngements of key chemical features
essential for compound affinity leading to a biatad effect®”#® A thorough summary of the
development of pharmacophores and early works odefimg can be found in a recent

1°% also discuss

publication by Giineet al.2” Reviews by Leackt al,®® Yang®® and Sanderst al
technological advances and challenges of usingréift pharmacophore methods in modern
drug discovery. In practice, pharmacophore featuran be derived from known active
ligand(s), a defined binding site geometry, or mbmation of both. Importantly, the abundance
of atomic-resolution structures publically avaikalih the protein data bank (POByan be used

to derive pharmacophore models for compounds vetifigd experimental activity to help guide
structure-based drug design. A partial list ofgseans that incorporate pharmacophore modeling
includes CATALYST?? GASP?® LigandScout? PHASE®® GALAHAD, % PhDOCK?"*® and
MOE,” among others. While such prior efforts are immairttools and represent different
approaches for modeling, the goal of the presemkwsto provide a pharmacophore method
that can leverage DOCK's powerful anchor-and-graming strategy while taking advantage
of different combinations of scoring functions.

The new DOCK pharmacophore scoring protocol terrmrmacophore Matching
Similarity (FMS) encodes useful chemical featumeduding hydrogen bond acceptors/donors,
hydrophobic groups, positively/negatively chargedugs, and aromatic/non-aromatic rings.
Initial pharmacophore types are generated basedtom type and chemical environment,
defined by neighboring atoms in the same ligandecwdk, and are processed to create a

pharmacophore feature set (ph4 model) with cootdéand directionality as shown in Figure 2-

1 for three representative drug-like compounds.pdrtantly, the amount of overlap (termed
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FMS score) between a user-supplied reference ligahdrmacophore and candidate
pharmacophores derived from docked compounds cacolmputed on-the-fly during docking
(or rescoring) without the need for a separateppoeessing step. This enables large virtual

screening libraries to be sorted (i.e. rank-ordevath the function in an efficient manner.

2D
representation
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Figure 2-1 2D representations for three approved drugs @opl)corresponding DOCK pharmacophore
(ph4) models (bottom). Features include: (i) hgdmo bond acceptor in red, (ii) hydrogen bond damor
blue (iii) hydrophobic atom/group in cyan, (iv) aratic ring center and direction in orange, (v) non-
aromatic ring center and direction in yellow, (m&gatively charged group center in green, and (vii)
positively charged group center in magenta. Strestof nevirapine, erlotinib, and zanamivir fromB?
codes 1VRT, 1M17, and 1A4G, respectively.

Specific validation tests used in this work to era& the new scoring protocol include
pose reproduction, crossdocking, and enrichmenl. FMS results are compared relative to
using the standard DOCK single grid energy (SGE)y@gch, as well as a combined scoring
function (FMS+SGE) consisting of both terms. Irs@aeproduction, crystallographic ligand
positions are used as a reference to test if angmwethod is capable of reproducing native-like

poses (within 2 A of the x-ray pose) using the éa®B2012 validation database (update of

SB2010j developed in our laboratory. In crossdockingeseprotein families from SB2012
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(based on high sequence homology), are employesaimate docking accuracy across an NxN
matrix when all ligands from a family are dockedetach individual receptor. In enrichment,
active ligands and accompanying decoy compoundentdfom the DUD-E’* database are
docked to 15 different targets to assess the ahfithe new scoring schemes to correctly rank-
order active ligands earlier than decoys. Fina#yrospective analyses of three virtual screens to
targets of pharmaceutical interest (EGFR, IGF-1RJ BIVgp41l) are shown in which FMS-
based scoring (FMS and FMS+SGE) was used as ardatag tool to identify compounds with
high pharmacophore overlap to small molecules gtige ligand sidechains. Overall, the
results of this comprehensive study suggest the method will be a useful addition to the

growing number of scoring and sampling methodslalks in DOCK.

2.2 Theoretical Methods
2.2.1 Pharmacophore Definitions.

Pharmacophore modeling in this study uses a twpstatocol involving: (1) assignment
of a pharmacophore type definition to each ligatoma followed by (2) construction of
pharmacophore points with pharmacophore labelsdbasethe type definitions. Inspired by
chemical matching code previously developed for B&C% we employ a type definition
model based on SYBY{? atom types and environment (neighboring atomd)e fhite list of
pharmacophore type definitions is stored in phd.defn parameter file (Table 2-1) and can be
customized to include other pharmacophore types. cRrity it is important to emphasize there
is a distinction between pharmacophore type déimst (for the individually-typed atoms) and
the pharmacophore label definitions (for the fisahstructed pharmacophore points) derived

from the pharmacophore types. In the atom enviemtrdefinition list in Table 2-1, parenthesis
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() specify “atoms thatmust be bonded to the parent atom” while square brackgtsgdecify
“atoms thatmust not be bonded to parent atom® The integer in the definition represents the
number of atoms associated in the rule. For exart@ syntax “N.pI3 (2 *) [ H]” specifies a
trigonal planar nitrogen connected to at least dtleer atoms and not bound to any hydrogen
atoms. For this work, eight pharmacophore typesaasigned to individual atoms as outlined in
Table 2-1: (1) null or no assignment, (2) hydroghp3) hydrogen bond donor, (4) hydrogen
bond acceptor, (5) aromatic ring member, (6) hydrogond acceptor in an aromatic ring, (7)
negatively charged species, and (8) positively gduspecies. The resulting atom set is post-
processed to generate pharmacophore points witldicades that specify the position of the

pharmacophore point center and vectors indicatieglirection of potential interactions.

Table 2-1. Pharmacophortype definitions in DOCK.
type namé environment definition®

(1) null *
C.[O.]IN.1[S.1[F1[P](*
C.(N.pI3(2C.))(*
N.pl3 (3 C.)

]
(2) hydrophobic )
H(O.
H(N.)
H(S.)
H(F)

(3) donor

O.(*)
N.1(1%*)
N.2[3*]
N.3(3%*)

(4) acceptor N.pI3(2*)[H]
S.2[O.]1[N.]
S.3(2%)
F(*)
CI(*)
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. C.al
(5) aromatic N ar

(6) aroAct Nar[H][3*](*)

C.(20.co2
C.2(0.2)(03[*])
_ P.(40.)(0.3[*])
(7) negative S.(30.)(0.3[*])
S.(40.)(0.3[*])
F[*]
CIT*]

C.cat (*’
N.4 (*)
N.3(4%*)
N.2(3%*)
Zn[*]
Mg [*]
Ca[*]
Mn [*]
K]
Fe [*]
*Types defined in DOCKoh4.defn parameter file. "Environments based on SYBYL atom types and
atom connectivities.

(8) positive

Aromatic and non-aromatic rings are identified Imecking for closed loops formed by
connected atoms. The coordinate of the ring ceateraged over all ring member coordinates,
is computed and saved as the pharmacophore poguréF2-2). The average normal vector of
the plane defined by adjacent ring center-to-vexstegtors (Figure 2-2, dashed blue lines) is
calculated and saved as the direction vector optie@macophore point. If the individual normal
vectors (Figure 2-2, solid blue lines) of the reag all within an angle cutoff. to the average
normal vector (Figure 2-2a, solid red lines), tithe pharmacophore point is marked as an
aromatic ring (Figure 2-2a). Otherwise it is l@gkhs non-aromatic (Figure 2-2b). In practice,
0; is measured by directly computing the inner prodddwo vectors (¥ which is converted to

degrees by the inverse function of cosine ascos(x)) = 6;. Based on examining
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crystallographic ligand coordinates containing abmand non-aromatics rings we use as a

cutoff criteriaarccos(0.99)~ 8.11 degrees to determine if a ring is planar.

(@) (b)

Aromatic ring Non-aromatic ring

Figure 2-2 Pharmacophore feature assignment for rings: r@natic (close to planar) and (b) non-
aromatic (not planar). Ring center-to-vertex vexghown as dashed blue lines, individual normetare
shown as solid blue lines, averaged normal vedoosvn in solid red lines. The angle between the bl
and the red vectors are compared to a threshadteymine the planarity of the ring.

Atoms with hydrophobic and positive/negative phacapnore type definitions are saved
individually as pharmacophore points inheriting same type as their pharmacophore labels.
For these cases, default direction vectors (whhat affect the score) are assigned to facilitate
a common data structure. For the hydrogen bondpaoc the coordinate of the polar atom is
saved as the pharmacophore point. The averagectdrg pointing from all neighbor atoms to
the acceptor atom is saved as the direction veatdicating the potential position of the
coupling hydrogen bond donor, as indicated by medwss in Table 2-2 which shows example
pharmacophores derived for several small organiecotes. The hydrogen bond donor uses the
coordinate of the hydrogen atom as that of the mphaophore point. Similarly, the vector
pointing from the donor hydrogen to the connectpwjar atom is saved as a normalized
direction vector, indicated as blue arrows in Téb2. The combined set of all pharmacophore

points is called the molecular pharmacophore (phéyel which may include hydrophobic

(PHO), hydrogen bond donor (HBD), hydrogen bondeptmr (HBA), aromatic ring (ARO),
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non-aromatic ring (RNG), positively charged (POBJ aegatively charged (NEG) features (see

Table 2-2).
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Table z-2. Examples of pharmacoph: feature derived from small molecule

Name Labef 20" 30°
PHO
(a) ethanol HBD H,C” “OH /\/w
HBA
/A
(b) toluene  ARO @CHs L>—‘
PHO
(c) methyl- POS + K
amine HBD Jr/
o
(d) indane ARO Kﬁg\/g\
RNG ' "
. o
(e) propanoic PHO
acid NEG / 6\
HBA H,;C (@]
H;C O

o

®PHO in cyan; HBA (vertex and vector) in red; HBDct@ in blue, hydrogen vertex in gray; ARO
(vertex and vector) in orange; RNG (vertex and sgcin yellow; POS in magenta; NEG in gree
Direction vectors are shown in arrows generatedgu€himera™® bild files. 2D pictures generated
with ChemSketch.® °3D molecules and pharmacophore visualization gésesith Chimera.
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To gauge how many pharmacophore features are priesgpically sized compounds,
Figure 2-3 plots histograms derived from 1043 muales in their x-ray pose taken from the
SB2012 testset used in this work to gauge posedeption and crossdocking accuracy. As a
reduced representation, the pharmacophore modétedefor each molecule contains (on
average) a much smaller number of pharmacophorég(i6.0) relative to the total number of
atoms (49.2) as shown in Figure 2-3b vs. 3-3a.telms of specific features, molecules in
SB2012 contain on average of 1.9 aromatic ring8, Mon-aromatic rings, 2.6 hydrophobic
groups, 3.6 hydrogen bond donors, and 4.6 hydrbgex acceptors. Values for the two latter
features are indicative of the drug-like charasters of many of the compounds in SB2012 for
which ~80% have less than 5 hydrogen bond donats-88% have less than 10 hydrogen bond
acceptors in rough agreement with Lipinski-fikerules. About 1/4 of the testset contains
molecules with positively (199) or negatively (2&harged functionality.

In principle, given the smaller feature space, efspharmacophore models should yield
faster run times than an all-atom based scoringtiiom. In terms of rescoring poses without
sampling, timing tests indicate that under the entriconditions, computing the pharmacophore
matching similarity (FMS) score between two molesuis faster than computing the standard
energy score by about 3.5 fold. Comparing prodactimes when using the FMS method to
drive ligand sampling is less straightforward, doi¢he much larger numbers of poses generated
when using FMS compared to SGE (discussed furtblew). However, when normalized by
the size of the final pose ensemble retained UusM§ or SGE methods, time per pose with FMS

is faster by about 1.5 fold.
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Figure 2-3. Number of pharmacophore features computed by DEGIS scoring function using the
SB2012 docking testset (N=1043 molecules).
2.2.2 Pharmacophore Matching Similarity (FMS) Scomg Function.

After computing the pharmacophore (ph4) model usimegprotocol described above for
both the reference and candidate poses, moleduidasty between the two poses is evaluated
by the degree of pharmacophore overlap, termed gteaemacophore matching similarity score
(FMS score). For each pharmacophore pdinwith pharmacophore labeh, Cartesian
coordinate X = [x;,x,,x3] and direction vectorv = [v,,v,,v3] in the reference
pharmacophore, is compared to every pharmacoplwnt B in the candidate pharmacophore
in three steps: (i) label check, (ii) distance ¢hand (iii) direction check.The pharmacophore
label a is used to eliminate pharmacophore points in thalicate pharmacophore that have
different labels. The distance betweehand the candidate pharmacophore pBjntcomputed
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asd; = ||¥ -yl = \/Zf;l(xj — y}')zwhereﬁ’ = [yi, ¥4, 4] is the Cartesian coordinate By, is

compared to a distance cutoff Only whend; < r will the corresponding pharmacophore point
B; be further investigated. A constantalue is assigned to all reference pharmacophoirés

as a default parameter, but for a ring (aromatieamr-aromatic) the radius of the ring is assigned
as r. The scalar projection of the normalized direttivector v onto that ofB; ,

w, = [wi,wi,wi ] is calculated. The condition that the vector @ctpns - w, = ¥3_; v; X

wji > o implies the angle between the two direction vextoandw, is withinarccosa, which

ensures that the two vectors are pointing in agprately the same direction. A perfect vector
overlap (wherv = w;) between two normalized direction vectors willibew, = ||¥]| = 1. By
default, a scalar projection cutoff @f= cos(45°) = 0.7071 is used. Note that for hydrophobic
and charged feature labeled poimtsw, > o is always true as the same default value of (1,0,0
is assigned to both andw,. For a ring, the absolute value of the scalajegtmn|v - w;]| is
used to account for its orientation (i.e. vectdye\ee and below the plane of the ring). If all of
the above criteria are met, then the two pharmam@ppointsA andB; are deemed a match.

In Figure 2-4, three ARO pharmacophore point paiesshown to illustrate how the three
criteria (label, distance, and direction) are usedlentify matches in rings. The first criterion
(same label) is met by all three pairs as the pheophore points shown are all labeled as
aromatic rings (ARO). The first pair (Figure 2-48s both a small distancé € r) and good
directional agreemen{i{ - w,| > o) and thus represents a well-matched case. Thmndqmair
(Figure 2-4b), although the ring vectors are wikgjreed, is not matched due to the large distance

between the pharmacophore centers. For the tland (pigure 2-4c), although the distance
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between ring centers is small, this case is al$@omsidered a match due to the large difference

in ring vector orientation|¢ - w,| < o).

(a) Well matched (b) Not matched (c) Not matched
d<r d>r d<r
Il Vector projection Il > o Il Vector projection Il > o Il Vector projection Il < o

. . L

Figure 2-4. Example pharmacophore matches for aromatic rifgsving: (a) well matched case with
same labels, small distance, and similar vectactions, (b) not matched case with same labelge lar
distance, and similar vector directions, and (d) matched case with same labels, small distanak, an
different vector directions.

All matched point pairs between the reference amdlicdate pharmacophore models are

investigated by their geometric relationships téaoba quantitative measurement of matching.

The residual between two matched points is defamd = /(d;)2/|7 - w;| which takes into
account both the distance and overlap in directidfter comparing pharmacophore paitvith

all candidate pharmacophore poifts the best matched poiBt with the lowest matching
residuals; will be retained for the pharmacophore matchimgilsiity (FMS) score calculation.
If no match was found fat, then it will not contribute to the residual teahFMS score. The
residual term in combination with a match rate tetefines the numerical value of the FMS

score via eq 2-1.
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k(1-2)+ ‘/—27”(621')2 >0
FMS = v " (2-1)

X , n=20

Here, k is a constant parameter;stands for the total number of matches (note fitrat
each reference pose pharmacophore point, one rgambunted at mosti\ is the number of

pharmacophore points in the reference pharmacop&jgreepresents the best matching residual

of a matched reference pharmacophore pint Based on similarity measurements in graph

theory!%1% FMS score uses the match rate tekr@ —%) to prioritize poses with higher

numbers of pharmacophore matches to the referease. p Poses with similar numbers of

[F07)?

matches will be differentiated by their root meguare matching residu Note

that the total number of matchesneeds to be larger than zero for eq 2-1 to giveagonable
value. When no match is identified=0Q), an arbitrary large scob€is assignedX is set to be
larger than the upper bound of FMS score value wir). For any reference and candidate
pair of molecules, FMS score ranges between Odpenhatch) an&, which depend on choices
for k, distance cutoff, and scalar projection cutaff For pharmacophore-based docking, lower
FMS scores are more desirable. Figure 2-5 outlset®matically the overall process using

DOCK.
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Figure 2-5. Flow chart schematic outlining pharmacophore-ageual screening in DOCK.

To determine a default set of values forr, ands in 2-1, we performed a series of
rescoring tests using ligand geometries generatgéd the standard DOCK protocol, for
comparison with crystallographic references, ansepeproduction success (defined in the next
section) was determined. Four valuesKdd, 2, 5, 10), three values for(0.5A, 1.0A, 1.54),
and three values far (30°, 45°, 60°) were examined. As a general e, of stricter matching
criteria (shorter distance cutaff smaller angle cutoff) led to lower docking success rates. In
addition, the success rate increased as the mgtcdi@ term weighk was increased from 1 to 5,
but remained relatively steady fraar 5 to 10. Taking these results into consideratiba set
comprisingk = 5,1 = 1A, 6 = 45°, andX = 20 yielded generally good pose reproduction siscces
and had values which were roughly in-between tlfilerént ranges explored. Although other
combinations might also have been suitable, thisvas ultimately employed for all subsequent
FMS sampling and scoring experiments used in tlikw
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2.3 Validation Metrics and Computational Details
2.3.1 Pose Reproduction Details.

In order to approximate the accuracy of ligand pgzedicted by a given protocol for
unknown systems, pose reproduction control expetisnare performed over a large number of
crystallographic complex structures. Ideally, thest-scored docked pose should agree with
crystal pose. Following our previous wdfR docking results are categorized as one of three
outcomes: docking success (Success), scoring dailfEcore Fail), and sampling failures
(Sample Fail). Over a large dataset the percemédgauccess + Score Fail + Sample Fail =
100%. Docking success is defined when the RMSWvéet the best scored pose and native
(crystal) pose ix 2 A. A scoring failure is defined when a closenttiive pose is sampled but
the best scored pose is > 2 A from the native p&geally, a sampling failure is defined if none
of the sampled poses are within 2 A of the nativeep

Representative visual examples of the three outsomne shown in Figure 2-6a. For
ligands of drug-like size, low RMSD values alsoitglly correspond to good visual overlap
between docked and reference ligand poses. Aiksta reported in this work make use of
"symmetry corrected” RMSDs to account for chemjcallentical functionality (i.e. symmetric
ring flips, carboxylate flips, etc), or completeymmetric molecules, adopting visually
indistinguishable conformations as described inailepreviously*'® The updated pose
reproduction database termed SB2012 (an updateeo8B2010 databas¥f was used for all
pose reproduction and crossdocking (defined belewperiments. The set, derived from
complexes in the protein databank (PDB), contai®431protein-ligand systems in ready to

DOCK format and is freely available online at wwzzolab.org.
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Figure 2-6. Validation metrics used to evaluate DOCK scoffimgctions. (a) Pose reproduction cases
with different outcomes: Success (top, PDB code ACBcore Fail (middle, PDB code 1V2W), and
Sample Fail (bottom, PDB code 1GKC). Crystal pasesrange, best scored poses in magenta, best
RMSD pose in cyan. (b) Representative crossdodkeamap showing docking outcome as a function
of docking all ligands (Ligl, Lig2, ... LigN) tolaleceptors (Recl, Rec2, ... RecN), for an aliggexip

of proteins with nearly identical sequence homologfc) Hypothetical database enrichment results
showing a partitioning of data based on FMS scarking (0 to 6) for a group of ligands (left bottom
magenta curve) comprised of a known active ligagtd(left middle, blue curve) and inactive decoy set
(left top, red curve). The vertical dashed linpresents a hypothetical FMS score cutoff dividihg t
total group into (X) predicted positive and (Y) gieted negative sets which can be partitioned ifoto
quadrants (I-1V) defined respectively as true pesg (TP, 1), false positives (FP, II), true neges (TN,

), and false negatives (FN, IV). Also shownais ROC curve, which for this example plots indivdtiu
points which correspond to various FMS score ctgd-uof the left panel. The coordinate of each pa@nt
determined by the false positive rate and truetpesiate at that FMS score cut-off.
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All DOCK experiments in this work employed well-defd receptor and ligand setup
protocols, in conjunction with the flexible ligas@mpling protocol termed FLX, as previously
described® Briefly, in terms of receptor setup, several emsory programs are used to
compute a molecular surface (DM$), generate docking spheres to guide sampling
(SPHGEN)!? and pre-compute the potential energy on a gridciviipeeds up the docking
calculations (GRID)° Key setup parameters include use of 6-9 Lennanes) and distance
dependent dielectrie{4r), a 0.3A resolution, and a grid box size exieg®A in all directions
based on the docking spheres (75 spheres max).dé&ng parameters include use of the on-
the-fly anchor-and-grow algorithm to orient andeasble ligands layer by layer, retaining a
maximum of 5000 completely-grown conformers to &eked by the primary scoring function,
and saving a maximum of 100 conformers (after elusgj to remove redundancy, RMSD <= 2
A). Ligands were energy minimized at each stageooformational search (500 iterations per
cycle per anchor/step max) and those exceedinbstmore cutoff of 100.0 were removed.

The different functions employed in this work indéa (1) single grid energy (SGE) score, (2)
DOCK Cartesian energy (DCE) score which is equivate SGE but in Cartesian space, (3)
pharmacophore matching similarity (FMS) score, éidthe combination of the two termed
FMS+SGE (or FMS+DCE) score. For the combined fionctthe FMS score was weighted by
10-fold so when summed together the FMS and SGHEDIE) terms would be more equally

balanced.

2.3.2 Crossdocking Details.
In addition to pose production experiments, croskohg was employed in which highly

homologous protein complexes, with nearly identislcture and sequence (termed here a
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protein receptor family), are aligned into a commeference frame and each ligand is docked
into each receptor as shown in Figure 2-6b. Saatfilies inherently contain variability due to
different crystallization conditions, co-crystaliizon with different ligands, as well as receptor
point mutations, among others. Nevertheless, ypothesis in crossdocking is that ligands
should adopt similar binding geometries in highgnologous receptors, provided there are no
large deformations in the binding site or incomipletimutations. The results are expressed as an
NxN heatmap Nl = number of systems) with docking success plaitteblue, sampling failures
plotted in red, and scoring failures are plottedyieen (Figure 2-6b). As before, a 2 A RMSD
cut-off is used to evaluate success. The diagelemhents (Figure 2-6b, white dots) represent
cognate protein-ligand pairs and thus represengr@xental references. Off-diagonal elements
are "theoretical" protein-ligand pairs and the refee, in some instances, may be incompatible.
To identify incompatible elements, we employ a lslagatrix check® independent of the actual
crossdocking experiment, in which all matrix conxgle (representing cognate and theoretical
references) are subject to a short restrained gmenmgmization. If the minimized ligand pose
moves >2 A from the starting pose, or pose beatséavorable energy score ( >0 kcal/mol), the
specific reference pair containing the clash isinoluded is crossdocking success evaluations
(Figure 2-6b black squares). All crossdocking ssicémployed the FLX docking protocol, and

results are reported for both the diagonal ancetiiege matrix.

2.3.3 Enrichment Details.
A third method used to evaluate docking methoasrechment (Figure 2-6¢). Databases

such as the directory of useful decoys (DUB)and the newer enhanced version called DUD-

E,'°* contain large sets of known active compounds (amagerty-matched decoys) which are
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docked to a specific target and the results ark-oadered. Good enrichment is achieved when
greater numbers of actives are ranked earlier enlih compared to the decoys. For more in-
depth discussion on using DOCK to estimate enrictinieterested readers should consult
Brozell et al.'** Briefly, for this work, ranked results were vitimad as receiver operating
characteristic (ROC) curves which plots how the tpositive rate (true positive/total positive)
changes relative to the false positive rate (faesitive/total negative). Accompanying area
under the curve (AUC) analysis was also perfornmetiwesed to estimate fold enrichment values
(FE=AUC/AUGCandom ), relative to random, at 0.1%, 1%, 10%, and 100P4he database
examined. For virtual screening, early enrichmentof particular importance, as typical
applications will only focus on (i.e. purchase) firsabsets of molecules ranked very early (i.e.
0.1-1%) in the database. In the theoretic exarsptavn in Figure 2-6¢, which employed FMS
score to rank active and decoy ligands shown inlgftepanels, the ROC curve on the right
represents a good enrichment case relative to nar{figgure 2-6¢ magenta vs dashed line). By
specifying a specific score cut-off (Figure 2-6ft lgottom panel, dashed line) the data can also
be partitioned into two groups for which moleculggh smaller scores (better overlap) are
defined as predicted positives (X), and moleculéh Wigher scores (worse overlap) defined as
predicted negatives (Y). If, as in the presentmgXa, the results are in fact known, this allows
ligands in the active group to be classified ae fasitive (1) or false negative (1V), and ligands
in the inactive (decoy) group classified as falssifive (I) and true negative (lll). By varying
the cut-off, the number of molecules in the founsets I-1V will change accordingly.

Enrichment studies employed the 15 DUD-E systenmwvehin Table 2-3%* The
receptor PDB files were already available in SB2@sHine PDB code as DUD-E) and the active

and decoy ligands were downloaded from the DUD-Bsite and used as is. It is important to
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note that some ligands (active and decoys) for ethegstems contain multiple entries
representing, for example, different tautomersrotgnation states. For all enrichment analyses,
in the case of duplicate id codes, only the bestest molecule was retained. For each system,
the native cognate ligand in the original PDB fdeused as the pharmacophore reference for
FMS scoring. As in the pose reproduction and dosking studies, the enrichment tests also
employed the FLX docking protocol. With this proty predicted ligand poses with
accompanying scores were obtained for approximadelut 2% of the actives and decoys listed

in Table 2-3.

Table 2-3. Systems used for enrichment tes

PDB System  #Actives’ #Decoy? Description
2HZI abll 29t 1088t  tyrosine-protein kinase AB
1E66 ace: 664 2637  acetylcholinestera:
2VT4 adrb? 45¢ 1595¢  bete-1 adrenergirecepto
1L2S amp 62 290z bete-lactamas
1BCD cah: 83t 3171C  carbonic anhydrase
1R90 cp2ct 18¢ 757¢ cytochrome P450 2(C
2RGP egf 83z 3544;  epidermal growth factor receptor erk
1SJ0O esrl 627 2081¢ estrogen receptor alp
3CCW hmdr 29¢ 888/ HMG-CoA reductas
1UYG  hs90: 12t 494; heat shock protein HSP -alphe
2AA2 mct 19z 524( mineralocorticoid recept:
1KVO pa2g: 127 521¢ phospholipase A2 group Il
2GTK  ppar¢ 725 25867 peroxisome proliferat-activated receptor gami
1NJS purz 201 272F GAR transformylas
1C8K  pyamr 114 404~ muscle glycogen phosphoryle

*Systems taken from DUD-E databa¥e.
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2.4 Results and Discussions
2.4.1 Pose Reproduction Results.

Table 2-4 shows pose reproduction outcomes compfotethe three DOCK protocols
tested (SGE, FMS, FMS+SGE) in which a given functiwas used for both sampling and
scoring (diagonal blocks in gray box) or when resdousing the other two scoring functions
(off-diagonal blocks). All experiments were perfead under the same conditions except for the
sampling and/or scoring method employed. It is dartgnt to emphasize that use of an
alternative function to re-rank an ensemble of pagenerated by any given method (Table 2-4,
off-diagonal blocks) will, in most cases, lead tadiierent group of top-scored results, but the

number of sampling failures remains unchanged.

Table 2-4. Pose reproduction results employing SGE, |, and FMS+SGE scoring functior

sampling’
scoring Outcome SGE FMS FMS+SGE

Success 75€ 72.5% 61C 58.5% 854 81.9%

SGE Score Fai 18t 17.7% 394 37.8% 18z 17.4%
Sample Fail 10z 9.8% 3¢ 3.7% 7 0.7%
Success 86( 82.5% 97t 93.5% 103t 99.2%

FMS Score Fail 81 7.8% 29 2.8% 1 0.1%
Sample Fail 10z 9.8% 39 3.7% 7 0.7%
Success 87¢ 84.0% 71¢ 68.9% 102t 98.3% |

FMS+SGE Score Fail 65 6.2% 28t 27.3% 11 1.1%
Sample Fail 10z 9.8% 39 3.7% 7 0.7% |

®SGE sampling size = 89,0 pose, FMS sampling size = 337,6 pose, FMS+SGE sampling size
59,237 poses.

In general, the diagonal results (Table 2-4, graxels) using the three different methods

yield high percentages of success across the 1¢&8nss in SB2012 with the FLX ligand
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protocol. Importantly, the SGE success rate (72.B%¢onsistent with earlier work from our
laboratory’* using a smaller dataset (68.5%, N=780), indicagjogd reproducibility of DOCK.
Overall, the diagonal results in Table 2-4 revealear trend in terms of outcome with success
following SGE < FMS < FMS+SGE and sampling and sgpfailures following SGE > FMS >
FMS+SGE. The very high success rates when using KBB.5%) or the combination
FMS+SGE (98.3%) is significant and represents &22%- improvement over the standard
DOCK method employing SGE (72.5%). On one handhdugh success rates are expected
given that for any system the x-ray reference liyand docked ligand are the same molecule in
terms of topology and thus have the exact same auwibpharmacophore features. In actual
practice, for virtual screening, the number of fleas between a reference and candidate would
change as each new ligand was docked. Neverthdlessgood correspondence in these
validation tests provides strong evidence the newplemented DOCK pharmacophore
labeling, modeling, and overlap routines are beiges expected and yield robust results over a
large pose reproduction testset. Importantly, RNES method is straightforward to use and only
requires that the user input a reference molecoiesisting of a single 3D conformation. The
processing of the candidate pose(s) to determin8 Bbbres is done automatically and on-the-
fly. Ongoing work to allow a text-based pharmacmghreference to be used as a query will
further simplify the procedure of customizing inp@r FMS score calculation.

Systems with failures. Of the three methods tested, the FMS+SGE protgetds the
lowest sampling (0.7%) and scoring (1.1%) failuates on the diagonal. In an attempt to
understand what led to the small subset of failMs18), docked poses for the group were
examined. Out of the 7 sampling failures, oneesystlid not complete growth, which, although

infrequent, can happen using DOCK under some cistamces. And for the remaining 6
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sampling failures, 4 are relatively large molecueish up to 35 rotatable bonds, and thus
extremely challenging for any docking protocol. terms of the 11 scoring failures, a
noteworthy result (Figure 2-7) is that 7 out of tfesystems (PDB code: 1XLZ, 6TMN, 2ITX,
1086, 1V2W, 1V2Q, 5TMN) actually show good corresgence both in terms of visual overlap
as well as RMSD (2.07 - 2.34 A). Thus, these 7 lbarclassified as "near misses" for which
only a part of the ligand geometry adopts a conétion different than the x-ray pose.
Consistent with expectation, in all but two cas&SKA, 6CPA), geometries corresponding to the
best RMSD also have a lower FMS score. The fad the FMS+SGE protocol correctly

identifies a native-like pose in nearly all 1043e&siis notable.

1XLZ 6TMN 2ITX 1086 1V2w 1vV2Q
2.07 (2.96) 2.14 (0.91) 2.16 (1.50) 2.24 (0.65) 2.25 (1.22) 2.31 (1.34)
0.49 (1.59) 0.51 (0.45) 1.31 (1.09) 0.44 (0.42) 0.22 (0.31) 0.35 (0.41)
= .
' ~ ¥ Y ﬂ
o %M
o
o -
%) ) A
5TMN 7CPA 6CPA 2AZZ 1CNY
2.34 (0.85) 3.13 (1.14) 4.21 (1.25) 4.29 (1.63) 12.81 (3.83)
1.48 (0.73) 1.40 (1.42) 1.42 (2.76) 1.35 (0.82) 0.73 (0.99)
T I Crystal
i 2,
o > B Best score
3 Best RMSD
wn

Figure 2-7. Eleven scoring failures derived from FMS+SGE gdidlocking showing overlaid poses,
PDB code identifier. RMSD in A, and FMS scoresparentheses for the best FMS+SGE scored pose
(first row, magenta) and the best FMS+SGE RMSD (fsseond row, cyan) relative to the crystal pose in
orange.
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Rescoring. In terms of the off-diagonal blocks (Table 2-#scoring the standard SGE
results (72.5%) with FMS (82.5%) or FMS+SGE (84.0%J)eals a similar trend with SGE <
FMS < FMS+SGE as in the diagonal experiments. Hease rescoring cannot "rescue”
incorrectly sampled geometries, the maximum succassattainable is a function of the poses
originally sampled which for SGE is 90.2% (e.g. #09.8% sampling failures). This specific
experiment is important as the improvement in ss&eehen rescoring SGE-derived results with
FMS or FMS+SGE (10-11%) suggests the current impteation is a viable way to post-
process docked poses and identify those compouiitisgwod pharmacophore overlap to a
reference. This procedure would be a particularbeful tool to aid virtual screening as
discussed further below. Rescoring results for gneup derived from FMS+SGE sampling
shows similar results, with FMS (99.2%) yieldingignificantly higher success rate than SGE
(81.9%).

The most dramatic changes in terms of pose reptioduinivolve using SGE (58.5%) or
FMS+SGE (68.9%) to rescore the pose ensemblesedefrom FMS-only sampling (93.5%).
These reduced success rates likely stem from ttietiat the FMS score accounts only for
overlap between pharmacophore features derived fhamreference ligand structure and the
receptor is "invisible" during sampling. The erdult is that poses generated using FMS alone
may clash with the target protein when rescoreteirergy space” despite high pharmacophore
overlap. However, as the pairing of energy andrphaophore overlap (FMS+SGE) leads to
relatively high success rates when rescored in S@&€e, as noted above, the combined function
is likely to be preferred when a receptor structaravailable. Nonetheless, the 58% success rate
obtained with SGE rescoring can be considered eagmmg considering that ligand sampling

with the anchor-and-grow algorithm was done in dbsence of a receptor. Thus, for ligand-
48



only based design, the FMS protocol appears to dpalde of enriching for energetically
favorable poses by matching only to a referencerpaeophore. The caveat of course is
identifying suitable pharmacophores in the absehceystallographic information.

Ensemble properties. A protocol designed to enrich for ligands withspse close to a
native structure should, in theory, yield favorabbt®res using any reasonable scoring function.
To examine in more detail how properties of molesuyjenerated with one protocol may differ
when rescored with another, histograms of the tasuBGE and FMS scores were plotted using
each of the three different pose ensembles obtautbdSGE, FMS, or FMS+SGE methods. As
expected, and consistent with the rescoring resuli@ble 2-4, use of the FMS function alone to
derive poses does lead to overall less favorabl€®@nergies (Figure 2-8 top, red) when
rescored in SGE-space compared to FMS+SGE (Fig&réop, green) or SGE (Figure 2-8 top,
blue). The large positive peak at 200 kcal/mog(ifé 2-8 top, red) represent those systems for
which large positive energies were obtained dugetmmetric clashes occurring between ligand
and protein. However, an encouraging number ofpies derived from FMS sampling do
yield favorable energies. At first glance, thetfidhat the SGE and FMS+SGE energy histograms
(Figure 2-8 top, blue and green) are nearly sugmgable is somewhat surprising, especially
considering the two ensembles yield substantiaifferént success rates (SGE = 72.5% vs
FMS+SGE = 98.3%). However, given the underlyingiptexity of binding energy landscapes,
ligand poses with distinctly different binding geetmes may in fact yield similar energy scores

(and vice versa), thus the observed SGE overl&gure 2-8 (top panel) is not unreasonable.
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Figure 2-8 SGE (top) and FMS (bottom) score histograms usimgembles derived from SGE (blue),
FMS (red), or FMS+SGE (green) driven sampling meésho

As shown in Figure 2-8 (bottom), FMS score disttifaos show much greater separation,
indicating greater sensitivity, in contrast to t8&E score distributions shown in Figure 2-8
(top). Here, SGE sampled poses yield a much vatiteost uniformly-distributed range of FMS
scores (Figure 8 bottom, blue) compared to FMSuiie@®-8 bottom, red) or FMS+SGE (Figure
2-8 bottom, green) sampled poses which have laegks around 0.5, indicative of high
pharmacophore overlap. Importantly, the FMS+SGEhination containing both geometric and
energetic components to guide growth yields enexyres on par with standard SGE-guided
docking poses (Figure 2-8 top, green vs. blue) matches the pharmacophore models even
better than FMS-only docking (Figure 2-8 bottoneegr vs. red).

Ensemble sizes. An additional interesting observation from theul¢s in Table 2-4 is the

larger number of final docked poses obtained usibigp (337,674) compared to SGE (89,083)
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or FMS+SGE (59,237). The much larger ensemble rg&s with FMS corresponds to an
increase in total docking time, which could be ohecern, although when normalized by the
number of poses kept, the FMS function is actualsger than SGE by about 1.5 fold. The most
likely explanation for the increased size involvesiuced pruning. Current experiments
employed a standard DOCK input file specifying aximmum score cutoff of 100.0, larger than
the upper bound of the FMS function [0, 20]. Thpsses are not as vigorously pruned during
growth compared to protocols that employ energyedasinctions (themselves not bounded).
The significantly larger ensemble from FMS-samplatgp likely contributes to the reduction in
docking success rate associated with SGE rescbaoguse of the greater number of alternative
(decoy) poses associated with system. Futureestudi optimize the maximum score cutoff

parameter would be worthwhile.

2.4.2 Quadrant Partitioning using FMS Score.

Although no score cutoffs were used to define ssxde the pose reproduction tests in
Table 2-4, if both a RMSD cutoff and score cuta# defined then the results can be classified
in one of four different quadrants (see Figure 2dfined as: (I) True Positive (TP), good score
and low RMSD; (ll) False Positive (FP), good scanel high RMSD; (l1l) True Negative (TN),
bad score and high RMSD; (IV) False Negative (AN)J score and low RMSD. To highlight
properties of the new DOCK pharmacophore functiigure 2-9 focuses on the results derived
using only the FMS-guided sampling protocol disedssbove (success = 93.5%, sampling
failure = 3.7%, scoring failure = 2.8%). Dashedayr lines at RMSD=2 A and FMS=2 delineate

the four quadrants.
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Figure 2-9. 2D histograms of FMS score and RMSD for (a) algs (N=239,486) and (b) best scored
poses (N=1,041) generated using FMS guided sammfn@043 systems. Poses without matches
(FMS=20) not included in histograms. Color reftedensity (population).

Figure 2-9a plots the large "all poses” set comgsbf 239,486 ligand conformations
with FMS<20 out of the total sampled space obtaingth FMS sampling (337,674 poses).
Here, the small separate cluster of points locatetie TP region (lower left quadrant), which
shows roughly linear correlation with RMSD, corresgs to mostly docking successes
compared to the highly populated TN region (uppghntrquadrant) containing many thousands
of points for which the correlation between RMSQI &MS begins to diverge as FMS values
increase. Unlike the standard SGE function, whigbically shows little correlation with
RMSD, the FMS method behaves more like RMSD givengeometric nature of the function.
Importantly, the results in Figure 2-9a indicatattthe FMS protocol is not only able to identify
close-to-native ligand conformation with favorabdeores (region 1), but also correctly
characterize poses that are geometrically diffeferh the reference by assigning unfavorable

scores (region lll).
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Figure 2-9b plots the "best poses” set consistintpd1 ligand conformations (1 system
failed to dock, 1 system with FMS=20 for the besire pose). As in Figure 2-9a, poses in the
TP region again show roughly linear correlationhntRMSD. In this case however, as only a
single pose for each systems is retained, unlike"#tl poses” case, the TN region is sparse.
Ideally, a good function should maximize TP andimine FP. With the present RMSD (2.0 A)
and FMS (2) cutoffs, 949 points are classified Bsahd 26 are classified as FN. The remaining
points (1042-975 = 67) are divided into 39 TN camsed 28 FP cases. Overall, the 97.3% TP
rate (949/975) and 41.8% FP rate (28/67) indicajesd quadrant partitioning. And, as
expected, use of a smaller score cutoff will yialdeduction in TP but an improvement in FP.
For example, use of an FMS cutoff = 1.5 yields @t = 91.4% and FP rate = 20.9%, and use of
an FMS cutoff =1.0 yields TP rate = 78.1% and He r9.8%. As a point of comparison,
comparable analysis by Baligsal’* for a similar TP rate = 79.8% vyielded a higherraf =
46.2% using DOCK's footprint similarity method wigh0.6 score cutoff (based on normalized
Euclidean distance) and 2 A RMSD cutoff across j8fiein-ligand systems. In practice, the
optimal choice of a numerical value for score dutofemploy in a study to yield compounds
with the desired properties is system dependendr example, in typical virtual screening
applications, FMS score between candidate compoands reference would be expected to be
higher (i.e. less overlap) than under the presesé peduction tests which compare compounds
with identical topologies but different conformats

False Positive (FP) cases with FMS. While FMS in general yields excellent quadrant
partitioning, an examination of the results wasertaken to determine the underlying cause of
FP and FN classifications. Focusing on resultsiftbe "best poses" set (Figure 2-9b), Figure 2-

10 presents the ten out of twenty-eight FP re®MSD > 2 A, FMS <= 2) with the highest
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RMSD. Analogous to that observed with the FMS+3B&ring failures (Figure 2-7), FP poses
derived with FMS-sampling show, for the most pegtnarkably high overlap except for one end
of the molecule. And in all ten cases, the poorgtlapped groups contain rings, which are
weighted heavier by the RMSD function than FMS.st&m 10DC is a particularly interesting
case. Here, the ligand pose is semi-symmetricflgsed by ca. 180relative to the reference
(magenta vs. orange) resulting in overlap betwesnrings on one end with three rings from the
other. Although the Hungarian algorithm used tie®®OCK"'° to compute symmetry-corrected
RMSD effectively accounts for the swap of functitiyahaving identical chemical properties,
the resultant value of 3.41 A is still classifieslafailure, largely as a result of one ring ohesit
end (8 atoms total) not being matched. In contthe FMS score not only accounts for the
symmetry but the good overlap between four outiefrig centers (and associated vector
directions), which leads to a relatively low FMSsE of 1.48. Overall, visual examination of
these ten worst FP cases reveals a significant mimmfuphysically-reasonable matches and
minimal mismatch and the classification of poses this quadrant is, in most cases,

understandable.
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Figure 2-1Q Ten out of twenty-eight FP poses derived from Fd&led docking with the largest RMSD
values. Crystal poses in orange, best scored posesagenta. RMSD in A, and FMS scores in

parentheses.

False Positive

False Negative (FN) cases with FMS. In terms of the FN examples (RMSD < 2 A, FMS
> 2), Figure 2-11 presents the ten out of twenty-six pos&th the highest FMS scores.
Immediately obvious compared to the FP example#has the molecules here contain fewer
aromatic rings, for the most part are larger andemextended, and have a higher number of
more loosely matched hydrogen-bonding functionaligs (most polar atoms in the FP cases are
either tightly matched or not matched at all). sThatter point is particularly important as
relatively small changes in position of a hydrogpending functional group can lead to relatively
large changes in FMS overlap but minor effects MSR which is computed using only heavy
(non-hydrogen) atoms. Although our standard piepar protocol for FMS scoring employs an

energy minimization step to relax any hydrogen &awided to the system, the positions adopted
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as a result of ligand sampling during growth magulein the candidate and reference poses
having different hydrogen directions. This resulihlights the need for care when preparing a
molecule to be used as a "reference" for scoringdidate compounds. Despite being a
distinctly different type of function, a similar wdusion was reached by employing the DOCK
footprint function’* Despite this sensitivity, however, most of the dées have scores close to

2 that could easily be rescued by a minor increas®S cutoff to 2.5.
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Figure 2-11 Ten out of twenty-six FN poses derived from FM#dgd docking with the largest FMS
scores. Crystal poses in orange, best scored posgmgenta. RMSD in A and FMS scores in

parentheses.

2.4.3 Crossdocking Results.
In addition to pose reproduction, crossdocking expents are a useful way to determine
if different protocols can reproduce native-likesps when ligands are docked to highly

homologous protein binding sites from differentstajiographic structures (see Figure 2-6b).
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Figure 2-12 displays outcomes across six protemili@s: carbonic anhydrase (CA=29),
carboxypeptidase A (CPA=8), epidermal growth factor receptor (EGHR;15), thermolysin
(THERM, N=26), HIV protease (HIVPR\=60), and HIV reverse transcriptase (HIVRF21).
For comparison, both the diagonal (cognate prdtgamd pairs) and the entire matrix (all
combinations) are shown. As before, three doclpngfocols were tested (SGE, FMS, and
FMS+SGE). As shown in Figure 2-12a, this is aipalarly challenging group of proteins with
the standard SGE protocol yielding low diagonakssses (34.5-60.0%) for 5 out of 6 families.
The exception is HIVRT for which the SGE succeds = 95.2%. In contrast, use of FMS
(71.7-100.0%) or FMS+SGE (75.0-100.0%) vyields digant improvement for cognate
receptor-ligand pairs. Carbonic anhydrase is @codarly noteworthy example as the SGE
diagonal success increases from only 34.5% to ©6a8r0% using the FMS or FMS+SGE
functions. Comparable enhancements in successafbonic anhydrase were also reported by
Balius et al”* when using the DOCK footprint similarity scoringnition (82.8%) compared to

SGE (31.0%).
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Figure 2-12 Crossdocking outcomes averaged across the diafefta or total matrix (right) for six
protein families: carbonic anhydrase (CA), carbpeyptidase A (CPA), epidermal growth factor receptor
(EGFR), thermolysin (THERM), HIV protease (HIVPRnd HIV reverse transcriptase (HIVRT) using
SGE (top), FMS (middle), and FMS+SGE (bottom) pcots. Success in blue, scoring failure in green,
sampling failure in red.

As expected, for more challenging crossdocking grpnts, matrix success (Figure 2-
12b) using any of the scoring functions are in gansignificantly lower than their diagonal
counterparts (Figure 2-12a). As a baseline, us8GiE yields an averaged matrix success of
36.0% compared to the diagonal at 54.6%. In cehtathe diagonal results, interestingly, use
of FMS alone for crossdocking shows improvement &@@BE in only two cases (CA and CPA).
However, in all cases, the combined FMS+SGE funcéivays yields a better matrix success
than does SGE. Analogous to the diagonal reshktsmatrix outcomes (Figure 2-12b) similarly

reveal carbonic anhydrase has the lowest overattbm&GE success rate (17.8%) which

increased the most among all systems tested wheg BMS (48.8%) or FMS+SGE (52.1%).
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Figure 2-13 compares the heatmaps for carbonic caabg, derived from three independent
docking sets of size 29x29=841 combinations, uSiGd, FMS, and FMS+SGE methods. The
maps visually highlight that SGE failures are priityadue to scoring (green squares), pinpoint
which specific systems are involved, and indicatattFMS and FMS+SGE protocols
significantly improve docking outcomes (more blgeares).

Additionally visible in the FMS heatmap for carbominhydrase (Figure 2-13, middle), is
the appearance of previously unseen sampling &aslspecifically localized to column 1BCD. It
is important to note that the RMSD calculationdath diagonal and off-diagonal experiments
always involve compounds of the same topology. el@mwy, for pharmacophore overlap
calculations involving off-diagonal elements theaphacophore reference and the candidate
molecule being docked are usually of different togg. In such cases, FMS-guided docking
may drive sampling in a direction that will not essarily agree with the RMSD reference.
Calculation of the pharmacophore overlap betweémlgned crystallographic references for
carbonic anhydrase indeed shows 1BCD has the pomfesence FMS scores (between the
pharmacophore reference and the RMSD reference)n wdeeraged across all columns
(FMS=5.15) or all rows (FMS=5.51) which is apprétyaabove the overall average (FMS=3.38)
across all reference pairs. Inspection furtheeaéd that the ligand from 1BCD has only one
rotatable bond and a molecular weight of 148.1 ¢/minich is markedly smaller than the
average ligand in this family with 5.1 rotatablende and molecular weight of 339.7 g/mol.
Thus, crossdocking of ligands to receptor 1BCDnhagiskFMS alone, is not expected to be
consistent with the 1BCD reference sampling spadech leads to the observed sampling

failures.
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Figure 2-13 Crossdocking heatmaps using SGE, FMS and FMS+H3@t&cols for carbonic anhydrase
(29x29=841 combinations).

Additionally, more dramatic examples of this pheroiwn manifest themselves in the
heatmaps for thermolysin as shown in Figure 2-Here, in contrast to carbonic anhydrase,
crossdocking with SGE yields a higher overall sasaate of 38.2% (Figure 2-14 left, blue) but
with a higher percentage of sampling failures (28.1ted). And, while the combined function
FMS+SGE yields the overall best docking success(Edt.0%) for this family, use of FMS alone
actually increases sampling failures (47.5%) reéato SGE (Figure 2-14 left vs middle, red)
which, as described below, likely involves poorerehce pharmacophore overlap. Close
inspection of the crossdocking heatmaps revealsmathices of size 4x4, defined here as group
1 (1PE5, 1PE7, 1PE8, 2TMN) and group 2 (1KJO, 1KLBS7, 1KKK), for which FMS
sampling relative to SGE: (i) maintains docking cegs and/or (ii) rescues previously
unsuccessful docking outcomes involving system&iwithe same group, and (iii) introduces

docking failures for systems from different groupbo aid the discussion, Figure 2-15 shows a
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heatmap of FMS scores (as opposed to docking oetprderived from the x-ray references,

with diagonal and off-diagonal sub-matrix blocks gmoups 1 and 2 outlined as black boxes.

I Success [ Score Fail

I sampleFail M Clash
SGE

FMS FMS+SGE

Ligand

Receptor

Receptor

Figure 2-14 Crossdocking heatmaps using SGE, FMS and FMS+$@ocols for thermolysin
(26x26=676 combinations).
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Figure 2-15 (a) FMS heatmap, using all crystallographic refiee poses for thermolysin, with perfect
overlap in dark blue (FMS=0) and poorest overlad$>=8) in dark red. Group 1 sub-matrix defined by
systems 1PE5, 1PE7, 1PES8, and 2TMN. Group 2 sthbxndefined by systems 1KJO, 1KL6, 1KS7, and
1KKK. (b) Crystallographic reference overlays slmyvmatched pharmacophore features for group 1
(left, orange), group 2 (right, magenta), and grbws. group2 (middle).

The FMS scores computed between all reference palisate perfect overlap on the
diagonal (FMS=0, dark blue) but for the most p&e majority of pairs have poor overlap
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(FMS=3-8, green to dark red). A striking exceptame the cases defined by group 1 and 2
(Figure 2-15, black boxes) which all have relatyvgbod reference FMS scores within the same
group (two blue sub-matrices near the diagonal)poar FMS scores between different groups
(two green to yellow sub-matrices on the off-diagpn This observation help explains why
FMS-guided docking yields 100% success acrossubarsatrices formed within the same group
(Figure 2-14 middle), but when using group 1 systas a reference to guide docking of ligands
in group 2, no matrix success is reported and dnsuccess is obtained for the opposite case
(other symmetric block). Structurally, the moleouktluster formed by ligands in group 1,
occupies an extended space in the thermolysin figndocket (Figure 2-15b left) and contain
additional hydrophobic groups compared to groupF@ure 2-15b right). Group 2 ligands
cluster into a more slender volume anchored byramatic ring at one end and hydrogen bond
acceptor on the other. As a consequence, grougsdl2 share only a few (1-3) matched
pharmacophore points (Figure 2-15b middle) whicpl&xs the poor FMS scores between off-
diagonal reference ligands in addition to the pdmcking outcomes. Interestingly, the addition
of the energy term to the pharmacophore overlapeegMS+SGE score), using group 2 as a
reference to dock group 1, yields 100% docking essc In contrast, using group 1 as reference
to dock group 2 yields 100% sampling failure (Feg@r14, right panel).

Finally, the overall poorest matrix success resuktng FMS (7.2%) or FMS+SGE
(37.7%) docking is seen with HIVPR. Although higiand flexibility is expected to play a role
in the large number of sampling failures seen g FMS matrix (Figure 2-12b red) relative to
other systems (31/60 of ligands hawel5 rotatable bonds), the most likely cause is poor
pharmacophore overlap between all pairwise comioingt Consistent with the discussions

above, out of the 3600 pairwise combinations inHPR crossdocking reference FMS matrix
63



derived from crystallographic poses, only 220 pgietded reasonable pharmacophore overlap
(FMS<=3). In contrast, 2493 pairs have poor phaophore overlap (FMS>=4.5) which,
interestingly in this case, is about the same asittmber of sampling failures (2816).

Overall, two key points have emerged from the airoeossdocking studies: (1) FMS-guided
success rates, particular for off-diagonal elememts dependent on the similarity between the
pharmacophore reference and the RMSD referencg. T2 FMS+SGE protocol generally
improves crossdocking performance, relative to SS8EMS, by integrating known binding

profiles into the standard DOCK energy score.

2.4.4 Enrichment Results.

Results for enrichment experiments, used to gawsye BOCK would perform in a
virtual screening using SGE, FMS, or FMS+SGE proi®are shown in Figure 2-16 and Table
2-5. Receiver operating characteristic (ROC) csiraed area under the curve (AUC) analyses
were used to compute fold enrichment (FE= ALGAUC andon) Values for docking active and
decoy ligands taken from the DUD-E datab®SeFor virtual screening applications, good early
enrichment is considered to be critically importdnis FE was also computed at 0.1%, 1%, and
10% of the ranked database. For the current thetgverall shape of the ROC curves vary from
essentially perfect enrichment (1NJS) to randomicbemrent (1C8K) with most systems
exhibiting good overall enrichment but with a visildependence on which of the three docking
functions was used. For the majority of systenepetiding on which ROC region is examined,
FMS (red curves) shows higher enrichment than SB&e(curves), with FMS+SGE (green
curves) being roughly in between (Figure 2-16).ro&s different ranges of the database, based

on numerical AUC values, use of FMS or FMS+SGE mtestly yield higher FE rates relative
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to SGE (Table 2-5). For example, at 0.1% of th&alkse, 11/15 FE values using FMS and
11/15 FE values using FMS+SGE are enhanced relatv&GE (Table 2-5 column A).
Similarly, at 1% of the database, 10/15 FE valussigt FMS and 13/15 FE values using
FMS+SGE are enhanced relative to SGE (Table 24hwolB). Comparable results are obtained
at 10% and 100% of the database.

The fact that use of FMS+SGE yields generally loamtichment outcomes than FMS is
somewhat surprising given that FMS+SGE yielded déigbuccess rates than FMS in pose
reproduction experiments. However, it is importeminote that the role of the SGE term in
FMS+SGE is fundamentally different for pose repwthn given that different molecular
conformers, as opposed to the different chemicaktisg for enrichment, are what is rank-
ordered. The most likely contributing factor asmioy FMS scoring yields enhanced enrichment
involves the fact that use of a crystallographienmence captures elements of what is important
for activity for at least one active ligand. Besauank-ordering of "actives" using FMS scoring
are biased towards the known binder, higher enrngtisncan be obtained. With the addition of
the SGE term, sampling and rank-ordering using FSISE will change as a result of, for
example MW bias, which leads to different enrichtnesults (less-favorable in most cases for
the present tests). Overall, the enrichment teslislate the ability of FMS and FMS+SGE
protocols to enrich for true actives relative toES&one by prioritizing molecules with similar
binding profiles as a known ligand. This strongliggests use of a pharmacophore reference to

help guide virtual screening is a viable altermatir the standard DOCK protocol.
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Figure 2-16 ROC enrichment curves for 15 DUD-E systems uSi6g, FMS and FMS+SGE protocol.
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Table 2-5. Fold enrichment (FE) results at different perceasagf the database (DB) screened.

(A) (B) © (D)
FE @ 0.1% of DB FE @ 1% of DB® FE @ 10% of DB FE @ 100% of DB
Random 1.00 1.00 1.00 1.00
Systeni  Maximum 2000.00 200.00 20.00 2.00
SGE 0.00 111.36 19.05 1.99
1INJS FMS 1009.65 184.26 19.88 2.00
FMS+SGE 0.00 150.85 19.52 2.00
SGE 88.96 22.09 4.98 1.21
1SJ0 FMS 804.91 114.91 15.39 1.90
FMS+SGE 382.87 48.69 5.90 1.30
SGE 80.74 31.49 7.20 1.43
3CCW  FMS 1167.99 144.49 15.46 1.77
FMS+SGE 932.51 116.07 12.68 1.61
SGE 218.33 41.28 6.76 1.40
2RGP FMS 225.70 46.36 11.77 1.77
FMS+SGE 517.05 67.51 9.90 1.59
SGE 166.11 36.47 7.51 1.50
2VT4 FMS 223.36 65.93 10.45 1.73
FMS+SGE 376.70 78.04 11.07 1.67
SGE 53.17 22.27 7.21 1.59
2GTK FMS 613.72 75.99 10.30 1.67
FMS+SGE 319.87 60.89 10.75 1.69
SGE 6.40 14.38 6.35 1.67
1BCD FMS 147.94 25.25 5.43 1.65
FMS+SGE 43.48 25.22 7.74 1.74
SGE 0.00 3.56 0.65 0.92
1UYG FMS 590.68 90.43 9.32 1.62
FMS+SGE 75.01 35.68 7.90 1.25
SGE 0.00 0.00 0.54 1.07
1L2S FMS 264.83 55.17 7.82 1.61
FMS+SGE 235.40 56.64 8.84 1.48
SGE 86.92 23.01 5.03 1.40
2HZI FMS 149.30 23.72 4.43 1.53
FMS+SGE 103.28 28.80 5.51 1.50
SGE 62.81 35.80 5.84 1.29
1KVO FMS 39.26 6.16 4.04 1.53
FMS+SGE 51.04 32.23 8.04 1.47
SGE 31.34 4.59 1.53 1.07
1R90 FMS 0.00 2.17 2.45 1.20
FMS+SGE 15.67 5.33 1.63 1.07
SGE 247.06 52.18 8.20 1.37
1E66 FMS 11.28 3.43 1.56 1.19
FMS+SGE 508.10 70.25 8.99 1.43
SGE 4.13 5.00 0.74 0.45
2AA2 FMS 190.19 26.71 3.32 1.17
FMS+SGE 62.02 7.07 0.90 0.64
SGE 0.00 0.00 0.63 0.98
1C8K FMS 0.00 0.00 0.47 0.83
FMS+SGE 0.00 0.00 0.82 1.00

*PDB codes used with accompanying DUD-E librariegiyas + decoys)."FE= AUC.,d AUC andomthus baseline
random selection always yields a FE = 1.00.
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As an additional point, in general, good enrichmsduld depend only on actives being
ranked earlier than decoys without regards to thmeeng "similarity” among groups of
compounds. However, use of the FMS function miglat expected to yield higher early
similarity, compared to the entire set of activesaawhole, provided the composition of active
molecules in a given database does contain sub#gt2D similarity and a larger than average
number of docked compounds yield good 3D overlajh whe reference pharmacophore. To
explore this issue, among rank-ordered active camg®, we computed all possible pairwise
Tanimoto coefficients® using the DOCK fingerprinting method motivated thg MOLPRINT
algorithm*®**’and plotted the data as heatmaps (Figure 2-17).

While additional studies should be pursued, esfigdiaose employing more than one
reference per system as was done in the curredy,siigure 2-17 reveals that in a number of
cases, active molecules do in fact appear to hayeeh similarity earlier in rank-ordered list
when using FMS vs. SGE scoring (Figure 2-17 retbyel/s. blue, top vs. bottom rows). Rank-
ordering with FMS also shows a tendency to clusterilar molecules together. Particularly
interesting examples include 1SJO, 1UYG, and 1Ld&Snhich SGE shows poor (random in 2

cases) enrichment compared to FMS as gauged shépe of the ROC curves in Figure 2-16.
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Figure 2-17 Pairwise Tanimoto heatmap for 15 DUD-E systemiaguEMS (top) and SGE (bottom)
protocol. The color scheme in the heatmap repregbet magnitude of Tanimoto similarity and the x/y
axis represents the rank-ordered list (FMS or S@Hkihique active molecules for each system.

2.4.5 Case Studies Targeting EGFR, IGF-1R, and HIfzt1.

To further gauge the utility of using FMS methoad®, rescored virtual screening results
for three systems being targeted in our laboratepjdermal growth factor (EGFRY*2insulin-
like growth factor 1 receptor (IGF-1R), and humammunodeficiency virus glycoprotein 41

(HIVgp41)'?**® and visually examined the number of pharmacopmeaéches for top-ranked
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molecules under different conditions (Figure 2-18)e FMS references employed for EGFR
(erlotinib) and IGF-1R (isoquinolinedione analogere based on known small molecule
inhibitors, while the HIVgp41l reference was basedfaur key amino aid sidechains (WWDI)
from a known peptide inhibitor. The receptors asdompanying references were derived from
crystallographic structures (PDB codes 1M17, 2ZM®d 1AIK, respectively), and the
molecules docked to each target were taken fronptidically available ZIN& collection of
purchasable organic compounds. For each screerophl100,000 ranked compounds obtained
with the standard docking protocol (grid score withX protocol) were retained and then
rescored and re-ranked using DOCK Cartesian en(&G¥£, which is comparable to SGE but in

Cartesian space), FMS, and FMS+DCE scoring prasocol
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Figure 2-18 References (orange sticks, gray surface) useestmre virtual screening results targeting
(A) EGFR, (B) IGF-1R, (C) HIVgp41, and (D) HIVgpAtith Asp sidechain weighted 5 times. Matched
pharmacophore features include: PHO in cyan; HB&téx and vector) in red; HBD vector in blue,
hydrogen vertex in grey; ARO (vertex and vector)oirange; POS in magenta; NEG in green (see
Theoretical Methods for definitions).

As shown in Figure 2-18, the number of pharmacoghonatched for the top 25 ranked
compounds is relatively small using DCE. In sheoptrast, use of FMS or FMS+DCE show,
for example, many more matched HBD (blue arrow8AHred arrows), ARO (orange arrows),

and PHO (cyan spheres) features. It is import@miote that the plots in Figure 2-18 show how
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many "matched" pharmacophores were obtairmethtive to the reference, but candidate
compounds can contain "unmatched features" thandxbeyond the volume defined by the
reference compound; the functional form of eq 2eksinot necessarily penalize unmatched
featuregelatively to the candidate. This behavior could be changed, for examplanbluding a
simply penalty term based on the number of unmatareups in the candidate however this
was not explored in great detail. Other functiofams besides eq 2-1 could also be
investigated. In any event, the number of matcedi unmatched features, including types, for
each docked pose, is printed to the DOCK outpuichvican be useful to determine whether
particular characteristics have been satisfied.

As a specific example, an interesting result frown present analysis is a lack of matched
pharmacophore features to the Asp carboxylate gmupe HIVgp4l reference (Figure 2-18
row C). An examination of ranked poses higher hg EMS and FMS+DCE lists did indeed
reveal compounds with overlap to the referencemailate but they were not ranked as well as
compounds with multiple matches involving two Trole rings and a hydrophobic lle (Figure
2-18 row C). Given the biological importance of thsp group in this system, an effective small
molecule mimic would reasonably be expected to aion& negatively charged or hydrogen
bonding group at this positidA’*** A straightforward way to enforce this requiremeves
devised by using a modified HIVgp4l reference thiabply included 5 copies of the Asp
carboxylate which had the effect of weighting tt@ature more heavily as shown in Figure 2-18
row D. For this particular test, weighting the Aspre highly had the desired effect but at the
expense of losing hydrophobic matches to lle (Fgeil8 FMS and FMS+DCE, row C vs D).
As a general point, this example demonstrates #se evith which specific pharmacophore

features can be emphasized over others using thentlDOCK infrastructure.
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Finally, in terms of additional ligand propertieBigure 2-19 plots results from the
HIVgp41l screen for different groups of top-rankedl@cules (N=500) each obtained by one of
the ranking protocols. Consistent with previousdsts from our laboratory, use of DCE (or
SGE) shows a bias towards larger molecules. Itrast) compounds ranked by FMS score are
smaller in size as demonstrated by ligands withelomolecular weights (Figure 2-19d) and
fewer numbers of rotatable bonds (Figure 2-19e)s afticipated, use of FMS+DCE yields
molecular weights and numbers of rotatable bondghty in-between DCE and FMS. For
scoring, use of DCE results in more favorable D@e&rgies (Figure 2-19a blue vs. red or green),
FMS results in more favorable FMS scores (Figu@®B-red vs. blue or green), and FMS+DCE
results in more favorable FMS+DCE scores (Figul®@-green vs. blue or red). And, rescoring
molecules obtained with one function with anothanction leads to the expected results. For
example, DCE score distributions for top ranked FRASE molecules are in between that of
DCE and FMS (Figure 2-19a green), FMS score digiohs for top ranked FMS+DCE
molecules are in between that of FMS and DCE (leig2z#19b green), and FMS+DCE score
distributions for top ranked FMS molecules are @tmeen that of FMS+DCE and DCE (Figure
2-19c red). Importantly, use of the combined FM&HDfunction to rescore virtual screening
results yield both favorable FMS scores and DOC#&rgies. This suggests use of a reference to
rescore screening results could also be a viable twvadentify compounds that make known

interaction patterns, with favorable interactioemges, while reducing molecular weight bias.
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Figure 2-19 Histograms of rescoring results for the top 50flenules selected from virtual screening
targeting HIVgp41.
2.5 Conclusion

In conclusion, the primary goal of this study waslevelop, implement, and thoroughly
test a pharmacophore-based scoring function fordtieking program DOCK. The resulting
method, termed pharmacophore matching similaritfQF score, was validated using
experiments that help gauge accuracy relative éostandard DOCK single energy grid (SGE)
protocol, and the combination score FMS+SGE. Tlgeelps of validation experiments were
performed: (i) pose reproduction (Figures 3.7-14Qhl& 2-4), (ii) crossdocking (Figures 3.12-15),
and (iii) enrichment (Figures 3.16, Table 2-5).pbrtantly, in terms of pose reproduction, use of
FMS (93.5%) or FMS+SGE (98.3%) functions yieldeghgdicantly higher success rates than the

standard SGE (72.5%) method when evaluated usiAg &gstems in the SB2012 testset. The
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nearly perfect success rate obtained with the coethiFMS+SGE function, which biases
sampling to match a reference while simultaneoumliuding energetic constraints imposed by a
binding site, is notable and strongly suggestsntie¢hod will have applicability for structure-
based drug design provided a "suitable" refereacebe identified. Tests using FMS alone for
pose reproduction showed relatively few ligand gosdling into false positive (FP) and false
negative (FN) regions defined by quadrant partitismg specific RMSD and FMS score cutoff
criteria (Figure 2-9). Interestingly, visual examaiion of the worst FP cases (Figure 2-10)
revealed, in most instances, that the candidaterafiedences poses were in fact well overlaid
and that only one part of molecule was not wellanatl. Unlike the standard DOCK energy
function, the geometry-based FMS scores show radéd®igorrelation with RMSD.

For crossdocking, while use of FMS scoring alonenskd significant improvement with
regards to systems on the diagonal (cognate prbg@ind pairs), the overall matrix success rate
in 4 out of 6 cases was significantly lower thanESGExamination of the underlying reference
structures showed that FMS docking success is Yighldpendent on how well the
pharmacophore reference overlays with the RMSDreafe (Figure 2-12~2-15). Thus, while
use of FMS scoring alone to drive sampling of arigj using a reference without possibilities for
good overlap yields poor results, such behavioresgkhysical sense. More importantly, the
results dramatically emphasize that the FMS fumctiorks best when the goal is identification
of molecules that resemble the reference, as wa®riiginal intent. As expected, use of the
combined FMS+SGE function provides more of a badaaed yields the highest crossdocking
matrix success rates (Figure 2-12).

In terms of enrichment, receiver operator char&tter(ROC), area under the curve

(AUC), and fold enrichment (FE) analyses, in gehesaowed that FMS and FMS+SGE
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functions yield better performance than SGE alar&l (random selection) for both early and
total enrichment (Figure 2-16 and Table 2-5) whealwated over 15 systems taken from the
DUD-E database. For several systems FMS+SGE enechappears roughly in between that
obtained using FMS or SGE alone (Figure 2-16). drigntly, FE values computed very early in
rank-ordered lists (0.1% and 1%) showed using FRBRMS+SGE yielded 10-13 out of 15 FE
values enhanced relative to the standard protaG@ @able 2-5 column A, B) despite the fact
that only a "single" reference (cognate ligand) wised to guide sampling of compounds.
Future studies should evaluate enrichment outcarsieg multiple FMS references.

In terms of virtual screening, rescoring resultsaoted from standard docking to three
target of pharmaceutical interest (EGFR, IGF-1RJ &l\Vgp41l) showed that the FMS and
FMS+DCE (equivalent to FMS+SGE) methods yielded enmympounds with greater numbers
of pharmacophore matches when the top 25 compoftmds each method were examined
(Figure 2-18). The example also demonstrated hdi& Ecoring could utilize small organic
molecules or non-contiguous protein sidechains eferences. For gp4l in particular,
examination of top poses revealed that none ofcthapounds matched an important Asp
sidechain in the initial pharmacophore model. W@e modification of the reference to include
multiple copies of the Asp weighted this functiatyamore highly, and when rescored, yielded
top-ranked compounds with the desired interactitmportantly, this result further establishes
the importance of the FMS "reference” in additiordemonstrating how pharmacophores could
be customized.

Finally, the current results suggest several dwast for future research including
exploring other functional forms of the main FMSuation (eq 2-1), testing FMS score in

combination with other scoring functions (i.e. fmnt similar scoring), development of a
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receptor-baseéd’ as opposed to the current ligand-based methodingmiémentation of routines
to address multiple pharmacophore references simediusly?® Ongoing work involves
incorporation of FMS scoring into de novo design version of DOCK, currently under
development in our laboratory, to allow pharmacapkguidedde novo growth of new ligands

from scratch having similar binding profiles asrewn reference.
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Chapter 3. FMS-guided Virtual Screen to HIVg41

This Chapter provides additional analyses on apgtin case studies employing

pharmacophore-based scoring in database enrictandntirtual screening targeting HIVgp41.

3.1 Introduction

The ultimate goal of structure-based drug desida @btain potent ligands with desirable
interactions against a given target. In this Clgpive present detailed visual inspection of
enrichment studies, which is an important indicatbthe expected outcomes for the computer-
aided drug design approach virtual screening, gpudication studies of FMS-guided docking.
Rescoring virtual screenings results with differ&@®CK scoring functions were performed
targeting HIVgp41, to both the well-known hydrophobinding pocket as well as a new NHR
inner pocket recently identified by Alleal.**

As introduced in Chapter 1, the viral protein HIMdpis an attractive anti-HIV drug
target. To date, the only FDA approved HIV fusiohibitor, T20, is a peptide-based drug.
However, small molecule drugs targeting HIVgp41l afegreat interest. In addition to the
known conserved hydrophobic pocket on the surfdcéh® NHR trimer where the known
peptide inhibitor C34 binds (Figure 2-18C,D, Fig@da), our lab has recently identified an
inner pocket found at the internal interface of theee NHR helice® Virtual screening to the
inner pocket and experimental efforts to validdie mechanism of NHR trimer formation and
confirm the target eligibility of this pocket aregning in collaboration with researchers Dr.

Amy Jacobs (SUNY Buffalo) and Dr. Miriam Gochin (Mersity of California, San Francisco).
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Validation tests and application tests for smalllenole inhibitor design can help to
provide additional insight into the FMS scoring fmnl and guide protocol refinement to aid
future works. By comparing the sampling sizes hitgroperties in virtual screening, we can
evaluate the effects of using different scoringctions such as single grid energy (SGE),
pharmacophore matching similarity (FMS) and the loo@tion FMS+SGE. Our hypothesis is
that FMS and FMS+SGE procedure can serve as rawmesing and sampling protocols for

alternative virtual screening compound selectioic@mes.

3.2 Methods and Computational Details

Structured-based drug design techniques and protocols. Previously in Chapter 2,
enrichment studies were performed on 15 DUD-E systeising three different docking
protocols (SGE, FMS and FMS+SGE). And as was disdi, FMS and FMS+SGE can
significantly enhance enrichment rates. In thispthr, we provide more in-depth visual

inspection of docked poses for top scored moledunlessubset of the enrichment systems.
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Figure 3-1. Flow chart represents the standard Rizzo lab \irsgeeening protocol. Colored boxes
represents the approximate size of the compourstgdied in each step of virtual screening.

Figure 3-1 illustrates the general procedure fotual screening in this study. In the
Rizzo lab, virtual screening is performed via tlodloiving five steps: 1) prepare the target
protein for docking and download a compound datli@sscreening; 2) perform individual on-
the-fly docking for all molecules in the databaseng the DOCK single grid energy (SGE) score
followed by restrained minimization using DOCK Caiin energy (DCE) score to eliminate
molecules with unfavorable affinity to the targeY;cluster top DCE scored molecules according
to molecular properties such as molecular weigbt,fidgerprint etc.; 4) rank-order clustered
heads by different DOCK scoring functions; 5) sekep hits from each rank-ordered list by
visual inspection, and purchase samples for exmgeriah testing. Typically, the initial set for
screening contains 0.5 to 1.5 million compoundgp(st). The top 100,000 DCE scored
molecules will be evaluated in step 2 through gtedinally, about 1000 top scored molecules

using different metric will be inspected in stefFigure 3-1, right).
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Using the virtual screening protocol in Figure 8t has been previously shown by our
group to yield promising hits for the known HIVgpH#gdrophobic pockét (Chapter 2), Alleret
al recently performed a screen to a newly identifreger pocket on the gp41 NHR region using
an IQLT peptide derived from one N helix as therpracophore referencé. In this Chapter,
we rescore these virtual screening results to gp#l pocket using FMS-based methods. Figure

3-2b-c shows the two targets structurally.

targeting the hydrophobic pocket

host targeting the inner pocket virus

Figure 3-2. HIVgp41l inner-pocket for FMS-guided virtual scremmi (a) Mechanism of blocking N-
helical trimer association via targeting inner petcknd blocking formation of the six helical bundle
(6HB) via targeting the hydrophobic pocket. Figuadapted from work by Alleret al.*?® (b)
Visualization of the hydrophobic pocket (gray ribb@nd pharmacophore reference demovo design
(cyan line representation) and virtual screeningrige stick representation). (c) Visualizationttod
inner pocket (gray ribbon) and the pharmacophdexeace (orange stick representation).
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3.3 Results and Discussion
3.3.1 Enrichment Study Analyses on Four Representae Systems

The top 50 molecules picked by the three DOCK sgpifunctions SGE, FMS and
FMS+SGE from four DUD-E systems 3CCW, 2AA2, 1E668K contain different numbers of
actives and decoys, representing different stafesry enrichment rate. The enrichment data
and molecular visualization of the top 50 hits slhewn in Figure 3-3. Note that molecules in
DUD-E may contain multiple compounds with the samelecular ID, based on different
protonation states or tautomer, but only the bestesl candidate compound is retained for rank
ordering and “hit” selection. Overall, the bindipgses of the top 50 molecules (carbon atoms in
grey in Figure 3-3) picked by FMS score overlay entightly to the reference molecules shown
in orange. In contrast, molecular clusters formgdthe top 50 molecules picked by SGE
protocol tend to occupy additional volumes thatraefilled with the crystal pose.

For systems 3CCW and 2AA2, FMS score has the besialb and early enrichment
performance in all stages as reported previousi@hapter 2 (Figure 2-16 and Table 2-5). For
system 3CCW, both FMS and FMS+SGE yields very psorgiresults with 100% true actives
for the top 50 molecules when only ~50% of the $§pE molecules are true actives. And, the
top FMS and FMS+SGE hits all have almost perfedriap in terms of binding poses to the
reference molecule (row 3CCW middle and right pamdfigure 3-3). In the system 2AA2, top
molecules selected by SGE and FMS+SGE both favasta pocket adjacent to where the
reference molecule binds, as shown by the somecuialecluster to the top left of the crystal
ligand in Figure 3-3 row 2AA2. However, the top BMnolecules generate poses with ring
structures tightly clustered around the centehefreference pose (the gray clouds in the center

for row 2AA2 middle panel in Figure 3-3) with fewc@upancy to that top left region filled by
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top SGE and FMS+SGE molecules. The total molecutéwme with high occupancy by top
molecules for FMS+SGE protocol is in between tlwat $GE and FMS protocol. For 1E66,
although FMS protocol has the worst early enrichim(ér 0.1%, 1% and 10% of database,
Table 2-5) and has the least number of activebartdp 50 molecules, the top scored poses still
yields the best overlap visually with the referepose at the matched region (Figure 3-3, row
1E66, middle panel) with unmatched segments sedltar all directions from the reference.
Top SGE and FMS+SGE molecules cluster into a mtdeamolume that only intersects with the
reference pose in a small percentage (Figure 88, XE66, left and right panel) when the
unmatched segments tightly overlapped. The ontyesy where all three protocols fail to do
better than random selection in terms of enrichmatet is 1C8K. The top 50 molecules picked
by SGE, FMS and FMS+SGE protocols are all decogtead of actives. Although the early
enrichment rates are all poor, poses generated kt§ protocol and FMS+SGE protocol are
still reasonably well overlapped with the referermese, while only 2 of the top 50 SGE
molecules are docked to the same pocket as theenef= molecule.

Overall, the in-depth conformational inspectiontbé enrichment study results again
validates the reliability of FMS and FMS+SGE scgrprotocol to enrich for true binders while
competing with decoy compounds with similar physib@mical properties. These results
further demonstrate the robustness of our pharntexegbased scoring protocol and the utility

to aid virtual screening.
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Figure 3-3. Early enrichment represented by the predicted binglioses of top molecules selected by
SGE, FMS and FMS+SGE. Reference ligand shown ingarastick model; molecular volume of the
reference ligand shown in gray surface model; tBpntlecules in DOCK predicted conformations
shown in gray line model. PDB codes for the fowstesns are 3SCCW, 2AA2, 1E66 and 1C8K.
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3.3.2 Rescoring Virtual Screening to HIVgp41
H1Vgp4l hydrophobic pocket. As described in Chapter 2, ~0.5 million compounds

al’>'1° were rescored

previously screened to the HIVgp4l hydrophobic podky Holdenet
using SGE, FMS and FMS+SGE scoring functions. Hersualizations of the top 100
molecules from these rescoring tests along witlr theatched pharmacophore models to the
reference ligand pose in the pocket are showngarEi3-4. In general, the top molecule poses
generated with FMS (carbon atoms colored in pinle eonsistently more tightly clustered
around the reference, which in this case is fouM) isolated amino acid side chains (Figure
3-4, top row). Visualization of the actual matchgthrmacophore points yield similar results
with FMS vyielding more matches compared to SGEUE® -4, bottom row, middle panel vs.
left panel). The top SGE molecules (carbon atoahsred in cyan) fill not only the part of the
binding site that has been occupied by the referdoentral pocket) but also several adjacent
pockets (Figure 3-4, top left panel). Visuallyettop SGE molecules are also larger than the
other two groups of molecules. The top 100 mokespicked by FMS+SGE are more medium-
sized compared to the top SGE or top FMS scoreecntds with fewer occupancy outside of

the central pocket and reasonably well matchedrpheophore models to the reference. (Figure

3-4, bottom row)
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Top 100 SGE Top 100 FMS Top 100 FMS+SGE

Figure 3-4. Representative results from FMS-guided virtual echeg targeting the HIVgp4l
hydrophobic pocket (PDB ID: 1AIK). The Pharmacophoeference (orange) is the WWDI key residue
side chains from C34. Molecules shown in the tm; Matched pharmacophore models in the bottom
row.

HI1Vgp4l inner pocket. To gauge virtual screening rescoring outcomes fdiff@rent
target system, SGE, FMS and FMS+SGE methods weze tasrescore results generated by
Allen et al** from docking 1 million ligands to the HIVgp41 inmgocket introduced in Figure 3-
3. Visualizations of the top 100 molecules witleithmatched pharmacophore models to the
reference poses for the HIVgp41 inner pocket aosvehin Figure 3-5. Here, this binding pocket
occupied by the reference peptide (IQLT) contawe hydrophobic residues and two polar
residues with hydrogen bond acceptors and hydrbgex donors. In contrast to the previous

example, no ring-containing residues were usedhisr reference. Visually, top hits from all

three methods occupy the full span of the bindiagkpt. In addition to overlaps with reference
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residues, top molecules picked by FMS and FMS+S@&Ee imore occupancy on the left corner
of the binding site as shown by the hydrophobicrpia@ophore point clusters close to the lle
group (Figure 3-5, bottom middle and bottom rightCompared to re-screening to the

hydrophobic pocket (Figure 3-4), the results heedess dramatic.

Top 100 SGE Top 100 FMS Top 100 FMS+SGE

Figure 3-5. Representative results from FMS-guided virtual echeg targeting the HIVgp4l inner
pocket. The pharmacophore reference (orangenipised of the IQLT key residues from one N helical
peptide. Molecules shown in the top row; Matchedrmacophore models in the bottom row.

To further gauge the differences in top-scored $@iected by FMS and energy scores,
molecular properties of the top 500 molecules pickg DCE (equivalent to SGE), FMS, and
FMS+DCE targeting the gp4l inner pocket are showrfFigure 3-6. Consistent with the
analyses in Chapter 2 (Figure 2-19), use of DCHesgmelded most favorable DCE results

(Figure 3-6a, blue vs. red and green curves), iSeMS score yielded best pharmacophore
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overlap (Figure 3-6b, red vs. blue and green ciyreesl use of FMS+DCE vyielded overall
lowest FMS+DCE scores which is as expected (Figu8e, green vs. blue and red curves). The
best FMS scores for this inner pocket screen arenar 5.0 (Figure 3-6b, red curve), compared
to 4.2 (Figure 2-19, red curve) for the hydrophgiacket. This indicates the less overlap in this
pocket may be related to the fact that the referecmmpound does not contain rings. In
addition, FMS again showed the least amount of daaihe size of the molecules (Figure 3-6d-e,
red vs. blue and green curves). Compared to tMgp#i1l hydrophobic pocket, top hits in the
inner pocket are generally more flexible as the Iemnof rotatable bonds peaks at around 10 in
Figure 3-6e while hits in the hydrophobic pocket arerage have around 8 rotatable bonds
(Figure 2-19e). The molecular weights of hits foe two pockets, however, both are centered
around 500 g/mol, which agrees well with known ‘gHike” properties’> This observation is
likely to correspond to the binding profiles of ttveo binding pockets. For instance, the native
peptide inhibitor for the inner pocket consistsaafino acids that are relatively smaller (IQLT),
and the native substrate for the hydrophobic po¢ké¥VDI) consists of indole-containing

residues that are much larger in size.
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Figure 3-6. Histogram of (a) DCE score, (b) FMS score, (c) FISE score, (d) molecular weight, and
(e) number of rotatable bonds for the top 500 stonelecules scored by DCE (blue), FMS (red), and
FMS+DCE (green) from a virtual screen targetingtitiégp41 inner pocket?

3.4 Conclusion

In summary, in this Chapter we performed enrichns#nictural results analyses as well
as virtual screening rescoring tests targeting Ht€gp41l hydrophobic and inner pockets.
Judged by the ability of FMS to enrich for knowntiaes, this method is likely to be an
important tool to aid virtual screening.

It is important to emphasize a new DOCK descripgoore that allows scoring of
molecules with different DOCK scoring functions thie same time was employed in this
Chapter. Customized weight can be assigned terdiif components in the descriptor score.
This is particularly useful in driving the samplingth a hybrid score in future screening.

However, complexities can also arise when optimaights on the individual score component
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for the combinations are not employed. Thus, iteisommended that the users also perform

their own validation tests when deviating from ttadues used here.
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Chapter 4. FMS-guidedde novo Design to HIVg41l

This Chapter provides analyses on preliminary appbn case studies employing

pharmacophore-based scoring demovo design.

4.1 Introduction

In addition to standard ligand docking, which religrimarily on robust sampling and
scoring routines to search conformational spaceal@mnative technique used computer-aided
approaches for ligand discovery is termd=inovo design as discussed below. Tdeenovo
design of a novel molecule from scratch requires psinciple tasks: (1) obtaining molecular
“building blocks”, and (2) assembling the “buildibgpcks” into physically reasonable molecules
with desirable pharmacological properties in a tjrmeanner:** Compared to virtual screening,
de novo design does na priori limit the search space to a chosen compound dsgalédich
makes it a useful alternative tool to search owvenyJarge chemical sub-spaces which are
estimated to contain approximately?4(500 Da) molecule¥’ In recent years, marge novo
design drug design programs, such as LEGERDeapFrog,*?’ LEA3D,**® BOMB,'***and
LigBuilder,****3? have been developé® Ongoing development in the Rizzo lab lead by
postdoctoral fellow Dr. Wiliam J. Alléfi* aims to implement a robuste novo design
algorithms into the docking program DOCK to leveragcent advancements in on-the-fly
sampling and new scoring function®e novo DOCK version 2015-01-18* (which included the
FMS scoring function) has been used in this Chaptgerform FMS-guidede novo design for

both method validation and case studies targetiMyp# 1.

91



Pruning and Filtering

Fingerprint, Volume, Mol. Property

Targeted Growth
Footprint, Pharm., Energy

Drug Leads

ngﬁi\%f) Qngm
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Figure 4-1 lllustration ofde novo design protocols: (a) Horizontal pruning and gdideowth inde novo
design. Figure generated by William J. Alféh. (b) de novo growth of molecules by adding new
segments from a user-defined fragment library adtef pre-defined fragments at all attachment goint
during the anchor-and-grow sampling processes. @émbighlighted by the red box and the growing
molecule at each layer shown in the grey boxes.

The de novo design strategy implemented into DOCK constructgeh molecules from
scratch using a modified version of the anchor-grmv algorithm. The procedure requires
“building blocks” (.e. fragments), which are obtained from common mokatidegments
generated from a set of existing and purchasahlg-like molecules. The frequency of each
fragment is saved for later reference. Also, th@maenvironments on both sides of the
“breaking point”, which corresponds to a rotatabtend identified by DOCK, are documented
and saved as an “allowable bond library”. In tesesmbly step ofle novo growth, only bonds
contained in the “allowable bond library” can beni@d. Importantly, this restriction helps to
enforce physically reasonable molecules and inesedse chemical feasibility of final hits

generated by the algorithm. Similar to the stadd2®CK anchor-and-grow algorithrde novo
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growth employs an “inside-to-outside” strategy. arBhg from the placement of an anchor
(highlighted by the red box in Figure 4-1b), fockattachment point on an anchor (layer 0), a
series of fragments from the fragment library vii# evaluated. The compatible fragments
satisfying the conditions defined in the “allowalblend library” after attachment will be added
to the molecule and the new structure will be sawetil the maximum number of constructs is
achieved at any attachment point. After addingfitst layer of fragments, all new constructs
are evaluated together. If there are no attachmeitts (tagged by dummy atoms) in the
construct, then the complete molecule is savethatrholecule for output. Otherwise, it will be
clustered and filtered (horizontal pruning, Figdrda) by scoring functions and other metrics
that define the molecular properties of the coms$tu The top scored (guided growth, Figure 4-
la) clusterheads will then be used for growing nlegt layer. By design, different DOCK
scoring functions can be used for pruning at edep sf de novo growth, as well as guide
growth to optimize the final molecules for certanolecular properties such as similarity to a
known reference molecule. Importanttg novo design is often considered to rely even more on
accuracy of the scoring method used compared tmabirscreening®® In this study, we
evaluated the robustness of FMS and FMS+SGE ascbreng and sampling protocols fde
novo design. Overall, the preliminary tests yielde@rmpising results, indicating that FMS-
guidedde novo design has the potential to construct small maéeligands with similar binding

profiles to the known references in an extendednite space.

4.2 Methods and Computational Details
Focused library de novo tests. As a first battery of tests to validate the perfance of

new FMS-guidedde novo DOCK protocols, we have rude novo reproduction tests for 50
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SB2012 systems as listed in Table 4-1. For eapfodection test case, we first generated a
highly restricted “focused” fragment library by desposing each crystallographic ligand into
scaffolds (>2 attachment points), linkers (2 attaeht points), and sidechains (1 attachment
point) by breaking the rotatable bonds in each mdée and storing each non-redundant
fragment. The combined set of scaffolds, linkersg sidechains are saved as “anchors”. The
total number of fragments in the anchor file iswhan Table 4-1 (Column 3 and Column 6).
Each segment in the anchor file is oriented inkiimeling site to obtain the initial set of roots
(molecular construct with attachment points) fasvgth. The maximum number of orientations
for the current tests was set to 10000. demovo sampling, a “graph” method was used to select
new fragments. Briefly, a fragment graph thatudels the pair-wise Tanimoto and rank-ordered
lists of similarity among all the input fragmentse grepared in the beginning of the novo
procedure to optimize how fragments are chosenefmh attaching event. The maximum
number of starting points to try in the fragmeragr is set to 10 while the breath and depth of
the graph are set to 5 and 2, respectively. If regldine fragment at a given attachment point
favorably enhances the overall score, then theldtig event is accepted and fragments that
similar to the current fragment will be chosen émgrate more constructs at the same attachment
point. Otherwise, this fragment is kept based oaceeptance probability calculated using
equation P=="*5*T_ Here AE represents the difference in energy before atet afiding the
fragment; T is the annealing temperature initiadgt to 100 and gradually decreases in the
growth procedure. As a result, an unfavorablenfragt is more likely to be kept earlier on in the
growth step and less and less likely to be kegrlah. After adding fragments to generate a
maximum number of 50 next layer partially grown swlles for each root construct, a

molecular weight restraint of 1000 and a maximurmmber of 15 rotatable bonds will be used to
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filter newly built constructs. Then the subsetnefw layer molecules is pruned by Tanimoto
(cutoff set to 1.0) and the Hungarian RMSD hewrt&ti(unmatched number cutoff of 0 and
matched region RMSD cutoff of 2.0 A). Next layenstructs that have no attachment points at
this step will be written to file, while a maximunumber of 50 (maximum root size) of the
remaining partially-built molecules are returneddot for the next iteration of growth. In this
study, the maximum number of growth layers is set As with standard flexible ligand
docking, internal energy is used during ligand giote avoid internal clashes with a repulsive-

only VDW potential with exponent 12.

95



Table 4-1. List of 50 systems for initiede novo validation from SB201:**

PDB # Fragmeni  PDB # Fragmeni  PDB # Fragmen
1ACM 6 1FH7 4 1020Q 7
1AID 6 1FHD 4 1037 7
1BIR 7 1G9V 8 105G 7
1BJU 6 1H4¢€ 7 1PMN 8
1BN4 8 1HAK 6 1Q95 6
1BR5 5 1HDQ 7 1RDN 5
1C8Vv 6 1IEP 8 1RGK 7
1C9D 5 1JJE 5 1RGL 7
1CPS 6 1JJT 4 1RKG 6
1Cw2 5 1JLA 5 1IRNT 7
1CX9 5 1ILG 8 1ROB 7
1DO0¢ 6 1K3U 6 1RT2 5
1D4F 7 INFU 7 1S11 8
1DY4 7 INFX 6 1T40 7
1E6S 4 INFY 7 1T46 8
1E72 4 102H 7 1TZ8 4
1EJN 7 102] 7

Scoring functions used in tlde novo reproduction tests presented in this Chapter declu
the following: (1) single grid energy (SGE) sconhere 6-9 Lennard-Jones, distance dependent
dielectric ¢=4r) and a grid box with 8.0 A extension from glhsre points and 0.3 A resolution
are used; (2) Pharmacophore matching similarity $lrigcore; (3) FMS+SGE score, where the
weight parameters for FMS and SGE are 10 and peotisely. Additional combinations
methods include (4) SGE+Tanimoto, where the wepglitmeters for SGE and Tanimoto are 1
and -50; (5) FMS+Tanimoto, where the weight paramsetor FMS and Tanimoto are 1 and -5;
(6) FMS+SGE+Tanimoto, where the weight parametarsMS, SGE, and Tanimoto are 10, 1

and -100.
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Specifically for the FMS-guidede novo tests, we merged the FMS scoring protocol with
the development version dé novo DOCK (version 2015-01-18)* The intention is to release
the FMS andde novo functionality as DOCK®6.8. It should also be notedt in this study,
scoring functions tested are used to guide vertieahovo growth only (See Figure 4-1a).
Currently, horizontal pruning is performed with thepulsive internal energy, pairwise

Hungarian RMSB' and Tanimoto function among the partially grownlecales at each layer.

Targeting HIVgp41l. Similarly to the virtual screen that used peptidsed references to
guide compound selection targeting the HIVgp41l bptobic pocket and the inner pocket in
Chapter 3, here we performed FMS-guidiechovo design to bias “from-scratch” ligand growth
also guided by peptides. The focused fragmenariés derived from the continuous peptides
with key residues IQLT (inner pocket, Figure 3-2lmd WWDI (hydrophobic pocket, Figure 3-
2c) were retained at the interface. For the hydobph pocket, the peptide used as
pharmacophore reference and for fragment libranegaion is obtained by keeping the residues
from residue Trpll7 (W, gp4l sequencing) to resitle@24 (I, gp4l sequencing) while
mutating intermediate residues to Alanine othenttiee four key amino acids (WWDI). Note
that this reference molecule is slightly differédrdam what was used in the prior the virtual
screening, which contains only the side chains lé four disjoint residues (WWDI).
Construction of the inner pocket reference (IQL®)Ndwed the same protocol. The focused
fragment library generated for the hydrophobic micid AIK-WWDI) includes 1 scaffold, 4
linkers and 5 sidechains. The focused fragmemanjbgenerated for the inner pocket (1AIK-

IQLT) includes 1 scaffold, 4 linkers, and 6 siddalsa
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4.3 Results and Discussions
4.3.1 Focused libraryde novo runs: small molecule reference reproduction.

The focused libraryde novo design tests on the 50 SB2012 systems can serve as
validation for working protocol employing differestoring metrics including FMS. For each
system, a subset of novel molecules with varioukeoutar fingerprints were generated. These
de novo output molecules were then evaluated using difteEOCK scores as well as their
molecular properties including Tanimoto and Hungarscore to the corresponding crystal
ligand in SB2012. Note that standard Hungarian BM&n be directly derived from the
Hungarian score for molecules with Tanimoto of tbh@he reference molecule because for two
molecules with a Tanimoto of 1.0, the Hungarianreds equal to -5 + Hungarian RMSD value.
Thus, if at least one molecule generated by gileenovo DOCK has a Tanimoto of 1.0 to the
crystal ligand, we identify this system as beingcassfully reproduced in terms of Tanimoto
(Tanimoto reproduction) by the givede novo protocol. In addition, if for at least one of the
reproduced molecules, its binding pose predictedidogiovo DOCK is within 2A (Hungarian
RMSD) to the crystal pose, then we identify thisteyn as being successfully reproduced in
terms of RMSD (RMSD reproduction) by tde novo protocol. The objective in optimizing the
protocols is to tune input parameters and setupmagimize the number of systems that
reproduce both Tanimoto and RMSD values.

Table 4-2 shows the total sampling sizes (columresylting fromde novo design for all
50 systems as well as the number of systems thatamimoto reproduced (column cl) tg
novo DOCK wusing six scoring protocols: SGE, FMS, FMSE5GSGE+Tanimoto,
FMS+Tanimoto, and FMS+SGE+Tanimoto. By relaxing Ta@mimoto cutoff, we find increased

Tanimoto reproduction rate, depending on what foncts used, as shown by the increased
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number of compounds going from column c2 (Tanimaitoff of 0.95), column c¢3 (Tanimoto
cutoff of 0.8), column c4 (Tanimoto cutoff of 0.7 column c5 (Tanimoto cutoff of 0.6). In
most cases, the current protocol can reproduceottignal ligand to a Tanimoto of 1.0,
especially if growth is driven using Tanimoto asamponent of the scoring function (Table 4-2
column c1, row SGE+Tanimoto: 45, FMS+Tanimoto: 4d &MS+SGE+Tanimoto: 45). And,
if the Tanimoto cutoff is loosened to 0.6, mosttegss can be rebuilt for all six protocols
(reproduction between 47 and 50 systems, Table ebymn c5). In all cases, FMS-alone
growth yielded the highest reproduction rate cormpao SGE and FMS+SGE. For example, in
column cl in Table 4-2, the FMS protocol reprodudBdsystems while SGE reproduced 36 and
FMS+SGE reproduced 37. When boosted by Tanimotd&s+RMnimoto protocol reproduced 47
systems while SGE+Tanimoto and FMS+SGE+Tanimotd beproduced 45. Future studies
however should examine if sample size is leadingdifferences in the Tanimoto being
reproduced, through using consistently sized enk=mf.e. top scoring compounds only).
Additionally, the focused (small) libraries are ttcial” in the sense that to be of practical use,
de novo design protocols must also behave well wisémg much larger generic libraries. These
initial tests are meant only to be a first stethim overall validation procedure.

Note that for one particular system 1Alde novo DOCK using SGE, FMS+SGE,
SGE+Tanimoto and FMS+SGE+Tanimoto protocols athieated growth before layer 7 with O
output molecules. Interestingly, FMS and FMS+Tastonwere able to generated 59 molecules
(up to layer 7) and 3 molecules (up to layer 4)%AiD. Visual inspection showed that 1AID is
relatively large molecule with few rotatable bor{dstN=6, molecular weight = 453.1 g/mol).
The focused fragment library for 1AID includes 4gde ring-containing fragments (molecular

weight 86.2-112.6 g/mol) and two small fragmenttaoring single heavy atoms (molecular
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weight 15.0-17.0 g/mol). It is likely that partialgrown molecules for system 1AID already
exceeded the maximum molecular weight limit durthg de novo growth before layer 7,
especially when driven by energetic scoring fumio Thus only FMS and FMS+Tanimoto
were able to completde novo growth and reproduce the crystal ligand in terrh3animoto.
This suggests that for some applications use oFM& protocol without an accompany energy
term (i.e. SGE) can be useful.

Table 4-3 shows the number of RMSD reproductionegasut of the Tanimoto
reproduced systems with Tanimoto cutoff of 1.0 &MdSD cutoff of 2A (column d1), 2.5A
(column d2) and 3A (column d3). One obvious obatown is the significant decrease in the
number of RMSD reproduced cases for all six prdtocd his indicates that sufficient sampling
in thede novo protocol to re-generate the 3D binding geometrggsured by RMSD) is a more
challenging problem than reproducing the 2D fingetp(measured by Tanimoto) alone.
However, by relaxing the RMSD cutoff to 3A (colund8), over 50% of the Tanimoto
reproduced cases (Tanimoto =1.0) and nearly 50%heftotal test systems (N=50) can be

RMSD reproduced.
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Table 4-2.Reproduction rate afe novo design by Tanimoto cutoff in 5y/stems tested in SB2012.

cl. # Tanimoto c2.# Tanimoto c¢3.# Tanimoto c4. # Tanimoto c¢5. # Tanimoto

a. DOCK scoring protocol  b. sample size  reproduction reproduction reproduction reproduction reproduction
(2.0) (0.95) (0.8) (0.7) (0.6)
SGE 2500 36 36 45 45 47
FMS 4595 45 45 48 49 50
FMS+SGE 2752 37 38 43 44 48
SGE+Tanimoto 3119 45 45 47 47 49
FMS+Tanimoto 5430 47 48 48 48 49
FMS+SGE+Tanimoto 3642 45 46 46 47 48

de novo Tanimoto reproduction defined as creating moleculith Tanimoto=1.0 to reference molecule.

Table 4-3.Reproduction rate afe novo design by Hungarian RMSD cutoff in 8@stems tested in SB2012.

a. DOCK scoring protocol  b. sample size cL. # Tapimoto di.# R.MSD dz. # .RMSD ds. # R.MSD
reproduction (1.0)  reproduction (2 A)  reproduction (2.5A)  reproduction (3 A)
SGE 2500 36 14 19 23
FMS 4595 45 10 15 23
FMS+SGE 2752 37 17 22 23
SGE+Tanimoto 3119 45 15 19 22
FMS+Tanimoto 5430 a7 13 21 24
FMS+SGE+Tanimoto 3642 45 26 29 33

All experiments in this table employ a Tanimotoaffibf 1.0 and the listed Hungarian RMSD cutoff.
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4.3.2 Focused libraryde novo runs: DOCK outcomes and molecular properties

Total ensemble properties. Histograms of SGE, FMS, and FMS+SGE, Tanimto and
Hungarian (RMSD) scores for alk novo output molecules for the 50 SB2012 systems are/isho
Figure 4-2 to examine overall global trends. As¢hrrent FMS protocol does not penalize clashes
between a candidate ligand and the receptor, FMISFAMS+Tanimoto generated molecules yield
mostly energetically unfavorable molecules (Figdr2a, red solid and red dashed lines) when
evaluated in the contact of the recepia SGE score). The FMS+SGE guideelnovo protocol
yielded similar energy profiles to the SGE proto@agure 4-2a, green solid and green dashed lines
vs. blue solid and blue dashed lines). The FMS RM&+Tanimoto protocol yielded the best
pharmacophore overlap with the reference, withRlWkS score peak around FMS=4.2 (Figure 4-2b,
red solid and dashed lines) while SGE and SGE+Tataingielded mostly molecules with little
pharmacophore overlaps (Figure 4-2b, peak at FM8k®& solid and dashed lines). The
FMS+SGE and FMS+SGE+Tanimoto FMS histogram febhetween the SGE guided protocol and

the FMS guided protocol.

102



1000 2000 500

800 1500 400

600 300
1000

400 200

4 b2 500
-z N [
200 [ i S / 100
\.f—‘/ i

c 0 — 0 - 0F
o -100 -50 0 8 -100 0 100 200
"(B' SGE score (kcal/mol) FMS score FMS+SGE score
=
8—1200 . 1500 SGE
o 1000 (e) FMS

800 1000

FMS+SGE

600
= SGE+Tan

e 0 FVS 4 Tan
0 FMS+SGE+Tan

400 500

200

Tanimoto Hungarian score

Figure 4-2 Histogram of (a) SGE, (b) FMS, (c) FMS+SGE, (dhimoto and (e) Hungarian Sore for all six
de novo experiments on all 50 systems. Tanimoto=1.0 staod perfect Tanimoto overlap. Molecular
properties and DOCK scores of ensembles generalitd SGE (blue solid line), FMS (red solid line),
FMS+SGE(green solid line), SGE+Tanimoto (blue ddsliee), FMS+Tanimoto (red dashed line), and
FMS+SGE+Tanimoto (green dashed line)

Interestingly, by adding the Tanimoto term, FMS+SGB&nimoto yielded a notably
enhanced FMS distribution (Figure 4-2b green dadive®) compared to FMS+SGE protocol
(Figure 4-2b green solid line). This result indesathat growth towards favorable Tanimoto space
can in principle promote better pharmacophore ayerlin Figure 4-2c, all protocols showed two
separate peaks, one shifted to the left indicafjogd overall scores; another shifted to the right
indicating bad overall scores. The FMS+SGE guideatocols (green solid and dashed lines)
contains more molecules in the left peak while FMS guided protocols (red solid and dashed
lines) contains mostly molecules in the right pediis is consistent with the energetic clashes of

FMS-only ensembles observed in the SGE histogramhignre 4-2a. For FMS+SGE and SGE
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guided protocols, the right peak (FMS+SGE>100)ljikepresents molecules with dominating bad
FMS scores of 20 (with a score penalty contributtdéb*x20=100 to FMS+SGE score), indicating
no pharmacophore overlaps between the generatestuieland the crystal ligand pose. The left
shifted peaks contain molecules with both good mia@ophore overlap to the reference ligands and
favorable energetic affinity to the target proteinfanimoto histograms (Figure 4-2d) for all six
protocols all peak at around 0.5, while those drivdth Tanimoto (dashed lines) are slightly
shifted towards an improved Tanimoto score. OVetae FMS and FMS+Tanimoto protocols
generated the most ensembles with Tanimoto ofdlt@e reference ligand (Figure 4-2d, peaks of
red lines at Tanimoto=1.0). This explains the higimimoto reproduction rate of the FMS guided
protocol shown in Table 4-2. Finally, Figure 4-@®owed the Hungarian score where a perfect
overlap of two poses of the same molecule woultbygescore of -5. Very few molecules have

perfect Hungarian scores in the total ensembles.

Best-scored molecule properties. Figure 4-3 shows the same results from Table 443 bu
when only the best-score# novo grown molecule is retained instead of the entirgeenble across
the 50 SB2012 test systems. Notably, top-scorel@cutes (Figure 4-3) for all six protocols bear
improved scores compared to the total ensemblemi@&i4-2). For example, a new peak ranging
from 1 to 3 in the FMS histogram (Figure 4-3, bhadid line) of the top scored molecules obtained
using the SGE protocol indicate an increased pdpualaf compounds with good pharmacophore
overlaps. In fact, FMS score histograms for all@iotocols showed significant improvement for
the best-scored molecule sets (Figure 4-3b vs.)4-2Best-scored poses also showed great
improvement in terms of the Hungarian score withrergiverse distributions shifted towards lower

scores (Figure 4-3e vs. 4-2e). Overall the FMS+8GHIMoto ensemble (green dashed line)
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contain the most closely overlapped molecules atdit by the largest peak near the perfect

Hungarian score of -5 in Figure 4-3e. This supptite RMSD reproduction results shown in Table

4-3 that FMS+SGE+Tanimoto consistently yields tlghst RMSD reproduction rates.
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Figure 4-3 Histogram of (a) SGE, (b) FMS, (c) FMS+SGE, (dhimoto and (e) Hungarian Sore for all six

de novo experiments on the best scored molecule for eddtheo50 systems.

Molecular properties and

DOCK scores of ensembles generated with SGE (lilieé kne), FMS (red solid line), FMS+SGE(green

solid line), SGE+Tanimoto (blue dashed line), FM&rimoto (red dashed line), and FMS+SGE+Tanimoto
(green dashed line).

Representative structural analysis. In Figure 4-4, six representativi® novo generated

molecules across five systems (PDB codes 1ACM, 104&BU, 1RNT and 1T46) from the 50
SB2012 test cases using FMS+SGE+Tanimoto protaeadllastrated. Systems 1ACM, 1D4P and
1K3U are RMSD reproduced cases where the beste(mst of Tanimoto and RMSD) grown

molecules (Figure 4-4 a-c) have a Tanimoto of h@ Hungarian RMSD value within 2A relative
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to the crystal ligand. The poses (carbon atsimasvn in magenta) all visually overlap well witleth
crystal ligand (carbon atoms shown in cyan). Sysi®&NT is a Tanimoto reproduced case but not
RMSD reproduced. Here, the molecule shown in legl#dd is identical to the crystal ligand in
term of 2D fingerprint (Tanimoto=1.0). However, thest Hungarian RMSD for the Tanimoto
reproduced molecules is larger than 2 A (RMSD=36#r the molecule shown). Visually, this
pose has reasonable FMS overlap (FMS=2.90) and geothetrical overlap with the reference
except for the sulfate group to the right sideha pocket. In contrast, for system 1T46, although
the obtained Tanimoto value of 0.96 for the posEigure 4-4e is nearly identical to 1.0, it yielded
a somewhat poor RMSD of 2.76 A relative to the @lyligand. Figure 4-4f also shows an example
in which the best Hungarian RMSD (0.88 A) for 1Td&r only the matched part of the molecule
with Tanimoto<1.0) yielded a poor Tanimoto of 0.3Zncouragingly, many molecules generated
with a function combining the standard DOCK scomis FMS achieved energetic fits in the target
pocket and had enhanced overlap to the refereriRarticularly, use of FMS+SGE+Tanimoto
appeared to yield the most well behaved molecuig isethese very focusede novo validation
tests. It thus shows potential as a protocol tades inde novo design although additional tests are

needed.
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Figure 4-4. Preliminary tests usinge novo DOCK to 50 SB2012 targets with FMS-guided grovRhotein
backbone is shown in tan ribbons; crystal referenokecule in cyangle novo DOCK generated molecule in
magenta. PDB IDs, Tanimoto and Hungarian RMSD abfd¢he molecules (a)-(f) are provided.

4.3.3 Focusedle novo tests: HIVgp41 hydrophobic pocket

The focused de novo protocol using SGE, FMS, FMS+SGE, SGE+Tanimoto,
FMS+Tanimoto and FMS+SGE+Tanimoto score functioreyewalso applied to the HIVgp4l
hydrophobic pocket and inner pocket target systama preliminary application test. Here, the
focused fragment libraries were generated fromntitese peptide inhibitors shown in Figure 3-2b
(orange stick representation) and Figure 3-2c (ay@me representation). These peptide inhibitors
were also used as pharmacophore reference for RMfedygrowth. The focused fragment library
generated for the inner pocket (LAIK-IQLT) includes fragments in total; the focused fragment

library generated for the hydrophobic pocket (LANWNDI) includes 10 fragments in total.
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Compared to the virtual screening protocol usethéRizzo lab as described in the study
by Holdenet al’? targeting HIVgp41, the sampling procedure and astatpnal complexity irde
novo design are quite different. Here, it generallyemlabout 2~7 seconds to sample one new
molecule (i.e. generate a fully/partially grown ealle in one growth layer). Total sampling size,
final hit (output fully grown molecules) ensembieesand run time (total time for each compldee
novo experiment and average time for each samplingteeea reported in Table 4-5. Note that for
focusedde novo design targeting the HIVgp41 hydrophobic pock&lKEWWDI), the total time
exceeded the wall clock time, which was set to haQrs. The experiment was terminated at
growth layer 6. Thus the sampling size and run t@reenot shown. Overall, the average run time
for targeting the inner pocket (2~5 seconds) is hmless than that for targeting the hydrophobic
pocket (4~7 seconds). And the sampling size figeting the inner pocket is much larger except
for the case using the FMS+Tanimoto scoring fumcti®©n average, about 200~500 fully grown
molecules were output after approximately 7~75 sdaxcept for FMS-guidede novo design to
the hydrophobic pocket). It is important to ndtattthe sampling sizes and run time variabilityl wil
depend on the properties of the fragments such @scoiar size, number of attachment points,
number of allowable bonds at each attachment pa@nt] environment. To address these
challenges, evolutionary sampling procedures @genetic algorithm) and refined generic fragment
libraries are also being tested in the Rizzo lahdip improve sampling and increase efficiency of

thede novo protocol in DOCK.
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Table 4-4.De novo design results for HIVgp41 hydrophobic and innecket.

se s S8 T e soter
Sampling  LAIK-WWDI 14878 - 14783 10107 17862 9159
size 1AIK-IQLT 34204 89520 31561 39794 11862 13196
Final hit  LAIK-WWDI 237 119 201 238 282 230
size 1AIK-IQLT 229 231 214 323 484 501
Run time 1AIK-WWDI 90696 - 100572 51171 118691 60229
(seconds) 1AIK-IQLT 107154 270788 145859 171379 25513 37302
Run time 1AIK-WWDI 25.19 - 27.94 14.21 32.97 16.73
(hours) 1AIK-IQLT 29.77 75.22 40.52 47.61 7.09 10.36
Avg. time LAIK-WWDI 6.10 - 6.80 5.06 6.64 6.58
(seconds) JAIK-IQLT 3.13 3.02 4.62 4.31 2.15 2.83

1AIK-WWDI: hydrophobic pocket; 1AI-IQLT: inner pocket. Average run time is calculateased ot
sampling size.

Figure 4-5 shows four representative compound®tangthe HIVgp41 hydrophobic pocket
designed by thede novo DOCK protocol guided with FMS+SGE (top row) and
FMS+SGE+Tanimoto (bottom row) scoring functionsll fAur molecules yield favorable binding
energies ranging from -62 kcal/mol to -20 kcal/mehich are comparable to top SGE scores
obtained in a virtual screen to this pocket (paakraund -50 kcal/mol in Figure 2-19a, blue curve).
Encouragingly, several of these representative catde contain indole rings that overlap with the
Trpll1l7 position on the left side of the binding ketc(Figure 4-5) as well as a charged acid group
positioned roughly near the Asp121 residue of #ference. Particularly, the molecule on the top

right also contains a secondary indole ring thatriayps with the Trp120. While the synthetic

feasibility of these molecules is yet to be deteedi their binding poses are quite unique and not

yet observed in the virtual screening results. uAnsual occurrence that needs more investigation
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is the presences of compounds with multiple acougs and large magnitudes of net charges
(compound with net formal charge of -4 in Figur® #ep right and -5 in Figure 4-5 bottom right).
As expected, these two negatively charged molegué#ded much more favorable energy scores
(SGE=-62.33 ~-52.14 kcal/mol) compared to the twatral molecules (Figure 4-5 top left and
bottom left, SGE=-38.41~ -19.58 kcal/mol). Thisansistent with the fact that the crystal receptor
carries a positive net formal charge of +6. Incpce, however, restraints in the total charges

should be assigned in tde novo protocol to yield more drug-like molecules.

e 4 . SGE: -52.14 keal/mol
1 # FMS: 4.87

- Tanimoto: 0.28

col: FMS+SGE

to: 0.37
ycol: FMS+SGE

"~ SGE: -62.33 kcal/mol
FMS: 4.90
- Tanimoto: 0.23

"~ SGE: -38.41 kcal/mol

FMS: 5.26

. Tanimoto: 0.27
Protocol: F

Figure 4-5 Representative results frote novo growth targeting the HIVgp41 hydrophobic pockdthe
pharmacophore reference is the extended peptideiding WWDI key residue side chains (wire
representation, &shown in orange).
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Molecular properties and DOCK scores of all tleenovo generated molecules targeting the
HIVgp41 hydrophobic pocket using all six scoringndtions are shown in Figure 4-6. Molecules
generated using the FMS-alone are in general smallesize (Figure 4-6a-b, red solid lines).
Interestingly, use of FMS+Tanimoto score instead-BfS alone seemed to yield the best FMS
score results as shown in Figure 4-6f red solidgaghed lines. However, as the ensemble size for
eachde novo tests could vary (Table 4-2 and 4-3, column bis ltkely that the enhanced peak for
FMS+Tanimto is partially due to its larger samplisige (5430) compared to FMS alone (4595).
Future studies should enforce a “common” ensembkets facilitate comparisons. In contrast to
virtual screening when sampling of a single moleasl performed with energy score and the six
scoring functions are used for rescoring onlygdeémovo design, the sampling is heavily influenced
by the given scoring function. Thus the enhancenreirMS score for FMS+Tanimoto protocol

demonstrated the synergy of FMS and Tanimoto séomEsnovo sampling.
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Figure 4-6. Histogram of (a) molecular weight, (b) numberatitable bonds, (c) Tanimoto, (d) Hungarian
Score, (e) SGE, () FMS and (g) FMS+SGE flernovo DOCK generated molecules targeting HIVgp41
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Although some aspect of thede novo test results are encouraging (i.e. overlap tolando
and acid groups in the reference), it is import@nemphasis that the focused novo test for
reproducing the peptide reference in these comipotdt experiments were not nearly as
successfully as that for the small molecule tesesaliscussed earlier in the section (Table 42, 4-
and Figure 4-3). Focusing on the Tanimoto histogi&igure 4-6¢) and the Hungarian score
histogram (Figure 4-6d), none of the six protocotaild regenerate the peptide in terms of
Tanimoto (perfect Tanimoto score:1.0) or Hungarisrore (perfect Hungarian score: -5,
corresponding to Tanimoto =1.0 and RMSD = 0 A). e@ii the reasons for this result is the fact
that rebuilding a peptide reference from fragménts far more complicated problem. Not only are

the peptides much larger than the small molecues00 g/mol in molecular weight, <7 rotatable
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bonds) used in the initial test case, but the hktionformation of the peptide taken from the alyst
structure is part of a much larger protein hellkmay also be challenging to reproduce the exact
2D fingerprint and 3D conformation of the peptidighwthe limited number ofle novo growth steps
(up to layer 7). One potential modification to therent protocol would be to use the crystal pose
of the fragments as the initial anchor placemestead of orienting the fragment from scratch
before growth in layer 1. Additional future refment to both the fragment library and sampling
protocols can be explored to improve the reproduactate for peptide reference guidee novo

design.

4.3.4 Focusedle novo tests: HIVgp41l inner pocket

Figure 4-7 shows four representative hits targethe alternative HIVgp41l inner pocket
designed by thele novo protocol guided by FMS+SGE (bottom row) and FMSESGanimoto
(top row) scoring functions. Interestingly, hitorm these preliminary focusetke novo design
experiments occupied only about half of the bindoogket. And, none of the hits contain ring
structures as the crystal ligand used to genenatdragment library itself does not contain rings.
Thus, the small sizes of the hits lead to lesqgtlinding interaction energies between the ligands

and binding site, which range from approximatel® t8 -22 kcal/mol.
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Figure 4-7. Representative results frorde novo growth targeting the HIVgp4l inner pocket.
Pharmacophore reference is the extended peptideiding IQLT key residue side chains (wire
representation, Sshown in orange).

As before, figure 4-7 shows the histograms of mdbacproperties and DOCK scores of all
the de novo generated molecules targeting the HIVgp41 innekpbwith the six different scoring
functions. The molecular sizes of the moleculesigieed in the inner pocket are significantly
smaller compared to that of the hydrophobic pockéthile the molecular weights are as large as
400 g/mol and they peak at approximately 120 g/rewtept for the FMS+Tanimoto and
FMS+SGE+Tanimoto protocols (Figure 4-7a). Notd tha reference peptide for the hydrophobic
pocket contains 36 rotatable bonds (as determigigddbecular modeling program MOE) and has a

molecular weight of 1028.2 g/mol; the referencetioepfor the inner pocket, contains 39 rotatable
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bond (as determined by MOE) and has a moleculagiwesf 856.9 g/mol. Thus, the average
molecular weight of each fragment in the focusedyiment library for the inner pocket is much
smaller. Most hits contain less than 5 rotataldads. This along with the visual inspection in
Figure 4-7 suggests that more layers and more sagnpeeds to be added for the inner pocket with

the focusedde novo protocol to successfully reproduce molecules simih size to the two

reference peptides employed in these preliminatgte
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Figure 4-8 Histogram of (a) molecular weight, (b) numberaftable bonds, (c) Tanimoto, (d) Hungarian
Score, (e) SGE, () FMS and (g) FMS+SGE flernovo DOCK generated molecules targeting HIVgp41
inner pockets. Molecular properties and DOCK ssafensembles generated with SGE (blue solid,line)
FMS (red solid line), FMS+SGE (green solid line§;E5+Tanimoto (blue dashed line), FMS+Tanimoto (red
dashed line), and FMS+SGE+Tanimoto (green dashed li

4.3.5 Future experiment: generic libraryde novo tests.

While de novo DOCK should be capable of re-generating the crygand given a very

focused fragment library derived from the origimablecule itself, the ultimate goal of novo
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design is to yield a diverse ensemble of novel mdes with desirable molecular properties and
binding affinities to the target protein using atgric” fragment library. Table 4-5 shows a series
of generic libraries, pre-computed by Dr. WilliamAllen using a ZINC drug-like compound set
(3_t90.both.mol2, with 205,792 molecules in total) currently beiegpluated for different growth
protocols. Using a frequency (times the fragmerdeen in the original database) cutoff of 1, 10,
50, 100, 250, 500 and 1000, the number of fragmentthese generic libraries can be, with
additional studies, “tuned” so that a reasonaldedslibrary {.e 250~500 fragments) can be used to

re-generate a known compoung.(Tanimoto >0.90) in a timely mannerg1~2 days).

Table 4-5. List of generic fragment libraries

Library Name Frequency # Scaffold # Linker # Sidechain
cutoff
Fraglib_1 1 132¢ 729t 2116¢
Fraglib_2 10 101 673 174¢
Fraglib_3 50 26 215 52C
Fraglib_4 10C 15 14t 30C
Fraglib_5 25C 11 76 148
Fraglib_6 50C 8 40 88
Fraglib_7 100( 4 27 49

Libraries generated by Dr. William J. Allel

4.4 Conclusion

In summary, in this Chapter we performed prelimynde novo design tests targeting the
HIVgp41l hydrophobic and inner pockets. The focudedovo protocol has been validated by
reproduction tests with 50 SB2012 systems. In roases, the small molecule ligands, with a very
small fragment library, can be reproduced in teom¥animoto overlap. And, reasonable structure
overlap to the crystal poses of the ligands caoltained. FMS is shown to be an effective scoring

function not only works well in virtual screeningitbalso now compatible witde novo design.
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The ability to reproduce known poses is essentiatife validation ofle novo design protocols and
can significantly improve the potency and feadipitif de novo designed molecules. Finally, when
used in combination, synergies among FMS, SGE aminioto scores can significantly improve
the properties of the hits generatedi@novo design.

Future studies with FMS-guidef novo design should include: (1) an evolutionary strateg
to speed up thele novo sampling procedure; (2) using optimized genetbcally generation to
improve hit properties; (3) gradually increase weght on the matching residual term for FMS for
eachde novo growth layer so that partially grown moleculeshmhore numbers of matches are

favored compared to molecules with fewer exact hedc
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Chapter 5. Quantitative Characterization of T20 Varants Affinity

and Mutational effects

Chapter 5 reports molecular dynamics simulation &me energy calculation results using
thermodynamic integration and molecular footprigtia study the interactions between HIV fusion

protein gp41 and peptide inhibitor T20.

Abstract

A critical step in the HIV life cycle is viral fusn, involving the binding of three C-helices
in HIVgp41 to three N-helices to form a six-helitaindle'® Derived from the outer gp41 C-helix,
the first FDA approved HIV fusion inhibitor T20 (ewirtide) competes with the native C-helices
for binding to the viral protein N-helicKsand effectively blocks viral replication in climicuse*®
However, resistance to T20 can arise from primanyations in the gp41 N-helices and secondary
mutations in the gp41 C-helices which reduce dffifor T20 while retaining viral infectivity. This
interesting observation underscores the importafcanderstanding the origins of the binding
affinities and mutational effects in the HIVgp410r@omplex system in order to design new fusion
inhibitors that can overcome such drug resistaricehis study, we have successfully predicted the
effect of both favorable and unfavorable mutati@mnpared to experiments using all-atom
molecular simulations and relative free energy waloons employing the thermodynamic
integration (TI) method. In addition, several keteractions between specific residue pairs in T20
with gp41 N-helices has been identified which calphexplain the underlying energetic and

structural effects of primary mutations and secoyndautations for 19 variants of T20 with 3
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different gp41 N-helices analogs. These computaticesults can be used to help guide design of

potential peptide and small molecule HIV fusionibitors with improved binding profiles.

5.1 Introduction

As the world is entering the fourth decade of fightthe HIV/AIDS pandemic, the virus has
been estimated to result in over 36 million deatbsdwide throughout the yeat$:> Due in large
part to the increased clinical use of antiretrdviterapy developed starting in the 1990s and
introduced worldwide since the early 2000s, proditieey can afford it, HIV-infected patients can
expect a reasonable life-span with proper treatfiem key challenge with treatment however is
the development of drug resistant mutations théiice drug potency. In addition, with 2.5 million
new infections observed worldwide in 2041t is urgent for researchers to continue working
towards more effective HIV treatment strategy witiproved resistance profiles to prevent further
spread of the epidemic. Among the various clingtedtegies to block the HIV life cycle, targeting
membrane fusion via compounds that bind to the oglyatein gp4l, is of great
interest’121372120.135.136 Gh41 plays an important role in facilitating th#V fusion process
through bringing the viral and host cell membradese to each other. The end result is that the
two membranes fuse together, resulting in a potiewsy that allows the viral core to enter the host
cell. 1t is believed the early stages of this psxinclude a pre-hairpin intermediate in which the
three inner gp41 N-terminal helices (shown in paifpélices/tubes in Figure 5-1) become inserted
into the target cell membrane while the C-termimelices (shown in red helices/tubes in Figure 5-
1) remain attached to the viral membrane. LaterGhhelices will bend over and bind to the N
helices and form a coiled-coil hairpin known as $hehelical bundle (6HBY*"**® Notably, at this

pre-hairpin stage, the N helical surfaces are eegh@md susceptible to fusion inhibitors that block
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formation of the 6HB and prevent fusibit? The first and for now the only FDA-approved HIV
fusion inhibitor T20 has been designed with thiatsgy.'®**°!° Derived from the outer C-helical
sequence of the native virus, this 36 amino a@didue 127 to residue 162, shown as orange tube
in Figure 5-1b) peptide has shown clinical efficasycontrolling viral load although its use also
results in drug resistance. While it is believiedttT20 binds to N-HR during the prehairpin stage
of HIV fusion, currently, there is no complete TgP41 crystal structure available. However, a
well-validated computational T20-gp41 complex modeVeloped in the Rizzo lab as reported by
McGillick et al,'®is available to help characterize T20 binding jtesf Importantly the model is in

good agreement with an experimental crystal stractubsequently reported by Buzsral.***

HIV Fusion : Prehairpin
Target cell membrane

/ — N helices

T20 target site

helices —>
e

(a) (b)

Figure 5-1. (a) Preharipin stage in HIV fusidh. The three N-helices (show in purple helices) fedna
trimer inserted into target cell membrane while theee C-helices (show in red) are yet to bind) (b
lllustration of positional alignment of T20 (orantydes) to HIV CHR (red tubes).

As a RNA virus, HIV has a tendency to mutate and easily develop drug resistanicé.
For gp41, one important example is the developroéni20-resistant mutations at positions V38A

or N43D (gp4l sequencing) on the gp4l N-termingioe Considering the fact that the T20
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sequence is identical to the native virus, for thetated virus to confine function, a secondary
mutation S138A is also observed on the C-termifgpdl that restores binding to the mutated N-

1'® has

terminal. Thus, T20 can be modified correspondinglinhibit the mutated virus. l1zunet al
designed an experiment to approximate the chandanofing affinity across a matrix of gp4l
recombinant systems formed by 19 T20-derived pept($138X in Table 5-1) and several gp41 N-
helical mutants. Table 5-1 shows binding affirstestimated from the original experimentalsiEC
data. Importantly, different single-point mutatigmirs show dramatic differences in binding
affinity, which can be used to help provide biolmiclues as to the origins in T20-gp41 binding
and fusion inhibition. For example, the clinicddserved primary mutation N43D reduces the
binding affinity of T20 by almost 2 kcal/mol (-1B57%0 -9.97 kcal/mol) relative to the wild-type

receptor. And the secondary compensatory mutatic88& on T20 restores affinity to almost the

wild-type level (-11.53 kcal/mol).
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Table 1. Binding energy of T20 targeting HIVgp41l calculatedm experimental Esy values
obtained from Izumet al."®

Receptors HIV-1 1 HIV-1y3ga HIV-1 nazp
Ligands AGying (kcal/maol) AGying (kcal/mol) AGying (kcal/mol)
T20s138s -11.7¢ -10.41 -9.97
T20s138a -12.57 -11.51 -11.5:
T20s1380 -9.1C >-8.1¢ >-8.1¢
T20s138e -8.9¢ >-8.1¢ >-8.1¢
T20s138F -10.9¢ -9.12 -8.7:
T20s1386 -12.17 -9.8( -9.34
T20s138H -9.1C >-8.1¢ >-8.1¢
T20s138 -12.6¢ -11.3¢ -11.6¢
T20s138¢ -8.3¢ >-8.1¢ >-8.1¢
T20s1380 -12.4¢ -10.7¢ -11.6¢
T20s138m -12.4¢ -11.3¢ -11.9¢
T20s1387 -10.5¢ >-8.1¢ >-8.1¢
T20s138p -8.6¢ >-8.1¢ >-8.1¢
T20s1380 -10.1¢ >-8.1¢ >-8.1¢
T20s138r -8.7¢ >-8.1¢ >-8.1€
T20s1387 -12.3¢ -10.1¢( -9.2¢
T20s138v -12.81 -10.2¢ -10.4¢
T20s138w -10.2¢ >-8.1¢ >-8.1¢
T20s138y -10.3¢ -8.57 >-8.1€

Binding energie\Gy;qare estimate using the equatioAG,s=RT*In(ECs) in kcal/molat 298.15K
using experimentally evaluated E@alues from Table 1-2 in Chapter-1.

In this chapter, we present a computational stedgvialuate T20-gp41 binding affinities
and determine the biological effects of T20-resisfmimary mutations V38A and N43D as well as
compensatory mutations on T20 analogs. Our hypihe that, since the change of affinities
among the mutants are derived from single-pointatns, there should be a subset of key residues
in the binding pocket or close to the mutated negithat dominate changes in antiviral activity. An
examination of residues was performed using peduesheatmaps based on molecular dynamics
simulations of different T20-gp41 complex systerh®ach endstate. Concurrently, atomic-level

molecular dynamics simulations were performed usiiregthermodynamic integration (TI) method
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in an effort to reproduce the clinical observatidhough direct comparison to the experimental
binding data shown in Table 5-1. The goal of #tigly is to use such information to help guide the
development of new HIV fusion inhibitors, either ptides or small molecules, using

complementary computational approaches such asnglcaphore modeling (discussed in Chapter

2-4Y" andde novo design.

5.2 Theoretical Methods and Computational Details
5.2.1 Free Energy Calculations Using Thermodynamilmtegration

Thermodynamic integration (TI) methods calculateergg changes for nonphysical
transformation processes (See Chapter 1, sectidnMblecular Dynamics and Free Energy
Calculation). By artificially simulating the traitisn from one ligand to the other in both the bdun
and unbound states, one can obtain the potentabgrdifferences of the processes, which are
defined as the relative free energy of binding.pdmantly, using thermodynamic cycles shown in
Figure 1-8, the computed relative binding energyGping Obtained from differences in
transformation energies can be directed comparethéodifferences in two absolute binding
energies measured experimentally. Sufficient sengplwith carefully chosen intermediate
windows can, in principle, yield very accurate Tregictions provided that the two states are
similar. The transformation free energy betweentam similar systems is computed as a coupled
function of the endstate potential energiesavid 4 with respect to a mixing parameferwhich
varies from 0 to 1 as introduced in Chapter 1,isect.4. The potential energy in each window is a
weighted combination between that of the two endstgstems. A series of transition simulations

for all L windows will be performed. The soft-core potehtraxing function, as implemented in
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AMBER11 (See Chapter 1) is used with the parametensd set to the default values in<0.5,

p=12).

5.2.2 Footprint Analysis: Energy Decomposition to dcover Ligand Binding Profile

In addition to the Tl simulations, standard molaculynamics simulations for each T20-
gp41l complex were also performed at the endstafée resulting dynamics as well as molecular
footprint signatures were analyzed to provide insigto specific protein-ligand interactiofs’* "2
For each complex system, a per-residue energy dqeusition based on either the protein receptor
or the peptide ligand yielded what is called a poot, essentially an energy density string of
residue numbers. In this study, both van der WaA®N) and electrostatic (ES) footprints were
computed which can be plotted as an interactiomggnmatrix (heatmap) in an attempt to identify
key residues and energy components most important20 binding. Besides MD, use of such

energy signals can be an alternative way to idehtts in docking studie§-°

5.2.3 Model Construction and MD Simulation Protocol

All-atom gp41-T20 structures were based on thoseldped by McGillicket al,*® which in
turn were originally constructed based on a moégorted by Cafferyet al.**® Briefly, the
molecule was constructed from PDB entry 1IF3 andRructure 1IENV by superimposing the
common regions and matching 1ENV to the correctiggeghuence. The derived complex structure
included the membrane-proximal and fusion peptidgons, which were modeled @helical’® In
the presented study, eighteen analogs of T20 (pfdes in total) and three variants of the gp41
receptor were constructed using the McGillick maakela starting point by manually mutating the

T20 residue 138 to 18 different natural amino aeidg the gp41 residue 38 from VAL to ALA, or
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the gp41 residue 43 from ASN to ASP using the mogMOE?® The initial conformations were
optimized and tested via energy minimization andildgyation usingsander in AMBER11. The
final model to be simulated using both the standai protocol and the TI protocol are shown in

Figure 5-2.

d a d a d a d a d a d
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Figure 5-2. (a) T20 interaction site with two primary mutatioms the target peptide N43D (in cyan) and
V38A (in red) and one secondary single-point matatiat residue 138 on CHR/T20 (letters a-e reptéken
residual position in ther-helical secondary structure, symbol +/- highligthe charged residues); (b).
Rotated (by 90° ) view of the helical bundle formmdthe gp41-T20 complex. (c) Corresponding wheel
representation of CHR bound to NHR1, NHR2 and NHRG@mbered 1-94 in NHRi, i=1,2,3 in gp4l
sequencing}®

The coupled simulation for the thermodynamic iné¢ign MD simulation in AMBER11

required a defined “soft-core mask” which includes regions to be transformed. The other atoms,
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which are outside the mask, have to be identicahentwo coupled systems through the whole
simulation. In order to meet this requirement,itiigal structures of the solute were fit to therse
scaffold (as shown in Figure 5-2a), and an idehtstdvent box was assigned. For both the
unbound and the bound states, the wild-type conijjard was solvated with TIP3¥ waters via
tleap. Then the solvent box was saved as a separatél@dind later shifted to match the original
gas phase complex/ligand variant models. This @fagssigning the water box enables all of the
mutant systems to differ only in the mutated regidrhe size of the water box for the complex
systems (320 residues) was 59x58x178#8879 TIP3P waters) and for the ligand systends (3
residues including capping groups on both ends) 42e58x82K (4774 TIP3P waters). The
resulting starting conformations were used fottal molecular dynamic simulations in this study.
The systems were equilibrated with a periodic bampdn 9 steps including several
minimization steps of 1000 cycles and short MD dations (50ps each) before the production
runs. The Partial Mesh Ewald (PME)method is used for calculating the electrostatiergy in
the periodic box. Equilibration started with a miization and a MD simulation step with
positional restraints on all the heavy atoms in $oéute (restraint weight 5.0 keatol*-A?),
followed by three minimization runs with the samestraint mask, but the restraint weight
decreased to 2.0, 0.1 and, finally, 0.05 koal™A? Then, two additional MD simulations were
performed with reduced restraint weight 1.0 and kt&kmol™-A~, respectively. The final two
equilibration steps had relaxed restraint masksrevlanly the back bone heavy atoms were
included. The restraint weights were set to 0dl-kml™A? Production runs were done after the
equilibration with identical simulation protocol tbe last equilibration runs for data collection.

The reference conformation used for the restramteach step was the last snapshot from the
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previous step up to step 6. For steps subseqtentast frame of step 5 was always used as the
restraint reference.

All Tl simulations were accomplished usisgnder module in AMBER11 with a 1fs time
step. Throughout the NPT (constant number of at@orsstant pressure, and constant temperature)
MD simulation, the temperature of the systems wegt ko 298.15K regulated by the Langevin
dynamics method with collision frequency of IpsSystem pressure was relaxed every 0.5ps.
Default Lennard Jones and Coulombic parameters w&ed. The MD trajectory snapshots were
saved every 1ps for further data analyses. Spalififor TIMD simulations, a soft-core mask was
defined for the single mutation site at residue #88720. A total number of 1B windows § =
0.05, 0.10,...,0.95) were simulated for each tramsédion. Each of the data point on the dv/d
plot represents results from nineteen 2ns-longi$ with varying mixing parametgr

For extended endpoint MD simulation@nemd.cuda in AMBER14 was used with GPU
acceleratiof?® The longer 20ns endpoint simulations were domesiio ligand-protein systems
involved in clinical observed primary and secondamytations (HI\{y1-T20s133s HIVwt-T20s138
HIVv3ga-T20s138s HIVyzga-T20s138a HIVNaap-T20s138s  HIVnasp-T20s1389). Longer endstate
simulations help ensure improved convergence andracy in per-residue energetics. Snapshots

of the endpoint simulations for every 1ps are sdeethe structural and energetic analyses.

5.3 Results and Discussions
5.3.1 Endpoint Simulation Behavior: RMSD

To evaluate the behavior of the molecular modéddikties of the endpoint systems for the
bound states were gauged through monitoring RMSDiine. While stability of the wild type

complex HIMyt-T20s138swas investigated in the original study by McGHliet al,*® the different
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mutants studied here have not yet been examineglre=5-3 shows representative trajectories for
six different systems (HIr-T20s13ss HIVw1-T20s138a HIVy3sa-T20s133s HIVyaga-T20s1334

HIV na3p-T20s138s HIViNa3p-T20s138a  20ns long each) with instantaneous results ire kdnd
running averages (block size = 100ps) in blackrethe RMSD values are computed fgrafoms

in the complex structures with “fitting” to the fral constructed structure (the first frame of slep
in the standard MD simulations). As expected, gitlee weak restraints employed, none of the
restrained MD simulations showed significant bacldaonformational deviations from the initial
conformation with relatively low RMSD values (<14). Thus we hypothesize that the ensemble
of conformations of the stable complexes can bd tsdelp decipher the binding profiles of T20
in terms of per-residue VDW and ES interaction grag. Detailed analyses on the average

molecular footprint and heatmap of binding anddksociated error estimation are discussed below.

128



GP41.WILD T20 wild 1 GP41.WILD T20 S138A

0.8 0.8
0 0.5 1 15 2 0 0.5 1 15 2
x10* x10%
15 GP41.N43D T20 wild 15 GP41.N43D T20 S138A
—~
o<
N
Q 1 1
2
0.8 0.8
oc 0 0.5 1 15 2 0 0.5 1 15 2
x1 04 X 104
, GP41.V38A T20 wild , GP41.V38A T20 S138A
1 1,
1 1
0.8 0.8
0 0.5 1 1.5 2 0 0.5 1 15 2
x10% x10%
time (ps)

Figure 5-3. The RMSD plots of the six endpoint standard MD datians of HIVgp41-T20 complex
variants. RMSD values in A. Time in picoseconBsaw data in blue, running average shown in black.
5.3.2 Tl Simulation Behavior: RMSD

We also performed RMSD calculations using the TIkM&ectories to evaluate simulation
stability. Figure 5-4 illustrates the RMSD valuafsthe mutating region (residue 138 on T20) in
both the initial state A (T2Qsss first column) and the final state B (T36sa second column) as
well as those for the common region (complex stmast bound to HI\r that are identical for both
state A and B, third column) as a function of tistep (in picosend). For the mutating region, all
heavy atoms are used for RMSD calculation; fordtyamon region, Catoms are used. All results
are computed for complex coordinates “fitted” te tast frame of MD equilibration runs (step 9 in

the TIMD protocol). Representative windowsio£0.05, 0.50 and 0.95 are plotted.
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Figure 5-4. Representative RMSD plots for TIMD simulations ofitating HIMyr-T20s138s t0 HIViyr-
T20s1384iN (@) bound state and (b)unbound state. RMSDegin A. Timein picosecond.
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Again, in all cases, both the mutating region RMS8D A) and common region RMSD (< 2
A) values are very low, likely a function of the akeenergetic restraints on the protein and peptide
backbones. This suggests the conformational éiffees between the two endstate T20 analogs in
both the bound and unbound states are quite smvaich is desirable for well-behaved TI
simulations and transformation energy calculatiofsterestingly for the RMSD of the mutating
regions (first and second columns), although mb#t@® TI runs yield extremely low RMSD value
for the single residue (close to 0 A), simulation &0.50 and 0.95 for both the bound and unbound
states yielded a subset of trajectories with RM®@Ias of about 0.5 A. This suggests that across
differentd windows, the Tl simulations likely sampled slighdifferent orientations of residue 138,

which could contribute to the energetic calculagiomthe non-physical paths of transformation.

5.3.3 Tl Simulation Behavior: dV/di

Another procedure to evaluate TIMD protocols aréngpect distributions of dVidacross
differentA windows. Sufficient sampling across intermedittdes, with a reasonable numbeh of
windows along the complete transformation pathukhgield good overlap in terms of the d¥/d
values sampled for each pair of adjacentindows. Figure 5-5 shows the histograms of dv/d
values for each of the 1® windows (different colors represents differantvindows) of TIMD
simulations of mutating T2@sssto T2Q133aWhen bound to (Figure 5-5b) to H¥ and in the
unbound states. Overall, histograms for adjagewindows are well overlapped, especially for
windows closer ta=0.50. The total range of d\id/alues of all 19 windows (-40~70 kcal/mol for
bound state and -40~90 kcal/mol for unbound state)continuously covered by allwindows,

suggesting that our choice &k of 0.05 is reasonable.
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Figure 5-5. The dV/d. value histogram in all windows § =0.05, ..., 0.50, ..., and 0.95, distinguished by
color) simulations for mutating Hi-T20s1385t0 HIViwr-T20s1384in (@) bound state and (b) unbound state.

In addition, the stability of TIMD runs are illuated by the dV/d plots as a function of
time steps (in picosecond) for all windows in the bound and unbound states ofsfz®@to
T20s133amutations (Figure 5-6). Corresponding to the goelavior in terms of RMSD fluctuation
in Figure 5-4, all dV/d plots are consistently stable across all framethénTIMD simulations.
The gap in terms of dVidvalues for adjacent windows are minimal for windows closerxs0.50

and grow gradually asapproaches the two physical endstate system wh@and 1.
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Figure 5-6. The dV/d. plots with respect to time for all windows § =0.05, ..., 0.50, ..., and 0.95,
distinguished by color with identical color scheaseshown in Figure 5-5) simulations for mutatindy/ t#-
T20s1385t0 HIVW1-T20s1384 1N (@) bound state and (b) unbound state.
5.3.4 Tl Simulation Behavior: Null Transformation

Comparison to experimental measurements is a conmmethod to evaluate Tl energy
calculation accuracy. However, experimental valmay also have associated noises related to the
theoretic true value. A straightforward test téphealidate a given TI protocol, which does noyrel
on the quality of experimental measurements, is th#l transformation test where by
transformation simulations are run to mutate a mdee to itself. The transformation energy of
such null-transformation runs should be equivatenéxactly zero. And, relative binding energy
derived from the difference between null transfdrara simulations in the bound and unbound
states should also be zero.

Ensemble averaged dWgblots with respect ta from four different T1 null transformation
simulations when T2Qsgsis mutated to itself when either bound to wild eypeceptor HIVyr
(Figure 5-7, left panel) and in the unbound st&igure 5-7, right panel) are shown in Figure 5-7

and Table 5-2. Here, run 1, run 2 and run 3 eaxisisted of 19 windows (AX=0.05) with
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different random seeds. To further evaluate cayemce, runl was expanded to include 39
windows with a window size of 0.025, and denotedwaslb. Similarly, results for one TI null
transformation run (runl) for T2€sssbinding to HIM/3sa and four Tl null-transformation runs

(runl, runlb, run2 and run3) for T23ssbinding to HI\l43p are also reported in Table 5-2.

GP41.WILD GP41.WILD
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Figure 5-7. The dV/d. curves with respect ta for run 1 (red), runlb (green), run2 (cyan) and3ru
(magenta). Each point of the dW/glot is derived from ensemble average of a 2ng rrun.

The dV/d. curves from all four null transformation runs f620 s33ss binding to HIMyt
overlap well with each other in most regions fothbbound state simulations and unbound state
simulations as shown in Figure 5-7. The calculdatadsformation energies as well as relative
binding energies for almost all null transformatiams in Table 5-2 are close to zero with the

exception of run2 for HIVr and runl for HIW3p. Thus our TI protocol is generally robust and
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can correct predict the theoretic transformatioergy and relative binding energy of a null
transformation in a large protein-peptide complggtem with a relatively large transformation
mask (a entire amino acid group). Interestingty,the two cases not close to zero, they are due to
either the unbound transformation only (KW or the bound transformation only (Hi¥p ) as
shown in Table 5-2. Referring to the d¥/durve in Figure 5-7 (right panel) for Hy\4, the error
in unbound transformation energy for R{Y is primary due to the Tl simulation at window=
0.55 (gray circle in Figure 5-7, right panel) whatre dV/d. curve is most steep. Potential
improvements to the current Tl protocol include (performing multiple independent
transformation runs and using the average valuepé€2forming additional Tl simulations with
intermediate) values near thé windows corresponding to sharply angled regionsha initial
dV/di curve with uniformly distributed windows. For example, for HIV run2, Tl simulations
can be performed with = 0.525 and 0.575 which presumably could redueeoffset of calculated

unbound state transformation energy as well asiibérelative binding energy.

Table £-2. Calculated relative binding energy and transforamaéinergy fonull transformation:
Runtime Runl Runlb Run2 Run3

Bound transformation ener 0.16£0.15 0.22+0.15 0.43+0.14 0.18+0.14
HIVwr  Unbound transformation energy  0.23+0.18  0.58+0.18.56#0.16  0.10+0.19

Relative binding ener 0.08+0.24 0.80+0.23  1.99+0.21  0.29+0.23

Bound transformation ener 0.03+0.15 - - -
HIVyssa  Unbound transformation enel  0.23+0.18 - - -

Relative binding ener 0.26+0.24 - - -

Bound transformation ener 1.13+0.14 0.01+0.14 0.47+0.14 0.01+0.13
HIVnsap  Unboundtransformation ener¢  0.23+0.18  0.35+0.18 0.63+#0.19  0.18+0.17

Relative binding ener 1.36+0.23 0.36+0.23 0.15+0.24 0.18%0.22
Run 1b has 39. windows instead of 19 for run 1, run2 and run3nRuand 3 have differel

random seeds from Run 1. Average energy and assoaaor (standard error of the mean) were
reported in kcal/mol.
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5.3.5 Tl Relative Binding Energies: Correlation with Experimental Results

Figure 5-8 and Table 5-3 show relative binding gresr computed from the TIMD
calculations for 24 systems and comparisons withetkperimental measuremefits The data in
Table 5-3 reports the relative binding energieshef T20 analogs compared to that of wild type
T20 (T2Q1389 for binding to a given form of the receptor (FY, HIVnasp and HIW 34 N-HR).
Here, each of the computed relative binding enevglue is derived from two sets of TI
transformations (bound and unbound), each congisiin19 A windows that are 2ns long per
window. The experimental relative binding energige computed via subtracting the T2@s
absolute binding energy from that of each d;326kx analog shown in Table 5-1. For consistency,
data for null-transformations reported in Table &&e all obtained using only a single run (runl
in Table 5-2). Overall, 10 system with wild typeceptor (green squares) and 7 each with the two
mutated receptors (blue squared for RWdpand red squares for H{¥ysa) were simulated.

Despite potential issues with null transformatian neing zero for N43D. Remarkably, the
computational results correctly reproduce the trehdffinity among the complex analogs with a
correlation coefficient?=0.66 (N=20). Note that four of the data pointseled with stars in Figure
5-8 (hollow squares) were not considered forrthealculation as the corresponding experimental
data (see Table 5-2) were reported as approxinzeiges (HI\43o-T20s138 HIVN43p-T20s1388

HIV vaga-T20s138x and HI/3ga-T20s1388.
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Figure 5-8. Correlation of calculated relative binding energ\wGcaca, ¥ axis) compared to experimental
data AAGep, X axis). Relative binding energy using Tl meth®dalculated from mutating residue 138 on
T20 when bound to the same receptor, averagingtbee2x19 2ns production run for each complex.

It is also encouraging to find out with only a fewceptions, our calculations were able to
correctly distinguish the favorable T20 mutationsi the unfavorable ones. As shown in Figure
5-8, the data points to the top right of point JOdle unfavorable both experimentally and
computationally while data points to the bottont kfe favorable. Only four data points fall into
the region where the sign of the relative bindingrgy are not consistent (top left and bottom right
from point (0,0)). And, their experimental or adlsted energies were very close to zero. Although
the correlation is reasonable, it is worth notihgttthe calculated results tend to over-predict the
magnitude of the experimental results. In particuthere is significant overestimation of the
effects of the T28 35« mutation, although the experimental trend is ot torrect (see Table 5-3 for

row T20s1386 AAGeacq ranging from 12.32 to 18.90 kcal/mol). Possibleuses of this

137



overestimation are that the size of this mutatibys) is relatively large, which could lead to a
decrease in favorable VDW energy as a result odworible contacts compared to Ser, arising
from our use of backbone restraints. Another fil#tgiis the change in net charge, which is likely
to affect long-range electrostatic interactionsoas current simulation protocol does not mutate
another residue to enforce a consistent total ehfogthe system. An examination of the results
shows that the other charged mutations S138E Iead tsimilar, although not as large,
overestimation A4AGcaicq ranging from 6.39 to 9.13 kcal/mol). Despite thdserepancies, overall
the Tl results yield reasonable agreement with exntal trends. Thus, the model and simulation
protocols used in this Chapter can be used to perétructural and per-residue energetic analyses
to help understand why specific mutations leadss lof affinity and to aid the design of new HIV

fusion inhibitors using analogs binding energy akdtons.

Table E-3. Experimental vs. CalculatefAGy,;,4 for T20 analogs with HIVgp4

Receptors HIV wr HIV y3ga HIV nasp

Ligands Exptl. Calcd. Exptl. Calcd. Exptl. Calcd.
T20Cs138s 0.0c 0.08+0.2- 0.0c 0.26+0.2: 0.0c 1.3640.2:
T2Cs138 -0.8: -1.88+0.1! -1.1C -1.75£0.1¢ -1.5¢€ -1.96+0.1!
T2Cs138e 2.8z 9.13+0.4( 2.2¢ 7.47+0.3¢ 1.7¢ 6.39+0.4:
T20Cs1386 -0.3¢ 1.0540.2. 0.6z 2.260.2: 0.65 -0.1940.2:
T20Cs138 3.37 18.90+40.3! 2.2t 18.17+0.3: 1.7¢ 12.3240.3!
T2Cs138L -0.7: -0.70£0.2° -0.3¢ 1.34+0.2° -1.67 -2.96+0.2t
T20Cs138p 3.0¢ 3.71+0.2! 2.2¢ -- 1.7¢ -
T20s1380 1.57 0.68+0.3( 2.2¢ -- 1.7¢ -
T2Cs138v -1.0€ 0.22+0.2- 0.1¢ 1.28+0.2! -0.47 -2.7140.2
T20s138w 1.47 4.73+0.3! 2.2¢ -- 1.7¢ -

Calcd. AAGying computed using TIMD results from mutating resid@d8 dbn T20 when bound to tl
same receptor. ExpthAAG,ing computed via subtracting the binding energy ofiwyipe T20 from that
of the mutated T20 when bound to the same recdptargy unit in kcal/mol.
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5.3.6 T20 Binding: Footprint Analyses of the Wild-Type System

The 3-fold symmetry of gp41l presents challenge$ waspect to determine which amino
acids interactions are most important for liganddbig in this system. In an attempt to identify
which residues are most important, per-residue ggnelecomposition of the VDW and ES
interactions between the three different gp41 NHRchs (the receptor) and T20 (the ligand) were
computed and plotted as both one-dimensional awddiwensional (termed molecular heatmap)
molecular footprints. The gp41l receptor residumliners range from 1 to 94 (x3 chains) for each of
the individual NHR monomers while the T20 ligandideie numbers range from 127 to 162.

Key residues: VDW interactions. In Figure 5-9, VDW energies are averaged across all
frames (20,000 snapshots) of the 20ns long endstBtesimulations (frames saved every 1ps) of
the wild type complex (HIWr -T20 s1389, and the color scheme represents the magnitude of
interactions (favorable ones in red squares, umébte ones in blue squares) provided they exceed
a threshold of 2.0 kcal/mol (interactions < 2.0lkoal in magnitude are shown in white squares).

Of the three N-HR helices, NHR2 is not directlydontact with T20, thus the threshold
VDW molecular footprint for NHR2-T20 contained athite squares (<2.0 kcal/mol) and the data
is not shown. In contrast, threshold VDW molecuiaatmaps for NHR1 (Figure 5-9a) and NHR3
(Figure 5-9b) show numerous favorable interactifpmed squares), and the differences in relative
position of T20 interacting with each NHR yieldeiffetent interaction patterns. For the NHR1-
T20 interactions, 3 T20 residues 1le135, GIn142 bewl149 (indicated by the horizontal arrows in
Figure 5-9a) are the most significant in terms bé tligand footprint (VDW interactions
decomposed by each ligand residue, top left p&iaglire 5-9a), and correspond to 3 out of 5 key

residues Arg31, Val38 and Leu45 (indicated by weattarrows in the heatmap, Figure 5-9a) near
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the site of mutations (V38A, N43D) on the corregiiog receptor footprint (VDW interactions
decomposed on each receptor residue, bottom ragtel pFigure 5-9b).

For the 3 residues on T20, they are all 7 residpeast in terms of linear sequence, and thus
adopt the same position corresponding to lettetenoted in Figure 5-2 in the-helical T20
secondary structure. For the 3 residues on NHRju(& 5-9a), they are exactly 7 residues apart,
and also all adopt positions corresponding to retten the o-helix NHR. These primary
interactions involve the following residue pairs fhe 3 key & residues on T20: (1) lle135 consist
of: lle135-Leu45 ¢), lle135-1le48 &), lle135-Glu49 Ip), 11e135-GIn52 ¢); (2) GIn142 consist of:
GIn142-Val38 ¢), GIn142-GIn41 &), GIn142-Asn42lf), GIn142- Leu45d); (3) Leuld9 consist
of: Leul49-Arg31 ¢), Leul49-Leu34d), Leul49-Ser35h), Leul49-Val38¢€). From the receptor
point of view, for the 3 keye” residues on NHR1, key residue pairs includef@¢it)Arg31: Arg31-
Leul52 @), Arg31-Asp1531f), Arg31-Alal56 €); (2) for Val38: Val38-Asn145d), Val38-Glul46
(b), Val38-Leul49¢€); (3) for Leud5: Leud5-Serl3@), Leud5-GIn139k), Leud5-GInl142¢€).

For the NH3-T20 interactions (Figure 5-9b), keyidas pairs are emphasized using the
square boxes instead of arrows in the moleculatnifega Here, the top edge of the box
corresponds to T20 residues at positipthe bottom edge corresponds to T20 residues satiquo
a; the left edge corresponds to NHR3 residues atipo€ and the right edge corresponds to NHR3
residues at positiog. Most of interactions in this heatmap involveidess at these four positions.
Specifically, T20 residues at positidntop) interact most strongly with NHR3 residuepasition
g (right), as shown by the red squares overlappirt thie top right corner of the black boxes. And
T20 residues at positian(bottom) interact mostly with NHR3 residues atipos c (left), showing

by the red squares overlapping with the bottomdefher of the black boxes.
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Figure 5-9. (a) Key residues for VDW contact (heatmap for NHRTS138S (>0.5kcal/mol)); (b) Key

residues for VDW contact (heatmap for NHR3 WTS188&5kcal/mol))
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Interestingly, the analyses on binding interactpatterns shown in Figure 5-9 suggest a
modified wheel representation for the T20-SNHR Wand more applicable, as shown in Figure 5-
10b, with T20 rotated by 1 position counter-clocgsvresulting in an alternative interaction pattern.
Using the traditional model (Figure 5-10a), CHRidass at positiona should be directly
interacting with NHR1 residues at positieand those at positiashshould be making close contact
with NHR3 residues at positiap The CHR residues at positioagndb are more distal to either
NHR1 or NHR3. However, based on the energy footprshown in Figure 5-9, T20 residues at
positione andb also appear to be essential, especially for intenas with NHR1, suggesting the
modified interaction wheel in Figure 5-10b. Ovékrake of molecular heatmaps, such as the ones
shown in Figure 5-9, may be more effective thanafseheel representations (Figure 5-10a, b) if

the goal is to more precisely identify residuesgaivolving alpha-helical bundles.

Figure 5-10. (a) Original and (b) modified model of T20-3NHR bdson VDW footprint and heatmap
analyses.
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Charged residues. eectrostatics interactions. Compared to VDW interactions, ES
interactions are more long-range and the three NBEERheatmaps were in general very similar.
Thus, to simplify the analysis, the ES energies oser all three helices
(BNHR=NHR1+NHR2+NHR3) were computed and shown guFe 5-11. As expected, inspection
of the electrostatic T20 binding profile using 88 heatmap shows that charged residues (indicated
in Figure 5-2a) contribute most to the electrostatnteractions profile. Large peaks in both the
ligand and receptor footprints all correspond &sthcharged residues. As simulated here, T20 has
a net formal charge of -5 while the wild type gidH#iR has a total net charge of +12 (+4 for each
monomer). Thus, all the negatively charged T20dtes, including Glul36f)Y, Glul37 §),
Glu143 ), Glul46 b), Glul48 (), Glul51 @), Aspl53 b), where the letter in the bracket
indicates the residue position in the wheel reprieg®n of the T20-3NHR bundle, will yield
overall favorable per-residue electrostatic energmgtributions. Correspondingly, the positively
charged T20 residues Lys144) (and Lys154¢) yielded unfavorable per-residue electrostatic
energy. Analogous observations are made fromdbeptor point of view in terms of negatively
charged residues (Glu4®)( Glu73 €), Asp78 €)) and positively charged residues (Arg3), (
Arg46 (), Lys63 p), Arg68 @), Arg74 ), Lys77 p)). Note that the interactions involving residues
Alal and Thr94 are due to the fact that the tertmesidues on the receptor are left uncapped.

Notably, none of the positive charges on T20 acatkd directly in the binding interface
(only at positionc andg) and thus avoid strong repulsive electrostatierattions with the overall
positively charged receptor. Focusing on the Ala&657 region (on the receptor), corresponding
to the interface with direct contact to T20 in terof the VDW interaction heatmap in Figure 5-9,
residues Arg31d), Arg46 ) and Glu491f) yield the most significant per-residue ES intéats as

shown in Figure 5-11. In addition to the chargesidues, polar residues at this interface also make
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important contributions. For example, favorableractions (red squares) are observed for receptor
residues Gly36d), GIn39 ), GIn40 @), GIn41 @), Asn42 p), Asn43 €) with T20 residues Ser138
(@), GIn139 p), GIn141 (), GIn142 €). And, unfavorable interactions are reported leetv

Lys144 @) on T20 and GIn41a) /Asn43 €) on gp41l.
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Figure 5-11. Electrostatic (ES) interaction heatmap for T20 bigdo 3NHR.

5.3.7 Why S138A?

As predicted both experimentally by Izumi et’and computationally in this study (Table
5-3 and Figure 5-8), S138A mutation can restorealibop caused by primary mutations in gp41
NHR to approximately the wild type complex levelaAs more hydrophobic and examination of

the data in Table 5-3 shows other hydrophobic rartat (e.g. S138V) also usually enhance
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binding. According to the experimental data, th&slin binding affinity of T20 is ~1.34 kcal/mol
for the gp4l V38A mutation, and ~1.78 kcal/mol tbe gp41l N43D mutation (Table 5-1). The
estimated experimental gains in binding energy 20 With the gp41 S138A secondary mutation
for these two primary mutants are 1.75 kcal/mol 4m@b kcal/mol respectively. It is thus of
particular interest to identify the origins of aity and the change in affinity between the mutatin
systems. Here, we decomposed the total compughtimnding energy into individual residues to
generate both the receptor gp41 (sum of all thedieds, 3NHR) and T20 ligand footprints (Figure
5-12 and 5-13). The values of the associated atdndrror of the mean for each per-residue
decomposition data point are plotted as the dastegks.

Primary (V38A) and Secondary Mutations. The footprints for the three systems involved in
the V38A primary and S138A secondary mutationssai@vn in Figure 5-12. An obvious loss of
VDW affinity was observed at gp41 residues 38 a2dobth at positio® on 3NHR, for the V38A
primary mutation (blue to red curve, Figure 5-12dtdim). Interestingly, the VDW footprint for
the T20 ligand (Figure 5-12a top) showed the magtificant changes were at residue 18, (
which is directly interacting with gp41 residuesa2? €), Thr25 ), Leu26 ¢) and GIn29 €), the
latter being one turn apart from the primary motasite at Val38€). Here, the VDW interactions
at Trp155 get less favorable due to primary mutati@8A (blue to red curve) and then improve as
a result of the secondary mutation S138A (red ézgrcurve). In contrast, only minor changes are
observed in the corresponding ES footprints (bhed, and green curves in Figure 5-12b). This
indicates that the hydrophobic V38A and S138A motet have little direct effects on the
electrostatic interactions in the complex systaithile more structural analysis is needed, loss and
gain of physical contact at residue Trpl55 couldabeontributing factor in the V38A/S138A

mutations.
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Primary (N43D) and Secondary Mutations. The footprints for the three systems involved
in the N43D primary and S138A secondary mutatioessaown in Figure 5-13. Here, a loss (blue
to red curve) of VDW affinity is observed agairresidues 38 and 52 as well as 41. In terms of the
secondary mutation, only position 38 and 41 onrdueptor show a restoration of affinity (red to
green curve). For the T20 ligand, at residue GyiHe per-residue VDW interactions (Figure 5-
13a, top) become significantly less favorable duthé primary mutation N43D (blue to red curve)
and then are restored as a result of secondarytionutd138A (red to green curve). Interestingly,
GIn142 is predicted to directly interact with rastd Val38, GIn41l (with affinity changes in the
receptor footprints) as well as Asn42 and Leu4%,na N43D, as shown in the VDW heatmap in
Figure 5-9a. Thus, loss and gain of physical atstat residue GIn142, likely paired with residue
V38A and GIn41, could be contributing factors ie ti43D/S138A mutations.

In sharp contrast to V38A, as shown in Figure 5;1Bb charged primary mutation N43D
has significantly changed the magnitude of ES auons for all charged residues, especially
residue Glul36 and Glul137, on T20 (Figure 5-13D.tdporrespondingly, the mutation introduced
a large unfavorable ES interaction at residue 4@ufe 5-13b bottom, blue to red/green). And, the
small neutral secondary S138A mutation has onlytdicheffects on the ES interactions, similar to
what was observed in the V38A/S138A mutations cadee fact that the large loss in ES energy is
not restored by S138A, in terms of only the intéoac energy examined here (despite the TI
calculations yielding the correct experimental d€n emphasizes challenges with computationally
pinpointing the biological effects of charged veutral mutations. Additional computational
studies are warranted, more specifically, use ofgionts that includes desolvation energy penalties

should be examined.
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5.4 Conclusion

In summary, in Chapter 5, we reported a thermodymamtegration molecular dynamics
protocol of a large complex system HIVgp41-T20 wathiransformation mask set to an entire
amino acid residue on the peptide ligand T20 tadystboth primary (V38A, N43D) and
compensatory (S138X) mutations. Our protocol Bwshto have reasonable behavior in terms of
simulation stability.  Relative binding energy cdltions yielded good correlation with
experimental measurements for a series of compietogs with ligand variants (secondary
mutations) binding to receptor variants (primarytations).

In addition, one-dimensional molecular footprints \&ell as two-dimensional footprints
(heatmap) for the protein-peptide (gp41-T20) systm calculated for both the wild type and
mutant complexes. Preliminary discussions on tB&\Wand ES interactions between T20 and the
gp41l N-HR leading to the computational evaluatibpeptide binding and changes in affinity due
to primary and secondary mutations are providedth \ttie present results, the neutral mutation
pair V38A/S138A was more easily interpretable tlia@ charged mutation pair N43D/S138A in
terms of the energetic effects of loss and gaiafiofity.

Future studies to yield more accurate relative ibipénergy estimates and characterization
of the origins of affinity in the gp41-T20 systenciude: (1) multiple independent Tl simulations to
obtain more converged “average” energies; (2) adudit L windows in TIMD near the steepest
regions of the initial dV/kl curve as well as fok close to 0 or 1; (3) construction of lipid-bound
complex systems to enhance the robustness of thetwste, better mimic the dynamics of the
system (potentially with non-restrained simulatmntocol for the new construct), and evaluate the

role of lipids in T20 binding; (4) additional stitucal analyses at the per-residue level.
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Chapter 6. Dissertation Summary: Scientific Impact,Challenge and

Future Direction.

Computer-aided structure-based drug design isirgri®rce in modern pharmaceutical industry.
Advanced technology to resolve complicated drugdistructures, as well as new and improved
computational modeling methods can all contributettie enhancement of the overall drug
discovery pipeline. Studies discussed in Chaer8, 4, and 5 provided a new perspective of
molecular recognition; investigated the HIVgp4l NKERR binding interface; and introduced
novel protocols for molecular docking. This Chamemmarizes the scientific impact of works in

this dissertation and points out future directiohthis study.

6.1 Development and Application of FMS Docking Praicol
6.1.1 Scientific Impact

In Chapter 2, we introduced a new pharmacophoreebasoring function in the docking
program DOCK. This FMS scoring method encodesgig@metric arrangement of key chemical
features in a reference molecule (known ligandemoich for molecules with desirable binding
profiles. Importantly, as shown by validation tessults, FMS score when used alone, and in
combination with other scoring functions such aglk& grid energy (SGE) score, can in most cases
improve docking performance compared to the stahdarce field based approackd. SGE
alone). For pose reproduction, FMS and FMS+SGIescyield close to 100% success rate (93.5%
and 98.3%, respectively) compared to 72.5% sucimesSGE using the docking testset SB2012
(N=1043), where success is defined as generatihgsa-to-native (RMSD<=2A to crystal) pose in

docking. For crossdocking, FMS/FMS+SGE also yiefg®mising results, given that the
150



pharmacophore and RMSD references overlap reagon#éblgeneral, for enrichment study, FMS
shows the most favorable early and total enrichni@idwed by FMS+SGE. Finally, in virtual
screening, FMS score tends to select a unique fseigpomolecules different from SGE score.
Additional computational experiments also show thidlh an engineered pharmacophore reference,
which includes multiple copies of a certain funoab group, FMS-guided docking can be
customized to prioritize a hotspot for binding. &tall, we have developed an alternative scoring
protocol for the docking community, with the adgessibility for use as a ligand-only (i.e. without
use of a receptor) scoring tool. The final FMSe®lslated to be released in DOCKG6.8.

In Chapter 3 and 4, more applications of the FMé&kag protocol have been implemented
and closely investigated. Detailed structure Migation of virtual screening further supported the
robustness and utility of the FMS docking protocdlop molecules scored by various scoring
functions including FMS score have been prioritiza&nd, pending additional study, may be
purchased for experimental testing by collaborataigs to identify new small molecule leads that
inhibit HIV fusion. Another important component tfis study was merging the FMS scoring
function into thede novo DOCK code under active development by Dr. Willidoseph Allen and
colleagues in the Rizzo lab. As proof of princjdlee merged code was used to guide novel ligand
growth to match pharmacophores of reference inildihg tests using 50 diverse small molecule

inhibitors and 2 peptides targeting either the bptiobic or the inner pockets in HIVgp41.

6.1.2 Challenge, Related Work and Future Direction
To expand functionality, future implementation afwn features of FMS scoring such as
including matching to multiple references or useagéceptor-based reference should be explored.

By matching pharmacophore features of multipledtyeeferences with known binding poses in the
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same target site, FMS score can capture the hetsipat are statistically more likely to contribute
to ligand binding and yield more potent leads. Aextension to a receptor-based pharmacophore
would enable identification of ligands that makeror-image, favorable interactions with the target.
A receptor-based FMS protocol could also be usedombination with a ligand-based FMS
protocol to eliminate spatial clashes between dockgands and the receptor (i.e. similar to
excluded volume) while ensuring good ligand overlapplementation of a text-based input format
would also be worthwhile. Also, thde novo FMS docking protocol should also be continuously

updated to match ongoing developments ofdgeovo DOCK code.

6.2 Computational Investigation of HIVgp41-T20 Bindng
6.2.1 Scientific Impact

In Chapter 5, we employed overall and per-residnergetic analyses on a series of
HIVgp41-T20 complex analogs with point mutationstba target protein as well as on the peptide
ligand. With thermodynamic integration simulatiprvge obtained good correlation with the
experimentally determined relative free bindingrgres due to primary and secondary mutations.
With molecular footprint and heatmap calculations,identified per residue interaction patterns of
T20 binding to HIVgp41l that suggest a modified whedepiction may be a more appropriate
description of alpha-helical bundles in the casgmfl. Although our detailed structural analyses
help provide a deeper understanding of the origin¥20 binding affinity, and the effects of a
neutral primary and secondary mutation pair in ghgtem, challenges associated with a charged
mutation were also encountered. Importantly, as ainthe few Tl case studies where reasonable
correlations of free energy measurements are aataihen mutating an entire amino acid residue

at once in terms of the mutation mask and VDW aBdtétms simultaneously, this study can aid
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the community in developing more straightforwardl afficient alchemical simulation protocols.
It is also worth noting that, the simulation belwaas well as free energy results of the constducte
protein-peptide systems indicate the robustnessuofcomputational model of the HIVgp41-T20

complex.

6.2.2 Challenge, Related Work and Future Direction

While prior studies from the Rizzo lab have exptbraembrane-bound HIVgp41-T20
simulations and the roles of membrane at the fugieptide insertion interface of gp41, more
extended simulations using a more rigorous modetdiative binding energy calculationse( Tl
vs. MM-GBSA) would be worthwhile. Preliminary effe have been made in constructing a
membrane-bound gp41-T20 system using the online RMASUI and simulating the structure
with GPU-accelerategmemd using AMBER14"® The model makes use of a DOPC lipid bilayer
prepared with the new Lipid1# force field. Works to adjust the insertion depfhthe complex
into the membrane bilayer, identify a reasonablé/esu-to-solute ratio, and obtain a good
simulation protocol including equilibration setups ongoing. Simulations with explicit lipid
should further aid the study of dynamics of thetamysand in characterizing the nature of T20
binding and drug resistance.

In addition, the identification of which key resihicontribute most to binding of T20 will
be useful as references to guide small moleculd tiacovery. The Rizzo lab has already
successfully screened for small molecule leadsatcimmolecular footprints of key residues using
peptide substrates to yield hits with experimemietivities. Similar strategies using the newly
developed FMS scoring function as described in @hrdh 3 and 4 are envisioned to target the T20

binding interface.
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6.3 Summary

As presented in this dissertation, although comalilg challenges remain, atomic-level
molecular docking, molecular dynamics simulatioff@e energy calculations, and molecular
footprint studies have been employed to providégisinto protein-ligand binding for the drug
target HIvVgp4l. Of particular note is developmerit a new powerful yet easy-to-use
pharmacophore-based docking method for the progp@€K which we believe will become an
important tool of benefit to the community perfongiboth virtual screening ardk novo design

projects.
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Appendix A. FMS-guided DOCKIing Protocol

Dock input files for FMS and FMS+SGE guided staddamolecular docking ande novo DOCK
are provided below. This version of DOCK 6 thatarporates a new descriptor score to combine

individual DOCK scores and FMS score will be reézhsn DOCK®6.8.

For FMS-guided rescoring, the sample DOCK inp@t @ised is shown below.

conf ormer _search_type rigid
use_i nt er nal _energy no
ligand_atom file i gand. nol 2
limt_nmax_|igands no
ski p_mol ecul e no
read_nol _sol vation no
cal cul ate_rnsd no
use_dat abase _filter no
orient _|igand no
bump_filter no
score_mol ecul es yes
contact _score_prinary no
cont act _score_secondary no
grid_score_primary no
grid_score_secondary no
nmultigrid_score_primry no
nmul tigrid_score_secondary no
dock3.5 _score_primary no
dock3. 5_score_secondary no
conti nuous_score_primary no
conti nuous_scor e_secondary no
footprint_simlarity_score_primry no
footprint_simlarity_score_secondary no
Ph4_pri mary yes
Ph4_secondary no
use_ph4_ref _nol 2 yes
Ph4_ref _nol 2 _fil enane ph4_ref.nol 2
wite out_reference_ph4 no
write_ out_candi date_ph4 no
write_out _nmatched _ph4 no
ph4_conpare_type 0
ph4_full _match yes
descri ptor_score_secondary no
gbsa_zou_score_secondary no
gbsa_hawki ns_score_secondary no
SASA descri ptor_score_secondary no
anber _score_secondary no
m nimze_ligand no
at om nodel al
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vdw defn_file vdw_AMBER par n99. def n

flex_defn_file flex.defn
flex_drive file flex_drive.thbl
ph4_defn_file ph4. defn
ligand _outfile_prefix FMS_out put _re
wite orientations no

num scored_conformers 1

rank_l i gands no

For FMS+SGE-guided rescoring using descriptor sabeesample DOCK input file used is shown

below.

conf ormer _search_type rigid
use_i nternal _energy no
ligand_atomfile I'i gand. nol 2
[imt_max_ligands no
ski p_nol ecul e no
read_nol _sol vati on no
cal cul ate_rnsd no
use_dat abase filter no
orient _|igand no
bump _filter no
score_mol ecul es yes
contact _score_prinary no
cont act _score_secondary no
grid_score_primary no
grid_score_secondary no
mul tigrid_score_primry no
nmul tigrid_score_secondary no
dock3.5_score_primary no
dock3. 5_score_secondary no
conti nuous_score_primary no
conti nuous_scor e_secondary no
footprint_simlarity_score_primary no
footprint_simlarity_score_secondary no
Ph4_secondary no
descri ptor_score_primary yes
descri ptor_score_secondary no
descriptor_use_grid_score yes
descri ptor_use_tani noto yes
descri ptor _use_phar macophore_score yes
descriptor_grid_score_rep_rad_scal e 1
descriptor_grid_score_vdw scal e 1
descriptor_grid_score_es_scale 1
descriptor_grid_score_grid_prefix recept or
descriptor _fingerprint_ref _filenane tan_ref. nol 2
use_ph4_ref _nol 2 yes
Ph4_ref _nol 2_fil enane ph4_ref. nol 2
ph4_conpare_t ype o]
ph4_full _match yes
descri ptor_wei ght _grid_score 1
descri ptor_wei ght_fingerprint_taninoto 0
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descri pt or _wei ght _phar nacophore_t ani noto 10

gbsa_zou_score_secondary no

gbsa_hawki ns_score_secondary no

SASA descriptor_score_secondary no

anber _score_secondary no

nm nimze_ligand no

at om nodel al

vdw defn_file vdw_AMBER par n99. def n
flex_defn_file flex.defn
flex_drive file flex_drive.thbl
ph4_defn_file ph4. defn

ligand outfile_prefix FM5+SCGE _out put _re
write_orientations no

num scored_conformers 1

rank_l i gands no

For FMS-guided standard flexible ligand docking XjLthe sample DOCK input file used is

shown below.

conformer_search_type flex
user _speci fi ed_anchor no
[imt_max_anchors no
m n_anchor _si ze 5
pruni ng_use_clustering yes
pruni ng_nmax_orients 1000
pruni ng_cl ustering_cutof f 100
pruni ng_conforner_score_cut of f 100.0
use_cl ash_overl ap no
wite gromh_tree no
write fragnent _libraries no
use_i nt er nal _ener gy yes
i nt ernal _energy_rep_exp 12
ligand_atomfile I'i gand. mol 2
limt_max_|igands no
ski p_nol ecul e no
read_nol _sol vation no
cal cul ate_rnsd yes
use_rmed_reference_nol no
use_dat abase filter no
orient _ligand yes
aut omat ed_nat chi ng yes
receptor_site file spher es. sph
max_orientations 1000
critical _points no
cheni cal _mat chi ng no
use_l i gand_spheres no
bunp_filter no
scor e_nol ecul es yes
contact _score_prinmary no
cont act _score_secondary no
grid_score_primary no
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grid_score_secondary no

dock3.5 _score_primary no
dock3.5_score_secondary no
conti nuous_score_primary no
conti nuous_scor e_secondary no
footprint_simlarity_score_primary no
footprint_simlarity_score_secondary no
Ph4_primary yes
Ph4_secondary no
use_ph4_ref _nol 2 yes
Ph4_ref _nol 2_fil enane ph4_ref. nol 2
ph4_conpare_t ype o]
descri ptor _score_secondary no
gbsa_zou_score_secondary no
gbsa_hawki ns_score_secondary no
anber _score_secondary no
nm nimze_ligand yes
m ni m ze_anchor yes
nm ni mze_flexible growh yes
use_advanced_si npl ex_par anmeters no

si mpl ex_max_cycl es

si mpl ex_score_conver ge 0.1

si mpl ex_cycl e_conver ge 1.0

sinmpl ex_trans_step 1.0
sinmplex_rot_step 0.1
simplex_tors_step 10.0

si nmpl ex_anchor _nmax_iterations 500

si nmpl ex_grow _nmax_iterations 500
sinplex_grow tors_premn_iterations 0

si nmpl ex_random seed 0
sinplex_restraint_mn no

at om _nodel al

vdw _defn_file vdw_AMBER par nB9. def n
flex_defn_file flex.defn
flex_drive_file flex_drive.thbl
ph4_defn_file ph4. defn
ligand outfile_prefix

fl ex.dock2grid. orient. FMS

wite orientations no

num scor ed_conforners 5000
write_confornmations no
cluster_conformations yes
cluster_rnsd_threshol d 2.0
rank_l i gands no

For FMS+SGE-guided standard flexible ligand dockiRgX), the sample DOCK input file used is

shown below.

conf ormer _search_type flex
user _speci fi ed_anchor no
[imt_max_anchors no
m n_anchor _si ze 5
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pruni ng_use_cl ustering
pruni ng_nmax_orients
pruni ng_cl ustering_cut of f
pruni ng_conf orner_score_cut of f
use_cl ash_overl ap

wite growth_tree

wite fragnent _libraries
use_i nternal _energy

i nt ernal _energy_rep_exp
ligand_atomfile
limt_max_|igands

ski p_nol ecul e
read_nol _sol vation

cal cul ate_rnsd
use_rmed_reference_nol
use_dat abase _filter
orient _|igand

aut omat ed_mat chi ng
receptor_site file
max_orientations
critical _points
cheni cal _mmat chi ng

use_l i gand_spheres

bump _filter
score_mol ecul es

contact _score_prinmary
cont act _score_secondary
grid_score_primary
grid_score_secondary
dock3.5_score_primary
dock3. 5_score_secondary
conti nuous_score_primary
conti nuous_scor e_secondary

footprint_simlarity_score_primary
footprint_simlarity_score_secondary

Ph4_primary

Ph4_secondary

descri ptor_score_primary
descri ptor_score_secondary
descri ptor_use_grid_score
descri ptor_use_tani noto

descri ptor _use_phar macophore_score
descriptor_grid_score_rep_rad_scal e
descriptor_grid_score_vdw scal e

descriptor_grid_score_es_scal e

descriptor_grid_score_grid_prefix

use_ph4_ref _nol 2
Ph4_ref _nol 2_fil enane
ph4_conpare_t ype

ph4_full _match

descri ptor_weight _grid_score

descri pt or _wei ght _phar nacophore_t ani noto

gbsa_zou_score_secondary
gbsa_hawki ns_score_secondary
anber _score_secondary

yes
1000
100
100.0
no

no

no
yes
12

I'i gand. mol 2
no

no

no
yes
no

no
yes
yes
spher es. sph
1000
no

no

no

no
yes
no

no

no

no

no

no

no

no

no

no

no

no
yes
no
yes
no
yes

1

1

1
recept or
yes
ph4_ref. nol 2
o]

yes

1

10

no

no

no



nm nimze_ligand

ni ni m ze_anchor

nm ni mze_flexible growh
use_advanced_si npl ex_par aneters
si mpl ex_max_cycl es

si mpl ex_score_conver ge

si nmpl ex_cycl e_converge

simpl ex_trans_step

si nmpl ex_rot_step
simplex_tors_step

si nmpl ex_anchor_nmax_iterations
si nmpl ex_grow _nax_iterations
sinplex_grow tors_premn_iterations
si nmpl ex_random seed
sinplex_restraint_mn

at om nodel

vdw defn_file

flex_defn_file

flex_drive file

ph4_defn_file

ligand _outfile_prefix

fl ex.dock2grid. ori ent. FM5+SGE
wite orientations

num scor ed_conforners
write_confornmations
cluster_conformati ons

cluster _rnsd_threshol d
rank_l i gands

yes
yes

al
vdw_AMBER par n99. def n
flex.defn
flex_drive.thbl

ph4. defn

no
5000
no
yes
2.0
no

For FMS-guidedle novo growth, the sample DOCK input file used is showioly.

conf ormer _search_type
dn_fraglib_scaffold file
dn_fraglib_linker_file
dn_fraglib_sidechain file
dn_fraglib_rigid file
dn_user _speci fi ed_anchor
dn_fraglib_anchor_file
dn_use_torenv_table
dn_torenv_table
dn_sanpl i ng_ret hod
dn_graph_starting_points
dn_graph_breadth
dn_graph_depth
dn_graph_tenperature
dn_constrai nt_nol _wt
dn_constraint_rot_bon
dn_t ani not o_cut of f
dn_heur _unmat ched_num
dn_heur _mat ched_r nsd
dn_max_grow | ayers
dn_max_current _aps
dn_nax_root _si ze
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denovo
fraglib_scaffol d. nol 2
fraglib_linker.nol2
fraglib_sidechain. nol 2
fraglib_rigid. nol2
yes
fraglib_anchor. nol 2
yes
fraglib_torenv. dat
graph

10

5

2

100

1000



dn_max_| ayer _si ze
dn_write_checkpoints
dn_out put _prefix

use_i nternal _energy

i nternal _energy_rep_exp
use_dat abase filter

orient _ligand

aut omat ed_nat chi ng
receptor_site file
max_orientations

critical _points
cheni cal _mat chi ng

use_l i gand_spheres
bunp_filter

score_nol ecul es

contact _score_prinary

cont act _score_secondary
grid_score_primary
grid_score_secondary

mul tigrid_score_primry

nmul tigrid_score_secondary
dock3.5 _score_primary
dock3.5_score_secondary

conti nuous_score_primary
conti nuous_scor e_secondary
footprint_simlarity_score_primary
footprint_simlarity_score_secondary
Ph4_primary

Ph4_secondary
use_ph4_ref _nol 2
Ph4_ref _nol 2_fil enane
ph4_conpare_type

ph4_full _match

descri ptor_score_secondary
gbsa_zou_score_secondary
gbsa_hawki ns_score_secondary
SASA descriptor_score_secondary
anber _score_secondary

nm nimze_ligand

ni ni m ze_anchor

nm nimze_flexible growh
use_advanced_si npl ex_par anmeters
si mpl ex_max_cycl es

si nmpl ex_score_conver ge

si mpl ex_cycl e_conver ge

sinmpl ex_trans_step

si nmpl ex_rot_step

sinmpl ex_tors_step

si nmpl ex_anchor _nmax_iterations
si nmpl ex_grow _nmax_iterations
sinplex_grow tors_premn_iterations
si mpl ex_random seed
sinplex_restraint_mn

at om _nodel

vdw _defn_file
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yes
FMS_denovo. fi nal
yes
12

no
yes
yes
spher es. sph
10000
no

no

no

no
yes
no

no

no

no

no

no

no

no

no

no

no

no
yes
no
yes
ph4_ref. nol 2
o]

yes
no

no

no

no

no
al
vdw. def n



flex_defn_file
flex_drive file
ph4_defn_file

flex.defn
flex_drive.thbl
ph4. defn

For FMS+SGE-guidede novo growth, the sample DOCK input file used is showeiotw.

conformer_search_type

dn_fraglib_scaffold file

dn_fraglib_linker file

dn_fraglib_sidechain_file

dn_fraglib_rigid file
dn_user _speci fi ed_anchor
dn_fraglib_anchor_file
dn_use_torenv_table
dn_torenv_table
dn_sanpl i ng_net hod
dn_graph_starting_points
dn_graph_breadth
dn_graph_depth
dn_graph_tenperature
dn_constraint _nol _wt
dn_constraint _rot_bon
dn_t ani not o_cut of f
dn_heur _unmat ched_num
dn_heur _mat ched_r msd
dn_max_grow | ayers
dn_max_current _aps
dn_nax_root _si ze
dn_nmax_| ayer _si ze
dn_write_checkpoints
dn_out put _prefix

use_i nt ernal _energy

i nt ernal _energy_rep_exp
use_dat abase _filter
orient _|igand

aut omat ed_mat chi ng
receptor_site file
max_orientations
critical _points
cheni cal _mat chi ng

use_l i gand_spheres

bump _filter
score_mol ecul es

contact _score_prinary
cont act _score_secondary
grid_score_primary
grid_score_secondary
mul tigrid_score_primry

nmul tigrid_score_secondary

dock3.5_score_primary
dock3. 5_score_secondary
conti nuous_score_primary

conti nuous_scor e_secondary

denovo
fraglib_scaffold. nol 2
fraglib_linker.nol2
fraglib_sidechain. nol 2
fraglib_rigid. nol 2
yes
fraglib_anchor. nol 2
yes
fraglib_torenv. dat

gr aph

10

yes
FM5+SCGE_denovo. fi na
yes

12

no

yes

yes
spher es. sph
10000

no

no

no

no

yes

no

no

no

no

no

no

no

no

no

no



footprint_simlarity_score_primary
footprint_simlarity_score_secondary
Ph4_primary

Ph4_secondary

descri ptor_score_primary

descri ptor_score_secondary
descriptor_use_grid_score

descri ptor _use_phar nacophore_score
descri ptor _use_t ani noto

descri ptor_use_hungari an
descriptor_grid_score_rep_rad_scale
descriptor_grid_score_vdw scal e
descriptor_grid_score_es_scale
descriptor_grid_score_grid_prefix
use_ph4_ref _nol 2
Ph4_ref _nol 2_fil enane
ph4_conpare_type

ph4_full _match

descri ptor_wei ght _grid_score
descri pt or _wei ght _phar macophor e_t ani not o
gbsa_zou_score_secondary
gbsa_hawki ns_score_secondary

SASA descriptor_score_secondary
anber _score_secondary

nm nimze_ligand

ni ni m ze_anchor
mnimze_flexible_growh
use_advanced_si npl ex_par anmeters

si nmpl ex_max_cycl es

si nmpl ex_score_conver ge

si nmpl ex_cycl e_converge

sinmpl ex_trans_step

si nmpl ex_rot_step

simplex_tors_step

si nmpl ex_anchor _nmax_iterations
simpl ex_grow max_iterations
sinmplex_grow tors _prenin_iterations
si mpl ex_random seed
sinmplex_restraint_mn

at om _nodel

vdw defn_file

flex_defn_file

flex_drive file

ph4_defn_file
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no

no

no

yes

no

yes

yes

no

no

1

1

1
recept or
yes
ph4_ref. nol 2
o]

yes

1

1

no

al

vdw. def n
flex.defn
flex_drive.thbl
ph4. defn



Appendix B. Visualization of Pharmacophore Models

This section describes the general procedure tmalie pharmacophore models generated by the

FMS protocol using Chimetaild files'®® as introduced in Chapter 2.

First, the following DOCK input parameters needb® set. By default, the parameters
“write_out_reference_ph4”, “write_out_candidate_plahd “write_out_matched_ph4” are set to

“no” and no output pharmacophare|2 file will be generated.

write_out _reference_ph4 yes
ref erence_ph4_out fil enane ref _ph4. nol 2
write_out _candi date_ph4 yes
candi date_ph4_out _fil enane cad_ph4. nol 2
write out_nmatched_ph4 yes
mat ched_ph4_out _fil enane mat _ph4. nol 2

In the pharmacophore outpumol2 files “ref _ph4.mol2”, *“cad_ph4.mol2” and
“mat_ph4.mol2”, each pharmacophore point is represkby a set of atoms (Table B-1, column c).
Note for HBD, HBA, ARO and RNG labeled pharmacoghpoints, more than one atom is used
because both the center of the point (denoted éyfitht atom in the list) and the directionality
(derived from all the atoms in the list) need torbeorded. The output pharmacophow? file
will then be converted tolaild file using a python scriptol2bild.py (to be released in DOCK6.8).
The bild file contains the directional vectors derived falt the pharmacophore points with
directionality (HBD, HBA, ARO, RNG) in the originahol2 file. Different colors are used to
represent different pharmacophore labels as showmble B-1 column d. The directional vectors
are modeled as 3D arrow geometric objects in théeentar modeling software Chimera, each

consists of a cylinder (from the start point to iatermediary point) and a cone (from the
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intermediary point to the end point) representimg arrowhead. As an example, a 3D arrow for a

ring pharmacophore feature is written as followshimbild file.

.col or orange

.arrow 0.64 -17.12 -10.61 0.99 -17.69 -9.86 0.01 0.04 0.75
.col or orange

.arrow 0.64 -17.12 -10.61 0.30 -16.55 -11.36 0.01 0.04 0.75
. col or orange

.arrow -0.04 -15.65 -9.18 0.30 -16.22 -8.43 0.01 0.04 0.75
. col or orange

.arrow -0.04 -15.65 -9.18 -0.39 -15.09 -9.93 0.01 0.04 0.75
. col or orange

.arrow -0.22 -16.30 -4.16 -0.73 -16.46 -3.32 0.01 0.04 0.75
. col or orange

.arrow -0.22 -16.30 -4.16 0.29 -16.15 -5.01 0.01 0.04 0.75
. col or orange

.arrow -1.30 -14.47 -4.50 -1.81 -14.62 -3.65 0.01 0.04 0.75
.col or orange

.arrow  -1.30 -14.47 -4.50 -0.79 -14.33 -5.35 0.01 0.04 0.75
.color red

.arrow  -7.12 -15.42 -2.60 -7.25 -14.95 -1.73 0.01 0.04 0.75
.color red

.arrow -7.11 -15.54 -4.81 -7.24 -15.16 -5.73 0.01 0.04 0.75
.col or blue

.arrow 2.65 -16.61 -11.14 1.71 -16.86 -10.90 0.01 0.04 0.75
.col or blue

.arrow 1.53 -15.84 - 3.04 0.72 -16.07 -3.57 0.01 0.04 0.75

Here, each Chimera object is defined by two lindse first line defines the color of the
Chimera object (e.g. “.color orange”). The sectind defines the type of the geometric object
(“.arrow”), the start and end point of the arroyxt, y1, z1)= (0.64, -17.12, -10.61) and2?, y2,
22)= (0.99, -17.69, -9.86) in the first object in thleove example, arrow pointing fromxil(y1, z1)
to (X2, y2, 22) ), as well as the size of the arrow (radius ef ¢lylinderr1= 0.01, the radius of the
base of the cone2=0.04, and the ratio of the length of cylinder batt of the complete arrow
rho=0.75). For the most recent description, pleasensald the Chimera website

(http://www.cgl.ucsf.edu/chimera/).
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Table B-1. Pharmacophore feature represented in ph4.mol2 fahdbifo.

a. Label b. definition c. mol2 d. bild
PHC Hydrophobi C -
HBD Hydrogen bond don HD, N blue
HBA Hydrogen bond accepr 0O, HA rec
ARO Aromatic ring S, H1, H: orangt
RNG Non-aromatic rin P, H3, H: yellow
POS Positively charge Na -
NEG Negatively charge Cl -

The completéild files include all the directional vectors deriviedm the pharmacophore
mol2 files. Both the pharmacopharel2 andbild files will be opened in Chimera for visualization

of the pharmacophore model, as shown in Figureathle 2-1 and Figure 2-18 in Chapter 2.
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Appendix C. Lipid-Bound HIVgp41-T20 Complex Simulations

This section outlines the DOPC lipid-bound HIVgpB20 complex (as visualized in Figure C-1)
construction steps using the CHARMM-GUI lipid b and simulation protocols using
pmemd.cuda in AMBER14 on GPU-accelerated machines. The gdegtgand (red helix in Figure

C-1) and protein (magenta helices in Figure C+licstires are obtained as described in Chapter 5.

First, the gas phase protein-ligand complex strectsi uploaded to the CHARMM-GUI
lipid builder to generate the lipid bilayer. “Hetgeneous Lipid” system with “Rectangular” box
type is chosen. The length of Z axis for the solveox is determined by assigning the “water
thickness”, which is defined as the minimum waterght on top and bottom of the complex
system, to “17.5”. In order to obtain a reasonamaformation with the fusion peptide region
correctly embedded in between the lipid bilayevesal values of the NHR insertion depth were
tested and a final value of -75.5 A was select&d.achieve similar lipid density in the upper and
lower lipid layers, the “number of lipid componéhis set to 80 for the upper leaflet and 74 for the
lower leaflet. No ions are added for the initiebtt The solvated lipid-bound system is pre-
equilibrated briefly in the CHARMM-GUI platform arfahal structure is downloaded.

The solvent box along with the lipid bilayer froinet resulting structure was saved as a
separate pdb file and later shifted to match thgiral gas phase complex variant models using
molecular modeling softwar€himera. Also, the CHARMM-GUI PDB format structure is
converted into AMBER compatible format using a mythscript charmmlipid2amber.py provided
in AMBERToo0Is14. Another bash script vmd_box_dishsis used to estimate the periodic box

dimensions by measuring the range of water molstut®rdinates. The size of the water box for
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the complex system (320 residues) is set to 80x806A° (24399 TIP3P waters, 154 DOPC lipids)
for MD simulations in AMBER14. Force field ff99SB employed for proteins, Lipid14 for lipids

and TIP3P for explicit waters. The resulting staytconformations were used for 200ns-long
molecular dynamic simulations. The 9-step equalilmn and minimization protocols are identical
to that described in Chapter 5. 20 production 1@ns each) of MD simulations were performed
with restraint weight of 0.5 kcahol™-A2 on TM region (residues 82-94 on NHR1, residues 176
188 on NHR2, and residues 270-282 on NHR3, hereré¢blue numbers are from the actual
complex file) heavy atoms. The average simulatior is about 19ns/day per GPU card. Future
tests and studies can be done to further refindigltebound structure and optimize the molecular
dynamics simulation protocols for better initiakige and equilibration of the solvated complex
system. Energetic and structural analyses spaltyfion the lipids can uncover the role of lipids i

the mechanism of T20 binding.

Figure C-1. Membrane-bounded HIVgp41-T20 complex prepared @HARMM-GUI and AMBER14.
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