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Abstract of the Dissertation

Software Tools for Stochastic Simulations of Turbulence

by

Ryan Kaufman

Doctor of Philosophy

in

Applied Mathematics and Statistics

Computational Applied Mathematics

Stony Brook University

2014

We present two software tools useful for the analysis of mesh based physics application

data, and specifically for turbulent mixing simulations. Each has a broader, but separate

scope, as we describe. Both features play a key role as we push computational science to its

limits and thus the present work contributes to the frontier of research.

The first tool is Wstar, a weak* comparison tool, which addresses the stochastic nature

of turbulent flow. The goal is to compare underresolved turbulent data in convergence,

parameter dependence, or validation studies. This is achieved by separating space-time data

from state data (e.g. density, pressure, momentum, etc.) through coarsening and sampling.

The collection of fine grained data in a single coarse cell is treated as a random sample

in state space, whose cumulative distribution function defines a measure within that cell.

This set of measures with the spacial dependence defined by the coarse grid defines a Young

measure solution to the PDE.

The second tool is a front tracking application programming interface (API) called FTI. It

has the capability to generate geometric surfaces (e.g. the location of interspecies boundaries)

of high complexity, and track them dynamically. FTI also includes the ghost fluid method,

which enables mesh based fluid codes to maintain sharpness at interspecies boundaries by

modifying solution stencils that cross such a boundary. FTI outlines and standardizes the

methods involved in this model. FronTier, as developed here, is a software package which

implements this standard. The client must implement the physics and grid interpolation

routines outlined in the client interface to FTI. Specific client programs using this interface

include the weather forecasting code WRF; the high energy physics code, FLASH; and two

locally constructed fluid codes, cFluid and iFluid for compressible and incompressible flow

respectively.
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Chapter 1

Introduction

The motivation for this thesis is to provide simple and useful software tools to facilitate

turbulent mixing simulations. We introduce two tools, each of which took on a life of its

own, each with a distinct generalization beyond its original target domain. As a consequence,

we consider them separately, as distinct sections of the thesis. Though developed as tech-

niques for Navier-Stokes based turbulent LES, we also discuss the broader range of possible

applications for each.

It has been shown that front tracking with large eddy simulations (LES) gives good

agreement with experimental data for instability studies, such as Rayleigh-Taylor (RT) [15,

20]. Convergence is challenging to establish in an unstable regime [21]. For this we introduce

a stochastic notion of convergence, named weak∗ convergence (or w∗ convergence). Weak*

convergence is a very general concept. In this thesis, we consider weak* convergence of

probability measures. In this weak* limiting process, we realize the solution of a PDE as

a space-time dependent probability measure. This form of stochastic convergence has been

developed in [37, 38, 7, 4] and used by [10] in their existence proof for 3D Euler equations.

We outline techniques for computing Navier-Stokes solutions based upon

• LES / SGS

• Front Tracking

• Stochastic Convergence

Chapter 3 deals with our first main theme: stochastic data analysis. It is natural to

consider turbulent flows as a stochastic process. We present a portable tool which can gen-

erate stochastic data from a single deterministic simulation output. We calculate various

statistics, including arbitrary order single point correlations between physical variables, as

well as probability density functions (PDFs) and cumulative density functions (CDFs) for
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state-space variables. We show verification studies for the tool as well. The unique contribu-

tion of this thesis is the implementation of this tool, as well as participation in verification

studies based on its use.

Chapter 4 introduces our second theme: bringing a software innovation, front tracking,

into ready use in a wide range of computational simulation codes. Front Tracking has been

verified and validated in RT [31, 12, 11, 24, 26] studies using SGS in an LES regime. The

unique contribution of this thesis is the design of the API based on past implementations,

and the implementation of the server code, as well as the client code in cFluid, FLASH, and

WRF.
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Chapter 2

Introduction to Turbulence Models

2.1 Turbulence Modeling

To discuss turbulence and its length scales, we introduce the dimensionless Reynolds

number, which is a ratio of the inertial to the viscous forces in a fluid flow. The Reynolds

number is defined as

Re =
Inertial Force

Viscous Force
=
ρvL

µ
=
vL

ν
, (2.1)

where L and v are typical length and velocity values, µ and ν the dynamic and kinematic

viscosities. Since viscosity is the mechanism by which small turbulent vortices break down,

a high Reynolds number implies finer vortex structures associated with turbulence. The

range of turbulent length scales is divided into three main range, each with a preferred

computational method.

• Integral length scales

• Inertial length scales

• Dissipation length scales

The integral range is the range of energy scales associated with the largest eddies in the

flow structure. The size of these large eddies is bounded only by the size of the flow medium.

They contain a large amount of energy in low frequency oscillations. Integral length scale

vortices supply the energy which drives the smaller scale vortices.

The inertial range is an intermediate range. Vortices in this range are in balance between

the driving forces of the large scale eddies and the dissipative forces of the small scale

eddies. Scales in this range are non-dissipative, however the dissipation rate at smaller

scales controls the rate of energy transfer in this range. Since vortices on each scale are
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experiencing balanced energy transfer, there is self similarity in in this range [23] and the

energy can be expressed as a function of only two parameters: κ, the wave number; and ε,

the dissipation rate. In this range, the slope of the log of energy as a function of the log of

the wave number, ln(κ) vs ln(E(κ)) (for fixed ε) remains constant and is represented by the

Kolmogorov 5
3

power law [23].

The dissipation range is the range of length scales where the viscous effects of the medium

are non-negligable. This range begins with the Kolmogorov scale η, the length of the smallest

vortices, defined as:

η =

(
ν3
k

ε

)1/4

, (2.2)

where νk is the kinematic viscosity. Below the Kolmogorov scale, turbulent vortices cannot

exist due to being overdamped by viscous forces. Turbulent eddies in this range have high

frequency and low energy. Turbulent effects do not extend beyond this range.

We classify techniques for computing solutions to Navier-Stokes equations into three

distinct categories:

1. DNS: Direct Numerical Simulation

2. LES: Large Eddy Simulation

3. RANS: Reynolds Averaged Navier-Stokes

Direct numerical simulation (DNS) is the most fundamental solution technique. It com-

putes the PDE solution directly, i.e. with no additional models for turbulence. DNS describes

these solutions in which flow structures are resolved on all length scales. This simple and

ideal case is impractical for most problems involving turbulence (with models to be discussed

later). Thus, it is not discussed further here.

Reynolds-averaged Navier-Stokes (RANS) models apply the Reynolds decomposition to

the original PDE. This decomposition separates the solution into an averaged component,

and a fluctuating component. In these averaged equations some high order terms (such as

Reynolds stress) which arise from its formulation must be modeled. A RANS model treats

the Reynolds stress, or more commonly, some components of it, as dynamic variables with

their own equations. The method is efficient regardless of grid resolution, but is dependent

on data to set the several parameters in its models. Often the coefficients for these modeled

terms must be calibrated from experimental data or from LES.
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2.2 Large Eddy Simulations

LES describes a technique for computing in the regime where large scale turbulent vortices

are resolved, but fine scale turbulent structures still exist below the mesh resolution. LES

models also begin with the filtered Navier-Stokes equations. We apply dynamic subgrid-

scales (SGS) to model subgrid turbulent effects. Kolmogorov’s self similarity law [23] allows

for the SGS coefficients to be solved by comparing resolved effects at two different length

scales in the inertial range (see §2.2.3). Therefore, the SGS models can only be applied when

the characteristic length scale of the mesh is within this range. This gives a parameter free

model for subgrid turbulent effects. We also apply front tracking (see Chapter 4).

The tools described in this thesis will be applicable to simulations employing LES (in the

inertial regime). An expanded description appears in §2.2.

2.2.1 The Equations of Fluid Motion

The dynamics of fluid motion are modeled by Navier-Stokes equations for conservation

of mass, energy, and momentum. Fundamental quantities are represented by the primi-

tive variables ρ, ~ψ, ~u, p, E for density, species concentration, velocity, pressure, and energy

respectively. The following Navier-Stokes definitions are based on [5, 32, 28].

The equation for the conservation of mass is:

∂ρ

∂t
+
∂(ρui)

∂xi
= 0 . (2.3)

The equation for the conservation of species mass in a multispecies flow is:

∂ρψk
∂t

+
∂ρψkuj
∂xj

= −∂(ρψkVk,j)

∂xj
, (2.4)

where Vk,j is the diffusion velocity of species k. Using g = const as the acceleration due to

gravity, we have the following form for conservation of momentum:

∂ρui
∂t

+
∂ρuiuj
∂xj

= − ∂p

∂xi
+
∂τij
∂xj

+ ρgi , (2.5)

where, according to Stokes’ law, we represent the viscous stress tensor, τij by,

τij = µ

[
∂ui
∂xj

+
∂uj
∂xi
− 2

3

∂uk
∂xk

δij

]
. (2.6)
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with E as the total energy (per unit mass), conservation of energy is given by:

∂ρE

∂t
+
∂ρEuj
∂xj

+
∂puj
∂xj

= ρgjuj −
∂qj
∂xj

+
∂τijui
∂xj

(2.7)

2.2.2 Navier Stokes Filtering

The LES filter is a mathematical operation which removes small scales from the solution

to the Navier-Stokes equations. It is a low-pass filter, which means that low frequency,

large wavelength perturbations, i.e. large eddies, are allowed to pass, while high frequency

perturbations, i.e. small eddies are filtered out.

When applying a LES model, the original Navier-Stokes equations are filtered. A filter

has a length scale (denoted ∆̄) associated with it. ∆̄ defines the wavelength above which

information is allowed to pass. This is called the filter width. The quantity, q, filtered by ∆̄,

is denoted q̄. Thus, we have,

q = q̄ + q′ = filtered component + subfilter component . (2.8)

The filter is defined by a convolution, G∆̄, associated with the length scale ∆̄.

We define the filtered quantity q̄, in terms of the function G∆̄

q̄ =

∫
Ω

G∆̄(~x− ~ζ)q(~ζ, t)d~ζ . (2.9)

The filter G∆̄ satisfies
∫

Ω
G∆̄(x− ζ)dζ = 1.

The motivation is such that the Navier-Stokes numerical solution at the grid level rep-

resents the filtered Navier-Stokes solution. The sub-filter components (i.e. SGS component)

are modeled (see §2.2.3) and added into the filtered solution. This filter could be implicit or

explicit. Studies here use the implicit mesh-based filter. With an implicit filter, the filtering

is performed simply by the grid resolution cutoff, and cell values are interpreted as mesh

block averages. If filter width is fixed, the soution converges under mesh refinement to a

solution of the filtered equations. The solution of the Navier-Stokes equation then requires

a second limit as the filter length tends toward zero.

We also define the Favre filter operation, which is a mass weighted average based on the

LES filter operation

q̃ =
ρq

ρ̄
. (2.10)

The Favre filter of the variable q will be expressed q̃.

We now define the filtered Navier-Stokes equations. The equation for conservation of

6



mass comes from applying the ∆ filter to Eq. 2.3:

∂ρ̄

∂t
+
∂ρ̄ũj
∂xj

= 0 . (2.11)

By applying the filter to Eqn. 2.5, we have conservation of momentum:

∂ρ̄ũi
∂t

+
∂ρuiuj
∂xj

+
∂p̄

∂xi
= ρ̄gi +

∂τ̄ij
∂xj

, (2.12)

where gi is the gravitational force in direction i. The filtered viscous stress tensor is modeled

as:

τ ij = νd

[
∂ũi
∂xj

+
∂ũj
∂xi
− 2

3

∂ũk
∂xk

δij

]
, (2.13)

where νd = ρνk is the filtered dynamic viscosity. νk, the kinematic viscosity, is considered

constant.

Let Rij = ρuiuj − ρũiũj be the residual stress tensor. This gives the alternate form for

Eqn. 2.12:
∂ρ̄ũi
∂t

+
∂ρũiũj
∂xj

+
∂p̄

∂xi
= −∂Rij

∂xj
+ ρ̄gi +

∂τ̄ij
∂xj

. (2.14)

∂E

∂t
+
∂(E + p)ũi

∂xi
=
∂τ ijũj
∂xi

+
∂

∂xi
(κ
∂R̃

∂xi
) +

∂

∂xi

(
(H̃h − H̃l)ρT̃

∂ψ̃

∂xi

)

+

(
1

2

∂τkkṽi
∂xi

− ∂q
(H)
i

∂xi
− ∂q

(T )
i

∂xi
− ∂q

(V )
i

∂xi

) , (2.15)

where T̃ is the average temperature. We derive the filtered species diffusion equation from

Eqn. 2.4.

∂ρψ̃k
∂t

+
∂ρψ̃kũj
∂xj

=
∂

∂xi

(
ρτ̃
∂ψ̃k
∂xj

)
−
∂q

(ψ)
j

∂xj
, (2.16)

Equations 2.11-2.16 define our LES model equations for grid level effects. Four residual

terms have been used here, namely, Rij, q
(H)
i , q

(V )
i , q

(ψ)
i which are expressed as

Rij = ρ̄(ũiuj − ũiũj) (2.17)

q
(H)
i = ρ(c̃pTui − c̃pT̃ ũi) (2.18)

q
(T )
i =

1

2
ρ(ũkukui − ũkũkũi) (2.19)
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q
(V )
i = τijuj − τ ijũj (2.20)

q
(ψ)
i = ρ(ψ̃ui − ψ̃ũi) (2.21)

The derivation of these equations is shown out in [28], in which the subgrid term ρ̄(ẽ∞vi −
ẽ∞ṽi) is modeled as zero. H̃h and H̃l represent the partial specific enthalpy of the two species

(heavy and light), defined as

H̃h = ẽh +
p

ρ
(2.22)

H̃l = ẽl +
p

ρ
(2.23)

where ẽh and ẽl are the specific internal energy of each species [28].

2.2.3 SGS Models

2.2.3.1 Smagorinsky Model

We begin SGS construction with the eddy-viscosity model [42] in which the additional

turbulent stresses are modeled by adding an artificial eddy viscosity, νt. The approach treats

dissipation of kinetic energy at subgrid scales as a form of molecular diffusion.

The SGS residual stress tensor Rij can be decomposed into isotropic and anisotropic

parts.

Rij = (Rij −Rkk
δij
3

) +Rkk
δij
3

= Ra
ij +Ri

ij = anisotropic tensor + isotropic tensor (2.24)

The anisotropic part of Rij is modeled based on turbulent viscosity

Ra
ij = −2ρ̄νtS̃

a
ij

where Sij = 1
2
( ∂ũi
∂xj
∂ũj∂xi) is the strain-rate tensor, and Saij = S̃ij − δij

3
S̃kk.

The classical Smagorinsky model for viscosity is:

νt = (CS∆)2|S̃| (2.25)

where |S̃| =
√

2S̃ij
2

and CS is a model coefficient. Accordingly, for the anisotropic part,

Ra
ij = −2ρ̄(Cs∆)2|S̃|S̃aij . (2.26)
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The isotropic part is based on [45] following kSGS = (CI∆)2|S̃|2. We have

Rkk = 2ρ̄(CI∆)|S̃|2 . (2.27)

The full SGS stress tensor is modeled as

Rij = −2ρ̄(CS∆)2|S̃|S̃aij +
δij
3

2ρ̄(CI∆)2|S̃|2 . (2.28)

The SGS mass species transport flux, gradient transport is:

λkj = −ρ̄ νt
Sct

∂ψ̃k
∂xj

, (2.29)

where Sct is the turbulent Schmidt number and νt is the Smagorinsky viscosity (see Eqn. 2.25).

The equation for turbulent thermal flux is:

Qj = −ρ̄ vt
Prt

∂ẽ

∂xj
= −ρcv

vt
Prt

∂T̃

∂xj
(2.30)

where Prt is the turbulent Prandtl number.

Four turbulent transport coefficients have been introduced, namely Cs, CI , Prt, and Sct.

Using Germano’s identity, as shown in the next section, we are able to close these terms.

2.2.3.2 Dynamic Smagorinsky Model

Here we demonstrate the application of the Germano identity to close subgrid terms in

the multi-species filtered Navier-Stokes according to the model posed by [25] as presented

in [32]. We refer to [32] for the generation of all closure terms, but here we show CS the

Smagorinsky viscosity coefficient as an example.

SGS stress at grid filter level ∆̄

RM
ij = −2ρ̄(Cs∆̄)2

√
2S̃ijS̃ijS̃aij +

2δij
3
ρ̄(CI∆̄)2(2S̃2

ij) (2.31)

We introduce a new test filter ˆ̄∆ larger than ∆̄ This filter gives a new field with scales

larger than the resolved field.

SGS stress st the test filter level is represented:

rij = ρ̂uiuj −
ρ̂uiρ̂uj

ρ̂
, (2.32)

9



which is modeled as:

rMij = −2ρ̂(Cs∆̂)2
√

2S̃ijS̃ijS̃aij +
2δij
3
ρ̂(CI∆̂)2(2S̃2

ij) , (2.33)

where ̂̃
Sij =

1

2
(
∂

∂xj
(
ρ̂ui

ρ̂
) +

∂

∂xi
(
ρ̂uj

ρ̂
)),
̂̃
S
a

ij =
̂̃
Sij −

δij
3
̂̃
Skk (2.34)

where
̂̃
Sij = 1

2
( ∂
∂xj

( ρ̂ui
ρ̂

) + ∂
∂xi

(
ρ̂uj

ρ̂
)),
̂̃
S
a

ij =
̂̃
Sij − δij

3

̂̃
Skk Where Sij is the strain rate tensor.

Applying Germao’s identity for the Leonard stress tensor, Lij, gives

Lij = rij − R̂ij = (
ρ̂uiρuj
ρ̄
− ρ̂ui ρ̂uj

ρ̂
(2.35)

The right hand side may be obtained from the filtered variables. Thus, Lij is known. The

anisotropic part of the Leonard stress tensor, Lij, can be expressed as:

Laij = raij − R̂a
ij = 2(Cs∆̄)2

̂
ρ̄

√
2S̃ijS̃ijS̃ija − 2(CS∆̂)2ρ̂

√
2ŜijŜijŜija = C2

sM
a
ij (2.36)

Since raij − R̂a
ij is known and Mij can be calculated, we have 5 independent relations for CS.

This can be solved by least squares. This process can be carried out similarly for CI , the

Prandtl number, and the Schmidt number. [25, 32].

2.3 Rayleigh-Taylor Problem

The RT instability is a fluid instability in which acceleration is directed from a heavy fluid

toward a light fluid across a planar interface [3]. Perturbations in the interface position induce

pressure perturbations, which cause the interface perturbations to grow. The regions of light

fluid penetrating into the heavy are called bubbles; the regions of heavy fluid penetrations

into a light ambient are called spikes. As these perturbations grow, secondary Kelvin-

Helmholtz instabilities develop on their sides, leading to the formation of mushroom caps

at the tips, and vortex roll-up along sides of the bubbles and spikes. By late time, many

of these fine scale vortex structures develop and interact, leading to highly complex flow

patterns.

An RT instability, at early time, grows exponentially with a growth rate γ =
√Agλ,

where g is the acceleration, and λ is the wave length of the perturbation. A is the Atwood

number, defined as ρh−ρl
ρh+ρl

with ρh, ρl as the heavy and light fluid densities, respectively. The

factor A acts as a buoyancy correction to the acceleration force g.
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Simulating late time RT instabilities is difficult due to the inherent instability of the

problem, uncertainty surrounding initial conditions, and due to the numerical smearing of

the fluid interface that is present in many Eulerean solvers. Simulating such a system

requires a fine mesh, a subgrid turbulence model, and front tracking, as well as correct use

of experimental values for fluid transport quantities [19]. LES with front tracking has been

shown to be well suited (giving excellent agreement with experimentally observerd growth

rates) for Rayleigh-Taylor instabilities [27, 29]. Here we introduce methods for the analysis

of stochastic solutions in an LES regime.

2.4 Richtmeyer-Meshkov Instability

The Richtmeyer-Meshkov (RM) instability is a fluid instability induced by passage of

a shock wave across a (perturbed) planar interface between two fluids. The instability is

similar to RT in the sense that bubbles and spikes grow from the shocked interface, as in

RT. In contrast to RT, which produces constant acceleration and velocities increasing in

time, early time RM produces constant velocities and amplitudes increasing linearly in time,

with slower growth rates at later time.

The initial growth of the interface with the shock impacting at t = 0 is given as

y(x, t) = a(t) sin(kx) (2.37)

where a(t) is the growth rate as a function of time.

Richtmyer’s formula [40] gives the growth rate as:

a(t) = k∆u
ρ1 − ρ2

ρ1 + ρ2

a(0+) (2.38)

where ∆u is the difference between the shock and unshocked mean interface velocities. The

ρi are the post-shocked densities on the two sides of the interface. The incident shock moves

from material 2 to material 1. a(0+) is the perturbation amplitude immediately after the

collision of the shock with the material interface. We assume the preshocked amplitude,

a(0−) is small.

2.5 Stochastic Solutions and Second Moments

Due to the inherent instability of turbulent fluid flow, we develop techniques which em-

phasize the stochastic nature of these kinds of problems. LES grid cell values are cell aver-
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ages, not point values. We build on this by proposing a stochastic PDE solution, which is

composed of one-point probability density functions on the PDE state variables. Additional

physical processes, e.g. combustion chemistry, can be modeled as stochastic processes, de-

pendent on local statistics to determine local reaction rates. Stoichiometric reactions, such

as chemical combustion, are known to have reaction rates of the form ρai ρ
b
je
−A/t, where ρi

and ρj are local mean densities of different reactive components. For the case a = 1− b, we

can represent the reaction rate using the normalized second moment of the concentration.

We study a normalization of the second moment

θ =
〈F (1− f)〉
〈f〉〈1− f〉 , (2.39)

where f is the relative concentration of fluid.
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Chapter 3

Wstar: A Comparison Tool for

Stochastic Grid Data

In this chapter we explore stochastic solutions to partial differential equations (PDEs).

We make use of a theoretical framework which represents grid based data (such as a PDE

solution) in terms of probability distributions (over the PDE solution state space). In other

words, we reinterpret the PDE solution as a solution of a stochastic PDE. Operationally,

this representation is constructed from grid data through a coarsening of the grid and the

construction of a PDF in each coarse cell. Theoretically, this description takes the form of a

Young measure. We observe that Young measures allow differentiation with respect to space

and time (in the sense of distributions) and application of solution functions, so that they

can be substituted into a nonlinear PDE as a possible solution. We refer to such a Young

measure PDE solution as a stochastic solution. Young measures have found extensive uses in

mathematical studies of 1D conservation laws [7, 37, 4, 10] and in descriptions of microphase

composite alloys in material science [2].

We provide a process for generating such stochastic solutions from conventional grid

based data, and for comparing this data using its stochastic description. A tool is developed

to implement this method, and verified by testing for the mesh convergence of a sequence of

mesh refined stochastic solutions. We present some of the applications for which this tool

has been useful, and pose future applications which may benefit from it.
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3.1 The Theory of Stochastic Solutions

3.1.1 Weak* Convergence

We begin by introducing Ω as a problem defined state space. To avoid inessential technical

details, we fix Ω to be a closed and bounded subset of Rn. We define Y = C(Ω) to be the

Banach space of continuous functions on Ω with the sup norm. Let X = Y ∗ be the dual of

Y , i.e. the space of linear functionals on Y . This X also defines the space of Radon measures

on Ω, i.e. X =M(Ω).

For a function φ ∈ Y and a measure dν ∈ X, we define an expectation operation:

〈φ〉 =

∫
Ω

φ(ξ)dν(ξ) (3.1)

Weak* convergence is the convergence of a sequence of measures in the set X. It is

defined as convergence for each linear function φ ∈ Y . Thus with the sequence of measures

νn ∈ X, we say that νn → ν in the w* sense, if 〈φ, νn〉 → 〈φ, ν〉 for each φ ∈ Y .

Each measure is written uniquely as the sum of a positive and negative measure with

disjoint support. The norm of each is the absolute value of the measure evaluated on the

function identically 1 and the norm of the measure itself is the sum of the norms of its

positive and negative parts.

dν = dν+ + dν− (3.2)

||dν|| = |
∫
dν+|+ |

∫
dν−| (3.3)

As is relevant for existence questions, bounded sets in the Banach space X are weak* com-

pact, meaning that bounded sequences necessarily have convergent subsequences.

We extend this definition to the space of Young measures, ν~x,t, i.e. a function mapping

each time-space point to a measure. Thus we denote the sequence as νn,~x,t and its limit as

ν~x,t. Young measures can be differentiated in the sense of distributions and thus can satisfy

a PDE.

Since the use of Young measures is not common in numerical studies, we summarize the

key differences between the weak and weak* formulation of a PDE solution in Table 3.1 [21].

3.1.2 Stochastic Comparison of Solutions

We define a stochastic solution of a PDE to be a Young measure solution in which

the space-time dependent measures, ν~x,t, are probability measures (i.e. 〈1〉 = 1) with the

domain Ω. An example of this is a delta function δ~x,t,ξ~x,t(ξ) concentrated at the value ξ~x,t ∈ Ω

14



Table 3.1: Test Functions for Weak and Weak* (Young Measure) Solutions
test function Weak Solutions Young Measures
g values multiply f(~x, t) which takes values in Ω probabilities
g arguments ~x, t ∈ R4 ~x, t, ξ ∈ R4 × Ω
integration domain R4 R4 × Ω

example
g(~x, t) multiplies f(~x, t)
which takes values in Ω

g(~x, t, ξ) multiplies probability

dependent on ~x, t ∈ R4. This corresponds to a classical weak solution, f(~x, t) = ξ~x,t.

As a second example, assume that the Young measures, ν~x,t, are absolutely continuous rel-

ative to Lebesgue measure on Ω, and thus defined by PDFs f(~x, t, ξ) with ν~x,t = f(~x, t, ξ)dξ.

We regularize these PDFs by considering their indefinite first integral:∫
f(x, t, ξ)dξ (3.4)

namely the CDFs.

The idea of stochastic comparison is to compare these stochastic solutions. For compar-

ison, we take a norm of the difference of Young measures. The comparison result is of the

form:

E(~x, t) = ||ν1(~x, t, ξ)− ν1(~x, t, ξ)|| (3.5)

where ξ ∈ Ω is a random variable in the solution state space, and ν1 and ν2 are probability

functions from data set 1 and data set 2 respectively. The norm in (3.5) has yet to be

specified, but many choices are possible. Conventional function space norms on M(Ω) are

then applied to the CDFs in Eqn. (3.5). We typically compose a norm over X (state space

measures) with a norm over functions on R4 representing the νi in terms of their CDFs.

3.1.3 Large Eddy Simulations

We consider stochastic solutions to LES (see §2.2) turbulent mixing problems. Engrained

in LES is the notion that subgrid fluctuations resemble grid level fluctuations. The concep-

tual framework seems to be especially appropriate here, as LES are (by definition) under

resolved, and have fluctuations below as well as at and above the grid level. We interpret

this to mean that the statistics collected at the grid level should be representative of the

statistical distributions hiding beneath the grid level. Of course, this is the basic idea of

turbulent self similarity and Kolmogorov’s scaling laws.

We propose this technique for the comparisons of data: from distinct meshes (e.g. in
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a mesh convergence study), from distinct physics parameters (in a parameter dependence

study), or from numerical to experimental data (in a validation study).

The idea of LES is that fluctuations at or above the grid level (observed numerically) can

be used to predict fluctuations below grid level (not observed numerically). We extend this

to the stochastic assumption, that although the solution is fluctuating rapidly, the statistical

laws that govern this fluctuation are changing only slowly. Thus we seek to capture the slow

variation of the statistical laws (on a coarse grid) and the statistical laws that define the

rapid fluctuations (as a probability measure).

3.2 Wstar

The mesh level comparisons performed can be applied to many types of comparisons

in which simple differencing or averaging fail to capture important qualities inherent in

stochastic phenomena. We discuss methods for stochastic convergence of mesh based simu-

lations and we illustrate this concept with particular applications to LES turbulent mixing

simulations.

The first problem which wstar addresses is the construction of a stochastic solution from a

(non-stochastic) point-valued dataset. Such a solution is constructed by relaxing the fine grid

dependence on space and time. To this end, we form a coarse grid (supergrid), composed of

unions of mesh cells (supercells) and resolve the space-time aspect of the data on the coarse

grid only. Within a single supercell, the collection of solution values (from the many fine

mesh cells in a single supercell) is treated as a (space-time independent) random sample of

state values (e.g. density, pressure, momentum, etc.).

The strength of a comparison based on this reorganization of the solution data is that

there is no averaging. Thus variations and fluctuations are preserved. Although coarsening

is necessary, there is not a loss of information. Rather, data is reinterpreted. Nonlinear

functionals of the data (e.g. combustion rates in a chemistry problem), which respond to the

fluctuations correctly, converge along with the original sequence [22].

3.2.1 The Algorithm

The wstar tool is designed to perform a comparison between two different data sets

(varying parameters, refinement, etc.) following the theory presented in §3.1. That is, it

computes a (discrete approximation to) a Young measure for each data set and compares

their difference as in Eqn. 3.5. We tend to prefer L1 for the norm. A comparison of L1 with

L∞ is shown for our verification dataset in Table 3.2.
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The inputs to a wstar comparison are two raw data sets and a coarsening factor for each

to define the supercells for each set. Also required is a bin size, or state space discretization.

Wstar is implemented in two steps. The first step is to process the raw data into a stochastic

(Young measure) solution. This is done separately for each data set that is to be compared.

In the second step, the Young measures are compared by a norm difference of measures in

each supercell (by Eqn. 3.5), and the numerical result is recorded at the supercell location.

This creates a supercell grid of comparison (norm of difference) results. Note that the result

is a Young measure, but differences of probability measures are not typically probability

measures. This result can be visualized and can be integrated to define an overall L1 norm

of the difference.

To accomplish this task, during the second step, an injection is defined to map the

supercell defined data from one comparison grid onto the other. There is no requirement that

the CDFs have the same state space discretization (bin size) or same space-time discretization

(supercell size). We refine the coarser mesh by a piecewise constant injection into the finer

mesh. The reverse injection is also possible, by construction of the union of the random

samples and injecting this union of data into the coarser stochastic solution.

3.2.1.1 Computing the CDF

We begin by constructing the PDF in a coarse grid cell. To construct the PDF, we

introduce for each supercell, a mesh discretization of Ω (“frequency bins” in state space).

Within a supercell, the fine grained data is treated as a random sample, i.e. with no notion

of spacial or temporal dependence. In each supercell, we count the number of sample points

from the fine data that lie in each bin. The integer counts are normalized to yield a total

mass of 1. This numerical piecewise-constant PDF is integrated to obtain a piecewise linear

CDF (as in Eqn. 3.4) which is used for further analysis.

The degree of discretization, i.e. the bin size, is a state space convergence issue quite

different from conventional space-time grid resolution issues. [22]. There is a trade off

between the numerical integration error (in CDF and in the differencing) due to a coarse

bin size, as no knowledge of solution values internal to a bin is retained; and the statistical

sampling error due to the finite sample size for each bin. Decreasing the bin size improves

integration accuracy, but leaves less sample data in each coarse cell, increasing statistical

error. Given a bin size, δb with volume δb3 and a supercell sample size N , the amount of

data per bin is about N
δb3

. Assuming smooth PDFs and CDFs, the integration error is O(δb).

The statistical sampling error is O((N/δb)1/2). These two sources of error must be balanced

using standard statistical tests to evaluate this trade off.
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3.2.1.2 Comparison

At this stage, a discrete Young measure has been defined over the supergrid represented

as a CDF in each supercell with ~x, t defined by supercell location. We obtain a value in each

supercell that is the difference of the two CDFs taken in the L1 norm. We can integrate this

field over the spatial domain to to yield an overall mesh norm i.e.

L =

∫
D

E(~x)d~x (3.6)

Where E(~x) is defined in Eqn. 3.5. [22]

An example of spatial arrays of PDFs and CDFs to define a Young measure description

of simulation data is given in Fig. 3.2 in §3.3.1.1.

3.2.2 Implementation and Usage

Wstar is designed as a post processing tool. It is written in Python version 2.6. This

construction gives it cross platform support as it rides on the portability of the Python

language, which is a standard in computing. Wstar supports IO for files in VTK structured

grid format. It is designed, moreover, to simplify adding IO support for different file types.

See the Wstar Manual in the appendix for details on support for various file types.

The post processing is executed in two scripts:

The first script, wstar.py, parses an input file and set of data files to generate the PDFs

on the coarse grained grid of supercells. The coarse graining factors and bin sizes are inputs

at this stage. The PDF is stored as an array of bin counts as data is read in from the data

files. As each datum is read, it is determined to which supercell it belongs, and then to

which bin it belongs. The corresponding data counter is incremented for that cell and bin,

and the process continues until all of the data is read in this way. At this stage the PDF

is normalized, and the frequency counts are replaced with probabilities in a corresponding

array. This data is integrated into a piecewise linear CDF (as in Eqn. 3.4), and this data is

then stored in an intermediate file. This is done individually for each data set to be compared

[22].

The second script, wstar compare.py, generates the final comparison. It takes as input

two CDF supergrids made via the previous instructions, and generates the comparison as its

output. The comparison contains L1 norms of CDF differences, as well as other statistical

information such as means and variances of state variables from each. VTK structured grid

is used to generate output plots of these [22]. Alternative formats for IO should be easy to

implement following the manual.
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3.3 Applications

The foremost feature of wstar is the ability to analyze and compare stochastic (Young

measure) data sets, such as solutions of PDEs. Another noteworthy feature in these examples

is the ability to tease out valid scientific conclusions from data in which simple inspection is

not sufficient, and the conclusions are somewhat buried in the statistical noise.

The Young measure aspect of the data is emphasized in our first set of figures (see

Fig. 3.1 and Fig. 3.2). In a following analysis we illustrate the ability of wstar to analyze

higher statistical moments. Here we study second moments.

3.3.1 Rayleigh-Taylor Turbulent Mixing

The RT instability is an acceleration driven fluid instability described in §2.3. Here we

investigate an RT simulation using LES, dynamic SGS and front tracking. We will show

mesh convergence of the CDFs using wstar. Initial conditions for Rayleigh-Taylor mixing

experiments have been somewhat mysterious.

3.3.1.1 Stochastic Mesh Convergence

We demonstrate verification for wstar through a mesh convergence study, applying weak*

convergence (using wstar) to a Rayleigh-Taylor instability problem, following previously

published material [21]. The raw data to be compared is shown in Fig. 3.1 in the left frame,

concentration in a slice through the midplane for three grid levels, coarse, medium, and

fine. While these plots suggest some level of convergence, the true measure of convergence

emerges only from our wstar analysis. In the right frame, are shown the differences of the

CDFs. The medium to fine comparison shows systematically smaller CDF differences than

the coarse to fine comparison. Thus we demonstrate the ability of w* to make obvious and

clearcut facts that are only weakly discernible from direct examination of the data. We also

use this data set to explore the setting of various parameters in the wstar algorithm.

We study mesh convergence using a 8× 2 array of supercells to define PDFs and CDFs.

At the latest time completed for the fine grid, we compare the PDFs and CDFs on the coarse

to fine and medium to fine grids. We compute the L1 norm of the pairwise differences for

each of the 8×2 PDFs or CDFs. These differences yield an 8×2 array of norms, i.e. numbers,

which is plotted in Fig. 3.1, in the right frame.

In Table 3.2, we apply the L1 norm to Eqn. (3.5) using PDFs and CDFs on a simplified

solution state space (Ω) which is the concentration of light fluid. To simplify further, we

apply L1 and L∞ norms in space (x, y) to yield a single number for the entire data set. We
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Figure 3.1: RT mixing on 3 grids with stochastic comparison. Left: Plot of heavy fluid con-
centration at the midplane, t = 50. Coarse grid (left), medium grid (center), fine grid (right)
Right: Spatial array of L1 norms of CDF mesh differences for heavy fluid concentrations at
the midplane. Coarse to fine (left). Medium to fine (right).

explore the effects of [21]

• the mesh,

• PDF vs. CDF,

• L1 vs. L∞ for a spatial norm and

• the size of the supercells.

To construct the PDF, we divide the concentration, ξ ∈ [0, 1] into 5 bins. The result

of this exercise is an 8 × 2 array of PDFs, each represented in the form of a bar graph.

The array is a graphical presentation of the Young measure at the fixed z, t value. See

Fig. 3.2. From this array of PDFs, we can observe some level of coherence or continuity in

the spatial arrangement of the PDFs, in that the central supercells have a strong heavy fluid

concentration, while near the top and bottom, there is more of a mixed cell concentration.

The convergence suggested in Fig. 3.1, is now a clear trend in Table 3.2. Generally L1

norms show better convergence, and generally there is a minimum size for the supercell to

obtain useful convergence. Since our convergence properties are documented for the medium

grid (through comparison to the fine grid), we can speculate that the errors at the fine grid

level would be smaller.
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Table 3.2: Summary norm comparison of convergence for heavy fluid concentration PDF
and CDF at fixed values of z, t In each supercell, an L1 norm is applied to the difference
of the PDFs or CDFs; this x, y dependent set of norms is measured by an L1 or L∞ norm.
The larger supercell sizes, the last four columns of the table, cover the entire y domain.
In this case, the space-time localization of the PDFs/CDFs are in x, z, t only. We observe
convergence for CDFs; while the PDF error is decreasing, further refinement will be needed
for usefully converged PDF errors. We see that a coarsening of the supercell resolution
(increase of the supercell size) to 18× 12 coarse grid cells per supercell is needed to obtain
single digit convergence errors.

coarse grid supercell size 9× 6× 1 18× 12× 1 36× 12× 1
mesh comparison L1 norm L∞ norm L1 norm L∞ norm L1 norm L∞ norm
CDFs: coarse to fine 0.26 0.98 0.16 0.48 0.15 0.39
CDFs: medium to fine 0.18 0.54 0.08 0.16 0.03 0.10
PDFs: coarse to fine 0.93 4.89 0.59 2.40 0.54 1.98
PDFs: medium to fine 0.64 2.66 0.30 0.82 0.15 0.52

Figure 3.2: Spatial array of heavy fluid concentrations at t = 50, for z in the midplane, as
PDFs (bar graphs) and as CDFs (line graphs), Left: medium grid. Right: fine grid.

3.3.1.2 Second Moments

We verify wstar by showing convergence of second moments. We follow the previously

published text [21]. The measure by ν of the functional f : Ω → R, denoted 〈f〉, is defined
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in Eqn. 3.1. We define the normalized second moment of f , to be:

〈f(1− f)〉
〈f〉〈1− f〉 (3.7)

As these are more slowly convergent, we use a single supercell, and do not emphasize the

Young measure (coarse grid spatial localization) aspect of the data. Rather we emphasize

the ability of wstar to handle higher statistical moments. The algorithm can accomplish

both goals at once, but the data we analyze is not strong enough to allow such an analysis.

We show the convergence under mesh refinement of the second moments for species

concentration and velocities, quantities of interest in a miscible Rayleigh-Taylor experiment

[43]. We apply wstar with one supercell (treating the entire dataset as a single sample).

The same tools are applied to velocities (giving the Reynolds stress), but as the conclusions

for the use of w* are similar to those for concentrations, we refer to [21] for those results,

omitting them here. Since the quantities we report were not measured experimentally, this

study is verification only, not validation. A related simulation study [29] includes comparison

to the water channel experiments [34, 35], in which the second moments were measured, and

thus for which validation was studied.

It is commonly believed (and observed in numerical studies) that fluctuating quantities

obey a type of Kolmogorov scaling law. This property, if correct, implies that the fluctuations

are represented by a convergent integral, and should be convergent under mesh refinement.

Thus the convergence we report here should not be a surprise. Still, the documentation pro-

vides some new information: the level of refinement needed to observe convergent behavior.

We generally observe satisfactory convergence through comparison between the medium and

the finest of the three grids considered here, and unsatisfactory (poor agreement with the

refined grid) properties for the coarsest grid. The limits at late time encounter a varying loss

of statistical resolution due to the diminished number of statistically independent degrees of

freedom at late time. The three grids have a size 520 to 130 microns (4 to 8 to 16 cells per

elementary initial wave length). Of these, we have generally used the medium grid in our

previous simulations, while the coarse grid is commonly favored in RT studies [6]. All second

moments reported here represent mid plane values, i.e. a slice z = const from the center of

the mixing zone with t fixed, and are averaged over all x, y values. All second moment plots

were constructed from wstar, using the full domain as a single supercell.

The second moments of concentration, normalized, define the molecular mixing correla-

tion θ = 〈f(1 − f)〉/〈f〉〈1 − f〉. Our value for θ ≈ 0.8 is consistent with values obtained

numerically in related problems by others. However, significantly smaller θ values were ob-

served in the similar fresh-salt water miscible experiments [34, 35]. Since these differences
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Figure 3.3: Plot of θ vs. time for a numerical simulation of the experiment [43] #112.
Three grid levels shown: ∆x = 520, 260, 130µ. The data has been collected at the mid plane
value of z, with an average over all of x, y.

are observed even at very early times, we can attribute the differences to initial conditions,

specifically to the thickness of the initial diffusion layer. Fig. 3.3 displays numerical results

for convergence of θ which model experiment [43], #112, with three levels of mesh refinement.

3.3.2 Richtmeyer-Meshkov Turbulent Mixing

We apply the wstar tool to show mesh convergence in an RM instability study (see §2.4

about RM instability). Again, the strength of wstar is its ability to extract from the data

clear signals for properties otherwise lost in the noise of fluctuations. We demonstrate here

one such example and refer to other examples in [33]. In summary, we present evidence for

mesh convergence of the CDFs below, and refer to [33] for details of other studies which

show a weak dependence on the Reynolds number in the limit Re→∞. For this conclusion,

we need to compare two small quantities extracted from the statistical noise, namely the

numerical convergence rates and the signal from Re variation. The point of this analysis

is that the numerical convergence errors were (somewhat) smaller than the physics based

Re variation effects, indicating that the later was in fact a real effect and not a mesh error

artifact. These same references also study the variation in the solution caused by variation

of the numerical algorithm (in the form of modified subgrid model coefficients). Here the

contrast was larger and clearly visible even without a wstar analysis. This conclusion in

this case is the solution non-uniqueness, and its dependence on the numerical algorithm. It

should be noted that this conclusion is itself striking, as it flies in the face of conventional

notions of numerical predictive science.

In Fig. 3.4, we plot the L1 norm of convergence errors in the concentration CDFs at

Re = 6× 107. The picture represents a time after reshock. The turbulence is well developed
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Figure 3.4: Mesh convergence of the concentration CDFs is demonstrated visually, with data
from [33].
The left frame compares the coarse to fine mesh; the right frame compares the medium to
fine mesh. Colors indicate the level of CDF mesh error in each supercell. Expressing this
convergence as an L1 norm, the order of convergence is 1/2.

at this time and the high values of Re are reflective of the Kolmogorov hypothesis. In the

left frame, the coarse grid is compared with the fine grid and in the right frame, the medium

grid is compared with the fine grid. This figure is a visualization of the w* convergence

assessment. The numerical values associated with the plots of Fig 1.5 can be integrated to

obtain an overall norm of convergence, and this is compared, coarse to fine and medium grid

to fine. The order of the mesh convergence, using an L1 norm, is about 1/2, which is slightly

better than order of convergence of joint concentration-temperature CDFs [33].

3.4 Conclusion

The wstar tool has been verified to demonstrate mesh convergence in a turbulent mixing

regime via second moments. We hope to see it used in the future to demonstrate LES conver-

gence quantitatively. We also believe that validation studies in the turbulent regime should

use this tool. Moreover, the notion of a stochastic solution as a representation of a turbulent

mixing solution has a variety of other potential uses that still stand to be brought to light.

These techniques can be embedded in a simulation tool for predicting nonlinear functions

on state data, i.e. combustion or other chemistry reactions. Wstar still stands to bene-

fit from some enhancements. Parallel post processing would greatly enhance performance.

Alternative geometry would allow a broader scope of use.

One issue is that there is relatively little experimental data to compare fluctuations,

and only limited ability to validate the properties of PDEs presented here. We hope that

experimentalists will take up this form of data analysis, in addition to computational sci-

entists. Experimental scientists report repeatable data, and at first glance, most turbulent
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data seems not to be repeatable due to its rapid fluctuations aspects. However, with the

stochastic reinterpretation of data, the experimental measurements should be repeatable in

the fluctuating regime, and if reported, would provide a basis for validation, thus allowing a

significant advance in scientific analysis of turbulence.

25



Chapter 4

FTI (Front Tracking Interface)

Front tracking is a numerical method which introduces dynamically evolving fronts into

an Eulerean grid based simulation. The use of front tracking is to preserve and maintain

sharp discontinuities or steep gradients, which are often poorly resolved by Eulerian methods.

Block stencil based operations near the front where the block stencil contains states with

differing materials or properties produces a smearing of discontinuities or gradients. The

intention of front tracking is to minimize this numerical diffusion. Front tracking in an

Eulerean simulation framework can be considered to be the ultimate Arbitrary Lagrangian

Eulerean (ALE) algorithm in that it is minimally Lagrangian. The Lagrangian aspects

of front tracking are robust and better able to survive the late time mesh distortion from

complex flows that normally limits ALE effectiveness. The common ALE recourse to Eulerian

dynamics is significantly postponed or totally eliminated with the use of front tracking.

A standardized application programming interface (API) for porting front tracking mod-

els into arbitrary simulation codes is introduced. We discuss models for advecting the front

according to laws of physics as well as methods for communicating front information into

the solver. Front Tracking Interface (FTI) is an API designed to make front tracking con-

veniently accessible to new or existing simulation tools. FTI has only a small number of

essential routines, a fact that contributes to the simplicity of its use. The FTI routines are

divided into

1. Server Routines, and

2. Client Routines.

The server routines are provided in the FTI server (FronTier, §4.4.1). They allow manipu-

lation and queries of the front geometry. Routines which are delegated to the client require

knowledge of the physics, simulation grid, or states in the simulation. While the goal of
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this design is to provide a generalized package for tracking a dynamic geometric front, the

discussion here is focused on computational physics (e.g., fluid dynamics).

This work follows the FronTier Lite project, which also provides an API for front track-

ing. FronTier Lite provides robust methods for interfacing with the front geometry. FronTier

Lite is quite versatile and robust due to its complete independence from underlying physics.

The aim of FTI is provide a simpler interface to front tracking that is targeted to physics ap-

plications, and to provide clear and concise methods for interfacing various types of physical

models to the front.

We target a broad range of possible client applications. Thus, FTI is based on a client-

server model in which the server manages the front, but requires the client to implement

routines dependent on client data structures and physics. Implementations of the FTI client

are provided in cFluid (§4.4.2.1) and in the UChicago high energy computational fluid dy-

namics (CFD) code, FLASH (§4.4.2.2). We also assist in the development of implementations

of the FTI client in the weather simulation code WRF, and an electrocardiac simulation code.

(See Table 4.4 for a list of clients and their current statuses.)

4.1 Front Tracking Conceptual Framework

The essence of front tracking is handling the dynamic motion and topological changes

of a front. This physics-free conceptual framework allows a variety of uses (e.g. weather

modeling in §4.4.2.3, elastic-plastic slide surfaces in §4.5.4.3). Reference implementations

for the Navier-Stokes equations with a WENO numerical solver are provided. The front,

represented as an unstructured triangulated mesh, is assumed to be a closed surface, or

an open surface with boundary constrained to lie on the domain boundary. It is stored

using data structures from computational geometry: discrete points with some connectivity

information, i.e., edges and faces. The front, as constructed above, separates the space into

distinct regions. We define the term ’component’ as an indicator for these regions. Regions

on different sides of the front are said to have different components.

The two main tasks in front tracking are:

1. Propagation of the front

2. Propagation of the interior (non-front) states near the front

It is assumed that the interior state update involves a stencil of adjacent states, with the

solver operating on that stencil. We introduce a modification to this algorithm for a stencil

which crosses the front, as this crossing is exactly the condition that causes numerical mixing.
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FTI provides a detection algorithm to find stencils which cross the front and a ghost state

extension to modify the stencil states beyond the front crossing. The client solver acts in the

usual manner on this modified stencil. We also have a vectorized version of this algorithm

that works well in a vectorized dimensionally split solver.

We require an algorithm to compute the solution state at arbitrary locations in the

domain. These interpolated states come from the interior grid but use only states of a

specified component. This component aware interpolation is used for computing unmixed

interpolated states near the front.

We offer two modes of operation:

1. state-free tracking,

2. and dynamic state tracking.

In state-free tracking, states are computed at the front using component aware interpo-

lation (§4.1.3) and solving the Riemann problem (§4.1.4) at the front. We define the front

states (§4.1.5) to be the mid states of this Riemann problem solved at the front point using

two interpolated states as the two outer states (one from each component). The coupling be-

tween the two separate regions separated by the front occurs through the Riemann problem

connecting them.

In dynamic-state tracking, solution states are also stored at the discrete points on the

front. They can, of course, be interpolated to give a solution state anywhere on the front.

They are updated during the front propagation step.

4.1.1 Front Geometry

The front is represented in 3D space as a set of triangles, each of which contain points.

Triangles that share a common edge are said to be adjacent, and that adjacency information

is also stored. This set is partitioned into surfaces, each of which must either have edges

that meet the domain boundary (open surface) or be entirely closed. Thus, as presently

implemented, each surface creates a bipartite partition of the spatial domain.

Efforts in front tracking began with the grid based (GB) front. The points of this front

are constrained to lie on the grid lines of the simulation grid. This constraint gives a stable,

evenly distributed discretization of the surface. However, it is clear that this method must

be improved to gain subgrid resolution of the front. The next generation, now in use, uses

the locally grid based (LGB) front. This front is allowed to move freely, unconstrained

by (in fact, entirely agnostic to) the simulation grid, with one exception. When the front

triangles intersect each other, topological changes must be computed and the interface must
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Figure 4.1: Illustration of a component grid with a front crossing solution stencil. Cells in
the pure yellow and pure blue regions are assigned different components. This grid is dual
to the simulation grid, so component and state information is defined at cell corners.

be reconstructed. This is done by creating a GB representation of the front local to the

points of intersection, then performing a GB reconstruction to produce a topologically valid

front, then rejoining the GB region to the rest of the front. This algorithm gives a high

resolution, efficient front, with the robustness of being able to handle changing topology.

4.1.2 Components

Components are computed and stored at grid cell centers (shown in Fig. 4.1). This

requires determining components for a cell center from its coordinates. This calculation is

based on finding the nearest front point. This expensive call is used to initiate the marching

front method (see below).

These components are used in the component aware interpolation model (§4.2.3.3). It

is also used in the solver to determine the material region in which a given mesh cell lies.

Other uses for component in a simulation code may be to assign physical models (e.g. EOS)

based on component, as different materials may have different models associated with them.

4.1.2.1 Marching Front Algorithm

This algorithm begins with a grid in which all components have been set to some place-

holder value (e.g. 0). First we iterate over the triangles of the front and mark, with another
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Figure 4.2: A conceptual view of component aware interpolation

placeholder value (called ONFRONT) which marks the cells which are cut by the front.

Now we can start by making an expensive component query on a particular grid cell

(whose component is unknown). The front is representative of a surface, and so two adjacent

cells cannot have different component unless there is an ONFRONT cell between them. By

this assumption, adjacent cells can be filled in with the same component (and adjacent to

those, and adjacent to those, etc.) until an ONFRONT cell is reached. This will fill in the

component of an entire region with only one expensive component lookup. We can then

continue onto another cell of unknown component until all of the components are known.

4.1.3 Interpolation

The client is required to compute the solution state at an arbitrary point in the simu-

lation domain. Many simulation tools already have grid interpolation routines. However,

we require an interpolation in regions near the interface between different components with

distinct material properties. Therefore, we require an interpolation that takes this into ac-

count, computing the solution state at a point based only on adjacent states of a specified

component. The amount of available information to the interpolator in this type of use

is variable. It is desirable to use high resolution interpolation (usually bilinear or trilinear

here); however it is possible that there is not enough available information. It is necessary

to reduce the interpolation (down to constant order if there is only one datum available) to

obtain the desired result.

4.1.4 The Riemann Problem

The Riemann problem specifies Cauchy data depending on a single spatial coordinate, and

in this coordinate the data is piecewise constant with a single discontinuity at the origin. The
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Figure 4.3: An illustration of the Riemann solution. Red and green are simple waves. Blue
is the contact discontinuity. The 4 constant state regions are labeled in Roman numerals.

Riemann solution for the Euler equations of a compressible fluid has four constant regions

(see Fig. 4.3) separated by three waves. The two outer regions are outside of the influence

of the fluid interaction, whose effects travel at finite speed. The two inner regions are in

contact, and are in pressure equilibrium. The waves separating the outer regions from the

inner are shock or rarefaction waves. The central wave is a contact surface between the two

fluids [5].

The initial conditions for the Riemann problem are two constant regions (I and IV)

separated by a contact discontinuity. Since information travels out from the contact at finite

speed, the initial constant regions continue to exist for all time. However, as soon as the

system becomes dynamic, two inner regions will form around the contact (II and III). The

mid states for the inner regions are in pressure equilibrium. The boundary between the inner

state and outer state represents a simple wave, either rarefaction or shock, propagating at

finite speed. The waves must lie on the characteristics. The Euler equation characteristics

are:

C+ :
dx

dt
= u+ c , (4.1)

C− :
dx

dt
= u− c , and (4.2)

C0 :
dx

dt
= u (4.3)

where c is the sound speed. The contact wave lies on the C0 characteristic. These are

straight lines in the Riemann problem, which explains the straight line region boundaries in

Fig. 4.3 [5].
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To relate this back to front tracking, the front represents a contact discontinuity, and

the discontinuous solution near the front is modeled as the mid states in Riemann problems

solved at the front. This choice is physics and problem dependent, and other choices (e.g. a

flame front or a dynamic phase transition boundary) are possible.

4.1.5 Front States

On the points of the front mesh (which are generally not at cell centers), the front states

are defined. These are fluid states which specify the solution at the front. Each front point

has two front states, one from each material meeting at the interface. We provide two means

of assigning front states. Both methods are rooted in the assumption that the local solution

near the front is the solution to a local Riemann problem.

4.1.5.1 State Free Tracking

In state-free tracking mode, the front states are computed from interior states as needed

during the simulation, using the following algorithm. Component aware interpolation (§4.2.3.3)

is called at the front point for each of the two components that the front point separates.

This gives gives two states, one from each component, at the front point, S1 and S2, the state

resulting from components 1 and 2 respectively. The Riemann problem (§4.1.4) is solved

normal to the front using the two interpolated states as outer states. The mid states of the

Riemann solution, Ŝ1 and Ŝ2 gives the two front states at the point. This gives a simpler

front tracking client than the dynamic state model. Evaluation of the relative accuracy of

these algorithms is in progress.

4.1.5.2 Dynamic State Tracking

In dynamic-state tracking mode, the front state is a dynamic variable stored at each front

point. These are initialized using the front state algorithm from 4.1.5.1, and updated during

the front advection step. As physics dependent variables, the front states are updated using

operator split dynamics in the normal and tangential directions during front propagation.

The guiding physics and basic algorithm are shown in §4.1.7.2.1 and §4.1.7.2.2 for normal

(MOC) and tangential update respectively.

4.1.6 Initialization

Initialization is performed by the server by creating a meshed surface and setting the

initial front states on that surface. The surface is initialized from a client supplied level
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set function, φ. The front is created as the isosurface at φ(~x) = 0 via the marching cubes

(or marching squares in 2D) algorithm. This creates a grid based interface, using a regular

Cartesian grid. The dimensions of the grid are chosen such that the initial front has sufficient

granularity for its intended use, generally taking the grid spacing from the interior state mesh.

This grid spacing is used only for initialization, and for the grid based untangle algorithm

(§4.3.2).

4.1.7 Front Propagation

To accomplish the front advection, velocities at and near the front points are needed.

The front state velocity (defined below in each operation mode) gives a first order definition

of the front motion. Both dynamic state and state free modes make use of the front state

for their front point updates.

4.1.7.1 State-Free Mode

The normal velocity is continuous in the Riemann problem; therefore this velocity is well

defined at the front point. The point is advected by a second order Runge-Kutta scheme

using the front state velocity. In state-free front tracking, we use the front state algorithm

defined in §4.1.5 to get the velocity for both the predictor and corrector steps. RK2 is applied

to the following:

v(~x, t) = velocity(frontstate(~x, t)). (4.4)

and solving
d~x

dt
= V (~x, t) (4.5)

as shown in [9].

4.1.7.2 Dynamic-State Mode

In dynamic-state front tracking, the front states are stored and must be updated, as well

as the front positions. The update is performed first in the normal direction during point

propagation. This algorithm uses a method of characteristics solver, and a second order

predictor corrector method (RK2). After the point is advected, there is a tangential update.

4.1.7.2.1 Normal (MOC) Update The normal update is done at the same time as the

point advection. When the predictor is applied, the front point takes a new position. The

Riemann characteristics (Eqns. 4.1 and 4.2) are found and traced back to the previous time
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level. An ODE for the Riemann invariants [5] is solved using the interpolated state from

the previous time level at the characteristic. This gives a new front state for the corrector

method. After the corrector is applied, the Riemann problem is solved using the new front

states as input, to ensure consistency.

4.1.7.2.2 Tangential Update The tangential front state update is performed after the

front points are advected to the new time level, and the front states have been updated by

the normal update. The tangential effects are computed using the interior PDE solver (the

same one that is used to update the interior states). To perform the update at each point,

the front is projected onto the tangent plane around the point and the nearby front states

give a 2D unstructured solution. This unstructured solution is interpolated onto a stencil

compatible with the interior solver, which calculates the flux to perform the update.

4.1.8 Interior State Propagation

A PDE solver is used to update the interior states, as usual, using a finite stencil and

a numerical scheme to update each interior point. However, solver stencils may be cut by

the front, i.e., the stencil may contain data from two different components (with differing

material properties). To maintain consistency (sharpness), the solver is modified to detect

cut stencils, and a ghost state algorithm is used.

The ghost fluid method is the model by which front tracking maintains sharpness in the

data field of the simulation [13]. Numerical diffusion usually occurs when updating points

near the material interface, as data from one material is used in the stencil for an update

at a point located in another material. Using FTI, one can identify where a stencil crosses

the material interface, and provide a model for substituting single component data into the

stencil for the solve.

Conceptually, the interior solver sees the state from one side of the front only. The

purpose of the ghost fluid method is to accomplish this goal. The physics of coupling across

the front is handled by the front state Riemann problem only (defined in §4.1.4).

4.1.8.1 Dynamic Component Change

An interior grid cell may find that the front has crossed over it during a time step. At

the new time level, it lies on the other side of the front. This is done by using component

aware interpolation on the cell center coordinates using the new component. The old state

is discarded. We find that the conservation of mass violation is a small effect, and will be

addressed in future work (see §4.5.1).
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t=n t=n+1

Figure 4.4: An example of a grid cell with dynamically changing component

4.2 FTI Client Implementation

Implementation of the front tracking method can be summarized by the following four

modifications to a solver based physics application:

• Initialize

– Call during initialization

• Propagate Front Points

– Call in time step loop

• Dynamic Component Update for New Time Level

– Call in time step loop after propagate front points

• Modify Stencil for Interior State Update

– call when creating solver stencil

Since FTI cannot know or enforce conditions on the client data model, it is the task of the

client to generate, advect (in dynamic-state mode), and interpolate on front states. The front

states are the crux of the coupling between the interior dynamics and the front dynamics.

4.2.1 Component Update

The client performs the marching front algorithm, as described in §4.1.2.1. The server

provides routines for detecting cut cells, for determining the component at the start of the
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algorithm. The components are stored by the client on the grid cell centers. The dynamic

component change (§4.1.8.1) is also calculated during this step.

4.2.2 Modify Stencil

To find the state values for the stencil point immediately following the interface, we first

find where the stencil crosses the front. The front state having the same component as

the stencil (described in §4.2) is computed for that point. It is this state that is used in

the solution stencil (by constant extrapolation) for all values needed across the front [13].

Conceptually, in this mode, the interior solver operates purely on a single side of the front

(one material only) and never crosses the front. All cross-front information comes via the

Riemann solution in the front state definition.

The algorithm in this direction split, vectorized solver is as follows. We begin constructing

sweep vectors. As we pack data into the vector, we check the component of the new data.

If the component is the same as the data already loaded, we append it to the vector and

continue. If the component changes, we stop. This gives a sweep vector of homogeneous

material. We only need to add buffer states onto the end of these sweep vectors. If the

edge of the vector is at the simulation boundary, then boundary data is used to complete

the buffer. When the edge of the vector is in the middle of the domain, then the vector

must cross the front. FTI getCrossing() returns the coordinate of this crossing point. The

front state (§4.2) at this coordinate having the same component is used for all buffer states

beyond the crossing. For an illustration of this construction see Fig. 4.5.

4.2.3 Support Functions

In addition to these modifications, we require the client to provide several callback func-

tions for the proper execution of the front tracking dynamic geometry. We also break down

these listed tasks into smaller functions. Here is the complete list of functions that the client

must implement.

• Level Set Function (for initialization)

• Get Front State

• Front State Interpolation

• MOC Solver (dynamic state only)

• Tangential Solver (dynamic state only)
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Figure 4.5: Ghost cell extrapolation. Above, original stencil, crossing the interface. Middle:
Two right states are replaced by left side extrapolated states to define a stencil consisting of
only left states. Below: a similar construction for the right sided stencil.

4.2.3.1 Level Set Function

The level set function is given as the function φ : Rn → R which maps each point in the

spatial domain to its (signed) distance from the front. The sign distinguishes between the

two regions.

For example, to create an initial interface which is a sphere of radius 1 centered at the

origin with positive component inside and negative component outside, we define:

φ(x, y, z) = 1− (x2 + y2 + z2) . (4.6)

Each front separates two regions. To initialize many fronts, a level set function is used

to initialize each one individually. Allowing these fronts to intersect is not supported here.

4.2.3.2 Get Front State

The FTI server provides the client routine with a front point and its normal. An outline

of the front state algorithm follows:

1. Get front point coordinates

2. Get normal
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3. Obtain two outer front states

• Component aware interpolation

4. Solve Riemann problem between outer front states

5. Return mid-states from Riemann Solution

The resulting mid states are the required front states, each corresponding to one of the

interior components. This algorithm is used to initialize the dynamic-state model, and it is

used for all front states in the state-free model.

4.2.3.3 Component Aware Interpolation

Component aware interpolation is used to compute outer front states in several of the

algorithms, ensuring that each outer front state averages only cell values that match the

component of one side of the front.

We implement component aware interpolation on the dual grid to the simulation, where

components are defined on grid cell corners. See §4.1.2. To find the state at an arbitrary

point, we identify the cell on the dual grid which contains this point. The algorithm con-

structs an interpolation element using only grid data from a single component taking the

first to succeed of the four following constructions.

In 2D:

1. Bilinear Interpolation

2. Linear Interpolation

(inside)

3. Linear Extrapolation

(outside)

4. Constant Extrapolation

In 3D:

1. Trilinear Interpolation

2. Bilinear Interpolation

(inside)

3. Bilinear Extrapolation

(outside)

4. Constant Extrapolation

The inputs to this function are the coordinates to be used for state evaluation, and

the component consistent with those coordinates. We have implemented this function by

constructing a dual grid to the simulation grid (see 4.1.2). Each corner of the dual grid is a

cell center of the original grid associated with an interior state and a component identifier.

38



1) Bilinear interpolation 2) Linear interpolation

3) Linear interpolation 4) Constant interpolation

Figure 4.6: Cases of the component aware interpolation model in 2D. The shaded area shows
the interpolation or extrapolation element. Case 1 shows a bilinear interpolation case. Case
2 shows linear a interpolation case. Case 3 shows linear a extrapolation case. Case 4 shows
a constant extrapolation case.

We first determine the dual grid cell in which the point lies, and from this we perform a walk

over the corners associated with that dual grid cell. Each cell corner state that matches the

component chosen is added to a queue storing its coordinates and state. Depending on how

many points are available, different different types of interpolation are used. See Figs. 4.6

and 4.7 for the details of each construction.

4.2.3.4 Riemann Solver

In order to compute the front state, a Riemann problem is solved in the direction normal

to the front. We use an exact Riemann solver [5].

We first take S1 and S2 from component aware interpolation at the given coordinates

using component 1 and component 2 respectively. Using [5] we have two functions for mid
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1) Trilinear interpolation 2) Bilinear interpolation

3) Bilinear interpolation 4) Constant interpolation

Figure 4.7: Cases of the component aware interpolation model in 3D. The shaded area shows
the interpolation or extrapolation element. Case 1 shows a trilinear interpolation case. Case
2 shows bilinear a interpolation case. Case 3 shows bilinear a extrapolation case. Case 4
shows a constant extrapolation case.
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state velocity, one taking data from S1 across a left facing wave, and one taking data from S2

across a right wave. These problems are underdetermined and have a free parameter, taken

as the pressure. We denote these ul(S1, p
∗
l ) and ur(S2, p

∗
r), where p∗l and p∗r are the mid state

pressures. Since pressure and velocity are continuous across the contact wave, we have:

p∗l = p∗r = p∗ (4.7)

ul(S1, p
∗) = ur(S2, p

∗) (4.8)

This is solved by a numerical root finder. This gives pressure and velocity in the mid state.

Density and energy are calculated using wave equations in [5] and the EOS.

4.2.3.5 Front State Interpolation

This method is used in dynamic-state mode to fill in state values to dynamically created

points when the front is remeshed. It is a simple interpolator which takes in 3 sets of coor-

dinate / front state pairs and a set of target coordinates. It returns the linearly interpolated

results. This method uses the client state structure which is opaque to the FTI server. Hence

it must be implemented by the client.

4.2.3.6 MOC Solver

This routine is used in dynamic-state mode to propagate the front state in the normal

direction along with its motion. For the Euler equations , there are three space-time char-

acteristics (§4.1.4). When the front is advanced, the point is moved according to the normal

velocity of its front states. Since these are mid states from a Riemann problem (with continu-

ous normal velocity), both states have the same normal velocity. The front point is a contact

discontinuity, and thus travels along the C0 characteristic. The front state information will

travel along the C+ and C− characteristics, which can be traced back to a point interior

to the solution grid at tn. This information (which is typically not a grid point) must be

interoplated (via Component Aware Interpolation: §4.2.3.3), and then taken to define the

new front state at tn+1.

We can perform this algorithmically as:

p(1) = p(0) + v(0) · δt

s
(1)
l = interp(coords, compl)

s(1)
r = interp(coords, compr)
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These states are used as outer states in a Riemann problem and the resulting mid states

define the new front states after the normal propagation.

4.2.3.7 Tangential Solver

As described in §4.1.7.2.2, the front is flattened around a single point. This is done

by projecting the front onto the tangential plane. This creates an unstructured state grid

surrounding a single point. This point is updated by the flux generated by a solve on these

states. Since finite difference solvers rely on grid structure, we interpolate this unstructured

mesh onto a stencil compatible with the interior solver. The interior solver is used to calculate

the flux using this stencil, which is added into the solution state at that point. This is iterated

over all front points.

4.3 FTI Server Implementation

4.3.1 Server Role in Front Tracking Algorithm

• Initialize (uses client callback functions)

– Set up initial geometry

– Initialize front states

• Time Step (uses client callback functions)

– Front propagation

– Resolve topology changes

– Remeshing and smoothing

• Support Functions

– calculate normal and curvature

– determine component region

– determine if front crosses mesh line

– compute front state at crossing of front with mesh line
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4.3.2 Time Step Advancement

It is the role of the server to automate the propagation of front points and states. This

task is performed using client functions for physics related tasks, and can be divided into

steps.

1. Normal Propagation: points move, and states are updated via MOC (dynamic-state

only)

2. Tangential Propagation: tangential update to dynamically tracked front states (dynamic-

state only)

3. Resolve Topology Changes: a LGB untangle algorithm is used to resolve changing

topology.

4. Remeshing and Smoothing: small elements are joined, and large elements are split to

maintain quality of the Lagrangian front mesh.

During the normal propagation, we use client functions to obtain the contact velocity at

the front point and to update the front state at the point via the MOC solver (§4.2.3.6).

This is done at each point to construct a second order RK solution to Eqn. 4.5.

The tangential propagate step constructs a tangential stencil to the front at each front

point. That regular stencil is populated with states interpolated from nearby front states

and passed into the interior solver for a flux calculation.

The Riemann problem is solved again on the new front states to guarantee continuous

pressure and normal velocity.

Topological changes are resolved by adding, deleting, and/or joining elements near the

location where the front becomes tangled (geometrically inconsistent). This is a sophisticated

geometric algorithm [9] which FronTier is capable of performing internally, without support

from the client. However, new front points require new states to be calculated via the client

front state interpolation algorithm (§4.2.3.5).

Remeshing and smoothing are done to maintain mesh quality [46]. Again, this operation

is entirely geometric, and thus handled by the server unaided except for computing new

states at added points by front state interpolation as with the changing topology step.

4.3.3 Support Functions

4.3.3.1 Normal and Curvature

The FTI server can compute normal and curvature at the front. The front point normal

is computed and stored during the front point propagation step. These normals can be
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interpolated to any point on the front surface by giving input coordinates.

4.3.3.2 Component

This method is crucial to the front tracking algorithm. Given a set of coordinates, the

FTI server can return the component, an indicator of the region in which the coordinates

lie. This is needed for component aware interpolation, determination of irregular solution

stencils, and for ghost cell extrapolation. It is used in the marching front to fill in the

components onto the client grid (§4.1.2).

4.3.3.3 Mesh Line Crossing

Given the coordinates of a line segment, the FTI server can determine if that segment

crosses the front, and return the coordinates of the crossings if they exist.

4.3.3.4 Front State at Mesh Line Crossing

Given the coordinates of a line segment, the FTI server will return the front state at the

crossing point of this segment with the front. This is intended to get the solution at the

point where a cut stencil crosses the front (where the line represents an arm of the stencil).

4.4 FTI Implementations

Implementing the physics routines outlined allows a simple and robust front propagation

for a wide variety of potential clients. Implementing the ghost fluid method, a restructuring of

the basic solution algorithm, avoids numerical diffusion across the front by avoiding solution

stencils which contain data from different materials.

FTI is currently being used in the SBU cFluid and iFluid (compressible and incompress-

ible fluid) packages, the high energy density physics code FLASH, and (with passive tracking

only) by the weather simulation code WRF (see Table 4.4).

FTI is designed to be lightweight, simple, and easy to use and understand. Detailed

outlines of these definitions follow in the FTI manual attached in Appendix .

4.4.1 FTI Server: FronTier

FronTier is a front tracking simulation code developed and maintained at SUNY Stony

Brook. FronTier supports triangulated surface meshes and a dynamic propagation algorithm
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Table 4.1: FTI Client Implementations
Code Description Status Location
FLASH High Energy Density Physics In progress This work
cFluid SBU fluid code In progress This work
iFluid SBU fluid code Future work SBU
WRF Weather forecast Passive tracking SBU thesis
Petroleum Reservoir Flame fronts Planned IMPA
Electrocardiac In progress SBU thesis

which supports changing topology. FronTier also performs the normal and curvature calcu-

lations necessary to perform front tracking related calculations, as well as component query

to determine (quickly) the named region (component) of a specified set of coordinates.

Geometry based server functions based on the front come from a recent reformulation of

the interface package, performed by Xiangmin Jiao and students [17, 18, 39]. The idea is

to construct a coordinate neighbor patch (stencil) about each front point of sufficient size

to allow geometry operations (e.g. normals, curvature) to be computed with higher order

accuracy. A 1-ring about a point consists of all triangles with the point as a vertex. A

11
2
-ring includes also all triangles with an edge in common with a 1-ring triangle. Larger

stencils are built by continuation of this idea. On a stencil, the surface is represented as

a polynomial height function of fixed order, leading to linear equations for the polynomial

coefficients for the local height function which defines the surface. The stencil is chosen to

be larger than needed to solve these equations, which are thus overdetermined. They are

then solved (approximately) by least squares. The purpose of the least squares construction

is to achieve a robust algorithm.

Geometrical operations (normal, curvature) have a straight forward derivation within this

framework, and more general integral and differential surface operations are also supported.

4.4.2 Clients

4.4.2.1 cFluid

We provide a reference implementation of the FTI client in the Stony Brook CFD code

cFluid. cFluid and iFluid are compressible and incompressible object oriented CFD codes

developed by Xiaolin Li based on the FronTier simulation package at Stony Brook.

4.4.2.2 FLASH

FLASH is a high energy density physics code developed at uChicago. It supports PPM

and WENO, MHD unsplit staggered mesh, and MHD split 8 wave solvers. FLASH also has
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a variety of EOS available. There are also models for laser energy deposit, opacity, particle

methods, nuclear burning, and more. Its modular design makes it highly extensible. This

implementation will add front tracking to the list of available modules in FLASH.

4.4.2.3 WRF

The Weather Research and Forecasting (WRF) Model is a mesoscale numerical weather

prediction system. The model serves a wide range of meteorological applications across

scales from tens of meters to thousands of kilometers. WRF is currently in operational use

at NCEP, AFWA, and other centers. WRF features the nonhydrostatic mesoscale model

(NMM) dynamic solver, including one-way and two-way static nesting. WRF also features

the unified post processor (UPP) software package and sample scripts for several graphical

packages.

WRF stores meteorological variables at discrete points on a mesh. We intend to use the

tracked surfaces from FTI to represent cloud boundaries, determined by data from satellite

images. This is being developed to make short term predictions for cloud coverage over solar

farms. Future applications may be to track uncertainty boundaries around weather patterns

such as storms.

4.5 Future Work

4.5.1 Second Order Conservative Tracking

The FT API is based on the currently active vision of FronTier. Here we outline a second

order conservative algorithm, based on [30, 46]. In fact, higher than second order accuracy

follows from a higher order version of the ideas presented here. The ideas follow from [16].

1. Propagate the front to a full time level and also to a 1/2 time level

2. Use the space-time front to divide the space-time cells it crosses into cut cells, i.e. two

subregions, each on one side of the front.

3. Merge cut cells with small tops (at time level n+1) or even lacking tops, with neighbors,

until all merged cells have a top volume ≈ ∆x∆y∆z.

4. Integrate the flux ∇F · n over the side or time-like cut-cell boundaries and also over

all regular side and cut-cell faces of the space-time cut cell.

5. The solution can be evaluated on each side wall of the cut cell by differencing to the

required order in standard numerical methods.
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6. Conservative differencing gives the solution average over the top (level n+ 1) in terms

of the average over the bottom (level n) plus the sum of the side fluxes.

7. Integration of the flux over the t = n+ 1
2

cut cell surface is supported in the software

package, and is sufficient for a second order algorithm. Extensions to higher order

follow similar ideas.

This plan is a modification of the algorithm of [14, 30]. The main improvement is in

step (7) which reduces the cost of the flux integration, so that the algorithm is feasible to

implement. Additionally, tetrahedralization of the cut cell side surface is not required.

This version of FT eliminates the ghost cell extrapolation and the interpolation algorithm

for cell centers crossing (in time) the moving front.

In contrast to [30], there is no use of an explicitly discretized space-time front. That is,

step 2 is conceptual only and does not occur in the algorithm. Step 4 is carried out (for

example) at the n + 1
2

time level, using the n + 1
2

time front (see step 7). The side faces of

the space-time cell can be either regular or cut. For cut cell side faces, we evaluate the flux

at the centroid, to achieve second order accuracy. Thus, we never deal with the geometry

of a 3D space-time surface in 4D space-time. In this regard, the present algorithm improves

over [16].

4.5.2 Embedded Boundary Method

The embedded boundary method (EBM) is a numerical algorithm for the solution of

elliptic problems with discontinuous data and/or source terms. We refer to this method here

as it is consistent with the ideas of front tracking, and is needed for use of front tracking

for elliptic problems. The method only uses data from cell centers and the geometry of the

discontinuous surface. We consider an elliptic equation of the form

∇ · F = f (4.9)

F = A∇U , (4.10)

where A and f may be discontinuous over a surface and U is the unknown. The method was

introduced by Colella, and further improved in [44, 1]. The idea is to introduce new degrees

of freedom in the solution matrix at the centroids of the cut cells, and to evaluate flux F

and source f terms at centroids of cut cell faces. These evaluations proceed from the cut

centroid data.
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4.5.3 Late Time Selective Untracking

The front motion is largely grid free. This subgrid resolution offers many advantages.

However a problem sometimes arises in late time turbulent flow simulations using front

tracking in which unphysically small regions may be tracked. Also late-time mixing can

cause the regions near the front to become so diffuse, that the tracked interface is no longer

physical.

The idea is, according to some criteria, we wish to declare a triangle to be untracked or

passive. This property of the triangle must be returned via the stencil / front intersection

query. When the crossing point belongs to an untracked triangle, the ghost fluid method

will not be applied. Instead the cell will update normally. [16]

4.5.4 Other Physics

4.5.4.1 Flame Fronts

We can extend the methods outlined here to apply front tracking to tracking flame

fronts in a combustion simulation. These flame fronts are structured with chemical reactions

taking place in the interior and on the boundary. This has been studied in [36] which notes

that the thermonuclear fusion fronts in type IA supernova behave similarly to combustion

flame fronts. Tracking flame fronts poses new and unique challenges. The flame speed is

determined by a source term integrated over the flame front.

4.5.4.2 Magnetohydrodynamics

Coupling the dynamics of moving surfaces into MHD has required some additional de-

velopment. The hyperbolic dynamics are the same as the fluid applications here. However,

MHD has an elliptic component as well. The embedded boundary method, as above, must be

implemented for the MHD equations. Some techniques have been developed and validated

in [41, 8] using FronTier, but are not yet part of the FTI code.

4.5.4.3 Elasticity

Modeling elastic sliding surfaces is another potential application of front tracking and

FTI. This is done by a master-slave model. Master and slave nodes are created at the slide

surface, and shear forces are computed following an ODE. Front tracking offers promise for

extending the geometric capabilities of such a model, as well as standardizing its implemen-

tation into a fundamental package compatible with many other models.
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CHAPTER

ONE

USER’S GUIDE

1.1 Introduction

Wstar is a tool for computing W* convergence of CFD, and other simulation data. The main idea is a grid coarsening
and sampling. The coarsened grid contains in each cell, a sample of data generated from the simulation grid. This
sample regarded without any geometry coming from the point locations within the supercell. It is instead considered
to be a sample of probability density function(PDF) in the coarse grid cell on the space of solution state variables. This
PDF is computed in the supercell and serves as the Young’s measure for w* convergence.

There are two steps involved in the w* convergence test. The first is the generation of PDF data from the coarsen
and sample model. The second is the comparison of two simulations by comparing these coarsened grids of Young’s
measures.

The first step, coarsen and sample, is performed by the driver (reference?)wstar.py. The second step, compare is
perforemed by the driver (reference?)wstar_compare.py

1.2 Algorithm Details

The coarsen and sample step is fairly straight forward. A new, coarse grid is constructed concurrently with the
simulation data grid. Iterating over the simulation data, the values are binned and counted in the corresponding coarse
cell. After this is done, the simulation data is thrown away, and PDF’s are generated based on the bin frequencies in
the coarse cells. The bins are considered to be a piecewise constant approximation to the true PDF.

The comparison has some more detail. First, the data ranges on the two data to compare may not have the same
binning or values. The ‘bin-lines’, grid lines of the discretized PDF, are taken in union to make a new binning or grid
(perhaps irregular) for the PDF’s. The data are extrapolated as piecewise constant onto the new grid for each PDF.

Now, the PDF’s may be integrated into CDF’s. This is done by a Riemann integral. This integral is exact (numerically,
not stastically) because the bins are piecewise constant, and that constant is chosen to give the correct integral over
the bin to reflect the frequencies of the data sample. Whereas the the PDF has values associated with bins, the CDF
has values associated with the grid lines (the first value being always 0, the last being always 1) and is interpreted as a
piecewise linear approximation to the true CDF.

The comparison for PDF and for CDF are slightly different.

1.3 Wstar Usage

This package contains several module files with .py extensions, as well as two executable drivers: wstar.py, and
wstar_compare.py
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Each is invoked in the same way, passing a single command line argument representing the input file from which to
operate.

1.3.1 Sample wstar.py input file

{
# This will match the file test8.DENSITY.scalar.ts00822-nd0000.vtk etc.
InputName=test8.%var.scalar.ts%step05d-nd%node04d.vtk
# Output file name will be ./pdf-test/test.vtk
OutputName=pdf-test/test

# Number of node files (cuncurrent domains)
Nodes=64

# Size of supercell in terms of simulation cells.
nx=5
ny=5
nz=5
nt=5

# Data about which variables, timesteps, etc to operate upon
BaseStep=822
Steps=822,825,828,831,834
Vars=DENSITY
# Data ranges and binning size
ValRange=0,1
nBins=20

}

This is a sample input file for wstar.py.

InputName The name of the input file. Certain markups are recognized:

%noded This will substitute the node number into the file name. The final ‘d’ is as in
the printf format string for integers. For example, if you have files like: name01.txt,
name02.txt,... You can use: ‘name%node02d.txt’

%stepd The subs for the time step number. This can be formatted like %noded.

%var The name of the variable being analyzed.

OutputName The name of the output file. ‘.pdf’ will be appended to that name.

Nodes The number of node files (concurrent domains) to be read in at each time step. They will be
numbered starting at 0.

nx,ny,nz The number of normal cells to a supercell in each dimension.

nt The number of timesteps to a supercell (time discretization).

BaseStep The base time step. This should be the first entry in the steps list

Steps The list of timesteps to be included in the analysis. This should be a comma separated list of
integers. The first element should be the same as BaseStep. The number of entries should be the
same value as nt.

Vars This should be a comma separated list of variables to be cross correlated e.g. var0,var1,... Often
only one variable is used, but multiple variable correlations can be done.



ValRange The range of values in the input. This is necessary to perform the PDF binning before pro-
cessing can begin. This is a comma separated list with entries being min0,max0,min1,max1,... with
each pair corresponding to an entry in the Vars list.

nBins The number of bins in the PDF discretization. This is a comma separated list with each entry
corresponding to an entry in the Vars list.

The complete data is set in curly braces. Several braced blocks will run several PDF generations on different blocks of
data (from the same simulation or from different simulations). The order of the keys is not important. Each key must
appear exactly once in a block, or an exception will be raised.

1.3.2 Sample wstar_compare.py input file

{
File1=/gpfs/scratch2/yanyu/test_mirko_110902/pdftest/pdf-test.CONCENTRATION.pdf.ts00822
File2=/gpfs/scratch2/yanyu/test_mirko_110902/pdftest/pdf-test.CONCENTRATION.pdf.ts01693
OutputFile=./pdftest/concentration_comparison
Integrate=yes

}

This is a sample input file for wstar_compare.py.

File1,File2 The two PDF files upon which to perform comparison. These should be the output of a prior
execution of wstar.py.

OutputFile The name of the output file. ‘.vtk’ will be appended to the given file path and name.

Integrate Should be ‘yes’ or ‘no’. Yes indicates that the PDF will be integrated into CDF before com-
parison. ‘no’ will perform the comparison on the raw PDF.

1.3.3 Command line invocation

Wstar can be invoked at the command line. This is done by calling:

wstar.py input_file_name

The output will be a single file per block in the input file given by the OutputName key (with ‘.pdf’ appended). This
file will contain all of the PDF data for performing comparisons.

TODO: document the file format, perhaps in an appendix. TODO: provide binary output

1.3.4 Running unit tests

The test directory contains some testing protocols for wstar. The ‘dotests.py’ file will execute the tests and report the
number of successes and failures. All detailed output will be piped into the log file, ‘test.log’.





CHAPTER

TWO

DEVELOPER’S GUIDE

This is the developer’s guide.

2.1 Coding style

2.1.1 File organization

Wstar is coded in Python in an object oriented style. It is divided into several files:

wstar.py The driver for computing PDF’s from simulation data

wstar_compare.py The driver for comparing grids of PDF’s generated by the above

pdf.py All of the code pertaining to PDF’s and CDF’s directly. This includes objects which generate
PDF’s from data, integrating PDF’s to CDF’s, and comparison functions for the PDF’s/CDF’s

grid.py This contains all of the data structures of the grids used. This includes simulation grids, PDF
grids, CDF grids, and tools for performing wstar comparison of grids (successively calling compare
functions in the PDF module).

fgrid.py This module provides a few factory functions for GRID based on different data formats for
simulation data.

arraynd.py Since correlations can be on any number of variables, this module provides an n-dimensional
array object (arraynd) that can be indexed by a list of indices. It also provides some tools for iterating
over, and manipulating such index lists.

utils.py Some global utilities. Included are the input file parser, and some floating point tolerance utilities.

2.1.2 Coding Practices

• It is preferred to use tab=4 spaces. All indentation is done by tabs.

• Data members prefixed by a double underscore are private, and should not be accessed outside of the constructor.
These data are immutable and should only be accessed by the properties assigned to them.

• Function members prefixed by double underscore are private. They may be used outside of the constructor, but
only by function members of the owning object.

• Data/function members prefixed by a single underscore are protected. They are meant to be accessed by the
owning class and by subclasses.

• Variable/members are sad camels if they are local variables, proud camels if they are intended for some broader
use.

55



2.2 Module Documentation

2.2.1 wstar

wstar.py: This is the wstar main driver for generating PDF grids from simulation data.

It has the capability of generating several pdf grids from several simulations, however the file reader is currently only
capable of reading in one pdf grid to make.

The main routine invokes the FileDriver, which parses the input file into the necessary data. That data is stored in a
STEP object. Several step objects can be consolidated into a step list. This list is then passed on to the MainDriver.run()
which generates the PDF data.

class wstar.FileDriver(fileName)
This is a derived class from MainDriver. It takes an input file and generates the data necessary to call
MainDriver. See the sample input file for more info

Parameters fileName (string) – The name of the input file to read

exception wstar.GridCompatibilityError(filename, attribute)
An exception class for compatibility errors between grids in the same timestep cluster. This will be raised when
a file is read in that contains a grid not consistent with the previously read grids.

class wstar.InputFileName(string)
There are various naming schemes for files. This object is a file name generator for the filenames of the data
input to wstar. Once instantiated, it will generate a file name based in the input:

node step var

get(step, node, var)
Return the generated filename for the given arguments :param step: The time step number :type step: int
:param node: The id of the node when reading parallel data :type node: int :param var: The name of the
variable to be read. :type var: string

class wstar.MainDriver(steps)
The main driver class. This class takes in the necessary information to do some analysis. The arguments are all
of the required parameters. This class is the parent of FileDriver which extracts these parameters from the
input file and passes them in.

Parameters steps (list(STEP)) – a list of analysis parameters

run(steps)
The model for this function is: looping over each variable, then for each major timestep, then for each
node domain: construct a grid of supercells initialized to zero. then looping over each minor timestep in
the time stencil: add the contents of each grid cell to its corresponding supercell

class wstar.STEP(InputNameGen, OutputName, Base_step, Dim, Steps, Vars, Nodes, valRange, nBins)
A single PDF grid to make. Tells which variable, timesteps to use

Parameters

• InputNameGen (InputFileName) – A filename generator for the input file.

• OutputName (string) – the name of the output file

• Base_step (int) – The first time step in the time step cluster

• Dim (int) – The grid dimension

• Steps (list(int)) – A list of all time step numbers in the cluster These should be in order, and
the first entry should be equal to Base_step



• Vars (list(string)) – A list of all variables to be analyzed. The order of these matters to the
next several arguments.

• Nodes (int) – the number of nodes (domain files)

• valRange (list(tuple(int))) – A list of 2-tuples who specify the extreme ranges (min,max) of
each variable in Vars in corresponding order

• nBins (list(int)) – An array of integers representing the bin discretization of the correspond-
ing variable in vars

exception wstar.StepConsistencyError(message)
An exception class for inconsistent input data for analysis. This may be raised during initialization when the
input file is processed for consistency.

2.2.2 wstar_compare

wstar_compare.py: Performs PDF/CDF comparison analysis for W* convergence tests. Reads in PDF files generated
by wstar.py.

exception wstar_compare.ComparisonError(grid1, grid2, attr)
To compare two grids, some attributes must match If they do not, this exception is raised.

class wstar_compare.PDF_COMPARE(pdf_grid1, pdf_grid2, outname)
This is a class that runs a comparison on two pdf grids. The final analysis is written to outname

Parameters

• pdf_grid1 (PDF_GRID) – the first pdf grid.

• pdf_grid2 (PDF_GRID) – the first pdf grid.

• outname (string) – the output file name for final analysis

class wstar_compare.PDF_COMPARISON(inFileName1, inFileName2, outFileName, integrate)
The parameters for a PDF comparison. Takes the filenames of the two PDF files (generated by wstar.py), the
name of an output file, and a flag indicating whether or not to integrate to CDF before doing the comparison

Parameters

• basename1 (string) – the first pdf file

• basename2 (string) – the second pdf file

• outbasename (string) – the output file name

class wstar_compare.PDF_COMPARISON_DRIVER(inputfilename)
The driver to run the wstar comparison. This integrates the pdf grids based on the input option, and then calls
PDF_COMPARE to do the comparison

Parameters inputfilename – the name of the input file for the comparison

run(comparisons)
Do the indicated analyses. Loop over list of comparisons to perfoem. For each: read in the PDF file,
integrate if indicated, then call PDF_COMPARE to generate the analysis.

Parameters comparisons (list(PDF_COMPARE)) – The list of analyses to perform

2.2.3 grid

class grid.GRID(gmax, spacing=None, origin=None, varName=None, initialval=0.0)
A grid class for multi purpose use. gmax is a 3-tuple giving the grid spacing in each dimension



static combine_grids(grids)
A factory function to make a grid from several grids

writeVTK(filename)
Write the data to VTK format works only if grid is of singe value floats

class grid.PDF_GRID(filename)
This is the grid of PDF’s used in wstar_compare.py. It is related to the SUPERGRID.

compare(pdf_grid1, pdf_grid2)
Compare two pdfgrids.

integrate()
Call the integrate method on each of the IRREGULAR_PDF’s in the grid. This will replace each IRREG-
ULAR_PDF with an IRREGULAR_CDF object.

unify_binning(pdf1, pdf2)
This function takes 2 pdf grids and replaces all PDF objects with IRREGULAR_PDF objects on the same
grids.

class grid.PDF_MASTER(pdfgrids)
This class takes in several pdf_grid’s and constructs a master pdf_grid from them. It uses the origin field
to arrange the grids passed in into a grid of grids called the “domain_grid”. It is assumed that they can fit
together to form a rectangular grid of domains. Then each domain in the domain_grid is assigned a startindex.
This represents the number of indices below that grid in each dimension, and is used to shift the indices when
constructing the master grid of all of the domains.

construct_global_grid(domain_grid)
Take entries in the grids in the domain grid and place them into the global grid at the correct global indices.

static get_domain_grid_dimensions(pdfgrids)
Find the dimensions of the domain grid. This is equal to the partition dimeneions. This is done assuming
the grid array, pdfgrids, is in z,y,x sorted order. It works by comparing the origins to see how many there
are in each diimension There is some reduncency in the calculation for the purpose of error catching.

static get_total_grid_dimension(domain_grid)
Go through each of the grids in the domain grid and compute the total overall grid dimensions

static set_pdfgrid_start_index(domain_grid)
Take in the domain grid, and set the value: startindex on each pdfgrid in it. This is the shift from lo-
cal/domain coords to global coords used to construct the master grid.

static sort_grids(pdfgrids)
Sort the grids in order of z then y then x. This way they are in row major form to be made into a 3d array
of grids.

class grid.SUPERGRID(gmax, var, origin, spacing, valRange, nBins)
The grid of superblocks. input determines the corresponding grid, and the number of grid cells to a supercell. It
is assumed to divide evenly

Finalize()
Analogous to the finalize method of PDF_BUILDER() class. This calls the PDF_BUILDER.Finalize() on
each PDF in the supergrid. The result is that the supergrid now contains cells with normalized PDF’s with
calculated first and second moments.



2.2.4 fgrid

2.2.5 pdf

class pdf.IRREGULAR_CDF(array, lines, nBins, valRange)
This is a CDF that does not have a regular grid spacing It is similar to the IRREGULAR_PDF, and is generated
by that class’s integrate() method. It contains all of the data of CDF, with the addition of some knowledge of the
physical coordinates of the grid lines.

class CELL(x, f, bilin_eval=None)
A bilinear cell in n dimensions. x is array of x coords [(x0min,x0max),(x1min,x1max),...] f is ARRAYND
of function values. Dim in each var should be 2.

analytic_integral()
Perform integration of bilinear cell analytically.

bilinear_evaluate_generator(xa)
Evaluate the bilinear interpolant on the cell at the point xa

integrate()
Integrate the cell, automatically determining if analytic or numerical integration is required.

numerical_integral()
Split the cell by FACTOR in each dimension, and do a riemann integral.

numerical_integral2()
If there is a crossing, split the cell by 2 in each dimension. continue to split recursively until there is
no cross, or the cell size is very small.

IRREGULAR_CDF.compare(cdf1, cdf2)
Perform the W* comparison on cdf’s. Return the integrated difference scaled by the total area (scale is on
[0,1]).

IRREGULAR_CDF.get_cell(index)
Given the cell index, return a billinear cell object (IRREGULAR_CDF.CELL).

IRREGULAR_CDF.integrate()
Get the integral of the given CDF, intended to be a function in CDF data structure, but representing the dif-
ference of 2 CDF’s. The integration is performed analytically on cells where there is no detected crossing
of the bilinear functions (same signs at all grid points), but numerical in the presence of a crossing.

Iterates over all bilinear cells and finds the integral.

class pdf.IRREGULAR_PDF(pdf, lines)
This is a PDF object whose grid lines are not evenly spaced. The initialization is from a regularly spaced pdf,
and a list of grid lines. The new pdf is created using constant interoplation on the PDF bins at the given grid
lines.

compare(pdf1, pdf2)
Do the W* comparison on two PDF’s. Integrated difference times area. For PDF’s, this is on a scale [0,2],
and so the result is multiplied by 1/2 to get a scale of [0,1].

integrate()
Generate a CDF from the PDF. This is done by riemann integrating. Riemann is the proper integeral to
use, due to the piecewise constant definition of the PDF.

class pdf.PDF(pdfarray, nBins, valRange, mean, cov)
This object represents a PDF. It stores the PDF as a multi-dimensional array in state-variable space. The elements
in the array represent probability density for the discretized bin which it represents.

Parameters



• pdfarray (list(float)) – The pdf in array form.

• valRange (list(2-tuple(float))) – The ranges of values for each variable

:param nBins : the number of bins for each variable :type nBins : list(int) :param mean : The mean of the PDF
:param cov : the covariances of the PDF

There is corrently little to no use of the mean and cov, but they may prove useful in the future for analysis.

tostr()
Return a string representation of the PDF for printing, and for future reading by the PDF_FROMSTR object.

class pdf.PDF_BUILDER(Vars, nBins, valRange)
The Probability density function object. It stores a PDF as an arrayND(above) Representing bins in the PDF.
Each bin has an integer containing the abs frequency of the range of the bin. Bin ranges are computed arithmeti-
cally.

When complete, the getPDF() method converts the integer counts to probability densities and generates a
PDF object.

Parameters

• Vars –

• valRange –

• nBins –

addValue(value)
Add a value to the PDF. The correct bin is computed arithmetically and the freq for that bin is increased.

getPDF()
Computes mean/std/etc shifts from absolute frequency(int) to relative freq (float on [0,1]) returns a PDF
object

class pdf.PDF_FROMSTR(string)
A class derived from PDF whose only initializer is a string. The string converts directly into a complete pdf. the
string is exactly the output of a PDF.tostr() call.
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0.1 File Index

0.1.1 File List

Here is a list of all documented files with brief descriptions:

FTI_client.h
FTI Client Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

FTI_server.h
FTI Server Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

0.2 File Documentation

0.2.1 FTI client.h File Reference

FTI Client Functions.

Functions

• void FTI_getVelocity (const double ∗coords, double ∗return_vel)
• void FTI_getFrontStates (double ∗coords, int component, State ∗return_st)
• void FTI_ghostBuffer (clientStencil ∗stencil)
• void FTI_Interpolate (double ∗coords, STATE ∗return_state)
• void FTI_RiemannSolver (ClientState leftOuter, ClientState rightOuter, ClientState return_leftInner, Client-

State return_rightInner)
• void FTI_NormalUpdate (ClientState old_state, double ∗coords_old, double ∗coords_new, ClientState ∗new-

_state)
• void FTI_TangentialUpdate (ClientStencil stencil)

0.2.1.1 Detailed Description

FTI Client Functions. This is the list of FTI client functions. These functions handle the physics and grid related
aspects of front tracking.

0.2.1.2 Function Documentation

0.2.1.2.1 void FTI getVelocity ( const double ∗ coords, double ∗ return vel )

Input the coordinates, return the velocity

0.2.1.2.2 void FTI getFrontStates ( double ∗ coords, int component, State ∗ return st )

Input the coordinates and normal, return two front states.

Parameters
coords the coordinates of the front point at which to find front state

return_vel the returned velocity

0.2.1.2.3 void FTI ghostBuffer ( clientStencil ∗ stencil )

Given the stencil, compute the ghost states and fill them in.
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0.2.1.2.4 void FTI Interpolate ( double ∗ coords, STATE ∗ return state )

Given the coordinates and component, interpolate the state.

0.2.1.2.5 void FTI RiemannSolver ( ClientState leftOuter, ClientState rightOuter, ClientState return leftInner, ClientState
return rightInner )

Given the coordinates and component, interpolate the state.

0.2.1.2.6 void FTI NormalUpdate ( ClientState old state, double ∗ coords old, double ∗ coords new, ClientState ∗ new state )

Given the coordinates of a point during its update, find the new front state by method of characteristics.

0.2.1.2.7 void FTI TangentialUpdate ( ClientStencil stencil )

Given the coordinates of a point during its update, find the new front state by method of characteristics.

0.2.2 FTI server.h File Reference

FTI Server Functions.

Enumerations

• enum FT_BOUNDARY_TYPE { FT_BOUNDARY_PERIODIC, FT_BOUNDARY_REFLECTING, FT_BOUN-
DARY_FLOW }

• enum FT_GEOMETRY_TYPE { FT_GEOMETRY_SPHERICAL, FT_GEOMETRY_CARTESIAN, FT_GEO-
METRY_CYLINDRICAL, FT_GEOMETRY_POLAR }

Functions

• void FTI_Init_Dynamic_State (int ∗dim, int ∗procGrid, double ∗xmin, double ∗xmax, double ∗ymin, double
∗ymax, double ∗zmin, double ∗zmax, int ∗isize, int ∗jsize, int ∗ksize, int ∗ibuf, int ∗jbuf, int ∗kbuf, int ∗xlbdry,
int ∗xubdry, int ∗ylbdry, int ∗yubdry, int ∗zlbdry, int ∗zubdry, double(∗level_func)(void ∗func_params, dou-
ble ∗coords), void ∗level_func_params, int(∗vel_func)(void ∗, double ∗, double ∗), void ∗vel_params, int
∗geometry)

• void FTI_Init_Dynamic_State (int ∗dim, int ∗procGrid, double ∗xmin, double ∗xmax, double ∗ymin, double
∗ymax, double ∗zmin, double ∗zmax, int ∗isize, int ∗jsize, int ∗ksize, int ∗ibuf, int ∗jbuf, int ∗kbuf, int ∗xlbdry,
int ∗xubdry, int ∗ylbdry, int ∗yubdry, int ∗zlbdry, int ∗zubdry, double(∗level_func)(void ∗func_params, dou-
ble ∗coords), void ∗level_func_params, int(∗vel_func)(void ∗, double ∗, double ∗), void ∗vel_params, int
∗geometry void ∗tangential_update(ClientStencil stencil);void ∗normal_update(ClientState old_state, double
∗coords_old, double ∗coords_new, ClientState ∗new_state);)

• void FTI_Output (const char ∗filename, int length)
• void FTI_WriteRestart (const char ∗filename, int length)
• void FTI_Propagate (const double ∗dt)
• void FTI_CreateSurface (int pos_comp, int neg_comp, double(∗level_func)(void ∗, double ∗), void ∗level_-

params, int surf_type, int(∗vel_func)(void ∗, double ∗, double ∗), void ∗vel_params)
• int FTI_getComponent (double ∗coords)
• void FTI_normal (int ∗size, double ∗∗coords, double ∗∗nor)
• void FTI_cross (const double ∗∗line, double ∗cross)
• void FTI_state_at_cross (const double ∗∗line, double ∗cross, ClientState ∗lstate, ClientState ∗rstate)

0.2.2.1 Detailed Description

FTI Server Functions. This is the list of FTI server functions. These functions handle the geometric aspects of front
tracking, and provide hooks for client level and velocity functions for initialization and time step advancement of the
front.

67



0.2.2.2 Enumeration Type Documentation

0.2.2.2.1 enum FT_BOUNDARY_TYPE

Boundary type

0.2.2.2.2 enum FT_GEOMETRY_TYPE

Geometry type

0.2.2.3 Function Documentation

0.2.2.3.1 void FTI Init Dynamic State ( int ∗ dim, int ∗ procGrid, double ∗ xmin, double ∗ xmax, double ∗ ymin, double ∗
ymax, double ∗ zmin, double ∗ zmax, int ∗ isize, int ∗ jsize, int ∗ ksize, int ∗ ibuf, int ∗ jbuf, int ∗ kbuf, int ∗ xlbdry,
int ∗ xubdry, int ∗ ylbdry, int ∗ yubdry, int ∗ zlbdry, int ∗ zubdry, double(∗)(void ∗func params, double ∗coords)
level func, void ∗ level func params, int(∗)(void ∗, double ∗, double ∗) vel func, void ∗ vel params, int ∗ geometry )

The FTI Initialization function

Parameters
dim the dimension of the simulation. Supported 2D or 3D.

xmin lower x coordinate bound of interior domain
xmax upper x coordinate bound of interior domain
ymin lower y coordinate bound of interior domain

ymax upper y coordinate bound of interior domain
zmin lower z coordinate bound of interior domain

zmax upper z coordinate bound of interior domain
isize number of interior grid cells in x direction
jsize number of interior grid cells in y direction
ksize number of interior grid cells in z direction Does lots of initialization related stuff

0.2.2.3.2 void FTI Init Dynamic State ( int ∗ dim, int ∗ procGrid, double ∗ xmin, double ∗ xmax, double ∗ ymin, double ∗
ymax, double ∗ zmin, double ∗ zmax, int ∗ isize, int ∗ jsize, int ∗ ksize, int ∗ ibuf, int ∗ jbuf, int ∗ kbuf, int ∗ xlbdry,
int ∗ xubdry, int ∗ ylbdry, int ∗ yubdry, int ∗ zlbdry, int ∗ zubdry, double(∗)(void ∗func params, double ∗coords)
level func, void ∗ level func params, int(∗)(void ∗, double ∗, double ∗) vel func, void ∗ vel params, int ∗geometry
void ∗tangential update(ClientStencil stencil);void ∗normal update(ClientState old state, double ∗coords old, double
∗coords new, ClientState ∗new state); )

The FTI Initialization function

Parameters
dim the dimension of the simulation. Supported 2D or 3D.

xmin lower x coordinate bound of interior domain
xmax upper x coordinate bound of interior domain
ymin lower y coordinate bound of interior domain

ymax upper y coordinate bound of interior domain
zmin lower z coordinate bound of interior domain

zmax upper z coordinate bound of interior domain
isize number of interior grid cells in x direction
jsize number of interior grid cells in y direction
ksize number of interior grid cells in z direction Does lots of initialization related stuff

0.2.2.3.3 void FTI Output ( const char ∗ filename, int length )

Write out visualization data to a file.
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Generates visualization data for the front. The output format is VTK POLYDATA.

Parameters
filename The name of the file to generate

length The length of the filename string (for FORTRAN compatibility)

0.2.2.3.4 void FTI WriteRestart ( const char ∗ filename, int length )

Write out restart data to a file.

Generates a restart file for the front.

Parameters
filename The name of the file to generate

length The length of the filename string (for FORTRAN compatibility)

0.2.2.3.5 void FTI Propagate ( const double ∗ dt )

This is the time step function for the front.

Advance the front by the time step ∆t. Move the points according to the velocity field.

Parameters
dt The time step size ∆t

0.2.2.3.6 void FTI CreateSurface ( int pos comp, int neg comp, double(∗)(void ∗, double ∗) level func, void ∗ level params,
int surf type, int(∗)(void ∗, double ∗, double ∗) vel func, void ∗ vel params )

Create a single surface.

Parameters
pos_comp the component identifier where the level function is positive
neg_comp the component identifier where the level function is negative
level_func a function pointer for a level function describing the surface
surf_type a client controlled identifier for the surface. It can have any integer value. Surfaces of the same

type will will have the same velocity function.
vel_func a velocity callback function for the surface.

vel_params some client controlled data that can be passed into the velocity function.

0.2.2.3.7 int FTI getComponent ( double ∗ coords )

Get the component at the specified coordinates

Parameters
coords The coordinates

Returns

The component

0.2.2.3.8 void FTI normal ( int ∗ size, double ∗∗ coords, double ∗∗ nor )

Get the list of front coordinates and normals
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Parameters
size The number of points in the array

coords the array of coordinates.
nor the array of normals.

0.2.2.3.9 void FTI cross ( const double ∗∗ line, double ∗ cross )

Get the intersection point of a line segment with the front

Parameters
line coordinates of 2 points defining the line segment

cross returned crossing coordinates

0.2.2.3.10 void FTI state at cross ( const double ∗∗ line, double ∗ cross, ClientState ∗ lstate, ClientState ∗ rstate )

Get the front state at an intersection point of a line segment with the front

Parameters
line coordinates of 2 points defining the line segment

cross returned crossing coordinates
lstate returned left front state
rstate returned right front state
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